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A numerical analysis is made of the electrostatic field of a TEM cell and scattering of the initial
field of the TEM cell by ideally conducting surfaces of revolution and by a parallelepiped.
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INTRODUCTION The methods described in Refs. 2—6 can be used for

highly accurate numerical analyses of essentially three-
An integral part of the development, construction, anddimensional problems. In the present paper we use these

operation of a TEM cellinvolves the construction of suit- methods as the basis for a numerical simulation of the elec-

able numerical models: preliminary calculations of the fieldtrostatic field of a Crawford TEM célf’ and also for a nu-

of a TEM cell having a particular profile can be used tomerical analysis of the scattering of the fields of a TEM cell

assess the possibilities of this design and ultimately to synat a parallelepiped and at surfaces of revolution having a

thesize a device which best satisfies these particular charagiecewise-smooth generatrix. The accuracy of the calcula-

teristics. The tolerances for the assembly of a real structurgons is of the order of fractions of a percent.

can also be determined. A numerical analysis of the scatter-

ing of the field of a TEM cell at conducting surfaces having 1. NUMERICAL SIMULATION OF THE ELECTROSTATIC

a particular profile can also be used to estimate the perturbaiELD OF A TEM CELL

tions of the initial field introduced by various measuring de- . -

vices. Moreover, if the numerical analysis of this problem W.e shall consider the problem of determining the elef:-

can be performed with a high degree of accuracy, it may bérOStat'(:. field of a TEN.I cell whose; fuqdamental geometry IS

possible to calibrate the measuring devices to the extent o§hown in the _con\_/entlonal form in Figs. 1a and 1b_and n

creating a standard. A numerical analysis of scattering probgeneral form in Fig. 1c. We sh_all assume that the internal

lems is equally important for the direct operation of a TEM electrode of the TEM _ceII forming the surfac qnd the

cell. extemal electrodéforming t.he surfaces,) are at given po-

Under low-frequency excitation, the eIectromagnetictem""llsCl.an_d Ca, res_pecnvely. Then, the potential of the

electrostatic field of this system(x), wherex={x;} are Car-

field of a TEM cell is quasistatic so that various measurin ) . . : . ;
q %Fsmn coordinates in the three-dimensional spégeis the

devices can be calibrated at given electrostatic potentials . - :
the electrodegcasing and internal wiringof the TEM cell. solution of the Dirichlet problem for the Laplace equation

Consequently, in this case it is sufficient to make a numerical 2 g2 g2
analysis of the electrostatic field of the TEM cell and scat- Asv(X)=0, Az=-—+-—+-——,
: T, . . . L X1 X5 X3
tering of the initial field by various conducting objects in
serted in the TEM cell. xeV3/S, v(x)=f(x), xeS. )

The geometry of a TEM cell is such that the numerical ) i
simulation of its electrostatic field and to a greater extent, thdn this case we hav€=S5,US,, f(x)=xs(X)Ci, xe§, i
numerical analysis of scattering of the initial field at conduct-=1,2, whereys is the characteristic function of the set of
ing surfaces are essentially three-dimensional problemsurface pointss;. We know that a solution of the boundary-
whose solution presents various fundamental difficultiessalue problen{l) can be constructed using the potential of a
caused by the complex geometry and the diversity of thesingle layer. In this case, the surface function of the charge
boundary surface formed by the electrodes of the TEM celdensity u(x), xe S satisfies the following system of first-
and the corresponding shields. In turn, discretizing a giverorder integral equations:
boundary surface with acceptable accuracy necessitates con- W(y)
struc.tlng economical and stable aIgonthm; for the numerical E Ayu=C;, [Aijq,](x):f _y ds, .
solution of mesh problems of very large dimensions. Hence, =1 Ix—yl
known calculation procedures are ineffective in this case and -
cannot be applied to make numerical analyses of the fields of xeS, ye§, Lj=12, 2)

a TEM cell with the required accuracy. As a consequence, invhere|x—y| is the Euclidean distance between poixtnd
practice, three-dimensional models are usually rejected in fay in the space/s.

vor of simpler, less accurate, two-dimensional qualitative = Methods of obtaining an approximate solution of an
models. equation of the typé2) based on a numerical solution of
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FIG. 1.
mesh problems of small dimensiond (M=<500) The surfaceS; (internal electrodepossesses an Abelian

approximating an initial boundary-value equation aregroup of Klein symmetry transformations{r(kl)} (k
well-known®1° For simply shaped surfac&these methods =1,2,3,4). The surfac&, (external electrodepossesses a
demonstrated undoubted advantages over other approacHeste non-Abelian group of sixteenth-order symmetry trans-
in a numerical implementation of the method of boundary-formations{Tff)} (k=1,2,...,16). Thus, the symmetry of
value integral equations. Moreover, since the number of arthe surfacess; andS, is best taken into account separately
ithmetical operations required to solve a mesh problem apwhen constructing a solution of E(R) using the highly ef-
proximating an initial boundary-value equation is ficient methods proposed in Refs. 2-5 for solving boundary-
proportional toM3, the computing costs increase substan-value integral equations with a commutative and noncommu-
tially as the dimensions of the mesh problem increase. Inative finite-order symmetry group.
addition, it is difficult to construct stable algorithms for the Following Ref. 6, we shall seek a numerical solution of
numerical inversion of mesh problems of large dimensions.Eq. (2) using the iteration process
For boundary-value integral equations invariant with re- (n+1)_ ") ")

spect to symmetry transformations of some&f\i/nite Abelian  Aulr =(17@)Anup’ + o[ Cr— Al

roup {7}, k=1,2,... N, Demin and Tarasévand Za- i 4
Ehargv{etkill.3 proposed methods of constructing a solution of Azt D= (1= @) Ag? + 0 Cp— Agyu™ ],
the initial equation whose numerical implementation was n=012... ®)
significantly more stable arid? times more economical than " ’
conventional algorithms. These methods may be used for ar, in a different form,
numerical solution of Eq(2) since the surfac&=S,US, B
can be partitioned into congruent components relative to the uf" V= (1= w)uf” + 0A;[Cr— AU,

Klein fourth-order symmetry group. Allowance for this sym- (n+1)_ (n) 1 (n+1)
metry when constructing numerical algorithms can reduce 2 (1= 0)uy"+ oAy [ComAgui ™,
the volume of calculations by a factor of 16 which, however, — _ 4 2 3)

is insufficient to construct an approximate solution of the
problem of scattering of the electrostatic field of a TEM cellwhereA;* andA,,' are operators which are the inverse of
at conducting surfaces with a high degree of accuracy. Aj; andA,;, respectively.
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The invariance of the operatofs;; and A,, relative to ~ TABLE L.
the end groups {7’} (k=1,2,34) and {#{?} (k

=1,2,...,16) of the symmetry transformations of the sur- W) e o & Cn ¢ Ca & Ca
facesS; and S, can be established directly. Consequently,u: 1 1 1 1 1 1 1 1
the operatorsA;;' and A,;} can be constructed using the U2 o1 -1 -1 Al
methods described in Refs. 2 and 3 and in Refs. 4 and %j i _11 :i _1 1 _i :i _1

respectively.
Since algorithms for the inversion of operators invariant
relative to transformations from the group of fourth-order

Klein symmetries were analyzed in detail by Demin and ) )
Tarasov*! we shall merely give the final results here. Spe-and the transformations of the Euclidean spacg, o4, and

cifically, the surfaceS, can be represented in the form o, are defined as followse is an identity transformatiorC
P R S is a rotation through the anglen24 (the X axis is the axis of
Si=UiLs, sNs =0 i#), 1,j=1,2,34, rotation in Fig. 3, o, is a specular reflection operation rela-

tive to the plane passing through the axis of rotation, apnd
is a specular reflection relative to the plane orthogonal to the
Wherer(ll)=e is the identity transformation:;(zl) and 7-21) are  axis of rotation(the YZ plane in Fig. 1. Then, if the coor-
the reflections relative to two orthogonal planes passinglinate functions corresponding to the irreducible representa-
through the axes of rotatiofin Fig. 1 the XZ and YZ tions of the{7{?)} group are known, following Refs. 4 and 5,
planes, 75"= 7D+ is a rotation by the angler (in Fig. 1 we can convert from the second equati8hto the equations
the Z axis is the axis of rotation{s{"} is a set of congruent for its canonical representation relative to §é¢>} group.
components of the surfac® relative to the Abelian group Since the{7(?)} (k=1,2,...,16) groups can be repre-
{r(kl’}, k=1,2,3,4. sented as the direct product of two of its subgroups—a
Demin and Tarasdv then showed that as a result of second-order Abelian group{e,o,} and an eighth-
unitary transformations the operatoA;;=|a;| (i,] order non-Abelian group  (square group
=1,2,3,4) may be reduced to the diagonal form {e,al,C,Cal,CZ,gol,Cs,C%l}, calculation of the coor-
- ) dinate functiond 7;*’} reduces to calculating the coordinate
A = Ap=diagb;,bs,b3,ba), (4) functions of thes{sek t\};vo subgroups. The coordinate functions
where of the irreducible regular representations of an Abelian group
are its characters. The characters of any Abelian group are
known and for a second-order group these have the values 1

WM 21234, o S=UL DD,

b,=a;+a,t+azt+a,, by,=a;—a,—as;+a,,

b;=a,+a,—az—a,, bs=a;—a,+az;—ay, and —1 (for further details see Sec..3For its part, the
. square group{n} (k=1,2,...,8) hasthree generatrices:
ai=a; TV, TOux)=u(#Y %), i=1,2,34, =€, 7,=0;, 73=C, which allows us to calculate directly
w(y) the coordinate functiong;(7), i=1,2, ... ,5,corresponding
[aijxp](x)zj —ydsy, to five irreducible regular representations of this group. The
Ix—y| values ofu;(7y), (i=1,2,...,4,k=1.2,...,8) argyiven in
(1) (1) _— Table 1.
xesit, yest, 1i=1234 The coordinate functionss(7,) (k=1,2,...,8) may be

Thus, the algorithm for inversion of the operatas, represented in the form
reduces to constructing the operatdiriél, which are the
inverse ofb;, i=1,2,3,4. This procedure can reduce the
number of calculations by a factor of 16 by using direct
numerical methods of inverting numerical matrices.

1 0 1 O
Us(e):(o 1>, U5(01)2<0 —l)'

The surfaces, is described by the non-Abelian group of C)= - Co)= -1
symmetry transformationsr®’}, k=12, ...,16, i.e., it can e N e BTN
be partitioned as

16 (2) (2) ~ g(2) i#i, i,j 0 I
S,=UR.s?, s@nsP=0, i#j, i,j=12,...16, us(CAH=| o ], us(CPo)=| o ],
MsP=s®, i=12,...16, — $=U% D 1 0
intocongruent componentgs(?)} relative to the group Us(C3)=(_ 1 0/ “5(C3"1):<1 o)'
{T(kz)}, k=1,2,...,16, where

7(12)=e, 7(22):(71, 7(32)=C, 7'512)=C01. ng)zcz, Tr_]e calculated vaIue.si(rk) can be u_sed to vynte the
equations of the canonical representation relative to the
D=0,0,, 12=0,C, 1D=0,Coy, 73d=0,C2 A+BHu(0=Tix), i=12...10, xes?, (5

§=0,C30y, whereA;=A.s, Bi=—Bi.,g, i=1,2,...,5.

T(li)=0'2C20'1, 7(125)=0'2C3, T(l
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The following relations hold for the operatofs andB;
(i=1.2,....5)

A=A+ A+ A+ A+ Ac+Ag+As+ Ag,

NA‘2:A1_A2+Ag_A4+A5_A6+A7_A8,

~A3:Al+Az_A3_A4+A5+A6_A7_A8,

’A4:Al_AZ_A3+A4+A5_A6_A7+A8,
,,A A1+A2_A5_A6 _Aa_A4+A7+A8
> A3_A4_A7+A8 Al_AZ_A5+A6

Bi=Ag+Ajgt Apy+ Appt Aggt Ayt Ags+ Agg,

By=Ag—Ajgt Ap— At A= Ayt Ags—Agg,

By=Ag+Arg— A=At Agt Ay~ Ags— Ay,

By=Ag—Ajg— A+ At Ajg— Ay~ Agst Ay,

Ag + AlO_ A13_ A14 - All_ A12+ A15+ AlG

ESZ ~ ~ ~ ~ ~ ~ ~ ~ y
A=A AistAg  Ag— A~ Azt Ay
(6)
where
A=TOA,, T@ux)=u(#? 'x), i=12,...16,
W(y)
AP I(x =i—d ,
[ ij ]( ) |X—y| Sy .
2 2 .. 20 :0'02‘ 0.024
xest?, yes?, ij=12,...16. 7 Ngggg\m___,//?
0 )
Converting from the second equation to EG9—(7) re- M///
duces the volume of calculations for the constructiodgf ~40 -30 -20 -10 70 20 30 40z
by a factor of=170. In addition, this procedure for con- FIG. 2

structing the inverse to the mesh operator approximakisng
has a significantly higher calculation stability compared with
existing procedures.

By implementing the iteration proceg3’) with the op-  working volumes of the TEM cell efficiently and highly ac-

eratorsA;;" andA;," constructed using relatiortd) and(5)—  curately, and the procedure for determining these working
(7), it was possible to obtain stable, highly accurate solutiongolumes can be adequately visualized.
of mesh problems which approximate the equati@svith Figures 2 and 3 show isolines for the potentiék,y,z)

a discretization ordeM =10". Therefore, values of the dis- (wherex, Y, andz are the coordinates of the point intkey Z
tribution density function of the electrostatic charggg) at  Cartesian system shown in Fig) &nd the components
the electrodes of the TEM Ceﬂl andSz can be calculated EX(X,ylz)’ Ey(xiy,z), and EZ(X,y,Z) of the intensity vector
with an error not exceeding fractions of percent and conseg(x,y,z) of the electrostatic field of the TEM cell shown in
quently at any poink in the Euclidean spacé; the potential  Fig. 1. A unit potential was applied to the internal electrode
v(x) and the intensity vectdE(x) = —grad)(x) of the elec- 5, while the potential at the external electrotke surface

trostatic field of the TEM cell can be determined by 52) was assumed to be zero. Figure 2a gives the equipoten_
u(y) u(y) tial distribution in the rectanglg=0.2b;, xe[—a;,a,], z
v(X)= i ——ds,, E(X)= _J grad ——rds,, €[0b5], while Fig. 3a gives that in the rectanghe
Xyl x=yl =0.2b,, ye[—bg,bs], ze[0bs]. Figures 2b and Fig. 3b
XeVa\S, yeS=S,US,. show the isolines foE,(Xx,y,z) in the same rectangles; Figs.

2c and 3c give those foE(x,y,z), while Figs 2d and 3d
The algorithms for calculating the electrostatic field of agive those forE,(x,y,z).
TEM cell described in the present section can be used to In these calculations the number of nodes on the bound-
determine the position and required characteristics of thary surfaceS=S,US, was 8000, i.e., the initial boundary-
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fields of a TEM cell based on electrostatic problems on a
plane can give a qualitativelgbut not quantitatively true
picture of the potential distribution and the component of the
electrostatic field intensity vector in th€Y andXZ symme-

try planes, although this is very approximate for simulating
the scattering of the field of a TEM cell at conducting sur-
faces.

2. SCATTERING OF THE ELECTROSTATIC FIELD OF A TEM
CELL AT A CONDUCTING SURFACE OF REVOLUTION

The problem of determining the perturbation of the field
of a TEM cell caused by various conducting objects inserted
in the cell is of major practical interest. In this section we
analyze the scattering of the field in a TEM cell by infinitely
conducting shields and objects comprising various surfaces

c of revolution(such as cylinders, cones, spheres, ellipsoids of
zF revolution, and so on In this case, we need to find the
solution of the boundary-value problefd) whose set of
boundary points forms a surfacg having the following
form: S=S,US,US;, whereS,; andS, are the electrodes of
the TEM cell considered previously argi is some surface
of revolution, given that the potential(x) of the electro-
static field of this system has the following values at the
boundaryS:

-
SO

v(x)=f(x), xeS§, f(X)=xs(X)GC;,

xeS, =123,

whereC,; andC, are given constants arf@; is a generally
unknown constant.

By analogy with Sec. 1, we convert from the boundary-
value problem to an analysis of the following system of

40

-30 boundary-value integral equations:
FIG. 3. 3 W (y)
le Aijui=GCi,  [Aj] ,‘I’](X)Ifwdsy,
value integral operatof2) was approximated by a densely xeS, yeS, i,j=123. ®

filled (8000x 8000) matrix.

The components of the electrostatic field intensity vector ~ We shall construct a numerical solution of the equations
Ex(x,y,2) andE(x,y,z) are usually neglected when devel- (8) on the basis of the iteration process
oping TEM cells since it is assumed that their values are (n+1) ") " "
negligible compared withe,(x,y,z). However, no reliable Apuy T =(1-w)Apui P+ o Cp— Apuy” — Aggus ],
guantitative estimates have been obtained to confirm this.

A comparison between the isolines shown in Fig. 2 withA224
thev(x,y,2), Ex(X,y,2), andE,(X,y,z) isolines obtained in
the rectangley=0,xe[ —a;,a,], ze[0,bs] (in this case we
have E,(x,y,z2)=0) revealed qualitative differences. This n=012.... 9
also applies to the(x,y,z), Ey(x,y,2), andE,(X,y,2) iso-
lines obtained in the rectangle=0, ye[—bs,bs], z We shall consider the construction of an operaigg the
€[0,b3] and the isolines shown in Fig. 3. The values of theinverse ofAg;, since the operatord;; and A,," are con-
electrostatic field potential(x,y,z) and the corresponding structed using relation&) and (5)—(7), respectively.
components of the intensity vecté,(x,y,z) at the points The surface of revolutiorS; is described by theC..
(x,02) and (x,0.2b3,z) for xe[ —a;,a;] andze[0bs] and  group of symmetry transformations of Euclidean space and
also at the points (9,z) and (0.d3,y,z) for ye consequently it has a finite Abelian subgro@p of the C.,
[—bs,bs] and ze[0bs] differed by a few percent. This group for anyn (n=1,2,3...); C, is a cyclic group of
indicates that under certain conditions, a simulation of thesymmetry transformations having the following form:

M= (1— ) Auf" + w[ Co— Apyu{" V= AnufV],

A33U(3n+1)=(1_ a))A33ug")+ w[Ca—A31u(l”+1)—A32u(2”+1)],
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{e,7, ..., 7"}, wherer is a rotation through the angle A ;u{™ V= (1-w)Apu{"+w[C;—Aus — AufV],
27/n with the axis of rotation matched with the symmetry (1) ") (1) ")
axis of the surface of revolution. Sin€, is a finite Abelian ~ AxUy /= (1= @)Axu5" + o[ Co—Axui = Axuz™],
group of symmetry transformations of the surf&eand the ~(n+1)_ ~(n) (n+1) (n+1)
operatorAg; is invariant with respect to transformations of AsdUs = (1~ @)Ags” — @[ Agui™" '+ Agliz ™ ],
the motion from the symmetry group of the boundary sur-

face, the operatoh;” is best constructed using the methods f uf"* Yds,
described by Demin and Taragoand Zakharowet al® M V=c{ Bug+uftY, et
By virtue of the symmetry properties, the surf&&gecan f l:'gdSy
be partitioned as follows
Se=ULs¥, s®ns®=p, i#j, i,j=12,...n, n=012..., (12)
Ti_ls(3)28g3) =10 N oo S=Un 17“““5(13) whereu; is the solution ofAzzu;=1.
i ] 1y v e s ] i=

It is easy to see that implementing the iteration process

into congruent componenl{$i(3)} relative to theC, group.  (12) requires almost no increase in the number of operations

Demin and Tarasdvand Zakharowt al® also showed that compared with proced9), i.e., the iteration proce¢d2) has

as a result of known unitary transformations, the operatothe same advantages for solving scattering problems as the
A33:||aij|| (i,j=1,2,...n) can be reduced to the diagonal iteration proces$9) used to determine the electrostatic field

form*? created by the surfac8=S,US,US;. We stress that for
R iteration processef®) and (12) the relative spatial configu-
Asz = Agg=diagby,by, ... by), (100 ration of the surfaceS,, S,, andS; is arbitrary.
where We shall analyze the scattering of the electrostatic field
of a TEM cell (Figs. 2 and 3 at a cylinder of heightH
n ) , =0.0695; and radiusR=0.1&;. Approximate solutions of
bi=2, ae" 07D =12 .. .p, this problem for various positions of the cylinder inside the
= TEM cell were obtained using the iteration proc€kg). For
e=exp2wl/n), 12=1, instance, Fig. 4a shows field potential isoling,y,z) of
, A A this system in the rectangley=0, xex[—aj,a;], z
aj=ay T I*, T u()=u(7 "), j=12,...n,  <[0)bs]. Isolines for the component of the electrostatic field
W(y) intensi_ty ve_ctorEz(x_,y,z) in this re_ctar_1g|e are shown in Fig.
[aij‘l'](x):fmdsy: 4b while Fig. 4c givesE,(X,y,2) isolines in the rectangle

xes®, yes®, ij=12,...n.

ConstructingAs, using the relation§10) can reduce the
number of arithmetic operations involved in inverting the
mesh operators approximatir®; by a factor of=n?. For
instance, forn=100 the number of operations will be re-
duced= 10" times when direct methods are used to invert the
numerical matrices.

Computational experiments showed that if the value of
the constantC; is known (the potential of the surface of
revolution), the iteration algorithm(9) where the operators
ALY, ALY and ALY are calculated using relatiortd),
(5)—(7), and(10), respectively, can be used to determine the
electrostatic field created by a system of electro&s
=S,US,US; having given potential€,, C,, andCs with
an error not exceeding fractions of percent. \

We shall consider the scattering of the electrostatic field +
of a TEM cell by an infinitely conducting scatterer. We know %%
that this problem can be solved approximately by means of a /
numerical solution of the equatioit8) supplemented by the B
following condition (charge conservation conditipn

» =,

J u(y)ds,=0, yeS;. (12) o et

0 \\—/ :
Condition(11) can naturally be incorporated in the itera- % ; L L L L L v [/

tion process(9) to determine the consta; without any 40 30 -2 1 0o G e
real increase in the number of arithmetic operations, i.e., FIG. 4.
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y=0.2,;, xe[—aj,a;], ze[0,b3]. In this case, the axis of
rotation of the cylinder coincided with the axis (Figs. 1a
and 10 and the distance between the internal electrode of the
TEM cell and the lower end of the cylinder whs=0.4%5.

Let us assume that this cylinder is positioned as follows:
the axis of rotation of the cylinder is parallel to thfeaxis
and intersects th& axis at the heighbh=0.3%; and one of
the ends of the cylinder lies in théZ plane. For this cylin-
der configuration Fig. 5a gives the isolines characterizing the
potential distributionv(x,y,z) in the rectanglex=0, ye
[ —Dbs,bs], ze[0,bs]. Figure 5b shows th&,(x,y,z) iso-
lines in the same cross section and Fig. 5c gives the
E,(x,y,z) isolines in the rectanglex=0.2b;, Vye
[—bs,bs], ze[0bs].

By comparing Figs. 4 and 5 with Figs. 2 and 3 we can
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determine some characteristic features of the perturbations of

the electrostatic field of a TEM cell caused by the presence
of an ideally conducting cylinder in some part of this cell.

Since the electrostatic field is potential and the ideally con-
ducting cylinder is an equipotential surface, we can talk of

the field flowing round the surface of the cylinder whoseFIG. 6.

nature can be determined directly from Figs. 4 and 5 and the
degree of perturbation of the electrostatic field of the TEM

cell caused by the cylinder and its rate of attenuation in space
can easily be assessed.

To conclude this section, we note that we have confined

In these calculations the number of nodes on the bound-

ary surface S=S;US,US; was 9000, i.e., the initial
boundary-value integral operat{8) was approximated by a
densely filled (9008 9000) matrix.

FIG. 5.

ourselves to developing programs to simulate the scattering
of the field of a TEM cell at surfaces of revolution having a
piecewise-smooth generatrix represented as a finite combina-
tion of line segments and arcs of circledosed and open
cylindrical and conical surfaces, spheres, and sp How-
ever, this program can also be used as the basis for analyzing
surfaces of revolution with any types of generatrices since
these algorithms implement a specific type of symmetry and
are not related to a specific surface profile. This implies that
the development of programs to solve the problem of scat-
tering of the field of a TEM cell for surfaces of revolution
having a specific type of generatrix can be reduced to a pro-
gram describing merely a class of these surfaces.

3. SCATTERING OF THE ELECTROSTATIC FIELD OF A TEM
CELL AT A PARALLELEPIPED

If a parallelepipedFig. 6) is taken as the compone8j
of the boundary surfac&=S,;US,US; considered in the
previous section, approximate values of the electrostatic field
potential for known constant§;, C,, andCz; may be ob-
tained using the iteration proceé®. Then, the problem of
scattering of the electrostatic field of a TEM cell at an infi-
nitely conducting parallelepiped can be solved numerically
using the iteration proces€l?2). In addition, calculations
based on the iteration algorithr@) or (12) can be predicted
to have a high accuracy provided that effective algorithms
are available for inverting the operatdg;
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TABLE II.
)(i(rj) T =€ T,=0, T3= 0y0, T4=0y T5= Oy Te= 0x0y T7= 0x0y0, Tg= 00,
X1 1 1 1 1 1 1 1 1
Y2 1 1 -1 -1 1 1 -1 -1
X3 1 -1 -1 1 1 -1 -1 1
Xa 1 -1 1 -1 1 -1 1 -1
Xs 1 1 1 1 -1 -1 -1 -1
X6 1 1 -1 -1 -1 -1 1 1
X7 1 -1 -1 1 -1 1 1 -1
Xs 1 -1 1 -1 -1 1 -1 1

P(y) xesi?, j=1,2,....8,
(A¥I00= [ L2ods, xyes,

Ix—yl (3) (3) (3)
l:I(X):f(’ﬂ 5X)| f(T| IX):f(Ti X)i
whereS; is a parallelepiped.

The surfaceS; is described by the Abelian symmetry xesi?, i=1.2,....8,
group {7} (k=1,2,...,8)(Fig. 6 and the invariance of
the operatoi,; to transformations of the motion of the Eu- f(X)=(1—w)Asu{V(x) + [ Cg— Agzu{" V(%)

clidean space from the eighth-order groﬁqﬁg)} can be es-
tablished directly. Zakharoet al!® analyzed three existing
abstract eighth-order Abelian groups and obtained canonical
representations of the operators invariant with respect to [A:W](x)= f
transformations from these groups. The restilfsrm the !

basis of the algorithm for constructing the operalloj@l

—Asud (X)), xeSs,

w(rYy)

[ — Sy ,
Py

which is the inverse of,;. x,yes, i,j=1,2,....8.

The eighth-order Abelian group of symmetry transfor-
mations of the surfac&; {7{*)} has the following form: Similar notation is suitably introduced for the third equa-
{e,0,,000,,0,,0¢,040,,040,0,,0,0,}, Where oy, oy, tion in the iteration proces®).

and o, are reflections relative to the three pairwise orthogo- ~ The system(13) can be converted to eight independent
nal planes{YZ}, {XZ}, and {XY}, respectively(Fig. 6. equation by means of unitary transformations
Since o2=02=02=e, e is an identity transformation, the . . _
group {7} is the direct product of its three Abelian sub- ~ A(o)U(g)=F(ai), 1=12,....8, (14)
groups{e,o.}, {e,oy}, and {e,o,}. Since the subgroups
{e,04}, {e,0y}, and{e,o,} are cyclic groups, the tables of
their characters have the same forgi(e)=1, x.(e)=1, 8 8
x1(1)=1, xo(7)=—1, andr={0y,0,,0,}, which can be A(a)=2 Axi(7?),  U(o)=2 Ujxi(¥),
used to directly calculate the characteygr\>)) of the =1 =1
{731 k=1,2, ... 8group(Table II). 8

The surfaceS; can then be partitioned as F(&‘):,zl Fin(rJ(3)), i=12,....8.

where

Se=Uf_;sP,  sPnsP=p, i#j,

If the solution of the equations(14) U(o;) (i
=1,2,...,8) isknown, the solution of the systefi3) can
be reconstructed as follows:

SORDENCY

i=12,...,8, —» S3= UiS:lTi(s)S(lp)

8
into congruent components{”} relative to the{7)}; k Ui=> U(o)xi(7®), i=12,...8.
=1,2,...,8group. Taking into account these relations for i=1 A
eachn (n=0,1,2 ...), werewrite the third equation of the

iteration processe®) and(12) in the form Hence, the solution of the third equation in the iteration

processe$9) or (12) is reduced to solving the equatiofisd),
8 i.e., inversion of the operatdks; is replaced by constructing
121 AjUI(0=Fi(x), i=12,....8 xes’, (13 A1) operators the inverse @f(&r), i=1.2, ... ,8.This
procedure can reduce the volume of calculations required to
where the following notation is introduced for the third equa-construct the mesh operators approximaﬁiiq;g1 by a factor
tion (9) of =64. The problem of scattering of an electrostatic field by
an arbitrarily oriented parallelepiped can therefore be solved
Ui =uf" V(7 x),  uf DA ) =uf " D(%x), with a high degree of accuracy by means of the iteration
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process(12) where the operator8,;, A,,, andA;; are in-  fundamental difficulties and requires relatively little comput-
verted in accordance with Eg&l), (5)—(7), and(14). ing time.

We shall now consider the scattering of the electrostatic  To conclude we note that these algorithms may be taken
field of a TEM cell(Figs. 2 and Bat a parallelepiped having as the basis for developing schemes for obtaining numerical
the following typical dimensionsa,=0.183, b,=0.183,  solutions of problems involving the scattering of electrostatic
and c,=0.032%;, i.e., this parallelepiped is a square platefields of known types of TEM cells at various systems of
whose base length is equal to the diameter and whose thickiosed and open shields.
ness is equal to the thickness of the cylinder described in the
previous section. This plate was successively inserted in the
same volumes as the cylinder. The electrostatic fields of‘M. L. Crawford, IEEE Trans. Electromagn. Comp&MC-16(4), 189
these two systems with the parallelepiped was calculated for1974- .

. S. K. Demin and R. P. Tarasov, Zh. Vychisl. Mat. Mat. F28, 1308
11500 nodes suitably selected on the boundary surface (1989.
=8,US,US;. Graphs of the isolines in the same cross sec-3g. v. zakharov, S. I. Safronov, and R. P. Tarasov, Dokl. Akad. Nauk
tions as in Figs. 4 and 5 were then plotted for the electro-4gS§R%:1£§\? (3393 [CSh?:I. T\’Ah;S-MD;kIFSi%Jﬁ(llf)g(igga
static field poterjtlab(g,y,z) and the corresponding cqmpo- 5R. P. Tarasov: zh. Vzchisl: Mat. Mat. Fi83: 1815(1993:
nents of the intensity vectoE(x,y,z). A comparison SE. V. Zakharov, S. I. Safronov, and R. P. Tarasov, Z. Phys. Cliistu-
between these graphs of the isolines of the electrostatic fieldnich) 33, 1030(1993.
of a TEM cell scattered by a parallelepiped and those of the’C. H. Wan, IEEE Trans. Electromagn. Comp@, 109 (1993.

field isolines scattered by a cylindéfigs. 4 and brevealed mégé Jaswon and G. T. Symm, Proc. R. Soc. London, Se74 23

a definite qua"tati\llge Sim"_arity- ~ °M. A Jaswon and A. R. Ponter, Proc. R. Soc. London, Se278 237
Zakharovet al.™” considered quadrupole systems which (1963.
have the same Symmetry group as a para"elepiped’ i.e', thloé? F. Harrington,Field Computation by Moment MethodMacmillan,

. X . . New York, 1968.
class of surfaces having this type of symmetry which is ofus. K. Demin and R. P. Tarasov, Mat. ModB(7), 113 (1993.

interest for practical applications is fairly extensive. Prob-12g v zakharov, S. I. Safronov, and R. P. Tarasov, Zh. Vychisl. Mat. Mat.
lems involving the scattering of the electrostatic field of a Fiz. 31, 40(1992.
. . . 13 i
TEM cell at surfaces in this class can then be solved using E'. V. Zakharov, S. I. Safronov, and R. P. Tarasov, Zh. Vychisl. Mat. Mat.
: . . Fiz. 30, 1631(1990.
these algorithms. It is only necessary to obtain a program
describing this class of surfaces which does not present aryanslated by R. M. Durham
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It is demonstrated that the generally accepted treatment of the second law of thermodynamics is
incorrect when the statement of the maximum limiting efficiency of the forward Carnot

cycle is applied to the reverse cycles. An analysis of reversible cycles compared with the Carnot
cycle shows that the reverse Carnot cycle has the lowest efficiency of all reverse cycles. A

new characteristic is proposed — the thermal efficiency of reverse cycles, and a generalized
theorem is put forward for the additivity of the thermal efficiencies of the forward and

reverse cycles. A formulation of the second law of thermodynamics is suggested from the point
of view of the efficiency of reverse cycles. ®99 American Institute of Physics.
[S1063-784299)00206-9

INTRODUCTION W, /Q<(T1—T,)/Ty.

Erroneous statements and conclusions are frequently en- At the same time, the relationship between the cooling
countered in treatments of the principles of thermo-coefficient and the thermal efficiency is stthat the more
dynamics In particular, the thermal efficiency of reverse efficient the forward cycle, the less efficient will be the re-
equilibrium processes and the position of the Carnot cycle irverse cycle.
this group of cyclic processes have yet to be determined. One It is difficult to envisage the position of the Carnot cycle
formulation of the second law of thermodynamics indicatesamong the other reverse cycles because of the absence of any
that some limit exists for thermal efficiency whose boundarycharacteristic similar to the thermal efficiency of forward
is determined by the most efficient forward Carnot cycle. cycles. Thus, an explanation of the impossibility of sponta-

In the forward and reverse cycles the conversion of som@eous concentration of energy using a heat pump in violation
types of energy into others is considered under conditionsf the second law of thermodynamics is of no significatce.
where the conservation law is satisfied. Nonequilibrium is It is impossible to formulate the second law of thermo-
allowed for by a correction in analyses of processes for reaflynamics in terms of the existing efficiency characteristics of
cycles. The efficiency and direction of energy conversion careverse cycles. As will be shown, the statement that the Car-
be formulated in terms of efficiency, and in terms of entropy.not cycle is the most efficient of the forward cycles cannot be
Thus, analyses of forward and reverse cycles may be useftiansferred “mechanically” to reverse cycles.
in chemical and technical thermodynamics.

Reversible cyclegsubsequently we shall not specifically compARISON OF REVERSE CYCLES
refer to the condition of reversibilijyare compared with the ] ]

Carnot cycle as the standarahich is considered to be the For the analysis we give the well-known theorems.
most favorable in the forward and reverse forms. It is  First Camot theorem: the thermal efficiengy of the

postulated® that the reverse Carnot cycle has superior ecoforward Carnot cycle depends only on the temperatures of

nomic characteristics, i.e., cooling and heating coefficientsth® heat sources
This is demonstrated either on the basis of fallacious pre- 7.=1-T,/T,.

mises or the conditions of comparison are taken to be _
arbitrary’~® The statementsee Refs. 3 and)Zhat the Car- Second Carnot theorem: the forward Carnot cycle has

not cycle has the highest cooling coefficient compared witf€ highest thermal efficiency of any cycle for given tem-
other reverse cycles at given heat-source temperatures is iR€raturesT, andT,

correct. In particular, the following inequalitys assumed to ne>n". (D)

hold for reverse cycles - : .
y The efficiency of reverse cycles is characterized by the

Qu /W <T,/(T;—T,), heating coefficienty
whereQ,/W,.=¢ is the cooling coefficientyV, is the work ¥=Q1/We=Q1/(Q1=Q2).
of the cycle, andl'; andT, are the temperatures of the hot Since the thermal efficiency of an arbitrary forward
and cold heat sources. cycle is
However, this expression contradicts the “principle of ~
the heat engine '{the second Carnot theorgni.e., the in- 7=(Q1=Q2)/Qu,
equality it follows that

1063-7842/99/44(6)/3/$15.00 618 © 1999 American Institute of Physics
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should be defined as the ratio of the difference between the
energyQ; supplied to the working medium and the compen-
sation energyE to the energyQ., i.e.,

7=(Q1—E)/Q;. 4

For forward cyclesE is the heatQ, removed from the
working medium and then

7=(Q1—Q2)/Qq,
whereas for reverse cycles it is the wgrkechanical energy

5 6 8§ W, needed to transfer heat from the cold to the hot medium
so that
7=(Q1—W)/Q1=Q,/Q;.
- The second Carnot theorem gives-T,/T;=n.>7%

=17 =1-Q,/Q,, andT,/T;<Q,/Q,, and we obtain
The second Carnot theorem indicates that,/1/is or Pe<7. (5)

o

FIG. 1.

<. 2 Inequality (5) is consistent with inequalitie®) and (3),
Thus, any reverse cycle with given temperature limitsi-€., the reverse Carnot cycle is most inefficient.

has a higher heating coefficient that the corresponding Car-

not cycle. The same result can be achieved by comparing the

Carnot cycle and an arbitrary reverse cycle onBh& dia-  MULTIPLICITY OF EFFICIENCY CHARACTERISTICS

gram. The cycles being compared should be situated betwe@&F FORWARD AND REVERSE CYCLES AND THEIR

the limiting temperature$, andT, in order to eliminate any INTERRELATIONSHIP

ambiguity.

The other efficiency characteristic of reverse cycles is It can be shown that the introduction of a third efficiency
the cooling coefficient characteristic for the reverse cycle is excessive. However, the

thermal coefficienk, is known for the forward cycle which
e=Q2/We=Q2/(Q1— Q). indicates the possibility of utilizing the heat dumped in the

Having inscribed an arbitrary cycle into the Carnot cycleforward cycle
(Fig. D, we can see tha®@,. is equal to the area of the e=7+Q,/Q;.
rectangle 1456 whereas the same heat of the arbitrary cycle )
Q, is the sum of the areas 1456 +a, so thatQ,.<Q,. For the forward cycle we can also suggest the ecological
The work of the Carnot cycl#, ¢, which is equal to the ~characteristic
area of the rectangle 1234, exceeds the work of the arbitrary ¢ =\w._/

e c Q21

cycle W, by the amounta+b+c+d, whenceW, c:>W,.

Consequently we fin@Q, /W, c<Q, /W, or which at the same time characterizes the working efficiency
, c, [+

of the engingif £.>1, the engine operates in the most per-
ec<e, fect cyclo.

which is consistent with the conclusig8). This means that As a result, the forward and reverse cycles can be char-
the heating and cooling coefficients of an arbitrary reversé“:ter'23eOI by a system of interrelated characteristics. We
cycle are greater than the corresponding characteristics of tH@OWl that

reverse Carnot cycle. 7(e+1)=1. (6)

The characteristics and ¢ are convenient for estimat-
ing the useful properties of the reverse cycle but do not re-
flect the appearance of the second law, as may be achieved %.y=¢.g,=g,=1, )
using the thermal efficiency of the forward cycle. The ab-
sence of such a characteristic, i.e., the thermal efficiency o?nd also
the reverse cycle, makes it difficult to obtain unambiguous  7(g+1)=1, (8)
results in thermodynamic analyses.

However, this relation is not unique since

which is equivalent to Eq6). The efficiency characteristics
of the reverse cycles are related analytically

THERMAL EFFICIENCY OF REVERSE CYCLES n=eli. 9

By definition, in all cases the efficiency should be alt follows from Egs.(6)—(8) that for the Carnot cycle;, and
proper fractioh? given by the ratio of the useful effect to the % have the highest values while &, and? have the lowest
energy consumption. values compared with other cycles. Hence, the forward Car-

Heat pumps operating on reverse cycles can transfer heabt cycle is most efficient in terms of all characteristics while
from cold to hot media. The efficiency for heat enginesthe reverse cycle is least efficient.
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"'MH HHP’ ) 7+7<1,

where the subscriptrefers to irreversible processes.

—_— CONCLUSIONS

In reverse cycles the ratiQ,/Q; indicates the effi-
ciency of transferring heat from a cold source to a hot one by
0 l l l 1 1 Ta analogy with the expression-1Q,/Q, , which describes the

‘ ‘ efficiency of transferring heat into work in accordance with
the second law of thermodynamics. From this similarity we

FIG. 2. suggest that the rati®,/Q; should be called the thermal
efficiency of the reverse cycle.
The introduction of the thermal efficiendy as a univer-
THEOREM OF ADDITIVITY OF THE EFFICIENCY sal characteristic means that the reverse cycle can be as-
OF FORWARD AND REVERSE CYCLES sessed from common viewpoints regardless of the conditions

of application of the heat pumfzooling, heating, and com-
bined heating-cooling devicgand the condition for revers-
ibility of the energy conversions in a cyclic process can be
expressed rationally. The conclusion is confirmed that
among the reverse cycles the Carnot cycle ceases to be a
7+n=1 (100  standard cycle. The proposed efficiengymeans that this

an be made equal t§ by formulating the second law of
hermodynamics for equilibrium and nonequilibrium pro-
esses.

The property of additivity of the efficiencies is the most
general from the point of view of the first law of thermody-
namics. It is easily shown by introducirig that in any cy-
clic process the sum of the thermal efficiencies is one

This statement can be taken as the theorem of additivit
of the efficiencies of the forward and reverse cycles whos
analytic expression together with Eq§)—(9) combines the
characteristics of both groups of cyclic processes. As the
difference between the temperatures of the hot and cold:\-/lF’- Bazgrovylielysions f;)nd Err'ars inmggern;%dynamim Russiar,
sources in any cycle !ncreas@’lncr?ases an@ decre.a.'ses' ZG?SISI?V\AIetI?stgeV?gggselgl Ir-|eesa3£ E?\Z?r?eerir?din FIQJE-ssiaﬂ, Vysshaya
Formula (10) is a rational expression for the condition of  gniola, Moscow(1980, 552 pp.
reversibility of the heat and work conversion in a cyclic pro- 3M. P. Vukalovich and I. P. NovikovTechnical Thermodynami¢i Rus-
cess conducted in the forward and then in the reverse direc;Sian, Gosmergoizdat, Moscow1955, 336 pp.

tion or in a system of two identical coupled cycles, one being xﬂ'osibwz(qgl%vs?@Tpr;ermdynam'cs[m Russiap, Energoatomizdat,

for_\/\_/ard Qnd the_qthe_r revers€ig. 2), and is equivalent to sy, v. NashchokinTechnical Thermodynamics and Heat Transged ed.
writing this condition in the form6)—(8). [in Russian, Vysshaya Shkola, Moscow 980, 469 pp.
The theorem(10) shows the erroneous nature of the 8E. Schmidt, Thermodynamics. Principles and Applications to Engineer-

. 14 . . . ing, transl. from the 3rd German edClarendon Press, Oxford, 1949
conclusiori that the efficiencies of coupled cycles are equal. [Russ. transl., later ed_nErgiya, Moscow, 1965, 392 pp.

The second law of thermodynamics can be formulated’y. A, Kirilin, V. V. Sychev, and A. E. Shendlin, Technical Thermody-
from the point of view of the efficiency of the reverse cycle: namics 4th ed.[in Russiar, Energoatomizdat, Moscow1983, 416 pp.
it is impossible to completely transfer energy from a cold to 8Technical Thermodynamics: Textbook for Universjtiedited by V. I.

. . . . Krutov, 2nd ed[in Russian, Vysshaya Shkola, Mosco(981), 493 pp.
a hot medium without an additional expenditure of Energy; . Fenn,Engines, Energy, and Entropy: a Thermodynamics Prmer

(compensation energyn the implementation of this process, [Freeman, San Francis¢2982; Mir, Moscow (1986, 336 pp].
i.e., it is impossible to achieve a value of unity fgr. 101, A. Kvasnikov, Thermodynamics and Statistical Physics. Theory of Equi-

Eaquilibrium conditions give the highest efficiency for librium Systemdin Russian, Moscow State University Press, Moscow
d 9 9 y (1991), 800 pp.

the forward a_nd reverse Cy(_:Ies. o 1| . Artsimovich, P. Kapitsa, and I. Tamm, Pravda No. 32859.
We obtain a certain “inverse” Carnot principle: the ?physics Encyclopedic Dictionarfin Russiad, Sov. Htsiklopediya,

greater the temperature difference between the two sourcel§!\/|OSCOW(1983).

- : : : : ~°N. I. Belokon’, Basic Principles of Thermodynamifis Russian, Nedra,
the lower the efficiency of engines and devices operating in Moscow (1968, 110 pp.

the reverse CyC_l?- . 143, Orear,Physics[Macmillan, New York(1979; Vol. 1, Mir, Moscow
For nonequilibrium processes we clearly have (1981, 336 ppl.

m+n<l Translated by R. M. Durham
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A theoretical analysis is made of the flow of vibrationally excited hydrogen in a channel. It is
shown that coverage of the channel walls with adsorbed hydrogen atoms can substantially
increase the concentration of vibrationally excited molecules in the stream. The possibility of
applying these results to bulk sources of negativehydrogen ions is discussed. It is

shown that the rate of Hion generation in the source may be enhanced appreciably under
conditions where this generation is achieved by dissociative attachment of thermal electrgns to H
molecules injected into the discharge chamber, whose vibrational distribution function has

been pre-enriched in excited molecules by suitably organizing the hydrogen flow in the channel.
© 1999 American Institute of Physids$1063-784£99)00306-3

1. The present paper is concerned with the generation afolecules to the channel walls, it is natural to use wall ma-
vibrationally excited H molecules in a stream of molecular terials having the highest possible potential barrier for ad-
hydrogen. Interest in the generation of these molecules hasorption of molecular hydrogen. Such materials specifically
arisen as a result of various plasma-chemical applicatidns, include transition metals such as copper, gold, and silver. As
the use of vibrationally excited Hmolecules in negative in Ref. 6, we shall subsequently analyze a flow of vibra-
hydrogen ion sourcesand other factors. Various types of tionally pumped hydrogen in a copper channel since the
gas discharge are being actively used to generate vibrgrobabilities of adsorption and desorption of molecular hy-
tionally excited moleculegsee, for instance, Refs. 1}x4n  drogen, including vibrationally excited hydrogen, have been
these discharges the formation of vibrationally excited mol-comparatively thoroughly studied for copper surfat&g®
ecules is generally determined by the vibrational pumping ofThe most comprehensive theoretical analysis of the interac-
lower vibrational levels bye—v exchange and subsequent tion between vibrationally excited Hmolecules and a cop-
diffusion of vibrational quanta into regions of high vibra- per surface was made by Cacciatore and Biffinfpr the
tional numbers as a result ob —v exchange. An important Cu(111) face. These authdfsshowed that at low kinetic
factor is that in many cases, fairly efficient pumping of theenergies E,,<0.1e\) the surface deactivation of,Hnol-
lower vibrational levels of molecules is accompanied by ap-ecules is mainly caused by tunneling of molecules through
preciable heating of the gas. This reduces the role -af the potential barrier in the surface layer followed by disso-
exchange in filling the upper levels and increases their  ciation, i.e., attachment of H atoms to the surface. Cacciatore
relaxation which ultimates reduces the populations of theand Billing*® also determined the probability of attachment
higher vibrational states. w, (Eyn) of a molecule vibrationally excited to the level,

In Refs. 5 and 6 the present authors suggested using l@ving the energ¥,;, along the normal to the surface.
flow of vibrationally excited hydrogen in a channel to en- In the present study we consider a low-voltage cesium—
hance the populations of highly excited vibrational states. Irhydrogen discharge as the discharge in which the initial vi-
this case, the vibrational distribution functidp of the H, brational pumping of H takes placé:?° This type of dis-
molecules forms in two stages. First, molecular hydrogercharge was selected because its parameters can be
flows across the discharge where the hydrogen moleculedetermined theoretically to quite acceptable accurese
acquire a fairly high average vibrational enerffy,) as a Refs. 20—22, for instangeThis method of enhancing the
result ofe—v exchange. The vibrationally excited hydrogen concentrationN, of vibrationally excited molecules in a
then flows through a channel whose walls are kept at a lovgtream is naturally also promising for pure hydrogen dis-
temperaturd  such as room temperature. An additional, andcharges.
for some vibrational levels, very substantial increase in the In Ref. 6 we reported a theoretical analysis of the flow of
populationsN, is achieved by —v exchange in the cold gas vibrationally excited hydrogen in a channel using the mecha-
in the channel, i.e., by comparatively inefficientt ex- nism for the surface deactivation of molecules indicated
change. Note that similar effects caused by pumping higlabove. However, in Ref. 6 we neglected effects caused by
vibrational levels of H molecules were observed experimen-the finite coverage® of the metal surface with adsorbed
tally and investigated theoretically in the afterglow of pure hydrogen atoms. The aim of the present study is to take these
hydroger§ and cesium—hydrogen dischardés. effects into account. We shall show that when these effects

2. In order to reduce the losses of vibrationally excitedare taken into account, the populatidds of a whole range

1063-7842/99/44(6)/7/$15.00 621 © 1999 American Institute of Physics



622 Tech. Phys. 44 (6), June 1999 F. G. Baksht and V. G. lvanov

of vibrationally excited states of Hmolecules increase sub- geneous because of the removal of particles to the channel
stantially in the upper part of the spectrum. This then leads tgvalls and the resulting depleted concentration in the wall
a considerable increase in the effective rate constant for digones. Effects arising from the depleted concentrations are
sociative attachment of thermal electrons to vibrationally extaken into account by introducing the effective lifetimes of
cited H, molecules compared with the ca®e=0 considered Vibrationally excited molecules, and atomsr,;, which are
in Ref. 6. given by>**

3. The basic equations describing the flow of vibra- L2 L o
tionally excited hydrogen in a channel are written as follows T,= +— Yo

(for further details see Ref.)6The distribution of the mo- mDgg UH, Yo '

lecular hydrogen pressuig(x) over the length of a planar L2 Lo

channel is given by =+ - YH ©). (7)
P(X)=[p5—(p§—Pp2)x/h]*?, (1) ™D TR

wherepy=p(0) is the hydrogen pressure at the entrance thhereDsd andD,, are th'_a _coefficie_nt Of. self-diffusion Of.é_l
the channel X=0), i.e., approximately the pressure in the molecules and the coefficient of diffusion of H atoms in H

5,26 —
discharge, ang, is the pressure at the channel exit=(h). molecules?”** andv = yBKT/7XM. _
Thenp, andp, are related by The coefficientsy, and y, determine the fractions of
S

excited H molecules lost to the surface of the channel walls
h/L=(Ry/24)(c,/c,) " (Po/ps)®—1], (2 from the total number of molecules or atoms incident on the

whereR.=p.LV,/7 is the Reynolds number calculated us- SUrface, respectivelyy, and y, depend on the surface cov-
ing the channel cross sectitn the molecular hydrogen vis- €r2ge® with adsorbed hydrogen atoms.y#-1 in Egs.(6)
cosity 7, the densityp,, and the velocity of sountf, in the or (7), the first term on the rlg.ht-hand S|de.|s _substantlally
exit cross section of the channel. greater than the second. In this case, the lifetime of an ex-
The vibrational level population,(x) are determined cited molecule or atom is limited by partiqle_diff_usion from
from the system of equations the channel to the walls and a characteristic diffusion con-
centration profile is established between the walls. In the
opposite case, when<1 (for further details see Ref.)6
only the last terms are important in Eq®) or (7). This
corresponds to comparatively fast diffusion which equalizes

d
T (NoV) = TN+ TN+ TN+ 9N}

(v=012...,14, 3 the particle concentration over the channel cross section. In
where V(x) is the gasdynamic velocity averaged over thethis last case, the particle flux from the gas to the surface of
channel cross section. each channel wall iéNv_y and is small compared with the

The terms on the right-hand side of E@) systemati-  random currentNv.
cally allow forv—v exchangeyp—t exchange with hydrogen 4. We shall now determine the values of, yy, ¥, ,
molecules and atorr?g, and vibrational relaxation of mol- and the Coverag@_ The value Of‘yv , which is the probab"_
ecules at the channel walls ity of a vibrationally excited molecule being adsorbed at the

|§W){Nu}: —N, /7,4 W, /L. (4) surface, depends on the attachment probabaif¢E,;,) and

the surface coverag® with adsorbed hydrogen atofis?®
The first term on the right-hand side of E¢) describes

- —®)2
the losses of vibrationally excited molecules caused by their 70(0)=(W, (Eyin)) (1~ ©)*. ®)
drift from the stream toward the channel walls angdis the Here(w,(Ey;,) ) denotes the attachment probability av-
corresponding effective lifetime of a vibrationally excited eraged over a semi-Maxwellian molecular distribution func-
molecule in the channel. The second term on the right-hangon in a random stream at gas temperatiiteSince the
side describes the increase in the concentration of vibraw, (E,;,) values given in Ref. 10 is insufficient to calculate
tionally excited H molecules in the stream as a result of (w,), we made the approximation that everywhere
de_sorption of h_ydrogen from the channel walls, whergis  (w,(Eyn))=w,(kT). The values ofw,(kT) in the required
twice the density of the molecular desorption flux from therange of temperature$ were determined by extrapolating

walls. the data from Ref. 10.

