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Numerical analysis of scattering of the electrostatic field of a two-electrode cell
at conducting surfaces
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A numerical analysis is made of the electrostatic field of a TEM cell and scattering of the initial
field of the TEM cell by ideally conducting surfaces of revolution and by a parallelepiped.
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INTRODUCTION

An integral part of the development, construction, a
operation of a TEM cell1 involves the construction of suit
able numerical models: preliminary calculations of the fie
of a TEM cell having a particular profile can be used
assess the possibilities of this design and ultimately to s
thesize a device which best satisfies these particular cha
teristics. The tolerances for the assembly of a real struc
can also be determined. A numerical analysis of the sca
ing of the field of a TEM cell at conducting surfaces havi
a particular profile can also be used to estimate the pertu
tions of the initial field introduced by various measuring d
vices. Moreover, if the numerical analysis of this proble
can be performed with a high degree of accuracy, it may
possible to calibrate the measuring devices to the exten
creating a standard. A numerical analysis of scattering pr
lems is equally important for the direct operation of a TE
cell.

Under low-frequency excitation, the electromagne
field of a TEM cell is quasistatic so that various measur
devices can be calibrated at given electrostatic potential
the electrodes~casing and internal wiring! of the TEM cell.
Consequently, in this case it is sufficient to make a numer
analysis of the electrostatic field of the TEM cell and sc
tering of the initial field by various conducting objects i
serted in the TEM cell.

The geometry of a TEM cell is such that the numeric
simulation of its electrostatic field and to a greater extent,
numerical analysis of scattering of the initial field at condu
ing surfaces are essentially three-dimensional proble
whose solution presents various fundamental difficult
caused by the complex geometry and the diversity of
boundary surface formed by the electrodes of the TEM
and the corresponding shields. In turn, discretizing a gi
boundary surface with acceptable accuracy necessitates
structing economical and stable algorithms for the numer
solution of mesh problems of very large dimensions. Hen
known calculation procedures are ineffective in this case
cannot be applied to make numerical analyses of the field
a TEM cell with the required accuracy. As a consequence
practice, three-dimensional models are usually rejected in
vor of simpler, less accurate, two-dimensional qualitat
models.
6091063-7842/99/44(6)/9/$15.00
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The methods described in Refs. 2–6 can be used
highly accurate numerical analyses of essentially thr
dimensional problems. In the present paper we use th
methods as the basis for a numerical simulation of the e
trostatic field of a Crawford TEM cell1,7 and also for a nu-
merical analysis of the scattering of the fields of a TEM c
at a parallelepiped and at surfaces of revolution havin
piecewise-smooth generatrix. The accuracy of the calc
tions is of the order of fractions of a percent.

1. NUMERICAL SIMULATION OF THE ELECTROSTATIC
FIELD OF A TEM CELL

We shall consider the problem of determining the ele
trostatic field of a TEM cell whose fundamental geometry
shown in the conventional form in Figs. 1a and 1b and
general form in Fig. 1c. We shall assume that the inter
electrode of the TEM cell forming the surfaceS1 and the
external electrode~forming the surfaceS2) are at given po-
tentialsC1 and C2, respectively. Then, the potential of th
electrostatic field of this systemv(x), wherex5$xi% are Car-
tesian coordinates in the three-dimensional spaceV3, is the
solution of the Dirichlet problem for the Laplace equation

D3v~x!50, D3[
]2

]x1
2

1
]2

]x2
2

1
]2

]x3
2

,

xPV3 /S, v~x!5 f ~x!, xPS. ~1!

In this case we haveS5S1øS2 , f (x)5xSi
(x)Ci , xPSi , i

51,2, wherexSi
is the characteristic function of the set o

surface pointsSi . We know that a solution of the boundary
value problem~1! can be constructed using the potential o
single layer. In this case, the surface function of the cha
density u(x), xPS satisfies the following system of first
order integral equations:

(
j 51

2

Ai j uj5Ci , @Ai j C#~x!5E C~y!

ux2yu
dsy ,

xPSi , yPSj , i , j 51,2, ~2!

whereux2yu is the Euclidean distance between pointsx and
y in the spaceV3.

Methods of obtaining an approximate solution of
equation of the type~2! based on a numerical solution o
© 1999 American Institute of Physics
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FIG. 1.
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mesh problems of small dimensionsM (M<500)
approximating an initial boundary-value equation a
well-known.8–10 For simply shaped surfacesS these methods
demonstrated undoubted advantages over other approa
in a numerical implementation of the method of bounda
value integral equations. Moreover, since the number of
ithmetical operations required to solve a mesh problem
proximating an initial boundary-value equation
proportional toM3, the computing costs increase substa
tially as the dimensions of the mesh problem increase
addition, it is difficult to construct stable algorithms for th
numerical inversion of mesh problems of large dimensio

For boundary-value integral equations invariant with
spect to symmetry transformations of some finite Abel
group $tk%, k51,2, . . . ,N, Demin and Tarasov2 and Za-
kharovet al.3 proposed methods of constructing a solution
the initial equation whose numerical implementation w
significantly more stable andN2 times more economical tha
conventional algorithms. These methods may be used f
numerical solution of Eq.~2! since the surfaceS5S1øS2

can be partitioned into congruent components relative to
Klein fourth-order symmetry group. Allowance for this sym
metry when constructing numerical algorithms can red
the volume of calculations by a factor of 16 which, howev
is insufficient to construct an approximate solution of t
problem of scattering of the electrostatic field of a TEM c
at conducting surfaces with a high degree of accuracy.
hes
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The surfaceSi ~internal electrode! possesses an Abelia
group of Klein symmetry transformations$tk

(1)% (k
51,2,3,4). The surfaceS2 ~external electrode! possesses a
finite non-Abelian group of sixteenth-order symmetry tran
formations$tk

(2)% (k51,2, . . .,16). Thus, the symmetry o
the surfacesS1 andS2 is best taken into account separate
when constructing a solution of Eq.~2! using the highly ef-
ficient methods proposed in Refs. 2–5 for solving bounda
value integral equations with a commutative and noncomm
tative finite-order symmetry group.

Following Ref. 6, we shall seek a numerical solution
Eq. ~2! using the iteration process

A11u1
(n11)5~12v!A11u1

(n)1v@C12A12u2
(n)#,

A22u2
(n11)5~12v!A22u2

(n)1v@C22A21u1
(n11)#,

n50,1,2, . . . , ~3!

or, in a different form,

u1
(n11)5~12v!u1

(n)1vA11
21@C12A12u2

(n)#,

u2
(n11)5~12v!u2

(n)1vA22
21@C22A21u1

(n11)#,

n50,1,2, . . . , ~38!

whereA11
21 and A22

21 are operators which are the inverse
A11 andA22, respectively.
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The invariance of the operatorsA11 and A22 relative to
the end groups $tk

(1)% (k51,2,3,4) and $tk
(2)% (k

51,2, . . .,16) of the symmetry transformations of the su
facesS1 and S2 can be established directly. Consequen
the operatorsA11

21 and A22
21 can be constructed using th

methods described in Refs. 2 and 3 and in Refs. 4 an
respectively.

Since algorithms for the inversion of operators invaria
relative to transformations from the group of fourth-ord
Klein symmetries were analyzed in detail by Demin a
Tarasov,11 we shall merely give the final results here. Sp
cifically, the surfaceS1 can be represented in the form

S15ø i 51
4 si

(1) , si
(1)ùsj

(1)5”0 iÞj, i,j51,2,3,4,

t i
(1)s1

(1)5si
(1) , i 51,2,3,4, ° S15ø i 51

4 t i
(1)s1

(1) ,

wheret1
(1)5e is the identity transformation,t2

(1) andt4
(1) are

the reflections relative to two orthogonal planes pass
through the axes of rotation~in Fig. 1 the XZ and YZ
planes!, t3

(1)5t2
(1)t4

(1) is a rotation by the anglep ~in Fig. 1
theZ axis is the axis of rotation!, $si

(1)% is a set of congruen
components of the surfaceS1 relative to the Abelian group
$tk

(1)%, k51,2,3,4.
Demin and Tarasov11 then showed that as a result

unitary transformations the operatorA115iai j i ( i , j
51,2,3,4) may be reduced to the diagonal form

A11 ° Â115diag~b1 ,b2 ,b3 ,b4!, ~4!

where

b15a11a21a31a4 , b25a12a22a31a4 ,

b35a11a22a32a4 , b45a12a21a32a4 ,

ai5a1iTi
(1) , Ti

(1)u~x!5u~t i
(1)21

x!, i 51,2,3,4,

@ai j C#~x!5E C~y!

ux2yu
dsy ,

xPsi
(1) , yPsj

(1) , i , j 51,2,3,4.

Thus, the algorithm for inversion of the operatorA11

reduces to constructing the operatorsbi
21 , which are the

inverse of bi , i 51,2,3,4. This procedure can reduce t
number of calculations by a factor of 16 by using dire
numerical methods of inverting numerical matrices.

The surfaceS2 is described by the non-Abelian group
symmetry transformations$tk

(2)%, k51,2, . . .,16, i.e., it can
be partitioned as

S25ø i 51
16 si

(2) , si
(2)ùsj

(2)50”, iÞ j , i , j 51,2, . . .,16,

t i
(2)s1

(2)5si
(2) , i 51,2, . . .,16, ° S25ø i 51

16 t i
(2)s1

(2)

into congruent components$si
(2)% relative to the group

$tk
(2)%, k51,2, . . .,16, where

t1
(2)5e, t2

(2)5s1 , t3
(2)5C, t4

(2)5Cs1 , t5
(2)5C2,

t6
(2)5C2s1 , t7

(2)5C3, t8
(2)5C3s1 , t9

(2)5s2 ,

t10
(2)5s2s1 , t11

(2)5s2C, t12
(2)5s2Cs1 , t13

(2)5s2C2,

t14
(2)5s2C2s1 , t15

(2)5s2C3, t16
(2)5s2C3s1 ,
,

5,

t
r

-

g

t

and the transformations of the Euclidean spacee, C, s1, and
s2 are defined as follows:e is an identity transformation,C
is a rotation through the angle 2p/4 ~theX axis is the axis of
rotation in Fig. 1!, s1 is a specular reflection operation rel
tive to the plane passing through the axis of rotation, ands2

is a specular reflection relative to the plane orthogonal to
axis of rotation~the YZ plane in Fig. 1!. Then, if the coor-
dinate functions corresponding to the irreducible represe
tions of the$tk

(2)% group are known, following Refs. 4 and 5
we can convert from the second equation~3! to the equations
for its canonical representation relative to the$tk

(2)% group.
Since the$tk

(2)% (k51,2, . . .,16) groups can be repre
sented as the direct product of two of its subgroups—
second-order Abelian group$e,s2% and an eighth-
order non-Abelian group ~square group!
$e,s1 ,C,Cs1 ,C2,C2s1 ,C3,C3s1%, calculation of the coor-
dinate functions$tk

(2)% reduces to calculating the coordina
functions of these two subgroups. The coordinate functi
of the irreducible regular representations of an Abelian gro
are its characters. The characters of any Abelian group
known and for a second-order group these have the valu
and 21 ~for further details see Sec. 3!. For its part, the
square group$tk% (k51, 2, . . . ,8) hasthree generatrices
t15e, t25s1 , t35C, which allows us to calculate directly
the coordinate functionsui(tk), i 51,2, . . . ,5,corresponding
to five irreducible regular representations of this group. T
values ofui(tk), (i 51,2, . . . ,4,k51,2, . . . ,8) aregiven in
Table I.

The coordinate functionsu5(tk) (k51,2, . . . ,8) may be
represented in the form

u5~e!5S 1 0

0 1D , u5~s1!5S 1 0

0 21D ,

u5~C!5S 0 21

1 0 D , u5~Cs1!5S 0 21

21 0 D ,

u5~C2!5S 21 0

0 21D , u5~C2s1!5S 21 0

0 1D ,

u5~C3!5S 0 1

21 0D , u5~C3s1!5S 0 1

1 0D .

The calculated valuesui(tk) can be used to write the
equations of the canonical representation relative to
$tk

(2)% group for the second equation in~3!

~Ãi1B̃i !ũi~x!5 f̃ i~x!, i 51,2, . . .,10, xPs1
(2) , ~5!

whereÃi5Ãi 15 , B̃i52B̃i 15 , i 51,2, . . . ,5.

TABLE I.

ui(tk) e s1 C Cs1 C2 C2s1 C3 C3s1

u1 1 1 1 1 1 1 1 1
u2 1 21 1 21 1 21 1 21
u3 1 1 21 21 1 1 21 21
u4 1 21 21 1 1 21 21 1
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The following relations hold for the operatorsÃi andB̃i

( i 51,2, . . . ,5)

Ã15Â11Â21Â31Â41Â51Â61Â71Â8 ,

Ã25Â12Â21Â32Â41Â52Â61Â72Â8 ,

Ã35Â11Â22Â32Â41Â51Â62Â72Â8 ,

Ã45Â12Â22Â31Â41Â52Â62Â71Â8 ,

Ã55F Â11Â22Â52Â6 2Â32Â41Â71Â8

Â32Â42Â71Â8 Â12Â22Â51Â6
G

B̃15Â91Â101Â111Â121Â131Â141Â151Â16,

B̃25Â92Â101Â112Â121Â132Â141Â152Â16,

B̃45Â91Â102Â112Â121Â131Â142Â152Â16,

B̃45Â92Â102Â111Â121Â132Â142Â151Â16,

B̃55F Â91Â102Â132Â14 2Â112Â121Â151Â16

Â112Â122Â151Â16 Â92Â102Â131Â14
G ,

~6!

where

Âi5Ti
(2)Ai1 , Ti

(2)u~x!5u~t i
(2)21

x!, i 51,2, . . .,16,

@Ai j C#~x!5E C~y!

ux2yu
dsy ,

xPsi
(2) , yPsj

(2) , i , j 51,2, . . .,16. ~7!

Converting from the second equation to Eqs.~5!–~7! re-
duces the volume of calculations for the construction ofA22

21

by a factor of>170. In addition, this procedure for con
structing the inverse to the mesh operator approximatingA22

has a significantly higher calculation stability compared w
existing procedures.

By implementing the iteration process~38! with the op-
eratorsA11

21 andA22
21 constructed using relations~4! and~5!–

~7!, it was possible to obtain stable, highly accurate soluti
of mesh problems which approximate the equations~2! with
a discretization orderM>104. Therefore, values of the dis
tribution density function of the electrostatic chargesu(x) at
the electrodes of the TEM cellS1 andS2 can be calculated
with an error not exceeding fractions of percent and con
quently at any pointx in the Euclidean spaceV3 the potential
v(x) and the intensity vectorE(x)52gradv(x) of the elec-
trostatic field of the TEM cell can be determined by

v~x!5E u~y!

ux2yu
dsy , E~x!52E gradx

u~y!

ux2yu
dsy ,

xPV3\S, yPS5S1øS2 .

The algorithms for calculating the electrostatic field o
TEM cell described in the present section can be used
determine the position and required characteristics of
s

e-

to
e

working volumes of the TEM cell efficiently and highly ac
curately, and the procedure for determining these work
volumes can be adequately visualized.

Figures 2 and 3 show isolines for the potentialv(x,y,z)
~wherex, y, andz are the coordinates of the point in theXYZ
Cartesian system shown in Fig. 1! and the components
Ex(x,y,z), Ey(x,y,z), andEz(x,y,z) of the intensity vector
E(x,y,z) of the electrostatic field of the TEM cell shown i
Fig. 1. A unit potential was applied to the internal electro
S1 while the potential at the external electrode~the surface
S2) was assumed to be zero. Figure 2a gives the equipo
tial distribution in the rectangley50.2b3 , xP@2a1 ,a1#, z
P@0,b3#, while Fig. 3a gives that in the rectanglex
50.2b3 , yP@2b3 ,b3#, zP@0,b3#. Figures 2b and Fig. 3b
show the isolines forEx(x,y,z) in the same rectangles; Figs
2c and 3c give those forEy(x,y,z), while Figs 2d and 3d
give those forEz(x,y,z).

In these calculations the number of nodes on the bou
ary surfaceS5S1øS2 was 8000, i.e., the initial boundary

FIG. 2.
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value integral operator~2! was approximated by a dense
filled (800038000) matrix.

The components of the electrostatic field intensity vec
Ex(x,y,z) andEy(x,y,z) are usually neglected when deve
oping TEM cells since it is assumed that their values
negligible compared withEz(x,y,z). However, no reliable
quantitative estimates have been obtained to confirm thi

A comparison between the isolines shown in Fig. 2 w
the v(x,y,z), Ex(x,y,z), andEz(x,y,z) isolines obtained in
the rectangley50, xP@2a1 ,a1#, zP@0,b3# „in this case we
have Ey(x,y,z)[0… revealed qualitative differences. Th
also applies to thev(x,y,z), Ey(x,y,z), andEz(x,y,z) iso-
lines obtained in the rectanglex50, yP@2b3 ,b3#, z
P@0,b3# and the isolines shown in Fig. 3. The values of t
electrostatic field potentialv(x,y,z) and the corresponding
components of the intensity vectorEx(x,y,z) at the points
(x,0,z) and (x,0.2b3 ,z) for xP@2a1 ,a1# andzP@0,b3# and
also at the points (0,y,z) and (0.2b3 ,y,z) for yP
@2b3 ,b3# and zP@0,b3# differed by a few percent. This
indicates that under certain conditions, a simulation of

FIG. 3.
r

e

e

fields of a TEM cell based on electrostatic problems on
plane can give a qualitatively~but not quantitatively! true
picture of the potential distribution and the component of
electrostatic field intensity vector in theXY andXZ symme-
try planes, although this is very approximate for simulati
the scattering of the field of a TEM cell at conducting su
faces.

2. SCATTERING OF THE ELECTROSTATIC FIELD OF A TEM
CELL AT A CONDUCTING SURFACE OF REVOLUTION

The problem of determining the perturbation of the fie
of a TEM cell caused by various conducting objects inser
in the cell is of major practical interest. In this section w
analyze the scattering of the field in a TEM cell by infinite
conducting shields and objects comprising various surfa
of revolution~such as cylinders, cones, spheres, ellipsoids
revolution, and so on!. In this case, we need to find th
solution of the boundary-value problem~1! whose set of
boundary points forms a surfaceS having the following
form: S5S1øS2øS3, whereS1 andS2 are the electrodes o
the TEM cell considered previously andS3 is some surface
of revolution, given that the potentialv(x) of the electro-
static field of this system has the following values at t
boundaryS:

v~x!5 f ~x!, xPS, f ~x!5xSi
~x!Ci ,

xPSi , i 51,2,3,

whereC1 andC2 are given constants andC3 is a generally
unknown constant.

By analogy with Sec. 1, we convert from the bounda
value problem to an analysis of the following system
boundary-value integral equations:

(
j 51

3

Ai j uj5Ci , @Ai j ,C#~x!5E C~y!

ux2yu
dsy ,

xPSi , yPSj , i , j 51,2,3. ~8!

We shall construct a numerical solution of the equatio
~8! on the basis of the iteration process

A11u1
(n11)5~12v!A11u1

(n)1v@C12A12u2
(n)2A13u3

(n)#,

A22u2
(n11)5~12v!A22u2

(n)1v@C22A21u1
(n11)2A23u3

(n)#,

A33u3
(n11)5~12v!A33u3

(n)1v@C32A31u1
(n11)2A32u2

(n11)#,

n50,1,2, . . . . ~9!

We shall consider the construction of an operatorA33
21 the

inverse ofA33, since the operatorsA11
21 and A22

21 are con-
structed using relations~4! and ~5!–~7!, respectively.

The surface of revolutionS3 is described by theC`

group of symmetry transformations of Euclidean space
consequently it has a finite Abelian subgroupCn of the C`

group for anyn (n51,2,3, . . . ); Cn is a cyclic group of
symmetry transformations having the following form
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$e,t, . . . ,t (n21)%, wheret is a rotation through the angl
2p/n with the axis of rotation matched with the symmet
axis of the surface of revolution. SinceCn is a finite Abelian
group of symmetry transformations of the surfaceS3 and the
operatorA33 is invariant with respect to transformations
the motion from the symmetry group of the boundary s
face, the operatorA33

21 is best constructed using the metho
described by Demin and Tarasov2 and Zakharovet al.3

By virtue of the symmetry properties, the surfaceS3 can
be partitioned as follows

S35ø i 51
n si

(3) , si
(3)ùsj

(3)5”0, iÞ j , i , j 51,2, . . . ,n,

t i 21si
(3)5s1

(3) , i 51,2, . . . ,n, ° S35ø i 51
n tn2 i 11s1

(3)

into congruent components$si
(3)% relative to theCn group.

Demin and Tarasov2 and Zakharovet al.3 also showed tha
as a result of known unitary transformations, the opera
A335iai j i ( i , j 51,2, . . . ,n) can be reduced to the diagon
form12

A33 ° Â335diag~b1 ,b2 , . . . ,bn!, ~10!

where

bi5(
j 51

n

aj«
n2( j 21)(i 21), i 51,2, . . . ,n,

«5exp~2pI /n!, I 251,

aj5a1 jT
n2 j 11, Tn2 j 11u~x!5u~t j 21x!, j 51,2, . . . ,n,

@ai j C#~x!5E C~y!

ux2yu
dsy ,

xPsi
(3) , yPsj

(3) , i , j 51,2, . . . ,n.

ConstructingA33
21 using the relations~10! can reduce the

number of arithmetic operations involved in inverting t
mesh operators approximatingS33 by a factor of>n2. For
instance, forn5100 the number of operations will be re
duced>104 times when direct methods are used to invert
numerical matrices.

Computational experiments showed that if the value
the constantC3 is known ~the potential of the surface o
revolution!, the iteration algorithm~9! where the operators
A11

(21) , A22
(21) , andA33

(21) are calculated using relations~4!,
~5!–~7!, and~10!, respectively, can be used to determine
electrostatic field created by a system of electrodesS
5S1øS2øS3 having given potentialsC1 , C2, andC3 with
an error not exceeding fractions of percent.

We shall consider the scattering of the electrostatic fi
of a TEM cell by an infinitely conducting scatterer. We kno
that this problem can be solved approximately by means
numerical solution of the equations~8! supplemented by the
following condition ~charge conservation condition!:

E u~y!dsy50, yPS3 . ~11!

Condition~11! can naturally be incorporated in the iter
tion process~9! to determine the constantC3 without any
real increase in the number of arithmetic operations, i.e.
-

r

e

f

e

d

a

A11u1
(n11)5~12v!A11u1

(n)1v@C12A12u2
(n)2A13u3

(n)#,

A22u2
(n11)5~12v!A22u2

(n)1v@C22A21u1
(n11)2A23u3

(n)#,

A33ũ3
(n11)5~12v!A33ũ3

(n)2v@A31u1
(n11)1A32u2

(n11)#,

u3
(n11)5C3

(n11)û31ũ3
(n11) , C3

(n11)52

E ũ3
(n11)dsy

E û3dsy

,

n50,1,2, . . . , ~12!

whereû3 is the solution ofA33û351.
It is easy to see that implementing the iteration proc

~12! requires almost no increase in the number of operati
compared with process~9!, i.e., the iteration process~12! has
the same advantages for solving scattering problems as
iteration process~9! used to determine the electrostatic fie
created by the surfaceS5S1øS2øS3. We stress that for
iteration processes~9! and ~12! the relative spatial configu
ration of the surfacesS1 , S2, andS3 is arbitrary.

We shall analyze the scattering of the electrostatic fi
of a TEM cell ~Figs. 2 and 3! at a cylinder of heightH
50.065b3 and radiusR50.18b3. Approximate solutions of
this problem for various positions of the cylinder inside t
TEM cell were obtained using the iteration process~12!. For
instance, Fig. 4a shows field potential isolinesv(x,y,z) of
this system in the rectangley50, xPx@2a1 ,a1#, z
P@0,b3#. Isolines for the component of the electrostatic fie
intensity vectorEz(x,y,z) in this rectangle are shown in Fig
4b while Fig. 4c givesEz(x,y,z) isolines in the rectangle

FIG. 4.
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y50.2b3 , xP@2a1 ,a1#, zP@0,b3#. In this case, the axis o
rotation of the cylinder coincided with theZ axis ~Figs. 1a
and 1b! and the distance between the internal electrode of
TEM cell and the lower end of the cylinder wash50.45b3.

Let us assume that this cylinder is positioned as follow
the axis of rotation of the cylinder is parallel to theY axis
and intersects theZ axis at the heighth50.35b3 and one of
the ends of the cylinder lies in theXZ plane. For this cylin-
der configuration Fig. 5a gives the isolines characterizing
potential distributionv(x,y,z) in the rectanglex50, yP
@2b3 ,b3#, zP@0,b3#. Figure 5b shows theEz(x,y,z) iso-
lines in the same cross section and Fig. 5c gives
Ez(x,y,z) isolines in the rectangle x50.2b3 , yP
@2b3 ,b3#, zP@0,b3#.

By comparing Figs. 4 and 5 with Figs. 2 and 3 we c
determine some characteristic features of the perturbation
the electrostatic field of a TEM cell caused by the prese
of an ideally conducting cylinder in some part of this ce
Since the electrostatic field is potential and the ideally c
ducting cylinder is an equipotential surface, we can talk
the field flowing round the surface of the cylinder who
nature can be determined directly from Figs. 4 and 5 and
degree of perturbation of the electrostatic field of the TE
cell caused by the cylinder and its rate of attenuation in sp
can easily be assessed.

In these calculations the number of nodes on the bou
ary surface S5S1øS2øS3 was 9000, i.e., the initia
boundary-value integral operator~8! was approximated by a
densely filled (900039000) matrix.

FIG. 5.
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To conclude this section, we note that we have confin

ourselves to developing programs to simulate the scatte
of the field of a TEM cell at surfaces of revolution having
piecewise-smooth generatrix represented as a finite comb
tion of line segments and arcs of circles~closed and open
cylindrical and conical surfaces, spheres, and so on!. How-
ever, this program can also be used as the basis for analy
surfaces of revolution with any types of generatrices sin
these algorithms implement a specific type of symmetry a
are not related to a specific surface profile. This implies t
the development of programs to solve the problem of sc
tering of the field of a TEM cell for surfaces of revolutio
having a specific type of generatrix can be reduced to a p
gram describing merely a class of these surfaces.

3. SCATTERING OF THE ELECTROSTATIC FIELD OF A TEM
CELL AT A PARALLELEPIPED

If a parallelepiped~Fig. 6! is taken as the componentS3

of the boundary surfaceS5S1øS2øS3 considered in the
previous section, approximate values of the electrostatic fi
potential for known constantsC1 , C2, andC3 may be ob-
tained using the iteration process~9!. Then, the problem of
scattering of the electrostatic field of a TEM cell at an in
nitely conducting parallelepiped can be solved numerica
using the iteration process~12!. In addition, calculations
based on the iteration algorithms~9! or ~12! can be predicted
to have a high accuracy provided that effective algorith
are available for inverting the operatorA33

FIG. 6.
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TABLE II.

x i(t j ) t15e t25sz t35sysz t45sy t55sx t65sxsy t75sxsysz t85sxsz

x1 1 1 1 1 1 1 1 1
x2 1 1 21 21 1 1 21 21
x3 1 21 21 1 1 21 21 1
x4 1 21 1 21 1 21 1 21
x5 1 1 1 1 21 21 21 21
x6 1 1 21 21 21 21 1 1
x7 1 21 21 1 21 1 1 21
x8 1 21 1 21 21 1 21 1
y
f
-

ic
t

r-

o

b-
s
f

or

a

a-

nt

on

d to

by
ved
ion
@A33C#~x!5E C~y!

ux2yu
dsy , x,yPS3 ,

whereS3 is a parallelepiped.
The surfaceS3 is described by the Abelian symmetr

group $tk
(3)% (k51,2, . . . ,8) ~Fig. 6! and the invariance o

the operatorA33 to transformations of the motion of the Eu
clidean space from the eighth-order group$tk

(3)% can be es-
tablished directly. Zakharovet al.13 analyzed three existing
abstract eighth-order Abelian groups and obtained canon
representations of the operators invariant with respec
transformations from these groups. The results13 form the
basis of the algorithm for constructing the operatorA33

21

which is the inverse ofA33.
The eighth-order Abelian group of symmetry transfo

mations of the surfaceS3 $tk
(3)% has the following form:

$e,sz ,sysz ,sy ,sx ,sxsz ,sxsysz ,sxsz%, where sx , sy ,
andsz are reflections relative to the three pairwise orthog
nal planes$YZ%, $XZ%, and $XY%, respectively~Fig. 6!.
Since sx

25sy
25sz

25e, e is an identity transformation, the
group $tk

(3)% is the direct product of its three Abelian su
groups $e,sx%, $e,sy%, and $e,sz%. Since the subgroup
$e,sx%, $e,sy%, and $e,sz% are cyclic groups, the tables o
their characters have the same form:x1(e)51, x2(e)51,
x1(t)51, x2(t)521, and t5$sx ,sy ,sz%, which can be
used to directly calculate the charactersx i(tk

(3)) of the
$tk

(3)%, k51,2, . . . ,8group ~Table II!.
The surfaceS3 can then be partitioned as

S35ø i 51
8 si

(p) , si
(p)ùsj

(p)5”0, iÞ j ,

t i
(3)s1

(p)5si
(p) ,

i 51,2, . . . ,8, ° S35ø i 51
8 t i

(3)s1
(p)

into congruent components$sk
(p)% relative to the$tk

(3)%; k
51,2, . . . ,8group. Taking into account these relations f
eachn (n50,1,2, . . . ), werewrite the third equation of the
iteration processes~9! and ~12! in the form

(
j 51

8

Ai j U j~x!5Fi~x!, i 51,2, . . . ,8, xPs1
(p) , ~13!

where the following notation is introduced for the third equ
tion ~9!

U j~x!5u3
(n11)~t j

(3) ,x!, u3
(n11)~t j

(3) ,x!5u3
(n11)~t j

(3)x!,
al
to

-

-

xPs1
(p) , j 51,2, . . . ,8,

Fi~x!5 f ~t i
(3) ,x!, f ~t i

(3) ,x!5 f ~t i
(3)x!,

xPs1
(p) , i 51,2, . . . ,8,

f ~x!5~12v!A33u3
(n)~x!1v@C32A31u1

(n11)~x!

2A32u2
(n11)~x!#, xPS3 ,

@Ai j C#~x!5E C~t j
(3)y!

ut i
(3)x2t j

(3)yu
dsy ,

x,yPs1
(p) , i , j 51,2, . . . ,8.

Similar notation is suitably introduced for the third equ
tion in the iteration process~9!.

The system~13! can be converted to eight independe
equation by means of unitary transformations

A~ ŝ i !U~ ŝ i !5F~ ŝ i !, i 51,2, . . . ,8, ~14!

where

A~ ŝ i !5(
j 51

8

Aj 1x i~t j
(3)!, U~ ŝ i !5(

j 51

8

U jx i~t j
(3)!,

F~ ŝ i !5(
j 51

8

F jx i~t j
(3)!, i 51,2, . . . ,8.

If the solution of the equations~14! U(ŝ i) ( i
51,2, . . . ,8) isknown, the solution of the system~13! can
be reconstructed as follows:

Ui5(
j 51

8

U~ ŝ j !x j~t i
(3)!, i 51,2, . . . ,8.

Hence, the solution of the third equation in the iterati
processes~9! or ~12! is reduced to solving the equations~14!,
i.e., inversion of the operatorA33 is replaced by constructing
A21(ŝ i) operators the inverse ofA(ŝ i), i 51,2, . . . ,8.This
procedure can reduce the volume of calculations require
construct the mesh operators approximatingA33

21 by a factor
of >64. The problem of scattering of an electrostatic field
an arbitrarily oriented parallelepiped can therefore be sol
with a high degree of accuracy by means of the iterat
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process~12! where the operatorsA11, A22, andA33 are in-
verted in accordance with Eqs.~4!, ~5!–~7!, and~14!.

We shall now consider the scattering of the electrost
field of a TEM cell~Figs. 2 and 3! at a parallelepiped having
the following typical dimensions:ax50.18b3 , by50.18b3,
and cz50.0325b3, i.e., this parallelepiped is a square pla
whose base length is equal to the diameter and whose th
ness is equal to the thickness of the cylinder described in
previous section. This plate was successively inserted in
same volumes as the cylinder. The electrostatic fields
these two systems with the parallelepiped was calculated
11 500 nodes suitably selected on the boundary surfacS
5S1øS2øS3. Graphs of the isolines in the same cross s
tions as in Figs. 4 and 5 were then plotted for the elec
static field potentialv(x,y,z) and the corresponding compo
nents of the intensity vectorE(x,y,z). A comparison
between these graphs of the isolines of the electrostatic
of a TEM cell scattered by a parallelepiped and those of
field isolines scattered by a cylinder~Figs. 4 and 5! revealed
a definite qualitative similarity.

Zakharovet al.13 considered quadrupole systems whi
have the same symmetry group as a parallelepiped, i.e.
class of surfaces having this type of symmetry which is
interest for practical applications is fairly extensive. Pro
lems involving the scattering of the electrostatic field of
TEM cell at surfaces in this class can then be solved us
these algorithms. It is only necessary to obtain a progr
describing this class of surfaces which does not present
ic

k-
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or

-
-

ld
e

he
f
-

g
m
ny

fundamental difficulties and requires relatively little compu
ing time.

To conclude we note that these algorithms may be ta
as the basis for developing schemes for obtaining numer
solutions of problems involving the scattering of electrosta
fields of known types of TEM cells at various systems
closed and open shields.
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Efficiency of reverse cycles
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It is demonstrated that the generally accepted treatment of the second law of thermodynamics is
incorrect when the statement of the maximum limiting efficiency of the forward Carnot
cycle is applied to the reverse cycles. An analysis of reversible cycles compared with the Carnot
cycle shows that the reverse Carnot cycle has the lowest efficiency of all reverse cycles. A
new characteristic is proposed — the thermal efficiency of reverse cycles, and a generalized
theorem is put forward for the additivity of the thermal efficiencies of the forward and
reverse cycles. A formulation of the second law of thermodynamics is suggested from the point
of view of the efficiency of reverse cycles. ©1999 American Institute of Physics.
@S1063-7842~99!00206-8#
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INTRODUCTION

Erroneous statements and conclusions are frequently
countered in treatments of the principles of therm
dynamics.1 In particular, the thermal efficiency of revers
equilibrium processes and the position of the Carnot cycl
this group of cyclic processes have yet to be determined.
formulation of the second law of thermodynamics indica
that some limit exists for thermal efficiency whose bound
is determined by the most efficient forward Carnot cycle.

In the forward and reverse cycles the conversion of so
types of energy into others is considered under conditi
where the conservation law is satisfied. Nonequilibrium
allowed for by a correction in analyses of processes for
cycles. The efficiency and direction of energy conversion
be formulated in terms of efficiency, and in terms of entro
Thus, analyses of forward and reverse cycles may be us
in chemical and technical thermodynamics.

Reversible cycles~subsequently we shall not specifical
refer to the condition of reversibility! are compared with the
Carnot cycle as the standard2 which is considered to be th
most favorable in the forward and reverse forms. It
postulated3–6 that the reverse Carnot cycle has superior e
nomic characteristics, i.e., cooling and heating coefficie
This is demonstrated either on the basis of fallacious p
mises or the conditions of comparison are taken to
arbitrary.7–9 The statement~see Refs. 3 and 5! that the Car-
not cycle has the highest cooling coefficient compared w
other reverse cycles at given heat-source temperatures
correct. In particular, the following inequality9 is assumed to
hold for reverse cycles

Q2 /Wc,T2 /~T12T2!,

whereQ2 /Wc5« is the cooling coefficient,Wc is the work
of the cycle, andT1 andT2 are the temperatures of the h
and cold heat sources.

However, this expression contradicts the ‘‘principle
the heat engine ’’~the second Carnot theorem!, i.e., the in-
equality
6181063-7842/99/44(6)/3/$15.00
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Wc /Q1,~T12T2!/T1 .

At the same time, the relationship between the cool
coefficient and the thermal efficiency is such10 that the more
efficient the forward cycle, the less efficient will be the r
verse cycle.

It is difficult to envisage the position of the Carnot cyc
among the other reverse cycles because of the absence o
characteristic similar to the thermal efficiency of forwa
cycles. Thus, an explanation of the impossibility of spon
neous concentration of energy using a heat pump in viola
of the second law of thermodynamics is of no significance11

It is impossible to formulate the second law of therm
dynamics in terms of the existing efficiency characteristics
reverse cycles. As will be shown, the statement that the C
not cycle is the most efficient of the forward cycles cannot
transferred ‘‘mechanically’’ to reverse cycles.

COMPARISON OF REVERSE CYCLES

For the analysis we give the well-known theorems.
First Carnot theorem: the thermal efficiencyh{C of the

forward Carnot cycle depends only on the temperatures
the heat sources

h{C512T2 /T1 .

Second Carnot theorem: the forward Carnot cycle
the highest thermal efficiency of any cycle for given tem
peraturesT1 andT2

h{C.h{. ~1!

The efficiency of reverse cycles is characterized by
heating coefficientc

c5Q1 /WC5Q1 /~Q12Q2!.

Since the thermal efficiency of an arbitrary forwa
cycle is

h{5~Q12Q2!/Q1 ,

it follows that
© 1999 American Institute of Physics
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c51/h{.

The second Carnot theorem indicates that 1/cc.1/c or

cc,c. ~2!

Thus, any reverse cycle with given temperature lim
has a higher heating coefficient that the corresponding C
not cycle. The same result can be achieved by comparing
Carnot cycle and an arbitrary reverse cycle on theB,T dia-
gram. The cycles being compared should be situated betw
the limiting temperaturesT1 andT2 in order to eliminate any
ambiguity.

The other efficiency characteristic of reverse cycles
the cooling coefficient

«5Q2 /Wc5Q2 /~Q12Q2!.

Having inscribed an arbitrary cycle into the Carnot cyc
~Fig. 1!, we can see thatQ2,c is equal to the area of th
rectangle 1456 whereas the same heat of the arbitrary c
Q2 is the sum of the areas 14561c1a, so thatQ2,c,Q2 .
The work of the Carnot cycleWc,C , which is equal to the
area of the rectangle 1234, exceeds the work of the arbit
cycle Wc by the amounta1b1c1d, whenceWc,C.Wc .
Consequently we findQ2,C /Wc,C,Q2 /Wc or

«C,«,

which is consistent with the conclusion~2!. This means that
the heating and cooling coefficients of an arbitrary reve
cycle are greater than the corresponding characteristics o
reverse Carnot cycle.

The characteristics« and c are convenient for estimat
ing the useful properties of the reverse cycle but do not
flect the appearance of the second law, as may be achi
using the thermal efficiency of the forward cycle. The a
sence of such a characteristic, i.e., the thermal efficienc
the reverse cycle, makes it difficult to obtain unambiguo
results in thermodynamic analyses.

THERMAL EFFICIENCY OF REVERSE CYCLES

By definition, in all cases the efficiency should be
proper fraction12 given by the ratio of the useful effect to th
energy consumption.

Heat pumps operating on reverse cycles can transfer
from cold to hot media. The efficiency for heat engin

FIG. 1.
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should be defined as the ratio of the difference between
energyQ1 supplied to the working medium and the compe
sation energyE to the energyQ1 , i.e.,

h5~Q12E!/Q1 . ~4!

For forward cyclesE is the heatQ2 removed from the
working medium and then

h{5~Q12Q2!/Q1 ,

whereas for reverse cycles it is the work~mechanical energy!
Wc needed to transfer heat from the cold to the hot medi
so that

h[5~Q12Wc!/Q15Q2 /Q1 .

The second Carnot theorem gives 12T2 /T15hc.h{

512Q2 /Q1 , andT2 /T1,Q2 /Q1 , and we obtain

h[C,h[. ~5!

Inequality~5! is consistent with inequalities~2! and ~3!,
i.e., the reverse Carnot cycle is most inefficient.

MULTIPLICITY OF EFFICIENCY CHARACTERISTICS
OF FORWARD AND REVERSE CYCLES AND THEIR
INTERRELATIONSHIP

It can be shown that the introduction of a third efficien
characteristic for the reverse cycle is excessive. However,
thermal coefficient« t is known for the forward cycle which
indicates the possibility of utilizing the heat dumped in t
forward cycle

« t5h{1Q2 /Q1 .

For the forward cycle we can also suggest the ecolog
characteristic

«e5Wc /Q2 ,

which at the same time characterizes the working efficie
of the engine~if «e.1, the engine operates in the most pe
fect cycle!.

As a result, the forward and reverse cycles can be ch
acterized by a system of interrelated characteristics.
know13 that

h{~«11!51. ~6!

However, this relation is not unique since

h{•c5«•«e5« t51, ~7!

and also

h[~«e11!51, ~8!

which is equivalent to Eq.~6!. The efficiency characteristic
of the reverse cycles are related analytically

h[5«/c. ~9!

It follows from Eqs.~6!–~8! that for the Carnot cycle,«e and
h{ have the highest values whilec, «, andh[ have the lowest
values compared with other cycles. Hence, the forward C
not cycle is most efficient in terms of all characteristics wh
the reverse cycle is least efficient.
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THEOREM OF ADDITIVITY OF THE EFFICIENCY
OF FORWARD AND REVERSE CYCLES

The property of additivity of the efficiencies is the mo
general from the point of view of the first law of thermod
namics. It is easily shown by introducingh[ that in any cy-
clic process the sum of the thermal efficiencies is one

h{1h[51. ~10!

This statement can be taken as the theorem of additi
of the efficiencies of the forward and reverse cycles wh
analytic expression together with Eqs.~6!–~9! combines the
characteristics of both groups of cyclic processes. As
difference between the temperatures of the hot and c
sources in any cycle increases,h{ increases andh[ decreases
Formula ~10! is a rational expression for the condition
reversibility of the heat and work conversion in a cyclic pr
cess conducted in the forward and then in the reverse d
tion or in a system of two identical coupled cycles, one be
forward and the other reverse~Fig. 2!, and is equivalent to
writing this condition in the form~6!–~8!.

The theorem~10! shows the erroneous nature of th
conclusion14 that the efficiencies of coupled cycles are equ

The second law of thermodynamics can be formula
from the point of view of the efficiency of the reverse cyc
it is impossible to completely transfer energy from a cold
a hot medium without an additional expenditure of ene
~compensation energy! in the implementation of this proces
i.e., it is impossible to achieve a value of unity forh[.

Equilibrium conditions give the highest efficiency fo
the forward and reverse cycles.

We obtain a certain ‘‘inverse’’ Carnot principle: th
greater the temperature difference between the two sou
the lower the efficiency of engines and devices operating
the reverse cycle.

For nonequilibrium processes we clearly have

h{i1h[,1

FIG. 2.
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h{1h[i,1,

where the subscripti refers to irreversible processes.

CONCLUSIONS

In reverse cycles the ratioQ2 /Q1 indicates the effi-
ciency of transferring heat from a cold source to a hot one
analogy with the expression 12Q2 /Q1 , which describes the
efficiency of transferring heat into work in accordance w
the second law of thermodynamics. From this similarity w
suggest that the ratioQ2 /Q1 should be called the therma
efficiency of the reverse cycle.

The introduction of the thermal efficiencyh[ as a univer-
sal characteristic means that the reverse cycle can be
sessed from common viewpoints regardless of the condit
of application of the heat pump~cooling, heating, and com
bined heating-cooling devices! and the condition for revers
ibility of the energy conversions in a cyclic process can
expressed rationally. The conclusion is confirmed t
among the reverse cycles the Carnot cycle ceases to
standard cycle. The proposed efficiencyh[ means that this
can be made equal toh{ by formulating the second law o
thermodynamics for equilibrium and nonequilibrium pr
cesses.

1I. P. Bazarov,Delusions and Errors in Thermodynamics@in Russian#,
Moscow State University Press, Moscow~1993!, 56 pp.

2G. N. Alekseev, General Heat Engineering@in Russian#, Vysshaya
Shkola, Moscow~1980!, 552 pp.

3M. P. Vukalovich and I. P. Novikov,Technical Thermodynamics@in Rus-
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A theoretical analysis is made of the flow of vibrationally excited hydrogen in a channel. It is
shown that coverage of the channel walls with adsorbed hydrogen atoms can substantially
increase the concentration of vibrationally excited molecules in the stream. The possibility of
applying these results to bulk sources of negative H2 hydrogen ions is discussed. It is
shown that the rate of H2 ion generation in the source may be enhanced appreciably under
conditions where this generation is achieved by dissociative attachment of thermal electrons to H2

molecules injected into the discharge chamber, whose vibrational distribution function has
been pre-enriched in excited molecules by suitably organizing the hydrogen flow in the channel.
© 1999 American Institute of Physics.@S1063-7842~99!00306-2#
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1. The present paper is concerned with the generatio
vibrationally excited H2 molecules in a stream of molecula
hydrogen. Interest in the generation of these molecules
arisen as a result of various plasma-chemical application1,2

the use of vibrationally excited H2 molecules in negative
hydrogen ion sources,3 and other factors. Various types o
gas discharge are being actively used to generate vi
tionally excited molecules~see, for instance, Refs. 1–4!. In
these discharges the formation of vibrationally excited m
ecules is generally determined by the vibrational pumping
lower vibrational levels bye–v exchange and subseque
diffusion of vibrational quanta into regions of high vibra
tional numbersv as a result ofv –v exchange. An importan
factor is that in many cases, fairly efficient pumping of t
lower vibrational levels of molecules is accompanied by
preciable heating of the gas. This reduces the role ofv –v
exchange in filling the upper levels and increases theirv –t
relaxation which ultimates reduces the populations of
higher vibrational states.

In Refs. 5 and 6 the present authors suggested usi
flow of vibrationally excited hydrogen in a channel to e
hance the populations of highly excited vibrational states
this case, the vibrational distribution functionf v of the H2

molecules forms in two stages. First, molecular hydrog
flows across the discharge where the hydrogen molec
acquire a fairly high average vibrational energy^Ev& as a
result ofe–v exchange. The vibrationally excited hydroge
then flows through a channel whose walls are kept at a
temperatureTs such as room temperature. An additional, a
for some vibrational levels, very substantial increase in
populationsNv is achieved byv –v exchange in the cold ga
in the channel, i.e., by comparatively inefficientv –t ex-
change. Note that similar effects caused by pumping h
vibrational levels of H2 molecules were observed experime
tally and investigated theoretically in the afterglow of pu
hydrogen7 and cesium–hydrogen discharges.8,9

2. In order to reduce the losses of vibrationally excit
6211063-7842/99/44(6)/7/$15.00
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molecules to the channel walls, it is natural to use wall m
terials having the highest possible potential barrier for
sorption of molecular hydrogen. Such materials specifica
include transition metals such as copper, gold, and silver.
in Ref. 6, we shall subsequently analyze a flow of vib
tionally pumped hydrogen in a copper channel since
probabilities of adsorption and desorption of molecular h
drogen, including vibrationally excited hydrogen, have be
comparatively thoroughly studied for copper surfaces.10–19

The most comprehensive theoretical analysis of the inte
tion between vibrationally excited H2 molecules and a cop
per surface was made by Cacciatore and Billing10 for the
Cu~111! face. These authors10 showed that at low kinetic
energies (Ekin,0.1 eV! the surface deactivation of H2 mol-
ecules is mainly caused by tunneling of molecules throu
the potential barrier in the surface layer followed by diss
ciation, i.e., attachment of H atoms to the surface. Caccia
and Billing10 also determined the probability of attachme
wv(Ekin) of a molecule vibrationally excited to thev level,
having the energyEkin along the normal to the surface.

In the present study we consider a low-voltage cesiu
hydrogen discharge as the discharge in which the initial
brational pumping of H2 takes place.4,20 This type of dis-
charge was selected because its parameters can
determined theoretically to quite acceptable accuracy~see
Refs. 20–22, for instance!. This method of enhancing th
concentrationNv of vibrationally excited molecules in a
stream is naturally also promising for pure hydrogen d
charges.

In Ref. 6 we reported a theoretical analysis of the flow
vibrationally excited hydrogen in a channel using the mec
nism for the surface deactivation of molecules indica
above. However, in Ref. 6 we neglected effects caused
the finite coverageQ of the metal surface with adsorbe
hydrogen atoms. The aim of the present study is to take th
effects into account. We shall show that when these effe
are taken into account, the populationsNv of a whole range
© 1999 American Institute of Physics
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of vibrationally excited states of H2 molecules increase sub
stantially in the upper part of the spectrum. This then lead
a considerable increase in the effective rate constant for
sociative attachment of thermal electrons to vibrationally
cited H2 molecules compared with the caseQ50 considered
in Ref. 6.

3. The basic equations describing the flow of vibr
tionally excited hydrogen in a channel are written as follo
~for further details see Ref. 6!. The distribution of the mo-
lecular hydrogen pressurep(x) over the length of a plana
channel is given by

p~x!5@p0
22~p0

22ps
2!x/h#1/2, ~1!

wherep05p(0) is the hydrogen pressure at the entrance
the channel (x50), i.e., approximately the pressure in th
discharge, andps is the pressure at the channel exit (x5h).

Thenp0 andps are related by

h/L5~Rs/24!~cp /cv!21@~p0 /ps!
221#, ~2!

whereRs5rsLVs /h is the Reynolds number calculated u
ing the channel cross sectionL, the molecular hydrogen vis
cosityh, the densityrs , and the velocity of soundVs in the
exit cross section of the channel.

The vibrational level populationsNv(x) are determined
from the system of equations

d

dx
~NvV!5I v

(vv)$Nv%1I vM
(vt)$Nv%1I vA

(vt)$Nv%1I v
(w)$Nv%

~v50,1,2, . . . ,14!, ~3!

where V(x) is the gasdynamic velocity averaged over t
channel cross section.

The terms on the right-hand side of Eq.~3! systemati-
cally allow for v –v exchange,v –t exchange with hydrogen
molecules and atoms,23 and vibrational relaxation of mol
ecules at the channel walls

I v
(w)$Nv%52Nv /tv1Cv /L. ~4!

The first term on the right-hand side of Eq.~4! describes
the losses of vibrationally excited molecules caused by t
drift from the stream toward the channel walls andtv is the
corresponding effective lifetime of a vibrationally excite
molecule in the channel. The second term on the right-h
side describes the increase in the concentration of vi
tionally excited H2 molecules in the stream as a result
desorption of hydrogen from the channel walls, whereCv is
twice the density of the molecular desorption flux from t
walls.

The concentrationNH(x) of hydrogen atoms in the chan
nel was determined from

d

dx
~NHV!52NH /tH , ~5!

wheretH is the lifetime of hydrogen atoms in the chann
caused by their losses to the walls.

In Eqs.~3!–~5! Nv(x) andNH(x) are the concentration
of vibrationally excited H2 molecules and H atoms average
over the channel cross section: the true distributions ofNv
andNH over the channel cross section are generally inhom
to
is-
-

s

o

ir

d
a-

l

-

geneous because of the removal of particles to the cha
walls and the resulting depleted concentration in the w
zones. Effects arising from the depleted concentrations
taken into account by introducing the effective lifetimes
vibrationally excited moleculestv and atomstH , which are
given by6,24

tv5
L2

p2Dsd

1
L

vH2

22gv

gv
,

tH5
L2

p2D12

1
L

vH

22gH

gH
, ~6!, ~7!

whereDsd andD12 are the coefficient of self-diffusion of H2
molecules and the coefficient of diffusion of H atoms in H2

molecules,25,26 andv5A8kT/p3M .
The coefficientsgv and gH determine the fractions o

excited H2 molecules lost to the surface of the channel wa
from the total number of molecules or atoms incident on
surface, respectively;gv andgH depend on the surface cov
erageQ with adsorbed hydrogen atoms. Ifg;1 in Eqs.~6!
or ~7!, the first term on the right-hand side is substantia
greater than the second. In this case, the lifetime of an
cited molecule or atom is limited by particle diffusion from
the channel to the walls and a characteristic diffusion c
centration profile is established between the walls. In
opposite case, wheng!1 ~for further details see Ref. 6!,
only the last terms are important in Eqs.~6! or ~7!. This
corresponds to comparatively fast diffusion which equaliz
the particle concentration over the channel cross section
this last case, the particle flux from the gas to the surface
each channel wall is14Nv̄g and is small compared with th
random current14Nv̄.

4. We shall now determine the values ofgv , gH , Cv ,
and the coverageQ. The value ofgv , which is the probabil-
ity of a vibrationally excited molecule being adsorbed at t
surface, depends on the attachment probabilitywv(Ekin) and
the surface coverageQ with adsorbed hydrogen atoms27–29

gv~Q!5^wv~Ekin!&T~12Q!2. ~8!

Here^wv(Ekin)&T denotes the attachment probability a
eraged over a semi-Maxwellian molecular distribution fun
tion in a random stream at gas temperatureT. Since the
wv(Ekin) values given in Ref. 10 is insufficient to calcula
^wv&, we made the approximation that everywhe
^wv(Ekin)&>wv(kT). The values ofwv(kT) in the required
range of temperaturesT were determined by extrapolatin
the data from Ref. 10.

Under the conditions being considered here, the pr
ability gH , which determines the fraction of hydrogen atom
lost to the surface is written as

gH~Q!5wH~12Q!1sER
(eff)sHQ. ~9!

