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The neutralization of H ions in collisions with fast, multiply charged ions is considered in the
parameter region where the Born approximation applies. An analytical formula is obtained
for the H™ neutralization cross section in such collisions. 1©®99 American Institute of Physics.
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Atomic collisions involving negative ions have been the potential. As in Refs. 5 and 12, we shall describe the inter-
subject of intensive research in the past decddes, e.g., action of the active electron with the core by the nonlocal
Refs. 1-3 and the literature cited theteifihe study of such separable Yamaguchi potential
collisions can have important practical applicatidesy., for
obtaining beams of fast neutrdlsFor calculating the neu- V(r,r')=—=x|lg(r)}g(r")|, (1)
tralization cross sections of negative ions in collisions with
fast charged particles having relatively low charggs<g,
whereZ is the charge of the particle andis the collision g(r)=g(r)=(Bl2m)Y? exp (— Br)Ir %)
velocity; here and below we use the atomic system of units . )
one can use the Born approximatibin the present paper With 8=0.913 and\=0.659(Ref. 12; r is the distance be-
we consider the neutralization of H ions in collisions with ~ tween the active electron and the nucleus of theieh.
fast, multiply charged iong$MCls) in the parameter region With this potential the Schringer equation is easily
Z=v>v, (v, is the characteristic orbital velocity of the solved for both the discrete spectrum _and_the continuum. For
weakly bound electron in H), where the Born approxima- €xample, the bound state wave function is
tion is inapplicable. We note that for certain values of Z and CNe—1 N _

v in this parameter region the Hneutralization cross sec- o1 =Nr=(exp(—r) —exp(— Br)), ©
tions have been measufefbr collisions with Ne ions Z whereN= ((27) ~*xB(x+ B) B—x) “?)*? is a normalizing
<4) and with Ar and Xe ions4=<8). The neutralization of factor, and»=0.235 is specified according to the known
H™ in collisions with MCls has been studied theoretically in value of the electron affinity.
Refs. 1-3, 5, and 6 by the method of classical Monte Carlo  The wave function4) has the correct asymptotic form
trajectories; by a method proposed in Ref. 7 as a generalifor r x> 1-
zation of the Keldysh theofyfor photoionization in a high
field >3 in a two-state model,and by the coupled channels @o(r)=1.51((2m) ) 2exp( — xr)/r, 4
method® In the present paper the problem of Heutraliza-
tion is treated by the approach proposed in Refs. 9 and 10 f
calculating the ionization cross sections of atoms in colli-
sions with fast MCls. Unlike the methods listed above, this
approach can yield an analytical solution for the cross sec-
tion, and the results can be used over a rather wide range na : .
collision parameterg andw, which will be specified below. 1€ ©rigin of the coordinate system and that the MCI is mov-
ng along a classical rectilinear trajectofg(t)=b+vt,

Let us examine the problem. In order to calculate the hereb is the i t ter. It is knodrthat th ;
neutralization cross section one needs to know the electroniff (€€ IS the impact parameter. ftis kno at the main

wave functions of the negative ion. The Hon has two contribution to the cross sections of inelastic processes in

electrons, which are usually treated theoretically under thé:OIIISIOnS with fast MCls comes from thg region of |_mpact
assumption that one of them is found in an almost hydrogenparameterb>r0, wherer g is the characteristic dimension of

. . — 71 . .
like 1s orbital, while the other is weakly bound, in a diffuse the atomic systendin our caserg=x"", the characteristic

orbital of radius~»~1~4 (x?/2=0.0275 is the electron af- size of H'). For b>r_0 th.e field OT the MCI in the reg!on
finity of H™). In this paper we shall describe the negative ionWhere the hydrogen ion is found is assumed to be uniform,
in the one-electron approximation, assuming that the weakly W(r,t)=Z/|R(t)—r|=Z/R(t) — ZR(1) - [/R3(1). (5)
bound active electron moves in the field of a “frozen” core

of the H™ ion (the proton plus the tightly bound electjoit The first term in Eq(5), which does not depend on the
is known(see, e.g., Ref. )Xhat the motion of an individual electron coordinates, leads to a slight phase shift which is
particle under the influence of other particles can be dethe same for all states, and we shall henceforth ignore it as it
scribed as motion of this particle in an effective nonlocaldoes not lead to electronic transitions. Electronic transitions

whereg(r) is chosen in the form

JFmaining finite ag —0. Below we will use the wave func-
tions obtained with the use of the potential to describe the
eigenstates of the discrete and continuous spectra of H

Let us consider a collision of a fast MCI with a negative
drogen ion. We assume that the hydrogen ion is at rest at
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are due to the dipole interactiov, (t)=—ZR(t) - r/R3(t), Conditions in the regiqn of small _impact pa_rametprs
which can be regarded as acting over a finite time interval. Ir<r'o for Z=v are characterized by larg& comparison with
fact, the binding energy of the active electron in Henergy

transfers to the electron. Indeed, for-r, the average en-
© ey transfer can be estimated as27?/b%v?. It follows

that this energy is large even foer, (and, of course, be-
] o comes even larger in the regidn<r,). The large average
whereT =T(b) =2b/v has the meaning of the effective time gnergy transfer leads to detachment of the weakly bound
of interaction with the field of the MCI. electron with a probability close to unity. Here it is important

~ Following the approach proposed in Refs. 9 and 10, W§q note the following. Even though expressidi is formally

divide the region of impact parameteis-r into two sub-  gpplicable only forb>r,, calculations using this formula
regions: 1 ro<<b<wr, wherer=r,/uv, is the characteristic gjyes reasonable valuésiose to unity for the neutralization
orbital time for the weakly bound electron in the hbn, and probability (for Z=v) in the regionb=r, as well. There-
2) b>Zxlv. Using the wave functiori3), we can estimate fore for Z=v we shall use expressiof?) to calculate the
the characteristic orbital velocity of the electron in this state,estralization probability even in the region of small impact
asvo=(xB)"?=x"2 which givest=2x"32 For what fol- parameterd =< 1. Since a calculation shows that the con-
lows it is important to note that subregion 1 exists under thgyiytion (9) to the neutralization cross section fgr>1 is

conditionv>v o~ 2 and that subr/egions 1 and 2 partially practically insensitive to the choice of the value qf. we
overlap under the condition?>Zx"? and we shall there- g simply sefj, = (b;=0) in Eq.(9).

fore assume below that both of these conditions hold. The integral overg in Eq. (9) is evaluated as follows.

In collisions in the first subregion the effective collision Sincep(q)~ (q/x)? for q<x, we make use of the relations
time T(b) is short (<), and to calculate the neutralization , <, andg,< x (the latter holds foZ/(xv)<b,<v/%%?) to
probability w_y(b) in this region we will use the zeroth- \\ ite

order sudden approximatith

W_o(b)=wg(b)
eX[{ —i fjwdt Wl(t)) (Po>

- d3k|<sok

J‘j—wdt Wl(t) :Wl(t: O) . T,

Z2 (=dq
Aa_o(b1<b<b2)=8ﬂ-—2f — p(a)
v°J02(Q

2

72 32,d
=152.2— f ' —qq2
5 ) 5 vi\Ja, o
- [ etedexaia nlgol, @ d
> dag
where ¢, and ¢, are the wave functions of the bound state +0.1652Ls/%¥p(q)) ' (10

and the states of the continuous spectrum of, land g
=2Zb/b*» has the meaning of the average momentum  The second term in parentheses is independent of the

transfer to the electron from the field of the fast MCI. chargeZ of the MCI and depends on the velocity only
The probability(7) can be evaluated using the condition through the lower limit of integration. Since®%/v <1, this
of completeness of the states of the negative ion, dependence is, to good accurac,y logarithmic. Indeed, we
write the second integral iflL0) in the form
|<P0><€Do +f d3k“Pk><‘Pk|:11
" %w( )=(0.1652"1 In (Co/»3?) (12)
which leads to the expression %, )= (0. vl
16m2N* o . :
Wy(b(@)) =1 - ——— (tan X(q/2x) +tan X(q/2B) Numerical integration of the _Ieft—hag\g side of E4.1)
q for different values ob in the regionv/»>“>1 shows that
=0.4 ically i ly of th I fin thi
—2tar Y g/ (x+ B)))2. ®) C=0.46 practically independently of the value wfin this

region of velocities. Thus, using Egd.0) and (11), we ob-

The contribution to the neutralization cross section fromtain for the contribution(9) to the cross section
the states in the region of impact parametbis<b<b,

(whereb,<v 7, and the value ob,; will be determined be- B Z? 0.2%
|OW) haS the form Aa',o(bgbz)— 15221)_2 In Z bz . (12)
2
Ao_y(b;=<bs bz):27rfb db bwy(b) In the region of impact parametelos>Z/(xv) the neu-
by tralization probability is small. In fact, for/(xv)<b<vr
2 we can use expressiolig) and(8) to obtain
Z° (qtdq
=87 — | —pa), 9
v-Jax g Z?

W_o(b)=134———<1; Z/(xw)<b<v/x* (13
wherep(q) =wy(b(Q)), q1.=2Z/(vby 7). b x
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Therefore, to describe the ionization k&t Z/(v ») we

shall therefore use perturbation theory in the interaction

W;,(t). In the first order of perturbation theory we have for
the ionization probability(see, e.g., Ref. 16
wklb)
v

¥

2

472 (=
w_o(b)=wy(b)=—- fo dk Rwi y2,
v

Ki( ))

where o, =(k?+ »?)/2 are the frequencies of the transi-

wklb

(14

tions, yZ, is the mean square value of the component of the

dipole matrix element for A (yZ,=x2,=22,=r%/3), and
Ky and K; are modified Bessel functions.

For the contribution to the neutralization cross section

from collisions with impact parametebg<b<«, where the
point by lies in the rangeZ/(v ») <b%<u/»*? we obtain

A b=b3)=2 fwdb bw,(b)=152 2—22 | 112
= = =
o_o 3)=2m 2 Wy(b) 23 n w3’
(15

where

Wef= exp(f dk kzyﬁllnwkl/ f dk k2y51)=0.081.
0 0

Because foiZx'?><v? the two investigated subregions
of impact parameters partially overlap, we can kgt b,
and, summing the contributior{42) and(15), we obtain for
the ionization cross section

Z? 22
o _0=152.2— In ( ) (16)
1%

z
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FIG. 1. Cross sections for the neutralization of Ht collision energyE
=200 keV. The symbols are the experimental data of RefJ2-Ne**
(Z<4), O—Ar?* (z<8), A—Xe?** (Z<8); the solid curve shows the
results of a calculation using formu(a6).

In this paper, as in Ref. 5, a bound-state wave function
of the form (3) was used in the calculation of the Heu-
tralization cross section. At the same time, in Refs. 2 and 3
this cross section was calculated for a wave function taken in
the form (4) (but for all r, O<r<). We should therefore
like to conclude with a brief discussion of the influence of
the form of the bound-state wave function on the calculated
value of the cross section in the regian<1. For this pur-
pose we carried out an additional calculation of the héu-
tralization cross section using the asymptotic fgBnof the

Let us refine the parameter region in which the approachyaye function for allr (0<r<w). We found that the main
taken above can be used. First, we have made use of th@ntripution to the cross section still comes from the region

“suddenness” of the collisiony>uv o= »*/2

- Second, the par-  of impact parameteris> » 1, and the calculated value of the

tial overlap of the two regions of impact parameters consideross sections exceed those calculated ugifigby approxi-

ered can take place fafx'><v?. Third, to minimize the

mately 20%. An uncertainty of20% in the theoretical data,

error introduced by the method used to calculate the contrighile not exceeding the experimental error in the neutraliza-
bution to the cross section from collisions with small impacttion cross sectiof,is still appreciable. Therefore a realistic
parameters l{=<r), it is necessary to havE=v. Conse-  cnoice of the wave function foxr=<1 is one of the main
quently, this approach is applicable in the parameter regiogyays of improving the accuracy in calculating the cross sec-
v=Z<v? %" v>x" Here we should also note the fol- tions for neutralization of A in collisions with fast, multiply
lowing. Since the active electron in M has a very low charged ions. We note in this regard that the useq®f) in

binding energy and a low orbital velocity on atomic scalesthe form (3) is preferable to form4), since the latter has

even collisions with particles witZ~1 andv~1 can be  cjearly the wrong behavior at small

treated as collisions with fast, “multiply charged” ions, and

the neutralization cross section of Hn such collisions can
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The diffusional transport of a ternary gaseous mixture of helium, Freon-12, and argon is studied
under isothermal conditions by a steady-flow method. The experiments were done at
atmospheric pressure and a temperature of 298 K. The data are compared with the theory. It is
shown that the mass transfer of the components is influenced by convective flows.

© 1999 American Institute of Physid$$1063-784£99)00207-X

INTRODUCTION one to determine the boundaries of the domain of applicabil-
ity of the diffusional representations with the help of stability
Experimental studies of isothermal diffusion in certain theory!®*'#as has been done by the authtirsanalogy with
ternary gaseous mixtures have shown that under certain coRef. 13 in the linear approximation for a plane-layer
ditions the difference in the diffusion velocities of the com- model'® However, the relations obtained in Ref. 15 cannot
ponents can lead to stratification of the gaseous mixture ade used to obtain information about the contribution of mo-
cording to density, which is followed in a gravitational field lecular diffusion and convection to the total mass transfer.
by macroscopic motions forming distinct structutedThe  The behavior of diffusionally unstable systems under steady
process wherein the convective flows are superposed on tlenditions becomes a question of fundamental importance,
molecular transport is defined as diffusionally unstable. Thehe answer to which will permit estimation of the magnitude
detailed investigatich” of this effect has revealed a compli- of various effects accompanying mass transfer in closed ap-
cated dependence on many parameters and conditions butratus.
the same time has made it possible to formulate the follow-
ing physical model for the diffusional instability and the sub-
sequent dynami_cs of the process. In Fhe case of multicomp%—XPERlMENTAL RESULTS AND PROCEDURE
nent diffusion, differences in the mobility of the components
give rise to stratification into regions of different densities. If The experiments were carried out on the steady-flow ap-
the change in concentration over the characteristic length qfaratus schematically illustrated in Fig. 1. The idea of the
this region is small, then the mass transfer will occur at themethod is to achieve conditions of binary diffusion by equal-
microscopic level, and no convective flow of the gaseouszing the total volume gas flows in opposite directions. This
mixture will be observed. However, the influence of suchwas achieved by adjusting the hydrodynamic drag of one of
parameters as the pressure, temperature, viscosity, etc., tre gases at the outlet from the pipe. The procedure was
the system can lead to a decrease in the linear size of thenalogous to that of Ref. 16. The initial mixtures of gases
stratified region. Then the gradients can increase to certaiftom bottles1 were passed through pressure regulators to
critical values, whereupon a sudden transitibifurcation dibutylphthalate-filled manostagsand then to buffer tank3
to macroscopic flows occurs. The unstable regime can deand capillaries4 for smoothing out pulsations, and then to
velop further only if the size of the “convection cell§’ls  heat exchangerS. The volume flow rates of the mixtures
the same as the geometric dimensions of the diffusion charwere measured by inclined rheometér3hen the steady gas
nel. It is clear that in that case the conventional study offlows entered the diffusion cell, which consisted of two slot
multicomponent diffusion, both in the experimental andchannels connected by a diffusion cuvette having a height of
computational/theoretical arenas, will not permit a suffi-7.8 cm and a cross section of %%.05 cm. In the central
ciently correct estimate of the true contribution to the totalpart of the cuvette there was a XB.0 cm inspection port
mass transfer from the convective flows in the unstable reinto which flat panes of glass were cemented; this permitted
gime. Previous experiments involving the study of the diffu-observation of the dynamics of the unstable process in a
sional instability were carried out in closed apparatus by quashadow devicd 2 (Ref. 17.
sisteady or unsteady methddSand could not eliminate the From the diffusion cell the gaseous mixtures were
effect of circulation of the gaseous mixture between the uppassed through containers for selecting the gases for analysis
per and lower parts of the apparatus, as has been shown & capillaries9, and fine-control valve40 and then to soap-
exist for the mass transfer in ternary systems with a diluenfilm flow meters11 with a graduation of 0.1 ml/div. The
gas® The standard methods of studying both in thevelocity of the film was determined by a timer to an accuracy
thermodynamit'® and kineti¢}'? approximations permit of +0.1 s. The temperature was regulated at the necessary
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FIG. 1. Diagram of the experimental
I apparatus implementing the steady-
flow method.
7 8 g 10 11

places in the apparatus to an accuracy 20d.1 K and were used in the calculation for the gas pairsPat0.101
equalled 298.0 K at atmospheric pressure. MPa, T=298.0 K: Dpea=0.750, Dpe_rio=0.385,

The steady flows of the initial gaseous mixtures, whichD s,_r;,=0.067 cnf-s 1. The calculations were done for
were maintained constant and equal in volume flow ratethe equilibrium values of the mole fractions and initial dif-
passed into the upper and lower inlets of the diffusion cellferences of the concentrations of the components, referred to
the lower-density mixture into the upper inlet and the higher-mean atmospheric pressure, as in the experiment. One no-
density mixture into the lower inlet. The fine-control valves tices that the stable process is characterized by a monotonic
were used to equalize the volume flow rates of the gases aependence of the diffused amount of the components on the
the outlet from the cell, a condition that was monitored byFreon-12 concentration in the mixture. Then, beginning at a
means of the soap-film flow meters. Thus we modeled amoncentration of 0.04 mole fraction Freon-12 in the binary
binary diffusion process in which the observed volume flowmixture in the experiments, a completely different picture is
rates of the gases in opposite directions were equal. Thebserved. When the mixture is above and the pure gas is
initial gas mixtures were analyzed on an ITR-1 interferom-
eter with an error of not more than 0.1%, while the mixtures
from the samplers after diffusion were analyzed on a 04
Khrom-4 chromatograph with an error of 0.3%.

The experiments were carried out for the system helium
(He) + Freon-12 R12) — argon(Ar). This system was cho-
sen because, for the given geometric dimensions of the dif-
fusion cuvette, the unstable process occurred in it at atmo- 0.3
spheric pressure over a wide range of Freon-12

concentrations in the binary mixtufé. g

In the experiment conditions were always maintained
such that the density of the mixtufpure gagin the upper :,.:? )
cell was less than the density of the pure gasxture) in the © 0.2
lower cell. Fluctuations of atmospheric pressure during the -3
course of the experiment did not exceed 0.4% of the value R
91.9 kPa, which was taken as the mean value. <

Figure 2 shows the concentrations of helium and
Freon-12 that have crossed over as functions of the Freon-12
concentration in the binary mixtuighe argon concentration
is equal to the sum of the concentrations of helium and
Freon-12: A — He, O — R12 (experimental valugsthe
solid curves are an approximation of the experimental data. ! L 2
Also shown in Fig. 1 are the concentratiotthe dashed 0z 04 le f%gctionsaa 10
curve for He, the dotted curve f&®12) calculated from the Cp1z 270
Stefan—Maxwell equation$ on the assumption of a diffu- g, 2. Helium and Freon-12 concentrations versus the concentration of
sion process. The following binary diffusion coefficients R12 in a binary mixture with helium, diffusing in argon &t=298.0 K.

a.1
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below, a maximum enrichment of the pure gas in helium andvhich is most often manifested in an unstable process in
freon occurs. The unstable regime is manifested mossystems with a ballast gés.

strongly for systems in which the density of the mixture is  The domain of applicability of Fick's laws for the steady
equal to or somewhat lower than the density of the purease can be estimated in the framework of stability theory,
component(argon. For the opposite orientation of the sys- which is widely used in problems of thermal convectidi?
tem, when the mixture flows along the lower channel of theThe macroscopic motion of an isothermal ternary gaseous
diffusion cell and the argon flows along the upper, the influ-mixture is described by the Navier—Stokes equation, which
ence of convection resulting from the buoyancy forces ids supplemented with the equations of mass transfer of the
weaker. Visual observations of the unstable regime by theomponents?

technique of Ref. 17 revealed the presence of structural for-
mations moving along the diffusion channel in opposite di—p
rections. In certain situations one can observe relatively im-
mobile strata in the channel, which, as the Freon-12 is o 9C,
“accumulated,” transform into convective flows which lead —+V-(pu)=0, p(—I-I—UVCi) =V-ji,

to perturbations of the hydrodynamic type. at at

If conditions of hydrostatic instability are realized inthe  j — _ ,(D* Vc,+D*,Vc,),
system, i.e., when a heavier mixture, say 0.6 mole fraction
helium and 0.4 mole fraction Freon-12, flows in the upper  j,=—p(D3%,Vc,+D3,Vc,), (h)
part of the channel and a lighter gdeere argoiflows in the
lower part, the convection mechanism loses its anomalo
character. The partial flon®; of the components will obey
the conditionQue/Qr12=CHe/Cr12, Wherec; is the initial
concentration of théth component. The symbolk, @ in
Fig. 2 illustrate this situation.

According to our studies, the concentration data can b
separated into the following regions) fbr a Freon-12 con-
tent in the binary mixture in the range<@c<<0.04 mole frac-
tion the system is diffusionally stable; Z the Freon-12 p=p(cy,Cy,p), T=const, 2
concentration lies in the range 004<0.5 mole fraction,
then the diffusion process is unstable independently of th
orientation of the gases in the cell) B the interval 0.50
<€<1.00 the convective mechanism of diffusion of the light

component is quenched. This is evidenced by the experime . _ .
b d y b linearly and choosing scale units of measureniddtances

tal data and the results of a calculation for helium. A com- o N ) :
parison with Freon-12 gives poorer agreement, a circum@'€ measured in units of the characteristic linear dimendion

. . . - 2 - .
stance that can be attributed to the presence of a diffusiofi thf cavity, the time In units o ,/V‘ the frequenpy In units
“gate” in such mixturest? of D%,y/d, the concentration in thegh component in units of

Aid, and the pressure in units @fvD3,/d?), for a plane
vertical layer(the z axis is directed upward and perpendicu-
INTERPRETATION OF THE EXPERIMENTAL RESULTS lar to the plane formed by theandy axes we can rewrite

N . . Eqg. (1) in the form
The results attest to a significant influence of convective a. @

flows on the mass transfer in the unstable region under ac, #c; A, d%c,
steady-state conditions. In this case the data obtained by the PZZW U=t + A, T2 o
steady-flow method will differ from the data obtained in X 1o
closed devices. Jc A

2 1

Let us examine this question for the transport of Po——uU=—7—+
g o 22 ot A2 oy

u
(U V)u|=—Vp+ VUt g+g V(V-u)+pg,

uWhereu is the velocity,p the densityp the pressurey and ¢
tshe coefficients of shear and bulk viscositythe accelera-
tion of gravity, c; the concentration of theth componentj;
the diffusional flux density of theth component, an®;; the
practical diffusion coefficients, which are defined in terms of
éhe binary diffusion coefficients.

Equation(1) must be supplemented with the equation of
state of the medium,

(gvhich relates the thermodynamic parameterslin
Since the unsteady perturbations of mechanical equilib-
rium are small, we neglect terms quadratic in the perturba-

fions, and, assuming that the concentrations are distributed

d’c,  d°c,
Freon-12 in the case when the binary mixture is above the
pure gas. The Freon-12 that “falls” down is carried by the p 2

; e u u
counterflowing argon to the outlet of the diffusion cell. It can — = — + Ry + R,C,), 3)
therefore be asserted that whether the gases have crossed 9t gx
over from upper to lower or vice versa, there is practically no B * _ )
chance for them to return. The picture is completely differentWhtﬁree;g_lé’i/aiin'usnggir?_ringylgimbjﬁ[ 9BiAd D
for the unstable process in closed systems, e.g., in a two-buf yielg Hij = Fijf P a0 YT e
diffusion apparatus.There one also observes enrichment of 1/{dp
the lower part of the apparatus in the heavy component, but  Bi=— % ﬁ—q '
convective flows which transport the gas from the upper part P.T
of the apparatus to the lower part encounter an upward bacld;y=—Vc;o, v=17/p, vis a unit vector, the average quanti-
flow, and this mixture can also contain some amount of thdies are denoted by a subscript 0, and the perturbed quantities

heavy component. A so-called circulation of the gas arisesare written without a subscript.
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FIG. 3. Regions of diffusiort and diffusional instabilityll : line MM is the
neutral line of monotonic perturbation®; are experimental data points.

We seek a solution of equatiofd) in the form

0 0 Ol m
{c1,C,,u}={cj,c5,u}sin (n+1)Ex exd —At], (4
wheren=1,3,5 ... are thecharacteristic odd modes of the

perturbations.

Zharin et al.

nary diffusion coefficients of the components obey the con-
dition D,3<D,<D5 (Ref. 19. We also note that the spec-
trum of critical Rayleigh numbers in the steady diffusion
problem is determined by the wave numbérsdes of the
perturbationy characterizing the set of convective forms of
motion®

CONCLUSIONS

In summary, these studies have shown that in the steady
regime one can determine the existence regions of convec-
tive flows arising under the influence of the buoyancy forces.
The proposed calculation technique permits estimation of the
critical parameters of the transition to the regime of concen-
trational convection.

This study was done with the financial support of the
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The spectrum of capillary oscillations of a charged oblate spheroidal drop is calculated in neglect
of the interaction between modes by means of a perturbation expansion in the small

deviation of the equilibrium shape of the drop from spherical. The critical conditions for instability
of its nth mode with respect to the self-charge are calculated in the form of an analytical

function describing how the dimensionless Rayleigh parameter characterizing the stability of the
drop depends on the value of the spheroidal deformation1989 American Institute of
Physics[S1063-784299)00307-4

The problem of studying capillary oscillations, stability, Y,(co®)=3,(cos®), where, is a normalized Legendre
and self-dispersal of a highly charged drop is encountered ipolynomial. We assume that the drop carries a ch@gead
diverse physical problemsee, e.g., Refs. 1-3 and the lit- that its volume is that of a spherical drop of radiRsWe
erature cited therejnin this regard the case of spherical and will denote the coefficient of surface tension of the interface
prolate spheroidal drops have been studied repeatetity. by o and the densities of the drop and mediumpgyandp,,
the same time, the stability of charged oblate spheroidalespectively. We shall solve the problem by the method ap-
drops has hardly been studied, although there have beenpied previously in Refs. 12 and 13.
few published reports on this subjéct.The problem of The equation of the surface of an oblate spheroidal per-
studying the stability of charged oblate spheroidal drops is ofurbed by thermal capillary wave motion in the linear ap-
interest in connection with the physics of storm clouds, inproximation in the square of the eccentricity is written as
which, according to observational data, a certain fraction ofollows in a spherical coordinate system with origin at the
the drops have oblate spheroidal fotrff,and also for prob- center of the drop:
lems of liquid-metal epitaxy and inkjet printing, where _
charged drops landing on the substrate with a nonzero veloc- r=r(0)+4(0,¢,)~R[1-€*h(O)R™

ity have for a certain interval an oblate spheroidal féramd +&(0,p,1)EL;

also in connection with the problem of St. EImo’s fire, which

is due to the instability in an external electric field of water R(1—e?)13 R

drops that have precipitated on the objects around which St. r(®)= (]__TmZ@)l/Z; h(®)= E(3C°§®_1)'

Elmo’s fire is observed!®In Ref. 4, where a charged oblate 1)
spheroidal drop was investigated for stability against axisym- o o2 o ]
metric deformations, it was found that such a drop is stableHeree=(1—a’/b%)""is the eccentricity of the spheroid,
Moreover, it was assertédhat the stability of a charged andb are its semiminor and semimajor axée0, ¢,t) is the
spheroidal drop against its self-charge increases with increa®€rturbation of the equilibrium spheroidal surface of the drop
ing degree of oblateneswith increasing eccentricilyand it due to cgplllary oscillations occurring on apcount of the.ther—
was concluded that the concentration of such drops in cloud@al_motion of the molecules and having an amplitude
should be high. In Ref. 5 it was shown that the conclusion of~ VKT/a (k is Boltzmann’s constant andl is the absolute
Ref. 4 that oblate charged drops have a heightened stabiligmperature We also note that for the majority of liquids
was reached prematurely and that including possible nonaxfh€ amplitude of such thermal capillary oscillations is of the
symmetric deformations destroys the stability of such dropsQrder of tenths of a nanometer.

Since the calculations of Ref. 5 were of a preliminary, quali- ~ Under the stated conditions the wave motions in the drop
tative nature and their correctness can be disputed, it is a@nd surrounding medium will be of a potential character,
visable to do them more rigorously. with velocity potentials¥’; and¥,, respectively, which for

1. Let us consider the problem of stability against non-&n incompressible liquid are harmonic functidfis:
axisymmetric disturbances of the surface of a highly charged  y2y,—o (i=1,2),
oblate spheroidal drop of an ideal incompressible, perfectly
conducting liquid immersed in an ideal incompressible non-  r—0:  W,(r,t)—0;
conducting medium. We shall assume that the spheroidal oo Wy(r 1) —0 @)
shape of the drop is due to “outside” forces of a nonelectri- ' 2
cal nature, e.g., forces of acoustialtrasonig pressure and at the interfac€or r=r(0)+ £(0,¢,t)) the following
P.=PyY,y(cos®), as implemented in Ref. 11, whelRg isa  boundary conditions are satisfied: equality of the velocity
constant andY,q is the axisymmetric spherical harmonic components normal to the boundary,

1063-7842/99/44(7)/5/$15.00 745 © 1999 American Institute of Physics
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oV, oV, P The time dependence of the velocity fidli{r,t), pres-
G an,  on’ (3 sure fieldp(U,t), and perturbation of the equilibrium surface
£(0,¢,t) will be assumed exponentiak exp(st), wheres is
the kinematic boundary condition a complex frequency.
The harmonic solutions of equatiof® for velocity po-

a_ggﬂ, (4)  tentialsW¥(r,t) in a spherical coordinate system are natu-
gt dn rally sought in the form of series in the normalized spherical
and the dynamical boundary condition harmonicsY (0, ¢):
ok
v, v, K
=—pg,— — -R — W (r,t)= Al “Yim(®, @) exp(st),
AP==py—=+po—p +Pe=R,—Pa, (5) (n0=2 3 At Yin( . @)exp(sy
whereAP is the pressure differential between the drop and >k

medium,Pg and P, are the pressures exerted by the electric ~ W,(r,t)= 2 E B Y m(©,@)exp(st). (11)
field and surface tension, respectively, andandn, are the k=0 m="k

outward and inward normals to the surface of the drop (' Since the perturbation of the equilibrium surface of the
=n;=—Ny). _ _ _ drop £(0,¢,t) is related to the velocity potential;(r,t)
To determine the electrical potentidl produced by the by the kinematic boundary conditio4), the function

perturbed charged drop in the surrounding space, whicl(@,¢,t) should also be written as an expansion in spherical
should be a harmonic function, we have the boundary-valugarmonics:

problent® .
V2P =0, (6) §<®,¢,t>:k§0 m;_k ZimYin(©, @) eXp(st). (12)
r—ow: &0, (7)

The coefficient® ., Bxm, andZy,, in expansiong11)
r=r(®)+& d=const (8) and (12) are related to one another by the boundary condi-
N ] ) ~_ tions(3) and(4).
In the exposition below, in the linear approximation in - conditions (9) and (10) impose certain restrictions on
|§.|/R, all the derivatives in the boundary conditiof8—(5  the form of the thermal perturbatiof(©, ¢,t) of the equi-
will be referred to the unperturbed surface of the dropjipiym surface of the liquid; the essence of these can be

r=r(®), as is standard procedure in the theory of waves o ,cidated by substituting expressioff3 and (12) into (9)

infinitesimal amplitude:* . and (10). We note that in our statement of the problem the
We also require that the volume of the drop remain con+,nction £(0,¢,1) is independent and completely unrelated
stant, to the equilibrium spheroidal shape of the drop; in taking the
4 integrals(9) and (10) we can therefore ignore the “cross”
f dv= §7TR3, (9) terms~e?¢, e*¢, etc. As a result, the integral8) and (10)
v in the linear approximation ie? and& can be reduced to the
and that its center of mass does not move, form
27 (7
f rdv=0. (10) fo fo £(09,¢,t)sin®@dOde=0; 13
In Egs.(9) and(10) the int tion is over the volume of 2m (@ .
n £65.(9) and(10) the Integra £(0,6,0Y10(0,)siNOAOde=0;
the drop. o Jo
2. The subsequent analysis is carried out in the frame-
work of perturbation theory by means of an expansion inthe m=0, £1. (14

small parameterg? and ¢ to terms of order~e?, ¢, and . . .
e2¢, i.e., in the linear approximation in each of these. We, By virtue of the orthonormality of the spherical harmon-

note that the small parameteg$and¢ are independent, and ics, It fO"OWS from (13) and (14) that_Zlm=0_ (m=0,* 1.)'
thate?> ¢. For this reason it might seem that if we are keep-z(?ozo' This means that the summation oven .(.12) begins

ing terms of ordere?¢, we should also take the terme? with k=2. By virtue of of the boundary conditior@) and
into account. Although this is a completely valid conclusion,(4)' this also holds o the Se”?fﬂ)' . .

we shall see below that the contribution to the dispersion Touse the.boundary conditio8), one “?“St. first write
relation for the capillary oscillations of a charged spheroidalOUt an expression for the yector normal, which in the general
drop has only terms- ¢ ande?¢, the terms~e?,e* vanish- case is given by the relation

ing when when the kinematic boundary condition is imposed VE

(it contains a partial derivative with respect to tim&ince =R F=r—[R-e*h(0)+&(0,¢,1)].

this dispersion relation is what we are after, it would serve no

purpose to complicate the mathematical formulas by keeping In the approximation adopted here, this relation has the
terms~e* below. form
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~ , 1 dh(O) 9&(0,0,1) 1] 9£(6,0,t)
n=|1lte R2 90 90 R| 00
L 2NO) 1 AN(O)EO 0.0]]
MPT:) R 90
1 06(0,9,) h(O)
~ Rsin® e [1+ez R | ™' (9

wheree, , €g, €, are the unit vectors of the spherical coor-
dinate system.

Substituting expansiofiL1) into the boundary condition
(3) and taking expressiofil5) into account, we obtain after
straightforward but awkward transformations the following
relation between the coefficientg,, and By, in expansions
(1D:

1 k
Bkm% - m k—e? aﬁ-l— mﬁﬁ) %Ln R2k+lAkm
k—2
—e? ag+ _k—l’Bi Y R IA L —e?
k+2
x| ap+ mﬁi’ Vkm+1R2k+3Ak+z,m], (16)

where we have used the notation;=k>—k—3, af
=0.5(k?>-3k+2), ai=05K>+k—4); Bi=k?>+3k-1,
Bi=0.5(k?>+k—4), Bi=0.5(k>+5k+6),

m_ k+k—3m

¥ T 3(2k—1)(2k+3)’

n 1 (k2_m2)[(k+ 1)2_m2] 1/2

Y«Tokt1| T (2k—1)(2k+3) (A7)

The coefficientsA,,,, and B, are related to the expan-
sion coefficientsZy, in Eq. (12) by the kinematic boundary
condition (4). Substituting(11) and (12) into (4) and using
Eqg. (16), we get

A= RN 1+ ezkilali%km]szkm—'_ e?
X (k=2) tadyR 1SZ o+ €?
X (k+2) "o Vi 15 Zcs 2

Bum~ — RZ K(k+1) " Y[1—e?(k+ 1) 1BLx"S Zum
—e2(k—1) " 1BEyR 1SZ_om—€?
X (K+3) " By vy 15Zcs 2m}-

3. In order to use the dynamical boundary conditi&in
one must write out expressions for the electrical presByre
and the pressure of surface tens®pn. The electrical poten-

(18

tial ® near the surface of the drop is determined by the

solution of the boundary-value problef6)—(8), which is
conveniently sought in the form

CI):(I)0+(D1+(I)2+(D3, (19)
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where @ is the potential obtained in zeroth order in the
small parameters used in the expansidn,is the correction
~e?, ®, is the correction~¢, and &5 is the correction
~ge’.

Substituting(19) into (6)—(8), we straightforwardly ob-
tain the following set of boundary-value problems for finding
®;, wherej=0,1,2,3:

V2¢>j=0,

[— 0]

IDy
r=R: ®,=Q/R; d>1=ezh(®)§—r

B ® LN
2= —&( ,QD,t)&—r

P
ar?

D3=e?h(0)(0,p,t) —>

—§(®,<P,T)(9—r

5 P,
+e’h(0)—-. (20)
ar
The potentialsb; will be sought in the form of series in
spherical harmonics:

Pir0=2 % Clu(0) 17 Yin(0,9). (2D

Imposing successively the boundary conditions of differ-
ent orders at the surface of the drop, we obtain the following
expression for the potential in the vicinity of the drop:

R R 1
@(r,t)wg{r—ezh((B)r—erﬁ
* k k+1
x> > zkm(—) Yim(©®, @)exp(st)
k=0 m=—k r

(k+2)%g Zym

m=—Kk

k 1
+ E yLn— 1Zk— 2m™ E(k"_ 4) VE1+ 1Zk+2,m

k+1

X (22

Ykm((i),(p)exp(st)] .

Using the solution of equatiof22), we can write the
electrical pressure to the adopted accuracy as an expansion in
the small parameters,

P :i(E)Zzi(vqn(r t))2~ P2+ Pg(&);
B 8nx 8 ! E B\
R
P~ ——|1-€—|;
E 8wR* R
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e(§)~ Z 2 [(k—1)—€? w02 22 XT3 (e 3K+ 6)— aW(k—5)
4 R4 k'~ k-
Zy_om 1 k+4 1
_rm 2_ M 27 ,.m I T
X(k 4) k] e 2R(k 5)7k 1Zk 2m X R € 27k+1[ﬂ k(k+2)+k+177
2 1 m 2 k+2m
—-e ﬁ(k—nykﬂzk”m —2(k“+5k+10)—4W(k—7) =0, (25
XYim(®,p)exp(st). (23)  where we have introduced the dimensionless parameters
Here P‘é is the electrical pressure on the spheroidal surface . 2le3 P2 _ Q?
of the drop, undistorted by the capillary motion, a@P¢l &) is =S o 1" Z’ T 16moR®

the correction to it due to surface perturbatiéf®, ¢,t).
The pressure of surface tensiBy beneath the distorted sur-
face of the liquid in the general case has the frm

P,=a(V-n),

where the unit vector normal to the perturbed spheroidal sur,
face is represented by expressidm).

As a result, we can write the Laplace pressure as ap

expansion in small quantities:
P,=Po+P,(£);

PO_ZO'

"R 1-e?—

R

o

oo k
Pg(§>~—2 E ALk=1)(k+2) +e%2(k?+k
+4)”km]zkm+ez(k2_3k+6)7kmflzk72,m
+e?(k?+ 5K+ 10) yiy 1 Zy+ o m}
p)expst).

XYim(©, (24

The equations of systerf25) have an every-other type
of coupling, and the system therefore actually decomposes
into two subsystems for the even and odd capillary modes,
and it has nontrivial solutions when the determinant of its
coefficients vanishes. This condition yields the dispersion re-
lation of the problem, which is also of infinite order. How-
ever, in the linear approximation in the square of the eccen-
icity ~e?, when one can neglect the interaction of the
modes(which appears only in the approximatione®), the
system of equation&5) reduces to a system of uncoupled
equations for the individual modes, and the dispersion rela-
tion can be written in the relatively simple form
,k+3 1
k ( 1-ef =l + 7y

+[(k+2)(k—1)+e?2(K?+Kk+4) xy ]

Qzl

”k

—4W[ (k—1)—e?(k—4)»']=0. (26)

As the parameteW is increased and passes through a
certain critical value, the square of the complex frequency
passes through zero and becomes positive; this corresponds
to the appearance of two solutions varying exponentially in

In our statement of the problem we postulated that theime, one of which is experimentally decaying and the other
equilibrium shape of the drop was spheroidal; accordingly, irexponentially growing, i.e., the system becomes unstable.
the dynamical boundary conditiai®) the sum of the terms Thus, assuming ifi26) thatQZ 0, we obtain the following
of zeroth order and the terms of first orderetfhgoes to zero, relation, which can be used to find the critical value of the
leaving the equilibrium shape. Then the sum of the termgarameteiV separating the stable and unstable solutions:
linear in &, which are due to the deformation of the equilib-

2 2
rium surface of the drop by thermal capillary motion, also k+2 1+ e2 kk(k+1)—3m7]
vanishes, i.e., Eq5) gives 4 (k—1)(k+2)(2k—1)(2k+3)
———py———Pg(&)+P,(£)=0.
Progt P2 at (&) o It should be recalled that the conditions that the volume

Substituting the solutiongll) into this relation and us-
ing relations(18), (23), and(24) and the property of orthogo-

of the drop be constarif) and that its center of gravity not
move (10) forbid the excitation of modes witk=0 and
=1; the minimum value of the indelin (27) is therefore

nality of the spherical harmonics, we arrive at an |nf|n|tek 2.

11
T

system of coupled equations for the coefficiens,:
1 k+3
—| 1—e?

[1-e )

+[(k+2)(k—1)+e?2(k®+k+4) ] —4W[ (k—1)

k=2

2 -
‘Q “k+1

21m

Zy
_ez(k_4)’frkn]] ?m_e 5 Yk-1

It follows from (27) that for all the axisymmetric modes
(m=0) the critical values of the parametéfincrease with
increasing oblateness of the drépith increasinge?). For
the nonaxisymmetric modes the valuevidtan be increasing
or decreasing, depending on the value of the indexor
example, fork=2 the coefficient o&? in (27) is positive for
m=0,*1 and negative fom= * 2. This means that a highly
charged oblate spheroidal drop is stable against axisymmet-
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ric capillary oscillations and also against nonaxisymmetridowering of the critical conditions for instability with respect
oscillations withm= =1 but is unstable with respect to non- to the self-charge. For the nonaxisymmetric modes=Q)
axisymmetric oscillations witlm= =+ 2, the situation in regard to the stability is determined by the

4. Let us conclude with the observation that a similarvalue of the indexm. For example, for the fundamental mode
problem can also be formulated for prolate spheroidal dropgk=2) the critical value of the paramet@y increases with
the stability of which against axisymmetric deformations hasincreasinge? in the casem=2, while form=1 it decreases,
not yet been investigated. The equation of the unperturbede., the picture is opposite to that for an oblate spherical
surface of a prolate spheroidal drop in a spherical coordinatdrop.
system is

2\ 1/6 'A. G. Baily, Sci. Prog. Oxf61, 555 (1974.

(@)= R(1-e%) 2V 1. Kozhenkov and N. A. Fuks, Usp. Khind5, 2274(1976.
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(1-e COSZ@) Gazov, No. 3, pp. 3—-2(019949.
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andb anda are its semiminor and semimajor axes. Since the : - Gfigorev. A. A. Forstov, and S. O. Shiryaeva, Rroceedings of the
: . . . l . o Ninth International Conference on Atmospheric Electric8y. Petersburg,
entire analysis was done in the approximation lineaedn Russia(1992, pp. 450-453.
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mal capillary wave motion is of the form "E. L. Ausman and M. Brook, J. Geophys. R&g, 6131(1967).
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A dispersion relation is obtained for the capillary oscillations of a hemispherical protrusion
(oblate or prolateon the plane surface of a conducting liquid in a uniform electrostatic field
parallel to the symmetry axis of the protrusion. For the fundamental mode of the capillary
oscillations realized on the protrusion the critical dependence of the parameter characterizing its
stability in an external electrostatic field is obtained as a function of the square of the
eccentricity as the protrusion is drawn out from the an oblate to a prolate hemisphere. Such a
change in shape lowers the threshold electric field for instability of the protrusion.