The concentratiol(x) of hydrogen atoms in the chan- Under the conditions being considered here, the prob-
nel was determined from ability y,;, which determines the fraction of hydrogen atoms

d lost to the surface is written as

ax (NuV)= = Nu/7, ®) Yu(®)=wy(1-0)+ oMo ,0. (9)
where 7 is the lifetime of hydrogen atoms in the channel The first term on the right-hand side of E§) describes
caused by their losses to the walls. the attachment of atomic hydrogen to the surface and is simi-

In Egs.(3)—(5) N,(x) andNy(x) are the concentrations lar to expressior{8); wy is the probability of attachment of
of vibrationally excited H molecules and H atoms averaged atomic hydrogen to the surface. The second term on the
over the channel cross section: the true distributiondlof right-hand side describes the probability of ap tHolecule
andN, over the channel cross section are generally inhomobeing formed at the surface as a result of surface recombina-
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tion of an incident H atom with an adsorbed hydrogen atomy, and r,. We also note that the effective lifetime, can
by the Eley—Rideal mechanistiHere o;=1.5x 10*°cm™2 generally only be introduced if, for givenm, the emission of
is the density of sorption centers at the surface of thevibrationally excited molecules from the gas stream to the
Cu(111) facé and ¢ is the effective cross section of walls exceeds the reverse desorption flux. Allowance for all
Eley—Rideal surface recombination. these factors should make the calculation scheme signifi-
The probabilitywy, of attachment of hydrogen atoms to cantly more complex. In the situation being analyzed here,
the copper surface was assumed to be one because of the Ibwever, these complexities can be avoided because in the
gas temperature and the very small thermal energy spread @alculations presented below, Eley—Rideal desorption will
the atomic hydrogen stream penetrating into the metal. Corplay a dominant rolé® The density of the desorption flux of
sequently, the probability of atoms returning from the metalvibrationally excited H molecules from the walls is de-
to the gas is low. Note that similar valueswf, were calcu-  scribed by
lated by Bischleret all® for room-temperature gas and the (eff
Cu(110 surface allowing only for a phonon mechanism of \If(ER)zL& OER'0HO (ER)
energy loss for a hydrogen atom in the metal. v A yw(@)
The effective cross section for surface recombination of
a hydrogen atom by the Eley—Rideal mechanism followedere the cofactowr (i) 0,0/, determines the fraction of
by desorption of a vibrationally excited ,Hnolecule was hydrogen atoms incident on the surface of the channel walls
assumed to ber&=5 A2 The value used for the cross and participating in surface recombination by the Eley—
section is the result of an analysis of the experimental*iata Rideal mechanism ané{™® is the vibrational distribution
made by Persson and Jack$BiWe note that the cross sec- function of the molecules desorbed by the Eley—Rideal
tion oS thus determined from the experimental data is supMechanism, normalized to unitg( f{=®=1). The distribu-
stantially higher than the calculated cross section for Eley-tion function f % used in the calculationésee Fig. 2bis
Rideal recombination obtained in Ref. 18. A quite obvioustaken from Ref. 30f{*Ris also similar to one of the calcu-
reason for thigas noted by Persson and Jackson in Ref. 19lated variant¥ (see Fig. 10c in Ref. 28An important factor
is the extremely large cross section for capture of an H atori§ that the vibrational distribution functiof{=™ is almost
in the surface layer of the metal. Consequently, Eley—RideaPnly nonzero fon = 1-3 whereas the attachment probabili-
recombination involving trapped but not yet thermalized hy-ties w, and therefore the values of7}/in expressiong4)
drogen atoms at the surface is much more efficient than di@nd(10) are only nonzero for comparatively high vibrational
rect Eley—Rideal recombination of an atom incident on thdevelsv=5 (Ref. 10. As a result, the effective lifetimes,
surface for which the cross section was calculated in Ref. 18Jiven by expressiong6) and (8) will only be used in the
For these values of andU(EeRff) , we find y4~1, so that calculations when the corresponding desorption fluxes are
the first term on the right-hand side of E) for any cov- ¥, =0. This means that expressi¢8) can be used for, .
erage® is substantially greater than the second. Thus, foAllowance for desorption by the Langmuir—Hinshelwood
the calculations we assumedy=7{", where 7 mechanism in cases where this mechanism is important re-

=L272D, is the time for diffusion of atomic hydrogen from duires a special analys{see Sec. 6 S

the stream to the channel walls. As a resulj, is almost 5. We shall now discuss the calculated distribution of the
independent 0® and the accurate values of the constants orfOverage®d(x) over channel length. Figure 1 shows distri-
the right-hand side of E¢9). On the contrary, the lifetime butions of the molecular and atomic hydrogen concentrations
7, of an excited H molecule in the channel depends strongly Nu,(X) andNy(x) over the channel length determined from

(11)

ono®. Egs. (1) and(5) together with the distributio® (x), calcu-
The coverag® of the surface of the channel walls with lated by solving Eq(10) for ¥, =W (R The initial values
adsorbed hydrogen atoms is determined from of the concentrationsl;, (0) andNy(0) at the channel en-

trance(allowing for a jump in temperatur€ at the channel
entranc®) correspond to the conditions achieved in an initial
low-voltage cesium—hydrogen discharge. The discharge pa-
rameters were calculated using a method described in Ref.

The left-hand side of Eq10) is the number of hydrogen 23. Figures 2a and 2b show calculated distributions of the
atoms adsorbed per unit time on both walls of the channevibrational distribution function of hydrogen molecules in
per unit surface area. The right-hand side of Bdf) gives the streant,(x)=N,(x)/Z,N,(x) over the channel length,
the number of hydrogen atoms entering the stream as a reswlalculated by solving the system of equatigB$, and the
of desorption of molecules from the channel waNi; is  vibrational distribution functiorif,ER) used in the calculations
twice the flux density of molecules excited to leveldes- where desorption is described by the Eley—Rideal mecha-
orbed from each channel wall. nism (f,(x) is given in relative units,(x)/f,(0)).

With reference to the notation used in expressi¢f)s We shall analyze thé& (x) curve plotted in Fig. 1 for
and(10), we note that in the adopted formalism, the desorpwhich we shall first assess the role of the various terms on
tion of vibrationally excited molecules from the walls should the left-hand side of Eq10). Simple estimates show that in
be taken into account, not by including the flux denslty  the initial section of the channel, where the vibrational dis-
from the channel walls as a separate term on the right-hanlibution functionf,(x) of the molecules in the stream, under
side of expression&) and (10), but by suitably redefining those conditions making the major contribution to adsorp-

2> N, /7,(0)+ N/ |L=2> ¥, (0). (10)
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o ) ) and the dashed curves give those of Ref. 6 obtaine@fe0; the discharge
FIG. 1. Distributions of atomic and molecular hydrogen concentrations and,q fiow parameters in the channel are the same as in Fly—2 vibra-
coverage over channel length-— Ny, 2— Ny, 3— ©. Initial discharge  jonq) distribution function of K molecules desorbed from the walls by the
parametersL=0.3 cm, N(H°2)= 3x10%cm3, N®W=1.8x10"“cm3, N Eley—Rideal mechanism.
=10Mcem 3, n,=3.26x108%cm3, N{®=3.8x10%cm™3, T,=0.65eV,
(E,)=0.335¢eV, T,=300K. j,=4.5Alcn?, j=5Alcn?, U=4.9V, ¢,
=8.65V, and¢,=0.75V. The gas temperature in the discharge Wgs
=0.06 eV and in the chann@l=0.03 eV.
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tion there is no need to use the effective lifetimgsand the

) o o ) o resultant molecular flu¥, at the gas—wall interface is cal-
tion, is still close to the initial vibrational distribution func- culated as

tion f,(0) in the discharge, only the second term on the

left-hand side of Eq(10) describing the adsorption of atomic

hydrogen is significant. This yields. the _covera@e which JUZENUU_H 7,(0)— Eq,(LH)’ (12)
does not depend onNy and is given by ©=1/ 4 2 2"

(1+ UHU(Ee,{f)). Then, as the populatioms, of the levels con-

tributing to the adsorption of molecular hydrogen increase 1

and the atomic hydrogen concentratitlhy, decreases, the z\lfgLH)zzﬁLH@fo}H) (13)
first term on the left-hand side of Eql0) describing the

adsorption of vibrationally excited Hmolecules also be-

comes important. This has the result that the cove@ge I-€., the density of the Langmuir—Hinshelwood desorption
increases, approaching unity_ A formal solution of Etp) flux of molecules excited to level from one of the channel
for x—o andNy—0 gives®=1. The curve®(x) in Fig. 1 walls.

has a cutoff at the point, where desorption by the Eley—  The value of (1/2§,0? is determined as in Ref. 31 and
Rideal mechanism is comparable with that by the Langmuir-is the density of the total flux of jJimolecules desorbed from
Hinshelwood mechanism. the walls. Hered, 4(T) = vaﬁexp(—E/kTs) is the desorption

6. Desorption by the Langmuir—Hinshelwood mecha-rate constanty andE are the effective vibration frequency of
nism only becomes appreciable at fairly low concentration@n adsorbed atom and the desorption energy, respectively,
Ny and®=1. In this case, it follows from Eq®8) that y, and T, is the wall temperature. Moreove‘rf,"H) is the vibra-
<1, so that only the last term in E¢f) is important. As has tional distribution function of molecules desorbed by the
been noted, this is consistent with the fact that the true con-angmuir—Hinshelwood mechanism normalized to unity.
centration of vibrationally excited molecules becomes equalThe criterion for the validity of expressiofi2) is the in-
ized over the channel cross section as a result of rapid diffuequalityyu<27-r2D3d/LvH2 which forx=Xx, is satisfied by a
sion and the flux of excited molecules from the gas to thgarge margin. The vibrational distribution functidy-") is
channel walls becomes (1M)vH2~ v, . In this approxima- determined from the principle of detailed equilibrium
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B = [(Wy (Eiin) 7, 0XP(— B, KT/ 1 f & M %3,
2 (W, (En))r,exp(—E, /KTy |.  _ s .
v 0 °L = 410
\\
The surface temperature was assumed t@ 3300 K. s
. 7 2'N2\\ 3
The rate constand, 4(Ts) was calculated using the measured oL \\ d7*
desorption spectrum for JACuU(111) (see Fig. 7 in Ref. 31 \
Finally, instead of expressiofl0) for x=x, we obtain the \\
following equation to determine the covera@e which ex- 0L \ |, -6
presses the atom balance at each channel wall: \ 0
\
1 1 NyL \\
_ -8 -8
- - i 0 ° 10
22 7N, 7,(0)+ 3 W \
d \
- ||
=3 (v O)+ v o)), as w0 07
where W &R is described by expressidal) as before and 1% ! ! ! L Nw™*
w(-M was defined in expressiaii3). 0 7 2 £ eV 3 4
The value of® obtained by solving Eq.15) for x=x, is v’

very close to unity. As a result for=x, the probability of 5 3 viprational distribution function of Himolecules in the initial dis-
vibrational deactivation of limolecules is very low so that charge(1) and at the channel exi2(2, 3): L=0.3cm;h=3.5 (2, 2') and

the terml "){N,} in Eq. (3) is insignificant here. Vibrational 4.5cm(3); the solid curves give the results of the present calculations and
deactivation of molecules in this region is causedzbyt the dashed curve gives_the_regmibtained for@ =0. The discharge param-
. _ eters are the same as in Fig. 1.

exchange. Now, unlike Ed6) v—t exchange limits the op-
timum channel lengti for vibrational pumping of high lev-
els. This means that a substantially higher level of vibra-
tional excitation of the molecules can be achieved at higher Maxwellian distribution with the temperatufg,. We shall
than in Ref. 6 both as a result of the lower probabilitiesdetermine the effective rate constant for dissociative attach-
v,(®) of vibrational deactivation of the molecules at the Ment
walls and as a result of the increased channel lehgth

Figure 2a shows how the results of the calculations are  (Kpa(h,T2))=2> f,(h)K,(TL), (16)
influenced by the reduced probabilify(®), with two series v
of curves being plotted: the dashed curves give the results ofhereK,(T.) is the rate constant for generation of kbns
Ref. 6 obtained fol® =0 and the solid curves give the re- by attachment of electrons to molecules vibrationally excited
sults of the present study. It can be seen that for the sante the levelv (Refs. 33 and 34
channel lengtth=3.5 cm, the vibrational distribution func- Figure 4 gives values df,(h)K,(T;) which indicate the
tion f,(h) at the channel exit is significantly higher at high partial contribution of the different vibrational levels to the
vibrational numbersy compared withf (h) calculated in total rate constant for dissociative attachment. Curvweas
Ref. 6. This is also illustrated in Fig. 3, which gives the calculated forh=0 using the vibrational distribution func-
vibrational distribution functiong$,(h) (curves2,2 and3) tion f,(0) in the initial discharge. Curv gives the result of
at the channel exit for various calculations. In Fig. 3, cl2ve the present calculations whefg(h) is the vibrational distri-
calculated in Ref. 6 corresponds to approximately the optibution function at the channel exit, determined allowing for
mum channel length for the selected discharge and flow pahe finite coverag® (x) of the channel walls with adsorbed
rameters in the channel. The distribution functibg(h) hydrogen atoms. It can be seen that the values of
shows the highest level of vibrationally highly excited mol- f,(h)K,(T;) are increased substantially as a result of the
ecules. A comparison of cun& with curves2 and3 shows  madification of the vibrational distribution in the channel.

that allowance for a finite coverag® leads to an increase in Figure 5 gives(Kp,) as a function ofT; for various
the vibrational population distribution at highand also in- calculation variants. Curvé was calculated using the initial
creases the optimum channel length. vibrational distribution functionf,(0) formed in the dis-

7. To conclude, we shall discuss how modification of thecharge. Curv®’ was calculated in Ref. 6 and corresponds to
vibrational distribution functiorf,(x) in the channel influ- conditions when the vibrational distribution functidg(h)
ences the rate of Hgeneration as a result of dissociative was formed in a channel of optimum length={ 3.5 cn) for
attachment of plasma electrons to vibrationally excited H ®(x)=0. Curves2 and 3 give the results of the present
molecules’? As in Ref. 6, we shall assume that a hydrogencalculations made allowing for a finite coverage of the chan-
flux pumped vibrationally in a channel is injected into a dis-nel walls with adsorbed hydrogen atoms. Cugyas in Ref.
charge chamber which contains thermal electrons having &, was calculated fon=3.5cm and curve corresponds to
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FIG. 5. Dependence of the effective constéip(h,T,)) for dissociative
attachment on the electron temperatlife The discharge parameters as the
same as in Fig. 11 — (Kpa(0,Tg)); 2,2 and 3 — (Kpa(h,Tg)), L
=0.3cm,h=3.5(2,2), 4 and 4.5 cm3); 2 and3 — results of the present
calculations, an@’ — resulf obtained for®=0.

ecules injected in the chamber, whose vibrational distribu-
tion function has been pre-enriched in excited molecules by
suitably organizing the hydrogen flow in the channel.
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A new approach is proposed for the development of a nonlinear moment method of solving the
Boltzmann equation. This approach is based on the principle of invariance of the collision

integral with respect to the choice of basis functions. Sonine polynomials with a Maxwellian
weighting function are taken as these basis functions for the velocity-isotropic Boltzmann
equation. It is shown that for arbitrary interaction cross sections the matrix elements corresponding
to the moments of the nonlinear collision integral are not independent but are coupled by

simple recurrence formulas by means of which all the nonlinear matrix elements are expressed in
terms of linear ones. As a result, a highly efficient numerical scheme is constructed for
calculating the nonlinear matrix elements. The proposed approach opens up prospects for
calculating relaxation processes at high velocities and also for solving more complex kinetic
problems. ©1999 American Institute of Physid$$1063-784£99)00406-1

INTRODUCTION and an equation is constructed for the weighting functien (
representation of the Boltzmann equaji@yuivalent to the
The basic mathematical results of solving the BoltzmanrBoltzmann equation iw-space’® In Ref. 9 we considered
equation include a linearized equation and slight deviationghe same moment method as in Ref. 6 but by using the math-
from equilibrium:~* Analytic solutions of the nonlinear ematical tools developed to construct therepresentation,
Boltzmann equation are known in very limited number of e succeeded in obtaining formulas for the matrix elements
cases. Existing numerical methods of solutidmainly vari-  for aritrary power potentials, including those for Coulomb
ous modifications of the Monte Carlo methagive only @ paricle interaction. Moreover, the formulas obtained are

rough idea of the behavior of the distribution function at highconsiderably simpletfour nested sumsso that the calcula-

velocities® At the same time, the behavior of the distribution tions could be made as far as the thirtieth moment with the
function at high energies is a decisive factor in a whole rangg . me accuracy

of physicochemical processes. . . .
. o . . In Ref. 1 hat th f th Ili-

In 1982 Turchetti and Paolifli published a study in . n e 0 we suggestedt a_tt € Invariance o the cofl
sion integral of the Maxwellian distribution function relative

which a nonlinear moment method was used for the first tlmet- . ) .
. ; o . to the choice of basis functions could be used to analyze the
to make systematic calculations of the distribution function ) . )
matrix elements. These basis functions were taken to be So-

at high velocities for the isotropic Boltzmann equation. The . | s with diff £t i f the M
distribution function was represented as a truncated series ne polynomials wi erent temperatures of the Max-
wellians characterizing the expansion. As a result, we ob-

Sonine polynomials, and the tails of the distribution function™ " i ) . .
were described using higher moments. The main difficulty intained some relationships between the matrix elements which

this method is calculating the interaction matrix correspondVere used as criteria for the accuracy of the calculations. We
ing to moments of the nonlinear collision integral. Even forParticularly stressed that for arbitrary interaction cross sec-
the velocity-isotropic Boltzmann equation the problem istions, the nonlinear matrix elements are not independent but
fairly complex. For instance, in this study where the powervarious relationships exist between them.
potentials are considered assuming that the scattering cross In the present paper the idea of invariance is generalized
section is independent of the angles, the analytic formula® the collision integral of an arbitrary distribution function.
obtained for the matrix elements contain six nested sumds a result, we obtained very detailed relations which could
The calculation difficulties increase catastrophically as thde used to express the nonlinear matrix elements in terms of
number of moments taken into account increases so that linear ones. These relations can be applied to study how the
becomes impossible to go beyond the thirteenth moment. basic properties of the linear elements influence the nonlin-
The present authors previously developed a method ofar ones and can also be used to check the accuracy of the
integral transformation of the nonlinear Boltzmann equationcalculations. Finally, these relations can be taken as recur-
in which the distribution function and the collision integral rence formulas to calculate the nonlinear matrix elements in
are expressed as a superposition of Maxwellian distributionserms of linear ones.

1063-7842/99/44(6)/8/$15.00 628 © 1999 American Institute of Physics
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INVARIANCE OF THE DESCRIPTION OF RELAXATION where the distribution function irv-space is related to
PROCESSES @(T,t) by:

ocM(v,T)<,o(T,t)dT. (6)

lems, the distribution function is expanded in terms of So- o

nine polynomials with a Maxwellian weighting

When the moment method is applied to isotropic prob- fot) f
v,l)=

The kernelA(T,T,,T,) is a mapping of the collision
integral of the two Maxwelliang™(T,,T,,v) in a-space

f(v,H)=ngM(v,T) ZO CH(T)S(mu?/2KT). (1)
M _2 |7
Here M(v,T)=(m/2kTm)3%exp(-mu¥2kT) is the Max- T T2 Tz0)=ng J’o M DA T2 T2)dT. @

wellian andng is the particle number density. We know that ) ) )
this series converges if the Grad criterion is satisfitt The Maxwellian-weighted orthogonal system of Sonine

further details see Ref)8Substituting Eq(1) into the right- ponnomiaIsS’l,zgmuzr/ T.) cr()rrespondséto the biorthogonal
hand side of the Boltzmann equation, then multiplying bothSYStem of functions; andsg in a-spac
sides of the equatior! b, ,(mv2/2kT), and integrating with SH(T, T, ) =(T,) 8(T=T,)/r!, (8)
respect ta, we obtain
S[(T,T*)Z(l—T/T*)r. (9
dC /dt'= > K'j  (T)C,C,, t'=t/r. 2
2

o, T Here 8()(T—T,) is an rth-order derivative of the

_ _ o _ . o-function. For conciseness we use the notation
The d|men3|onl?ss matrik’, . is defined in terms of M(v,T)S(Mmv2/2kT) =S (v, T). Then we have

the collision integral (f,f) as follows:

o Sr(U,T*):f M(v,T)sk(T,T,)dT, (10)
K,:Nz(T):L‘WnOT( J' rllzlA(MSrl}zaMSrﬁz Uzdv) vy, 0
’ and it follows from Eqgs(8) and(9) that

ve=(2r+ 1)1/ (2r)!1, 3) F

SL(T, T, )sk(T,T,)dT=4;. (12)
0

wherev, is the square of the norm of the Sonine polynomial.
Subsequently, the primes will be omitted and the choice of
will be specifically discussed.

In Ref. 10 we derived a formula to check the accuracy o
the matrix element calculations. This formula was derived * *
assuming that the collision integral of the Maxwellian distri- f(v,t)= Z CE(t)Sk(v,T0)= 2 Crl(t)S,(v,Tl). (12
bution function is invariant relative to the choice of basis and k=0 r=0
comprised the foIIowing relation between the matrix ele- Quite C|ear|y the vector€® and C! do not Change on

We express the distribution function inspace in two
fbases with the temperaturég and T,

ments: transition fromv- to a-space and the equaliti€$2) in the
N a-representation have the form
> K y.r.=0, r,N=0,...®. (4)
ry=0 1 1

e(T,H)=2 CROSKT,To)=2 CHOSK(T,Ty. (13

The equalities(4) are satisfied for arbitrary scattering k=0 =0

cross sections. Quite clearly, not only the collision integral of  In order to find the relation between the vect@3 and

a Maxwellian but also the collision integral of an arbitrary C*, we perform scalar multiplication of both sides of equa-

distribution function should possess properties of invariancetion (13) by s (T,T;). Then, using Eqg8), (9), and(11), we
When expanding in terms of Sonine polynomials, wegbtain

must bear in mind that these are orthogonal, with a Maxwell-

ian weighting characterized by a certain temperafuré&he

transition to a different temperature corresponds to a new

unit of velocity measurement and essentially involves a tran-

sition to a new basis. In the kinetic theory of gases the temwhere the matrix elements of the transition from one basis to

peratureT is usually taken to be the equilibrium gas tempera-the otherD(T;,To) are expressed in terms of the scalar
ture. product

For the transition from one basis to another it is conve-
nient to use thex representatiofa=m/(2kT)) of the Bolt- dr,k(TliTO):J
zmann equatiof® 0

o

C%=k20 d (T2, To)CY, (14)

[’

SH(T,Ty)sK(T, To)d T

=(SL(T,T1),Sk(T,To)). (15)

—=n A(T,T,,T T1,0)e(T,,t)dTdT,, . .
0 fo (T, T2, T2) ¢(T1, D e(T2,Hd T, AT, The Sonine polynomials are then transformed as fol-

(5) lows:
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SR(T,T) =2, dir(To, T1)SK(T, o). (16) =2 (T To) 2 KE 4 (To)
k=0 =0 kyko=0
k k
Using the simple expressions fal and s in the S L 1
a-representation, Eq$8) and(9), we obtain Xrlzzo dk1~f1(T0'T1)Cf1,ZE:0 dir,(To T2 G,
r r—kkyr k (23)
— - =
d, ((T1,To)=1 \K (Ta=To)" T/, 1=K, (17) If the distribution function is expanded directly in terms
' 0 r<k of Sonine polynomials with the temperatufg, instead of

the expressioini23), the system of moment equations can be

The matrixD is triangular. We also note that it is not Written as
unitary. For any linear transformation we have dCl o
> Ki o (T)CECE, (24)

* dt ry,r,=0

d (T4, Tg)= d, o(T1,T)dy (T, , To). 18 ) . o )
T2 To) pZO o1 Tl To) (18 Since the expansion coefficien@ and C;, are arbi-

trary, we obtain from expressior23) and(24)
In our case, because the matrix is triangular, summation

is performed between and k. By directly substituting Eq. ) r
(17) into Eq.(18), we can confirm that this property is indeed Ky (,(T1)= kZO dr k(T1,To)
found. In operator form Eq.18) is given by -

0

D(T1,To)=D(T1,T,)D(T, . To). (19 X 2 KE i (Tod i,
ki=rq.ko=r,
Since D(T,,Ty) is the unit operatolE, assumingT, X(To,T1)dk, r(To, T1). (25

=Ty, we obtain
Hence, the invariance of the description of the relaxation
f)(-r* ,T0)=If)’1(TO,T*). (20) process relative to the choice of basis yields a relation be-
tween the matrix elements in the baggsandT,. Note that
Note that in the nonisotropic case, the distribution func-for fixed T, formula (25) holds for anyT,. The form of the
tion is expanded in terms of Hermite polynomials where thedependencet(r " (T4) on the left-hand side of expression

weighting Maxwellian is characterized by the four-vector 25 jg determmed by the energy dependence of the cross
W=(T,u). HereT andu are the temperature and velocity section whereas the expression on the right only depends on
about which the expansion is performed. In this general case;, via the matrix elements of the transition matfx which
we can determine the operator of the transition from ongye the same for all cross sections. After substituting the
basis to anothed (W,,W;), which will also have properties matrix elements ob (17) and a series of simple transforma-
similar to Egs.(19) and (20). This general matrix is best tions, expressiofi25) gives
constructed using a representation of the Hermite polynomi-
als in a—u spacet''?

We shall continue our analysis of the isotropic Boltz-
mann equation. Quite clearly, the transition to a new basis

:1,r2(T1) =(1-2)%(— 1)N+qq20 Zqul,rz(quo), (26)

should not affect the result, i.e., the time derivatives of the ; _ i K
$istribution function should be the same in the babesind Br.. fz(q’TO)_k:max(qm‘N) k—gq-R (=1)
21
SN . @
de(T,t dC0 ” dCi(t) X KkkkTO-
‘D S s e O T, SRICRLE AN '

k=0 21) Here we have=1—-T,/Ty, R=N—-r, andN=r;+r,. The

expression$25) or (26), (27) impose certain relations on the
If both sides of Eq.(21) are multiplied scalarly by matrix elements in the initial reference fram&,. This can
s (T,T,), then using the condition for orthogonality of the be seen particularly clearly for Maxwellian molecules for

Sonine polynomials and Eq@15), we obtain which, as we know(see Ref. 9, for examplethe elements
Kil,rz(T) do not depend on temperature. For this model Eq.
dCl zw: TT (t) 99 (26) has a constant on the left and a power series with respect
< de (T, 0) ' (22) to z on the right. Equating to zero the coefficients of all

positive powersz, we obtain relations containing different
We substitute Eq(2) into Eqg.(22) in the initial basisT, Kﬁl,rz(Tl) and coefficients which do not depend @nFor
and express the vect@” in terms ofC* using Eqs(14) and  example, equating the coefficients of the first powewe
(20): C°=D(T,,T,)C. Then, we have can obtain
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M.l

N+1 ;
-1 N+k
k:ma%JrR,N) (k—R—l)( )

K2k, \ [k—k
1 1 _p_
SN T 27 8
ki=rq \ M1 Mo

This formula shows that some linear combinations of the(
matrix elements of the matriK vanish. For arbitrary inter-
action models we can derive more general relations by suc-

cessively differentiating both sides of expressi@3) with
respect tol; and then settind ;= T,. Formula(25) is writ-
ten in the operator form

K(T)=D(T1, To)K(To)(D(To,T1),D(To,T1)). (29

The rules for the action of the bilinear operaﬁmn the

vector are clear from Ed2) and the rules of action when the
operator is expressed in the new basis are clear from expre,
sion (25). In general when Hermite polynomials are consid-

ered as the basis functions, relations simila®) and(20)

are satisfied for the transition operallf)n(Wo,Wl) and the
following inequality should be satisfied instead of E29)

f<<w1>=D<w1,wo>r‘<<wo>(|5<wo,w1>,|5<wo,w1>(>3.0)

COUPLING BETWEEN MATRIX ELEMENTS

We shall analyze arbitrary cross sections for particle in-

teraction. We shall differentiate ER9) with respect toT;
and sefl;=T,. We then assume that for =

D becomes the unit operatér

dQ(Tl)) _(db(Tl,To)) A
( dT, T,=T - dT, T,=T (&8

(db(To,m) E)
Ty T1:To,

. (df)(TO,Tl)) )
E|l —2 .
CLPR

(31

LER

|-|-|>

»

+E

In order to calculate the derivative of the matrix ele-
ments of the matrixD, we consider the explicit form
dr «(T1,To) given by Eq.(17). Quite clearly, the derivative

of this function forT;=T, is only nonzero ifr=k+1 or
r=Kk,

d
d_-l—l(dr,k(TlvTO))T1=T0:r(‘srfl,k_ or Wl To. (32
Similarly we have
d
d_Tl(dkl’rl(TO T))1, =1,
=(=(r1+1) & v 1k, 1160 k) To, (33

T, the operator
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d_-l—l(dkz,rz(TO T))1,-7,

=(=(ra+1)6; 11k, + 126, k,)/ To- (34)
Converting from the operator to the matrix form in Eq.
31) and substituting Eq$32)—(34), we obtain a fundamen-

tal relation linking the matrix elementsr ry

dKf, (D
—g7— RK, (D

=K (M= DK] g, (T)
—(rp+ DKp o a(T),

(R=rq+r,—r). (35

I§|_ereT0 is replaced byl and we stress than E(B5) should
be satisfied for arbitrary. In the particular case of Maxwell-
ian molecules, formul&35) is the same a&28).

In order to obtain relationships which appear under re-
peated differentiation, we divide both sides of equati®®
by (1—2)R, differentiate twice with respect td,, setting
T,=T, (z=0) and denotingl,=T. As a result, we have

2

d d
T2— —2RT-=+R(R+1)
dT2

;
dT Krir(T)=B

r1 2( 2T).
(36)

We shall now show that the relatioii36) are a conse-
quence of(35) and do not impose additional correlations on
the matrix elements. Using the fact that the identB¥®) is
valid for anyT, we apply the operatdrd/dt to this. Express-
ing the derivatives on the right-hand side of the resulting
equality in terms of the matrix elements usi(8p) and per-
forming simple transformations, we obtain

2 d? d

T F—T(R—l)d (M =B, (2T)
=(R+1)(rK7 (M= (ra+ K] 1, (T)

(37)

Now, on the right-hand side of Eq37) we again use
equality (35)

_(r2+ 1) r r2+1(T))

, d? d
T 5 REDT KL (M

—(R+1)( T

i - R) Ky, (T)+Bf (2T). (39

On comparing expressior(86) and (38), we note that
these equalities are the same. Similarly, we can show that the
relations obtained for higher derivatives of E5) also im-
pose no additional correlations on the matrix elements com-
pared with relation(35). Hence we can confirm that in order
to satisfy formula(25), it is necessary and sufficient that
relation (35) is satisfied for anyf.



632 Tech. Phys. 44 (6), June 1999

TABLE |. Verification of formula(45).

A. Ya. Ender and I. A. Ender

K2, K2, K2, Right-hand side of Eq45)
From Eq.(39  —1.6667x 10 ? 3.9063x10°* —8.7240< 103 0
From Ref. 13 1.7578 102 —3.4180x 1073 —1.2533x 1072 7.4218<1072

FUNDAMENTAL RELATIONS FOR VARIOUS PARTICLE
INTERACTION LAWS

In Ref. 9, for arbitrary power potentials we made ana-
lytic calculations of the matrix elements in the form of four

nested sums, having the form

kI — 2(4kTo #(=1)TIT (u+502)
., o
172 m 2r2
r min(r,,q) i
+5/2)4_ q 2
XE qu ()—
4=1 q! i=max@g-ry) \ 1/ (F2—i)!
" ' (21-2q—1)!11(—1)!
I=max(,r—rq{+q-1i) r'a+3/2)r—-1)!
a3 D
x 2 — (39)

j=max(0my) j!2j(ml—j)!(j —m2)! '

where u= /2, my=r;—r+l—q+i, my=r,—r—l+qg+i,
andmg=I—-q+r,—i.
Here we used the following notation

a=a(a+1)...(a+tk=1)=I'(a+k)/T'(a),

For nonzero matrix elements in cases of Maxwellian
molecules Eq(42) gives

(r+ DKL o~ (r+ DK
—(r=ri+ DK 44 =0. (44)

It is easily verified that the matrix elemen#3) satisfy
the identity (44).

In Ref. 10 we used the relatiorid) as the criterion for
the accuracy of the calculations which, as can be shown, are
a consequence of the relatio(85) which are more detailed
criteria for the accuracy of the calculations. Assuming that
andr, vary in the range &r+r,<Ng, andr varies in the
range O<r=<N,, then the total number of matrix elements is
(No+1)%(Ng+2)/2, and the total number of new, more de-
tailed relations of the typ&35) or (42) is (No+1)?Ng/2,
whereas the total number of relations obtained from formula
(4) is only (Nog+1)2. Thus, for largeNy the number of rela-
tions (42) far exceeds the number of relatio@.

For other laws of interaction the relatiod2) were
checked by calculating the matrix elements using formulas
(39—(41) in the ranger,N<20. We showed in Ref. 9 that
small numerical errors are known to occur in this range. A
check was made for various values @fand it was estab-
lished that all the matrix elements satisfy the equalitit®.

Schirer and Kigerf® gave formulas for the matrix ele-

In this case, the scattering cross section is given in thé&ents for the hard sphere model{0.5). Separate formu-

1
Jq=47rfo F(z)z%z (40
form
go(9,2)=g"F(2). (41)

las are given to calculate the linear elements which after
various simplifications agree with Eq§39)—(41). Special
formulas are given for the nonlinear elements which do not

Here F(z) is the angular part of the cross sectian, include the matrix elements for which one of the subscripts
= sir?®/2, and® is the scattering angle. It can be seen fromiS 1. Itis therefore difficult to verify the identitiegl2) when
Egs. (39) and (40) that when the scattering cross sectionthese relate _nonlir_wear and linear elements. We shall therefore
depends on the angle and velocity as given by @), the analyze the identity42) for N=4 andr=r,=2
matrix eIementsKﬁlyr2 depend quite specifically on the basis
temperature , i.e., a general coefficient—the collision fre-
quency 7(T)=bT* depends on temperature. Relati(8b)
now has the form

1.5¢3 ,— 3K% ,— 3K5 ;= —2K3 ,. (45)

The values of these elements calculated using the formu-
las (39) and the formulas from Ref. 13 in the same units of
measurement are given in Table |. Despite the substantial
differences between the corresponding elements, the rela-
tions (45) are satisfied in both cases. Moreover, other sets of
elements from Ref. 13 with subscripts not including 0 or 1,

It is interesting to note that the relations between thedlSo satisfy the relation&t2).
matrix element$42) do not depend on the form of the func- It follows from the energy conservation law thm%,z
tion F(2). It is well-known that for pseudo-Maxwellian mol- = 0. The main error in Ref. 13 is that the formulas proposed
ecules w=0) a simple analytic formula exists which, cor- there yieldK3 ,#0 and the identity(45) is only satisfied for

B . . : . . 1 l .
rect to within the normalization constant, has the form  this inaccurate value df; ,. If a zero value foiK3 , is sub-
stituted into identity(45) and all the other elements therein

are taken from Ref. 13, criterio@2) is satisfied. This im-
plies that there is an error in the determination of the other

:rKr—l

(/'L_R)Kr rl,Nfrl_(rl+1)K;l+l,Nfrl

rl,N*fl

—(N+1-r1)Kp N1, - (42)

1
K£1»f*r1:m_5rvr1' (43)
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TABLE II. K;prz for ry+r,=4 for Coulomb particle interaction. TABLE Ill. Kilvrz for r,+r,=5 for Coulomb particle interaction.
ry=0 1 2 3 4 r;=0 1 2 3 4 5
r r,=4 3 2 1 0 r r,=5 4 3 2 1 0
1 0.41139  0.82278  0.00000 —0.82278 —0.41139 1 23141 69422 46281 —.46281 —.69422 —.23141
0.41139  0.82278  0.00000 —0.82278 —0.41139 23141 69422 46281 —.46281 —.69422  —.23141
2 0.74050  0.91681  0.56419 -0.91681 —1.30469 2 50909 .86906 .68908 —.03085 —1.19817 —.83820
0.76871  0.91681  0.50777 -0.91681 —1.27648 52555 .88551 .65616 —.06377 —1.18171 —.82175
3 0.87273  0.89918  0.84628 -0.12543 —2.49276 3 70909 85785 .78347  .48595 —1.00898 —1.82740
0.92794  0.91207  0.76166 —0.21570  —2.38597 74889  .88153 75224  .39024 —1.01754 —1.75536
4 0.84041  0.83453  0.84628 0.94222 —3.46344 4 78788 .81212 .80000  .75152 —.14786 —3.00367
0.90469  0.86414  0.80751 0.67380 —3.25014 84494 84411 78404  .63525 —.28066 —2.82768
5 0.71626  0.72728  0.70524 0.58184 —2.73061 5 76102 .75505 .75804  .76998 86552 —3.90961
0.76813  0.74909  0.66598 0.38743 —2.57062 82273 79389 75985  .69699 54218 —3.61564
6 0.56199  0.59504  0.52893 0.23912 —1.92508 6 66736 67975 67356  .64876 51849 —3.18792
0.59933  0.60895  0.49407 0.11776 —1.82010 71941 71203 .67098  .57863 27711 —2.95816
7 0.41525  0.46024  0.37025 0.03995 —1.28568 7 54501 58599 56550  .48354 16171 —2.34175
0.44046  0.46858  0.34304 —0.03150 —1.22058 58483 .61047 .55893  .42238 .00670 —2.18331
8 0.29311  0.33940  0.24683 —0.04957 —0.82977 8 42135 48242 45188  .32975 —.05400 —1.63140
0.30942  0.34423  0.22735 —0.09032  —0.79068 45001 .50007 .44388  .28145 —.14728 —1.52813
9 0.19959  0.24050  0.15868 —0.07628 —0.52248 9 31186 .38019 .34602  .20935 —.14947 —1.09795
0.20981  0.24323  0.14552 —0.09905  —0.49951 33160 .39247 33842 17385 —.20347 —1.03287
10 0.13200  0.16483  0.09917 —0.07325 —0.32275 10  .22275 .28810 .25542  .12474 —.17066 —.72036
0.13825  0.16636  0.09065 —0.08580  —0.30947 23591 29638 .24910  0.9999 —.20109  —.68029
three elements in identit{45). If these inaccurate elements Eq. (39) is artificially truncated ar=2,3,. .., these sums

are changed so that identi@5) is satisfied, criteriorf42) is  also satisfy the relation§42). This was checked as far as
violated for subsequent values of the indices, and so on. INy=20.

Ref. 10 we analyzed how this inaccurate determination of the

nonlinear matrix elements gives such erroneous results in the

course of a relaxation process.

Formulas(39)—(41) can also be applied to Coulomb par-
ticle interaction. In this case, in order to eliminate diver- The relationg42) can be used as recurrence formulas to
gence, we can use the Coulomb potential with the Debygalculate the matrix elements. This is particularly important
cutoff radius\;, following the usual procedur&This corre-  for high values of the indices. We shall show that in order to
sponds to the fact that whel, is determined using formula determine the nonlinear matrix elements, it is sufficient to
(40), integration over angles is not performed from zero butgefine the linear elements of just one of the two tyleso
fro;n some small anglef, which is assumed to be g yr  Then one half of the linear elements is defined in
2e?/(\pmg?). It can be shown that the first term in the sum- 1 .

terms of the other. Let us assume that all linear elements of

mation overq in formula (39) corresponds to the Landau r .
approximatiort! For the complete Boltzmann equation sum- Lheev;[}r'ﬁtzlgq;g’qSNO) are defined. Formul#2) can then

mation overq is performed as far as and the number of

RECURRENCE FORMULAS

cprrection_terms_ increases with increasingables | and_ 11 (q+ 1)K;\lfq.q+1: (R—M)thq,ﬁ r rNilq‘q
give the dimensionless matrix elements calculated using for-
mulas(40) and(41) for N=4 and 5. For the calculations of —(N=g+ 1)K _qi14- (46)

the matrix elements the unit of measurement of time in the

Boltzmann equation was taken to be=16(kT,/m)%% We shall first analyze this formula foi=0

(J1No). In this case we have Kb 1= (—u—1)K ot rKh o =Kl (47
42 We then find all K{,yl from Eq. (47). Converting to
J;=8mIn Ae’/m*. N=1 in Eq.(46) we obtain two relations
r o __ o r r-1_ r
In our calculations the Coulomb logarithm Anwas Kia= (A== 0Ky ot 1Ky o7 = 2Kz, (48)
taken to be 5. The upper number in each line in the table 2K = (1= u—1)K" K K! 49
corresponds tq=1 (Landau approximationand the lower 02=(1=n=1Ko, 0.1 L 49
line gives the total sum ovey (Boltzmann equation for Cou- For fixedr we find K} ; from Eq. (48) and then deter-

lomb particle interaction Substituting the values from the mine K{, in terms of the elements from E¢49) K1 ; just
tables into relation42) shows that these identities are satis-determined and the linear elements with subscripts 0, 1 de-
fied for the Landau approximation and for the complete Bolt-termined earlier using formul@?7). In this way all elements
zmann equation. In addition, if the summation owglin  with N=2 are determined.
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For N=2 we obtain three relations from E6) from
which allN=3 element«} ;, K ,, andKj ; can be system-

atically determined in terms of thBl=2 elementsiK},
K'Y, andKg .

We shall assume that all matrix elements for which the

sum of the subscripts is equal kbare known and we write
the corresponding equalitie$46) for fixed r and q
=0,1,...N

KF\I,lz(N_r_M)K;\I,O—i_rK;\lTOl_(N_F1)K;\l+l,01 (50)
2K 1= (N=r = w)KN_ 1 1+ KNS = NKR ., (52)
3K\ 2= (N=T = w)K{ 2+ K G
—(N=1)K\_1,, (52)
(N+ 1)K 1=(N=1 = @)Ko+rKoN =Kiy . (53)

Quite clearly, moving from top to bottom, we can use
Egs. (563 —(55) to systematically determine all elements for

which the sum of the subscripts &+ 1 in terms of already

known elements. Thus, all the nonlinear elements can be
determined for giverKy ,. In addition, the linear elements of
the other typeK{m can also be determined in terms of these.

A. Ya. Ender and I. A. Ender

r _(4kTO)“ rin
o2\ m | p(r+3/2)2rr2
min(r,,r)
X 2290W2 3 T'(q+ p+3/2)/q!, (56)
q=1 ’
where
Wrzz—,u(—,u,-l-l)...(—M+r2+r—2q—1)
rd (rz=a)!(r—aq)!
I'(—wp+r,+r—2q)
——— (57)
F(=p)(ra=ol(r—a)!
The similar formula foﬂ(ﬁlyo has the form
) :(4kTO)“ rind
O\ m ) pr+3/2)2tn
min(rq,r)
X > 220WL 3 T(q+ p+3/2)/q!. (58)
q=1 ’
Here we have
- 1
Jq=47rf0|:(z)((1—z)q—1)dz. (59)

In practice, an approximation in the form of a finite sum

Conversely we can assume that linear elements of the types far as somél, rather than the serigd) must be used to

Kog are known and by reducing, we can determine all
nonlinear elements and linear ones of the tm%.

represent the distribution function. The main errors incurred
when using the moment method are caused by this trunca-

As a resu't, we can Construct such a recurrence procéj.on. In Ordel’ to Calculate the diStI‘ibution function at h|gh

dure. Initially, N is increased fronN=0 and thenr is in-
creased, also from zero. Then, for giveandN the values of
q are varied between 0 adand the elementsy_, .., are
determined from formula46). Assuming that linear ele-

ments of the typeK{)’q are known, we obtain a similar recur-

rence procedure by replacing—q with g in formula (46)
and then determining the extreme right elemiéft ;-

velocities, we need to strive to increaldg. However, when
formulas with multiple summation are used for the calcula-
tions, both the errors and the computation time begin to in-
crease catastrophically with increasiNg. This is quite un-
derstandable since calculationsh§ elements involving six
sums, as in Ref. 6, requires a number of summations propor-
tional to NJ. For four sums, as in Ref. 9, this number of

. ) 1 ) . . . 7 . .
Note that when a gas of the one species is being studie§ummations is proportional #d,. In this sense, calculations
a knowledge of the symmetrized matrix elements is suffi-using recurrence formulas are advantageous since the num-

cient
Ki = (KD KD )02, 11y, (54)
In this case, instead of formul#50)—(53) we have
(A+ DK g qr1=(N=T = w)K{_q g+ 1K
_(N+1_Q)Rk+kq,q

g=0,...[(N—1)/2]. (55)

ber of summations for calculating any element is three and
the computation time only increases proportionatelyNgs

The calculations were made using a 66 MHz PC-486.
The calculations using formul@9) allowing for all the sim-
plifications considered in Ref. 9 foNyg=30 took 3.5h
whereas calculations of all the nonlinear elements to double
precision using the recurrence formu#6) for Ny= 30 only
required 0.23 s. Quite clearly if the number of summations is
N2, a time of 3.5 h is required fd¥o= 14 and if calculations
up toNg=30 could be made using the formulas from Ref. 6
with sixfold summation and no significant errors, nine
months would be required.

Here the square brackets denote the integer part of the num-

ber.
Understandably, when the recurrence formuls are

used, we need to have simple formulas to calculate the linear

elements. We now go over to the linear case in forni8&.
Assuming thatr,=0, we then have=q, m;=1-r=0,
from which it follows thatr =1, and thenm;=0 andj=0.
As a result we obtain

CONCLUSIONS

It has been shown that the conditions of invariance in the
description of the relaxation process relative to the choice of
basis impose certain relations on the matrix elements which
are a mapping of the collision integral in the moment method
of solving the Boltzmann equation. These relations exist for
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arbitrary particle interaction laws. Using these relations ad articular mention should be made of the need to use high
recurrence formulas can reduce the time required to calculat®oments and electron transport matrix elements in a thermo-
nonlinear matrix elements by many orders of magnitude. nuclear plasma.
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Methods of measuring charges in the bulk and at the surface of the insulating envelope of a high-
voltage vacuum device are developed as part of studies of a complex range of dielectric

strength aspects. These methods were used to measure the charge distribution over the length of
the envelope and to study how this distribution is influenced by the operating regimes of

the device. Laws governing the formation of charges were identified and its correlation with the
appearance of physical changes in the structure of the surface layers of the insulator was
determined. Processes of structural change were studied and simulated and the change in the
dielectric strength of the device was compared with changes in the magnitude and polarity

of the surface and bulk charges. 99 American Institute of Physid$1063-784299)00506-]

INTRODUCTION irradiation by hard x-rays, ions, and high-energy electrons.

The insulating envelope is one of the main componentéJnder these cond.iti(-)ns, polarizqtion should occur in the
of any vacuum device. However, such an important paramglassls_elr;velope, similar to that in radio- or electro-elec-
eter as the dielectric strength of the vacuum device is notets: ) )
generally related to the presence and properties of the insu- Numerous methods are available for measuring the
lating envelope. For instance, among the numerous studies 6harges of insulator€~**Three methods suitable for the real
vacuum breakdowh no consideration is given to the influ- OPerating conditions of sealed high-voltage electric-vacuum
ence of the insulating envelope on the initiation of break-devices proved the most convenient for measuring the
down. However, a few authors do draw attention to the faceharges in the glass envelope of x-ray tubes. For instance,
that effects associated with secondary electron emission froiuring operation of the tubes the effective total surface
insulating components and luminescence at the enveldpe charge was investigated by measuring the electrostatic force
may affect the operating reliability of vacuum devices. Increated by the charge field The charge formed in the bulk
x-ray tubes and hydrogen thyratrons luminescence andnd at the surface of the envelope and its distribution over
breakdown of the vacuum interelectrode gap is accompanieithe envelope length away from the device were estimated by
by the observation of catastrophic damage to the glass aneasuring the thermostimulated depolarizati®8DP cur-
metal ceramic envelopt’ All these processes are caused byrents and by an electrostatic indicatit®Sl) method'*2%:2*
exposure of the insulating elements to ion and electron Experimental prototypes were fabricated with S40-1 and
beams. S49-1 borosilicate glass envelogsgmilar to Corning 7052

The aim of the present paper is to study the chargeg.7+0.3mm thick, 35-60 mm in diameter, and 12—18cm
formed in the insulating envelope of high-voltage vacuumiong. The design was essentially that of small x-ray tubes. In
devices, especially x-ray tubes, to identify the charge distriprder to measure the electrostatic force directly during op-
bution pattern over the length of the envelope, and to deteferation under voltage, we used a prototype x-ray tube with a
mine the processes promoting electrical breakdown of thenetal probe inserted in one of the high-voltage electrodes
envelope and lowering the dielectric strength of the devicesrig. 1). Its displacement under the action of the charge field
It should be noted that studies of the interaction betweery s recorded by a special vacuum “diode” transducer hav-
charged particle beams and insulators are important for varig o planar anodes connected mechanically to the probe
ous practical applications conce_rnedo with the reliability notyit 5 filamentary cathode inserted between them. The oper-
only of high-voltage vacuum devices but also with larger  44ing principle of the transducer is based on the change in the
objects using insulators in a vacuum, including accelerators,, rent distribution between the anodes of the diode as the
nuclear reactors, and space station equiprfietit. probe is displaced. The displacements of the probe were cali-
brated to obtain direct measurements of the envelope poten-
tial (Fig. 2).

The glass envelope of x-ray tubes is exposed to the ac- In order to measure the charge at the envelope, the high-
tion of a complex range of factors: strong electric fields, andvoltage electrode in which the probe was inserted was con-

DESCRIPTION OF METHODS OF MEASUREMENT

1063-7842/99/44(6)/5/$15.00 636 © 1999 American Institute of Physics
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FIG. 1. Schematic of x-ray tube prototype with diode transducer to measure
probe displacement: — high-voltage device — transducer anode3,— 0 L L 0
glass envelope4 — probe,5 — transducer cathode, asd— spring. Zg ffﬁ
min
-100 if 1 ’ -
nected to it electrically and could be connected either as the ol
cathode or as the anode of the tube. Figure 2 shows that the 200 | & 2

displacement of the probe depends linearly on the voltage in
the rang_e 0-15V. As the voltage increases further, the deF'IG. 3. Currents recorded by flexible probe in the cathddend anod€?2)
flection increases abruptly and the probe then “attaches” tQegions of the envelope, without.{ and with heating Isg): 3 — tem-
the envelope. This method was used to measure sofalio  perature of outer envelope surfade— temperature of inner envelope sur-
15kV) potential differences between the envelope and th&ce, anode voltage 120 kV, and operating regime — with discharges in
high-voltage electrode of the prototype. interelectrode gap.
gh-voltag p yp

Measurements of the charge using the ESI and TSDP
methods were made using probes with an active area @érnal contact with the envelope near the probe. The probe
1 cn? inserted in the high-voltage electrodes of x-ray tubewas then brought in contact with the glass. The envelope
prototypes. The following types of probes were used: a flexcharge was determined from the voltage and the capacitance
ible thin niobium foil probe which ensured good contact with of the voltmeter and an additional capacitor connected to it.
the surface of the cylindrical envelope; shielded probes, havihe charge thus recorded frequently passed over to the probe
ing a shield to protect against the charge built up outside thaccompanied by breakdown. The charge density was several
surface of the probe; and insulated probes where the probe éfders of magnitude higher than the induced charge typical
insulated from the envelope surface by a thin layer of glassof electrets. The prototype was then placed in a shielded
We used stationary and moving probes which could be inchamber, the probe was mounted on the surface of the enve-
serted at any point in the envelope. lope at the point being studied, and its output was connected

The prototype being tested was held under conditionso a U5-6 electrometer amplifier to measure the TSDP cur-
close to real operation, at high voltage in an oil bath. Afterrents. A grounded copper electrode with a heater to heat the
the voltage had been switched off, the prototype was rearea of the glass being studied was mounted externally, fac-
moved from the bath and an electrostatic voltmeter was coning the probe. The rate of heating was varied between 3.7
nected to the probe output. The charge was first measured ynd 16 deg/min. The inside of the envelope was heated to
the ESI method. A grounded electrode was brought into ex3150-180 °C while the outside was heated to 210—240 °C.

RESULTS AND DISCUSSION
Investigation of the residual polarization of the envelope

The experimental dependences of the currents produced
by relaxation of the charges in the envelope measured using
the U5-6 amplifier have two characteristic sectighig. 3).
Initially, after the irradiated prototype has been inserted in
the chamber, we observe a discharge curtentvhich de-
creases over 10—-60min reaching low values, without any
heating of the envelope. The polarity of this current depends
on the measurement point. The positive direction was taken
to be the direction of the current from the irradiated side of
the envelope to the outside. After switching on the heater, we
observe a second type of current, a thermostimulated depo-
larization current tgp.