The first term on the right-hand side of Eq.~9! describes
the attachment of atomic hydrogen to the surface and is s
lar to expression~8!; wH is the probability of attachment o
atomic hydrogen to the surface. The second term on
right-hand side describes the probability of an H2 molecule
being formed at the surface as a result of surface recomb
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tion of an incident H atom with an adsorbed hydrogen at
by the Eley–Rideal mechanism.18 HeresH>1.531015cm22

is the density of sorption centers at the surface of
Cu~111! face14 and sER

(eff) is the effective cross section o
Eley–Rideal surface recombination.

The probabilitywH of attachment of hydrogen atoms
the copper surface was assumed to be one because of th
gas temperature and the very small thermal energy sprea
the atomic hydrogen stream penetrating into the metal. C
sequently, the probability of atoms returning from the me
to the gas is low. Note that similar values ofwH were calcu-
lated by Bischleret al.16 for room-temperature gas and th
Cu~110! surface allowing only for a phonon mechanism
energy loss for a hydrogen atom in the metal.

The effective cross section for surface recombination
a hydrogen atom by the Eley–Rideal mechanism follow
by desorption of a vibrationally excited H2 molecule was
assumed to besER

(eff)55 Å2. The value used for the cros
section is the result of an analysis of the experimental da14

made by Persson and Jackson.18 We note that the cross sec
tion sER

(eff) thus determined from the experimental data is s
stantially higher than the calculated cross section for Ele
Rideal recombination obtained in Ref. 18. A quite obvio
reason for this~as noted by Persson and Jackson in Ref.!
is the extremely large cross section for capture of an H a
in the surface layer of the metal. Consequently, Eley–Rid
recombination involving trapped but not yet thermalized h
drogen atoms at the surface is much more efficient than
rect Eley–Rideal recombination of an atom incident on
surface for which the cross section was calculated in Ref.

For these values ofwH andsER
(eff) , we findgH;1, so that

the first term on the right-hand side of Eq.~7! for any cov-
erageQ is substantially greater than the second. Thus,
the calculations we assumedtH5td

(H) , where td
(H)

5L2p2D12 is the time for diffusion of atomic hydrogen from
the stream to the channel walls. As a result,tH is almost
independent ofQ and the accurate values of the constants
the right-hand side of Eq.~9!. On the contrary, the lifetime
tv of an excited H2 molecule in the channel depends strong
on Q.

The coverageQ of the surface of the channel walls wit
adsorbed hydrogen atoms is determined from

F2(
v

Nv /tv~Q!1NH /td
(H)GL52(

v
Cv~Q!. ~10!

The left-hand side of Eq.~10! is the number of hydrogen
atoms adsorbed per unit time on both walls of the chan
per unit surface area. The right-hand side of Eq.~10! gives
the number of hydrogen atoms entering the stream as a r
of desorption of molecules from the channel walls;Cv is
twice the flux density of molecules excited to levelv des-
orbed from each channel wall.

With reference to the notation used in expressions~4!
and~10!, we note that in the adopted formalism, the deso
tion of vibrationally excited molecules from the walls shou
be taken into account, not by including the flux densityCv
from the channel walls as a separate term on the right-h
side of expressions~4! and ~10!, but by suitably redefining
e

low
in

n-
l

f
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gv and tv . We also note that the effective lifetimetv can
generally only be introduced if, for givenv, the emission of
vibrationally excited molecules from the gas stream to
walls exceeds the reverse desorption flux. Allowance for
these factors should make the calculation scheme sig
cantly more complex. In the situation being analyzed he
however, these complexities can be avoided because in
calculations presented below, Eley–Rideal desorption w
play a dominant role.18 The density of the desorption flux o
vibrationally excited H2 molecules from the walls is de
scribed by

Cv
(ER)5L

NH

td
(H)

sER
(eff)sHQ

gH~Q!
f v

(ER) . ~11!

Here the cofactorsER
(eff)sHQ/gH determines the fraction o

hydrogen atoms incident on the surface of the channel w
and participating in surface recombination by the Ele
Rideal mechanism andf v

(ER) is the vibrational distribution
function of the molecules desorbed by the Eley–Rid
mechanism, normalized to unity ((v f v

(ER)51). The distribu-
tion function f v

(ER) used in the calculations~see Fig. 2b! is
taken from Ref. 30:f v

(ER) is also similar to one of the calcu
lated variants18 ~see Fig. 10c in Ref. 18!. An important factor
is that the vibrational distribution functionf v

(ER) is almost
only nonzero forv 5 1–3 whereas the attachment probab
ties wv and therefore the values of 1/tv in expressions~4!
and~10! are only nonzero for comparatively high vibration
levelsv>5 ~Ref. 10!. As a result, the effective lifetimestv
given by expressions~6! and ~8! will only be used in the
calculations when the corresponding desorption fluxes
Cv50. This means that expression~6! can be used fortv .
Allowance for desorption by the Langmuir–Hinshelwoo
mechanism in cases where this mechanism is importan
quires a special analysis~see Sec. 6!.

5. We shall now discuss the calculated distribution of t
coverageQ(x) over channel length. Figure 1 shows dist
butions of the molecular and atomic hydrogen concentrati
NH2

(x) andNH(x) over the channel length determined fro
Eqs. ~1! and ~5! together with the distributionQ(x), calcu-
lated by solving Eq.~10! for Cv5Cv

(ER) . The initial values
of the concentrationsNH2

(0) andNH(0) at the channel en
trance~allowing for a jump in temperatureT at the channel
entrance6! correspond to the conditions achieved in an init
low-voltage cesium–hydrogen discharge. The discharge
rameters were calculated using a method described in
23. Figures 2a and 2b show calculated distributions of
vibrational distribution function of hydrogen molecules
the streamf v(x)5Nv(x)/(vNv(x) over the channel length
calculated by solving the system of equations~3!, and the
vibrational distribution functionf v

(ER) used in the calculations
where desorption is described by the Eley–Rideal mec
nism „f v(x) is given in relative unitsf v(x)/ f v(0)….

We shall analyze theQ(x) curve plotted in Fig. 1 for
which we shall first assess the role of the various terms
the left-hand side of Eq.~10!. Simple estimates show that i
the initial section of the channel, where the vibrational d
tribution functionf v(x) of the molecules in the stream, und
those conditions making the major contribution to adso
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tion, is still close to the initial vibrational distribution func
tion f v(0) in the discharge, only the second term on t
left-hand side of Eq.~10! describing the adsorption of atom
hydrogen is significant. This yields the coverageQ, which
does not depend onNH and is given by Q51/
(11sHsER

(eff)). Then, as the populationsNv of the levels con-
tributing to the adsorption of molecular hydrogen increa
and the atomic hydrogen concentrationNH decreases, the
first term on the left-hand side of Eq.~10! describing the
adsorption of vibrationally excited H2 molecules also be
comes important. This has the result that the coverageQ
increases, approaching unity. A formal solution of Eq.~10!
for x→` andNH→0 givesQ51. The curveQ(x) in Fig. 1
has a cutoff at the pointx0 where desorption by the Eley
Rideal mechanism is comparable with that by the Langmu
Hinshelwood mechanism.

6. Desorption by the Langmuir–Hinshelwood mech
nism only becomes appreciable at fairly low concentratio
NH and Q>1. In this case, it follows from Eq.~8! that gv
!1, so that only the last term in Eq.~6! is important. As has
been noted, this is consistent with the fact that the true c
centration of vibrationally excited molecules becomes equ
ized over the channel cross section as a result of rapid d
sion and the flux of excited molecules from the gas to
channel walls becomes (1/4)Nvv̄H2

•gv . In this approxima-

FIG. 1. Distributions of atomic and molecular hydrogen concentrations
coverage over channel length:1 — NH , 2 — NH2

, 3 — Q. Initial discharge

parameters:L50.3 cm, NH2

(0)5331016 cm23, NH
(0)51.831014 cm23, NCs

(0)

51014 cm23, ne53.2631013 cm23, NH
(0)53.831012 cm23, Te50.65 eV,

^Ev&50.335 eV, Ts5300 K. j s54.5 A/cm2, j >5 A/cm2, U>4.9 V, w1

58.65 V, andw250.75 V. The gas temperature in the discharge wasT0

50.06 eV and in the channelT50.03 eV.
e

e

–

-
s

n-
l-
u-
e

tion there is no need to use the effective lifetimestv and the
resultant molecular fluxJv at the gas–wall interface is ca
culated as

Jv5
1

4
Nvv̄H2

gv~Q!2
1

2
Cv

(LH) , ~12!

1

2
Cv

(LH)5
1

2
dLHQ2 f v

(LH) ~13!

i.e., the density of the Langmuir–Hinshelwood desorpti
flux of molecules excited to levelv from one of the channe
walls.

The value of (1/2)dLHQ2 is determined as in Ref. 31 an
is the density of the total flux of H2 molecules desorbed from
the walls. HeredLH(Ts)5nsH

2exp(2E/kTs) is the desorption
rate constant,n andE are the effective vibration frequency o
an adsorbed atom and the desorption energy, respecti
andTs is the wall temperature. Moreover,f v

(LH) is the vibra-
tional distribution function of molecules desorbed by t
Langmuir–Hinshelwood mechanism normalized to uni
The criterion for the validity of expression~12! is the in-
equalitygv!2p2Dsd /L v̄H2

which for x>x0 is satisfied by a

large margin. The vibrational distribution functionf v
(LH) is

determined from the principle of detailed equilibrium

d

FIG. 2. a — Variation of the vibrational distribution function of H2 mol-
ecules over the channel length: the number of the vibrational levels is i
cated on the curves. The solid curves gives the results of the present
and the dashed curves give those of Ref. 6 obtained forQ50; the discharge
and flow parameters in the channel are the same as in Fig. 1; b — vibra-
tional distribution function of H2 molecules desorbed from the walls by th
Eley–Rideal mechanism.
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f v
(LH)5@^wv~Ekin!&Ts

exp~2Ev /kTs!#/

F(
v

^wv~Ekin!&Ts
exp~2Ev /kTs!G . ~14!

The surface temperature was assumed to beTs5300 K.
The rate constantdLH(Ts) was calculated using the measur
desorption spectrum for H2/Cu~111! ~see Fig. 7 in Ref. 31!.
Finally, instead of expression~10! for x>x0 we obtain the
following equation to determine the coverageQ, which ex-
presses the atom balance at each channel wall:

2(
v

1

4
Nvv̄H2

gv~Q!1
1

2

NHL

td
(H)

5(
v

@Cv
(ER)~Q!1Cv

(LH)~Q!#, ~15!

whereCv
(ER) is described by expression~11! as before and

Cv
(LH) was defined in expression~13!.

The value ofQ obtained by solving Eq.~15! for x>x0 is
very close to unity. As a result forx>x0 the probability of
vibrational deactivation of H2 molecules is very low so tha
the termI v

(w)$Nv% in Eq. ~3! is insignificant here. Vibrationa
deactivation of molecules in this region is caused byv –t
exchange. Now, unlike Eq.~6! v –t exchange limits the op
timum channel lengthh for vibrational pumping of high lev-
els. This means that a substantially higher level of vib
tional excitation of the molecules can be achieved at highev
than in Ref. 6 both as a result of the lower probabiliti
gv(Q) of vibrational deactivation of the molecules at th
walls and as a result of the increased channel lengthh.

Figure 2a shows how the results of the calculations
influenced by the reduced probabilitygv(Q), with two series
of curves being plotted: the dashed curves give the resul
Ref. 6 obtained forQ50 and the solid curves give the re
sults of the present study. It can be seen that for the s
channel lengthh53.5 cm, the vibrational distribution func
tion f v(h) at the channel exit is significantly higher at hig
vibrational numbersv compared withf v(h) calculated in
Ref. 6. This is also illustrated in Fig. 3, which gives th
vibrational distribution functionsf v(h) ~curves2, 28 and 3!
at the channel exit for various calculations. In Fig. 3, curv2
calculated in Ref. 6 corresponds to approximately the o
mum channel length for the selected discharge and flow
rameters in the channel. The distribution functionf v(h)
shows the highest level of vibrationally highly excited mo
ecules. A comparison of curve28 with curves2 and3 shows
that allowance for a finite coverageQ leads to an increase i
the vibrational population distribution at highv and also in-
creases the optimum channel length.

7. To conclude, we shall discuss how modification of t
vibrational distribution functionf v(x) in the channel influ-
ences the rate of H2 generation as a result of dissociativ
attachment of plasma electrons to vibrationally excited2
molecules.32 As in Ref. 6, we shall assume that a hydrog
flux pumped vibrationally in a channel is injected into a d
charge chamber which contains thermal electrons havin
-

e

of

e

i-
a-

-
a

Maxwellian distribution with the temperatureTe8 . We shall
determine the effective rate constant for dissociative atta
ment

^KDA~h,Te8!&5(
v

f v~h!Kv~Te8!, ~16!

whereKv(Te8) is the rate constant for generation of H2 ions
by attachment of electrons to molecules vibrationally exci
to the levelv ~Refs. 33 and 34!.

Figure 4 gives values off v(h)Kv(Te8) which indicate the
partial contribution of the different vibrational levels to th
total rate constant for dissociative attachment. Curve1 was
calculated forh50 using the vibrational distribution func
tion f v(0) in the initial discharge. Curve2 gives the result of
the present calculations wheref v(h) is the vibrational distri-
bution function at the channel exit, determined allowing f
the finite coverageQ(x) of the channel walls with adsorbe
hydrogen atoms. It can be seen that the values
f v(h)Kv(Te8) are increased substantially as a result of
modification of the vibrational distribution in the channel.

Figure 5 gives^KDA& as a function ofTe8 for various
calculation variants. Curve1 was calculated using the initia
vibrational distribution functionf v(0) formed in the dis-
charge. Curve28 was calculated in Ref. 6 and corresponds
conditions when the vibrational distribution functionf v(h)
was formed in a channel of optimum length (h53.5 cm! for
Q(x)50. Curves2 and 3 give the results of the presen
calculations made allowing for a finite coverage of the ch
nel walls with adsorbed hydrogen atoms. Curve2, as in Ref.
6, was calculated forh53.5 cm and curve3 corresponds to

FIG. 3. Vibrational distribution function of H2 molecules in the initial dis-
charge~1! and at the channel exit (2, 28, 3!: L50.3 cm;h53.5 (2, 28) and
4.5 cm~3 !; the solid curves give the results of the present calculations
the dashed curve gives the result6 obtained forQ50. The discharge param
eters are the same as in Fig. 1.
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the optimum channel lengthh54 or 4.5 cm~the results of
the calculations for these two lengths are almost the same!. It
can be seen that allowance for a finite coverageQ(x) leads
to an increase in the effective rate constant for dissocia
attachment̂ KDA& ~compare curves28 and 2! and the opti-
mum channel length corresponding to the maximum
^KDA& ~compare curves2 and3!.

8. To sum up, we have shown that when calculating
flow of vibrationally excited hydrogen in a channel and d
termining the vibrational distribution function of the mo
ecules formed in the stream, it is important to allow for t
coverage of the channel walls with adsorbed hydrogen
oms. Allowance for this coverage appreciably reduces
probabilities of vibrational deexcitation of H2 molecules at
the channel walls and increases the concentration of vi
tionally excited molecules in the stream.

In particular, these effects may be of considerable in
est for two-chamber sources of negative hydrogen ions
which the vibrational excitation of H2 molecules and the
generation of H2 ions are separated in space. In this case
substantial increase in the rate of H2 generation in the dis-
charge chamber can be achieved if these ions are gene
by dissociative attachment of thermal electrons to H2 mol-

FIG. 4. Contributions of various vibrational levels to the effective rate c
stant for generation of H2 ions as a result of dissociative attachment. T
discharge parameters are the same as in Fig. 1;h50 ~1!, 3.5 cm ~2!; L
50.3 cm, andTe850.75 eV.
e

f

e
-

t-
e

a-

r-
in

a

ted

ecules injected in the chamber, whose vibrational distri
tion function has been pre-enriched in excited molecules
suitably organizing the hydrogen flow in the channel.
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Nonlinear moment method for the isotropic Boltzmann equation and invariance
of the collision integral

A. Ya. Énder
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A new approach is proposed for the development of a nonlinear moment method of solving the
Boltzmann equation. This approach is based on the principle of invariance of the collision
integral with respect to the choice of basis functions. Sonine polynomials with a Maxwellian
weighting function are taken as these basis functions for the velocity-isotropic Boltzmann
equation. It is shown that for arbitrary interaction cross sections the matrix elements corresponding
to the moments of the nonlinear collision integral are not independent but are coupled by
simple recurrence formulas by means of which all the nonlinear matrix elements are expressed in
terms of linear ones. As a result, a highly efficient numerical scheme is constructed for
calculating the nonlinear matrix elements. The proposed approach opens up prospects for
calculating relaxation processes at high velocities and also for solving more complex kinetic
problems. ©1999 American Institute of Physics.@S1063-7842~99!00406-7#
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INTRODUCTION

The basic mathematical results of solving the Boltzma
equation include a linearized equation and slight deviati
from equilibrium.1–3 Analytic solutions of the nonlinea
Boltzmann equation are known in very limited number
cases.4 Existing numerical methods of solution~mainly vari-
ous modifications of the Monte Carlo method! give only a
rough idea of the behavior of the distribution function at hi
velocities.5 At the same time, the behavior of the distributio
function at high energies is a decisive factor in a whole ra
of physicochemical processes.

In 1982 Turchetti and Paolilli6 published a study in
which a nonlinear moment method was used for the first t
to make systematic calculations of the distribution funct
at high velocities for the isotropic Boltzmann equation. T
distribution function was represented as a truncated serie
Sonine polynomials, and the tails of the distribution functi
were described using higher moments. The main difficulty
this method is calculating the interaction matrix correspo
ing to moments of the nonlinear collision integral. Even f
the velocity-isotropic Boltzmann equation the problem
fairly complex. For instance, in this study where the pow
potentials are considered assuming that the scattering c
section is independent of the angles, the analytic formu
obtained for the matrix elements contain six nested su
The calculation difficulties increase catastrophically as
number of moments taken into account increases so th
becomes impossible to go beyond the thirteenth momen

The present authors previously developed a method
integral transformation of the nonlinear Boltzmann equat
in which the distribution function and the collision integr
are expressed as a superposition of Maxwellian distributi
6281063-7842/99/44(6)/8/$15.00
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and an equation is constructed for the weighting functiona
representation of the Boltzmann equation! equivalent to the
Boltzmann equation inv-space.7,8 In Ref. 9 we considered
the same moment method as in Ref. 6 but by using the m
ematical tools developed to construct thea-representation,
we succeeded in obtaining formulas for the matrix eleme
for arbitrary power potentials, including those for Coulom
particle interaction. Moreover, the formulas obtained a
considerably simpler~four nested sums! so that the calcula-
tions could be made as far as the thirtieth moment with
same accuracy.

In Ref. 10 we suggested that the invariance of the co
sion integral of the Maxwellian distribution function relativ
to the choice of basis functions could be used to analyze
matrix elements. These basis functions were taken to be
nine polynomials with different temperatures of the Ma
wellians characterizing the expansion. As a result, we
tained some relationships between the matrix elements w
were used as criteria for the accuracy of the calculations.
particularly stressed that for arbitrary interaction cross s
tions, the nonlinear matrix elements are not independent
various relationships exist between them.

In the present paper the idea of invariance is generali
to the collision integral of an arbitrary distribution function
As a result, we obtained very detailed relations which co
be used to express the nonlinear matrix elements in term
linear ones. These relations can be applied to study how
basic properties of the linear elements influence the non
ear ones and can also be used to check the accuracy o
calculations. Finally, these relations can be taken as re
rence formulas to calculate the nonlinear matrix element
terms of linear ones.
© 1999 American Institute of Physics
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INVARIANCE OF THE DESCRIPTION OF RELAXATION
PROCESSES

When the moment method is applied to isotropic pro
lems, the distribution function is expanded in terms of S
nine polynomials with a Maxwellian weighting

f ~v,t !5n0M ~v,T!(
r 50

`

Cr~T!S1/2
r ~mv2/2kT!. ~1!

Here M (v,T)5(m/2kTp)3/2exp(2mv2/2kT) is the Max-
wellian andn0 is the particle number density. We know th
this series converges if the Grad criterion is satisfied~for
further details see Ref. 8!. Substituting Eq.~1! into the right-
hand side of the Boltzmann equation, then multiplying bo
sides of the equation byS1/2

r (mv2/2kT), and integrating with
respect tov, we obtain

dCr /dt85 (
r 1 ,r 2

K8r 1 ,r 2

r ~T!Cr 1
Cr 2

, t85t/t. ~2!

The dimensionless matrixK8r 1 ,r 2

r is defined in terms of

the collision integralÎ ( f , f ) as follows:

K8r 1 ,r 2

r ~T!54pn0tS E
0

`

S1/2
r Î ~MS1/2

r 1 ,MS1/2
r 2 !v2dv D n r ,

n r5~2r 11!!!/ ~2r !!!, ~3!

wheren r is the square of the norm of the Sonine polynomi
Subsequently, the primes will be omitted and the choice ot
will be specifically discussed.

In Ref. 10 we derived a formula to check the accuracy
the matrix element calculations. This formula was deriv
assuming that the collision integral of the Maxwellian dist
bution function is invariant relative to the choice of basis a
comprised the following relation between the matrix e
ments:

(
r 150

N

Kr 1 ,N2r 1

r 50, r ,N50, . . . ,̀ . ~4!

The equalities~4! are satisfied for arbitrary scatterin
cross sections. Quite clearly, not only the collision integra
a Maxwellian but also the collision integral of an arbitra
distribution function should possess properties of invarian

When expanding in terms of Sonine polynomials, w
must bear in mind that these are orthogonal, with a Maxw
ian weighting characterized by a certain temperatureT. The
transition to a different temperature corresponds to a n
unit of velocity measurement and essentially involves a tr
sition to a new basis. In the kinetic theory of gases the te
peratureT is usually taken to be the equilibrium gas tempe
ture.

For the transition from one basis to another it is con
nient to use thea representation„a5m/(2kT)… of the Bolt-
zmann equation:7,8

n0

]w

]t
5n0

2 E
0

`

A~T,T1 ,T2!w~T1 ,t !w~T2 ,t !dT1dT2 ,

~5!
-
-

h

.

f
d

d
-

f

e.

l-

w
-
-

-

-

where the distribution function inv-space is related to
w(T,t) by:

f ~v,t !5E
0

`

M ~v,T!w~T,t !dT. ~6!

The kernelA(T,T1 ,T2) is a mapping of the collision
integral of the two MaxwelliansJM(T1 ,T2 ,v) in a-space

JM~T1 ,T2 ,v !5n0
2 E

0

`

M ~v,T!A~T,T1 ,T2!dT. ~7!

The Maxwellian-weighted orthogonal system of Soni
polynomialsS1/2

r (mv2/T* ) corresponds to the biorthogona
system of functionssL

r andsR
r in a-space8

sR
r ~T,T* !5~T* !rd (r )~T2T* !/r !, ~8!

sL
r ~T,T* !5~12T/T* !r . ~9!

Here d (r )(T2T* ) is an r th-order derivative of the
d-function. For conciseness we use the notat
M (v,T)S1/2

r (mv2/2kT)5Sr(v,T). Then we have

Sr~v,T* !5E
0

`

M ~v,T!sR
r ~T,T* !dT, ~10!

and it follows from Eqs.~8! and ~9! that

E
0

`

sL
i ~T,T* !sR

j ~T,T* !dT5d i j . ~11!

We express the distribution function inv-space in two
bases with the temperaturesT0 andT1

f ~v,t !5 (
k50

`

Ck
0~ t !Sk~v,T0!5(

r 50

`

Cr
1~ t !Sr~v,T1!. ~12!

Quite clearly the vectorsC0 and C1 do not change on
transition fromv- to a-space and the equalities~12! in the
a-representation have the form

w~T,t !5 (
k50

`

Ck
0~ t !sR

k ~T,T0!5(
r 50

`

Cr
1~ t !sR

r ~T,T1!. ~13!

In order to find the relation between the vectorsC0 and
C1, we perform scalar multiplication of both sides of equ
tion ~13! by sL

r (T,T1). Then, using Eqs.~8!, ~9!, and~11!, we
obtain

Cr
15 (

k50

`

dr ,k~T1 ,T0!Ck
0 , ~14!

where the matrix elements of the transition from one basi
the otherD(T1 ,T0) are expressed in terms of the sca
product

dr ,k~T1 ,T0!5E
0

`

sL
r ~T,T1!sR

k ~T,T0!dT

5~sL
r ~T,T1!,sR

k ~T,T0!!. ~15!

The Sonine polynomials are then transformed as
lows:
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sR
r ~T,T1!5 (

k50

`

dk,r~T0 ,T1!sR
k ~T,T0!. ~16!

Using the simple expressions forsL
r and sR

k in the
a-representation, Eqs.~8! and ~9!, we obtain

dr ,k~T1 ,T0!5H S r

kD ~T12T0!r 2kT0
k/T1

r , r>k,

0, r ,k.

~17!

The matrixD is triangular. We also note that it is no
unitary. For any linear transformation we have

dr ,k~T1 ,T0!5 (
p50

`

dr ,p~T1 ,T* !dp,k~T* ,T0!. ~18!

In our case, because the matrix is triangular, summa
is performed betweenr and k. By directly substituting Eq.
~17! into Eq.~18!, we can confirm that this property is indee
found. In operator form Eq.~18! is given by

D̂~T1 ,T0!5D̂~T1 ,T* !D̂~T* ,T0!. ~19!

Since D̂(T0 ,T0) is the unit operatorÊ, assumingT1

5T0, we obtain

D̂~T* ,T0!5D̂21~T0 ,T* !. ~20!

Note that in the nonisotropic case, the distribution fun
tion is expanded in terms of Hermite polynomials where
weighting Maxwellian is characterized by the four-vect
W5(T,u). Here T and u are the temperature and veloci
about which the expansion is performed. In this general c
we can determine the operator of the transition from o
basis to anotherD̂(W0 ,W1), which will also have properties
similar to Eqs.~19! and ~20!. This general matrix is bes
constructed using a representation of the Hermite polyno
als in a –u space.11,12

We shall continue our analysis of the isotropic Bolt
mann equation. Quite clearly, the transition to a new ba
should not affect the result, i.e., the time derivatives of
distribution function should be the same in the basesT1 and
T2,

dw~T,t !

dt
5 (

k50

` dCk
0~ t !

dt
sR

k ~T,T0!(
r 50

` dCr
1~ t !

dt
sR

r ~T,T1!.

~21!

If both sides of Eq.~21! are multiplied scalarly by
sL

r (T,T1), then using the condition for orthogonality of th
Sonine polynomials and Eq.~15!, we obtain

dCr
1~ t !

dt
5 (

k50

`

dr ,k~T1 ,T0!
dCk

0~ t !

dt
. ~22!

We substitute Eq.~2! into Eq.~22! in the initial basisT0

and express the vectorC0 in terms ofC1 using Eqs.~14! and
~20!: C05D̂(T0 ,T1)C1. Then, we have
n

-
e

e,
e

i-

is
e

dCr
1

dt
5 (

k50

r

dr ,k~T1 ,T0! (
k1 ,k250

`

Kk1 ,k2

k ~T0!

3 (
r 150

k1

dk1 ,r 1
~T0 ,T1!Cr 1

1 (
r 250

k2

dk2 ,r 2
~T0 ,T1!Cr 2

1 .

~23!

If the distribution function is expanded directly in term
of Sonine polynomials with the temperatureT1, instead of
the expression~23!, the system of moment equations can
written as

dCr
1

dt
5 (

r 1 ,r 250

`

Kr 1 ,r 2

r ~T1!Cr 1

1 Cr 2

1 . ~24!

Since the expansion coefficientsCr 1

1 and Cr 2

1 are arbi-

trary, we obtain from expressions~23! and ~24!

Kr 1 ,r 2

r ~T1!5 (
k50

r

dr ,k~T1 ,T0!

3 (
k15r 1 ,k25r 2

`

Kk1 ,k2

k ~T0!dk1 ,r 1

3~T0 ,T1!dk2 ,r 2
~T0 ,T1!. ~25!

Hence, the invariance of the description of the relaxat
process relative to the choice of basis yields a relation
tween the matrix elements in the basesT1 andT0. Note that
for fixed T0 formula ~25! holds for anyT1. The form of the
dependenceKr 1 ,r 2

r (T1) on the left-hand side of expressio

~25! is determined by the energy dependence of the cr
section whereas the expression on the right only depend
T1 via the matrix elements of the transition matrixD, which
are the same for all cross sections. After substituting
matrix elements ofD ~17! and a series of simple transforma
tions, expression~25! gives

Kr 1 ,r 2

r ~T1!5~12z!R~21!N1q(
q50

`

zqBr 1 ,r 2

r ~q,T0!, ~26!

Br 1 ,r 2

r ~q,T0!5 (
k5max(q1R,N)

` S r

k2q2RD ~21!k

3 (
k15r 1

k2r 2 S k

r 1
D S k2k1

r 2
DKk1 ,k2k1

k2q2R ~T0!. ~27!

Here we havez512T1 /T0 , R5N2r , andN5r 11r 2. The
expressions~25! or ~26!, ~27! impose certain relations on th
matrix elementsK in the initial reference frameT0. This can
be seen particularly clearly for Maxwellian molecules f
which, as we know~see Ref. 9, for example!, the elements
Kr 1 ,r 2

r (T) do not depend on temperature. For this model E

~26! has a constant on the left and a power series with res
to z on the right. Equating to zero the coefficients of a
positive powersz, we obtain relations containing differen
Kr 1 ,r 2

r (T1) and coefficients which do not depend onT. For

example, equating the coefficients of the first powerz, we
can obtain
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RKr 1 ,r 2

r 1 (
k5max(11R,N)

N11 S r

k2R21D ~21!N1k

3 (
k15r 1

k2r 2 S k1

r 1
D S k2k1

r 2
DKk1 ,k2k1

k2R21 50. ~28!

This formula shows that some linear combinations of
matrix elements of the matrixK vanish. For arbitrary inter-
action models we can derive more general relations by s
cessively differentiating both sides of expression~25! with
respect toT1 and then settingT15T0. Formula~25! is writ-
ten in the operator form

K̂̂~T1!5D̂~T1 ,T0!K̂̂~T0!~D̂~T0 ,T1!,D̂~T0 ,T1!!. ~29!

The rules for the action of the bilinear operatorK̂̂ on the
vector are clear from Eq.~2! and the rules of action when th
operator is expressed in the new basis are clear from exp
sion ~25!. In general when Hermite polynomials are cons
ered as the basis functions, relations similar to~19! and~20!

are satisfied for the transition operatorD̂̂(W0 ,W1) and the
following inequality should be satisfied instead of Eq.~29!

K̂̂~W1!5D̂~W1 ,W0!K̂̂~W0!~D̂~W0 ,W1!,D̂~W0 ,W1!!.
~30!

COUPLING BETWEEN MATRIX ELEMENTS

We shall analyze arbitrary cross sections for particle
teraction. We shall differentiate Eq.~29! with respect toT1

and setT15T0. We then assume that forT15T0 the operator
D̂ becomes the unit operatorÊ

S dK̂̂~T1!

dT1
D

T15T0

5S dD̂~T1 ,T0!

dT1
D

T15T0

K̂̂~Ê,Ê!

1ÊK̂̂S S dD̂~T0 ,T1!

dT1
D

T15T0

,ÊD
1ÊK̂̂S Ê,S dD̂~T0 ,T1!

dT1
D

T15T0

D .

~31!

In order to calculate the derivative of the matrix el
ments of the matrixD, we consider the explicit form
dr ,k(T1 ,T0) given by Eq.~17!. Quite clearly, the derivative
of this function for T15T0 is only nonzero ifr 5k11 or
r 5k,

d

dT1
~dr ,k~T1 ,T0!!T15T0

5r ~d r 21,k2d r ,k!/T0 . ~32!

Similarly we have

d

dT1
~dk1 ,r 1

~T0 ,T1!!T15T0

5~2~r 111!d r 111,k1
1r 1d r 1 ,k1

!/T0 , ~33!
e

c-

s-
-

-

d

dT1
~dk2 ,r 2

~T0 ,T1!!T15T0

5~2~r 211!d r 211,k2
1r 2d r 2 ,k2

!/T0 . ~34!

Converting from the operator to the matrix form in E
~31! and substituting Eqs.~32!–~34!, we obtain a fundamen
tal relation linking the matrix elementsKr 1 ,r 2

r ,

T
dKr 1 ,r 2

r ~T!

dT
2RKr 1 ,r 2

r ~T!

5rK r 1 ,r 2

r 21 ~T!2~r 111!Kr 111,r 2

r ~T!

2~r 211!Kr 1 ,r 211
r ~T!,

~R5r 11r 22r !. ~35!

HereT0 is replaced byT and we stress than Eq.~35! should
be satisfied for arbitraryT. In the particular case of Maxwell
ian molecules, formula~35! is the same as~28!.

In order to obtain relationships which appear under
peated differentiation, we divide both sides of equation~26!
by (12z)R, differentiate twice with respect toT1, setting
T15T0 (z50) and denotingT05T. As a result, we have

S T2
d2

dT2
22RT

d

dT
1R~R11!D Kr 1 ,r 2

r ~T!5Br 1 ,r 2

r ~2,T!.

~36!

We shall now show that the relations~36! are a conse-
quence of~35! and do not impose additional correlations o
the matrix elements. Using the fact that the identity~35! is
valid for anyT, we apply the operatorTd/dt to this. Express-
ing the derivatives on the right-hand side of the result
equality in terms of the matrix elements using~35! and per-
forming simple transformations, we obtain

S T2
d2

dT2
2T~R21!

d

dTD Kr 1 ,r 2

r ~T!2Br 1 ,r 2

r ~2,T!

5~R11!~rK r 1 ,r 2

r 21 ~T!2~r 111!Kr 111,r 2

r ~T!

2~r 211!Kr 1 ,r 211
r ~T!!. ~37!

Now, on the right-hand side of Eq.~37! we again use
equality ~35!

S T2
d2

dT2
2~R21!T

d

dTD Kr 1 ,r 2

r ~T!

5~R11!S T
d

dT
2RDKr 1 ,r 2

r ~T!1Br 1 ,r 2

r ~2,T!. ~38!

On comparing expressions~36! and ~38!, we note that
these equalities are the same. Similarly, we can show tha
relations obtained for higher derivatives of Eq.~25! also im-
pose no additional correlations on the matrix elements co
pared with relation~35!. Hence we can confirm that in orde
to satisfy formula~25!, it is necessary and sufficient tha
relation ~35! is satisfied for anyT.



632 Tech. Phys. 44 (6), June 1999 A. Ya. Énder and I. A. Énder
TABLE I. Verification of formula~45!.

K22
2 K32

2 K23
2 Right-hand side of Eq.~45!

From Eq.~39! 21.666731022 3.906331024 28.724031023 0
From Ref. 13 1.757831022 23.418031023 21.253331022 7.421831022
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FUNDAMENTAL RELATIONS FOR VARIOUS PARTICLE
INTERACTION LAWS

In Ref. 9, for arbitrary power potentials we made an
lytic calculations of the matrix elements in the form of fo
nested sums, having the form

Kr 1 ,r 2

r 5n0
2S 4kT0

m D m ~21!r 1r 1r !G~m15/2!

2r 2

3 (
q51

r
~m15/2!q21

q!
Jq (

i 5max(0,q2r 1)

min(r 2 ,q) S q

i D 2i

~r 22 i !!

3 (
l 5max(q,r 2r 11q2 i )

r
~2l 22q21!!! ~21! l

G~ l 13/2!~r 2 l !!

3 (
j 5max(0,m2)

m1 ~21! j~2m! j 1m3

j !2 j~m12 j !! ~ j 2m2!!
, ~39!

where m5g/2, m15r 12r 1 l 2q1 i , m25r 12r 2 l 1q1 i ,
andm35 l 2q1r 22 i .

Here we used the following notation

ak5a~a11! . . . ~a1k21!5G~a1k!/G~a!,

Jq54pE
0

1

F~z!zqdz. ~40!

In this case, the scattering cross section is given in
form

gs~g,z!5ggF~z!. ~41!

Here F(z) is the angular part of the cross section,z
5sin2Q/2, andQ is the scattering angle. It can be seen fro
Eqs. ~39! and ~40! that when the scattering cross secti
depends on the angle and velocity as given by Eq.~41!, the
matrix elementsKr 1 ,r 2

r depend quite specifically on the bas

temperature , i.e., a general coefficient—the collision f
quencyt(T)5bTm depends on temperature. Relation~35!
now has the form

~m2R!Kr 1 ,N2r 1

r 5rK r 1 ,N2r 1

r 21 2~r 111!Kr 111,N2r 1

r

2~N112r 1!Kr 1 ,N112r 1

r . ~42!

It is interesting to note that the relations between
matrix elements~42! do not depend on the form of the func
tion F(z). It is well-known that for pseudo-Maxwellian mol
ecules (m50) a simple analytic formula exists which, co
rect to within the normalization constant, has the form

Kr 1 ,r 2r 1

r 5
1

r 11
2d r ,r 1

. ~43!
-

e

-

e

For nonzero matrix elements in cases of Maxwelli
molecules Eq.~42! gives

~r 11!Kr 1 ,r 2r 1

r 2~r 111!Kr 111,r 2r 1

r 11

2~r 2r 111!Kr 1 ,r 2r 111
r 11 50. ~44!

It is easily verified that the matrix elements~43! satisfy
the identity~44!.

In Ref. 10 we used the relations~4! as the criterion for
the accuracy of the calculations which, as can be shown,
a consequence of the relations~35! which are more detailed
criteria for the accuracy of the calculations. Assuming thatr 1

and r 2 vary in the range 0<r 11r 2<N0, andr varies in the
range 0<r<N0, then the total number of matrix elements
(N011)2(N012)/2, and the total number of new, more d
tailed relations of the type~35! or ~42! is (N011)2N0/2,
whereas the total number of relations obtained from form
~4! is only (N011)2. Thus, for largeN0 the number of rela-
tions ~42! far exceeds the number of relations~4!.

For other laws of interaction the relations~42! were
checked by calculating the matrix elements using formu
~39!–~41! in the ranger ,N<20. We showed in Ref. 9 tha
small numerical errors are known to occur in this range.
check was made for various values ofm and it was estab-
lished that all the matrix elements satisfy the equalities~42!.

Schürrer and Kügerl13 gave formulas for the matrix ele
ments for the hard sphere model (m50.5). Separate formu
las are given to calculate the linear elements which a
various simplifications agree with Eqs.~39!–~41!. Special
formulas are given for the nonlinear elements which do
include the matrix elements for which one of the subscri
is 1. It is therefore difficult to verify the identities~42! when
these relate nonlinear and linear elements. We shall there
analyze the identity~42! for N54 andr 5r 152

1.5K2,2
2 23K3,2

2 23K2,3
2 522K2,2

1 . ~45!

The values of these elements calculated using the for
las ~39! and the formulas from Ref. 13 in the same units
measurement are given in Table I. Despite the substan
differences between the corresponding elements, the r
tions ~45! are satisfied in both cases. Moreover, other sets
elements from Ref. 13 with subscripts not including 0 or
also satisfy the relations~42!.

It follows from the energy conservation law thatK2,2
1

50. The main error in Ref. 13 is that the formulas propos
there yieldK2,2

1 Þ0 and the identity~45! is only satisfied for
this inaccurate value ofK2,2

1 . If a zero value forK2,2
1 is sub-

stituted into identity~45! and all the other elements there
are taken from Ref. 13, criterion~42! is satisfied. This im-
plies that there is an error in the determination of the ot
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three elements in identity~45!. If these inaccurate elemen
are changed so that identity~45! is satisfied, criterion~42! is
violated for subsequent values of the indices, and so on
Ref. 10 we analyzed how this inaccurate determination of
nonlinear matrix elements gives such erroneous results in
course of a relaxation process.

Formulas~39!–~41! can also be applied to Coulomb pa
ticle interaction. In this case, in order to eliminate dive
gence, we can use the Coulomb potential with the De
cutoff radiuslD following the usual procedure.9 This corre-
sponds to the fact that whenJq is determined using formula
~40!, integration over angles is not performed from zero b
from some small angleu0 which is assumed to be
2e2/(lDmg2). It can be shown that the first term in the sum
mation overq in formula ~39! corresponds to the Landa
approximation.11 For the complete Boltzmann equation sum
mation overq is performed as far asr and the number of
correction terms increases with increasingr. Tables II and III
give the dimensionless matrix elements calculated using
mulas~40! and ~41! for N54 and 5. For the calculations o
the matrix elements the unit of measurement of time in
Boltzmann equation was taken to bet516(kT0 /m)3/2/
(J1n0). In this case we have

J158p ln Le4/m2.

In our calculations the Coulomb logarithm lnL was
taken to be 5. The upper number in each line in the ta
corresponds toq51 ~Landau approximation! and the lower
line gives the total sum overq ~Boltzmann equation for Cou
lomb particle interaction!. Substituting the values from th
tables into relation~42! shows that these identities are sat
fied for the Landau approximation and for the complete Bo
zmann equation. In addition, if the summation overq in

TABLE II. Kr 1 ,r 2

r for r 11r 254 for Coulomb particle interaction.

r 150 1 2 3 4

r r 254 3 2 1 0

1 0.41139 0.82278 0.00000 20.82278 20.41139
0.41139 0.82278 0.00000 20.82278 20.41139

2 0.74050 0.91681 0.56419 20.91681 21.30469
0.76871 0.91681 0.50777 20.91681 21.27648

3 0.87273 0.89918 0.84628 20.12543 22.49276
0.92794 0.91207 0.76166 20.21570 22.38597

4 0.84041 0.83453 0.84628 0.94222 23.46344
0.90469 0.86414 0.80751 0.67380 23.25014

5 0.71626 0.72728 0.70524 0.58184 22.73061
0.76813 0.74909 0.66598 0.38743 22.57062

6 0.56199 0.59504 0.52893 0.23912 21.92508
0.59933 0.60895 0.49407 0.11776 21.82010

7 0.41525 0.46024 0.37025 0.03995 21.28568
0.44046 0.46858 0.34304 20.03150 21.22058

8 0.29311 0.33940 0.24683 20.04957 20.82977
0.30942 0.34423 0.22735 20.09032 20.79068

9 0.19959 0.24050 0.15868 20.07628 20.52248
0.20981 0.24323 0.14552 20.09905 20.49951

10 0.13200 0.16483 0.09917 20.07325 20.32275
0.13825 0.16636 0.09065 20.08580 20.30947
In
e
he

e

t

r-

e

le

-
-

Eq. ~39! is artificially truncated atr 52,3,. . . , these sums
also satisfy the relations~42!. This was checked as far a
N0520.

RECURRENCE FORMULAS

The relations~42! can be used as recurrence formulas
calculate the matrix elements. This is particularly importa
for high values of the indices. We shall show that in order
determine the nonlinear matrix elements, it is sufficient
define the linear elements of just one of the two typesKr 1,0

r

or K0,r 1

r . Then, one half of the linear elements is defined

terms of the other. Let us assume that all linear element
the typeKq,0

r (r ,q<N0) are defined. Formula~42! can then
be written as:

~q11!KN2q.q11
r 5~R2m!KN2q,q

r 1rK N2q,q
r 21

2~N2q11!KN2q11,q
r . ~46!

We shall first analyze this formula forN50

K0,1
r 5~2m2r !K0,0

r 1rK 0,0
r 212K1,0

r . ~47!

We then find all K0,1
r from Eq. ~47!. Converting to

N51 in Eq. ~46! we obtain two relations

K1,1
r 5~12m2r !K1,0

r 1rK 1,0
r 2122K2,0

r , ~48!

2K0,2
r 5~12m2r !K0,1

r 1rK 0,1
r 212K1,1

r . ~49!

For fixed r we find K1,1
r from Eq. ~48! and then deter-

mine K0,2
r in terms of the elements from Eq.~49! K1,1

r just
determined and the linear elements with subscripts 0, 1
termined earlier using formula~47!. In this way all elements
with N52 are determined.

TABLE III. Kr 1 ,r 2

r for r 11r 255 for Coulomb particle interaction.

r 150 1 2 3 4 5

r r 255 4 3 2 1 0

1 .23141 .69422 .46281 2.46281 2.69422 2.23141
.23141 .69422 .46281 2.46281 2.69422 2.23141

2 .50909 .86906 .68908 2.03085 21.19817 2.83820
.52555 .88551 .65616 2.06377 21.18171 2.82175

3 .70909 .85785 .78347 .48595 21.00898 21.82740
.74889 .88153 .75224 .39024 21.01754 21.75536

4 .78788 .81212 .80000 .75152 2.14786 23.00367
.84494 .84411 .78404 .63525 2.28066 22.82768

5 .76102 .75505 .75804 .76998 .86552 23.90961
.82273 .79389 .75985 .69699 .54218 23.61564

6 .66736 .67975 .67356 .64876 .51849 23.18792
.71941 .71203 .67098 .57863 .27711 22.95816

7 .54501 .58599 .56550 .48354 .16171 22.34175
.58483 .61047 .55893 .42238 .00670 22.18331

8 .42135 .48242 .45188 .32975 2.05400 21.63140
.45001 .50007 .44388 .28145 2.14728 21.52813

9 .31186 .38019 .34602 .20935 2.14947 21.09795
.33160 .39247 .33842 .17385 2.20347 21.03287

10 .22275 .28810 .25542 .12474 2.17066 2.72036
.23591 .29638 .24910 0.9999 2.20109 2.68029
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For N52 we obtain three relations from Eq.~46! from
which all N53 elementsK2,1

r , K1,2
r , andK0,3

r can be system-
atically determined in terms of theN52 elements:K2,0

r ,
K1,1

r , andK0,2
r .

We shall assume that all matrix elements for which
sum of the subscripts is equal toN are known and we write
the corresponding equalities~46! for fixed r and q
50,1, . . .N

KN,1
r 5~N2r 2m!KN,0

r 1rK N,0
r 212~N11!KN11,0

r , ~50!

2KN21,2
r 5~N2r 2m!KN21,1

r 1rK N21,1
r 21 2NKN,1

r , ~51!

3KN22,3
r 5~N2r 2m!KN22,2

r 1rK N22,2
r 21

2~N21!KN21,2
r , ~52!

.......................................... ,

~N11!K0,N11
r 5~N2r 2m!K0,N

r 1rK 0,N
r 212K1,N

r . ~53!

Quite clearly, moving from top to bottom, we can u
Eqs. ~53!–~55! to systematically determine all elements f
which the sum of the subscripts isN11 in terms of already
known elements. Thus, all the nonlinear elements can
determined for givenKq,0

r . In addition, the linear elements o
the other typeK0,q

r can also be determined in terms of thes
Conversely we can assume that linear elements of the
K0,q

r are known and by reducingq, we can determine al
nonlinear elements and linear ones of the typeKq,0

r .
As a result, we can construct such a recurrence pro

dure. Initially, N is increased fromN50 and thenr is in-
creased, also from zero. Then, for givenr andN the values of
q are varied between 0 andN and the elementsKN2q,q11

r are
determined from formula~46!. Assuming that linear ele
ments of the typeK0,q

r are known, we obtain a similar recu
rence procedure by replacingN2q with q in formula ~46!
and then determining the extreme right elementKq11,N2q

r .
Note that when a gas of the one species is being stud

a knowledge of the symmetrized matrix elements is su
cient

K̃r 1 ,r 2

r 5~Kr 1 ,r 2

r 1Kr 2 ,r 1

r !/2, r 1>r 2 . ~54!

In this case, instead of formulas~50!–~53! we have

~q11!K̃N2q,q11
r 5~N2r 2m!K̃N2q,q

r 1rK̃ N2q,q
r 21

2~N112q!K̃N112q,q
r

q50, . . . ,@~N21!/2#. ~55!

Here the square brackets denote the integer part of the n
ber.

Understandably, when the recurrence formulas~46! are
used, we need to have simple formulas to calculate the lin
elements. We now go over to the linear case in formula~39!.
Assuming thatr 150, we then havei 5q, m15 l 2r>0,
from which it follows thatr 5 l , and thenm150 and j 50.
As a result we obtain
e

e

.
pe

e-

d,
-

m-

ar

K0,r 2

r 5S 4kT0

m D m r !n0
2

G~r 13/2!2r 1r 2

3 (
q51

min(r 2 ,r )

22qWr ,q
r 2 JqG~q1m13/2!/q!, ~56!

where

Wr ,q
r 2 5

2m~2m11! . . . ~2m1r 21r 22q21!

~r 22q!! ~r 2q!!

5
G~2m1r 21r 22q!

G~2m!~r 22q!! ~r 2q!!
. ~57!

The similar formula forKr 1,0
r has the form

Kr 1,0
r 5S 4kT0

m D m r !n0
2

G~r 13/2!2r 1r 1

3 (
q51

min(r 1 ,r )

22qWr ,q
r 1 J̃qG~q1m13/2!/q!. ~58!

Here we have

J̃q54pE
0

1

F~z!~~12z!q21!dz. ~59!

In practice, an approximation in the form of a finite su
as far as someN0 rather than the series~1! must be used to
represent the distribution function. The main errors incur
when using the moment method are caused by this trun
tion. In order to calculate the distribution function at hig
velocities, we need to strive to increaseN0. However, when
formulas with multiple summation are used for the calcu
tions, both the errors and the computation time begin to
crease catastrophically with increasingN0. This is quite un-
derstandable since calculations ofN0

3 elements involving six
sums, as in Ref. 6, requires a number of summations pro
tional to N0

9. For four sums, as in Ref. 9, this number
summations is proportional toN0

7. In this sense, calculation
using recurrence formulas are advantageous since the n
ber of summations for calculating any element is three a
the computation time only increases proportionately asN0

3.
The calculations were made using a 66 MHz PC-4

The calculations using formula~39! allowing for all the sim-
plifications considered in Ref. 9 forN0530 took 3.5 h
whereas calculations of all the nonlinear elements to dou
precision using the recurrence formula~46! for N0530 only
required 0.23 s. Quite clearly if the number of summations
N0

9, a time of 3.5 h is required forN0514 and if calculations
up toN0530 could be made using the formulas from Ref
with sixfold summation and no significant errors, nin
months would be required.

CONCLUSIONS

It has been shown that the conditions of invariance in
description of the relaxation process relative to the choice
basis impose certain relations on the matrix elements wh
are a mapping of the collision integral in the moment meth
of solving the Boltzmann equation. These relations exist
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arbitrary particle interaction laws. Using these relations
recurrence formulas can reduce the time required to calcu
nonlinear matrix elements by many orders of magnitude.

This opens up the possibility of calculating matrix el
ments with large indices. As a result, the distribution fun
tion for high velocities can be calculated ‘‘almost analy
cally.’’

The principle of invariance of the collision integral rel
tive to the choice of basis functions may prove highly effe
tive for calculating the matrix elements in cases of noni
tropic relaxation. Therefore, the distribution function must
expanded in terms of Hermite polynomialsHr ,l ,m , which are
the product of spherical harmonics and Sonine polynom
with a weighting Maxwellian, which depends on the tem
perature and average temperature. In this case, the rela
ship between the matrix elements will be determined by
ing over to a basis with a Maxwellian distribution not on
with a different temperature but also with a different she
velocity.

So far, the moment method has been little developed
the nonisotropic case because of the major difficulties
volved in deriving the formulas and calculating the nonline
matrix elements. The formulas known from transp
theory1,4 have only been derived for linear elements anl
<2. However, in nonisotropic problems the apparatus ofa –
u transformations developed in Refs. 11 and 12 can be u
to obtain simple relations between the matrix elements s
lar to those obtained here. As a result, even in nonisotro
problems, progress can be made toward high velocities w
constructing the distribution function. This is particularly im
portant for problems in physicochemical kinetics and for
description of highly nonequilibrium transport process
s
te
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Particular mention should be made of the need to use h
moments and electron transport matrix elements in a ther
nuclear plasma.
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Investigation of the charge distribution in the insulating envelope of a high-voltage
vacuum device
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Methods of measuring charges in the bulk and at the surface of the insulating envelope of a high-
voltage vacuum device are developed as part of studies of a complex range of dielectric
strength aspects. These methods were used to measure the charge distribution over the length of
the envelope and to study how this distribution is influenced by the operating regimes of
the device. Laws governing the formation of charges were identified and its correlation with the
appearance of physical changes in the structure of the surface layers of the insulator was
determined. Processes of structural change were studied and simulated and the change in the
dielectric strength of the device was compared with changes in the magnitude and polarity
of the surface and bulk charges. ©1999 American Institute of Physics.@S1063-7842~99!00506-1#
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INTRODUCTION

The insulating envelope is one of the main compone
of any vacuum device. However, such an important para
eter as the dielectric strength of the vacuum device is
generally related to the presence and properties of the i
lating envelope. For instance, among the numerous studie
vacuum breakdown,1 no consideration is given to the influ
ence of the insulating envelope on the initiation of brea
down. However, a few authors do draw attention to the f
that effects associated with secondary electron emission f
insulating components2,3 and luminescence at the envelop4

may affect the operating reliability of vacuum devices.
x-ray tubes and hydrogen thyratrons luminescence
breakdown of the vacuum interelectrode gap is accompa
by the observation of catastrophic damage to the glas
metal ceramic envelope.5,6 All these processes are caused
exposure of the insulating elements to ion and elect
beams.