© 1999 American Institute of PhysidsS1063-784£99)00407-9

When an infinite vacuum interface of a perfectly con- Nevertheless, it has been shown theoretié¢afiyand experi-
ducting liquid of density and surface tensiom is subjected mentally that the nonlinear stage of the Tonks—Frenkel in-
to an electrostatic fiel, perpendicular to the free surface stability results in the formation of the so-called Taylor
of the liquid, it is knowri—® that the interface is unstable with cones, which are prolate hemispherical protrusions on the

respect to perturbations of the form liquid surface with a conical tip from which highly charged
B droplets are emitted, carrying away the excess charfe.
{=Loexp(St=kx) (1) The mechanism of formation of Taylor cones has been the
(S is the complex frequencyt is the time,k is the wave subject of many studies**~"*Nevertheless, by virtue of of
number, and is the horizontal coordina}ef the nonlinearity of the problem, correct results have been
obtained only for the initial and final stages of formation of
1 o these protrusions. The main regularities in the growth of
Wie=— +ak, a=+\/—, o . e
k g emitting protrusions are known only on the qualitative level
of the first paper by Tonksalthough the problem itself is of
Eé _ Eéa significant interest in connection with numerous academic,
WTF:47T(ng)1/2= Ao’ 2) technical, and technological applications.

To reach reasoned conclusions about the intermediate

Herea is the capillary constang is the acceleration of free stage of evolution of Taylor cones, it is useful to consider the
fall, and W+ is the dimensionless Tonks—Frenkel parameterquestion of stability of hemispherical protrusiof@blate or
which characterizes the stability of the surface of the liquidprolate on a plane surface of a conducting liquid in an elec-
against the charge induced on it by the fiéld trostatic fieldE perpendicular to the surface. By solving this

The lowest value of the electric fielH, for which the  problem and noting the behavior of the critical value of the
most easily excited mode witt= 1/a becomes unstable, i.e., electrostatic field for instability of the protrusions as a func-
for which the Tonks—Frenkel instability is realized, is deter-tion of the value of the spheroidal deformation, one can ob-
mined from the critical value of the Tonsk—Frenkel param-tain information about the evolution of emitting protrusions
eterWye=2 (Refs. 1 and 2 Perturbations of the plane sur- forming upon the onset of instability, when in the course of
face of the liquid in the forn{1) exist if only because of the their growth they pass through a hemispherical shape.
thermal motion of the molecules, in which cagg= VkT/a, Since we are interested specifically in the critical condi-
wherek is Boltzmann’s constant and is the absolute tem- tions for instability of hemispherical protrusions of different
perature, and if the surface char@be field E) reaches a eccentricities, we set aside the question of the mass flow into
high enough value that conditidg) holds, the amplitudes of the growing protrusion and consider a model problem of the
some of the waves of the forfi) will begin to grow expo-  stability of a hemispherical drop with a given eccentricity,
nentially in time. lying on an electrically conductive solid substrate in an elec-

The above statements are valid in the framework of thdrostatic field applied perpendicular to the substrate. This
linear theory of instability {,<<1/k), which predicts the ex- statement of the problem may be of interest for treating St.
ponential growth of the amplitude of the perturbation to val-Elmo’s fire> for explaining the sharp enhancement of the
ues at which the amplitudé of the perturbation becomes energy loss in electrical transmission lines during rain-
comparable to the wavelengthkli.e., {<1/k; for {=1/k storms'® and for analysis of explosion and fire safety issues
one can no longer be guided by the results of this theory. Ain the storage of flammable liquidS.
the present time our understanding of the nonlinear stage of 1. Consider a drop of incompressible, perfectly conduct-
development of the Tonks—Frenkel instability is unclear.ing liquid with densityp and surface of surface tensian

1063-7842/99/44(7)/8/$15.00 750 © 1999 American Institute of Physics
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lying on a plane conducting substrate. Let the whole system €
be located in an external uniform electrostatic field perpen- =r(@)+¢, 0<®<— S~ (V)Y (6)
dicular to the plane of the substrate. We assume that the drop
has the shape of an oblate axisymmetric hemispheroid and o
that the equation of the free surface in a spherical coordinate AF— P +3E Foi @)
system with origin at the center of the base of the drop is
R(1— €)1 d2 V2d=0; (8
r(®): . 1 1 1

(1—eisir @)Y c? r—o:. O®—-®,=—Eyjz=—Ey cosO; 9)
whered andc are the semiminor and semimajor axes of the
spheroid, withd along the symmetry axis, arRlis the radius r=r(0)+& ©O= . ® = const=0 (10)
of a hemisphere of the same volume as the drop. ' 2° '

Let £(©,t) be a perturbation of the equilibrium hemi-
spheroidal shape of the drop, due to the thermal motion ofieren is the unit vector normal to the surface of the drop,
the molecules of the liquid. We consider the problem of cap#(r.t) is the velocity potentiald is the electrical potential,
illary oscillations and stability of the surface of such a drop.AF is the pressure differential inside and outside the drop,
We shall derive the solution in an approximation linear in theSe is the pressure exerted by the electric field, ds the
perturbation of the hemispheroidal shape of the dgpr  Pressure of surface tension.

and in the square of the eccentricigf with accuracy to 2. We represent the perturbatiagf{®,t) of the hemi-
terms ~ el|§|/R In this approximation the equation of the spheroidal surface of the drop in the form of a series in
surface of the drop is written in the form Legendre polynomials:

=r(0®)+¢~R|1 1O £, S

=r(@)+{~Rl1-e;—(—+ 5 g(@,t):jgo Z;(t)P;j(c0s0), (11)

h(®) = . 3 whereZ;(t) are the time-dependent amplitudes of the indi-

R 6 vidual capillary modes of the drop.

When the drop has the shape of a prolate hemispheroid, In the oscillations of the surface of the drop, its volume
the equation of its free surface becomes rémains unchanged:

. 2\1/6 2 2m wl2 r(@)+¢ 2
()= RA-€)™ 2, G f dgof sin@df rPdr— R
(1-e2co2@)¥2 7 0 0 0

Whereq and.c are the semimajor and sgmiminor axes of the *E ZJ_(t) 3J'1P-(x)dx=0.
spheroid, withd along the symmetry axis. i=
The expansion of this expression in powerseg)fdiffers
from (3) only in the sign of the coefficients @ ande3: Here we have neglected termse?¢ on account of the fact
that the spheroidal deformation of the hemispheroid is inde-

h(® i iqui
—1(0)+é~R 1+e§ ( )+ é ; pendent of the pertgrbatlon of the.free surface of the. liquid.
R R Legendre polynomials on a hemisphere obey the integral
relationg’
h(®)
R~ (33 1, i m=0;
1 H .
We shall henceforth regaref as some formal real pa- fo Pm(x)dx=1 0, if m=2n;
rameter that is not required to be the nonnegative square of Amn, If m=2n+1;

the eccentricity, and we shall solve the problem simulta-

neously for both the oblate hemispheroidal shape, with a 1
square of the eccentricitgi=—e? (when e?<0), and for jo Pr(X)Pm(X)dx
the prolate hemispheroid, with a square of the eccentricity
es=e? (if e2>0). 1 ¢ men:
Since the liquid is assumed ideal, the wave motion in the 2n+2’ '
drop will be potential motion. A complete mathematical for- =Y o if n—m=2n+0"
mulation of the problem of calculating the capillary oscilla- ' '
tions of such a drop will have the form Bim,»  if m=2n+1andnis even;
szp:O, (4) (_1)2m(2m)|
A=

r—0: —0; (5) b2t imim+ 1)1
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n+2

B (=1) 2z (2m+21)! n!
Bnm n 2"
2"2M(n—2m— 1)(n+2m+2)[(—>|m|

(12

With (12) taken into account, the condition of constant

volume of the drop becomes

i sz+1(t)

01

and consequently,
Zozzzj+1:O; (j:0’112|' . ')l (13)
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In the calculations below we shall use the recurrent ex-
pansions for the Legendre polynomidls:

cos®P(cos®)=a,,,Py4+1(c0sO)+b,,P,_1(c0sO);

i.e., the zeroth mode and all the odd modes are not excited.

Therefore, expressiofil) can be rewritten as follows:

§(®,t):j§=:l Z,;(t) P4;(cosO). (14)

The solution of equatiofd) which satisfies the boundary
condition (5) has the following form in a spherical coordi-

nate system:

[’

y(r,t)= 20 Crn(D)I P n(c0S®). (15)

HereC,,(t) is the time-dependent amplitude of the potential
motions of the liquid due to the different modes. We write
the unit vector normal to the surface of the perturbed hemi-

spheroid in the approximation linear & and|&|/R as

|42 1 9N(O®) 940, ,(0)
nie E O 90 |7 R e 90
&0, .1 }
70 R (9®(h( )E(O,1)) [eq (16)

wheree, andeg are unit vectors of the spherical coordinate

system.
The kinematic boundary conditio(6) with allowance
for expression(16) has the form
h(@)] d¢ ¢y ,1 h(O)1
= |

SN

U
at  ar eR 0 r 90
(17)

r~R|1+€?

We assume that
Zn(t)=Z, exp St). (19

Substituting(14) and(15) into (17), we reduce the kine-
matic boundary condition to the form

121 SZy(t)P4;(cosO)

©

~ > Cph(h)RM DI mP,(cos®)+e?m(m
m=0

h(®) ;1 7h(©) 7Py (cose)|

—1)—R Pm(cosG))— R 20 70

(19

h(®) 1
R Pm(cos®)= EMum+2(cos®) + %P mn(cos®)
1
+§§mpm,2(COS®);
. dPy(cosO)
sm@szam[PmH(cos)
m-1(C0S®)];
oh(®) dP(cos0) 3 b
ﬁ 90 de =—Mum m+2(cos )
+3xmPr(cos®)+(m
+1) {mPm-2(cos®);
_m+y o _ m :
am=m, m=m, Mm=a8mam+1,
m(m+1)
Am= {m=bm_1bpy. (20)

32m-1)(2m+3)’
Using (20), we transform(19) to

2, | SZ(1)mzy—[m+e(m(m—1)
1
—3)xm]Cm(t)R(m‘1)—e2§(m—1)(m
1
—Z)Mm_zcm_z(t)R"“fs’—ezz[(m+2)(m+1)

—2(M+3)]¢ms 2Cm+2(HRM D Pr(cosd) =0.

By virtue of the orthogonality of the Legendre polyno-
mials, this equation holds if the coefficients of the different
P, all vanish. As a result, we obtain an infinite system of
linear coupled equations for the coefficierlig,(t). For m
=2j, wherej=1,2,3,4... thesystem will be inhomoge-
neous, and, solving it by the method of successive approxi-
mations, we straightforwardly find

Cyi(t)~ Z;(t)

sz(Zj—l)(S
21(2] 1)-3
2j
(-1D(2j-1)
2(j—-1)

(j+1)(2j+1)—(2j+3)
T 521+2322j+2<t>H.

(21)

%21822J(t)

Moj—2 S o(t)
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Form=2j+1, wherej=0,1,2 ... , weobtain a homo-
geneous system of equations with a nonzero determinant.

Such a system has only the trivial solution
C2j+l(t):0 (j=0,1,2,. . ) . (22)

Let us write out the terms in Ed7). The pressure ex-
erted by the capillary forces on an arbitrary surface is deter-
mined by the well-known relation

F,=0(V-n),

wheren is a unit vector normal to the surface.
For the surfacé3) we find, using(16) and(14), that

(23

o0

o[, @) o _ .
§U~2§ 1+e ZT +§j:1 (2j—1)(2j+2)
h(®)| Z,i(t
— 2By ez(T)} 2;\,( )sz(cosG));

Bm=m?+m+4. (24)

Using relations(20), we can reduce this expression to
the form

2
Po(cos®)+ e2§ P,(cos0)

B~ B0+ 05,(6) =2
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at r=R: ®y=0,
b= —eh(0) 20 -~ £(0.1) 20
1—9()ar, 2—5(,)ar,
PPy
®3=—e?h(0)&(0,1) 5
o°r
0.t) 221 e ) 22 30
&( ’t)Te ( )7- (30)

The solutions of the above problems of finding potentials

®, which satisfy conditiong28) and (29) should be sought
in the form

Do(r,0)= >, [ADrm+DQ (M DIP, (cosO);
m=0

0 R 2j+2
wy1= 3, 00 T Py atcose)

(0=1,2,3. (31

Substituting these equations and relatidd) into the

boundary condition$28)—(30) and taking(20) into account,
we obtain expressions for the unknown coefficieh{8 and

AP=—g;; AD=0(Vm#1);

D{W=EyR% DO=0(Vm#1);

0 < . . Z5;(1)
+§j2'2 ([(21—1)(21+2)_922%21,321]T DY
Zy;—o(t)
_92,321—2,%]—2%
Zyj+o(t)
_92,32]+2§2j+2%] P,;(cos®), (25

where%f,o) is the pressure exerted by capillary forces on the
unperturbed surface of a drop containing terms of zero order
of smallness and termse?; 6F,(¢) is the correction to the
capillary pressure due to the perturbatiéf®,t) and con-
tains terms~ ¢ and ~e%¢.

3. In order to write an expression for the pressure ex-
erted by the electric field on the surface of a drop we must
solve the boundary-value proble(8)—(10). We write the
electrical potentials in the form of an expansion,

CD:q)0+(Dl+q)2+q)3, (26)

where®, is the zeroth order potentia?, is the correction
of ordere?, ®, is the correction of orde¢, and®; is the
correction of ordee?é.

Substituting (26) into (8)—(10), we obtain four
boundary-value problems for each of the functiohs(q
=1,0,2,3))

V2(Dq:0 (q:0111213l (27)

at r—ow:  ®y— —Eyrcoso,

-0 (q=1,2.3); (28)
a

at O=7: ®—0 (9=0,123; (29

3
D{Y=Z e’EgR;

2
DM=_e?EgR; :

5
DM =0 (m=234,..);

D(2?)+1: 3Eq[asjZ,j(t) +byj 12254 2(1) ];

DB —ea23E —i+2 j+2) %y
2j+1 € 0 15 (] )%2]+1

azj

+(J+1)ag - 1by;|Z5j(t) +byj 12

4 . .
ST 2(j+2) 25541+ (j +3)agj 120513

XZpj12(1)+(J+1)agj—apaj—1Z25-2(1)

X

+(j +3)b2j+4§2j+322j+4(t))§

(j=0,1,2,..)). (32

The coefficientsa,,, by, {m, andu, are defined in20).

We can now write out expressions for the electric field
and the pressure exerted by it on the free surface of the drop,
r=R+e?h(®)+&(0,t):
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2 h(®)
3—622(§—ST)}

E=—V~<I)~|Eocos®

7 h(®)|]£O,1)
1= e22(15 R ” R

—6E,cos®

o0

+2 (2j+2)

2
1-e%(2j+3) R

N D2?+1(t)
R

P2j11(cosO) r &

1+ 6—) 3E,sin

[e Eosin®

§(0,1)

7
X 0| 1+e? +11—”

e 2ien® )) )

-2
j=0

D(zgj))+1(t)
R

E2 9E] 8 h(o)
%E_8—~8—COSZ® 1—¢? 1—5—4T

€o -

dPy;j,1(cosO)
de

47
H 2 )
[13 9 h(0®) 42(h()) }g(,t)

1[6 { 6—(®)}—§(2t) e?6E2

><15 15 R R R

1—¢?

—3Eocos®2 (2j+2) =+

D{2 D
1) h(:)))) 2];1(':) + J;l(t)

h(®)
1+6T

+e?E,sin®

X2

= 0

“ DS, (1) dP2j+1(COS®)]

Using (14), (20, and the expressiong32) for
DY, 1(t)/R and DS, ; (t)/R and performing some straight-
forward but extremely awkward manipulations, we arrive at
an expression for the electrical pressure on the surface of a +e2
hemispheroidal drop in the form of an expansion in Legendre

polynomials:

3E2
Fe~F 0+ 5&9(5)— ( Po(cos®)

48
==P4(cos®)

1 ,18
+e’— 35

2 35

P,(cos®)+e?

9EF < Zyi—4(1)

> [92(31 N Raj-akoj-2— g

87 (=1

(@)) D&, 4 (1)

P 1(c0s0)
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. Zyj—o(t)
+ gyl (2] —2) + (V] =

_ (t)
+1(2] = 2) 751+ 2] v+ D] =L 2

. ZZ'+2(t)
+ Loyl 2+ —

. Zoi1a(t)
+923(]_1)§21+2§2j+4% sz(COS®);

Ym=amPm+1;

f=(3M—7) yam-3+ (5M—7) Yoo+ (M—6) Y1

1
+(3M—4) yop— 7z(31m—61);
15
f2)= 72m1[ (M=6)Y2m-1+ (5M=7) yom—>

+ J’zm[ (M=5)¥om+1

1
~ 7g(3Im—62)

+(5M—2) yom— %5(31m— 30)}

+2(3M—=5) yom-1Y2m;

f&=3(M—2) yom_1+ (5M—2) yom+ (M—5) yams 1
1
+3(M—1) Yom o~ 75(31m—30). (33

4. Let us update the hydrodynamic term in the dynamical
boundary conditior{7) with the use of the solutiofil5) and
the coefficientd21) and(22), the functional form(18), and
relations(20). As a result, we find that the following equa-
tions hold on the free surface of the drop:

,... h(®) _
1+e Z]T Pyj(cos®);

40 - .
p—-=~pS2, Cyj(t) R?
ot =1

d o1 (2j+3) Zy;(1)
— ~pR?5? z _ 2 ) ]
P t pR-S 21[<1+e %21>

= 2] R
1 Zyi (1)
2 j
te S mo 2
j+2 Zoi t
) 2i:+2( )}sz(cos). (34)

2j+2°4*2 R
From the dynamical boundary conditigd) on the un-

perturbed surface of the drop we obtain the equation
AF+F0=50)

which to zeroth order gives for the pressure differential

across the unperturbed surface

o 3E0

AF=25- =,
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and which to first order ire? gives the familiar relatioff1° W
between the magnitude of the electric field and the square of
the eccentricity of the drope?:

\

2
, 9 ER
e~ T ——

160 o '

On the unperturbed surface of the drop the dynamical 5 \

boundary condition(7) is written

1 1

-0.2 0 0.2

] 1
i -0.4 0.4 e*
—p o+ OFe(£)= 55, ().
FIG. 1. Critical value of the Taylor parameter versus the square of the
eccentricity of a hemispheroidal protrusion on a plane free surface of a

Substituting into this equation expressiof®b), (33),  conducting liquid.

and (34) and making use of the orthogonality of the Leg-
endre polynomials, we obtain an infinite system of linear
homogeneous coupled equations for the unknown amplitudes

Z,i(H)/R:

1 (2j+3)
_ 02 2
( Q —2j[1+e 2]

+2) v+ P]-[(2) - 1)(2j +2)

+WI(2]—2) 551

%Zj

Zy;(1) (J+2)

_a2 po\ e _022_M ST
. Zyj4o(1)

+W[21+92f1(3)]+32,32j+2 §2j+2—1;

+ —Qze24ij+W[(2j—2)+e2fj(1)]+e2/32jl

Xﬂzj—zzz%;(t)ﬁL{eZW?J(J—1)§zj+2§21+4}

XZZHTAP(UJF{EZW@]_7)M2j—4M2j—2}22j+;(t)=0i

QZEP—RSSZ; Wzi@. (35)
47 o

5. System(35) has a nontrivial solution if the determi-
nant of the coefficients of thg;(t) equals zero. This condi-
tion yields the dispersion relation of the problem:

detfamn) =0;

22m+3
2m

%2m

2 1
amm=—Q m 1+e

+ W[ (2M—2) yom_1+ 2Mysm+ €2 @]
—[(2m—=1)(2m+2) = €25 Bom];

(m+2)
A4m(m+1)

2g2 +W[2m+e?f (3]

Ammt+1~—

2 .
+e B2m+2] Loms2;

(1)
—92e2m +W[(2m—2)+e?f()]

Amm-1—

2 )
+e ﬁzmz] Mom-2;

@ mr2=3(M—1)€Wlom 1 2lom+4;
A m-2=(3M= 7)€ Wit om_aptom-2;

Ammn=0 (M=1,2,3...:h=+3+4,..). (36

Expressions foay,, by, {m, anduy, are given in(20),
and for y,, and f) in (33). In a system described by the
dispersion relatiori36), unstable solutions, exponentially in-
creasing in time, appear when the free coefficient of the sys-
tem (36) goes to zero, which corresponds to the appearance
of a zero solution fo)2. Therefore, setting2?>=0 in (36),
we obtain an equation of infinite order relating the critical
value of the parametat for the onset of instability of the
mth mode and the deformation parame#ér The equation
thus obtained is conveniently solved by the method of suc-
cessive approximations, where the determinant of infinite or-
der is successively approximated by determinants of increas-
ing finite order®®

The equation relatingV and e? has, according t¢14),
an infinite number of solutions for different even capillary
modes of the hemispheroidal drop. We recall that the hemi-
spheroidal deformation is characterized by a real parameter
e?: in the regione?<0 it is equal to the square of the eccen-
tricity of the oblate hemispheroid taken with a minus sign,
e?=0 corresponds to a regular hemisphere, efd0 is the
square of the eccentricity of a prolate hemispheroid.

Figure 1 shows the dependence of the critical valug/of
for the secondbranchl) and fourth(branch2) modes cal-
culated in the approximation of a 7th-order determinant. The
calculations show that in this approximation the accuracy in
the determination of the critical values @f for the funda-
mental mode is determined by the machine precision. From
the nature of the behavior of curv&sand?2 one can say that
the critical conditions for the onset of the instability studied
here tend to decrease as the hemispheroidal protrusion is
drawn up from an oblate to a prolate shape. The results
show, in particular, that for drops that have precipitated on
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electrical transmission lines, on tall objects during storms, or 1 5

on the walls of fuel tanks, the critical conditions for the onset—92§ 1+ 92§ %o +W[2y,+e*f 2] —[4—26%x,,]=0.
of electrostatic instability are considerably lower than the (39)
critical conditions for the onset of the Tonks—Frenkel insta-

bility.

If it is assumed in(38) that Q2=0, it is straightforward
to find, for e>=const, the critical valudV=W, at which a
hemispheroidal protrusion having a base with a characteristic
linear dimensiora becomes unstable:

6. As we have said above, the critical conditions for
instability of a charged plane surface obtain ft>2.
This means that for any specific electrically conducting lig-
uid in a uniform electrostatic fiel& normal to the plane of
the free surface of the liquid, as this field is increased to a

value determined from the instability criterigaee Eq.(2)] 4—2e2x,8,
W* :—2(2) . (39)
2y,+efy
E9= 87557, @ nstabilty
We now recall that the onset of instability itself began at

W=4.5M2>W, . Substituting this value, i.e., A8, in
the charged free surface of the liquid will lose stability. In Place of W in (38), we obtain the following expression for
other words, this happens when the attractive forces exertéfi€ instability growth ratey=Re)>0 of a hemispheroidal
by the electric fieldE, on the charges induced on the free Protrusion on a charged plane surface of a liquid subjected to
surface of the drop by the fielfl, itself, which tend to in- the electric field determined big7):
crease the area of the free surface of the liquid, exceed the
capillary forces that tend to diminish the area of the frees— /oW0 2y, +eZ(fP—5y,x,)]—4[2—e%xy(Bo+5)].
surface. As a result, virtual perturbations of the free surface
of the liquid due to the thermal motion of its molecules, i ) . i
which in the stable state have a physically infinitesimal am- It is easy to See that the instability growth rafein-
plitude, begin to grow exponentially in time with a growth Créases with increasingf.
rate that is determined by the amplitude of the virtual pertur-
bation at the time of the onset of instabilitgee, e.g., Ref.
21). As the amplitude of the growing perturbation increases,
so should the growth rate of the instabilifpr, in other
words, the rate of increase of the amplitudiee., there is
positive feedback. Some of the behavioral regularities of this
phenomenon can be investigated using relati@es.

First, we see from relation€36) and Fig. 1 that as the

amplitude of the virtual hemispheroidal perturbation of the

CONCLUSION

The critical conditions for the onset of instability of a
hemispheroidal drop of conducting liquid on an electrically
conducting solid substrate in a uniform external fiélda

free surface increases, the critical value of the paranvefer hemlspherom!al p_rotrusmn on t_he free surface of an e_Iectn-
cally conducting liquid undergoing the Tonks—Frenkel insta-

for it decreases; this means that the critical value of the eleCBiIit ) are lowered as the eccentricity of the spheroid in
tric field E,. at which the hemispheroidal protrusion becomes Y Y P

unstable is lowered. Since the instability of the initial planecreas.(?S and are S|gn|f|c-:antly“|ower than the critical
surface began at a value of the fifﬂaF determined by rela- conditions for the onset of instability of a plane free surface

tion (37) and which remains unchanged during the entireOf the liquid in the fieldE. This circumstance provides a

development of the instability, we ha\Eak<E$F. In other physical basis for the formation of Taylor cones and indi-

words, the initial fieldES. will be above the critical field for Ct€S that the growth rate of the Taylor cone upon the onset

the hemispheroidal protrusion, and the rate of growth of thé)f the Tonks—Frenkel instability will have a faster-than-

L . . . xponential growth.
parameter in timgits exponential growth rajdés determined exponential gro
by the differencé/\/?F—W* at any point in time.
Using relations(36) in the approximation linear ire?
and ignoring the interaction of the modes, we can write out
an expression for the exponential growth rate of a hemisphe;
idal protrusion when its eccentricity is zere?=0, i.e L. Tonks, Phys. Revds, 562 (1939.
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Critical equilibrium spheroidal deformation of a drop of dielectric liquid in a uniform
electrostatic field

S. I. Shchukin and A. I. Grigor'ev
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The stability of a dielectric drop, which in an external electrostatic field takes on the equilibrium
shape of a prolate spheroid, is analyzed using the principle of minimum total potential

energy of an isolated system. The values of the Taylor parameter and degree of spheroidal
deformation at which the drop loses stability are determined for a wide range of dielectric constants
of the substance of the drop. ®999 American Institute of Physid§1063-784209)00507-3

The equilibrium shapes and stability of charged drops in 1 2meoE?R3(e—1)
uniform external electrostatic fields have been the subjects of Ue=— 2 EPy= A1+(e—1)n] 2
numerous experimental and theoretical studies in connection X
with the investigation of elementary processes in stormwhere P, is the dipole moment of the spheroid; is the
clouds and the development of new chemical technologiedielectric permittivity of free space, amy, is the depolariza-
and physical apparatus for analytical investigatise, e.g., tion coefficient of the spheroid, which has the férm
the review$? and the literature cited therginNevertheless,

there are still many unanswered questions on this topic. For _kin(k+Vk*+1)— Jk*—1

example, the majority of the theoretical studies have been M= (K2—1)372 '

done for drops of a perfectly conducting liquid, and the ques-

tion of how the critical equilibrium deformation of a drop of In the following stability analysis of the spheroidal shape

dielectric liquid in a uniform electrostatic fiel is related to  of the drop, its total potential energy,+ U, will be ren-
E and to the dielectric constastof the liquid has remained dered dimensionless by dividing by the potential energy of a
beyond the scope of these investigations. The present studpherical drop of the same volume,
should fill this gap.
The analysis below is carried out in an approximation in _ UstUe
which the equilibrium shape of a drop of dielectric liquid in UgstUes’
a field E is assumed to be spheroiti@nd is based on the
principle of minimum potential energy of the equilibrium
shape of an isolated drop. We shall investigate the equilib- U, =47R%0 (4)
rium states and the stability boundaries of a drop of dielectric
liguid in the fieldE. The external medium will be assumed is the energy of surface tension of a spherical drop, and
to be nonconducting, with a dielectric constant equal to 32
unity, i.e., a vacuum. U= — 2mR°E (e —1)
1. The potential energy of an isolated drop in a fiéld es 4+e
consists of the energy of surface tension and the electrostatic

energy of the drop ifE. The energy of surface tension of a IS th\(/avelelctro:_st?ncdenertghy o;.a d|elfact|r|c Sphere 'Q‘Z Fld
prolate spheroidal drop is writt&n e also introduce the dimensionless param&te(the

Taylor parameter the value of which characterizes the sta-
bility of a drop in a fieldE (a drop of an electrically con-

()

where

®

tan 1 (VK2—1) ducting liquid becomes unstable at=2.59; Ref. §:
U,=2moR?| k™ 23+ k3 , (1)
k?—1 4eoE’R
W= —Y (6)

whereR is the radius of a spherical drop having the same  gypstituting expression4), (2), (4), and(5) into (3), we
volume as the spheroidal drop under studyis the coeffi-  rewrite (3) in dimensionless form as

cient of surface tensiork=a/b, anda andb are the semi-

major and semiminor axes of the prolate spheroid, respec- 1 k*¥tan !(Vk?-1)
tively. U=i2m le3+ =
The electrostatic energy of a dielectric spheroid elon-
gated along an external uniform electric fi#ldn vacuum is W(s—1) W(e—1)]*
given in Sl units by the expression - T—l)nx T 202+e) )

1063-7842/99/44(7)/5/$15.00 758 © 1999 American Institute of Physics
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U 1
- 2
3
1.00001 4
5 FIG. 1. Dimensionless energy of a drop of transformer oil in
- 5 an electrostatic field, as a function of the deformation param-
eterx: W=0.01(1), 0.1(2), 0.2(3), 0.3(4), 0.4(5), 0.5(6),
7 0.6 (7), 0.7(8), and 0.8(9).
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2. For convenience in graphical representation of the re1—4 in Fig. 2a and 2| corresponding to a spheroidal drop
sults of a numerical analysis of relatién), we shall charac- with a ratio of semiaxek<1.4. As the Taylor parameter
terize the degree of spheroidal deformation of the drop in théncreases to value$/=2.3 there is a qualitative change in
field E by the guantityx=In(a/b). the shape of théJ(x) curves: nowU(x) has two minima

Figure 1 shows the curves &f(x) for a drop of trans- separated by a local maximum. After the first minimum, the
former oil (¢=2.2) as calculated numerically from E(y) positions of which are denoted in Fig. 2b by dots, thgx)
for different values of the Taylor paramet& The presence curve passes through a local maximum and then descends to
of a single minimum on th&J (x) curves(the positions of the a second minimunithe positions of which for differentv
minima are indicated in Fig. 1 by dotever a wide range of are denoted in Fig. 2a by crosgesorresponding to an equi-
variation of the parametaV (0<W=40) indicates that for librium spheroidal shape with a ratio of semiaxes6. Fur-
this value of the dielectric constant of the substance theréher growth of the degree of deformationof the spheroid
always exists an equilibrium shape of the drop in the form deads to unbounded growth of the potential energy. As the
prolate spheroid. A comparison of the positions of the mini-Taylor parameteiV is increased, the positions of both the
mum on the curves for different values\Wf(see also Fig.)l  first and second minima are shifted to higher deformations.
shows that the eccentricity of the equilibrium spheroidal  As the Taylor parameter is increased/Ms= 3.24 the first
drop increases monotonically with increasing Taylor paramminimum (and, with it, the local maximuindisappears, and
eterW. U(x) becomes a descending curve in the whole region

In Figs. 2a and 2b the curvés$(x) are shown in differ- 0<k<6. Since the existence of stable equilibrium spheroidal
ent scales for a drop of ethyl alcohat £46) at different drops with a ratio of semiaxds>6, i.e., with an extremely
values of the Taylor paramet®. As the calculations show, strong elongation, is unlikely on general physical grounds
and as can be seen from Fig. 2, for small values of the Taylothat have not been incorporated in the model, the value of the
parameteiV< 2.3 the curves have a single minimfourves  Taylor parametelV=3.24 at which the first minimum van-
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FIG. 2. Dimensionless energy of a drop of ethyl alcohol. a: Ttf&) curves at large deformations; the crosses indicate the minima in the region of large
deformations foW>2.3; b: the curves at small deformations; the minimum in the region of small deformations are indicated by-at§;(1), 1.8 (2),
2.0(3), 2.2(4), 2.4(5), 2.6 (6), 0.8(7), 3.0(8), 3.2(9), and 3.4(10).
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ishes should bg regqrded as the upper'boundary of the region 10 . 4cC 5 k-3 11kC
of W values in which stable spheroidal drops exist for 27k —k 3+ = —k 1+ - ———
e =46, 9 9A 3 A2 3 a8

_ TheU(x) curves calculated for a wat_er drop<£81) f_or K K3C W (2k2+1)Bk
different values of the Taylor parametfig. 3) are qualita- 33— 43— | T 3A2
tively similar to those shown in Fig. 2. The significant dif- At A° D2 A

ferences are that) ahe second minimum on thg(x) curve
first appears at smaller values of the Taylor parameteér (
>1.43); b the positions of the local maximum &f(x) are
shifted to larger deformations;) ¢he vanishing of the first
minimum and the local maximum &f(x), i.e., its transition

to a monotonically descending function in the region of de-

formations (6<k<1.6), is also observed at smaller values
of the Taylor parameter>2.3).

3. The relation between the equilibrium spheroidal de-
formation of a drop and value of the Taylor paramétécan

be found from the requirement that the total potential energy

of the drop in the equilibrium state be minimum,
i U,+Ux)=0 8
“c(UstUe)=0, ®

which leads to the equation

2 4 K¥c Kk'® Kk'Pc
_ 53 _
2 3k + 3 A + 2 e
) WA
+[3kA=(2k*+1)B] 7 =0,

—AkAB+4k?—1—2A[3kA— (2k?+1)B]

3kA
X|—=+B|D"1}=0,
e—1
A=k’*-1, B=In(k+yk*—1),

C=tan }(Vk’-1),
o (K2—g)k?—1

e—1

+kIn(k+ Vk2—1).

A graph of the curvdJ =U(W,x) calculated from Eq.
(7) for a drop of water is shown in Fig. 3. The cund is
the projection of the solution of equatidB) on the surface
U(W,x), or, in other words, the curvAD passes through
points at whichU (x) takes on extremal averages. The lines
BF andCE are projections of the solution of equati(® on
the surfaceJ (W,x) and divides this surface into three parts:
to the right ofBF and to the left ofCE are the loci of points
at which

62
%(U(ﬁ Ue)>0,

which, with allowance for the requirement that the secondand betweetBF and CE is the locus of points at which

derivative be positive,

2

J
%(u(ﬁue);o, 9

leads to the relation

32
%(Uaﬂ— U.)<0.

Thus the segment&B and CD correspond to minima
and segmenBC corresponds to maxima of the function
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= NG 6 FIG. 4. Curves ofV(x) obtained from the solution of
o equation(8) for e=18 (1), 20 (2), 23(3), 26 (4), 34
2F (5), 46 (6), 81(7), 200(8), and (9).
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U(x). Itis clear from what we have said that the equilibrium eterW corresponding to the pointS3—C9 determines when
shapes of the drop correspond to the cuig the second minimum will appear on thix) curve.

Figure 4 shows the results of a numerical calculation At values of the Taylor parameter less than the critical
using EQ(S) for different values of the dielectric constant Va|ueW* , for a drop to be brought to the region of instabil-
The calculation shows that fer<20.8 an equilibrium shape ity it is necessary to impart to it an energy sufficient to over-
of the drop in the form of a prolate spheroid exists for anycome the potential barrier, the value of which is plotted in
value of the Taylor parametécurvesl and2 in Fig. 4. For  rig 5 (curvesBn-Cn) as a function of the Taylor parameter

¢>20.8 the equilibrium states of the spheroidal drops A¥or various values of the dielectric constast Segments

observed up to a certain critical value of the Taylor param-, - .
eterW=W, (denoted by point83-B9 in Fig. 4), and this A-Bn of the curves in Fig. 5 correspond to equilibrium states

critical value depends on the dielectric constant of the sub(-)I the fpbf:ermdgll_t()dr_op, a??hthz pOIrBtatEorreipon t? sta;et;
stance of the drop, in agreement with the data of Ref. 7. AQ" unstable equiiibrium ot the drop at the critical value ot the

the dielectric constant increases, the critical vallig de- | aYlor paramete. o
creases, reaching at—c a minimum valueW, o= 2.57, The three-dimensional surface presented in Fig. 6 was

which is in good agreement with the results of a study of thedetermined from the relation between the dielectric constant
boundaries of stability of conducting drops in an electrostatice of the substance of the drop, the Taylor parame¥eand
field® The segment&\-Bn in Fig. 4 correspond to equilib- the parametek, according to the solution of equatids).
rium spheroidal shapes of the drop. SegmeBis-Cn of  CurveAB, like the pointsBnin Figs. 4 and 5, corresponds to
curves3-9 correspond to local maxima of the functibi{x)  states of unstable equilibrium of the drop at the critical val-
for W= const ance =const. The value of the Taylor param- ues of the Taylor paramet&¥, and it separates the stable

1.25

1.2

FIG. 5. Height of the potential barrier
versus the Taylor parameter fer=32
(1), 46 (2), 81(3), and (4).

115

7.06F
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FIG. 6. Interrelationship between the Taylor parameter, the dielectric constant of the substance of the drop, and the deformation parameter.

spheroidal shapes of the drdi the left of AB) from the  corresponding to equilibrium spheroidal shapes of the drop
unstable statego the right of AB). and to determine the critical conditions for loss of stability.

CONCLUSION

The foregoing investigation has revealed that for an iso-
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The bidirectional escape into the third dimension of a linear disclination of strength (L ;)

in a cylindrical capillary with normal boundary conditions is investigated. It is shown that

in this case two types of defects arise in the capillary: point defects and ring defects, each of which
can be of the radial or hyperbolic type. Exact solutions are obtained for the equation of
equilibrium of the elastic field. The free energy of the point and ring defects is calculated
approximately in a narrow, long capillary. New scenarios are proposed for the escape of the
disclinationL? ;. © 1999 American Institute of Physids$S1063-784£99)00607-§

1. In nematic liquid crystalgNLCs) the director field 0 L sifa da
n(r) can have singular points, lines, and surfaces at which F=7K . dp 7LdZ p +sin ZLY%
the direction of the directon is indeterminate. These singu-
larities are called point, linear, and surface defects, respec- o sir? da da\? dar\?
; - —+p|l—| +pl—| |.
tlvely. SIT 0z p o'?p p 0z (3)

In an NLC in a cylindrical capillary with normal bound- o _ o
ary conditions, the structure with a singularity on the axis  Minimizing (3), we get the equation of equilibrium

(L%, a linear disclination withm=1) becomes energeti- Pa 0/ da

cally unfavorable at capillary radjp larger than a certain 2p2_+2p_(p_) =sin 2a. (4)
critical valuep, and it “escapes” into the third dimensidn. 9z° dp\" dp

The solution describing the unidirectional escape of a discli- Being a dimensionless quantity, the anglean depend

nation of strengtm=1 was obtained in Ref. 2. However, ., on dimensionless combinations of coordinates. We as-
for an NLC the two directions along the axis of the capillary ¢, e thata depends only on the combinatiaip. Then

are equivalent. Therefore, it is of interest to consider the,qq, introducing the new variabbe=sinh-1(z/p), we write
problem of bidirectional escape of a disclination, when theEq. (4) in the form '

two directions are connected by a singular point. Such a

possibility was indicated in Ref. 1. 2ay,=sin 2a. 5)
The goal of the present study is to investigate the bidi-

rectional escape into the third dimension of a linear disclina-

tion of strengthm=1 in the one-constant approximation of (a))?=c+sirt a, (6)

the continuum theory of NLCs, wherec=0 is a constant of integration.

2. Let us consider an NLC in a cylindrical capillary of : : :
: . . After a second integration with the normal boundary
radiuspy and length 2., with normal boundary conditions. o .
conditions taken into account, we have

The components of the director in the cylindrical coordinate

The intermediate result of integration is

system are written as @ d¢
———===*Inu, )
m2,/C+ sﬁg
n,=sina(z,p); n,=0; n,=cosa(X,p), (1)
where
where « is the angle between the “line of force” and the Zlp+ N1+ 7% p?
; ; N U= ——Fr———.
axis of the Caplllal’ya(p—po)—?T/Z.. 2l po+ \/mg
In the one-constant approximation the free energy of de-
formation is The substitution
au
K &= 5_ 1
F=3 ((V-n)2+(Vxn)2)dV, 2
™) reduces the left-hand side of E®) to an incomplete elliptic

integral of the first kind,
whereK is the Frank elastic moduluy,is the volume of the o q 1
NLC, andn is the director. f W +—Inu (8
Using (1) in expression2), we get o J1-KZsiPy kT

1063-7842/99/44(7)/4/$15.00 763 © 1999 American Institute of Physics
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FIG. 1. Hyperbolic point defectH). FIG. 2. Radial point defectR).
wherek=1/\/1+c. For pg—o the anglesa; and @, go over to the well-
Hence known solutions describing hyperbolic and radial point de-
fects in an infinite spact.
o= z +an< In_u) ) Let us now evaluate the free energytbfandR defects.
2" k )’ Here we limit discussion to the most interesting case of a
) , ) long and narrow capillary gp<<L). Substituting(11) into
where am is the Jacobi amplitudie. (1), we get
In order to study the elastic deformation field, we must
consider a family of lines of force satisfying the differential F T Po 21 2
equation Akl 3t 79 TOp/LY), 13
dp/n,=dz/n,, (100 whereq~1.5 for anH defect andy~3 for an R defect.

In calculating the energy we have expanded the inte-
grand in Eq.(3) in a series in powers of a small parameter,
keeping the first two terms of the expansion. In the region
|z|>p, the small parameter ig/|z|, and in the regioriz]

a;=2tan tu or a,=7—a;. 11 <poitis |z|/po.

Expression(13) shows that the energy of a structure con-

The lines of force obtained as a result of the numericataining a point defect differs from the energy of a nonsingu-
integration of(10) with allowance for(1) and(11) are drawn |ar structure by the presence of an additional term which
in Figs. 1 and 2(these and the other figures pertain to aappears because of the stronger distortion of the lines of
cylindrical capillary and show a section by a plane passindorce near the defect. Although this term does not contribute
through the axis As can be seen from these figures, bidirec-substantially to the energy, its presence suggests that the en-
tional escape of the disclination gives rise to point defects oérgy gap betweerd and R defects is smaller than in free
the hyperbolicH and radialR types. In the limit|z|>po we  space.
obtain the well-known Cladis—Kleman relatiéngorre- In fact, in free space Eq11) becomes

sponding to unidirectional escape of the disclination:
ay=2tan Y(zlp+J1+7%p?), ar,=m—a;. (19

Integrating the equation of the lines of for¢g0) with
allowance for(14), one is readily convinced that; corre-
sponds to arH defect anda, to anR defect. Let us now
ar=T—ay. (12 mentally select out an imaginary capillary of radipg and

which must be integrated with allowance fdy and(9).
3. Let us first consider the cage=1 (c=0). Then(9) is
transformed to

m—2tan Y (plpy), z>0,
@1= 2tan 1 (plpo), z<0,
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FIG. 3. System of hyperbolic ring defectRy).
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FIG. 4. System of radial ring defect&g).

length 2. and calculate the energy of the elastic field in this
imaginary capillary. Substitutingl4) into (13), we get
F dz  sn(In(p/pg)/k)
= 1 oo
aaKk _Potan " (Lpo), dp_ en(n(plpg)K)’ (20
FR

where sn and cn are the sine and cosine of the Jacobi
47K

amplitude®
Assuming thap,<L and keeping only the first term of The right-hand side of2) has a singularity determined
the series expansion in powersmf/L, we obtain

Substituting(19) into (10), we get

=2potan * (L/pg)+ LIn(1+ p3/L?). (15)

by the equation

F T Po 21 2 cn(In(p/po)/k)=0 (21
whereq=2 for anH defect andy=4 for anR defect.
Thus p=poexd —k(2m+1)K(k)], m=0,12..., (22
FR-pt ~ TP, (179 Where
27KL 2L
while for a real capillary K(k)= 2 dy
FR_FH 7503 0 V1-k*sirnt ¢
———~5 T 5, 18
2mwKL 212 (18 is the complete elliptic integral of the first kind.

i.e., the energy gap decreases. In other words, we have a family of infinitely many cy-
’4_ Fork=1 (c=0) the singular structures forming in the lindrical surfaces whose radii fall off in a geometric progres-

capillary are qualitatively different from those consideredSion a@s the axis of the capillary is approached. On these

above: they are now ring hyperbolRy and radialRg de- surfaces the angle tends asymptotically to O ot, depend-

fects. Their elastic field is illustrated schematically in Figs. 31"9 On the direction of escape. On the axis of the capillary a
and 4. singularity arises due to the indeterminacy of the value of the

For an analytical description of the rings we again limit @"gle a for p=0 [see Eq.(19)]. Taking the relationk
discussion to the case of a long and narrow capillary and™1/vV1+ ¢ into account, we easily see that for-1 the cyl-

consider the problem of unidirectional escape of the discliinders almost uniformly fill the space inside the capillary,
nation in the case=0. This problem can be solved exactly, and forc<1 they are cqncentrated mainly near the axis. For
and all the results obtained will clearly be valid also for ©=0 we have the Cladis—Kleman escdpe.

bidirectional escape in the zeroth approximation in an expan- N view of what was said above, we can conclude that

sion in powers ofpe/L. Solving Eq.(4) without the first “in the zeroth approximation” this picture holds for ring
term on the left-hand side, we get defects as well, the only difference being that éo+ 0 the

system of radial ringRk degenerates into a pointdefect,
oom In(p/ po) while the system of hyperbolic ringR, degenerates into a
a=—==*a . (19 .