S S
T I

3
T

Probe removing , arb. units

05 127 15 In order to analyze the relaxation processes in the enve-
U KV lope of x-ray tube prototypes, it is important to know the
prenv ? direction of current flow in the measuring circuit and the

FIG. 2. Diode transducer probe deflection as a function of voltage betweef@Ctors determining this. This allows us to assess how the

envelope and probe. residual polarization corresponds to the particular process.
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FIG. 4. Currents recorded by insulated probe in the anode region of the

envelope, withoutl(;) and with heating (;sp): anode voltage 1001) and . )

120 kV (2); operating regime — witlfil) and without discharge). FIG. 5. Cgrrents recorded _by erX|t_>Ie probe in the anode part of the enve-
lope (1), without (I;) and with heating I;sp): anode voltage 120 kV, op-
erating regime — without discharge®— temperature of inner surface of
envelope.

The TSDP current has different directions when the “inter-

nal” residual polarizatioriheterochargeand the “external” |ope surface is around 120 °C, regardess of the rate of heat-
residual polarizatioricoupled homochargelecay** The po- ing (Fig. 5).

larity of the displacement current observed when the hetero- = N such change in polarity was observed for the TSDP
charge decays is opposite to that of the charged insulatogyrents measured in the anode region using insulated
The homocharge usually discharges through the bulk of thgropes. From this we can conclude that the negative TSDP
sample. In this case, the TSDP current flows in the oppositg,rrents in the anode part of the envelope for tubes operating
direction. If the homocharge reaches the electrodes, thgithout discharges are currents from negative charges which
TSDP current has the same direction as the current caused Qach the surface of the envelope during heating, i.e., they
the decay of the heterocharge.. Hoyvever,_the direction _of thgre caused by the electron space charge. The TSDP currents
.Currem can be altered by using |nsy|at|ng spacers in thﬁre caused by the relaxation of charges trapped in compara-
insulator—electrode gap. The experimental characterlst|c§,\,e|y deep traps so that these charges may be described as
show that when insulation is inserted near the probe, only thg |k charges, in contrast to those recorded by the ESI
direction of the current; changes while the direction of the method, which are mainly attributable to the relaxation of

TSDP current remains as befaéig. 4. surface charge and are therefore subsequently called surface
Consequently, the discharge currdntin the cathode charges.

and anode regions of the envelope is caused by the release of

weakly bound homocharge from surface traps, which relaxes o

without heating. An analysis of a large number of TSDPCharge distribution over the tube envelope

current measurements also yielded the following conclu- In order to identify the processes responsible for the ap-
sions. The thermostimulated current is always positive in thgpearance of different charges in the anode region of the en-
cathode region and is solely due to homocharge dischargingelope when the tube is operated under various conditions,
through the bulk of the envelope. In the anode region theve studied the influence of electric fields on the formation of
TSDP currents produced by the buildup of different chargeshese charges. For this we used an x-ray tube prototype hav-
can be either positive or negative. For example, when dising a probe with a “diode” transducer. Measurements were
charges and breakdown occur in the vacuum high-voltagenade of the potentials between the high-voltage electrodes
gap of the prototype, a heterocharge appears in the anodmd the envelope under conditions with normal switching
region of the envelope, whose current is positive. The disand with current flow between the anode and the cathode
charging heterocharge peak is followed by a peak caused bgliminated. In this case, only a high voltage of different po-
the decay of homocharge, which discharges through the bullarity was connected to the mutually shorted cathode and
of the envelope as in the cathode region. This homocharge snode and the envelope was exposed to the action of an
activated at temperatures of 80—120 °C which indicates thatlectric field between the grounded external circuit and the
its is distributed in deep traps. In the envelopes of devicetigh-voltage electrodes.

operating at voltages above 100 kV without any discharges, The results of the measurements show that the electric
we observe negative TSDP currents which appear after thigelds in the anode and cathode regions differ substantially
positive current when the temperature of the internal envetFig. 6). In the cathode region, for instance, the small deflec-
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FIG. 6. Voltage between cathode and envel@@eand between anode and
envelope(b) during operation of prototype: — with normal switching and

no discharges? — with normal switching after the appearance of dis-
charges, an@ — with no current flowing. 10"

a,C/cm?

tion of the probe indicates that a potential close to the probe 10
potential, i.e., close to the cathode potential, is formed at the
envelope. When the operating conditions are varied, for ex-
ample, the leakage currents increase or discharges and break-
downs take place between the cathode and the anode, the
envelope potential varies little in this region. In the anode L L

: . 40 80 120
region, however, the envelope potential depends very Y kv
strongly on the operating conditions. When the leakage cur- a’
rents(field emission currenjsexceed 0.05%uA, the electrons FIG. 7. Density of envelope surface charge as a function of anode voltage
reaching the envelope near the anode lower its potentiaffter exposure to discharges, 5), without dischargeg3), and without
causing an abrupt increase in the deflection of the probe at #{""e"t(2 4) in the anode regiofl—3) and in the cathode regio#, 5).
anode voltage around 60kV. The probe remains in this po-

sition until discharges appear in the device. The probe theBroximater two orders of magnitutlén the magnitudes of
returns to a position close to zero, producing a small poteNnge ik and surface charges. However, this does not imply
tial difference between the envelope and the anode. that the large difference between them is real, mainly be-
After the voltage had been switched off, the charges on., qe of the differences in the measurement conditions. For
the envelope were investigated by the ESI and TSDP methngiance, the times between irradiation and the measurements
ods under normal conditions and in the absence of currefqineq by these methods differ: the surface charge is mea-
flow. Figure 7 gives the maximum densities of the surface;roq 12 min after irradiation while the bulk charge is mea-
charge of the envelope as a function of the anode voltagg, e 1y after irradiation. Under operating conditions with
measured by the I_ESI method. It can be seen that the Char%charges when an appreciable positive charge appears at
in the cathode region of the envelope depends comparativelys gface allowance should be made for a substantial re-
weakly on the electrode switching circuit and therefore they,ction in the negative bulk charge formed by electron irra-
formation of this charge is more strongly influenced by thediation of the envelope, immediately after the high voltage

electric fields acting in this region and to a lesser extent b¥1as been switched off. This factor also explains why this

the current flowing in the gap. In the anode region, cON-harge is only found after operation at voltages above

versely, the current flow regime has the strongest influencgyg v/ under discharge-free conditioffig. 5).
on the envelope charge. The polarity of the charge indicates

that it is attrlbu'_table to the formatlon_ of homoc_:ha_rge in theCONCLUSIONS
appropriate regions of the envelope, i.e., negative in the cath-
ode and positive in the anode regions. The experimental re- To sum up, when a discharge-free operation of a vacuum
sults suggest that the “external” polarization of the glass indevice, the envelope potential in the anode region is slightly
the electric field created by the tube electrodes plays an inpositive or close to a linear distribution law whereas the po-
portant role in forming the envelope charge. tential in the cathode region is close to the cathode potential.
These results are consistent with the experimental datiinder operating conditions when discharges appear in the
and theoretical ided$on the formation of homocharge when interelectrode gap, in the regions adjacent to the anode and
insulators are polarized in strong fields. However, the polarthe cathode the envelope acquires potentials close to those of
ization of the envelope of an electric vacuum device haghe corresponding electrodes. The potential distribution pat-
important differences compared with the polarization of or-tern over the envelope length is shown in Fig. 8.
dinary electrets. The main difference is that a negative The results show that the external polarization of the
charge appears in the anode region of the envelope when tlggass plays an important role in forming the envelope charge.
tubes are operating without discharges. Moreover, whereas the charge in the cathode region does not
A comparison of Figs. 3 and 7 reveals differen¢éep- change significantly under various operating conditions of
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a 7 to the dielectric strength of the vacuum gap. During the op-
eration of a device having a high dielectric strength where no
discharges occur, the negative charge of the envelope near
the anode impedes the bombardment of the glass, reducing
the field emission current from the anode and lowering the
energy of the electrons as they approach the surface of the
glass.
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An analysis is made of some burning characteristics of a hollow-cathode glow discharge with a
long tube (>D) used as the cathode. It is shown that, as in the tasB, the main

factor imposing a lower limit on the range of operating voltages is the drift of fast electrons
through the aperture in the cavity. Assuming that the electrons move along the cavity as a result of
diffusion, it was possible to calculate the critical pressure at which the discharge can no

longer burn and to determine the optimum rdtiD for which the discharge can be sustained at

the lowest voltage. The calculations showed satisfactory agreement with the experiment.

© 1999 American Institute of PhysidS1063-784209)00606-§

In Ref. 1 the present author analyzed the processes adischarge can be achieved if the following condition is sat-
companying the burning of a glow discharge with electronisfied:
oscillation in a hollow cathode and developed a model which

. . . . . "\

agreed satisfactorily with the results of experiments using y= , (1)
cathodes whose length and diameteD are of the same ey(1—expg—D/x(e))
order of magnitude. However, a comparison between the rgyhereU is the discharge voltage which is almost completely
sults predicted by this model and the experimental data obconcentrated in the cathode sheathis the average energy
tained using long cathode tubesX D) reveals an appre- (dissipated in forming a pair of charged particles when a fast
ciable discrepancy when the optimum hollow-cathodeparticle is stopped in the gasis the electron charge; is the
geometry is determined. The present author showreat the  coefficient of ion—electron emission, expD/)) are the frac-
minimum burning voltage is reached wh&/S.~Vm/M,  tions of particles which have reached the cathode without
whereS, andS; are the areas of the anode and the cathodeyndergoing collisions and do not participate in ionization
andm andM are the electron and ion masses, respectivelyprocesses, and=eU is the energy of the fast particles on
When this condition is satisfied, the fast electrons can protheir first transit. For any dependenk¢e) the voltage will
duce a sufficient number of ionizations and at the same timeyradually increase as the pressirdecreases and will only
there are no problems with the transport of plasma electrongo to infinity when\—c, i.e., whenP—0, but the dis-
to the anode. This condition predicts that in a long tubecharge is abruptly quenched for nonzefo In addition,
(S~ mDL) with an end anode§,~ wD?%/4), optimum con-  Metel* and Berseneet al® reported a discharge under con-
ditions for discharge burning in the most commonly usedditions wherex>D, which also contradicts the conclusion
gases such as argon, nitrogen, and oxygen will be achievagached in Ref. 3, but nevertheless an experiment was carried
when the conditionL/D~0.25/M/m~1(? is satisfied, al- out to check this and the results are presented below.
though in experiments the minimum voltage or maximum A discharge was initiated in a lond.(D=10) cathode
discharge currenwhen a given voltage is maintainedere  tube 1 (Fig. ) by a Penning discharge excited in a cell
observed fol./D~10 (Ref. 2. The aim of the present paper formed by end cathodesand3, an anodel, and a magnéei.
is to analyze the discharge burning characteristics in long\ probe6 was placed opposite the exit aperture of the cavity.
tubes and to identify the reasons for this discrepancy. The probe was either floating or connected to the cathode. In

Kirichenko et al® reported experiments using tubes of the first case, the fast electrons escaping from the cavity were
different length, and on the basis of their results, conclude@aptured by the probe, while in the second case they were
that the drift of fast electrons to the anodkeese losses were reflected by the probe and had a high probability of returning
taken into account in the author's motjebnly impedes to the cavity since their radial drift was impeded by the mag-
burning of the discharge for short lengthsin long tubes the netic field. Figure 2 gives the discharge burning voltage as a
main factor limiting the discharge burning process is the driftfunction of the gas supply for both cases. The measurements
of emitted electrons to the opposite part of the cathode andiere made with the gas supply gradually reduced to the criti-
the discharge becomes quenched wkenS, wherel is the  cal value for which the discharge was quenched in the cavity.
electron mean free path. This conclusion is dubious since if the main mechanism limiting the discharge burning pro-
we assume that electrons which have undergone collisionsess were electron losses to the walls of the cavity, the dif-
on their first transit through the cavity and have not reachederence in the probe potential should not significantly influ-
the opposite part of the cathode subsequently expend all theénce the results. However, it can be seen that in the second
energy in ionization, it is easily found that a self-sustainedcase, the gas supply could be reduced by almost an order of
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Gas wherej; andn; are the flux density and concentration of fast
_L particles,D; and»; are the diffusion coefficient and the ion-
ization frequency for the fast electrons, is the characteris-
tic relaxation time of the fast electrons, for which we can

write:
7
B eU 4
2 LW (4)
5 — — . . .
Assuming that the square of the fast particle velocity
M varies between @U/m and 0 and has an average of
~eU/m, we can write the following expression f@;:
47— 2
3Vf Sme '
FIG. 1. Schematic of experiment. wherev; is the effective fast-particle collision frequency.

The first term on the right-hand side of E8) describes
the generation of new fast electrons by ion—electron emis-

- ; ' ; jon. Herev;n; is the density of the ions generated per unit
magnitude compared with the first case. This result suggestao" S . ; .
g P 99 t§|§me and it is assumed that the ions drift rapidly to the cath-

that in long tubes the main mechanism impeding the dis- in th dial directi ithout having time f
charge burning process at low pressures is the loss of fagtde In the radial direction without having time 1or-any ap-

particles through the cavity aperture preciable longitudinal displacement. The second term as-
Consequently, this discrepancy between theory and e2umes that after the relaxation time has elapsed, a fast

periment cannot be attributed to the model neglecting thglectronflolses |t|s capacllty Ior |ongatt)|otr_1tat|_1d IS co_n\t/erItEed toa
electron losses to the cavity walls. At the same time, th roup of slow plasma electrons. Substituting Eg).into Eq.

experimental results indicate that in long tubes, gas condi(-3)’ we obtain a second-order equation for
l) d?ng

tions are established under which the longitudinal motion of

the fast particles is not a Knudsen process. This contradicts ('yvi— —|n;+D;——==0. (6)
another assumption used in Ref. 1, that the electrons move Tr d
freely over the entire volume of the cavity. We shall analyze Assuming that near the fast-particle absorbing anode at

the discharge conditions assuming that the transport of fashe pointx=0, the concentration of these particles is close to
electrons along the cavity is a diffusion process and that theq,q \we write the solution of the equation in the form

influence of the weak electric field in the plasma on the fast
[yviT,—1 .
X DfTr ' ( )

particle motion can be neglected. We shall write the equa- .
N =Nsg SIN
dny @) The constanh;, is related to the discharge curreint

tions of motion and continuity in the following form:

=" Praxe and may be determined from the following equation:
djs Ny D2 (L
&:’yvinf_;’ (3) Id:(1+ ’)/)e’JTTfO Vinf(X)dX. (8)

At the opposite end of the tube, the end is at the cathode
potential and electrons are reflected from it so that at the
I pointx=L the fast particle flux density, i.e., the derivative of
the concentration, is close to zero. We then obtain the fol-
450+ lowing equation:

\\\/ ywin—1 m
- 1 Ve =
L Ds, 2 ©

400+ Note that when the second end electrode is at the anode
or floating potential sometimes used, we need to impose the
constraint that the derivative vanishes at the center of the
system at the poimt=L/2. Introducing the parameters

350 L 1 ! 1 i 1 L L
0 100 200 300 400 Uozﬂ, Po=— /L, (10
Q,cm’ atm /h ey yL ¥ 3mugorig

FIG. 2. Discharge burning voltage as a function of gas sugply probe at V\{here vip and vy are the eﬁeCtiV? and. ionization frequen'
floating potential2 — probe at cathode potential. cies at 1 Torr pressure and the dimensionless variables are

Uy
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FIG. 3. Discharge burning voltage as a function of pressure. FIG. 4. Region in which a high-current discharge is achieved: Py(L),
2— Py(L).

u=U/Uy, p=PIP, (12)

. . L . the time for radial ion drift to the cathode. We shall assume
we rewrite this equation in the following form:

that the characteristic time for ion drift from the discharge is

u—1 D/vy,, wherev,=kT./M is the Bohm velocityk is the
2p u =1 (12 Boltzmann constant, antl, is the electron temperature. The

. . ] ) conditions for sustaining a high-current discharge will be
Figure 3 gives the discharge burning voltage as a funcgagisfied if a plasma electron can diffuse over a distance

tion of pressure determined implicitly by this relationship. greater than the tube length within this time, i.e., if the con-
Forp>1 the dependence is two-valued. A similar result wasgjtjon

obtained in Ref. 6 where the author analyzed the situation in

a glow discharge with electron oscillation in a magnetic field /D 2> L
and showed that states corresponding to the lower branch are v '

stable and can be attained experimentally. As we move along satisfied whereD. is the diffusion coefficient of the
this branch, the voltage drops rapidly with increasing pres- ' €

surep and at the poinp=1.74 it is 1.1 so that conditions plasma electrong. . : . .
. L : ) By transforming this relationship, we can ascertain that a
close to the optimum for maintaining a self-sustained dis-

charge are achieved at this poifet the voltageu=1 or high-current discharge will be sustaineddifis lower than a

U=U, where the fast electrons have time to expend all theirCertaln pressur®, given by:

energy before drifting to the anodeA further increase in M kT, D
pressure does not lead to any substantial increase in the num- P1= \/% \/ m 2,
ber of ionizations accomplished by the fast electrons or any Veo
appreciable voltage drop. wherev, is the effective collision frequency for the plasma
Forp<1, i.e., whenP<P, the discharge cannot be sus- electrons at 1 Torr.
tained at any voltage. Therefore the param@gis the criti- It should be noted that unlike fast particles, the transport
cal parameter, below which the discharge cannot burn. Cabf slow electrons along the cavity is strongly influenced by
culations ofPq using the expression given above are of thethe electric field in the plasma. However, if we assume that
same order of magnitude as the experimental results frorthe electrons are transported to the anode as a result of drift
Ref. 3. Thus, these results can be completely explained usirig the electric field rather than by diffusion, when the poten-
concepts of electron losses through the cavity aperture, artthl drop across the plasma is of the orderkdt,/e and the
the fact that the discharge was quenched at pressures conséserage electric field intensity is kT./eL, we obtain ex-
tent with the conditior\ ~D is to some extent coincidental. actly the same expression fBy. On the whole, the electric
In different cavity geometries the discharge can be quenchefield distribution pattern and the particle concentration in the
whenA>D or A<D. plasma column of the hollow cathode are fairly complex and
Consequently the condition for a self-sustained disin some sections the electron transport is predominantly by
charge is satisfied foP<P,. However, in order to ensure diffusion while in others it is the result of drift.
that a high-current discharge burns with a low discharge The high-current discharge region is shown schemati-
voltage, the constraint must also be imposed that at thesmally in Fig. 4, this being the region above cuivand below
pressures there are no problems with the transport of plasn@irve 2. Below curvel (P=Py(L)) the discharge cannot
electrons to the anode. A quasineutral state can be mairurn in this form because the self-sustaining condition is not
tained over the entire length of the cavity and the electrorsatisfied whereas above curd¢P=P,(L)) this is not pos-
current can be shorted at the anode in the absence of amgjble because of problems with shorting of the electron cur-
negatively charged anode sheath if the time taken for theent at the anode. When the pressure increases d@gpvan
electrons to move along the plasma column is shorter thaelectron sheath begins to form near the anode, across which

(13

(14)
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the potential drop makes a significant contribution to thecathode tube with an end anode even wittb ~ 10 is not
discharge voltage and the discharge goes over to a highdeal from the point of view of achieving a high-current dis-
voltage form. If the anode is not positioned at the end of thecharge at the lowest possible pressure, which is the situation
cathode tube but some distance away, electrons may hesually most desired when hollow-cathode systems are used
transported in the region near the exit aperture as a result @i charged particle sources. Substantially lower working
the formation of a double layer. A requirement for its stablepressures may be achieved by covering the exit aperture of
existence is that the external plasma should possess a suffite cathode tube with a diaphragm also at the cathode poten-

cient ion-emission capacity. tial, as is convincingly evidenced by the results of Ref. 4. In
When the cathode length is increased to this case, the area of the exit aperture in the diaphragm
L D 3kTe\/M Jrrora . should obviously not be less thanS.\m/M.
Tom T W m Veo ( )
the values o, andP, become equal and the lowest work- CONCLUSIONS
ing pressureP,, is achieved at this point, which for this 1. The main mechanism imposing a lower limit on the
particular configuration of gas-discharge system can be olrange of working pressures of a hollow-cathode glow dis-
tained using a cathode tube of diameier charge in the form of a long tubeL&D), as in the case
; . W W 6 l_u:eD, is the drift of fast electrons through the cavity aper-
™ ylm V3Myiorio 392D wigripy3KTM 2. By allowing for electron losses through the cavity
ForL>L, a high-current discharge cannot be sustainec@Perture and a_lso _taklng into account that th_e _electron motion
at any pressure. along the cavity is not Knudsen motion, it is possible to

Conditions close to the optimum for discharge burning atcalculate critical pressures and determine the optimum ratio
low pressures are evidently achieved kgy=L,/1.74 at the /D In satisfactory agreement with the experiment.
point P=P4(Ly)+1.74Py(L,y) where, as was discussed
above, the self-sustaining condition is satisfied at a low volt—lsl P. Nikulin, Zh. Tekh. Fiz67(5), 43 (1997 [Tech. Phys.42, 495
age close toU, and at the same time no anode electron (1997
sheath appears. Also bearing in mind that all the frequenciedyu. E. Kreindel', Plasma Electron Sourcéi Russiaf, Atomizdat, Mos-
in Eq. (15) are of the same order and neglecting factors of _cow (1977, 144 pp.

: : : : 3V. I. Kirichenko, V. M. Tkachenko, and V. B. Tyutyunnik, Zh. Tekh. Fiz
the order of unity, we can derive the following expression for 46, 1857(1976 [Sov. Phys. Tech. Phya1. 1080(1976].

the optimum ratio_/D: “A. S. Metel', Zh. Tekh. Fiz54, 241 (1984 [Sov. Phys. Tech. Phyg9,
141 (1984)].
(L ~ /E \/EN 10 (17) 5V. V. Bersenev, N. V. Gavrilov, and S. P. Nikulin, Proceedings of the
D Wi m ! Conference “Low-Temperature Plasma PhysicBetrozavodsk, 1995,
0 Part 2[in Russiai, pp. 251-253.

Broadly speaking, it should nevertheless be acknowl-
edged that a discharge configuration in the form of a longrranslated by R. M. Durham
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The coefficient of backscattering of primary electrons is discussed as a function of their energy
and atomic numbeZ. The amplitude of the wave function obtained in the first Born

approximation and the Thomas—Fermi atom model are used to calculate the constant for screening
of the electric field of the nucleus by atomic electrons. The theoretically calculated integral
backscattering coefficients of primary electrons are compared with the experimental values in the
range 12.Z2<92 for primary electron energies of 10 and 40 keV. Possible applications of

these results are indicated. €999 American Institute of PhysidsS1063-784299)00706-0

INTRODUCTION within a microvolumedV at an arbitrary depth taking into
Studies of the laws governing the backscattering of pri_acc?u_nt thﬁ pgrtllcle batl_:?nce and engrgy. This etqua}uorc]j OTgI
mary electron fluxes are of particular interest for electroncOMans pnysical quantities averagead over a particular aeptn,

lithography' since the electron backscattering process prima—such as the velocity, interaction cross section, and o on.

rily determines the resolution of the masIElectron back- This approach has proved quite justified in many caSes.

scattering laws are also used in electron scanning microThe main difficulty assomated_wnh this approgch qulves
qetermmlng the average energies and also the interaction pa-

scopy to achieve the best contrast in the observed image o ¢ ired for th lculati Thi bl
the surface of an object, and in local x-ray spectral analysigame ers required for the calculations. 1his problem was

to calculate corrections in quantitative calculati8risFi- Solved by the present author in earlier studfes.

nally, studies of these relationships are important for prob- | ltDurlng (tjhe mot|or|1 ozpnmgr.y ellec,:[t.ro-n? n at.sohfd, ear?hh
lems relating to the first wall of a fusion reactor, since inter-S €CIroN Undergoes elaslic and inefastic interaction for whic

action between the hot plasma electrons and the Wa?he prob_ability can be. estimatgd using the mean free pe_lths
produces a flux of backscattered electrons which have unde or elastic and inelastic scatterm.g gnd ab;orptlon. I we In-
gone appreciable energy losses, and this then leads to signi? oduce the average macroscopic |nteract.|on'cross ;ectlo'ns,
cant cooling of the entire plasma volufi&ln the author's the macroscopic cross section for the entire interaction will
view, this aspect has not received sufficient attention. Thi?e
effect can only be reduced by means of a suitable choice of
first wall material and also by using a suitably selected sur-
face profile and treatment characteristics. In the present pa-
per an analysis is made of the backscattering of electrons

having energies in the kiloelectronvolt range because elec-

tron fluxes at these energy levels are now the most Widel)‘/"herews' W, are the average macroscopic Cross sections for

used. The theoretical principles of the backscattering effec‘?lasnc_?nd |nel_alst|c ;cattermg and absorptmg,—)\s_ '
, W=N\"", \q is the mean free path for elastic and

are fairly complex. Several approaches have been noted N‘H:)‘y ) ) ‘
the literature in which the backscattering process has bedR€!astic scatteringh, is the mean free path for absorption,
considered in some approximatii However, no rigorous andA s the total mean free pgth. . . .
theory has yet been proposed to solve this problem. Here a V€ shall assume that during the interaction of primary

possible variant is proposed to obtain an approximate SO|Lparticles with a solid the probability of new particles such as
tion of this problem electrons being formed in the flux as a result of the ionization

of atoms is fairly low compared with the probabilities of
other processes. Jablonskshowed that the elastic mean
free path of primary electrons in a solid is far shorter than the
The penetration of a primary electron flux into a solid inelastic mean free path, i.e\o<<\;. Thus, we are suffi-

destroys the equilibrium distribution of free electrons. Con-ciently justified in considering that elastic scattering pre-
sequently, this process can be considered on the basis dbminates in the collision process and we shall subsequently
kinetic transport theory. The most acceptable approach ttakews to be the macroscopic cross section for elastic scat-
solving the problem would appear to be the following. A tering. It follows from Ref. 14 that the kinetic transport equa-
kinetic transport equation is constructed to describe the intion written in planar geometry allowing for energy losses
teraction between a flux of accelerated electrons and a solidnd anisotropy of the primary particle scattering is given by:

W=Ws+W,, D

THEORY
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1 &f(X,,U,) ax —ax
—Wf(X,M)+st_1Ws(M—>M’)f(X,M’)dM’=M x f(Xm)= Clwla+M+C4W/a_M G(u), (6)
@ and for the backward-propagating flux
where
dn fr (X, p)=(Cae™+Cye™ ™) LM)- (7
foom= g ) wia—p

. . o ) ) Then, taking account of Ed3), the flux density of pri-
f(x,u) is the velocity distribution function of the primary mary electrons in the range of angles betwe@nand ©
electronsn is the concentration of primary electrons at depth , ¢ ot depthx will be

X in the range of angles betweéh and® +d0O, v is their
velocity, u=co®, v'=co’; ® and®’ are the angles of
incidence of primary electrons on the elementary volutde
and the angle of scattering from Ws(u—u')=dps/dv is In the microvolumedV, the integral flux density of pri-
the scattering indicatrix, angl, is the elastic scattering prob- mary electrons propagating in the direction of theoordi-
ability. nate at depttx will be
Thus, the physical meaning of the scattering indicatrix is
the probability that a primary electron will be scattered from
the velocity range between andv+dv into the range be-
tweenv’ andv’ +dv’, i.e., will be scattered taking into ac-
count a change in the direction of motion. After substituting the distribution functioh, (x, x) from
Since the time of arrival of a primary electron in the Ed. (6) into Eq.(8) and integrating, we obtain an expression
elementary volumelV, for which the kinetic transport equa- for the integral flux density of the primary electrons propa-
tion (2) is constructed, and its time of departure from it aregating in the direction of increasing
incompatible events, i.e., they always differ in time, in ac- _
cordar?ce with the ergodic thgorem,ythe scattering indicatrix dn(x)=vz(ClBlleaX+ CaBre™™),
may be represented as a sum of two indicatrices, one depengqo o

dj=vdn=v?f(x,u)dpu.

1
i(X)=27Tvzf_1Mf(X,M')dM'- ®

(€)

ing only on the angle of incidend® and the other depending
only on the scattering anglé3’,

1
WS(M_’M,):;(1+WS(M)+WS(M,))- (4)

Equation(2) was solved by a method of separating the

. _wa(@)sinZ@d@) ; _wa(@)sinZ@d@
17 ), wlatcos® ' " ), w/a—cos®

However, since the functio®(®) is even for normal
incidence, we findB,;=—Bj,. Taking account of Eq(7),

variables. As a result, after the necessary transformations w8€ integral flux density in the opposite direction at depth

obtain the following particular solutions:

e®G(u) e ¥G(u)
fl(X,M)—Clm, fz(X,M)—sz,

e¥G(u) e ¥G(u)
f3(X,M)—C3m, f4(X,M)—C4m, ©)

whereC,, C,, C3, andC, are the integration constantsis
the interaction parametea,= R, 1 R; is the average longi-
tudinal range of a primary electron in the material;

G()= {1+ W) JAg+ A,

Ao, andA; are constants.
If the distribution functionf(x, ) is real, smooth, and

will be
Jr(X)=0v%B,y(C3e™+ Che™ ), (10)
where
oy [ CLOISN2000 "
-2 W/a—cos®

The following boundary conditions were used to deter-
mine the integration constants:

i2(00=i0=i:(0), j5(X)|x=h=0, ji()=0,

whereh is the thickness of the free layer.
For a layer of infinitely large thickneds=R,;, j, is the
integral flux density of primary particles incident on the sur-

(12

finite, these particular solutions are unique, as was shown bg?ce of a free layer of thickness

the author in Ref. 14
The physical formulation of the problem indicates that
two primary electron fluxes may be identified in a solid,

propagating simultaneously in opposite directions. Hence®

the resulting distribution of the primary electrons in the solid
at depthx may be represented in the following form: for the
forward-propagating flux,

After substituting the values from Eg&@) and(10) into
Eqg. (12), we obtain a system of three algebraic equations
which, when solved jointly, can determine the integration
onstantC,, C3, Cy:

(1-r)e 2",
2v°B;,cosiah)’
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TABLE |. Values of the coefficients, used in Eq48) and(19).

E, keV B g bo b, b,
10 7750 —0.843 —1327 04476 —3.20x10°°
40 8323 -0.832 —1263 04395 —3.10x10°°
(r—1e ", (1-1r)e*"j, 13
3: - 4 =
2v2B,coshah) 2v2B;,coshah)

wherer =j,(0)/j, andr is the integral backscattering coef-
ficient.

After substituting the values of the integration constants

C; andC, from Eq.(13) into Eq.(10) for x=0, we obtaif®

Bio -t
2h=R;,, r=|1+4+Z—coth(2ah)| ,
Ba1
B> -t
2h<R;,, r=|1+g—coth(1) (14
B2
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m

bn),

2

w=wypA 1(Z- b)E; ﬁF( (20)
where wy=6.3Xx104, b is the screening constanh,
=(AE)/E, is the average relative energy loss of a primary
electron after passing through a layer of thicknksshose
value can be calculated using the results of Ref.nlig,the
exponent in the power potential of the interaction between an
impinging primary electron and the atomic corgb,,/n) is

a function which takes into account the energy losses of pri-
mary electrons in a solid,

byl & (b
#{5e) =3 Al 2
A0:A1:1, A2:(2+n)/3, A3:(l+n)/2A2, A4:(2
+3n)/5A;, As=(1+2n)/3A;, As=(2+5n)/42A5, and

A;=(1+3n)/60A¢.

Here the screening constantwas calculated theoreti-
cally using the Thomas—Fermi model taking into account the
binding energy of atomic electrons in various electron shells

In order to calculate the integral backscattering coeffi-of the atom whose values were given in Ref. 19. Then using

cientr, we need to know the value af= R;l, h and the
ratio B;,/B,;. The value ofa can be calculated frotn

2 (p
a=a0(pZ)°-69Ep HF(T”“ , (15)

wheren=ny+cZ, a;=2.24x10 4, n,=1.287,c=—2.05
x 1073, p (g/ent) is the density of the target material, and
[Ep]= keV.

Since the coefficientB,, andB,; have a fairly complex
analytic expression, and their ratio is even more complex, i
order to simplify the following calculations the ratio of these
coefficients is replaced by the fairly simple analytic function

B, B

B—Zl—B—ZB(Z), (16)
where
w  w/a+1 w w/a
Bi=ginwia—1 % B=ahga—1 1 (A7)

Egs.(15) and(20) we have for a semiinfinite layer

w
§=2.81p°-31A*12*°-69(z— b)2. (22)
Expression$20) and(22) contain the screening constant
b which has the following physical meaning. As a fast pri-
mary electron moves in a solid, it undergoes continuous col-

lisions with atoms of the material, which are accompanied by

plastic and inelastic scattering. If small-angle deflections pre-

dominate, this means that the scattering is mainly elastic
where a primary electron penetrates fairly deeply into the
electron shell of the atom. As it moves inside the atom, the
primary electron is mainly scattered in the electric field of
the nucleus and the atomic electrons bound strongly to it.
These strongly bound electrons together with the nucleus
create a resulting electric field under whose action the pri-
mary electron moves within the atom. Thus, the screening
constantb in formulas(20) and(22) is taken to be the num-
ber of atomic electrons involved in screening the electric

An analysis shows that in the energy range 10—-40ke\fig|q of the atomic nucleus. It can therefore be postulated that

the functionB(Z) may be expressed as follows:

12<Z<50 B(Z)=B,Z9, (18)

56<Z<90 B(Z)=bg+b;Z+b,Z2 (19

The values of the coefficienB,, g, by, b;, andb, are
given in Table I. It can be showhthat the average longitu-
dinal rangeR, is proportional to the total rangB whose
value can be determined using Bethe thedrjt follows

in a solid the scattering of fast electrons can be considered as
scattering by a static force center, in whose electric field the
primary electron is located. The potential energy of the pri-
mary electron in the resultant electric field of the nucleus and
the atomic electrons screening the nucleus will then be

Z*e?
- 47780r

r
o,

u(r) (23

from this theory that the total electron range in a material is

determined by the Bethe stopping law which only holds for

electron energieE>J whereJ is the average ionization po-
tential of an atom.
The present author showedhat the Bethe law of con-

tinuous energy losses can be applied to obtain the following
expression for the total macroscopic interaction cross sec-

tion:

whereZ* =Z—b andr is the screening radius.

It was showr® that the total microscopic cross section
for elastic scattering of a primary electron at the screened
field of an atomic nucleus is given by
Z*e? )2

Ameomu?

ks

a?(1+a?) ,

(29)

o=
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FIG. 1. Average angle of scattering of a primary electron by target atoms ag|G. 2. Screening constabtas a function of atomic number of the element.
a function of the atomic number of the element.

metric, allowance should also be made for the departure from
spherical symmetry by introducing a suitable coefficient, as

2
a?=7.46% 106(2*)2’3( E) , (25)  in Ref. 15.
v The angle(®) was calculated by the method of succes-
wherec is the velocity of light in vacuum. sive approximations of the integré26) until (®) reached a

Since the scattering of a primary electron by individuallimiting value. The value ob for which(©) reaches a maxi-
atoms in a solid is a statistical process, we can usg®). Mum was taken as the screening constant in this study.
to calculate the average angle for scattering of a primary Figures 1 and 2 give calculated values(6f) andb for

electron in a solid in the small-angle approximation E,=10 and 40keV. These screening constants were then
used to calculatev/a using formula(22). Then, taking ac-
40%(1+a®) (7 Osin®dO count of Egs(15), (17), and(18) we can calculate the inte-
(@)= J 0 2 (26) gral backscattering coefficient from Ed.4) allowing for the
(Sin27+012) macroscopic anisotropy of the properties of the material for

various primary electron energies and various atomic num-

It follows from Eg. (25) that «? depends on the screen- bers. For a free layer of considerable thickness the primary
ing constant. In turnb depends on the primary electron en- electrons penetrate to depths not exceeding the average lon-
ergy and the structural characteristics of the solid atoms witlyitudinal range R,. Since during backscattering primary
which the primary electrons interact. We know that as a reelectrons initially move forward and then backward, their
sult of a collision between a primary electron and an atomeffective penetration depth RBy/2, but the total longitudinal
the momentum of the primary electron changes by range remains the same as befdRg, Therefore & in Eq.
0 (14) should be taken to be the total longitudinal rarigje.
ha=2hk Sin?’ (27 Moreover, since the physical meaning of the interaction pa-

rameter isa:Rgl, in Eq. (14) the product is 2h=1.

wherek is the wave number of the primary electron. Figure 3 gives the values of/a calculated using formu-

Consequently, the atom at which the primary electron idas (14) and(22) and Figs. 4 and 5 give the theoretical and
scattered receives the same momentum. This means that tB¥perimental values of (Refs. 20 and 21 A comparison
elastic scattering condition for which the primary electronréveals good agreement over a wide rang&.dh addition,
momentum remains the same and only the direction of mothe theory predicts that the integral backscattering coefficient
tion changes, should correspond to the moment2# im- I should not vary monotonically as a function of the atomic

parted to the atom, which we can then write in terms of thehumberZ, as follows from Ref. 20, but some quasiperiodic-
energy ity should be observed. This is caused by the gradual filling

of the electron shells with atoms &sincreases. Some dis-
AE=4Epsin2?. (29

Then, from the physical meaning of the formulation of
the problem, the condition for elastic scattering at strongly 4} .
bound atomic electrons should correspond to the inequality O 7
AE<E;, wherek; is the binding energy of the atomic elec- R JF y
trons completely involved in screening the electric field of
the nucleus. IfAE>E;, atomic electrons with this binding
energy will only participate partially in the screening. Thus,
the concept of an effective number of electrons involved in
the screening should be introduced for these electrons. This
applies to the spherically symmetric electron shell of an
atom. If the appropriate electron shell is not spherically sym-IG. 3. Dependence of the rati'a on the atomic number of the element.

10 kev

1 i 1
0 20 40 60 80 4



Tech. Phys. 44 (6), June 1999 Yu. D. Kornyushkin 649

rF of the backscattered primary electron flux from a solid of
- infinitely large thickness, such as Mg, Al, or Si, is approxi-
G0k mately the same and small whereas that for Pt, Au, and Pb
- should be appreciable. Therefore, light materials and coat-
4ok ings should be used to obtain the best resolution for masks
- used in electron lithography and to obtain images with the
20+ highest contrast in scanning electron microscopy, and in
L other similar cases.
L L ! ! | This approach can also be used to analyze the emission
a 20 40 60 80 z

properties of various chemical compounds in the solid state.
FIG. 4. Theoreticasolid curvg and experimental valu#s? of integral It can also be applied to an obliquely incident primary elec-

backscattering coefficients for normal incidence of an accelerated electrOﬂ,on flux on a free |ayer of solid of finite thickness and also
flux on the surface of a targeE(=10 keV). . . 4
on multilayer coating®’
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Distribution of 90° domain reorientations in lead titanate zirconate piezoceramic under
longitudinal compression
M. G. Minchina and O. I. Yankovskil

Rostov State University, 344090 Rostov-on-Don, Russia
(Submitted September 24, 1997; resubmitted March 18,)1998
Zh. Tekh. Fiz69, 46—49(June 1999

A static model of a critically polarized ceramic is used to analyze the behavior of the
piezocoefficients; of lead titanate zirconate ceramic exposed to a longitudinal compressive
stresso- and a quantitative analysis is made of the 90° and 180° domain reorientations. It is shown
that for TSTG-83G ceramic a 180° antiparallel domain structure forms at compressive
stressesr> 10 N/m?. © 1999 American Institute of Physid$S1063-784£99)00806-9

INTRODUCTION T=120° for 1 h at=25kV/cm. The direction of the polar-
izing field E coincided with the principak crystal-physics

ate anat€P 2T piezoceramc plate  racuced a8  roau oS Of he ceramic. A ciamond cisk was used t0 citds
P P X4 mm samples with the orientation of the principéY Z

90° domain reorientations which take place under the action . . L
o . crystal-physics coordinate system and the direction of the
of a longitudinal mechanical stress(Refs. 1 and 2 As the Y phy y

stresso in lead titanate crystals increases, domains with thé)olarizing fieldE being maintained. Electrodes were depos-
. € cry NN . jted on the oriented polarized samples by cathode deposition
¢ polar axis perpendicular to the direction of compressio

) . I . : "from Al + Cr atT=80°C for 30 min. Measurements of the
increase in volume, annihilating domains with tbhepolar

. o ) iezocoefficientslzz anddss=d were made under qua-
axis parallel to this direction as a result of the domain Wallsp. : NS -33(0) : d

. . L sistatic conditions using a “Piezomodul’™ device.
being displaced along the normal to their intrinsic planes.

When the stress is removed, the twinning structure is pargesyLTs AND DISCUSSION
tially restored to the initial state? Detwinning of lead titan-

ate crystals showed that 90° reorientation of ¢haolar axes o - ‘
is accompanied by 180° polarization reversal processeRfincipalXYZ crystal-physics coordinate systefthe polar-

which occur when a 90° domain wall is displaced rapidly Z&tion vectorP is directed along th& axis). We shall apply
(V4>1Xx10"°m/s (Ref. 5. An antiparallel 180° domain & Uniaxial mechanical stress

structure also forms in polarized PZT ceramic exposed to 000

compressive stresses>90x 10° N/m? (Ref. 6. In lead ti- 000

tanate crystals, the domains only become reoriented when

the mechanical stress exceeds the coercive strass of the 000

. 7,8 . . . . . . ) .
domain:~ In Ref. 9 the domain distribution over coercive tq the plate as a result of which an electric charge will be
stressesr, in the ceramic was expressed using the distribuinquced on the hatched faces of the pléeg. 1), its mag-
tion function f(o) which is equal to the probability density pitude being proportional to the piezocoefficien.

of the ¢ polar axis of the domain being rotated under the  The equation for the piezocoefficienly; of a group
Iongitpdinal compressionr. Here we propose to analyze the 4mm ferroceramic on transition from th&YZ crystal-
coercive stress . averaged over all domains, assuming thatyhysics coordinate system to t\éY’Z’ coordinate system

the ¢ polar axes of the domains in TSTS-83G ceramic argsing the laws for transformation of a third rank tensor has
distributed nonuniformly under the action of a longitudinal tne forn?®

stresso.

The aim of the present study is to analyze the behavior ~Jas=(dis+d3,)cosO sir’® +d;cos’ @, @
of }he piezocoefficientl;s=dsg(0) and the distribution of  \yhereds, is the piezocoefficient in thKY Z coordinate sys-
90° domain reorientations in TsTS-83G ceramic exposed tgapy anddl,, d;, andd.s are the piezocoefficients in the
a longitudinal compressioa using a static model for a criti- - x/y’z’ coordinate system.

cally polarized ceramic. Equation(1) can take into account the relationship be-
tween the piezocoefficierttz; of the polarized ceramic and
the piezocoefficientdy;, dg;, andd;s of the crystalliteqas-
suming that these are single-domaiifhe experimentally
Ferroceramic having the composition TsTS-83G wasdetermined piezocoefficients of TsTS-83G ceramic are
prepared by hot pressing. A block 100 mm in diameter andl;;=360 pC/N, d3;=—180.9 pC/N, andd;s=508.2 pC/N.
12 mm thick was sintered &ti=1100°C, held for 5h, and According to published sources, the piezocoefficients of lead
loaded to 90 kg/cth The block was polarized in silicone at titanate ceramic and single crystals differ negligiif§* so

We shall analyze a classwim piezoceramic plate in the

EXPERIMENTAL METHOD

1063-7842/99/44(6)/3/$15.00 650 © 1999 American Institute of Physics
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FIG. 1. Piezoceramic plate with longitudinal mechanical stresgplied to
hatched faces.

that the piezocoefficients of TsTS-83G ceramic were taken

as the piezocoefficientds;, d3;, andd;g of the crystallite
(domain.

A static model for a critically polarized ceramic was
used to construct an equation for the piezocoefficigpof a
ceramic exposed to longitudinal compression(Ref. 12.
This model neglected interaction between the crystallite
(domaing and the motion of the domain walls. The authors

assumed that the internal mechanical stresses created in tWe

ceramic during sintering remain constant under external in

fluences and only the field applied to the ceramic acts on

each crystallite.
The polarized ceramic was represented as a systed of
single-domain crystallites polarized to saturation, whose

S

M. G. Minchina and O. I. Yankovskil 651

closest to the field and the fiel, o is the coercive stress
(0.=16.555< 10° N/m? for PbTiO; crystald), and o is the
external mechanical stress.

We shall use the geometric relation between the angles
Ye» Ya, and ¢ characterizing the position of the domain
relative to the polarizing fiel& (Ref. 13

COSy,=Siny.COSp,

()

whereg is the angle between tleeaxis closest to the fiel&
and the line formed by intersection of the plane passing
through thea axis and the plane passing through thexis
andE.

We shall analyze the condition for total stability of tbe
polar axeq2) when thea axes of the domaifcrystallite) are
in the position closest to the polarizing field(¢=0°),

cosy.—tan45° siny.=o./o. 4)
After simple transformations, E¢4) has the form
0= y.<(arccogo./o)- (12/2)) —45°. (5)

Inequality (5) gives the angular boundaries of the zone
of total stability of theC polar axes when the longitudinal
stresso is applied to the ceramic.

The condition for partial stability of the polar axes
hen thea axes are further away from the direction of the
polarizing fieldE (¢=45°), has the form

cosy.— (V212)siny.= ol o. (6)
Equation(6) can be reduced to the form
45°< y.<54.733°-arcsi(o. /o) - (V2/13)). (7)

polar axes have the preferred orientation and are located

in the upper part of the orientation sphere in the solid
angle®=54°44. According to the model, the distribution
of the c polar axes in zones of total and partial stability,

taking into account all possible 180° and 90° reorienta-

tions, is inhomogeneous$p,=3N/27 and p) =3N/27(1

— (4arccos(cotl®))/7) are the densities of the polar axes
in zones of total and partial stability, respectivelyhe con-
dition for total stability of thec polar axes in a ceramic to
which an external stressgs is applied has the forrfFig. 2

2

wherevy, is the angle between the direction of the figldnd
the c axis of the domainy, is the angle between threaxis

COSy.—COoSy,=o./0o,

FIG. 2. Geometric relation between the angjes v, , ande characterizing
the position of the domains relative to the polarizing figld

Inequality (7) gives the angular boundaries of the zone
of partial stability of thec polar axes for a critically polarized
ceramic.

In the zone of partial stability of the polar axes we take
into account that part of the axes which after 90° switch-
ing, was converted int@ axes and then the condition for
stability of thea axes in this zone will have the form

COSy,—COSy.= 0 /0.

®

Substituting conditior{3) into (8), we find the anglé¢|
containing thec axes close to the fiel,

| o|<arccogcothy.+ o /(o siny,)).

9

The fraction of crystallite®8, whosec axes “drift” out
of the zone of partial stability of the polar axes as a result
of 90° switching will be

B.=4|¢|/m=(4 arccoscothy .+ o /(o siny)))/ .
(10

The fraction of crystalliteg3; whosec axes remain in-
side the zone of partial stability of the polar axes after
switching will be

Bi=1—(4 arccoscothy.+ o /(o siny.)))/ . 11

The value of Adl; by which the piezocoefficients;
changed under the action of the longitudinal stressvas
calculated by integrating over the orientation sphere ofcthe
polar axes in accordance with the angular boundaries of the
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TABLE |. Experimental and theoretical values of the piezocoefficibpt
=ds3(0) and distribution of 90° and 180° domain reorientations in TSTS-
83G ceramic.

X 107¢ N/m? d$P,pCIN  dlie pC/IN A%, % A1 %
245 360 36 - -
42.9 340 338.8 17 -
61.3 300 298.9 37 -
91.9 200 198.5 88 -
128.7 140 139.2 100 23
165.5 100 99.5 100 53
202.3 84 83.7 100 62
220.7 68 67.5 100 75

zones of total and partial stability of tlieaxes and averaging
the piezoelectric constantd;;, dg;, and d;; over all the
crystallites(domaing in the ceramic using the formula

arccos(§2/2)- (o /o)) —45°

2w
Ad33: 1/Nf d33()
o=

0 J®=0

X(3N/27)sin@dOde
2m 54.733°-arcsin((213)- (o /7))
+ 1/NJ ds3(0)
¢=0 JO=0
X (3N/27)(1— (4 arccoscoth®
+o:/(osin®)))/7)sin®@dOde, (12

whereds3(0) is Eq.(1).

In order to simplify the calculations, in formuld2) we
neglect the fraction of the crystallitg®, whosec axes drift
out of the zone of partial stability as a result of 90° switch-

M. G. Minchina and O. I. Yankovskil

under o,,=4x10°N/m*> we obtain A%"=45%; for
0,=30% 10° N/m?? this figure isA%%°=80%) (Ref. 14. The
theoretical analysis indicates that above stressesl00

X 10° N/m? all possible 90° rotationgfor given o) take
place in TsTS-83G ceramic and an antiparallel 180° domain
structure forms where the relative number of 180° domain
switchingsA®®” increases to 75%for o=221x 10° N/m?),
which is consistent with the experimental results from Ref. 6.
The contribution of the displacemeatis negligible so this
was neglected in the estimates A% and A% (in lead
titanate ceramic the contribution of the displacements of the
90° domain boundaries is 0.14—-0.61 pCARef. 15.

CONCLUSIONS

1. A static model of a critically polarized ceramic ex-
posed to the longitudinal stresshas been used to study the
behavior of the piezocoefficiert;; of TsTS-83G ceramic
and a quantitative analysis has been made of the 90° and
180° domain reorientationsA%°=A%"(g) and A
— A180°( 0_)_

2. It has been shown that for TsTS-83G ceramic exposed
to stresses>100x 10° N/m? all possible 90° domain rota-
tions occur and an antiparallel 180° domain structure forms.

ing. Having separated the contributions of the 90° and 180°y. z. Borodin, V. A. Doroshenko, O. P. Kramarat al, Piezoelectric

switching (from formula (12), for example, for the zone of
total stability of the polar axes the density of tbexes for
180° switching isp®°=N/27r, and that for 90° switching is
p%°=N/m), we determined the relative number of 90° and
180° domain switchings accomplished under the stresses
(for a giveno in percent A% and A% (%). The piezoco-
efficientd, of a ceramic plate exposed to the stressan be
finally calculated from

d3,=dgs— Adgs, (13

wheredss is the piezocoefficient obtained using formyia.
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An investigation is made of the propagation velocity of magnetoelastic vibrations in amorphous
metal alloys as a function of the sample size in the direction of propagation of the
magnetoelastic vibrations and the external magnetic field. The experimentally observed results
are at variance with the conclusions of the model of uniform rotation of the magnetization

usually used to describe the magnetoelastic properties of amorphous metal alloys. It is shown that
changes in the structure of the domain w&B$och—Neel transition in ribbons of amorphous

metal alloys as a result of the action of the external magnetic field must be taken into

account to obtain an adequate description of the observed result$99@ American Institute of
Physics[S1063-784299)00906-X

Studies of the magnetic properties of iron-based amoruniaxial anisotropy energy, the energies of interaction of the
phous metal alloys are currently attracting widespread attermagnetization with the external magnetic fidttland the
tion. These alloys have low coercive forces and high magneelastic stresses, and the magnetostatic energy caused by
tostriction constants so that they can be used as sensors tite appearance of magnetic scattering fields from the mag-
various types of acoustic and ultrasonic transducers, delagetization component perpendicular to the easy axis
lines, and so on. The possibility of using iron-based amor- 3
phous metal alloys for this purpose is attributable to the mag- W=K sir? a—M¢H uq sina— E)\Sa Sirf a
netoelastic vibrations induced in them under the action of an
varying magnetic field. The propagation characteristics of 1 ) ]
magnetoelastic vibrations in amorphous metal alloys are +§NMsMos'n2 a, @
mainly determined by the characteristics of rearrangement of ] o ) )
their domain structure. Unfortunately, at present the relationWhereK is the uniaxial anisotropy constant, is the mag-
ship between the domain structure rearrangement procesgaglic permeability of vacuun; is the saturation magneti-
in amorphous metal alloys and the propagation of acoustigation, andN is the demagnetization factor in the direction of
vibrations in these alloys has not been studied sufficientl)me sample Iength._. ,
comprehensively, and this has delayed the practical applica- From the.condmordW/d/a.:O .the expression for the
tion of these materials. angle of rotation of the magnetization can be written as

The aim of the present study is to investigate the propa- o= arcsin(MgquoH/(2K —3\ g0+ NM2ug)). 2
gation velocity of magnetoelastic waves as a function of the
demagnetization factor of the sample in the direction of
propagation of the magnetoelastic waves.