The aim of the present paper is to study the char
formed in the insulating envelope of high-voltage vacuu
devices, especially x-ray tubes, to identify the charge dis
bution pattern over the length of the envelope, and to de
mine the processes promoting electrical breakdown of
envelope and lowering the dielectric strength of the devic
It should be noted that studies of the interaction betw
charged particle beams and insulators are important for v
ous practical applications concerned with the reliability n
only of high-voltage vacuum devices7–10 but also with larger
objects using insulators in a vacuum, including accelerat
nuclear reactors, and space station equipment.11,12

DESCRIPTION OF METHODS OF MEASUREMENT

The glass envelope of x-ray tubes is exposed to the
tion of a complex range of factors: strong electric fields, a
6361063-7842/99/44(6)/5/$15.00
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irradiation by hard x-rays, ions, and high-energy electro
Under these conditions, polarization should occur in
glass envelope, similar to that in radio- or electro-ele
trets.13–15

Numerous methods are available for measuring
charges of insulators.16–18Three methods suitable for the re
operating conditions of sealed high-voltage electric-vacu
devices proved the most convenient for measuring
charges in the glass envelope of x-ray tubes. For insta
during operation of the tubes the effective total surfa
charge was investigated by measuring the electrostatic f
created by the charge field.19 The charge formed in the bulk
and at the surface of the envelope and its distribution o
the envelope length away from the device were estimated
measuring the thermostimulated depolarization~TSDP! cur-
rents and by an electrostatic indication~ESI! method.14,20,21

Experimental prototypes were fabricated with S40-1 a
S49-1 borosilicate glass envelopes~similar to Corning 7052!
1.760.3 mm thick, 35–60 mm in diameter, and 12–18 c
long. The design was essentially that of small x-ray tubes
order to measure the electrostatic force directly during
eration under voltage, we used a prototype x-ray tube wit
metal probe inserted in one of the high-voltage electro
~Fig. 1!. Its displacement under the action of the charge fi
was recorded by a special vacuum ‘‘diode’’ transducer h
ing two planar anodes connected mechanically to the pr
with a filamentary cathode inserted between them. The o
ating principle of the transducer is based on the change in
current distribution between the anodes of the diode as
probe is displaced. The displacements of the probe were
brated to obtain direct measurements of the envelope po
tial ~Fig. 2!.

In order to measure the charge at the envelope, the h
voltage electrode in which the probe was inserted was c
© 1999 American Institute of Physics
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nected to it electrically and could be connected either as
cathode or as the anode of the tube. Figure 2 shows tha
displacement of the probe depends linearly on the voltag
the range 0–15 V. As the voltage increases further, the
flection increases abruptly and the probe then ‘‘attaches’
the envelope. This method was used to measure small~up to
15 kV! potential differences between the envelope and
high-voltage electrode of the prototype.

Measurements of the charge using the ESI and TS
methods were made using probes with an active area
1 cm2 inserted in the high-voltage electrodes of x-ray tu
prototypes. The following types of probes were used: a fl
ible thin niobium foil probe which ensured good contact w
the surface of the cylindrical envelope; shielded probes, h
ing a shield to protect against the charge built up outside
surface of the probe; and insulated probes where the pro
insulated from the envelope surface by a thin layer of gla
We used stationary and moving probes which could be
serted at any point in the envelope.

The prototype being tested was held under conditi
close to real operation, at high voltage in an oil bath. Af
the voltage had been switched off, the prototype was
moved from the bath and an electrostatic voltmeter was c
nected to the probe output. The charge was first measure
the ESI method. A grounded electrode was brought into

FIG. 1. Schematic of x-ray tube prototype with diode transducer to mea
probe displacement:1 — high-voltage devices,2 — transducer anodes,3 —
glass envelope,4 — probe,5 — transducer cathode, and6 — spring.

FIG. 2. Diode transducer probe deflection as a function of voltage betw
envelope and probe.
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ternal contact with the envelope near the probe. The pr
was then brought in contact with the glass. The envelo
charge was determined from the voltage and the capacita
of the voltmeter and an additional capacitor connected to
The charge thus recorded frequently passed over to the p
accompanied by breakdown. The charge density was sev
orders of magnitude higher than the induced charge typ
of electrets. The prototype was then placed in a shiel
chamber, the probe was mounted on the surface of the e
lope at the point being studied, and its output was connec
to a U5-6 electrometer amplifier to measure the TSDP c
rents. A grounded copper electrode with a heater to heat
area of the glass being studied was mounted externally,
ing the probe. The rate of heating was varied between
and 16 deg/min. The inside of the envelope was heate
150–180 °C while the outside was heated to 210–240 °C

RESULTS AND DISCUSSION

Investigation of the residual polarization of the envelope

The experimental dependences of the currents produ
by relaxation of the charges in the envelope measured u
the U5-6 amplifier have two characteristic sections~Fig. 3!.
Initially, after the irradiated prototype has been inserted
the chamber, we observe a discharge currentI 1 which de-
creases over 10–60 min reaching low values, without a
heating of the envelope. The polarity of this current depe
on the measurement point. The positive direction was ta
to be the direction of the current from the irradiated side
the envelope to the outside. After switching on the heater,
observe a second type of current, a thermostimulated de
larization currentI TSD.

In order to analyze the relaxation processes in the en
lope of x-ray tube prototypes, it is important to know th
direction of current flow in the measuring circuit and th
factors determining this. This allows us to assess how
residual polarization corresponds to the particular proce

re

en

FIG. 3. Currents recorded by flexible probe in the cathode~1! and anode~2!
regions of the envelope, without (I 1) and with heating (I TSD): 3 — tem-
perature of outer envelope surface,4 — temperature of inner envelope su
face, anode voltage 120 kV, and operating regime — with discharge
interelectrode gap.
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The TSDP current has different directions when the ‘‘int
nal’’ residual polarization~heterocharge! and the ‘‘external’’
residual polarization~coupled homocharge! decay.14 The po-
larity of the displacement current observed when the het
charge decays is opposite to that of the charged insula
The homocharge usually discharges through the bulk of
sample. In this case, the TSDP current flows in the oppo
direction. If the homocharge reaches the electrodes,
TSDP current has the same direction as the current cause
the decay of the heterocharge. However, the direction of
current can be altered by using insulating spacers in
insulator–electrode gap. The experimental characteris
show that when insulation is inserted near the probe, only
direction of the currentI 1 changes while the direction of th
TSDP current remains as before~Fig. 4!.

Consequently, the discharge currentI 1 in the cathode
and anode regions of the envelope is caused by the relea
weakly bound homocharge from surface traps, which rela
without heating. An analysis of a large number of TSD
current measurements also yielded the following conc
sions. The thermostimulated current is always positive in
cathode region and is solely due to homocharge dischar
through the bulk of the envelope. In the anode region
TSDP currents produced by the buildup of different char
can be either positive or negative. For example, when
charges and breakdown occur in the vacuum high-volt
gap of the prototype, a heterocharge appears in the an
region of the envelope, whose current is positive. The d
charging heterocharge peak is followed by a peak cause
the decay of homocharge, which discharges through the
of the envelope as in the cathode region. This homocharg
activated at temperatures of 80–120 °C which indicates
its is distributed in deep traps. In the envelopes of devi
operating at voltages above 100 kV without any discharg
we observe negative TSDP currents which appear after
positive current when the temperature of the internal en

FIG. 4. Currents recorded by insulated probe in the anode region of
envelope, without (I 1) and with heating (I TSD): anode voltage 100~1! and
120 kV ~2!; operating regime – with~1! and without discharges~2!.
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lope surface is around 120 °C, regardless of the rate of h
ing ~Fig. 5!.

No such change in polarity was observed for the TS
currents measured in the anode region using insula
probes. From this we can conclude that the negative TS
currents in the anode part of the envelope for tubes opera
without discharges are currents from negative charges w
reach the surface of the envelope during heating, i.e., t
are caused by the electron space charge. The TSDP cur
are caused by the relaxation of charges trapped in comp
tively deep traps so that these charges may be describe
bulk charges, in contrast to those recorded by the E
method, which are mainly attributable to the relaxation
surface charge and are therefore subsequently called su
charges.

Charge distribution over the tube envelope

In order to identify the processes responsible for the
pearance of different charges in the anode region of the
velope when the tube is operated under various conditio
we studied the influence of electric fields on the formation
these charges. For this we used an x-ray tube prototype
ing a probe with a ‘‘diode’’ transducer. Measurements we
made of the potentials between the high-voltage electro
and the envelope under conditions with normal switch
and with current flow between the anode and the cath
eliminated. In this case, only a high voltage of different p
larity was connected to the mutually shorted cathode
anode and the envelope was exposed to the action o
electric field between the grounded external circuit and
high-voltage electrodes.

The results of the measurements show that the elec
fields in the anode and cathode regions differ substanti
~Fig. 6!. In the cathode region, for instance, the small defl

e

FIG. 5. Currents recorded by flexible probe in the anode part of the en
lope ~1!, without (I 1) and with heating (I TSD): anode voltage 120 kV, op-
erating regime — without discharges,2 — temperature of inner surface o
envelope.
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tion of the probe indicates that a potential close to the pr
potential, i.e., close to the cathode potential, is formed at
envelope. When the operating conditions are varied, for
ample, the leakage currents increase or discharges and b
downs take place between the cathode and the anode
envelope potential varies little in this region. In the ano
region, however, the envelope potential depends v
strongly on the operating conditions. When the leakage c
rents~field emission currents! exceed 0.05mA, the electrons
reaching the envelope near the anode lower its poten
causing an abrupt increase in the deflection of the probe a
anode voltage around 60 kV. The probe remains in this
sition until discharges appear in the device. The probe t
returns to a position close to zero, producing a small pot
tial difference between the envelope and the anode.

After the voltage had been switched off, the charges
the envelope were investigated by the ESI and TSDP m
ods under normal conditions and in the absence of cur
flow. Figure 7 gives the maximum densities of the surfa
charge of the envelope as a function of the anode volt
measured by the ESI method. It can be seen that the ch
in the cathode region of the envelope depends comparati
weakly on the electrode switching circuit and therefore
formation of this charge is more strongly influenced by t
electric fields acting in this region and to a lesser extent
the current flowing in the gap. In the anode region, co
versely, the current flow regime has the strongest influe
on the envelope charge. The polarity of the charge indica
that it is attributable to the formation of homocharge in t
appropriate regions of the envelope, i.e., negative in the c
ode and positive in the anode regions. The experimenta
sults suggest that the ‘‘external’’ polarization of the glass
the electric field created by the tube electrodes plays an
portant role in forming the envelope charge.

These results are consistent with the experimental d
and theoretical ideas14 on the formation of homocharge whe
insulators are polarized in strong fields. However, the po
ization of the envelope of an electric vacuum device h
important differences compared with the polarization of
dinary electrets. The main difference is that a negat
charge appears in the anode region of the envelope whe
tubes are operating without discharges.

A comparison of Figs. 3 and 7 reveals differences~ap-

FIG. 6. Voltage between cathode and envelope~a! and between anode an
envelope~b! during operation of prototype:1 — with normal switching and
no discharges,2 — with normal switching after the appearance of d
charges, and3 — with no current flowing.
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proximately two orders of magnitude! in the magnitudes of
the bulk and surface charges. However, this does not im
that the large difference between them is real, mainly
cause of the differences in the measurement conditions.
instance, the times between irradiation and the measurem
obtained by these methods differ: the surface charge is m
sured 1–2 min after irradiation while the bulk charge is me
sured 1 h after irradiation. Under operating conditions w
discharges when an appreciable positive charge appea
the surface, allowance should be made for a substantia
duction in the negative bulk charge formed by electron ir
diation of the envelope, immediately after the high volta
has been switched off. This factor also explains why t
charge is only found after operation at voltages abo
100 kV under discharge-free conditions~Fig. 5!.

CONCLUSIONS

To sum up, when a discharge-free operation of a vacu
device, the envelope potential in the anode region is sligh
positive or close to a linear distribution law whereas the p
tential in the cathode region is close to the cathode poten
Under operating conditions when discharges appear in
interelectrode gap, in the regions adjacent to the anode
the cathode the envelope acquires potentials close to tho
the corresponding electrodes. The potential distribution p
tern over the envelope length is shown in Fig. 8.

The results show that the external polarization of t
glass plays an important role in forming the envelope char
Moreover, whereas the charge in the cathode region does
change significantly under various operating conditions

FIG. 7. Density of envelope surface charge as a function of anode vol
after exposure to discharges~1, 5!, without discharges~3!, and without
current~2, 4! in the anode region~1–3! and in the cathode region~4, 5!.
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the vacuum gap~homocharge is formed!, homocharge only
forms in the anode region when discharges or breakdo
occur in the vacuum interelectrode gap. The magnitude
this charge reaches 531026 cm2 and the envelope potentia
in the anode region becomes similar to the anode poten
Positive charge predominates in this region. As a result o
appearance, the operating conditions of the envelope in
anode region deteriorate abruptly: the intensity and energ
the bombarding electrons increase, which promotes
buildup of appreciable levels of electron space charge at
range depth~up to;60mm at 150 keV!. When the accumu-
lated space charge reaches values of the order of 1026 C, the
strength of its field exceeds the dielectric strength of
glass, resulting in breakdown of the surface layers with
breakdown channel reaching the inner surface of the en
lope. Thus, the breakdown of the envelope is closely rela

FIG. 8. Potential distribution over the length of the x-ray tube envelo
without ~a! and with discharges~b!: the dashed line shows the change in t
envelope potential at the site of bombardment by field emission electr
1 — cathode,2 — anode, and3 — insulating envelope.
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to the dielectric strength of the vacuum gap. During the o
eration of a device having a high dielectric strength where
discharges occur, the negative charge of the envelope
the anode impedes the bombardment of the glass, redu
the field emission current from the anode and lowering
energy of the electrons as they approach the surface of
glass.

1I. N. Slivkov, Electric Insulation and Discharges in Vacuum@in Russian#,
Atomizdat, Moscow~1972!.

2N. V. Cherepnin,Sorption Effects in Vacuum Technology@in Russian#,
Sovetskoe Radio, Moscow~1973!.

3V. N. Batygin,Vacuum Ceramics@in Russian#, Énergiya, Moscow~1973!.
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An analysis is made of some burning characteristics of a hollow-cathode glow discharge with a
long tube (L@D) used as the cathode. It is shown that, as in the caseL;D, the main
factor imposing a lower limit on the range of operating voltages is the drift of fast electrons
through the aperture in the cavity. Assuming that the electrons move along the cavity as a result of
diffusion, it was possible to calculate the critical pressure at which the discharge can no
longer burn and to determine the optimum ratioL/D for which the discharge can be sustained at
the lowest voltage. The calculations showed satisfactory agreement with the experiment.
© 1999 American Institute of Physics.@S1063-7842~99!00606-6#
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In Ref. 1 the present author analyzed the processes
companying the burning of a glow discharge with electr
oscillation in a hollow cathode and developed a model wh
agreed satisfactorily with the results of experiments us
cathodes whose lengthL and diameterD are of the same
order of magnitude. However, a comparison between the
sults predicted by this model and the experimental data
tained using long cathode tubes (L@D) reveals an appre
ciable discrepancy when the optimum hollow-catho
geometry is determined. The present author showed1 that the
minimum burning voltage is reached whenSa /Sc;Am/M ,
whereSa andSc are the areas of the anode and the catho
andm andM are the electron and ion masses, respectiv
When this condition is satisfied, the fast electrons can p
duce a sufficient number of ionizations and at the same ti
there are no problems with the transport of plasma electr
to the anode. This condition predicts that in a long tu
(Sc'pDL) with an end anode (Sa'pD2/4), optimum con-
ditions for discharge burning in the most commonly us
gases such as argon, nitrogen, and oxygen will be achie
when the conditionL/D'0.25AM /m;102 is satisfied, al-
though in experiments the minimum voltage or maximu
discharge current~when a given voltage is maintained! were
observed forL/D;10 ~Ref. 2!. The aim of the present pape
is to analyze the discharge burning characteristics in l
tubes and to identify the reasons for this discrepancy.

Kirichenko et al.3 reported experiments using tubes
different length, and on the basis of their results, conclu
that the drift of fast electrons to the anode~these losses wer
taken into account in the author’s model1! only impedes
burning of the discharge for short lengthsL. In long tubes the
main factor limiting the discharge burning process is the d
of emitted electrons to the opposite part of the cathode
the discharge becomes quenched whenl'S, wherel is the
electron mean free path. This conclusion is dubious sinc
we assume that electrons which have undergone collis
on their first transit through the cavity and have not reac
the opposite part of the cathode subsequently expend all
energy in ionization, it is easily found that a self-sustain
6411063-7842/99/44(6)/4/$15.00
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discharge can be achieved if the following condition is s
isfied:

U5
W

eg~12exp~2D/l~«!!
, ~1!

whereU is the discharge voltage which is almost complete
concentrated in the cathode sheath,W is the average energ
dissipated in forming a pair of charged particles when a f
particle is stopped in the gas,e is the electron charge,g is the
coefficient of ion–electron emission, exp(2D/l) are the frac-
tions of particles which have reached the cathode with
undergoing collisions and do not participate in ionizati
processes, and«5eU is the energy of the fast particles o
their first transit. For any dependencel(«) the voltage will
gradually increase as the pressureP decreases and will only
go to infinity when l→`, i.e., whenP→0, but the dis-
charge is abruptly quenched for nonzeroP. In addition,
Metel’4 and Bersenevet al.5 reported a discharge under co
ditions wherel@D, which also contradicts the conclusio
reached in Ref. 3, but nevertheless an experiment was ca
out to check this and the results are presented below.

A discharge was initiated in a long (L/D510) cathode
tube 1 ~Fig. 1! by a Penning discharge excited in a ce
formed by end cathodes2 and3, an anode4, and a magnet5.
A probe6 was placed opposite the exit aperture of the cav
The probe was either floating or connected to the cathode
the first case, the fast electrons escaping from the cavity w
captured by the probe, while in the second case they w
reflected by the probe and had a high probability of return
to the cavity since their radial drift was impeded by the ma
netic field. Figure 2 gives the discharge burning voltage a
function of the gas supply for both cases. The measurem
were made with the gas supply gradually reduced to the c
cal value for which the discharge was quenched in the cav
If the main mechanism limiting the discharge burning pr
cess were electron losses to the walls of the cavity, the
ference in the probe potential should not significantly infl
ence the results. However, it can be seen that in the sec
case, the gas supply could be reduced by almost an ord
© 1999 American Institute of Physics



es
is
fa

e
th
th
nd

o
ic
o
z
fa
th
as
ua

st
-

an

ity
of

is-
nit
th-
p-
as-
fast
o a

at
to

ode
the
of
fol-

ode
the
the

-
re

642 Tech. Phys. 44 (6), June 1999 S. P. Nikulin
magnitude compared with the first case. This result sugg
that in long tubes the main mechanism impeding the d
charge burning process at low pressures is the loss of
particles through the cavity aperture.

Consequently, this discrepancy between theory and
periment cannot be attributed to the model neglecting
electron losses to the cavity walls. At the same time,
experimental results indicate that in long tubes, gas co
tions are established under which the longitudinal motion
the fast particles is not a Knudsen process. This contrad
another assumption used in Ref. 1, that the electrons m
freely over the entire volume of the cavity. We shall analy
the discharge conditions assuming that the transport of
electrons along the cavity is a diffusion process and that
influence of the weak electric field in the plasma on the f
particle motion can be neglected. We shall write the eq
tions of motion and continuity in the following form:

j f52D f

dnf

dx
, ~2!

d j f

dx
5gn inf2

nf

t r
, ~3!

FIG. 1. Schematic of experiment.

FIG. 2. Discharge burning voltage as a function of gas supply:1 — probe at
floating potential,2 — probe at cathode potential.
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wherej f andnf are the flux density and concentration of fa
particles,D j andn i are the diffusion coefficient and the ion
ization frequency for the fast electrons,t r is the characteris-
tic relaxation time of the fast electrons, for which we c
write:

t r5
eU

n iW
. ~4!

Assuming that the square of the fast particle veloc
varies between 2eU/m and 0 and has an average
;eU/m, we can write the following expression forD f :

D f5
^n2&
3n f

5
eU

3mn f
, ~5!

wheren f is the effective fast-particle collision frequency.
The first term on the right-hand side of Eq.~3! describes

the generation of new fast electrons by ion–electron em
sion. Heren inf is the density of the ions generated per u
time and it is assumed that the ions drift rapidly to the ca
ode in the radial direction without having time for any a
preciable longitudinal displacement. The second term
sumes that after the relaxation time has elapsed, a
electron loses its capacity for ionization and is converted t
group of slow plasma electrons. Substituting Eq.~2! into Eq.
~3!, we obtain a second-order equation fornf

S gn i2
1

t r
Dnf1D f

d2nf

dx2
50. ~6!

Assuming that near the fast-particle absorbing anode
the pointx50, the concentration of these particles is close
zero, we write the solution of the equation in the form

nf5nf 0 sinS xAgn it r21

D ft r
D . ~7!

The constantnf 0 is related to the discharge currentI d

and may be determined from the following equation:

I d5~11g!ep
D2

4 E
0

L

n inf~x!dx. ~8!

At the opposite end of the tube, the end is at the cath
potential and electrons are reflected from it so that at
point x5L the fast particle flux density, i.e., the derivative
the concentration, is close to zero. We then obtain the
lowing equation:

LAgn it r21

D ft r
5

p

2
. ~9!

Note that when the second end electrode is at the an
or floating potential sometimes used, we need to impose
constraint that the derivative vanishes at the center of
system at the pointx5L/2. Introducing the parameters

U05
W

eg
, P05

p

gL
A W

3mn f 0n i0
, ~10!

wheren f 0 and n i0 are the effective and ionization frequen
cies at 1 Torr pressure and the dimensionless variables a
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u5U/U0 , p5P/P0 , ~11!

we rewrite this equation in the following form:

2p
Au21

u
51. ~12!

Figure 3 gives the discharge burning voltage as a fu
tion of pressure determined implicitly by this relationsh
For p.1 the dependence is two-valued. A similar result w
obtained in Ref. 6 where the author analyzed the situatio
a glow discharge with electron oscillation in a magnetic fie
and showed that states corresponding to the lower branch
stable and can be attained experimentally. As we move a
this branch, the voltage drops rapidly with increasing pr
surep and at the pointp51.74 it is 1.1 so that condition
close to the optimum for maintaining a self-sustained d
charge are achieved at this point~at the voltageu51 or
U5U0 where the fast electrons have time to expend all th
energy before drifting to the anode!. A further increase in
pressure does not lead to any substantial increase in the
ber of ionizations accomplished by the fast electrons or
appreciable voltage drop.

For p,1, i.e., whenP,P0 the discharge cannot be su
tained at any voltage. Therefore the parameterP0 is the criti-
cal parameter, below which the discharge cannot burn. C
culations ofP0 using the expression given above are of t
same order of magnitude as the experimental results f
Ref. 3. Thus, these results can be completely explained u
concepts of electron losses through the cavity aperture,
the fact that the discharge was quenched at pressures co
tent with the conditionl;D is to some extent coincidenta
In different cavity geometries the discharge can be quenc
whenl.D or l,D.

Consequently the condition for a self-sustained d
charge is satisfied forP<P0 . However, in order to ensur
that a high-current discharge burns with a low discha
voltage, the constraint must also be imposed that at th
pressures there are no problems with the transport of pla
electrons to the anode. A quasineutral state can be m
tained over the entire length of the cavity and the elect
current can be shorted at the anode in the absence of
negatively charged anode sheath if the time taken for
electrons to move along the plasma column is shorter t

FIG. 3. Discharge burning voltage as a function of pressure.
-
.
s
in

re
ng
-

-

ir

m-
y

l-

m
ng
nd
sis-

ed

-

e
se

a
in-
n
ny
e
n

the time for radial ion drift to the cathode. We shall assu
that the characteristic time for ion drift from the discharge
D/nb , wherenb5AkTe /M is the Bohm velocity,k is the
Boltzmann constant, andTe is the electron temperature. Th
conditions for sustaining a high-current discharge will
satisfied if a plasma electron can diffuse over a dista
greater than the tube length within this time, i.e., if the co
dition

ADe

D

nb
.L, ~13!

is satisfied, whereDe is the diffusion coefficient of the
plasma electrons.

By transforming this relationship, we can ascertain tha
high-current discharge will be sustained ifP is lower than a
certain pressureP1 given by:

P15AM

m
AkTe

m

D

L2ne0

, ~14!

wherene0 is the effective collision frequency for the plasm
electrons at 1 Torr.

It should be noted that unlike fast particles, the transp
of slow electrons along the cavity is strongly influenced
the electric field in the plasma. However, if we assume t
the electrons are transported to the anode as a result of
in the electric field rather than by diffusion, when the pote
tial drop across the plasma is of the order ofkTe /e and the
average electric field intensity is;kTe /eL, we obtain ex-
actly the same expression forP1 . On the whole, the electric
field distribution pattern and the particle concentration in
plasma column of the hollow cathode are fairly complex a
in some sections the electron transport is predominantly
diffusion while in others it is the result of drift.

The high-current discharge region is shown schem
cally in Fig. 4, this being the region above curve1 and below
curve 2. Below curve1 „P5P0(L)… the discharge canno
burn in this form because the self-sustaining condition is
satisfied whereas above curve2 „P5P1(L)… this is not pos-
sible because of problems with shorting of the electron c
rent at the anode. When the pressure increases aboveP1 , an
electron sheath begins to form near the anode, across w

FIG. 4. Region in which a high-current discharge is achieved:1 — P0(L),
2 — P1(L).
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the potential drop makes a significant contribution to
discharge voltage and the discharge goes over to a h
voltage form. If the anode is not positioned at the end of
cathode tube but some distance away, electrons may
transported in the region near the exit aperture as a resu
the formation of a double layer. A requirement for its stab
existence is that the external plasma should possess a
cient ion-emission capacity.1

When the cathode length is increased to

L5Lm'
gD

p
A3kTe

W
AM

m

An f 0n i0

ne0
~15!

the values ofP0 andP1 become equal and the lowest wor
ing pressurePm is achieved at this point, which for thi
particular configuration of gas-discharge system can be
tained using a cathode tube of diameterD

Pm'
p

gLm
A W

3mn f 0n i0
'

p2Wne0

3g2Dn f 0n i0A3kTeM
. ~16!

For L.Lm a high-current discharge cannot be sustain
at any pressure.

Conditions close to the optimum for discharge burning
low pressures are evidently achieved forL05Lm/1.74 at the
point P5P1(L0)11.74P0(L0) where, as was discusse
above, the self-sustaining condition is satisfied at a low v
age close toU0 and at the same time no anode electr
sheath appears. Also bearing in mind that all the frequen
in Eq. ~15! are of the same order and neglecting factors
the order of unity, we can derive the following expression
the optimum ratioL/D:

S L

D D
0

'gAkTe

W
AM

m
;10, ~17!

which agrees with the results of Ref. 2.
Broadly speaking, it should nevertheless be ackno

edged that a discharge configuration in the form of a lo
e
h-
e
be
of

ffi-

b-

d

t

t-

es
f
r

l-
g

cathode tube with an end anode even withL/D;10 is not
ideal from the point of view of achieving a high-current di
charge at the lowest possible pressure, which is the situa
usually most desired when hollow-cathode systems are u
in charged particle sources. Substantially lower worki
pressures may be achieved by covering the exit apertur
the cathode tube with a diaphragm also at the cathode po
tial, as is convincingly evidenced by the results of Ref. 4.
this case, the area of the exit aperture in the diaphra
should obviously not be less than;ScAm/M .

CONCLUSIONS

1. The main mechanism imposing a lower limit on th
range of working pressures of a hollow-cathode glow d
charge in the form of a long tube (L@D), as in the case
L;D, is the drift of fast electrons through the cavity ape
ture.

2. By allowing for electron losses through the cavi
aperture and also taking into account that the electron mo
along the cavity is not Knudsen motion, it is possible
calculate critical pressures and determine the optimum r
L/D in satisfactory agreement with the experiment.
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Characteristics of the backscattering of moderate-energy electrons by solids having
different atomic numbers
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The coefficient of backscattering of primary electrons is discussed as a function of their energy
and atomic numberZ. The amplitude of the wave function obtained in the first Born
approximation and the Thomas–Fermi atom model are used to calculate the constant for screening
of the electric field of the nucleus by atomic electrons. The theoretically calculated integral
backscattering coefficients of primary electrons are compared with the experimental values in the
range 12,Z,92 for primary electron energies of 10 and 40 keV. Possible applications of
these results are indicated. ©1999 American Institute of Physics.@S1063-7842~99!00706-0#
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INTRODUCTION

Studies of the laws governing the backscattering of p
mary electron fluxes are of particular interest for electr
lithography1 since the electron backscattering process prim
rily determines the resolution of the mask.2 Electron back-
scattering laws are also used in electron scanning mi
scopy3 to achieve the best contrast in the observed imag
the surface of an object, and in local x-ray spectral analy
to calculate corrections in quantitative calculations.4,5 Fi-
nally, studies of these relationships are important for pr
lems relating to the first wall of a fusion reactor, since int
action between the hot plasma electrons and the w
produces a flux of backscattered electrons which have un
gone appreciable energy losses, and this then leads to sig
cant cooling of the entire plasma volume.6,7 In the author’s
view, this aspect has not received sufficient attention. T
effect can only be reduced by means of a suitable choic
first wall material and also by using a suitably selected s
face profile and treatment characteristics. In the present
per an analysis is made of the backscattering of electr
having energies in the kiloelectronvolt range because e
tron fluxes at these energy levels are now the most wid
used. The theoretical principles of the backscattering ef
are fairly complex. Several approaches have been note
the literature in which the backscattering process has b
considered in some approximation.8,9 However, no rigorous
theory has yet been proposed to solve this problem. He
possible variant is proposed to obtain an approximate s
tion of this problem.

THEORY

The penetration of a primary electron flux into a so
destroys the equilibrium distribution of free electrons. Co
sequently, this process can be considered on the bas
kinetic transport theory. The most acceptable approach
solving the problem would appear to be the following.
kinetic transport equation is constructed to describe the
teraction between a flux of accelerated electrons and a s
6451063-7842/99/44(6)/5/$15.00
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within a microvolumedV at an arbitrary depthx taking into
account the particle balance and energy. This equation o
contains physical quantities averaged over a particular de
such as the velocity, interaction cross section, and so
This approach has proved quite justified in many case10

The main difficulty associated with this approach involv
determining the average energies and also the interaction
rameters required for the calculations. This problem w
solved by the present author in earlier studies.11,12

During the motion of primary electrons in a solid, ea
electron undergoes elastic and inelastic interaction for wh
the probability can be estimated using the mean free p
for elastic and inelastic scattering and absorption. If we
troduce the average macroscopic interaction cross sect
the macroscopic cross section for the entire interaction
be

w5ws1wg , ~1!

wherews , wg are the average macroscopic cross sections
elastic and inelastic scattering and absorption,ws5ls

21 ,
wg5lg

21 , w5l21, ls is the mean free path for elastic an
inelastic scattering,lg is the mean free path for absorptio
andl is the total mean free path.

We shall assume that during the interaction of prima
particles with a solid the probability of new particles such
electrons being formed in the flux as a result of the ionizat
of atoms is fairly low compared with the probabilities o
other processes. Jablonski13 showed that the elastic mea
free path of primary electrons in a solid is far shorter than
inelastic mean free path, i.e.,le!l i . Thus, we are suffi-
ciently justified in considering that elastic scattering p
dominates in the collision process and we shall subseque
takews to be the macroscopic cross section for elastic sc
tering. It follows from Ref. 14 that the kinetic transport equ
tion written in planar geometry allowing for energy loss
and anisotropy of the primary particle scattering is given
© 1999 American Institute of Physics
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2w f~x,m!1wsE
21

1

Ws~m→m8! f ~x,m8!dm85m
] f ~x,m!

]x
,

~2!

where

f ~x,m!5
dn

vdm
, ~3!

f (x,m) is the velocity distribution function of the primar
electrons,n is the concentration of primary electrons at dep
x in the range of angles betweenQ andQ1dQ, v is their
velocity, m5cosQ, n85cosQ8; Q andQ8 are the angles o
incidence of primary electrons on the elementary volumedV
and the angle of scattering from it,Ws(m→m8)5dps /dv is
the scattering indicatrix, andps is the elastic scattering prob
ability.

Thus, the physical meaning of the scattering indicatrix
the probability that a primary electron will be scattered fro
the velocity range betweenv and v1dv into the range be-
tweenv8 andv81dv8, i.e., will be scattered taking into ac
count a change in the direction of motion.

Since the time of arrival of a primary electron in th
elementary volumedV, for which the kinetic transport equa
tion ~2! is constructed, and its time of departure from it a
incompatible events, i.e., they always differ in time, in a
cordance with the ergodic theorem, the scattering indica
may be represented as a sum of two indicatrices, one dep
ing only on the angle of incidenceQ and the other dependin
only on the scattering anglesQ8,

Ws~m→m8!5
1

v
~11Ws~m!1Ws~m8!!. ~4!

Equation~2! was solved by a method of separating t
variables. As a result, after the necessary transformation
obtain the following particular solutions:

f 1~x,m!5C1

eaxG~m!

w/a1m
, f 2~x,m!5C2

e2axG~m!

w/a1m
,

f 3~x,m!5C3

eaxG~m!

w/a2m
, f 4~x,m!5C4

e2axG~m!

w/a2m
, ~5!

whereC1 , C2 , C3 , andC4 are the integration constants,a is
the interaction parameter,a5Rp

21 , Rp is the average longi-
tudinal range of a primary electron in the material;

G~m!5
ws

2
$@11Ws~m!#A01A1%,

A0 , andA1 are constants.
If the distribution functionf (x,m) is real, smooth, and

finite, these particular solutions are unique, as was show
the author in Ref. 14

The physical formulation of the problem indicates th
two primary electron fluxes may be identified in a sol
propagating simultaneously in opposite directions. Hen
the resulting distribution of the primary electrons in the so
at depthx may be represented in the following form: for th
forward-propagating flux,
s

-
ix
nd-

e

by

t
,
e,

f h~x,m!5S C1

eax

w/a1m
1C4

e2ax

w/a2m DG~m!, ~6!

and for the backward-propagating flux

f r~x,m!5~C3eax1C4e2ax!
G~m!

w/a2m
. ~7!

Then, taking account of Eq.~3!, the flux density of pri-
mary electrons in the range of angles betweenQ and Q
1dQ at depthx will be

d j5vdn5v2f ~x,m!dm.

In the microvolumedV, the integral flux density of pri-
mary electrons propagating in the direction of theX coordi-
nate at depthx will be

j ~x!52pv2E
21

1

m f ~x,m8!dm8. ~8!

After substituting the distribution functionf h(x,m) from
Eq. ~6! into Eq. ~8! and integrating, we obtain an expressio
for the integral flux density of the primary electrons prop
gating in the direction of increasingx,

dh~x!5v2~C1B11e
ax1C4B12e

2ax!, ~9!

where

B115E
0

pG~Q!sin 2QdQ

w/a1cosQ
, B125E

0

pG~Q!sin 2QdQ

w/a2cosQ
.

However, since the functionG(Q) is even for normal
incidence, we findB1152B12. Taking account of Eq.~7!,
the integral flux density in the opposite direction at depthx
will be

j r~x!5v2B21~C3eax1C4e2ax!, ~10!

where

B215E
p/2

p G~Q!sin 2QdQ

w/a2cosQ
. ~11!

The following boundary conditions were used to det
mine the integration constants:

j h~0!5 j 02 j r~0!, j h8 ~x!ux>h50, j r~h!50, ~12!

whereh is the thickness of the free layer.
For a layer of infinitely large thicknessh5Rp , j 0 is the

integral flux density of primary particles incident on the su
face of a free layer of thicknessh.

After substituting the values from Eqs.~9! and~10! into
Eq. ~12!, we obtain a system of three algebraic equatio
which, when solved jointly, can determine the integrati
constantsC1 , C3 , C4 :

C15
~12r !e2ahj 0

2v2B11cosh~ah!
,
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C35
~r 21!e2ahj 0

2v2B12cosh~ah!
, C45

~12r !eahj 0

2v2B12cosh~ah!
, ~13!

wherer 5 j r(0)/ j 0 and r is the integral backscattering coe
ficient.

After substituting the values of the integration consta
C3 andC4 from Eq. ~13! into Eq. ~10! for x50, we obtain15

2h<Rp , r 5S 11
B12

B21
coth~2ah! D 21

,

2h<Rp , r 5S 11
B12

B21
coth~1! D 21

. ~14!

In order to calculate the integral backscattering coe
cient r, we need to know the value ofa5Rp

21 , h and the
ratio B12/B21. The value ofa can be calculated from15

a5a0~rZ!0.69E
p

2
2
nFS bm

n D , ~15!

where n5n01cZ, a052.2431024, n051.287, c522.05
31023, r (g/cm3) is the density of the target material, an
@Ep#5 keV.

Since the coefficientsB12 andB21 have a fairly complex
analytic expression, and their ratio is even more complex
order to simplify the following calculations the ratio of the
coefficients is replaced by the fairly simple analytic functi

B12

B21
5

B1

B2
B~Z!, ~16!

where

B15
w

a
ln

w/a11

w/a21
22, B25

w

a
ln

w/a

w/a21
21. ~17!

An analysis shows that in the energy range 10–40 k
the functionB(Z) may be expressed as follows:

12,Z,50 B~Z!5B0Zg, ~18!

56,Z,90 B~Z!5b01b1Z1b2Z2. ~19!

The values of the coefficientsB0 , g, b0 , b1 , andb2 are
given in Table I. It can be shown16 that the average longitu
dinal rangeRp is proportional to the total rangeR whose
value can be determined using Bethe theory.17 It follows
from this theory that the total electron range in a materia
determined by the Bethe stopping law which only holds
electron energiesE@J whereJ is the average ionization po
tential of an atom.

The present author showed15 that the Bethe law of con
tinuous energy losses can be applied to obtain the follow
expression for the total macroscopic interaction cross s
tion:

TABLE I. Values of the coefficients, used in Eqs.~18! and ~19!.

Ep , keV B0 g b0 b1 b2

10 77.50 20.843 213.27 0.4476 23.2031023

40 83.23 20.832 212.63 0.4395 23.1031023
s

-

in

V

s
r

g
c-

w5w0rA21~Z2b!E
p

2
2
nFS bm

n D , ~20!

where w056.331024, b is the screening constant,bm

5^DE&/Ep is the average relative energy loss of a prima
electron after passing through a layer of thicknessh whose
value can be calculated using the results of Ref. 18,n is the
exponent in the power potential of the interaction between
impinging primary electron and the atomic core,F(bm /n) is
a function which takes into account the energy losses of
mary electrons in a solid,

FS bm

n D5(
i 51

Z

Ai S bm

n D i

; ~21!

A05A151, A25(21n)/3, A35(11n)/2A2 , A45(2
13n)/5A3 , A55(112n)/3A4 , A65(215n)/42A5 , and
A75(113n)/60A6 .

Here the screening constantb was calculated theoreti
cally using the Thomas–Fermi model taking into account
binding energy of atomic electrons in various electron sh
of the atom whose values were given in Ref. 19. Then us
Eqs.~15! and ~20! we have for a semiinfinite layer

w

a
52.81r0.31A21Z20.69~Z2b!2. ~22!

Expressions~20! and~22! contain the screening consta
b which has the following physical meaning. As a fast p
mary electron moves in a solid, it undergoes continuous c
lisions with atoms of the material, which are accompanied
elastic and inelastic scattering. If small-angle deflections p
dominate, this means that the scattering is mainly ela
where a primary electron penetrates fairly deeply into
electron shell of the atom. As it moves inside the atom,
primary electron is mainly scattered in the electric field
the nucleus and the atomic electrons bound strongly to
These strongly bound electrons together with the nucl
create a resulting electric field under whose action the
mary electron moves within the atom. Thus, the screen
constantb in formulas~20! and~22! is taken to be the num
ber of atomic electrons involved in screening the elec
field of the atomic nucleus. It can therefore be postulated
in a solid the scattering of fast electrons can be considere
scattering by a static force center, in whose electric field
primary electron is located. The potential energy of the p
mary electron in the resultant electric field of the nucleus a
the atomic electrons screening the nucleus will then be

U~r !5
Z* e2

4p«0r
e2

r
r 0, ~23!

whereZ* 5Z2b and r 0 is the screening radius.
It was shown15 that the total microscopic cross sectio

for elastic scattering of a primary electron at the scree
field of an atomic nucleus is given by

s5S Z* e2

4p«0mv2D 2
p

a2~11a2!
, ~24!



a

ar

-
n-
i

re
m

i
t

on
o

th

of
gl
li

c-
o

s
i

Th
a
m

rom
as

s-

hen

-

for
m-
ary
lon-

y
eir

pa-

d

ient
ic
c-
ing
-

s t.

t.

648 Tech. Phys. 44 (6), June 1999 Yu. D. Kornyushkin
a257.4631026~Z* !2/3S c

v D 2

, ~25!

wherec is the velocity of light in vacuum.
Since the scattering of a primary electron by individu

atoms in a solid is a statistical process, we can use Eq.~24!
to calculate the average angle for scattering of a prim
electron in a solid in the small-angle approximation

^Q&5
4a2~11a2!

p E
0

p Q sinQdQ

S sin2
Q

2
1a2D 2 . ~26!

It follows from Eq. ~25! that a2 depends on the screen
ing constant. In turn,b depends on the primary electron e
ergy and the structural characteristics of the solid atoms w
which the primary electrons interact. We know that as a
sult of a collision between a primary electron and an ato
the momentum of the primary electron changes by

\q52\k sin
Q

2
, ~27!

wherek is the wave number of the primary electron.
Consequently, the atom at which the primary electron

scattered receives the same momentum. This means tha
elastic scattering condition for which the primary electr
momentum remains the same and only the direction of m
tion changes, should correspond to the momentum~27! im-
parted to the atom, which we can then write in terms of
energy

DE54Ep sin2
Q

2
. ~28!

Then, from the physical meaning of the formulation
the problem, the condition for elastic scattering at stron
bound atomic electrons should correspond to the inequa
DE<Ei , whereEi is the binding energy of the atomic ele
trons completely involved in screening the electric field
the nucleus. IfDE.Ei , atomic electrons with this binding
energy will only participate partially in the screening. Thu
the concept of an effective number of electrons involved
the screening should be introduced for these electrons.
applies to the spherically symmetric electron shell of
atom. If the appropriate electron shell is not spherically sy

FIG. 1. Average angle of scattering of a primary electron by target atom
a function of the atomic number of the element.
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metric, allowance should also be made for the departure f
spherical symmetry by introducing a suitable coefficient,
in Ref. 15.

The anglê Q& was calculated by the method of succe
sive approximations of the integral~26! until ^Q& reached a
limiting value. The value ofb for which ^Q& reaches a maxi-
mum was taken as the screening constant in this study.

Figures 1 and 2 give calculated values of^Q& andb for
Ep510 and 40 keV. These screening constants were t
used to calculatew/a using formula~22!. Then, taking ac-
count of Eqs.~15!, ~17!, and~18! we can calculate the inte
gral backscattering coefficient from Eq.~14! allowing for the
macroscopic anisotropy of the properties of the material
various primary electron energies and various atomic nu
bers. For a free layer of considerable thickness the prim
electrons penetrate to depths not exceeding the average
gitudinal rangeRp . Since during backscattering primar
electrons initially move forward and then backward, th
effective penetration depth isRp/2, but the total longitudinal
range remains the same as before,Rp . Therefore 2h in Eq.
~14! should be taken to be the total longitudinal rangeRp .
Moreover, since the physical meaning of the interaction
rameter isa5Rp

21 , in Eq. ~14! the product is 2ah51.
Figure 3 gives the values ofw/a calculated using formu-

las ~14! and ~22! and Figs. 4 and 5 give the theoretical an
experimental values ofr ~Refs. 20 and 21!. A comparison
reveals good agreement over a wide range ofZ. In addition,
the theory predicts that the integral backscattering coeffic
r should not vary monotonically as a function of the atom
numberZ, as follows from Ref. 20, but some quasiperiodi
ity should be observed. This is caused by the gradual fill
of the electron shells with atoms asZ increases. Some dis

asFIG. 2. Screening constantb as a function of atomic number of the elemen

FIG. 3. Dependence of the ratiow/a on the atomic number of the elemen
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agreement between theory and experiment is evide
caused by the insufficiently accurate mapping of the exp
mental results with the empirical formulas used for a co
parison between theory and experiment.20

The exponentn can be calculated from formula~15!. It
can be seen that asZ increases,n decreases, tending to unity
This indicates that the elastic scattering of primary electr
by heavy atoms is close to a Coulomb process whereas
scattering by light atoms may differ appreciably from th
This behavior is mainly attributable to some characteris
features of the energy loss law: scattering by light atom
accompanied by higher energy losses than scattering
heavy atoms.

CONCLUSIONS

The relationships established can be used to calculate
integral backscattering coefficient for any solids in the e
ergy range 10–100 and also to predict possible valuesr
for those materials not naturally observed in the solid s
and also for those whose emission properties have not
been sufficiently well-studied~actinides!. All these factors
indicate that the results are of major practical value.

The values ofw/a plotted in Fig. 3 using results from
Refs. 22 and 23 can be used to predict qualitatively wh
solids have a narrow angular distribution of backscatte
primary electrons and which have a broad angular distri
tion. At this point, we can predict that all materials with
low ratio w/a have an appreciable angular half-width. Thu
we can affirm that the half-width of the angular distributio

FIG. 4. Theoretical~solid curve! and experimental values20,21 of integral
backscattering coefficients for normal incidence of an accelerated ele
flux on the surface of a target (Ep510 keV).

FIG. 5. As Fig. 4 forEp540 keV.
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of the backscattered primary electron flux from a solid
infinitely large thickness, such as Mg, Al, or Si, is approx
mately the same and small whereas that for Pt, Au, and
should be appreciable. Therefore, light materials and c
ings should be used to obtain the best resolution for ma
used in electron lithography and to obtain images with
highest contrast in scanning electron microscopy, and
other similar cases.

This approach can also be used to analyze the emis
properties of various chemical compounds in the solid st
It can also be applied to an obliquely incident primary ele
tron flux on a free layer of solid of finite thickness and al
on multilayer coatings.24
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Dnepropetrovskaya Ul., 191119, St. Petersburg! for whose
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Distribution of 90° domain reorientations in lead titanate zirconate piezoceramic under
longitudinal compression

M. G. Minchina and O. I. Yankovski 
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A static model of a critically polarized ceramic is used to analyze the behavior of the
piezocoefficientd33 of lead titanate zirconate ceramic exposed to a longitudinal compressive
stresss and a quantitative analysis is made of the 90° and 180° domain reorientations. It is shown
that for TsTG-83G ceramic a 180° antiparallel domain structure forms at compressive
stressess.108 N/m2. © 1999 American Institute of Physics.@S1063-7842~99!00806-5#
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INTRODUCTION

It is known that the piezocoefficientd33 of a lead zircon-
ate titanate~PZT! piezoceramic plate is reduced as a result
90° domain reorientations which take place under the ac
of a longitudinal mechanical stresss ~Refs. 1 and 2!. As the
stresss in lead titanate crystals increases, domains with
c polar axis perpendicular to the direction of compress
increase in volume, annihilating domains with thec polar
axis parallel to this direction as a result of the domain wa
being displaced along the normal to their intrinsic plan
When the stress is removed, the twinning structure is p
tially restored to the initial state.3,4 Detwinning of lead titan-
ate crystals showed that 90° reorientation of thec polar axes
is accompanied by 180° polarization reversal proces
which occur when a 90° domain wall is displaced rapid
(Vd.131025 m/s! ~Ref. 5!. An antiparallel 180° domain
structure also forms in polarized PZT ceramic exposed
compressive stressess.903106 N/m2 ~Ref. 6!. In lead ti-
tanate crystals, the domains only become reoriented w
the mechanical stresss exceeds the coercive stresssc of the
domain.7,8 In Ref. 9 the domain distribution over coerciv
stressessc in the ceramic was expressed using the distri
tion function f (s) which is equal to the probability densit
of the c polar axis of the domain being rotated under t
longitudinal compressions. Here we propose to analyze th
coercive stresssc averaged over all domains, assuming th
the c polar axes of the domains in TsTS-83G ceramic
distributed nonuniformly under the action of a longitudin
stresss.

The aim of the present study is to analyze the beha
of the piezocoefficientd335d33(s) and the distribution of
90° domain reorientations in TsTS-83G ceramic expose
a longitudinal compressions using a static model for a criti
cally polarized ceramic.

EXPERIMENTAL METHOD

Ferroceramic having the composition TsTS-83G w
prepared by hot pressing. A block 100 mm in diameter a
12 mm thick was sintered atT51100 °C, held for 5 h, and
loaded to 90 kg/cm2. The block was polarized in silicone a
6501063-7842/99/44(6)/3/$15.00
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T5120° for 1 h atE525 kV/cm. The direction of the polar
izing field E coincided with the principalZ crystal-physics
axis of the ceramic. A diamond disk was used to cut 434
34 mm samples with the orientation of the principalXYZ
crystal-physics coordinate system and the direction of
polarizing fieldE being maintained. Electrodes were depo
ited on the oriented polarized samples by cathode depos
from Al 1 Cr at T580 °C for 30 min. Measurements of th
piezocoefficientsd33 andd335d33(s) were made under qua
sistatic conditions using a ‘‘Piezomodul’’’ device.

RESULTS AND DISCUSSION

We shall analyze a class 4mm piezoceramic plate in the
principal XYZ crystal-physics coordinate system~the polar-
ization vectorP is directed along theZ axis!. We shall apply
a uniaxial mechanical stress

F 0 0 0

0 0 0

0 0 s
G

to the plate as a result of which an electric charge will
induced on the hatched faces of the plate~Fig. 1!, its mag-
nitude being proportional to the piezocoefficientd33.

The equation for the piezocoefficientd33 of a group
4mm ferroceramic on transition from theXYZ crystal-
physics coordinate system to theX8Y8Z8 coordinate system
using the laws for transformation of a third rank tensor h
the form9

d335~d158 1d318 !cosQ sin2Q1d338 cos3 Q, ~1!

whered33 is the piezocoefficient in theXYZ coordinate sys-
tem, andd338 , d318 , and d158 are the piezocoefficients in th
X8Y8Z8 coordinate system.

Equation~1! can take into account the relationship b
tween the piezocoefficientd33 of the polarized ceramic and
the piezocoefficientsd338 , d318 , andd158 of the crystallites~as-
suming that these are single-domain!. The experimentally
determined piezocoefficients of TsTS-83G ceramic
d335360 pC/N, d3152180.9 pC/N, andd155508.2 pC/N.
According to published sources, the piezocoefficients of le
titanate ceramic and single crystals differ negligibly10,11 so
© 1999 American Institute of Physics
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that the piezocoefficients of TsTS-83G ceramic were ta
as the piezocoefficientsd338 , d318 , and d158 of the crystallite
~domain!.

A static model for a critically polarized ceramic wa
used to construct an equation for the piezocoefficientd33 of a
ceramic exposed to longitudinal compressions ~Ref. 12!.
This model neglected interaction between the crystall
~domains! and the motion of the domain walls. The autho
assumed that the internal mechanical stresses created i
ceramic during sintering remain constant under external
fluences and only the field applied to the ceramic acts
each crystallite.

The polarized ceramic was represented as a systemN
single-domain crystallites polarized to saturation, whosc
polar axes have the preferred orientation and are loc
in the upper part of the orientation sphere in the so
angleQ554°448. According to the model, the distributio
of the c polar axes in zones of total and partial stabilit
taking into account all possible 180° and 90° reorien
tions, is inhomogeneous„rc

I 53N/2p and rc
II 53N/2p(1

2(4arccos(cothQ))/p) are the densities of thec polar axes
in zones of total and partial stability, respectively!. The con-
dition for total stability of thec polar axes in a ceramic to
which an external stresss33 is applied has the form~Fig. 2!

cosgc2cosga>sc /s, ~2!

wheregc is the angle between the direction of the fieldE and
the c axis of the domain,ga is the angle between thea axis

FIG. 1. Piezoceramic plate with longitudinal mechanical stresss applied to
hatched faces.

FIG. 2. Geometric relation between the anglesgc , ga , andw characterizing
the position of the domains relative to the polarizing fieldE.
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closest to the field and the fieldE, sc is the coercive stress
(sc516.5553106 N/m2 for PbTiO3 crystals4!, ands is the
external mechanical stress.

We shall use the geometric relation between the ang
gc , ga , and w characterizing the position of the doma
relative to the polarizing fieldE ~Ref. 13!

cosga5singccosw, ~3!

wherew is the angle between thea axis closest to the fieldE
and the line formed by intersection of the plane pass
through thea axis and the plane passing through thec axis
andE.

We shall analyze the condition for total stability of thec
polar axes~2! when thea axes of the domain~crystallite! are
in the position closest to the polarizing fieldE (w50°),

cosgc2tan 45° singc>sc /s. ~4!

After simple transformations, Eq.~4! has the form

0<gc<~arccos~sc /s!•~A2/2!!245°. ~5!

Inequality ~5! gives the angular boundaries of the zo
of total stability of theC polar axes when the longitudina
stresss is applied to the ceramic.

The condition for partial stability of thec polar axes
when thea axes are further away from the direction of th
polarizing fieldE (w545°), has the form

cosgc2~A2/2!singc>sc /s. ~6!

Equation~6! can be reduced to the form

45°<gc<54.733°2arcsin~~sc /s!•~A2/3!!. ~7!

Inequality ~7! gives the angular boundaries of the zo
of partial stability of thec polar axes for a critically polarized
ceramic.