2 k point H defect.
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The free energy of the rings is found by substitut{i§) bunched together near the axis, however, are almost as ener-
into (3) and taking into account that the result thus obtainedyetically favorable as the nonsingular structuf&™.
is the zeroth approximation in an expansion in powers of 5. In summary, a linear disclinatiob®, ; can escape into

po/L: the third dimension in at least three ways. For a unidirec-
F 9 tional escape a structuté'S¢ forms which contains an infi-
SRKL kE(am(|n(p0/b)/k))+ sre(In(po/b)/k) nite number of cylindrical surfaces, on each of which the

direction of the director is asymptotically parallel to the axis

of the capillary, and a singularity on the axis of the capillary.

—(k'/k)? In(pO/b)+q(k) L O(ps 2112+ fo, A degenerate case of such a structure is a disclination escap-
ing in the Cladis—Kleman manner YEY. For bidirectional

(23 escape a system of ring defects of the raBigabr hyperbolic

where Ry type form, which in the degenerate case go over to point
R or H defects, respectively.
sing (11— kzt2 In principle more complex scenarios for the escape of
E(‘P)_f VI-K, LP , are possible, viz.,
q(k) is a bounded function ok (q(k)—(7/2)q ask—1) LP > LNSG | NSL
andb is a so-called cutoff parameter of the order of molecu- -
lar scales;f, is the free energyin units of 27KL) of the L? ;—~Rr—R,
core of the singular structurd { cannot be calculated in the -
framework of continuum theoty. L% —Ry—H.
Forc>1 Here the symbols> and — denote the more probable and

o less probable scenarios, respectively. To determine which of

~c|n(po/b)+(1/c)T+O(p(2,/L2)+f0. (29 these is actually realized it will be necessary to do a more

accurate calculation of the free energy of the structures de-

Forc<1 scribed above and to consider specific mechanisms for the
onset of instability.

F
27KL

Cpo

3+ ZqPo ¢
~ EqL N %p

20 2
+ O(pO/L )+0(c)+ fo' Ip. G. de Genneghe Physics of Liquid CrystaJ®ergamon Press, Oxford
(25) (1974; Mir, Moscow (1977, 400 pp].
) ] 2p. E. Cladis and M. Kleman, J. Phy@®arig 33, 591 (1972.
Expressiong24) and (25 show that a system of rings °E. Jahnke, F. Emde, and F.¢ah, Tables of Higher Functionssth ed.
that almost uniformly fills the entire capillary region is ener- 4[SM%?1raVL_H'"i( r’:‘eW Ygfé(ls%g? NaUkihMAojco"\(lgégv?fl“g‘Sgp]-
getically unfavorable, since its energy is of the same order as > Chandrasekhar and G. S. Ranganath, Adv. P8t '

the energy of a linear disclination of integer strenhjRings  Translated by Steve Torstveit

27KL
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Results are presented from a study of the characteristics of a steady-state plasma in a He/H
mixture at high pressures. The plasma is formed in the outer region of a multielectrode corona
discharge. It is shown that molecules of helium hydride form in such a medium, and their
decomposition is accompanied by continuum emission in the 350—650 nm region. The corona
discharge is distributed over the length and can be used in systems for the transverse

electric circulation of the working medium of atmospheric-pressure plasma radiation sources.
The reference spectra of the plasma emission and the dependence of the relative intensity

of the lines and the brightness of the bands of e the value of the discharge current, pressure,
and composition of the working mixture are investigated. 1899 American Institute of
Physics[S1063-784£99)00707-3

INTRODUCTION for studying the kinetics of the processes occurring in such
media.
Atmospheric-pressure HefHmixtures under excitation In this paper we present the results of a study of the

in an electron-beam-controlled dischaKgeration=0.1 m9 electrical and optical characteristics of a bipolar corona dis-
are of considerable interest for application in IR lasers work-charge of negative polarity, ignited in the working medium
ing at vibrational—-rotational transitions of the hydrogen ha-of an atmospheric-pressure plasma radiation source using a
lide molecules(HF, HCI, etc), and both the case of room He/H, mixture.

temperatures of the gaseous mediiand nitrogen tempera-
tures (T=100 K)? have been investigated in detail. EXPERIMENTAL PROCEDURES AND CONDITIONS

The possibility of building a periodic-pulse laser source  The multielectrode corona discharge was investigated on
working at the A-X transition of the excimer molecule the apparatus described in Refs. 11 and 12. The electrode
HeH" with A =460 nm andA\ =310 nm for excitation of  system used consisted of one row of point electrodes and a
a He/H, mixture by modulated high-energy electron beamssemitransparent metallic grid. The rounding radius of the tips
or by optical pumping was demonstrated in Refs. 3-5. Inyas 0.1-0.2 mm, and the radius of the wires in the grid was
order to maintain the optimum gas temperature, such sourcgs15 mm. The density of tips in the row was 1 per centimeter
require circulation and cooling of the working medium. In of length, and the total length of the electrode system was 11
these sources it may be appropriate to employ electric circuer 17 cm. A dc voltage of negative polarity)&10 kV, |
lation of the gaseous mixtures by means of a multielectrodes 15 mA) was applied to the tips across a limiting resistor
corona discharde distributed uniformly over the length of with R=1-3 M(Q. The emission from the corona discharge
the active medium of the source. Corona discharges are algdasma was investigated with a panoramic view of the entire
used in electrofilters for removing solid particulates that haventerelectrode gap. Radiation from the hot zones formed near
been sputtered in the electrode system of a plasma radiatidhe tips was shielded. The radiation from the plasma was
source.. The conditions for achieving stable corona disanalyzed with a DFS-12 monochromator, anU~E06 pho-
charges in He/k mixtures at high pressures has not beentomultiplier, a U5-9 dc amplifier, and a chart recorder. The
studied before. At a lower pressures (.2 kPa He/H, mix-  resolution of the spectrometer was 0.1 nm or better. The
tures have been used in laser plasma radiation sources usifgfative calibration of the radiation detection system was
Hel atoms §=706.5 nm,21° but in that case the use of done with the use of DVS-25 and Sl 8-200 standard lamps.
electric circulation is hard to implement because of instabili- A Steady discharge regime was used. The possible pres-
ties of the corona discharge at low pressures of the gaseo§c€ Of & pulsed component of the radiation from the plasma
medium. In the majority of cases the He/lrhixtures have Was monitored by means of a 14—.FS linear electron multi-
been investigated under pulsed excitation by electron beanfdier and an S1-79 fast pulsed oscilloscope.
or a transverse discharge; it is therefore of physical interest
to study the parameters of a dense plasma based on thvs
mixture in the case of steady electrical-discharge pumping. A corona discharge in a HefHmixture was stably ig-

The plasma under such conditions of excitation should baited at a pressure of 50—300 kPa and was observed as a
supercooled, a circumstance which is important for the forspatially uniform discharge similar to those in mixtures of
mation of the excimer molecules H&Hind HeH* and also  He/Ar, Kr, and Xe'® The transverse aperture of the corona

ATIAL, ELECTRICAL, AND OPTICAL CHARACTERISTICS
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Typical current—voltagél-V) characteristics of the co-
rona discharge in He and in a He/lmixture are shown in
Fig. 1. In helium the 1-V characteristic of the corona dis-
charge has a close-to-linear form, while for a HefHlixture
it indicates the presence of two discharge stages, each of
which can be described by a linear 1-V characteristic. The
growth rate of the current in the high-current stage of the
corona discharge in a mixture with,Hs 3 mA/kV, while in
the low-current stage it is 0.25 mA/kV. The main difference
between the 1-V characteristic in these media may be due to
the formation of H negative ions in the He/Hmixture at
higher charging voltagdd on the tips, and at lower voltages,
to the efficient excitation of the high vibrational stateg#)

(Ref. 14, which enter into a dissociative attachment reaction
with electrons: The dependence of the ignition potential and

FIG. 1. Current-voltage characteristics of a negative corona discharge i region of stable existence of the discharge in terms of the
helium atP=200 (1) and in a He/H = 200/1.2 kPa mixture?2).

value ofU as the pressure of the He/lhixture is changed
(at[H,]<5 kPa was similar to the corresponding data for

discharge plasma was in the form of an isosceles triangl@lixtures of He/Xe/Ar, et¢® The main carriers of positive
with the base on the grounded electrode. Increasing the volthange in the investigated medium arg dnd Hg ions*®
age across the point electrodes gave rise to streamer breakhile the negative charge is carried mainly by kbns and
down around one of the tips at a pressure exceeding 150 kRedectrons.

or to the ignition of an arc at lower pressure. Increasing the
concentration of K molecules P=5-10 kPa caused the

Figure 2 shows the emission spectrum of a corona dis-
charge plasma in a HejHnixture atl =1.5 mA. The spec-

spatially uniform discharge in the outer region of the coronarum is shown without allowance for the relative calibration
discharge to vanish and led to the formation of bright hotof the spectrometerk(). The spectra were interpreted with
zones near the tips, similar to what is found for a coronahe aid of tables of Refs. 15 and 16. The emission spectra of

discharge in He/Mor He/CO mixtures?

Hej
—

—_——
i
-—

507.6 nm Hel

a plasma based on He or a He/iixture typically exhibited

587.6 nm Hel

i

L
500

1
550 600 A, nm

FIG. 2. Panoramic spectrum of the emission from a corona discharge plasma in arhigttie.
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Hey(e®ll;—a%3)) (0,1); 2 — 473.3 nm line of Hg(E'TI—A'S) (1,0);
FIG. 3. Relative intensity of the emission in the lines of the He atom in a3 — 464.9 nm line of Hg(e*M1—a%3 ) (0,0).

corona discharge plasma in a Hg/H 200/1.2 kPa mixtur¢l—3) and in He
(4,9: 587.6(1,5), 501.6(2), 388.9 nm(3,4).

stepwise excitation process. The dissociative recombination
a continuum in the region 360-650 nm. Observed against th%action can occur 0n|y with |—Iei0ns (023)_18A Compari_
background of this continuous radiation are the most intensgon of the distribution of the relative intensities of the Hel
lines of the He atom: 388.9, 501.6, and 587.6 nm, and dines with the distribution of the effective cross sections for
series of molecular bands of Fién the blue-green region of stepwise excitation of the corresponding lines of (Ref.
the spectrum. The dashed curve in Fig. 2 shows the contg) showed that they do not correlate with each other. There-
tinuum emission in a pure helium mediutat [He]=200  fore, a better candidate for the population of HelH3,4) is
kP3g (this continuum can be identifiétiwith C—A transitions the dissociative recombination of ﬁeions (023) with
of Hey) under the same excitation conditions as for theglectrons.

plasma in the He/kHimixture. The intensity of the continuum The continuum emission from a plasma in a Hefhix-
emission of the plasma in the He/khixture is significantly  ture appears as a result of the formation of Megkcimer
higher than in the helium medium. molecules’ In the ground state the HeH molecule is un-

Figure 3 shows the dependence of the relative intensityyound, while the lower excited states are stable, with a bind-
of the emissior(with allowance fork,) on the value of the ing energy=2.3 eV2>?! The HeH continuum observed in
corona discharge current, and Fig. 4 shows the brightness ¢fef. 20, with a maximum at 250 nm, belongs to the transi-
the HE bands as a function of the partial pressure gf H tion B2I1—X23* of the HeH molecule, while the longer-
molecules in the He/gHimixture. The 587.6 nm line was the wavelength emission from HeH can be attributed to the sys-
most intense line in the corona discharge plasma in thgem A2S*-X,5" (Ref. 21). The stateA?S* has a short
He/H, mixture, while the 388.9 nm line was predominant in jifetime with respect to predissociation, 0.65 ps, much
pure He. Admixtures of fimolecules to He had the greatest shorter than the corresponding lifetime of Hé&H¢ =1-5),
influence on the intensity of the 388.9 nm line and only awhich is 56—5 n<?
weak influence on the 587.6 nm lirf€ig. 3. At discharge The formation of HeM molecules in the corona dis-
currents<0.8 mA their intensity ratio is inverted. Increasing charge plasma in a HejHmixture occurs as a result of the
the number of H molecules in the He/Hmixture leads to a reactiond—>2!
strong quenching of the emission in the3Heands.

Thus small admixtures of Hmolecules to He have a He+H,(CI, B3 ) —HeH* +H, )
considerable effect on the shape of the 1-V characteristics of
a corona discharge; they lead to significant growth of the H(2s,2p)+2He—HeH* +He, 2
brightness of the continuum emission in the 360—650 nm
range and to strong quenching of the emission at the 388.9 HeH" +e+(He)—HeH* +(He), )

nm line of Hel and in the bands of Ble
He,H' +e+(He)—HeH* +(He). 4
DISCUSSION OF THE RESULTS The predominant population of the’B state of Hel,
Excited He atoms {=2,3) are formed in a dense, which is the upper level for the 587.6 nm line, is due to the
weakly ionized plasma in a dissociative recombindtiaar  selective character of the dissociative recombination reaction



770 Tech. Phys. 44 (7), July 1999 A. K. Shuaibov

for Hey ions (v=3)!" and the mixing of such states by The main mechanism populating the excited states of
electron impact. Since the rate constant for the mixing of theHel is the dissociative recombination of Hg) ions with
3%D states of Hel is negativ& they play the role of an electrons.

energy acceptor, and the 587.6 nm line stands out consider- H, molecules efficiently quench the emission at transi-
ably in intensity in the emission spectrum of the plasma. In &ions of Hel and Hg

corona discharge plasma lholecules lead to quenching of The discharge studied can be used for transverse electric
the emission in the lines of Hel except for the 587.6 nm line circulation of the working medium in radiation sources uti-
at discharge currents 0.8 mA (Fig. 3). The increase in in- lizing HeH* molecules in high-pressure plasmas.

tensity of this emission line of Hel may be due to depopula-

t!on of its lower level through processes'of Penning ioniza-1, , Dem'yanov, N. A. Dyatko, I. V. Kochetowt al, Zh. Tekh. Fiz.
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The permeation of tritium produced in thermonuclear fusion through metallic membranes, which
is a topical problem in radiation physics, is addressed. A physical model for the permeation

of hydrogen through a beryllium membrane is proposed which takes into account the oxide layer
on the surface of the membrane. The model is implemented in the form of a system of
differential equations, which is solved by numerical methods. As a result of the computer modeling
it is shown that as the temperature is raised, the oxide layer in a certain interval blocks the
permeation of tritium in the membrane, and it is found that the tritium is distributed in a rather
limited region of the membrane over its thickness. This circumstance will permit the use

of special processing by etching or mechanical treatment1989 American Institute of Physics.
[S1063-78499)00807-7

1. INTRODUCTION root of the saturation pressure. In test calculations described

c v th ¢ . lant below we took the pressure in the subsurface layer of the
urréntly the most promising power plants aré con- o prane in the interval 1.33—13.3 kPa.

.trollgd fusion reactors. The parts of these reactors which are | "y majority of cases it is necessary to take into ac-
n direct Co.m".’wt with the Workl_ng plasma are exposed tocount that the beryllium membrane is coated by a thin oxide
|ntense.rad|at|on over long perlpds of t|me. The gases reI'ayer. Data on the solubility of hydrogen isotopes in BeO are
leased in the operatlon. of a.fusmn re{:\c(motopes qf hy- limited. In this paper we use the formula

drogen, helium, etg.actively interact with the materials of

the first wall and divertor. Along with the gases a large num- ~ S=1.25x 10" *exp{0.8 eVk®}[ atomic fractioni/Pa],

ber of radiation defects are formed in these structures; modi- 1

fication of the crystal structure occurs, and radiation emyyhich was obtained by fitting the experimental data of Ref.
brittlement, pitting, and blistering are observed. All of these1 \we note that the activation energy0.8 eV was taken
strongly complicate the mechanisms of migration and occlufom the paper of Macaulay-Newcomb and Thonfsand
sion of the gases, making it necessary in some cases 10 s obtained at temperatures below 873 K. For the coeffi-
consider the established physicochemical ideas. cient of diffusion of tritium in BeO the best approximation to

Beryllium membranes are most often proposed for use ifpe experimental data, according to Ref. 3, is the expression
the first wall and divertor components of fusion reactors as

devices for controlling the flux of tritium and ensuring the =~ D =1.31x10"° exp{—1.335k®}[m?/s]. 2

safe operation of the reactor. Over the course of their irra-  |n view of the small interatomic distances in the crystal

diation and the introduction of structural defects, the properiattice of beryllium the question of the solubility of hydrogen

ties of these membranes change considerably, particularigotopes in pure polycrystalline beryllium is still open to dis-

their permeability to hydrogen isotopes. In this study wecyssion. In Ref. 3 the formula

have attempted to devise a computer model that would simu- ) )

late the permeation of tritium through beryllium membranes ~ S=1.76X 10" exp{—0.17k®}(atomic fraction/Pa)

for specified initial distributions of the various radiation de- &)

fects in the membrane material. was proposed for temperatures in the range 500—-600 °C. For
the diffusion coefficient under these same conditions it is
customary to use the values given by Jones and Gibson,

D=1.31x10 texp{—1.335kO}[m?/s] (4

r (for a membrane of ultrapure Beéy Abramovet al.>

2. PHYSICAL MODEL

Typical particle fluxes near the irradiated surface of
a membrane in a fusion reactor are of the order ofO
1071 DT/m?s. The saturation concentration in an oxide film  D=6.7X10"° exp{ —0.294k0O}[ m?/s]. (5
several microns thick is reached in a few minutes. Conse-
guently, the boundary conditions for the initial flux from the
irradiated side should be the condition of constant concentra?i' MATHEMATICAL MODEL
tion. The expected concentration of mobile hydrogen atoms  As the initial mathematical model of the process of dif-
at the entrance is proportional to the solubility of hydrogenfusion and absorption of tritium atondsin a plane metallic
in beryllium and, according to Sievert's law, to the squaremembranev of thicknesd., in the presence of lattice defects

1063-7842/99/44(7)/4/$15.00 771 © 1999 American Institute of Physics
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(vacancied/ and bivacancies\2) and the possible formation grates into the interior df1 and enters into reactior{g), (8).

of clustersTV, T2V, 2T2V, we take a system of differential The tritium T can escape from the sample through the exit

equations of the Johnson—Lam tybe, surfaceS, (x=L).

’ o B In accordance with the stated assumptions, let us specify
dC,/0t=D,(9°C,/x°)=F,, »=1235710. (6) the mathematical model as an initial/boundary-value prob-

Here C,=C,(x,t) are the unknown concentrations of mi- lem for a system oh=6 equationg6) with right-hand sides

grating defects in atomic fractions, which by extension will ©f the form

also be referred to as particles or elements, at the porfit Fi= —K3iC3+K,Co—K1aC1C3—K14C1Cy

a one-dimensional sample={xe R:0<x=<L} attimet; D,

are the corresponding diffusion coefficients, &ndare poly- —K15C1C5—K16C1C6+K7C7+KgCs,

nomial functions ofC,,C,, ... ,C, having a form deter- Er e KarC2— Ko Co— KoaCorCore K G

mined by the character of the interactions and the interaction 2~ "“M11w1 h2-27 2323 had2tg,

cor?starlts_ in th(_a following seven elemgn_tary proce_éses Fa= —K15C1Ca— KdCyCq— Kg7C3Cr—K3aCsCa

actions”) involving the formation or annihilation of six types

of defects: + K 45C4Cs5+ KygCyCgyt+ KgCy,
V+V—Kav, v+ ToKueTy, F5=K13C1C3—K15C1Cs+K7C7—KysCyCs,
2V+T—KepyT, 2v_Kay+vy, 7) F7=K23C2C31K5C;1Cs— K37C3C5

VTKIV+VT, V+VT—KsaVT, ~KarCaCrt KoCo=KiCr,
T+2VT—Kev2T, (8) F10=K37CsCr. ©
The nonlinear terms in the right-hand sides of sys(ém

~ The coefficients written above the arrows in the reacyake into account the binary interactions of particles and
tions are their rate constants, which depend exponentially og) sters via “reactions’(7) and (8).

the absolute temperatuf@ of the sampleM by the Arrhen- The penetration of defects into the membrane and the

ius laws: escape of gases through the surfaggandS, are also regu-
K,,= KO ,exp(—E,,, k), lated by the proper choice of initiallll and boundary conditio.ns
# that adequately model the conditions of external pumping
K,=K%exp —E,/kO). and removal of particles while maintaining the overall mass

and flux balances. The mechanisms for the penetration and
HereE,, andE, are the activation energies of the reactions,escape of particles through the surface of the membrane can
k is Boltzmann’s constant, and the coefficieKt%V andK®  pe of different natures and, strictly speaking, should be de-
are independent d® and are expressed in terms of the pa-scribed by individual models of seepage through barriers.

rameters of the crystal lattice. These topics and the mechanisms of reactions of fypand
For the sake of specificity, we stipulate that the values o{8) will not be discussed in detail in this paper.
the subscripts 1, 2, 3, 5, 7, and 10 in E¢®. correspond to In the spatially one-dimensional model under consider-

defectsV, 2V, T, TV, 2VT, and /2T in the order written.  ation the simplest forms of boundary conditions are those
This numbering is used because the model under discussiathich characterize either the values of the concentraidns
is a specialization of the more general model of Ref. 9, inof defects or the fluxes of these concentrations at the en-
which a system of 11 differential equations of the fof@  trance and exit. We choose the boundary conditions in the
was used. The defect¢T and 2/2T are assumed to be form
stabilized, nondecaying, and the diffusion coefficiebts i
andD o are assumed to be zero. All of the remaining diffu- 9C,19X|x=0=0, JC,/9x|=L=0, if v#3;
s_ion coefficients are taken to be functions with an exponen- C4(01)=S-\P;: Cy(L,t)=0, (10)
tial dependence on the absolute temperat@e D,
=D%xp(—B,/k®), whereB, is the energy of migration of and the initial conditions
the corresponding particle. . C,(x0=C%x), »=1,2,3,5,7,10 (11)
Interstitial tritium atomsT are implanted to a depth v
0<I<L, through the entrancérradiated surfaceS; of the From a mathematical standpoint, nonlinear systems of
membraneM, which in the one-dimensional case corre-the type(1) often turn out to be stiff, and the corresponding
sponds to the poink=0, at a specified pressufe of the  explicit finite-difference schemes are unstable even for small
gaseous tritium near the surfaBg. In the model a boundary time steps. A general approach for dealing with problems of
layer of deptH adjacent to the irradiated surface of the mem-stiffness is to use implicit iterative methofi& The physical
brane is assumed to be filled by a BeO oxide film, and thecause of these effects is the onset of rapidly damped transient
intervall <x<L corresponds to a membrane layer filled with processes that must be dealt with by the numerical scheme
high-purity (99%) Be. The initial concentrations of vacancies and which, in the end, have no effect on the solution. For
and bivacancies over the sample are assumed given. Subsaetmerical modeling of diffusion processes at macroscopic
quently the above-described ensemble of point defects mtimes one must go over to a reduced model. The averaging
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FIG. 1. Distribution of the tritium concentrations over the sample at the timeF/G. 2. Distribution of the vacancy concentrations over the sample at time
t=1800 s for a temperatu® =573 K and pressures ¢f,=13.3 kPa(1), ~ t=1800 s under the same conditions as in Fig. 1, culiv
P,=7.0 kPa(2), andP;=2.0 kPa(3).

property of the reduction operator, which is described in RefSeégmenf0,L ] was divided intaN =200 parts. The following
9, leads to a computationally stiff system of differential values were used for the diffusion coefficients of mobile de-
! . _ —5 _ —5
equations which can be integrated numerically even at madects: D;1=5.0x10 exp(—(}768k®), D,=8.0x10 "exp
roscopic(of the order of 1 stime steps with a simultaneous (_0-66‘(@6’ D3=1.31x10 exp(-1.335k0), and D,
improvement of the computational stability. =1.0X10 "exp(-0.9k®). The remainingD, were as-
Because the reduced model coincides exactly with th&umed to be zero. Figure 1 shows the results of test calcula-

initial system, up to the notation for the coefficients, we will 10NS of the distribution of tritium over the sample in a mem-

not stop to write it out here but will go on to a description of brane of thickness. =0.6 mm atT=573 K for various
a discrete analog of the model. tritium pressures in the subsurface layer. The calculation

Consider on the interva]O,L] a uniform meshaoy time was 1800 s. The diffusion coefficient was calculated
={x;=iH;i=0...N;NH=L} with stepH>0. At the inter- according to Gibson’s formufaThe tritium concentrations

nal mesh points of the grid we approximate each equation ot the entrance were proportional to the solubiiiand to
system(6) with right-hand sideg7) and (8) by the familiar the square root of the pressure..The |n|t.|al conce.ntratlons of
difference scheme of second-order accuracy in time and ¥acancies over the sample was IlnearZ with a maximum at the
predictor—corrector scheme in spdcehe algebraic system €ntrance of Co—(x/L))-7X 10" * atomic fraction. The con-

of difference equations thus obtained is supplemented by thgentration of bivacanies was constant and equalda *
difference forms of the boundary-value and initial-value&tomic fraction.

problems(10) and(11). The implantation depthis assumed ~_ AS We see from Fig. 2. The final distribution of vacan-
to be comparable to the mean free path of Tretoms in the ~ Cies over the volume after the calculation time could change
membrane; in the discrete problem we assumelta@H. appreciably in an initial segment of length 0.01 cm; here the

The algorithm for solving the stated problem inclusions Pottom curve corresponds to the highest initi.al pressure, 13.3
the successive application of tridiagonal inver&ian each kPa. The trend of the curves showing the distribution of the

time step, and the time stepis chosen from the conditions complexTV over the sample under the conditions described
for stability of the calculation. above have the same general features as the curves of Fig. 1,

but the maximum penetration depth of tritium is approxi-
mately 1.3 times larger than the maximum depth at which an
appreciable number ofV complexes is observed.

The main results of the calculation were obtained under  The calculations showed that the final distribution of bi-
the following general conditions. A beryllium membrane of vacancies in the initial segment, to a depth of 0.01 cm, quali-
thicknessL =0.6 mm, the irradiated side of which is coated tatively reiterates the vacancy distribution.
by a thin oxide film 0.0024 mm thick, is irradiated by a To study the temperature dependence of the concentra-
tritium plasma at temperatures in the interval 573—-773 Ktions of T, V, 2V, and TV in the model, with the entrance
The pressurd® in different simulations had values of 2, 7, surface of the membrane coated with a thin oxide film, the
and 13.3 kPa. The solubility and diffusion coefficients invacancy and bivacancy concentrations were taken to be con-
BeO and Be and the initial concentrations of vacancies andtant and equal to %10 % and 1x 10~ “ atomic fractions,
bivacancies over the sample were taken according to the recespectively, and the temperatures weédg=573 K and
ommendations of Ref. 3, as described in Sec. 1 above. Th®,=773 K. The tritium pressure was 13.3 kPa, and the time

4. RESULTS OF THE COMPUTER MODELING
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FIG. 3. Distribution of the tritium concentration over the sample in the

resence of an oxide layer, f@ =773 K (a), 573 K (b) andt=3600 s. . . . .
P Y ( ) this may make it possible to remove the accumulated tritium

by etching or mechanical treatment.

t=3600 s. We see from Fig. 3 that as the temperature i%eceased
raised there is a sharp decrease in the initial and final distri-
butions of tritium over the sample, even though the penetra- o _ _ o
tion depth of tritium is approximately the same in the two 1D. L. Balduoin, in Woorkshop on Beryllium for Fusion Application

lt] th 0.02 The final distributiof uf Karlsruhe, Germany1993, KfK 5271.
cases, a little more than U.Uz cm. e !na IS .” utio 2R. G. Macaulay-Newcomb and D. A. Thomson, J. Nucl. Ma2d2-215,
complexes over the sample has a similar tréfid. 4). The 942 (1994
qualitative behavior of the curves of the final distributions of jG- R. Longhurset al, Fusion Technol28, 1217(1995.

; ; “P. Jones and R. Gibson, J. Nucl. Mat2t, 353(1967).

V. a.nd a4 r?mams lechz?nged,has_ Q)_(pleg.teq.bNptlceablebdesE. Abramov, M. P. Riehm, and D. A. ThomsoBeuterium Permeation
viations to lower values from the initial distribution are ob- and Diffusion in High Purity BerylliumCanadian Fusion Fuel Technol-
served down to depths of 0.015 cm. Thus as the temperaturengy Project(1990, N CFFTP-G-9013.

is increased fron®,=573 K to®,=773 K the oxide layer bV. V. Kirsanov and S. B. KislitsynComputers and the Modeling of De-
block the flux of tritium in the membrane fects in Crystal§in Russian, A. F. loffe Physicotechnical Institute, Acad-

. . emy of Sciences of the USSR, Leningrd®82, pp. 106—-107.
The model calculations showed a slowing of the escape ; w. ortega and W. G. Poole JAn Introduction to Numerical Methods

of tritium from the unirradiated side of the membrane as the for Differential Equations[Pitman, Marshfield, Mass(1981); Nauka,
initial concentrations of vacancies was increased and in com_Moscow (1986]. _ , , ,
parison with the defect-free case; this can be explained byﬁ&ﬁasaggzﬂg% A. V. Gulin, Numerical Methodsin Russiar
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over its thicknesgas we see from Fig.)2occupies a rather PP 50

limited region of the membrane. From everything we know,Translated by Steve Torstveit
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Hooke’s law is generalized to the case of arbitrary elastic or plastic indentatiq@/+/rr)

X (w, /JA), wheree =q/E, is the elastic straing is the average pressure over the contact area,
E, is the reduced elasticvoung’s) modulus,A is the projected area of the contaat, is

the deformation in elastic indentation by a flat punch. On this basis a relation is obtained between
the reduced hardnes$ and unreduced hardneBl,, which depends on the ratiog/w,

=ms; Ws is the elastic deformation along the perimeter of the indent,ragsl0.78. It is shown
that the correctiol\E, to the elastic modulug, determined from the condition of

linearity of the initial part of the unloading diagram, A€, =0.27(AP/P,,), whereAP is the

value used in the calculation &, for the length of the linear part of the diagram,

reckoned from the maximum lod@,,. It is shown that for metallic construction materials of
medium hardness one hgssHM, whereHM is the Meyer hardness. With increasing

HM and increasing angle at the tip of the indenter, the ratidM/q grows by an exponential
law. © 1999 American Institute of Physid$$1063-78429)00907-]

INTRODUCTION of the material: the resistance to plastic deformati@sve
) ) 1), creep or stress relaxatigourve 2), and the elastic prop-
In domestic practice the terms reduced)(and unre-  gties (curve 3). The hysteresis loop of width is recorded
duced Hy,) (microjhardness have been regulated by the thg,nger repeated loading of the same indent. It determines the
GOST 9450-76(ST SEV 1195-79 standard and are deter- jnensity of the accumulation of reversible plastic deforma-

mined in the first case by its conventional measurement frofy, s under cyclic loading and, hence, the intensity of wear
the projection of the loaded plastic indent and in the second 4 the kinetics of crack growth in fatigue.

case H,) from the displacemenh (depth of the indent
HereH}, is measured continuously as the loAdn the in-
denter is increased, by recording three variabkesh, and
the timet (Ref. 1). In the rest of the world no such terminol-
ogy has been developétf even though there is an obvious
need to distinguish this sort of test from the conventional p 2
measurement of thémicro)hardness. Analysis and experi-
ments show that the quantitie$d and H,, characterize two
independent properties of a material, and their ratio is a new
indicator of its physicomechanical properties. The efficacy of
testing in which thé®—h—t diagram is recorded is enhanced
many-fold and can provide comprehensive information not y

only about the physicomechanical properties but also about )
the structural characteristics of the matetiaf!® The limit-

ing sensitivity in the recording of the displacement and the
load are of the order of 1 nm andx110™ % N, respec-
tively,2~” which permits investigation not only of thin films,
coatings, and individual phases but also the structure of a
single-phase material, with a resolution of the order of 10
nm. At such a resolution it becomes possible to investigate
phase transformations in silicon on the basis of an analysis of
the features of the hysteresis lobff 18

In the analysis of the®—h diagrams a decisive role is
played by the elastic deformations in the indentation, and the

FIG. 1. Typical indentation diagram with three segmefits:- loading and

continuous measurement of the hardngsas a function oth; 2 — hold

. . . . . under loadrelaxation or creep regime3 — unloading with repeated load-
A typical P—h diagram is shown in Fig. 1. Parts-3  ing and recording of a hysteresis loop of widthThe scales along tHeand

depend, for a fixed shape of the indenter, on three properties(or w for unloading axes depend on the hardnesg of the material.

HOOKE'S LAW DURING INDENTATION

1063-7842/99/44(7)/7/$15.00 775 © 1999 American Institute of Physics
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beginnings of a theory of such testing based on their analysis
are being worked oUt:*> A number of properties have been
discovered by which an analytical relation betwdérand
H}, can be established and experimentally confirrtfed. o
Figure 2 illustrates the elastic recovery of an indent, in- =<
cluding that in the material forming a noticeable ridge of
extruded materialrim) around it, with a height\h. Because
the normal recovery along the perimeter of the indent is lessiG. 2. Relationships among the different components of the elastic defor-
than at its center, the angle of the unloaded indentnations in an indent, both with allowance for the rim of heiglt (to the

increased?2 |t is noteworthy that the no change in the right of the axi$ and without allowance for the rirtto the left of the axis

di . f the ind is ob 4.2t The dashed and solid curves are contours of the indent under load and after
transverse dimensioa of the indent is observed: removal of the load.

Let us digress from the shape of the indenter and discuss
its average pressutéM (Meyer hardnegs which is distrib-

uted according to aa priori unknown law over the area of according to the estimate of Ref. 10 and by 1.2% according
the plastic indent. An analysfsbased on the known solu- 1 Ref. 23(calculation by the finite-element method; for the

tions of contact problems in the theory of _elastiﬁ?tyhows _trihedral indent made by a Berkovich pyramid this decrease
that the initial stage of the elastic unloading of the plastic,a5ches 3.4%

indent, which commences after the creep on segridrds In analyzing the relationship betweét and H,, it is
practically ceasedf is independent of the specific CharaCterimportant to pay attention to the not-so-obvious circum-
of the pressure distribution over its area and is determined byiance that the displacememion the diagram does not re-
the level of hardness and the elastic modHusf the mate- spond to the value oE; and is equal to the displacement
rial. _ _ recorded for an absolutely stiff indenter. This follows from

~ Including allowance for the stiffnessP/dh of the de-  the condition that at the instant the indenter touches the sur-
vice, the formula forE become¥’ face of the sample it is not yet loaded, and so the subsequent

1— 2 dependencd(h) is determined solely by the geometry of

E= 5 (1)  the indenter(instrumen}, since the transverse dimension of
Z_ﬁ(ﬂ_% _ 1-v the indenter, like that of the indent, does not change on

J7 \dP dP E; loading?®?! Consequentlyh is the instrumental displace-

h is th . d fthe ind q q ment, set by the geometry of the indenter. Another feature of
whereAis the projected area of the indent, andv;, E, an this displacement is that it is measured from the initial sur-

E; are the Poisson’s ratios and elastic moduli of the material§ace of the sample, whereas in measurements of the reduced

of the samplc_a and indenter. . .. bhardness the transverse dimension of the indent is measured
To describe the process of unloading of the plastic in-

. ) . . with allowance for the rim heighkh. Therefore, the relation
dent, it is adwsaple to place the ongin of the Coor,d'natebetweenH andH,, depends solely on the normal elastic de-
systgm at the point where the unloading starts, with thg o w, along the perimeter and the rim height.
maximum values* =P, andh=h, and to change fromto 1o, "y gefinition, the relation betwedh and H, in an

the symbolw used in mechanics. When this is done, expresingent ohtained at a fixed loa@,, is written in accordance

sion (1) assumes the more compact form
dp ( 2

7

whereSis the stiffness, including the stiffned$?/dh, of the
devicel® E, is the contact elastic modulus: EL)=(1
—v?E)+(1-vd)/E;.

A circular indent and a square indent with a side\@

—=S= JA-E,, (2)

dw

are practically equivalertf®?>%3in the case of uniform pres-
sure for the square indent the stiffnesdecreases by 0.6%

with Fig. 2 in the forn}!?
( H\"2 h  hg+we—Ah
Hy, :

“hy hy )
An analysis of the known solutions of the contact prob-
lem in the theory of elasticify* has been systematized in
Table 112 where the following additional notation has been
adoptedP.= P,/A is the mean pressure over the area of the
indent,w, is the deformation in an elastic indentation by a
flat punch having a fixed are@and producE, A, mis an

TABLE |. Basic relations between the elastic deformations in circular and square indents.

Means of loading Pressure distribution law ~ w/w;=m W /Wy —Ug/wg
Punch with flat end p=P/(2max) 1.0 1.0

Uniform pressure pP=Ppe A 0.81 7(1-2v)/8(1-v)
Conical punch exp(@pe) =(1+x)/(1—x) 2 2—(4lw)

Spherical indenter p=3pXx/2 15 0.75 4(+2v)/13w(1—v)
Concentrated force p— (1-2v)/2(1-v)
Square indent P=Pe Al 0.63%

0.865*
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FIG. 3. Analysis values of the elastic deformations in circular and square
indent of dimension &, as functions of the inder of the pressure distri-  FIG. 4. Calculatedsolid curve$ and experimentalpoints plots of Hy, /H
bution over the area of the indeftt — w, /w;, 2 — wg/w). versusHM/E, for wg/w;=0.78(1), 0.61(2); + — data of Ref. 26.

index characterizing the pressure distribution over the con-
tact area, andg is the radial deformation along the perimeter
of the indent. This last deformation has the opposite sign, so ~ Wsm/W1=0.865-0.28 m—1.27). (8
that the dimensiod = 2a increases during unloading, but the If one should start from the averaged deformatiog,
increase is practically zero, as follows from the formula in:WS along a side of the square indent, the approximation

Weq/W;=0.635-0.204m—1.27), @

Table | and as is confirmed by experiméfht! w/d<1;
we=—5uq; ug/d=0.

For a flat punch it follows from Eq.2) that P,, andw;,
are linearly related:

Pn=w.E.d. 4

The derivatived P/dw at the initial point of the elastic
unloading curve of a plastic indent intercepts thaxis at a
distancew; from the valueh,,. This is the minimum pos-
sible value at a given hardnebidM and elastic modulug
(Refs. 1, 12, and 251t follows from Fig. 1 that there is a
simple relation betweew andw;, if the unloading curve is
approximate®! by P=Bw™ (see Table)t

©)

m=w/wy,

wherem can vary in the interval from 2 to 1.

In elastic indentation by a cone one has=2 andw
=2w,, for a spherical indentean=1.5 andw=1.5wv, for a
flat punchm1 andw=w,, and in the model of a uniform
pressure distributiom=4/7 andw=1.24v,. When the de-
formation wg is normalized byw,; we obtain, according to
Table I, its extrapolated dependence wn(Fig. 3.12 For
plastic indent made by a Vickers pyramid one lmas 1.3
—1.5(Refs. 1 and 12 We see from Fig. 3 that for a circular
indent in this interval ofm values the function Ws/w;)

X(m) is close to a constant, in contrast to the function

(wg/w)(m). For a Berkovich pyramid a wider interval of
values, 1.2—1.6, was obtained in Ref. 4.

Table | also gives two values for the deformation along
. . o _ . °Ref. 27.
the perimeter of a square indent during its uniform loadin

— Wgq (denoted by *), measured at the ends of the diag
nals, andwy,, (denoted by**), measured in the middle of

the square. In a linear approximation, proceeding from th(?eI
known deformatiorwg, we obtain the following expressions

for a circular indent in the intervah=1.27-1.5:

We/w;=0.81-0.26m—1.27), (6)

formula(6) would apply. It is preferable to formul@), since
present-day hardness meters measure the real projected area
of the indent with allowance for the rim-related distortions of
the square shape.

In Fig. 4 the experimental values bff,,/H are compared
with the values calculated according to form{®. The de-
formation on the contour of the indent was found using for-
mula (6) for a mean valuem=1.4, which giveswg/w;
=0.78 for a circular indent. The height of the rim was taken
equal to zero. Also shown in Fig. 4 are the results of experi-
mental measurements, including the data of Ref. 26. The
position of the experimental points shows that if the values
of m and of the blunting of the tip of a sharp indenter are
measured more carefully, then the ratig/H can be used to
measure the height of the rim, which depends on the coeffi-
cient of strain hardening of the material and determines its
basic mechanical characteristics. More complete results of
experimental measurements are presented in Table II, which
also gives the ratio of the differentials of the elastic work
dA. to the total workdA in the indentation; this ratio was
analyzed in Ref. 25. Note the different deviation from the
calculated curve for the two points corresponding to two
types of glass: construction-grade soda—lime glass, and KV-
grade quartz glass. The calculated rim heights for these two
differ by more than 10%. Experiments show that this differ-
ence can be much larger for metallic glasses of different
compositions. Careful interference measurements of the rim
height and the profiles of unloaded indents were made in
It follows from an analysis of these data that on

Yraditional construction materials the rim height can alter the

ratio H,,/H by more than a factor of 1.2.
Taking into account thaP,,/A=HM, we obtain from
ation (4)

HM 2

E.  Jm JA

SEEN

Wy
F.

C)

=k
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TABLE Il. Physico-mechanical properties of materials.

No. Material HV, GPa HV, /HV E, GPa HM/E HM/E, slwy, % dA./dA

1 30KhGSA 2.50 1.08 210 0.013 0.015 14.0 0.96
2 12Kh18N9T 1.60 1.04 204 0.085 0.010 7.0 0.31
3 45 2.46 1.12 195 0.013 0.015 14.0 0.97
4 L62 brass 1.33 1.08 98 0.014 0.015 9.0 0.62
5 D16 Duralumin 1.61 1.06 80 0.021 0.022 45 0.45
6 Ti alloy 2.47 1.08 130 0.020 0.022 7.0 0.70
7 Ni—Al—Cr 7.10 0.94 210 0.037 0.040 6.0 1.02
8 Glass 6.25 0.85 74 0.091 0.092 8.5 3.16
9 KV glass 6.95 0.68 71 0.110 0.110 5.0 1.99
10 FeAl 7.20 0.77 110 0.071 0.073 1.0 0.28
11 GaAs 5.93 0.74 118 0.055 0.061 0.46

12 Si 11.00 0.65 150 0.079 0.087 0.62

13 a-Al,0, 25.00 0.77 430 0.063 0.086 0.65

14 BN 45.00 0.57 550 0.088 0.130 0.87

15 B 32.00 0.72 400 0.080 0.115 0.86

Relation (9) does not change whedM is replaced by where 2p is the angle at the vertex of the corg, is the
the true mean pressucgand true contact are& We obtain  mean pressure for a purely elastic contacis a quantity
the following expression for Hooke’s law for any, elastic or which determines the dimensianalong the perimeter of

plastic, local contact loading: which the pressurp acts,
x2=1-r?/a? (15)
qa 2w
E, \/_; \/_K 10 where a=d./2 is the radius of the perimeter on which the

pressure is equal to zero.
We are interested in the boundary of the plastic region of
quently dimensionr on which the pressurp=HM. Let the same
load P,, be distributed in one case over the regimand in
the other over the region Dividing the numerator and de-
nominator of the right-hand side ¢14) by P,,,, we get

For tensile testing, Hooke’'s law is/E=¢. Conse-

e=——. (11
V7 A x2=1—(g/HM), (16)

whereq= P,,/(wa?) is the mean pressure over the total elas-
tic and plastic contact area, aRg,/(mr%)=HM is the hard-
ness measured from the unloaded plastic indent.