We shall consider ferromagnets with a positive magne-
tostriction constant \s>0) in the form of a narrow strip
with the easy magnetization axis perpendicular to its length. ) ) L
The domain structure consists of domains of opposite mag- Thg elastic modulus in the magnetic fielel, can be
netization separated by 180° wallsig. 1). This type of determined from
domain structure occurs in amorphous metal ribbons when (1/E,)=(1/Ey)+de,/do, 4
thgy are ar}nealed n a sta}tlc magne_tlc .f|eld, which I.nduce%hereEo is the elastic modulus in the demagnetized state.
uniaxial anisotropy. A static magnetic field and varying The expression foE,, can then be written as
elastic stresses which excite magnetoelastic vibrations act H
along the length of the strip in the direction of the difficult ~ Ey=E{1—[INZM2ZH2u2Eq/((2K — 3N\ go+NM2ug)®
magnetization axis. The action of these factors changes the
orientation of the magnetization in the domains. It follows
from the model of uniform rotation of the magnetizafidn Using expressions which give the magnetoelastic reso-
that an expression for the angle of rotatierof the magne- nance frequency, and the propagation velocity of the mag-
tization in the domains may be obtained from the conditionnetoelastic vibration¥,, . as a function of the elastic modu-
for minimum domain structure enerdy, which contains the lus

The magnetoelastic deformatiap, .= (3/2)\ sirfa can
be given as

3
eme= 5 N MEHZu3/(2K=3N o +NM2pg)®].  (3)

+ONIMZHZuEEL) 1} (5)

1063-7842/99/44(6)/4/$15.00 653 © 1999 American Institute of Physics
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H,s
|
I o | l | | l FIG. 1. Domain structure configuration being
~ studied:1 — easy magnetization axi® —
| +a: | | I difficult magnetization axis.
¥ \
MS
—— o
2

fr=(1/2L)-(Ex/p)*?, (6)

brations should increase monotonically. The calculations
Vime=2L-f,, (7)  also show that as the magnetic field directed along the diffi-
cult magnetization axis increases, the dependaénggH)
should decrease monotonically.

In order to check these calculations experimentally, we
investigated the propagation velocity of magnetoelastic vi-

wherelL is the sample length in the direction of propagation
of the magnetoelastic vibrations apds the sample density,
we obtain the following expression f&f,, ¢:

Vime={(Eo/p)[1—(IN2M2H2u3E,/ brations as a function of the sample length in the direction of
propagation of these vibrations in iron-based amorphous
((ZK - 3)\SO-+ N M§M0)3+ 9)\§M gHzﬂ“gEO))]}llz' metal a||oys_
(8) The sample used was an greB1355i3C, amorphous

metal alloy obtained by rapid quenching from a melt and
annealed at 430° in a static magnetic field of 40 000 A/m for
20 min. During annealing the static magnetic field was di-
rected perpendicular to the sample length. The sample was
N=(1L)/[(1L)+(1/a)+(1b)], (9)  2.5x10 °m thick and 0.002 m wide. The length was varied
wherea is the width andb is the sample thickness. between 0.045 and 0.015m in 0.005m steps. The propaga-
Figure 2 gives the calculated dependence of the prop&lon velocity of the magngtoacoushc vibrations was mea-
gation velocity of the magnetoelastic vibrations on theSuréd by a resonance—antiresonance métbed‘_ollows;_. A
sample length.. For the calculations we used the following se(?tlon of the ribbon sample is mserted_m an induction coll
values of the sample parameters typical of iron-based amothich records the change in the magnetic flux caused by the

phous metal alloys, and for the external magnetic field, théction of magnetic fields on the sample. This coil together
and elastic stressedd=5x10° A/m, K=50J/n%, As=3 with the sample is then inserted inside a coil which generates

x10°5, o=10°Pa, H=100A/m, p=5000kg/mm, E, @ varying magnetic field which induces magnetoelastic vibra-
=1.4x 10" Pa,a=0.002m, andh=2.5x10"°m. tions in the sample. The varying magnetic field does not
It can be seen from this curve that as the sample lengtgxceed 10 A/m. The system of cails is placed between Helm-

and varying magnetic fields are directed along the difficult

magnetization axis. We measure the complex impedance of
the recording coil whose maximum corresponds to the mag-
5 netoelastic resonance frequenty (Ref. 5. Using the ex-

T perimentally determined magnetoelastic resonance fre-
quency, we calculate the velocity of the magnetoelastic
vibrations from the expressiov,, .= 2Lf,

Figure 3 gives the propagation velocity of the magneto-
elastic vibrationsv,, . as a function of the sample length
for various values of the external magnetic field directed
A along the difficult magnetization axis. An analysis of these
curves indicates that the external magnetic field strongly in-
fluences their behavior. In weak magnetic fields
3 | ! 1 ! ! (H=80-240 A/m the curveV,, L) has a minimum which
0 oot o0z 003 004 005 L,m shifts toward smalleL as the static magnetic field increases.
FIG. 2. Calculated dependence of the propagation velocity of the magnetol-n fairly strong magnetic fieldsH = 320 A/m for all L we

elastic waves/,, . on the sample length in the direction of propagation of Observed_ a d_ecre_ase in the propagation velocity of the mag-
these magnetoelastic vibrations. netoelastic vibrations. Consequently, the calculated curves

According to Kim? an approximate expression for the
demagnetization factoN in the direction of the sample
length may be written in the form
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FIG. 3. Experimental dependences of
the propagation velocity of the magneto-
elastic vibrationsV,,, on the sample
length L in the direction of propagation
of the magnetoelastic waves for various
values of the static magnetic field di-
rected along the difficult magnetization
axis.
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(Fig. 2) only show satisfactory agreement with the experi-the plane where the easy axis is perpendicular to the length
mental results for weak magnetic fields and srhall of the ribbons. This leads to the formation of a striped do-
Figure 4 gives the propagation velocity of the magneto-main structure with oppositely magnetized domains sepa-
elastic vibrationsV,, . as a function of the static magnetic rated by 180° Bloch domain walls. When a varying magnetic
field H for Fes; $B1355i3 sC, samples of various lengthis It field is applied in the direction of the difficult magnetization
can be seen that the curvi, {H) has a minimum for alL. axis of narrow ribbons of amorphous metal alloys a few tens
The position of this minimum is determined by the sampleof micron thick, the domain walls oscillate around their equi-
lengthL. The lower the value df, the stronger the magnetic librium position. Brouha and van der Botshowed that this
fields in which the minimum oW, {H) is observed. effect may be explained using concepts of a BlochelNe
The model of uniform rotation of the magnetizatidn transition of the domain-wall structure and redistribution of
provides no explanation for the appearance of these miniméne magnetic poles at the edges of the sample under the ac-
of Vi, L) andV,, {H). The following explanation may be tion of a magnetic field. As a result of a Bloch“&éransi-
put forward for the experimental results. Annealing thesetion of the domain wall structure, the equilibrium period of
samples in a magnetic field induces uniaxial anisotropy irthe striped domain structure corresponding to its energy

FIG. 4. Experimental dependences of
the propagation velocity of the magneto-
elastic vibrations/,, . on the static mag-
netic fieldH directed along the difficult
magnetization axis for various lengths
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minimum decreases and the density ofeNdomain walls be shifted toward smalldr. In the range oL being studied
n(H) increase$.Taking into account the contribution of the it is therefore probable that the curve Wf, {L) had no
energy of the Nel domain walls to the total energy of the minimum in a magnetic fieldH =320 A/m.
domain structure, the expression for the propagation velocity From these investigations we can draw the following
of the magnetoelastic waves may be expressed in the formconclusions.
_ 2 2 1. The dependences of the propagation velocity of mag-
Vime={(Eo/p)1= (Ns(MsHuot2n7) Eo/ netoelastic vibrations in iron-based amorphous metal alloys

((2K=3\go+ NMZpy+2ny)3 having a periodic domain structure are not monotonic func-

tions of the sample length and external magnetic field. The

+(9NgMgH o+ 2n7)%Eg)) I}, (100 results cannot be explained merely in terms of the model of

wherey is the energy density of the Medomain walls. uniform rotation of the magnetization usually used to de-

In magnetic fields exceeding the fields for which the Scribe the magnetoelastic properties of amorphous metal al-
domain-wall structure undergoes a Bloch-eNeransition, |0YS: _ .
the propagation velocity of the magnetoelastic vibrations in- 2. The calculated and experimental results show satisfac-
creases as a result of an increase in the density ef i tOry agreement when the domain wall structure of the sample
main wallsn. Hence, the minima on the curves of the propa-iS taken into account. The existence of a minimum on the
gation velocity of the magnetoelastic vibrations should becurves of the propagation velocity of the magnetoelastic vi-
observed near the field for which the domain-wall structure®rations as a function of the external magnetic field and the
undergoes a Bloch—N¢ transition. Middellhoek showed ~Sample length can be explained using concepts of a Bloch—
that the energy density of the Bledomain walls in magneti- Neel transition of the domain-wall structure.
cally soft materials a few tens of micron thick is 8—103/m 3. The external magnetic field strongly influences the
and the energy density of the Bloch domain walls is 1—3Pehavior of Vi, {L). As H increases, the minimum of
Jim?. At these domain-wall energy densities the field for aVmdL) shifts toward smalled.. This result may be ex-
Bloch—Neel transition does not exceed half the effective an-Plained by the fact that as the sample length decreases, the
isotropy field of the sample, which shows good agreemen@ffective anisotropy field increases and therefore the field for
with the experimental results. a Bloch—Nel transition, which corresponds to the minimum
The effective anisotropy field and consequently thepropagation velocity of the magnetoelastic vibrations, also
Bloch—Neel transition field are strongly influenced by the INcreases.
demagnetization factor of the sample in the direction of ap-
plication of the external magnetic field. The smaller the
sample length_ in the direction of application of the field, 15 p_|ivingston, Phys. Status Solidi 20, 591 (1982.
the greater the demagnetization fachkbrAn increase in the  2M. L. Spano, K. B. Hathaway, and H. T. Savage, J. Appl. PB$s2667
demagnetization factor leads to a decrease in the angle of1982. , o _
rotation of the magnetization and increases the field for a4$. gzgfe'ﬁ?'§h°°§°§'affj§s§§.?§'i°gﬂFé%is{?gégasnoymﬂgsa =
Bloch—Neel transition. In this case, the minimum on the sy Brouha ag/djl van der Borst, J. Appl. Phg6, 7594(1979.
curve of the propagation velocity of the magnetoelastic vi- °A. L. Petrov, A. A. Gavrilyuk, and S. M. ZubritskiFiz. Met. Metalloved.
brations also shifts toward stronger fields. ,80(6), 47 (1995.
In fairly strong fields exceeding the field for a Bloch— > Middelihoek, J. Appl. Phys34, 1054(1963.
Neel transition the minimum on the curve Wf, (L) should  Translated by R. M. Durham
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Theoretical and experimental studies are made of the spectra of spin wave excitations localized
at a Bloch domain wall in a ferromagnet with combined cubic and biaxial anisotropy in

[100]- or [110]-oriented bismuth-containing iron garnet films. This analysis of the spectra is used
as the basis to calculate diagrams of stable states of a homogeneous Bloch domain wall as

a function of the magnetic parameters in these materials. Results of measurements of the oscillation
spectrum of an isolated domain wall in the mega- and gigahertz frequency ranges are

presented. A description is given of an effect where the spin-wave excitations of the Goldstone
translational branch and the high-frequency Gilinskii unidirectional mode are hybridized.

© 1999 American Institute of Physids$1063-784£99)01006-3

INTRODUCTION whereM is the magnetization vecto is the gyromagnetic
ratio, He= — (6F/6M) is the effective magnetic field; is

The resonant response of domain walls_to microwave, thermodynamic potential of the ferromagnet, agdire
electromagnetic radiation has been studied by man he degaussing fields

authorst~® Lihrmannet al® observed antiphase resonant os- We shall first consider a cubic ferromaanet with ortho-
cillations of the domain walls in films of easy-axis iron gar- C . 9 :
) . . ) rhombic induced anisotropy along thel(Q] crystal axis. We

nets in the gigahertz range. In recent studies of microwave . . -

o . : . Shall take the coordinate axes in the crystallographic direc-
excitations of the domain walls in easy-plane iron garnet. B B de—I11
films, high-frequency branchassociated with the Gilinskii t|ons$]x—[hOOl], gy—[ll_O], an e?—l[llo] .h b qi
mod€ were observed in addition to the low-frequency Gold- ;I' e thermodynamic potential can then be expressed in
stone modes. As well as being of scientific interest, theséhe orm.
investigations of the microwave excitations of the domain F=A(Vm)2—Ku(my)2—Ki(mz)2
walls are also of technical interest for light modulatfoop-
tical mode conversion, and other applications in
magnetooptics. It should be noted that potentially useful
magnetic-film materials based on Bi-substituted iron garnets ) . ) . .
exhibit induced uniaxial and basis anisotropy as well as cu?VhereA is the exchange interaction constant,is the unit

bic anisotropy*® However, we know that the spectrum of the vector directed along the magnetization vector such that

spin waves localized at a domain wall depends strongly or- MM: @ndKy, K;, andK, are the constants of uniaxial,

the anisotropy of the magnetic substahtet is therefore ©rthorhombic, and cubic anisotropy, respectiveyl nega-
interesting to analyze the spectrum of elementary excitationdV®)- i . L

of a domain wall as a function of the ratio of the constants of We_lntr_oduce the polar Co_ordln_ates for the d|rect!on of
magnetocrystalline and induced anisotropy. Some studie@agnet'zat'_orm:(S'_nﬂCOS‘P' sindsine, COSQ) and define
along these lines were reported in Ref. 12 for iron garnef® Magnetic potential:hy=V¥. For convenience we nor-
films grown in the[110] plane. Here we report a detailed Malize thex, y, andz coordinates and the wave vectorto
analysis of the spectrum of spin-wave excitations and cony/Kul/A, and the timet and the frequency to 2y|K,|/M.
struct diagrams showing the stability of Bloch domain walls '€ domain wall which we shall consider is described by a
in orthorhombic and tetragonal ferromagnets as a function ofttic solution of the Landau-Lifshitz equatiah

the magnetic parameters.

1 h3
Ky 7 (my—m3) 2+ mi(1-m) | —Mhy— 2=, (3

I3

Yo==, Sirfey=1/(cost(zA)+ e sintP(zA)),

INITIAL EQUATIONS

o N

\PO:

The spin-wave excitations of the domain wall of a fer- _ TR . _ _
romagnet are described by the Landau-Lifshitz equations O\?/hereA— 1=p, e=3p/4(1 ,8),'and,8' KllK”' .
We shall seek small harmonic deviations of the spins

magnetodynamics and magnetostatics from the equilibrium distributior(4) in the form of a small

4

oM correction to the main solution
7=—7[M><Heﬁ], (1)

7T -
div (hy+477M) =0, @) =7 ToD)sinet—kx=ky),

1063-7842/99/44(6)/7/$15.00 657 © 1999 American Institute of Physics
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¢= o+ d(2)cog wt— kX —kyy), the spectral dependence to the condition that the eigenvalue
_ in the Sturm-Liouville problem vanishes for the operator
V= (z)sin(wt —kex—kyy), () equation

where /(z) is normalized to 4M JA/|K,|.
In the first approximation these satisfy the linearized sys-
tem of equation$l) and(2), which may be expressed in the

La=)\a, 9

where\ is an eigenvalue and the operafohas the form

form
2
e 9\ 9 r—_e% 139 .5
pei qi—ﬁ+k2—(2—Eﬁ)sm%o—zsm“(po}a L Eazz Az tE
1 94 E is the unit matrix,
+wd+ 6 E’ ) 0 0 Q—l
A=1{0 0 0 },
@ 13 10 0
—f=w0+ 1—,8+k2—(2— 7/3)sin2<po
& g~ B+ K-
] 1 ] - (2—3 )sin2 Yo— w 0
—6Bsin‘ey|p— o (Kxsingo—ky cosgo) ¢, —2Bsin’ o
a2¢ 90 é: 1_,8+k2— —é(kxsincpo— .
F: E-ﬁ-(kx singg—K, Cosgg) p+ K2y, (6) w - (2—% )sin2 po— —ky coS )
z —60 sin* ©o
wherek= \/k2+ kyz, Q=|K|/27M?, andq;=K; /K. .
The boundary conditions have the form 0 ke sinpo — ky cos o S
lim {6,¢,4}=0. 7 In general the boundary condition can be written in ma-
z+o trix form
The equation$6) with the boundary condition&) were Ja R
solved numerically by two different methods. One of these, — — =Da, (10
described in Ref. 11, involves determining the spectrum Z=zx

from the condition that the Wronskian of the systévan-

ishes at the joining point of the right and left triplets of
lution in Runge—K integratiétregul . .

?;;E%:th%t;a-rﬁg ir%al cli)n%?ti Onu:;? e a(t:igsitllﬁi oigil:: Ecl)b_ umns are constructed of the eigenvectors of the solutions of

tained from the asymptotic form of the corresponding inde-the lll_rr]](.ea?zetd Sth?l‘(Q)fV\ﬂth )‘?0 att;]nf'mty' otic f f

pendent solutions of the linearized problem which satisfy theth IISt' as Cct)?hl |og 0 (;\{[vhs [jom e asl);mlpfo '(i orm o't

boundary condition(7). For example, the asymptotic behav- the solu |or;s al t'e N ???. it € ct>kr]na|fn wall. In fact, we write

ior of the solutions on the right half of the domain walls for € general solution at Infinity In the form

z— oo is determined by the triplet of vectors with the indices 0

P13 satisfying the characteristic equation

whereD=RPR™!, P is the diagonal matrix of the charac-
teristic exponential functions, arfi! is a matrix whose col-

_| ¥ _g
po=pH(1+0;~28+Q +3K%) +p2 (g~ f+Q =1, e
+k?) (1= B+K?) +KA(1+0;—28+Q (ky/k)?
+2k2)—w2]+k2[w2—(qi—,8+k2)(1—ﬂ 1 1 1 AeXF(p]_Z)
—1k k2 =0. ﬁ{: Ci C2 C3 , e= BexquZ)
HQ Uy f071=0 ® d; dy di C exp(ps2)

By using this solution as the initial condition, after inte-
grating as far as the joining point, we can Obta”? a triplet OfwhereA, B, andC are arbitrary constants; andd; are the
vectors in the phase space of the system which span tha(?m litudes of the eigenvectors of the linearized sy<{@nat
vector of the required solution. Similarly, using the P 9 y

) P . infinity.
asymptotic form at infinity to the left of the wall, i.e., far Tze vector of its spatial derivativéa/sz can then be
— —oo, after integrating in the opposite direction, we can

. ) ) related to the vector of th neral soluti ing th r-
obtain another triplet of vectors which should also be spaneaEd 0 the vector of the general solltianising the co

the required solution. The condition for joining of the right responding matrix, and specifically
and left solutions is equivalent to vanishing of the determi- 95 _ . .
nant(Wronskian from the six independent basis vectors ob- -~ = RPR™*a=Da,

tained. The second method is a modification of that de-

scribed in Ref. 12. It reduces the problem of searching fowhere
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P 0 0 Lof
p=| O P2 O, 08}
0 0 ps
0.6
D=RPR™ . > 4l
N s 04
It can be shown that the boundary conditid®) can be < 0.2 i
used not only for real but also for complex values of the 1
characteristic exponent. Both methods are equally effective 0.0
for wave number&>0.005 but cease to work for very small
wave number&k<<0.005. In this range a special asymptotic 02 T
analysis of the solutions is required as in Ref. 11. -10-8 6 -4 -2 0 2 4 6 8 10
z
SPECTRUM OF SPIN-WAVE EXCITATIONS OF BLOCH FIG. 2. Spectrum of the Goldstone mo@errve1 in Fig. 1 fork=0.23;1—
DOMAIN WALLS IN AN ORTHORHOMBIC FERROMAGNET azimuthal anglep, 2 — polar angled, and3 — magnetic potentiaiy.

The methods described were used to make numerical

calculations of the spectra of cubic ferromagnets with in- .
duced anisotropy. Not only the quantitative but also theCent translational branches repel each other so that for a cer-

qualitative behavior of the spectral dispersion curves varied@in value of the magnetic parameters the frequency of the
as a function of the ratio of the magnetic parameters. In afanslational mode may vanish at a finite wave number, as
orthorhombic ferromagnet described by the thermodynami€hown in Fig. 1(see also Ref. 12 At this point the Bloch
potential(3) the axisymmetric case considered by Gilinskii is dor_naln Wa_II bec_omes_unstable relative to nonuniform pertur-
obtained fork ;= 0, K; =K. In this case, in accordance with bations of its spins. Figure 2 _s_hows the structure of _the soft
the theory the spectrum of spin waves propagating along thénode_ determining the instability of thg Bloch domain wa_II
domain wall perpendicular to the easy magnetization axis 0 this case. The spectrum of the spin waves propagating
asymmetric and initially contains three branches. Of thesegarallel to the direction of magnetization in the domains has
two are the Goldstone translational modes and the third is H1€ usual form(Fig. 3. Figure 4 shows the calculated bound-
unidirectional high-frequency Gilinskii mode. At high wave aries separating the region Of. stable B!OCh domaln wall in an
numbersk>1 we may observe additional high-frequency orthorhombic ferromagnet with combined anisotropy from
modes? localized at domain walls whose spectral branchedhe region of parameters where this domain wall is unstable.
become detached from the bottom of the continuous spectoward the inside of the region of instability, the low-
trum band. The spectrum of waves propagating along thé&requency OSC|IIa_t|on branch Fouchmg the abscissa begins to
anisotropy axis parallel to the magnetizations in the domain§© OVer to negative frequencies so that a gap appears on the
is symmetric and contains only two branches, which Correlo_wer branch at positive frequencies. Because of the inver-
spond to the translational modes at the beginning of the spe&ion symmetry of the spectrufm (k) = — w(—k)), an addi-
trum. In the presence of cubic or basis anisotropy, the asynfional branch appears in the positive half-plane in an identi-
metry of the spectrum of spin waves propagatingca| region of wave nu_mbers but of opposite sign. For' a
perpendicular to the magnetizations in the domains is intencertain value of the anisotropy parameters this new oscilla-
sified. The spectral branches of the high-frequency and adjdion branch may merge with the “old” Goldstone branch,
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09 0.002
08 F 0.000 k 0.6
071 g
206
0sf 204
047 2 1
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0.2 -
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FIG. 1. Excitation spectrum of 180°-domain wall in an orthorhombic ferro- FIG. 3. Excitation spectrum of a 180° domain wall in an orthorhombic
magnet fork,=0; g;=0.5, =0.3, andQ=0.6624,1 and2 — Goldstone  ferromagnet wittk,=0; q;=0.5, 8=0.3, andQ=0.6624,1 — translational
mode,3 — Gilinskii mode, andd — boundary of continuous spectrum. mode,2 — boundary of continuous spectrum.
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FIG. 4. Boundaries separating the regions of domain-wall stability and in- -04 04

stability in an orthorhombic ferromagnef;=0.5 (1), 0.55(2), 0.6(3). (The
region of instability lies above the curyes

] ) ) ) o FIG. 6. Excitation spectrum of a 180° domain wall in an orthorhombic
disrupting it and forming a closed loop at the beginning offerromagnet withk,=0, g;=0.5, 8=0.3, Q=1.6; 1-3 — translational

the spectrum, as shown in Fig. 5. Similar oscillation spectranode.
appear in a stratified liquid flux having different densities
and velocities under conditions of Kelvin—Helmholtz insta-
bility and turbulencé®!* The symmetric branches of the

_ 2_ 2
spin wave spectrum in cases where these propagate parallel F=AVm)"=Ky(my)

to the magnetizations at the edge of the domain wall gradu- 1 hg

ally become lower toward the inside of the unstable region Ky Z(mi—m§)2+ mi(l—mi) —Mhy— 8
until they come in contact and subsequently form a rough

singularity at this pointFig. 6). These spectral properties of (13)

the spin waves show that in the unstable region a homoge- The structure of this Bloch domain wall obtained by
neous Bloch domain wall is a highly nonequilibrium forma- solving the Landau—Lifshitz static equation is described by
tion. By analogy with the flow of a stratified liquid;'* its

evolution_ may be characteri_zed by an exponential incregse in "90:2, sifPgg=1/(cost(zA) + & sintf(zA)),
the amplitudes of the negative-energy waves near the line of 2
stability loss and strong Kelvin—Helmholtz instability far _

o X X ) ¥y,=0, (12
from this line. The final domain-wall structure may contain
soliton-like and vortex formations. where

3

SPECTRUM OF LOCALIZED SPIN WAVES AT A BLOCH A=VI—BP2, = B B=K, /K,

DOMAIN WALL IN A TETRAGONAL FERROMAGNET T A1-p2)

We shall analyze easy-plane films of cubic ferromagnets | this case, the linearized system of equations under
grown in the [100] plane. In the coordinate syste®  study has the form

=[110], e,=[001], e,=[110] the thermodynamic potential

: : ; . &2 9 190
for this case is written as follows: — =| B+Kk2—2 sirfpy— - Bsinfeo| 0+ wh+ — _‘/’
Jz 4 Q oz
P . o B .
— = w0+ | 1+k?=2sifp,— 5 (1-11sirfe,
0z 2
4 . 1 ,
+12sirfeg) |p— a(kx sin o —k, COSeo) ¥,
8
AR _ )
E—E"-(kXSInQDO_kyCOSQDO)(]B‘Fk . (13)
An analysis of the localized solutions of this system was
Ol o A made as in the previous case. A numerical experiment
-08 -0.6-04 -02 00 02 04 0.6 08 showed that the spin wave spectra typical of a stable homo-
ky geneous Bloch domain wall are not observed over the entire

FIG. 5. Excitation spectrum of a 180° domain wall in an orthorhombic range of magnetic parameters for this partlcglar cgse. A dia-
ferromagnet witrk,=0, q,=0.5, = 0.3, Q= 1.6; 1-3 — Goldstone mode, 9ram of the Bloch domain wall states for this caseg. 7)
4 — Gilinskii mode, ands — boundary of continuous spectrum. shows the calculated boundaries of the region of strong
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FIG. 7. Boundaries separating regions having different types of domain-walFIG. 9. Excitation spectrum of a 180° domain wall in a tetragonal ferro-
instability in a tetragonal ferromagnet. Below curte— region of weak  magnet withk,=0, 8=0.5, andQ=0.25; 1-3 — Goldstone mode4 —
instability, above curvél — region of existence of Goldstone mode loop, Gilinskii mode, ands — boundary of continuous spectrum.

above curve2 — region in which the spectrum fdg,=0 is similar to that

shown in Fig. 6.

tion was directed along tt[(é)oz] axis(sample No. lor at an

Kelvin—Helmholtz instability for a tetragonal-symmetry fer- @nglee~18° to this axissample No. 2 The[100]-oriented
romagnet with combined anisotropy. In the region of weakflms contained 180° domain walls parallel to 0] and
instability the asymmetric spectrum of localized spin waved 011] directions, and also 90° domain walls para!lel to the
has no loops on the low-frequency branch at the beginning df010] and[001] axes(sample No. & The 180° domain walls
the spectrun(Fig. 8). In the region of parameters above the studied _exhlblted a strong Bloch_ magnetization component
critical curve a loop of the Goldstone mode is obser(fg. perpendicular to the plane of the film. This was conflrmed by
9). The spectrum of the symmetric propagation of Spmf[h_e strong Faraday contrast at the walls ok_Js_erved in a polar-
waves along the magnetizations in the domains behaves as!f{"9 microscope. Sample No. 3 also exhibited Bloch lines

the previous case of an unstable Bloch domain wall. separating dark and light subdomains on the image of the
domain wall. The numbering of the samples and the param-

EXPERIMENTAL STUDY OF THE SPECTRA OF SPIN WAVES  ©ters of the materials were the same as in Ref. 6.
LOCALIZED AT DOMAIN WALLS, IN EASY-PLANE [100] In order to measure the response of the domain wall to
AND [110] IRON GARNET FILMS an rf magnetic field, we used a planar structure comprising a

slot line and a coplanar waveguid The dimensions of the

A X 9 structure did not exceed those of the domaiss1Q0um)
grown epitaxially on[110]- and [100]-oriented gadolinium \nich allowed us to study the excitation of an isolated do-

gallium garnet substrates, which correspond to the cases ain wall. The output signal from a microwave spin oscilla-
orthorhombic and tetragonal ferromagnets considered aboveg, \yas fed to the structure input, i.e., the slot line. The signal
All the films exhibited in-plane magnetization as a result of aproduced by the domain-wall oscillations was recorded from
suitable choice of cubic, uniaxial, and orthorhombic anisot-the output, i.e., the coplanar waveguide. After being ampli-
ropy parameters. In theL10J-oriented films the magnetiza- fioq and detected, these frequency dependences of the linear

amplitude of the domain-wall oscillations were recorded us-
\ ing a digital storage oscilloscope and also recorded and pro-
5

We investigated films of Bi-containing iron garnets

20 cessed on a PC.
Figures 10 and 11 show the measured frequency depen-
{50 4 dences of the domain-wall response [ihl10] films for

samples Nos. 1 and 2, respectively. A set of narrow reso-
nance lines with nonmonotonically increasing frequencies in
310 ] the gigahertz range is clearly visible. We also observed a
second set of almost equidistant resonances in a lower fre-
quency range. Figure 12 shows the corresponding dispersion

0.5 5 dependences of the resonance frequencies as a function of
i /\ 3 the resonance number.
0.0 L— T M — 11 A Figure 13 shows a frequency scan of the domain-wall
-1.0 -0.5 %0 0.5 1.0 response measured in th&o0] film (sample No. 3 The
.

lower part of the figure shows the FMR signal measured
FIG. 8. Excitation spectrum of a 180° domain wall in a tetragonal ferro- from the same pa_rt of the ﬂlr,n, but in the abse_nce ofa (?'O'T‘a'”
magnet withk,= 0, 8= 0.5, Q=0.17; 1-3 — Goldstone moded — Gilin-  Wall (removed using an additional weak static magnetic field
skii mode, ands — boundary of continuous spectrum. which was then switched off The first resonance has a
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FIG. 12. Dispersion dependences of resonances frequencies as a function of
the resonance number for sample No.lL,@®) and No. 2 (1, O); @, O

— resonances assigned to Goldstone m#le, ] — resonances assigned to
high-frequency Gilinskii mode.

Frequency, GHz

FIG. 10. Frequency response of an isolated 180° domain wall[ 18-

oriented bismuth garnet filrteample No. I 1-3 — oscillator power levels

—35, —25, and— 15 dBW, respectively.

branches of the spectrum. The low-frequency peaks with lin-

lower frequency than that for tHa 10] films although it has ear dlspt_arsmn are_assouated with the translational Goldgtone
branch, i.e., standing flexural domain-wall waves. The high-

an equally narrow line widtt4.5 MH2). frequency resonances with nonmonotonic dispersion belon
The frequencies of all the resonances increased with d}- q y P 9

creasing sample thickness and were almost independent 3eth§el:]2:2!e(;“t%réalhi6;:'Qfl:gstgr?ggsé;n;mﬁéagg%ggﬁ;er:]hc?de
the other dimensions. From this it follows that both sets o q 9

resonances are caused by the excitation of standing domai%’opdrga\fvzegbggjg dos]jotrrri li/v;ﬁ; re(;‘c’tﬂznt(\;\?c?sogt?ris%y?jls(g-
wall waves over the film thickness and belong to different ' P y

nances (Fig. 11). This indicates that the two different
branches in the spectrum of domain-wall excitations are hy-
- bridized. It should be noted that the type of standing wave
formation observed in this particular case differs qualita-
tively from the classical case of excitation with a symmetric
dispersion law. The forward-traveling wave belongs to the
- Gilinskii mode while the backward-traveling wave with the
samew belongs to the Goldstone mode. The superposition of
these modes leads to the formation of a hybrid standing wave
whose phase also depends on the spatial coordinates, as in
the case of a pure Goldstone mode with asymmetric
dispersiont> The condition for resonant excitation of a
standing wave has the fornk((w)—k_(w))=2wn/d, n
=0,+1,=2,....Since the return wave has no gap unlike
the forward wave, the hybrid standing wave will have a dif-
ferent gap value. Consequently, the phase velocity and gap
calculated from the measured dispersion dependence of the
high-frequency resonances(n) may differ appreciably
from the values obtained in the Gilinskii theofthe experi-

- . — e mental slit value for sample No 1 is550 MHz and the
0 200 400 600 800 1000 theoretical value~140MHz. A comparison between the
Frequency, MHz theoretical and experimental results shows that the experi-

mentally observed resonance frequencies are higher than the

FIG. 11. Frequency response of an isolated 180° domain wall[fl8l- o4 encies predicted theoretically using the model of an un-
oriented film(sample No. 2 In addition to the high-frequency resonances, . . . .
the arrow indicates low-frequency resonances assigned to the Goldsto@Unded medium. This difference can also be attributed to
mode. the appearance of magnetic charges at the boundaries of the

Amplitude, arb. units
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uniaxial anisotropy. We showed that the domain walls in
[100]-oriented easy-plane films are unstable relative to non-
uniform spin oscillations over the entire range of magnetic
parameters. We calculated the boundaries of the regions of
magnetic parameters in which strong Kelvin—Helmholtz in-
stability may occur by analogy with the flow of a stratified
hydrodynamic flux. Above this boundary soliton-like and
vortex spin distributions may be predicted in an equilibrium
domain-wall structure. Dispersion dependences of the reso-
nant modes of the domain-wall oscillations were measured
experimentally in the microwave frequency range up to the
gigahertz range. The observed high-frequency modes of the
spin-wave excitations were associated with the Gilinskii
mode. A standing-wave resonance was observed in the high-
frequency modes, which can be attributed to the hybridiza-
= tion of the modes in the translational and high-frequency
| spectral branches. The observed high-frequency resonances
of the domain-wall oscillations may be used for magnetoop-
- tic light modulation in the gigahertz range.

This work was supported by a grant from the Russian

Fund for Fundamental Research No. 97-02-16183.
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Phase transitions in a titanium-silicon system under laser treatment in alkanes
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An investigation is made of the phase transitions taking place in a titanium—silicon composite
exposed ton=1.06um laser treatment in pentane and hexane. It is shown that the

formation of titanium carbide, oxides, and silicides depends on the treatment parameters and
conditions. The phase changes were investigated over the thickness of the film and their influence
on the electrophysical parameters of the titanium-silicon contact was studiet99@

American Institute of Physic§S1063-784299)01106-X]

One of the most promising methods of obtaining Ohmicthe crystal lattice. Titanium carbide, oxide, and silicide nu-
and rectifying contacts is laser treatment of materials, primaelei form and grow.
rily because of its speed and the local nature of treating in-  After the Ti—Si system had been treated in pentane at
tegrated circuits:” In the present paper we investigate the 1.5\ laser radiation power, the electron diffraction patterns
phase transitions in a titanium—silicon composite exposed tgevealed diffraction rings assigned to the lowest titanium ox-
laser treatment in alkanes, i.e., pentane and hexane. ides ThO; and TiOs and titanium carbide TiGTable .

~ A 60nm thick titanium film was deposited on(&11)-  \yhen the laser radiation power was increased to 4.0 W, the
orientedp-type silicon substrate by electron beam depchItloneIectron diffraction patterns revealed not only titanium car-

at a_substrate _t(_amperature of 373K. Before th_e film was deBide and oxide rings but also diffraction rings ascribed to
posited, the silicon wafer was treated chemically using a

method described in Ref. 3. A=1.06xm LTN-103 laser metal-enriched titanium silicide §%i;. The oxide phases

was used to treat the Ti—Si system as shown schematically ffprm at the su.rface of the composite as a rgsult of int-e-raction
Fig. 1. A 55 mm sample positioned in a cell containing between the film and.oxygen adsorbed during deposition and
alkanes, either pentane {6, or hexane (GHy,), was ir- also from the ambient medium. Laser treatment of a
radiated for 3s using a scanning laser beam. The surface §fanium-silicon system in pentane is accompanied by the
the sample was treated uniformly for 5 using the scannehomolytic breaking of carbon—carbon bon@sacking in
The laser radiation power was 1.5—7.0 W and was monitorethe carbon-containing liquid. Laser irradiation imparts suffi-
with an IMO-2 power meter during the treatment processcient energy to crack the pentane molecules, and the carbon
The phase transitions taking place in the composite after laatoms interact with the titanium film to form titanium car-
ser treatment were investigated by electron diffraction analybide. A more detailed description of the formation of metal
sis and by electron spectral and chemical analysis. carbides on laser-irradiated thin metal films in carbon-
The investigations showed that laser treatment of a&ontaining liquids can be found in Ref. 4. As a result of the
Ti—Si system leads to changes in the phase composition &fiffusion of carbon atoms into the film from the surrounding
the surface layer. Grain growth is observed accompanied byedium, numerous pores form in the surface layers both
migration of grain boundaries and redistribution of defects in,gige grains and along grain boundaries. As a result of laser
treatment of Ti—Si in pentane at 7.0 W, the electron diffrac-
tion patterns reveal that in addition to the phases noted
above, the highest-intensity peaks are from titanium silicide,
TiSi. The titanium silicides are formed by the diffusion of
silicon into the titanium film. The high concentration of de-
fects and the grain boundaries in the metal film facilitate the
1 4 diffusion of silicon to a considerable extehtaser annealing
I } % > stimulates interdiffusion and interaction between the tita-
nium and silicon. The sequence of the phase transitions re-
8 flects the interdiffusion kinetics in the Ti—Si system as the
T laser radiation power increases, resulting in the redistribution
of titanium, carbon, oxygen, and silicon atoms and changes
in the titanium-silicon interface. The change in the phase
FIG. 1. Schematic of experimental apparatbs:— LTN-103 laser.2 —  composition of the Ti—Si surface layer as a function of the
IMO-2 laser radiation power mete3,— semitransparent mirrod,— mirror " .
treatment conditions may be represented by the following

rotatable abouX axis,5 — mirror rotatable abouyY axis,6 — focusing lens,
7 — cell containing samples, argl— VUP-4 device. scheme:

g

st 7
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TABLE Il. Change in the phase composition of a Ti—Si system under laser

1.5W 4.0W .
Ti-Si — Ti305,Ti,03,TiC — TizO0s, TiC, TisSiy reatment in hexane.
7.0wW E, W
~ TizOs, TiC,TiSi, TisSis. 4 A LS 0 70
When a Ti-Si system is treated in hexane at a Iaseg:gi 1382 2282 Ezgz
radiation power of 1.5W, the electron diffraction patternss 14 TiOs Ti;Oq Ti;Oq
reveal TiC, TiOs, and ThO; peaks(Table Il and Fig. 2aIn 271 ThO;
addition to these phases, as the laser radiation power ir#57 TiOq
creases, nuclei of the J3i; phase also form and grow. 251 Tic Tic Tic
When the system is treated in hexane at 7.0 W the electro%igg Tisi TT'S'.
. . . . R . 5913 i5Si3
diffraction pattern reveals peaks of the;®@i, TiC, TisSi;, 5 19 Tisi
and TiSi phasegTable Il). An analysis of the results pre- 2.18 Tic Tic Tic
sented in Tables | and Il shows that there are no significar?.11 TisSis TisSiz
differences in the phase compositions for treatment in per?-10 TEOs
tane or hexane. However, for treatment in hexane the eleci—'gi T|C T|C TT'%
tron diffraction pattern reveals many diffraction rings as-; 5, TisSia
cribed to titanium carbide which indicates an increase in tha 31 Tic Tic TiC
titanium carbide content. Thus, we shall subsequently dise.97 TiC TiC TiC

cuss the results obtained by treating the system in hexane:
In order to investigate the phase transitions taking place

in a Ti-Si system after laser treatment in alkanes over e, ion (Fig. 2b). In addition to the silicides, titanium
entire thickness of the titanium film, we etched a 20 nm th'Ckoxides and carbide are also present at a depth of 20 nm. This
film. As a result of 1.5W laser irradiation of Ti—Si in hex- .2 pe attributed to the diffusion of carbon atoms into the
ane, at a depth of 20 nm from the surface the electron d'ftitanium film and the presence of oxygen adsorbed by the

fraction pattern reveals titanium silicide TiSi peaks in addi-, during deposition which diffuses into the film as a result
tion to the phases formed at the surface of the system. The%q degradation of the SiDlayer on the silicon surface.
TiSi peaks have the highest intensities. This indicates thatas 5, analysis of the results presented in Table IV shows

a re§ult Of. ,1'5W treatment, titanium silipid_e forms a.t t,hethat the phase composition of the system after laser treatment
titanium—silicon interface. When the irradiation power is in-;, Jikanes at powers of 1-5-7.0W at a depth of 40 nm con-

creased to 4.0W, growth of the TiSi titanium silicide phasegigis majnly of titanium silicide and disilicide. The electron

is observed accompanied by nucleation of Ji@riched in itrraction pattern of the treated samples also reveals isolated

the silicon modification S-54Table Ill). Titanium disilicide Si and SiQ (tridymite) peaks. A comparison of the results
with an S-54 lattice was described by Yatserstaal® At a

laser radiation power of 7.0 W the electron diffraction pat-
terns reveal peaks of the TiSi and TiSihases in the same

TABLE |. Change in phase composition of Ti—Si system under laser treat-
ment in pentane.

E, W
d, A 1.5 4.0 7.0
4.28 TkOs TizOs TizOg
3.54 TiOs TizOg TizOg
3.14 TOs TizOg TizOg
271 TiL,O4
257 Ti,O4
2.51 TiC Tic TiC
2.44 TiSi
2.20 TisSi; TisSi
2.19 TiSi
2.18 TiC TiC TiC
2.11 TisSi; TisSi;
2.10 Ti,Os
1.96 TiSi
1.70 Tib,O;4
1.54 TiC TiC TiC
1.51 TisSi;
1.31 TiC TiC TiC

Note Here and subsequentlgt,is the interplanar distance affdis the laser  FIG. 2. Electron diffraction patterns of titanium—silicon system after laser
radiation power. treatment in hexane at 1(8) and 7.0 W(b).
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TABLE lll. Change in the phase composition of a Ti—Si system in hexaneTABLE V. Change in the phase composition of a Ti—Si systefa-aZ.0 W

after etching the film to a thickness of 20 nm. after etching at 504) and 60 nm B).

E, W d A A B
d A 15 4.0 7.0 : .

4.26 SiQ SiO,

4.28 TkOs TizOg 4.08 SiQ Sio,
3.54 TOs TizOf 3.80 SiQ Sio,
3.14 TiOs TizO0s 3.61 sio,
2.68 TiSi TiSi TiSi 3.23 SiO,
2.57 Ti, 04 3.12 Si Si
251 TiC TiC TiC 2.96 SiQ Sio,
2.44 TiSi TiSi TiSi 2.48 SiQ Sio,
2.34 TiSi 2.29 TiSh TiSi,
2.29 TiSi, T|S|2 219 TiSh TiSi,
2.20 TiSi; 213 TiSp
2.19 TiSi TiSi 2.08 TiS)
2.18 TiC TiC TiC 2.07 SiO,
2.11 TiSis 1.93 Sio,
2.08 T|S|2 T|S|2 1.90 Si Si
1.82 TiSi, 1.63 Si Si
1.70 Ti, 04 1.24 Si Si
1.54 TiC TiC TiC 1.10 Si
1.48 Ti, 04 1.04 Si
1.44 TiSi TiSi TiSi 0.92 Si
1.40 TiSi;
1.39 T|S|2 T|S|2
131 TiC TiC TiC

moved from the samples after treatment. The results are pre-
sented in Table V. In addition to peaks of titanium silicide

presented in Tables 11l and IV shows that no titanium oxidegVith an S-54 lattice, the electron diffraction patterns also
or titanium carbide exist at a depth of 40 nm. This is limitedreveal peaks from SiQ(tridymite) and silicon. Thus, layer-
by the depth of diffusion of carbon atoms from the surround-PY-layer etching of the surface layer revealed changes in the
ing medium. The amount of oxygen diffusing from the SiO phase composition of a Ti—Si system under laser annealing.
layer into the titanium film is negligible and is insufficient to The phase composition changes as follows: Ti/58D to
form titanium oxides. The presence of silicides indicates that ixOy—TIC—TinSin/TiSi,—SIiG,/Si, depending on the dis-
silicon atoms diffuse through the Sjdnto the titanium. tance from the surface. Attention is drawn to the fact that
In order to study the interface of the system after laseSiOz crystallizes at the metal—semiconductor interface and

treatment in alkanes, 50 and 60 nm surface layers were réecomes displaced inside the silicon. N
We therefore conclude that when a titanium—silicon sys-

tem undergoes laser irradiation in alkanes, the surface layer
TABLE IV. Change in the phase composition of a Ti—Si system after etch-Of titanium interacts with the carbon, leading to the forma-
ing to 40 nm. tion and growth of titanium carbide at the surface of the film,
which is also accompanied by oxidation of the titanium. As a

d A 15 E;,r_\év 70 result of the silicon diffusing across the Sim and also as

a result of its degradation, silicides form at the titanium—
4.26 SiQ SIO, SIo, silicon dioxide interface. In consequence, the near-surface
g'(l)g S'S? sgz S'glz layer has a complex phase composition. The phase distribu-
268 Tisi Tisi tion over the depth of this layer can be seen from Fig. 3.
244 Tisi Tisi The results obtained by electron diffraction analysis cor-
2.34 Tisi Tisi
2.29 TiSh TiSi, Tisi,
2.19 TiSh TiSi, Tisi,

213 Tisi

2.08 TiSh Tisi, Tisi, \\\\\\\\ Jil T" O

1.96 TiSi TiSi L/

o 5 o < ; o //’LSL TLSL//

1.82 TiSi, TiSi, TiSi, . K : ,SPP{ il

1.63 Si Si Si 7 y ? ; : .

1.49 TiSh TiSi, iSi /// S // / /// o /

1.44 TiSi 4 /.

1.39 TiSi, a

1.31 TiSh TiSi, TiSi, FIG. 3. Diagram showing distribution of phase composition of titanium—
1.24 TiSh TiSi, TiSi, silicon system over deptla — initial sample(without treatment b — after

laser treatment at 7.0 W in alkanes.
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relate with those obtained by electron spectral and chemical To sum up, by treating a Ti—Si system with=1.06um

analysis. laser radiation in alkanes, we can obtain a contact with a
Changes in the phase composition of the Ti—Si systenspecific phase composition. Treatment in alkanes stimulates

and its interface lead to changes in the electrophysical pahe formation of titanium oxides, carbide, and silicides de-

rameters of the contact. The current—voltage characteristiggending on the laser radiation power and the thickness of the

were investigated using a method described in Ref. 6 whichitanium film. By exposing the system to laser treatment in

yielded the Schottky barrier height, the breakdown voltagepentane and hexane, we can produce a rectifying contact

and the ideality factor. These investigations showed thawith specific electrophysical properties.

within experimental error, the electrophysical parameters of

a Ti—Si contact treated in pentane and hexane are identical.

Under treatment the Schottky barrier height increases fromls o Murarka.Siicides for VLSI Aolicationg Academic b \

0.55eV for the initial sample to 0.56eV as a resu!t of an- Sork (1glér§;r ,\;‘i'r",\'/ft')sizwo(rlgsay 172%';;‘ iongAcademic Press, New

nealing in alkanes, and the breakdown voltage increasesy '\ Rrykalin, A. A. Uglov, and A. N. KokoraLaser Treatment of Ma-

from 0.5 to 0.8 V. The increase in the Schottky barrier height terials [in Russiail, Mashinostroenie, MoscoW 975 296 pp.

is caused by the reactive diffusion of silicon under laser *Handbook of Thin-Film Technologgdited by L. I. Maissel and M. Glang

treatment and the subsequent formation of titanium silicide [MCGra]W'H'"' New York (1970; Sovetskoe Radio, Moscowl977,

and disilicide. A negligible change in the Schottky barrier +a . Chaplanov and A. N. Shibko, Phys. Status Soldi10, K37

height can be attributed to the presence of Ji&nd was (1990. ]

explained in detail in Ref. 1. The barrier height is also influ- 53- tB- ;Sti,eg'ék("l’gég Ya. Tverdokhlebova, and K. Sadychev, Neorg.

enced by changes in the surface stfate.der.\sny atthe SeI’nICOQI_E.aHe.rll?oc’ierick,MetaI.—Semiconductor Contacf€larendon Press, Oxford

ductor under laser treatment. Redistribution of oxygen and (1978; Radio i Svyaz’, Moscow(1982, 208 ppl.

diffusion of carbon in the surface layer and inside the system’v. M. Strikha, E. V. Buzaneva, and |. A. Radzievskschottky Barrier

lead to an increase in the breakdown voltage. The influence Semiconductor Devicelsn Russiaf), Sovetskoe Radio, Mosco(974),

of impurities in the contacts, which affect the characteristics 48 pp.

of semiconductor devices, was described by Striehal.” Translated by R. M. Durham
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Characteristics of the x-ray diffraction field in structures with a variable strain gradient are
analyzed using a model with an exponential profile. It is shown that the problem of reconstructing
the structural parameters of the strained layer from the angular positions of the principal
maximum and the oscillations is generally multivalued even when the strain varies monotonically
over depth. Conditions are determined for which this problem can be solved. An analogy is
identified with the results of an approach to determine the parameters of the strained layer based
on using the integral characteristics of the diffraction reflection curve.1999 American

Institute of Physicg.S1063-7849)01206-4

An analytic study of the strained surface region of a L ' 1 .
crystal by x-ray diffraction methods is essentially based on &=~ 5~ 4sirf 6 COSzQD“—’E cotfsin2¢ | &g,
information on the wave field structure over the crystal depth H

in various angular intervals near the Bragg maximumm. 2 A /—| val 7o
this case, the strain profile is described by a certain model 6o=(L—) , LetaZWv
ext, H

which contains information on the structural parameters of
the strained region: the layer thickness, the nature of the 2_ 2 _
. . K=K — &6y, m=ML,
decrease over depth, and so on. A comprehensive analysis
under various diffraction conditions for various possible ra-A g is the deviation from the exact Bragg anglke vy
tios of the structural parameters can only be made for those — sin(g+¢) and y,= — sin(¢= 6) are the direction cosines
profiles for which an accurate analytic solution of the rel-of the wave vectors of the diffracted and refracted waves,
evant dynamic diffraction problem is known. In this context, js the angle of inclination of the diffraction plane to the crys-
particular importance is attached to the diffraction problema| surface ., is the extinction length) is the wavelength
for an exponential profile of the incident radiationey is the strain amplitudey is the
e(2)=goe M, (1) polarization factor,rz z/L is the coordipate normalized to
the crystal thicknesk, the “+” (* =" signs correspond to
whereeg, is the strain amplitudeM is a positive value pro- the diffraction geometry when the incident beam is at the
portional to the strain gradient and determining some charangle §— ¢ (6+ ¢) to the crystal surface.
acteristic thickness over which the strain varies, arglthe We shall confine our analysis to the case of a steep strain
coordinate along the normal directed into the crystal. gradient which corresponds to a strained surface region of
In general, the accurate solution of the dynamic diffrac-small thickness. We take as the parameter the “effective
tion problem for a crystal with an exponential strain profile thickness” 1f« of the strained region relative to the total

(1) has the form® crystal thickness
. i
En(r)=Cie 7 R0 | 1+ —(x+ k), 1 it
M m ML
+ 12k i2_§e_w +Cye (R0 TE At this point, we must specify which quantity is assumed to
M be small relative tqu in the exact solution. Since we intend

: ; - to use these formulas for arbitrary values of the stfaind
i i2kg 126 o : ,
1+ —(k—kg),1— ——;—e 7|, 2 specifically for the parametef typical of the theory, this
M HoR constraint will be determined only by the angular interval in
whereF(a,c;x) is a degenerate hypergeometric functiép, ~ Which the diffraction reflection curve can be constructed.
and C, are arbitrary constants determined by the boundaryie€nce, the angular region for which this approximation

X

conditions of the problem. holds is limited by the constraint&/u|<1 and|xo/u|<1.
The following notation is introduced in Eq2): It follows from Eqg.(2) that the angular values, and x
only appear in the functiof (a,c;x) in terms of the param-
_ . YH L etersa andc and the dependence on the strain is only relative
k=| —2A0siN260— xo| 1— — , . . X
Yo/ 2yuN to the argumenk. This characteristic of the solution means

1063-7842/99/44(6)/3/$15.00 668 © 1999 American Institute of Physics
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that forF(a,c;x) we can find a so-called uniformly suitable In formula (6) the numbemn of the oscillation maximum
asymptotic expansidrfor arbitrary values of the strain and should not be too high for the expansion to hold. In deriving
the angular range specified above. formula (6) we assumed that dynamic effects mainly appear
An analysis of the solution(1) for a steep gradient only within the total diffraction reflection region so that in
show£" that the structure of the diffraction reflection curve practice the kinematic approximation can be usednfer2.
broadly retains the form characteristic of an ideal crystal. At ~ We shall analyze two variants for which the thickness of
the same time, the presence of a strained surface region tilse strained surface region and the strain amplitude can be
manifest as additional modulation of the standing x-rayestimated for given angular shifts of the main diffraction
waves and changes in the phase ratios between them. Aspaak and oscillations.
result of this redistribution of the unitary wave field in the If 2¢/u>1 (and in fact, even if 2/u>2), we have
strained structure, the diffraction peak and the oscillatiorSi(x) ~ /2 and Cink)~ y+In(x) (Ref. 5. At this point, a
maxima are shifted from the angular positions for an idealdistinguishing feature of x-ray diffraction appears in struc-
crystal. tures with a variable strain gradient: the angular position of
The angular position of the main diffraction peak to the principal diffraction maximum is independent of the
within terms of the order L2 is given by the following strain amplitude and is determined only by the thickness of

expressior® the strained layer. A similar situation may be interpreted as
Si(2¢/ the result of multiple inversion of the phase of the diffracted
k(0)= _p(go)M' wave over the thickness of the strained layer with compo-

nents of the initial “perturbation” being “forgotten’{strain
2 amplitudg. Consequently, this case of scattering has some
_ 15285+ 5o+ 3) &) analogy with a Markov process.