In the zone of partial stability of thec polar axes we take
into account that part of thec axes which after 90° switch
ing, was converted intoa axes and then the condition fo
stability of thea axes in this zone will have the form

cosga2cosgc>sc /s. ~8!

Substituting condition~3! into ~8!, we find the angleuwu
containing thec axes close to the fieldE,

uwu<arccos~cothgc1sc /~s singc!!. ~9!

The fraction of crystallitesbc whosec axes ‘‘drift’’ out
of the zone of partial stability of thec polar axes as a resu
of 90° switching will be

bc54uwu/p5~4 arccos~cothgc1sc /~s singc!!!/p.
~10!

The fraction of crystallitesbc8 whosec axes remain in-
side the zone of partial stability of the polar axes af
switching will be

bc8512~4 arccos~cothgc1sc /~s singc!!!/p. ~11!

The value ofDd33
T by which the piezocoefficientd33

changed under the action of the longitudinal stresss was
calculated by integrating over the orientation sphere of thc
polar axes in accordance with the angular boundaries of
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zones of total and partial stability of thec axes and averaging
the piezoelectric constantsd338 , d318 , and d158 over all the
crystallites~domains! in the ceramic using the formula

Dd3351/NE
w50

2p E
Q50

arccos((A2/2)•(sc /s))245°
d33~Q!

3~3N/2p!sinQdQdw

11/NE
w50

2p E
Q50

54.733°2arcsin((A2/3)•(sc /s))
d33~Q!

3~3N/2p!~12~4 arccos~cothQ

1sc /~s sinQ!!!/p!sinQdQdw, ~12!

whered33(Q) is Eq. ~1!.
In order to simplify the calculations, in formula~12! we

neglect the fraction of the crystallitesbc whosec axes drift
out of the zone of partial stability as a result of 90° switc
ing. Having separated the contributions of the 90° and 1
switching ~from formula ~12!, for example, for the zone o
total stability of the polar axes the density of thec axes for
180° switching isr180°5N/2p, and that for 90° switching is
r90°5N/p), we determined the relative number of 90° a
180° domain switchings accomplished under the stresses
~for a givens in percent! A90° andA180° ~%!. The piezoco-
efficientd33

T of a ceramic plate exposed to the stresss can be
finally calculated from

d33
T 5d332Dd33

T , ~13!

whered33 is the piezocoefficient obtained using formula~1!.
Table I give the experimental and theoretical values

the piezocoefficientd335d33(s) and the relative number o
90° and 180° domain reorientations completed in the
ramic under the longitudinal stresss. It can be seen that a
the longitudinal stresss increases from 253106 to 221
3106 N/m2, the piezocoefficientd33

exp decreases from 360 t
68 pC/N which confirms the data given in Refs. 1 and 2.T
relative number of 90° rotations under the action of the lo
gitudinal stresss increases fairly rapidly for TsTS-83G ce
ramic ~for s591.93106 N/m2, this number isA90°588%!.
X-ray structural analysis of BaTiO3 ceramic exposed to th
biaxial equilibrium compressive stresss22 ~TsTS-83G ce-
ramic is ‘‘ferrohard’’ compared with BaTiO3 ceramic! indi-
rectly confirm the theoretical distribution of 90° domain r
orientations in TsTS-83G ceramic~for BaTiO3 ceramic

TABLE I. Experimental and theoretical values of the piezocoefficientd33

5d33(s) and distribution of 90° and 180° domain reorientations in TsT
83G ceramic.

s31026 N/m2 d33
exp, pC/N d33

theor, pC/N A90°, % A180°, %

24.5 360 36 2 2

42.9 340 338.8 17 2

61.3 300 298.9 37 2

91.9 200 198.5 88 2

128.7 140 139.2 100 23
165.5 100 99.5 100 53
202.3 84 83.7 100 62
220.7 68 67.5 100 75
-
°

f

-

e
-

under s22543106 N/m2 we obtain A90°545%; for

s225303106 N/m2 this figure isA90°580%) ~Ref. 14!. The
theoretical analysis indicates that above stressess.100
3106 N/m2 all possible 90° rotations~for given s) take
place in TsTS-83G ceramic and an antiparallel 180° dom
structure forms where the relative number of 180° dom
switchingsA180° increases to 75%~for s52213106 N/m2),
which is consistent with the experimental results from Ref
The contribution of the displacements is negligible so this
was neglected in the estimates ofA90° and A180° ~in lead
titanate ceramic the contribution of the displacements of
90° domain boundaries is 0.14–0.61 pC/N! ~Ref. 15!.

CONCLUSIONS

1. A static model of a critically polarized ceramic ex
posed to the longitudinal stresss has been used to study th
behavior of the piezocoefficientd33 of TsTS-83G ceramic
and a quantitative analysis has been made of the 90°
180° domain reorientationsA90°5A90°(s) and A180°

5A180°(s).
2. It has been shown that for TsTS-83G ceramic expo

to stressess.1003106 N/m2 all possible 90° domain rota
tions occur and an antiparallel 180° domain structure form
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Influence of sample dimensions on the propagation velocity of magnetoelastic waves in
amorphous metal alloys
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An investigation is made of the propagation velocity of magnetoelastic vibrations in amorphous
metal alloys as a function of the sample size in the direction of propagation of the
magnetoelastic vibrations and the external magnetic field. The experimentally observed results
are at variance with the conclusions of the model of uniform rotation of the magnetization
usually used to describe the magnetoelastic properties of amorphous metal alloys. It is shown that
changes in the structure of the domain walls~Bloch–Néel transition! in ribbons of amorphous
metal alloys as a result of the action of the external magnetic field must be taken into
account to obtain an adequate description of the observed results. ©1999 American Institute of
Physics.@S1063-7842~99!00906-X#
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Studies of the magnetic properties of iron-based am
phous metal alloys are currently attracting widespread at
tion. These alloys have low coercive forces and high mag
tostriction constants so that they can be used as senso
various types of acoustic and ultrasonic transducers, d
lines, and so on. The possibility of using iron-based am
phous metal alloys for this purpose is attributable to the m
netoelastic vibrations induced in them under the action o
varying magnetic field. The propagation characteristics
magnetoelastic vibrations in amorphous metal alloys
mainly determined by the characteristics of rearrangemen
their domain structure. Unfortunately, at present the relati
ship between the domain structure rearrangement proce
in amorphous metal alloys and the propagation of acou
vibrations in these alloys has not been studied sufficie
comprehensively, and this has delayed the practical app
tion of these materials.

The aim of the present study is to investigate the pro
gation velocity of magnetoelastic waves as a function of
demagnetization factor of the sample in the direction
propagation of the magnetoelastic waves.

We shall consider ferromagnets with a positive mag
tostriction constant (ls.0) in the form of a narrow strip
with the easy magnetization axis perpendicular to its leng
The domain structure consists of domains of opposite m
netization separated by 180° walls~Fig. 1!. This type of
domain structure occurs in amorphous metal ribbons w
they are annealed in a static magnetic field, which indu
uniaxial anisotropy. A static magnetic fieldH and varying
elastic stressess which excite magnetoelastic vibrations a
along the length of the strip in the direction of the difficu
magnetization axis. The action of these factors changes
orientation of the magnetization in the domains. It follow
from the model of uniform rotation of the magnetization1,2

that an expression for the angle of rotationa of the magne-
tization in the domains may be obtained from the condit
for minimum domain structure energyW, which contains the
6531063-7842/99/44(6)/4/$15.00
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uniaxial anisotropy energy, the energies of interaction of
magnetization with the external magnetic fieldH and the
elastic stressess, and the magnetostatic energy caused
the appearance of magnetic scattering fields from the m
netization component perpendicular to the easy axis

W5K sin2 a2MsHm0 sina2
3

2
lss sin2 a

1
1

2
NMs

2m0 sin2 a, ~1!

whereK is the uniaxial anisotropy constant,m0 is the mag-
netic permeability of vacuum,Ms is the saturation magneti
zation, andN is the demagnetization factor in the direction
the sample length.

From the conditiondW/d/a50 the expression for the
angle of rotation of the magnetization can be written as

a5arcsin~Msm0H/~2K23lss1NMs
2m0!!. ~2!

The magnetoelastic deformation«m.e5(3/2)lssin2a can
be given as

«m.e5
3

2
ls@Ms

2H2m0
2/~2K23lss1NMs

2m0!2#. ~3!

The elastic modulus in the magnetic fieldEH can be
determined from

~1/EH!5~1/E0!1d«m.e/ds, ~4!

whereE0 is the elastic modulus in the demagnetized stat
The expression forEH can then be written as

EH5E0$12@9ls
2Ms

2H2m0
2E0 /~~2K23lss1NMs

2m0!3

19ls
2Ms

2H2m0
2E0!#%. ~5!

Using expressions which give the magnetoelastic re
nance frequencyf r and the propagation velocity of the mag
netoelastic vibrationsVm.e as a function of the elastic modu
lus
© 1999 American Institute of Physics
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FIG. 1. Domain structure configuration bein
studied:1 — easy magnetization axis,2 —
difficult magnetization axis.
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f r5~1/2L !•~EH /r!1/2, ~6!

Vm.e52L• f r , ~7!

whereL is the sample length in the direction of propagati
of the magnetoelastic vibrations andr is the sample density
we obtain the following expression forVm.e:

Vm.e5$~E0 /r!@12~9ls
2Ms

2H2m0
2E0 /

~~2K23lss1NMs
2m0!319ls

2Ms
2H2m0

2E0!!#%1/2.

~8!

According to Kim,3 an approximate expression for th
demagnetization factorN in the direction of the sample
length may be written in the form

N5~1/L !/@~1/L !1~1/a!1~1/b!#, ~9!

wherea is the width andb is the sample thickness.
Figure 2 gives the calculated dependence of the pro

gation velocity of the magnetoelastic vibrations on t
sample lengthL. For the calculations we used the followin
values of the sample parameters typical of iron-based am
phous metal alloys, and for the external magnetic field,
and elastic stresses:Ms553105 A/m, K550 J/m3, ls53
31025, s5106 Pa, H5100 A/m, r55000 kg/mm3, E0

51.431011Pa,a50.002 m, andb52.531025 m.
It can be seen from this curve that as the sample len

decreases, the propagation velocity of the magnetoelasti

FIG. 2. Calculated dependence of the propagation velocity of the magn
elastic wavesVm.e on the sample lengthL in the direction of propagation o
these magnetoelastic vibrations.
a-

r-
e

th
vi-

brations should increase monotonically. The calculatio
also show that as the magnetic field directed along the d
cult magnetization axis increases, the dependenceVm.e(H)
should decrease monotonically.

In order to check these calculations experimentally,
investigated the propagation velocity of magnetoelastic
brations as a function of the sample length in the direction
propagation of these vibrations in iron-based amorph
metal alloys.

The sample used was an Fe81.5B13.5Si3.5C2 amorphous
metal alloy obtained by rapid quenching from a melt a
annealed at 430° in a static magnetic field of 40 000 A/m
20 min. During annealing the static magnetic field was
rected perpendicular to the sample length. The sample
2.531025 m thick and 0.002 m wide. The length was varie
between 0.045 and 0.015 m in 0.005 m steps. The prop
tion velocity of the magnetoacoustic vibrations was me
sured by a resonance–antiresonance method4 as follows. A
section of the ribbon sample is inserted in an induction c
which records the change in the magnetic flux caused by
action of magnetic fields on the sample. This coil togeth
with the sample is then inserted inside a coil which genera
a varying magnetic field which induces magnetoelastic vib
tions in the sample. The varying magnetic field does
exceed 10 A/m. The system of coils is placed between He
holtz coils which generate a static magnetic field. The sta
and varying magnetic fields are directed along the diffic
magnetization axis. We measure the complex impedanc
the recording coil whose maximum corresponds to the m
netoelastic resonance frequencyf r ~Ref. 5!. Using the ex-
perimentally determined magnetoelastic resonance
quency, we calculate the velocity of the magnetoelas
vibrations from the expressionVm.e52L f z

Figure 3 gives the propagation velocity of the magne
elastic vibrationsVm.e as a function of the sample lengthL
for various values of the external magnetic field direct
along the difficult magnetization axis. An analysis of the
curves indicates that the external magnetic field strongly
fluences their behavior. In weak magnetic fiel
(H580–240 A/m! the curveVm.e(L) has a minimum which
shifts toward smallerL as the static magnetic field increase
In fairly strong magnetic fields (H 5 320 A/m! for all L we
observed a decrease in the propagation velocity of the m
netoelastic vibrations. Consequently, the calculated cur

to-
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FIG. 3. Experimental dependences o
the propagation velocity of the magneto
elastic vibrationsVm.e on the sample
length L in the direction of propagation
of the magnetoelastic waves for variou
values of the static magnetic field di
rected along the difficult magnetization
axis.
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~Fig. 2! only show satisfactory agreement with the expe
mental results for weak magnetic fields and smallL.

Figure 4 gives the propagation velocity of the magne
elastic vibrationsVm.e as a function of the static magnet
field H for Fe81.5B13.5Si3.5C2 samples of various lengthsL. It
can be seen that the curveVm.e(H) has a minimum for allL.
The position of this minimum is determined by the sam
lengthL. The lower the value ofL, the stronger the magneti
fields in which the minimum ofVm.e(H) is observed.

The model of uniform rotation of the magnetization1,2

provides no explanation for the appearance of these min
of Vm.e(L) andVm.e(H). The following explanation may be
put forward for the experimental results. Annealing the
samples in a magnetic field induces uniaxial anisotropy
-

-

a

e
n

the plane where the easy axis is perpendicular to the len
of the ribbons. This leads to the formation of a striped d
main structure with oppositely magnetized domains se
rated by 180° Bloch domain walls. When a varying magne
field is applied in the direction of the difficult magnetizatio
axis of narrow ribbons of amorphous metal alloys a few te
of micron thick, the domain walls oscillate around their eq
librium position. Brouha and van der Borst5 showed that this
effect may be explained using concepts of a Bloch–N´el
transition of the domain-wall structure and redistribution
the magnetic poles at the edges of the sample under the
tion of a magnetic field. As a result of a Bloch–Ne´el transi-
tion of the domain wall structure, the equilibrium period
the striped domain structure corresponding to its ene
f
-

FIG. 4. Experimental dependences o
the propagation velocity of the magneto
elastic vibrationsVm.e on the static mag-
netic field H directed along the difficult
magnetization axis for various lengthsL.
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minimum decreases and the density of Ne´el domain walls
n(H) increases.6 Taking into account the contribution of th
energy of the Ne´el domain walls to the total energy of th
domain structure, the expression for the propagation velo
of the magnetoelastic waves may be expressed in the fo

Vm.e5$~E0 /r!@12~9ls
2~MsHm012ng!2E0 /

~~2K23lss1NMs
2m012ng!3

1~9lsMsHm012ng!2E0!!#%1/2, ~10!

whereg is the energy density of the Ne´el domain walls.
In magnetic fields exceeding the fields for which t

domain-wall structure undergoes a Bloch–Ne´el transition,
the propagation velocity of the magnetoelastic vibrations
creases as a result of an increase in the density of Ne´el do-
main wallsn. Hence, the minima on the curves of the prop
gation velocity of the magnetoelastic vibrations should
observed near the field for which the domain-wall struct
undergoes a Bloch–Ne´el transition. Middellhoek7 showed
that the energy density of the Ne´el domain walls in magneti-
cally soft materials a few tens of micron thick is 8–10 J/m3

and the energy density of the Bloch domain walls is 1
J/m3. At these domain-wall energy densities the field for
Bloch–Néel transition does not exceed half the effective a
isotropy field of the sample, which shows good agreem
with the experimental results.

The effective anisotropy field and consequently t
Bloch–Néel transition field are strongly influenced by th
demagnetization factor of the sample in the direction of
plication of the external magnetic field. The smaller t
sample lengthL in the direction of application of the field
the greater the demagnetization factorN. An increase in the
demagnetization factor leads to a decrease in the angl
rotation of the magnetization and increases the field fo
Bloch–Néel transition. In this case, the minimum on th
curve of the propagation velocity of the magnetoelastic
brations also shifts toward stronger fields.

In fairly strong fields exceeding the field for a Bloch
Néel transition the minimum on the curve ofVm.e(L) should
ty

-

-
e
e

-
nt

-

of
a

-

be shifted toward smallerL. In the range ofL being studied
it is therefore probable that the curve ofVm.e(L) had no
minimum in a magnetic fieldH5320 A/m.

From these investigations we can draw the followi
conclusions.

1. The dependences of the propagation velocity of m
netoelastic vibrations in iron-based amorphous metal all
having a periodic domain structure are not monotonic fu
tions of the sample length and external magnetic field. T
results cannot be explained merely in terms of the mode
uniform rotation of the magnetization usually used to d
scribe the magnetoelastic properties of amorphous meta
loys.

2. The calculated and experimental results show satis
tory agreement when the domain wall structure of the sam
is taken into account. The existence of a minimum on
curves of the propagation velocity of the magnetoelastic
brations as a function of the external magnetic field and
sample length can be explained using concepts of a Blo
Néel transition of the domain-wall structure.

3. The external magnetic fieldH strongly influences the
behavior of Vm.e(L). As H increases, the minimum o
Vm.e(L) shifts toward smallerL. This result may be ex-
plained by the fact that as the sample length decreases
effective anisotropy field increases and therefore the field
a Bloch–Néel transition, which corresponds to the minimu
propagation velocity of the magnetoelastic vibrations, a
increases.
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Microwave excitations of a domain wall in a cubic magnet with induced anisotropy
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Theoretical and experimental studies are made of the spectra of spin wave excitations localized
at a Bloch domain wall in a ferromagnet with combined cubic and biaxial anisotropy in
@100#- or @110#-oriented bismuth-containing iron garnet films. This analysis of the spectra is used
as the basis to calculate diagrams of stable states of a homogeneous Bloch domain wall as
a function of the magnetic parameters in these materials. Results of measurements of the oscillation
spectrum of an isolated domain wall in the mega- and gigahertz frequency ranges are
presented. A description is given of an effect where the spin-wave excitations of the Goldstone
translational branch and the high-frequency Gilinskii unidirectional mode are hybridized.
© 1999 American Institute of Physics.@S1063-7842~99!01006-5#
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INTRODUCTION

The resonant response of domain walls to microwa
electromagnetic radiation has been studied by m
authors.1–5 Lührmannet al.5 observed antiphase resonant o
cillations of the domain walls in films of easy-axis iron ga
nets in the gigahertz range. In recent studies of microw
excitations of the domain walls in easy-plane iron gar
films, high-frequency branches6 associated with the Gilinski
mode7 were observed in addition to the low-frequency Go
stone modes. As well as being of scientific interest, th
investigations of the microwave excitations of the dom
walls are also of technical interest for light modulation,8 op-
tical mode conversion, and other applications
magnetooptics.9 It should be noted that potentially usef
magnetic-film materials based on Bi-substituted iron garn
exhibit induced uniaxial and basis anisotropy as well as
bic anisotropy.10 However, we know that the spectrum of th
spin waves localized at a domain wall depends strongly
the anisotropy of the magnetic substance.11 It is therefore
interesting to analyze the spectrum of elementary excitat
of a domain wall as a function of the ratio of the constants
magnetocrystalline and induced anisotropy. Some stu
along these lines were reported in Ref. 12 for iron gar
films grown in the@110# plane. Here we report a detaile
analysis of the spectrum of spin-wave excitations and c
struct diagrams showing the stability of Bloch domain wa
in orthorhombic and tetragonal ferromagnets as a functio
the magnetic parameters.

INITIAL EQUATIONS

The spin-wave excitations of the domain wall of a fe
romagnet are described by the Landau–Lifshitz equation
magnetodynamics and magnetostatics

]M

]t
52g@M3Heff#, ~1!

div ~hd14pM !50, ~2!
6571063-7842/99/44(6)/7/$15.00
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whereM is the magnetization vector,g is the gyromagnetic
ratio, Heff52(dF/dM ) is the effective magnetic field,F is
the thermodynamic potential of the ferromagnet, andhd are
the degaussing fields.

We shall first consider a cubic ferromagnet with orth
rhombic induced anisotropy along the@110# crystal axis. We
shall take the coordinate axes in the crystallographic dir
tions ex5@001#, ey5@110#, andez5@ 1̄10#.

The thermodynamic potential can then be expresse
the form:

F5A~¹m!22Ku~my!22Ki~mz!
2

1K1F1

4
~my

22mz
2!21mx

2~12mx
2!G2Mhd2

hd
2

8p
, ~3!

whereA is the exchange interaction constant,m is the unit
vector directed along the magnetization vector such thaM
5Mm, and Ku , Ki , and K1 are the constants of uniaxia
orthorhombic, and cubic anisotropy, respectively~all nega-
tive!.

We introduce the polar coordinates for the direction
magnetizationm5(sinq cosw, sinq sinw, cosq) and define
the magnetic potentialC:hd5¹C. For convenience we nor
malize thex, y, andz coordinates and the wave vectork to
AuKuu/A, and the timet and the frequencyv to 2guKuu/M .
The domain wall which we shall consider is described by
static solution of the Landau–Lifshitz equation~1!

q05
p

2
, sin2w051/~cosh2~zD!1« sinh2~zD!!,

C050, ~4!

whereD5A12b, «5 3b/4(12b), andb5K1 /Ku .
We shall seek small harmonic deviations of the sp

from the equilibrium distribution~4! in the form of a small
correction to the main solution

q5
p

2
1u~z!sin~vt2kxx2kyy!,
© 1999 American Institute of Physics
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w5w01f~z!cos~vt2kxx2kyy!,

C5c~z!sin~vt2kxx2kyy!, ~5!

wherec(z) is normalized to 4pMAA/uKuu.
In the first approximation these satisfy the linearized s

tem of equations~1! and~2!, which may be expressed in th
form

]2u

]z2
5Fqi2b1k22S 22

9

2
b D sin2w02

9

4
sin4w0Gu

1vf1
1

Q

]c

]z
,

]2f

]z2
5vu1F12b1k22S 22

13

2
b D sin2w0

26b sin4w0Gf2
1

Q
~kx sinw02ky cosw0!c,

]2c

]z2
5

]u

]z
1~kx sinw02ky cosw0!f1k2c, ~6!

wherek5Akx
21ky

2, Q5uKuu/2pM2, andqi5Ki /Ku .
The boundary conditions have the form

lim
z→6`

$u,f,c%50. ~7!

The equations~6! with the boundary conditions~7! were
solved numerically by two different methods. One of the
described in Ref. 11, involves determining the spectr
from the condition that the Wronskian of the system~6! van-
ishes at the joining point of the right and left triplets
solutions obtained by Runge–Kutta integration~‘‘regula
falsi’’ method!. The initial condition for each solution is ob
tained from the asymptotic form of the corresponding ind
pendent solutions of the linearized problem which satisfy
boundary condition~7!. For example, the asymptotic beha
ior of the solutions on the right half of the domain walls f
z→` is determined by the triplet of vectors with the indic
p1,2,3, satisfying the characteristic equation

p62p4~11qi22b1Q2113k2!1p2@~qi2b1Q21

1k2!~12b1k2!1k2~11qi22b1Q21~ky /k!2

12k2!2v2#1k2@v22~qi2b1k2!~12b

1Q21~ky /k!2!#50. ~8!

By using this solution as the initial condition, after int
grating as far as the joining point, we can obtain a triplet
vectors in the phase space of the system which span
vector of the required solution. Similarly, using th
asymptotic form at infinity to the left of the wall, i.e., forz
→2`, after integrating in the opposite direction, we c
obtain another triplet of vectors which should also be sp
the required solution. The condition for joining of the rig
and left solutions is equivalent to vanishing of the determ
nant~Wronskian! from the six independent basis vectors o
tained. The second method is a modification of that
scribed in Ref. 12. It reduces the problem of searching
-

,

-
e

f
he

n
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-
-
r

the spectral dependence to the condition that the eigenv
in the Sturm–Liouville problem vanishes for the opera
equation

L̂a5la, ~9!

wherel is an eigenvalue and the operatorL̂ has the form

L̂52Ê
]2

]z2
1Â

]

]z
1B̂,

Ê is the unit matrix,

In general the boundary condition can be written in m
trix form

]a

]zU
z56`

5D̂a, ~10!

whereD̂5R̂P̂R̂21, P̂ is the diagonal matrix of the charac
teristic exponential functions, andR̂ is a matrix whose col-
umns are constructed of the eigenvectors of the solution
the linearized system~9! with l50 at infinity.

This last condition follows from the asymptotic form o
the solutions at the edge of the domain wall. In fact, we wr
the general solution at infinity in the form

a5S u

c

c
D 5R̂e,

R̂5S 1 1 1

c1 c2 c3

d1 d2 d3
D , e5S A exp~p1z!

B exp~p2z!

C exp~p3z!
D ,

whereA, B, andC are arbitrary constants,ci anddi are the
amplitudes of the eigenvectors of the linearized system~9! at
infinity.

The vector of its spatial derivative]a/]z can then be
related to the vector of the general solutiona using the cor-
responding matrix, and specifically

]a

]z
5R̂P̂R̂21a5D̂a,

where
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P̂5S p1 0 0

0 p2 0

0 0 p3
D ,

D̂5R̂P̂R̂21.

It can be shown that the boundary condition~10! can be
used not only for real but also for complex values of t
characteristic exponent. Both methods are equally effec
for wave numbersk.0.005 but cease to work for very sma
wave numbersk,0.005. In this range a special asympto
analysis of the solutions is required as in Ref. 11.

SPECTRUM OF SPIN-WAVE EXCITATIONS OF BLOCH
DOMAIN WALLS IN AN ORTHORHOMBIC FERROMAGNET

The methods described were used to make nume
calculations of the spectra of cubic ferromagnets with
duced anisotropy. Not only the quantitative but also
qualitative behavior of the spectral dispersion curves va
as a function of the ratio of the magnetic parameters. In
orthorhombic ferromagnet described by the thermodyna
potential~3! the axisymmetric case considered by Gilinskii
obtained forK150, Ki5Ku . In this case, in accordance wit
the theory7 the spectrum of spin waves propagating along
domain wall perpendicular to the easy magnetization axi
asymmetric and initially contains three branches. Of the
two are the Goldstone translational modes and the third
unidirectional high-frequency Gilinskii mode. At high wav
numbersk@1 we may observe additional high-frequen
modes11 localized at domain walls whose spectral branch
become detached from the bottom of the continuous sp
trum band. The spectrum of waves propagating along
anisotropy axis parallel to the magnetizations in the doma
is symmetric and contains only two branches, which cor
spond to the translational modes at the beginning of the s
trum. In the presence of cubic or basis anisotropy, the as
metry of the spectrum of spin waves propagati
perpendicular to the magnetizations in the domains is in
sified. The spectral branches of the high-frequency and a

FIG. 1. Excitation spectrum of 180°-domain wall in an orthorhombic fer
magnet forkx50; qi50.5, b50.3, andQ50.6624;1 and2 — Goldstone
mode,3 — Gilinskii mode, and4 — boundary of continuous spectrum.
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cent translational branches repel each other so that for a
tain value of the magnetic parameters the frequency of
translational mode may vanish at a finite wave number,
shown in Fig. 1~see also Ref. 12!. At this point the Bloch
domain wall becomes unstable relative to nonuniform per
bations of its spins. Figure 2 shows the structure of the s
mode determining the instability of the Bloch domain wa
for this case. The spectrum of the spin waves propaga
parallel to the direction of magnetization in the domains h
the usual form~Fig. 3. Figure 4 shows the calculated boun
aries separating the region of stable Bloch domain wall in
orthorhombic ferromagnet with combined anisotropy fro
the region of parameters where this domain wall is unsta
Toward the inside of the region of instability, the low
frequency oscillation branch touching the abscissa begin
go over to negative frequencies so that a gap appears on
lower branch at positive frequencies. Because of the inv
sion symmetry of the spectrum„v(k)52v(2k)…, an addi-
tional branch appears in the positive half-plane in an ide
cal region of wave numbers but of opposite sign. For
certain value of the anisotropy parameters this new osc
tion branch may merge with the ‘‘old’’ Goldstone branc

-

FIG. 2. Spectrum of the Goldstone mode~curve1 in Fig. 1 fork50.23;1 —
azimuthal anglew, 2 — polar angleu, and3 — magnetic potentialc.

FIG. 3. Excitation spectrum of a 180° domain wall in an orthorhomb
ferromagnet withky50; qi50.5, b50.3, andQ50.6624;1 — translational
mode,2 — boundary of continuous spectrum.
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disrupting it and forming a closed loop at the beginning
the spectrum, as shown in Fig. 5. Similar oscillation spec
appear in a stratified liquid flux having different densiti
and velocities under conditions of Kelvin–Helmholtz inst
bility and turbulence.13,14 The symmetric branches of th
spin wave spectrum in cases where these propagate pa
to the magnetizations at the edge of the domain wall gra
ally become lower toward the inside of the unstable reg
until they come in contact and subsequently form a rou
singularity at this point~Fig. 6!. These spectral properties o
the spin waves show that in the unstable region a homo
neous Bloch domain wall is a highly nonequilibrium form
tion. By analogy with the flow of a stratified liquid,13,14 its
evolution may be characterized by an exponential increas
the amplitudes of the negative-energy waves near the lin
stability loss and strong Kelvin–Helmholtz instability fa
from this line. The final domain-wall structure may conta
soliton-like and vortex formations.

SPECTRUM OF LOCALIZED SPIN WAVES AT A BLOCH
DOMAIN WALL IN A TETRAGONAL FERROMAGNET

We shall analyze easy-plane films of cubic ferromagn
grown in the @100# plane. In the coordinate systemex

5@ 1̄10#, ey5@001#, ez5@110# the thermodynamic potentia
for this case is written as follows:

FIG. 4. Boundaries separating the regions of domain-wall stability and
stability in an orthorhombic ferromagnet:qi50.5 ~1!, 0.55~2!, 0.6 ~3!. ~The
region of instability lies above the curves!.

FIG. 5. Excitation spectrum of a 180° domain wall in an orthorhom
ferromagnet withkx50, qi50.5, b50.3, Q51.6; 1–3 — Goldstone mode,
4 — Gilinskii mode, and5 — boundary of continuous spectrum.
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The structure of this Bloch domain wall obtained b
solving the Landau–Lifshitz static equation is described

q05
p

2
, sin2w051/~cosh2~zD!1« sinh2~zD!!,

C050, ~12!

where

D5A12b/2, «5
3b

4~12b/2!
, b5K1 /Ku .

In this case, the linearized system of equations un
study has the form

]2u

]z2
5Fb1k222 sin2w02

9

4
b sin4w0Gu1vf1

1

Q

]c

]z
,

]2f

]z2
5vu1F11k222 sin2w02

b

2
~1211 sin2w0

112 sin4w0!Gf2
1

Q
~kx sinw02ky cosw0!c,

]2c

]z2
5

]u

]z
1~kx sinw02ky cosw0!f1k2c. ~13!

An analysis of the localized solutions of this system w
made as in the previous case. A numerical experim
showed that the spin wave spectra typical of a stable ho
geneous Bloch domain wall are not observed over the en
range of magnetic parameters for this particular case. A
gram of the Bloch domain wall states for this case~Fig. 7!
shows the calculated boundaries of the region of stro

-

FIG. 6. Excitation spectrum of a 180° domain wall in an orthorhomb
ferromagnet withkx50, qi50.5, b50.3, Q51.6; 1–3 — translational
mode.
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Kelvin–Helmholtz instability for a tetragonal-symmetry fe
romagnet with combined anisotropy. In the region of we
instability the asymmetric spectrum of localized spin wav
has no loops on the low-frequency branch at the beginnin
the spectrum~Fig. 8!. In the region of parameters above th
critical curve a loop of the Goldstone mode is observed~Fig.
9!. The spectrum of the symmetric propagation of sp
waves along the magnetizations in the domains behaves
the previous case of an unstable Bloch domain wall.

EXPERIMENTAL STUDY OF THE SPECTRA OF SPIN WAVES
LOCALIZED AT DOMAIN WALLS, IN EASY-PLANE †100‡
AND †110‡ IRON GARNET FILMS

We investigated films of Bi-containing iron garne
grown epitaxially on@110#- and @100#-oriented gadolinium
gallium garnet substrates, which correspond to the case
orthorhombic and tetragonal ferromagnets considered ab
All the films exhibited in-plane magnetization as a result o
suitable choice of cubic, uniaxial, and orthorhombic anis
ropy parameters. In the@110#-oriented films the magnetiza

FIG. 7. Boundaries separating regions having different types of domain-
instability in a tetragonal ferromagnet. Below curve1 — region of weak
instability, above curve1 — region of existence of Goldstone mode loo
above curve2 — region in which the spectrum forky50 is similar to that
shown in Fig. 6.

FIG. 8. Excitation spectrum of a 180° domain wall in a tetragonal fer
magnet withkx50, b50.5, Q50.17;1–3 — Goldstone mode,4 — Gilin-
skii mode, and5 — boundary of continuous spectrum.
k
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tion was directed along the@001̄# axis~sample No. 1! or at an
anglew;18° to this axis~sample No. 2!. The@100#-oriented
films contained 180° domain walls parallel to the@010# and
@01̄1# directions, and also 90° domain walls parallel to t
@010# and@001# axes~sample No. 3!. The 180° domain walls
studied exhibited a strong Bloch magnetization compon
perpendicular to the plane of the film. This was confirmed
the strong Faraday contrast at the walls observed in a po
izing microscope. Sample No. 3 also exhibited Bloch lin
separating dark and light subdomains on the image of
domain wall. The numbering of the samples and the para
eters of the materials were the same as in Ref. 6.

In order to measure the response of the domain wal
an rf magnetic field, we used a planar structure comprisin
slot line and a coplanar waveguide.5,6 The dimensions of the
structure did not exceed those of the domains (&100mm!
which allowed us to study the excitation of an isolated d
main wall. The output signal from a microwave spin oscill
tor was fed to the structure input, i.e., the slot line. The sig
produced by the domain-wall oscillations was recorded fr
the output, i.e., the coplanar waveguide. After being am
fied and detected, these frequency dependences of the l
amplitude of the domain-wall oscillations were recorded
ing a digital storage oscilloscope and also recorded and
cessed on a PC.

Figures 10 and 11 show the measured frequency de
dences of the domain-wall response in@110# films for
samples Nos. 1 and 2, respectively. A set of narrow re
nance lines with nonmonotonically increasing frequencies
the gigahertz range is clearly visible. We also observe
second set of almost equidistant resonances in a lower
quency range. Figure 12 shows the corresponding disper
dependences of the resonance frequencies as a functio
the resonance number.

Figure 13 shows a frequency scan of the domain-w
response measured in the@100# film ~sample No. 3!. The
lower part of the figure shows the FMR signal measu
from the same part of the film but in the absence of a dom
wall ~removed using an additional weak static magnetic fi
which was then switched off!. The first resonance has

ll

-

FIG. 9. Excitation spectrum of a 180° domain wall in a tetragonal fer
magnet withkx50, b50.5, andQ50.25; 1–3 — Goldstone mode,4 —
Gilinskii mode, and5 — boundary of continuous spectrum.
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lower frequency than that for the@110# films although it has
an equally narrow line width~4.5 MHz!.

The frequencies of all the resonances increased with
creasing sample thickness and were almost independe
the other dimensions. From this it follows that both sets
resonances are caused by the excitation of standing dom
wall waves over the film thickness and belong to differe

FIG. 10. Frequency response of an isolated 180° domain wall in a@110#-
oriented bismuth garnet film~sample No. 1!: 1–3 — oscillator power levels
235, 225, and215 dBW, respectively.

FIG. 11. Frequency response of an isolated 180° domain wall in a@110#-
oriented film~sample No. 2!. In addition to the high-frequency resonance
the arrow indicates low-frequency resonances assigned to the Gold
mode.
e-
of
f
in-
t

branches of the spectrum. The low-frequency peaks with
ear dispersion are associated with the translational Golds
branch, i.e., standing flexural domain-wall waves. The hig
frequency resonances with nonmonotonic dispersion bel
to the unidirectional Gilinskii branch. In this range where t
frequencies of the higher resonances of the Goldstone m
approached those of the lower resonances of the Gilin
mode, we observed some overlap of the two systems of r
nances ~Fig. 11!. This indicates that the two differen
branches in the spectrum of domain-wall excitations are
bridized. It should be noted that the type of standing wa
formation observed in this particular case differs quali
tively from the classical case of excitation with a symmet
dispersion law. The forward-traveling wave belongs to t
Gilinskii mode while the backward-traveling wave with th
samev belongs to the Goldstone mode. The superposition
these modes leads to the formation of a hybrid standing w
whose phase also depends on the spatial coordinates,
the case of a pure Goldstone mode with asymme
dispersion.15 The condition for resonant excitation of
standing wave has the form (k1(v)2k2(v))52pn/d, n
50,61,62, . . . . Since the return wave has no gap unli
the forward wave, the hybrid standing wave will have a d
ferent gap value. Consequently, the phase velocity and
calculated from the measured dispersion dependence o
high-frequency resonancesv(n) may differ appreciably
from the values obtained in the Gilinskii theory~the experi-
mental slit value for sample No 1 is'550 MHz and the
theoretical value'140 MHz!. A comparison between the
theoretical and experimental results shows that the exp
mentally observed resonance frequencies are higher than
frequencies predicted theoretically using the model of an
bounded medium. This difference can also be attributed
the appearance of magnetic charges at the boundaries o
ne

FIG. 12. Dispersion dependences of resonances frequencies as a funct
the resonance number for sample No. 1 (j, d) and No. 2 (h, s); d, s

— resonances assigned to Goldstone mode,j, h — resonances assigned t
high-frequency Gilinskii mode.
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film which were neglected in the calculations.

CONCLUSIONS

To sum up, we have made theoretical calculations
experimental investigations of the spectra of localized s
waves at a domain wall in cubic ferromagnets with induc
anisotropy. The calculations have shown that in@110#-
oriented films there are regions of magnetic parameter
which the Bloch domain wall is unstable relative to nonu
form spin oscillations. We determined the soft mode for tra
sition to the inhomogeneous state and the boundaries o
region of stability as a function of the constants of cubic a

FIG. 13. Frequency dependence of the response of an isolated 180° do
wall in a @100#-oriented film~sample No. 3!. The lower part of the figure
shows the FMR signal measured for the same sample without a do
wall.
d
n
d

in
-
-
he
d

uniaxial anisotropy. We showed that the domain walls
@100#-oriented easy-plane films are unstable relative to n
uniform spin oscillations over the entire range of magne
parameters. We calculated the boundaries of the region
magnetic parameters in which strong Kelvin–Helmholtz
stability may occur by analogy with the flow of a stratifie
hydrodynamic flux. Above this boundary soliton-like an
vortex spin distributions may be predicted in an equilibriu
domain-wall structure. Dispersion dependences of the re
nant modes of the domain-wall oscillations were measu
experimentally in the microwave frequency range up to
gigahertz range. The observed high-frequency modes of
spin-wave excitations were associated with the Gilins
mode. A standing-wave resonance was observed in the h
frequency modes, which can be attributed to the hybridi
tion of the modes in the translational and high-frequen
spectral branches. The observed high-frequency resona
of the domain-wall oscillations may be used for magneto
tic light modulation in the gigahertz range.

This work was supported by a grant from the Russ
Fund for Fundamental Research No. 97-02-16183.
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Phase transitions in a titanium–silicon system under laser treatment in alkanes
A. M. Chaplanov and A. N. Shibko

Institute of Electronics, Academy of Sciences of Belarus, 220841 Minsk, Belarus
~Submitted January 14, 1998!
Zh. Tekh. Fiz.69, 63–66~June 1999!

An investigation is made of the phase transitions taking place in a titanium–silicon composite
exposed tol51.06mm laser treatment in pentane and hexane. It is shown that the
formation of titanium carbide, oxides, and silicides depends on the treatment parameters and
conditions. The phase changes were investigated over the thickness of the film and their influence
on the electrophysical parameters of the titanium–silicon contact was studied. ©1999
American Institute of Physics.@S1063-7842~99!01106-X#
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One of the most promising methods of obtaining Ohm
and rectifying contacts is laser treatment of materials, prim
rily because of its speed and the local nature of treating
tegrated circuits.1,2 In the present paper we investigate t
phase transitions in a titanium–silicon composite expose
laser treatment in alkanes, i.e., pentane and hexane.

A 60 nm thick titanium film was deposited on a~111!-
orientedp-type silicon substrate by electron beam deposit
at a substrate temperature of 373 K. Before the film was
posited, the silicon wafer was treated chemically using
method described in Ref. 3. Al51.06mm LTN-103 laser
was used to treat the Ti–Si system as shown schematical
Fig. 1. A 535 mm sample positioned in a cell containin
alkanes, either pentane (C5H12) or hexane (C6H14), was ir-
radiated for 3 s using a scanning laser beam. The surfac
the sample was treated uniformly for 5 s using the scan
The laser radiation power was 1.5–7.0 W and was monito
with an IMO-2 power meter during the treatment proce
The phase transitions taking place in the composite afte
ser treatment were investigated by electron diffraction an
sis and by electron spectral and chemical analysis.

The investigations showed that laser treatment o
Ti–Si system leads to changes in the phase compositio
the surface layer. Grain growth is observed accompanied
migration of grain boundaries and redistribution of defects

FIG. 1. Schematic of experimental apparatus:1 — LTN-103 laser,2 —
IMO-2 laser radiation power meter,3 — semitransparent mirror,4 — mirror
rotatable aboutX axis,5 — mirror rotatable aboutY axis,6 — focusing lens,
7 — cell containing samples, and8 — VUP-4 device.
6641063-7842/99/44(6)/4/$15.00
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the crystal lattice. Titanium carbide, oxide, and silicide n
clei form and grow.

After the Ti–Si system had been treated in pentane
1.5 W laser radiation power, the electron diffraction patte
revealed diffraction rings assigned to the lowest titanium
ides Ti2O3 and Ti3O5 and titanium carbide TiC~Table I!.
When the laser radiation power was increased to 4.0 W,
electron diffraction patterns revealed not only titanium c
bide and oxide rings but also diffraction rings ascribed
metal-enriched titanium silicide Ti5Si3. The oxide phases
form at the surface of the composite as a result of interac
between the film and oxygen adsorbed during deposition
also from the ambient medium. Laser treatment of
titanium–silicon system in pentane is accompanied by
homolytic breaking of carbon–carbon bonds~cracking! in
the carbon-containing liquid. Laser irradiation imparts su
cient energy to crack the pentane molecules, and the ca
atoms interact with the titanium film to form titanium ca
bide. A more detailed description of the formation of me
carbides on laser-irradiated thin metal films in carbo
containing liquids can be found in Ref. 4. As a result of t
diffusion of carbon atoms into the film from the surroundin
medium, numerous pores form in the surface layers b
inside grains and along grain boundaries. As a result of la
treatment of Ti–Si in pentane at 7.0 W, the electron diffra
tion patterns reveal that in addition to the phases no
above, the highest-intensity peaks are from titanium silici
TiSi. The titanium silicides are formed by the diffusion o
silicon into the titanium film. The high concentration of d
fects and the grain boundaries in the metal film facilitate
diffusion of silicon to a considerable extent.1 Laser annealing
stimulates interdiffusion and interaction between the ti
nium and silicon. The sequence of the phase transitions
flects the interdiffusion kinetics in the Ti–Si system as t
laser radiation power increases, resulting in the redistribu
of titanium, carbon, oxygen, and silicon atoms and chan
in the titanium–silicon interface. The change in the pha
composition of the Ti–Si surface layer as a function of t
treatment conditions may be represented by the follow
scheme:
© 1999 American Institute of Physics
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Ti–Si→
1.5 W

Ti3O5 ,Ti2O3 ,TiC→
4.0 W

Ti3O5 ,TiC,Ti5Si3

→
7.0 W

Ti3O5 ,TiC,TiSi,Ti5Si3 .

When a Ti–Si system is treated in hexane at a la
radiation power of 1.5 W, the electron diffraction patter
reveal TiC, Ti3O5, and Ti2O3 peaks~Table II and Fig. 2a!. In
addition to these phases, as the laser radiation power
creases, nuclei of the Ti5Si3 phase also form and grow
When the system is treated in hexane at 7.0 W the elec
diffraction pattern reveals peaks of the Ti3O5, TiC, Ti5Si3,
and TiSi phases~Table II!. An analysis of the results pre
sented in Tables I and II shows that there are no signific
differences in the phase compositions for treatment in p
tane or hexane. However, for treatment in hexane the e
tron diffraction pattern reveals many diffraction rings a
cribed to titanium carbide which indicates an increase in
titanium carbide content. Thus, we shall subsequently
cuss the results obtained by treating the system in hexa

In order to investigate the phase transitions taking pl
in a Ti–Si system after laser treatment in alkanes over
entire thickness of the titanium film, we etched a 20 nm th
film. As a result of 1.5 W laser irradiation of Ti–Si in hex
ane, at a depth of 20 nm from the surface the electron
fraction pattern reveals titanium silicide TiSi peaks in ad
tion to the phases formed at the surface of the system. T
TiSi peaks have the highest intensities. This indicates tha
a result of 1.5 W treatment, titanium silicide forms at t
titanium–silicon interface. When the irradiation power is i
creased to 4.0 W, growth of the TiSi titanium silicide pha
is observed accompanied by nucleation of TiSi2 enriched in
the silicon modification S-54~Table III!. Titanium disilicide
with an S-54 lattice was described by Yatsenkoet al.5 At a
laser radiation power of 7.0 W the electron diffraction p
terns reveal peaks of the TiSi and TiSi2 phases in the sam

TABLE I. Change in phase composition of Ti–Si system under laser tr
ment in pentane.

E, W
d, Å 1.5 4.0 7.0

4.28 Ti3O5 Ti3O5 Ti3O5

3.54 Ti3O5 Ti3O5 Ti3O5

3.14 Ti3O5 Ti3O5 Ti3O5

2.71 Ti2O3 ••• •••
2.57 Ti2O3 ••• •••
2.51 TiC TiC TiC
2.44 ••• ••• TiSi
2.20 ••• Ti5Si3 Ti5Si3
2.19 ••• ••• TiSi
2.18 TiC TiC TiC
2.11 ••• Ti5Si3 Ti5Si3
2.10 Ti3O5 ••• •••
1.96 ••• ••• TiSi
1.70 Ti2O3 ••• •••
1.54 TiC TiC TiC
1.51 ••• Ti5Si3 •••
1.31 TiC TiC TiC

Note: Here and subsequently,d is the interplanar distance andE is the laser
radiation power.
r

in-

on

nt
n-
c-
-
e
s-
.
e
e

k

f-
-
se
as

-

proportion ~Fig. 2b!. In addition to the silicides, titanium
oxides and carbide are also present at a depth of 20 nm.
can be attributed to the diffusion of carbon atoms into
titanium film and the presence of oxygen adsorbed by
film during deposition which diffuses into the film as a res
of degradation of the SiO2 layer on the silicon surface.

An analysis of the results presented in Table IV sho
that the phase composition of the system after laser treatm
in alkanes at powers of 1-5–7.0 W at a depth of 40 nm c
sists mainly of titanium silicide and disilicide. The electro
diffraction pattern of the treated samples also reveals isola
Si and SiO2 ~tridymite! peaks. A comparison of the resul

FIG. 2. Electron diffraction patterns of titanium–silicon system after la
treatment in hexane at 1.5~a! and 7.0 W~b!.

t-

TABLE II. Change in the phase composition of a Ti–Si system under la
treatment in hexane.

E, W
d, Å 1.5 4.0 7.0

4.28 Ti3O5 Ti3O5 Ti3O5

3.54 Ti3O5 Ti3O5 Ti3O5

3.14 Ti3O5 Ti3O5 Ti3O5

2.71 Ti2O3 ••• •••
2.57 Ti2O3 ••• •••
2.51 TiC TiC TiC
2.44 ••• ••• TiSi
2.20 ••• Ti5Si3 Ti5Si3
2.19 ••• ••• TiSi
2.18 TiC TiC TiC
2.11 ••• Ti5Si3 Ti5Si3
2.10 Ti3O5 ••• •••
1.96 ••• ••• TiSi
1.54 TiC TiC TiC
1.51 ••• Ti5Si3 •••
1.31 TiC TiC TiC
0.97 TiC TiC TiC
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presented in Tables III and IV shows that no titanium oxid
or titanium carbide exist at a depth of 40 nm. This is limit
by the depth of diffusion of carbon atoms from the surroun
ing medium. The amount of oxygen diffusing from the SiO2

layer into the titanium film is negligible and is insufficient
form titanium oxides. The presence of silicides indicates t
silicon atoms diffuse through the SiO2 into the titanium.

In order to study the interface of the system after la
treatment in alkanes, 50 and 60 nm surface layers were

TABLE III. Change in the phase composition of a Ti–Si system in hexa
after etching the film to a thickness of 20 nm.

E, W
d, Å 1.5 4.0 7.0

4.28 Ti3O5 Ti3O5 •••
3.54 Ti3O5 Ti3O5 •••
3.14 Ti3O5 Ti3O5 •••
2.68 TiSi TiSi TiSi
2.57 ••• ••• Ti2O3

2.51 TiC TiC TiC
2.44 TiSi TiSi TiSi
2.34 ••• TiSi •••
2.29 ••• TiSi2 TiSi2
2.20 Ti5Si3 ••• •••
2.19 ••• TiSi TiSi
2.18 TiC TiC TiC
2.11 Ti5Si3 ••• •••
2.08 ••• TiSi2 TiSi2
1.82 ••• ••• TiSi2
1.70 ••• ••• Ti2O3

1.54 TiC TiC TiC
1.48 ••• ••• Ti2O3

1.44 TiSi TiSi TiSi
1.40 Ti5Si3 ••• •••
1.39 ••• TiSi2 TiSi2
1.31 TiC TiC TiC

TABLE IV. Change in the phase composition of a Ti–Si system after et
ing to 40 nm.

E, W
d, Å 1.5 4.0 7.0

4.26 SiO2 SiO2 SiO2

4.08 SiO2 SiO2 SiO2

3.12 Si Si Si
2.68 TiSi TiSi •••
2.44 TiSi TiSi •••
2.34 TiSi TiSi •••
2.29 TiSi2 TiSi2 TiSi2
2.19 TiSi2 TiSi2 TiSi2
2.13 ••• ••• TiSi2
2.08 TiSi2 TiSi2 TiSi2
1.96 TiSi TiSi •••
1.90 Si Si Si
1.82 TiSi2 TiSi2 TiSi2
1.63 Si Si Si
1.49 TiSi2 TiSi2 TiSi2
1.44 TiSi ••• •••
1.39 ••• ••• TiSi2
1.35 ••• ••• Si
1.31 TiSi2 TiSi2 TiSi2
1.24 TiSi2 TiSi2 TiSi2
s

-

t

r
e-

moved from the samples after treatment. The results are
sented in Table V. In addition to peaks of titanium silicid
with an S-54 lattice, the electron diffraction patterns a
reveal peaks from SiO2 ~tridymite! and silicon. Thus, layer-
by-layer etching of the surface layer revealed changes in
phase composition of a Ti–Si system under laser annea
The phase composition changes as follows: Ti/SiO2/Si to
TixOy–TiC–TinSim /TiSi2– SiO2/Si, depending on the dis
tance from the surface. Attention is drawn to the fact th
SiO2 crystallizes at the metal–semiconductor interface a
becomes displaced inside the silicon.

We therefore conclude that when a titanium–silicon s
tem undergoes laser irradiation in alkanes, the surface la
of titanium interacts with the carbon, leading to the form
tion and growth of titanium carbide at the surface of the fil
which is also accompanied by oxidation of the titanium. A
result of the silicon diffusing across the SiO2 film and also as
a result of its degradation, silicides form at the titanium
silicon dioxide interface. In consequence, the near-surf
layer has a complex phase composition. The phase distr
tion over the depth of this layer can be seen from Fig. 3.

The results obtained by electron diffraction analysis c

e

-

TABLE V. Change in the phase composition of a Ti–Si system atE57.0 W
after etching at 50 (A) and 60 nm (B).

d, Å A B

4.26 SiO2 SiO2

4.08 SiO2 SiO2

3.80 SiO2 SiO2

3.61 ••• SiO2

3.23 ••• SiO2

3.12 Si Si
2.96 SiO2 SiO2

2.48 SiO2 SiO2

2.29 TiSi2 TiSi2
2.19 TiSi2 TiSi2
2.13 TiSi2 •••
2.08 TiSi2 •••
2.07 ••• SiO2

1.93 ••• SiO2

1.90 Si Si
1.63 Si Si
1.24 Si Si
1.10 ••• Si
1.04 ••• Si
0.92 ••• Si

FIG. 3. Diagram showing distribution of phase composition of titanium
silicon system over depth: a — initial sample~without treatment!, b — after
laser treatment at 7.0 W in alkanes.



ic

te
p
ti
ic
ge
h
o

ic
ro
n
s

gh
se
id
ie

u
ic
n

te
n
ic

h a
ates
e-
the
in
tact

667Tech. Phys. 44 (6), June 1999 A. M. Chaplanov and A. N. Shibko
relate with those obtained by electron spectral and chem
analysis.