We have takeHM =q andd=d., whered, is the di- The unloading along a perimeter of widftr =a—r is
mension including the plastic and elastic contact zone arounelastic. For a conical indenter we substitfe3) into (12)
the perimeter of the indent. Analytical estimates made irand divide byA to get
Ref. 28 show that this approximation holds in many cases.
Let us use the data of Table | to obtain a relation between D =EE cot ¢ 17)
HM andg. In addition, we must find the conditions for a 2 '
more precise experimental determination of the elastic
moduluse, as discussed in Refs. 3—6 and 23.

In elastic indentation by a pyramid or an equivalen
cone, the elastic contact along the perimeter of the plasti
indent is described by the equations

ELASTIC CONTACT AREA

The pressure distribution in the plastic contact zone is
iclose to unifornt® Therefore, we suppose, with a certain
ewargin of error, that the pressupen the expression for the
dimensionx is equal toHM (analysis of the pressure distri-
bution using the data of Ref. 29 gives an order-of-magnitude
estimate ofHM =1.1q). After substituting this value into

P= 2 & w2 W= deOtcp (12),(13) (14) and doing some straightforward manipulations we ob-
\ cotp 4 ' ' tain
and the variable pressupsis distributed as a function of the ex _4 HM - 1+X' 18
(18)
cote E, 1-x

polar coordinate by the law

With the values found fox, formulas(16) and(15) give
Pe, 14X values for the ratiog/HM and Ar/a, and, as can be seen

P= 7'” 1-x’ (14) from a comparison of16) and(15),
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TABLE Ill. Relation between the mean contact pressgr@nd the Meyer
hardnessHM for a Vickers pyramid for different values oHM/E
(HM/E=y/11.32).

y expy HM/q d./d

0.1111 1.1175 1.003 1.001
0.3333 1.3956 1.028 1.014
0.5555 1.7428 1.079 1.039
0.7777 2.1765 1.159 1.077
1.1110 3.0375 1.342 1.158
1.4443 4.2392 1.619 1.272
1.7777 5.9161 2.021 1.422
2.2221 9.2266 2.834 1.683

HM\ Y2 d. r+Ar 19
q) d r

Solutions of equation18) and (19) are presented in
Table 1ll. The quantity (4/cqt)(HM/E,) is denoted ag. For
a Vickers pyramid =136°, and so 4/cgt=11.11. Then

y=11.1HM/E,. For this particular case the values of

HM/q andd_./d are given for varioudHM/E, . It is seen
from the table that forHM/E,>0.03 the ratioHM/q
>1.03, and it increases rapidly with increasid1/E, . Let
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ps 4a 1

p. w Rcote’ (24

where the subscrips and ¢ denote spherical and conical
indenters, respectively.

Herea/R and cotp characterize the angle between the
normal to the surface of the sample and the tangent to the
profile of the indent at a point located along its perimeter.
For equal values op we obtain from the geometric relations

(a/R)(1/cotp)=sine. (25

As ¢ increases, the value of expressi@b) approaches
unity, and, hence,

Ps/pc=(4/m). (26)

From an analysis of relation€4)—(26) one can con-
clude that to a first approximation the width of the elastic
girdle along the perimeter of the plastic indent is the same
for indents made by conical and spherical indenters at the
same angles of indentatiof(90°— ¢).

The accuracy to whick and, hence, the ratid,/H are
determined is higher if the initial segment of the unloading
curve of the plastic indent is linear. The existence of this
indicator was pointed out in Refs. 1, 3, 9, and 10, and the

us also look at the calculations for another particular casd}€Cessity of taking the nonlinearity of this segment into ac-

typical for steelsE=200 GPa,»=0.25, E;=1141 GPay;
=0.07 (Ref. 4. For these values we havélM/E,

count was demonstrated in Refs. 4 and 16. In this connection
let us analyze the flat-punch model, which is also given in

=1.19HM/E. Then valuesdM/q>1.03 are already reached Table I. In this model the elastic contact is described by the

atHM/E>0.027. Similar calculations can be done for other
anglese. For 290>136° it is convenient to use the approxi-
mation tanyg= ¢, wherey=(90°— ¢). If ¢ is decreased by

linear relation(4). The sharp edge of the punch is dulled on
the segment of the transition frochto d.. The geometry of
this transition is specified by the geometry of the real conical

a factor of 5, so thaty=(22/5)°, then the ratio of the tan- © spherical indenter. Consequently, the unloading on the

gents of these angles is 5.2, i.e.,

with the ratio of the tangents of these angles by only 4%. Fo > ) N .
valuesiM/q>1.03 are reached at considered, which also determine its length. Comparing for-

such an indenter,
HM/E>(0.03)/5=0.006.

it increases in compariso??gment on which the dimension of the contact area de-

preases frond, to d is described by the relations already

mulas(19) and(12) for a conical indenter with relatio(iL3)

Let us examine indenter shapes further. For an elastiguPstituted into it, we conclude that the lodn the unload-

process of indentation by a parabolispherical indenter,
according to Table I, we write in analogy witt4)

p=(3/2)peX. (20
On the other hand, for an elastic process
P=d3E,/(6R). (21
After dividing by A, we get

4 a
Pe=3-R E,. (22

Under the conditiop=HM the substitution of20) into
relation (22) yields

2

q (WHM R 23

M- l2E A

ing from dimensiond. to d is given by P/P,=q/HM. It
follows from the foregoing discussion that this segment on
the unloading curve become appreciable fovl/E,>0.03

and grows rapidly as this ratio increases. From a comparison
of formulas (26) and (21) it follows that this segment in-
creases for a spherical indenter.

If the ratioE; /E is large, then the further elastic unload-
ing approaches the model of a rigid punch, since all points
on the plastic indent area recover by the same amaun,
equal to the rise of the indenter. The distribution of the coun-
terpressure in the unloading will vary in accordance with the
formula

P =AP/(27a%/x)=pe/(2X), (27

whereAP is the decrease of the load during unloading, and
py is the variable value of the counterpressure.

On the part of the unloading from, to d the pressure
along the perimeter of the indent declines to zero and then

Let us compare the two indenters in more detail. Takingincreases to a valup,=—HM. Under this condition Eq
the ratio of Eq.(20) to Eq. (14), making use of the fact that (27) becomes—HM :’F‘) 1(2) or '
e 1

for small x one can write In(1+x)/(1—x)]=2%, and substi-
tuting pe from Eq. (22) into (17), we obtain

X=p/(2HM), (28
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wherep, increases during unloading, from zeroH®/ at the In the model of the unloading of a rigid punch the lim-
completion of the unloading, whibkeincreases from 0 to 0.5. iting value wasAP,,=0.75. In a real process this is less and
Substitutingp, for g in (16), we obtain atx=0.5 the  depends on several parametersklE,; increases, then the

limiting value of the counterpressure contribution of the elastic deformation of the indenter in-
creases, as a result of which the flat model of the punch is
Pem=0.73HM. (29 transformed into a convex model, and,, decreases. The

o _ real pressure distribution over the area of the indent is char-

Up to this limiting value of the counterpressure the di- acterized by a rise toward the center of the indent, which also
mension of the contact area remains unchanged and equal {@creaseaAP,,. There is a similar influence of deviations
d. Therefore, p./HM=AP/P,. As the unloading fom g circular shape of the indent. It increases in the se-
progresses, reverse plastic deformations arise, and along th@ence from conical or spherical indenter to Vickers, Berk-
perimetgr of the inde.nt there.is an increase in.the WMth ovich, and Knoop pyramids. With increasing number of re-
of the girdle over which a uniform pressure with a valuls  peated loading cycles the reverse plastic deformation leads to
distributed. For such a pressure distribution the preseure 5 sejf-matching of the surfaces of the indent and indenter, the
= (4/m)w,=1.27, where 4=m¢, and the unloading also reyerse plastic deformation becomes exhausted, &Rg
takes place by a linear law similar {d), but here the slopes 556 tends toward zero, and the hysteresis loop changes ac-
of the unloading branches are differenP/dwy(4/  cordingly. The intensity of the reverse plastic deformation
m)dP/dwe. In the linear relation4) and the others like it, processes and their exhaustion as the number of repeated
the quantitiesi andw, or d andw, are interchangeable: the |5ading cycles increases also depend on the strain-hardening
value of P does not change if one of these is increased andpefficient of the material. As it increases, so does the di-
the other decreased by the same factor. This property allowgensionD, /d of the plastic zone under the indent, the in-
one to treat the unloading of a plastic indent as a sum of tWeensity of the reverse plastic deformations decreases owing to
linear processes in which the parametsandd, vary but  tneir retardation by the plastic zone, and a greater number of

their sum remains equal td. For one of theses processes repeated unloading cycles is needed in order to exhaust
me= /4. Their specific contribution is determined from the pam,.

boundary conditions. At the start of the unloading, condition
(2) holds, and accordinglgw/dP=w, /P,. At this time the
girdle over which the pressure is distributed uniformly hasCONCLUSION
zero width. If upon completion of the unloading the pressure
is distributed uniformly over the entire area of the plastic
indent, then we obtain a deformation,= (4/7)w;. At an
intermediate position the contribution of this deformation is
given by Aw.= (4/7)Aw,(AP/P,). The specific contribu-
tion of both processes is the sum

In summary, the branch of the first unloading of an in-
dent consists of three segments. The initial segment involves
elastic unloading of a girdle along the perimeter of the in-
dent. Its length and indem depend orHM/E, and the type
of indenter used. For a conical or pyramidal indemter 2,
and for a spherical indenten=1.5. On the second segment
the unloading occurs in accordance with a rigid-punch
model, with an accumulation of reverse plastic deformation
as the unloading proceeds. The length of this segment de-
creases with increasing rati/ E; and asymmetry of the in-
dent. This last is most pronounced for a Knoop pyramid. On
tpe final segment the contact area of the indenter with the
surface of the plastic indent begins to decrease. The concen-
tration of the pressure at the center of the indent causes the
indexm and the curvature of this segment to increase. After
10-15 repeated loading cycles the reverse plastic deforma-
tion has decreased and stabilized. The inaercreases with
increasing ratide/E; and strain-hardening coefficiekt The
AAP P influence ofk is due to the fact that the length of the second
) (3)  segment decreases with increasig/d, while on the third
segment the inder increases and pressure is increasingly
At the initial point of the unloading procesaP/P,, ~ concentrated at the center of the indent. This scheme of the
—0, P=P,,, and the correction is zero. A decreases and Unloading processes and the technique of refined determina-

AP increases, this correction increases linearly. We obtaifion of the elastic modulus agree with the data of Ref. 4,

A 4A AP A P A 4 AP P
W—; Wlp—m+ Wlp—m— Wy ;P—m‘FP—m

(30

It follows from a comparison of relation&30) and (2)
that the expression in parentheses in the right-hand side
(30) is equal to the correction to the vallg, found under
the assumption thak P is a straight line segment. The true
value of the modulug, for this sum of two linear processes,
with each of their propertieg!) taken into account, is found
from the equation

AP

4E=Rw

7 P, P

for E, the expression where the following values ah were obtained: for tungsten
and aluminum 1.51 and 1.38, respectively, and for sapphire,
E,/E,=1+[(4/7)—1]AP/P,,, (32 quartz, and fused silica 1.47, 1.43, and 1.25, respectively.

The experimental measurements presented in Table I
where E,, is the value found from relatioii2) along the and discussed above also agree with the analysis given for
segment of the unloading curve of lenghtP that was as- the relation between the reduced and unreduced hardness and
sumed to be a straight line segment. the determination of the height of the rim.
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It is shown that in the pulsed polarization switching of polycrystalline ferroelectrics in high fields
the external field is damped by the electronic subsystem associated with the crystallite
boundaries. Therefore, the reorganization of a ferroelectric system with a high density of surface
states at the crystallite boundaries is not irreversible, and the system returns to its former

state after the polarization-switching voltage is removed. Because of this, electron emission from
the surface of a ferroelectric ceramic can be brought about by unipolar pulse$99®

American Institute of Physic§S1063-784299)01007-7

INTRODUCTION aries of the crystallites; this layer is of the Schottky type and
'is positively chargeti(Fig. 2). The appreciable electric field
existing in the Schottky regions has a large influence on the
ﬁistribution of the polarizatiof®.” In the equilibrium state of

Electron emission from ferroelectrics is observed unde
various kinds of external influencékght, heat, mechanical,
etc). There has recently been considerable interest in th

phenomenon of electron emission from ferroelectrics unde the electroni bsvst If the f lectri bsvstem |
the influence of an external polarization-switching electric y the electronic subsystem. € ferroelectric subsystem 1S

field1=® It has been established that this emission can béaken out of its former statée.g., by a sudden polarization

obtained both from crystals and from ceramics, that it has éeversa], the electronic subsystem will adjust to the new

unipolar character, that it last a short tiraf the order of state of the ferroelectric subsystem, i.e., a rescreening will

tens of nanosecongisthat the emission capability can re- oceur, which can come about through motion of the charges

cover after the polarization-switching field is removed and™ Poth the internal and external circuits. The rescreening due

that the amount of charge emitted correlates with the valué0 the motion of charges in the external circuit can be accom-
of the spontaneous polarizatid®,. In Refs. 1-5 the ques- panied by the escape of electrons from the open surface of

tions of the formation of the emission potential and differentthe ferroelectric, i.e., emission. The response times of the

. . . L . lectroni rf n nd ioni m n ex-
microscopic mechanisms of emission were discussed for ectronic(surface and bulkand ionic subsystems to an e

ferroelectric crystals. However, there have been no reports c}F mal influence are dlffergnt. If a sudden p'olarlzatlon rever-
models that take into account the specifics of the emissioﬁaI IS _brqught abou_t by af'EEB. Ec (whereE is the ex’FernaI
processes during the polarization switching of a ferroeIectricelecmc_]cIeIOI ancE_C Is the 7COGI’CIV€ field, e.g., for BaT_gOhe
ceramic, for which promising experimental results have beeﬁheorencal V?"“e £~ 10 V/|j11)2, then the ferroelectn(_: sub-
obtained® At the same time, our studi&€ of charge trans- >YStem readjusts overeo—~10 *s. FOrE<E, the switch-
port processes have shown that the formation of the internd'? time of the ferroelectric system increases as
electric field in ferroelectric ceramics has a number of fun-"¢ TCOeXpCEC/E). (Ref. 198' For example, folE~10° V’”?
damental differences from that in crystals on account of théRef' 3) we ObtamTC.N .10 s. In order to o.bserve any k'.n.d
presence of intercrystallite boundaries, and that these diffetgf switching effect it is necessary to safisfy the condition

ences affect the formation of the emission potential. 7=, Where 7 is the time of the external polarization-
switching pulse. The response time of the electronic bulk

subsystem to an external influence can be estimated by pro-
ceeding from the Maxwell relaxation time=gyep~10"1

Let us consider the behavior of a polarized polycrystal-s (g¢ is the permittivity of free space,~ 10% is the dielectric
line ferroelectric in an external polarization-switching field constantp~10° Q- m (Ref. 11 is the electrical resistivity
(Fig. 1. In polycrystalline ferroelectrics there are a number
of interacting subsystems that respond to the external electric
field, among them: N ferroelectric(ionic), 2) electronic in [ ]
the bulk of the crystallites, )3electronic, related to the sur- 1 2 3 1
face of the crystallites. The interaction with this last sub-
system is due to the fact that under certain conditions of
synthesis and annealing, localized surface states of the ac-
ceptor type arise at the interfaces between crystdifftése
screening of these filled states owing to the redistribution of |
electrons in the bulk of the crystallites gives rise to the for- ~!
mation of an electron-depleted surface layer near the boundHG. 1. Arrangement of the objects— electrodes2 — sample3 — gap.

e ferroelectric the spontaneous polarizatiyis screened

DESCRIPTION OF THE MODEL

1063-7842/99/44(7)/4/$15.00 782 © 1999 American Institute of Physics
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Owing to the large dielectric constant of a ferroelectric, the  75¢4
external voltage applied to the electrodes creates a significar
electric field in the gap.In order for an electron to leave the
surface of a ferroelectric, it must undergo a transition from
some surface state to a free state. At an average extern: .,
electric field E,~10° V/im, ¢~10%, a sample thickness
L~10"3m, and a gap thickness~10 ® m (Fig. 2), the  «
electric field in the gap will be~10° V/m,® which causes S
electron emissichfrom the surface energy states with a sig- -
nificant activation energy 0.5 eV) over the time x o6k
~10 2 s necessary for the displacement of an electron to ¢
distance of the order of one lattice constant under the influ-
ence of the external electric field. The integrated value of the
emitted charge is limited by the density of surface states, 0
which can reach- 10 m?.

In the crystal the screening processes occurring in the
external circuit due to emission of the surface electrons car
lead to pinning of the new s_tate of the_ ferroe_lectrlc sy_stem. -4y 0.50 700 750 \‘2.100 2‘150
However, in a polycrystalline material during a brief 7.
(~10"7 s) polarization-switching pulse the electrons in the
bulk of the crystallites do not have sufficient time to react toFIG. 3. Total energyV versus the degree of emissiag in the absence of
the pulse, and as a result the electric fields due to this elegxtemnal voltage §=0) for a ferroelectric crystall) and for ferroelectric
tronic subsystem in the Schottky regions remain the same £§72mics WitNs=3x10'% (2), 4x10°? (3), and 5<10%m* (4).
they were before the polarization-switching pulse was ap-
plied. Thus, after the polarization-switching pulse has ended
the ferroelectric system in a ceramic is subjected two tw
competing factors: the field of the emission-modified elec- et us give some illustrative numerical estimates for
tronic system associated with the open surface of the samplgarium titanate BaTiQ, since electron emission during po-
tends to stabilize the new polarization direction, while thejarization switching has been observed for this compdund
conserved fields of the Schottky regions tend to restore thand the parameters of the thermodynamic potential have
previous state. The restoration of the initial state of the ferropeen well determined. To trace how the emission processes
electric system plays an extremely important role in organizare influenced by the densily, of deep surface states of the
ing an efficient emission process. It can happen that, aftefcceptor type at the crystallite boundaries, we have made
suppression of the new polarization-switching pulse of thesome model calculations based on the thermodynamic pa-
previous polarity, the whole cycle is repeated anew. Thererameters of BaTiQinferred from the data of Ref. 12. In the
fore, the time of the polarization-switching pulse should becalculations we used the following values: temperatére
less than the timer, required for reorganization of the =300 K, density of impurity states of the donor type in the
Schottky regions at the grain boundaries. Thus, in order fopulk of the crystalliteNy=2x 10?°> m~3, activation energy
the emission current to be large and for the switching back t@f these donor stateS =0.5 eV, activation energy of the
occur after removal of the polarization-switching field it is surface states E,=1.2 eV, and crystallite thickness
necessary to satisfy the conditiep> ;> 7.> 75 and to have  d=10"°% m. Then the bulk conductivity in the crystallites is
the restoring effects due to the Schottky regions be predomis~10°()-m, which ensures satisfaction of the condition
nant over the emission-related effects that pin the new statg, > .> r_> r,. Therefore, in the polarization switching and
It is most important to consider the role played in these prothe accompanying electron emission from the open surface
cesses b\Ns, the density of surface states at the crystalliteof the ferroelectric, the distribution of the electron density
boundaries, since that is primarily what determines the fieldgnd the Schottky regions in those Crysta”ites which are lo-
in the Schottky regions. cated in the interior of the ferroelectric remain uncharged.
Figures 3 and 4 show the results of calculations of a number
of parameters as functions of the degree of emission, which
is characterized by the quantity,, which is related to the
chargeAQ escaping from the surface of the sample by the
relation n.=AQ/Ps. We assume thaqN, ¢, >P; (q is the
elementary electron charge, ahg ¢, is the density of sur-
face states on the free surface of the ferroelectric sgmple
Therefore, the surface charge=qgNg¢, and the adjacent
Schottky region together provide complete screeninggh
the ground state. Since emission alters the surface charge on
FIG. 2. Diagram of the electron-depleted surface layarsand 2 are ~ the free surface, the field in the bulk of the crystallite
Schottky regions | and II. changes, and a new polarizatidgh=P¢(1— 7.) is estab-

T

ESULTS OF THE CALCULATIONS

b=

S I —
-
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FIG. 4. FieldEy in the gap versus the degree of emissignat u=0 for a
crystal(1) and for ceramics witNg=3x 10'® (2) and 5<10"® m™? (3). FIG. 5. Average fieldE,, versusn, at a field in the gaft,=10° V/m for a
crystal (1) and for ceramics withNs=3x 108 (2) and 5< 108 m~2 (3).

lished. Figure 3 shows the total energy per unit area of the
sample together with the gap as calculated for different de-

o values ofE,, for a crystal and for a ceramic with small
grees of emission in the absence of an external voltage; this av y N

energy includes the energy of the ferroelectric and eIectroniE:ndlcate that during polarization switching at that stage,

o . which corresponds to the metastable part of the hysteresis
subsystems and the energy of their interaction. It follow: ) .

. o oop, the sample itself become a voltage source. This ten-
from Fig. 3 that for a crystal or ceramic with smai,

polarization switching accompanied by emission leads to gency is less pronounced for a ceramic with srhalland is

new stable state of the system, i.e., is irreversible, since th%ltogether absent for a ceramic with larlg. This is be-

total energy of the new state is lower than that of the initialci:osssatlhselgnnola(r::g: gc;]ritzl?nn OsféﬂgtiOtfgtIiilnlg aﬁz::Tr:gr?ilssa
state. At the same time, Fig. 3 shows that for a ceramic wit 9 9 Y I€g ’

large Ng, polarization switching accompanied by emission igh-field region(Fig. 6) because of the small (Fig. 7). The

leads to an unstable new state, and the initial state is eneIrQCal value ofe is given by the expressiog(e—1)=(a

2 -1
getically favorable. The calculated dependence of the elecmgwgfﬁer;igpn;mi.cHeortee ﬁtl fl : (3”3178’ ?;Gr}r:)heelze?:?rriimeteriss of
field E4 in the gap(Fig. 4 shows that a deviation of the y P , ang

external field(at zero potential difference between the elec-the permittivity of free space. Negative values wofcorre-

trodes for a ceramic with a large density of surface statesSpond to metastable parts of the hysteresis oBpe larger

(curve 3) gives rise to an electric field in the gap in the the value ofNg, the larger is that part of the Schottky region

direction corresponding to restoration of the original surfaceWhICh corresponds to the metastable segments of the hyster-

charge E,<0); this promotes reversibility of the polariza- esis loop, wheres is small. Since the linear dimensions

tion switching process. Thus the calculations whose results

are presented in Figs. 3 and 4 suggest that in the case of a

large density of surface states the polarization switching is k/—\ z, m

reversible at values of the degree of emission*1) for 0.00£+0 5O0F T 150 T~ 23067

which the region of irreversible processes has been reachec 1.006-7 2.00E-7

in a crystal or ceramic with a low density of surface states.

At lower degrees of emissiony<1), where, in accordance - 5.00£+7

with Fig. 4, a crystal or ceramic with a low density of surface

states exhibits a tendency toward restoration of the initial 2

state when the external polarization-switching voltage is > -7 gge+s
=

turned off, this tendency is weaker for a ceramic with large
N;.

Let us now examine Fig. 5, which corresponds to an
external field of 18 V/m, i.e., a field such that emission
conditions will be attained in the gap. Plotted along the ver-
tical axis is the average of the external electric figlg, and
along the horizontal axis i,, a measure of the degree of ~ ~2.00t*8

gmission. The _ﬁgwe ShOWS.the vaIue@v that is requir.ed FIG. 6. Distribution of the fieldE, in Schottky region Il for an average
in order for emission to continue at a given. The negative field E,,=14x 1¢° V/im andNg=3x10'® (1) and 510" m~2 (2).

£

~1.50£+8
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2.00E-2 zation-switching processes will not occur even for high
) polarization-switching fieldsE,,>E.).

CONCLUSION
1.50£-2
During the polarization switching of ferroelectric mate-

rials, which have large dielectric constants, electric fields are
produced which can cause electron emission from the surface
of the ferroelectric. In polycrystalline ferroelectrics there are
regions of low dielectric constant in the regions of the crys-
tallites near the grain boundaries; these affect the formation
of the internal fields and promote restoration of the initial
state after the polarization-switching voltage is turned off.
For this reason, at high densities of surface states one can
achieve higher degrees of emission without leaving the re-
0.00£+0 : == ' : gion of reversible polarization-switching phenomena than is
o.00ev0 7 1.00€-7 2.006-7 z, m. S : ; .
possible in a crystalline ferroelectric or a polycrystalline
FIG. 7. Distribution of the inverse dielectric constanit! in Schottky re-  f€fToelectric with a low density of surface states.

gion Il at an average fieldE,,=14x10° V/Im and N;=3x10" (1) and
5x10%¥ m™2 (2).

w
> 1.006-2

5.00F-3
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The growth rate of nuclei is calculated in self-consistent mean field approximation with

allowance for the screening of a selected nucleus from heat fluxes, and an expression is obtained
for the screening length of the heat flux. It is shown that the growth rate of a nucleus

depends on the degree of crystallization of the melt. The influence on the crystallization process
of collisions of the particles as they coalesce into a polycrystalline solid is investigated. A
refinement of the size distribution function in the thermal Ostwald ripening stage is obtained.

© 1999 American Institute of Physids$1063-784£99)01107-1

At present there is much interest in the theoretical de-  Another goal of this study is to investigate the influence
scription of the crystallization of melfs® The construction ~of the nonzero volume fraction in the late stage of the first-
of a complete theory describing all stages of this processrder phase transition in melts — the stage of thermal Ost-
(nucleation, independent growth of the nuclei, Ostwald rip-wald ripening?*®
ening is of enormous significance both for the physics of ~ Let us turn to a derivation of expressions for the growth
phase transitions and for practical metallurgy. The stage ofate of a nucleus of radiug with allowance for the screening
nucleation of the new phase in melts was investigated i®f the heat fluxes.

Refs. 2 and 3, and a theory of the Ostwald ripening of the

ensemble of nuclei in a crystallizing multicomponent meltSELF-CONSISTENT EFFECTIVE-MEDIUM APPROXIMATION
was constructed in Refs. 4 and 5. However, all of the proWITH ALLOWANCE FOR THE SCREENING

posed theories of Ostwald ripeni§ are based on the ap- OF THE HEAT FLUXES TO A SELECTED NUCLEUS

proximation of zero volume fraction, i.e., in the derivation of Let us select a nucleus of the new phase in a supercooled
all the basic relations it was assumed that the volume ocClsne_component melt. For the sake of definiteness, let us as-
pied by the particles of the new phase is strictly zero. Thissyme that it has spherical symmetry. Heat is removed from
simplification affects such parameters of the nucleationne melt with a sink strengtk <0 that is constant in time.
theory as the screening length of the heat fluxes and th¢he temperaturd(r,t), wherer is the coordinate of a point

growth rate of an island of given radilist must also be i space and is the time, will be determined by the heat
taken into account that in studying the thermal Ostwald ripconduction equation in a honmoving fluid:

ening the heat sinking is taken into account only in the heat
balance equation, i.e., the theory treats the evolution of the pcpﬂz ~V.q+K, gq=-xVT (1)
system as a whole, on the macroscopic level. In this paper ot
we shall consider the influence of heat sinking on a microwjth boundary conditions at the surfa of someith
scopic level, i.e., at the level of the growth of an individual nycleus of radiusR:
nucleus.

The influence of a nonzero volume fraction of the new (9" n)|3.:'8(T_TR)|S.' (2)

phase in the diffusional growth of a nucleus and in the deywnerey is the density of the melyy is the thermal diffusiv-
composition of supersaturated solid solutions was first invesity C, is the specific heat, ang is the specific boundary
tlgated in Refs. 8—10. One should also mention Ref. 11, irﬂux of atoms to the nucleus.

which a method based on a classical diagram technique was To solve the problem of the many-particle dynamics, it
used. is necessary to solve E@L) with the boundary condition®)

In this paper we shall consider the crystallization ofimposed at all the nuclei. This problem obviously cannot be
melts with allowance for the finite distance between nucleisolved exactly. To solve it we shall use the self-consistent
and derive expressions for the growth rate and screeningean field approximation’’ The essence of this approach is
length in the self-consistent effective-medium approximationto replace the spatially nonuniform thermal fidi¢r,t) by a
with allowance for the screening of heat fluxes at a selectedniform field that has been averaged over all the islands of
nucleus. the ensemble and which is modulated by the field of the

1063-7842/99/44(7)/6/$15.00 786 © 1999 American Institute of Physics
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selected nucleus. The evolution of the temperature field in  Combining Egs(3) and(5), we obtain the desired aver-

time is governed by the heat balance equation in the systeraged heat conduction equation for the selected nucleus in a

and that makes this approach self-consistent. In the presesglf-consistent mean fiell with allowance for the screening

study we take into account that the volume fraction of thegf the heat fluxes:

new phase is nonzero, and so the distance between islands is

finite. It is clear that the thermal field in the region close to [~ V- q+K]O(Ry—r)

the selected nucleus is formed mainly by that nucleus, and

the influence of the entire ensemble begins to play a substan- +

tial role only at a certain distance from the nucleus. Thus for

a selected nucleus one can define a zone of influence in

which there are no other nuclei, and approximate this zone

by a sphere of radiuRy(R). Physically this means that all where®(x) is the Heaviside step function,

the heat removed by the external sikkis released by the

given nucleus. Thus the entire space occupied by the crystal- 1, x=0,

lizing melt will be divided into two zones: the sphere of ®(X):{o, x<0.

influenceR<r<R,, and the outer region=R,, which we

shall first describe separately and then match the solutions The boundary conditions fd6) are

obtained. It can be shown that inside the sphere of influence,

R<r<R,, Eq. (1) holds in the quasisteady approximation: X?j—T
r

~ dT
— (V- () macrg— I +K(1— ﬂ)—pcpa

XO(r—Rg) =0, (6)

=B(T(R)=TR); (D|,_.=T(1). (7)
r=R

~V.q+K=0, 3) B
— The mean temperatureT(t) is determined self-
In the outer regiom=R, we should go over from the set ., qistantly from the heat balance equation. In addition, for

of localized heat sources at each nucleus to a continuouds1e solution of equatiof6) we must supplemer(?) with the
medium with continuously distributed sinks. For this we gen-condition for the “matching” of the temperaturdsand(T)

eralize the approach developed in Ref. 10 for the case of —
island growthp?rom an adsorrt))ed vapor on the surface of gnd the heat fluxe and(q) at the boundary of the sphere of

substrate. We shall perform an averaging of equatgin a mﬂu\?vr:acis(e:t:?g.solution of equatidh) with boundary con-
“physically” infinitesimal volume AV containing a large q Y

number of nuclei: ditions (7) in the following way. We write the temperatute
' of the melt and the heat flux densigyin the form

1

()= lim _f CdV. (4) T=To+Ty, a=dot+q=—x(VTo+VTy). (8
av—o AV Jav

Here, of course, for the average temperature of the melt,

After performing operatiort4) for Eq. (1), we write the  T=T,+ T, the fluxg, and temperatur&, are due solely to

latter in the form the presence of the sink (for K=0 we haveT,;=0 and
5T g,=0) and are nonzero only inside the sphere of influence.
_ . They are determined from the natural condition at the bound-
C =—(V- ~1+K(1-17), 5 ) .
PP 5t (V- () macro (1=m) ® ary of the sphere of influencey|,—g =0. Inside the sphere

of influence we assume thét,)=Tj,.
The fluxqg in (8) is due to the exchange of heat between
1 nuclei, and we will call it the exchange flux. For this flux the
(V- <q>)macr0=m ﬁ q-ds; boundary of the sphere of influence does not have any sig-
nificance. Making a change of various in E6) and bound-

Sis a surface enclosing the individual nuclei in the volumeary conditions(7), we get the heat conduction equation for

where

AV, T, (9) with the corresponding boundary conditiofi®):
1 -V.-q;+K=0, 9
-1 § qus

AV s dT, _
— =BTi(R); T4l =T%; T =T;.
is the specific flux of heat released by the entire ensemble of Xdr r=R ATy ih Ro 1|r>R° !

nuclei at the physical point, and 7 is the volume fraction (10

constituted by the nuclei. e . .
We shall show below that the temperature changes sub- T.h.e quantityT™ is determined from the self-consistency

. L . . condition

stantially within the sphere of influence of a given chleus,

while outside i{T) differs from the mean temperatufeof T,

the melt only over the screening length for the screening of 3~ L Ro(RIf(R)dR=1 (11)

the heat flux by the surrounding centers, and we can replace

the 9(T)/ot in Eq. (5) by dT/dt. and the requirement
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2/3

dT, R 2(1+yo)— 7
—| ~=o S S Y NG el L A
Xdr r=R, Ro(R) 2(1+vyo) A+ R A 3 '
19
Heref(R,t) is the size distribution of the nuclei. Assum- 9
ing that in the effective-medium regiorV¢(d;)) macs=0,  Wherex=(1+yp)/(1+7).
we obtain Eq.(12) with the boundary condition§l3) for Let us examine two limiting cases.
calculating the value of ,: 1. If B—0, then the growth or melting of the nuclei is

limited by the boundary kinetics. In this caBg(R) can be

—V-do-O(Ro—r) written in the form

~ d? 2/3p1/3
(V. _ —n)— — R“*R
+ i (V <QO>)macro I+ K(l 77) pCp dt Ro(R): o ~R2/3. (20)
n
XO(r—Rp) =0, (12 ] S
If 83— (the growth or melting of the nuclei is limited
dTy _ _ = by the heat removal, and the boundary kinetics does not play
XW r:R— B(To(R)—Tr); TOlI’—»oo_TO' (13 a role, we will have
Thus we have reduced E(§) with boundary conditions R|?%2— 53] RUSRZ3
(7) t i i Ro(R =751+ 5 = ~RY3, (21
o the system of equation®), (12) with boundary and 0 2 R 1/3 1/3
auxiliary conditions(10), (11), and(13). 7 K
First we must find the fluxgq,; from Eq. (9). Since its Thus from the solution of systeri®), (10) we have ob-

solution does not present any difficulties, we shall immedi+tained an expression for the flyg6) due to the sinking of
ately write the value of the heat flug; from a growing heat from the system and expressigh9)—(21) for the ra-
nucleus of radiufk dius of the sphere of influence. Now we must find the ex-
change fluxgqy. We obtain a solution of equatioil2) with

- quzxﬂ =-— @ the boundary conditiond 3). In the effective-medium region
dr | _ 3 (r=Ry), for a random distribution of the nuclei with respect
LK KR to their size and location, we can write the following expres-
XRE (;)(Ré— R?)+T*+ 35 sion for the averaged heat fluxr):
R R \ (14 »
(Ro-R)+ 22 ()= | “anRaonn)+ ol (ROIR (22
where Here (qgRr) is the averaged exchange flux to a nucleus of
1K\ R3 R R K radiusR, andq, is ther-independent fluxj; to the nucleus.
T* :_<_) _0( 1——Il1+ = _> (R3-R?3). The total heat flux from all the nuclei in the system can be
31x/ R Ro 2 Ro/ 3pR? written as
(15
1 ® —
Then, substitutindg15) into (14), we obtain = v E § q-dS= —f 47R%*(Qor+ g1r) F(R,1)AR.
i S 0
K (23
_Q1R:_2(Rc3>_ R?). (16) " .
3R Writing {(qgg) in the form

Let us find the radius of the sphere of influence of the _ - _ _T
selected nucleuRy(R) from expressiongll) and(15). We (o) = x¢(R)(To~Te) + x¢(R)(To) = To).  (24)

introduce the notation x=Ry/R, a=3xT*/KR?, y  whereo(R) is a function to be determined, and combining
=x/BR, y,=x/RR Then systen{11) and(15) becomes (22)—(24), we obtain an expression for

4w Jm 3.f(Rt). R3dR=1 17 X =

3 Jo X TRURAR= =1+ 50T ~Tal,
1 —_ o0

(x—1)3 x+ = |+ y(x¥—1)=a. (189  Wherel =47 [R*o(R)f(R,t)dR.
2 Then Eq.(12) can be reduced to

The solution of systenfl7), (18) does not present any
partlcu!ar mathematical difficulties, and we therefore turn _v. QO——Z(TO—TO)@)U—RO)
immediately to the results. Le&>1 (R<Ry), which corre- I
sponds to a rather sharp distribution functibfR,t) and a
low degree of crystallization3<1). ThenRy(R) will as-

dT
sume the form +|K(1=7)=1=pCp5r|O(r—Ry)=0. (25)



Tech. Phys. 44 (7), July 1999

The expression in the square brackets in &§) is in-
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of the late stage of the first-order phase transition, when the

dependent of and must go to zero in order for a physical particles grow together into a continuous polycrystalline
(bounded as— ) solution to exist; this corresponds to the solid and the degree of crystallization approaches unity.

heat balance equation

dT
K(1=n)=Cpgrp+l. (26)

Thus Eq.(12) goes over to the following equation:

~V. qo— I%(To—?o>®<r—Ro>=o, 27
dT, _
x5 =BToR-Tal, Tohw=To. (29

r=R
We note that the parametkin (27), which has the di-

ALLOWING FOR THE “COLLISIONS” OF NEW-PHASE
NUCLEI IN THE OSTWALD RIPENING STAGE

In Refs. 5 and 6 the theory of Ostwald ripening during
crystallization of a melt was treated in an approximation in
which the volume fraction of the new-phase nuclei in the
melt is assumed to be zero. As the volume of the new phase
increases, the influence of collisidhsf nuclei on their size
distribution should become more noticeable. For example,
the collision of grains of the new phase occurs during crys-
tallization of melts in the stage of formation of a continuous

mensions of length and depends on the distribution functionpolycrystalline solicf

has the physical meaning of the screening length for the heat

Let us write a system of equations describing the heat of

flux to the given nucleus. An expression for this index will Ostwald ripening of an ensemble of nuclei in a one-

be obtained below.
Since the solution of equatiof27) with boundary con-

component melt with allowance for the nonzero volume frac-
tion of the new phase. This system consists of the continuity

ditions (28) does not present any fundamental difficulties, weequation(31), which includes a collision integrdl,,, the
will immediately write out the expression for the heat flux heat balance equatio(82), and an expression in general

Jdor-

—Qor™

X (To—Tr), (29

+ —

B

where the screening lengthHfor the heat flux is determined
from the equation

X
R
Ro+|

I

R
70 R(R)

1

2= —|1+
47NR

form (33) for the growth rate of the nuclei:

(R 9 . B
at +ﬁ[ (R,t)VR]—|CO|, (31)
4 ©
Qo=0Q(t)+ 37Lps fo f(R,1)R3dR, (32
dR cons\( R
a o me iR (33

Let us now give a formula for the growth rate of the HereL is the latent heat of fusioms is the density of the
nucleus with allowance for the screening of the thermahew-phase fraction of the particlel(R,t) is the size distri-

fields,
dR 1 _—
ar p_L(qOR+ dir)

and, substituting into this equation the expressionsafgr
and q;r and considering, for example, the cg8e-»0, i.e.,

bution function of the islandd,, is the collision integral,
Q(t) is the quantity of heat in the melt at a given time, const
is the constant in the equation for the growth rate of a
nucleus, and Q, is the quantity of heat in the melt at the
start of the Ostwald ripening.