125§+750+ 15° Thus, the criterion for this case being implemented ex-
o o o perimentally will be that«(0) is constant within the error
where Sik) is the sine integral and the coefficieptdo)  |imits specified above, which is determined by the nature of

determines the nature of the scattering. the scatteringmeasuringo(5,)) as a function of the reflec-
It can be seen from Ed3) that the dependence of the ion order.

angular shift on the strain amplitude is essentially nonlinear. Equations(3) and (6) yield the following approximate

Moreover, as a result of the oscillating behavior of the sing,yressions for the thickness of the strained layer and the
integral betweert andA «(0), generally only a multivalued  gyrain amplitude in the experimental unit€0) andA x(n):
correspondence exists. From E) we obtain two charac-
Ak(n)
M.

p( o)

teristic limits: the kinematic limit §,—0) and the case of a 1
thick crystal corresponding to the formal limfi;— . For ;z —0.23¢(0), £=0.28uex
the kinematic limit, Eq(3) gives

)

) At this point, it should be noted that this expression §ds
k(0)n=—3 Si(2¢/p) , (4) to a considerable extent illustrative. This is because, as given
M by Eg. (6), the angular width of the oscillations «(n) is
primarily determined by the total crystal thickness. The in-
fluence of Ax(n) on the parameters of the strained surface
region £ and u is considerably weaker here since it has the
5 Si(2&/ ) form of a small additive correction. Finally, we find that the
K(O)dyn:_ET- (5) exponential function in the expression férin Eq. (7) is
always very close to unity for the same
Thus, these two cases only differ by the numerical coef- The second variant corresponding to the condition
ficient. It follows from Eq.(3) that the angular shift of the 2&/ <1 is more frequently encountered in crystals with a
principal maximum depends monotonically @iy and the  strained layer. In cases of small values of the argument, for
numerical difference between the two limiting cases does Nohe functions Sik) and Cink) we obtain the estimate
exceed 20%. Therefore it is sufficient to use an average valugi(X)NX and Cinf)~x2/4. ConsequentlyA«(0) depends
for p( o) =2.75 in the following approximate expressions. |inearly on¢, which should be observed experimentally. This
Similar calculations for the angular widths of the oscil- yesylt is fully compatible with a clear interpretation of the

and for a thick crystal the angular shift of the principal maxi-
mum is given by

lation maxima yield the following resuit: shift of the angular position of the principal diffraction maxi-
1 2¢ mum as the manifestation of some nontrivial “diffraction
Ak(n)=m 1+—Cin(—)> (6) averaging” of the strain field over the thickness of the

K K strained layer by the x-ray wave. Relations similar(%

where the function have the form
ci fx L0 4y~ Gix)+ In(x) + L 00330 0.1842x(0 8
=] ——dy=- —=0.033+——+7—— =0. .

in(x) 0 Ty y i(x)+In(x)+y . Ar(m—1)" £ 8u“x(0) ®

is expressed in terms of the cosine integralxti@nd y Thus, in these limiting cases, information on the angular

=0.577 is the Euler constant. shifts of the principal maximum and the oscillations is quite
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sufficient primarily to estimate the thickness of the strained &
region and only as a secondary function to estimate strain L 4=
amplitude. This problem can be solved uniquéfgr the
thickness of the strained regipim two alternative cases:
under conditions where the ratio of the strain at the crystal-€., in cases of incomplete phase inversion over the thick-
surface to the thickness of the strained layer is small andless of the strained layér depends on the parameters of
conversely, when this ratio is large. Otherwise, additionathis layer and these can therefore be reconstructed from the
information is required for an accurate solution of the prob-X-ray data.
lem. However, the estimat€) for 2&/u>1 (multiple phase

We shall give the results of calculations @f and  inversion gives
u using formulag(7) and (8) for two cases. In order to de-
termine the angular shifts, we constructed the theoretical dif- 1 ( sin( §/,u))

eff— T

(10

4u®

fraction reflection curve for gived and x near the principal lu 11

diffraction maximum using asymptotic representations of the
exact solution in this particular case of a steep gradiént.
For the first case &u>1 for the given valueg=20
and ¢£&=30 for u=10 we obtain:x=8.9, £=5.03, andu
=9.7, £=8.5, respectively. Thus, the good approximation

Since the second term in E@L1) for large values of the
argument oscillates near zero and is much less than unity, the
effective thickness is merely reduced to the depth of the

btained f d th lete di o hich dif strained layer and does not depend on the strain amplitude.
? tamle or;]f anf It 'TI comp eteh Isparity q’r (w 'Cf " q In this case we are therefore dealing with a loss of informa-
ers almost fourfoldl illustrates the reasoning put forwar tion on the parameters of the strained layer.

above on the analogy with Markov processes—loss of infor- s e tremely important that this result can also be gen-

mansn or;f' q 1 th culati isld eralized to other strain profiles which decrease over depth, by
_1 gr t_eSsecfon hcaseg?,u«l t Slca Clé aUSrés y'ed estimating the integrdB). However, the important constraint
5:2-0,2#_—6.57 for t_ez trus Vfgef_ an Mbl— » N9 remains that the strain must vary monotonically over depth.
¢=2.02,p=6.7for¢=2 andu=8. Here no problems arise Mathematically this constraint reduces to the absence of
with loss of mformaﬂon and th_|s accuracy for_the approXi- steady-state points in the phase of the cosine intégyalver
mat_e}he xpressmlns fcanhbe con;fl_deredb:o be fq(le_I;fe sajusfa_cto%e thickness of the strained layer. This in fact implies that a
ese resu tsfort € specilic problem of di raction in a1 range of constant-sign strain profiles which decrease
crystal with an exponential strain profile can lead to the fo"over depth at least no more weakly than exponentially can be

lowing generalization. The relations put forward above eSincluded here.

sentially gstablish qualitative criteria fo_r a particulgr degrge To sum up, these results obtained for a crystal with an

of solubility for t.he problem of dete_rmmmg_the strain amphj exponential strain profile suggest that these x-ray diffraction

tude.and the thlqkness of the stralined region from x-ray d'f1 ws apply to all structures with a variable gradient where the

fraction data. This statement applies equally to analytic and, ;. '\ ories monotonically over depth. An analogy is also

humerical methq@s since th_e latter are bqsed s_ubstantially ¥Bbtained when integral characteristics such as the Fourier

the ar?gl_"ar pos_mons and W'dthS_Of_ the d|ffract_|on maxfina. transforms of the diffraction reflection curves and the angular
It is interesting to note that similar conclusions can alsopositions of the diffraction maxima are used to identify the

be drawn when the diffraction problem is considered in the tructure of the strained layer.

so-called semikinematic approximation when the straine(? This work was supported by the Russian Fund for Fun-

surface layer of the crystal is assumed to scatter kinematHﬂamental Research, Project No. 98-02-16151.

cally and the substrate scatters like an ideal dynamic crystal. ’
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effective thicknesd .. In the notation used here this for- ,[S0v- Phys. JETR7, 154(1978].
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An analysis is made of the nonlinear relaxation of the charge formed in a photoconducting
material as a result of the absorption of a light pulse. Calculations are made of the distribution
profiles of the excess carriers and the density of the photoinduced charge in various

transport regimes. The influence of contact phenomena on the dynamics of the space charge is
examined and solutions are obtained for boundary conditions corresponding to a blocking
contact with an illuminated electrode and optical breakdown of the contact. An investigation is
made of the evolution of the integral pulse response under transverse electrooptic
modulation. The results are suitable for analyzing two geometric recording systems for entering
information into a space—time light modulator with arbitrary absorption and for recording

a holographic grating in the limit of low absorption coefficients. 1©99 American Institute of
Physics[S1063-784£99)01306-9

INTRODUCTION dark conductivity of the material is assumed to be zero. At

Studies of nonlinear space-charge relaxation processes EHn?t:to thte ZYth”g lin deLgoefhpuflsed |Iltun1|33(ts|otnhThe op-
photorefractive materials are topical for two main reasons. oo Ntensity distribution has the or(r, )_. (1) (.r),
herer=xe,+ye,, W is the exposureg(t) is the Dirac

First, photorefractive materials are opening up new prospect . = . :
for developing active elements in optical information pro- tic?:itfﬁgt?gr?n, andR(r) =X(x)Y(y) is the spatial modula-
cessing and storage system@ncluding holographic . ' L .

g 9 4 6 9 grap Figure 1 shows the direction of light for the two most

memory.1~® Second, photoinjection processes and transport | q ; tal svst In the first h
of nonequilibrium photoinduced charges in these material§CMMONty used expenmental systems. In the hirst case, when

lead to the formation of photorefractive waves, which are Oﬂnfqrmatlon is coupled into a space—'qme_modulator, light is
separate scientific interet'2 incident on the crystal along the axis (Fig. 18 and the

Here, a two-dimensional nonsteady-state problem i odulation functionX(x) is determined.by the Bougqer—
solved for the nonlinear relaxation of the space charg amt_)e_rt law X(x) = exp(~ax), where a is the abs_orptlo_n .
formed in a photorefractive crystal under pulsed iIIumina-coefﬁc'em'.In the ;econd case, when a holographlc grating Is
tion. A detailed analysis is made of a variant correspondindecorded(':'g' 10, .“ght propagates along tr;eaX|§ and for
to the storage of information in a space—time Iight“l‘<1 the intensity is modulated along theaxis by the

modulatort'?3However, the results are suitable for analyz-
ing the pulsed recording of holographic gratihgs®in the
limit of low absorption coefficients. The difference between ho
these variants is determined by the form of the spatial modu X X
i . C o . A ”
lation function of the photogeneration in accordance with the AW
Ly, 0

system for storing information in the optical memory. The ¥ y
case of an arbitrary absorption coefficient is considered for ¢ \ v l q
space—time light modulator. Allowance is also made for theg,, % z K

depletion of impurity centers during photogeneration and the\/\ ~
influence of the injection current on the dynamics of the — — —

space charge is considered. Two sets of boundary conditior
are analyzed, corresponding to a blocking contact with ar
illuminated electrode and optical breakdown of the contact. { \ {
FORMULATION OF THE PROBLEM AND MATHEMATICAL U v
MODEL __@__ @)
N
We analyze an infinite single-crystal wafer of thickness a b

L to which we apply a static electric field created by a VOIt_FIG. 1. Schematic of information recording process— input of informa-

age sourcéJ (Fig. 1. Thgx a)_(is is directed along the crystal ion to space—time light modulatds — hologram recording, andk, are
thickness and thg axis is directed along the surface. The the wave vectors of the object and reference waves, respectively.

1063-7842/99/44(6)/7/$15.00 671 © 1999 American Institute of Physics
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function X(x) = 1+ &£ cosKx), whereK is the wave vector of p(r,0-0)=0, n(r,0+0)=p(r,0+0). 4
tﬂel)recorded grating andl is the modulation index (&£ The boundary conditions are determined by the carrier

The crystal contains two types of traps: shallow traps inconcentration at the_ iIIuminat_ed_surface according to th_e type
thermal equilibrium with the conduction band and deep im of contact, the applied electric field, and the type of radiation
purity centers whose photoionization leads to the appearan
of free carriers migrating in the external field. The carrier ~ n(0y,t)=n(0y,0+0), 6)
lifetime in the deep traps significantly exceeds the transit _ _
time. The drift of the nonequilibrium carriers is limited by e(0y.0=1" ¢(1y,H=0, ©)
the space charge defined by the carriers themselves. Conse- ¢
quently, the transport process is nonlinear: Ohm’s law is not @@(X,OI)ZO, (7)
obeyed since the charge migrates in a self-consistent field.

The influence of shallow traps on the transport process is
taken into account in the fast recapture approximattone @‘P(X‘y'- ) =0. ®)
assume that,<7;, wherer, is the trapping timdthe aver-

age carrier lifetime in an extended state; is the free time iry of the potential for the periodic functiol(y)="Y(y

(the average lifetime in a trapping leyeln this case, the I ) f the field ted by th
equation describing the trapping and release of carriers from yu), or screening of the field generated by the space

shallow traps an,/dt=n;/7—n, /7, reduces to =/, charge, by _the mirror image c_h_arges for the damped function
=n¢/n¢,wheren; andn, are the concentrations of free and _Y(y). In this last ca_se,_corjd|t|o(8) h.0|ds fory >L. The
trapped carriers, respectively. This means that instead of thlgtegral of the photoionization equati¢d) has the form
transport of free carriers having the mobility, which de- p(r,t)=N(1—exp(—F(r)))H(t), 9)
termines the cqnductmty fpr the ex.tended 'states, we CaOvhereF(r)E(aW/N)R(r), H(t) is the Heaviside function
analyze the motion of quasifree carriers having the concen-
tration n=n;+n, and the effective drift mobility 0 t<0,
= pong/(Ng+ny). H= 1 t>0.

The relaxation of the photoinduced charge is described ) o
by the following system of equations written in dimension- ~ The equation of continuityl) may be transformed to a

grétensity distribution over thg axis

Condition(8) corresponds either to translational symme-

less variables: convenient form for the subsequent discretization
V. (n(r,t)Ve(r,t))— %n(r,t)zo, (1) %n(r,t)—Vgo(r,t).Vn(r,t)+n(r,t)(n(r,t)—p(r,t))=0.
(10)
VZg(r,t)y=p(r,t)—n(r,t), ) Thus, Egs.(2), (9), and (10) form a closed system to
P « determine the carrier concentratiofr,t) and the potential
S PO =G H(N=p(r.0), @) ().

where (1) is the equation of continuity(2) is the Poisson BRIEF DESCRIPTION OF THE FINITE DIFFERENCE
equation, and3) describes the ionization of the impurity ALGORITHM

;Z:fr:z'onei:? Lsrithecsgsgpslzln?jn%n?;: dp i?r:el}:}zecsonr(;in-ec The equations are discretized using a three-dimensional
. P .W . . mp ' PECIhesh whose nodes are defined by the coordinates

tively. On changing to dimensionless variables, we use the

following normalization: Xi=i1Ax, y;=jAy, t=KkAt, (12)
r! t! o' whereAx, Ay, andAt are the mesh steps along the appro-
rEf, tEE' =10 a=a'l, priate coordinates, i=0,1,...0mas =01, ... jmad
k=0,1, ... Knax-
Lo 47mqlL? 4mqlQ Applying an integrointerpolation method to discretize
(n,N,p)=(n",N",p") —5—, =W U the nonlinear equation of continuiyl0) in the bulk of the

crystal yields the following iteration difference equations

where the corresponding dimensional variables are denotegitten for half-integer points of the initial megfi1):
by the prime,ty=L?/(«U) is the carrier transit time in an . . . ~ ~
unperturbed fieldq is the carrier chargeQ is the photoion- DGV —Dyel - Dyn§ P —Dye) - Dynf ™
ization quantum yield of an impurity centes is the light 40+ D0 _p =0 (12)
frequency, and: is the permittivity of the crystal for polar- m m Fm '
ization with relaxation times considerably shorter than thewherel is the number of the layer-by-layer iteration for fixed
transit time. k and all values with the multindexn=||i+1/2, j+1/2,

The initial conditions correspond to the absence of anyk+ 1/2|| corresponds to the center of a mesh cdll)
ionized centers before illumination, and local electroneutral{Fig. 23.
ity at the end of illumination The difference derivatives have the form
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a 3D d
=0 2 4 6 8 W £ % #
e rem=0
L P
(I ] =
1 el m=1
b L L
y=0:2D ie: =2
t
P = oy m=3
: +
k t iy.] ‘
kt
z; FIG. 2. Construction of a finite-difference algorithm:
z; patterns of difference schem¢$5) (a) and (16) (b);
€ sequence of calculations of the carrier concentrations at
c . the (k+1) mesh layer at fixed timéc): direct run(d)
= 2 4 6§ &8 10 . 2 75,,1:4 and inverse formulatiofe) of cyclic reduction for solv-
' ing the Poisson equation.
/| m=3
t
.——hr N m=2
! ]
o e o et m=1
m=0
%
Z;
. 1 1 1 K1k The boundary conditions are obtained directly from Egs.
DtnmE 4At(n|+1j+l+n|+lj+n|]+1+n n|+l,j+1 (4) and(5)

nG=Pj. Ng;=ng;. (14
1 Using the difference equatiofil2) we can derive the
B, n=——(nk L following explicit two-layer difference scheme to calculate

k k k
=Nt = Nije1— NG,

n +nk +niHL 4 nk
x''m +1,j+1 +1,j+1 +1 +1 . .
4Ax T e R at the (+1) iteration:
CakFl ok k+l ok k+1 k+1 k+1
an_l ni’j+l n” n”)q n|+l,J+1(l+U+) n|J+l( 1+V )+n|+lj( 1_V+)
k+1
2 +nj (=1+u” )+nk
k+1 k+1 i+1j+1
Dyny,= 4Ay(n|+1]+1+n|+11+1+n|1+1+n|1+1 )

X(L=u)+n g (1+r7) +nf g

k+1 k k+1 k
N =Nt i),
L L i) X(1=v")+nf(1+u”), (15
Difference differentiation of the potential is performed
similarly. The values oh andp are averaged over all points Where
in an elementary cell of the mesh . At _— AX . 0 AX 0
1 iFLitlkel 1 iFLit1kel U™=1x _DX(Pm_A_yDy‘Pm = (N =Pw) |3
g S 2 Sl peg 3 S 3 R N
&1 4k Siisid =2t p oW+ X 02X oy ))
Discretization of the equation of continuit0) in the Ax amoAyTyTme 2 m
planey=0 where condition(7) holds is performed sepa- Figure 2a shows the pattern of the difference scheme

rately. The corresponding difference equation written for(15) In order to trigger the scheni@5), we require values of
half-integer points of the two-dimensional mesh |s obtainegnhe carrier concentratlono at the crystal surface at=0
from the initial three-dimensional mesghl) for j= defined by the second boundary conditid4) and also val-
okl —
S5 (0.5 4+ 4 q(+1)n(0) 0, 13 ues of thg concentratlomg"ﬂ0 in t_he planey=0, calculated
e X X w (M P = (13 using a difference scheme obtained from ELB):
where | is the iteration number;u_|||+1/2, 0,k+1/2],

' k1 nke1 K p

= 2z Ehndo, pu= s i Zqtkpdo, nisidl+a’) (mlta)tnidi-a’)
+ni’0(1+a*), (16)

07tnﬂ 2At(n|k:110+n:(31 nik+1,o_n=(,o)v where

At

Ax
k+1 k+1_ .k ) atEAX ax¢2)+7(n(l)_pﬂ)

INy= 2AX(”.+10"‘”|+10 Nio™ —Njo).
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The pattern of the difference scher(6) is shown in  where B=(Ax/Ay)?, &, is the Kronecker delta, and,s
Fig. 2b. The initial values;l?j required to trigger the schemes =1,2, ... jhat1.
(15) and(16) are calculated from the first boundary condition Thus, the solution of the Poisson equation reduces to
(14) and the integral of the photoionization equati® The inversion of the partitioned matri€ for which we use the
calculations are performed as follows: the carrier concentrafollowing variant of the cyclic reduction method.
tion n is calculated at thek{+ 1)th layer of the meskill) in The direct run involves calculating the vectG?S”) and
the unperturbed field initially in the plane=0 using scheme Q{™
(16) and then using scheni&5) for all points in the bulk of m_ o(m-1 M1 =1/ ~(m—1 m—1 m—1
the crystal having the samievalue on the k+1)th layer. PIM=P{™ D(Cm D) Q™ D+ Py P ),
The concentration is then calculated for the next valug of

QM =2P(M V+Qfmy Y+ QM.
first for j =0 using the schem&6) and then forj #0 using

the schemé15), and so on. The sequence of calculations is Q9=F;, PO=p, (17)
lllustrated in Fig. 2c. _ m is the reduction numbem=1,2,...n; M=2""1 |
After finding the carrier concentration at the{1)th  _om 5y om gy om i _om

layer we calculate the field created by the resultant space  tne jnyerse formulation involves reconstructing the un-
charge, by solving the Poisson equati{@nin a rectangle on KNOWNS

whose opposite sides Dirichlet conditiof® and Neumann - D1 (et
conditions(7), (8) are set. Then the carrier concentration is ~ Vi=P{™ D+ (CM D) "1 QM D4V y+Vi.y),

calculated again, but in the perturbed field. If the values ob- (18
tained differ from the previous ones, the iterations are rem=n+1,n, n—1,...,1:M=2""1 i=M, 3M, 5M, ...,
peated until convergence is achieved. i max—M.

We use a cyclic reduction method to solve the Poisson  The constraint on the number of mesh points in the di-
equation on a mesh defined for a fixed time in the rectangleection of reductioralong thex axis) is i na=2""*, wheren
{0=x=1, OsysyL_}. _ is the number of reduction steps.

For the potentiaV/= ¢ — 1+ x of the field created by the Inversion of the matrice€(™ % involves solving the
space charge with the volume denditgn—p, the boundary  vector equation$17) and(18) by successively inverting the

conditions(6) will be homogeneous. The difference problem matrix factors in the expansion

for the Poisson equatioRN?V=—f may be written in the

form

where

! max

J max

ViEHVi,OVi,l'"Vijmax”T’ izoyly---jmaw

B (Ax)?[fiofia - fiy T =12, imac 1,
o

E is a unit matrix, 0 is the null matrix of dimension$,{;x
+1)?, and the superscrifit denotes transposition, the matrix

|0 O

elementsC have the form

Crs:2(1+,8)5rs_,8( 5r,s+l+ 5r+1,s+ Or1602s

+6

r'jmax'*'l(sjma><'

s)

I =0, max

i (21-1)
C(m’1)=|H Cim-1, where C, ,_;=C—2E cosz—mw.
=1

The matricesC, 1, like the initial matrixC, are tridi-
agonal with diagonal predominance and are inverted using a
right tridiagonal inversion.

The calculation algorithm using a cyclic reduction for
i max=16 andn=3 is shown schematically in Figs. 2d a2el.

RESULTS AND DISCUSSION

The space charge dynamics depend fundamentally on
the properties of the contact between the illuminated elec-
trode and the photorefractive crystal. For a blocking contact
the boundary conditiort5) has the formn(0,y,t)=0 both
before and after the action of light. In this case, nonequilib-
rium carriers form in the bulk of the crystal exclusively as a
result of photoinjection and none are transported from the
electrode. Another case is also possible when, under the ac-
tion of light, the contact is converted from blocking to inject-
ing and undergoes optical breakdown. In this case, the opti-
cal pulse causes an abrupt increase in the carrier
concentration at the irradiated contact from zero to a finite
value determined by the integral of the photoionization equa-
tion (9) and the boundary conditiong) and (5) n(0,y,t)
=N[1-exp(=F(0,y))JH(t).

Thus, after photoexcited carriers have formed, excess
carriers will be continuously injected into the crystal from
the broken-down contact.

Figure 3 shows a schematic band diagram of the contact
under optical breakdown. For simplicity the surface states
are not shown. It is assumed that before illuminat{&ig.
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d a reduction in the barrier heiglisimilar to the Schottky ef-
. . fect). Consequently, after the pulsed illumination the barrier
b -4 N will no longer impede the injection of carriers from the con-
_/\A Cv. b tact into the bulk of the crystdFig. 3b.

ﬂ___.\ o F———] We shall now analyze the distributions of the carrier
~o \ concentratiom and the space charge densitgbtained for
~ . \ ¢y, various boundary conditions. The calculations were made for

D spatial modulation functions given b
\\ p g y
AN
‘1\\\ = —
S J—~F, X(X)=exp — ax),
™~

a b 1 2wy b b

=l 1+cos—| —=<y<g,

FIG. 3. Band diagram of contact befof® and after(b) exposure to light Y(v)= 2 b 2 2 19

pulse during optical breakdowrkV — reduction in the barrier heighd, — (Y) - b b (19

depth of depletion zon& — Fermi level,F,, — Fermi quasilevel, an® — 0 y<—4, y>z,

impurity levels. The bottom of the conduction baff@.V) neglecting the 2 2

potential of the mirror image forces is shown by the dashed curve. . . . . .
whereb is the width of the irradiated region.

This modulation corresponds to exposure of the band
3a) the contact is neutral, i.e., the flat band condition is satpositioned at the surface of the crystal perpendicular tocthe
isfied. Prior to illumination an external bias is applied to theandy axes when information is coupled into a space—time
contact and all the transition processes associated witlight modulator(Fig. 1a. The calculations were made for
charge transfer at capacitances have time to be completedqual mesh steps along the spatial coordinates=(Ay)

The potential barrier impeding carrier transpéd be spe-  with a relative accuracy of I for the carrier concentration
cific, electrony from the cathode is assumed to be suffi-and 0.1 for the transverse field. The time step=10 2
ciently large so that the contact can be considered to bensured that the Courant condition was satisfied. The results
blocking prior to illumination. Under the action of the light discussed subsequently were obtained for a mesh of dimen-
pulse, the impurity centers undergo photoionization. As &ioNSi y3,=64, j max="64, andk,,,=120 fora=1,b=1, and
result of the external bias, the photoexcited carriers leave thid=10°.

contact region and residual ionized impurities create a space We shall initially consider the case of optical breakdown
charge field. The formation of a depleted region has featuresf the contact. Figure 4 shows contours of the carrier con-
in common with the similar process observed during the for<entration and the charge density at titwe0.6 for two val-
mation of a Schottky barrier but is distinguished by opticalues of the exposuréV=0.1 and 10. The calculated param-
rather than thermal ionization of impurities and takes place atter is the product of the contour number and the
a constantly applied external bias. The combined effect ofjuantization step. Figure 4a shows the linear motion of a
the space charge field in the depleted region, the potential gfacket of free carriers: at low exposures the resulting space
the mirror image forces, and the external electric field causeharge field does not distort the external field and the dis-

0.5

FIG. 4. Distribution profiles of ex-
cess carrier concentratiom) and
space charge density)( during opti-
cal breakdown of contaca — linear
regime (exposureW=0.1, quantiza-
tion steph,=1.11X10"2, h;=4.79
X 10°3); b — nonlinear regimdex-
posureW= 10, quantization steps,
=1.11,h;=0.114).
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/] VA
0.5
0.4 FIG. 5. Distribution profiles of space
carrier concentrationn) and excess
0.3+ charge densityf() for blocking con-
tact in linear transport regimg@uan-
02k tization stepsh,=9.73x10°3, h;
=9.47x10 3.
0.1f
1 1
1] 02 04

tance covered by the leading edge of the carriers increasearriers has left the bulk of the crystal under the action of the
linearly with time. The nonuniform spatial distribution of the external field(att>1), the sign of the space charge density
ionized impurity centers leads to the formation of a maxi-remains constant. The space charge of the ionized impurity
mum space charge density which propagates with the leadingenters creates an electric field which forms a recorded im-
section of the carrier packet. Excess carriers are continuousbge in the crystal as a result of the electrooptic effect. It
injected from the contact broken down by the optical pulseshould be noted that this field and thus the written informa-
and these completely compensate the charge of the ionizdéibn are conserved during the dielectric relaxation time and
impurities. Thus, the space charge density has the same sigifter the external bias has been switched off.
over the entire volume of the crystal. After passage of the An important parameter characterizing the possibility of
photoexcited carriers, a current of excess carriers injectedsing a photorefractive material for optical storage of infor-
from the contact will flow through the crystal. The density of mation is the diffraction efficiency during readout. For the
this current is modulated over the crystal surface by the funcselected geometric systefiRig. 18 the diffraction efficiency
tion Y(y) according to the intensity distribution under illu- is determined by the integral pulse response under transverse
mination. Therefore the recorded information is stored aslectrooptic modulation
long as the external bias is switched on. Since the optical 1y
breakdown of the contact is a reversible effgmovided that d(y,t)=— J dX— @(X,Y,t).
electrical breakdown of the contact region has not occurred o X
as a result of summation of the external field and the space oy g given spatial modulation functiof(y) of the type
charge field, the devices returns to the initial state when the(19) the pulse response characterizes the information writ-
external bias is switched off. ing efficiency when one line is input to a space—time modu-
As the exposure is increased, the contact goes over t0gtor. Figure 6 shows the evolution of the pulse response
nonlinear transport regime as a result of confinement by thgg|cylated forW=0.2, «=0.5, b=1, andN=400. The se-
space charge. The resulting space charge of the excess Cffeted combination of dimensionless parameters is typical of
riers slows the motion of the packet and pushes it sideway$, pRriz space—time light modulator using bismuth silicate

This transverse carrier drift leads to the formation of lateralg;, sjo,, (Ref. 13. The writing wavelength is 0.5&m with
“tongues” in the charge density distributioffrig. 4b. Un-

like the linear regimeg(Fig. 43, under higher exposure the
initial carrier concentration profile, defined by the spatial

modulation of the radiation, becomes distorted by the space 172,
charge. At the same time, the sign of the space charge den- 08
sity remains constant over the entire volume of the crystal, as 0.6
in the linear regime. 04
We shall now consider the more interesting case from 02k

the practical point of view when the illuminated contact re- 0
mains blocking after the propagation of the light pulse. Re-

sults of calculating the carrier concentration and space

charge density for this case are plotted in Fig. 5 which gives ~-0.002
contours of the distributions formed at time=0.6 for the
exposureW=0.1, which corresponds to a linear transport

regime. Atx~0.6 we can clearly identify a front which ~0.004
bounds the moving packet of excess carriers. This is fol-

lowed by space charge of opposite sign generated by the

ionized impurity centers. Since no carriers are injected from -0.006
the contact, the charge of the ionized impurities remains un- @

compensa_ted and_the space charge density changes its _Sigf?ciéi 6. Distribution of optical intensity/I, along crystal surface and evo-
the bounding carrier front. After the packet of photoexcitediution of pulse respons® under transverse electrooptic modulation.
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the exposur&V’ =0.1uJ/cnt which corresponds to an opti- the illuminated electrode and the photorefractive crystal and
cal pulse of duration s with an intensityt ;=100 mW/cnt differs appreciably for a blocking contact and for optical
at the line center. For the given exposure a linear transpotireakdown of the contact. The space—time distributions of
regime is established and the distributions of the carrier conthe pulse response under transverse electrooptic modulation
centration and the space charge density are similar to thosgere calculated for the efficiency characteristic of the infor-
shown in Fig. 5. The width of the exposed band is equal tanation recording process. The results are suitable for analyz-
the crystal thicknes®’'=L=0.5mm. ForU=2kV and u ing the process of entering information into a space—time
=0.03 cnt/V s the transit time ist=42 us. The concentra- light modulator with an arbitrary absorption coefficient and
tion of impurity centers with a 100% photoionization quan- also for analyzing the pulsed recording of holographic grat-
tum yield isN’ =10 cm™ 3, the permittivity of the crystal is ings in the limit of low absorption coefficients.

¢="56, and the absorption coefficient =10 cm *. Figure 6 To conclude, the author would like to thank all delegates
also shows the distribution of the optical intensity along theat the M. P. Petrov Laboratory Seminar for fruitful discus-
crystal surface defined by the spatial modulation functiorsions of the problem.
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The possibility of using a panoramic detector with a television signal-recording system in an
apparatus to observe Thomson scattering of laser radiation by a nonrelativistic electron beam is
discussed. Panoramas of Thomson and Rayleigh scattering and of the electron beam
luminescence are presented. Estimates are given of the sensitivity and spatial resolution of the
apparatus. Results of panoramic and single-point methods of investigation are compared.
Possibilities for extending the range of the Thomson scattering method to measure the density
distribution in nonrelativstic electron beams are discussed1989 American Institute

of Physics[S1063-78499)01406-3

INTRODUCTION image of the diaphragm, was projected onto the fiber unit

An experimental method of investigating the parametersOf _the Image co nverter and was then u_sed as are ference
of electron and plasma fluxes based on the Thomson scattel?p!m to Qetermlng the center of the probing region, i.e., the
ing of laser radiation has extensive possibilities, providingpomt of mtersgcuon of the axes of the Iase.r.and electron
local measurements and introducing no distortions into th(?eams. for a suitably selected line of the television frame and
flux. Panoramic studies of the structure of electron beamdS €90n: . . :
and plasmas, where the spatial distribution of the signals is The resolutiorR of t.he detection systgm in the observa-
recorded simultaneously and not one point after another, agéon'space was determlned by a's.eco.nd 'mage 'converter, tak-
of considerable interest, with the number of points which canl"9 mt_o account the linear r_nag_nlflcatlon of the image by the
be monitored in space depending on the number of observét)-bject've M :0_'6 and the first 'mage convertM1=0.63,
tion channels. However, investigations are difficult becaus@nd also allowing for a decrease in the resolution py a fe_lctor
of the small scattering signal and the need to isolate thié)f \/E accompanying th_e passage through the pair .Of fiber-
against an appreciable noise background. Particular difficul®Ptic d'Sk.S of the two image converters. An e><7pler|mental
ties are encountered in studies of nonrelativistic electror(fh(:"ck using a referenpe staqdard 98%5”‘(“ and
beams having densities of the order ofi%m2 or lower. agreed with the theoretical estimate. The spatially resolved

Panoramic measurements have been made for plasmas hé{g_lumev, Wlh'%h ca? Ibe rehpres(;anted toa c_erta(;n appr.oxgng—
ing electron densities of 18- 10cm ™3 (Ref. 1). In the pro- tion as a cylinder of length and cross section determined by

posed study we assess the possibility of panoramic invesj_—he laser be;’:lrtn dlamfete:rr:n thde ?bstgrvatmntzone an;lé;gthe
gations of the parameters of electron beams using Thoms frear " resolution 0 € detection system, w
scattering of ruby laser radiation in an experimental syste

102 mn.
described in detail in Ref. 2, but using a television signal- The least sensitive element of the detection system is the
recording system.

superkremnikon. The working illumination of the photocath-
ode for LI-702 tubes is=5x 10 2Ix (Ref. 3 and each ele-
ment of the image on the photocathode, corresponding to a
single pixel of the 3Qum diameter superkremnikon detector
The new system differs from that described in Ref. 2 inshould receive a radiation energy= 10 %Jat550nmi.e.,
that it incorporates facilities for panoramic detection of theapproximately 18 photons over the frame scanning period
measured signals. The detection system includes an objectiv# 40 ms. Then, having equaté to the corresponding Th-
for coupling out the scattered radiation, a brightness ampliomson scattering energy, we obtain an expression for the
fier consisting of two series-connected image converters, aglectron density; for which the Thomson scattering signal
LI-702 superkremnikon video camera, and a recording sysef the laser radiation creates the working illumination on the
tem comprising a television receiver and an S8-9A oscillo-superkremnikon photocathode
scope. The region inside the diagnostic chamber bounded by
an aperture diaphragm was scanned on the television screen n;=ES(E,K;K,KaQV;) 1,
and the brightness of a single line of the television frame was
analyzed using the oscilloscope. The line and its specifievhere o is the cross section for Thomson scatterifg, is
region were selected by a synchronization system. As in Rethe laser pulse energy is the cross-sectional area of the
2, a diaphragnD, was installed in the objective to align the laser beam in the probed regidf; ,= 10? are the brightness
system, and this was removed during the measurements. Agains of the first and second image convertirs,0.3 is the

NEW ELEMENTS AND THEIR PARAMETERS

1063-7842/99/44(6)/4/$15.00 678 © 1999 American Institute of Physics
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total transmission coefficient of all the optical elements of
the detection system at the Thomson scattering wavelength 10
A=630nm, ) =2.6xX10 ?sr is the solid angle of observa-
tion, V, is the volume from which the Thomson scattering
enters a single pixel and which, by analogy with the resolved
volume V, can be represented to some approximation as a
cylinder of length equal to the laser beam diametén the
observation zone and whose cross section is determined by
the size of the superkremnikon pixe} taking into account
the coefficients of magnification of the optical image of the 0.2
two image converterd!,;=M, and the objective for cou-
pling out the scattered radiation. 0
For the parameters given above and a laser enEggy
=30J the value oh, is approximately 1dcm2 and at the =75 -10 -05 0 05 10
entrance to the first image converter the energy scattered T, mm
from the spatially resolved volume corresponds to approxi-
mately a single photon. Slhce the quantum yield of the Im‘rfu‘ggcatteringHT (@). Solid curve — approximation dfl; using Gauss func-
converter photocathode is several times less than unityon (..
(=0.2), a single photoelectron from the photocathode of the
first image converter produces an illumination several times
greater than the working illumination per frame scanningcross section since the laser beam was not displaced relative
period in the appropriate region of the superkremnikon photo the electron beam together with the observation point, as
tocathode. Thus, the detection system is sufficiently sensitivin Ref. 2, and the laser beam diameter is approximately equal
to record isolated photons. to the electron beam diameter. Figure 2 shows the distribu-
Since the Thomson scattering signal is small and probation of the Rayleigh signaHg over the laser beam cross
bilistic, a series of measurements is required to obtain relisection measured for a single laser shot at a pressure of
able data and the lower the electron density, the longer th266 GPa in the chamber. This distribution reflects the energy
series required. In a real experimental system, the presendistribution of the probe radiation over the electron beam
of optical noise necessitates a further increase in the numbeross section when a Thomson scattering panorama is re-
of measurements. The optical noise is made up of luminessorded. Thus, the distribution profile obtained for the Thom-
cence from the gas in the lamp under the action of the elecson signal is narrower than the luminescence profile. If the
tron beamNg, luminescence from the gun, luminescencedistribution obtained for the Thomson signal is normalized to
from the elements of the receiving channel under the influthe Rayleigh scattering distribution, the curvel g
ence of these, and the laser nolNe (Ref. 2. This laser ={H;g}/{HRrg}, as can be seen from Fig. 3, agrees fairly
noise was ten times lower than the luminescence and fouwell with the luminescence distribution, as in Ref. 2. Here
times less than the Thomson scattering signal at the point dH s} and{Hg¢} are the experimentally determined Thom-
maximum electron density, which was approximatelyson {H;} and Rayleigh{Hg} scattering distributions ap-
8x10° cm™3. The optical noise was investigated by analyz-proximated by a Gauss function. Note that in this system
ing the panorama on the television screen and oscilloscope
traces of the luminescence in the probing zone, which are

0.8

N ,H,, arb. units

IG. 1. Panoramas of beam luminescence sighgl{A) and Thomson

clear and convenient for television recording. 10 i .
EXPERIMENTAL RESULTS AND DISCUSSION 0.8 —
[2]

Panoramic measurements were made of the Thomson § -
and Rayleigh scattering of laser radiation by a nonrelativistic s 06k
electron beam and air, respectively, and results of measure- ° B
ments obtained using panoramic and single-poinethods t*M |
of signal recording were compared. The luminescence distri- )
bution over the beam cross section was recorded separately ¥
to obtain the Thomson scattering panorama. Figure 1 shows 0.2 o
panoramas of the Thomson scattering sigrtdis and the =
electron beam luminescenbk, averaged over a series of 70 ok
shots for a laser beam energy of 30 J, the lines of the televi- [ R NS BT R B
sion frame oriented at right angles to the electron beam im- 15 -1 05 0 05 10
age, and a pressure of X80 °Pa in the diagnostic cham- X, mm

ber. In, contrast to Ref. 2_’ the lumm,escen(_:e and, ThomS_OEIG. 2. Distribution of Rayleigh signdHz over laser beam cross section.
scattering curves, normalized to th?”‘ maxima, differ. Thiscircles — experimental data, solid curve — approximationHef using
can be attributed to the energy distribution in the laser beanzauss functionKirg).
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FIG. 3. Distribution of normalized Thomson signdlg over beam cross Z,mm

section:O — experimentally determined beam luminescence tita
FIG. 5. Panoramas of luminesceridg (1) and Thomson scattering signals

H+ (2) when the frame lines are oriented along the axis of the beam image;
) 0 — center of probing region.
where the diameters of the electron and laser beams are ap-

proximately the same, as a result of a decrease in the laser

beam energy, the Thomson scattering panorama at the be‘%@am. Observations on the television screen revealed that

edges was obtained bylar:/eraging olver a Iarl]rge series Off?_qeﬂﬁs peak can be attributed to cathode luminescence which
surements(around 70 although 35 laser shots were suffi- illuminated the knife of the first screening diaphragm in the

cient fo'r the central region. i _channel for coupling out the scattered radiation. As a result,
Variation of the laser beam energy during the recorqun the probing regior(around 3 mr there was a slight in-

of a Thomson scattering panorama over the electron bea'aease in the overall noise backgroufmh the right of Fig.

cross section can be eliminated by rotating the televisio%) The luminescence distribution in Fig. Burve 1) was
frame line about the axis of the laser beam, which was eas“%tained by averaging over 50 traces Also shown is the

e : rregion which accounts for a third of the luminescence signal

the electron beam, laser beam, and direction of observatlogt a pressure of 2)910 % Pa in the diagnostic chamber

lie in the same plane, the television frame line was also ori- 5 comparison of the measurements obtained by the pan-

Ented Ialor_lg the axis r?f tlr(;ehbeam IMage. In th'j case, th ramic and single-chanrfeprocedure showed that the ratio
eam luminéscence should have a maximum and remain & e Thomson scattering signal to the luminescence is

most constant over the entire 8mm region of Observat'onslightly greater for the single-channel procedure. This can be

However, the oscilloscope trace of the luminescence shoWRyip, iteq to an increase in the exposure time of the lumines-

in Fig. 4 reveals a clearly defined peak which decays rapidl)éence signals on the superkremnikon detector. In the pan-

tovyard the center of the probing region, i.e., toward the poing, 5 e procedure this time was equal to the frame scanning
of intersection of the axes of the probe laser and the eIeCtrOBeriod i.e., 40ms, whereas for the single-channel technique

using a photomultiplier as the optical detectdhe exposure
time was=10ms. For the panoramic detector, the lumines-
cence can be reduced substantially by real paths, for in-
stance, by inserting an optical switch at the image converter
input which switches on the power supply to one image con-
verter during the laser pulse or switches it off in the absence
of a pulse, or by modifying the electronic power supply cir-
cuit of the superkremnikon so that the superkremnikon de-
tector was cleared directly before the laser shot near the line
(frame where the image of the part of the beam being stud-
ied is situated. By reducing the luminescence exposure time
from 40 to 1-2 ms, i.e., down to the laser pulse duration, it is
possible to increase the ratio of the Thomson scattering sig-
-§ -4 =3 0 2 4 3 nal to the luminescence approximately 20 times and reduce
Z,mm the series of measurements required to obtain reliable data.
) ) L . In our view, it is fairly difficult to use Thomson scatter-
FIG. 4. Oscilloscope trace of luminescence on beam axis with television " _3 .
frame lines oriented along the axis of the beam image— center of  INJ at lower densities of the order of %01C° cm™2 and in
probing region. particular, this requires serious modifications to the appara-
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tus used by the authors. As the density decreases, it is desprinciple of a vario-illuminator, suppressed the noise by a
able to compensate for the decrease in the useful signé&ctor of 13° at the wavelength of a ruby probe laser but the
reaching the first image converter by increasing the lasetransmission coefficient of the polychromator was less than
radiation energy and the solid angle of observation or by25% in the range 650—690 nm. Using a similar polychroma-
using a substantially longer series of measurements to irter in the present apparatus could reduce the laser noise by
crease the signal to noise ratio. The length of the series afeveral orders of magnitude, i.e., could substantially increase
measurements can be determined experimentally from thie ratio of the signal to the laser noise and almost eliminate
constraint that the mean square deviation should not exceedta influence.

given value. For example, in studfesf the scattering spec- Our estimates and the experimental single-point and
trum of Nd laser radiation in a plasma having a density ofpanoramic observations of Thomson scattering by a nonrel-
10%-10%cm2 using a twelve-channel detection system,ativistic electron beam having a density of the order of
because of the low laser pulse energy and the small soliix 10° cm™2 and also the success achieved in the develop-
angle, the useful signal in the channel with the lowest inputnent of high-power lasers, highly sensitive detectors, and
energy corresponded to the signal in our apparatus at a detaser noise suppression systérssggest that the unique pos-
sity of the order of 1dcm™3. A series of 900 laser shots was sibilities offered by Thomson scattering will be of interest

required to measure this signal in Ref. 4. not only for research purposes but also for measuring the
When the sensitivity of the apparatus is enhanced, aparameters of real beams.
increase in the useful signll; is accompanied by a propor- This work was partially supported by the Russian Com-

tional increase in the laser noidy , and under multipass mittee for Higher EducatioriGrant No. GR-72-96 and the
probing this increase is even greater. Thus, the ratio of therogram “Laser Physics and Laser Systems” MLTs, Mos-
signal to the laser noise at best remains constant. In theow State University

present apparatus, the magnitude of the laser noise corre-

sponded to the Thomson signal at a density ofctd 3. At

Iowgr densities the ratibl7/N, becomes les,s than 1 and it i? 1G. T. Razdobarin and D. A. Shcheglov, Diagnost. Plazmy No. 6, 88
desirable to search for methods of reducing the laser noise.(19gg.

The beam luminescence decreases in proportion to the déB. G. Tsikin, L. E. Dolotov, O. V. Zyuryukina, and A. P. Solovev, Zh.
crease in the density and causes no deterioration in the 3Le‘i]h-E':iZ|f31(1?\h1‘E‘9(Sl_99]> [20&’- §h¥5_-ttTECh- E_h{]?fi 89 l(gi’Qt]ﬂ-t _
ratio of the signaHr to the total noise. Interference filters in As'trc'mocrf];é’am'bri aggﬁn?\r/‘ersit'y breZS?chb:%ge, %?33; mc,\%ss (';‘)W‘
the detection system reduced the laser noise approximately;ogg.

10° times at the wavelength of the scattered light detuned by*P. Jauemik, H. Kempkens, and J. Uhlenbusch, Plasma Phys. Controlled
60 nm from the probe laser wavelength with a 40% useful Fusion29, 1615(1987. _

signal transmission. Casest al® reported that a polychro- > A Casey and J. H. Irby, Rev. Sci. InstruiT, 1804(1986.

mator consisting of three holographic gratings based on th&ranslated by R. M. Durham
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A solution is obtained for the problem of expansion of a gas of an inhomogeneous cloud of
rotating particles under the action of its space charge. It is shown that with time the process of
expansion of the cloud becomes self-similar. 1©®99 American Institute of Physics.
[S1063-78429901506-9

INTRODUCTION 9
at

J
+VrE)F=O. 3)

The construction of analytic solutions of gasdynamics
equations has attracted interest because these are one of the ) )
methods of studying the properties of nonlinear systtms. The simplest solution of Eq(3) has the formF=C,
Analytic solutions of the self-consistent equations of motionWhere C is a constant. A nonsteady-state solution of this
for a charged-particle gas can generally be obtained und&qgatl_on is obtgmed for nong;teady motion for which the ve-
certain assumptions which simplify the real formulation of locity is proportlonal to the distance from the center of sym-
the problem. Nevertheless, these solutions are of practicanetry V. =ra/a, wherea is the radius of the sphere, and the
interest and can be used for estimates and also for testirﬁpt denotes differentiation with respect to time. In this case,
numerical simulation programs. Self-similar solutions play aEd. (3) gives F=Qr?aj/a?, where() is a certain constant.
special role for gasdynamic systems since under certain corf=or this type of motion the particle density is typically uni-
ditions [hey serve as intermediate asymp[otic forms. Foformly distributed over the bulk of the cloud so that for the
nonself-similar processes, details of the initial stage are “for-collective field we havé&e=4menr/3. Finally, we find from
gotten” and the process becomes self-similar. Eg. (1) that the cloud radius satisfies the fO”OWing equation:

In the present paper this behavior is demonstrated by 5
solving the problem of expansion of a rotating cloud of é:@(w2+92 3o
charged particles under the influence of space charge. Two a2\ ?
types of rotation of particles in a spherical cloud are possible,
for which the characteristic of the rotational motion dependsvherew’=Ne?/ma3, andN is the total number of particles
only on the radial coordinate and the time. In the first type,n the cloud.
the particles only undergo ordered motion in the meridional  The solution of this equation may be expressed in the
directionV,#0, V,=0. For this model it is comparatively parametric forrh
easy to construct a self-similar solution of the gasdynamic
equations corresponding to a homogeneous charged-particle a= do (& coshy+1)
cloud. It is found that in this case, a self-consistent nonself- 1+e¢ '
similar solution can also be obtained for an inhomogeneous
cluster. For the second type which corresponds to disordered 1 )
particle rotation, i.e.V,=0, V,=0, but the corresponding wot = (1+—8)3,2(8 sinhi+ ), (4)
diagonal components of the pressure tensor are nonzero, a
similar solution can be obtained using a kinetic description.yhere for an initially stationary gas we hawve=1+ Q% 3.

Note that this solution of the self-consistent problem in
SOLUTION OF GASDYNAMIC EQUATIONS the form of a spherical cloud with an abrupt boundary be-
Aongs to a class of self-similar solutions, as can easily be
established by introducing the self-similar varialgler/a,

In the absence of azimuthal motion, the Euler equatio
for a cold spherical cloud of charged particles has the form

] d 1., e a3 :
St Vigr [Vim V= E 1 n(r,t)=n01“¥, V,(r,t)=¢&ar,
a+v&v+1vv—o 2 a’

gt VrorveTy Vrvem Va(r,t)=§QF§0, T=H(1-¢&).

Here we assume that the particle density and the radial ve-
locity of the cloud depend only on the radial coordinate andHere H(x) is the Heaviside step function. A more general
time. From Eq.(2) for the functionF=rV, we find solution of Eq.(3) can be constructed for an inhomogeneous

1063-7842/99/44(6)/4/$15.00 682 © 1999 American Institute of Physics
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particle cloud. For this we need to bear in mind that the  The initial conditions for Eq(8) have the forms(0,r)
expression for the radial gas velocity can be given in the=r é(O,ro)=u(ro), whereu(r) is the given initial distri-

form: bution of the radial velocity.
V. (r,t)=A(t,p(r,t)). (5
Here the functiom\ has the form SOLUTION OF THE VLASOV EQUATION
_ds(t,rg) A solution for a spherically symmetric cloud with disor-
A(ter) - ’ . . . . . .
at dered particle rotation can be obtained using a kinetic de-

where s=s(t,r,) is the coordinate of the radial gas layer scription. We shall analyze the following distribution func-
0 9 Y tion which describes the initial state of this cloud with a

considered as a function of time and the value of this Coorhonuniform article density(r,0)=no»(r) and the initial
dinate at zero time; the functiop(r,t) is a solution of the P i o¥

transcendental equatiasft, p)=r, i.e.. s(t.p(r 1)) =r. radial velocity distribution functiorV,(r,0)=u(r),

In terms of Lagrange variables the radial velocity of this

_MNo > 2012
element is given by fo(X,1)= ?r v(r)s(p,—mu(r)) (1 —m=W=(r)).

v (tro)=A(t,ro). (6)  Here, for concisenes¥ denotes the set of variablesp; ;

_p2 2 i . _ —rai
Therefore, this structure of the expression for the radia' =Pyt P¢/sm20, Py=rp,, andP,=rsindp, are the com-

gas velocity is a consequence of changing from a Lagrangiaﬁone_nts of the generalized momentum. For this distribution
to a Eulerian description of the motion. Then, it is easy torunction the transverse components of the gasdynamic veloc-

verify that F(r,t)=W(p(r,t)), where W(r) is a certain Ity are zero
function, is a solution of Eq(3). Thus, in Euler variables the 1 s 1 s
transverse velocity component is given by Vazm]f Py fod”p=0, V‘P:ﬁf P, fod”p=0.
v, (r t):W(P(f,t)) For the pressure tensor only the diagonal transverse
o3 r ' components are nonzero
In Lagrange variables this velocity has the form 1 5 mn,
H(%):_J’ pofodp= S V(NWA(r),
W(ro) m 2mr
Uy (t,ro) = m
"o 1 mny )
_ 2¢ 43, _
These results indicate that the functivv(r) is deter- Hw‘ﬁf Pefod”p= omr? v(NWH(r).
mined by the initial transverse velocity distribution of the
cloud Therefore, the functioWV(r) characterizes the initial de-
pendence of the degree of disordered particle rotation on the
W(r)=rVo(r), Veo(r)=Ve(r,0). radial coordinate. Since for a central fidldemains constant,

Provided that the layers of particles move radially onein the Vlasov equation written in spherical coordinates we

behind the other without overtaking, the collective field act-N€ed to change from the variabfieto the new variable. As

positionr, and by the defined initial particle density distri- function f(X,1,t):

bution n(r,0)=ngw(r) Lfe d p,d U 4 o 9
. . =\t T mar arap )70 ©
_ N _ 2
E_47Tn052 q(ro). a(ro) fo v()x“dx. whereU =e® +/2mr? and® is the potential of the collec-
tive field.