Changes in the phase composition of the Ti–Si sys
and its interface lead to changes in the electrophysical
rameters of the contact. The current–voltage characteris
were investigated using a method described in Ref. 6 wh
yielded the Schottky barrier height, the breakdown volta
and the ideality factor. These investigations showed t
within experimental error, the electrophysical parameters
a Ti–Si contact treated in pentane and hexane are ident
Under treatment the Schottky barrier height increases f
0.55 eV for the initial sample to 0.56 eV as a result of a
nealing in alkanes, and the breakdown voltage increa
from 0.5 to 0.8 V. The increase in the Schottky barrier hei
is caused by the reactive diffusion of silicon under la
treatment and the subsequent formation of titanium silic
and disilicide. A negligible change in the Schottky barr
height can be attributed to the presence of TiSi2 and was
explained in detail in Ref. 1. The barrier height is also infl
enced by changes in the surface state density at the sem
ductor under laser treatment. Redistribution of oxygen a
diffusion of carbon in the surface layer and inside the sys
lead to an increase in the breakdown voltage. The influe
of impurities in the contacts, which affect the characterist
of semiconductor devices, was described by Strichaet al.7
al
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To sum up, by treating a Ti–Si system withl51.06mm
laser radiation in alkanes, we can obtain a contact wit
specific phase composition. Treatment in alkanes stimul
the formation of titanium oxides, carbide, and silicides d
pending on the laser radiation power and the thickness of
titanium film. By exposing the system to laser treatment
pentane and hexane, we can produce a rectifying con
with specific electrophysical properties.
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X-ray diffraction scattering and determination of the structural parameters of a film
with a variable strain gradient
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Characteristics of the x-ray diffraction field in structures with a variable strain gradient are
analyzed using a model with an exponential profile. It is shown that the problem of reconstructing
the structural parameters of the strained layer from the angular positions of the principal
maximum and the oscillations is generally multivalued even when the strain varies monotonically
over depth. Conditions are determined for which this problem can be solved. An analogy is
identified with the results of an approach to determine the parameters of the strained layer based
on using the integral characteristics of the diffraction reflection curve. ©1999 American
Institute of Physics.@S1063-7842~99!01206-4#
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An analytic study of the strained surface region of
crystal by x-ray diffraction methods is essentially based
information on the wave field structure over the crystal de
in various angular intervals near the Bragg maximum.1 In
this case, the strain profile is described by a certain mo
which contains information on the structural parameters
the strained region: the layer thickness, the nature of
decrease over depth, and so on. A comprehensive ana
under various diffraction conditions for various possible
tios of the structural parameters can only be made for th
profiles for which an accurate analytic solution of the r
evant dynamic diffraction problem is known. In this conte
particular importance is attached to the diffraction probl
for an exponential profile

«~z!5«0 e2Mz, ~1!

where«0 is the strain amplitude,M is a positive value pro-
portional to the strain gradient and determining some ch
acteristic thickness over which the strain varies, andz is the
coordinate along the normal directed into the crystal.

In general, the accurate solution of the dynamic diffra
tion problem for a crystal with an exponential strain profi
~1! has the form2,3

EH~t!5C1e2 i (k1k0)tFS 11
i

m
~k1k0!,1

1
i2k0

m
;
i2j

m
e2mtD1C2e2 i (k2k0)tF

3S 11
i

m
~k2k0!,12

i2k0

m
;
i2j

m
e2mtD , ~2!

whereF(a,c;x) is a degenerate hypergeometric function,C1

and C2 are arbitrary constants determined by the bound
conditions of the problem.

The following notation is introduced in Eq.~2!:

k5S 22Du sin2u2x0S 12
gH

g0
D D pL

2gHl
,

6681063-7842/99/44(6)/3/$15.00
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j52
pL

2gHl
4 sin2 uS cos2w6

1

2
cotu sin 2w D «0 ,

d05S L

Lext
D 2

, Leta5
lAugHug0

phuxHu
,

k0
25k22d0 , m5ML,

Du is the deviation from the exact Bragg angleu, gH
52sin(u6w) andg052sin(w6u) are the direction cosine
of the wave vectors of the diffracted and refracted wavesw
is the angle of inclination of the diffraction plane to the cry
tal surface,Lext is the extinction length,l is the wavelength
of the incident radiation,w0 is the strain amplitude,h is the
polarization factor,t5z/L is the coordinate normalized t
the crystal thicknessL, the ‘‘1’’ ~‘‘ 2’’ ! signs correspond to
the diffraction geometry when the incident beam is at
angleu2w (u1w) to the crystal surface.

We shall confine our analysis to the case of a steep st
gradient which corresponds to a strained surface region
small thickness. We take as the parameter the ‘‘effect
thickness’’ 1/m of the strained region relative to the tot
crystal thickness

1

m
5

1

ML
.

At this point, we must specify which quantity is assumed
be small relative tom in the exact solution. Since we inten
to use these formulas for arbitrary values of the strain~and
specifically for the parameterj typical of the theory!, this
constraint will be determined only by the angular interval
which the diffraction reflection curve can be constructe
Hence, the angular region for which this approximati
holds is limited by the constraintsuk/mu!1 anduk0 /mu!1.

It follows from Eq. ~2! that the angular valuesk0 andk
only appear in the functionF(a,c;x) in terms of the param-
etersa andc and the dependence on the strain is only relat
to the argumentx. This characteristic of the solution mean
© 1999 American Institute of Physics
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that for F(a,c;x) we can find a so-called uniformly suitab
asymptotic expansion4 for arbitrary values of the strain an
the angular range specified above.

An analysis of the solution~1! for a steep gradien
shows2,3 that the structure of the diffraction reflection curv
broadly retains the form characteristic of an ideal crystal.
the same time, the presence of a strained surface regio
manifest as additional modulation of the standing x-r
waves and changes in the phase ratios between them.
result of this redistribution of the unitary wave field in th
strained structure, the diffraction peak and the oscillat
maxima are shifted from the angular positions for an id
crystal.

The angular position of the main diffraction peak
within terms of the order 1/m2 is given by the following
expression:3

k~0!52r~d0!
Si~2j/m!

m
,

r~d0!5
15~2d0

21d013!

12d0
217d0115

, ~3!

where Si(x) is the sine integral and the coefficientr(d0)
determines the nature of the scattering.

It can be seen from Eq.~3! that the dependence of th
angular shift on the strain amplitude is essentially nonline
Moreover, as a result of the oscillating behavior of the s
integral betweenj andDk(0), generally only a multivalued
correspondence exists. From Eq.~3! we obtain two charac-
teristic limits: the kinematic limit (d0→0) and the case of a
thick crystal corresponding to the formal limitd0→`. For
the kinematic limit, Eq.~3! gives

k~0!kin523
Si~2j/m!

m
, ~4!

and for a thick crystal the angular shift of the principal ma
mum is given by

k~0!dyn52
5

2

Si~2j/m!

m
. ~5!

Thus, these two cases only differ by the numerical co
ficient. It follows from Eq.~3! that the angular shift of the
principal maximum depends monotonically ond0 and the
numerical difference between the two limiting cases does
exceed 20%. Therefore it is sufficient to use an average v
for r(d0)52.75 in the following approximate expressions

Similar calculations for the angular widths of the osc
lation maxima yield the following result:3

Dk~n!5pS 11
1

m
CinS 2j

m D D , ~6!

where the function

Cin~x!5E
0

x 12cosy

y
dy52Ci~x!1 ln~x!1g

is expressed in terms of the cosine integral Ci(x) and g
50.577 is the Euler constant.5
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In formula ~6! the numbern of the oscillation maximum
should not be too high for the expansion to hold. In derivi
formula ~6! we assumed that dynamic effects mainly app
only within the total diffraction reflection region so that i
practice the kinematic approximation can be used forn>2.

We shall analyze two variants for which the thickness
the strained surface region and the strain amplitude can
estimated for given angular shifts of the main diffractio
peak and oscillations.

If 2 j/m@1 ~and in fact, even if 2j/m.2), we have
Si(x);p/2 and Cin(x);g1 ln(x) ~Ref. 5!. At this point, a
distinguishing feature of x-ray diffraction appears in stru
tures with a variable strain gradient: the angular position
the principal diffraction maximum is independent of th
strain amplitude and is determined only by the thickness
the strained layer. A similar situation may be interpreted
the result of multiple inversion of the phase of the diffract
wave over the thickness of the strained layer with com
nents of the initial ‘‘perturbation’’ being ‘‘forgotten’’~strain
amplitude!. Consequently, this case of scattering has so
analogy with a Markov process.

Thus, the criterion for this case being implemented e
perimentally will be thatk(0) is constant within the erro
limits specified above, which is determined by the nature
the scattering~measuringr(d0)) as a function of the reflec
tion order.

Equations~3! and ~6! yield the following approximate
expressions for the thickness of the strained layer and
strain amplitude in the experimental unitsk(0) andDk(n):

1

m
520.23k~0!, j50.28m expS S Dk~n!

p Dm D . ~7!

At this point, it should be noted that this expression forj is
to a considerable extent illustrative. This is because, as g
by Eq. ~6!, the angular width of the oscillationsDk(n) is
primarily determined by the total crystal thickness. The
fluence ofDk(n) on the parameters of the strained surfa
regionj andm is considerably weaker here since it has t
form of a small additive correction. Finally, we find that th
exponential function in the expression forj in Eq. ~7! is
always very close to unity for the samem.

The second variant corresponding to the condit
2j/m!1 is more frequently encountered in crystals with
strained layer. In cases of small values of the argument,
the functions Si(x) and Cin(x) we obtain the estimate
Si(x);x and Cin(x);x2/4. Consequently,Dk(0) depends
linearly onj, which should be observed experimentally. Th
result is fully compatible with a clear interpretation of th
shift of the angular position of the principal diffraction max
mum as the manifestation of some nontrivial ‘‘diffractio
averaging’’ of the strain field over the thickness of th
strained layer by the x-ray wave. Relations similar to~7!
have the form

1

m
50.033

k2~0!

~Dk~n!/p21!
, j50.18m2k~0!. ~8!

Thus, in these limiting cases, information on the angu
shifts of the principal maximum and the oscillations is qu
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sufficient primarily to estimate the thickness of the strain
region and only as a secondary function to estimate st
amplitude. This problem can be solved uniquely~for the
thickness of the strained region! in two alternative cases
under conditions where the ratio of the strain at the cry
surface to the thickness of the strained layer is small
conversely, when this ratio is large. Otherwise, additio
information is required for an accurate solution of the pro
lem.

We shall give the results of calculations ofj and
m using formulas~7! and ~8! for two cases. In order to de
termine the angular shifts, we constructed the theoretical
fraction reflection curve for givenj andm near the principal
diffraction maximum using asymptotic representations of
exact solution in this particular case of a steep gradient.2,3

For the first case 2j/m@1 for the given valuesj520
and j530 for m510 we obtain:m58.9, j55.03, andm
59.7, j58.5, respectively. Thus, the good approximati
obtained form and the complete disparity forj ~which dif-
fers almost fourfold! illustrates the reasoning put forwar
above on the analogy with Markov processes—loss of in
mation onj.

For the second case 2j/m!1 the calculations yield
j51.2, m58.5 for the true valuesj51 and m58, and
j52.02,m56.7 for j52 andm58. Here no problems aris
with loss of information and this accuracy for the appro
mate expressions can be considered to be quite satisfac

These results for the specific problem of diffraction in
crystal with an exponential strain profile can lead to the f
lowing generalization. The relations put forward above
sentially establish qualitative criteria for a particular deg
of solubility for the problem of determining the strain amp
tude and the thickness of the strained region from x-ray
fraction data. This statement applies equally to analytic
numerical methods since the latter are based substantial
the angular positions and widths of the diffraction maxim6

It is interesting to note that similar conclusions can a
be drawn when the diffraction problem is considered in
so-called semikinematic approximation when the strain
surface layer of the crystal is assumed to scatter kinem
cally and the substrate scatters like an ideal dynamic cry
When solving this problem, Afanasevet al.7 obtained a rela-
tionship linking the Fourier transform of the diffraction re
flection curve far from the fundamental maximum with som
effective thicknessLeff . In the notation used here this fo
mula is given by

Leff 5E
0

1/mS 12cosS 2
j

m
e2miD Ddi

5
1

m S 12CiS j

m D1CiS j

m
e21D D . ~9!

For the first of the characteristic limits specified abo
we obtain from formula~9!
d
in

l
d
l
-

if-

e

r-

ry.

-
-
e

f-
d
on

o
e
d
ti-
al.

Leff5
j2

4m3
, ~10!

i.e., in cases of incomplete phase inversion over the th
ness of the strained layerLeff depends on the parameters
this layer and these can therefore be reconstructed from
x-ray data.

However, the estimate~9! for 2j/m@1 ~multiple phase
inversion! gives

Leff5
1

m S 12
sin~j/m!

j/m D . ~11!

Since the second term in Eq.~11! for large values of the
argument oscillates near zero and is much less than unity
effective thickness is merely reduced to the depth of
strained layer and does not depend on the strain amplit
In this case we are therefore dealing with a loss of inform
tion on the parameters of the strained layer.

It is extremely important that this result can also be ge
eralized to other strain profiles which decrease over depth
estimating the integral~9!. However, the important constrain
remains that the strain must vary monotonically over dep
Mathematically this constraint reduces to the absence
steady-state points in the phase of the cosine integral~9! over
the thickness of the strained layer. This in fact implies tha
whole range of constant-sign strain profiles which decre
over depth at least no more weakly than exponentially can
included here.

To sum up, these results obtained for a crystal with
exponential strain profile suggest that these x-ray diffract
laws apply to all structures with a variable gradient where
strain varies monotonically over depth. An analogy is a
obtained when integral characteristics such as the Fou
transforms of the diffraction reflection curves and the angu
positions of the diffraction maxima are used to identify t
structure of the strained layer.
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Nonlinear dynamics of the space charge in a photorefractive crystal under pulsed
photoinjection
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An analysis is made of the nonlinear relaxation of the charge formed in a photoconducting
material as a result of the absorption of a light pulse. Calculations are made of the distribution
profiles of the excess carriers and the density of the photoinduced charge in various
transport regimes. The influence of contact phenomena on the dynamics of the space charge is
examined and solutions are obtained for boundary conditions corresponding to a blocking
contact with an illuminated electrode and optical breakdown of the contact. An investigation is
made of the evolution of the integral pulse response under transverse electrooptic
modulation. The results are suitable for analyzing two geometric recording systems for entering
information into a space–time light modulator with arbitrary absorption and for recording
a holographic grating in the limit of low absorption coefficients. ©1999 American Institute of
Physics.@S1063-7842~99!01306-9#
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INTRODUCTION

Studies of nonlinear space-charge relaxation process
photorefractive materials are topical for two main reaso
First, photorefractive materials are opening up new prosp
for developing active elements in optical information pr
cessing and storage systems~including holographic
memory!.1–5 Second, photoinjection processes and transp
of nonequilibrium photoinduced charges in these mater
lead to the formation of photorefractive waves, which are
separate scientific interest.6–12

Here, a two-dimensional nonsteady-state problem
solved for the nonlinear relaxation of the space cha
formed in a photorefractive crystal under pulsed illumin
tion. A detailed analysis is made of a variant correspond
to the storage of information in a space–time lig
modulator.1,12,13However, the results are suitable for analy
ing the pulsed recording of holographic gratings1,5,14 in the
limit of low absorption coefficients. The difference betwe
these variants is determined by the form of the spatial mo
lation function of the photogeneration in accordance with
system for storing information in the optical memory. T
case of an arbitrary absorption coefficient is considered f
space–time light modulator. Allowance is also made for
depletion of impurity centers during photogeneration and
influence of the injection current on the dynamics of t
space charge is considered. Two sets of boundary condit
are analyzed, corresponding to a blocking contact with
illuminated electrode and optical breakdown of the conta

FORMULATION OF THE PROBLEM AND MATHEMATICAL
MODEL

We analyze an infinite single-crystal wafer of thickne
L to which we apply a static electric field created by a vo
age sourceU ~Fig. 1!. Thex axis is directed along the crysta
thickness and they axis is directed along the surface. Th
6711063-7842/99/44(6)/7/$15.00
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dark conductivity of the material is assumed to be zero.
time t50 the crystal undergoes pulsed illumination. The o
tical intensity distribution has the formI (r ,t)5Wd(t)R(r ),
where r[xex1yey , W is the exposure,d(t) is the Dirac
delta function, andR(r )5X(x)Y(y) is the spatial modula-
tion function.

Figure 1 shows the direction of light for the two mo
commonly used experimental systems. In the first case, w
information is coupled into a space–time modulator, light
incident on the crystal along thex axis ~Fig. 1a! and the
modulation functionX(x) is determined by the Bouguer–
Lambert lawX(x)5exp(2ax), where a is the absorption
coefficient. In the second case, when a holographic gratin
recorded~Fig. 1b!, light propagates along they axis and for
aL!1 the intensity is modulated along thex axis by the

FIG. 1. Schematic of information recording process: a — input of informa-
tion to space–time light modulator, b — hologram recording,k0 andkr are
the wave vectors of the object and reference waves, respectively.
© 1999 American Institute of Physics
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functionX(x)511j cos(Kx), whereK is the wave vector of
the recorded grating andj is the modulation index (0,j
,1).

The crystal contains two types of traps: shallow traps
thermal equilibrium with the conduction band and deep i
purity centers whose photoionization leads to the appeara
of free carriers migrating in the external field. The carr
lifetime in the deep traps significantly exceeds the tran
time. The drift of the nonequilibrium carriers is limited b
the space charge defined by the carriers themselves. Co
quently, the transport process is nonlinear: Ohm’s law is
obeyed since the charge migrates in a self-consistent fie

The influence of shallow traps on the transport proces
taken into account in the fast recapture approximation.15 We
assume thatt t!t f , wheret t is the trapping time~the aver-
age carrier lifetime in an extended state!, t f is the free time
~the average lifetime in a trapping level!. In this case, the
equation describing the trapping and release of carriers f
shallow traps ]nt /]t5nf /t t2nt /t f , reduces to t f /t t

5nt /nf ,wherenf andnt are the concentrations of free an
trapped carriers, respectively. This means that instead o
transport of free carriers having the mobilitym0, which de-
termines the conductivity for the extended states, we
analyze the motion of quasifree carriers having the conc
tration n5nf1nt and the effective drift mobility
m5m0nf /(nf1nt).

The relaxation of the photoinduced charge is descri
by the following system of equations written in dimensio
less variables:

¹•~n~r ,t !¹w~r ,t !!2
]

]t
n~r ,t !50, ~1!

¹2w~r ,t !5p~r ,t !2n~r ,t !, ~2!

]

]t
p~r ,t !5

a

N
I ~r ,t !~N2p~r ,t !!, ~3!

where ~1! is the equation of continuity,~2! is the Poisson
equation, and~3! describes the ionization of the impurit
centers. Herew is the potential andN andp are the concen-
trations of impurity centers and ionized impurities, resp
tively. On changing to dimensionless variables, we use
following normalization:

r[
r 8

L
, t[

t8

tT
, w[

w8

U
, a[a8L,

~n,N,p![~n8,N8,p8!
4pqL2

«U
, W[W8

4pqLQ

\v«U
,

where the corresponding dimensional variables are den
by the prime,tT[L2/(mU) is the carrier transit time in an
unperturbed field,q is the carrier charge,Q is the photoion-
ization quantum yield of an impurity center,v is the light
frequency, and« is the permittivity of the crystal for polar
ization with relaxation times considerably shorter than
transit time.

The initial conditions correspond to the absence of a
ionized centers before illumination, and local electroneut
ity at the end of illumination
n
-
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p~r ,020!50, n~r ,010!5p~r ,010!. ~4!

The boundary conditions are determined by the car
concentration at the illuminated surface according to the t
of contact, the applied electric field, and the type of radiat
intensity distribution over they axis

n~0,y,t !5n~0,y,010!, ~5!

w~0,y,t !51, w~1,y,t !50, ~6!

]

]y
w~x,0,t !50, ~7!

]

]y
w~x,yL ,t !50. ~8!

Condition~8! corresponds either to translational symm
try of the potential for the periodic functionY(y)5Y(y
1yL), or screening of the field generated by the spa
charge, by the mirror image charges for the damped func
Y(y). In this last case, condition~8! holds for yL@L. The
integral of the photoionization equation~4! has the form

p~r ,t !5N~12exp~2F~r !!!H~ t !, ~9!

whereF(r )[(aW/N)R(r ), H(t) is the Heaviside function

H~ t ![H 0 t,0,

1 t.0.

The equation of continuity~1! may be transformed to a
convenient form for the subsequent discretization

]

]t
n~r ,t !2¹w~r ,t !•¹n~r ,t !1n~r ,t !~n~r ,t !2p~r ,t !!50.

~10!

Thus, Eqs.~2!, ~9!, and ~10! form a closed system to
determine the carrier concentrationn(r ,t) and the potential
w(r ,t).

BRIEF DESCRIPTION OF THE FINITE DIFFERENCE
ALGORITHM

The equations are discretized using a three-dimensio
mesh whose nodes are defined by the coordinates

xi5 iDx, yj5 j Dy, tk5kDt, ~11!

whereDx, Dy, andDt are the mesh steps along the app
priate coordinates, i 50,1, . . . ,i max; j 50,1, . . . ,j max;
k50,1, . . . ,kmax.

Applying an integrointerpolation method to discretiz
the nonlinear equation of continuity~10! in the bulk of the
crystal yields the following iteration difference equatio
written for half-integer points of the initial mesh~11!:

D̂tnm
( l 11)2D̂xwm

( l )
•D̂xnm

( l 11)2D̂ywm
( l )
•D̂ynm

( l 11)

1nm
( l 11)~nm

( l )2pm!50, ~12!

wherel is the number of the layer-by-layer iteration for fixe
k and all values with the multiindexm5uu i 11/2, j 11/2,
k11/2uu corresponds to the center of a mesh cell~11!
~Fig. 2a!.

The difference derivatives have the form



:

at
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FIG. 2. Construction of a finite-difference algorithm
patterns of difference schemes~15! ~a! and ~16! ~b!;
sequence of calculations of the carrier concentrations
the (k11) mesh layer at fixed time~c!: direct run~d!
and inverse formulation~e! of cyclic reduction for solv-
ing the Poisson equation.
d
s

-
fo
e

qs.

me
D̂tnm[
1

4Dt
~ni 11,j 11

k11 1ni 11,j
k11 1ni , j 11

k11 1ni , j
k112ni 11,j 11

k

2ni 11,j
k 2ni , j 11

k 2ni j
k !,

D̂xnm[
1

4Dx
~ni 11,j 11

k11 1ni 11,j 11
k 1ni 11,j

k11 1ni 11,j
k

2ni , j 11
k11 2ni , j 11

k 2ni j
k112ni j

k !,

D̂ynm[
1

4Dy
~ni 11,j 11

k11 1ni 11,j 11
k 1ni , j 11

k11 1ni , j 11
k

2ni 11,j
k11 2ni 11,j

k 2ni j
k112ni j

k !.

Difference differentiation of the potential is performe
similarly. The values ofn andp are averaged over all point
in an elementary cell of the mesh

nm5
1

8 (
s5 i

i 11

(
r 5 j

j 11

(
q5k

k11

nsr
q , pm5

1

8 (
s5 i

i 11

(
r 5 j

j 11

(
q5k

k11

psr
q .

Discretization of the equation of continuity~10! in the
plane y50 where condition~7! holds is performed sepa
rately. The corresponding difference equation written
half-integer points of the two-dimensional mesh is obtain
from the initial three-dimensional mesh~11! for j 50

]̂ tnm
( l 11)2 ]̂xwm

( l )
• ]̂xnm

( l 11)1nm
( l 11)~nm

( l )2pm!50, ~13!

where l is the iteration number,m[uu i 11/2, 0,k11/2uu,
nm5 1

4(s5 i
i 11(q5k

k11ns,0
q , pm5 1

4(s5 i
i 11(q5k

k11ps,0
q ,

]̂ tnm[
1

2Dt
~ni 11,0

k11 1ni ,0
k112ni 11,0

k 2ni ,0
k !,

]̂xnm[
1

2Dx
~ni 11,0

k11 1ni 11,0
k 2ni ,0

k112ni ,0
k !.
r
d

The boundary conditions are obtained directly from E
~4! and ~5!

ni j
0 5pi j

0 , n0,j
k 5n0,j

0 . ~14!

Using the difference equation~12! we can derive the
following explicit two-layer difference scheme to calculaten
at the (l 11) iteration:

ni 11,j 11
k11 ~11u1!5ni , j 11

k11 ~211n2!1ni 11,j
k11 ~212n1!

1ni j
k11~211u2!1ni 11,j 11

k

3~12u1!1ni , j 11
k ~11n2!1ni 11,j

k

3~12n1!1ni j
k ~11u2!, ~15!

where

u6[
Dt

Dx S 2D̂xwm
( l )2

Dx

Dy
D̂ywm

( l )6
Dx

2
~nm

( l )2pm! D ;

n6[
Dt

Dx S 2D̂xwm
( l )1

Dx

Dy
D̂ywm

( l )6
Dx

2
~nm

( l )2pm! D .

Figure 2a shows the pattern of the difference sche
~15!. In order to trigger the scheme~15!, we require values of
the carrier concentrationn0,j

k at the crystal surface atx50
defined by the second boundary condition~14! and also val-
ues of the concentrationni 11,0

k11 in the planey50, calculated
using a difference scheme obtained from Eq.~13!:

ni 11,0
k11 ~11a1!5ni ,0

k11~211a2!1ni 11,0
k ~12a1!

1ni ,0
k ~11a2!, ~16!

where

a6[
Dt

Dx S 2 ]̂xwm
( l )6

Dx

2
~nm

( l )2pm! D .
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The pattern of the difference scheme~16! is shown in
Fig. 2b. The initial valuesni j

0 required to trigger the scheme
~15! and~16! are calculated from the first boundary conditio
~14! and the integral of the photoionization equation~9!. The
calculations are performed as follows: the carrier concen
tion n is calculated at the (k11)th layer of the mesh~11! in
the unperturbed field initially in the planey50 using scheme
~16! and then using scheme~15! for all points in the bulk of
the crystal having the samei value on the (k11)th layer.
The concentration is then calculated for the next value oi,
first for j 50 using the scheme~16! and then forj Þ0 using
the scheme~15!, and so on. The sequence of calculations
illustrated in Fig. 2c.

After finding the carrier concentration at the (k11)th
layer we calculate the field created by the resultant sp
charge, by solving the Poisson equation~2! in a rectangle on
whose opposite sides Dirichlet conditions~6! and Neumann
conditions~7!, ~8! are set. Then the carrier concentration
calculated again, but in the perturbed field. If the values
tained differ from the previous ones, the iterations are
peated until convergence is achieved.

We use a cyclic reduction method to solve the Pois
equation on a mesh defined for a fixed time in the rectan
$0<x<1, 0<y<yL%.

For the potentialV[w211x of the field created by the
space charge with the volume densityf [n2p, the boundary
conditions~6! will be homogeneous. The difference proble
for the Poisson equation¹2V52 f may be written in the
form

CV5F,

where

C[I E 0 0 0 . . . 0

2E C 2E 0 . . . 0

0 2E C 2E . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 2E C 2E

0 . . . 0 0 0 E

I ,

V[I V0

V1

. . .

V i max

I , F[I F0

F1

. . .

Fj max

I ,

V i[uuVi ,0Vi ,1 . . . Vi j max
uuT, i 50,1, . . . ,i max,

Fi[H ~Dx!2uu f i ,0 f i ,1 . . . f i j max
uuT, i 51,2, . . . ,i max21,

uu0 0 . . . 0uuT, i 50,i max,

E is a unit matrix, 0 is the null matrix of dimensions (j max

11)2, and the superscriptT denotes transposition, the matr
elementsC have the form

Crs52~11b!d rs2b~d r ,s111d r 11,s1d r1d2s

1d r , j max11d j max,s!,
a-

s

ce

-
-

n
le

where b[(Dx/Dy)2, d rs is the Kronecker delta, andr ,s
51,2, . . . ,j max11.

Thus, the solution of the Poisson equation reduces
inversion of the partitioned matrixC for which we use the
following variant of the cyclic reduction method.

The direct run involves calculating the vectorsPi
(m) and

Qi
(m)

Pi
(m)5Pi

(m21)1~C(m21)!21~Qi
(m21)1Pi 2M

(m21)1Pi 1M
(m21)!,

Qi
(m)52Pi

(m21)1Qi 2M
(m21)1Qi 1M

(m21) ,

Qi
(0)5Fi , Pi

(0)50, ~17!

m is the reduction number,m51,2, . . . ,n; M[2m21, i
52m, 232m, 332m, . . . , i max22m.

The inverse formulation involves reconstructing the u
knowns

V i5Pi
(m21)1~C(m21)!21~Qi

(m21)1V i 2M1V i 1M !,
~18!

m5n11, n, n21, . . . ,1; M[2m21, i 5M , 3M , 5M , . . . ,
i max2M.

The constraint on the number of mesh points in the
rection of reduction~along thex axis! is i max52n11, wheren
is the number of reduction steps.

Inversion of the matricesC(m21) involves solving the
vector equations~17! and ~18! by successively inverting the
matrix factors in the expansion

C(m21)5)
l 51

M

Cl ,m21 , where Cl ,m215C22E cos
~2l 21!p

2m
.

The matricesCl ,m21, like the initial matrixC, are tridi-
agonal with diagonal predominance and are inverted usin
right tridiagonal inversion.

The calculation algorithm using a cyclic reduction f
i max516 andn53 is shown schematically in Figs. 2d and2e.

RESULTS AND DISCUSSION

The space charge dynamics depend fundamentally
the properties of the contact between the illuminated e
trode and the photorefractive crystal. For a blocking cont
the boundary condition~5! has the formn(0,y,t)50 both
before and after the action of light. In this case, nonequi
rium carriers form in the bulk of the crystal exclusively as
result of photoinjection and none are transported from
electrode. Another case is also possible when, under the
tion of light, the contact is converted from blocking to injec
ing and undergoes optical breakdown. In this case, the o
cal pulse causes an abrupt increase in the car
concentration at the irradiated contact from zero to a fin
value determined by the integral of the photoionization eq
tion ~9! and the boundary conditions~4! and ~5! n(0,y,t)
5N@12exp(2F(0,y))#H(t).

Thus, after photoexcited carriers have formed, exc
carriers will be continuously injected into the crystal fro
the broken-down contact.

Figure 3 shows a schematic band diagram of the con
under optical breakdown. For simplicity the surface sta
are not shown. It is assumed that before illumination~Fig.
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3a! the contact is neutral, i.e., the flat band condition is s
isfied. Prior to illumination an external bias is applied to t
contact and all the transition processes associated
charge transfer at capacitances have time to be comple
The potential barrier impeding carrier transport~to be spe-
cific, electrons! from the cathode is assumed to be su
ciently large so that the contact can be considered to
blocking prior to illumination. Under the action of the ligh
pulse, the impurity centers undergo photoionization. As
result of the external bias, the photoexcited carriers leave
contact region and residual ionized impurities create a sp
charge field. The formation of a depleted region has featu
in common with the similar process observed during the f
mation of a Schottky barrier but is distinguished by optic
rather than thermal ionization of impurities and takes plac
a constantly applied external bias. The combined effec
the space charge field in the depleted region, the potentia
the mirror image forces, and the external electric field ca

FIG. 3. Band diagram of contact before~a! and after~b! exposure to light
pulse during optical breakdown:DV — reduction in the barrier height,d —
depth of depletion zone,F — Fermi level,Fn — Fermi quasilevel, andD —
impurity levels. The bottom of the conduction band~C.V! neglecting the
potential of the mirror image forces is shown by the dashed curve.
t-

ith
ed.

e

a
he
ce
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l
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f
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e

a reduction in the barrier height~similar to the Schottky ef-
fect!. Consequently, after the pulsed illumination the barr
will no longer impede the injection of carriers from the co
tact into the bulk of the crystal~Fig. 3b!.

We shall now analyze the distributions of the carr
concentrationn and the space charge densityf obtained for
various boundary conditions. The calculations were made
spatial modulation functions given by

X~x!5exp~2ax!,

Y~y!5H 1

2 S 11cos
2py

b D 2
b

2
,y,

b

2
,

0 y,2
b

2
, y.

b

2
,

~19!

whereb is the width of the irradiated region.
This modulation corresponds to exposure of the ba

positioned at the surface of the crystal perpendicular to thx
and y axes when information is coupled into a space–ti
light modulator ~Fig. 1a!. The calculations were made fo
equal mesh steps along the spatial coordinates (Dx5Dy)
with a relative accuracy of 1022 for the carrier concentration
and 0.1 for the transverse field. The time stepDt51022

ensured that the Courant condition was satisfied. The res
discussed subsequently were obtained for a mesh of dim
sionsi max564, j max564, andkmax5120 fora51, b51, and
N5106.

We shall initially consider the case of optical breakdow
of the contact. Figure 4 shows contours of the carrier c
centration and the charge density at timet50.6 for two val-
ues of the exposure:W50.1 and 10. The calculated param
eter is the product of the contour number and t
quantization step. Figure 4a shows the linear motion o
packet of free carriers: at low exposures the resulting sp
charge field does not distort the external field and the d
FIG. 4. Distribution profiles of ex-
cess carrier concentration (n) and
space charge density (f ) during opti-
cal breakdown of contact: a — linear
regime ~exposureW50.1, quantiza-
tion stephn51.1131022, hf54.79
31023); b — nonlinear regime~ex-
posureW510, quantization stepshn

51.11, hf50.114).
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FIG. 5. Distribution profiles of space
carrier concentration (n) and excess
charge density (f ) for blocking con-
tact in linear transport regime~quan-
tization steps hn59.7331023, hf

59.4731023).
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tance covered by the leading edge of the carriers incre
linearly with time. The nonuniform spatial distribution of th
ionized impurity centers leads to the formation of a ma
mum space charge density which propagates with the lea
section of the carrier packet. Excess carriers are continuo
injected from the contact broken down by the optical pu
and these completely compensate the charge of the ion
impurities. Thus, the space charge density has the same
over the entire volume of the crystal. After passage of
photoexcited carriers, a current of excess carriers injec
from the contact will flow through the crystal. The density
this current is modulated over the crystal surface by the fu
tion Y(y) according to the intensity distribution under illu
mination. Therefore the recorded information is stored
long as the external bias is switched on. Since the opt
breakdown of the contact is a reversible effect~provided that
electrical breakdown of the contact region has not occur
as a result of summation of the external field and the sp
charge field!, the devices returns to the initial state when t
external bias is switched off.

As the exposure is increased, the contact goes over
nonlinear transport regime as a result of confinement by
space charge. The resulting space charge of the excess
riers slows the motion of the packet and pushes it sidew
This transverse carrier drift leads to the formation of late
‘‘tongues’’ in the charge density distribution~Fig. 4b!. Un-
like the linear regime~Fig. 4a!, under higher exposure th
initial carrier concentration profile, defined by the spat
modulation of the radiation, becomes distorted by the sp
charge. At the same time, the sign of the space charge
sity remains constant over the entire volume of the crysta
in the linear regime.

We shall now consider the more interesting case fr
the practical point of view when the illuminated contact r
mains blocking after the propagation of the light pulse. R
sults of calculating the carrier concentration and sp
charge density for this case are plotted in Fig. 5 which gi
contours of the distributions formed at timet50.6 for the
exposureW50.1, which corresponds to a linear transp
regime. At x'0.6 we can clearly identify a front which
bounds the moving packet of excess carriers. This is
lowed by space charge of opposite sign generated by
ionized impurity centers. Since no carriers are injected fr
the contact, the charge of the ionized impurities remains
compensated and the space charge density changes its s
the bounding carrier front. After the packet of photoexcit
es
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carriers has left the bulk of the crystal under the action of
external field~at t.1), the sign of the space charge dens
remains constant. The space charge of the ionized impu
centers creates an electric field which forms a recorded
age in the crystal as a result of the electrooptic effect
should be noted that this field and thus the written inform
tion are conserved during the dielectric relaxation time a
after the external bias has been switched off.

An important parameter characterizing the possibility
using a photorefractive material for optical storage of info
mation is the diffraction efficiency during readout. For th
selected geometric system~Fig. 1a! the diffraction efficiency
is determined by the integral pulse response under transv
electrooptic modulation

F~y,t ![2E
0

1

dx
]

]x
w~x,y,t !.

For a given spatial modulation functionY(y) of the type
~19! the pulse responseF characterizes the information writ
ing efficiency when one line is input to a space–time mod
lator. Figure 6 shows the evolution of the pulse respo
calculated forW50.2, a50.5, b51, andN5400. The se-
lected combination of dimensionless parameters is typica
a PRIZ space–time light modulator using bismuth silica
Bi12SiO20 ~Ref. 13!. The writing wavelength is 0.51mm with

FIG. 6. Distribution of optical intensityI /I 0 along crystal surface and evo
lution of pulse responseF under transverse electrooptic modulation.
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the exposureW850.1mJ/cm2 which corresponds to an opt
cal pulse of duration 1ms with an intensityI 05100 mW/cm2

at the line center. For the given exposure a linear trans
regime is established and the distributions of the carrier c
centration and the space charge density are similar to th
shown in Fig. 5. The width of the exposed band is equa
the crystal thicknessb85L50.5 mm. ForU52 kV and m
50.03 cm2/V•s the transit time istT542ms. The concentra-
tion of impurity centers with a 100% photoionization qua
tum yield isN851016cm23, the permittivity of the crystal is
«556, and the absorption coefficienta8510 cm21. Figure 6
also shows the distribution of the optical intensity along
crystal surface defined by the spatial modulation funct
I (y)/I 05Y(y) as given by Eq.~19!. For negative values o
the coordinates the graphs are symmetric since the puls
sponse is described by the odd functionF(2y,t)
52F(y,t). The figure clearly shows a continuous rise
the pulse response with time as far ast51. For times ex-
ceeding the transit time (t.1) the coordinate dependence
the pulse response remains unchanged since after extra
of the photoinjected carriers the electric field is only crea
by the space charge of the ionized impurity centers. T
maximum integral of the transverse field intensity
achieved at the pointy'0.31 where the optical intensity i
31% of the value at the center of the line. At the edge of
exposed band where the intensity falls to zero~at y50.5) the
pulse response is 67% of its maximum which character
the ‘‘spreading’’ of the recorded image.

CONCLUSIONS

An analysis has been made of the pulsed recording
information in a photorefractive crystal. As the exposure
creases, the nonlinearity caused by the space charge lim
tion of the photoinjected carriers becomes significant. Ca
lations were made of the distribution profiles of the exc
carriers and the space charge density in the linear and
linear transport regimes. The dynamics of the space char
determined by contact phenomena at the interface betw
rt
n-
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e
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en

the illuminated electrode and the photorefractive crystal a
differs appreciably for a blocking contact and for optic
breakdown of the contact. The space–time distributions
the pulse response under transverse electrooptic modula
were calculated for the efficiency characteristic of the inf
mation recording process. The results are suitable for ana
ing the process of entering information into a space–ti
light modulator with an arbitrary absorption coefficient a
also for analyzing the pulsed recording of holographic gr
ings in the limit of low absorption coefficients.

To conclude, the author would like to thank all delega
at the M. P. Petrov Laboratory Seminar for fruitful discu
sions of the problem.
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Panoramic measurements of electron beam densities by Thomson scattering of laser
radiation
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The possibility of using a panoramic detector with a television signal-recording system in an
apparatus to observe Thomson scattering of laser radiation by a nonrelativistic electron beam is
discussed. Panoramas of Thomson and Rayleigh scattering and of the electron beam
luminescence are presented. Estimates are given of the sensitivity and spatial resolution of the
apparatus. Results of panoramic and single-point methods of investigation are compared.
Possibilities for extending the range of the Thomson scattering method to measure the density
distribution in nonrelativstic electron beams are discussed. ©1999 American Institute
of Physics.@S1063-7842~99!01406-3#
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INTRODUCTION

An experimental method of investigating the paramet
of electron and plasma fluxes based on the Thomson sca
ing of laser radiation has extensive possibilities, provid
local measurements and introducing no distortions into
flux. Panoramic studies of the structure of electron bea
and plasmas, where the spatial distribution of the signal
recorded simultaneously and not one point after another,
of considerable interest, with the number of points which c
be monitored in space depending on the number of obse
tion channels. However, investigations are difficult beca
of the small scattering signal and the need to isolate
against an appreciable noise background. Particular diffi
ties are encountered in studies of nonrelativistic elect
beams having densities of the order of 1010cm23 or lower.
Panoramic measurements have been made for plasmas
ing electron densities of 1013– 1016cm23 ~Ref. 1!. In the pro-
posed study we assess the possibility of panoramic inve
gations of the parameters of electron beams using Thom
scattering of ruby laser radiation in an experimental sys
described in detail in Ref. 2, but using a television sign
recording system.

NEW ELEMENTS AND THEIR PARAMETERS

The new system differs from that described in Ref. 2
that it incorporates facilities for panoramic detection of t
measured signals. The detection system includes an obje
for coupling out the scattered radiation, a brightness am
fier consisting of two series-connected image converters
LI-702 superkremnikon video camera, and a recording s
tem comprising a television receiver and an S8-9A osci
scope. The region inside the diagnostic chamber bounde
an aperture diaphragm was scanned on the television sc
and the brightness of a single line of the television frame w
analyzed using the oscilloscope. The line and its spec
region were selected by a synchronization system. As in R
2, a diaphragmD2 was installed in the objective to align th
system, and this was removed during the measurements
6781063-7842/99/44(6)/4/$15.00
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An

image of the diaphragmD2 was projected onto the fiber un
of the image converter and was then used as a refere
point to determine the center of the probing region, i.e.,
point of intersection of the axes of the laser and elect
beams for a suitably selected line of the television frame
its region.

The resolutionR of the detection system in the observ
tion space was determined by a second image converter,
ing into account the linear magnification of the image by t
objective M50.6 and the first image converterM150.63,
and also allowing for a decrease in the resolution by a fac
of A2 accompanying the passage through the pair of fib
optic disks of the two image converters. An experimen
check using a reference standard gaveR55 mm21 and
agreed with the theoretical estimate. The spatially resol
volumeV, which can be represented to a certain approxim
tion as a cylinder of length and cross section determined
the laser beam diameterd in the observation zone and by th
linear resolution of the detection system, wasV>4
31022 mm3.

The least sensitive element of the detection system is
superkremnikon. The working illumination of the photocat
ode for LI-702 tubes is>531023 lx ~Ref. 3! and each ele-
ment of the image on the photocathode, corresponding
single pixel of the 30mm diameter superkremnikon detect
should receive a radiation energyEs>10216J at 550 nm i.e.,
approximately 103 photons over the frame scanning perio
of 40 ms. Then, having equatedEs to the corresponding Th
omson scattering energy, we obtain an expression for
electron densityn1 for which the Thomson scattering sign
of the laser radiation creates the working illumination on t
superkremnikon photocathode

n15EsS~E0K1K2KsVV1!21,

wheres is the cross section for Thomson scattering,E0 is
the laser pulse energy,S is the cross-sectional area of th
laser beam in the probed region,K1,25102 are the brightness
gains of the first and second image converters,K50.3 is the
© 1999 American Institute of Physics
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total transmission coefficient of all the optical elements
the detection system at the Thomson scattering wavele
l5630 nm, V52.631022 sr is the solid angle of observa
tion, V1 is the volume from which the Thomson scatteri
enters a single pixel and which, by analogy with the resolv
volume V, can be represented to some approximation a
cylinder of length equal to the laser beam diameterd in the
observation zone and whose cross section is determine
the size of the superkremnikon pixelLc taking into account
the coefficients of magnification of the optical image of t
two image convertersM15M2 and the objective for cou
pling out the scattered radiation.

For the parameters given above and a laser energyE0

530 J the value ofn1 is approximately 109 cm23 and at the
entrance to the first image converter the energy scatt
from the spatially resolved volume corresponds to appro
mately a single photon. Since the quantum yield of the im
converter photocathode is several times less than un
(>0.2), a single photoelectron from the photocathode of
first image converter produces an illumination several tim
greater than the working illumination per frame scann
period in the appropriate region of the superkremnikon p
tocathode. Thus, the detection system is sufficiently sens
to record isolated photons.

Since the Thomson scattering signal is small and pro
bilistic, a series of measurements is required to obtain r
able data and the lower the electron density, the longer
series required. In a real experimental system, the pres
of optical noise necessitates a further increase in the num
of measurements. The optical noise is made up of lumin
cence from the gas in the lamp under the action of the e
tron beamNe , luminescence from the gun, luminescen
from the elements of the receiving channel under the in
ence of these, and the laser noiseNL ~Ref. 2!. This laser
noise was ten times lower than the luminescence and
times less than the Thomson scattering signal at the poin
maximum electron density, which was approximate
83109 cm23. The optical noise was investigated by analy
ing the panorama on the television screen and oscillosc
traces of the luminescence in the probing zone, which
clear and convenient for television recording.

EXPERIMENTAL RESULTS AND DISCUSSION

Panoramic measurements were made of the Thom
and Rayleigh scattering of laser radiation by a nonrelativi
electron beam and air, respectively, and results of meas
ments obtained using panoramic and single-point2 methods
of signal recording were compared. The luminescence di
bution over the beam cross section was recorded separ
to obtain the Thomson scattering panorama. Figure 1 sh
panoramas of the Thomson scattering signalsHT and the
electron beam luminescenceNe averaged over a series of 7
shots for a laser beam energy of 30 J, the lines of the tel
sion frame oriented at right angles to the electron beam
age, and a pressure of 2.631025 Pa in the diagnostic cham
ber. In contrast to Ref. 2, the luminescence and Thom
scattering curves, normalized to their maxima, differ. T
can be attributed to the energy distribution in the laser be
f
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cross section since the laser beam was not displaced rel
to the electron beam together with the observation point
in Ref. 2, and the laser beam diameter is approximately eq
to the electron beam diameter. Figure 2 shows the distr
tion of the Rayleigh signalHR over the laser beam cros
section measured for a single laser shot at a pressur
266 GPa in the chamber. This distribution reflects the ene
distribution of the probe radiation over the electron be
cross section when a Thomson scattering panorama is
corded. Thus, the distribution profile obtained for the Tho
son signal is narrower than the luminescence profile. If
distribution obtained for the Thomson signal is normalized
the Rayleigh scattering distribution, the curveHTR

5$HTG%/$HRG%, as can be seen from Fig. 3, agrees fai
well with the luminescence distribution, as in Ref. 2. He
$HTG% and$HRG% are the experimentally determined Thom
son $HT% and Rayleigh$HR% scattering distributions ap
proximated by a Gauss function. Note that in this syst

FIG. 1. Panoramas of beam luminescence signalsNe (n) and Thomson
scatteringHT (d). Solid curve — approximation ofHT using Gauss func-
tion (HTG).

FIG. 2. Distribution of Rayleigh signalHR over laser beam cross section
Circles — experimental data, solid curve — approximation ofHR using
Gauss function (HRG).
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where the diameters of the electron and laser beams are
proximately the same, as a result of a decrease in the l
beam energy, the Thomson scattering panorama at the b
edges was obtained by averaging over a large series of m
surements~around 70! although 35 laser shots were suf
cient for the central region.

Variation of the laser beam energy during the record
of a Thomson scattering panorama over the electron b
cross section can be eliminated by rotating the televis
frame line about the axis of the laser beam, which was ea
achieved by rotating one end of the bunch of optical fib
which transfer the image from the image converter to
superkremnikon. Since in this design of diagnostic cham
the electron beam, laser beam, and direction of observa
lie in the same plane, the television frame line was also
ented along the axis of the beam image. In this case,
beam luminescence should have a maximum and remai
most constant over the entire 8 mm region of observat
However, the oscilloscope trace of the luminescence sh
in Fig. 4 reveals a clearly defined peak which decays rap
toward the center of the probing region, i.e., toward the po
of intersection of the axes of the probe laser and the elec

FIG. 3. Distribution of normalized Thomson signalHTR over beam cross
section:s — experimentally determined beam luminescence dataNe .

FIG. 4. Oscilloscope trace of luminescence on beam axis with televi
frame lines oriented along the axis of the beam image; 0 — center of
probing region.
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beam. Observations on the television screen revealed
this peak can be attributed to cathode luminescence w
illuminated the knife of the first screening diaphragm in t
channel for coupling out the scattered radiation. As a res
in the probing region~around 3 mm! there was a slight in-
crease in the overall noise background~on the right of Fig.
5!. The luminescence distribution in Fig. 5~curve 1! was
obtained by averaging over 50 traces. Also shown is
panorama of the Thomson scattering signalHT ~curve 2!
which has a well-defined peak at the center of the prob
region which accounts for a third of the luminescence sig
at a pressure of 2.931025 Pa in the diagnostic chamber.

A comparison of the measurements obtained by the p
oramic and single-channel2 procedure showed that the rat
of the Thomson scattering signal to the luminescence
slightly greater for the single-channel procedure. This can
attributed to an increase in the exposure time of the lumin
cence signals on the superkremnikon detector. In the p
oramic procedure this time was equal to the frame scann
period, i.e., 40 ms, whereas for the single-channel techni
using a photomultiplier as the optical detector,2 the exposure
time was>10 ms. For the panoramic detector, the lumine
cence can be reduced substantially by real paths, for
stance, by inserting an optical switch at the image conve
input which switches on the power supply to one image c
verter during the laser pulse or switches it off in the abse
of a pulse, or by modifying the electronic power supply c
cuit of the superkremnikon so that the superkremnikon
tector was cleared directly before the laser shot near the
~frame! where the image of the part of the beam being st
ied is situated. By reducing the luminescence exposure t
from 40 to 1–2 ms, i.e., down to the laser pulse duration, i
possible to increase the ratio of the Thomson scattering
nal to the luminescence approximately 20 times and red
the series of measurements required to obtain reliable d

In our view, it is fairly difficult to use Thomson scatter
ing at lower densities of the order of 109– 108 cm23 and in
particular, this requires serious modifications to the appa

n

FIG. 5. Panoramas of luminescenceNe ~1! and Thomson scattering signal
HT ~2! when the frame lines are oriented along the axis of the beam im
0 — center of probing region.
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tus used by the authors. As the density decreases, it is d
able to compensate for the decrease in the useful si
reaching the first image converter by increasing the la
radiation energy and the solid angle of observation or
using a substantially longer series of measurements to
crease the signal to noise ratio. The length of the serie
measurements can be determined experimentally from
constraint that the mean square deviation should not exce
given value. For example, in studies4 of the scattering spec
trum of Nd laser radiation in a plasma having a density
1012– 1013cm23 using a twelve-channel detection syste
because of the low laser pulse energy and the small s
angle, the useful signal in the channel with the lowest in
energy corresponded to the signal in our apparatus at a
sity of the order of 108 cm23. A series of 900 laser shots wa
required to measure this signal in Ref. 4.

When the sensitivity of the apparatus is enhanced,
increase in the useful signalHT is accompanied by a propor
tional increase in the laser noiseNL , and under multipass
probing this increase is even greater. Thus, the ratio of
signal to the laser noise at best remains constant. In
present apparatus, the magnitude of the laser noise c
sponded to the Thomson signal at a density of 109 cm23. At
lower densities the ratioHT /NL becomes less than 1 and it
desirable to search for methods of reducing the laser no
The beam luminescence decreases in proportion to the
crease in the densityn and causes no deterioration in th
ratio of the signalHT to the total noise. Interference filters i
the detection system reduced the laser noise approxima
105 times at the wavelength of the scattered light detuned
60 nm from the probe laser wavelength with a 40% use
signal transmission. Caseyet al.5 reported that a polychro
mator consisting of three holographic gratings based on
sir-
al

er
y
n-
of
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f
,
lid
t
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n

e
he
re-

e.
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e

principle of a vario-illuminator, suppressed the noise by
factor of 1010 at the wavelength of a ruby probe laser but t
transmission coefficient of the polychromator was less th
25% in the range 650–690 nm. Using a similar polychrom
tor in the present apparatus could reduce the laser nois
several orders of magnitude, i.e., could substantially incre
the ratio of the signal to the laser noise and almost elimin
its influence.

Our estimates and the experimental single-point a
panoramic observations of Thomson scattering by a non
ativistic electron beam having a density of the order
83109 cm23 and also the success achieved in the devel
ment of high-power lasers, highly sensitive detectors, a
laser noise suppression systems5 suggest that the unique pos
sibilities offered by Thomson scattering will be of intere
not only for research purposes but also for measuring
parameters of real beams.
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Asymptotic form of the nonsteady motion of a charged-particle gas
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A solution is obtained for the problem of expansion of a gas of an inhomogeneous cloud of
rotating particles under the action of its space charge. It is shown that with time the process of
expansion of the cloud becomes self-similar. ©1999 American Institute of Physics.
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INTRODUCTION

The construction of analytic solutions of gasdynam
equations has attracted interest because these are one
methods of studying the properties of nonlinear systems1–5

Analytic solutions of the self-consistent equations of mot
for a charged-particle gas can generally be obtained un
certain assumptions which simplify the real formulation
the problem. Nevertheless, these solutions are of prac
interest and can be used for estimates and also for tes
numerical simulation programs. Self-similar solutions pla
special role for gasdynamic systems since under certain
ditions they serve as intermediate asymptotic forms.
nonself-similar processes, details of the initial stage are ‘‘f
gotten’’ and the process becomes self-similar.

In the present paper this behavior is demonstrated
solving the problem of expansion of a rotating cloud
charged particles under the influence of space charge.
types of rotation of particles in a spherical cloud are possi
for which the characteristic of the rotational motion depen
only on the radial coordinate and the time. In the first ty
the particles only undergo ordered motion in the meridio
direction VuÞ0, Vw50. For this model it is comparatively
easy to construct a self-similar solution of the gasdyna
equations corresponding to a homogeneous charged-pa
cloud. It is found that in this case, a self-consistent nons
similar solution can also be obtained for an inhomogene
cluster. For the second type which corresponds to disord
particle rotation, i.e.,Vu50, Vw50, but the corresponding
diagonal components of the pressure tensor are nonze
similar solution can be obtained using a kinetic descriptio

SOLUTION OF GASDYNAMIC EQUATIONS

In the absence of azimuthal motion, the Euler equat
for a cold spherical cloud of charged particles has the fo

S ]

]t
1Vr

]

]r DVr2
1

r
Vu

25
e

m
E, ~1!