To take the collisions of the nuclei into account, we use

when the growth rate of the particle is limited by the rate ofth€ method developed by Lifshits and Slezov in Ref. 11,
incorporation of the atoms, we obtain an expression fovhich treated the decomposition of supersaturated solid so-

dR/dt in the form
R K

Ry 3

dR_ Ba

1 A=
dt RLps R13 7

1 1/9
- _R2
x ( 3/47TN> R ) ’

Comparing expressioni30) with the formula for the

(30

lutions. In fact, it has been showrhat in dimensionless
form, the equations describing the thermal and diffusional
Ostwald ripening of an ensemble of new-phase nuclei have
the same mathematical structure. We use this formalism and
introduce the relative variablas=R/R.(t) and “time” 7
=Inx?, wherex=AT/AT,, whereAT and AT, are the in-
stantaneous and initial values of the supercooling of the melt.
Choosing the origin of coordinates at some nucleus, we
note that all the other nuclei will move toward the chosen

growth rate of a nucleus obtairagithout taking the screen- center (since the coordinates of their centers do not
ing of the thermal fields into account, we see that as thehange, an®R.(x)— ). Here the majority of the nuclei will
degree of crystallizationy increases, the growth rate be- melt without having reached the chosen center, and colli-
comes comparatively smaller. We note that the results obsions will not occur. We write the total system of equations
tained above were obtained in the approximation of a rathedescribing the thermal Ostwald ripening with allowance for
low degree of crystallization. Let us now turn to an analysiscollisions of the grains in the relative variablesand = as
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FIG. 1. Form of the size distribution function of the particlés:— for zero
volume fraction of the new phase2 — with a nonzero volume fraction of
the new phase.
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AT -
1—QL|—T’3:|TJ o(u,r)udy,
0 0

(39

3

du
—=(u—-1)y—ud.

dr (36)

Here Eq.(34) is the continuity equation in the space of vari-
ablesu, r; Eq. (35) is the heat balance equation in the new
variables, and Eq36) is the growth rate of an island. Equa-
tion (35) describes the heat balance in the system, expression
(36) is the dimensionless growth rate of the nucleus, ansl

the dimensionless distribution function. We note that the sys-
tem of equation$34)—(36) is mathematically identical to the
system described in Ref. 11 and can be solved by the same

dp 9 du method. Here we shall write down immediately the expres-
EﬂL %(‘P(U,T) E) =lcols sion for the dimensionless size distribution function of the
particle with allowance for “collisions” in the first approxi-
©|,—0=¢o, (34  mation, ¢,(7,2), wherez=R%/RZ,,
|
( -y 0
11 e 2 *
— —e*A— z=<2° Azf v 19.(z")dz,
e’ Teol B z'
p1=4 1 1 e [20 (37)
= [T el (2)dz P=z<2?,
e” Teol B
L O z=27°
|
Here sion describing the melting of a smaller grain in a collision,
du®/dr=—y—u3, and in the initial conditionsu|,_,= U,
4 5 =1.
0 . . .
Yr+A >0 y* =§In( Vz+3)+ §In| Vz—\2°) Figure 1 shows the form of this function. We see that the
distribution function(37) has a “tail” corresponding to the
1 3% formation of particles of large sizes.
+ —In 27,3 This study was supported in part by the Russian Fund for
B 1— \/E Fundamental Resear¢@rants Nos. 96-03-32396 and 98-03-
v= 20 3279) and the Russian Federal Center “Integration”
(Project No. 58%
A S A
o+ 770 3Ay Y=Y~V
2 Z ‘}’_0 DBy collision we mean the direct coalescence or melting of smaller-radius

The collision integral has the form

=| —w(z—2",72")¢(z

col 2 0 eZT

11 3#{1 =1

X Teol AT
1 ]

—Z’,T)cp(Z’,T)dZ'——<P(Z,T)J —w(Z,Z’)]-
e’ oe’

Herew(z,z') is the effective relative volume in which nuclei
z interact with nucleiz’. The relative collision time is of the

nuclei upon entering the sphere of influer(see aboveof a larger par-

ticle. The heat absorbed in the melting promotes growth of the larger
particle. Here the possible slight amount of absorption by the other par-
ticles of the heat released on coalescence will not be taken into account.
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The behavior of the nonsteady deformations in solids containing internal stresses under

irradiation by temporally modulated laser radiation is analyzed. In the framework of the nonlinear
theory of thermoelasticity a model is proposed for the excitation of mechanical vibrations

with allowance for the dependence of the thermoelastic coupling parameter on the initial
deformation. For the case of a piezoelectric method of detecting the mechanical vibrations

in a uniformly deformed sample, an analytical expression is obtained for the electrical signal taken
off from the piezoelement. The behavior of the piezoelectric signal under various conditions

is investigated, and the results are compared with the available experimental data and found to be
in qualitative agreement. €999 American Institute of Physids$1063-784£99)01207-§

The detection of mechanical stresses in solids is an imsolid is a product of these two quantities, it is important to
portant research area in the development of modern mechamclude such a dependence in the thermoelastic coupling co-
ics, nondestructive monitoring, and diagnostic tools. Variousfficient as well.
methods are used for this purpose. Among the most impor- Let us discuss the generation of mechanical vibrations
tant of these are ultrasonit$faman spectroscopy x-ray* by laser radiation in a solid containing mechanical stresses in
and neutron® diffraction, magneticg, and also methods the framework of nonlinear mechanics with initial straifis.
based on the use of holographic interferom&t’.In addi-  Here we shall assume that the initial strains are not small.
tion, recently there has been serious attention devoted to inFherefore, the displacement vector of points of the solid will
vestigating the possibility of using the thermoelastic effectbe assumed to be specified in the form
for diagnostics of the mechanical stresses in sdftd¥ In
that approach the mechanical stresses are ordinarily detected U(r)=r+U(r)+Au(r), @)
O el S eneraled 1 e Oty inereu(r) desres e il s, and e veck()
the thermoelastic method is that.it can be applied to Objectdescrlbes the d|splacement of partlcles of the solid due to

: ; : . ) Thermoelastic strains under the influence of the laser radia-
of various natures, since the thermoelastic effect is quite uni:
versal. The feasibility of this approach has already been con-
firmed by a number of experimental studies for métal®®
and ceramic$?!>1®Nevertheless, the mechanism by which
the mechanical stresses influence the results of the laser ther- ;p. )
moelastic measurements remains insufficiently clear. In Ref. ———=poAu;, 2

. e ox
14 a model of the formation of the thermoelastic signal was

proposed Which attributed its dependence on the meCha”iCﬁ!herePiﬁ(aui /%) tem is the Piola—Kirchhoff tensot,,
stresses mainly to the stress dependence of the thermophygi-the stress tensor, which is related to the internal energy

cal parameters of the material. On the other hand, in Ref. 1@ensityW of the solid by the relation, = dW/du,,,, with
it was shown experimentally that a dependence of the theknhe strain tensor

moelastic signal on the residual stresses can be observed in
ceramics even in the absence of any noticeable changes in 1{duy du, du, du,
their thermophysmal properties. o Ukm=5 K X Xy PX]

To explain the aforementioned features, in this paper |
propose a different model for the formation of the ther-andp, is the density of the solid in the initial state.
moelastic signal generated in solid objects by laser radiation. The energy density of a strained solid can be written in
The important distinction of this model is that it takes into the form a sumW=Wg+W; (W is the mechanical energy
account the dependence of the thermoelastic coupling coeflensity, and/N5 is the energy density due to the thermoelas-
ficient on the mechanical stresses. Such a dependence hasstraing. In this paper it is assumed that the solid is iso-
been noted previously both for the coefficient of thermaltropic in the initial state, and the mechanical part of its en-
expansioh’ and for the elastic modulu$. Since the ther- ergy is determined in the Murnaghan moéfejccording to
moelastic coupling coefficient in the case of an isotropicwhich the mechanical energy density can be written

The equation of motion of the elements of the solid in
nonlinear mechanié® can be written in the form

1063-7842/99/44(7)/5/$15.00 792 © 1999 American Institute of Physics
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|§ |i vectorAu; in explicit form. Assuming the oscillations of the
We=(A+2u) 5 —2pulo+(1+2m) = —2mlyl,+nls, temperature in the sample are small and keeping only the
3) term to the first power ofAT, we obtain the equation of

., . motion in the form
where A and u are the Lamecoefficients,|,m,n are the

2

Murnaghan constants; = Uy, 9“Auy JAuy

aiklp—axlax + ikp a5 Y0
p p

AT a(aui ”
| AT
aXi an an

1 2
|2:§[(Ukk) —UmUim],

o (u RNy )AT}
YobP o~ ki™ 2o VYkp
and &Xk &Xp
1 3 1, +poAu;, 9
|3:§ UigcUij Uit 55 Ui Ui Uy E(Uu) . where
The stress tensdi[ij) associated with the mechanical en- © i
ergy can be determined from the relation ikip= Oiktip’ T Niigp + lemkpr
I(JE):aWE (9'1 (9WE alz (9WE 6|3 . (4) atl(':(’)) aN“kp aZUi &UI &N|mkp
(9'1 &UIJ (9'2 &UIJ (9'3 (9UIJ bikp: Ki aX| + 07X| +5X|5Xlemkp+3Tm ﬂX|
Taking expressioni3) into account, we write the stress
tensort{" in explicit form as Nijkp= 2Cijapt 4MSijakmU mpt b(axi pj + 8k Spi)
) n ) +n(Umjakm5pi+akiUpj)+n(Umiakmépj
tij = )\|1+ |+_ Il_2m|2
2 +ayUpi),
><5”--1—[2(,u+m|1)—n|1]Uij+nUpiUpj. (5) 1 5 +(9Uk)
a . —_ . -—,
The thermoelastic energy density is due solely to the K207 axg
strains caused by the action of the laser radiation on the n
solid. In determining it we shall assume, in analogy with Ref. cij=[N+2[1-m+3]11|8;+(2m—n)U;;,
17, that the thermoelastic coupling coefficient depends lin- 2

sity of the solid can be written as Equation (9) can be used to determine the nonsteady
Wr=—yi(Uix— U ) AT, (6)  strain in the solid provided that one knows the distribution of
the initial strain in it and the temperature distribution pro-
whereyiy= yo(Sik+ BUik), 7o is the thermoelastic coupling duced by the laser radiation. In addition, for solving the
coefficient for the unstrained Soli(ﬁ is a coefficient that equation Obtained one needs to Specify the boundary Condi_
determines the dependence of the thermoelastic coupling Qfbns. In accordance with the nature of the problem to be
the initial strain,Ujy is the initial strain of the solid, and splved, the initial strain of the solid should be regarded as
AT=T-T,, with T, the temperature of the surrounding me- given. As to the thermophysical properties of the solid, we
dium. shall assume that the appearance of the internal stresses in it
In what follows we shall assume that the straiigix  does not lead to substantial changes. Such a situation has
arising as a result of the action of laser radiation on the soligheen observed experimentally in a number of ceramics, for

are small. Then the thermoelastic enef§yof the solid will  examplet®
be determined up to terms linear &u; by the equation The boundary conditions on E() in the general case
Wr=— yo( S+ BUi ) (T—To) AUy . ) are determined by the means employed for detection of the

) variable strains in the object. In this paper we consider the
For =0 Eq.(7) reduces to the usual expression for thecase when these strains are detected by means of a piezoele-
thermoelastic energy density of an isotropic solid. We notenent attached to the samplsee Fig. L For this case it is
that the value of the coefficiefit in accordance with Ref. 17 necessary to write the boundary conditions at the upper and
is given approximately by3=KEy,/3 (K is the compress- |ower surfaces of the solid. Under the influence of external
ibility, E is the elastic modulus, angt, is the Grmeisen  stresses the surface of the sample is slightly deformed.
coefficien}, and for metals at small strains it typically has @Therefore, e.g., on the upper surface of the sample, the

value between 1 and 2. _ boundary condition can be written in the form
The stress tensdfj ) corresponding to the thermoelas-
tic energy(6), can be found from the expression nkPik|z:Z(x,y):0' (10
W, wherez=27(x,y) is the equation of the upper surface of the
ti(jT)=W =—yo(6ij+ BU;j)(T—Ty). (8)  object deformed by the internal stresses.
i]

When applying boundary conditiofi0) to the problem
Using expression$2), (5), and (7), we can obtain the under study one should keep in mind that we are interested
equation of motion for the components of the displacemenbnly in the nonsteady component of the strains. Below, in
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2 n
Cii:K_§M+2 I_m‘l‘i Upp+(2m—n)U”.
0 X We note that the expressions fi§P', h{", c;;, andg®

on the right-hand side are not to be summed over repeated
indices. Equatiori12) can be used to determine the strain in

1 the solid, provided that the temperature distribution produced
l in it by the exciting laser radiation is known. As we have
said above, we are assuming that the appearance of the in-
ternal stresses in the solid will not appreciably alter its ther-
mophysical parameters. In addition, we shall assume that the
surface of the sample is illuminated uniformly by the laser
radiation and that the laser radiation is modulated in time
according to a harmonic law. Then if the exciting laser ra-
FIG. 1. Geometry of the sample and piezoelemént— sample,2 — pi- diation is completely absorbed at the surface of the sample
ezoelement. and is modulated in time by a harmonic law, the nonsteady
component of the temperature inside the sample will be
given by the expression

L+L1

VA

accordance with the usual assumptions of nonlinear mechan- AT(zt)=ATe 72 iet, (13
ics, we shall replace the boundary condition at the deformed

surface by a boundary condition at the undeformed sufface. Whereo(1+1i) yw/2k, wherex is the thermal diffusivity of
Here we take into account the fact that the initial deforma-the sampleAT is the amplitude of the oscillations of the
tion of the surface occurs under the influence of static interSurface temperature of the sample, ands the angular fre-
nal stresses. Then, after linearization with respectapand ~ quency of modulation of the exciting radiation.

AT, we obtain on the basis of the foregoing comments the The requirement of continuity of the normal component
following form for the boundary conditiofiL0): at the boundary between the sample and piezoelement can be

used to find the signal taken off from the piezoelement. For
this one must use the familiar equations relating the me-
chanical and electrical characteristics of a piezoelerfient.
For the problem under consideration these equations can be
where At{®) is the variable component of the mechanicalwritten in the form

ou;
t(o)—|+

kmo"Xm :0, (11)

z=0

Ny

ay;
ek o A+ 43

stress generated in the object by the laser radiation. Ju®
At the boundary of the object with the piezoelement, tg§)=C(EU—3—e(T)E3, (149
=|, we use the condition of continuity of the normal com- 9z
ponent of the stress vector. Using E®) and the stated JulP
boundary conditions, one can find the components of the D3=e(T)&—;+s(SDE3, (14b)

displacement vector of the particles of the solid when me-
chanical vibrations are excited in it by laser radiation. In th'swheretgz) is the mechanical stress inside the piezoelement,

paper we limit consideration to the case of a uniformly () s the displacement vector of the points of the piezoele-

strained solid with vector components of the initial strain ont D, is the electric displacemert, is the electric field
specified in the formJ;=AMx; (the A") are constants char- ;4 cED (ST ande™ are characteristics of the piezo-

acterizing the uniform strain along different directionBy  gactric which are defined as in Ref. 23.

this case Eq(9) simplifies and can be put in the form For the quasistatic case, when the acoustic wavelength is
2 much greater than the characteristic dimensions of the piezo-
. J Aui N Auk L OAT . . . .
f(l)= h{" =g + poAU;, (120  element, its deformation along the thickness can be assumed
IX X IXIX; IXi uniform. Then with the use of Eq14b), we obtain the fol-
where lowing expression f(_)r th_e voIt_age signé(t) detected at the
output of an open-circuited piezoelement:
. (1+A0)2
f(')=[t(°)+ ————(b+nU;+nUg) |, eM auP(1)
k= | ti 5> ( i kk V()= 3 15

&(SD 5 X
7=

b=2u+(2m—n)U,,,

PP wherel, is the thickness of the piezoelement.

hf(‘):(1+A(i))(1+A(k)) In expression(15) one can go over from the strains in
the piezoelement to the strains in the sample by making use
of the continuity equation for the normal component of the

X )
stress at the sample—piezoelement boundary,

1
Cii+2mUkk+ E(b"‘ﬂUii +nUkk)},

9= yo(1+ADY(1+BU;), ) =Pad - (16)
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In accordance with the character of the quantities ap- dAug
pearing in expressiofil6), for finding the variable compo- V(w)=—C(f+h) 9z |2=1 (18
nents of the signal from the piezoelement it is sufficient to
know the Au;(z,t) component of the displacement vector. where we have introduced the notation
For harmonic modulation of the exciting laser radiation, we
write this component in the formhu(z,t)=Au(z,»)e'", eM|,
and _using Eq(12) and the indiqated boundary conditions, we C= W-
obtain forAus(z,w) the following result:

Ugo)e* ol Using relationg17) and(18), one can find the piezoelec-
Aus(z,w)=— FQ'COSQZ tric signal in explicit form:
(3)
YL+ AT)(14AYs9) o Lo V(0)=—C(fP+h{)] QUPe “tanl
HONING s 8
3 3
X si —)+uUPe 0z 1 1+A®)(1+ U
sinQ(z—1)+UPe 7, 17 Yol . )( (3),3 33) AT+ 0UQ)
where f5”+hy
3
UO— Yoo (1+A®)(1+ U3 —gUPe 1} (19)
(f(33)+ h(33))0'2+p0w2 ®
pow? Expression19) can be used to determine the piezoelec-
Q= m tric signal under rather general conditions. In this paper we
3 3

shall assume that the sample is quite thick in respect to the
The mechanical and electrical characteristics of the pipropagation of thermal waves, i.e., we canesef'=0. Here
ezoelement are related by E@$4). Then with the use of the let us consider separately the cases of low and high modula-
continuity equation for the normal component of the stress ation frequencies of the exciting radiation. We begin with the
the sample—piezoelement boundary, we obtain the followingase of low frequencies, for whiclkpow<(f$)+h$).
expression for the voltage signd(w) registered at the out- Then, using expressiofl9), we obtain for the signal from
put of an open-circuited piezoelement: the piezoelectric transducer

Yo(1+A®) (14 BUy AT

V(w)=iCkpw? (20

32
+[t+ (1+AC) (21U o+ (4m+ n)u33)]}

4
(1+A(3))(K+§,u

In the region of high modulation frequencies of the exciting radiationgch,rw>(f(33)+ h(33)), expressior{19) leads to the
result

Yo(1+A®) (14 BU3) AT, (21)

V(w)=—Cpgw 2 TP
(1+A(3>)( K+ 5/;,) +[t+ (1+AC) (21U o+ (4m+ n)ugg)]]

Expressiong20) and(21) can be used to analyze some (21), the initial stress tenscné,%) also in general has such a
general behavioral regularities of the piezoelectric signatlependence. However, in accordance with expressipthe
from objects containing internal stresses. In this paper welependence on the Murnaghan constants in the teﬂé%)or
shall consider only the physical and not the geometricaknters only through terms quadratic in the initial strains.
nonlinearities>??i.e., we shall assume th&®><1. In ac-  Since even under substantially nonlinear conditions the ini-
cordance with the results of Ref. 17 the coefficigris posi- tial strains are usually characterized by quantities much less
tive. Therefore, the presence of tensile stresses in the samplean unity, the influence of the Murnaghan constants on the
enhances the thermoelastic coupling and increases the piezgiezoelectric signal arises mainly through the terms linear in
electric signal, while the presence of compressive stressdke initial strains and which are written out explicitly in the
diminishes it. denominators of expressiofig0) and (21).

Besides the quantities which determine the dependence Expressiong20) and (21) can also be used to analyze
of the piezoelectric signal on the Murnaghan constants anthe possibility of determining the Murnaghan constants of a
the quantities appearing explicitly in expressid@2€) and  material under the conditions of the problem under discus-
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sion. For example, we see from the two expressions thaitresses in the framework of the nonlinear theory of ther-
measurement of the dependence of the piezoelectric signaloelasticity and also to explain qualitatively the existing ex-

on the initial strainU4; (or U,,) in the absence of a strain perimental results. To achieve quantitative agreement of
U3 will enable one to determine the Murnaghan constant theory with experiment it will be necessary to develop the
For a knownl expressiong20) and (21) can be used to theory further to more fully take into account the peculiari-

determine the coefficien® and the quantity (th+n) from ties of the experimental investigations.

the dependence of the piezoelectric signal on the initial strain

Us; for Uy;=U,,=0. However, it is not possible here to

determine the constanta and n independently within the Y. H. Pao and W. Sachse, ihysical AcoustigsVol. XVII (edited by
framework of the problem under discussion. W. P. Mason and R. N. ThurstpnAcademic Press, New Yorkl 984,

. o . pp. 61-143.
In Ref. 15 experiments on the excitation of mechanical 21" a0ka, S. Yokogama, and Y. Osaka, Jpn. J. Appl. Piys.112

vibrations in loaded titanium rods by laser radiation were (1984

reported. The experiments were in fact done under condil. I. Vlasov, V. G. Ralchenko, E. D. Obraztsoea al, Appl. Phys. Lett.
tions of low-frequency excitation of acoustic vibrations. In 4;1'El_739(1997)'8 Schoties. and E. Macherauch. Mater. Sci. B
agreement with expressid20) it was found that the piezo- (igsg_enmann' - Scholies, and E. Macherauch, Mater. Sci. B1g.
electric signal increases when mechanical vibrations are exim. R. Daymond, M. A. M. Bourke, R. B. Von Dreek al, J. Appl. Phys.
cited by laser radiation in the zones where tensile stresseg8? 1554(1997.

exist and decreases in regions of compressive stress. On thg'scegztﬂ;u%sr:::r&’ i}LT';f:gﬂaig E’;‘\’/'O Eecl_géo'zé‘h%gge'

basis of data on the value of the coefficightfor metals’ 8G. N. Chernyshev, A. L. Popov, V. M. Kozintsev, and I. I. Ponomarev,
one can estimate the influence of internal stresses on theResidual Stresses in Strained Solifia Russiad, Nauka, Fizmatlit,
piezoelectric signal. For example, for the conditions of Ref. Moscow(1996, 240 pp. , _

15 expressior(20) shows that the stress dependence of the g/'d; legziﬂse;gssl)(}/’ R.F. Miller, and C. S. Vikram, Opt. Etgelinghan
thermoelastic coupling coefficient leads to roughly a 10%:oc.’s; vikram, M. J. Pechersky, C. Feng, and D. Engelhaupt, Exp. Tech.
change in the piezoelectric signal. 20, 27 (1996.

This value is somewhat smaller than that obtained inllM. Kasai and T_. Sawadﬁhotqacous_tic and'Phototherm_aI Phenomena Il
Ref. 15. However, it should be kept in mind that for the ¥glr'k?fgggsggmg§r_§6€”es In Optical Sciences, Springer-Verlag, New
majority of metals the Murnaghan constants have negativer. m. Burbelo, A. L. Gulyaev, L. I. Robuet al, J. Phys.(France 4,
values. Then, in accordance with expressi@® and(21), 13Colloque C7-311(1994. _
the stress dependence of the piezoelectric signal due to me-ZL éSﬁcrn]gd sbszsg;ggg 4)G- Weides, and U. Netzelmann, J. RRgance
chanical nonlinearities will be analogous to the dependence,, Qianc,l Chin. J. Acoustl4, 97 (1995.
on the thermoelastic coupling coefficient. Under these con®r. M. Burbelo and M. K. Znabitenko, iProgress in Natural Science
ditions the total change in the piezoelectric signal will be Taylor & Francis, London; Washingtofi996, Suppl. Vol. 6, pp. 720-
somewhat larger than the value due solely to the change igfel’_' Muraticor. A L Glazov. b. N. Rovet al. Pisma zh. Tek. Fi
the thermoelastic coupling coefficient. Unfortunately, it is 535, 42?1'95;;’[Téc,;_ pii,z\_/'Let't23;(3)?li§8(ig;g?ﬁ_ma e
difficult to make a more detailed estimate of the piezoelectri¢’r. 1. Garber and I. A. Gindin, Fiz. Tverd. Teldeningrad 3(1), 176
signal on account of the lack of data on the Murnaghan con; (196D [Sov. Phys. Solid Stat8, 127(1961.
stants for titanium. Strong changes in the piezoelectric signal (Tl'glzfj‘;ema”' W. P. Mason, and H. J. McSkimin, J. Appl. PI85.928
have also been recorded near the ends of cracks formed by N Guz, Priki. Mekh.2, 3 (1970.
Vickers indentatiof?®?4in ceramics. It has been shoffn  2°T. Tokuoka and M. Saito, J. Acoust. Soc. A#B, 1241(1969.
that the changes in the piezoelectric signal in this case arZéA-g'f-3 LUE‘;,ZNon"neaf Theory of Elasticitjin Russiar, Nauka, Moscow
dl,'le to the presence of internal St_resses' Here, in accordang . V?VNovozphpil.ov, Fundamentals of the Nonlinear Theory of Elasticity
with the results of Ref. 16, the size of these changes ordi- [in Russiad, Gostekhizdat, Leningrad—Moscoi@948, 211 pp.
narily amount to several tens of percent. 2\, Jackson and N. M. Amer, J. Appl. Phyl, 3343(1980.

In summary, the proposed theory enables one to detef2d. H. Cantrell, M. Qian, M. V. Ravichandran, K. W. Knowles, Appl. Phys.

. ' ; o Lett. 57, 1870(1990.

mine the basic features of the generation of acoustic vibra-

tions by laser radiation in solid objects containing internalTranslated by Steve Torstveit
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Planar dislocation pileupd’DP3 and curvilinear dislocation segmen8DS9 are considered as
indicators of the local elastic shear stress figldSSSF$ that existed in the growing single

crystals at the time of stabilization of their dislocation structure. Calculations using the theory of
dislocations with the experimental parameters of PDPs and CDSs measured from the x-ray
topograms(taken by the Lang and divergent-polychromatic-bg®@®B) method$ give values of

the LESSFs in the range (0.2—1:5)0° Pa for thin single-crystal wafers of SiC k§

grown by sublimation in a graphite container. A strong nonuniform bending of the single-crystal
wafers is observed; for the x-ray topographic study of the dislocation structure in these

wafers the DPB method is preferable to the Lang method on account of its low sensitivity to
bending. ©1999 American Institute of Physid$$1063-784£99)01307-(

The use of silicon carbide wafers grown by sublimation For studying the dislocations we used the direct x-ray
in the Lely method as substrates for the growth of epitaxiatopographic methods of Lafdn collimated beams of the
structures for making a wide range of high-power microeleccharacteristi &; andKa, radiation of a molybdenum an-
tronic and optoelectronic microdevicdsee, e.g., Ref.)1 ode and a divergent polychromatic beam from a quasipoint
makes it necessary to study the various types of defects igource(DPB)** from the same anode. For such radiation the
these materials. A practical outcome of such studies might bealue of ut lay in the range 0.07-0.18. This provided ex-
the optimization of the technology for preventing the forma-tinction contrast of the dislocations recorded on the topo-
tion of certain types of defects both during the growth of thegrams, both those taken by the Lang method and those taken
single-crystal substrates and epitaxial structures and also dupy the DPB method. In the Lang method the topograms were
ing the fabrication of the microdevices. In addition to thetaken successively at symmetric reflections of {i¢20}
electrophysical, optical, and electron-microscope methods;,nd{30§0} type.
the development and production of efficiently operating and  In contrast to the Lang method, the DPB method is a
reliable microdevices based on SiC will also require nondemethod of multiple-beam x-ray topograph§-¢ In the DPB
structive methods of quantitative x-ray topograpf@XTG)  method from three to five reflections of th&120}, {3300},
and diffractometric(QXD) analysis of the defects of the 4nq {2240} type for the fundamental zonal ellipse, whose
single-crystal substrates, the grown epitaxial structures, anglis[0001] is perpendicular to the basal surface of the crys-
the actual device structures fabricated on them. tals and around 15 reflections of the other zonal ellipses were

The QXTG and QXD methods occupy a special nichetaken on the same photographic plate.
among methods of investigating structural defects in single Figure 1 shows the a panoramic topogram of one of the
crystals and epitaxial systems. The quantitative data prosjlicon carbide crystals, taken by the Lang method in the
vided by these methods has played an important role in the; 120y reflection. On it are recorded two comparatively nar-
!a_borz_itory development ar_1d_ industrial production of reliableyq\ curvilinear bands with a clear image of a set of nonin-
injection heterolasers emitting cw at room temperature ajersecting dislocation lines. In the vast region between these
wavelengths of 0.85, 1.30, and 1.5.” The data provided pands the images of the dislocation lines are practically in-
by the QXTG and QXD methods will no doubt provide a yisible or appear with extremely low contrast. This means
physical basis for speeding up the optimization of the growthhat the given 61-SiC single crystal, and, incidentally, all
processes and the development and production of reliabige other silicon carbide single crystals investigated in this
microdevices with the necessary output parameters in thewdy, has a pronounced nonuniform macroscopic bending.
case of SiC technology as well. Because of the high sensitivity of the Lang method to bend-

In this paper we employ the methods of QXTG analysising, a large part of the area of the investigated single crystals
to study thin (150—-40@.:m) wafers ofa-SiC of structural in Laue diffraction and linear scanning is out of the reflecting
type 6H, grown by sublimation and precipitation on the position, and the defect structure of these regions is not re-
walls of a graphite container. The wafers had hexagonalealed, whereas on those parts of the topograms from the
faceting with the greatest development of 01 basal regions of the same crystal which are found in the reflecting
planes, and a diameter of up to 12 mm. position for the characteristi€ «; andK «, lines of the an-

1063-7842/99/44(7)/4/$15.00 797 © 1999 American Institute of Physics
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FIG. 2. Topograms of one of the diffractional reflections (Bp3f the
fundamental zonal ellipse, taken by the DPB method. a: The topogram dem-
FIG. 1. Panoramic topogram of one of the silicon carbide crystalsonstrates the direction of convexities of the dislocation half-loops and the
(6H-SIC), taken by the Lang method in the (1M2reflection of strictly individual curvilinear dislocations; the arrow indicates the region where the
collimated characteristi& «; andK «, radiation of a molybdenum anode.  growing single-crystal wafer touched the wall of the graphite crucible; b,c:
typical one-sided planar dislocation pileu@®DPs for curvilinear (b) and
rectilinear(c) dislocations squeezed by elastic stresses into the corner region
(b) or parallel to the crystallographic planes of the natural lateral faceting of

. . . . the hexagonal single-crystal wafgig.
ode, the dislocation structure of the crystals is revealed with

excellent contrast and with a high linear resoluti@mound
3 um in Fig. 1. o

As we see from the topograms of the othed-6SiC ~ They have Burgers vectors of the type=1/3(1010) and
crystals, the configurations of the reflecting regions are very,=1/3(1120). The maximum linear density of dislocations
different. For the given crystal the shape of the reflectingin the 6H—SiC samples studied wad,;<6x10? cm™? in
regions and their position relative to the edges of the crystahe basal plane, which corresponds to a dislocation density
depend on the type of reflecting planes and the precise orN,<6x10* cm 2 for the {hk10} planes, perpendicular to
entation of the crystal relative to the incident beam. All of the basal glide planes of the dislocations. Besides curvilinear
this points to an extremely strong nonuniform bending of thegislocations one also observes strictly rectilinésectoria)
investigated single-crystal wafer oH6-SiC. The observed dislocations and also rectilinear dislocations with 120-degree
nonuniform bending strongly complicates the study of thepends, the individual rectilinear segments of which coincide
defect structure of B—SiC cry;tals by the ang methpd. with the crystallographic directions of th(&lfO) type.

~ The DPB x-ray topographic method, which permits ob- 1y main goal was to elucidate the physical causes of the

taining rather high image 040ntrast for individual dlslocatlonsgeneration of dislocations in the growingH6 SiC single-
In polychromatu_:_rad|at|o?1 ~%is, because of this, signifi- crystal wafers and to determine the location of the actuated
cantly less sensitive than the Lang method to the effects of gigjocation sources that have generated the dislocations. It is
nonuniform bending of the single-crystal wafers. Figure 25155 necessary to ascertain the stage in which the generation
sholvs a topogram of one of the diffractional reflectionsypq propagation of the dislocations occurs — during growth
(3030) of the fundamental zonal ellipse, taken by the DPBor during the C00|ing of the grown Crysta|3_
method. It clearly reveals the dislocation structure of this  judging from the direction of the convexities of the dis-
nonuniformly bent &—-SiC wafer. This same image was |ocation half-loops and the individual branches of the curvi-
recorded in two other reflections, (1QPand (21.0), of the linear dislocationgFig. 23, their sources were localized in
fundamental zonal ellipse and also in certain reflections ofthe region where the growing single-crystal wafer of
other zonal ellipses. The x-ray topograms taken by the DPBH —SiC touched the wall of the graphite crucible. Theoreti-
method for the other I8 —SiC samples also quite clearly re- cally the calculation of thermoelastic stresses acting on the
vealed their dislocation structure. On them one can easilyegion where the crystal is fastened to the wall of the cru-
follow the extinction of the images of individual dislocations cible showed that because of the large differences in the
as the magnitude and direction of the diffraction vectorscoefficients of thermal expansion and in the behavior of
changed, making it possible to identify the types of the disthese coefficients as functions of temperature, thermoelastic
locations. stresses arise in the region where the graphite touches the

The Lang and DPB methods inHe-SIiC crystals re- single-crystal &1—SiC wafer, and these stresses, increasing
vealed dislocations localized mainly in the basal planesas the grown crystal and crucible are cooled to room tem-
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perature, can exceed the yield strength of graphite, (3—44)
x 10° Pal! This means that the single crystals may pull
away from the walls of the container during cooling. The
evidence confirms that this happened more than once. Thi
provides grounds for assuming that the generation of dislo-
cation half-loops in single-crystal H5—SiC wafers most
likely occurs during cooling of the container after the growth
of the single crystals.

In a number of samples we recorded typical one-sided
planar dislocation pileupDP$ of curvilinear dislocations FIG. 3. Topogram of defects of the surface of one of the-&iC crystals,
squeezed by elastic stresses in the basal planes into the c@fcorded in the form of different-sized local regions of black-and-white
ner regions of the hexagonal single-crystal wafgiig. 2b). contrast. The topogram was taken by the DPB method in theQ)l i&flec-

We also recorded planar pileups of rectilinear dislocationgion of the polychromatic and characteristic line radiation of the molybde-
(Fig. 29 parallel to the crystallographic planes of the natural™!™ anode.
lateral faceting of the wafers.

Using the dislocations as indicators, in this paper we
have used the parameters of the curvilinear dislocation segre island deposits of some sort of reaction products which
ments of individual dislocatiodsand groups of planar dislo- interfere with the mechanism of layered growth of the ho-
cation pileupgPDP$,%#as obtained from measurements onmoepitaxial single-crystal film. However, physically they
the topograms and from calculations, to calculate, for theplay the role of local concentrators of the macroscopic elastic
first time for SiC (@), the local elastic stressesacting in  stress field due to the nonuniform bending of the single-
specific growing crystals on account of these dislocationscrystal 84— SiC wafers grown and cooled to room tempera-
Here for the PDPs the values af were calculated using the ture.
formula from Ref. 8: The topograms of such samples revealed only individual

_ . dislocations and with rather low contrast. It is as if they are

T={[G/(1=»)]sinen+G cosan}bNy /7L, @ “leveled out” or weakly transilluminated in a fog. The sup-
where G=2.6x 10" Pa is the shear modulug;=0.20 is  pression of the image of bulk defects by surface defects is an
Poisson’s ratid? b=3.1x10"1"m is the Burgers vector of effect that is generally familiar to x-ray topographers. The
the dislocations for B—SIiC, « is the angle of the Burgers author himself has published several papers on this
vector relative to the dislocation lines, ahg is the length  subjec*512After a chemical processing of the surface of
andN, the number of dislocations in any of the PDPs. the crystals the images of the surface defects vanish from the

PDP-based estimates of the elastic stresses acting topograms. Consequently, the surface defects themselves
6H-SiC single-crystal wafers under real growth conditionsmust also vanish from the surface of the single crystals as a
gave for the local shear stress the valyg=1x10° Pa(or  result of chemical dissolution, which indirectly confirms
100 Js/mmf). their surface island character.

Calculations according to the measured radii of curva-
ture of the segments of individual curvilinear dislocatibns
gave a range of values of the local elastic stressgs 2
X 10°—1.5x 1 Pa (or 20—150 Js/mR). We see that the
values of the local elastic stresses obtained by differen
methods for the sameHs-SiC crystal agree with one an-
other and should be trustworthy. The range of values ob
tained for the local elastic shear stresses in rddl-&iC
crystals is close to the critical values of the shear stresse
necessary for excitation of the dislocation sources that ger
erate dislocations in the basal glide planes at high temper:
tures.

The sinuosity observed for some of the dislocation lines
is a sign of their stopping by impurities, which precipitate
out, apparently incoherently, in the active glide planes.

In a DPB study of &1 —SiC single crystals with a thick-
ness of 40Qum and an unetched surface, defects of the sur
face on the upper basal planes were observed after grow
for the natural faceting of the crystals. In Fig. 3 these surfact
defects are recorded in the form of comparatively small locai
regions of black-and-white contrast. Their diffraction dimen-
sions are from 50 to 200—10Q@m, and they are distributed

FIG. 4. Defects of the structure of one of the samples of a homoepitaxial

. . _ . . 6H-SIiC film—substrate system, revealed by the DPB method in thEOOllZ
2

with a density of up to K10'cm - Their phySICO- reflection of the polychromatic and of the characteristic line radiation of a

chemical nature can be only hypothesized. Most likely theymolybdenum anode.
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The DPB method was also used to study the defect struaiucleus formation during homoepitaxy might be stimulated
ture of one of the samples of a homoepitaxibd-6SiC film— by surface contaminants on the substrate, which in other
substrate system. It became clear that the defect structure shmples have been observed in x-ray topography as defects
the substrate of this homoepitaxial single-layer structure i®f a surface layer of the single crystals.
characterized by an extremely strong dislocation network,
the dislocations of which are emitted both by sources at the*A. A. Lebedev, A. N. Andreeset al, in Proceedings of the VII Interna-
crystal—container heterointerface and by an internal sourcegona' Slég‘POSi“fggng'gowef Semiconductor Devices andftiohama,
lying in a re_zgio_n of the crystal far from the heterOinFerface ZGéplih(Kuz?,etps%v, Doct<-)ral Dissertatidin Russiar}, Moscow (1989,

(the arrow in Fig. 4 The contrast of the substrate disloca- 466 pp.
tions is lowered by the influence of the nonuniform elastic *A. R. Lang, inDirect Methods of Studying Defects in Crysta¥ir, Mos-

field of the epitaxial film. cow (1969, pp. 205-222; 259-267.

. . 4G. F. Kuznetsov, Kristallografiyal, 847 (1976 [Sov. Phys. Crystallogr.
In some of the DPB topograms the region of the epitax- 21, 485(1976)].

ial film was partially shifted relative to the substrate. In this 5G. F. Kuznetsov, Apparatura i Metody Rentgenovskogo Analiza, No. 12,
region one can clearly see that the distribution of the inten—egp-FlGE—l67£l973- S, A Semiletov. Obzor Hekéronn Tekhnik

H H H . F. Kuznetsov an . A, Semiletov, Zor exeronn eknnike.
Sity over the area of the t.ODOQra.m'. on \.Nhl(.:h the |mage We.ls Ser. Mikrodektronika (TsNII Elektronika, Mosc)c/)v)?, No. 1(1975.
produced by polychromatic x radiation, is discrete in the azl-7g g, Kuznetsov, Obzory pEJIE(tronnd Tekhnike. Ser. Mikrokektronika
muthal and Bragg directions. This contrast is similar to that (TsNIl Elektronika, Moscow, No. 1(1975.
which we observed in Ref. 13 for mosaic single-crystal films ®G. F. Kuznetsov, IREAN SSSR Preprint No.(@41) [in Russiad, Institute

of CdTe grown on mica substrates. For this reason one Canof Radio Engineering and Electronics, Academy of Sciences of the USSR,
) Moscow (1986, 31 pp.

draw the prelimingry ConC|U§i0n that the grown single- sg r kuznetsov, Kristallografiya4, 765 (1989 [Sov. Phys. Crystallogr.
crystal film is mosaic. To us this means that the growth con- 34, 456(1989].

ditions of the 64— SiC homoepitaxial film were such that the 103, R. McLaren, G. Tappin, and R. W. Davidge, Proc. Brit. Ceram. Soc.,

. . o No. 20, 259-2651972.
operative growth mechanism was not the Iayer by IayelilA. R. Ubbelohde and F. A. LewisGraphite and Its Crystal Compounds

growth that is typical for ideal homoepitaxy but rather [ciarendon Press, Oxford.960; Mir, Moscow (1965, 265 pp].

growth by the heterogeneous formation and growth of a Se£G. F. Kuznetsov, Ektronnaya Tekhnika. Ser. 8, No. 3, pp. 39+4578.

of three-dimensional nuclei. Some of them, in grOWing,BG' F. Kuznetsov and S. A. Semiletov, Kristallografiga, 664 (1977
. . . [Sov. Phys. Crystallogi22, 381 (1977].

transform into mosaic blocks with small angles of mutual

and maximum misorientation. The three-dimensionalTranslated by Steve Torstveit
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The structural perfection of GaAs epitaxial films grown by molecular beam epitaxy on substrates
with the (100, (111)A, and (111B orientations is investigated by double-crystal and triple-

crystal x-ray diffractometry. It is found that the ratip of the molecular fluxes of arsenic and
gallium has a strong influence on the structural quality of the epitaxial films. The optimum
values of the parametey are found for each of the substrate orientatioh80), (111)A, and
(111)B. © 1999 American Institute of PhysidsS$1063-784(99)01407-3

INTRODUCTION FILM GROWTH AND INVESTIGATION PROCEDURES

Silicon is widely used as a doping impurity in the growth  EPitaxial films of GaAs were grown by MGE on semi-
of epitaxial structures of I1I-V semiconductor compounds,nsulating GaAs substrates with th@00, (111)A, and
in particular, in GaAs and its solid solutions. In molecular (111)B orientations. In order that the films be grown under
beam epitaxyMBE) on GaAs substrates with t{&00) ori- the same conditions, the samples were grown three at a time,

entation, epitaxial films witm-type conductivity are formed. on the(100), (111)A, and (111 substrates, for each value

In the case of silicon doping an electron concentration of upOf 7. A specified value ofy was reached by changing the

to 6x 108 cm-3 can be achieved in the films. It is also temperature of the As cell, while the temperature of the Ga

known that when (1114 substrates are used for MBE, sili- Cfgct\;\gseshe[?hgong;tr;%;:é?no e(r:;tuf'or ;Jlri;he grr(;)v\\l/\f[tr?
con exhibits amphoteric propertiés® at small values of P > . P ¢ 99

was 600°C. The thickness of the undoped buffer layer
Y(y=Pas/Pca, WhereP,s and P, are the vapor pressures

; oo : was ~0.5um, with an impurit ncentration of
of As and Ga in the growth zone of the epitaxial films in the s 05u a purtty concentiation o

; > 5% 10" ecm3, and the thickness of the silicon-doped layer
MBE apparatuslayer of predominanthyp-type conductivity was~0.20 um. The temperature of the Si molecular source

form on a(;count C,)f the incorporation O,f the_ St atoms in thecorresponded to the value at which the electron concentra-
As sublattice, while at largey one obtains films of-type  ion 1y 'in the doped layer on thél00) substrate was-1
conductivity. This phenomenon opens up new possibilities, 118 cy=3 For the nonconducting samples the thickness
for fabrication novel semiconductor devices with latgrain of the doped layer was increased to 1— L. For all the

junctions, buried-heterostructure quantum-well lasers, andamples the conductivity type and carrier concentration were
other devices. Therefore, the epitaxial growth of Ill-V layersmeasured by th€ -V method.

on substrates of different orientations, with the use of a
single dopant — silicon — is of great scientific as well as
practical interest=’ However, analysis of the the published

data shows that there is significant disagreement in the ex BLE L
perimental results obtained by different authors. For eXsample " Substrate Conductivity Carrier
ample, in Ref. 5 it was found that the change in the conducNo. orientation type concentration, ¢rh
tivity type from p to n in epitaxial films grown on substrates 16 (100 n 1x10'8
with the (1114 orientation occurs ay>5, whereas accord- 2 16 (1117 p 8.0x 10'
ing to the data of Ref. 6, this occurs at>48. There are no 3 16 (111p n <10®
data on the dependence of the quality of the crystal lattices of* 36 (100 n 9.6x10"
films grown on substrates of different orientations or under > 3 (1117 P 22¢10°
'ms g 3 6 36 (1118 n ~10%5
different growth conditions. 7 50 (100 n 9.7% 10"
In this paper we report a study of the influence of the 8 50 (1117 n 4.1x 10"
ratio of the As and Ga fluxes on the electrophysical and® 50 (1118 n =10158
structural properties of GaAs epitaxial films grown by MBE 10 ;; ((110101)» 'rl ;'éi 18117
on GaAs substrates with the (100), (1A]l)and (111B  ;» 77 (1118 n 8.5x 107

orientations, with Si used as a dopant.

1063-7842/99/44(7)/3/$15.00 801 © 1999 American Institute of Physics
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The structural perfection of the grown epitaxial films
was studied on a triple-crystal x-ray spectrometer; here slot
ted single crystals of G&11) or Gg004), with threefold
reflection, were used as monochromators, and1lGk or
Ge(00]) single crystals were used as the analyzer crystals
The x-ray beam illuminated a region of dimensions 1 zoom0
X4 mm on the sample. Both reflection diffraction curves
(RDC9 and triple-crystal x-ray diffractionTXD) spectra
were recorded.

40000

RESULTS AND DISCUSSION 80000

The growth conditions of the epitaxial films, the carrier
concentration, and the type of conductivity of the samples&
are presented in Table I. We see that all of the epitaxial filmss 42000
grown on substrates with tH@00) orientation(samplesl, 4,

7, and 10) have n-type conductivity, with an electron con-
centrationng~ 10" cm™2 for all values of y. The films 0
grown on (111B substrates, while also exhibitingtype
conductivity, have small values af, (n,<10" cm 3) for

<50, and only fory=77 does,=8.5x 10! cm™3, which 80000
is smaller than for epitaxial films grown qa00) substrates.

The situation for epitaxial films grown on (11A)substrates

is more complicated. In our experiments, as in Ref. 6, @
small y the doping of the epitaxial film by silicon leads to

p-type conductivity (sample2) with n,=8.0x 10" cm™3. -
As v is increased from 16 to 36 there is a decreaseito et
2.2x<10' cm 2. Apparently fory=36 there is substitution T, ' 5 %0
of Si atoms in the Ga and As sites simultaneously, whiclk Angle,”

leads to partial compensation of the conductivity. Ass
increased further to 50 there is a change in the type of co
ductivity (from p to n), and aty=77 the concentration,
reaches values-9.0x 10" cm 3.