The condition for conservation of the layer mass during  For the initial distribution functior(8) a solution of Eq.
motion of the gas has the form =h(t,ro)s°ds (9) can be constructed using a singular solution method
=4mnou(ro)ridro. The particle density is then given by which plays the role of the Green function of the operator

2 (Refs. 6 and ¥

r
n(t:ro):nov(fo)sz_;- R(t,ro)= o 7)

H(t)f(x,l,t):f G(X,Xg: 1) Fo(Xo,1)dXo,

It follows from Eq. (1) that the radial velocity of the gas

layer changes under the action of the collective field and also LG(X,Xo;t) = (1) 6(X=Xo),

under the influence of the centrifugal force G(X,Xo:t)=H () 8(r —r(t;Xo)) 8(p; — p; (t:Xo)).
. ,0(Nng) W2(r ) Herer (t;X;),p,(t;Xp) is the law of radial motion of a single
ST 2 + 3 (8 particle in a field having the potential energysatisfying the

conditionsr (0;Xg) =r g, andp,(0;Xg) = p,o. This possibility
where w?=4mnye?/m. arises because in this case, the nonsteady self-consistent
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problem reduces to calculating the one-dimensional motion

of a cold charged-particle gas in a combination of collective 0.12

and centrifugal fields.
Fipally the distribution function of the charged-particle RS 0.08
cloud is given by }
ALY 0.04 -
(L0 = 2 a(p(r 1) 2 oD 2P |
—MA(t,p(r, ) 51— MPW2(p(r 1)), , . U
1 3
where the notatio@Q(r,t) =R(t,p(r,t)) is introduced in ad- r/a,
dition to the quantities used previously.
This distribution function yields the same expressions™'C- 1-
(7) and (5) for the particle density and the radial velocity.
The following relations can be used to calculate the pressure
tensor _ 1+ h h 3 V| esinhy+
=1y |LTecoshy —sm e foq) & coshy+1)°

_ _ Mo 2
IMyy(s,t) =1 4(s,t)= EV("O)W (ro)- (10 (12

Let us assume that the initial particle density distribution
By systematically varying, in small steps, expressions s defined as a cloud with a diffuse boundary
(6), (7), and (10) can be used to determine the distribution
of the gasdynamic characteristics of the cloud at any given ()= p( r3)
v(r ex

time t. (13

ag
The results of calculating the initial particle density dis-
DYNAMICS OF THE CLOUD tribution in the cloud using expressiofid, (11) and(12) for
_ . wt=4 in the cases=1.25 are shown by the solid curve in
As for a homogeneous cloud, the solution of £8).is  Fig. 1. The dashed curve gives the self-similar solutién

written in the parametric form for this time and the same value of
The formation of a particle density peak in this example
Mo (¢ coshyr+1) illustrates the resulting limitation of the range of validity of

the results, which may arise if the initial assumption that the
particle layers move without overtaking is violated as the

rg . cloud expands. This is expressed as the condifn,rg)
wt= m(s sinhy+ ). (1) =0 being satisfied at timg, for various initial positions of
the layers as a result of which the particle density tends to
For simplicity the expansion of the cloud under the in-infinity (so-called gradient catastroph&sS
fluence of its space charge is subsequently analyzed for A comparatively simple expression for the functiBnis
u(r)=0; in this case, we have=1-+W?2(ry)/w?ryq(r,).  also obtained when
From the expressiond1) we obtain for the functiorR

ro de 3 ¥

— =113
J 1+e or 03
R=-|1+ecoshy+roe smhz//—w & aho d
fo This condition is satisfied if
——(coshy—1) —
, r

Lre %o WAro)=rowlq(ro)(e—1), e=p-—=—1, (14
7 1 , a
are  2s(l+e) (e sinhy+¢) where is a certain constant.

In this case, we have

v 3rg de
X 3—r0q 1te ﬁr +2rosmh¢ o Vrg vrg e coshy+e
. . . . _3q(1+s)(1+8COShl’ll)jL 1_5 e coshy+1
Quite clearly, a simpler expression for the functiris (15)
obtained when the eccentricity does not depend on the initial
position of the layers=1+N\, i.e., if W?(r)=Aw?rq(r), It can be seen from expressiétb) that if the condition

where\ is a certain constant. For this choice of initial par- 3q(r)=»(r)r® is satisfied, the cloud expands without any
ticle rotation we have overtaking. In particular, this inequality is satisfied for an
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initial diffuse distribution(13). Thus, in this case the above should be predicted after overtaking in the example consid-
constraint is not imposed on the time interval during whichered above.

the analytic expressions can be used. L _
For | | f th t ink he E M. V. Kuzelev and A. A. Rukhadzelectrodynamics of Dense Electron
or large values o e parame er sk cos '30{ as. Beams in a Plasmfin Russian, Nauka, Moscow(1990.
(4), (11), (14), and(15) therefore give for the quantities used 2|, M. Aleshin and L. S. Kuzmenkov, Vestn. Mosk. Univ., Fiz., Astron.
here 35(2), 89 (1994.
3Yu. M. Aliev and L. Stenflo, Phys. SckO, 701 (1994.
v 4P. A. Polyakov, Pis'ma zh. Tekh. Fi21(19), 46 (1995 [Tech. Phys.
a=agwtVu3 R, s=owtyuq®® R=_—sri. Lett. 21, 789(1995].
3q 5N. D. Naumov, Pis'ma Zh. Tekh. Fi22(19), 89(1996 [Tech. Phys. Lett.
. 22, 817(1996].
From this it follows that L. D. Landau and E. M. LifshitzMechanics 3rd ed.[Pergamon Press,
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An analytic solution is obtained for the problem of electron motion in an electron boundary layer
along the surface of a conductor in a static electric field. Calculations are made of the
longitudinal conductivity near the surface in the limit of weak and strong Coulomb nonideality

of the layer electrons. It is shown that under certain conditions the boundary conductivity

may greatly exceed the conductivity in the bulk of the conductor.1999 American Institute of
Physics[S1063-784£99)01606-3

INTRODUCTION the basis of simple qualitative reasoning. Regardless of
whether the electron component is an ideal gas or an electron
In Refs. 1 and 2 the present authors investigated théquid, the main “delaying factor” for the mass motion of
properties of an electron boundary layer which exists neaelectrons in a CCM are collisions with the crystal lattice.
the free surfaces of conductors and semiconductors. Iviemotion of electrons outside the CCKalong the surfageis
et al® also examined the influence of an electron boundarither limited by viscous friction forcesye 1, electron lig-
layer on the propagation of rf electromagnetic radiation andiid) which are much greater than the collisional friction
the ionization processes of a dense gas near the surface. Thigyces in a CCM, or it is not limited at all <1, ideal
showed that the main factor determining the electrophysicatlectron gas Thus, if the effective time for freéwithout
properties of the electron boundary layer is the Coulomixollisions with the latticg electron motion above the CCM
nonideality parameter of the electrons=e?/4mso(r)eyin, surface is much greater than the time for free electron drift in
where(r) is the average interelectron distance apgis the  the CCM, the electron current at the boundary induced by the
average kinetic energy of the electronsKT for nondegen- application of a longitudinal electric field, should greatly ex-
erate and~ ¢ for degenerate electrons, respectiyely ceed the current in the bulk of the CCM. Consequently, the
For small v (y<1) the boundary-layer electrons are aim of the proposed study is to analyze the steady-state con-
similar to an ideal collisionless ghand the collective pro- ductivity near the surface of a CCM for ideal and nonideal
cesses in the electron boundary layer are described by a caectron components.
lisionless transport equation. In the opposite case, if the elec-
tr_on_s form a _strongly non_ldeal systemy*1), th_ey are CONDUCTIVITY IN THE CASE y<1
similar to a fluid and equations from the mechanics of con-
tinuous media must be used to describe the collective We shall consider the following problem: a CCM occu-
processes? pies the half-space<0, the electron component of the CCM
The temperature and concentration of conduction elechas the temperaturg and forms an ideal Coulomb system.
trons in a conductor or semiconductare shall subsequently A static electric fieldE is directed along the surface of the
use the term “conducting condensed material’—CLC8&n  CCM (along thex axis). We need to determine the perturba-
vary fairly widely if this CCM undergoes nonequilibrium tion of the electron distribution function induced by the field
heating by pulses of several picoseconds duration or shorteE near the surface and the conductivity of the CCM as a
Then, the lattice temperature remains almost unchanged aridnction of z
the electron temperature may reach several electrorfolts.  The distributions of the electron concentratioand the
The electron concentration may vary as a function of theelectric potential® of the electron boundary layer in the
band gap(for semiconductopsbetween arbitrarily low val- regionz>0 have the fort’
ues and concentrations corresponding to those of a metal.
: SR kT
Thus, when a CCM is exposed to pulsed heating, it is pos- ¢ (g)=— —[1+2In(1+&)],
sible to have various combinations of the electron nonideal- e
ity parametery, the Fermi energyr, and the temperature

n

for which CCM and boundary-layer electrons form eithera  n(¢)= —m(1+ £)72, (D)
. . e

nonideal(degenerate or nondegenejabe ideal (nondegen-

eratd Coulomb system. whereé=2z/L, L=2.e D, D=/eokT/2e’n,, is the Debye

Note that under certain conditions the longitudinal con-length corresponding to the electron concentration in the
ductivity near the CCM surface should substantially exceedCCM n,,, ande is the base of natural logarithms.
that in the bulk of the material. This conclusion can be In the regionz<0, the concentration and potential vary
reached a priori, without making accurate calculations, orconsiderably more rapidly with increasing distance from the
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boundary®« —exd —z/D], nxexded/kT], and at the dis- right-hand side and in consequence, the solution of the trans-
tance=(1.5-2)D the electron concentration differs negli- port equation forz>0 is given by formula(4) setting
gibly from n,,,. Consequently, in the following calculations ver=0. However, it should be noted that an exact solution of
we can assum@®=0 andn=n,, for z<0, and at the point the transport equatidhcan be obtained in the regia0

z=0 the concentration and potential undergo a jump

e (7~
KT N, fe(z,v) =1, UX+E fo E(7",v,)d7" vy,
®(¢=0.)=——5, n(E=0)=—". 2
' . : 2 28

Therefore the electron-filled regiom>0 will subse- T\/vz— F‘D)'
guently be called the electron boundary layer.

It is impossible to obtain an exact solution of the trans- 2 dz'
port equation in the regiog<O which takes into account T—J’ =¥ (v,,2),
electron scattering by collisions with the lattice and impuri- z \/ 5 ,
ties because of the complex form of the collision integral. vzt H[‘D(Z )~ @(2)]
Thus, we shall use a simpler linear representation of the col-
lision integral, that is the isotropie-approximatiorf This E(7,0,)=E(¥ Y(1,0,), (5)

approximation sufficiently accurately describes the COIII_wherefo is the equilibrium distribution function in the ab-

sional kinetics of the electrons in a conductor if these are .
scattered by impurities and interelectron collisions can peenee of the field& and o. . .
We denote bym and| the functions assigned to the re-

neglected. In this case, the steady-state transport equation h&%ns 2<0 andz>0, respectively. The unperturbed func-

the form tions {9 and f(®) are Maxwellian distribution functions
of e of e do of 32 2
Vo —E(2) —+ — = =), (3 0)_ m LY
dz m dvy, m dz dv, f n(z) KT ex ik

wherevg is the effective scattering frequency.
Having written the required distribution function in the
conventional format

The thickness of the electron boundary layer is fairly

small so that we can naturally assume tBatoes not depend

on z. This means that the functi 1} , corresponding to a

f=fO 40 |1 <|£O) uniform flux from the depth of the CCM also does not de-
() pend on z Consequently, using Eq4) we find that
and givingf'*) in the form A,.=0 f%l has the form
. f+; Uz>0, f(l): eE ﬁf(o)
f_, v,<0, M My vy
we obtain the solution of Eq3) (Ref. 9 We write the boundary conditions determining the inte-
gration functionsA,,_(g) andA,..(g). Using the condition
fﬁ))(z v)=exgd FA(s,2)]| A.(e) of continuity of the functions‘(il) for given ¢, we obtain
. . 2=0: fO=£1)
z=7*: fV=f"1, (6)
(0) ’ '
+E of z E(Z)exg £ A(e,2')] dz’ 4) wherez* is the classical turning point determined from the
m dvy Jz [2 ' condition
E[e+e(13(z )] ed(z¥)=—¢. (7)
where Using expression&2), (4), and(6) we derive an expres-
sion for A,
z Vetf (0)
A(e,2)= dz, eE of
=] — An-=20(lv| = 2w = —— 5 (|v:)), ®)
—[e+ed(z)] X
m where

1 2
e=smu;—ed(z).

. 7* dz
2 7'O(l)z):J
0 5 2e
Here A, (&) are the integration functions determined from v+ F(D(Z,)

the boundary conditions of the problem and integration over

z' is performed along the electron trajectory. is the time for electron motion in the fietll from the surface
Steady-state collisionless motion of boundary-layer elecz= 0, to the turning poinz=z*, @(x) is the Heaviside step

trons in the regiorz>0 is described by Eq3) without the  function, andv.= VkT/m is the electron thermal velocity.

(€)
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Substituting the expressions obtained Aar into Eq. (4)
we determine the final form of the distribution function in
the CCM

¢ _ e o
m+ Mvgg dU,
(o _ eE
m= Mvggg JUy

Vet
X 1+2Veff®(|vz|_\/Eve)TS(lszex . Z) . 0 2 j & 8 10

|Uz|

(10
. . . . FIG. 1. Steady-state electrical conductivity of conducting condensed mate-
The physical meaning of the expression obtained for 4 y 9

rial as a function of distance from its surface.

(1) is quite obvious. Only those electrons whose velocity in
the z direction exceeds the threshold valye-2ed(0,)/m  duction electrons. Thus, the increase in the boundary con-
=/2v, leave the CCM. An electron leaving the CCM mi- ductivity should be greater, the lower the electron mobility in
grates in the fieldDP to the right as far as the turning point the CCM and the lower their concentration. The frequency
z*, reaching it within the timery (v,). Hence, by the time v determined by scattering at impurites may reach
the electron returns to the CCM, it has acquired the addiv.s~10®s . If the CCM is a semiconductor with the band
tional momentum BErg (v,) in the direction of thez axis. gap AE=3-4¢eV, whose electron component undergoes

We now use formulg10) to calculate the conductivity pulsed heating to the temperature-0.3—1 eV, the concen-
of the CCM o, as a function of the depth<O measured trationn,, may vary in the ranga,~3X 10?°-3x 10°°m~3,
from the surface. Using the relation between the cufjrand ~ which corresponds to the plasma frequeno)5~(1014—

the conductivityo 10" s~ 1. Figure 1 gives the dimensionless conductivity
crm(z)/cr?n plotted as a function of the dimensionless coordi-
iW2)=0on(2) E= _ef Uxffr})dV, nate vez/lv,, Obtained using formuldl2). The parameter

vei/ wp IS taken to be 100. The boundary value of the dimen-
and also representing the functiéf’ as the combination sionless conductivityr,(0)/ad, is
1) we obtain

om(0) N 1 v (™ e 'dr
9f©) =lt—— | ——5 =
on(2)=0df1- uxrz:(vz)—exp(@z)dv oo 2me @p Jo \ri+1(r?+1/2)
Nm Jov,> 20, Uy Uz
4
(D ~1+0.18,
Here o2, is the conductivity in the bulk of the CCM. Inte- “p

grating Eq.(11) over the velocities, andvy and transform-  ~q\pUCTIVITY IN THE CASE y>1
ing the integral9) using Eq.(1), we obtain the final expres-

sion for the conductivity We shall now consider a variant where the electron com-

ponent in the CCM forms a nonideal system i.e., is similar to
om(2) 1 vy a liquid. In the CCM(regardless of the degree of nonideal-

Q0 - ﬁw_ ity), the conductivity is determined by electron collisions

Tm P with the lattice because the forces produced by these colli-
o VerZ sions are always much greater than the viscous friction

xf erfw exp( — w2+ e—z forces!! Under these conditions nb, andf_ discontinui-
0 2ve VW +1/2 ties occur in the electron liquid because of strong interpar-

W ticle interaction at the boundarg=0. Consequently for

X ————dw, (12) vy=1 the conductivity of the CCM in the regian=0 differs

JW2+1/2 negligibly from ¢¥,.

Unlike an electron gas, in the electron liquid of an elec-
tron boundary layer filling the region>0 there is a mecha-

2 (w nism for internal dissipation of energy caused by the viscous

erfw= \/_— fo e ‘d¢, friction forces: the forcd,isc=(mn) ~1%V2u acts on an elec-

7 tron, causing the energy acquired in the fiéldo be dissi-
wp= Je%n,,/me, is the plasma frequency of the CCM elec- pated. Consequently, the viscous friction forces determine
trons. the unique characteristic of a boundary layer of nonideal

It follows from formula(12) that the boundary conduc- electrons: the conductivity therein is determined by the elec-
tivity is directly proportional to the effective electron scatter- tron viscosity* For this reason, the formulation of the prob-
ing frequency in the CCM and inversely proportional to thelem in this particular case of a nonideal electron component
plasma frequency corresponding to the concentration of corwill differ from the formulation in the limity<1 in that the

where erfw is the error function
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conductivity will be determined in that part of the electron arbitrary boundary, (the point wheren=n,), the liquid is
boundary layer near the surface where the electrons form eonverted to an ideal electron gas filling the regeenz, and

nonideal Coulomb system. distributed according to the law

No analytic expressions are available to describe the dis- s
tribution of the concentration of nonideal nondegenerate n(z):nb(1+ Z_Zb> (19)
electrons. The distribution of nonideal degenerate electrons Lp '

obtained by the density functional methtédn the limit
T=0 has the form of a power dependence (z/Lg) °
near the surface and an exponential asymptotic curve fo .

largez (L1g is the Thomas—Fermi radiudHowever, at fairly {14) with the tensor componerit5).

high temperatures the electrons rapidly become nondegenetF Ehgrcgogdlg?tezb |sr S)ilr?,cfdnsg tharlitbfor {ar?y?zﬁ? r of
ate as the density decreases with increaginthus, for the € hydrodynamic approximation describes thé behavior o
the electron liquid sufficiently accurately. We shall integrate

calculations we shall use the approximate power S
bp P Eq. (14) overz betweerz=z, andz= . Taking into account

whereL,=2D(ny).
The electron motion foz=z, is described using Eq.

dependence Egs.(16) and(18), we obtain
~h
z
n(z)=ng(ny| 1+—| , (13 du

@=notnml| 14T @ELpNp+ me(2) + 7(20) 5| =0 (19
whereL,, andh are the effective spatial scale and the expo- %
nent which depend onp, and vary in the rangebrg=<L, We show thatr,,(=) =0 for which we calculater, (2)
<L, and 6=h=2. for z>z,. The electron gas in this region is ideal and colli-

~ Far from the surface of the CCM the dependef®®  sjonless so that we can use the solution of the collisionless
yields the distribution of an ideal electron gasith the ex-  yrangport equatiofil5). In accordance with E¢5) the elec-

ponenth=2). _ ~tron distribution functiorf at pointz has the form
We shall use the equation for the moments of the distri-

bution functiort® to describe the electron motion in the elec- fO(z,v,—ux+ duy,vy,0,), v,>0,

tron bpundary Igye_r. .The _equatipn fpr the_first moment  f(zZV)= fO)(Z,0— Uy~ 8Uy,vy,0,), v,<0, (20
(equation of continuityis satisfied identically since the mo-

tion takes place along the axis. The steady-state equation wheref(®) is a Maxwellian distribution function, anay and

for the second moment has the form éu, are given by
d7r, eE [ dz
= z
en(Z)E+ dz 0, (14) ux:ux(zb)+_ j !
m Jz, 5 2e
wherer,, is thexz component of the stress tensor expressed vt —[P(2')—D(2)]
in terms of the distribution function m
eE [ dz'
Tyz= mf (vx—Uy) v f(V)dv, (15) OUy,=— ’ , (21
m Jz
uy is mass velocity of the electrons along the surface. \/U§+ H[(I)(z’)—d)(z)]
In the region of the electron boundary layer filled with
the electron liquidm,, has the form whereu,(z,) is the mass velocity at the boundazy.
du The turning pointz* is determined from the condition
X

Txz= 7 dz’ (16) 1 ,
. - . . o ed(z*)=ed(z)— s mv;.
where 7 is the coefficient of viscosity of the electron liquid. 2

The dependence of onn was obtained using a molecu-

lar dynamics methdct? Substituting Eqs(20) and (21) into Eq. (15), we obtain

the required expression fer,, after various transformations

n (23
n)=ny 1+ 8| — 1 eeE (=
7(n)=mg 1+ nb) ' 17 wxz(z):4\/§n(z)uew—(z)f werfwe™“dw
p 0
where 7, is the viscosity of the electron gas, which does not
depend om, n, is the concentration determined from the =eEL,Vnpn(2), (22)

condition y(ny)=1, and « and B are fitting parameters
which vary between zero and unity. .

Thus, if the CCM electrons form a strongly nonideal formThus, we findm,(2)—0 for z—e and Eq.(19) has the
Coulomb system, the electron boundary layer near the sur-
face is a layer of electron liquid with the concentration dis- du,
tribution (13). The motion of the liquid in the fielcE is W(Zb)E
described by Eq(14) together with Eq(16). On reaching an

wheren(z) corresponds to Eq18).

=—eELng. (23

Zp
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Expression(23) must be taken to be a boundary condi- 25+ 1
tion imposed at the poirt, on the flow of electron liquid. -
The second quite obvious condition —~ 15
o g
[ux]|z=0:O (24 Q
0 05 2
is set at the boundary of the CCM and requires continuity of 2 9

the longitudinal velocityu,. The equation describing the
flow in the region G=z<z,, after substituting Eqs(13),
(16), and(17) into Eq. (14) has the form

J

A S
& &
/ '

4
2 S ! ] L ] i ! L | i
d - . du] engLiE " 0 2 4 3 8 0 E
42| (LB (L+ ™) 2= (146" (29
3 3 g FIG. 2. Steady-state electrical conductivity of electron boundary layer as a

_ _ ~ 3 function of distance from conductor surfaﬁéﬁ’“@): 1,2—100,3—0.1,
where {=2/Ly,, &,=2,/L, n=ng/ny=7y>(ny) (the sym-  4n44a — 1:h=1.2(1), 2 (2, 4, and 1.2(3).
bol x is omitted here and subsequently
Integrating Eq.(25) allowing for the boundary condi-
tions (23) and (24) and using the relatiomE=—enu we  (Wherex~uv(r) is the thermal diffusivity that the charac-
obtain the following expression for the conductivity of the teristic scale of temperature variation ks~ (ve/|ul){r)

electron boundary layer: >L,, i.e., in the weak perturbation approximation the tem-
perature can be considered to be uniform.
o(§) ng (1+e) " 1+ e’nLZ We shall examine how the soluti¢#?) varies as a func-
o  Nm nga%(h—l) tion of the parameters of the problem. &> gn*h(h—1)

andh<2/(2— «), the conductivity of the electron boundary
layer increases monotonically with increasing distance from

(26)  the CCM boundary; if the opposite inequalities are satisfied,
the conductivity decreases monotonically. &> gn®h(h

The integral in Eq(26) may be expressed in terms of —1) and h>2/(2—a)_, the conquctivity iniFiaIIy increases
incomplete beta functions but it is somewhat inconvenient tgnd then, after reaching a maximum, begins to decrease. If
use the expression obtained for the following analysis so thdf'® Opposite inequalities are satisfied, the conductivity ini-

we shall use the following reasoning. For largén,,) the tially decreases and then begins to increase. An extreme
value of the conductivity is achieved at the point

n1-h_7-1
Xf§(1+§) n (Lb/Lh) dg’ .

0 1+8n%(1+¢) e

parameten is large and thus the one in the denominator of

the integral(26) can be neglected as far as the lirjt, at - 1
gral(26) g "B B 0—pBn4h-1)[2—(1—a)h] |2-T-ah

which n*(1+¢)~*"=1. For the same reasons we can ne- o= —1.
glect the second term in the numerator of the integrand. As a O[(2—a)h—2]
result of integrating, we obtain the final expreSSion for the Figure 2 gives the results of calculations made using
dimensionless conductivity formula (27) which illustrate this behavior of the curve
- o=0(¢) (the parameter isx=0.5, ny/n,=1/e). Since a
ASTRLL IS B B 'n"°® varies as a function of/(n,,) between zero and one, and
‘r)n B nm( &) (h—1)(2—(1—a)h) h=2, in practice only those cases corresponding to curves
2 and4 can be achieved.
2—(1-a)h
X[(1+g* 0 _1]] @7 concLusions

We therefore draw the following conclusions on the ba-
sis of these results. When an ideal<€1) electron compo-
e?n2L2 nent in a semiconductor is heated under nonequilibrium to
= = temperaturesT=0.3eV for timest<10 !!s, the electron
Mg0m conductivity of a CCM boundary layer of thickness of the
. order ofv, /vt may far exceed the conductivity in the bulk
When solving Eq(25), we assumed that the temperature ot yhe heated sample. This effect can be achievewlfis

of the electron liquid does not vary along thecoordinate.  yoiormined by scattering at impurities and its value is of the
Such an assumption is quite justified if the electron therma!)rderv ~1015_10'651
. .

velocity in the electron boundary layer far exceeds their mass
velocity. In fact, if we use the solution obtain€®?), it fol-
lows from the steady-state heat conduction equation

where the following notation is introduced

If the CCM electrons form a highly nonideal Coulomb
system, the conductivity of the electron boundary layer near
the CCM boundary may far exceed the conducti\d@(. As
42T in the case of an ideal electron component, this situation may
k—— + oE2=0 be achieved if the electron mobility in the CCM is fairly low
dz? (Otyey).
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A theoretical interpretation is put forward for the fine structure of the secondary electron
emission spectra of Ir normal to thé&11) surface and the total current spectrum of an Ir
polycrystal. The calculations took into account the energy dependence of the broadening

of the energy band levels, the electron—electron and electron—plasmon contributions to the
nonequilibrium electron distribution function, and the isotropic component of the current

from the electrons scattered at the surface. It is shown that the fine structure of the secondary
electron emission spectrum and the total current spectrum is mainly attributable to the

electron structure of the final states into which the electrons enter or from which they are emitted
so that the characteristics of the band configuration in the energy band structure can be
reconstructed directly from the experimental data. This method can be used to separate bulk
effects from surface effects in the secondary electron emission and total current spectra. It is
confirmed that the fine structure of the secondary electron emission and total current

spectra depends on the geometric structure and the degree of ordering of the crystals. A reduction
in the intensity of the fine structure serves as a measure of the defect structure in the

surface region of the sample which can be successfully used to monitor the surface state during
treatment. ©1999 American Institute of Physids$S$1063-784£99)01706-7

Low-energy secondary emission spectroscopy based dng the cascade processes for different surface models. More-
studying the effects accompanying the interaction between aver, formulas having the form3(E)~ x(E) (E+E;)°
flux of slow primary electrong, (of energyE,<1keV) and  have been obtained for the energy distribution of the second-
a crystal surface includes two methddsa differential and ary electrongcascade maximumwherex(E) is the coeffi-
an integral method. The first method gives the energy districient of transmission of the crystal-vacuum barrier for the
bution curve of the secondary electrons outside the crystal secondary electrons and the second cofactor is proportional
the secondary electron emissi@BEE) spectrum, while the to the number of secondary electrons of eneEgyyr the
second method gives the curve of the integaaltota) sec-  distribution function of nonequilibrium secondary electrons
ondary electron current in the sample or the total currenf(E). The parametersandE; differ in different theories. In
spectrum. As well as conventional applications in analyzingRef. 11, for example, we find~2 andE; is the energy
elementary excitations and the surface states of solids, bottifference between the vacuum le\&),. and the bottom of
methods are now being used to monitor surface purity and ithe conduction band. In practick; is replaced by a fitting
the technology used to fabricate electrode materials. value® The experimentally observed fine structure of the

The fundamental fine-structure characteristics of theSEE spectrum cannot be explained by theories using the free
SEE and total current spectrum are mainly attributable to thelectron model neglecting the influence of the band structure.
bulk band structure of the crystif.The emission of second- Calculations of the SEE spectrum made by Christensen and
ary electrons has been investigated experimentally by manwillis® showed that the fine structure is related to the bulk
authors, in most cases using polycrystals. Single-crystal tadensity of stateg(E); in this case, neglecting the broaden-
gets have been used in comparatively few studies. A finéng of the energy levels, the authors only analyzed the posi-
structure against the background of a cascade maximum ition of the lines in the spectrum, not their shape and inten-
the SEE spectrum was observed for example in the secongity. Kleinherberset all® proposed an interpretation of the
ary electron energy distribution for [Ref. 5, Ag (Ref. 6,  fine structure of the SEE spectrum based on the theory of
Si (Ref. 7, Pt(Ref. 8, W (Refs. 3 and § and Cu(Ref. 10 low-energy electron diffraction. The results of this study dif-
single crystals. Theoretical analysis of the SEE spectrder from those of Ref. 3, although they satisfactorily describe
proved extremely difficult because of the need to allow for athe fine structure of the experimental curves. Artamonov
wide range of processes accompanying the interaction best all® and Korablewet al ! showed that the fine structure of
tween the primary electron flux and the crystal. The theorieshe SEE spectrum is determined by the energy dispersion of
of secondary electron emission from metésee, for in- the high electronic statedigher thanE,,) and reflects the
stance, Refs. 11-14 mostly based on the Sommerfeld band boundaries in the dispersion law of electrons moving in
model, mainly differ in respect of the method of approximat-the direction of recording.

1063-7842/99/44(6)/3/$15.00 692 © 1999 American Institute of Physics
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Comparatively few studiegsee for example, Refs. 2, 4,
17, and 18 have been made of the total current spectrum,
i.e., the derivative with respect #, of the total current in
the sample circuit=1,—I5 (wherels is the current of elec-
trons leaving the samplgrovided that the secondary elec-
trons are completely removed. The results of these studies
indicate that the fine structure of the total current spectrum is
strongly related to the fundamental properties of the material.
In accordance with Ref. 2, in the energy range up to 100 eV
electron—electron g-e) scattering predominates with the
excitation of interband transitions and the main structures in
the total current spectrum reflect thgE) characteristics.
Calculations made in Ref. 18 using the dynamic theory of
low-energy electron diffraction confirm that the fine structure
of the total current spectrum is related to the bulk band struc-
ture.

The aim of the present study is the investigate and inter-
pret the fine structure of the SEE and total current spectrum
of iridium in terms of the bulk band structure and to develop
a method of analyzing the experimental results to obtain the
maximum information on the electron dispersion law above
Eyac. As previously(see, for example, Refs. 7, 9, 19, and
20), for our calculations of the SEE and total current spec-
trum we considered the scattering of electrons having a given
momentum on a crystal where the scattering probability is
proportional to the number of final states at a given lével
with a given direction of quasimomentuéh. Allowance was
made for energy dependence of the broadening of the energy

NE,R)

J(E,S2), arb. units

5
85 10.9 139

band levelsaI'(E)—#/7(E), the electron—electron and | ! i i
electron—plasmon contributions tE), and the isotropic 0 5 10 15 20
component of the current from the electrons scattered at the E,ev

surface.

This work is based on the real band structég and FIG. 1. a — number of-electron disper_sioq law brapches for irid_iulm(
p(E) of indium; €. appears in the calculations of the spec- o T e symmety pomsiersectng e lev e
tra in terms ofN(E,€2) (Fig. 18, this being the number of maj to the(111) surface:1 — experiment from Ref. 5 foE,=40eV;2 —
energy bands in the directio for which the equality theory based on band structure calculationsHgr0.96 eV;3-5 — theory
E=E. is satisfied. The structure of the iridium energy based on band structure calculations from Refs. 23, 21, and 22, r«_aspgctively
bands(like that of other ® transition metals obtained by 0" En~0:27 8V: energjE measured fronty; the curves are arbitrarily

. . . . . spaced along the ordinate. The vertical dashed IkeB indicate the main
various authors using different methods generally differs incharacteristics of the experimental secondary electron emission spectrum.
the energy range above the Fermi lei&l. The bulk band
structure of iridium was calculated by Nemoshkalenko
et al?! using the relativistic generalization of the connectedE, .= Er+ e, where Er=10.8eV andep=5.8eV. The
plane wave method, by Ragtal?? using a relativistic excited-state lifetimer(E) was determined from Ref. 25:
Korringa—Kohn—Rostoker method, and by Noffke and#/7(E)=Ey (E/ER—1)?, whereE,, is the screening param-
Fritsché® using the self-consistent method of relativistic lin- eter, and the coefficient(E) for one-dimensional motion is
ear muffin-tin orbitals. In this last study the energy bandstaken from Ref. 26. The filling function of the statége),
obtained over a wide energy range agree with the experimercorresponding to multiple electron—electron scattering is ob-
tal values of the photoemission spectra with angulatained forE—Er<E, by solving the transport equation us-
resolution? ing a statistical model of electron—electron scattefinghe

Figure 1b gives results of calculating the SEE spectralecay of plasmons generated by primary electrons and also
along the normal to the 1f111) surface using bulk band by excited electrons in a solid makes its own contribution to
structure given by various authors. The background current(E) which is obtained from the energy conservation law if
componeh — a structureless cascade maximdpeakA), the dispersion of the plasmons is neglected.
was taken into account by adding the constamd N(E, ), The best agreement with the fine struct(peaksB, C,
when the energy structure of the surface region is describeaind D) in the experimental spectruficurve 1) is observed
by the model of an almost free electron gas. The followingfor curve 3 where the broadening parametgy which de-
values of the parameters were used in the calculations gfends on the concentration sfandd electrons in the elec-
J(E,Q): C=4 (gives a cascade maximum whose profile andtron shell of the atom, was fitted rather than calculated from
width are similar to those observed experimenfally the general theory of metalas for curve?). This is because
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did not influence the fine-structure characteristics of the de-
rivative of the total current. The results of the calculations of
dI(E,Q)/dE (Fig. 2, curve2—4) demonstratéas in Ref. 28
for PY) the contribution of the various crystallographic planes
to the total current spectrum of the polycrystalline sample
(curvel).

To sum up, these methods can be used to determine
experimentally the boundaries of the energy baN(g, ()
in the energy range aboue,,;, supplementing the photo-
emission spectral data.

This work was supported by the Ukraine State Fund for
Fundamental Research.
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The dependence of the current on emitter size is obtained for a high-current planar diode with a
discrete emitting surface. It is shown that if the distance between the emitters appreciably
exceeds their size, the dependence of the current on the ratio of the emitter size to the diode gap
is a power dependence with an exponent of 3/2. The voltage dependence of the current

obeys the “three-halves” law up to higher voltages than that for a planar diode with a
homogeneous emitting surface. ®99 American Institute of Physid$1063-784£99)01806-1

INTRODUCTION this expansion is studied in the present paper. Another reason

Planar vacuum diodes with explosive emission cath]odesfor the evolutlpn .Of the emlttlng sm_Jrface IS the. change n the
umber of emission centers with time, whose influence is not

are used to form high-current relativistic electron beams witH" idered h

large cross sectiong@ens and hundreds of square centime-CONSIdered here. . . : .

ters. These beams are widely used in high-power, virtual- In the present study we investigate the current in a diode
' ith planar electrodes as a function of the size of the emis-

cathode, microwave pulse generators to generate x-ray puls@’é . .
and also for technological applications. sion centergsubsequently called emittersThe solution of

In many applications, especially for the generation Ofth|s problem is not only of independent interest but is also

microwave radiation, an important condition is that the bearT{eqmred to take into account the discreteness of the emitting

current and electron energy should remain constant duringurface in_high-current diodes with cathodes having more

the pulse, whose duration is usually a few or tens of nano—Omplex configurations.

seconds. In addition, for high-current planar diodes the im-

pedance typically decreases with tifi@his leads to an in- SIMILARITY RELATIONS FOR THE ELECTRON CURRENT IN
crease in current and, as a result of a mismatch between tifeDIODE

diode and the pulse source, causes a drop in the diode volt-

X We shall analyze a steady-state electron flux in a diode
age and the electron energy of the be@fiy. 1).

h o ¢ the diode i q ith i . of arbitrary configuration having an emitter of unbounded
The variation of the diode impedance with time IS omiving capacity at the cathode. We shall assume that the
caused by the evolutlon_of_the emitting s_urface at the Cathl'nitial velocity of the emitted electrons is zero. We shall
ode. Qne reason for this is _the expansm_n_of the Catr_‘odﬁostulate that the particle motion in the gap is nonrelativistic
explosive emission plasma. Initially, the emitting surface is &r_ 1 <1 \vhereT'=1+eU/m&. andU is the diode volt-

set of isolated plasma formations or emission centers. Witl& e. We shall assume that no external magnetic field exists
time the size of the centers increases, leading to an increasg y e shall neglect the influence of the self-induced mag-
in the current extracted f.roim them. For meta! and graph't?hetic field on the electron motion. For simplicity, we suppose
cathodes, the characteristic plasma expansion VelOCity ig ot the electron beam can be described by the single-flow
vp~2X10° cm/s (Ref. 3. The mechanism responsible for hydrodynamic model. The parameters of the system, i.e., the
electron velocityv, the charge density, and the electric

0 0 field potentialy are then related by the system of equations
e
102 (VV)V=—EV¢, Ap=—4mp, div(pv)=0
_5 L
< 04 ? with the boundary conditions at the cathodg=0, ¢|.=0,
~_pol 05>  Vielc=0 (at the nonemitting surfageVe|,,=0 (at the
emitting surfacgand at the anode|,= ¢,=U (whereU is
-0.8 the diode voltage V,¢|,=0 (the subscriptt denotes the
-5t 10 component tangential to the surface
20 20 &0 80 Denoting byL the characteristic linear dimension of the
t,ns system, we introduce the dimensionless variables and the

o _ ~ differential operators=r/L, v=v(egy/m) 2 o= ¢/ ¢,
FIG. 1. Typical time dependence of current and voltage in the planar diode-  , = ~ 2 .
of the SINUS-700 high-current, pulse-periodic, electron accelerator using # = PL/¢0, V=LV, A=L“A. In the new notation the sys-

metal—insulator cathode. tem of equations and the boundary conditions have the form
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Wyv=-Ve, Rp=-4mp, div(pv)=0, (1) 0.05

V|c:01 (P|c:01 Vt‘P|c:01 V‘P|em:01 (P|a: 1, thola=0. 0.04
The boundary conditions no longer contasg. Conse-

quently, the functions/(t), p(r), being the solution of Eq. Q 003

(1), also do not depend ap,. The form of these functionsis

determined only by the shape of the electrodes and does not 0.02

depend on their absolute dimensions. The current density is

~ - 0011
j(N=la(eeo/me)¥L=7(r) = JeIme3 5 (1),
— o~~~ ; 1 | 1 I ] L
wherej=pv andl,=mc®/e~17KkA is the Alfven current. 0 0.02 004 008 008 010 0712
The total current in the system is given by R/D
=1 (epe/m )% F = «/e/mng’zF, 2) FIG. 3. Shift of the surface with the potentid/2 relative to the center of

the diode gap as a function of the radius of a hemispherical eméterthe
where the form factonfST(?)dNS is only determined by absolute value of the shjft Numerical calculations foD=4 cm and
the relative sizes of the electrodes and remains constaft™>%0kV:

when all the linear dimensions in the diode vary proportion-

at_el_y. This last cross sectio_n is taken over any su_rface COMonfirm that in the range dR/D ratios of practical impor-
taining the beam Cross section, such as the emission surfactgnce this is in fact the ca4€ig. 3. In a diode with a linear
It follows from expressior2) that the voltage dependence of potential distribution the current obviously remains constant

the current obeys the “three-halves” law and the current v en the voltage and length of the diode gap vary propor-

remains constant when all the linear dimensions in the d'Odﬁonately. Consequently, we obtaipd?D~¥?=const and
vary proportionately.

. Fo(R/D)%2 Hence the current for a single emitter may be
It is easy to see that these results apply to a hydrOdy\Nritten as
namic model with a finite number of fluxes greater than one

(a numerical simulation showed that in the particular case of | =,8\/e/m(RU/D)3/2, 3)

a hemispherical emitter examined below, the electron trajec\ivhere the dimensionless factgris only determined by the
tories intersect each other and the number of fluxes ig.two

emitter shape.

Numerical calculations performed using the SuperSAM
progrant for a hemispherical emitter confirmed this depen-

We shall consider a planar diode with a gaghaving a  dence and yielded the coefficie@t=0.47 (Fig. 4).
hemispherical emitter of radiuR positioned on the cathode Similar reasoning yields the conclusion that for “linear”
plane (Fig. 23. The emitter has an unbounded emitting ca-emitters (such as semicylindrical, Fig. 2idthe current per
pacity. If the transverse dimension of the electrodes considdnit length of the emitter depends on its radius cdéd|
erably exceed® then, since the emitter shape is defined, thexRY?D 372,

CURRENT IN A DIODE WITH A SINGLE EMITTER

form factor of the systenk is merely a function of the pa- We especially note that for small emittefl®/0<1), the
rameterR/D. Thus, in the nonrelativistic approximation we voltage dependence of the current shows a relativistic devia-
have tion from the three-halves law when the voltage is approxi-
mately D/R times greater than that for a homogeneous pla-
| = Jelme32F (RID). Y 9 9 b

nar diode. This is because the emitter current is determined
In order to determine the form of the functidh we
shall use the smallness of the emitter radius compared with

the diode gafR/D < 1. Quite clearly, when the emitter radius 1000
tends to zero, the current and thickness of the electron flux
also tend to zero and the electron flux weakly perturbs the  700F
electric field in the gap. The potential distribution in the di-
ode is close to lineap(z) ~ ¢,z/D. Numerical calculations 10 F
<'\
~ L
a b !
01F
0.01! 1 o . L
B 0.0001 0.001 0.01 0.1 1
S| R \ R, em
ya YD)
g M FIG. 4. Current versus radius of a single hemispherical emitter with

D=4 cm andU =500 kV: crosses — numerical calculations, line — calcu-
FIG. 2. Diode with point(@ and linear(b) emitters. lations using formuld3) for =0.47.
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2.0t specify the shape of the cellWe introduce the notation
x=2R/p andy=p/D. Thus, forx=1 we have a planar di-
ode with continuous uniform emission for which the Child—
o Mr Langmuir law is satisfied. We write this law in an approxi-
e mate form which is asymptotically exact in the
%% nonrelativistic and ultrarelativistic limits and gives a devia-
‘o 1Or tion of less than 1% from the exact solutfan the interme-
8" diate range of voltages
S 051 3 = la (T23_ )32
pd mD? ’
! L i L n=2/3—2/9%"°~0.204425. (5)
] 0.05 0.10 045
R/D We shall now consider another case of practical impor-

. . . . . ) tance when the distance between the emission centers is con-
FIG. 5. Perveance of a planar diode with a single hemispherical emitter as a.d biv | h he diod In thi ided th
function of the ratio of the emitter radius to the gdp+— using formula(3), Siderably less than the diode gap. In this case, provided that

2 — from Ref. 5, and3 — from Ref. 6. the conditionx<<1 is satisfied, the current for each emitter is
described by expressidaB), i.e., the emitters have little rela-
tive influence. If the size of the emitters decreases without

by the space charge in its immediate vicinity whose dimenbound, the current in the system tends to zero and the space

sion is of the ordeiR. Even if the total diode voltagel is  charge of the electron flux in the diode gap has no influence
relativistic, the electron energy in the vicinity of the emitter, on the impedance of the emitters, i.e., they do not influence
which is given by~eUR/D, may be much lower than the each other.

relativistic values. This is responsible for the nonrelativistic ~ Thus, a general expression which would determine the

law of current behavior. Thus, the condition for validity of average current density in the diode over the entire range

expression(3) has the form betweenx=0 andx=1 should give expression8) and(5)
R in these limiting cases. This property is obtained for the fol-
(I'-1)=<1. (4) lowing formula which matches the solutions for a single
D emitter and a planar diode with a continuous emitting surface
If the diode voltage is sufficiently high that the electrons F(x)y2 (123 n| 32
become relativistic near the emitter, the voltage dependence j—; /A A=1+ y ) (6)
of the current tends to linear and the exponenRof re- P 2%2px32\ I'=1

duced by 1/2. It is easy to see that in this case, for linear
emitters the current does not dependfn

Condition (4) is satisfied in most cases of practical im-
portance, i.e., for plasma expansion velocities-df® cm/s,
pulse durations between a few and tens of nanoseconds,
ode gaps of a few centimeters, and voltages of a few meg
volts (Fig. 8).

We stress that the exponent 3/2 in expressR)nis as-
ymptotically exact in the limit of the small rati®/D. We
compare the current obtained from formu@ with other
known resultgFig. 5). The method of specific capacitantes
gives a quadratic dependence of the current on the parameter
R/D. It should be noted that this method has not been suffi-
ciently well substantiated and gives incorrect results for
small ratiosR/D. An interpolation formul& based on the
results of numerical calculations gives a linear dependence of
the current orR/D for small values of this parameter. Quite
clearly, the results of the numerical calculations for
R/D=0.05 and 0.1 are not completely accurate. It should be
noted that Djogo and Grogave an incorrect representation
of the data from Ref. 7 relating to the current of a spherical
emitter at the apex of a tip.

The weighting functionf(x) satisfies the conditions
f(0)=1, f(1)=0 and its specific form depends on the shape
of the periodic cell containing the emitter.

. We shall consider a hexagonal cell. For a numerical
%l'mulation this can be approximated by a cylinder of radius
Eb'/2, having defined the Neuman condition for the electro-
static potential and the specular reflection condition for the
electron trajectories at its side surfa@gg. 6). In this way,

CURRENT IN A PERIODIC EMITTING STRUCTURE

Let us assume that emitters of radRsare arranged as a
periodic structure separated by the distapogve shall not FIG. 6.
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FIG. 7. Current for a hemispherical emitter in a periodic system as a func-
tion of the ratio of the emitter diameter to the cell period Bo+4 cm and -5010.02 ! \ N ; !
U =500 kV. Crosses — numerical calculations, curves — calculations using 0 10 20 30 40 50
formula (6). t,ns

FIG. 9. Time dependences of the current density in a planar diode with a
the calculation problem is converted from three-dimensionafiiscrete emitting surface calculated using expresgirfor D=4 cm and
to axisymmetric two-dimensional. Numerical calculationsY =500 KV. The emitter expansion velocity is<@0° cm/s.
made using the SuperSAM program showed that in this case,
the weighting function can be approximated bgx)~1
—x17X. Then, the dependenck&) for the current per emit-

E:earl 22&?'?:?;;'”; Ig;ﬂg@tﬁﬂds‘;;a r%sult of the numeri- o expanding at the velocity>210° cm/s for various dis-
uiatl 9 withi '9. 7). tances between the emitters. By comparing these

Figure 8 gives relative voltage dependences of the perc'jependences with the experimentally measured oscilloscope

\rfar?cﬁlc’f ang'Od?nW'tfh rr:snl]g)’hi”?al emltt;ers Calctwattig Yraces of the current, it is possible to assess the state of the
encally and using tformuiao). 1t IS easy 1o see that the emitting surface at the cathode.

smaller the relative size of the emitterthe higher the volt-
ages for which the nonrelativistic dependence of the current
on voltagel «U®? typical of a single emitter is conserved. CONCLUSIONS

The difference between the analytic and numerical results at  This theoretical analysis has demonstrated that the mi-

extremely high voltages can be explained by the fact that therostructure of the emitting surface strongly influences the
condition for no relativistic electron motion ceases to holdcuyrrent in a high-current planar diode.

Figure 9 shows calculated time dependences of the av-
erage current density for a cathode with hemispherical emit-

near the emittekquite clearly the constraint for a periodic If the distance between the emitters appreciably exceeds
system of emitters should differ from conditi¢d) since it their size, the dependence of the current on the ratio of the
contains the paramet@). emitter size to the diode gap is a power dependence with the

The numerical calculations showed that as the paramet@')(ponent 3/2. Moreover, the V0|tage dependence of the cur-
x decreases, the dependence of the current in a periodic syient obeys the three-halves law up to higher voltages than
tem on the diode gap tends to the formD ~3? typical of a  that for a planar diode with a uniform emitting surface.
single emitter. Quite clearly, the discreteness of the emitting surface
and the expansion of the cathode plasma lead to a reduction
in the impedance of high-current planar diodes with time.
The cathode effects described determine the minimum dura-
tion of the resulting current pulse.