S ]

]t
1Vr

]

]r DVu1
1

r
VrVu50. ~2!

Here we assume that the particle density and the radial
locity of the cloud depend only on the radial coordinate a
time. From Eq.~2! for the functionF5rVu we find
6821063-7842/99/44(6)/4/$15.00
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S ]

]t
1Vr

]

]r DF50. ~3!

The simplest solution of Eq.~3! has the formF5C,
where C is a constant. A nonsteady-state solution of th
equation is obtained for nonsteady motion for which the
locity is proportional to the distance from the center of sy
metryVr5rȧ/a, wherea is the radius of the sphere, and th
dot denotes differentiation with respect to time. In this ca
Eq. ~3! gives F5Vr 2a0

2/a2, whereV is a certain constant
For this type of motion the particle density is typically un
formly distributed over the bulk of the cloud so that for th
collective field we haveE54penr/3. Finally, we find from
Eq. ~1! that the cloud radius satisfies the following equatio

ä5
a0

3

a2 S v0
21V2

a0

a D ,

wherev0
25Ne2/ma0

3, andN is the total number of particles
in the cloud.

The solution of this equation may be expressed in
parametric form6

a5
a0

11«
~« coshc11!,

v0t5
1

~11«!3/2
~« sinhc1c!, ~4!

where for an initially stationary gas we have«511V2/v0
2.

Note that this solution of the self-consistent problem
the form of a spherical cloud with an abrupt boundary b
longs to a class of self-similar solutions, as can easily
established by introducing the self-similar variablej5r /a,

n~r ,t !5n0G
a0

3

a3
, Vr~r ,t !5jȧG,

Vu~r ,t !5jVG
a0

2

a
, G5H~12j2!.

Here H(x) is the Heaviside step function. A more gener
solution of Eq.~3! can be constructed for an inhomogeneo
© 1999 American Institute of Physics
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particle cloud. For this we need to bear in mind that t
expression for the radial gas velocity can be given in
form:

Vr~r ,t !5L~ t,r~r ,t !!. ~5!

Here the functionL has the form

L~ t,r 0!5
]s~ t,r 0!

]t
,

where s5s(t,r 0) is the coordinate of the radial gas lay
considered as a function of time and the value of this co
dinate at zero time; the functionr(r ,t) is a solution of the
transcendental equations(t,r)5r , i.e., s(t,r(r ,t))[r .

In terms of Lagrange variables the radial velocity of th
element is given by

v r ~ t,r 0!5L~ t,r 0!. ~6!

Therefore, this structure of the expression for the rad
gas velocity is a consequence of changing from a Lagran
to a Eulerian description of the motion. Then, it is easy
verify that F(r ,t)5W(r(r ,t)), where W(r ) is a certain
function, is a solution of Eq.~3!. Thus, in Euler variables the
transverse velocity component is given by

Vu ~r ,t !5
W~r~r ,t !!

r
.

In Lagrange variables this velocity has the form

vu ~ t,r 0!5
W~r 0!

s~ t,r 0!
.

These results indicate that the functionW(r ) is deter-
mined by the initial transverse velocity distribution of th
cloud

W~r !5rVu0~r !, Vu0~r ![Vu~r ,0!.

Provided that the layers of particles move radially o
behind the other without overtaking, the collective field a
ing on a particular layer of gas is determined by its init
position r 0 and by the defined initial particle density distr
bution n(r ,0)5n0n(r )

E54pn0

e

s2
q~r 0!, q~r 0!5E

0

r 0
n~x!x2dx.

The condition for conservation of the layer mass dur
motion of the gas has the form 4pn(t,r 0)s2ds
54pn0n(r 0)r 0

2dr0. The particle density is then given by

n~ t,r 0!5n0n~r 0!
r 0

2

s2R
, R~ t,r 0!5

]s~ t,r 0!

]r 0
. ~7!

It follows from Eq.~1! that the radial velocity of the ga
layer changes under the action of the collective field and a
under the influence of the centrifugal force

s̈5v2
q~n0!

s2
1

W2~r 0!

s3
, ~8!

wherev254pn0e2/m.
e
e

r-

l
n

-
l

o

The initial conditions for Eq.~8! have the forms(0,r 0)
5r 0 , ṡ(0,r 0)5u(r 0), whereu(r ) is the given initial distri-
bution of the radial velocity.

SOLUTION OF THE VLASOV EQUATION

A solution for a spherically symmetric cloud with diso
dered particle rotation can be obtained using a kinetic
scription. We shall analyze the following distribution fun
tion which describes the initial state of this cloud with
nonuniform particle densityn(r ,0)5n0n(r ) and the initial
radial velocity distribution functionVr(r ,0)5u(r ),

f 0~X,I !5
n0

p
r 2n~r !d~pr2mu~r !!d~ I 2m2W2~r !!.

Here, for concisenessX denotes the set of variablesr, pr ;
I 5Pu

21Pw
2/sin2u; Pu5rpu , and Pw5rsinupw are the com-

ponents of the generalized momentum. For this distribut
function the transverse components of the gasdynamic ve
ity are zero

Vu5
1

mnE pu f 0d3p50, Vw5
1

mnE pw f 0d3p50.

For the pressure tensor only the diagonal transve
components are nonzero

Puu5
1

mE pu
2f 0d3p5

mn0

2mr2
n~r !W2~r !,

Pww5
1

mE pw
2 f 0d3p5

mn0

2mr2
n~r !W2~r !.

Therefore, the functionW(r ) characterizes the initial de
pendence of the degree of disordered particle rotation on
radial coordinate. Since for a central fieldI remains constant
in the Vlasov equation written in spherical coordinates
need to change from the variableu to the new variableI. As
a result, we obtain the following equation for the distributio
function f (X,I ,t):

L f [S ]

]t
1

pr

m

]

]r
2

]U

]r

]

]pr
D f 50, ~9!

whereU5eF1I /2mr2 andF is the potential of the collec-
tive field.

For the initial distribution function~8! a solution of Eq.
~9! can be constructed using a singular solution meth
which plays the role of the Green function of the operatoL
~Refs. 6 and 7!

H~ t ! f ~X,I ,t !5E G~X,X0 ;t ! f 0~X0 ,I !dX0 ,

LG~X,X0 ;t !5d~ t !d~X2X0!,

G~X,X0 ;t !5H~ t !d~r 2r ~ t;X0!!d~pr2pr~ t;X0!!.

Herer (t;X0),pr(t;X0) is the law of radial motion of a single
particle in a field having the potential energyU satisfying the
conditionsr (0;X0)5r 0, andpr(0;X0)5pr0. This possibility
arises because in this case, the nonsteady self-consi



tio
iv

le

n
y.
u

s
on
ve

in-
f

iti

r-

on

s-

n

le
f

the
he

to

y
n

684 Tech. Phys. 44 (6), June 1999 N. D. Naumov
problem reduces to calculating the one-dimensional mo
of a cold charged-particle gas in a combination of collect
and centrifugal fields.

Finally the distribution function of the charged-partic
cloud is given by

f ~X,I ,t !5
n0

p
n~r~r ,t !!

r2~r ,t !

Q~r ,t !
d~pr

2mL~ t,r~r ,t !!!d~ I 2m2W2~r~r ,t !!!,

where the notationQ(r ,t)5R(t,r(r ,t)) is introduced in ad-
dition to the quantities used previously.

This distribution function yields the same expressio
~7! and ~5! for the particle density and the radial velocit
The following relations can be used to calculate the press
tensor

Puu~s,t !5Pww~s,t !5
mn0

2s2
n~r 0!W2~r 0!. ~10!

By systematically varyingr 0 in small steps, expression
~6!, ~7!, and ~10! can be used to determine the distributi
of the gasdynamic characteristics of the cloud at any gi
time t.

DYNAMICS OF THE CLOUD

As for a homogeneous cloud, the solution of Eq.~8! is
written in the parametric form

s5
r 0

11«
~« coshc11!,

vt5A r 0
3

q~11«!3
~« sinhc1c!. ~11!

For simplicity the expansion of the cloud under the
fluence of its space charge is subsequently analyzed
u(r )50; in this case, we have«511W2(r 0)/v2r 0q(r 0).
From the expressions~11! we obtain for the functionR

R5
1

11« F11« coshc1r 0« sinhc
]c

]r 0

1
r 0

11«
~coshc21!

]«

]r 0
G ,

]c

]r 0
52

1

2s~11«! F ~« sinhc1c!

3S 32r 0
3 n

q
2

3r 0

11«

]«

]r 0
D12r 0 sinhc

]«

]r 0
G .

Quite clearly, a simpler expression for the functionR is
obtained when the eccentricity does not depend on the in
position of the layer«511l, i.e., if W2(r )5lv2rq(r ),
wherel is a certain constant. For this choice of initial pa
ticle rotation we have
n
e

s

re

n

or

al

R5
1

11« F11« coshc2
«

2
sinhcS 32r 0

3 n

qD « sinhc1c

« coshc11G .
~12!

Let us assume that the initial particle density distributi
is defined as a cloud with a diffuse boundary

n~r !5expS r 3

a0
3D . ~13!

The results of calculating the initial particle density di
tribution in the cloud using expressions~7!, ~11! and~12! for
vt54 in the case«51.25 are shown by the solid curve i
Fig. 1. The dashed curve gives the self-similar solution~4!
for this time and the same value of«.

The formation of a particle density peak in this examp
illustrates the resulting limitation of the range of validity o
the results, which may arise if the initial assumption that
particle layers move without overtaking is violated as t
cloud expands. This is expressed as the conditionR(tk ,r 0)
50 being satisfied at timetk for various initial positions of
the layers as a result of which the particle density tends
infinity ~so-called gradient catastrophes!.8,9

A comparatively simple expression for the functionR is
also obtained when

r 0

11«

]«

]r 0
512r 0

3 n

3q
.

This condition is satisfied if

W2~r 0!5r 0v2q~r 0!~«21!, «5m
r 0

q1/3
21, ~14!

wherem is a certain constant.
In this case, we have

R5
nr 0

3

3q~11«!
~11« coshc!1S 12

nr 0
3

3q D « coshc1«

« coshc11
.

~15!

It can be seen from expression~15! that if the condition
3q(r )>n(r )r 3 is satisfied, the cloud expands without an
overtaking. In particular, this inequality is satisfied for a

FIG. 1.
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initial diffuse distribution~13!. Thus, in this case the abov
constraint is not imposed on the time interval during wh
the analytic expressions can be used.

For large values of the parameter sinhc . coshc, Eqs.
~4!, ~11!, ~14!, and~15! therefore give for the quantities use
here

a.a0vtAm321/3, s.vtAmq1/3, R.
n

3q
sr0

2 .

From this it follows that

n0

nr 0
2

s2R
.

3n0

~vtAm!3
.n0

a0
3

a3
,

i.e., with time the details of the initial particle density distr
bution become insignificant and the cloud expansion proc
becomes self-similar. Similar behavior of the particle dens
ss
y

should be predicted after overtaking in the example con
ered above.
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Steady-state longitudinal conductivity of an electron boundary layer
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An analytic solution is obtained for the problem of electron motion in an electron boundary layer
along the surface of a conductor in a static electric field. Calculations are made of the
longitudinal conductivity near the surface in the limit of weak and strong Coulomb nonideality
of the layer electrons. It is shown that under certain conditions the boundary conductivity
may greatly exceed the conductivity in the bulk of the conductor. ©1999 American Institute of
Physics.@S1063-7842~99!01606-2#
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INTRODUCTION

In Refs. 1 and 2 the present authors investigated
properties of an electron boundary layer which exists n
the free surfaces of conductors and semiconductors. I
et al.3 also examined the influence of an electron bound
layer on the propagation of rf electromagnetic radiation a
the ionization processes of a dense gas near the surface.
showed that the main factor determining the electrophys
properties of the electron boundary layer is the Coulo
nonideality parameter of the electronsg5e2/4p«0^r &«kin ,
where^r & is the average interelectron distance and«kin is the
average kinetic energy of the electrons (;kT for nondegen-
erate and;«F for degenerate electrons, respectively!.

For small g (g!1) the boundary-layer electrons a
similar to an ideal collisionless gas1 and the collective pro-
cesses in the electron boundary layer are described by a
lisionless transport equation. In the opposite case, if the e
trons form a strongly nonideal system (g>1), they are
similar to a fluid and equations from the mechanics of c
tinuous media must be used to describe the collec
processes.1,2

The temperature and concentration of conduction e
trons in a conductor or semiconductor~we shall subsequently
use the term ‘‘conducting condensed material’’—CCM! can
vary fairly widely if this CCM undergoes nonequilibrium
heating by pulses of several picoseconds duration or sho
Then, the lattice temperature remains almost unchanged
the electron temperature may reach several electronvo4

The electron concentration may vary as a function of
band gap~for semiconductors! between arbitrarily low val-
ues and concentrations corresponding to those of a m
Thus, when a CCM is exposed to pulsed heating, it is p
sible to have various combinations of the electron nonide
ity parameterg, the Fermi energy«F , and the temperatureT
for which CCM and boundary-layer electrons form eithe
nonideal~degenerate or nondegenerate! or ideal ~nondegen-
erate! Coulomb system.5

Note that under certain conditions the longitudinal co
ductivity near the CCM surface should substantially exce
that in the bulk of the material. This conclusion can
reached a priori, without making accurate calculations,
6861063-7842/99/44(6)/6/$15.00
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the basis of simple qualitative reasoning. Regardless
whether the electron component is an ideal gas or an elec
liquid, the main ‘‘delaying factor’’ for the mass motion o
electrons in a CCM are collisions with the crystal lattic
Motion of electrons outside the CCM~along the surface! is
either limited by viscous friction forces (g>1, electron liq-
uid! which are much greater than the collisional frictio
forces in a CCM, or it is not limited at all (g!1, ideal
electron gas!. Thus, if the effective time for free~without
collisions with the lattice! electron motion above the CCM
surface is much greater than the time for free electron drif
the CCM, the electron current at the boundary induced by
application of a longitudinal electric field, should greatly e
ceed the current in the bulk of the CCM. Consequently,
aim of the proposed study is to analyze the steady-state
ductivity near the surface of a CCM for ideal and nonide
electron components.

CONDUCTIVITY IN THE CASE g!1

We shall consider the following problem: a CCM occ
pies the half-spacez,0, the electron component of the CCM
has the temperatureT, and forms an ideal Coulomb system
A static electric fieldE is directed along the surface of th
CCM ~along thex axis!. We need to determine the perturb
tion of the electron distribution function induced by the fie
E near the surface and the conductivity of the CCM as
function of z.

The distributions of the electron concentrationn and the
electric potentialF of the electron boundary layer in th
regionz.0 have the form6,7

F~j!52
kT

e
@112 ln~11j!#,

n~j!5
nm

e
~11j!22, ~1!

wherej5z/L, L52Ae D, D5A«0kT/2e2nm is the Debye
length corresponding to the electron concentration in
CCM nm , ande is the base of natural logarithms.

In the regionz,0, the concentration and potential va
considerably more rapidly with increasing distance from
© 1999 American Institute of Physics
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boundaryF}2exp@2z/D#, n}exp@eF/kT#, and at the dis-
tance.(1.522)D the electron concentration differs neg
gibly from nm . Consequently, in the following calculation
we can assumeF.0 andn.nm for z,0, and at the point
z50 the concentration and potential undergo a jump

F~j501!52
kT

e
, n~j501!5

nm

e
. ~2!

Therefore the electron-filled regionz.0 will subse-
quently be called the electron boundary layer.

It is impossible to obtain an exact solution of the tran
port equation in the regionz,0 which takes into accoun
electron scattering by collisions with the lattice and impu
ties because of the complex form of the collision integr
Thus, we shall use a simpler linear representation of the
lision integral, that is the isotropict-approximation.8 This
approximation sufficiently accurately describes the co
sional kinetics of the electrons in a conductor if these
scattered by impurities and interelectron collisions can
neglected. In this case, the steady-state transport equatio
the form

vz

] f

]z
2

e

m
E~z!

] f

]vx
1

e

m

dF

dz

] f

]vz
52neff~ f 2 f (0)!, ~3!

whereneff is the effective scattering frequency.
Having written the required distribution function in th

conventional format

f 5 f (0)1 f (1), u f (1)u!u f (0)u

and giving f (1) in the form

f 5H f 1 , vz.0,

f 2 , vz,0,

we obtain the solution of Eq.~3! ~Ref. 9!

f (6)
(1) ~z,v!5exp@7L~«,z!#F A6~«!

6
e

m

] f (0)

]vx
E

z

z E~z8!exp@6L~«,z8!#

A2

m
@«1eF~z8!#

dz8G , ~4!

where

L~«,z!5E
z

z neff

A2

m
@«1eF~z8!#

dz8,

«5
1

2
mvz

22eF~z!.

Here A6(«) are the integration functions determined fro
the boundary conditions of the problem and integration o
z8 is performed along the electron trajectory.

Steady-state collisionless motion of boundary-layer el
trons in the regionz.0 is described by Eq.~3! without the
-

-
l.
l-

-
e
e
has

r

-

right-hand side and in consequence, the solution of the tra
port equation forz.0 is given by formula ~4! setting
neff50. However, it should be noted that an exact solution
the transport equation10 can be obtained in the regionz.0

f 6~z,v!5 f 0S vx1
e

m E
0

t

Ẽ~t8,vz!dt8,vy ,

6Avz
22

2e

m
F D ,

t5E
z

z dz8

Avz
21

2e

m
@F~z8!2F~z!#

5C~vz ,z!,

Ẽ~t,vz!5E~C21~t,vz!!, ~5!

where f 0 is the equilibrium distribution function in the ab
sence of the fieldsE andF.

We denote bym and l the functions assigned to the re
gions z,0 and z.0, respectively. The unperturbed fun
tions f m

(0) and f l
(0) are Maxwellian distribution functions

f (0)5n~z!S m

2pkTD 3/2

expS 2
mv2

2kTD .

The thickness of the electron boundary layer is fai
small so that we can naturally assume thatE does not depend
on z. This means that the functionf m1

(1) , corresponding to a
uniform flux from the depth of the CCM also does not d
pend on z. Consequently, using Eq.~4! we find that
Am150 f m1

(1) has the form

f m1
(1) 5

eE

mneff

] f (0)

]vx
.

We write the boundary conditions determining the in
gration functionsAm2(«) and Al 6(«). Using the condition
of continuity of the functionsf 6

(1) for given «, we obtain

z50: f l 6
(1)5 f m6

(1) ,

z5z* : f l 1
(1)5 f l 2

(1) , ~6!

wherez* is the classical turning point determined from th
condition

eF~z* !52«. ~7!

Using expressions~2!, ~4!, and~6! we derive an expres
sion for Am2

Am252Q~ uvzu2A2 ve!
eE

m

] f (0)

]vx
t0* ~ uvzu!, ~8!

where

t0* ~vz!5E
0

z* dz8

Avz
21

2e

m
F~z8!

~9!

is the time for electron motion in the fieldF from the surface
z501 to the turning pointz5z* , Q(x) is the Heaviside step
function, andve5AkT/m is the electron thermal velocity.
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Substituting the expressions obtained forA6 into Eq.~4!
we determine the final form of the distribution function
the CCM

f m1
(1) 5

eE

mneff

] f ~0!

]vx,

f m2
(1) 5

eE

mneff

] f (0)

]vx

3F112neffQ~ uvzu2A2ve!t0* ~ uvzu!expS neff

uvzu
zD G .

~10!

The physical meaning of the expression obtained
f m2

(1) is quite obvious. Only those electrons whose velocity
the z direction exceeds the threshold valueA22eF(01)/m
5A2ve leave the CCM. An electron leaving the CCM m
grates in the fieldF to the right as far as the turning poin
z* , reaching it within the timet0* (vz). Hence, by the time
the electron returns to the CCM, it has acquired the ad
tional momentum 2eEt0* (vz) in the direction of thez axis.

We now use formula~10! to calculate the conductivity
of the CCM sm as a function of the depthz,0 measured
from the surface. Using the relation between the currentj and
the conductivitys

j x~z!5sm~z! E52eE vxf m
(1)dv,

and also representing the functionf m
(1) as the combination

f m6
(1) , we obtain

sm~z!5sm
0 F12

neff

nm
E

vz.A2ve

vxt0* ~vz!
] f (0)

]vx
expS neff

vz
zDdvG

~11!

Here sm
0 is the conductivity in the bulk of the CCM. Inte

grating Eq.~11! over the velocitiesvx andvy and transform-
ing the integral~9! using Eq.~1!, we obtain the final expres
sion for the conductivity

sm~z!

sm
0

511
1

Ae

neff

vp

3E
0

`

erfw expS 2w21
neffz

2veAw211/2
D

3
w

Aw211/2
dw, ~12!

where erfw is the error function

erfw5
2

Ap
E

0

w

e2zdz,

vp5Ae2nm /m«0 is the plasma frequency of the CCM ele
trons.

It follows from formula ~12! that the boundary conduc
tivity is directly proportional to the effective electron scatte
ing frequency in the CCM and inversely proportional to t
plasma frequency corresponding to the concentration of c
r

i-

n-

duction electrons. Thus, the increase in the boundary c
ductivity should be greater, the lower the electron mobility
the CCM and the lower their concentration. The frequen
neff determined by scattering at impurities may rea
neff;1016s21. If the CCM is a semiconductor with the ban
gap DE.3–4 eV, whose electron component undergo
pulsed heating to the temperatureT.0.3–1 eV, the concen
trationnm may vary in the rangenm;331025–331026m23,
which corresponds to the plasma frequencyvp;(1014–
1015) s21. Figure 1 gives the dimensionless conductiv
sm(z)/sm

0 plotted as a function of the dimensionless coor
nate neffz/ve , obtained using formula~12!. The parameter
neff /vp is taken to be 100. The boundary value of the dime
sionless conductivitysm(0)/sm

0 is

sm~0!

sm
0

511
1

2Ape

neff

vp
E

0

` e2rdr

Ar 211~r 211/2!

.110.18
neff

vp
.

CONDUCTIVITY IN THE CASE g>1

We shall now consider a variant where the electron co
ponent in the CCM forms a nonideal system i.e., is similar
a liquid. In the CCM~regardless of the degree of nonidea
ity!, the conductivity is determined by electron collision
with the lattice because the forces produced by these c
sions are always much greater than the viscous frict
forces.11 Under these conditions nof 1 and f 2 discontinui-
ties occur in the electron liquid because of strong interp
ticle interaction at the boundaryz50. Consequently for
g>1 the conductivity of the CCM in the regionz<0 differs
negligibly from sm

0 .
Unlike an electron gas, in the electron liquid of an ele

tron boundary layer filling the regionz.0 there is a mecha
nism for internal dissipation of energy caused by the visc
friction forces: the forcefvisc.(mn)21h¹2u acts on an elec-
tron, causing the energy acquired in the fieldE to be dissi-
pated. Consequently, the viscous friction forces determ
the unique characteristic of a boundary layer of nonid
electrons: the conductivity therein is determined by the el
tron viscosity.1 For this reason, the formulation of the prob
lem in this particular case of a nonideal electron compon
will differ from the formulation in the limitg!1 in that the

FIG. 1. Steady-state electrical conductivity of conducting condensed m
rial as a function of distance from its surface.
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conductivity will be determined in that part of the electro
boundary layer near the surface where the electrons for
nonideal Coulomb system.

No analytic expressions are available to describe the
tribution of the concentration of nonideal nondegener
electrons. The distribution of nonideal degenerate electr
obtained by the density functional method12 in the limit
T50 has the form of a power dependencen}(z/LTF)26

near the surface and an exponential asymptotic curve
largez (LTF is the Thomas–Fermi radius!. However, at fairly
high temperatures the electrons rapidly become nondege
ate as the density decreases with increasingz. Thus, for the
calculations we shall use the approximate pow
dependence1

n~z!.n0~nm!S 11
z

Lh
D 2h

, ~13!

whereLh andh are the effective spatial scale and the exp
nent which depend onnm and vary in the rangesLTF<Lh

<L, and 6>h>2.
Far from the surface of the CCM the dependence~13!

yields the distribution of an ideal electron gas~with the ex-
ponenth52).

We shall use the equation for the moments of the dis
bution function13 to describe the electron motion in the ele
tron boundary layer. The equation for the first mome
~equation of continuity! is satisfied identically since the mo
tion takes place along thex axis. The steady-state equatio
for the second moment has the form

en~z!E1
dpxz

dz
50, ~14!

wherepxz is thexz component of the stress tensor expres
in terms of the distribution function

pxz5mE ~vx2ux! vzf ~v!dv, ~15!

ux is mass velocity of the electrons along the surface.
In the region of the electron boundary layer filled wi

the electron liquidpxz has the form

pxz52h
dux

dz
, ~16!

whereh is the coefficient of viscosity of the electron liquid
The dependence ofh on n was obtained using a molecu

lar dynamics method1,14

h~n!5hgF11bS n

nb
D aG , ~17!

wherehg is the viscosity of the electron gas, which does n
depend onn, nb is the concentration determined from th
condition g(nb).1, and a and b are fitting parameters
which vary between zero and unity.

Thus, if the CCM electrons form a strongly nonide
Coulomb system, the electron boundary layer near the
face is a layer of electron liquid with the concentration d
tribution ~13!. The motion of the liquid in the fieldE is
described by Eq.~14! together with Eq.~16!. On reaching an
a

s-
e
ns

or

er-

r

-

i-

t

d

t

l
r-

-

arbitrary boundaryzb ~the point wheren.nb), the liquid is
converted to an ideal electron gas filling the regionz>zb and
distributed according to the law

n~z!.nbS 11
z2zb

Lb
D 22

, ~18!

whereLb52D(nb).
The electron motion forz>zb is described using Eq

~14! with the tensor component~15!.
The coordinatezb is selected so that for any 0,z<zb

the hydrodynamic approximation describes the behavior
the electron liquid sufficiently accurately. We shall integra
Eq. ~14! overz betweenz5zb andz5`. Taking into account
Eqs.~16! and ~18!, we obtain

eELbnb1pxz~`!1h~zb!
dux

dz U
zb

50. ~19!

We show thatpxz(`)50 for which we calculatepxz(z)
for z.zb . The electron gas in this region is ideal and col
sionless so that we can use the solution of the collision
transport equation~15!. In accordance with Eq.~5! the elec-
tron distribution functionf at pointz has the form

f ~z,v!5H f (0)~z,vx2ux1dux ,vy ,vz!, vz.0,

f (0)~z,vx2ux2dux ,vy ,vz!, vz,0,
~20!

where f (0) is a Maxwellian distribution function, andux and
dux are given by

ux5ux~zb!1
eE

m
E

zb

z* dz8

Avz
21

2e

m
@F~z8!2F~z!#

,

dux5
eE

m
E

z

z* dz8

Avz
21

2e

m
@F~z8!2F~z!#

, ~21!

whereux(zb) is the mass velocity at the boundaryzb .
The turning pointz* is determined from the condition

eF~z* !5eF~z!2
1

2
mvz

2 .

Substituting Eqs.~20! and ~21! into Eq. ~15!, we obtain
the required expression forpxz after various transformation

pxz~z!54A2n~z!ve

eE

vp~z!
E

0

`

w erfwe2vdw

5eELbAnbn~z!, ~22!

wheren(z) corresponds to Eq.~18!.
Thus, we findpxz(z)→0 for z→` and Eq.~19! has the

form

h~zb!
dux

dz U
zb

52eELbnb . ~23!
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Expression~23! must be taken to be a boundary cond
tion imposed at the pointzb on the flow of electron liquid.
The second quite obvious condition

@ux#uz5050 ~24!

is set at the boundary of the CCM and requires continuity
the longitudinal velocityux . The equation describing th
flow in the region 0<z<zb , after substituting Eqs.~13!,
~16!, and~17! into Eq. ~14! has the form

d

dj F ~11bña~11j!2ah!
du

dj G5
en0Lh

2E

hg
~11j!2h, ~25!

where j5z/Lh , jb5zb /Lh , ñ5n0 /nb5g3(nm) ~the sym-
bol x is omitted here and subsequently!.

Integrating Eq.~25! allowing for the boundary condi
tions ~23! and ~24! and using the relationsE52enu, we
obtain the following expression for the conductivity of th
electron boundary layer:

s~j!

sm
0

5
n0

nm
~11j!2hF11

e2n0
2Lh

2

hgsm
0 ~h21!

3E
0

j~11j8!12h2ñ21~Lb /Lh!

11bña~11j8!2ah
dj8G . ~26!

The integral in Eq.~26! may be expressed in terms o
incomplete beta functions but it is somewhat inconvenien
use the expression obtained for the following analysis so
we shall use the following reasoning. For largeg(nm) the
parameterñ is large and thus the one in the denominator
the integral~26! can be neglected as far as the limitjb , at
which ña(11j)2ah.1. For the same reasons we can n
glect the second term in the numerator of the integrand. A
result of integrating, we obtain the final expression for t
dimensionless conductivity

s~j!

sm
0

5
n0

nm
~11j!2hF11

b21ñ2aQ

~h21!~22~12a!h!

3@~11j!22(12a)h21#G . ~27!

where the following notation is introduced

Q5
e2n0

2Lh
2

hgsm
0

.

When solving Eq.~25!, we assumed that the temperatu
of the electron liquid does not vary along thej coordinate.
Such an assumption is quite justified if the electron therm
velocity in the electron boundary layer far exceeds their m
velocity. In fact, if we use the solution obtained~27!, it fol-
lows from the steady-state heat conduction equation

k
d2T

dz2
1sE250
f

o
at

f

-
a

e

l
ss

~wherek;ve^r & is the thermal diffusivity! that the charac-
teristic scale of temperature variation isl T;(ve /uuu)^r &
@Lh , i.e., in the weak perturbation approximation the te
perature can be considered to be uniform.

We shall examine how the solution~27! varies as a func-
tion of the parameters of the problem. IfQ.bñah(h21)
andh,2/(22a), the conductivity of the electron boundar
layer increases monotonically with increasing distance fr
the CCM boundary; if the opposite inequalities are satisfi
the conductivity decreases monotonically. IfQ.bñah(h
21) and h.2/(22a), the conductivity initially increases
and then, after reaching a maximum, begins to decreas
the opposite inequalities are satisfied, the conductivity
tially decreases and then begins to increase. An extre
value of the conductivity is achieved at the point

jex5FQ2bña~h21!@22~12a!h#

Q@~22a!h22#
hG

1
22(12a)h

21.

Figure 2 gives the results of calculations made us
formula ~27! which illustrate this behavior of the curv
s5s(j) ~the parameter isa50.5, n0 /nm51/e). Since a
varies as a function ofg(nm) between zero and one, an
h>2, in practice only those cases corresponding to cur
2 and4 can be achieved.

CONCLUSIONS

We therefore draw the following conclusions on the b
sis of these results. When an ideal (g!1) electron compo-
nent in a semiconductor is heated under nonequilibrium
temperaturesT>0.3 eV for times t<10211s, the electron
conductivity of a CCM boundary layer of thickness of th
order ofve /neff may far exceed the conductivity in the bu
of the heated sample. This effect can be achieved ifneff is
determined by scattering at impurities and its value is of
orderneff;1015–1016s21.

If the CCM electrons form a highly nonideal Coulom
system, the conductivity of the electron boundary layer n
the CCM boundary may far exceed the conductivitysm

0 . As
in the case of an ideal electron component, this situation m
be achieved if the electron mobility in the CCM is fairly low
(Q}neff).

FIG. 2. Steady-state electrical conductivity of electron boundary layer a

function of distance from conductor surfaceb1ñ2aQ: 1, 2— 100,3 — 0.1,
and4 — 1; h51.2 ~1!, 2 ~2, 4!, and 1.2~3!.
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This effect can be used to achieve efficient heating
CCM boundary layers several angstrom thick by applyin
static electric field along its surface. Asneff increases, this
effect should become stronger not only as a result an incr
in the boundary conductivity but also because the ther
conductivity of the CCM is proportional toneff

21 and in this
case the transfer of heat to the bulk of the CCM will
slowed.
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Methods of calculating the band structure and low-energy secondary electron
spectroscopy of iridium

O. F. Panchenko
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A theoretical interpretation is put forward for the fine structure of the secondary electron
emission spectra of Ir normal to the~111! surface and the total current spectrum of an Ir
polycrystal. The calculations took into account the energy dependence of the broadening
of the energy band levels, the electron–electron and electron–plasmon contributions to the
nonequilibrium electron distribution function, and the isotropic component of the current
from the electrons scattered at the surface. It is shown that the fine structure of the secondary
electron emission spectrum and the total current spectrum is mainly attributable to the
electron structure of the final states into which the electrons enter or from which they are emitted
so that the characteristics of the band configuration in the energy band structure can be
reconstructed directly from the experimental data. This method can be used to separate bulk
effects from surface effects in the secondary electron emission and total current spectra. It is
confirmed that the fine structure of the secondary electron emission and total current
spectra depends on the geometric structure and the degree of ordering of the crystals. A reduction
in the intensity of the fine structure serves as a measure of the defect structure in the
surface region of the sample which can be successfully used to monitor the surface state during
treatment. ©1999 American Institute of Physics.@S1063-7842~99!01706-7#
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Low-energy secondary emission spectroscopy based
studying the effects accompanying the interaction betwee
flux of slow primary electronsI p ~of energyEp<1 keV! and
a crystal surface includes two methods:1,2 a differential and
an integral method. The first method gives the energy dis
bution curve of the secondary electrons outside the crysta
the secondary electron emission~SEE! spectrum, while the
second method gives the curve of the integral~or total! sec-
ondary electron current in the sample or the total curr
spectrum. As well as conventional applications in analyz
elementary excitations and the surface states of solids,
methods are now being used to monitor surface purity an
the technology used to fabricate electrode materials.

The fundamental fine-structure characteristics of
SEE and total current spectrum are mainly attributable to
bulk band structure of the crystal.3,4 The emission of second
ary electrons has been investigated experimentally by m
authors, in most cases using polycrystals. Single-crystal
gets have been used in comparatively few studies. A
structure against the background of a cascade maximum
the SEE spectrum was observed for example in the sec
ary electron energy distribution for Ir~Ref. 5!, Ag ~Ref. 6!,
Si ~Ref. 7!, Pt ~Ref. 8!, W ~Refs. 3 and 9!, and Cu~Ref. 10!
single crystals. Theoretical analysis of the SEE spe
proved extremely difficult because of the need to allow fo
wide range of processes accompanying the interaction
tween the primary electron flux and the crystal. The theo
of secondary electron emission from metals~see, for in-
stance, Refs. 11–14!, mostly based on the Sommerfe
model, mainly differ in respect of the method of approxim
6921063-7842/99/44(6)/3/$15.00
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ing the cascade processes for different surface models. M
over, formulas having the form:J(E);¸(E) (E1Ei)

2s

have been obtained for the energy distribution of the seco
ary electrons~cascade maximum!, where¸(E) is the coeffi-
cient of transmission of the crystal–vacuum barrier for t
secondary electrons and the second cofactor is proporti
to the number of secondary electrons of energyE or the
distribution function of nonequilibrium secondary electro
f (E). The parameterss andEi differ in different theories. In
Ref. 11, for example, we finds'2 and Ei is the energy
difference between the vacuum levelEvac and the bottom of
the conduction band. In practice,Ei is replaced by a fitting
value.6 The experimentally observed fine structure of t
SEE spectrum cannot be explained by theories using the
electron model neglecting the influence of the band struct
Calculations of the SEE spectrum made by Christensen
Willis3 showed that the fine structure is related to the b
density of statesr(E); in this case, neglecting the broade
ing of the energy levels, the authors only analyzed the p
tion of the lines in the spectrum, not their shape and int
sity. Kleinherberset al.10 proposed an interpretation of th
fine structure of the SEE spectrum based on the theory
low-energy electron diffraction. The results of this study d
fer from those of Ref. 3, although they satisfactorily descr
the fine structure of the experimental curves. Artamon
et al.15 and Korablevet al.16 showed that the fine structure o
the SEE spectrum is determined by the energy dispersio
the high electronic states~higher thanEvac) and reflects the
band boundaries in the dispersion law of electrons moving
the direction of recording.
© 1999 American Institute of Physics
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Comparatively few studies~see for example, Refs. 2, 4
17, and 18! have been made of the total current spectru
i.e., the derivative with respect toEp of the total current in
the sample circuitI 5I p2I s ~whereI s is the current of elec-
trons leaving the sample! provided that the secondary ele
trons are completely removed. The results of these stu
indicate that the fine structure of the total current spectrum
strongly related to the fundamental properties of the mate
In accordance with Ref. 2, in the energy range up to 100
electron–electron (e–e) scattering predominates with th
excitation of interband transitions and the main structure
the total current spectrum reflect ther(E) characteristics.
Calculations made in Ref. 18 using the dynamic theory
low-energy electron diffraction confirm that the fine structu
of the total current spectrum is related to the bulk band str
ture.

The aim of the present study is the investigate and in
pret the fine structure of the SEE and total current spect
of iridium in terms of the bulk band structure and to devel
a method of analyzing the experimental results to obtain
maximum information on the electron dispersion law abo
Evac. As previously~see, for example, Refs. 7, 9, 19, an
20!, for our calculations of the SEE and total current sp
trum we considered the scattering of electrons having a g
momentum on a crystal where the scattering probability
proportional to the number of final states at a given leveE
with a given direction of quasimomentumV. Allowance was
made for energy dependence of the broadening of the en
band levels \G(E)2\/t(E), the electron–electron an
electron–plasmon contributions tof (E), and the isotropic
component of the current from the electrons scattered at
surface.

This work is based on the real band structureEnk and
r(E) of iridium; Enk appears in the calculations of the spe
tra in terms ofN(E,V) ~Fig. 1a!, this being the number o
energy bands in the directionV for which the equality
E5Enk is satisfied. The structure of the iridium energ
bands~like that of other 5d transition metals! obtained by
various authors using different methods generally differs
the energy range above the Fermi levelEF . The bulk band
structure of iridium was calculated by Nemoshkalen
et al.21 using the relativistic generalization of the connect
plane wave method, by Rayet al.22 using a relativistic
Korringa–Kohn–Rostoker method, and by Noffke a
Fritsche23 using the self-consistent method of relativistic li
ear muffin-tin orbitals. In this last study the energy ban
obtained over a wide energy range agree with the experim
tal values of the photoemission spectra with angu
resolution.24

Figure 1b gives results of calculating the SEE spec
along the normal to the Ir~111! surface using bulk band
structure given by various authors. The background cur
component — a structureless cascade maximum~peak A!,
was taken into account by adding the constantC to N(E,V),
when the energy structure of the surface region is descr
by the model of an almost free electron gas. The follow
values of the parameters were used in the calculation
J(E,V): C54 ~gives a cascade maximum whose profile a
width are similar to those observed experimentall!;
,
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Evac5EF1ew, where EF510.8 eV andew55.8 eV. The
excited-state lifetimet(E) was determined from Ref. 25
\/t(E)5Epl (E/EF21)2, whereEpl is the screening param
eter, and the coefficienţ(E) for one-dimensional motion is
taken from Ref. 26. The filling function of the statesf (E),
corresponding to multiple electron–electron scattering is
tained forE2EF!Ep by solving the transport equation us
ing a statistical model of electron–electron scattering.27 The
decay of plasmons generated by primary electrons and
by excited electrons in a solid makes its own contribution
f (E) which is obtained from the energy conservation law
the dispersion of the plasmons is neglected.

The best agreement with the fine structure~peaksB, C,
and D) in the experimental spectrum~curve 1! is observed
for curve 3 where the broadening parameterEpl which de-
pends on the concentration ofs- andd electrons in the elec-
tron shell of the atom, was fitted rather than calculated fr
the general theory of metals~as for curve2!. This is because

FIG. 1. a — number of electron dispersion law branches for iridium (L61,
L62, G62, G72, G82 are its symmetry points!, intersecting the levelE in the
~111! direction; b — secondary electron emission spectrum along the n
mal to the~111! surface:1 — experiment from Ref. 5 forEp540 eV; 2 —
theory based on band structure calculations forEpl'0.96 eV;3–5 — theory
based on band structure calculations from Refs. 23, 21, and 22, respec
for Epl'0.27 eV; energyE measured fromEvac; the curves are arbitrarily
spaced along the ordinate. The vertical dashed linesA–D indicate the main
characteristics of the experimental secondary electron emission spectr
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t(E), which is responsible for the broadening of the pea
and was used in the calculations, was obtained near
Fermi surface in Ref. 25 and not in the region of high
excited states. The position and intensity of the fine-struc
peaksC and D on curve4 differ substantially from similar
characteristics of the experimental spectrum because o
approximate nature of the band calculations21 in the con-
nected plane wave method forE>15 eV higher thanEF . On
the basis of the band structure calculations22 using the
Korringa–Kohn–Rostoker method no fine structure could
identified in the experimental spectrum~curve5!.

As a result, the total current spectrum was calcula
using the bulk band structure23 and the broadening paramet
Epl was calculated from the general theory of metals wh

FIG. 2. Total current spectrum of iridium:1 — experiment for a polycrystal
~from Ref. 17!; 2–4 — theory for the~111!, ~110!, and~100! faces, respec-
tively for Epl'0.96 eV. The energyE is measured fromEvac. The curves
are arbitrarily separated along the ordinate. The arrowsa–g indicate the
main features of the experimental total current spectrum.
s
he
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did not influence the fine-structure characteristics of the
rivative of the total current. The results of the calculations
dI(E,V)/dE ~Fig. 2, curves2–4! demonstrate~as in Ref. 28
for Pt! the contribution of the various crystallographic plan
to the total current spectrum of the polycrystalline sam
~curve1!.

To sum up, these methods can be used to determ
experimentally the boundaries of the energy bandsN(E,V)
in the energy range aboveEvac, supplementing the photo
emission spectral data.

This work was supported by the Ukraine State Fund
Fundamental Research.
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Current in a high-current planar diode with a discrete emitting surface
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The dependence of the current on emitter size is obtained for a high-current planar diode with a
discrete emitting surface. It is shown that if the distance between the emitters appreciably
exceeds their size, the dependence of the current on the ratio of the emitter size to the diode gap
is a power dependence with an exponent of 3/2. The voltage dependence of the current
obeys the ‘‘three-halves’’ law up to higher voltages than that for a planar diode with a
homogeneous emitting surface. ©1999 American Institute of Physics.@S1063-7842~99!01806-1#
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INTRODUCTION

Planar vacuum diodes with explosive emission cathod1

are used to form high-current relativistic electron beams w
large cross sections~tens and hundreds of square centim
ters!. These beams are widely used in high-power, virtu
cathode, microwave pulse generators to generate x-ray pu
and also for technological applications.

In many applications, especially for the generation
microwave radiation, an important condition is that the be
current and electron energy should remain constant du
the pulse, whose duration is usually a few or tens of na
seconds. In addition, for high-current planar diodes the
pedance typically decreases with time.2 This leads to an in-
crease in current and, as a result of a mismatch between
diode and the pulse source, causes a drop in the diode
age and the electron energy of the beam~Fig. 1!.

The variation of the diode impedance with time
caused by the evolution of the emitting surface at the ca
ode. One reason for this is the expansion of the cath
explosive emission plasma. Initially, the emitting surface i
set of isolated plasma formations or emission centers. W
time the size of the centers increases, leading to an incr
in the current extracted from them. For metal and graph
cathodes, the characteristic plasma expansion velocit
vpl;23106 cm/s ~Ref. 3!. The mechanism responsible fo

FIG. 1. Typical time dependence of current and voltage in the planar d
of the SINUS-700 high-current, pulse-periodic, electron accelerator usi
metal–insulator cathode.
6951063-7842/99/44(6)/5/$15.00
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this expansion is studied in the present paper. Another rea
for the evolution of the emitting surface is the change in
number of emission centers with time, whose influence is
considered here.

In the present study we investigate the current in a dio
with planar electrodes as a function of the size of the em
sion centers~subsequently called emitters!. The solution of
this problem is not only of independent interest but is a
required to take into account the discreteness of the emit
surface in high-current diodes with cathodes having m
complex configurations.

SIMILARITY RELATIONS FOR THE ELECTRON CURRENT IN
A DIODE

We shall analyze a steady-state electron flux in a dio
of arbitrary configuration having an emitter of unbound
emitting capacity at the cathode. We shall assume that
initial velocity of the emitted electrons is zero. We sha
postulate that the particle motion in the gap is nonrelativis
G21!1, whereG511eU/mc2, and U is the diode volt-
age. We shall assume that no external magnetic field ex
and we shall neglect the influence of the self-induced m
netic field on the electron motion. For simplicity, we suppo
that the electron beam can be described by the single-
hydrodynamic model. The parameters of the system, i.e.,
electron velocityv, the charge densityr, and the electric
field potentialw are then related by the system of equatio

~v¹!v52
e

m
¹w, Dw524pr, div ~rv!50

with the boundary conditions at the cathodevuc50, wuc50,
¹ twuc50 ~at the nonemitting surface!, ¹wuem50 ~at the
emitting surface! and at the anodewua5w05U ~whereU is
the diode voltage!, ¹ twua50 ~the subscriptt denotes the
component tangential to the surface!.

Denoting byL the characteristic linear dimension of th
system, we introduce the dimensionless variables and
differential operatorsr̃5r /L, ṽ5v(ew0 /m)21/2, w̃5w/w0 ,
r̃5rL2/w0 , ¹̃5L¹, D̃5L2D. In the new notation the sys
tem of equations and the boundary conditions have the f

e
a

© 1999 American Institute of Physics
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~ ṽ¹̃ !ṽ52¹̃w̃, D̃w̃524pr̃, div ~ r̃ ṽ!50, ~1!

ṽuc50, w̃uc50, ¹̃ tw̃uc50, ¹̃w̃uem50, w̃ua51, ¹̃ tw̃ua50.
The boundary conditions no longer containw0. Conse-

quently, the functionsṽ( r̃ ), r̃( r̃ ), being the solution of Eq
~1!, also do not depend onw0. The form of these functions is
determined only by the shape of the electrodes and does
depend on their absolute dimensions. The current densit

j ~r !5I a~ew0 /mc2!3/2L22 j̃ ~ r̃ !5Ae/mw0
3/2j̃ ~ r̃ !,

where j̃ 5 r̃ ṽ and I a5mc3/e'17 kA is the Alfvén current.
The total current in the system is given by

I 5I a~ew0 /mc2!3/2F5Ae/mw0
3/2F, ~2!

where the form factorF5*Sj̃ ( r̃ )dS̃ is only determined by
the relative sizes of the electrodes and remains cons
when all the linear dimensions in the diode vary proportio
ately. This last cross section is taken over any surface c
taining the beam cross section, such as the emission sur
It follows from expression~2! that the voltage dependence
the current obeys the ‘‘three-halves’’ law and the curre
remains constant when all the linear dimensions in the di
vary proportionately.

It is easy to see that these results apply to a hydro
namic model with a finite number of fluxes greater than o
~a numerical simulation showed that in the particular case
a hemispherical emitter examined below, the electron tra
tories intersect each other and the number of fluxes is tw!.

CURRENT IN A DIODE WITH A SINGLE EMITTER

We shall consider a planar diode with a gapD having a
hemispherical emitter of radiusR positioned on the cathod
plane~Fig. 2a!. The emitter has an unbounded emitting c
pacity. If the transverse dimension of the electrodes con
erably exceedsD then, since the emitter shape is defined,
form factor of the systemF is merely a function of the pa
rameterR/D. Thus, in the nonrelativistic approximation w
have

I 5Ae/mw0
3/2F~R/D !.

In order to determine the form of the functionF, we
shall use the smallness of the emitter radius compared
the diode gapR/D!1. Quite clearly, when the emitter radiu
tends to zero, the current and thickness of the electron
also tend to zero and the electron flux weakly perturbs
electric field in the gap. The potential distribution in the d
ode is close to linearw(z)'w0z/D. Numerical calculations

FIG. 2. Diode with point~a! and linear~b! emitters.
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confirm that in the range ofR/D ratios of practical impor-
tance this is in fact the case~Fig. 3!. In a diode with a linear
potential distribution the current obviously remains const
when the voltage and length of the diode gap vary prop
tionately. Consequently, we obtainw0

3/2D23/25const and
F}(R/D)3/2. Hence the current for a single emitter may
written as

I 5bAe/m~RU/D !3/2, ~3!

where the dimensionless factorb is only determined by the
emitter shape.

Numerical calculations performed using the SuperSA
program4 for a hemispherical emitter confirmed this depe
dence and yielded the coefficientb'0.47 ~Fig. 4!.

Similar reasoning yields the conclusion that for ‘‘linear
emitters ~such as semicylindrical, Fig. 2b! the current per
unit length of the emitter depends on its radius asdI/dl
}R1/2D23/2.

We especially note that for small emitters (R/D!1), the
voltage dependence of the current shows a relativistic de
tion from the three-halves law when the voltage is appro
matelyD/R times greater than that for a homogeneous p
nar diode. This is because the emitter current is determi

FIG. 3. Shift of the surface with the potentialU/2 relative to the center of
the diode gap as a function of the radius of a hemispherical emitter (d is the
absolute value of the shift!. Numerical calculations forD54 cm and
U5500 kV.

FIG. 4. Current versus radius of a single hemispherical emitter w
D54 cm andU5500 kV: crosses — numerical calculations, line — calc
lations using formula~3! for b50.47.
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by the space charge in its immediate vicinity whose dim
sion is of the orderR. Even if the total diode voltageU is
relativistic, the electron energy in the vicinity of the emitte
which is given by;eUR/D, may be much lower than th
relativistic values. This is responsible for the nonrelativis
law of current behavior. Thus, the condition for validity
expression~3! has the form

~G21!
R

D
!1. ~4!

If the diode voltage is sufficiently high that the electro
become relativistic near the emitter, the voltage depende
of the current tends to linear and the exponent ofR is re-
duced by 1/2. It is easy to see that in this case, for lin
emitters the current does not depend onR.

Condition ~4! is satisfied in most cases of practical im
portance, i.e., for plasma expansion velocities of;106 cm/s,
pulse durations between a few and tens of nanoseconds
ode gaps of a few centimeters, and voltages of a few me
volts ~Fig. 8!.

We stress that the exponent 3/2 in expression~3! is as-
ymptotically exact in the limit of the small ratioR/D. We
compare the current obtained from formula~3! with other
known results~Fig. 5!. The method of specific capacitance5

gives a quadratic dependence of the current on the param
R/D. It should be noted that this method has not been su
ciently well substantiated and gives incorrect results
small ratiosR/D. An interpolation formula6 based on the
results of numerical calculations gives a linear dependenc
the current onR/D for small values of this parameter. Qui
clearly, the results of the numerical calculations f
R/D50.05 and 0.1 are not completely accurate. It should
noted that Djogo and Gross6 gave an incorrect representatio
of the data from Ref. 7 relating to the current of a spheri
emitter at the apex of a tip.

CURRENT IN A PERIODIC EMITTING STRUCTURE

Let us assume that emitters of radiusR are arranged as
periodic structure separated by the distancep ~we shall not

FIG. 5. Perveance of a planar diode with a single hemispherical emitter
function of the ratio of the emitter radius to the gap:1 — using formula~3!,
2 — from Ref. 5, and3 — from Ref. 6.
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specify the shape of the cell!. We introduce the notation
x52R/p andy5p/D. Thus, forx51 we have a planar di-
ode with continuous uniform emission for which the Child
Langmuir law is satisfied. We write this law in an approx
mate form which is asymptotically exact in th
nonrelativistic and ultrarelativistic limits and gives a devi
tion of less than 1% from the exact solution8 in the interme-
diate range of voltages

Jpd5
I a

2pD2
~G2/32Gn!3/2,

n52/322/92/3'0.204425. ~5!

We shall now consider another case of practical imp
tance when the distance between the emission centers is
siderably less than the diode gap. In this case, provided
the conditionx!1 is satisfied, the current for each emitter
described by expression~3!, i.e., the emitters have little rela
tive influence. If the size of the emitters decreases with
bound, the current in the system tends to zero and the s
charge of the electron flux in the diode gap has no influe
on the impedance of the emitters, i.e., they do not influe
each other.

Thus, a general expression which would determine
average current density in the diode over the entire ra
betweenx50 andx51 should give expressions~3! and ~5!
in these limiting cases. This property is obtained for the f
lowing formula which matches the solutions for a sing
emitter and a planar diode with a continuous emitting surf

j 5 j pd/A, A511
f ~x!y1/2

23/2bx3/2S G2/32Gn

G21 D 3/2

. ~6!

The weighting function f (x) satisfies the conditions
f (0)51, f (1)50 and its specific form depends on the sha
of the periodic cell containing the emitter.

We shall consider a hexagonal cell. For a numeri
simulation this can be approximated by a cylinder of rad
p/2, having defined the Neuman condition for the elect
static potential and the specular reflection condition for
electron trajectories at its side surface~Fig. 6!. In this way,

FIG. 6.
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the calculation problem is converted from three-dimensio
to axisymmetric two-dimensional. Numerical calculatio
made using the SuperSAM program showed that in this c
the weighting function can be approximated byf (x)'1
2x12x. Then, the dependencesI (x) for the current per emit-
ter obtained using formula~6! and as a result of the numer
cal calculations agree to within 5%~Fig. 7!.