Let us now consider the results of x-ray diffraction stud-
ies of the structure of epitaxial films. Figure 1 shows RDCsobserved for samples grown on substrates with the (A11)
measured by double-crystal diffractometry. Table Il givesorientation. Since a decrease®f and an increase ol are
values of the reflection coefficien® and the half-width&V/ indicative of an increasing degree of structural distortions in
for both the virgin surfaces and for the epitaxial samiites  the samplé,the largest number of defects would be expected
sample number can be found in Table I from the paramgter to form in the range 28 y<40 (in the case of silicon dop-
and the substrate orientatiorAs we see from Table II, of ing), corresponding to the transition fromtype to n-type
the samples with th€100 orientation samplél had values  conductivity in epitaxial films with the (111 orientation,.
of P, and W most closely corresponding to those for the  To check this we analyzed the TXD spectra. The spectra
virgin surfaces. This is apparently because that sample wagere recorded by scanning the analyzer crystal with the po-
grown at a partial pressurg closest to the optimum growth sijtion of the sample held fixed, with an angular detuning
conditions for the(100) orientation. Asy was increased?,  from the exact Bragg angle af=6— 65 (0g is the Bragg
decreased and the half-widWN increased; these changes at-
test to increasing distortions of the structure in the epitaxial
film. The largest deviations of the parameters of the RDCSABLE II.
from the values for the virgin surfaces were observedsfor

~
1

r.EIG. 1. Reflection diffraction curve®RDCs9 for GaAs epitaxial films grown
on AaAs substrates with th@ 00, (111)A, and (111B orientations. The
curves are labeled with the sample N¥S is the virgin surface.

X ~ i Orientation
=36. Apparently at this ratio of As and Ga pressures there is
appreciable formation of structural defects, with a decompo- (11DA (111)8 (100
sition of the solid solution due to nonuniform growth condi- P,%  W,”" P,% W," P,% W"
tions. At large values ofy the process stabilizes, and the Virgin
f_ormatlon of_ep_ltaX|aI_f|Ims occurs L_Jnder favora_ble cor_ldl- surfaces 85 18.9 86 183 66 113
tions for stoichiometric growth, as is reflected in the im-
provement of the parameters of the RD@ample10). For =16 72 23.2 59 22.0 60 1.7
illustration in Fig. 2 we show the dependence of the reflec- gi i;g gg 33'2 gg g'g
tion coefficientsP, on y for the samples studied. It follows ;7 82 189 43 45.6 58 13.0

from Fig. 2 and Table Il that the largest changesPefare
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Angle,”
angle, as the angle of the analyzer crystal was scanned. I.. e

this arrangement, the presence of defects in the sample WiIHIG. 3. Triple-crystal x-ray diffractiofTXD) spectra for GaAs epitaxial
give rise to a diffuse peaka broad hump ap~0) in addi- fims grown on GaAs substrates with tf&00) and (111} orientations. The
tion to the peak due to the Bragg component of the scatteringurves are labeled by the sample N¥S is the virgin surface.

(narrow peak at#=22"); the intensity, shape, and angular

position of this diffuse peak are determined entirely by the

number and type of the defects. The TXD spectra of the

GaAg100) virgin surfaces and the epitaxial films grown on . . L e
substrates of this orientation are shown in Fig. 3. We see thépe (100, (111), and (111 orientations are quite differ

on the curveV's (virgin surface the intensity neap=0 is ent both ir1 terms of thg degree of perfection of the structure
very low (slightly above backgroundand is constant. At the anq also in their electrical propertles._lt was fou_nd that .the
same time, the diffuse scattering from sampléecurve 1) is ratio of the moIecuIar' fluxes of arsenic and gallium dgrmg
easily seen. As the partial pressure is raisee={7) the growth 'haveastrong.lnfluence on the structural perfection of
diffuse maximum increasécurve 10). This result indicates G@As films. The optimum values of the parameter for
that the epitaxial growth conditions on substrates with theVhich the GaAs films form with the most perfect structure,
(100) orientation are better ag=16. A somewhat different Were determined for substrate orientatiof190), (111)A,
situation is observed for the Samp|es grown on (m$mb- and (111B It was found that the Crystal structure of GaAs
strates. In the case when the films grown exhikiype con-  epitaxial films grown on substrates with the (1Al9rienta-
ductivity, a large valuey=77 corresponds to epitaxial films tion is almost always more perfect than that of films grown
with the least distorted structure. In this case the diffuse peakn (111B substrates.

is minimal (curve 11) and much weaker than for sam8e

which was grown aty=50. It should also be noted that the

electron concentration in samplel is significantly higher

than in sample. For epitaxial films withp-type conductivity

the intensity of the diffuse peak in the TXD spectrum is 'S.S. Bose, B. Lee, M. H. Kim, and G. E. Stillman, J. Appl. Pt6&.743
noticeably greater than that of the Bragg scattering compo-2(198& ‘

nent. Thus under the growth conditions investigated we were,W- - Wang, R. F. Marks, and L. Vina, J. Appl. Phy30, 937 (1986

.- . . . . S. Subbanna, H. Kroemer, and I. L. Merz, J. Appl. P58.488(1986.
unable to grow silicon-doped epitaxial films with a structure 4, Okano, H. Seto, H. Katahane al, Jap. J. Appl. Phy8, 151(1989.

comparable in perfection to the virgin surface. 5Y. Okano, M. Shigeta, H. Setet al, Jap. J. Appl. Phy9, 1357(1990.
8F. Piazza, L. Pavesi, M. Henini, and D. Johnston, Semicond. Sci. Tech-
CONCLUSION nol., No. 7, 1504(1992.

L. Pavesi, M. Henini, and D. Johnston, Appl. Phys. L&6, 2846(1996.
In summary, the Comprehensive studies reported herdA. M. Afanas’ev, P. A. Aleksandrov, and R. M. ImamoX;Ray Diffrac-

have shown that when GaAs films are grown by MBE on tion Diagnostics of Submicron Film§in Russiad, Nauka, Moscow
GaAs substrates in a single technological cycle with Si used (1989, p. 151.
as the doping impurity, the films grown on substrates withTranslated by Steve Torstveit
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An investigation is made of the diffusion of gold in germanium under the influence of the energy
released by the recombination of hydrogen atoms to form molecules. Crystatyjoé

germanium with gold fimsd=1x10 ’m) are exposed to atomic hydrogen for various times

(up to 10 s) at temperatures close to room temperature. The diffusion of gold in the

germanium is analyzed by laser mass spectrometry, and also by measuring the surface resistance,
the minority carrier lifetime, and the infrared transmission spectra. Mechanisms are

proposed for the stimulation of heterodiffusion and accompanying processe$99® American

Institute of Physicg.S1063-78429)01507-X

INTRODUCTION the films was monitored using an MAR-2 x-ray microana-
&yzer and was (1-1.2310 "m. The surface state of the
samples was monitored by measuring the surface resistance

introduce electrically active and recombination impurities ) ¢ b thod and al . MIM-7 mi
into semiconductor crystals to a calculated concentration at §5 using a four-probe method and aiso using an - me
roscope at 500 magnification.

given depth are accompanied by many deleterious effects . . L
such as the redistribution of already implanted impurities, the AIOT'C r;ydrpgen \:vas prefpared dbg d|sso?|zporr\10f hyd1r%—
formation and growth of parasitic films, the creation of ap-gen molecules In a plasma formed by an 1t discharge. 1he

preciable mechanical stresses at the heterointerface, a lecular hydrogen was released erm a solution of 20%
many others. Thus we are faced with the problem of opti- OH and distilled water by _electroly3|s. The hydrogen was
mizing these heterodiffusion regimes in terms of reducingIhen pass_ed through a prefl!ter to collect any KOH. droplets
the process temperature without increasing its duration. and a (_:Irylng c_olumr(fllled V\.”th granular KOH alkah_, be-

A drastic reduction in the overall temperature in the pro-fore being fed into the working chamber. The atomic hydro-

cess system is best achieved by using local stimulation of th@&" lco.ncetnyratlor;r:nﬁthe dwcl)rklrtl)g chan|1b etr was measure(:. by
impurities in semiconductors. Accelerating the heterodif-2 C&/0MMELrc methotiand aiso by an electron paramagnetic

fusion under the influence of atomic hydrogen is an effective S>0Nance method and reached BY°m™* at a pressure of
means of achieving this. When hydrogen atoms recombine t3>5_20 Pa in the system. .

form molecules, a comparatively large energy is release?l The sa}mples were placepl on an aluminum holder 0-25'.”‘
(4.5eV per recombination evertwhich, when transferred rom the dlsc_harge Zone, Wh'_Ch prevented any hydroxyl radi-
to a surface impurity atom, may stimulate he'[erodiffusionCals and H ions from reaching the sampfeThe tempera-

processes in the subsurface and bulk regions of semicondurljl':-re of the samples was mea_sured using a Chromel-Copel
tor crystals. thermocouple attached to their surface. The samples were

The present author and coworktsinvestigated the only heated by the energy released as a result of recombina-

low-temperature diffusion of copper and nickel in germa—t'on’_l_";:nd dt_hte!Lt?mperfatt;]Jre d'% not exc?ettj_ 330 Kth
nium under the influence of atomic hydrogen. However, the . € distribution of the gold concentration in the germa-

diffusion of gold atoms is of greater practical interest, since'Um was investigated by laser mass spectrometry. The in-

gold is a more efficient recombination impurity in germa- vestigations were parrled out using aMEL-2 system in
AiLMm. which laser sputtering was followed by separation of the ions

in electric and magnetic fields and detection in an ion-
sensitive material. The gold concentration was determined
from the optical density of the corresponding line in the mass
The substrate material wasl1)-oriented,n-type single-  spectrum.
crystal germanium withp=1.5x10*Q-m and dislocation The influence of the gold atoms on the minority carrier
density 16 m~2. The wafers were etched in a 40% HF, 20% lifetime was studied by a point contact modulation method.
HNO;, 40% H,O mixture with added AgN@to remove the  The infrared transmission spectra of the samples were also
damaged layer and were then ultrasonically cleaned. measured using an IKS-21 spectrometer.
Gold films were deposited by thermal evaporation in
vacuum. The substrate temperature during the film deposFXPERIMENTAL RESULTS AND DISCUSSION
tion was of the order of 400K, so that no significant diffu- The films were sputtered and became thinner under the
sion of gold into the germanium occurred. The thickness ofnfluence of the energy released by the adsorpi®eR.5 eV

The high-temperature diffusion processes employed t

METHOD OF INVESTIGATION

1063-7842/99/44(7)/3/$15.00 804 © 1999 American Institute of Physics
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1 FIG. 2. Lifetime of minority carriers in Ge with Au film as a function of the
0.4 0.5 0.6 treatment time in atomic hydrogen.

FIG. 1. Distribution of Au concentration in Ge after treatment of the ] ) ] ) o
samples in atomic hydrogen for various timds— untreated Ge sample ied by measuring the minority carrier lifetime We know

with Au film, 2 — Ge sample with Au film treated in H for 1800 s, aBé— that the addition of gold to germanium accelerates the re-
Ge sample with Au film treated in H for 3600's. combination of electrons and holes and reduces the lifetime
if Au atoms occupy lattice sitésFigure 2 givesr as a func-
tion of the hydrogen treatment time. It can be seen that ini-

and subsequent recombinatidn5-2 eV} of hydrogen atoms tially 7remains constant, since only sputtering of the film has
on the gold surface. The surface resistaRg®f the samples occurred. Under further treatment a decreaseigobserved
therefore increased and, after the films had been completelys a result of the Au being driven into the Ge. Subsequent
removed, became the sameRsfor the initial germanium. treatment almost completely restoredo its initial value.
Since gold has no volatile compounds with hydrogen, the  Control samples were annealed in order to eliminate any
sputtering mechanism is a purely physical one in which annfluence onr from hydrogen atoms adsorbed on the surface
amount of energy sufficient to detach it from the film is or diffusing into the bulk. The samples were annealed at
transferred to a surface atom, together with momentum di423 K for 7200s, during which the values afremained
rected from the crystal surface into the gas phase. constant. This confirms that the change in the lifetinfer

In the stage of the hydrogen treatment when the Au filmghese samples is only caused by the incorporation of gold
were still continuous, no gold was observed in the germainto the germanium under the influence of hydrogen.
nium. Only after a critical thicknessd(~5x10 8m) had The change in the transmission spectra revealed appre-
been reached, at which discontinuities appeared in the filngiable absorption at wavelengths in the range (7.3—10)
did gold atoms begin to penetrate into the subsurface layers 10 ®m for Ge samples with Au films treated in atomic
of the germanium and then diffuse into the bulk. hydrogen, whereas the initial germanium and also the Ge

Figure 1 shows the gold concentration in germanium afsamples from which the Au film had been removed by etch-
ter treatment in atomic hydrogen for various times. Cutve ing in aqua regia were transparent in this part of the infrared
was obtained for a germanium sample on which a gold film(Fig. 3). The absorption peak corresponds to 0.2 eV, which
had been deposited and then etched off using a 3:1 HCleoincides with one of the energy levels created near the bot-
HNO; mixture (aqua regia It can be seen from this curve tom of the valence band when a gold atom occupies a Ge
that no significant diffusion of gold into the germanium takescrystal lattice sité.
place when these films are deposited. During treatment in It has been confirmed that gold is introduced into germa-
atomic hydrogen for 1800 s a considerable number of atomeium under the influence of hydrogen by a two-stage mecha-
penetrated from the film into the bulk of the germaniumnism in which Au atoms are driven into the subsurface layer
(curve 2 in Fig. 1). At this stage of the treatment the maxi- and then diffuse into the bulk of the Ge. The drive-in of the
mum concentration of gold was observed in the subsurfacéu atoms occurs directly under the influence of the released
layers of germanium. During the subsequent treatment preenergy. The energy release time for the chemical interaction
cess, the germanium layers doped with gold were sputtereof hydrogen atoms is of the order of 18's (exchange in-
and the gold concentration decreased in the subsurface lateraction time¢, so that the process of energy release and
ers. However, the gold concentration in the deeper layerdissipation is consistent with @-burst® Since the tempera-
increased as a result of the gold being dispersed in the buliure in the®-burst region is fairly high, of the order of the
of the Ge(curve 3 in Fig. 1). Prolonged treatment in Ht (  melting point, defect formation and multiphonon scattering
>10%s) resulted in total sputtering of the Au-doped Ge lay- mechanisms play an increasing role. The formation of de-
ers and no gold atoms were observed in the germanium. fects and phonon processes promotes the implantation of Au

The properties of Ge crystals doped with Au were stud-surface atoms in the subsurface layers. An estimate of the
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X 10 2°m?/s and Dy=1.4x10 “°m?/s, we can conclude
that the hydrogen-stimulated diffusion of Au atoms into the
bulk occurs predominantly by an interstitial mechanism. Un-
der normal conditions this mechanism is realized only at
high temperaturesT(>1000K), so that the equilibrium be-
tween gold at lattice sites Auand in interstitial positions
Au,,

Au=Augt AQ,

is shifted to the left only at high temperatures. Under the
influence of atomic hydrogen the concentration, Agihigh
even atT=330K as a result of gold being driven into inter-
stitial positions in the active zone. However, at low, close to
room temperatures, when Agncounters a vacancy it be-
comes localized in a lattice site, as is confirmed by measure-
ments of the lifetimer (Fig. 2) and the transmission spectra
(Fig. 3.

CONCLUSIONS

To sum up, the presence of atomic hydrogen effectively
stimulates the diffusion of Au into Ge at temperatures close
to room temperature. The incorporation of gold into the ger-

] manium involves Au atoms being driven into the Ge subsur-

7.4 7.9 8.4 8.9 4.4 face layers to a depth of the order of fam, where defect
A, 10 m formation mechanisms take place and the released energy is

dissipated by multiphonon mechanisms, and this is followed

FIG. 3. Transmission spectra of Ge samples with Au film= initial Ge by diffusion of Au into the bulk of the crystals predomi-

sample2 — Ge sample after removal of Au in aqua redia,— Ge sample o niy hy an interstitial mechanism. However, a considerable

with Au film treated in H for 1800 $Au residue removed in aqua regiand . . . . .

4 — Ge sample with Au film. fraction of the gold atoms are localized in Ge lattice sites by
interaction with vacancies.

Low-temperature heterodiffusion under the action of hy-
drogen can be effectively used in electron technology to im-
plant recombination impurities into semiconductor crystals.

D, arb. units

mean free path& | and L, for longitudinal and transverse
phonons, respectivef? showed that L>L, and
|-H~1078 m, i.e., the depth of the active zone where the 1y, A. Lavrenko, Recombination of Hydrogen Atoms at the Surface of
hydrogen-stimulated phonon processes take place most ef250|id5[in Russia}, Naukova Dumka, Kief1973, 204 pp.
fectively is comparable with the depth of the concentration \E/h?r'g ';";;{;)Sggg\(’l slaj Q'DShapo"a'OV' and A. R. Koshman, Int. J. Hydrogen
maximum at the _mlddle stage of the hydrogen activationsy, Matyushin, V. I. Lishchenko, and A. N. Gorban’, J. Chem. Soc.,
procesgcurve 2, Fig. 1. Faraday Trans. 32, 1407(1987.
Gold atoms expelled from the active zone then diffuse *V. A. Sokolov and A. N. Gorban’,Luminescence and Adsorption
into the bulk of the Ge. The diffusion coefficient was calcu- (" Russiad Nauka, Moscow1969, 187 pp. .
. . . . . . . °L. P. Pavlov,Methods of Determining the Main Parameters of Semicon-
!at?q using the. approximation of d|ﬁu5lqn INt0 @ Semi-  qgyctor Materialsfin Russiar, Vysshaya Shkola, Moscot@975, 206 pp.
infinite crystal with a zero initial concentration across a sur- ®B. I. Boltaks, Diffusion in Semiconductorfgn Russian, Fizmatgiz, Mos-
face at which the impurity concentration is kept constant.7‘é°V'\VA(1'363>;| 46iﬁpp-dA . Chudnovski Thermal Conductivity of Serni
e . . . M. Mogllevskii an . F. udnovskl ermal Con LICtIVItyO emi-
Thesg condltlgqs correspond best to.cuzvﬂn Elg. 1. The conductordin Russiar, Nauka, Moscow(1972, 536 pp.
diffusion coefficient calculated from this curve is of the order sc | classbrenner and G. A. Sluck, Phys. R&84, 1058(1964).
of 3x10 'm?/s. From a comparison db,, andDy, the ° Atomic Diffusion in Semiconductgredited by D. ShawPlenum Press,
coefficients of diffusion of Au in Ge by the interstitial and 10\'7\‘/3”80’8 19|73? F“)"r:r- Mgsfg;’vr;lfiég% Ap.
vacancy mechanisms, respectivély,which at the experi- - C. Dunlap, Phys. ReW7, 614(1955.
mental temperatureT(=330K) have the valuedD,,=8.2  Translated by R. M. Durham
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An analysis is made of the electric field strength of structures formed by point and filamentary
dipoles in a dielectric medium. Formulas and the results of calculations are presented.
© 1999 American Institute of Physids$1063-784£99)01607-4

Structures and substructures which impart new qualitiesvhere R, is the expression in braces; the upper limits of
to instruments and devices are used in electrical engineeringummationM andN are related to the number of points of
and electronics to screen and control carrier fluxes. They arthe arrayM, and N, along thex andy axes: M= (M,
used in electroacoustic transducers in telephone equipment,1)/2, N=(N,—1)/2.
thyristors, bipolar and field-effect transistors, and in devices If the number of points along the two axes is the same,

to regulate high voltages and high currehts. M,=N,, expressior(2) simplifies to
It follows from Refs. 5 and 6, which examined the con-
version of energy from a charged particle flux into electro- _3 2 15
magnetic radiation in a periodic electric field, that substruc- 2 m =+ 21 ,Zl (m?+n?) ' ©)

tures are potentially useful in energy converters.

Filamentary and spherical conducting inclusions of small ~ When constructing expressid8), we assumed that the
radius are substructure elements at which dipole momeng@ipoles located in each of the four quadrants make the same
are induced in an electric field. In this context we shall anacontribution.
lyze the laws governing the electric field distribution for ar- ~ The z component of the electric field produced on the
rays of spherical inclusions and “gratings” of filamentary axis at the poinz=kd by an elementary dipole with coordi-

dipoles. natesx=md andy=nd is given by
We shall calculate the electric fiel, acting on a dipole ) y
located at the center of an array and theomponent ,(z) N 2k*—(m*+n?) @
=

of the electric field on the axis as a function of the distance (K2+m?2+n?2)52’
from the (x,y) plane, in which the dipoles are distributed at
the nodes of a square array, for three casg¢ghé z axis Summing the fields of all the dipoles, we obtain the
passes through the central node of the array, as shown gpmponent of the electric field &;=\R;, E;=AR;, or
Figs. 1a and 1bE,(z) =E;; 2) the origin is shifted along the Ez=ARj3, which are expressed in terms of the coefficients
x axis by a half periodd/2, E,(z)=E,; 3) the origin is R, Ry, andRj given by the following formulas:
shifted along thex andy axes by a half period;,(z) =Es. M
We postulate that the dipoles are oriented alongzlzeis R, — 2 2k?—m?

- 1=—+4 -
and have the same dipole moment K3 =1 (K2+m?2)52

The field E, acting on the central dipole is the sum of N
the fields of all the other dipoles, each elementary dipole of 2—(m?+n?)
which, being located at a distange= (x2+y?)°*® from the +4E: Z m
center of the array at a point with coordinates md and
y=nd (wheremandn are integers, and is the period of the where the first term gives the contribution of the central di-
array), contributes a field ,, given by pole, the second gives the contribution of the dipoles located
on thex andy axes, and the third gives the contribution of

®

1 ; ; .
E,.=— 4";8 = \(m?+n?) 15, 1) the dipoles loacted in the quadrants;
p
M 2k2—(m-0.5?
where\ = u/(4med®), ande is the absolute permittivity. Rz=2mE:1 [+ (m—0.57]

The fieldE, is given by

M N 2 2
k“—[(m—0.5“+n"]
+
EOZ)\ E m 3+E n 3+2m2 nz (m 4mE: Z [k2+(m 05)2+n2]5/2 (6)
where the first term is due to the dipoles on the axis and the
+n?)~15 ] =\Ry, (2)  second to the dipoles in the quadrants, and

1063-7842/99/44(7)/3/$15.00 807 © 1999 American Institute of Physics
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a b TABLE I. Values of the coefficients in the expressions for calculating the
YI YI electric field at smalk.

° ° °° k R, R, Ry Rs Re
o o o o 0.0 —23.24644 —16.40418 —9.82960
0.1 1991.303 —20.45643 —15.37890 96.81367 —8.91620
— N — 0.2 24193217 —14.23478 —12.74208 21.99407 —6.76874
X z 0.3 66.91961 —8.23017 —9.46759 8.37208 —4.47807
° ° ° ° 0.4 25.14579 —4.16417 —6.42897 3.82603 —2.69656
0.5 10.95109 —1.90894 —4.06327 1.90320 -1.52761
o o ° ° f 0.6 5.17967 —0.79583 —2.42357 0.99320 —0.83959
T 0.7 258776  —0.28304 —1.37325 0.53731 —0.43383

0.8 1.35425 —0.05637 —0.73576 0.30206 —0.21568
FIG. 1. Planar dipole array — from abovein plang, b — in theplane of ~ 0.9 0.74610 0.04130 —-0.36291  0.17875 —0.09724
the array(side view. 10 043942 008373 —0.5037 0.11359 —0.03347
1.2 0.20121 0.10735 0.03440 0.06058 0.01901
1.4 0.13668 0.11159 0.09002 0.04555 0.03400
1.6 0.11882 0.11228 0.10634 0.04126 0.03826

M N 0 2 2 18 011379  0.11237 0.11104  0.04004  0.03946
2k*=[(m—-0.9“+(n—-0.

Ry=4 >, L( 97+ ( 9571 (7) 20 0.11235 0.11235 0.11236  0.03968  0.03979

m=1 n=1 [k?®+(m—0.52+ (n—0.5?]%2 30 011152 0.11207 0.11262  0.03946  0.03985

5.0 0.11065 0.11119 0.11173 0.03922 0.03960

is due to the dipoles in the quadrants.

Expressiong5)—(7) are written assuming that theaxis ~ Note k=0, Ry=—8.921609 R,= —3.250265.
passes through the center of the rectangular array; if3xq.
the number of points along theandy axes is odd, in E(6)
the number of points along theaxis is even and the number
along they axis is odd, and in Eq.7) the number of points
along both axes is even.

To calculate the field of a grating made up of filamentary
dipoles extended along the direction and situated in the Mo k2—m?
(x,y) plane, we can use the expression for the electrical po- Rs=K >+2 > —
tential of a filamentary dipofe m=1 (k™+ )

terms ofRsg, and for a grating of B filaments the fieldEg

on the z axis, which passes through the plane at a point
equidistant between the two central dipoles, is expressed in
terms ofRg,

M

k?—(m—0.5)?

(p=—'u _z (8 R6:22 2 : 5)2 2"
27e 7224 %2’ m=1[k*+(m—0.57]

whereu=qé, 5is the distance between the filaments and  esults of calculating;, R;, Rs, Rs, andR for short

is the charge per unit length of a dipole formed by two par-distances from the arrak 5, M =N=50) are presented in

allel filaments carrying charges of opposite sign: thexis | aple |- For large distances$ 10) Table Il gives only the

passes through the filament and is directed perpendicular {flU€S 0fRs andRe, since here the coefficient;, R, and

they axis, from the negative filament to the positive filament. ks r€ approximately equal, as &g and Re. _
Expression(8) yields expressions for the components of -t Us analyze the data given in Table I. At distances

the electric field produced by a filamentary dipole along thd™®™ the array not exceeding one peridgthe electric field

x, y, andz axes is highly nonuniform, and the componegj changes sign as
e ' we move along thes andy axes. The total electric field is
yn 2xz several times lower than that created by one of the nearest

X:2778 (22+X2)2' Ey

> 2 TABLE Il. Values of the coefficients in the expressions for calculating the
M X electric field at largek.
2 21me (224 x2)2"
Z°+X
( ) k R3 RG
. B — 2 .

We introduce the nota_tlorzj/ ,u/(27_rsd ), whered is 10 1077510 1 3.8460¢10 2
the distance between the filamentary dipoles, and we express 5 03849 102 34482 102
the electric field a€,=¢R,, Es=¢Rs, or Eg=/Rg. The 50 4.618% 102 2.0000< 102
field E, produced at a central dipole filament by all the other 100 1.1306¢ 102 8.0001x 1073
. . . . .. —3 —3

filamentary dipoles is given by the coefficient 200 2.218410 2.3530<10
500 156861074 3.9604< 107*
M 1000 1.990x 10~ ° 9.9751x 107
Ry=—2> m2 2000 2.496%10°° 2.4984x10°°
m=1 3000 7.403% 1077 1.1108<10°°
4000 3.124x 1077 6.2490< 107°

Eor a grating co_nS|st|ng ofM+1 flla_menta}ry dipoles 5000 1.599% 10-7 3.9996¢ 10~
the field E5 at a pointz=kd on the z axis, which passes 1000 1.999% 10-8 09997 107
through the central filament of the grating, is expressed in
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dipoles. At distances between approximatelg and ™ 1S. M. Sze,Physics of Semiconductor Devicgliley, New York, 1981;
from the array the electric field is nearly uniform and de- Mir, Moscow, 1984, 456 pg. ' _ '
pends weakly on the coordinates. Asincreases between A. Blicher, Field-effect Bipolar Poyver Tran_5|stor Physid#\cademic
20d and 10@ the field E. above an arrav of point dipoles Press, New York, 1981;ergoatomizdat, Leningrad, 1986, 248 Jop.
i z 2 Yy p p 3J. Kaufhold, A. Jastrebov, and M. Volokobinsky, Jahresbericht 1995
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vices with substructures, for instance when calculating the M°ScoW—Leningrad1960, 463 pp.
forces exerted on electric charges and polarizable particles
by a dipole array. Translated by R. M. Durham
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A study is made of surface waves of the potential type propagating along the interface between a
metal and a plasma of nonuniform density, with the thermal motion of the electrons taken

into account. Dispersion relation for these waves are derived and solved for a linear plasma density
profile. The influence of the nonuniformity of the plasma density on the dispersion properties

of the waves is studied. Cases of negative and positive gradients are considered.
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Structures formed by a plasma and a metal surface are | =e n v =n.T (1)
. . . . 3 . . Ja a ‘avar pa a ' a

currently being studied intensively® This interest has been
stimulated by the many possible applications of these struc¥€r€€a, Ma Pu, Na, To, andv, are the charge, mass,
tures. They are frequently encountered in various plasm§@SKinetic pressure, density, temperature, and hydrodynamic
technology and fusion facilitiedimiters, divertors, in probe  VElOCity of particles of species (a=e,i).
diagnostics of plasmas, in studies of the properties of anten- 1 ne solutions of the systerl) must satisfy boundary
nas in plasmas, and in semiconductor electronic device&ond't'ons at the interface. Since the frequencies of the wave

Surface waves can propagate in these strucfufié first disturbances in the plasma of interest to us are considerably
theoretical=® and experimentalpapers on the subject were lower than the natural frequencies of the disturbances in the

concerned with surface waves at the interface between tH€tal, the condition for continuity of the tangential compo-

magnetoactive plasma of a semiconductor and a metal. Howent of the electric field gives the quasistatic boundary con-

. pl o o

ever, the present author and coworkérshowed that surface dlthn E-(x=0)=0 (Ref. 10. AIIqwance for the thermal
waves can also exist at the interface between a metal and™@otion of the plasma electrons increases the order of the
free plasma if the thermal motion of the electrons in thedifferential equation describing the spatial distribution of the

plasma is taken into account. The approximation of a homoglectromagnetic field. Thus an additional boundary condition

geneous plasma was usually considered in all these studid$."®quired, for which we take the commonly used kinematic

However, the assumption that a plasma bounding a met&ondition that the normal component of the hydrodynamic

. . l .
surface is homogeneous cannot always be justified. Undéf€ctron velocity is zerb, which corresponds to specular

real conditions the plasma is usually inhomogendous. reflection of the particles from the plasma boundary. _
Here we consider surface waves at the interface between W€ Shall assume that the unperturbed plasma density

a metal and an inhomogeneous free plasma with allowanc?ries along the normal to the mterfangz No(x) and that

for the thermal motion of the electrons. As we knbunlike ~ 2" E wave propagates along tizeaxis. The dependence of

the case of volume waves in an inhomogeneous plasm%‘e components of this wave on the coordinates and the time

whose frequency is the solution of the local dispersion relalS 9iven by
tion w=w(k,X), the frequency of the surface waves is an  A(r,t)=A(x)exdi(ksz— wt)],

integral function of the density and does not depend on the S )
coordinates. i.e., we are considering surface waves traveling along the

We shall consider a frein zero external magnetic field interface. We shall analyze undamped waves, neglecting col-
plasma occupying the half spage-0, bounded by a metal lisions of the plasma electrons and assuming that the metal is
surface in the plang=0. The system of equations describ- @ Perfect conductor. Without the ion motion, systefn
ing the electromagnetic field of a particular surface wave iryi€lds a system of equations for the electric field components
the plasma consists of the Maxwell equations and the equﬁx’ E,
tions of quasihydrodynamics with allowance for the gaski- zdzEx ﬁ% dno(x) dE,

netic pressure (k3—k2e)E,

Td@ Nno(x) dx dx

dEZ+ B3 dny(x) dE,

19H _
curlE=—~—, curlH==—+— > j,, :ik3(1_ﬁ%)dx o9 ax|
0

c at’ c at c 4

oV e Vp an d’E, 2 L2 . 2
@_2p_ @ _a i - ——+(k5—k“e)E,=ik3(1—B7)
o maE o at + div(n,v,)=0, e (k3 ,=iks(1-p7

dE, X
ax @
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whereBr=vte/C, v1e is the thermal velocity of the plasma The other components of this wave field are expressed in
electrons, ¢ is the speed of light, ande(x)=1 terms of a first-order modified Bessel function:
—(Qe(X)/ )2 (Qe(x)= \/477e2n0(x)/me is the electron ke
plasma frequendy El=—iB ly(kst), Hi=—i-—B-l1(ksf). (10)
" . . X y k
The magnetic field of the wave is expressed in terms of 3

Ex andE; from the following equation We obtain the dispersion relation for the surface wave

E, from the condition that the tangential component of the re-
X 3 sultant electric fielce at the metal—plasma interface is zero
and from the kinematic boundary condition. This equation
If the plasma density profiley(x) is such that there is reduces to the form:
no pointx=xg at which the dielectric constarmt(x) of the

ikH, =iksEy

2
inhomogeneous plasma vanishes, the solution of the system 1— (26(0) @ 11(ksé(0)) _ (11)
(2) may be sought in the forth w? G2 lo(k3é(0))
E=E'+E. 4 If the density nonuniformity is weakksa>1, Eq. (10)
. . . . .can be simplified, and we can obtain the following solution:
In this case the single wave process in this system is

characterized by the frequeneyand the wave numbek,, [ [1-¢(0)]° ]
but is a superposition of two waves: the electromagnetic po- Kz=Kzg} 1+ > ,
larization waveE' and a wave associated with the thermal 2e7(0)[2~2(0) Jksoa

motion of the electron&' (space charge wayeThese waves  where kyo= w2/v1¢06(0) is the solution of the dispersion

have different skin depths along the normal to the metalelation for a surface wave at the interface between a homo-
surface. Azarenkov and Kondrateffkshowed that the in- geneous plasma and a metal. For the low-frequency range

equalityq; *>q; * holds for the skin depths of the waves  (»2<0?2(0)) we have
andE' (whereq; * is the skin depth oE' andq, * is the skin L

I .
depth ofE', respectively k3=k30[1+

2ksga
A=K, qp= kK2l 6. (5) i

Let us now analyze a linear plasma density profile with a

(12)

: (13

If the nonuniformity of the density is such that positive gradientny(x) =ngy(1+x/a). Using another change
g>,t a>q,t, ©) of variable,
where a=ng|dny/dx| ! is the inhomogeneity parameter, —a &(0) iy i
the inhomogeneity can be considered to be unimportant for a e(0)—1

space charge wave but important for the polarization compoge obtain a solution of Eq7) in the form of a zeroth-order
nent of the surface wave. The influence of the electron therypacdonald functiot?

mal motion on the polarization componeBt can be ne-

glected. Thus, we can s@;=0 to determine the fieldE!. E;=C-Ko(ks?). (15
We shall consider waves for whid§>|k?¢|. If this condi-

tion is satisfied, these surface waves will be potential Wﬁvesﬁrst
The system of equations describing the components of the

electric field of the transverseand longitudinall compo- ¢ _ ¢ ke
nents then has the form: Ex=—IC-Ky(k3d), Hy=-i k_3c' Ki(ksd). (16

The other wave components are expressed in terms of a
-order Macdonald function

d’E; 1 de(x)dE, . i dE In this case we obtain the dispersion relation for the
a2 T e00 dx ax KeE=0 B (D surface wave as

~ 03(0) ks Ka(ksg(0)

d2E| =V.
—Qq2EL=0, ikzE\=dE/dx. (8) w? G2 Ko(k3£(0))

_ 7z
dx?

17

This equation can also be simplified for cases of weak
inhomogeneitykza>1. As a result, we obtain the following
equation for the wave vector of the surface wave:

In general, Eq(7) for E}, cannot be solved for an arbi-
trary law £(x). However, exact solutions of E¢7) can be
constructed for some patrticular cases.

Let us analyze a linear plasma density profile with a [1-£(0)]3
negative gradientip(x) =ngy(1—x/a). For this law of varia- 37 Kao) +7 262(0)[2—2(0)]K ' (18)
tion the solutions of Eq(7) can be expressed in terms of a 308
zeroth-order modified Bessel functioh: For the low-frequency ranges€<Q2(0)) we obtain
EL=B-14(k a0 9 Ka=kag 1— = 19
2= B-1o(ksé), f—am—x- C) s=kao 1= oAl (19




812 Tech. Phys. 44 (7), July 1999 Azarenkov et al.

0.5F 0.16¢
0.141
0.41
~ 012y
<
0T *
~ 0101
S S
g9.21 + =
0081
~
L 3
011 0.06F
or 0.041
g 20 40 60 80 100 120 L
ky L, 0.02
FIG. 1. Frequency of surface wave as a function of wave number for various ot
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) ) ) . ) FIG. 3. Wave frequency versus inhomogeneity parameteand — as in
For arbitrary density nonuniformity, solutions of EQs. Fig. 1,k,/Ls=2, v1e/c=0.002.

(11) and(17) can be obtained numerically, and the results of
these calculations are plotted in Fig. 1. In this case, the skin

depthL s=c/Q¢(0) was taken to be the natural unit of length j, 5 homogeneous plasma, where an increase in the plasma
for normalization. It is easy to see _that the_frequency of &ensity causes a decrease in the wave number and an in-
surface wave for the negative-gradient profil{x) =no(1  crease in the phase velocity of the wave. Figure 3 gives the
—x/a) is always lower and the frequency for the positive-\yave frequency as a function of the inhomogeneity param-
gradient profileng(x) =no(1+x/a) is always higher thanthe  gtera, Low valuesa—0 correspond to abrupt inhomogene-
corresponding frequency for a homogeneous plasma. Figuig, and for these cases we need to check that the initial
2 shows the change in the phase velocity of the wave as Assumptions are satisfied. High valaes =% correspond to
function of its frequency for various density gradients. Thisg homogeneous medium, so that the curves have a common
behavior of the curves is consistent with the wave dispersiofmit which is equal to the surface wave frequency in a ho-
mogeneous plasma.

To conclude, we have established that surface waves of
the potential type can propagate along the interface between
T4 a metal and an inhomogeneous plasma when the thermal
motion of the plasma electrons is taken into account. Disper-
sion relations were obtained and solved for these waves.
0 Cases of negative and positive plasma density gradients were

considered.
10t The dispersion curves for the surface waves at a metal—
inhomogeneous plasma interface do not differ qualitatively
- from those for an interface between a metal and a homoge-
I neous plasma. The dependence of the natural frequency of
the surface wave on its wave vector is shifted to the left
(right) along the abscissa for a plasma with a positivega-
tive) density gradient.

These results show that the nonuniformity of the plasma
4t density influences the surface wave characteristics in an in-
tegral manner.
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It is shown that electromagnetic surface waves propagating along the azimuthal angle can be
excited efficiently by an annular electron beam in a cylindrical metal waveguide partially

filled with a magnetoactive plasma. A self-consistent system of differential equations is obtained
to describe the nonlinear interaction between the beam particles and an azimuthal surface
wave in the single-mode regime. This system of equations is analyzed numerically and the
influence of the parameters of this waveguide structure on the development of the resonant
beam instability is determined. @999 American Institute of Physid$51063-784£99)01807-3

INTRODUCTION waves is transferred along the plasma boundary and can be
extracted comparatively easily from the interaction zbne.

Studies of plasma—beam interaction are attracting con- Here we study the possibility of exciting a surface mode
tinuing interest primarily because of the major practicalof extraordinary polarization which is a natural mode for a
value of the expected results, which are finding extensiveylindrical metal waveguide partly filled with a cold magne-
fields of application, ranging from beam heating of plasmasoactive plasma. The wave propagates along the azimuthal
in controlled fusion devices and for conducting geophysicakngle at right angles to an external static axial magnetic field
experiments in space, to solving problems in plasma elecand is callefi an azimuthal surface wau@&SW). However,
tronics. The present theoretical study is devoted to solving &is wave is only a surface wave in the region of the plasma
problem relevant to one line of plasma electronics rese’archcynnder; in the insulator separating the metal wall of the
which involves studying the interaction between chargedvaveguide from the plasma, this electromagnetic disturbance
particle beams and the natural modes of plasma waveguidgsiopagates as a volume wave. We note that such plasma-
Studies of electromagnetic wave generation processes gofiled waveguide structures are currently being studied fairly
erned by the parameters of the beam and the plasma wavigtensively (see Refs. 7 and)8and the literature cited
guide are aimed at producing rf amplifiers or oscillators withtherein), so that this choice of subject is highly topical. A
the highest possible efficiency, permitting continuous fre-inear theory of the beam excitation of ASWs was put for-
qguency tuning over a wide range, and having comparativelyvard in Ref. 9, and the case of dissipative ASW instability
small dimensions, the highest possible radiation power, and/as studied in Ref. 10.
so on. Obviously, all these requirements cannot be satisfied We propose to excite ASWs using a cylindrical metal
simultaneously by a single device. The present study is awaveguide of radiuf, containing a coaxial plasma column
attempt to construct a nonlinear theory for a plasma electronsf radiusR;, whereR,— R;<R;. In the spac®k;<r <R, an
ics device which could satisfy two criteria to a certain extentannular electron beam rotates about the plasma column
i.e., it would offer continuous tuning of the radiation fre- (which may be a semiconductor plasma or a gas plasma con-
guency in a fairly compact device. tained in a thin-walled dielectric tubeThe beam densitgy,

At present, the conditions for the onset of beam instais substantially lower than the plasma density. An exter-
bilities and nonlinear interaction between charged particleal static magnetic fiel®, is oriented along the axis. We
beams and plasma in a strong external magnetic field and imssume that the electrical conductivity of the metal wave-
a finite magnetic field have been studied in fairly great detailguide wall is sufficiently high that we can use the boundary
The influence of the spectrum of generated waves on theondition for the tangential component of the ASW electric
nature of the beam—plasma interaction has also been angeld at the metal surface in the forB.(R,)=0.
lyzed without taking the influence of the plasma boundaries We used a hydrodynamic plasma model, Maxwell's
into account™ The bounded dimensions of the plasma notequations, and the equations of motion for the beam particles
only lead to changes in the dynamics of excitation of volumean the gapR,>r>R; between the plasma insert and the
waves but also creates conditions for the excitation of surmetal wall of the waveguide to obtain a system of differen-
face waves. Surface waves have various distinguishing fea-tial equations for describing the nonlinear stage of the beam
tures compared with volume waves: the energy of the surfacexcitation of ASWs. Bearing in mind the inequality for the

1063-7842/99/44(7)/5/$15.00 814 © 1999 American Institute of Physics
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beam particle and plasma densitigs<n,, we neglected the system of equation&a) and(2b) was solved by variation of
influence of the beam on the ASW dispersion properties and parameter. The components of the ASW field in the region
the influence of the self-field of the beam on the electromagR;<r <R, are expressed in terms of the first-order Bessel

netic field in which it propagates. functionsJ,,({), the Neumann functiond,(¢{), their deriva-
tives with respect to the arguments, and the components of
DERIVATION OF THE SYSTEM OF EQUATIONS the beam current densify andj, .

We shall use the following boundary conditions to de-
In the cold plasma approximation, Maxwell's equationsrive equations describing the behavior of the amplitude of
can be divided into two independent subsystems, one ahe envelope and the wave phase. The tangential electric

which describes the field of an ASW of extraordinary polar-field of the ASW vanishes at the surface of the waveguide
ization. Assuming that the wave field depends on the time metal wall:

and the azimuthal angle as E,H«expime—iwt) and that
the space is uniform along theaxis, we obtain a second- Ex(R)=0. ©)
order differential equation for the magnetic compondnof

The field E, is continuous at the plasma boundary
the ASW field and expressions linking the ASW field with |

=Ry:
H, in the region of the plasma cylindex R;: !
E.(Ry)}=0. 4
7°H, LM, m? {E(Ru)} @
082 g (;g + ? H,=0, (1a The ASW magnetic fieldH, is also continuous at the
plasma boundary=R;
g2 Mz, M {Ha(Ry)}=0. ©)
r 2 z9|’ 21
k81¢ krlﬂ
We also assumed that there are no currents at the surface
ime,H, i dH, 5 pf the mgtal wall of the waveguide and the plasma surface,
" Kro, | Kg? ar (D jy(R) =] (Rp) =0.