However, it should be noted that additional information
on the state of the emitting surface at the cathode is required
to correctly apply these results to real diodes. The depen-
dences given above were obtained assuming that the number
of emission centers remains constant in time and they are
equidistant. At the same time, there is no doubt that the
emission centers do not appear simultaneously at the cath-

ode. The distribution of the micropoints over the cathode

3.01‘ e 7' : 127 T 10[']0 surface and their sizes are not homogeneous. The space

U, Mv charge of a newly formed emission center reduces the elec-

tric field intensity in its vicinity? increasing the delay time

FIG. 8. Comparative voltage dependences of the perveance of a hemisphefpr the explosion of micropoints situated in this zone. Allow-
cal emitter in a periodic system wih=0.1 cm(1-3). Emitter radiusum: 500 for the influence of the nonsimultaneous creation of
1—5,2— 25, and3 — 100; asterisks — numerical calculations, curves — L. . . .
calculations using formulé6); 4 — relativistic dependence for a homoge- €Mission centers on the current profile in a high-current di-
neous planar diodés). ode is a problem for future research.
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Influence of C gy-containing additives in lubricant oil on the optimization of wear
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An investigation is made of the influence of fullerengy€ontaining additives in lubricant oil on
the optimization of the boundary friction process of steel and copper in steel-steel and
copper—steel sliding tribocouples. The optimization was characterized by a reduction in the
parametelQ introduced in a previous study, which is the probability that any given contact spot
between contacting bodies is converted into a debris particle accompanied by a relative

shift of the contacting bodies by the average diameter of the contact spot. The experimental data
are used to calculate values of the param@&éor various friction regimes and it is shown

that the addition of fullerene to the lubricant oil causes a substantial reducti@raimd for copper
this parameter reaches fairly low values similar to those for an arbitrary reference selected
previously for classifying solids according to this characteristic. 1899 American Institute of
Physics[S1063-784£99)01906-§

INTRODUCTION for high-strength cast irons in contact with tin-plated and
chrome-plated piston rings in engines lubricated with engine
By applying universal criteria for a comparative assessoils. Thus, the valu®=2x 10 '° can be used for the time
ment of the optimum nature of wear processes, it is possibleeing as an arbitrary reference for different materials, in the
to compare the antiwear properties of tribocouples and lubrisame way that the hardness of diamond is used as a reference
cant materials determined in tests under different conditiongoint to estimate the hardness of solids.
Among these universal criteria characterizing the wear pro- However, Ginzburget al>~® showed that the presence of
cess in the boundary friction of solids, mention may be mademall quantities of fullerene g in lubricant oil can substan-
of the paramete@ proposed in Ref. 1, which is the probabil- tially improve various tribological properties, especially the
ity that any contact spot between contacting bodies will beantiwear properties of steel and copper in steel-steel and
converted into a debris particle accompanied by a relativesteel—copper sliding tribocouples. It would be interesting to
shift of the contacting bodies by the average diameter of theetermine the extent to which fullereng ®elps to optimize
contact spoQ= a/n, wherea is the number of contact spots the friction process, i.e., to study howdXontaining addi-
converted into debris and is the total number of contact tives in industrial oil influence the values &f for steel and
spots, whose area is the actual area of the friction spot. Weopper and their variations under different test conditions. It
can postulate that an optimum wear regime exists for whiclwould also be interesting to compare these values with the
Q will have a minimum, which then leads to minimal values reference point, and these are the aims of the present study.
of the wear intensity. A reduction iQ during the wear pro-
cess may be taken as optimization of the wear process.
Kozyrev and Ginzburyproposed a method for the em-
pirical determination of optimum boundary friction regimes Fullerene Gy was separated chromatographicdilyth a
for which the wear intensity of the sample material has @6—-98% contentfrom a fullerene extractmainly G, and
minimum andQ=Q°P. For one of the most antifriction ma- C;) in the V. P. Budtov Laboratory*Khromotron” Project
terials, babbitt metal, the value @°" was ~2x10 . in the Russian Scientific and Technical Program “Fullerenes
These authors also showed tiatan be calculated for given and Atomic Clusters,” 1994 The extract was separated
test conditions if data are available on the linear wear intenfrom fullerene soot obtained in an electric arc plasma in the
sity, the material hardness, and the contact pressure. Pufs. A. Dyuzhev Laboratory“Arc” project under the same
lished data were used to calculate valuesQofor various  program.
materials(different types of bronze, a Teflon-4 graphite+ The lubricants used were [-40-A commercial industrial
MoS, composite, St-45 steel, cast irons, and titanium caroil (I-G-A-68 according to GOST 17479-87a mixture of
bide) for specific test conditions. In all cases, the valueQof [1-40 A and 5% fullerene g, and a mixture of I-40-A and
were between one and three orders of magnitude higher th&?o fullerene soot. The fullerene soot contained around 5.5%
2x107 %0 In particular, for St-45 steel in contact with Cgoand 1.5% G,. The additives were added mechanically to
bronze, the authors obtaingd~10 ' and for bronzeQ the oil in the form of finely dispersed powders. Before these
~10"8. Values ofQ = (3—4) x 10 1° were only obtained lubricant mixtures were used, they were mixed vigorously to

MATERIALS

1063-7842/99/44(6)/4/$15.00 700 © 1999 American Institute of Physics
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FIG. 1. Schematic showing friction tests:— fixed roller (samplg, 2 — 700 200 J00 400 500
moving roller a — initial state with linear friction contacb — state of FN S N

friction contact after formation of wear groove of arfa

FIG. 2. Dependence of the parame@mon the load for a steel-steel trib-
) ) ) o ) ) ] ocouple. Lubrication with 1-40 A base ofl), I-40 A + 5% fullerene soot
achieve a more uniform particle distribution in the oil, al- (2), and 1-40 A+ 5% Gy, (3).

though the residual inhomogeneity could be one reason for
the spread of the data obtained.
average diameter of the contact spot or the diameter of the
TEST METHOD debris particle, if the spot has been converted into a debris
) o . ) particle.
The mvestlgatlo_ns. were cqrrled .out using a standard  \ye subsequently assumed tigti~1, i.e., the debris is
ZQ7Q SMT-l roller friction machine using trlbocouples' COM- |umpy, as is frequently observed for metals.
prising a fixed upper roller and a rotating lower rollig. The linear wear intensity for a linear initial contact is

1). The lower roller, 46 mm in diameter and 16 m wide, gefined ad,=h/L, whereh is the depth of the wear groove
was made of wear-resistant 18Kh2NChMA st€@IOST  ,hq| s the friction path during testing. The friction path

_ P
4543-71 and rotated at a speed=400min ", which cor- a5 defined as = 7Dwt, whereD is the diameter of the
re;ponded toa Ilngar sliding veIOC|.ty of 1mis. Th‘_:" Sa,mplemoving roller andt is the test time. The nominal contact
being tested was e|th<_ar the upper fixed roll®® mm in di- pressurd®, was defined aBy /S,,, whereS,, is the average
ameter and 10mm widemade of St-45 steel or 0.25MM yming| contact area during the test. Special tests showed
copper foil attached to this roller. , , that our formulaS,,~S;+0.8(S,—S) more accurately de-
Various normal loads-y were successively applied 10 gcripes the change in the contact area than the arithmetical
the samples. The tests began with a linear friction contact ghean of the initial and final areas, since the contact area
a loadFy=100N (Fig. 1a. The duration of the testing at \aries nonlinearly with time, increasing rapidly in the initial

each load was 300 s and lubrication was provided by a singlg,stants of application of a new load and then varying more
drop of oil (~0.059 before each change in load. After ev-

ery 300 s the carriage of the friction machine was raised and
the geometric parameters of the wear spot were determiner
using a measuring magnifier. These values were used to ca
culate the average area of the wear spathe depth of the 2k
wear grooveh (Fig. 1b, and the bulk wea¥\y (Ref. 7). The
area of the wear spd, determined at the end of the tests
under a given load was taken as the area of the initial fric-
tional contactS; for the next load. Between three and fifteen « 8|
tests were carried out for each test varidot each load and 8
fixed type of lubricant depending on the spread, and the © [
arithmetical means of the measured values were then calcu
lated. In order to monitor the reproducibility after every
10-12 tests, tests were carried out using 1-40 A base oil. |
The value ofQ was calculated using a formula proposed

in Ref. 1 ! ) ] ! !
100 Joo 500 700
Ih=3(PNQ/Hg)-(g/d), (1) Fus W

Whefe' h 1S the linear wear m.tenSIty O_f the sampI%N IS the FIG. 3. Dependence of the paramet@ron the load for a copper—steel
nominal contact pressureig is the Brinell hardnesgy/d is  tibocouple. Lubrication with 1-40 A base ofll), 140 A + 5% fullerene
the ratio of the average height of a debris particle to thesoot(2), and 1-40 A+ 5% Gy, (3).
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1
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TABLE |. Minimum and maximum values of the linear wear intendity the paramete®, and the contact pressurBg over the entire range of loads for
steel and copper in steel—steel and copper—steel sliding tribocouples.

Steel Copper
Range Linear Range Linear

of average wear Probability of average wear Probability

values of intensity Q, 108 values of intensity Q, 108

Py, N/mn? I, 10°8 Py, N/mn? Iy, 10°8
Qil minimum  maximum  minimum  maximur minimum  maximum  minimum  maximum
1-40 A 26-38 0.8 4 16 80 60-80 0.15 3 0.5 14
1-40 A+5% ful- 27-50 0.3 2 8 40 80-90 0.08 2 0.3 7
lerene soot
1-40 A+5% G 28-53 0.3 2 7 30 90-120 0.05 2 0.15 5

smoothly. The Brinell hardness for St-45 steel was taken asiably. At loads of 300—500 N a substantial increase in the
2000 N/mnt and that for copper as 800 N/min(Ref. 8. values ofQ is observed and for the base oil a sharp increase
Taking into account all the constant values of the paramean be identified near 500 N, which is typical of scoring.
eters in formula(l) given above, the values @) can be However, for the oil with added & the value ofQ at these
calculated using the formulas high loads is 2.7 times lower than that for the base oil.

_ 3 . The lowest value ofQ for a steel-steel tribocouple is
Q=2.2<10"hS, /Fy  for a steel-steel tribocouple, (2) observed at 200N and is 7x 108 for pure G, additives,,
Q=0.9x10 %hs, /Fy for a copper—steel tribocouple, which is more than two orders of magnitude higher than the

(3) standard value for babbitt metal. A slightly reduced effect is
achieved with added fullerene soot: the lowest valugof

where the values oh are in millimeters,S,, is in square - : g o
millimeters, andF is in newtons. under these conditions is<9x10 °. The addition of

The relative mean square error of the arithmetical meani/llérenes to the oil reduces the linear wear intensity by a
of Q was 7—10%. factor of 2—3 and its lowest value is 30" ° (see Table)l
For the copper—steel tribocouples the cu@g-y) only
exhibited a weak minimunta 20% reductionfor the base
oil (Fig. 3). For the fullerene-containing additives the run-in
Note that a specific feature of friction tests is that in theis very fast for the first friction contact at a 100N load and
elastic contact region, the tribological characteristics depenthus no fall inQ could be recorded. Nevertheless, the value
not only on the pressure applied to the contact, but also to &f Q for the fullerene-containing oil at this load is 2.5-4.5
greater extent on the absolute value of the applied forte. times lower than that for the base ¢dee Table)l Subse-
As the applied force increased, the contact area also irguently, an increase i is observed for all loads but in all
creased so that the contact pressure did not change very sigases, the fullerene-containing additives give a significant
nificantly although the values @ varied substantially. Fig- reduction inQ compared with the base oil. Compared with
ures 2 and 3 give the results of calculati@gs a function of ~ the steel-steel tribocouple, the copper—steel tribocouple ex-
the applied force for tests on steel—-steel and copper—steBibits better antiwear properties under all conditions and the
tribocouples, respectively and Table | gives the maximurlowest values of, andQ achieved for pure g additives are
and minimum values of the parame@rand the linear wear 5%10 *°and 15< 10" '°, respectivelysee Table)l This last
intensity, more familiar to tribologists, over the entire rangefigure is of the same order of magnitude as the reference
of applied loads. The range of average pressures on the cowalue for babbitt metal.
tact is also given. To sum up, there is no doubt that fullerene additives in
We shall examine the behavior of these curves and howils help to optimize the friction surfaces of steel and copper
they change when fullerenes are added to the oil for steeland reduce their wear. The parame@rcharacterizing the
steel tribocouples(Fig. 2). At the initial run-in stage surface optimization has an extremely low value for copper
(Fy=100 N the values of for the different oils differ neg-  close to the arbitrary reference value characterizing the mini-
ligibly. When the load is increased froffy,=100 to 200N, mum possible wear.
a fall in Q is observed in all cases, i.e., so-called run-in or This work was carried out under the Russian Scientific-
optimization of the wear process takes place. However, foffechnical Program “Fullerenes and Atomic Clusters”
the fullerene-containing oils the optimization process is mord"Tribol” Project).
intensive. For example, for the base oil in the range of loads
used, the value df is halved, for oil with soot additives it is
reduced threefold, and for oil with fullereng,{additives it _
is reduced fourfold. When the load is then increased to E(T”éCE' gﬁ;g’;gv3%g‘j(lgés';"]' Ginzburg, Zh. Tekh. F&B(4), 48 (1998
300N, the value ofQ remains almost constant for oil with 2g . Ginzburget al, Pisma zh. Tekh. Fi21(22), 62 (1995 [Tech.
Ceo additives, whereas for the other oils it increases appre- Phys. Lett.21, 933(1995].
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Determination of the temperature distribution in liquids and solids using holographic
interferometry

V. V. Bat’kovich, O. N. Budenkova, V. B. Konstantinov, O. L. Sadov, and E. A. Smirnova
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(Submitted February 27, 1998
Zh. Tekh. Fiz69, 106—-111(June 1999

It is shown that holographic interferometry can be applied to solve two problems: heating of a
glass plate by a complex heat source and nonisothermal flow of a submerged jet around

a wedge. The process of isolating and numbering the skeletal lines on the interferograms is
automated and direct calculations are made of the temperature field§99® American

Institute of Physics.S1063-78499)02006-1

INTRODUCTION times,\ is the wavelength of the radiation usetdx,y,z) is

the refractive index at the poink(y,z), Sis the beam tra-

Two processes are considered. The first involves th?ectory,lo is the path length of the beam in the object, agd
flow of a submerged jet around a wedge where the wat€g e’ refractive index in the absence of any inhomogeneity.

temperature in the jet differs from the temperature of the .o fringe shift can be traced by measuring the coordi-

water filling the container, which also varies with time. The 5404 of the characteristic points of each interference fringe.

second involves the propagation of heat in a glass plat§ne characteristic points are those points at which the inten-
heated by a complex heat source. Numerical or analytic SGity has extreme values, i.e., the phase differénce
lutions of these problems present difficulties because of the o

complex boundary conditions. In the first process, for in- e(X,y)=mn; n=0,£1,+2,.... 2
stance, allowance must be made for the reflection of the jet
from the walls because of the bounded volume. In the second A set of characteristic points of one type belonging to
problem, even if we know the nature of the heat release ofhe interference fringe is a line of zero thickness, i.e., a
the heating element, we need to estimate the quantity of hegkeletal or core line.
entering the plate. It is technically difficult to insert thermo- ~ On an ideal interference pattern it is easy to isolate the
couples into these objects and would distort the real procesgﬁaracteri:stic points. In reality, however, the intensity distri-
so we used holographic interferometry. bution on the interference pattern reflects the presence of
The quantitative characteristics of a process investigate¥arious types of noise in addition to the useful signal and
by holographic interferometry are obtained by analyzing thenay be described as
interference fringes.
The intensity distribution on the interference pattern has

the formt wherew is a function describing the nonlinearity of the re-

X, Y) =1 1(%,Y) + 1 o(X,y) +2 /_|1|2COS(p(X,y), sponse of the recording system relative to the optical inten-

) . ) sity, andN(X,y) is the noise recorded together with the sig-
wherel,(x,y) is the intensity of the wave scattered by the na| (packground noise

object before the onset of the process at pakay), I2(x,y) The presence of noise in the measuring system leads to
is the intensity of the wave scattered by the object during thene appearance of spurious local extrema located at points
process at po_int>(,y), and ¢(x,y) is the phase_ difference (x,y) where condition(2) is not satisfied.
between the first and second waves at the poiry)( If the statistical characteristics of the noise and the use-
The spatial frequency of the fringes varies as a result ofy| signal are known, we can construct an optimum filter
a_change in the refractive index of the opject. A shift of the\yhich when applied to the initial image will give a signal as
fringes may also be caused by a change in the path length @fose as possible to the useful signal according to the crite-
the beam in the medium as a result of its expansion or coMyjon of minimum rms error. A priori information on the noise
pression. The shift of the interference fringes relative to theilharacteristic of the measuring system is not generally avail-
initial position is used to calculate the change in the phasgple and attempts to estimate the frequencies corresponding
distribution of the wave scattered by the object which is reyg the useful signal directly from the image spectrum have

1 (x,y)=w(12+13+2141, cose(x,y)) + N(X,y),

lated to the interesting characteristics of the process been unsuccessful. Thus, most studies concerned with the
Ag automatic processing of interference patterns have examined
=5 = X( Ln(x,y,z)dl—lono), (1)  various methods of filtering the image, i.e., modifications of

known filters and the development of new ones. The process-
wherek is the number of fringes by which the interference ing of interference patterns has been automated most com-
pattern was shiftedA ¢ is the phase difference at different prehensively only in specific casé$.

1063-7842/99/44(6)/5/$15.00 704 © 1999 American Institute of Physics
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Here we present an algorithm for obtaining quantitativepaired were filled artificially: each background pixel of the
information on a particular process using interference patimage was given values of 0 or 255 if the values of more
terns which includes preliminary processing of the initial im- than two neighboring pixels were 0 or 255, respectively.
age, isolating the skeletal lines, and calculating the shift of  After the cutting procedure, the remaining characteristic
the interference fringes which can be used as the basis foroints formed the core lines. In addition to the skeletal lines
Cu program. corresponding to the true intensity extrema on the interfer-
ence pattern, the image also exhibited noise in the form of
isolated points, short lines, short branches on lines, and also
line discontinuities.

The initial image(interference patteiris represented as The third stage involved determining the assignment of
an M X N numerical matrixB. Each element has values be- €ach point of a specific line for convenience in the subse-
tween 0 and 255 which correspond to the minimum andiuent processing of the image. We assumed that points be-
maximum intensities. long to the same skeletal line if they have the same type of

In order to correctly isolate the characteristic points, theextremenesgminimum or maximum and are located at a
image was pre|iminari|y processed using a moving a\/eragdistanCe shorter than some predefined value. If the points
filter® where the intensity at a particular point is replaced bywere positioned at a distance of one pixel or more, the gap
some average of the values of its neighboring elements. Thigas filled with the same extrema. In the program, points
filter was used because of its simplicity and also because tHeelonging to the same line were held in linked lists. This data
following analysis did not require a knowledge of the truestructure simplified the procedure for removing short
intensity. By repeatedly applying the filtébetween three branches, whose length does not exceed some predefined
and five timeg it was possible to avoid most of the spurious length and short lines, whose length does not exceed some
local maxima and minima present in the image as a result dpredefined value.
noise. The result of applying the moving-average filter was ~ After we had performed these procedures, some of the
written into a new matrixB;. skeletal lines remained broken and thus we carried out an

From among the various filters specially developed foradditional line connecting process. The discontinuities were
processing interference patterns, we selected a spin iltereliminated as follows: parts of the lines were interconnected
When a spin filter is applied, a direction is selected for eacHf the straight line linking their ends did not intersect a line
image point and the intensity at this particular point is re-made up of the other type of extremum. At this point the
placed by some average of the intensities at neighboringrocedure for isolating the skeletal lines was completed. An
points in this direction. Applying a spin filter to the interfer- important advantage of this method of isolating the skeletal
ence patterns obtained in our measuring system also yielddtes is that it is independent of the configuration and orien-
good results but with slower convergence. tation of the fringes.

The process of isolating the skeletal lines included sev-  In order to calculate the shift of the fringes relative to
eral stages. The first involved isolating the characteristidheir initial position, these were numbered on the initial in-
points at which the intensity has an extreme value. On aferference pattern and then suitably numbered on the subse-
ideal one-dimensional sinusoidal surface the point at whicifluent ones. A necessary condition for the successful opera-
the sine has a maximum is nonextremal only in one direction of the fringe-numbering program is that there should be
tion. When determining the maxima and minima on a rea@t least one continuous fringe passing through the entire im-
interference pattern, we assumed that because of the preage. This fringe was numbered zero. Fringes positioned to

ence of noise such a point can be nonextremal in more thalfie right were given positive numbers in order while those to
one direction. the left were given negative numbers, after which the num-

The intensitya; ; at a point having the matrix coordi- bers of the corresponding fringes became the values of the
nates {,j) was compared with the intensities at other pointsPoints assigned to the skeletal lines. Points not assigned to
within a window of dimensionsx n centered on the point skeletal lines were given fractional values obtained from in-
(i,j), along four principal directions, vertical, horizontal, and terpolating the fringe numbers over the entire field. The shift
two diagonals. Ifa; ; was higher than the intensities at all of each interference fringe was calculated simply by sub-
other points in any two directions, a pixel with the coordi- tracting the two matrices containing the fringe numb&s;
nates {,j) in a new matrixB, was assigned the value 255 (at the initial timg andB3, (at the instantaneous tinmg.
(maximum or if its intensity was lower, this pixel was as-
signed the value Gminimum). In other cases it was assigned
the value 128background value This procedure was re-
peated for each matrix poifg;. EXPERIMENTS

The image produced at the first stage of filtering could
not completely avoid spurious extrema and the isolated char- The technique described was used to process various in-
acteristic points did not form continuous lines of zero thick-terference patterns obtained using a holographic interferom-
ness. The skeletal lines were isolated from the set of charaeter with recording on a photothermoplastic carrier and re-
teristic points at the second stage. A cutting algorithm, cording of the information on a television. The image was
which can only be applied to connected regions, was used tied to a monitor which allowed the evolution of the process
isolate the core lines. Gaps in which connectedness was inte be observed in real time. At the times of interest the image

PROCESSING OF INTERFERENCE PATTERNS
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that the object was homogeneous in the direction of illumi-
nation and formuldl) then becomes

1
k= X(n(x,y)l —No(X,y)lo).

FLOW OF A SUBMERGED JET AROUND A WEDGE

Water initially begins to flow into a liquid-filled cell
containing a wedge. The initial temperatures of the water jet
flowing through a nozzle inside the cell, the wedge, and the
nozzle are different. The temperature of the jet decreases
during the process. The bounded volume leads to appreciable
mixing of the water in the cell and the fluxes reflected from
the walls begin to have a negative influence on the tempera-
ture field. The initial interference pattern is shown in Fig. 1.

Figure 2 shows isolated skeletal lines: the flow velocity
of the jet is 5 cm/s, the size of the celk®8X 1.5cm, and the
nozzle diameter 0.4 cm.

The change in the refractive index was calculated using
the formula

FIG. 1.
Ak(X,y)
An(x,y)= T, 3
was fed into a computer using a frame grabber The size of The bulk temperature field was calculated for times
the field being studied was>33 cm and the field resolution when return flows have a significant influence. The results

was 512512 pixels. are plotted in Figs. 3 and 4.
The following parameters were defined to analyze the

interference patterns: the moving-average filter was used
three times, the size of the window for isolating the characTEMPERATURE FIELD IN GLASS PLATE
teristic points was X7, points located at a distance of less -, . . .
. . Initially heat begins to be released in a heating element,
than ten pixels were assumed to belong to one fringe, thei ; AN
. : .’ Its nature being unknown. The released heat is dissipated
length of the fringes being removed was less than 11 pixels

and the length of the branches being removed was less the?nartlally Into the ambient medium, some enters ”“? glass
five pixels. plate and then propagates further by heat conduction and

radiation. According to our estimates, the shift of the fringes
In order to solve the formulated problems we assumed ; S :

caused by a change in the refractive index is two orders of
magnitude lower than that caused by expansion of the glass

so that the change in the refractive index was neglected. The

{ \ temperature field in the glass plate was calculated using the
J formula
')
/
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FIG. 2. FIG. 3.
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FIG. 4. FIG. 6.

A= MKOY) (1+M)\F

a’lo ! bs: D ’
where« is the coefficient of linear expansion of the glass.

The calculated temperature field in the plate is shown ifVn€ref is the focal length of the objectivé/ is the magni-
Figs. 5 and 6. fication coefficient, andD is the aperture size.

The spatial frequency of the speckle structurevis
=1/bg but since the speckle noise is multiplicative, a filter
DISCUSSION OF RESULTS cannot be constructed directly in this frequency range. How-
. _ ever, a moving-average filter and a spin filter, used many
_ The type of filtering of the image and the number of jeq are effective. For interference patterns for which the
times it should be applied is the most controversial aspect 9fqyiqq of the fringes is small and the noise is negligible, it is
this algorithm. Since the optical system contains scattering .« o use a spin filter: the frequent intensity maxima and
centers, speckle noi_se occurs \{vhich leads tq the formation %inima(corresponding to the fringeslo not disappear with
many spurious maxima and minima on the interference palge spurious extrema. The other parameters used to process
tern. If the optical characteristics of the system are knowny,q interference patterns were selected as a function of the
the characteristic speckle size is giverl by fringe period. The error in calculations of the characteristics
of a physical process using interference patterns is mainly
attributable to the error in isolating the skeletal lines. Despite
the stage-by-stage filtering, an isolated skeletal line may pass
il through points whose coordinates do not satisfy condition
i, (2). Since the presence of these points can be attributed to
speckle noise, we can postulate that these are randomly scat-
tered around the true skeletal line. The error can be estimated
if the shape of the fringes on the interference pattern is al-
ready known. In these experiments, straight parallel fringes
were initially observed on the interference pattern. The aver-
age slope of the lines was calculated for an image with se-
lected skeletal lines. The error was estimated using the
formuld®

il "l’l;'ll’lllllll',',',u.
IR
i

i
il
il

il gy
L
/!

A
LT

TR T T T T T T T T T 1

A=ty oy,

wheretg os= 2.5 is Student’s coefficient for 0.95 confidence
FIG. 5. and o is the rms deviation calculated using the formula
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can also be used to calculate the characteristics of a process
at almost any observable point with a high degree of accu-
wheren is the number of pointsy;,y; are the coordinates of racy. However, the process of obtaining quantitative infor-
points assigned to isolated skeletal lines, angy; are the  mation by analyzing interference fringes is laborious and at
coordinates of the corresponding lines. this stage some of the accuracy characteristic of the method
~ Estimates indicate that the error in measuring the changg |ost. This study makes it possible to use holographic inter-
in the rel;ractlve index as a result of isolating the skeletaky,metry to obtain the quantitative characteristics of some
lines is 8%. _processes.
Since the formulated problems were not solved analyti- . .
Advantages of this algorithm are that few parameters are

cally, the results were assessed qualitatively. ) )
The temperature distribution in the liquid at the very required and some of them can be predetermined for a spe-

beginning of the process can reveal characteristic effects tdyific optical system and do not require subsequent correction.
this process: the initial section of the jet, its reflection from  To conclude, the authors would like to thank L. M.
the walls, and the thermal boundary layer near the wedge. IMalkhasyan and V. M. Levushkin for assistance with these
Fig. 3 the temperature field is highly asymmetric. This canstudies.
be caused by tilting of the nozzle and by natural convection
of the heated liquid.

If we now consider the propagation of heat in the glass,
the temperature maximum is situated near the edge of the
plate with the heating element, around the geometric centeryy. |. Ostrovski, M. M. Butusov, and G. V. Ostrovskayéiolographic
of the heat source. With increasing distance from this source, Interferometry[in Russiaf, Nauka, Moscow(1977, 336 pp.
the temperature decreases and reaches its initial value. Th. A. Borynyak, A. V. Loginov, P. M. Mednis, and V. N. Sarnadki
heating zone of the glass and also the maximum increase ag\vtometriya No. 4, 591993.
the heating time increases. 3Scientific-Technical Report “Methods of Obtaining and Primary and

Errors in calculating the change in the refractive index Mathematical Processing of Interference Patterns of Supersonic Gasdy-
9 9 namic Objects” [in Russiai, A. F. loffe Physicotechnical Institute,
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lows. For a fringe shift of 1/100 and an object of thickness 40 PP
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Holographic interferometry has significant advantages
over other methods of investigations since it is a noncontactranslated by R. M. Durham
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Generation of electromagnetic waves by relativistic electrons in a cavity with crossed
radial electrostatic and axial magnetic fields under plasma resonance conditions

Yu. V. Kirichenko
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A theoretical analysis is made of the conditions for generation of electromagnetic waves by a
thin cylindrical layer of relativistic electrons rotating in crossed axial magnetic and radial
electrostatic fields in a cylindrical cavity. A dispersion equation is obtained to describe the
interaction between waves and electrons under plasma resonance conditions. The
dependence of the growth rates on the relativistic factor and the magnetic field are studied.
© 1999 American Institute of PhysidsS1063-784£99)02106-9

Interest in studying the dynamics of charged particle mowhere w,=eBy/mgyc, y=1/(1—v3(r)/c?)*? cis the ve-
tion in a cylindrically symmetric electrostatic field has beenlocity of light, —e<0, andm, are the electron charge and
stimulated by various practical applications of systems suclmnass, andj= * 1.
as Geiger—Mlier counters, electrical filters for pollutant The unperturbed density of the cylindrically symmetric
gases, ion—plasma pumps, high-pressure gas-dischargkectron layemg(r) is nonzero between the surfacesr _
meters, millimeter wave generators, and so on. The possibibnd r=r, ,i.e., ng(r)=0 for r<r_ and r=r, (a<r_
ity of energy exchange between nonrelativistic electrons ro<<r , <b). The approximation of a thin electron layer implies
tating in crossed fields and an electromagnetic wave wathat
analyzed theoretically in Refs. 1 and 2 where the authors
showed that one mechanism responsible for the generation of ¢
electromagnetic waves is plasma resonance. An increase in r_<1’ v
the electron velocity to relativistic levels could substantially

increase the oscillation frequency as far as the submillimeter
d y wheredr=r —r_.

range. A longitudinal magnetic field increases the force Using the linearized Lorentz equation and equation of

keeping the electrons in an orbit which can increase not Onl%ontinuity together with the Maxwell equations we obtain a
the electron velocity but also their density. This last fact Candifferentia'I equation in the region_<r<r ., for E, which

increase the oscillator power and the wave growth rates. . . .
) S ) is the azimuthal component of the wave fiéld
We shall consider a cylindrical metal cavity unbounded
along thez axis (using ther, ¢, z cylindrical system of co-
ordinate$ along which a magnetic fiel®, is directed. A d | ¢ 0%\ d E )4 0g* (M~ vowr £
cylindrical layer of electrons rotates about the cylinder axisdr | rw,; dr* ¢ YW, W, o,
on which a metallic charged filament is located. The internal
radius of the cavity i$ and the filament radius is (a<b). Q%wy(mE—vowr) d
The relativistic electrons are confined on equilibrium circular N a(rEw)
orbits by the crossed magnetic fie}) and the radial elec-
trostatic field of the filamenEy(r). We shall neglect the {1 02 Q%wy ( Vo, szngm)]
_l1_ oh— =2 o

T3
Y Wi

2,
YOml"WrWq

constant self-induced magnetic and electric fields of the elec- 3. T 3 2
i YW, YWw

tron layer. We shall assume that the system is homogeneous m

along thez axis. We shall determine the dependence of all (©)]

the variables orp and the timet using the factor e p(me

—wt)], wherem#0 is an integer ana is the complex fre-  where w,=w2+W,q, W= w?>—m?c?/r2— w202 yw,,

r YW, Wiy

quency. The analysis will be performed in the hydrodynamiow, o= (wy+vo/r —vg) wg, wg=2vo/r +(¥*—2)w,
approximation. The equilibrium unperturbed electron veloc-+ ey, Eqy/mec?, wg=wc—2v0/r+ev0Eo/meyC2, Q2(r)
ity is given by =47ny(r)e’/my, andwy,=w—mvy/r.

A plasma resonance occurs when the frequency of the
" eIecFronjagnetic field .is c_Iose to the frequency_ of the natural
2.2, 4E0(r)er) D longitudinal local oscillations of the electrons in the labora-
¢ Mey ' tory frame, i.e., subject to the condition

1 1
vo(r)= §w°r+ Eq 0}

1063-7842/99/44(6)/3/$15.00 709 © 1999 American Institute of Physics
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Y2 w(w)=Q3r). (4)  Cherenkov resonancé, the decrement of this wave is not
. . . . equal to the growth rate. In the most general case, it follows
Condition (4) yields an approximate expression for the from Eq. (6) that for A§p<4AF2), when the differencéwn(®
real part of the resonance frequency - wp| or the frequency shif , are small, unstable solutions
Re(w)=w,, may be obtained in the absence of losses Q). However,
when A% >4A2 the losses cause instability. Jfv—A, |

where >|Ay|, the growth rate is given by Ina)=vA%/(v?
Mug Q2(r) vz +A,2,p) and has a maximum in terms of
wp=——*Awy, Aw= 3 —Wro ©) On considering an inhomogeneous electron layer, we

shall assume that the functioR?(r) is Gaussian with a
Integrating Eq.(3) overr and neglecting terms higher maximum at =r,. The plasma resonance conditi@h will

than the first order of smallness with respect to the parametdye satisfied for two values of the radial coordinater ; and

orlr_, we obtain boundary conditions folE, and r=r,(r_<r;<r,<r,<r.). Finally, the growth rate is

d(rE,)/dr (a similar method was used in Refs. 1-6 given by

MatchingE, andd(rE,)/dr at the layer boundaries with the

corresponding values in vacuum and taking into account the

resonance conditiofd), we obtain a very complex disper- Im(w)=—v—signRe(wy))

sion equation. In order to analyze this equation at least quali-

tatively, we express the Bess&|, and NeumanmN,, func- w*hxg" l‘*’p[mﬂt|Uo|7’2r—'A‘*’|0/CZ]2
tions of the arguments; = wa/c and x=wr _/c contained 22m+1E!2b72774m

therein as a series in powers of the arguments, confining _

ourselves to the first terms of the expansion. In the functions X (wqdo— 7""—1)%, (1)

Jm(X2) andNp,(X5) (Xo=wb/c) we confine ourselves to the

first terms of the asymptotic expansion. In accordance with

the condition(2), we shall seek a solution of the dispersion Where
equation in the formw=w@+ oW, |0®|<0®, where

(©) are the natural frequencies of the cavity in the absence

2
of electrons. The dispersion equation describing the plasma | ,_ Q°(ry)
resonance in a homogeneous electron layer finally has the aQZ/ar|r1—a( 73Wr)/07r|r1,w
form p
2
(8@)2+(iv—A,p) +A2=0, ©) _ 0(r2) _ 12
o — dQ? or |, ,— o y~°‘w,)/ar|r2‘wp
,  Cmxg" top[mFvol vPr _Awy c?)Pe?(r ) or

Ap=- 2 o2m+2,y 2, 4m 5

r<2 m“n""Re wy)by

B In  our particular case  when |(992/(9r|,12
X (wgdg— 7°M—1)2, (7) >|0(73Wr)/¢9f|r12wp, it can be seen from Ed11) and(12)
that oscillation éccompanying plasma resonance in an inho-
0=— , (8) mogeneous electron layer occurs when condititd) is sat-
[m= vy yzr,-Awp/CZ] Re(wpm) isfied. Unlike the case of a homogeneous layer, the instabil-
0 ity is a threshold process and occurs when the second term in
Ap=o wptA,, ©) Eq. (11) is greater than the first. For a homogeneous layer
where Sw=w—w,, Xo=kor_/c, ko=w®/c, e(r_) expression(5) gives the formula for the frequency of the
=Q(r_)c/r_, p=r_/a, m=|m|; the termiv in Eq. (6)  9enerated wave
takes into account phenomenologically the losses caused by
absorption in the walls and radiation from the cavity, and the — I
term A, in Eq. (9) allows for the frequency shift caused by Re(w)*—vi my*-1)™ L 2yt 12— 1)
these losses; in formuldg) and(8) the + signs correspond r_ v Y YTy
to the = signs in formula(5).
Since Im @)= Im (Sw), the condition Im w)>0 cor-

. sign(vo)m( 7™ 1)

responds to oscillations which increase in time. These solu- +[(¥*= 1)Y= sign(vo)e1]) V7| (13)
tions of Eq.(6) are obtained forAf)>0 or, as follows from
Eq. (7), when
Re(w)r whereg = w.r_vyl/c.
V0> Uph; Uph= "y (10 For an inhomogeneous electron layer the frequency at

which the resonance conditi@4) is satisfied depends on the
von is the phase velocity of the wave near the electron layercoordinater which varies in the range <r=<r (or r

It follows from Egs.(6) and(7) that when conditior{10) <r<r_). Hence the generated frequencies will lie in the
is satisfied, the wave may become damped. However, unlikeange
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¢ [my2—1)¥2 1 layer, which is proportional to &/b)*2 In the first case,
r—[ _— —z(s%er Y(y?—1) however, the generation has the advantage that the resonance
- Y Y conditions are not violated when the radius of the electron
c orbit varies.
+[(y2—1)Y2— Sigl‘(vo)sl]z)llz] <R w)< — We also analyzed the case of an axisymmetric wave
r- whenm=0. We found that for both homogeneous and inho-
— 12 mogeneous electron layers lm@)<0 which corresponds to
XI miy" =)™ i(yz( Y1) damped oscillations.
Y ¥? The author would like to thank V. V. Dolgopolov for
useful discussions of the results.
+[(v2—1)1’2—Si9n(vo)81]2)”2.}, (14

h _ 1|. Alexeff and F. Dyer, Phys. Rev. Let#5, 351 (1980.
wheree,=max &(r). N 2y. V. Dolgopolov, M. V. Dolgopolov, Yu. V. Kirichenkeet al, in Pro-
It can be seen from conditior{43) and(14), where con- ceedings of the Seventh International Crimean Conference on “Micro-

dition (10) is taken into account, that generation can only wave Engineering and Telecommunication Technologigs”Russiar,

1997 Vol. 2, pp. 487-488.
occur whenm=>1. For Iargey the range(14) becomes nar- 3V. V. Dolgopolov, M. V. Dolgopolov, and Yu. V. Kirichenko, Izv. Vyssh.

rower and the generated frequency will be Uchebn. Zaved. Radiofi20(12), 16 (1997.
_ 4K. N. Stepanov, Zh. Tekh. Fi25, 1002(1965 [Sov. Phys. Tech. Phys.
c(m—1) 10, 773(1965)].
Re(w)=——7". (15 5K. N. Stepanov, Zh. Tekh. Fig5 1349 (1965 [Sov. Phys. Tech. Phys.

- 10, 1048(1965]. ]
The frequency(13) also tends towardl15) for large . 6Vv. V. Dolgopolov and A. Ya. Omel'chenko, Zh ksp. Teor. Fiz18, 1089
The growth rate for an inhomogeneous layer, which is pro- (1950.
portional to (/b), is smaller than that for a homogeneous Translated by R. M. Durham
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Vibrations of twinning-boundary atoms
O. M. Ostrikov

Mozyr State Pedagogical Institute, 247760 Mozyr, Belarus, Russia
(Submitted March 30, 1998
Zh. Tekh. Fiz69, 115-118(June 1999

A classical method is used to obtain dispersion equations for the vibrations of twinning-boundary
atoms. ©1999 American Institute of Physids$S1063-784£99)02206-(

1. Twinning is one of the main types of plastic deforma- where f,,,; is the force acting on the twinning-boundary
tion in crystals. Hence, its study from the scientific viewpointatom from atont (Fig. 2) andf,,_; is the force from aton2.
is of major importance because for many materialsch as In this case, the equation of motion for the twinning-
Bi, Zn, Sb, TiAl, and silicon iron plastic deformation in boundary atoms will have the form
specific crystallographic directions is accomplished solely by .
twinning. Despite a vast amount of experimental dafahe MXn= B(Xn+1 COSa +X,_1 COSa—2Xp). 4
problem of constructing a logical theory of crystal twinning  \we shall seek a solution of E4) in the form
has yet to be resolved. ,

The dynamic characteristics of twinning boundaries are Xn=Xo€ (*!7 "2, ()
de_c?sive factors in stgdying the ph_ysical relati_onships d_eter\'/vhere X, is the amplitude of the vibrations and is the
mining the twinning-induced plastic deformation of solids. b, mber of the atom.

In the present paper we study the dynamics of the vibrational e position of neighboring atoms numbened 1 and

motion of twinning-boundary atoms from the point of view ,_ 1 on thex axis at timet can obviously be given by
of the microscopic theory of twirss.

2. At present, an expression describing the vibrations of  Xp+1=Xg
a chaiq of atoms of like maﬂ@ has.now_ becomg gclassical =y dlot-(1-1)ag) )
resulf in solid-state physics and in this form it is used to n-17—70 '
simulate a one-dimensional crystal lattice Substituting Eqs(5)—(7) into Eqg. (4) gives a solution
which we write as the dependence @fon q
w=2 \/E
M

where w is the frequency of the atomic vibrationg,is the
wave vectora is the distance between the atoms, #his a

ei(wt*(n+ 1)aq), (6)

. (aq
sm( 2 )‘ @ w2=i/|—'8(1—cos(aq)005a) (8)

constant. B .laq a

Using the method applied to obtain formull, we can w==*2 Jm(SIr?(? +cos{aq)sm2§>. 9
calculate the dependence @fon q for an atom situated at
the twinning boundarA; A, (Fig. 1).

3. We shall analyze a crystal consisting of atoms of like
massM. We shall assume that each atom only interacts with A
neighboring atoms. In the harmonic approximation the po-
tential interaction energy of these atoms is related to the

distancex between them by

-

U (x)~X2. 3]

The interaction forcd between the atoms is therefore
directly proportional tox.

We relate the origin of the Cartesian coordinate system / \

™\
VN

to a twinning-boundary atonfFig. 2). The position of this
atom on theX axis will be denoted by, . The positions of
atomsl and2 on this axis will be denoted by, 1 cosa and
Xn+1 COSa, Wherea is the twinning angle. The force acting
on the twinning-boundary atom will then be given by

/
%
%
%

S S LSS
Jl L S LS

/]
d
d
d
%

fo=fai1tfro1=B(X,41COSa+X,_1 COSa—2X,),
3 FIG. 1. Schematic oA;A, twinning boundary.

1063-7842/99/44(6)/3/$15.00 712 © 1999 American Institute of Physics
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>0

FIG. 2. Twinning-boundary atom surrounded by neighboring atoms.

A comparison of Eqs(1) and (9) indicates that these

formulas differ in respect of the term in the radicand:

cos@q)sin’(e/2). In the limiting case wher =0, expression
(9) gives formula(1).
Figure 3 gives the dependences

w\/ﬁ_w\/ﬁ
3\NE=2 E(aQ)

for the vibration of a twinning-boundary atom along tKe
axis for various twinning anglea between zero and 40°.
Table | gives the values of Siw/2) in Eq. (9) for given
values ofa.

O. M. Ostrikov 713
TABLE I.
a L sina

smzi

0 0.000 0.0
10 0.008 0.2
20 0.030 0.3
30 0.070 0.5
40 0.100 0.6

It can be seen from Fig. 3 that an increase in the twin-
ning anglea leads to “truncation” of the low frequencies
and reduces the frequency range of the vibrations of the
twinning-boundary atoms.

4. Along thex axis, the nearest atonis-4 will exert the
force

Fﬂ: Fn+1+ Fn,l“l‘ 2F

=B(Yn+1tYn-1(1+2sina)—2y,), (10

on the twinning-boundary atom, whefg,,, is the force

acting on the twinning-boundary atom from at@yF,,_; is

the force from atom, andF is the force from atom4 or 2.
In this case, the equation of motion has the form

MYn=B(Yni1+Yn 1(1+2 sina)—2y,), (11
whose solution will be sought in the form
Yn=Yo€ "9, (12)

w M
FIG. 3. Dependences %‘\/E onagq:
a=0 (1), 10(2), 20(3), 30(4), and 40°

5).

1.00 —
0.80 —
0.601—
RS
~
5|
N
3
0.40
5
4
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2
1
] | 1 ] 1 | L 1 I ]
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aqg
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120
0.80 —
NS
N
|§ ™ FIG. 4. D d g M b
. 4. Dependences af+\/— onbg;
Q’ 1-5 'p Fig. 3 % P !
e -5 — as in Fig. 3.
0.40 —
1 | 1 | | 1 I ! I ]
0 2.00 4.00 6.00 8.00 10.0

where(} is the frequency of the atomic vibrations along the Note that when plotting the graph in Fig. 4, we imposed
y axis andb is the distance between the atoms along thishe constraint that the radicand in EG4) should be greater

axis. than zero.
In this case, the solution of Eg1l1l) may be written 5. To sum up, a classical method has been used to cal-
culate the dispersion dependence of the vibrations of
2B . .(bqg i - . . __
0%=—-| 2sirf| = | —cogbq)sina (13)  twinning-boundary atoms. An increase in the twinning angle
M 2 leads to a decrease in the frequency range of the vibrations of
or a twinning-boundary atom perpendicular to the twinning
boundary and increases this range for vibrations parallel to

Q==*2 \/5(3#(%

This relation differs from Eq(1) in respect of the term
in the radicand=— (1/2)cosbg)sina. As in the previous case M. V. Klassen-NeklyudovaMechanical Twinning of CrystalfConsult-
[see formula9)], Eq. (14) gives formula(1) for =0 ants Bureau, New York, 1964, USSR Academy of Sciences Press, Mos-

_ ;cos(bq)sina). (14) the twinning boundary.

cow, 196Q.

Figure 4 shows a graph of 2A. M. Kosevich and V. S. Biko, Usp. Fiz. Naukl04, 201 (1971 [Sov.
Phys. Uspl14, 286 (1971)].

9\/@:9\/@@ ) 3V. S. Savenko, O. M. Ostrikov, A. I. Pinchuk, and S. D. Sh#vre

2 B 2 B a). Abstracts of Papers presented at the Fourth International Conference on

“Action of Electromagnetic Fields on the Plasticity and Strength of
In this case, an increase in the twinning angle leads to the Materials” [in Russiaf, 1996, p. 21.

appearance of an additional maximum at the boundaries O?C. Kittel, Introduction to Solid State PhysicSth ed.[Wiley, New York
o . o 1976; Nauka, M 1978, 792 ppl.

the Brillouin zone and increases the range of vibration fre- (1979 Nauka, Moscow(1978, 762 pp]

guencies of the twinning-boundary atom. Translated by R. M. Durham
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Nonlinear surface magnetostatic waves in a ferrite semiconductor structure
A. S. Kindyak

Minsk Research Institute of Radio Materials, 220024 Minsk, Belarus
(Submitted February 9, 1998
Zh. Tekh. Fiz.69, 119-121(June 1999

A theoretical analysis is made of the propagation of a nonlinear surface magnetostatic wave in a
planar ferrite semiconductor structure as a function of the carrier concentration in the
semiconductor layer. It is shown that for certain concentrations the surface magnetostatic wave is
unstable with respect to longitudinal perturbations and may propagate perpendicular to the
magnetic field in the form of solitons. @999 American Institute of Physics.
[S1063-784299)02306-3

_ Recently Con_siderable interest has_ beer_w shown ir! stuqu- o (,u‘+k)(5u++k)tank(kst)+(u++k)\/5
ing envelope solitons of magnetostatic spin waves in thin 2kd— " — — . (2
ferromagnetic film$ So far, the conditions for the exis- (w* =K (8~ —K)tant(ks) +(u~—k)\/s

tence and formation of solitons have been studiedHere " =k(u+ up), k2= 5k?, k=k,+ik,, d andt are the

theoretically-* and the propagation of magnetostatic wavesthickness of the ferrite and semiconductor layer, respec-
pulses in the form of solitons has also been observegyely, x andu, are the diagonal and off-diagonal elements
experimentally’ However, nonlinear surface magnetostaticof the magnetic permeability tensor of the ferrite allowing
waves (SMSWs in ferrite semiconductor structures have for losses. The value o8 determines the characteristics of
been studied considerably less. interaction between the SMSW and the semiconductor layer

In the present paper we show that it is theoretically posand in this case, may be written in the form
sible for SMSW solitons to exist in a planar ferrite semicon-

ductor structure. The SMSWs propagate along Yhaxis _ WE7; 3

perpendicular to an external magnetic fielg directed along K2c2'

the Z axis parallel to the surface of the structure. . N e(h) ; o
The initial equations for studying nonlinear surface spinWNeréez,=ez;+ez;, £, is an element of the permittivity

waves in a ferrite semiconductor structure are the Maxwelf€nsor of the semiconductor in the magnetic fielg

equations, the Landau-Lifshitz equation in the magnetostatic w2 w2y
approximation for a ferrite layer, and also the Maxwell equa- es,=&g| 1— > P > +i 2p = | (4)
tions and the Lorentz equation for a semiconductor layer. otV w(0”+v7)

During the propagation of SMSWs, the role of nonlin- yynere is the permittivity of the semiconductor caused by
earity is manifested as a dependence of the frequency anfle contribution of the latticey is the electron collision fre-
phase velocity on the wave amplitude. Assuming that th‘%:]uency,wpz(47-re2N/m*aS)1’2 is the plasma frequency, and
amplitude¢ is a slowly varying function, the nonlinear dis- | is the electron concentration.
persion equation for the SMSWs may be formally written in - oy the cases=1 Eq. (2) gives the Damon—Eschbach

1 2 _ . .
the form: G(w,k,|¢|") =0, wherew is the carrier frequency  equation. In order to determine the coefficient of nonlinearity

andk=k(w) is the SMSW wave vector. Since the nonlin- ,, e shall assume that for small deviations of the magneti-
earity is assumed to be weak, the deviation of the frequencyaiion from the equilibrium state

o from wq to wy+ Q, Q<wy and the changes incompared
with the wave vectok of the linear equation will be small.
After expandingk(w) aboutky(wy) as a series in terms of
(w— wg), we obtain the nonlinear Schiimger equatioh®

M2+ M,y |2

Maz=Mo 2M?2

1—

where M, is the saturation magnetization amd; are the
components of the variable magnetizatiorr&,y,z).

Then, in the limitkd<1, we haveM,=M,— M| ¢|?
and wp=wn(1—|e|?) (Refs. 1 and % Substituting these
where 8,=d’k/dw?|,, is the dispersion of the linear group expressions into E¢2) we obtain
velocity calculated at the pointkg(wy) and vy
=dk/d|A|2|A:0'wO is the nonlinear coefficient. y=— d_G/ d_G

A necessary condition for the formation of an envelope d|A]? dk
soliton is that the Lighthill criterion 8,y<0 is satisfied.

The dispersion equation for a linear SMSW propagating
in a ferrite semiconductor structure has the fdrm d|A|?

i— — = —+y|A|?2A=0, N

1063-7842/99/44(6)/3/$15.00 715 © 1999 American Institute of Physics
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1 »
A=5[5+ o+ (\J6— 8)exp( —2kd)], 3
B=(1—8)(1—exp(—2kd))/4, 2k !
D, = oy 0+ @ 1— exp( — 2kd))/2), !
/
Ca: wm(wh— (,'.))/2, g 1+ :
5
dG g
W:AKD_'—ADk_(BkC—’_BCk)! @
< 01
=
2 £
w
D=0w§- " (1-e 2d), =
_7 -
_ o2, %m —2kd
C—w0+7(a}+wh)(l—e ), (5)
-2
whereA,, By, C,, Dy, and é, are derivatives with respect
to k, andwi= wi+ wpwn.
USing _3 i i ] i 1 1 1 1 1
4500 5000 5500 6000 6500
dw dk MHz
=V
d|A|? g d|A|? FIG. 1. Product of group velocity dispersion and nonlinear coefficient as a

o ) function of frequency for an isolated ferrite filnil) and a ferrite—
and substitutingg=1, §,=0, k=0, andw= 0y into Eq. (5), semiconductor structure with electron concentrations df 18), 10' (3),

we obtaindw/d|A|?= wnhwp/2w,, which agrees with the data 10° (4), and 16°cm* (5).
given in Ref. 1 to within a factor.

We know that solitons can occur as a result of longitu-
dinal and transverse modulational instability. The first is Ob-criterion is satisfied over a narrow range in the low-
served as self-modulation and the second as self-focusingrequency part of the spectrum. An increase in concentration
Self—focusing of SMSWs in a ferrite film without losses was causes the region of existence of SMSW solitons to disap-
studied by Zvezdin and Popkdvwho showed that an pear. A further increase in concentration leads to the reap-
SMSW propagating perpendicular to the magnetic field is
stable with respect to longitudinal perturbations. Boardman
et al2 showed that an SMSW propagating at an angle to the
magnetic field is unstable with respect to longitudinal pertur-
bations, which leads to the formation of SMSW envelope 61
solitons.

It can be seen from the data plotted in Fig. 1 for ferrite
semiconductor films that a SMSW is unstable with respectto 4L
longitudinal perturbations even when it propagates normal to ,
the magnetic field. Calculations were made neglecting the'§
losses for values of the parameters corresponding to those o.s

iron yttrium garnet films and a CdSe semiconductor: aﬂ 2r
47Mo=1750 G,H =960 Oe, hole mobilityu,,=50 cn?/V s, &
electron mobility u.=650cnf/Vs, d=0.002cm, andt M~

=0.0002 cm. 0
Figure 1 shows that for an isolated ferrite filmd=€1)
the SMSW is stable with respect to longitudinal perturba-

tions. In the presence of a semiconductor layer, a region of -2 | I %
existence of envelope solitons appears from low carrier con- , ,-' ————— 4
centrations and this extends over the entire region of exis- ! T 5
tence of the SMSW as the concentration increases. -4+ !.I

Allowance for losses in the ferrite and the semiconductor [ ',‘ . | | '
yields more complex frequency dependences of the SMSW 4500 4750 5000 5250 5500
group velocity dispersion and the nonlinear coefficient for MHz

various carrier concentrations in the semlconduCIE]g. 2. FIG. 2. Product of group velocity dispersion and nonlinear coefficient as a

Figure 2 gives the calculated products of th_e real pan?gzof _function of frequency for a ferrite—semiconductor structure with electron
andvy. It can be seen that at low concentrations the Lighthillconcentrations of 26 (1), 107 (2), 108 (3), 10*° (4), and 16°cm™2 (5).
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pearance of this region which then expands over almost the This work was supported by the Belarus Republican
entire SMSW frequency range bbsincreases. Note that Fig. Fund for Fundamental Research, Project No. 96-142.

. . ~ 7 )
2 gives Valqes for Wthl’k2_> 20 C_m - Thus, these data IA. K. Zvezdin and A. D. Popkov, Zh. I&p. Teor. Fiz.84, 606 (1983
show that in planar ferrite semiconductor structures an [Sov. Phys. JETB7, 350 (1983]. ]
SMSW is unstable relative to longitudinal perturbations. Zéé Dz-li%a(‘ggg”['s \gu- \F/)-hGSU'33";’%2”2253-8?-133";50“ Zhksp. Teor. Fiz.

. , V. yS. , . 3

We shall estimate the threshold SMSW power neecied*B. A. Kalinikos, N. G. Kovshikov, and A. N. Slavin, Zh.K8p. Teor. Fiz.
for soliton formation which is defined dsp|?=—B,/vyr, ,94(2), 159(1988 [Sov. Phys. JETRY, 303 (1988].
where 7 is the pulse duration. Using an asymptotic expres- a-g%;oardma”' S. A. Nikitov, and N. A. Waby, Phys. Rev48 13 602
sion for the SMSW poweér* P=rLd?wM?||? (WhereL is s 3. Lighthil, J. Inst. Appl. Math1, 269 (1965.
the structure width we find that for the parameters used and °A. S. Kindyak, Zh. Tekh. Fiz4(11), 99 (1994 [Tech. Phys39, 1143
N=10"cm 3, w=4.6 GHz, andr=8x 10 " s the threshold (1994

power for soliton formation i =17 mW. Translated by R. M. Durham



TECHNICAL PHYSICS VOLUME 44, NUMBER 6 JUNE 1999

Efficiency of microwave energy storage in a cavity
S. N. Artemenko
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A refinement is made to calculations of the microwave energy storage efficiency in a cavity.
© 1999 American Institute of Physids$S1063-784£99)02406-X|

The optimum input coupling coefficiegt corresponding

to the maximum energy storage efficiengyfor given input 061
pulse lengtht; is usually determined using the well-known
formula
05 7](/3),l'=1255
B=(2.512r,)Iti—1, (1) &
8~
which is derived from the expression for the storage .~
- < g4t
efficiency >
&~
7=4B7p(1-exp(~ti(1+B)/27y))*/((1+ B)*t), (2 o(@), =1
where 7, is the power time constant of the cavity. 0.1
Differentiating » with respect tox=t;/7,, expression
(2) gives the condition for maximurny in terms ofx for 0.2 ) ) L ! I
given B 05 10 1.5 2.0 25 x
L 4 i . I L
expz/2)=1+z, 3 7 2 3 4 § B
wherez=(1+ B)x, which yields formula(1). FIG. 1. Storage efficiency as a function of input coupling coefficigrior

For instance, fog=1 formula(1) gives the well-known a fixed normalized input pulse lengthand as a function of pulse length
optimumt;=1.256r, for which the storage efficiency is ap- for fixed couplings.
proximately 0.41. However, this does not imply that when
the input pulse length is 1.25, the maximum efficiency

corresponds to the critical coupling=1. It is easy to see  Thus, formula(1) can only be used to find the optimum
from formula(2) that in this case, the maximum efficiency is input pulse length for a given input coupling coefficient and
obtained forg satisfying the equation formula(4) must be used to determine the optimum coupling
for a given input pulse length to avoid errors.
exp(z/2)=1+2zB/(B—1). (4) g PEEP ?
In this case, the solution of Ed4) is B~2.5 and the
storage efficiency is thesr 0.515. 1s. V. Baraev and O. P. Korovin, Zh. Tekh. Fib, 2465 (1980 [Sov.
Figure 1 gives the storage efficiency as a functiorgof ~ ©"YS: Tech- Phy25, 1444(1980].
for x=1.256r, and as a function ok for g=1. Translated by R. M. Durham
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Loading characteristics of an electrostatic coaxial lens
L. P. Ovsyannikova and T. Ya. Fishkova

A. F. loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
(Submitted March 4, 1998
Zh. Tekh. Fiz69, 123-126(June 1999

The position of the image is calculated as a function of the position of the dijgxtlar beamn
for an electrostatic system consisting of two coaxial cylinders and an end diaphragm with
an annular slit. ©1999 American Institute of Physid$$1063-784£99)02506-4

In an earlier studywe determined the operating condi- ho/R=0.3 (y—1+1.1Jp/R),
tions of a coaxial cylindrical lensCCL) consisting of two
cylinders and a planar diaphragm on the charged particle r1/R=0.21.5/R—1)y+0.4yp/R+0.65. (1)

entry side which focuses a tubular beam onto the axis of the 14 crosses in Fig. 1 give the values calculated using the

lens. The ca_rdinal elements of the im_age space were Cf_ilmff)rmulas(l). It can be seen that these differ negligibly from
lated numerically. For these we obtained simple numericaly,o numerical calculations.

formulas which give an accuracy better than 25% and are
convenient for engineering calculatiohs.