Figure 8 gives relative voltage dependences of the p
veance of a diode with hemispherical emitters calculated
merically and using formula~6!. It is easy to see that th
smaller the relative size of the emitterx, the higher the volt-
ages for which the nonrelativistic dependence of the cur
on voltageI}U3/2 typical of a single emitter is conserved
The difference between the analytic and numerical result
extremely high voltages can be explained by the fact that
condition for no relativistic electron motion ceases to ho
near the emitter~quite clearly the constraint for a period
system of emitters should differ from condition~4! since it
contains the parameterp).

The numerical calculations showed that as the param
x decreases, the dependence of the current in a periodic
tem on the diode gap tends to the formI}D23/2 typical of a
single emitter.

FIG. 7. Current for a hemispherical emitter in a periodic system as a fu
tion of the ratio of the emitter diameter to the cell period forD54 cm and
U5500 kV. Crosses — numerical calculations, curves — calculations u
formula ~6!.

FIG. 8. Comparative voltage dependences of the perveance of a hemis
cal emitter in a periodic system withp50.1 cm~1–3!. Emitter radius,mm:
1 — 5, 2 — 25, and3 — 100; asterisks — numerical calculations, curves
calculations using formula~6!; 4 — relativistic dependence for a homoge
neous planar diode~5!.
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Figure 9 shows calculated time dependences of the
erage current density for a cathode with hemispherical em
ters expanding at the velocity 23106 cm/s for various dis-
tances between the emitters. By comparing th
dependences with the experimentally measured oscillosc
traces of the current, it is possible to assess the state o
emitting surface at the cathode.

CONCLUSIONS

This theoretical analysis has demonstrated that the
crostructure of the emitting surface strongly influences
current in a high-current planar diode.

If the distance between the emitters appreciably exce
their size, the dependence of the current on the ratio of
emitter size to the diode gap is a power dependence with
exponent 3/2. Moreover, the voltage dependence of the
rent obeys the three-halves law up to higher voltages t
that for a planar diode with a uniform emitting surface.

Quite clearly, the discreteness of the emitting surfa
and the expansion of the cathode plasma lead to a reduc
in the impedance of high-current planar diodes with tim
The cathode effects described determine the minimum d
tion of the resulting current pulse.

However, it should be noted that additional informatio
on the state of the emitting surface at the cathode is requ
to correctly apply these results to real diodes. The dep
dences given above were obtained assuming that the num
of emission centers remains constant in time and they
equidistant. At the same time, there is no doubt that
emission centers do not appear simultaneously at the c
ode. The distribution of the micropoints over the catho
surface and their sizes are not homogeneous. The s
charge of a newly formed emission center reduces the e
tric field intensity in its vicinity,9 increasing the delay time
for the explosion of micropoints situated in this zone. Allow
ance for the influence of the nonsimultaneous creation
emission centers on the current profile in a high-current
ode is a problem for future research.

c-

g

eri-

FIG. 9. Time dependences of the current density in a planar diode wi
discrete emitting surface calculated using expression~6! for D54 cm and
U5500 kV. The emitter expansion velocity is 23106 cm/s.
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The authors are grateful to D. I. Proskurovski� for dis-
cussions of the results.
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Influence of C 60-containing additives in lubricant oil on the optimization of wear
processes in the boundary friction of metals

D. G. Tochil’nikov and B. M. Ginzburg

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences,
199178 St. Petersburg, Russia
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An investigation is made of the influence of fullerene C60-containing additives in lubricant oil on
the optimization of the boundary friction process of steel and copper in steel–steel and
copper–steel sliding tribocouples. The optimization was characterized by a reduction in the
parameterQ introduced in a previous study, which is the probability that any given contact spot
between contacting bodies is converted into a debris particle accompanied by a relative
shift of the contacting bodies by the average diameter of the contact spot. The experimental data
are used to calculate values of the parameterQ for various friction regimes and it is shown
that the addition of fullerene to the lubricant oil causes a substantial reduction inQ and for copper
this parameter reaches fairly low values similar to those for an arbitrary reference selected
previously for classifying solids according to this characteristic. ©1999 American Institute of
Physics.@S1063-7842~99!01906-6#
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INTRODUCTION

By applying universal criteria for a comparative asse
ment of the optimum nature of wear processes, it is poss
to compare the antiwear properties of tribocouples and lu
cant materials determined in tests under different conditio
Among these universal criteria characterizing the wear p
cess in the boundary friction of solids, mention may be ma
of the parameterQ proposed in Ref. 1, which is the probab
ity that any contact spot between contacting bodies will
converted into a debris particle accompanied by a rela
shift of the contacting bodies by the average diameter of
contact spotQ5a/n, wherea is the number of contact spot
converted into debris andn is the total number of contac
spots, whose area is the actual area of the friction spot.
can postulate that an optimum wear regime exists for wh
Q will have a minimum, which then leads to minimal valu
of the wear intensity. A reduction inQ during the wear pro-
cess may be taken as optimization of the wear process.

Kozyrev and Ginzburg1 proposed a method for the em
pirical determination of optimum boundary friction regim
for which the wear intensity of the sample material has
minimum andQ5Qopt. For one of the most antifriction ma
terials, babbitt metal, the value ofQopt was '2310210.
These authors also showed thatQ can be calculated for given
test conditions if data are available on the linear wear int
sity, the material hardness, and the contact pressure.
lished data were used to calculate values ofQ for various
materials~different types of bronze, a Teflon-41 graphite1
MoS2 composite, St-45 steel, cast irons, and titanium c
bide! for specific test conditions. In all cases, the values oQ
were between one and three orders of magnitude higher
2310210. In particular, for St-45 steel in contact wit
bronze, the authors obtainedQ'1027 and for bronzeQ
'1028. Values ofQ 5 ~3–4! 310210 were only obtained
7001063-7842/99/44(6)/4/$15.00
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for high-strength cast irons in contact with tin-plated a
chrome-plated piston rings in engines lubricated with eng
oils. Thus, the valueQ52310210 can be used for the time
being as an arbitrary reference for different materials, in
same way that the hardness of diamond is used as a refer
point to estimate the hardness of solids.

However, Ginzburget al.2–6 showed that the presence o
small quantities of fullerene C60 in lubricant oil can substan
tially improve various tribological properties, especially th
antiwear properties of steel and copper in steel–steel
steel–copper sliding tribocouples. It would be interesting
determine the extent to which fullerene C60 helps to optimize
the friction process, i.e., to study how C60-containing addi-
tives in industrial oil influence the values ofQ for steel and
copper and their variations under different test conditions
would also be interesting to compare these values with
reference point, and these are the aims of the present st

MATERIALS

Fullerene C60 was separated chromatographically~with a
96–98% content! from a fullerene extract~mainly C60 and
C70) in the V. P. Budtov Laboratory~‘‘Khromotron’’ Project
in the Russian Scientific and Technical Program ‘‘Fulleren
and Atomic Clusters,’’ 1994!. The extract was separate
from fullerene soot obtained in an electric arc plasma in
G. A. Dyuzhev Laboratory~‘‘Arc’’ project under the same
program!.

The lubricants used were I-40-A commercial industr
oil ~I-G-A-68 according to GOST 17479-87!, a mixture of
I-40 A and 5% fullerene C60, and a mixture of I-40-A and
5% fullerene soot. The fullerene soot contained around 5
C60 and 1.5% C70. The additives were added mechanically
the oil in the form of finely dispersed powders. Before the
lubricant mixtures were used, they were mixed vigorously
© 1999 American Institute of Physics
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achieve a more uniform particle distribution in the oil, a
though the residual inhomogeneity could be one reason
the spread of the data obtained.

TEST METHOD

The investigations were carried out using a stand
2070 SMT-1 roller friction machine using tribocouples com
prising a fixed upper roller and a rotating lower roller~Fig.
1!. The lower roller, 46 mm in diameter and 16 mm wid
was made of wear-resistant 18Kh2NChMA steel~GOST
4543-71! and rotated at a speedv5400 min21, which cor-
responded to a linear sliding velocity of 1 m/s. The sam
being tested was either the upper fixed roller~50 mm in di-
ameter and 10 mm wide! made of St-45 steel or 0.25 mm
copper foil attached to this roller.

Various normal loadsFN were successively applied t
the samples. The tests began with a linear friction contac
a loadFN5100 N ~Fig. 1a!. The duration of the testing a
each load was 300 s and lubrication was provided by a sin
drop of oil (;0.05 g! before each change in load. After e
ery 300 s the carriage of the friction machine was raised
the geometric parameters of the wear spot were determ
using a measuring magnifier. These values were used to
culate the average area of the wear spotS, the depth of the
wear grooveh ~Fig. 1b!, and the bulk wearVW ~Ref. 7!. The
area of the wear spotSe determined at the end of the tes
under a given load was taken as the area of the initial f
tional contactSi for the next load. Between three and fiftee
tests were carried out for each test variant~for each load and
fixed type of lubricant! depending on the spread, and t
arithmetical means of the measured values were then ca
lated. In order to monitor the reproducibility after eve
10–12 tests, tests were carried out using I-40 A base oil

The value ofQ was calculated using a formula propos
in Ref. 1

I h53~PNQ/HB!•~g/d!, ~1!

whereI h is the linear wear intensity of the sample,PN is the
nominal contact pressure,HB is the Brinell hardness,g/d is
the ratio of the average height of a debris particle to

FIG. 1. Schematic showing friction tests:1 — fixed roller ~sample!, 2 —
moving roller; a — initial state with linear friction contact, b — state of
friction contact after formation of wear groove of areaS.
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average diameter of the contact spot or the diameter of
debris particle, if the spot has been converted into a de
particle.

We subsequently assumed thatg/d'1, i.e., the debris is
lumpy, as is frequently observed for metals.

The linear wear intensity for a linear initial contact
defined asI h5h/L, whereh is the depth of the wear groov
and L is the friction path during testing. The friction pat
was defined asL5pDvt, whereD is the diameter of the
moving roller andt is the test time. The nominal contac
pressurePN was defined asFN /Sav, whereSav is the average
nominal contact area during the test. Special tests sho
that our formulaSav'Si10.8(Se2Si) more accurately de-
scribes the change in the contact area than the arithme
mean of the initial and final areas, since the contact a
varies nonlinearly with time, increasing rapidly in the initi
instants of application of a new load and then varying m

FIG. 2. Dependence of the parameterQ on the load for a steel–steel trib
ocouple. Lubrication with I-40 A base oil~1!, I-40 A 1 5% fullerene soot
~2!, and I-40 A1 5% C60 ~3!.

FIG. 3. Dependence of the parameterQ on the load for a copper–stee
tribocouple. Lubrication with I-40 A base oil~1!, I-40 A 1 5% fullerene
soot ~2!, and I-40 A1 5% C60 ~3!.
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TABLE I. Minimum and maximum values of the linear wear intensityI h , the parameterQ, and the contact pressuresPN over the entire range of loads fo
steel and copper in steel–steel and copper–steel sliding tribocouples.

Steel Copper

Range Linear Range Linear
of average wear Probability of average wear Probability
values of intensity Q, 1028 values of intensity Q, 1028

PN , N/mm2 I h , 1028 PN , N/mm2 I h , 1028

Oil minimum maximum minimum maximum minimum maximum minimum maximum

I-40 A 26–38 0.8 4 16 80 60–80 0.15 3 0.5 14
I-40 A15% ful- 27–50 0.3 2 8 40 80–90 0.08 2 0.3 7
lerene soot
I-40 A15% C60 28–53 0.3 2 7 30 90–120 0.05 2 0.15 5
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smoothly. The Brinell hardness for St-45 steel was taken
2000 N/mm2 and that for copper as 800 N/mm2 ~Ref. 8!.

Taking into account all the constant values of the para
eters in formula~1! given above, the values ofQ can be
calculated using the formulas

Q52.231023hSav/FN for a steel–steel tribocouple, ~2!

Q50.931023hSav/FN for a copper–steel tribocouple,
~3!

where the values ofh are in millimeters,Sav is in square
millimeters, andFN is in newtons.

The relative mean square error of the arithmetical me
of Q was 7–10%.

TEST RESULTS

Note that a specific feature of friction tests is that in t
elastic contact region, the tribological characteristics dep
not only on the pressure applied to the contact, but also
greater extent on the absolute value of the applied force8–10

As the applied force increased, the contact area also
creased so that the contact pressure did not change very
nificantly although the values ofQ varied substantially. Fig-
ures 2 and 3 give the results of calculatingQ as a function of
the applied force for tests on steel–steel and copper–s
tribocouples, respectively and Table I gives the maxim
and minimum values of the parameterQ and the linear wear
intensity, more familiar to tribologists, over the entire ran
of applied loads. The range of average pressures on the
tact is also given.

We shall examine the behavior of these curves and h
they change when fullerenes are added to the oil for ste
steel tribocouples~Fig. 2!. At the initial run-in stage
(FN5100 N! the values ofQ for the different oils differ neg-
ligibly. When the load is increased fromFN5100 to 200 N,
a fall in Q is observed in all cases, i.e., so-called run-in
optimization of the wear process takes place. However,
the fullerene-containing oils the optimization process is m
intensive. For example, for the base oil in the range of lo
used, the value ofQ is halved, for oil with soot additives it is
reduced threefold, and for oil with fullerene C60 additives it
is reduced fourfold. When the load is then increased
300 N, the value ofQ remains almost constant for oil wit
C60 additives, whereas for the other oils it increases app
s
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ciably. At loads of 300–500 N a substantial increase in
values ofQ is observed and for the base oil a sharp incre
can be identified near 500 N, which is typical of scorin
However, for the oil with added C60 the value ofQ at these
high loads is 2.7 times lower than that for the base oil.

The lowest value ofQ for a steel–steel tribocouple i
observed at 200 N and is'731028 for pure C60 additives,,
which is more than two orders of magnitude higher than
standard value for babbitt metal. A slightly reduced effec
achieved with added fullerene soot: the lowest value ofQ
under these conditions is'931028. The addition of
fullerenes to the oil reduces the linear wear intensity by
factor of 2–3 and its lowest value is 0.331028 ~see Table I!.

For the copper–steel tribocouples the curveQ(FN) only
exhibited a weak minimum~a 20% reduction! for the base
oil ~Fig. 3!. For the fullerene-containing additives the run-
is very fast for the first friction contact at a 100 N load a
thus no fall inQ could be recorded. Nevertheless, the va
of Q for the fullerene-containing oil at this load is 2.5–4
times lower than that for the base oil~see Table I!. Subse-
quently, an increase inQ is observed for all loads but in al
cases, the fullerene-containing additives give a signific
reduction inQ compared with the base oil. Compared wi
the steel–steel tribocouple, the copper–steel tribocouple
hibits better antiwear properties under all conditions and
lowest values ofI h andQ achieved for pure C60 additives are
5310210 and 15310210, respectively~see Table I!. This last
figure is of the same order of magnitude as the refere
value for babbitt metal.

To sum up, there is no doubt that fullerene additives
oils help to optimize the friction surfaces of steel and cop
and reduce their wear. The parameterQ characterizing the
surface optimization has an extremely low value for cop
close to the arbitrary reference value characterizing the m
mum possible wear.

This work was carried out under the Russian Scienti
Technical Program ‘‘Fullerenes and Atomic Clusters
~‘‘Tribol’’ Project !.
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Determination of the temperature distribution in liquids and solids using holographic
interferometry

V. V. Bat’kovich, O. N. Budenkova, V. B. Konstantinov, O. L. Sadov, and E. A. Smirnova

A. F. Ioffe Physicotechnical Institute, 194021 St. Petersburg, Russia
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It is shown that holographic interferometry can be applied to solve two problems: heating of a
glass plate by a complex heat source and nonisothermal flow of a submerged jet around
a wedge. The process of isolating and numbering the skeletal lines on the interferograms is
automated and direct calculations are made of the temperature fields. ©1999 American
Institute of Physics.@S1063-7842~99!02006-1#
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INTRODUCTION

Two processes are considered. The first involves
flow of a submerged jet around a wedge where the w
temperature in the jet differs from the temperature of
water filling the container, which also varies with time. T
second involves the propagation of heat in a glass p
heated by a complex heat source. Numerical or analytic
lutions of these problems present difficulties because of
complex boundary conditions. In the first process, for
stance, allowance must be made for the reflection of the
from the walls because of the bounded volume. In the sec
problem, even if we know the nature of the heat release
the heating element, we need to estimate the quantity of
entering the plate. It is technically difficult to insert therm
couples into these objects and would distort the real proc
so we used holographic interferometry.

The quantitative characteristics of a process investiga
by holographic interferometry are obtained by analyzing
interference fringes.

The intensity distribution on the interference pattern h
the form1

I ~x,y!5I 1~x,y!1I 2~x,y!12AI 1I 2 cosw~x,y!,

where I 1(x,y) is the intensity of the wave scattered by t
object before the onset of the process at point (x,y), I 2(x,y)
is the intensity of the wave scattered by the object during
process at point (x,y), and w(x,y) is the phase difference
between the first and second waves at the point (x,y).

The spatial frequency of the fringes varies as a resul
a change in the refractive index of the object. A shift of t
fringes may also be caused by a change in the path leng
the beam in the medium as a result of its expansion or c
pression. The shift of the interference fringes relative to th
initial position is used to calculate the change in the ph
distribution of the wave scattered by the object which is
lated to the interesting characteristics of the process

k5
Dw

2p
5

1

l S E
S
n~x,y,z!dl2 l 0n0D , ~1!

wherek is the number of fringes by which the interferen
pattern was shifted,Dw is the phase difference at differen
7041063-7842/99/44(6)/5/$15.00
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times,l is the wavelength of the radiation used,n(x,y,z) is
the refractive index at the point (x,y,z), S is the beam tra-
jectory,l 0 is the path length of the beam in the object, andn0

is the refractive index in the absence of any inhomogene
The fringe shift can be traced by measuring the coor

nates of the characteristic points of each interference frin
The characteristic points are those points at which the in
sity has extreme values, i.e., the phase difference2

w~x,y!5pn; n50,61,62, . . . . ~2!

A set of characteristic points of one type belonging
one interference fringe is a line of zero thickness, i.e.
skeletal or core line.

On an ideal interference pattern it is easy to isolate
characteristic points. In reality, however, the intensity dis
bution on the interference pattern reflects the presence
various types of noise in addition to the useful signal a
may be described as

I r~x,y!5v~ I 1
21I 2

212I 1I 2 cosw~x,y!!1N~x,y!,

wherev is a function describing the nonlinearity of the r
sponse of the recording system relative to the optical int
sity, andN(x,y) is the noise recorded together with the si
nal ~background noise!.

The presence of noise in the measuring system lead
the appearance of spurious local extrema located at po
(x,y) where condition~2! is not satisfied.

If the statistical characteristics of the noise and the u
ful signal are known, we can construct an optimum filt
which when applied to the initial image will give a signal a
close as possible to the useful signal according to the c
rion of minimum rms error. A priori information on the nois
characteristic of the measuring system is not generally av
able and attempts to estimate the frequencies correspon
to the useful signal directly from the image spectrum ha
been unsuccessful. Thus, most studies concerned with
automatic processing of interference patterns have exam
various methods of filtering the image, i.e., modifications
known filters and the development of new ones. The proce
ing of interference patterns has been automated most c
prehensively only in specific cases.3,4
© 1999 American Institute of Physics
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Here we present an algorithm for obtaining quantitat
information on a particular process using interference p
terns which includes preliminary processing of the initial im
age, isolating the skeletal lines, and calculating the shif
the interference fringes which can be used as the basis
Cu program.

PROCESSING OF INTERFERENCE PATTERNS

The initial image~interference pattern! is represented a
an M3N numerical matrixB. Each element has values b
tween 0 and 255 which correspond to the minimum a
maximum intensities.

In order to correctly isolate the characteristic points,
image was preliminarily processed using a moving aver
filter5 where the intensity at a particular point is replaced
some average of the values of its neighboring elements.
filter was used because of its simplicity and also because
following analysis did not require a knowledge of the tr
intensity. By repeatedly applying the filter~between three
and five times!, it was possible to avoid most of the spurio
local maxima and minima present in the image as a resu
noise. The result of applying the moving-average filter w
written into a new matrixB1.

From among the various filters specially developed
processing interference patterns, we selected a spin fil6

When a spin filter is applied, a direction is selected for ea
image point and the intensity at this particular point is
placed by some average of the intensities at neighbo
points in this direction. Applying a spin filter to the interfe
ence patterns obtained in our measuring system also yie
good results but with slower convergence.

The process of isolating the skeletal lines included s
eral stages. The first involved isolating the characteri
points at which the intensity has an extreme value. On
ideal one-dimensional sinusoidal surface the point at wh
the sine has a maximum is nonextremal only in one dir
tion. When determining the maxima and minima on a r
interference pattern, we assumed that because of the
ence of noise such a point can be nonextremal in more
one direction.

The intensityai , j at a point having the matrix coordi
nates (i , j ) was compared with the intensities at other poi
within a window of dimensionsn3n centered on the poin
( i , j ), along four principal directions, vertical, horizontal, an
two diagonals. Ifai , j was higher than the intensities at a
other points in any two directions, a pixel with the coord
nates (i , j ) in a new matrixB2 was assigned the value 25
~maximum! or if its intensity was lower, this pixel was as
signed the value 0~minimum!. In other cases it was assigne
the value 128~background value!. This procedure was re
peated for each matrix pointB1.

The image produced at the first stage of filtering co
not completely avoid spurious extrema and the isolated c
acteristic points did not form continuous lines of zero thic
ness. The skeletal lines were isolated from the set of cha
teristic points at the second stage. A cutting algorithm5

which can only be applied to connected regions, was use
isolate the core lines. Gaps in which connectedness was
t-
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paired were filled artificially: each background pixel of th
image was given values of 0 or 255 if the values of mo
than two neighboring pixels were 0 or 255, respectively.

After the cutting procedure, the remaining characteris
points formed the core lines. In addition to the skeletal lin
corresponding to the true intensity extrema on the inter
ence pattern, the image also exhibited noise in the form
isolated points, short lines, short branches on lines, and
line discontinuities.

The third stage involved determining the assignment
each point of a specific line for convenience in the sub
quent processing of the image. We assumed that points
long to the same skeletal line if they have the same type
extremeness~minimum or maximum! and are located at a
distance shorter than some predefined value. If the po
were positioned at a distance of one pixel or more, the
was filled with the same extrema. In the program, poi
belonging to the same line were held in linked lists. This d
structure simplified the procedure for removing sh
branches, whose length does not exceed some prede
length and short lines, whose length does not exceed s
predefined value.

After we had performed these procedures, some of
skeletal lines remained broken and thus we carried out
additional line connecting process. The discontinuities w
eliminated as follows: parts of the lines were interconnec
if the straight line linking their ends did not intersect a lin
made up of the other type of extremum. At this point t
procedure for isolating the skeletal lines was completed.
important advantage of this method of isolating the skele
lines is that it is independent of the configuration and orie
tation of the fringes.

In order to calculate the shift of the fringes relative
their initial position, these were numbered on the initial i
terference pattern and then suitably numbered on the su
quent ones. A necessary condition for the successful op
tion of the fringe-numbering program is that there should
at least one continuous fringe passing through the entire
age. This fringe was numbered zero. Fringes positioned
the right were given positive numbers in order while those
the left were given negative numbers, after which the nu
bers of the corresponding fringes became the values of
points assigned to the skeletal lines. Points not assigne
skeletal lines were given fractional values obtained from
terpolating the fringe numbers over the entire field. The s
of each interference fringe was calculated simply by s
tracting the two matrices containing the fringe numbers:B3,0

~at the initial time! andB3,t ~at the instantaneous timet).

EXPERIMENTS

The technique described was used to process variou
terference patterns obtained using a holographic interfer
eter with recording on a photothermoplastic carrier and
cording of the information on a television. The image w
fed to a monitor which allowed the evolution of the proce
to be observed in real time. At the times of interest the ima
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was fed into a computer using a frame grabber The size
the field being studied was 333 cm and the field resolution
was 5123512 pixels.

The following parameters were defined to analyze
interference patterns: the moving-average filter was u
three times, the size of the window for isolating the char
teristic points was 737, points located at a distance of le
than ten pixels were assumed to belong to one fringe,
length of the fringes being removed was less than 11 pix
and the length of the branches being removed was less
five pixels.

In order to solve the formulated problems we assum

FIG. 1.

FIG. 2.
of
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that the object was homogeneous in the direction of illum
nation and formula~1! then becomes

k5
1

l
~n~x,y!l 2n0~x,y!l 0!.

FLOW OF A SUBMERGED JET AROUND A WEDGE

Water initially begins to flow into a liquid-filled cell
containing a wedge. The initial temperatures of the water
flowing through a nozzle inside the cell, the wedge, and
nozzle are different. The temperature of the jet decrea
during the process. The bounded volume leads to appreci
mixing of the water in the cell and the fluxes reflected fro
the walls begin to have a negative influence on the temp
ture field. The initial interference pattern is shown in Fig.

Figure 2 shows isolated skeletal lines: the flow veloc
of the jet is 5 cm/s, the size of the cell 53331.5 cm, and the
nozzle diameter 0.4 cm.

The change in the refractive index was calculated us
the formula

Dn~x,y!5
lk~x,y!

l 0
. ~3!

The bulk temperature field was calculated for tim
when return flows have a significant influence. The resu
are plotted in Figs. 3 and 4.

TEMPERATURE FIELD IN GLASS PLATE

Initially heat begins to be released in a heating eleme
its nature being unknown. The released heat is dissipa
partially into the ambient medium, some enters the gl
plate and then propagates further by heat conduction
radiation. According to our estimates, the shift of the fring
caused by a change in the refractive index is two orders
magnitude lower than that caused by expansion of the g
so that the change in the refractive index was neglected.
temperature field in the glass plate was calculated using
formula

FIG. 3.
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DT5
lk~x,y!

a l 0
,

wherea is the coefficient of linear expansion of the glass
The calculated temperature field in the plate is shown

Figs. 5 and 6.

DISCUSSION OF RESULTS

The type of filtering of the image and the number o
times it should be applied is the most controversial aspec
this algorithm. Since the optical system contains scatter
centers, speckle noise occurs which leads to the formation
many spurious maxima and minima on the interference p
tern. If the optical characteristics of the system are know
the characteristic speckle size is given by7

FIG. 4.

FIG. 5.
n

of
g
of
t-
,

bs51.22
~11M !l f

D
,

wheref is the focal length of the objective,M is the magni-
fication coefficient, andD is the aperture size.

The spatial frequency of the speckle structure isns

51/bs but since the speckle noise is multiplicative, a filt
cannot be constructed directly in this frequency range. Ho
ever, a moving-average filter and a spin filter, used ma
times, are effective. For interference patterns for which
period of the fringes is small and the noise is negligible, it
best to use a spin filter: the frequent intensity maxima a
minima ~corresponding to the fringes! do not disappear with
the spurious extrema. The other parameters used to pro
the interference patterns were selected as a function of
fringe period. The error in calculations of the characterist
of a physical process using interference patterns is ma
attributable to the error in isolating the skeletal lines. Desp
the stage-by-stage filtering, an isolated skeletal line may p
through points whose coordinates do not satisfy condit
~2!. Since the presence of these points can be attribute
speckle noise, we can postulate that these are randomly
tered around the true skeletal line. The error can be estim
if the shape of the fringes on the interference pattern is
ready known. In these experiments, straight parallel frin
were initially observed on the interference pattern. The av
age slope of the lines was calculated for an image with
lected skeletal lines. The error was estimated using
formula8

D5t0.95s,

wheret0.9552.5 is Student’s coefficient for 0.95 confidenc
ands is the rms deviation calculated using the formula

FIG. 6.
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s5A( i 51
n ~xi2 x̄i !

21~yi2 ȳi !
2

n
,

wheren is the number of points,xi ,yi are the coordinates o
points assigned to isolated skeletal lines, andx̄i ,ȳi are the
coordinates of the corresponding lines.

Estimates indicate that the error in measuring the cha
in the refractive index as a result of isolating the skele
lines is 8%.

Since the formulated problems were not solved anal
cally, the results were assessed qualitatively.

The temperature distribution in the liquid at the ve
beginning of the process can reveal characteristic effects
this process: the initial section of the jet, its reflection fro
the walls, and the thermal boundary layer near the wedge
Fig. 3 the temperature field is highly asymmetric. This c
be caused by tilting of the nozzle and by natural convect
of the heated liquid.

If we now consider the propagation of heat in the gla
the temperature maximum is situated near the edge of
plate with the heating element, around the geometric ce
of the heat source. With increasing distance from this sou
the temperature decreases and reaches its initial value.
heating zone of the glass and also the maximum increas
the heating time increases.

Errors in calculating the change in the refractive ind
are associated with the assumption that the object is ho
geneous along the line of observation. These errors cann
estimated without making additional measurements.

The precision of this method of holographic interferom
etry in determining the temperature can be calculated as
lows. For a fringe shift of 1/100 and an object of thickne
1 cm formula~3! givesDn50.6331026, which corresponds
to a temperature change of 6.631023 °C. For the estimates
we use data for water in the temperature range 20–25 °C9

CONCLUSIONS

Holographic interferometry has significant advantag
over other methods of investigations since it is a noncon
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method and introduces no perturbations into the object
can also be used to calculate the characteristics of a pro
at almost any observable point with a high degree of ac
racy. However, the process of obtaining quantitative inf
mation by analyzing interference fringes is laborious and
this stage some of the accuracy characteristic of the me
is lost. This study makes it possible to use holographic in
ferometry to obtain the quantitative characteristics of so
processes.

Advantages of this algorithm are that few parameters
required and some of them can be predetermined for a
cific optical system and do not require subsequent correct

To conclude, the authors would like to thank L. M
Malkhasyan and V. M. Levushkin for assistance with the
studies.
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Generation of electromagnetic waves by relativistic electrons in a cavity with crossed
radial electrostatic and axial magnetic fields under plasma resonance conditions

Yu. V. Kirichenko

National Scientific Center, Kharkov Physicotechnical Institute, 310108 Kharkov, Ukraine
~Submitted September 29, 1998!
Zh. Tekh. Fiz.69, 112–114~June 1999!

A theoretical analysis is made of the conditions for generation of electromagnetic waves by a
thin cylindrical layer of relativistic electrons rotating in crossed axial magnetic and radial
electrostatic fields in a cylindrical cavity. A dispersion equation is obtained to describe the
interaction between waves and electrons under plasma resonance conditions. The
dependence of the growth rates on the relativistic factor and the magnetic field are studied.
© 1999 American Institute of Physics.@S1063-7842~99!02106-6#
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Interest in studying the dynamics of charged particle m
tion in a cylindrically symmetric electrostatic field has be
stimulated by various practical applications of systems s
as Geiger–Mu¨ller counters, electrical filters for pollutan
gases, ion–plasma pumps, high-pressure gas-disch
meters, millimeter wave generators, and so on. The poss
ity of energy exchange between nonrelativistic electrons
tating in crossed fields and an electromagnetic wave
analyzed theoretically in Refs. 1 and 2 where the auth
showed that one mechanism responsible for the generatio
electromagnetic waves is plasma resonance. An increas
the electron velocity to relativistic levels could substantia
increase the oscillation frequency as far as the submillim
range. A longitudinal magnetic field increases the fo
keeping the electrons in an orbit which can increase not o
the electron velocity but also their density. This last fact c
increase the oscillator power and the wave growth rates

We shall consider a cylindrical metal cavity unbound
along thez axis ~using ther, w, z cylindrical system of co-
ordinates! along which a magnetic fieldB0 is directed. A
cylindrical layer of electrons rotates about the cylinder a
on which a metallic charged filament is located. The inter
radius of the cavity isb and the filament radius isa (a!b).
The relativistic electrons are confined on equilibrium circu
orbits by the crossed magnetic fieldB0 and the radial elec-
trostatic field of the filamentE0(r ). We shall neglect the
constant self-induced magnetic and electric fields of the e
tron layer. We shall assume that the system is homogen
along thez axis. We shall determine the dependence of
the variables onw and the timet using the factor exp@i(mw
2vt)#, wheremÞ0 is an integer andv is the complex fre-
quency. The analysis will be performed in the hydrodynam
approximation. The equilibrium unperturbed electron velo
ity is given by

v0~r !5
1

2
vcr 1

1

2
qS vc

2r 21
4E0~r !er

meg
D 1/2

, ~1!
7091063-7842/99/44(6)/3/$15.00
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wherevc5eB0 /megc, g51/(12v0
2(r )/c2)1/2, c is the ve-

locity of light, 2e,0, andme are the electron charge an
mass, andq561.

The unperturbed density of the cylindrically symmetr
electron layern0(r ) is nonzero between the surfacesr 5r 2

and r 5r 1 , i.e., n0(r )50 for r<r 2 and r>r 1 (a,r 2

,r 1!b). The approximation of a thin electron layer implie
that

dr

r 2
!1, ~2!

wheredr 5r 12r 2 .
Using the linearized Lorentz equation and equation

continuity, together with the Maxwell equations we obtain
differential equation in the regionr 2,r ,r 1 for Ew which
is the azimuthal component of the wave fieldE

d

dr H c2

rv r1
S 12

V2

g3wr
D d

dr
~rEw!1

vdV2~mc22v0vr

g3rwrwr1vm

EwJ
52

V2vg~mc22v0vr !

gvmr 2wrwr1

d

dr
~rEw!

2H 12
V2

g3wr

1
V2vd

g3wrvm
2 S v082

v0

r
1

V2vgvm
2

gwrwr1
D J Ew ,

~3!

where wr5vm
2 1wr0 , wr15v22m2c2/r 22vm

2 V2/gwr ,
wr05(vg1v0 /r 2v08)vd , vd52v0 /r 1(g222)vc

1ev0E0g/mec
2, vg5vc22v0 /r 1ev0E0 /megc2, V2(r )

54pn0(r )e2/me , andvm5v2mv0 /r .
A plasma resonance occurs when the frequency of

electromagnetic field is close to the frequency of the natu
longitudinal local oscillations of the electrons in the labor
tory frame, i.e., subject to the condition
© 1999 American Institute of Physics
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g3w~v!.V2~r !. ~4!

Condition ~4! yields an approximate expression for th
real part of the resonance frequency

Re~v!.vp ,

where

vp5
mv0

r
6Dvp , Dv5S V2~r !

g3
2wr0D 1/2

. ~5!

Integrating Eq.~3! over r and neglecting terms highe
than the first order of smallness with respect to the param
dr /r 2 , we obtain boundary conditions forEw and
d(rEw)/dr ~a similar method was used in Refs. 1–6!.
MatchingEw andd(rEw)/dr at the layer boundaries with th
corresponding values in vacuum and taking into account
resonance condition~4!, we obtain a very complex disper
sion equation. In order to analyze this equation at least qu
tatively, we express the BesselJm and NeumannNm func-
tions of the argumentsx15va/c and x5vr 2 /c contained
therein as a series in powers of the arguments, confin
ourselves to the first terms of the expansion. In the functi
Jm(x2) andNm(x2) (x25vb/c) we confine ourselves to th
first terms of the asymptotic expansion. In accordance w
the condition~2!, we shall seek a solution of the dispersio
equation in the formv5v (0)1v (1), uv (1)u!v (0), where
v (0) are the natural frequencies of the cavity in the abse
of electrons. The dispersion equation describing the pla
resonance in a homogeneous electron layer finally has
form

~dv!21~ in2Dnp!1Dp
250, ~6!

Dp
252

c2px0
2m̄21vp@m̄7uv0ug2r 2Dvp /c2#2«2~r 2!dr

r 2
2 22m̄12m̄! 2h4m̄ Re~vm!bg5

3~vdd02h2m̄21!2, ~7!

d05
sign~v0!m̄~h2m̄21!

@m̄7uv0ug2r 2•Dvp /c2# Re~vm!
, ~8!

Dnp.v (0)2vp1Dn , ~9!

where dv5v2vp , x05k0r 2 /c, k05v (0)/c, «(r 2)
5V(r 2)c/r 2 , h5r 2 /a, m̄5umu; the term in in Eq. ~6!
takes into account phenomenologically the losses cause
absorption in the walls and radiation from the cavity, and
term Dn in Eq. ~9! allows for the frequency shift caused b
these losses; in formulas~7! and~8! the 7 signs correspond
to the6 signs in formula~5!.

Since Im (v)5 Im (dv), the condition Im (dv).0 cor-
responds to oscillations which increase in time. These s
tions of Eq.~6! are obtained forDp

2.0 or, as follows from
Eq. ~7!, when

v0.vph, vph5
Re~v!r 2

m
, ~10!

vph is the phase velocity of the wave near the electron lay
It follows from Eqs.~6! and~7! that when condition~10!

is satisfied, the wave may become damped. However, un
er
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Cherenkov resonance,1,2 the decrement of this wave is no
equal to the growth rate. In the most general case, it follo
from Eq. ~6! that for Dnp

2 ,4Dp
2 , when the differenceuv (0)

2vpu or the frequency shiftDn are small, unstable solution
may be obtained in the absence of losses (n50). However,
when Dnp

2 .4Dp
2 the losses cause instability. Ifu in2Dnpu

@uDpu, the growth rate is given by Im(v)5nDp
2/(n2

1Dnp
2 ) and has a maximum in terms ofn.
On considering an inhomogeneous electron layer,

shall assume that the functionV2(r ) is Gaussian with a
maximum atr 5r m . The plasma resonance condition~4! will
be satisfied for two values of the radial coordinater 5r 1 and
r 5r 2(r 2,r 1,r m,r 2,r 1). Finally, the growth rate is
given by

Im~v!52n2sign~Re~vm!!

3
p2hx0

2m̄21vp@m̄7uv0ug2r 2•Dvp /c2#2

22m̄11m̄! 2bg2h4m̄

3~vdd02h2m̄21!2, ~11!

where

h5
V2~r 1!

]V2/]r ur 1
2]~g3wr !/]r ur 1 ,vp

2
V2~r 2!

]V2/]r ur 2
2]~g3wr !/]r ur 2,vp

. ~12!

In our particular case when u]V2/]r ur 1,2

@u](g3wr)/]r ur 1,2vp
, it can be seen from Eq.~11! and ~12!

that oscillation accompanying plasma resonance in an in
mogeneous electron layer occurs when condition~10! is sat-
isfied. Unlike the case of a homogeneous layer, the insta
ity is a threshold process and occurs when the second ter
Eq. ~11! is greater than the first. For a homogeneous la
expression~5! gives the formula for the frequency of th
generated wave

Re~v!.
c

r 2
H m̄~g221!1/2

g
2

1

g2
~«2g1g2~g221!

1@~g221!1/22sign~v0!«1#2!1/2J , ~13!

where«15vcr 2g/c.
For an inhomogeneous electron layer the frequency

which the resonance condition~4! is satisfied depends on th
coordinater which varies in the ranger 2<r<r m ~or r m

<r<r 1). Hence the generated frequencies will lie in t
range



ly

ro
us

ance
ron

ve
o-

r

ro-

.

.

.

711Tech. Phys. 44 (6), June 1999 Yu. V. Kirichenko
c

r 2
H m̄~g221!1/2

g
2

1

g2
~«m

2 g1g2~g221!

1@~g221!1/22sign~v0!«1#2!1/2J <Re~v!<
c

r 2

3H m̄~g221!1/2

g
2

1

g2
~g2~g221!

1@~g221!1/22sign~v0!«1#2!1/2,J , ~14!

where«m5maxr «(r).
It can be seen from conditions~13! and~14!, where con-

dition ~10! is taken into account, that generation can on
occur whenm̄.1. For largeg the range~14! becomes nar-
rower and the generated frequency will be

Re~v!.
c~m̄21!

r 2
. ~15!

The frequency~13! also tends toward~15! for large g.
The growth rate for an inhomogeneous layer, which is p
portional to (h/b), is smaller than that for a homogeneo
-

layer, which is proportional to (dr /b)1/2. In the first case,
however, the generation has the advantage that the reson
conditions are not violated when the radius of the elect
orbit varies.

We also analyzed the case of an axisymmetric wa
whenm50. We found that for both homogeneous and inh
mogeneous electron layers Im (v),0 which corresponds to
damped oscillations.

The author would like to thank V. V. Dolgopolov fo
useful discussions of the results.
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A classical method is used to obtain dispersion equations for the vibrations of twinning-boundary
atoms. © 1999 American Institute of Physics.@S1063-7842~99!02206-0#
a-
in

b

g

ar
te
s
n
w

o
al
to

t

ke
it

po
th

re

em

g

ry

g-
1. Twinning is one of the main types of plastic deform
tion in crystals. Hence, its study from the scientific viewpo
is of major importance because for many materials~such as
Bi, Zn, Sb, TiAl, and silicon iron! plastic deformation in
specific crystallographic directions is accomplished solely
twinning. Despite a vast amount of experimental data,1–3 the
problem of constructing a logical theory of crystal twinnin
has yet to be resolved.

The dynamic characteristics of twinning boundaries
decisive factors in studying the physical relationships de
mining the twinning-induced plastic deformation of solid
In the present paper we study the dynamics of the vibratio
motion of twinning-boundary atoms from the point of vie
of the microscopic theory of twins.2

2. At present, an expression describing the vibrations
a chain of atoms of like massM has now become a classic
result4 in solid-state physics and in this form it is used
simulate a one-dimensional crystal lattice

v52Ab

M UsinS aq

2 D U, ~1!

wherev is the frequency of the atomic vibrations,q is the
wave vector,a is the distance between the atoms, andb is a
constant.

Using the method applied to obtain formula~1!, we can
calculate the dependence ofv on q for an atom situated a
the twinning boundaryA1A2 ~Fig. 1!.

3. We shall analyze a crystal consisting of atoms of li
massM. We shall assume that each atom only interacts w
neighboring atoms. In the harmonic approximation the
tential interaction energy of these atoms is related to
distancex between them by

U~x!;x2. ~2!

The interaction forcef between the atoms is therefo
directly proportional tox.

We relate the origin of the Cartesian coordinate syst
to a twinning-boundary atom~Fig. 2!. The position of this
atom on theX axis will be denoted byxn . The positions of
atoms1 and2 on this axis will be denoted byxn21 cosa and
xn11 cosa, wherea is the twinning angle. The force actin
on the twinning-boundary atom will then be given by

f n5 f n111 f n215b~xn11 cosa1xn21 cosa22xn!,
~3!
7121063-7842/99/44(6)/3/$15.00
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where f n11 is the force acting on the twinning-bounda
atom from atom1 ~Fig. 2! and f n21 is the force from atom2.

In this case, the equation of motion for the twinnin
boundary atoms will have the form

Mẍn5b~xn11 cosa1xn21 cosa22xn!. ~4!

We shall seek a solution of Eq.~4! in the form

xn5x0ei (vt2naq), ~5!

where x0 is the amplitude of the vibrations andn is the
number of the atom.

The position of neighboring atoms numberedn11 and
n21 on thex axis at timet can obviously be given by

xn115x0ei (vt2(n11)aq), ~6!

xn215x0ei (vt2(n21)aq). ~7!

Substituting Eqs.~5!–~7! into Eq. ~4! gives a solution
which we write as the dependence ofv on q

v25
2b

M
~12cos~aq!cosa! ~8!

or

v562Ab

M S sin2S aq

2 D1cos~aq!sin2
a

2 D . ~9!

FIG. 1. Schematic ofA1A2 twinning boundary.
© 1999 American Institute of Physics
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A comparison of Eqs.~1! and ~9! indicates that these
formulas differ in respect of the term in the radican
cos(aq)sin2(a/2). In the limiting case whena50, expression
~9! gives formula~1!.

Figure 3 gives the dependences

v

2
AM

b
5

v

2
AM

b
~aq!

for the vibration of a twinning-boundary atom along theX
axis for various twinning anglesa between zero and 40°
Table I gives the values of sin2(a/2) in Eq. ~9! for given
values ofa.

FIG. 2. Twinning-boundary atom surrounded by neighboring atoms.
:

It can be seen from Fig. 3 that an increase in the tw
ning anglea leads to ‘‘truncation’’ of the low frequencies
and reduces the frequency range of the vibrations of
twinning-boundary atoms.

4. Along thex axis, the nearest atoms1–4 will exert the
force

Fn5Fn111Fn2112F

5b~yn111yn21~112 sina!22yn!, ~10!

on the twinning-boundary atom, whereFn11 is the force
acting on the twinning-boundary atom from atom3, Fn21 is
the force from atom4, andF is the force from atoms1 or 2.

In this case, the equation of motion has the form

Mÿn5b~yn111yn21~112 sina!22yn!, ~11!

whose solution will be sought in the form

yn5y0ei (Vt2nbq), ~12!

TABLE I.

a
sin2

a

2
sina

0 0.000 0.0
10 0.008 0.2
20 0.030 0.3
30 0.070 0.5
40 0.100 0.6
FIG. 3. Dependences of
v

2
AM

b
on aq:

a50 ~1!, 10 ~2!, 20 ~3!, 30 ~4!, and 40°
~5!.
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FIG. 4. Dependences of
V

2
AM

b
on bq:

1–5 — as in Fig. 3.
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whereV is the frequency of the atomic vibrations along t
y axis andb is the distance between the atoms along t
axis.

In this case, the solution of Eq.~11! may be written

V25
2b

M S 2sin2S bq

2 D2cos~bq!sina D ~13!

or

V562Ab

M S sin2S bq

2 D2
1

2
cos~bq!sina D . ~14!

This relation differs from Eq.~1! in respect of the term
in the radicand:2(1/2)cos(bq)sina. As in the previous case
@see formula~9!#, Eq. ~14! gives formula~1! for a50.

Figure 4 shows a graph of

V

2
AM

b
5

V

2
AM

b
~bq!.

In this case, an increase in the twinning angle leads to
appearance of an additional maximum at the boundarie
the Brillouin zone and increases the range of vibration f
quencies of the twinning-boundary atom.
s

e
of
-

Note that when plotting the graph in Fig. 4, we impos
the constraint that the radicand in Eq.~14! should be greater
than zero.

5. To sum up, a classical method has been used to
culate the dispersion dependence of the vibrations
twinning-boundary atoms. An increase in the twinning an
leads to a decrease in the frequency range of the vibration
a twinning-boundary atom perpendicular to the twinni
boundary and increases this range for vibrations paralle
the twinning boundary.
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A theoretical analysis is made of the propagation of a nonlinear surface magnetostatic wave in a
planar ferrite semiconductor structure as a function of the carrier concentration in the
semiconductor layer. It is shown that for certain concentrations the surface magnetostatic wave is
unstable with respect to longitudinal perturbations and may propagate perpendicular to the
magnetic field in the form of solitons. ©1999 American Institute of Physics.
@S1063-7842~99!02306-5#
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Recently considerable interest has been shown in stu
ing envelope solitons of magnetostatic spin waves in t
ferromagnetic films.1–4 So far, the conditions for the exis
tence and formation of solitons have been stud
theoretically1,2 and the propagation of magnetostatic wav
pulses in the form of solitons has also been obser
experimentally.3 However, nonlinear surface magnetosta
waves ~SMSWs! in ferrite semiconductor structures hav
been studied considerably less.

In the present paper we show that it is theoretically p
sible for SMSW solitons to exist in a planar ferrite semico
ductor structure. The SMSWs propagate along theY axis
perpendicular to an external magnetic fieldH0 directed along
the Z axis parallel to the surface of the structure.

The initial equations for studying nonlinear surface sp
waves in a ferrite semiconductor structure are the Maxw
equations, the Landau–Lifshitz equation in the magnetost
approximation for a ferrite layer, and also the Maxwell equ
tions and the Lorentz equation for a semiconductor layer

During the propagation of SMSWs, the role of nonli
earity is manifested as a dependence of the frequency
phase velocity on the wave amplitude. Assuming that
amplitudew is a slowly varying function, the nonlinear dis
persion equation for the SMSWs may be formally written
the form:1 G(v,k,uwu2)50, wherev is the carrier frequency
and k[k(v) is the SMSW wave vector. Since the nonli
earity is assumed to be weak, the deviation of the freque
v from v0 to v01V, V!v0 and the changes ink compared
with the wave vectork0 of the linear equation will be small
After expandingk(v) aboutk0(v0) as a series in terms o
(v2v0), we obtain the nonlinear Schro¨dinger equation1,4

i
dA

dy
2

b2

2

d2A

dt2
1guAu2A50, ~1!

whereb25d2k/dv2uv0
is the dispersion of the linear grou

velocity calculated at the point k0(v0) and g
5dk/duAu2uA50,v0

is the nonlinear coefficient.
A necessary condition for the formation of an envelo

soliton is that the Lighthill criterion5 b2g,0 is satisfied.
The dispersion equation for a linear SMSW propagat

in a ferrite semiconductor structure has the form6
7151063-7842/99/44(6)/3/$15.00
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e22kd5
~m21k!~dm11k!tanh~kst !1~m11k!Ad

~m12k!~dm22k!tanh~kst !1~m22k!Ad
. ~2!

Herem15k(m6ma), ks
25dk2, k5k11 ik2 , d and t are the

thickness of the ferrite and semiconductor layer, resp
tively, m andma are the diagonal and off-diagonal elemen
of the magnetic permeability tensor of the ferrite allowin
for losses. The value ofd determines the characteristics
interaction between the SMSW and the semiconductor la
and in this case, may be written in the form

d512
v«zz

k2c2
, ~3!

where«zz5«zz
e 1«zz

h , «zz
e(h) is an element of the permittivity

tensor of the semiconductor in the magnetic fieldH0

«zz
e 5«sS 12

vp
2

v21n2
1 i

vp
2n

v~v21n2!
D , ~4!

where«s is the permittivity of the semiconductor caused
the contribution of the lattice,n is the electron collision fre-
quency,vp5(4pe2N/m* «s)

1/2 is the plasma frequency, an
N is the electron concentration.

For the cased51 Eq. ~2! gives the Damon–Eschbac
equation. In order to determine the coefficient of nonlinear
g we shall assume that for small deviations of the magn
zation from the equilibrium state

Mz>M0S 12
uMxu21uM yu2

2M0
2 D ,

where M0 is the saturation magnetization andMi are the
components of the variable magnetization (i 5x,y,z).

Then, in the limit kd!1, we haveMz>M02M0uwu2

and vm>vm(12uwu2) ~Refs. 1 and 4!. Substituting these
expressions into Eq.~2! we obtain

g52
dG

duAu2
Y dG

dk
,

dG

duAu2
5ADa2BCa ,
© 1999 American Institute of Physics
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A5
1

2
@d1Ad1~Ad2d!exp~22kst !#,

B5~12d!~12exp~22kd!!/4,

Da5vm~vn1vm~12exp~22kd!!/2!,

Ca5vm~vh2v!/2,

dG

dk
5AkD1ADk2~BkC1BCk!,

D5v0
22

vm
2

4
~12e22kd!,

C5v0
21

vm

2
~v1vh!~12e22kd!, ~5!

whereAk , Bk , Ck , Dk , anddk are derivatives with respec
to k, andv0

25vh
21vhvm .

Using

dv

duAu2
5ng

dk

duAu2

and substitutingd51, dk50, k50, andv5v0 into Eq. ~5!,
we obtaindv/duAu25vmvh/2v0, which agrees with the dat
given in Ref. 1 to within a factor.

We know that solitons can occur as a result of longi
dinal and transverse modulational instability. The first is o
served as self-modulation and the second as self-focus
Self-focusing of SMSWs in a ferrite film without losses w
studied by Zvezdin and Popkov,1 who showed that an
SMSW propagating perpendicular to the magnetic field
stable with respect to longitudinal perturbations. Boardm
et al.2 showed that an SMSW propagating at an angle to
magnetic field is unstable with respect to longitudinal pert
bations, which leads to the formation of SMSW envelo
solitons.

It can be seen from the data plotted in Fig. 1 for ferr
semiconductor films that a SMSW is unstable with respec
longitudinal perturbations even when it propagates norma
the magnetic field. Calculations were made neglecting
losses for values of the parameters corresponding to thos
iron yttrium garnet films and a CdSe semiconduct
4pM051750 G,H5960 Oe, hole mobilitymh550 cm2/V s,
electron mobility me5650 cm2/V s, d50.002 cm, and t
50.0002 cm.

Figure 1 shows that for an isolated ferrite film (d51)
the SMSW is stable with respect to longitudinal perturb
tions. In the presence of a semiconductor layer, a region
existence of envelope solitons appears from low carrier c
centrations and this extends over the entire region of e
tence of the SMSW as the concentration increases.

Allowance for losses in the ferrite and the semiconduc
yields more complex frequency dependences of the SM
group velocity dispersion and the nonlinear coefficient
various carrier concentrations in the semiconductor~Fig. 2!.
Figure 2 gives the calculated products of the real parts ofb2

andg. It can be seen that at low concentrations the Light
-
-
g.
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W
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ll

criterion is satisfied over a narrow range in the lo
frequency part of the spectrum. An increase in concentra
causes the region of existence of SMSW solitons to dis
pear. A further increase in concentration leads to the re

FIG. 1. Product of group velocity dispersion and nonlinear coefficient a
function of frequency for an isolated ferrite film~1! and a ferrite–
semiconductor structure with electron concentrations of 1016 ~2!, 1017 ~3!,
1018 ~4!, and 1019 cm23 ~5!.