Using standard procedures for averaging and separating
where é=kry, k=wc™ 1, cis the speed of Iight¢2=(s§ out the slow time(see, for instance, Ref.),lwe find equa-
—sf)sl’l, e, ande, are the components of the permittivity tions for the amplitude of the envelope and the wave phase
tensor of a cold magnetoactive plasifsee Ref. 5, for ex- for the case where natural waveguide modes are excited and

ample. the dissipative processes in the plasma are neglected:
The fields of the ASW in the region occupied by the N
beam are described by the following system of differential ~JA _ aDy
equations: gt NzPL&|w 0712 Li(g)sinme; +6 —wt)
#®H, 10H, m? ,0
9 +Z o _? H=Fyp, (2a) + R — &t Lo(gi)cogme;+ 0 — wt) |,
47 mH, 00 aD N
E=—j ——or, v _ P 2 N _ _
el 7 n NzPLAiZ [R, e L,(Z)sin(me;+ 0 — wt)
_477 _dH, m JR;
“ToleT g G ot Li@cogme + 0 —wt) |, (®)
where whereA=E BO is the dimensionless envelope amplitude,
4w _ B @ is the phasea NNy by z=lwel Qg w=0Q.t,
b= 7 ag(lwg) imj |, {=kr, Ri=rQ. 1, w, and Q, are the electron cyclotron and
plasma frequencies,  respectively,L =J,(£1)N/({2)
. ar —In({2)Nm({1), £1=KRy, {o=KRy, Li(i)=Im()N;
— _ m m ’ ’ ’ I m\5Si m
lel2, a(r=r)ate—e07. X(£2) = In(LINm(Z), La(£) = LINR(L2) — In(EIN,
N X (&),
do
= —lel 2, ratr—r)ale=engr, Mhwe) ms, o d La(¢1)
Pyl 2, " dw| P L |
and 8(x—X,) is a delta function. An(V8) o1yl

The solutions of the systefda), (1b) for the ASW field The equation of motion for the beam electrons can be
in the plasma region are a modified Bessel functig€) for  conveniently written in terms of the particle momentum
the H, component, and linear combinationslgf(¢) and its  p=ym_,V (y is the relativistic factor
derivative with respect to the argumelrfi(¢) for the com-
ponentsE, andE,, . We used the boundary condition that the dp

ASW field is bounded on the waveguide axis=0). The dt at SETe [VX H+Bo)]. )
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FIG. 1. Evolution of the dimensionless amplitudeas a function of the
dimensionless time for |w|=0.098572),, R;=5.0, R,=5.5.

Substituting into Eq(7) the ASW field for the region
R;<r<R,, we obtain the following system of equations for b
theith particle:

O')Ri _ Vi

ot —|(1)e| Z; ’
9P e
ot @e Z’)/iRi ’
(9Vi U;

= 1- 2 ARy Y
Fa |we|; ﬁ lR_l W;

—Ra) sin (me;+ 0 — wt),

X
£1Dp
(9Ui | | Vi ( Ui ) AWR1|:R l Ra
—=|we|—|1——=|+ o 1+ =
at Y zR 141 Dp
m?2
X g——gl cos(me;+ 0 — wt)
1
AWRy, [ 1 _ 270
+ Vi ngp - R“ sin (m(’oi +O—ot), FIG. 2. Distribution of beam particles in coordindt® and phaséb) space

for the same values of the parameters as in Fig. 1=an@l02.

®)

=Vr. 71— = —1s- = -1.-1
whereR,=riR;, "= 1, v=p/me ¢ *, U=p,Me"C ~, andv ~ oeq\y + oF THE NUMERICAL SIMULATION
andu are the dimensionless momenta of the beam particles

(radial and azimuthal, respectively A fourth-order Runge—Kutta method was used to obtain
In order to derive the last two equations in the systema numerical solution of the joint systef®) and (8). The
(8), we used the initial assumption that the region occupiediumber of macroparticles used to simulate the electron beam
by the beam is relatively narrow, i.dR,—R;<R;. This al-  wasN=450. A specular reflection modéhe particles did
lowed us to substantially simplify the expressions containedot disappear as a result of the interactioras used for the
in the system(8), by using asymptotic expansions of cylin- interaction between the beam particles and the plasma
drical Bessel functions and their Wronskiafsee Ref. 1}, boundary or the metal waveguide wall. The results of a nu-
and consequently significantly reduced the computing timemerical investigation of the development of the resonant
The time required for direct calculations of cylindrical func- beam instability of an ASW are plotted in Figs. 1-4. For the
tions increases drastically, creating additional difficulties. Anumerical simulation we used the following values of the
joint solution of the systems of equatiof®) and (8) was waveguide and beam parameters: initial wave amplitude
obtained numerically. A=10"3, phase®=0, radial momentum of the beam par-

1
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influence of the choice ok, on the development of beam
ticles »;=0, angular momentum of the particles=zR instability confirms the results obtained in Ref. 9. The ASW
(£2%), and ratio of the electron beam density to the plasmamplitude did in fact increase more slowlykifs had values
density «=10"2. The initial distribution of the beam par- of 0.3, 0.2 or 0.5, 0.6. A decrease kg caused a greater
ticles over the anglep was approximately uniform with a slowing of the growth of the ASW amplitude than did an
small random deviatiorfAgp==*1%), and the initial radial increase, a finding which is also consistent with the results of
distribution of the beam particles was assumed to be randoiRef. 9. A change in the sign of the azimuthal mode index,
in the regionR;<r<R,. The other waveguide parameters which determines the direction of propagation of the ASW,
were:R,—R;=0.1R;, |w,/=0.098572),. In Fig. 1 the la- leads to cutoff of the instability. A decrease in the ratio
bels 2, 3 and 4 are the azimuthal mode indices of the  |w/Q, ! and an increase in the parametetead to a reduc-
ASW. tion in the time interval over which the ASW amplitude in-

It was shown in Ref. 9 that there is a region of effectivecreases from the initial value to the maximum.

wave numberkeﬁzmch‘lﬂe where the highest values of Figures 2—4 show the development of the beam particle
the ASW beam instability growth rate are localized. Thisdistribution in coordinate spad@angular and radial coordi-
corresponds tk.4~0.4, so that for the computations the nates$ and phasgangular coordinate and angular momen-
value of R; was selected so that.s=0.4. A study of the tum) space when an ASW is excited with the azimuthal
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mode indexm=2. We selected the most characteristic mo-the beam to break up into bunches which are gradually
ments in dimensionless time when the initial(7=0), al-  trapped in the potential wells of the wave. After this trap-
most uniform beam particle distributiain both coordinate ping, the instability reaches a stage of nonlinear saturation.
and phase space this resembled a continuous undeform@this saturation state is characterized by a slight variation of
ring) begins to become distorted£0.02), breaks up into the amplitude of the envelope about a certain equilibrium
bunches ¢=0.06), and is converted into tm@ccording to  value. The azimuthal mode index has the strongest influence
the mode indexn=2) incipient bunches%=0.3). Figures on the character of the development of the ASW beam insta-
2a, 3a, and 4a show the distribution of the beam particles ibility.

coordinate space for an ASW with the azimuthal mode index  This work was partially supported by the Ministry of
m=2 at dimensionless times=0.02, 0.06, and 0.3. The Science and Technology of the Ukraine, Grant No. WTZ
change in the distribution of the beam particles in phaséJKR 010-97.

space as a function of time can be seen from Figs. 2b, 3b,
and 4b. A study of these figures reveals that as the resonant

. o . ietriby . A. N. Kondratenko and V. M. KuklinPrinciples of Plasma Electronics
beam instability of the ASW develops, the particle distribu [in Russiaf, Energoatomizdat, Moscod988, 320 pp.

tion over the anglep in coordinate space evolves from an 2a A Rukhadze, L. S. Bogdankevich, S. E. Rosiiisand V. G. Rukhlin,
initial approximately uniform distribution over the azimuthal Physics of High-Current Relativistic Electron Beanfimn Russia,

angle to form two particle bunches for=2 (the number of 3§t°gizﬁit{ M‘?Sfo"(‘j(li?@v t167thpp-Ph e of Int Charded-Partid
. . . . b. ller, Introauction to e YSICS Of Intense arged-Particle
these bunches is equal to the azimuthal mode index of theBeams[Plenum Press, New York, 1982: Mir. Moscow, 1994, 432pp.

ASW). In phase space, as a result of being trapped by thewm. v. Kuzelev and A. A. RukhadzeElectrodynamics of Dense Electron
wave field, the beam particles form patterns similar to the Beams in Plasméin Russian, Nauka, Moscow(1990, 432 pp.

spokes in a wheelthe number of these spokes being the °A. N. Kondratenko,Surface and Volume Waves in a Bounded Plasma
[in Russian, Energoatomizdat, Moscowi1985, 208 pp.

same as the mode mdm)' V. A. Girka, I. A. Girka, A. N. Kondratenket al, Radiotekh. Elektron.
33, 1031(1988.
CONCLUSIONS 1. N. Onischenko, V. A. Balakirev, A. M. Korostelest al, in Proceed-
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frequency in the rangbue|<w< /Qe2+ w62/4_|we|/2’ by an zM. V. Kuzelev, O. T. Loza, A. A. Rukhad;(?t al, ibid., pp. 1-55.
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partially fills a cylindrical metal waveguide. This waveguide 1y A Girka, I. A. Girka, and V. |. Tkachenko, Zh. Tekh. Fia6(4), 114
structure is placed in an axial static magnetic field. The reso- (1996 [Tech. Phys41, 357(1996].
nant beam instability of the ASW was investigated in thellD. S. KuznetsovSpecial Function$in Russian, Vysshaya Shkola, Mos-
single-mode approximation. Nonlinear interaction between " (1968, 422 pp.

the electron beam and the natural waveguide modes caus®anslated by R. M. Durham
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Calculations are made of the permittivity of a composite formed by a mixture of a dielectric
matrix and macroscopic magnetic inclusions. It is shown that the dielectric loss tangent in this
material is a complex function of their concentratigrand this function is determined. The
dependence of the absorption maximumxois determined and it is shown that the maximum is
only observed in the presence of foreign inclusions. Conditions for the existence of an
absorption maximum are obtained for the two most interesting physical cases. A method of
calculating the components of the depolarization tensor is proposed for a thin-film composite.
© 1999 American Institute of Physids$1063-78499)01907-§

Studies of the properties of complex composite com-  Consequently, the components of the electric displace-
pounds have recently attracted major interest for various reanent vector are
sons. The first and main reason from the physical point of
view is that these compounds exhibit anomalous properties Do=(1—X)DogdEoig/IEio+XD150E1ig/IEi,,  (2)
compared with “normal” materials of homogeneous compo-where the subscripts are,B=Xx,y,z, D, is the electric dis-
sition. In particular, some physical parameters, such as thglacement inside the magnetic particl&, is the electric
thermal conductivityr (see Refs. 1-4, for instangdecause displacement in the pure dielectriin the host matrix and
of its strong dependence on the concentratioof the dis- here and everywhere below a summation over repeated
perse impurity phase, have somewhat unusual temperatuGreek indices is implied.
dependences which are only manifested wherpasses We adopt the following procedure to calculate the de-

through an extremum. Another reason is that these convivatives in expressiof2). We express the internal field,,
pounds can bé&and are] considerably cheaper than homo- andE;; in the form

geneous structures while at the same time possessing various
physical characteristics that are identical to or superior to Eoi=E+4magEq(No—Lo),

those of the homogeneous materials in a specific range of E,=E+4ma Ey(Ny—Ly), 3)
parameters(such as temperature, frequency, and applied
field). whereNg andN; are coefficients of the depolarization tensor

In the present paper an investigation will be made of aand depend on the shape of the objects, the coefficlejits
composite having a dielectric matri¢say, polypropylene are given byEgy =47l 1Pg 1, WhereEgy is the Lorentz
and we shall select macroscopic magnetic particles as thigeld, andag ; are the polarizabilities of the two phaseh-
impurity phase. The dielectric constant and dielectric los®lectric and magnetic
tangent, important in practical applications, will then be cal-  We have a similar relation for the “total” field; :
culated as a function of the frequency of the applied electric
field, the concentration of the magnetic phasand the tem- Ei=E+4mak(N-L). )
peratureT. HereN are the coefficients of the depolarization tensor of the

Let us assume that the composite is a very thin film. Anentire composite and the coefficiertsare determined by
alternating electric field is directed along the plane of the
film parallel to thez axis (Fig. 1). To determine the dielectric E =4malE;.
constant (_)f th_is medium, we shall proceed as fqllows. Since |t now follows from expressioné3) and (4) that
the electric displacement vectdr can be determined from
the relationD= — 6F/SE,, whereF is the free energy per IEoipl IEi = (9Egi g/ IE,)(IE I IE;,)
unit volume of the composite and; is the electric field _
inside the composite, we write, neglecting interaction be- =1+ (e=DL=N)V[1+ (20~ 1)

tween the host matrix and the impurities, X (Lo—Ng)], (5)
F=(1-X)Fo+xF, 1) 9E1iplIE;,=(1+(e—1)(L=N))/(1+(e;—1)
X(L1=Ny)), (6)

whereF is the free energy of the dielectric matrix aRgl is
the free energy of the magnetic particles. Then, since

1063-7842/99/44(7)/6/$15.00 819 © 1999 American Institute of Physics
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o' ={{1+2a(a—1)({+ ) — faldi+(d]
+d5) M2 £l (df+ d5) M

—d ]Y\2} 283+ £3), (10
e"= {{[di+ (di"‘ di)llz]m_ 51[(d§+ dg)llz_ d,]"2
— (o2} 2\2a2( 2+ £3), (11)

where

d;=1+4a(a—1){,, d,=4a(a—1)¢,,
{1=X+(1-x)A/C, {,=(1-x)B/C+xeg,
A=¢g([(1—b+bep)?—b?(ef)?]+2b(e)*(1—b+be}),

B=eg[(1—b+be()?—b?(eg)?]—2bejep(1—b+bef),

C=[(1-b+be})>—b%(e})2]2+4b%(e})2(1—b+be))?,
a=L—N, b=L,—N,, A>0, >0, C>0. (12

FIG. 1. Geometric configuration of coordinate axes and applied electric . .
field. Using formulas(11) and (12) we can easily calculate

tand. In fact, since the inequalitg,>d, is satisfied for any
frequencies, we find

tand=¢"le’ =(xB+(1—x)eg)/

DOZSOEOil D1:81E1i, D:8Ei,

+ — + _ 1/2.
in accordance with expressiof®) and(3), ¢ is given by (xA+(1=x)C)(1+4a(@-1)5)

13
— 2
e=[(1=X)eo/(1+(e0—1)(Lo—No))"+xe, /(1 Formula(13) can be simplified still further if we assume
+(e1=1)(L1—Np)?[1+ (e = 1)(L=N)]?. that the composite is a very thin film. In this case we have
No=1, Ly=0, and thusa=1, so that
Solving this equation foe, we find tans=[xB+ (1—x)eL]/[xA+(1-x)C]. (14)
e=(1-2{(L=N)(1+N—-L))/2{(L—N)? This formula shows that tahhas no extrema as a func-

tion of the magnetic inclusion concentrati@n

— _ _ _ _ 2712
{{A=24(L=N)A+N=L)/2L(L=N)"] We shall consider the case whbiis small orb=0 (the

—(1+N-L)%(L-N)& 12, (7)  coefficientsb will be calculated exactly a little latgrThen,
we obtain
where
tand=[(1—x)eg+xe ] [/[(1—X)e{+X]. (15
(=(1—-X)eo/(1+(g9g—1)(Lo—Ng))?+xe,/ Substituting
X (1+(e;—1)(L1—Nyp))2 (8) s'l'=cu7'1/(1+w27'§), 86=|so|w7'0/(1+w27'g),

Let us assume that the magnetic inclusions are spheres ef=|eo|/(1+ w?75),
of radiusR. We then havd.;=N;=1/3, and expressio(8)

is simplified substantially: we find

[(1=X)7os(1+8?%)/ 1+ xS(1+ 875/ 73)]

_ _ _ _ 2 =
{=(1-%)80/(1+ (80— 1)(Lo—No))*+Xe1. ) S X1+ 2D+ (Lxeg] | D

It can be seen from formuld) that in the limiting cases \heres=wr,.
when the sample is purely magnetic or purely dielectric, we |t therefore follows from expressiof16) that when the
obtain the natural expressioss=¢; ande = e, frequency dependence is taken into account, the dielectric

Formula(7) can be used to calculate the dependence of |55 tangent has a well-defined maximum at a specific fre-
on the frequency o of the applied electric field guency. Note that tahfor a completely homogeneous mate-
E=Eqexp(t), whereE, is the amplitude of the field. For g is simply equal tawr,, as expected. The qualitative dif-
this purpose we assume that ference between the absorptivities of the composite and a
homogeneous dielectric can be seen clearly from Fig. 2.

In order to find the extremum frequency, we need to
solve the cubic equation

go=1+iey, e,=g;tie].

Extremely cumbersome but simple algebraic calcula
tions lead us to the following expressions &drande”: y3+A;y?+3B;y—3C,=0, a7



Tech. Phys. 44 (7), July 1999

tgd

|
I
|
I
)|

)

max ©®

FIG. 2. Dependence of tanon the frequency of the applied alternating

electric field in two physical case&:— homogeneoussingle-phasemate-
rial, and2 — two-phase structure.

where
y=s?, A;=(9R;/R,)—1—Ry/Rs,
B;=(R;Ry/RyR3) + (R;/R,) — Ry /Ry,
C1=RgR;/R,Rg,
Ro=(1—X)|go| +X, R;=(1—Xx)g+Xx,
R,=3(xq?+(1—x)q), q=7o/7. (18

Equation(17) has a single solutiofsincey>0!), which is
determined by the condition

R3=X0?,

A<O. (19
Expressiong19) and(12) yield the following inequality
x2g,+2xg,— | &0 <O, (20)

where
91=(q—1)(|eo| —1-g°—30q),

9,=0°—0.5q]&,|+0.5.

If g;>0, which is satisfied by condition@1) or (22),
we find

1<q<(|eo|+5/42—1.5, (21
where|gg|>5, or
(|eo| +5/4)—1.5<q<1, (22)

where the inequality &£ |eo| <5 must be satisfied.
If conditions (21) and (22) are satisfied, the concentra-
tion of magnetic additives satisfies

x<[(95/9%) +|eol/91]">— 02 /9, . (23

If g,<<0, which, unlike conditiong21) and (22), is sat-
isfied by a different “ballpark” of given(exactly solvable!
times r, and 71, we obtain

0<q<(|eo|+5/4)*>—1.5, q<1, (24)
or
a>(|eo| +5/4)Y?—1.5. (25)

The system of inequalitie®4) is not satisfied under real
conditions (unless|eg|=1). Thus, there remains only one
possibility

q>1,
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9> (|0l +5/4) Y2~ 1.5. (26)
This inequality corresponds to concentrations

x>[(95/0%) +e0l/911"2~0,/9; . 27

We shall now give numerical estimates of the right-hand
sides of inequalitie$23) and(27). Assuming that is of the
order of unity, we findg;~ 1, g,~ —|e¢|, and as a result, we
obtain two possibilitiesx is greater than or smaller than
2|eg|. In reality only x<2|e,| is possible, and this means

that
x<1. (28)

In accordance with inequality23), if conditions (21)
and(22) are satisfied, we find

X<Xg,

wherexo=[(95/95) +|0l/9:11"*~ g, /9.
We write this inequality in expanded form

11<7o<[(|eo| +5/4Y?>—1.5]7;, if (|]eg|>5), (29
[(|eo| +5/4)Y?—1.5| 1< ro<T7q,
if (1<|go|<b), (30

It should be noted that in principle, inequalitig®) and(30)

can be satisfied by selecting suitable magnetic and dielectric
materials. For magnetic structures at temperat{resT .,
where T, is the magnetic phase transition temperatiaed

this is the temperature range we are dealing )yitie times

7, are determined by: )amagnon—magnon, )bmagnon—
phonon, and X phonon—phonon relaxation mechanistn.
One particular mechanism will predominate in different tem-
perature ranges. For a dielectric the relaxation tighehould

be determined by the relaxation of the polarizatien It
should be noted that in the case of a phonon relaxation
mechanism in both the dielectric and the magnetic substance,
the behavior of the times;, and 7y is qualitatively the same
but differs quantitatively. This is because the interaction con-
stants between phonons in the dielectric and the magnetic
substance differ substantially, since they depend on the sym-
metry of the material. If this mechanism is taken to be the
main one,g will simply be equal to the ratio of the appro-
priate striction constants; andK,, i.e.,

q=K,/Kj. (31)

Thus, the conditiom~ 1 is quite realistic. Conversely, if
the magnon interaction mechanism predominates in the mag-
netic substance 74 magi< T1phon, the inequality =<7,
<[ (g0t 5/4)Y?—1.5]7, is satisfied, andso|>5 [see Eq.
(29)]. In this case, tafihas a well-defined maximum. If in-
equality(29) is not satisfied, no absorption maximum occurs,
and tard increases linearly with frequency.

We shall now analyze the particular case whenO,
which is achieved ifLy=N,. The expression for tah[see
formula (14)] simplifies substantially, and, taking formula
(12) into account, we find

tand=[(1—x)es+xe][/[Xx+(1—X)eg]. (32
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The analysis of formula(32) is quite simple if (1 z
—X)ep>Xe1, Which can be achieved for low concentrations
of the magnetic phase.

Setting

sp=|eolwro/(1+ 0?7d), &j=wr/(1+w?r),
go=|eol/(1+ w?7d),

we find

tand=[|eo|(1—X) 0o ]/[(1—X)|eg| + X(1+ w?72)]. (33

The extremum of this function is localized at
0= 0ma=[1+(1—X)|eo/x]¥ 7. (34)

For a given frequency of the external field, the concen-
tration of the magnetic phase corresponding to the region o
maximum absorption is found from E(B4) as

Xopt= |€0l/ (02 75+ |eq| = 1). (35

Briefly summarizing this analysis, we note that the ab-
sorption of electromagnetic radiation by dielectric compos-
ites can be regulated by adding magnetic, metallic, or othefIG. 3. Schematic diagram of a disk structure of voids. The concentric
foreign substances to the host matrix. At this point, particulagircles lie in they—z plane.
attention should be drawn to the fact that for metal inclusions
he range of optimum rption of electromagnetic radia; . . .
t. e range of opt n absorption of electromagnetic a}d sf‘bars separated by a distance,2and neighboring bars are a
tion should be shifted toward shorter wavelengths. This is, . v

o . . distanced apart. If the length of this thread &, it is easy to
because the relaxation times in the electronic subsystem aree that the total number of voids is
generally appreciably shorter than those in the magnon and”
phonon subsystem&ee Ref. 9, for exampleand, conse- Nmax= (0% — )/ (d+2x). (38
qguently, the absorption maximum undergoes a hierarchical

shift toward high frequencies.

One-dimensional
thread

Then, since the concentration= »(1+ 2n,,,0/8, and
1—x=dny,/5*, formula(38) can be used to find a relation
betweend and x:

CALCULATION OF DEPOLARIZING FACTORS x=xXd2(1—X). (39

We shall consider the problem of calculating the depo- ~ With this in mind, the inner integral is written as
larizing factorsN, (the coefficientd) in the case of practical

d+x
importance when the dielectric is a film and the foreign in-  J;,= —z/r3|‘i*bff,2= —f (9ldz)(2/r3)dz
clusions may be considered to be voids. We shall assume *
(Fig. 3) that the geometry of the configuration of spherical 2d+3%
voids is an axisymmetric “disk” figure, i.e., along tteaxis —f s (9ldz)(zIr®)dz— . ..

the voids are distributed along concentric circles with no
voids at the center of the circle, and we shall calcuNgdor  (the ellipsis stands for terms with= —d, x= — x). For low
this figure. According to the definition of the components ofconcentrations of the magnetic phase as fax&ad/2 the
the depolarization tensdf,we have functions obtained as a result of integrating can be expanded
in powers ofx. As a result, we find
Nik=(1/4«rr)f (621 9%;9%,) (1Ir)dV "
Nozzz(ll%)f f dxdy{ 256l (XP+ y?+ 2?32
-M
=(1/47r)f f (alax;)(1r)ds,. (36) .
S max
2 2 242\—3/2
Beginning our calculations wittN,,, we write Ng,, in +4%r,§=:1 (Hy™+nid) J (40
the form

Ny~ (1/4) J f dxdyf_:(aZ/&zZ)(llr)dz. (37 | + _J'Z_{L._. r___?f,‘__q +

! . . . d
To find the inner integral, we envisage a one- I‘“—’l 5*
dimensional structure and represent this schematically as ir;

Fig. 4, Where the s_phereéthe voids are assumed to be rig. 4. Arbitrary representation of spherical voids in the form of linear
spheres with some size spreate denoted by two transverse gaps.
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Converting to polar coordinates we obtain

Nmax
Noz= (2/2)) = (p?+x%)"V2=22 (p*+ n2d2>—”2} 0 l
n=1 I
(41) |
Having divided the radial threads into regions :
pe[0:d;+ %]U[dy+3:2d; + 3] {
U[2d;+5%;3d,;+5x]U ..., I
7 x
whered; = y2d and
FIG. 5. Dependence of téron the concentration of the magnetic phase in
Nmax= (M —2)/(d1+2x), (42)  two real casesl — N, does not depend ax 2 — N is a function ofx.

as a resultas abovg by expanding expressigdl) in pow-
ers of x, we obtain the approximation

aik(w):J’ ([di(0xq),dy(t,x2)])

Nmax
1 E.2/942 _ 2 242312
Noz=1—5x /2le21 [1/Nd—2d 2/ (d?+N2d?)%?], < expli wt) %, % d U V3, (46)
Substituting expressiof89) and taking into account that where d;(t,x) is the .atomic dipole moment operator, the
_ : : brackets as usual indicate a commutator, and the angle brack-
d,=+2d, we finally obtain : L ) ;
ets denote averaging over the equilibrium density matrix.
Nmax Direct calculations of this expression are fairly compli-

NOzz:1_5X2/16(1_X)2+{X/2(1_X)}2 1N. (43)  cated(see Refs. 2 and 3, for example, where the Kubo for-
N=1 mula was used to calculate the thermal conductlyignd
We now have only to estimate the sum of the terms ofc@nnot be made in a general form. However, this formula

the divergent harmonic series. We have the approximation WOrks in simple particular cases, and if we define the specific
form of the operatod; and the interaction Hamiltonian of

the various subsystems, it can be simplified and the calcula-
tions brought to a logical conclusion. If we neglect the inter-
action between the two phases, dielectric and magratic
this point we note that any quantity of the phases may
Nogy= 1 5X2/16(1—x)2+ [x2n(x/2) A1 —x).  (44) exist!! but we shall then need to make some modification to

the following formula, formula(46) may be rewritten some-
For the componentilo,,= Ngyy, we have what differently, i.e.,

2 (IN)= NmaxInNmaXv

and, allowing for Egs(42) and(39), we find

Noxo=Noyy= (1~ Noz2) 2= 5x*/32 1~ x)? (@) :va ([dy(0),dy(t) ])expli wt) dtAV + (1—X)
1

—[x?In(x/2)]/8(1—X). (45)
Thus, these formulas clarify the dependencé oh the con- X f ([dyi(0),dy(t) Yexp(i wt)dt/AV, (47)
centration of voids. At this point, it should be reemphasized Vo

that the magnetic macroscopic additives have been replacgghich now contains the dipole moment operatdfsandd,
purely formally by voids. Note that in our notation Corresponding to the two phaSQ?,V]_/V, 1—X=V0/V,
b=Noxx - V1+Vy=V, whereV, is the volume of the magnetic phase,

It can be seen from formul@5) that the dependence of andv, is the dielectric component of the host matrix.
the coefficientd on the concentration of the magnetic phase

for smallx is extremely weaKproportional tox?), but even

so, when the dependendx) is taken into account, the

functional behavior of tafibecomes very complex and can The dielectric constant of two-phase syste(uiglectric

be represented schematically as in Fig. 5. It should be notedd macroscopic magnetic particlesalculated above can be

that this nonstandard behavior of &g characteristic of any used to predict various characteristics of the absorption of

two-component structure when a foreign substance havingxternal electromagnetic radiation by these substances.

the concentration is added to the host matrix, provided that 1. The value of taé for these structures has a well-

this substance is not a dielectric! defined maximum which is determined only by the impurity
Calculations of the dielectric constant in the form given phase concentration(if x=_0 there is no maximujnand the

above do not exhaust the possibilities of using other formulaabsorption maximum is localized in a specific wavelength

to find €. In particular, we can use the nonequilibrium den-range.

sity matrix method to determine the polarization coefficient 2. In these composites the depolarizing factors begin to

a and therefores. In fact, we have depend strongly on the impurity-phase concentration.

CONCLUSIONS
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An investigation is made to determine how inaccuracies in mounting the quadrupole lenses
influence the dilution of the transverse emittance of the beam. The study is made for two specific
designs of 500 GeV linear colliders, thermal and superconducting. The analytical prediction

is compared with the results of numerical calculations on the averaging of the beam emittance
dilution effects for various sets of random deviations of the lenses from the accelerator

axis. © 1999 American Institute of Physid$$1063-78429)02007-3

A meticulous study of the beam behavior along the main  Here we introduce the mean-square perturbed phase el-
linac with allowance for all the tolerances on the magnetidipse of the transverse oscillations of the centroid of the
and accelerating elements is required in order to preserve tHeam due to inaccurate installation of the quadrupole lenses
nominal emittance of the electron beam in a linear collider aglong the accelerator. The area of the phase ellipse is ex-
energies of 0.5—-1TeV. For numerical simulations of thepressed analytically in terms of the accelerator parameters.
beam dynamics, various codes for particle tracking in thelhe agreement between the numerical and analytical results
main linad¢~2 have been developed with comprehensive alfor the particle tracking will then serve as the criterion for
lowance for dilution of the transverse emittance of the electhe reliability of the particle tracking results along the entire
tron beant and these continue to be refined. At this point, it accelerator. The perturbed phase ellipse is determined by the
should be noted that the enlargement of the normalized beaffcusing system along the accelerator and the rate of particle
emittance in the main linac as compared with the nominafcceleration, and is an important characteristic of the accel-
normalized beam emittance should not exceed a few percerﬁ.rator from the point of view of tolerances for the accelerator

The main beam broadening effects can be attributed t§'€ments. In addition, a knowledge of the perturbed phase
perturbation of the central trajectory caused by inaccurat§!lPSe can be applied to optimize the focusing system and
installation of the quadrupole lenses along the acceleratop€/ect @ strategy for correcting the perturbed orbit. We
Even with tolerances of the order of 100n for the displace- Present results of an investigation for the ther@BLC,
ment of the lenses relative to the axis, the perturbed trajedreduency of rf system 3GHz and superconducting

tory may exceed the beam dimensions by several orders gESLA’ frequency of rf system 1 Ghizlesigns of 500 GeV

magnitude, leading to transverse beam instability caused b gart collldﬁrsf? .Thi equa:jlon céesqutk')lng tr}ethcentraé bearln
the excitation of transverse modes in the accelerating ajec ofry, a:;}wmg olr rart1 om devia |_onscé € quadrupole
sections. The only method of allowing for inaccurate =nses from e accelerator axis, 1s given by

mounting of the quadrupole lenses along the acceleratoristo 1

consider the deviations of the lenses relative to the axes as a (7 d—ZF(z) d—zx(z) ~Ku(2)[X(2) = xqil =0, @)
random set of uncorrelated displacements with a mean-

square alignment precision. However, the perturbed centra¥herezandx are the longitudinal and transverse coordinates,
beam trajectory may differ by orders of magnitude for tWOqu are the random diSplacementS of the lenses from the axis,
different sets so the beam emittance dilution effects must bEx is the power of the quadrupole lenses, dhds the Lor-
averaged over a large set of deviations of the lenses from tHNtz factor of an equilibrium particle along the accelerator.
axis. The important question then arises as what criterion  1h€ particular solution of the equation of motion corre-
should be used for the reliability of the particle tracking re-SPonding to the perturbed central beam trajectory may be
sults relative to the number of averagings. The particle track®XPressed in the form

ing results are usually confined to averaging over 20—30 sets B(2)

of random deviations of the lens center from the axis. Thisis  x.(z)= \/ﬁE KL gk VB sil ¢(2) — (zy) 1,
because, up to energies of around 50 GeV, the mean-square K

dimensions of the beam in the main linac vary negligibly as 2
the number of averagings is increased further. However, aghere 8(z) and ¢(z) are the instantaneous values of the
will be shown below, this cannot serve as a guarantee of thamplitude function and the phase of the transverse betatron
reliability of the results at higher accelerator energies, sincescillations,L is the length of a quadrupole lens, and terms
it does not take into account the larger number of lenses andith the subscriptk correspond to their values in thHeh

the accumulation of averaging errors. quadrupole.

1063-7842/99/44(7)/3/$15.00 825 © 1999 American Institute of Physics
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We assume that the random deviations of the lense$ABLE .
from the axis are uncorrelated, and consequently the cross
terms make no contribution to the mean-square displacement. .. icrator

Cell length  Energy increment  Phase  Lens displace-

) Le,m AE, eV/m shift u  mentag, um
of the central trajectory(k,x,)=0 for k#1)
SBLC 12 17 /2 100
B(2) ) TESLA 48 25 /3 500
(0= Tz 2 KL sl ¢(2)— ¢(z0)],
()
2\1/2 ; . ) ;
whetre<xqf> th ISI the rootl r?ear: s?huare _dlsplacement of theWhere,un is the phase shift of the betatron oscillations in the
centers ot the lenses relative to the axis. nth cell, andL. is the length of a FODO cell.

At this stage, by analogy with the free betatron oscilla-
tions of the particles, we can introduce the mean-square Pefre
turbed instantaneous phase ellipse of the beam

If the number of cells is large and the and energy incre-
nt per cell is comparatively small, we can convert from
summation over cells to an integral over energy, which in the

7,<X§>+2a<xcxé>+g<X'§>ZA2, (4) particular case of a constant phase shift gives the following
o ) analytical expression for the area of the perturbed phase el-
where the area of the ellipgdivided by ) is lipse:
(x5 (x3) E Eo [[E(2)\2
A?=—" K22 BT, (5) 2_g\a’ =0 M Fo | EUE
F(Z) ; k qk:Bk k A 8 |_(2: AE an2 E(Z) Eo 1|, (8)

anda, B, andy are the parameters of the Twiss matrix.  \yhereE, andE(z) are the initial and instantaneous equilib-
We shall assume that, as usual, the focusing system @fum beam energies anlE is the energy increment per unit

the accelerator is a symmetric FODO struct(wiere Fisa |ength.

focusing lens, D is a defocusing lens, and O is a fre§,gap  The mean-square displacement of the lenses is related to

which includes accelerating sections. Then, replacing thene tolerance,, bya§=3(x§>. We note immediately that the

summation over lenses by a summation over periodic cellgommonly used phase shift per periad2 (Ref. 4 is far

and using the relations for a symmetric FODO structure,  from optimum from the standpoint of the perturbed central

beam trajectory, and, in view of the fact that the amplitude of

2L
Bmaxt 'Bmi”:siTc’ KLgLc.=4 sin%, (6) the free betatron oscillations is determined by a beta func-
K tion, this shift can be reduced to values of the orderr6
we obtain without materially affecting the maximum amplitude of the
) free betatron oscillations. Table | gives the main parameters
A2=16 (Xc 2 r tanﬂ @ for the thermal(SBLC) and superconductingTESLA) de-
Ll " 27 signs of linear colliders.
x10~° F
C 2 4,
016 |-
N 3
012 |
'g C 2 FIG. 1. Evolution of the area of the mean-
=~ N square perturbed phase ellipse along the
,’_:, B SBLC main linac with a 10@m tolerance
~ 0.081 for the installation of the quadrupole lenses:
“;( - 1 — analytical prediction2 —4 — averag-
- ing over 25, 50, and 100 sets of random de-
| viations, respectively.
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8 i 1 FIG. 2. Evolution of the area of the mean-
by i square perturbed phase ellipse along the
E 006+ TESLA main linac with a 50m tolerance
~ " - for the installation of the quadrupole lenses:
< - 1-4 — as in Fig. 1.
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The ~1 GHz superconducting accelerator is distin-important it is to have an accurate idea of the central trajec-
guished by a beam tube of comparatively large aperturéory and the mean-square beam emittance at the accelerator
whose transverse wakefields are considerably weaker thaexit.
those of the~3 GHz thermal accelerator for the same pa-  We have derived a simple analytical formula which de-
rameters of the accelerated beam. This means that one caaribes the perturbed mean-square phase ellipse in linear ac-
have four(rather than twp accelerating modules per period celerators at high energies. The area of the ellipse may serve
of the FODO focusing system, substantially reducing theas a measure of the accuracy of the particle tracking along
perturbed phase ellipse and consequently increasing the tadhe accelerator when determining the mean-square param-
erances for the installation accuracy of the quadrupoleters of the beam. In addition, the perturbed phase ellipse is
lenses. an important characteristic of an accelerator from the point

Figures 1 and 2 show the change in the area of the mearf view of tolerances for the installation of the quadrupole
square perturbed phase ellipse for the thermal and supercolenses and from the point of view of optimizing the entire
ducting accelerators for 25, 50, and 100 sets of randonfocusing system.
equally probable deviations of the lenses from the axis, and The author would like to thank R. Brinkmann and R.
also the analytical prediction. As we can see, the particlaVanzenberg for worthwhile discussions which provided the
tracking results show good agreement with the analytical calstimulus for this work.
culations when the mean-square perturbed trajectory is aver-
aged over 100 or more sets of lens dlsplacementg. We aISpM. Drevlak, M. Timm, and T. Weiland, ifProceedings of the 18th Inter-
note that even when averaged over 50 sets of deviations theyational Linac ConferenceGeneva, 1996, pp. 621-623.
mean-square phase ellipse differs appreciably from the realA. Mosnier and A. Zakharian, ifProceedings of the Fourth European
one at electron energies higher than 100 GeV for the thermaA;arAtigﬁn gfgf'jlfatsoi :gfngiﬁf%%n(fgvltgs?fégg- 11ﬁ21113-
variant and ZSQ Ge_\/ for the _superco_nductlng variant, Wh_ICh4T.' Raubenhaimer, PhD Thzsis, SLAC-38091, pf).pill—ész.
must be borne in mind when interpreting the particle trackingsa. chao, Physics of Collective Beam Instabilities in High Energy Accel-
results to determine the mean-square dilution of the beamerators(Wiley New York, 1993, p. 286.
emittance at the accelerator exit. If the accelerator also has & Brinkmann, DESY Report No. DESY1997-048997 (2 Vols),
system for guiding and final focusing of the particles at the pp. 275-861.
collision point of the accelerated beams, we can also see howanslated by R. M. Durham
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A combined analysis is made of the low-energy total current and secondary electron emission
spectra at the initial stage of formation of a silver coating on @MW) surface. It is

shown that the features observed in the spectra are related to the energy structure of the density
of empty states lying above the vacuum level. The dynamics of changes in these features

in the total current spectra as the film thickness increases indicates that at the initial stage the silver
coating is characterized by the #d 1) orientation, but as the thickness increases, the

Ag(110 orientation predominates. @999 American Institute of Physics.
[S1063-784299)02107-9

INTRODUCTION EXPERIMENTAL RESULTS

The secondary electron emission spectra near the cas-

The electron spectra of the surface of silver were studied ) ) ; :
ade maximum were studied at primary electron energjes

by two methods of electron spectroscopy in which the energ o

structure of the solid was studied in the same range of ele _fet\r:veersh 10 and ‘_100 ev. Frodmf ene;ﬁ'Eﬁ:— 25_e|\/ a?d

tron energies. The first method was secondary electron spe igher (the energy 1S measured from the erml ¢vehe
spectra exhibited fundamentally the same profile, as shown

troscopy(SES, in which we studied the spectra of the true 7 X ;
secondary electron emission near the cascade maximum g Fig- 1 (curve 3). This curve has two peaks, one being a

the energy range between 0 and 30@éf. 1. The primary cascade peak recorded at 7.5eV and the other an emission
electron energy and current are kept constant during recor(?—eakA recorded aE=17.6 eV, which is a characteristic fea-

ing of the SES spectra. The secondary electron emission wadre of thg emission s_pectrum of S|Iver._ This feature only
recorded in a narrow solid angle using a hemispherical engppeared in the emission spgctrum at primary electron ener-
ergy analyzer. This SES method was described in detail ig'es aboveE,=25eV. AsE, increases further, the ampli-

ol : : de of this peak increases in proportion to the increase in the
Refs. 2 and 3, and th t the forf € :
N?ES) an and the emission spectra are given in the Oramplltude of the cascade peak. For tlith8—2 ML) silver

The other method was total current spectroscopJ'lmS on the surface of tungsten this peak is located at 16.3—

(TCS),*°in which the current of electrons propagating in the 1?\‘/'?_(%\{*’] but ai thﬁ_ﬁf"mt thlclén?]s_shls mcreas_ed fron;n 2 to
sample circuit is recorded when its surface is exposed to§ , the peax Shilts toward higher energies as far as

constant current of primary electrons whose energy varie Z{'ﬁf\/{hand thet?] 'tfstr?n?flrgy position remains unchanged
uniformly between 0 and 30eV. The total current spectrumWI urther growth of the im. . ;
The total current spectra of the film surface and the sil-

is identical to the spectrum of electron reflection into an in- ; : ,

verted hemisphere, provided that the primary current is th®" polygrystal were |dent|califor'f|lms more. than B.ML

same and that all electrons leaving the solid are coIIectec},h'Ck' This spectrum is shown in F'g' @urve2). At a pri-

ie. mary electron energy of 4.5 eV relative to the Fermi level we

' observed a primary peak typical of this type of spectrum. It

ltcs(E) = = lien(E). is associated with the energy threshold for the entry of elec-
trons into the solid and corresponds to the vacuum level for

An advantage of total current spectroscopy is that thesilver. The value of 4.5eV is the electron work function for

experimental equipment is simple compared with that req sijlver surface.

quired to record the reflection spectra. The total current spec-  As the primary electron energy increases, the total cur-

tra are expressed as the derivatd#E)/dE of the current  rent spectra reveal other features characteristic of silver at

flowing in the sample circuit. energies of 7.2, 9.7, 17.3, and 23 eV denote®a8, A, and
In the present study we analyze silver films on single-D, respectively, in Fig. Zcurve?2).
crystal tungsten 210 and also polycrystals of silver. The For thin (0.5—2 ML) silver films the amplitudes of fea-

surface was analyzed in a vacuuw6x10"®Pa. The sil-  turesB, C, andD are small. Peala predominates in the total
ver films were depositeth situ by thermal evaporation. The current spectrum of the thin film, and is shifted 1 eV to the
silver films and polycrystals were studied by total currentieft relative to its position in Fig. Icurve?2).

spectroscopy. The surface of the tungsten substrate was pre-

pared by a standard method of oxidation followed by heatP!SCUSSION OF RESULTS

ing. The silver sample was purified by heating in vacuum for ~ Figure 1(curve 1) gives the calculated integral density
several hours until the surface recrystallized. of electron energy states for silveThe amplitude of the

1063-7842/99/44(7)/3/$15.00 828 © 1999 American Institute of Physics
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empty states is four times that of the filled states. The lowebof the density of empty electron states in silver, i.e., the same
arrows indicate the density-of-states peaks corresponding tensity-of-states peak is responsible for the emission and ab-
different directions of the dispersion relation for the electronsorption of electrons having the same energy in the silver
energy. For instance, the features denoteXbgdicate the film.
I'=X directions perpendicular to the AHLO) face whereas No contradictions arise here because pAadkppears in
those denoted bl indicate the direction perpendicular to the the emission spectra only when the primary electron energy
Ag(111) face. The numbers in parentheses afteand L E, reaches a certain value which is higher than the energy of
correspond to different branches of the same direction on ththe 17.6 eV emission peak. Figure 2 shows the behavior of
dispersion relation. the emission spectra as the energy of the primary electrons
The nature of the emission peaks in the SES spectra hakecreases from 33.5 to 21.5eV. The cascade peak back-
been fairly well studied:® For instance, peak in the SES  ground has been subtracted from the curves. It can be seen
spectra of silver can be attributed to a maximum of thethat the emission peak decreases with decreasiig . At
empty electron energy states above the vacuum level &,=21.5eV (curve 7 in Fig. 2), the emission spectrum
17.6eV. Primary electrons with ener@y, sufficient to ion-  barely reveals any peak. AE, decreases, beginning at
ize filled valence states below the Fermi levig. 1, curve  E,=27.5eV(curve4 in Fig. 2) the suppressed pe#kover-
1) excite electrons from these states. These secondary eldeps with the left wing of a group of peaks characterizing the
trons occupy empty states between the excited state and tleéectron energy losses. This group consists of energy loss
level of E,,. They can enter vacuum from these states if thepeaks which are attributed to the energy lost by primary elec-
energy of these states is higher than the vacuum level. Thieons in the excitation of various plasma oscillations that are
maximum density of empty states corresponds to the emissharacteristic of silver. We knoWthat this group consists of
sion peak in the SES spectrum. In Fig(clirvel) the group  high-intensity peaks with maxima at 3.6, 3.8, and 7.5-8¢eV.
of density-of-states peaks at 16.3—17.7 eV shows good cotdnlike the emission peaks, whose energy position remains
respondence with emission peakn the SES spectrurtFig.  constant in all the emission spectra of a particular material,
1, curve 3). This shift of the emission peak from 16.3 to the characteristic losses keep their position constant relative
17.6 eV with increasing thickness of the silver film is clearly to the peak of elastically reflected electrons. For instance, for
caused by a change in the crystalline orientation of the surthe emission spectra of silver shown in Fig. 2, the right-hand
face in the thin and thick silver films on {/10). We know®  energy boundary for the loss band is 3.2 eV from the elastic
that thin silver films have the orientation Ad.1), whereas reflection peak, whereas the left-hand boundary is 7-8 eV
thick ones become polycrystalline. The position of péak from this peak. AsE,, decreases, this group of losses shifts
the SES spectrum of the thin film coincides with the 16.3 eVwith the elastic reflection peak, as shown by the dottedParc
density-of-states peak characterizing the(B) face. The The energy position of thA emission peak remains con-
shift of peakA toward 17.6 eV as the film becomes thicker stant in Fig. 2, while its amplitude decreases with decreasing
matches the 17.7 eV density-of-states peak in Figcutve  E,. This variation of the amplitude of peakshows that as
1), which corresponds to the AfL0) face. E, decreases, there is a lower probability of filled valence
The matching between the energy position of pAasn  states becoming ionized and a lower probability of empty
the TCS and SES spectra requires some explanation. Tratates being filled with excited electrons, which reduces the
emission peald in the SES spectrum indicates that 17.6 eVemission. It can be seen from Fig. 2 that even for
electrons are emitted from silver, while the TCS péain- E,=25.5eV(curve5 in Fig. 2) the SES spectrum contains
dicates that primary electrons of this energy are absorbed hyo emission peald, although the characteristic loss peaks
the silver film. Both these peaks coincide with an extremumare still visible. ForE,=17.6eV the emission spectrum
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present in the total current spectrum, with correspondence
being observed for these in the density-of-states spectrum
but not in the SES spectrum. The more complex structure of
the total current spectra as compared with the SES spectra
between 0 and 30 eV can be attributed to the absence of the
cascade maximum in this method of recording. In particular,
the high-intensityB peak, which has the same energy posi-
tion as the cascade maximum, is obscured by it and is there-
fore not recorded in the emission spectra. Feat@esdD

\______\___,_/:f\_5 are weak and only appear in the SES spectra at the noise
,\_”/_____/j\ 6 level, whereas they are quite significant in the total current
.’l

arb. units
ey
T
w

: spectra.
0 m7 p
il 1 i I 1 i
’ 70 R 2 50 CONCLUSIONS

FIG. 2. Secondary electron emission spectra with the cascade maximum The use of a combination of Iow-energy Secondary elec-

subtractedE,=33.5(1), 31.5(2), 29.5(3), 27.5(4), 25.5(5), 23.5(6), and  {ron spectroscopy methodSES and TC$has allowed us to

21.5(7). identify the main features of the density of empty electron
states located in the 0—20 eV range above the vacuum level
at the initial stage of the formation of thin silver films. The

I . nergy position of the experimental points in the energy de-
s:h_ould chang(_e qualltapvely because at this energy the C.Ogg)'endence of the density of empty states was determined and
ficient of elastic reflection of the electrons decreases. This i

: X Was found to be in good agreement with the results of theo-
indeed observed for the total current spectriiig. 1, curve retical calculations.