The aim of the present study is to calculate the loading
characteristics of a CClthe position of the image as a func- AL
tion of the position of the objertIn addition, the authors 72” A
show that a CCL with a tubular beam focused onto the axis
satisfies the classical lens formula which is well-known in
optics as the Newton formula.

A coaxial cylindrical lens with the front end closed by a 72.0
diaphragm and the rear end open belongs to a class of lens
for which the cardinal elements of the object and image
space differ in magnitude. This is because no field exists ir 75
the object space whereas a field does exist in the image spa
and at a distance from the lens greater than its aperture,
becomes homogeneotisThe calculations were made nu-
merically using a program developed by the authors for elec *
trostatic electron-optics systems possessing rotational syn
metry. The CCL geometry was selected on the basis o
previous studies made by the authors: the ratio between tr 25
radii of the external and internal cylinders wsp =2-100,
the gap between the input diaphragm and the external cylin
der wass/R=0.1 and the length of the lens wasR. A
working voltageV is applied to the external cylindrical elec-
trode with the internal electrode and the diaphragm
grounded. For this geometry and power supply the tubula
beam is focused onto the axis of the lens over the entirt
range of variation of the distance between the rear edge c

&n

0_

the lens and the image. 04 2
Figure 1 shows a schematic of the CCL and its cardina [ ,X,./-/X'

elements for the object space as a function of the excitatior | 3 o [

of the lensy=eV/e, wheree is the particle charge andis ) /TZ/ ///x/ ¥

the energy. We used numerical calculations to obtain empiri | —_~

cal formulas for the cardinal elements of the object space: th gg}

focal lengthfy, the position of the principal plartg,, and the 7 [,

initial radiusr; of the family of central beam trajectorieson #[ x * * X
the side of the image space, about which the focusing takes
place FIG. 1. Cardinal elements of the object space of a CCL of lehgtR: focal
length(solid curve$, position of principal planédashed curvgsand entry
radius of axial beam trajectoridglot-dash curvefor various ratios of the
fo/R=2[(1-p/R)/y—0.3], radii of the external and internal cylindeiR{p=2 (1), 10(2), and 100(3).
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It is of practical interest to obtain the loading character-
istics of the lens which determine the relationship between
the position of the object and its image. By varying the dis-
tance between the object and the entrance to theddosa
specific lens power, we determined the distance between the

TABLE I. RIp=2,1=R.

L. P. Ovsyannikova and T. Ya. Fishkova

FIG. 2. Position of the imagédsolid
curveg and radius of the central beam
trajectories on entry to the ler{sashed
curves as a function of the position of
the object for various excitations of a
lens havingR/p=10 andl=R: y=1.0
(1), 0.75(2), 0.5(3), 0.25(4).

exit and the imagey for axis—axis focusing. It should be
noted that in this case, the radius of the central beam trajec=

tories at the entrance to the lens, about which the beam &

focused, depends on the position of the object. This radjus <
was also determined numerically and the results of the cal-
culations are given in the form of graphs and tables.

Figure 2 gives the loading characteristics of a CCL withq
the typical geometnR/p=10 andl=R (solid curve3 and
also the corresponding values of the radiys (dashed 5
curves. Table I(upper ling gives the loading characteristics
for a CCL withR/p=2 andl =R while Table Il (upper ling
gives those folR/p=100 andl=R. All the geometric pa- »
rameters are given in units of the external cylinder radtus

0.2 0.3 0.4
g la g la g fa g la

7.9 0.88 3.3 0.84 1.8 0.82 11 0.80
8.0 0.89 3.2 0.86 1.7 0.83 0.90 0.80
20.1 0.88 5.0 0.84 2.4 0.82 14 0.79
21.1 0.89 4.7 0.86 2.1 0.83 11 0.80
64.0 0.86 6.3 0.84 2.8 0.82 1.6 0.79
83.3 0.88 5.9 0.86 2.4 0.83 1.2 0.80
175 0.83 4.8 0.82 2.3 0.78

0.84 3.8 0.82 1.6 0.80

18.3

15.2 0.78 4.2 0.77
9.2 0.81 2.5 0.78
13.0 0.74
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TABLE Il. R/p=100,=R. The values ofr, calculated using formulé2) are indi-

) 0.25 05 0.75 o cated by the crosses i_n Fig. 2 apd.are given in Tables I_gnd Il
(lower lineg. The maximum deviation between the empirical

a g fa g la g la g la values and the numerical calculations does not exceed 10%.

o 67 058 25 056 11 052 046 048 It is of considerable practical interest to demonstrate the

58 056 22 052 094 048 049 045 possibility of using the Newton formula in which empirical
15 143 058 35 056 14 051 059 0.48 expressions are substituted for the cardinal elements of the

118 055 29 051 12 048 058 044 CCL. We performed these calculations for the coaxial lens
10 294 058 42 056 1.6 0.51 066 048 geometry indicated above using a refined empirical formula

217 054 34 051 13 047 062 043 _
86 054 23 050 090 o0ae forthe focallength of the image space

5
. SENs Isoom o 0% giR-lai-pR)y-L0 @
0.47 31 043 11 040 The results of the calculations are presented in Tables |
2 oo 107044019 0420 g4 ) (Jower line and are shown by the crosses in Fig. 2. It
1 ?,‘,3 O.'fu 71.'76 09'3338 can be seen that in the region of existence of a real image,

86 031 the Newton formula is satisfied to within at least 25F4g.

2). The accuracy of determining the position of the image for

a given position of the object deteriorates as the object ap-
proaches the focus of the lens because of the specific features
Oqf the Newton formula.

To sum up, we have calculated the loading characteris-

It should be noted that substituting these numerical values
the focal lengths of the object and image spaces into the

classical formula reveals good agreement with the numeric ¢s of an eIectrgstatlc lens cormstmg of two coaxial cyI|n-_
values plotted on the graph and given in the tables. Exce 2erS and an adjacent planar input diaphragm under condi-

tions are the operating regimes where the focal length iil)ons of point-to-point focusing. The calculations were made

smaller than the lens aperture, when the focus falls within th y computer and using empirical formulas. It was shown that

strong field. In this case, the Newton formula cannot be ap'ghe classical lens formula is satisfied for a CCL having this

plied, as is the case for all other lenses. geometry.
On the basis of the numerical calculations, we obtained a
simple empirical formula for the radius of the central beam ) i )
L. P. Ovsyannikova and T. Ya. Fishkova, Pis’'ma Zh. Tekh.Z6), 39

trajectories (1996 [Tech. Phys. Lett22, 660 (1996)].

—r 2L. P. Ovsyannikova and T. Ya. Fishkova, Zh. Tekh. 6712), 81 (1997
ra=ro=0.0943+1/Ln(p/R)]/a, (2) [Tech. Phys42, 1444(1997].

wherer, is the initial radius of the central trajectories of a 3; 't:’h- gvgﬁnnig"a' 359- V3~4Zaig‘éet$ and E. V. Shpak, Nucl. Instrum.
beam parallel to the axis on entry to the lers—{x) for ethods Phys. Res. 298 344 (1990.
which we derived an empirical formula in Ref. 2. Translated by R. M. Durham
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Surface flow of liquid in an electric field
V. A. Semenov

Perm State University, 614600 Perm, Russia
(Submitted March 5, 1998
Zh. Tekh. Fiz69, 127-128(June 1999

An analytic solution is proposed for a model problem which demonstrates the occurrence of a
surface flow of weakly conducting liquid in an electric field which was previously

observed experimentally by the author. 1®99 American Institute of Physics.
[S1063-784299)02606-9

Berezhnov and Semen’or/eported results of an experi- divv=0, —Vp+75Av=0,
mental investigation of a new type of surface flow observed
at the free surface of a weakly conducting liquid in a static ~ r=b: v=0,
electric field. They established that unlike the electrocapil-
lary motion of mercury droplet;n this effect the surface r=R: vy=0, oin=1E;, )

velocity is proportional to the square of the voltage betweeRynherey is the velocity in the liquidF; is the strength com-
the electrodes. In the present paper the existence of this eﬁbnent tangential to the free surfaegis the viscosity of the

fect is demonstrated analytically. ~liquid, o is the viscous stress tensgris the pressure, and
We shall assume that an infinite air bubble of radRis |, is the unit vector of the normal.
located inside an infinite cylinder of radiusfilled with a After dedimensionalizing —R, u—U,, v—U%

weakly conducting liquidplanar problem The axes of the 4R, +— U /47R, o os/oR, b—Db/R) assuming that
cylinder and the bubble are the same. We shall assume that@fe surface current induced by the Ohmic conductivity is

the surface of the cylinder the potential distribution is de-much smaller than the current produced by the surface flow,
scribed byU, cose, wheree is the angle in the polar coor- \ye have

dinate systemr(,¢) measured from the axis, perpendicular
to the cylinder axis, andJ, is the characteristic potential Au;j=0, j=1.2,
difference. Since the conductivity of air and liquid differ, a .

free charge forms at the free surface of the liquid which can ~ divv=0, Av=Vp,
be determined by solving the following problem in the ap- r=b:

. . . . u,=cose, v,=0, v,=0,
proximation of weakly conducting air: 2 ® '

@

Au, =0, j=1,2, ) dup
J J r=1: u;=uop, 7:BU¢V‘FT, (3)
r=b: u,=Ugcose,
au;  du,
r=R: u;=u,, =———&g—
1= o T
du; .
G'WZ_UsAsu2+dlvs(VsT)_Vso'sVsub lov, dv, v,
0, =0, ——+—f—f=rF
7 r 9o or r e
g M1 U .
T @) U3 @
Here u; andu, are the potential in the bubble and in the 16m°R%po

liquid, o and e are the conductivity and the permittivity of
the liquid, respectivelyg is the surface conductivity\s is
the surface Laplaciany is the surface velocityV, is the
surface gradient, andis the free surface charge. When cur-
rent .flows, the component of the electric field strength tan- vfps)zvosin 20+ (v1SiN20+v,SiN4Q) B+ . ..,
gential to the free surface is nonzero. As a result, a force will

act on the free surface charge which is responsible for the b2(b2—1)

onset of surface flow. We shall find the steady-state velocity Vo= 5 3

of this flow in the approximation of low Reynolds numbers 2e(b"+1)

assuming that the free surface is nondeformable and the vis-

cosity of the air is low. For this case we have the following _ b%(b?~1)*(eb®+ &~ 1+b%)
equations: 4g3(b%+1)7

Solving the problent3) and(4) by expanding as a series
in powers of 8 (B<1) we find the velocity at the free sur-
face of the liquid

1063-7842/99/44(6)/2/$15.00 722 © 1999 American Institute of Physics
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b*(b?—1)(eb®+&+2b%—2)(b'%+3b%+6b%— 6b*—3b%—1)

5
16¢3(b%+1)8(b®+ 1)(b®+ 2b%+ 4b*+2b%+ 1) ®)

Vo=

The solution(5) indicates that the surface velocity is V. V. Berezhnov and V. A. Semenov, Pis'ma Zh. Tekh. B(5), 92
. - ... (1996 [Tech. Phys. Lett22, 223(1996)].
proportional to the square of the characteristic potential dif-2y, " | evich, Physicochemical Hydrodynamifis Russiai, Academy of

ferenceU,, which agrees qualitatively with the experimental Sciences of the USSR Press, Mosc@§52, 553 pp.
results obtained in Ref. 1. Translated by R. M. Durham
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Influence of an internal getter in silicon on the parameters of Au—Si structures
V. K. Kiselev, S. V. Obolenskil, and V. D. Skupov

N. I. LobachevskiNizhni Novgorod State University, 603600 NizhNiovgorod, Russia
(Submitted March 30, 1998
Zh. Tekh. Fiz69, 129-131(June 1999

It is shown that internal gettering of impurities and defects in Au—Si structures can enhance their
reliability and stabilize their characteristics. €99 American Institute of Physics.
[S1063-78429)02706-3

Silicon—gold structures are extensively used as the basmslectrodes to lower the resistance. The width of the interelec-
for fabricating photoconvertergdiodes and controllable trode region was 50m. Data obtained by infrared absorp-
switche$ and devices for measuring the physicochemical pation spectrometry indicate that the oxygen content in the ini-
rameters of external media, such as gas sensors. As in othal substrates did not exceed X40®cm 2 and the
types of semiconductor devices, the electrophysical, funcaverage microdefect density established from selective etch-
tional, and reliability characteristics of Au—Si structures de-ing patterns in a Sirtl solution was x4.0° cm™ 2. The x-ray
pend very strongly on the presence of accideritick-  diffraction patterns of the initial crystals revealed a dominant
ground impurities and other crystallographic defects in the(004) allowed peak according to the extinction conditions in
silicon substrate. Various gettering procedures are used tilicon together with “forbidden” (002 and (006) reflec-
reduce the concentration of impurities and defects, of whichions whose intensity is related to that of the main peak as
internal gettering is held to be the most promising method (o2 /1 (0oa)= 3 ¥ 1072 and I 006)/ ! (004y=1.1—2.3X 1072,
for silicon! As yet, the positive capabilities of this compara- The appearance of these forbidden peaks indicates that the
tively new method, especially for enhancing the radiationinitial samples contain regions of microstresses having a
resistance of devices, have not yet been fully identified. Theomponent normal to the reflecting surface.
aim of the present study is to investigate the influence of Before the gold was deposited, one batch of substrates
internal gettering on the photoelectric properties of Au—Siunderwent internal gettering using a method described
structures bombarded by moderate-energy protons. by Skupov? This involved irradiating the initial samples

The structures used for the investigations consisted ofvith alpha particles from &'%Po radionuclide sourceE(
twenty elements arranged in an interdigital topology on=4.5MeV,®=10""-10"cm ?) to activate nucleation cen-
dislocation-free Czochralski-grown KDB-12001) silicon ters and grow gettering inclusions during the subsequent
crystals by thermal deposition of a gold layer followed by three-stage annealing in a dry nitrogen atmosphere: 6 h at
brazing. A 2um layer of galvanic gold was grown on the 1373 K, 12h at 1073 K, and 8 h at 1373 K. The other batch of

10000

1000

100 H FIG. 1. Current—voltage characteristics of
Au-=Si structures without illumination
<§__ (1-4) and with illumination ('—4'): 1,
- 1’ — control samples?2, 2' — after get-
tering, 3, 3’ — control samples after pro-
10 ton irradiation, andt, 4 — after gettering
and proton irradiation.
1
0.1 | 1 { | ) |
0 10 20 30 40 S0 50
uv
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FIG. 2. Histogram showing the distribu-
tion of the structures in terms of break-
down voltage (without illumination:

1 — control samples,2 — control
samples after proton irradiatio8,— af-
ter gettering,4 — after gettering and
proton irradiation; N is the structure
number.

substrates was not annealed and the structures on thesilicon are growth clusters and clusters of intrinsic point de-
served as controls. It should noted that when the electrofects and impurities formed during the aggressive chemical
physical characteristics were measured for various contrdreatment of the substrates, as well as their surrounding im-
samples, some stabilization of the resistance was observepyrity atmospheres. Indirect confirmation of this may be pro-
which showed up as an abrupt increase in current from a fewided by the increase in the resistance of the structures after
to hundreds of microamperes when the voltage at the corproton irradiation, when additional gettering processes may
tacts was increased to 10—15V. This effect indicates sombe activated by radiation point defects and elastic wéves.
instability of the impurity-defect composition of the initial Measurements using batches of fifty structures revealed that
substrates and the Au—Si transition region which is not comafter gettering, the breakdown voltage increases by an aver-
pletely eliminated by conventional thermal brazing. age of 62% whereas after irradiation of the control samples it
Some of the structures in each batch were irradiated by mcreases by 22%Fig. 2). Some reduction in the breakdown
proton dose of 6.28 10! cm™? at increasing energies of 30, voltage after proton irradiation of gettered structures is
60, and 90 keV to suppress surface conduction channels. Belearly attributable to the electrical activity of the incorpo-
fore and after irradiation we recorded the current—voltageated radiation defects whose influence, however, is not so
characteristics without illumination and under illumination appreciabldless than 2%as the gettering. This is also evi-
by 0.85um 40 mW radiation. denced by the fact that gettered and irradiated structures are
The experiments showed that as a result of internal getstable under the action of short-terap to 19 loads of
tering in the surface zone 7—10n deep, the microdefect 55-60V unlike the irradiated control samples.
density decreased to910° cm™ 2 and the density dispersion These results suggest that internal gettering of impurities
decreased to 2:910° cm~2. The (002 and (006) forbidden  and defects in the substrates can stabilize the parameters and
peaks disappeared on the x-ray diffraction patterns, i.e., thenhance the functional reliability of silicon—metal structures,
level of microstresses in the crystals was reduced. In contragticluding that under irradiation.
to the control samples, no instability of the electrical param-
eters was detected at the initial time of measurement for any
of the structures formed on the gettered substrates. 1G. Z. Nemtsev, A. |. Pekarev, and Yu. D. Chistyakov, Mikroelektronika
Figure 1 gives the current—voltage characteristics of 12, 432(1983.
these structures, which show that after gettering the resisZV- D. Skupov,Abstracts of Papers presented at First All-Russia Confer-
tance increases and the structures reveal a more abrupt tranz °P o"gf:ser'fi'rs ggfggesi?cis hé’f}'/‘;?a‘a;e”I;'S:;iz;’”f\%ssoc\’;,':iggg’at'on
sition to the prebreakdown state, both without illumination p 157,
and under photoexcitation of nonequilibrium carriers. These®P. V. Paviov, Yu. A. Semin, V. D. Skupov, and D. I. Tetel'baum, Fiz.
observations correlate with data on the dissolution of micro- Tekh. Poluprovodn.20, 503 (1986 [Sov. Phys. Semicond20, 315
. : 986].
defects under gettering and suggest that the main channel
for current flow and microplasma formation in the initial Translated by R. M. Durham
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Sulfide passivation of a textured interface of a gallium arsenide surface-barrier
photovoltaic cell

N. L. Dmitruk, O. Yu. Borkovskaya, and |. B. Mamontova

Institute of Semiconductor Physics, Ukrainian Academy of Sciences, 252650 Kiev, Ukraine
(Submitted April 2, 1998
Zh. Tekh. Fiz69, 132—-134(June 1999

A comparative study is made of the influence of sulfide passivation in an aqueg8sIBO

solution on the photoconversion parameters of solar radiation in Au—GaAs barrier

structures as a function of the character of the microrelief and the pretreatment of the GaAs
surface. A quasigrating and a dendritic surface microrelief were produced by anisotropic chemical
etching. It is shown that this type of GaAs surface treatment is potentially useful for

enhancing the efficiency of a photovoltaic cell stored for several years. A possible mechanism is
discussed for the processes leading to changes in the structure parameté@&99 ©

American Institute of Physic§S1063-784£99)02806-9

A GaAs surface microrelief produced by anisotropic was varied between 15 and 25nm and was determined by
chemical etching can reduce the reflection coefficient of lighimultiangular ellipsometry using quartz satellite plates. The
in the visible and in the near ultraviolet and infrared to a fewstructures were fabricated using single-crysiagbaAs wa-
percent, provided that its morphology and depth are suitablfers doped to betweenx10' and 3x 10*”cm™ 2 and(100-
optimized?! This is particularly important when such a sur- oriented epitaxialn-n*-type films (=1x10°-3x 10
face is used as the interface in solar cells formed by a metalem™%). A dendritic microrelief was fabricated by etching in
semiconductor contact since even thirX0nm) layers of  concentrated HNQ(Ref. 1) and a variable-period quasigrat-
metal (Au) increase the reflection coefficient to 45-55%ing microrelief was obtained using 2HF : 280,:1H,0,
(from 30-35% for GaAs® Depending on the microrelief etchant The oxide was removed by etching in an HCI so-
morphology and the thickness of the metal film, the photodution.
sensitivity of these structures can be enhanced compared Figure la shows spectra of the short-circuit photocurrent
with that of planar structures, between 1.5-2 and several terig; per incident photon for Au—GaAs diode structures with
of times in different parts of the spectruhtowever, the different surface microrelief and different pretreatment. It
presence of pyramidal protrusions and acutely angled facesan be seen that the effect of the sulfide passivation depends
of a dendritic relief intensifies the field in these parts of theon the initial state of the surface. The maximum increase in
surface, induces a thermal-field current component, and ef-; is observed for structures with a planar or microrelief
fectively reduces the barrier heighwhich should be ob- surface from which the oxide layer was not removed by etch-
served as a reduction in the shunt resistédRgeand adrop in  ing (curvesl, 1’, 2, and 2'). For relief surfaces with the
the open-circuit voltag®/,,; of the solar cell. Quite clearly, oxide removed, which gives the maximury sulfide passi-
these effects may be suppressed by means of an intermediatation has a considerably weaker influencel gn mainly in
passivating layer. Here we examine the possibility of supthe short-wave part of the spectruourves3, 3', 4, and4’).
pressing these effects by sulfide passivation of a GaAs suBy analyzing the spectra of the internal quantum efficiency
face in an NaS-9H,0 aqueous solution, bearing in mind its of these diode structures using a model considered in Ref. 3
positive influence on the photosensitivity of these structtires,taking account of the light transmission spectrum in an air—
and also the presence of an etching phase during thisietal-intermediate oxide layer—semiconductor structure cal-
treatmerft’ which may slightly smooth the acute-angled re- culated using the method described in Ref. 8, we can deter-
lief. mine the recombination parameters of the structure, i.e., the

We made a comparative study of the loading opticalambipolar carrier diffusion length, the surface recombination
current—voltage characteristics and photocurrent spectra eklocity S, and the velocity of above-barrier transport of ma-
Au—GaAs barrier structures fabricated by vacuum depositiofjority carriersV,, into the metal. We established that sulfide
of semitransparent Au layers on planar and microrelief GaAgassivation reduces the velocBof the Au—GaAs interface
surfaces with a natural layer of oxide or with the oxide re-by one or two orders of magnitude for structures with a natu-
moved by etching. Some of the wafers were also passivatedl oxide layer and by a factor of 1.2—4 for structures with a
in a 2N NaS-9H,0 aqueous solutiori20 9 followed by textured surface and the oxide layer removed. In this last
rinsing in distilled water. The substrate temperature duringcase )V, also decreases which is observed as an enhancement
deposition of the metal was 110 °C. In order not to com- of the photosensitivity in the short-wavelength part of the
plicate the comparative analysis, no antireflection coatings ospectrum. Figure 1b shows the influence of sulfide passiva-
contact grid were used and the thickness of the metal filntion on the optical current—voltage characteristics of
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100 FIG. 1. Spectra of short-circuit photo-
current (@) and optical current—voltage

80 characteristics(b) of Au—GaAs struc-

A tures with a planar surfacél, 1'), a

3 quasigrating microrelief2, 2', 3, 3') and

~ 60k dendritic microrelief (4, 4') after pre-

liminary removal of the oxid€3, 3, 4,
4') and sulfide passivation(1’'-4');
n-GaAs single-crystal wafer withNy
=3x10%cm™3, and gold film 20 nm
thick.
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Au—GaAs structures with a quasigrating microrelief mea-also the change in the solar energy conversion parameters of
sured using a sun simulator under conditions correspondinghe solar cell as a result of sulfide passivatidg.{! <o,

to zero atmospheric mass. It can be seen that sulfide passir, /U, 7s/70) are presented in Table I. It can be seen
vation improves the characteristics of the solar cell in structhat sulfide passivation of a textured GaAs surface can sub-
tures with and without an oxide layer. Quite remarkably, instantially enhance the efficiency of a surface-barrier photo-
this last case we observe an increasevig which is not yojtaic cell by increasing the fill factoi., and Ry, and
associated with a drop in the surface recombination VeIOCityreducingRs.

Figure 2 shows the optical current—voltage characteristics of 11,4 investigations showed that this GaAs surface treat-
structures with a dendritic surface microrelief from which thement prevents the degradation of the characteristics of Au—
oxide layer has been removed. We can see that in this cas

GaAs photovoltaic cells, which remain almost constant for

sulfide passivation improves the fill factor of the character-?e,wveen two and four years. Figure 2 shows the characteris-
[

istic and gives a corresponding increase in the efficiency of. . . .
the solar celly. The equivalent circuit parametefseries cs of strucFures aft_er dn‘ferent. treatment of a m|cr_orel|ef
resistanceR, and shunt resistancBy) of the microrelief surface obtained atS|x-r_no_ntth intervals. For comparison we
structures determined from the optical characteristics an!so show the c_haracterlstlcs of planar structu_res with a natu-
ral layer of oxide on the GaAs surface which deteriorate
more rapidly, mainly as a result of a drop Ry,. Studies
200+ using photodiode structures having different areas showed
that the shunt resistand®,, is inversely proportional to the
diode diameter, i.e., is mainly caused by leakage across its
perimeter. We can hypothesize that as under annefling,
local stoichiometry of the interface plays a major role in the
degradation of these structures with time. The natural oxide
layer of GaAs is characterized by excess gallium in the form
Ga,0; (Ref. 9, whereas the arsenic is in the form&% (up
to 35%) as in the unoxidized state, and the free arsenic pos-
sesses fairly high mobilit} Since the conditions at the edge
of the diode are more favorable for its emergence at the

150

50 surface, the oxide G&; may predominate here with mainly
gallium diffusing through it. We postulate that this results in
the formation of channels for the interdiffusion of gallium
and gold atoms at room temperatyfer example, as a result

0 of recombination-stimulated processes under illumination

These channels may shunt the photovoltaic cell and ulti-
FIG. 2. Optical current—voltage characteristics of Au-A*-GaAs struc- mately re_SUIt Inits degradatlon_. Treatme_nt of this diode .|n an
tures with a dendritic surface microreligf, 1', 2, 2'), including after sulfide ~ HCI solution, as a result of which the oxide becomes thinner
passivation(2, 2'), and a planar GaAs surface with a natural layer of oxide and severely depleted in gallium around the perimeter of the
(3, 3, 3"): 1'-3", 3" — six months afterl-3; 3" — after treating the : 9 ; : "

structure in an HCI solutiorly4=7.4X 10'°*cm™3, gold layer 16.5 nm thick. diode, almost restores the opt|cal .characterlsfms_rveS )-
The increase in efficiency as a result of the microrelief{g »;=1.16 and For planar structuresR; is proportional to the diode area

as a result of the microrelief plus passivatigg/ 77;=1.46. whereas for textured structures its value is substantially
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TABLE I.

Surface state R, kQ Rsh, kQ FF lses! I sco Uoes/Uoco UNRE

1) Relief—quasigrating 3.74 63.3 0.45 - - -
with oxide + passivation 3.16 86.5 0.49 1.22 1.03 1.38
2) Relief—quasigrating, 1.08 58.5 0.62 - - -
oxide removed+ passivation 1.45 84.5 0.62 1.0 1.19 1.18
3) Dendritic relief, oxide 0.81 535 0.56 — - —
removed+ passivation 0.20 103.0 0.72 1.01 1.19 1.32

lower, i.e., it is mainly determined by the conductivity of the tovoltaic cell and also improve its degradation resistance.
intermediate layer. This drop in the resistance as a result of
treatment in an HCI soluﬂqn and/or sulfide p_asswatpn of their v, Gorbach, E. V. Pidlisrly and S. V. Svechnikov, Opttektron.
GaAs surface correlates with the decrease in the thickness ofoluprovodn. Tekh. No. 13, 34.989.
the intermediate lay€r!® Thus, the increase M. observed ~ “P. A lles, J. Vac. Sci. Technal4, 1100(1979.

: ; ; : O. Yu. Borkovskaya, N. L. Dmitruk, and O. N. Mishchuk, Fiz. Tekh.
QS a resu.lt of sulfu_de passivation (?annOt be. atfributed to f?‘” Poluprovodn25, 487 (1991 [Sov. Phys. Semicon@5, 294 (1991)].
increase in the thlckness of the mtermedlate_lay_er but_ iS40, Yu. Borkovskaya, N. L. Dmitruk, T. Ya. Gorbach, and O. N.
caused by a change in the surface structure which in particu-mishchuk, Bektron. Tekh. Ser. 2, No. 5, 50989.

lar, leads to a reduction in the strong-field effects in the °N. L. Dmitruk, O. Yu. Borkovskaya, O. I. Mayevat al, Proc. SPIE
2999 CT No. 12, 384(1997.

current ﬂOM . . i . i by, L? Berkovits, V. I\jll( Lar?tratov, T. V. L'vovaet al,, Fiz. Tekh. Polu-

To sum up, sulfide passivation has a positive influence poyodn.28, 428 (1994 [Semiconductorg8, 260 (1994)].

on the parameters of Au—GaAs photovoltaic cells with a’N. L. Dmitruk, O. V. Fursenko, and O. Yu. Borkovskaya, Opédéron.
textured surface not only by reducing the density of surface,Poluprovodn. Tekh. No. 27, 113.994. _
electronic states which determine the surface recombinationé' i"gelnzt?'l's\ggber’ R. Gronsky, J. Washbuen al, J. Vac. Sci. Technol.
velocity at the interface, which increaség but also by oy v. Nemoshkalenko, V. G. Aleshin, L. G. Gassarenal, Poverkhnost
changing the structure and chemical composition of the in- No. 2, 88(1983.

termediate layer, which is observed as a decreag® iand ~ °H- Sugahara, M. Oshima, H. Oigavet al, J. Appl. Phys.69, 4349
an increase irRg,, V.., and the fill factor. The proposed (1999

treatments can appreciably enhance the efficiency of the phadranslated by R. M. Durham
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Results of studies of the photoluminescence of porous silicon with different prehistories have
revealed the mechanism and nature of the instability of the luminescence properties of

freshly prepared samples. It was established that the initial quenching and subsequent rise of the
photoluminescence is attributable to the intermediate formation of silicon monoxide
(photoluminescence degradatjoand subsequent additional oxidation to form &iO
(photoluminescence rigeUltraviolet laser irradiation accelerates this process by a factor of
200-250 compared with passive storage of the samples in air. Plasma-chemical treatment

in an oxygen environment merely results in a subsequent rise in the photoluminescence as a result
of the formation of monoxide on the porous silicon surface. A kinetic model is proposed for

this process. ©1999 American Institute of PhysidsS1063-784299)02906-2

The luminescence properties of porous silicon in the vis{minimum) point is reached, identified 15—-20 min after ul-
ible were first detected less than a decade’ddowever, the traviolet irradiation, is almost independent of the storage
unigue nature of this effect, caused by the quantum dimertime in air. At the same time, the numerical value of the
sions of the silicon filaments and the nature of the chemistarting intensity depends strongly on the storage time in air.
sorbed atoms, provided the main impetus for its intensiveAs a result, the steady-state luminescence level can be either
study. lower or higher than the initial value.

Here we report the main results of investigations to  We establishedcurve 1 in Fig. 2) that the change ih,
specify the mechanism and nature of the evolutional changeaccompanying prolonged storage of the sample in air is simi-
to the photoluminescence properties of porous siliconlar to the change in the photoluminescence under continuous
Samples were prepared from11]-oriented, boron-doped, laser irradiation(curves1 and 2 in Fig. 1). However, the
dislocation-free p-Si wafers ©=2.6—3.1Q-cm. Electro- length of the similar sections and the time shifts of the ex-
chemical etching was carried out at an anode current densityemum points are 200—250 times shorter under laser irradia-
of 7-14 mA/cn? using a 1:1 mixture of 48% HF and ethyl tion. This indicates that the chemical processes taking place
alcohol. Each silicon wafer was first subjected to chemicaht the porous silicon walls are identical and may be repre-
etching for 2min in a 1:2 mixture of 48% HF:HNGacids.  sented by series-parallel reactions of the type
Photoluminescence was excited by an LGN-409 ultraviolet

He-Cd laser X=325nm at a radiation power of SiH,+ % 02:>sio+g H,0,

3.0£0.1 mW. The calculated power density of the ultraviolet

flux taking into account the irradiated area, was 133.6 1 X

mW/cn?. Each of the six—eight sections of sample was ex- ~ Sit+ 5 0,=SiO+ 7 Hy, (1)

posed to the continuougip to 8h action of ultraviolet ra-
diation with 14—-16 h between successive irradiations. The
processes taking place at the porous silicon walls were as- 120
sessed from changes in the starting intensiffyr) of the
luminescent samples stored passively in air for timand
from the changes ini(t) during the continuous ultraviolet
irradiation process. Repeated irradiation of any section was
eliminated by accurately setting the preselected coordinates
of a two-coordinate microscope stage.

Typical changes in the photoluminescence intensity as a !
function of the irradiation time for freshly prepared porous T T T W I T
silicon samples and samples held previously in air are shown O
by curvesl and2 in Fig. 1. It can be seen that regardless of ’
the preliminary holding time in air, the photoluminescence ofFIG. 1. Change in the photoluminescence of porous silicon during continu-
the porous silicon always exhibits extreme changes. Rapif!s laser irradiation after various holding times in ai;=47.22 h,

quenching at the initial stage of irradiation is aCCOmp‘,:miedrzz188.2 h(the porous silicon did not undergo plasma chemical treatment
73=22.2h, 7,=4.5min (freshly prepared samples underwent plasma

. . 3
by a subsequent smooth rise th a tende_ncy to reach @emical treatment for 5 minThe subscripts 1—4 te, correspond to the
steady-state level. Moreover, the time at which the extrem@umbering of the curves.

80

I, arb. units

40
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0 w0 40’57" a0 @ Complete filling of the surface bonds with oxygen
L e S should stabilize the light-emitting properties of the porous
silicon?® However, the clearly defined rise on thg) and
Io(7) curves can only be caused by additional chemical pro-
cesses, which must primarily include additional oxidation of
silicon (2) and the possible adsorption of hydrogen giCH
molecules to form OH hydroxyl groups which, according
to infrared spectroscopy, are always present at the surface of
. . C quantum filamenfsand are not subject to ultraviolet damage
B0 200 250 E(hv)=3.82,E(Si-0)=4.4, andE(O-H)=4.8eV(Refs. 5
7 h and 6.
FIG. 2. Photoluminescence starting intensity of porous silicon as a function ~ We shall analyze these effects from the point of view of
of the holding time in airl — after anode etching arzi— after additional ~ the kinetics of the processes. Let us assume @hais the
plasma chemical etching for 5 min. total concentration of surface bonds, is the concentration

of nonradiative centerévhich we associate with SijQand

C, andC, are the concentrations of radiative centers identi-

1 fied with SiQ, and SiOH. SinceCy=C,+C;+C,=3C;
(R-0)+ 5 0,=(R-0,), =const, the rates of the parallel reactig®s may be given
by the obvious equations

-~
&
7>
#

4, arb. units

1,, arb. units
\*
|

! 1 1

|
) 50 100

1

(R=O)+3 H=(R-OH), @ %=k1cn=k1<cz—cl—cz>, )
wherex=1 or 2 andR describes the chemical bond of the
molecule with the silicon crystal lattice. d_t2: koC,h,=ks(Cs—C,—C,), 4

If the observed extreme changes, including those during
the passive storage of porous silicon in air, can be attributed/herek; are the constants of the appropriate reacti@s
to the expulsion of adsorbed hydrogen by oxygen and sub- Assuming thatC;+C,=C andk;+k,=k, we express
sequent additional oxidation of the porous silicon walls, atEgs.(3) and(4) in the more compact form after summation
the first stage preceding the extreme valyg, reaction(1)
i?]ci)suld have priority and at the second stage reactiyn E:kcn:k(cz_c)_ (5)

presupposes that the photoluminescence of porous sili

con with an appropriate set of adsorbed atoms should satisfy 1he solution of this equation foIC,,(0)=Con="Cs
the constraint5i02>|SiHX>ISiO, although the contribution of —C(0) andC(=)=Cs has the form
SiO and SiQ to the photoluminescence has not yet been
determined. Thus, we carried out additional investigations C=Cs—Conexp(—k). ®)

using a high-frequency13.65 MH2, low-pressure(2.7 Pa The photoluminescence intensity is proportional to the
oxygen plasma. The samples were subjected to plasm@tal concentrationC. Hence we havel (t)=PC=P(C;
chemical treatment using a Plazma-600 device whose reac- fC,), whereP is the proportionality factor anfiallows for
tion chamber was a quartz cylinder with external capacitothe difference in the luminescence propertieCgfand C,.
plates. The plasma was excited and sustained by a genera®y subsequently differentiating this equation and taking into
having an output power up to 600 W with an anode curreniccount Eqs(3) and(4), we obtain
of 0.6—0.7 A and a grid current of 50 mA.

The plasma chemical treatment has a radical influence —
on the photolumlnesce_nce of the porous silicon, reduc_lng the 1(t) =1+ 1 2 PCon{1—ex — (Ky+ko)t]}
starting value , approximately 26 timegcurves1 and4 in ki +ka
Fig. 1) and completely eliminating the degradation section —F— Gexp(—k) @
on thel(t) curves for all the plasma treatment times being ’
studied(1-40 min. This shows that the initial oxidation of HereF andG are the corresponding constants, the subscript
the porous silicon walls is completed during the plasma‘0” satisfies the initial conditionst=0, and l,=P(Cy;
chemical treatment, with the natural exception of reactign  +f Cgy,). If Cy,, and thereforék, are zero, we find
which, in our view, is mainly responsible for quenching the
photoluminescence at the initial stage of ultraviolet irradia- _
tion of the untreated samples. This is convincingly confirmed H(1)=PCs = PConexp(—kib). ®)
by the results of an Auger spectral analysi§ plasma Equation(7) shows good agreement with the experiment
chemical treatment for 1 min gives 35 at. % silicon, 28.3%if for curves3 and4 (Fig. 1) we haveF=107.38 and 114.02,
carbon, and 36.7% oxygen, after treatment for 40 min almosG=75.68 and 100.7%=2.29, and 2.86s".
all the bonds at the surface are occupied by oxygen which To conclude, the changes in the photoluminescence of
corresponds to the stoichiometric composition of SiO monorous silicon with time are caused by the expulsion of ad-
oxide (50.3 at. % O and 49.7% Bi sorbed hydrogen by oxygen. This process is initially accom-
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Results are presented of investigations of the photoelectric properties of nitrided layer/GaAs

(GaP heterojunctions prepared by plasma treatment of GaAs and GaP crystals in the presence of
nitrogen ions. The heterojunctions exhibited broad-band photosensitivity relative to the

intensity of the natural radiation. It was established that when linearly polarized radiation is
obliquely incident on the surface of nitrided layers, polarization photosensitivity occurs which is
controlled by the angle of incidend® and increases proportionately @. The spectral

dependences of the induced photopleochroism are attributed to the antireflecting properties of the
wide-gap layers. Nitrided-layer heterojunctions can be used as broad-band photoanalyzers

for linearly polarized radiation. €1999 American Institute of PhysidS1063-784£99)03006-9

INTRODUCTION gions of the initial crystals. The layers exhibited strong ad-
The present authors recently established that treating ﬂ{éesmn to GaAs and GaP. Uniformly colored, dark yellow

. . ) ; . ayers were obtained as a result of plasma substitution on the
surface of gallium arsenide and gallium phosphide smgle%

. ) . ? 100 and (001) GaAs planes whereas under similar condi-
crystals with an rf discharge in a nitrogen atmosphere lead o
. . ; -~ tions for the GaP wafers, the layers were reddish lilac. These
to the formation of wide-gap layers in the surface region

which are produced by arsenic or phosphorus atoms beindlfferences can be attributed to the different atomic compo-

. . ; L Stion and thicknesses of the layers.
substituted by nitrogeh.This subsutunon leads to the ap- The prepared heterostructures were mounted on a Fe-
pearance of short-wavelength photoluminescence at the fun;

damental absorption depth of the initial semiconductors todorov table which could control the angular coordinates of
. e . the samples to within at least 30n these experiments the
gether with broad-band photosensitivity relative to the P with! xper!

intensity of the natural radiation as far as 3.8eV. Here We!ight was incident on thé\ layers and the angle of incidence
y o T varied between 0 and 90°. The current—voltage characteris-

report results of measurements of the photosensitivity in lin-. .
) S ) . : ) tics, and the angular and spectral dependences of the relative

early polarized radiation using heterojunctions formed in the uantum  efficienc were measured using GaAs:
surface region of GaAs and GaP crystal by wide-ga N y g )

GaAs:N and GaP:N layers, which for conciseness we shall /n-GaAs_a_md GaPN/n-GaP heterojunctions with average
photosensitive surface areas ok5 mm.
subsequently calN-layers.

EXPERIMENTAL RESULTS AND DISCUSSION

EXPERIMENTAL METHOD ) L
1. Typical steady-state current—voltage characteristics

The heterojunctions were fabricated usitg00- or  for these heterojunctions are plotted in Figs. 1 ar(duves
(11D-orientedn-type GaAs and GaP wafers having a free 1) and some of the parameters are indicated in Table I. It can
electron concentration of=10"cm ® at T=300K. The be seen that the heterojunctions exhibit well-defined rectifi-
specular surface of the initial semiconductors was preparedation, and under forward biases corresponding to a negative
by mechanical then chemical polishing. The wafers were inexternal voltage on the substrates and exceeding the cutoff
serted in an evacuated chamber with a residual pressure vbltageU>U, the current obeys the relation
around 10° Torr into which a mixture of hydrogen and ni-
trogen was then admitted and an rf plasma was ignited. A I=(U=Uo)/Ro, @
chemical potential gradient formed at the GaAs and GaPwhereR; is the residual resistance.
plasma interface, causing the solid-phase substitution of ar- The cutoff voltage, like the resistanég, in these het-
senic and phosphorus atoms in the substrates by nitrogearojunctions varies fairly widelysee Table)land reflects the
The substrate temperature during the plasma treatment pra¥fluence of the conditions of formation of th¢ layers on
cess was controlled in the range 50-500°. Thes@)AsN the electrical properties of the heterojunctions. In the range
plasma substitution regions produced uniformly colored lay-of weak forward currents, the current—voltage characteristics
ers with a mirror-smooth outer surface in the surface reobey the well-known exponential law for diode structures.

1063-7842/99/44(6)/4/$15.00 732 © 1999 American Institute of Physics
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’ FIG. 2. Steady-state current—voltage characteridticand spectral depen-

FIG. 1. Steady-state current—voltage characteridficand spectral depen- dences of the relative photoconversion quantum efficig@cy) of GaP
dences of the relative photoconversion quantum effici¢@cg) of GaAs : N/n-GaP heterojunctions at=300 K in natural radiationi, 2 — sample
N/n-GaAs heterojunctions &t=300 K in natural radiation1, 3 — sample ~ NO. 4,3 — sample No. 1; illuminated on side of wide-gap layer

No. 1,2 — sample No. 6; illuminated on side of wide-gap layer.

quantum efficiencyn(fiw) for several heterojunctions are

The results of estimating the ideality factBrsuggest that in  plotted in Figs. 1 and 2curves2 and3). These spectra give
N/n-GaAs structures the forward current is of the recombi-some idea of the possibilities of this method of obtaining
nation type typical of GaAs homojunctioAg.he high values in-plane control of the heterojunction photosensitivity. The
of B in N/n-GaP heterojunctions reflect the influence of theprincipal features of these spectral dependences afe as
series resistance on the current—voltage characteristic arddllows. For both types of structure we observe broad-band
thus cannot be used to assess the nature of the current trafgotosensitivity typical of ideal heterojunctions. It can be
port. In reverse-biased heterojunctions the current in mosseen from Figs. 1 and 2 that the maximum photosensitivity is
cases obeys the power ldw U?” where the exponeny lies  observed in the range between the band gaps of the substrate
in the range of 1.2—2, which indicates some imperfection agnd GaN crystald.The long-wavelength component of the
the edge of the heterojunction. The range of variation of the
reverse currentk, is shown in Table | and indicates that the
best of these heterojunctions are of fairly good quality.

2. When both types of heterojunctions were illuminated
the N-layers were always positively charged relative to theHeterojunction parameters GaAll/n-GaAs GaP N/n-GaP
substrates. The photovoltaic effect predominates when thg -

TABLE I. Photoelectric properties of GaA$\/n-GaAs and GaPN/n-GaP
heterojunctions at =300 K.

junctions are illuminated on the side of thelayers and the ' 506.35 E%,?z’;

range of values of the voltage sensitivlyy is indicated in R o 4.10P—10° 10— 10F
Table I. The polarity of the open-circuit photovoltage in all Ug, v 0.25-1.8 1-1.2
the heterojunctions corresponds to the direction of transmis? 1.8-2.0 7-10

sion and does not depend on the point of incidence of thér #A 02-1Up=1V)  01-1Uy=5V)
107-10° 10-10°

. S , VIW
optical probe on the surface nor on the energy of the mmden?evl 80-115 14-18

photons. .  Oip. eV 11-1.8 0.8-1.0
Spectral dependences of the relative photoconversios
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photosensitivity spectrazfv<<1.8eV for N/n-GaAs and
Aw<3 eV for N/n-GaP is caused by photoactive absorption
in the GaAs and GaP substrates. The differences observed in
the long-wavelength photosensitivitfFigs. 1 and 2 can be N
attributed to fluctuations in the perfection of the initial sub-
strates and also to the influence of the growth conditions of
the N-layers on their properties. The slope of the long-
wavelength increase in photosensitiviy 6(In I)/6(fiw) is
given in Table | and is typical of binary GaAs and GaP
semiconductors. The full-width of the spectral dependences
n(fiw) at half-heightéd,,, describes their broad-band prop-
erty and the observed changes in this parameter reflect the
influence of the layer formation conditiosee Table)l The
short-wavelength decay of the photosensitivity for these het-
erojunctions is localized nefrga’\' and this may be taken as
the basis for assuming that the atomic composition in the
surface region of thé\-layers approaches GaN stoichiom-
etry.

3. When all these heterojunctions were illuminated by
linearly polarized radiation along the normal to the plane of
the N-layers (@ =0), the photocurrent did not depend on the
polarization. This implies that under these conditions, the
photoactive absorption is isotropic and the coefficient of
natural photopleochroism iBy=0 over the entire range of
photosensitivity of the heterojunctidn® As soon as the
angle of incidence of the linearly polarized radiation be-
comes nonzero, all the heterojunctions exhibit differences
between the photocurrenitS when the electric vector of the
light wave E lies in the plane of incidencéPl), i.e., E||PI
andi® (ELPI). Under the condition® >0, over the entire
range of photosensitivity the photocurrent is a periodic func-
tion of the azimuthal angle betweenE and the plane of
incidence

i’ is, arb. units

FIG. 3. Short-circuit photocurrentl — i®, 2 — iS) and coefficient of

induced photopleochroisit8, 4) as a function of the angle of incidence of

(2) linearly polarized radiation on the receiving plane of a GaN$n-GaAs
heterojunction aflf =300 K. Illlumination is on the side of the wide-gap

i,=iPcoge+iSsirte.
For heterojunctions with different atomic compositions 2véf=0.60um, sample No. 6.
and differently oriented substrates the inequalfty-i® is
satisfied for®>0. Figures 3 and 4 show typical depen-
dences”(0©) andiS(®) for these heterojunctions. It can be incidence(Figs. 3 and 4, curve®). As a result, the curves of
seen that for both types of heterojunction the photocuiifent iP(®) and iS(®) converge, with this convergence being
initially increases with increasing angle of incidence, reachmore defined for GaPN/n-GaP structureéFig. 4, curve2).
ing a maximumi;,,, and then begins to decrease. This be-This behavior was observed previously and was attributed to
havior is consistent with the results of analyzing the propainterference of the linearly polarized radiation in the thin
gation of a light wave across the interface between twdayerl®!!Thus, there is reason to assume that the anomalous
media using Fresnel relationshipZhe increase in the pho- behavior ofi S(0®) observed for these heterojunctions may be
tocurrent is caused by the reflection losses being eliminatedttributed to interference effects of the linearly polarized ra-
these being minimal near the Brewster angle. The experidiation in theN-layers. This interference also indicates that
mental values of the ratidf,,/i § for both types of hetero- these layers are of high optical quality.
junction confirm that the increase in the photocurrent is re-  The coefficient of induced photopleochroistncalcu-
lated to the elimination of the reflection losses. At the saméated from the curves”(®) andiS(®)
time, the experimentally observed characterisfig®) tak- P iS\iP LS
ing into account the results of Refs. 4, 8, and 9 suggests that Pi= (7 =i)/G7+1%) 3)
theseN-layers on GaAs and GaP substrates are of fairly higtor these heterojunctions becomes nonzerodor0 and in-
optical quality. creases quadratically with increasing angle of incidence
A second important results of these polarization studied®,~®2 (Figs. 3 and 4, curve8). These dependences are
of the photosensitivity is that contrary to the monotonic de-linearized in the coordinate@,”z—@ (Fig. 3, curved) in
crease in the photocurrem® with increasing® deduced agreement with the results from Ref. 12.
from the Fresnel formulas® for most of our heterojunctions Figure 5 gives spectral dependences of the coefficient of
the photocurrent® behaves as” with increasing angle of induced photopleochroism fd = const for several hetero-
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FIG. 4. Short-circuit photocurrentl — i®, 2 — iS) and coefficient of
induced photopleochroisr(B) as a function of the angle of incidence of
linearly polarized radiation on the receiving plane of a GAPn-GaP het-
erojunction atT =300 K. lllumination is on the side of the wide-gap layer,
A=0.63um, sample No. 1.
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of induced photopleochroism is proportional to the refractive
indexn and this dependence has been used for some time to
determine n from polarization measurements of the
photosensitivity*® It was recently established that under the
conditions of interference of linearly polarized radiation, this
unigue relationshi?,~n ceases to hold and some disper-
sion of the induced photopleochroism occtfté! Taking ac-
count of Refs. 10 and 11, the spectral dependence of the
coefficient of induced photopleochroism observed here can
also be attributed to the antireflecting properties of the
N-layers. The curve®,(Aw) suggest that a bleaching effect
for which the condition isP;—0 (Refs. 10 and 12 shows

up most clearly folN/n-GaP structure¢Fig. 5, curve3) for
which the experimental values akg— 0 over a fairly wide
range between 2.5 and 3.5eV, i.e., in the range where the
photosensitivity of these heterojunctions has a maximum
(Fig. 2). From the point of view of the bleaching criterion
P,—0 (Refs. 10 and 1)j1 we can conclude that this effect is
much weaker inN/n-GaAs heterojunctions, although it
should be stressed that the minimumRgffor both types of
heterojunctions is localized in the same spectral range. Fig-
ure 5 shows spectra &, (Aw) for two differentN/n-GaAs
heterojunctiongcurvesl and?2). The similarity between the
values of P, and its spectral profile for the two different
heterojunctions indicates that the quality of thdayers has
fairly good technological reproducibility.

The P,(Aw) curves indicate that in order to achieve high
coefficients of induced photopleochroism and to use these
heterojunctions as broad-band photoanalyzers for linearly
polarized radiation, the technological process must ensure
that this radiation does not undergo interference in the wide-
gap layer of these structures.

junctions. It can be seen that the coefficient of induced pho-
topleochroism for these heterojunctions has a clearly defined
dependence on the incident photon energy, at variance with

the analysis? Medvedkinet al1? showed that the coefficient
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