FIG. 2. Product of group velocity dispersion and nonlinear coefficient a
function of frequency for a ferrite–semiconductor structure with elect
concentrations of 1016 ~1!, 1017 ~2!, 1018 ~3!, 1019 ~4!, and 1020 cm23 ~5!.
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pearance of this region which then expands over almost
entire SMSW frequency range asN increases. Note that Fig
2 gives values for whichk2.220 cm21. Thus, these data
show that in planar ferrite semiconductor structures
SMSW is unstable relative to longitudinal perturbations.

We shall estimate the threshold SMSW power nee
for soliton formation which is defined asuwu252b2 /gt,
wheret is the pulse duration. Using an asymptotic expr
sion for the SMSW power1,4 P5pLd2vM2uwu2 ~whereL is
the structure width!, we find that for the parameters used a
N51018cm23, v54.6 GHz, andt5831027 s the threshold
power for soliton formation isP517 mW.
e

n

d
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A refinement is made to calculations of the microwave energy storage efficiency in a cavity.
© 1999 American Institute of Physics.@S1063-7842~99!02406-X#
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The optimum input coupling coefficientb corresponding
to the maximum energy storage efficiencyh for given input
pulse lengtht i is usually determined using the well-know
formula

b5~2.512tp!/t i21, ~1!

which is derived from the expression for the stora
efficiency1

h54btp~12exp~2t i~11b!/2tp!!2/~~11b!2t i !, ~2!

wheretp is the power time constant of the cavity.
Differentiating h with respect tox5t i /tp , expression

~2! gives the condition for maximumh in terms of x for
given b

exp~z/2!511z, ~3!

wherez5(11b)x, which yields formula~1!.
For instance, forb51 formula~1! gives the well-known

optimum t i51.256tp for which the storage efficiency is ap
proximately 0.41. However, this does not imply that wh
the input pulse length is 1.256tp , the maximum efficiency
corresponds to the critical couplingb51. It is easy to see
from formula~2! that in this case, the maximum efficiency
obtained forb satisfying the equation

exp~z/2!511zb/~b21!. ~4!

In this case, the solution of Eq.~4! is b'2.5 and the
storage efficiency is then'0.515.

Figure 1 gives the storage efficiency as a function ob
for x51.256tp and as a function ofx for b51.
7181063-7842/99/44(6)/1/$15.00
Thus, formula~1! can only be used to find the optimum
input pulse length for a given input coupling coefficient a
formula ~4! must be used to determine the optimum coupli
for a given input pulse length to avoid errors.

1S. V. Baraev and O. P. Korovin, Zh. Tekh. Fiz50, 2465 ~1980! @Sov.
Phys. Tech. Phys.25, 1444~1980!#.

Translated by R. M. Durham

FIG. 1. Storage efficiency as a function of input coupling coefficientb for
a fixed normalized input pulse lengthx and as a function of pulse lengthx
for fixed couplingb.
© 1999 American Institute of Physics
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The position of the image is calculated as a function of the position of the object~tubular beam!
for an electrostatic system consisting of two coaxial cylinders and an end diaphragm with
an annular slit. ©1999 American Institute of Physics.@S1063-7842~99!02506-4#
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In an earlier study1 we determined the operating cond
tions of a coaxial cylindrical lens~CCL! consisting of two
cylinders and a planar diaphragm on the charged par
entry side which focuses a tubular beam onto the axis of
lens. The cardinal elements of the image space were ca
lated numerically. For these we obtained simple numer
formulas which give an accuracy better than 25% and
convenient for engineering calculations.2

The aim of the present study is to calculate the load
characteristics of a CCL~the position of the image as a func
tion of the position of the object!. In addition, the authors
show that a CCL with a tubular beam focused onto the a
satisfies the classical lens formula which is well-known
optics as the Newton formula.

A coaxial cylindrical lens with the front end closed by
diaphragm and the rear end open belongs to a class of le
for which the cardinal elements of the object and ima
space differ in magnitude. This is because no field exist
the object space whereas a field does exist in the image s
and at a distance from the lens greater than its apertur
becomes homogeneous.3 The calculations were made nu
merically using a program developed by the authors for e
trostatic electron-optics systems possessing rotational s
metry. The CCL geometry was selected on the basis
previous studies made by the authors: the ratio between
radii of the external and internal cylinders wasR/r52–100,
the gap between the input diaphragm and the external cy
der wass/R50.1 and the length of the lens wasl 5R. A
working voltageV is applied to the external cylindrical elec
trode with the internal electrode and the diaphra
grounded. For this geometry and power supply the tubu
beam is focused onto the axis of the lens over the en
range of variation of the distance between the rear edg
the lens and the image.

Figure 1 shows a schematic of the CCL and its cardi
elements for the object space as a function of the excita
of the lensg5eV/«, wheree is the particle charge and« is
the energy. We used numerical calculations to obtain emp
cal formulas for the cardinal elements of the object space:
focal lengthf 0, the position of the principal planeh0, and the
initial radius r i of the family of central beam trajectories o
the side of the image space, about which the focusing ta
place

f 0 /R52@~12r/R!/g20.3#,
7191063-7842/99/44(6)/3/$15.00
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h0 /R50.3 ~g2111.1Ar/R!,

r 1 /R50.2~1.5r/R21!g10.4Ar/R10.65. ~1!

The crosses in Fig. 1 give the values calculated using
formulas~1!. It can be seen that these differ negligibly fro
the numerical calculations.

FIG. 1. Cardinal elements of the object space of a CCL of lengthl 5R: focal
length~solid curves!, position of principal plane~dashed curves!, and entry
radius of axial beam trajectories~dot-dash curve! for various ratios of the
radii of the external and internal cylinders:R/r52 ~1!, 10 ~2!, and 100~3!.
© 1999 American Institute of Physics
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FIG. 2. Position of the image~solid
curves! and radius of the central beam
trajectories on entry to the lens~dashed
curves! as a function of the position of
the object for various excitations of a
lens havingR/r510 and l 5R: g51.0
~1!, 0.75 ~2!, 0.5 ~3!, 0.25 ~4!.
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It is of practical interest to obtain the loading charact
istics of the lens which determine the relationship betwe
the position of the object and its image. By varying the d
tance between the object and the entrance to the lensa for a
specific lens power, we determined the distance between
exit and the imageg for axis–axis focusing. It should b
noted that in this case, the radius of the central beam tra
tories at the entrance to the lens, about which the beam
focused, depends on the position of the object. This radiur a

was also determined numerically and the results of the
culations are given in the form of graphs and tables.

Figure 2 gives the loading characteristics of a CCL w
the typical geometryR/r510 and l 5R ~solid curves! and
also the corresponding values of the radiusr i ~dashed
curves!. Table I~upper line! gives the loading characteristic
for a CCL withR/r52 andl 5R while Table II ~upper line!
gives those forR/r5100 andl 5R. All the geometric pa-
rameters are given in units of the external cylinder radiusR.
-
n
-

he

c-
is

l-

TABLE I. R/r52, l 5R.

g 0.1 0.2 0.3 0.4

a g ra g ra g ra g ra

` 7.9 0.88 3.3 0.84 !.8 0.82 1.1 0.80
8.0 0.89 3.2 0.86 1.7 0.83 0.90 0.8

15 20.1 0.88 5.0 0.84 2.4 0.82 1.4 0.7
21.1 0.89 4.7 0.86 2.1 0.83 1.1 0.8

10 64.0 0.86 6.3 0.84 2.8 0.82 1.6 0.7
83.3 0.88 5.9 0.86 2.4 0.83 1.2 0.8

5 ••• ••• 17.5 0.83 4.8 0.82 2.3 0.78
18.3 0.84 3.8 0.82 1.6 0.80

3 ••• ••• ••• ••• 15.2 0.78 4.2 0.77
9.2 0.81 2.5 0.78

2 ••• ••• ••• ••• ••• ••• 13.0 0.74
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It should be noted that substituting these numerical value
the focal lengths of the object and image spaces into
classical formula reveals good agreement with the numer
values plotted on the graph and given in the tables. Exc
tions are the operating regimes where the focal length
smaller than the lens aperture, when the focus falls within
strong field. In this case, the Newton formula cannot be
plied, as is the case for all other lenses.

On the basis of the numerical calculations, we obtaine
simple empirical formula for the radius of the central bea
trajectories

r a5r 020.05@311/Ln~r/R!#/a, ~2!

wherer 0 is the initial radius of the central trajectories of
beam parallel to the axis on entry to the lens (a→`) for
which we derived an empirical formula in Ref. 2.

TABLE II. R/r5100, l 5R.

g 0.25 0.5 0.75 1.0

a g ra g ra g ra g ra

` 6.7 0.58 2.5 0.56 1.1 0.52 0.46 0.4
5.8 0.56 2.2 0.52 0.94 0.48 0.49 0.4

15 14.3 0.58 3.5 0.56 1.4 0.51 0.59 0.4
11.8 0.55 2.9 0.51 1.2 0.48 0.58 0.4

10 29.4 0.58 4.2 0.56 1.6 0.51 0.66 0.4
21.7 0.54 3.4 0.51 1.3 0.47 0.62 0.4

5 ••• ••• 8.6 0.54 2.3 0.50 0.90 0.46
6.8 0.49 1.9 0.46 0.78 0.42

3 ••• ••• ` 0.51 4.8 0.47 1.4 0.44
0.47 3.1 0.43 1.1 0.40

2 ••• ••• ••• ••• 10.7 0.44 1.9 0.42
8.3 0.41 1.6 0.38

1 ••• ••• ••• ••• ••• ••• 7.7 0.33
8.6 0.31
of
e
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a

The values ofr a calculated using formula~2! are indi-
cated by the crosses in Fig. 2 and are given in Tables I an
~lower lines!. The maximum deviation between the empiric
values and the numerical calculations does not exceed 1

It is of considerable practical interest to demonstrate
possibility of using the Newton formula in which empirica
expressions are substituted for the cardinal elements of
CCL. We performed these calculations for the coaxial le
geometry indicated above using a refined empirical form
for the focal length of the image space

f i /R51.9~12r/R!/g21.0. ~3!

The results of the calculations are presented in Tabl
and II ~lower lines! and are shown by the crosses in Fig. 2.
can be seen that in the region of existence of a real ima
the Newton formula is satisfied to within at least 25%~Fig.
2!. The accuracy of determining the position of the image
a given position of the object deteriorates as the object
proaches the focus of the lens because of the specific fea
of the Newton formula.

To sum up, we have calculated the loading characte
tics of an electrostatic lens consisting of two coaxial cyl
ders and an adjacent planar input diaphragm under co
tions of point-to-point focusing. The calculations were ma
by computer and using empirical formulas. It was shown t
the classical lens formula is satisfied for a CCL having t
geometry.

1L. P. Ovsyannikova and T. Ya. Fishkova, Pis’ma Zh. Tekh. Fiz22~16!, 39
~1996! @Tech. Phys. Lett.22, 660 ~1996!#.

2L. P. Ovsyannikova and T. Ya. Fishkova, Zh. Tekh. Fiz67~12!, 81 ~1997!
@Tech. Phys.42, 1444~1997!#.

3L. P. Ovsyannikova, S. V. Pasovets, and E. V. Shpak, Nucl. Instr
Methods Phys. Res. A298, 344 ~1990!.
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An analytic solution is proposed for a model problem which demonstrates the occurrence of a
surface flow of weakly conducting liquid in an electric field which was previously
observed experimentally by the author. ©1999 American Institute of Physics.
@S1063-7842~99!02606-9#
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Berezhnov and Semenov1 reported results of an exper
mental investigation of a new type of surface flow observ
at the free surface of a weakly conducting liquid in a sta
electric field. They established that unlike the electroca
lary motion of mercury droplets,2 in this effect the surface
velocity is proportional to the square of the voltage betwe
the electrodes. In the present paper the existence of thi
fect is demonstrated analytically.

We shall assume that an infinite air bubble of radiusR is
located inside an infinite cylinder of radiusb filled with a
weakly conducting liquid~planar problem!. The axes of the
cylinder and the bubble are the same. We shall assume th
the surface of the cylinder the potential distribution is d
scribed byU0 cosw, wherew is the angle in the polar coor
dinate system (r ,w) measured from thex axis, perpendicular
to the cylinder axis, andU0 is the characteristic potentia
difference. Since the conductivity of air and liquid differ,
free charge forms at the free surface of the liquid which c
be determined by solving the following problem in the a
proximation of weakly conducting air:

Duj50, j 51,2,

r 5b: u25U0 cosw,

r 5R: u15u2 ,

s
]u2

]r
52ssDsu21divs~vst!2¹sss¹su2 ,

4pt5
]u1

]r
2«

]u2

]r
. ~1!

Here u1 and u2 are the potential in the bubble and in th
liquid, s and « are the conductivity and the permittivity o
the liquid, respectively,ss is the surface conductivity,Ds is
the surface Laplacian,vs is the surface velocity,¹s is the
surface gradient, andt is the free surface charge. When cu
rent flows, the component of the electric field strength t
gential to the free surface is nonzero. As a result, a force
act on the free surface charge which is responsible for
onset of surface flow. We shall find the steady-state velo
of this flow in the approximation of low Reynolds numbe
assuming that the free surface is nondeformable and the
cosity of the air is low. For this case we have the followi
equations:
7221063-7842/99/44(6)/2/$15.00
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div v50, 2¹p1hDv50,

r 5b: v50,

r 5R: vn50, s i ,knk5tEi , ~2!

wherev is the velocity in the liquid,Ei is the strength com-
ponent tangential to the free surface,h is the viscosity of the
liquid, s i ,k is the viscous stress tensor,p is the pressure, and
n is the unit vector of the normal.

After dedimensionalizing (r→R, u→U0 , v→U0
2/

4pRh, t→U0/4pR, ss→ss /sR, b→b/R) assuming that
the surface current induced by the Ohmic conductivity
much smaller than the current produced by the surface fl
we have

Duj50, j 51,2,

div v50, Dv5¹p,

r 5b: u25cosw, v r50, vw50,

r 51: u15u2 ,
]u2

]r
5bvw¹wt, ~3!

t5
]u1

]r
2«

]u2

]r
,

v r50,
1

r

]v r

]w
1

]vw

]r
2

vw

r
5tEw ,

b5
U0

2

16p2R2hs
. ~4!

Solving the problem~3! and~4! by expanding as a serie
in powers ofb (b!1) we find the velocity at the free sur
face of the liquid

vw
(s)5v0 sin 2w1~v1 sin 2w1v2 sin 4w!b1 . . . ,

v05
b2~b221!

2«~b211!3
,

v152
b4~b221!2~«b21«211b2!

4«3~b211!7
,

© 1999 American Institute of Physics
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v25
b4~b221!~«b61«12b622!~b1013b816b626b423b221!

16«3~b211!6~b611!~b812b614b412b211!
. ~5!
is

di

a

The solution~5! indicates that the surface velocity

proportional to the square of the characteristic potential

ferenceU0, which agrees qualitatively with the experiment

results obtained in Ref. 1.
f-

l

1V. V. Berezhnov and V. A. Semenov, Pis’ma Zh. Tekh. Fiz22~5!, 92
~1996! @Tech. Phys. Lett.22, 223 ~1996!#.

2V. G. Levich,Physicochemical Hydrodynamics@in Russian#, Academy of
Sciences of the USSR Press, Moscow~1952!, 553 pp.

Translated by R. M. Durham
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Influence of an internal getter in silicon on the parameters of Au–Si structures
V. K. Kiselev, S. V. Obolenski , and V. D. Skupov
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It is shown that internal gettering of impurities and defects in Au–Si structures can enhance their
reliability and stabilize their characteristics. ©1999 American Institute of Physics.
@S1063-7842~99!02706-3#
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Silicon–gold structures are extensively used as the b
for fabricating photoconverters~diodes and controllable
switches! and devices for measuring the physicochemical
rameters of external media, such as gas sensors. As in
types of semiconductor devices, the electrophysical, fu
tional, and reliability characteristics of Au–Si structures d
pend very strongly on the presence of accidental~back-
ground! impurities and other crystallographic defects in t
silicon substrate. Various gettering procedures are use
reduce the concentration of impurities and defects, of wh
internal gettering is held to be the most promising meth
for silicon.1 As yet, the positive capabilities of this compar
tively new method, especially for enhancing the radiat
resistance of devices, have not yet been fully identified. T
aim of the present study is to investigate the influence
internal gettering on the photoelectric properties of Au–
structures bombarded by moderate-energy protons.

The structures used for the investigations consisted
twenty elements arranged in an interdigital topology
dislocation-free Czochralski-grown KDB-12~001! silicon
crystals by thermal deposition of a gold layer followed
brazing. A 2mm layer of galvanic gold was grown on th
7241063-7842/99/44(6)/2/$15.00
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electrodes to lower the resistance. The width of the intere
trode region was 50mm. Data obtained by infrared absorp
tion spectrometry indicate that the oxygen content in the
tial substrates did not exceed 1.431018cm23 and the
average microdefect density established from selective e
ing patterns in a Sirtl solution was 1.43105 cm22. The x-ray
diffraction patterns of the initial crystals revealed a domina
~004! allowed peak according to the extinction conditions
silicon together with ‘‘forbidden’’ ~002! and ~006! reflec-
tions whose intensity is related to that of the main peak
I (002) /I (004)5331022 and I (006) /I (004)51.122.331022.
The appearance of these forbidden peaks indicates tha
initial samples contain regions of microstresses having
component normal to the reflecting surface.

Before the gold was deposited, one batch of substra
underwent internal gettering using a method describ
by Skupov.2 This involved irradiating the initial sample
with alpha particles from a210Po radionuclide source (E
54.5 MeV,F51011–1012cm22) to activate nucleation cen
ters and grow gettering inclusions during the subsequ
three-stage annealing in a dry nitrogen atmosphere: 6
1373 K, 12 h at 1073 K, and 8 h at 1373 K. The other batch
f
FIG. 1. Current–voltage characteristics o
Au–Si structures without illumination
~1–4! and with illumination (18–48): 1,
18 — control samples,2, 28 — after get-
tering, 3, 38 — control samples after pro-
ton irradiation, and4, 48 — after gettering
and proton irradiation.
© 1999 American Institute of Physics
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FIG. 2. Histogram showing the distribu
tion of the structures in terms of break
down voltage ~without illumination!:
1 — control samples,2 — control
samples after proton irradiation,3 — af-
ter gettering,4 — after gettering and
proton irradiation; N is the structure
number.
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substrates was not annealed and the structures on
served as controls. It should noted that when the elec
physical characteristics were measured for various con
samples, some stabilization of the resistance was obse
which showed up as an abrupt increase in current from a
to hundreds of microamperes when the voltage at the c
tacts was increased to 10–15 V. This effect indicates so
instability of the impurity-defect composition of the initia
substrates and the Au–Si transition region which is not co
pletely eliminated by conventional thermal brazing.

Some of the structures in each batch were irradiated b
proton dose of 6.2531011cm22 at increasing energies of 30
60, and 90 keV to suppress surface conduction channels
fore and after irradiation we recorded the current–volta
characteristics without illumination and under illuminatio
by 0.85mm 40 mW radiation.

The experiments showed that as a result of internal
tering in the surface zone 7–10mm deep, the microdefec
density decreased to 93103 cm22 and the density dispersio
decreased to 2.93103 cm22. The ~002! and ~006! forbidden
peaks disappeared on the x-ray diffraction patterns, i.e.,
level of microstresses in the crystals was reduced. In con
to the control samples, no instability of the electrical para
eters was detected at the initial time of measurement for
of the structures formed on the gettered substrates.

Figure 1 gives the current–voltage characteristics
these structures, which show that after gettering the re
tance increases and the structures reveal a more abrupt
sition to the prebreakdown state, both without illuminati
and under photoexcitation of nonequilibrium carriers. The
observations correlate with data on the dissolution of mic
defects under gettering and suggest that the main chan
for current flow and microplasma formation in the initi
em
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silicon are growth clusters and clusters of intrinsic point d
fects and impurities formed during the aggressive chem
treatment of the substrates, as well as their surrounding
purity atmospheres. Indirect confirmation of this may be p
vided by the increase in the resistance of the structures a
proton irradiation, when additional gettering processes m
be activated by radiation point defects and elastic wav3

Measurements using batches of fifty structures revealed
after gettering, the breakdown voltage increases by an a
age of 62% whereas after irradiation of the control sample
increases by 22%~Fig. 2!. Some reduction in the breakdow
voltage after proton irradiation of gettered structures
clearly attributable to the electrical activity of the incorp
rated radiation defects whose influence, however, is no
appreciable~less than 2%! as the gettering. This is also ev
denced by the fact that gettered and irradiated structures
stable under the action of short-term~up to 1 s! loads of
55–60 V unlike the irradiated control samples.

These results suggest that internal gettering of impuri
and defects in the substrates can stabilize the parameter
enhance the functional reliability of silicon–metal structure
including that under irradiation.

1G. Z. Nemtsev, A. I. Pekarev, and Yu. D. Chistyakov, Mikroelektroni
12, 432 ~1983!.

2V. D. Skupov,Abstracts of Papers presented at First All-Russia Conf
ence on Materials Science and Physicochemical Principles of Fabrica
Technologies for Doped Silicon Crystals@in Russian#, Moscow, 1996,
p. 127.

3P. V. Pavlov, Yu. A. Semin, V. D. Skupov, and D. I. Tetel’baum, Fi
Tekh. Poluprovodn.20, 503 ~1986! @Sov. Phys. Semicond.20, 315
~1986!#.

Translated by R. M. Durham



TECHNICAL PHYSICS VOLUME 44, NUMBER 6 JUNE 1999
Sulfide passivation of a textured interface of a gallium arsenide surface-barrier
photovoltaic cell

N. L. Dmitruk, O. Yu. Borkovskaya, and I. B. Mamontova

Institute of Semiconductor Physics, Ukrainian Academy of Sciences, 252650 Kiev, Ukraine
~Submitted April 2, 1998!
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A comparative study is made of the influence of sulfide passivation in an aqueous Na2S•9H2O
solution on the photoconversion parameters of solar radiation in Au–GaAs barrier
structures as a function of the character of the microrelief and the pretreatment of the GaAs
surface. A quasigrating and a dendritic surface microrelief were produced by anisotropic chemical
etching. It is shown that this type of GaAs surface treatment is potentially useful for
enhancing the efficiency of a photovoltaic cell stored for several years. A possible mechanism is
discussed for the processes leading to changes in the structure parameters. ©1999
American Institute of Physics.@S1063-7842~99!02806-8#
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A GaAs surface microrelief produced by anisotrop
chemical etching can reduce the reflection coefficient of li
in the visible and in the near ultraviolet and infrared to a f
percent, provided that its morphology and depth are suita
optimized.1 This is particularly important when such a su
face is used as the interface in solar cells formed by a me
semiconductor contact since even thin (,10 nm! layers of
metal ~Au! increase the reflection coefficient to 45–55
~from 30–35% for GaAs!.2 Depending on the microrelie
morphology and the thickness of the metal film, the pho
sensitivity of these structures can be enhanced comp
with that of planar structures, between 1.5–2 and several
of times in different parts of the spectrum.3 However, the
presence of pyramidal protrusions and acutely angled fa
of a dendritic relief intensifies the field in these parts of t
surface, induces a thermal-field current component, and
fectively reduces the barrier height,4 which should be ob-
served as a reduction in the shunt resistanceRsh and a drop in
the open-circuit voltageVoc of the solar cell. Quite clearly
these effects may be suppressed by means of an interme
passivating layer. Here we examine the possibility of s
pressing these effects by sulfide passivation of a GaAs
face in an Na2S•9H2O aqueous solution, bearing in mind i
positive influence on the photosensitivity of these structur5

and also the presence of an etching phase during
treatment6,7 which may slightly smooth the acute-angled r
lief.

We made a comparative study of the loading opti
current–voltage characteristics and photocurrent spectr
Au–GaAs barrier structures fabricated by vacuum deposi
of semitransparent Au layers on planar and microrelief Ga
surfaces with a natural layer of oxide or with the oxide
moved by etching. Some of the wafers were also passiv
in a 2N Na2S•9H2O aqueous solution~20 s! followed by
rinsing in distilled water. The substrate temperature dur
deposition of the metal was;110 °C. In order not to com-
plicate the comparative analysis, no antireflection coating
contact grid were used and the thickness of the metal
7261063-7842/99/44(6)/3/$15.00
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was varied between 15 and 25 nm and was determined
multiangular ellipsometry using quartz satellite plates. T
structures were fabricated using single-crystaln-GaAs wa-
fers doped to between 131016 and 331017cm23 and~100!-
oriented epitaxialn–n1-type films (n5131015–331016

cm23). A dendritic microrelief was fabricated by etching i
concentrated HNO3 ~Ref. 1! and a variable-period quasigra
ing microrelief was obtained using 2HF : 2H2SO4:1H2O2

etchant.5 The oxide was removed by etching in an HCl s
lution.

Figure 1a shows spectra of the short-circuit photocurr
I sc per incident photon for Au–GaAs diode structures w
different surface microrelief and different pretreatment.
can be seen that the effect of the sulfide passivation dep
on the initial state of the surface. The maximum increase
I sc is observed for structures with a planar or microrel
surface from which the oxide layer was not removed by et
ing ~curves1, 18, 2, and 28!. For relief surfaces with the
oxide removed, which gives the maximumI sc sulfide passi-
vation has a considerably weaker influence onI sc, mainly in
the short-wave part of the spectrum~curves3, 38, 4, and48!.
By analyzing the spectra of the internal quantum efficien
of these diode structures using a model considered in Re
taking account of the light transmission spectrum in an a
metal–intermediate oxide layer–semiconductor structure
culated using the method described in Ref. 8, we can de
mine the recombination parameters of the structure, i.e.,
ambipolar carrier diffusion length, the surface recombinat
velocity S, and the velocity of above-barrier transport of m
jority carriersVn into the metal. We established that sulfid
passivation reduces the velocitySof the Au–GaAs interface
by one or two orders of magnitude for structures with a na
ral oxide layer and by a factor of 1.2–4 for structures with
textured surface and the oxide layer removed. In this
case,Vn also decreases which is observed as an enhance
of the photosensitivity in the short-wavelength part of t
spectrum. Figure 1b shows the influence of sulfide pass
tion on the optical current–voltage characteristics
© 1999 American Institute of Physics
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FIG. 1. Spectra of short-circuit photo
current ~a! and optical current–voltage
characteristics~b! of Au–GaAs struc-
tures with a planar surface~1, 18!, a
quasigrating microrelief~2, 28, 3, 38! and
dendritic microrelief ~4, 48! after pre-
liminary removal of the oxide~3, 38, 4,
48! and sulfide passivation~18–48!;
n-GaAs single-crystal wafer withNd

5331016 cm23, and gold film 20 nm
thick.
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Au–GaAs structures with a quasigrating microrelief me
sured using a sun simulator under conditions correspon
to zero atmospheric mass. It can be seen that sulfide p
vation improves the characteristics of the solar cell in str
tures with and without an oxide layer. Quite remarkably,
this last case we observe an increase inVoc which is not
associated with a drop in the surface recombination veloc
Figure 2 shows the optical current–voltage characteristic
structures with a dendritic surface microrelief from which t
oxide layer has been removed. We can see that in this c
sulfide passivation improves the fill factor of the charact
istic and gives a corresponding increase in the efficiency
the solar cellh. The equivalent circuit parameters~series
resistanceRs and shunt resistanceRsh) of the microrelief
structures determined from the optical characteristics

FIG. 2. Optical current–voltage characteristics of Au–n–n1-GaAs struc-
tures with a dendritic surface microrelief~1, 18, 2, 28!, including after sulfide
passivation~2, 28!, and a planar GaAs surface with a natural layer of ox
~3, 38, 39!: 18–38, 39 — six months after1–3; 39 — after treating the
structure in an HCl solution;Nd57.431015 cm23, gold layer 16.5 nm thick.
The increase in efficiency as a result of the microrelief ish1 /h351.16 and
as a result of the microrelief plus passivationh2 /h351.46.
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also the change in the solar energy conversion paramete
the solar cell as a result of sulfide passivation (I scs/I sc0,
Uocs/Uoc0, hs /h0! are presented in Table I. It can be se
that sulfide passivation of a textured GaAs surface can s
stantially enhance the efficiency of a surface-barrier pho
voltaic cell by increasing the fill factor,Voc, and Rsh and
reducingRs .

The investigations showed that this GaAs surface tre
ment prevents the degradation of the characteristics of A
GaAs photovoltaic cells, which remain almost constant
between two and four years. Figure 2 shows the characte
tics of structures after different treatment of a microrel
surface obtained at six-monthly intervals. For comparison
also show the characteristics of planar structures with a n
ral layer of oxide on the GaAs surface which deteriora
more rapidly, mainly as a result of a drop inRsh. Studies
using photodiode structures having different areas sho
that the shunt resistanceRsh is inversely proportional to the
diode diameter, i.e., is mainly caused by leakage acros
perimeter. We can hypothesize that as under annealing,8 the
local stoichiometry of the interface plays a major role in t
degradation of these structures with time. The natural ox
layer of GaAs is characterized by excess gallium in the fo
Ga2O3 ~Ref. 9!, whereas the arsenic is in the form As2O3 ~up
to 35%! as in the unoxidized state, and the free arsenic p
sesses fairly high mobility.8 Since the conditions at the edg
of the diode are more favorable for its emergence at
surface, the oxide Ga2O3 may predominate here with mainl
gallium diffusing through it. We postulate that this results
the formation of channels for the interdiffusion of galliu
and gold atoms at room temperature~for example, as a resul
of recombination-stimulated processes under illuminatio!.
These channels may shunt the photovoltaic cell and u
mately result in its degradation. Treatment of this diode in
HCl solution, as a result of which the oxide becomes thin
and severely depleted in gallium around the perimeter of
diode,9 almost restores the optical characteristics~curve39!.
For planar structures,Rs is proportional to the diode are
whereas for textured structures its value is substanti
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TABLE I.

Surface state Rs , kV Rsh, kV FF I scs/I sc0 Uocs/Uoc0 hs /h0

1! Relief—quasigrating 3.74 63.3 0.45 – – –
with oxide 1 passivation 3.16 86.5 0.49 1.22 1.03 1.38
2! Relief—quasigrating, 1.08 58.5 0.62 – – –
oxide removed1 passivation 1.45 84.5 0.62 1.0 1.19 1.18
3! Dendritic relief, oxide 0.81 53.5 0.56 – – –
removed1 passivation 0.20 103.0 0.72 1.01 1.19 1.3
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lower, i.e., it is mainly determined by the conductivity of th
intermediate layer. This drop in the resistance as a resu
treatment in an HCl solution and/or sulfide passivation of
GaAs surface correlates with the decrease in the thicknes
the intermediate layer.9,10 Thus, the increase inVoc observed
as a result of sulfide passivation cannot be attributed to
increase in the thickness of the intermediate layer bu
caused by a change in the surface structure which in par
lar, leads to a reduction in the strong-field effects in t
current flow.4

To sum up, sulfide passivation has a positive influen
on the parameters of Au–GaAs photovoltaic cells with
textured surface not only by reducing the density of surf
electronic states which determine the surface recombina
velocity at the interface, which increasesI sc but also by
changing the structure and chemical composition of the
termediate layer, which is observed as a decrease inRs and
an increase inRsh, Voc, and the fill factor. The propose
treatments can appreciably enhance the efficiency of the
of
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n
is
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tovoltaic cell and also improve its degradation resistance
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Instability of the photoluminescence of porous silicon
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Results of studies of the photoluminescence of porous silicon with different prehistories have
revealed the mechanism and nature of the instability of the luminescence properties of
freshly prepared samples. It was established that the initial quenching and subsequent rise of the
photoluminescence is attributable to the intermediate formation of silicon monoxide
~photoluminescence degradation! and subsequent additional oxidation to form SiO2

~photoluminescence rise!. Ultraviolet laser irradiation accelerates this process by a factor of
200–250 compared with passive storage of the samples in air. Plasma-chemical treatment
in an oxygen environment merely results in a subsequent rise in the photoluminescence as a result
of the formation of monoxide on the porous silicon surface. A kinetic model is proposed for
this process. ©1999 American Institute of Physics.@S1063-7842~99!02906-2#
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The luminescence properties of porous silicon in the v
ible were first detected less than a decade ago.1 However, the
unique nature of this effect, caused by the quantum dim
sions of the silicon filaments and the nature of the che
sorbed atoms, provided the main impetus for its intens
study.

Here we report the main results of investigations
specify the mechanism and nature of the evolutional chan
to the photoluminescence properties of porous silic
Samples were prepared from@111#-oriented, boron-doped
dislocation-free p-Si wafers (p52.6–3.1V•cm. Electro-
chemical etching was carried out at an anode current den
of 7–14 mA/cm2 using a 1:1 mixture of 48% HF and ethy
alcohol. Each silicon wafer was first subjected to chemi
etching for 2 min in a 1:2 mixture of 48% HF:HNO3 acids.
Photoluminescence was excited by an LGN-409 ultravio
He–Cd laser (l5325 nm! at a radiation power of
3.060.1 mW. The calculated power density of the ultravio
flux taking into account the irradiated area, was 133
mW/cm2. Each of the six–eight sections of sample was
posed to the continuous~up to 8 h! action of ultraviolet ra-
diation with 14–16 h between successive irradiations. T
processes taking place at the porous silicon walls were
sessed from changes in the starting intensityI 0(t) of the
luminescent samples stored passively in air for timet and
from the changes inI (t) during the continuous ultraviole
irradiation process. Repeated irradiation of any section
eliminated by accurately setting the preselected coordin
of a two-coordinate microscope stage.

Typical changes in the photoluminescence intensity a
function of the irradiation time for freshly prepared poro
silicon samples and samples held previously in air are sh
by curves1 and2 in Fig. 1. It can be seen that regardless
the preliminary holding time in air, the photoluminescence
the porous silicon always exhibits extreme changes. Ra
quenching at the initial stage of irradiation is accompan
by a subsequent smooth rise with a tendency to reac
steady-state level. Moreover, the time at which the extre
7291063-7842/99/44(6)/3/$15.00
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~minimum! point is reached, identified 15–20 min after u
traviolet irradiation, is almost independent of the stora
time in air. At the same time, the numerical value of t
starting intensity depends strongly on the storage time in
As a result, the steady-state luminescence level can be e
lower or higher than the initial value.

We established~curve1 in Fig. 2! that the change inI 0

accompanying prolonged storage of the sample in air is s
lar to the change in the photoluminescence under continu
laser irradiation~curves1 and 2 in Fig. 1!. However, the
length of the similar sections and the time shifts of the e
tremum points are 200–250 times shorter under laser irra
tion. This indicates that the chemical processes taking p
at the porous silicon walls are identical and may be rep
sented by series-parallel reactions of the type

SiHx1
x12

4
O2⇒SiO1

x

2
H2O,

SiHx1
1

2
O2⇒SiO1

x

2
H2, ~1!

FIG. 1. Change in the photoluminescence of porous silicon during cont
ous laser irradiation after various holding times in air:t1547.22 h,
t25188.2 h~the porous silicon did not undergo plasma chemical treatme!,
t3522.2 h, t454.5 min ~freshly prepared samples underwent plasm
chemical treatment for 5 min!. The subscripts 1 –4 tot1 correspond to the
numbering of the curves.
© 1999 American Institute of Physics
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~R2O!1
1

2
O2⇒~R2O2!,

~R2O!1
1

2
H2⇒~R2OH!, ~2!

wherex51 or 2 andR describes the chemical bond of th
molecule with the silicon crystal lattice.

If the observed extreme changes, including those du
the passive storage of porous silicon in air, can be attribu
to the expulsion of adsorbed hydrogen by oxygen and s
sequent additional oxidation of the porous silicon walls,
the first stage preceding the extreme valueI min , reaction~1!
should have priority and at the second stage reaction~2!.
This presupposes that the photoluminescence of porous
con with an appropriate set of adsorbed atoms should sa
the constraintI SiO2

>I SiHx
@I SiO, although the contribution o

SiO and SiO2 to the photoluminescence has not yet be
determined. Thus, we carried out additional investigatio
using a high-frequency~13.65 MHz!, low-pressure~2.7 Pa!
oxygen plasma. The samples were subjected to pla
chemical treatment using a Plazma-600 device whose r
tion chamber was a quartz cylinder with external capac
plates. The plasma was excited and sustained by a gene
having an output power up to 600 W with an anode curr
of 0.6–0.7 A and a grid current of 50 mA.

The plasma chemical treatment has a radical influe
on the photoluminescence of the porous silicon, reducing
starting valueI 0 approximately 26 times~curves1 and4 in
Fig. 1! and completely eliminating the degradation sect
on the I (t) curves for all the plasma treatment times bei
studied~1–40 min!. This shows that the initial oxidation o
the porous silicon walls is completed during the plas
chemical treatment, with the natural exception of reaction~1!
which, in our view, is mainly responsible for quenching t
photoluminescence at the initial stage of ultraviolet irrad
tion of the untreated samples. This is convincingly confirm
by the results of an Auger spectral analysis1! if plasma
chemical treatment for 1 min gives 35 at. % silicon, 28.3
carbon, and 36.7% oxygen, after treatment for 40 min alm
all the bonds at the surface are occupied by oxygen wh
corresponds to the stoichiometric composition of SiO m
oxide ~50.3 at. % O and 49.7% Si!.

FIG. 2. Photoluminescence starting intensity of porous silicon as a func
of the holding time in air:1 — after anode etching and2 — after additional
plasma chemical etching for 5 min.
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Complete filling of the surface bonds with oxyge
should stabilize the light-emitting properties of the poro
silicon.2,3 However, the clearly defined rise on theI (t) and
I 0(t) curves can only be caused by additional chemical p
cesses, which must primarily include additional oxidation
silicon ~2! and the possible adsorption of hydrogen or H2O
molecules to form OH2 hydroxyl groups which, according
to infrared spectroscopy, are always present at the surfac
quantum filaments4 and are not subject to ultraviolet damag
E(hn)53.82,E(Si–O)54.4, andE(O–H)54.8 eV~Refs. 5
and 6!.

We shall analyze these effects from the point of view
the kinetics of the processes. Let us assume thatCS is the
total concentration of surface bonds,Cn is the concentration
of nonradiative centers~which we associate with SiO!, and
C1 andC2 are the concentrations of radiative centers iden
fied with SiO2 and SiOH. SinceCS5Cn1C11C25SCi

5const, the rates of the parallel reactions~2! may be given
by the obvious equations

dC1

dt
5k1Cn5k1~CS2C12C2!, ~3!

dC2

dt
5k2Cn5k2~CS2C12C2!, ~4!

whereki are the constants of the appropriate reactions~2!.
Assuming thatC11C25C and k11k25k, we express

Eqs.~3! and ~4! in the more compact form after summatio

dC

dt
5kCn5k~CS2C!. ~5!

The solution of this equation forCn(0)5C0n5CS

2C(0) andC(`)5CS has the form

C5CS2C0nexp~2kt!. ~6!

The photoluminescence intensity is proportional to t
total concentrationC. Hence we haveI (t)5PC5P(C1

1 f C2), whereP is the proportionality factor andf allows for
the difference in the luminescence properties ofC1 andC2.
By subsequently differentiating this equation and taking in
account Eqs.~3! and ~4!, we obtain

I ~ t !5I 01
k11 f k2

k11k2
PC0n$12exp@2~k11k2!t#%

5F2Gexp~2k!. ~7!

HereF andG are the corresponding constants, the subsc
‘‘0’’ satisfies the initial conditionst50, and I 05P(C01

1 f C02). If C02, and thereforek2 are zero, we find

I ~ t !5PCS2PC0nexp~2k1t !. ~8!

Equation~7! shows good agreement with the experime
if for curves3 and4 ~Fig. 1! we haveF5107.38 and 114.02
G575.68 and 100.79,k52.29, and 2.86 s21.

To conclude, the changes in the photoluminescence
porous silicon with time are caused by the expulsion of
sorbed hydrogen by oxygen. This process is initially acco
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panied by the formation of silicon monoxide and quench
of the photoluminescence. Subsequent additional oxida
of the silicon to give SiO2 leads to a rise in the photolum
nescence. Ultraviolet laser irradiation accelerates this pro
many times.
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Photosensitivity of GaAs : N„GaP : N…/GaAs „GaP… heterojunctions in linearly polarized
radiation
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Results are presented of investigations of the photoelectric properties of nitrided layer/GaAs
~GaP! heterojunctions prepared by plasma treatment of GaAs and GaP crystals in the presence of
nitrogen ions. The heterojunctions exhibited broad-band photosensitivity relative to the
intensity of the natural radiation. It was established that when linearly polarized radiation is
obliquely incident on the surface of nitrided layers, polarization photosensitivity occurs which is
controlled by the angle of incidenceQ and increases proportionately asQ2. The spectral
dependences of the induced photopleochroism are attributed to the antireflecting properties of the
wide-gap layers. Nitrided-layer heterojunctions can be used as broad-band photoanalyzers
for linearly polarized radiation. ©1999 American Institute of Physics.@S1063-7842~99!03006-8#
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INTRODUCTION

The present authors recently established that treating
surface of gallium arsenide and gallium phosphide sin
crystals with an rf discharge in a nitrogen atmosphere le
to the formation of wide-gap layers in the surface reg
which are produced by arsenic or phosphorus atoms b
substituted by nitrogen.1 This substitution leads to the ap
pearance of short-wavelength photoluminescence at the
damental absorption depth of the initial semiconductors
gether with broad-band photosensitivity relative to t
intensity of the natural radiation as far as 3.8 eV. Here
report results of measurements of the photosensitivity in
early polarized radiation using heterojunctions formed in
surface region of GaAs and GaP crystal by wide-g
GaAs:N and GaP:N layers, which for conciseness we s
subsequently callN-layers.

EXPERIMENTAL METHOD

The heterojunctions were fabricated using~100!- or
~111!-orientedn-type GaAs and GaP wafers having a fr
electron concentration of>1017cm23 at T5300 K. The
specular surface of the initial semiconductors was prepa
by mechanical then chemical polishing. The wafers were
serted in an evacuated chamber with a residual pressu
around 1025 Torr into which a mixture of hydrogen and n
trogen was then admitted and an rf plasma was ignited
chemical potential gradient formed at the GaAs and Ga
plasma interface, causing the solid-phase substitution o
senic and phosphorus atoms in the substrates by nitro
The substrate temperature during the plasma treatment
cess was controlled in the range 50–500°. These As~P!→N
plasma substitution regions produced uniformly colored l
ers with a mirror-smooth outer surface in the surface
7321063-7842/99/44(6)/4/$15.00
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gions of the initial crystals. The layers exhibited strong a
hesion to GaAs and GaP. Uniformly colored, dark yello
layers were obtained as a result of plasma substitution on
~100! and ~001! GaAs planes whereas under similar con
tions for the GaP wafers, the layers were reddish lilac. Th
differences can be attributed to the different atomic com
sition and thicknesses of the layers.

The prepared heterostructures were mounted on a
dorov table which could control the angular coordinates
the samples to within at least 308. In these experiments th
light was incident on theN layers and the angle of incidenc
varied between 0 and 90°. The current–voltage characte
tics, and the angular and spectral dependences of the rel
quantum efficiency h were measured using GaAs
N/n-GaAs and GaP :N/n-GaP heterojunctions with averag
photosensitive surface areas of 535 mm.

EXPERIMENTAL RESULTS AND DISCUSSION

1. Typical steady-state current–voltage characteris
for these heterojunctions are plotted in Figs. 1 and 2~curves
1! and some of the parameters are indicated in Table I. It
be seen that the heterojunctions exhibit well-defined rec
cation, and under forward biases corresponding to a nega
external voltage on the substrates and exceeding the c
voltageU.U0 the current obeys the relation

I 5~U2U0!/R0 , ~1!

whereR0 is the residual resistance.
The cutoff voltage, like the resistanceR0, in these het-

erojunctions varies fairly widely~see Table I! and reflects the
influence of the conditions of formation of theN layers on
the electrical properties of the heterojunctions. In the ran
of weak forward currents, the current–voltage characteris
obey the well-known exponential law for diode structure
© 1999 American Institute of Physics
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733Tech. Phys. 44 (6), June 1999 Ivanov-Omski  et al.
The results of estimating the ideality factorb suggest that in
N/n-GaAs structures the forward current is of the recom
nation type typical of GaAs homojunctions.2 The high values
of b in N/n-GaP heterojunctions reflect the influence of t
series resistance on the current–voltage characteristic
thus cannot be used to assess the nature of the current t
port. In reverse-biased heterojunctions the current in m
cases obeys the power lawI;Ug where the exponentg lies
in the range of 1.2–2, which indicates some imperfection
the edge of the heterojunction. The range of variation of
reverse currentsI tr is shown in Table I and indicates that th
best of these heterojunctions are of fairly good quality.

2. When both types of heterojunctions were illuminate
the N-layers were always positively charged relative to t
substrates. The photovoltaic effect predominates when
junctions are illuminated on the side of theN-layers and the
range of values of the voltage sensitivitySU is indicated in
Table I. The polarity of the open-circuit photovoltage in a
the heterojunctions corresponds to the direction of transm
sion and does not depend on the point of incidence of
optical probe on the surface nor on the energy of the incid
photons.

Spectral dependences of the relative photoconver

FIG. 1. Steady-state current–voltage characteristic~1! and spectral depen
dences of the relative photoconversion quantum efficiency~2, 3! of GaAs :
N/n-GaAs heterojunctions atT5300 K in natural radiation:1, 3 — sample
No. 1, 2 — sample No. 6; illuminated on side of wide-gap layer.
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quantum efficiencyh(\w) for several heterojunctions ar
plotted in Figs. 1 and 2~curves2 and3!. These spectra give
some idea of the possibilities of this method of obtaini
in-plane control of the heterojunction photosensitivity. T
principal features of these spectral dependences ofh are as
follows. For both types of structure we observe broad-ba
photosensitivity typical of ideal heterojunctions. It can
seen from Figs. 1 and 2 that the maximum photosensitivit
observed in the range between the band gaps of the subs
and GaN crystals.3 The long-wavelength component of th

FIG. 2. Steady-state current–voltage characteristic~1! and spectral depen-
dences of the relative photoconversion quantum efficiency~2, 3! of GaP :
N/n-GaP heterojunctions atT5300 K in natural radiation:1, 2 — sample
No. 4, 3 — sample No. 1; illuminated on side of wide-gap layer

TABLE I. Photoelectric properties of GaAs :N/n-GaAs and GaP :N/n-GaP
heterojunctions atT5300 K.

Heterojunction parameters GaAs :N/n-GaAs GaP :N/n-GaP

ds , mm 0.3 0.3
dL , mm >0.5 >0.8
R0, V 4•1032105 1052106

U0, V 0.2521.8 1–1.2
b 1.8–2.0 7–10
I tr , mA 0.2–1 (U tr51 V! 0.1–1 (U tr55 V!

SU , V/W 1022104 102103

s, eV21 80–115 14–18
d1/2 , eV 1.1–1.8 0.8–1.0
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photosensitivity spectra (\w,1.8 eV for N/n-GaAs and
\w,3 eV for N/n-GaP! is caused by photoactive absorptio
in the GaAs and GaP substrates. The differences observ
the long-wavelength photosensitivity~Figs. 1 and 2! can be
attributed to fluctuations in the perfection of the initial su
strates and also to the influence of the growth conditions
the N-layers on their properties. The slope of the lon
wavelength increase in photosensitivitys5d(ln I)/d (\w) is
given in Table I and is typical of binary GaAs and Ga
semiconductors. The full-width of the spectral dependen
h(\w) at half-heightd1/2 describes their broad-band pro
erty and the observed changes in this parameter reflec
influence of the layer formation conditions~see Table I!. The
short-wavelength decay of the photosensitivity for these h
erojunctions is localized nearEG

GaN and this may be taken a
the basis for assuming that the atomic composition in
surface region of theN-layers approaches GaN stoichiom
etry.

3. When all these heterojunctions were illuminated
linearly polarized radiation along the normal to the plane
theN-layers (Q50), the photocurrent did not depend on t
polarization. This implies that under these conditions,
photoactive absorption is isotropic and the coefficient
natural photopleochroism isPN50 over the entire range o
photosensitivity of the heterojunction.4–6 As soon as the
angle of incidence of the linearly polarized radiation b
comes nonzero, all the heterojunctions exhibit differen
between the photocurrentsi P when the electric vector of the
light wave E lies in the plane of incidence~PI!, i.e., EuuPI
and i S (E'PI!. Under the conditionsQ.0, over the entire
range of photosensitivity the photocurrent is a periodic fu
tion of the azimuthal anglew betweenE and the plane of
incidence

i w5 i Pcos2w1 i Ssin2w. ~2!

For heterojunctions with different atomic compositio
and differently oriented substrates the inequalityi P. i S is
satisfied forQ.0. Figures 3 and 4 show typical depe
dencesi P(Q) and i S(Q) for these heterojunctions. It can b
seen that for both types of heterojunction the photocurreni P

initially increases with increasing angle of incidence, rea
ing a maximumi max

P , and then begins to decrease. This b
havior is consistent with the results of analyzing the pro
gation of a light wave across the interface between t
media using Fresnel relationships.7 The increase in the pho
tocurrent is caused by the reflection losses being elimina
these being minimal near the Brewster angle. The exp
mental values of the ratioi max

P /i 0
0 for both types of hetero-

junction confirm that the increase in the photocurrent is
lated to the elimination of the reflection losses. At the sa
time, the experimentally observed characteristici P(Q) tak-
ing into account the results of Refs. 4, 8, and 9 suggests
theseN-layers on GaAs and GaP substrates are of fairly h
optical quality.

A second important results of these polarization stud
of the photosensitivity is that contrary to the monotonic d
crease in the photocurrenti S with increasingQ deduced
from the Fresnel formulas,4,9 for most of our heterojunctions
the photocurrenti S behaves asi P with increasing angle of
in
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incidence~Figs. 3 and 4, curves2!. As a result, the curves o
i P(Q) and i S(Q) converge, with this convergence bein
more defined for GaP :N/n-GaP structures~Fig. 4, curve2!.
This behavior was observed previously and was attribute
interference of the linearly polarized radiation in the th
layer.10,11Thus, there is reason to assume that the anoma
behavior ofi S(Q) observed for these heterojunctions may
attributed to interference effects of the linearly polarized
diation in theN-layers. This interference also indicates th
these layers are of high optical quality.

The coefficient of induced photopleochroism5,6 calcu-
lated from the curvesi P(Q) and i S(Q)

PI5~ i P2 i S!/~ i P1 i S! ~3!

for these heterojunctions becomes nonzero forQ.0 and in-
creases quadratically with increasing angle of inciden
PI;Q2 ~Figs. 3 and 4, curves3!. These dependences a
linearized in the coordinatesPI

1/2–Q ~Fig. 3, curve4! in
agreement with the results from Ref. 12.

Figure 5 gives spectral dependences of the coefficien
induced photopleochroism forQ5const for several hetero

FIG. 3. Short-circuit photocurrent~1 — i P, 2 — i S) and coefficient of
induced photopleochroism~3, 4! as a function of the angle of incidence o
linearly polarized radiation on the receiving plane of a GaAs :N/n-GaAs
heterojunction atT5300 K. Illumination is on the side of the wide-ga
layer,l50.60mm, sample No. 6.
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junctions. It can be seen that the coefficient of induced p
topleochroism for these heterojunctions has a clearly defi
dependence on the incident photon energy, at variance
the analysis.12 Medvedkinet al.12 showed that the coefficien

FIG. 4. Short-circuit photocurrent~1 — i P, 2 — i S) and coefficient of
induced photopleochroism~3! as a function of the angle of incidence o
linearly polarized radiation on the receiving plane of a GaP :N/n-GaP het-
erojunction atT5300 K. Illumination is on the side of the wide-gap laye
l50.63mm, sample No. 1.

FIG. 5. Spectral dependences of the coefficient of induced photopleoc
ism of GaAs :N/n-GaAs heterojunctions~1 — sample No. 1,2 — sample
No. 6! and GaP :N/n-GaP heterojunctions~3 — sample No. 1! at T5300 K
andQ570°.
-
d

ith

of induced photopleochroism is proportional to the refract
index n and this dependence has been used for some tim
determine n from polarization measurements of th
photosensitivity.4,6 It was recently established that under t
conditions of interference of linearly polarized radiation, th
unique relationshipPI;n ceases to hold and some dispe
sion of the induced photopleochroism occurs.10,11Taking ac-
count of Refs. 10 and 11, the spectral dependence of
coefficient of induced photopleochroism observed here
also be attributed to the antireflecting properties of
N-layers. The curvesPI(\w) suggest that a bleaching effe
for which the condition isPI→0 ~Refs. 10 and 12!, shows
up most clearly forN/n-GaP structures~Fig. 5, curve3! for
which the experimental values arePI→0 over a fairly wide
range between 2.5 and 3.5 eV, i.e., in the range where
photosensitivity of these heterojunctions has a maxim
~Fig. 2!. From the point of view of the bleaching criterio
PI→0 ~Refs. 10 and 11!, we can conclude that this effect i
much weaker inN/n-GaAs heterojunctions, although
should be stressed that the minimum ofPI for both types of
heterojunctions is localized in the same spectral range.
ure 5 shows spectra ofPI(\w) for two differentN/n-GaAs
heterojunctions~curves1 and2!. The similarity between the
values of PI and its spectral profile for the two differen
heterojunctions indicates that the quality of theN-layers has
fairly good technological reproducibility.

ThePI(\w) curves indicate that in order to achieve hig
coefficients of induced photopleochroism and to use th
heterojunctions as broad-band photoanalyzers for line
polarized radiation, the technological process must ens
that this radiation does not undergo interference in the wi
gap layer of these structures.
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