Z)eztk aAnvilheig:]roirr:;Ssgg ?r:clrgé?;zzi/. ;t?slzrsﬁ)iiitrz?qerli\(l:?sf\sa The behavior of the main features in the total current
Eavin this ener FOE.— 17 5 6V rima? clecirons are spectrum confirms that thin silver films on a(¥0) tung-
evidegtl “tra e%)f,' at erFr)1_t éner pstate: of silver. and asten surface possess the (Agjl) orientation, whereas for
'ty - trapp L emply gy L ' thick films the Ag110) orientation predominates.

reduction in the coefficient of elastic reflection is observed.

The total current spectra are expressed as the derivative o
f the currede(E)/dE flowina throuah the samble. There- 1. M.‘Bronshtén and B. S. Franan, Secondary Electron Emissidin
Y - : g g ple. Russian, Nauka, Moscow(1969, 386 pp.
fore, the maximum in the total current spectrum should cor-2m. v. Kremkov, Corpuscular Low-Energy Diagnostics of a Solid Surface
respond not to the density maximum but to the maximum [in Russiai, FAN, Tashken{(1986, 163 pp.

; ; 30. M. Artamonov, O. M. Smirnov, and A. N. Terekhov, Izv. Akad. Nauk
upward slope of the density of empty states, as is observedSSSR’ Ser. Fizd6, 1383 (1982,

expe_rimentally(Fig. 1, curvesl and2). ThiS corresponds to 4S. A. Komolov,Integral Methods of Secondary Electron Spectrosdampy
a shift of peakA by 0.3 eV to the left in the total current  Russian, Leningrad State University Press, Leningré&t986, 180 pp.
spectrum relative to peak in the SES spectrum. ®S. A. Komolov, Total Current Spectroscopy of SurfacéSordon and
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Influence of lubricant on the motion of a body in an electromagnetic railgun accelerator.
I. Electric current distribution in the accelerated body and the rails
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An investigation is made of the influence of a liquid conducting film inserted in the gap between
the accelerated metal projectile and the rails in a railgun accelerator on the distribution of

the current density and the magnetic induction in the rails and the projectile. The film is assumed
to be fairly thin, so that the variation of the magnetic induction across the film can be

neglected. The problem is considered in a plane geometry. Approximate expressions are derived
for the thickness of the velocity skin layer as a function of the thickness and conductivity

of the film. The equations for diffusion of the magnetic field in the rails and in the projectile are
integrated numerically. It is shown that the presence of a liquid conducting film can

significantly suppress the velocity skin effect. Nevertheless, even when fairly thick films of fairly
high resistivity are used, the nonuniformity of the electric current density distribution in the
projectile still remains very high for the magnetic Reynolds numbers of practical interest99®
American Institute of Physic§S1063-784£99)02207-7

INTRODUCTION material, the transition velocities in the contact zone may
- o _ exceed 2.5km/s. The transition velocity can also be in-
As we are well aware, velocities significantly in excesscreased by depositing a high-resistivity layer on the surface
of 1-2km/s have yet to be achieved in electromagnetic acof the rails’***However, Glinovet al.” noted that the resis-
celerators with a metal projectilarmaturg. The reason for tjvity of this layer must be between three and four orders of
this is that at these velocities the metal contact between thﬁ]agnitude higher than that of copper.
rails and the projectile disappears and is replaced by an arc | sydies of the velocity skin effect it is usually assumed
discharge, with the result that most of the electric currentpat the contact between the rails and the moving body is
energy I1s hot expended in accelgratmg the bod.y but in SUSgeal. However, the real pattern of current flow across the
taining 'the electric arc .a”F‘ eroding the contacting surface§qrerface of a sliding contact between solid surfaces is far
According to present thinking there are two main reasons fOfrom ideal, and this is the second reason for the transition to

th'.s ”a”S'tl'Pfg' The first |nvol\_/es the onset of the Vequ'Fythe plasma regime. In addition, as a result of the roughness
skin effect,”“®and the second is related to the characteristics

. of the contact surfaces, current flows across the contact not
of current flow across the contact interface between the two

conductors and to wear of the sliding conta#£9-23In the over the entire nominal contact zone but in so-called alph_a
: . . _spots, where the two surfaces approach each other at dis-

velocity skin effect, when an accelerated body moves at hlgrtl 0 mparable to the interatomic distan nd the electri

velocities, the magnetic field and current flowing through it ances comparable 1o the interatomic distance a € electric

are concentrated in its rear section, causing an abrupt ieurrent lines become concentrated. At high current densities

crease in the Joule heat release in the contact zone and givif"%e glphha spots will u(;]dergo heating .gnd melt, Wh'Ch may
rise to a melting wave which propagates forward over thdTPair the contact and cause a transition to arcing. In par-

. . 6 - .
surface of the accelerated body in the direction of motionticular, Basilevskiet al.” showed on the basis of experimen-

When this wave reaches the front edge of the moving bodytal data that at least up to velocities of 1850 m/s, this transi-
the metal contact between the body and the rails disappeal@n IS almost independent of velocity and only depends on

and is replaced by an arc discharge. the nominal contact area, the contact compression force, and
Various approaches have been put forward to describd® electric action [ 2dt). . . _
the velocity skin effect. Only a few of the¢Refs. 14 and 15, Another factor influencing the quality of the contact is

for instance are based on direct numerical integration of theffictional heating and wear of the contacts. The influence of
equations for diffusion of the magnetic field and heat transfefrictional heating in railgun accelerators was studied in Refs.
in the rails and the moving body and in most cases, approxi®, 6, and 22-24. At high sliding velocities the contact sur-
mate semianalytical models were used, based on various aéces of the bodies will melt, giving rise to a molten fift*”
sumptions. Calculations of the velocity at which the metaland additional wear of the contact surfaces. Estimates show
contact goes over to arcing made using various models givthat melting of the contact boundary of a projectile due to
values of 0.5—-2 km/s, depending on the projectile design anffictional heating may begin at approximately the same ve-
the conductivity of the rails. It was shown in Refs. 4,11,13,locities as does the melting due to Ohmic heating as a result
and 17 that when the projectile is made of a high-resistivityof the velocity skin effect.

1063-7842/99/44(7)/8/$15.00 831 © 1999 American Institute of Physics
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Consequently, as our analysis shows, in existing designs a
of electromagnetic accelerators the motion of bodies at high
velocities is limited by the simultaneous action of the two 2d
factors mentioned: )1the velocity skin effect, and)2ocal
damage to the contact surface as a result of the flow of elec- z
tric current and frictional heating. The velocity skin effect is
a fundamental constraint arising from the principle of the 0 = l 2
electromagnetic acceleration of bodies, and special projectile -
designs must be employed required to overcome this. How-
ever, we can hardly expect any significant success in this
direction if we do not solve the second problem and ensure
good electrical contact between the projectile and the rails.
Moreover, we can consider that the constraint of the velocity
skin effect only begins to become the limiting factor in this
case.

A substantial improvement in the electrical contact be-
tween the rails and the metal projectile can be achieved by
specifically inserting a liquid conducting lubricant in the gap
between them. First, this eliminates the problem of curren€IG. 1. Schematic of railgun accelerat® and gap between rails and
concentration in alpha spots, and second, the local frictiondirojectile (b): 1 — projectile (armaturg, 2 — rails, and3 — liquid film.
heating at the rails—armature interface can be reduced appre-
ciably because dry friction is replaced by viscous dissipationgpon schematically in Fig. 1. The coordinate system is re-
At first glance, it seemed that the molten film formed as a5t to the projectile such that the rails move at the velocity
result of the melting of the contacting surfaces during motionj i the positive direction of the axis. Since the problem is
qf the projectile_ in the railgun coulql be us_ed as the "q“idplanar, only they component of the magnetic induction is
film. However, it would be almost impossible to ensure an,nzerg, jts distribution in the armature and the rails being

stable state and maintain a continuous liquid film betweergiven by the following equations and boundary conditions:
the projectile and the rails by melting the projectile. In addi-j, the armature

tion, this film could not suppress the velocity skin effect

_>U

because its resistivity would differ very little from that of the ~ 9Ba _ i( 9_Ba) i( 9_Ba) (18
projectile. Therefore, in order to achieve a real effect from gt ox| @ ax az\ ~ & ox )’
the use of lubricant, a foreign, electrically conducting liquid
must be intentionally inserted in the gap from outside. Quite for x=0 B,=0, for x=I B,=Bo,
obviously, the presence of a liquid film may have negative as B,
well as positive influences. In particular, the high electrical ~ for z=d  —==0, (1b)
resistance of the films leads to additional Joule heating.

Bearing these factors in mind, we attempt to make dn the rails
Qetqiled theor_etical apd numericql study of the action of a B, iB, B, 9 B,
liquid conducting lubricant on various aspects on the accel- 7+ U i a_x( ra_x) E( rﬁ)' (29

eration of a metal projectile. The following problems were

considered: the influence of the liquid film on the distribution for x=0 B,=0, for z=—o B,=0,

of the magnetic field and electric current in the armature and

rails, the flow of lubricant in the gap between the rails and  for z=0 and x=I B =B, (2b)

the accelerated bOdy, and the influence of the film on heating/hereBO is the magnetic induction in the space between the

of the accelerated body. The first problem is considered inajls behind the accelerated body, which in this geometry

the present paper and the others will be examined in our neX{epends only on timed is half the distance between the rails,

two studies of this problem. The specific method of inserting s the projectile lengthD is the diffusion coefficient of the

the lubricant in the gap between the rails and the projectile isnagnetic field, and the subscriptsandr refer to the arma-

not discussed. In principle, this can either be accomplishegire (projectile and the rails, respectively.

by depositing a suitable layer on the surface of the rails or by  problems(1) and(2) must be supplemented by two cou-

supplying lubricant from the projectile. Here we simply as-pling conditions at the rails—armature contact life., for

sume that the rails and the metal projectile are separated byz=0 and 0<x=<I), taking into account that a liquid conduct-

gap filled with a liquid conducting lubricant. All these prob- ing film is present in the gap between the rails and the arma-

lems are considered in a plane geometry. ture. When deriving these conditions, we assumed that the

film is so thin that any change in the magnetic induction over

the film thickness can be neglected. This assumption holds as

long as the thickness of the velocity skin layer is substan-
In order to simplify the problem we confine ourselves totially greater than the thickness of the liquid film. To a first

the simplest projectile shape, i.e., a rectangle. The problem i@pproximation, this last condition may be written in the form

FORMULATION OF THE PROBLEM
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h<D2/D,U, whereh is the film thickness. Hence, the first
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£, =% = _up=p, 2 _ug
zf (o] fﬁX ’

©)

where the subscrigtrefers to the filmg is the conductivity,
D=1/uqo, andu is the flow rate of the liquid in the film.

Substituting Eqs(5) into (4), dividing by dx, and letting
the differencex,—xg| tend to zero, we have

0B, B, 4 JB,\ B, _ ohdB,
"oz a9z ox| O fox X 29X X
ha g ki 6

at aot’ ©)

On the right-hand side of expressig6) the magnetic
induction in the film will be replaced by the magnetic induc-
tion in the armature, since it is assumed that the change in
the induction over the film thickness is small. The last two
terms in Eq.(6) can be neglected, since the time taken for
diffusion of the magnetic field in the film is substantially
shorter that the characteristic time of variation of the mag-
netic field under the influence of external factors such as the
acceleration of the armature. The third terms on the right-
hand side of expressidi) can also be neglected, since it is
assumed that the resistance of the film is much higher than
that of the rails and the armature. If this were not the case,
the influence of the film would be utterly insignificant.

Thus, the second condition at the rails—armature bound-
ary finally has the form

condition at the rails—accelerated body interface has the form

for z=0 and Osx=<| B,=B,. (3

We adopt the usual procedure to obtain the second con-

dition. We integrate the Maxwell equation
B _ VXE
i

over the regiolABCD in Fig. 2. Since

fABCD(Vx E)ds=— é 5ﬁABCD(Ezdz+ E,dx)

for z=0 and O=sx=<l|
9B, B, 4 9B, 9B,
Drz ~ aaz_ﬂ( f ax)_Q ax ' 0
where
h
Q(x)=f udz
0

is the liquid flow rate in the film.

Condition (7) differs from the conditions normally used
at the rails—armature interface because of the second term on
the right-hand side, which takes into account the velocity

then, bearing in mind that the tangential component of thejistribution in the cross section of the film.

electric field at the rails—film and film—armature interfaces is

continuous and that the integrfE,dz over the sectiorCD
(flm—armature interfage is nonzero and given by
—E,a(h(xa) —h(xg)), we obtain

- (Ex,r_ Ex,a)dx+ (h(XA) - h(XB))Ez,a

fh(xB)E q fh(XA)E d haB Bah d
+ o 2, V4 o 2, 7= E E X.
(4)
However, we find
£ x5 9B _xa__ 9Ba
X, T o, Tz’ z,a 04 a gz’
iz, dB
Ez,a:ﬂ :

o, 2 ox’

Since the acceleration of the armature is fairly high, the
problem(1)—(3), and(7) is generally nonsteady-state. Nev-
ertheless, for our calculations of the magnetic field and elec-
tric current distribution we neglected the time derivatives,
assuming the problem to be quasisteady. This assumption
holds if the characteristic magnetic field diffusion timg is
substantially shorter than the characteristic tiypg required
for the velocity of the accelerated body to change. Estimates
show that this condition is fairly well satisfied for the rails
but is not generally satisfied in the armature. We have used
this approximation anyway, for the following reasons. First,
the main idea of the calculations was to study the influence
of the liquid film on the motion of the body in the railgun
accelerator. The use of a quasisteady approximation does not
prevent us from addressing this problem, since it does not
distort the character of this influence. Second, the quasi-
steady approach drastically simplifies the numerical solution
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of the problem. In fact, in order to obtain a correct descrip- It should be noted that Eq11) not only describes the
tion of the velocity skin layer we need to use meshes whicltase when the rails and the armature are separated by a thin

become extremely dense toward the rear edge of the arméim but also cases where solid thin coatings are applied to
ture. Thus, in the nonsteady-state approach it would be neche rails or the accelerated body. In the first case we must set
essary to use nonsteady-state meshes whose density is ¥,=¢, Re and in the second,=0. For a liquid film the
creased as the problem is solved. Third and last, in the vastow rate depends on the velocity and acceleration of the
majority of studies dealing with the velocity skin effect, the moving body, the shape of the gap between the rails and the
velocity of the body has been assumed to be constant, arafmature, the viscosity of the lubricant, and the magnetic
nonsteady effects have also been neglected. Therefore, in tipeessure. However, for fairly thin films of the order of a few
next Section we consider the steady-state version of problemicrons thick the velocity profile in the cross section of the

(1) and(2).

CONVERSION TO DIMENSIONLESS FORM

In Egs. (1) and(2) and in the boundary condition8)
and (7), we transform to dimensionless variablgke tilde
will be omitted subsequently

B=B/B,, D=D/D,, h=h/hy, Xx=x/I,
~

=By

in the armature

7=12/,

and in the rails

- B ~ B
72=z|Rel, ji=—VRe=., j=—

where Re is the magnetic Reynolds numberRH/D, , hg
is the height of the gap for=0, andD, is the typical value
of the magnetic field diffusion coefficient.

As a result, we have in the armature

)

o

d By @ 9B, o °
x| Pax | T 52\ Pa’z |70 (%3
for x=0 B,=0, for x=1 B,=1,

for z=d &Ba—o 9b
or z= o =0 (9b)

in the rails

B, 1 4 5 JB, d 5 JB, 10
X Reax| P ax | T a2\ Praz ) (103
for x=0 B,=0, for z=-« B,=0,

for z=0 and x=1 B,=1, (10b)

at the interface between the rails and the armat(ioe
z=0 and O=x=<1)

B B

B,=B, and \/R—eDrﬁ—Zr—Da&—za
_ 9 o B, "
= x| e1Dih—=]—ea—=, (11

wheree,;=hg/l ande,=Q/D, .

films is close to linear. In this case, a good approximation for
&, may be the expressia, = ¢4, Re/2, which is obtained if

the liquid flow rate in the film is taken to b@®=Uh/2. It
should be noted that for lubricants whose specific gravity is
substantially higher than that of the accelerated body, this
expression underestimates the flow rate and therefore over-
estimates the capacity of the film to suppress the velocity
skin effect.

In order to solve Eq(10A) we generally require another
boundary condition fok—o. However, since for large mag-
netic Reynolds numbers this equation has the characteristic
features of a boundary-layer equation, this condition is in
fact unnecessary for its numerical solution.

METHOD OF SOLUTION

The main feature of the problerf®)—(11) is that the
solution of the Laplace equatig®) must be joined with the
solution of Eq.(10), which contains the convective term.
This has the result that at the poit 1, z=0 a singularity
appears in the solution and a velocity skin layer forms
around this point. For accurate calculations of this layer we
shall seek a solution of the problerfi0) in the form
B,=B;+B,, where the first ternB, is determined by the
boundary-layer equation

9By a( By (123

ox  9z\ " oz

with the boundary conditions
for x=0 B;=0, for z=-» B;=0,

for z=0 and x=1 B;=1, (12b

and the second terfd, is given by

p. B2 9(p
Tox ) oz

9B,
" ox

By 14
9x  Redx

+1 i D
Re dx

with the boundary conditions

9B,
"oz

(133

for x=0 B,=0, for z=-

Bzz 0,
for z=0 B,=0. (13b)

In this case, the following conditions are satisfied at the
rails—armature interface=0 and Osx<1:
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dB; B JB J
5,=8, and D,\RY o+ 2| -0, D¢ Da_oi_ oz (163
Jz 0z 0z \/71-_5 F) 52 E)
J JB B _ i i
_ _(81 f _a) —e, a (130 The left-hand side of Eq16A) vanishes for
IX X X D?2
T Va
Problem(12) describes a boundary-layer solution, and 51:R_eD_r' (16b)
problem (13) describes a correction to the boundary-layer ] ] ) )
solution near the point=1, z=0, where the velocity skin This value ofd determines the thickness of the velocity

layer forms, since the rate of change of the magnetic fieldkin layer in the absence of a liquid filfrt? The right-hand
near this point is of the same order along thandz coor-  Side of Eq.(16A) vanishes for
dinates, and consequently, the secpnd Qerivative with respect  5,—¢,D;/e,=2D;/Re. (160
to x cannot be neglected near this point. Hence, Efk. o ) o o
(12), and(13) determine the magnetic field distribution in the  THis implies, first, that the liquid film will Increase the
rails and the moving body. thickness of the velocity skin layer provided thaD;/D,

If the coefficient of magnetic field diffusion in the rails is =2P1- Second, it is easy to see that as the film thickness

assumed to be constant, we can write the following expredCréases, i.e., as, increases, the thickness of the velocity
sion for the solution of problerfi2): skin layer tends toward,. Let us compare this result with

the case where the resistive layer is located on the surface of

B fx dB, erfc( z )dx’ the armature. In this case, as has been noted, weefjnd
1= Tax T o n (v =0. Then, for fairly larges; for which £,>D,8/D;, we
° X leo 23D (x=x7) obtain the well-known expressi
for 0=sx<1, z=<0, (WD?S%) 1/3
1 9B, ( z ) D, Re
B,= f erfc| — ———— |dX’ ) ) _ i )
0o IX |,_, 2\D;(x—x") Thus, from the point of view of increasing the thickness
of the velocity skin layer, a liquid layer is less effective than
for x>1, z=<0. (14) resistive coatings deposited on the surface of the armature.
Condition (13C) then has the form The limiting value of the velocity skin-layer thickness
was obtained assuming that is fixed and the film thickness
b Re i fx 5_Ba dx’ N &_Bz _D 19_Ba inqrea_ses. If the film thickness is fixed abg _ten_ds to_in-_
' Vo Jo x|, Jx—x" 9z & 9z finity, it follows from Eg. (15) that the magnetic field distri-
bution in the armature will tend toward linegr,—1, and
_d 9B, dBa jx—0. However, the magnetic field distribution in the rails
B 5(81thx )_82 ax (19 Wil tend toward expressionl4). Consequently, th& com-

ponent of the electric field density in the railszat 0 will be
netic field in the armature can be reduced to solving théX:.2 ‘XRehT.D r_;tnd_can thus be fairly large. In this case, the
main Joule dissipation will therefore be concentrated in the

problem(9) with the condition(15) at z=0 (Ref. 2. rails and not in the armature. It is also clear that each value
Equations(9), (12), and(13) or (9), (14), and(15 were of Re will correspond to a particular value Bf; for which

integrated numerically by a finite-difference method. Forac-, . . .. o LT ;
. : : this limiting magnetic field distribution is nearly attained.

curate calculations of the velocity skin effect we used a non=_, . . . .
. o . : ._This value ofD; can be estimated using expressidrb),
uniform mesh with increasing density toward the boundaries . : . Lo
x=1 andz—0. The mesh-point coordinates were caIcuIatedWIth 6 set equal to 1 or by seeking a solution as a series in
. ’ P . reciprocal powers 0éD¢. As a result, we have
using formulas from Ref. 28. The minimum step was se-

lected in the range 0.0001—-0.0004 with 21 or 41 mesh points 8 e,
per unit length. 81Df>ﬁ\/Dr Re+ ERe.

If we neglect the correctioB,, calculation of the mag-

Thus if we takeD, =D,, we find, forD,=0.7 and Re
=1000 that the contact resistance of the film is forty times
the resistance of the metal projectiie terms of its height
per unit area.

Before analyzing the results of the numerical calcula-
tions, we shall assess the influence of the liquid film on th
velocity skin layer using Eq15). We takeéd to be the char- "RESULTS OF NUMERICAL CALCULATIONS
acteristic scale of variation of the magnetic field in the ve-  As we know, the conductivity of metals depends appre-
locity skin layer in the armaturé&his dimension is the same ciably on temperature. However, in order to make the mag-
along thex andy axes. Then, assuming that the film thick- netic field calculations independent of the temperature distri-
ness is constanth=1) and neglecting the correctiddy, in bution and thereby significantly simplify the problem, the
Eqg. (15), we obtain temperature dependence of the diffusion coefficients was ne-

QUALITATIVE ANALYSIS OF THE INFLUENCE OF THE
LIQUID FILM IN THE VELOCITY SKIN LAYER
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TABLE I. TABLE Ill. Maximum z component of current density and thickness of
velocity skin layer for an armature with a resistive layRe = 1000.

Dependence of

Variant Film thickness: | D¢ film thickness ornx Variant J z.max Sysi
1 0 3B 33.1 0.039
2 0.0001 7.2 No 4B 26.5 0.041
3 0.001 7.2 - 5B 19.5 0.047
4 0.001 30 - 6B 10.0 0.074
5 0.001 100
6 0.01 100 -

The calculations were made for four magnetic Reynolds
numbers 30, 100, 300, and 1000. If the projectile length is
glected in the present study. The projectile was assumed .01 m, these Reynolds numbers correspond to projectile ve-
be aluminum and the rails copper. The diffusion coefficientdocities of 105, 350, 1050, and 350 m/s. Note that in all these
of aluminum and copper were taken to be their values avariants the constant resistance of the film was substantially
600°C, i.e., 0.049Ris for aluminum and 0.035%s for lower than the value at which the limiting magnetic field
copper. The coefficient of magnetic field diffusion in the distribution is established in the armature and the rails. Two
rails used wa®, . The diffusion coefficients in the rails and parameters were used for the nonuniformity characteristic of
the liquid film were always assumed to be constant, while théhe electric current density distribution: the maximagom-
diffusion coefficient in the armature was assumed to beponent of the currenit, .« and the extent of that part of the
piecewise-constant so that we could estimate the influence eofiils—armature interfacé, s, across which 50% of the elec-
resistive inserts in the armature. Thus, the dimensionless diffic current flows. This last value may be taken as an estimate
fusion coefficients in the rails and the armature Bre=1 of the velocity skin-layer thickness. Table Il shows that in
andD,=1.4, and a hypothetical diffusion coefficient of 14 the absence of a film this value is almost the same as the
was used for the resistive inserts in the armature. Three typeastimated thickness of the velocity skin-lay&6B) for mag-
of armature were considered: uniform aluminum widy ~ netic Reynolds numbers of 300 and 1000.
=1.4(A), having a resistive laydiB) In this geometry the maximurm component of the cur-
rent always occurs at the poink€1, z=0). However, it
D,= [ 1.4, at df2>z>0.01, was found that the value gf, at this point depends strongly

14 at z<0.01; on the mesh step. It is possible that in our particular model
and having a resistive insert in the rear part of the armaturliS value is in general infinite. At least, we were unable to
(©) determine this wnh a sufficient degree of reliability for any

reasonable crowding of the mesh. Thus, fof,., we took

14, at x<1-.3z, the value ofj, at the rails—armature interface at the point

Da= 14, at x>1—3z x=0.9997. On the one hand, this point is fairly close to

x=1 and in this range of parameters is always inside the
This last variant simulates a chevron armature for whichye|ocity skin layer and on the other, the current at this point

the rear walls form an angle of 30° with the surface of thecan pe calculated with a sufficient degree of reliability. Ob-
rails. In all three variants the armature was assumed to bﬁous|y this choice of, may IS SOMewhat arbitrary but it can
square. The film material was liquid indium with a diffusion peyertheless effectively demonstrate the influence of the film
coefficient of 0.253rfis (dimensionless value;=7.2).  thickness on the electric current density distribution.
However, we also used hypothetical values of the film diffu-  The calculations have shown that near the rear edge of
sion coefficient substantially higher than this value and untpe armaturg, is substantially higher than thecomponent
related to any specific material. All the films considered areyf the electric current density in all variants except the arma-
listed in Table I. ture with a resistive insefvariant Q. In this last case, since

the diffusion coefficient in the armature undergoes a jump

TABLE II. Maximum z component of current density and thickness of
velocity skin layer for a uniform armature. TABLE IV. Maximum z component of the current density and thickness of
velocity skin layer for an armature with a resistive insert in the rear section.

Reynolds number

Reynolds numbers

Variant 30 100 300 1000

- - - - Variant 100 1000

J z,max §VSL J z,max 5VSL J z,max 5VSL J Z,max 5VSL - )
1A 309 0114 647 0046 121 0019 245 0.0065 Jz,max dust J2max Ovst
2A 281 0115 565 0046 108 0019 219 0.0067 1C 22.4 0.18
3A 176 0.116 343 0.049 647 0021 131 0.008 3C 8.9 0.18 445 0.039
4A 20.3 0.058 354 0.029 652 0014 4c 6.8 0.18 30.5 0.043
5A 119 008 193 0.046 331 0.024 5C 5.3 0.18 19.6 0.052

6A 3.9 0.19 6.1 0.124 11.3 0.066 6C 2.8 0.27 9.1 0.087
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FIG. 3. Distribution of thex andz components of the
electric current density at the rails—armature interface
with a liquid film (variant 4A: £,=0.001, D;=30;
Re = 1000(solid curves, 300(dashed curvesand 100
(dot-dash curves

0.95 0.97 0.99
z/I

along an interface inclined at an angle of 30° to the surfacare given in Tables II-1V, and Figs. 3 and 4 show the dis-
of the rails, thex component of the current becomes very tributions of thex andz components of the electric current
appreciable and may even exceedzltemponent. Thus, for density at the rails—armature contact interface. ¥hempo-

this variantj, nax is Nt a sufficiently representative charac- nent of the electric current density shown in these figures
teristic of the nonuniformity of the current density distribu- was calculated from the armature side. However xticem-
tion. The values of, nax and dys, for the different variants  ponent of the current density at the contact interface on the

Jar 10

=]
T 1
T T T
\
\
\
|

FIG. 4. Distribution of thex and z components of the
electric current density at the rails—armature interface
with a liquid film (variant 6A: £,=0.01, D;=100;
Re = 1000(solid curves, 300(dashed curvesand 100
(dot-dash curves
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TABLE V. Maximum x component of the current density in the rails at the of its heigh) per unit length. In this case, for a current of

interface with the armature. 300kA and a projectile size of 0.01m the voltage drop
Variant Re= 300 Re= 100 across the liquid film will be 9V. In order to completely

eliminate the velocity skin effect at high armature velocities

;2 3213 gég the contact resistance of the film should be ten times the
3A 115 269 resistance qf thg projectile. In this case, the voltage drop
4A 94.2 215 across the film will be tens of volts.

5A 73.2 164 This work was partly supported by DER&ontract No.

B6A 37.7 102 SMC/4C206).
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Characteristics of a thin-film sensor for a scanning SQUID microscope
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A description is given of the design, fabrication technology, and characteristics of a sensor for a
scanning magnetic microscope using a thin-film dc SQUID with NJ¥DAINb shunted

Josephson tunnel junctions. It is shown that at a sample temperature of 4.2 K the spatial resolution
of this detector is 1@&m with a field resolution of 70 pT/HZ. © 1999 American Institute

of Physics[S1063-784£99)02307-1

INTRODUCTION microscope sensor. The sensor is fabricated by multilayer
technology and has two layers of main superconducting met-

Scanning magnetic microscopes using - thin-film dCaIIization with a minimum reproducible size of 2ufn, and
SQUIDS with Nb/ALO5/Nb shunted Josephson tunnel junc- 3.5X3.5um planar Nb/A}Os/Nb Josephson junctions. The

tions are being increasingly widely used in unique physics ! o
experiments(see Refs. 1 and 2, for exampléThe spatial zfrgf:r is mounted on ax3 mm rectangular silicon sub-
resolution 6x of these devices, currently 1+2n, is deter- A. ticular feat f1h tem is the t SRR
mined by the larger of two quantities: first, the distante A particuiar teature ot the system 1S the two resis
between the object and the pick-up coil, and second thgeS|gned for a symmetric input current supply. This method

linear dimensiorD of the pick-up coil. The resolution for the of C?Lfcp“\r:vgi]trlln tlhrs SLthZpI)r/ cgrrentrfllr?:/vsntge p:]ck-ug (t:O:titoll
recorded component of the magnetic inducti&By, is deter- operate aimost zero dc current and can substantially

mined by the spectral density of the equivalent noise fIuxLen%lgestzzybaCk'eﬁeCt influence of the SQUID on the object
Egpti:)nngll?ontﬁszurgg\g Oirfﬁg%?gz_:;giﬁ nd is inversely pro- In order to achieve a spatial resolution for the SQUID
Since the signal and noise character.istics of the sensor .icroscope close to the gffective size of the pick-up coll, the
a scanning magnetic microscope depend on the values a 6stance between the coil and the surface of the sample must
relationships between the pick-up coil inductarigg, the be of the order of or smaller than the size of this coil. For this
inductance of the main part of the SQUID quantization Cir_pu;po?ewthe tS'“C(r)n dsrlljbs;[r?r:e O]; tkhe C?(Igi Wlaht»thli ?hQUID
cuit containing the Josephson junctiobhs, and the induc- Sensor was tapered near e pick-up 0. U €
tance of the connecting microstripling,, and also on vari- scanning microscope the chip with the sensor is attached to a
ous other parameters, the probletrr{w of designing an pring-loaded cantilever at a small angle to the surface of the
optimizing the multilayér thin-film structure of a SQUID sample and the pointed corner of the chip glides directly over
sensor to give selected values & and 6B, is of separate ELS surf_ace(F|g. 1(.:)‘ . . .
During operation of the scanning microscope a magnetic

interest. . )
ux considerably greater than the flux being measured may

Here we describe the design, fabrication technology, anﬂe trappedor frozen during coolingin the inductive circuit
har risti f th nsor for nnin ID micro- . .
characteristics of the sensor for a sca g SQU cro f the SQUID sensor. A local heat&®TSis provided to

i 4.2 K with ial resolution of . .
tsr::gr())er dol}ers(l)?nleqcirt: ;ﬁgr:tﬁe?é resoll\j\;:gnao?%%“&;asio ution 0remove it from the SQUID circuit without extracting the

entire device from the liquid helium. The heater is a resistive
“snake”positioned above part of the SQUID circuit. When
current flows through the heater, this part of the circuit is
locally overheated above the critical temperature and loses
A schematic of the sensor, which is similar to that usedts superconducting properties, thereby releasing the trapped
in Refs. 1 and 3, is shown in Fig. 1a. In this system a pick-upnagnetic flux from the circuit.
coil LP of the required size is positioned some distance from
the main SQUID cwcwt. contalnlng_ the Josephsqn JunCtlonSPABRICATION TECHNOLOGY
JJand is connected to it by a low-inductance strip structure.
This design can minimize the distortion of the magnetic field = The sensor microcircuit is fabricated o 00} -oriented
of the sample by the superconducting parts of the SQUIDsingle-crystal unoxidized silicon substrate and includes the
integrated microcircuit. following layers: 2 an Al,O; insulating sublayer between
In addition to Josephson junctiodd, the main part of the substrate and the auxiliary superconducting metallization,
the SQUID contains shunting resistd®§ a feedback coil, a 2) auxiliary superconducting Nb metallization) e lower
damping resistoRD, and symmetric power input resistors Nb electrode of the Nb/AIGND triple layer, 4 the upper Nb
RB. Figure 1b shows a diagram of the integrated SQUIDelectrode of the triple layer,)3wo layers of A,O; insula-

DESCRIPTION OF THE SENSOR OF THE SCANNING SQUID
MICROSCOPE

1063-7842/99/44(7)/5/$15.00 839 © 1999 American Institute of Physics
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FIG. 1. Sensor for SQUID microscopa — equivalent circuit
diagram of sensorl — SQUID current in,2 — SQUID volt-
age out3 — common output4 — outputs of SQUID feedback
coils, 5 — outputs of local heatelb — schematic of sensor:
LP — pick-up coil (40x40 um varian}, SQ— main part of
SQUID with Josephson junctionl), resistorsRSandRD, and
feedback coil RTS— local heater resistoRD — symmetric
input power resistor€CB — edge of sensor substrate; the con-
tact areas are numbered as in Fig;, da— schematic configu-
ration of sensor and sample during scannihg- sensor2 —
surface of sampléview from surface of sample

tion between the lower electrode and the main superconduchr pressure of X 10 ?mbar and 2.5A discharge current
ing metallization,  a layer of Ti resistors, J7the main su- using a Leybold AG L-560 system. The rate of deposition
perconducting Nb metallization, and & layer of Ti/Au  was 140nm per minute. During pump-down prior to the
contact pads. deposition of the Nb, a Meissner trap was cooled with liquid

The x-ray amorphous AD; sublayer plays the role of a nitrogen. This resulted in a residual pressure of the order of
barrier layer which protects the substrate during the subse2x 10™ ' mbar in the chamber. The substrates were attached
guent etching of the layer of auxiliary metallization. The to a water-cooled holder, and to improve the thermal contact
aluminum oxide was deposited by rf magnetron sputtering irthey were stuck on with vacuum grease.
a mixture of Ar and @ using a Leybold AG Z-400 system. After the Nb film had been deposited, a mask was
The Ar pressure was 1 Pa and the oxygen pressure 0.25Harmed on it by photolithography for pattern etching. This
The thickness of the deposited insulator was 150 nm. Lift-offwvas carried out by reactive ion etching in Skt 20
photolithography was then used to form windows in the suorm.cni/s at 10 Pa pressure and 50 W discharge power. The
blayer to provide electrical contact between the layer of auxend of etching was determined from the change in the coef-
iliary metallization and the silicon substrate, which is re-ficient of reflection of laser radiation from the surface of the
quired for the subsequent anodization of the lower electroddilm.

The auxiliary superconducting metallization, also used  As we know, in order to obtain high-quality tunnel junc-
for the electrical connections between the lower electrodé¢ions with niobium electrodes, we need to fabricetesitu a
and other elements of the circuit, was a 200 nm thick layer oBequence comprising a lower niobium electrode, a thin alu-
Nb. The Nb was deposited by dc magnetron sputtering at aminum layer which is deposited thermally and then oxidized
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to form a tunnel barrier, and finally the upper niobium elec-TABLE I.

troc_ie. We deposited a quyer niobium electrode 200 nm thic D o, Ry, Ve, R/Ry, Lo, AV, AVIVe
(using the same deposition parameters as for the layer
= > S . um MA QO Y pH  wV
auxiliary superconducting metallizatipn Then, after a
30 min pause to stabilize the substrate temperature, we dé- 10<10 45 33 150 L 60 66 043
2020 40 22 70 1 80 31 043

posited 6 nm of aluminum by rf magnetron sputtering at an
Ar pressure of X 10 ?mbar and 30 W power. The rate of
deposition under these conditions was of the order of 9 nm/

min. As a result of the specific growth mechanism, the alu-  The contact areas required for the connections to the
minum film smooths out growth roughness on the niobiumterminals of the measuring system were formed by deposit-
surface and thereby creates conditions for fabricating a th]g a 50-nm-thick titanium Sub|aye|' via a nega’[ive photo_
mogeneous layer of thermal oxide which functions as thenask to achieve the required adhesion of a 100-nm-thick
tunnel barrier. We carried out oxidation in pure oxygen at agold layer which was deposited next.

pressure of 4 mbar for 25 min and then deposited a 100 nm

thick niobium upper electrode.

The pattern in the lower electrode was produced by reRESULTS OF MEASUREMENTS AND ELECTRODYNAMIC

L ) . ; e MODEL
active ion etching carried out in three stages. First in ag SF
plasma(20 norm.cri/s, 10 Pa, 50 Wwe etched the upper Table | gives the main parameters of two sensors studied
niobium layer as far as the barrier layer, at which the etchingvith different sizes of pick-up coils. Hei® is the size of the
naturally terminated. The pressure was then reduced to 1 Rack-up coil,l¢, Ry, V¢, andLg are the maximum critical
and the power increased to 100 W, which allowed us to etcleurrent, the normal resistance, the characteristic voltage, and
through the barrier layer and the layer of residual aluminunthe inductance of the SQUID circuiAV is the percent
(the point at which the etching of these layers ended wasnodulation of the field—voltage characteristic of the SQUID,
determined using a laser interferometeéfhe pressure and andRg/Rp is the ratio of the resistances of the shunting and
power were then returned to their initial levels and the re-damping resistors. The experimental current—voltage and
maining lower electrode was etched. field—voltage characteristics of these sensors are plotted in

In the upper electrode of the triple layer we then formedFig. 2. These clearly show characteristic features in the form
a pattern for Josephson junctions in a ‘“column” Quh of steps at different voltages, denoted by3 in Fig. 2a.
high and 3.%3.5um in cross section. This operation was We know that these steps are associated with the excita-
performed by reactive ion etching in an Splasma(20  tion of Josephson oscillations at a frequency corresponding
norm.cni/s, 10 Pa, 50 Wuntil a natural stop was reached at to a particular voltage, in resonance with oscillations in the
the barrier layer. SQUID microstrip structures which comprise high-Q cavi-

We then fabricated the insulation layers between thdies. The appearance of these oscillations leads to various
lower electrode and the main superconducting metallizationundesirable consequences and particularly an appreciable in-
The first layer of insulation in fact consists of two layers: acrease in the SQUID noise level near these steps.
layer of anodic niobium oxide and a depositeg@d layer. In practical devices these resonances are partially or
This was formed using the same photoresist mask as thabmpletely eliminated by introducing and selecting damping
used to etch the upper electro@elf-matched processThe  resistors. A comparison of the sensor characteristics shows
side surfaces of the Josephson junctions and the open surfaitgt a reduction in the resistance of the shunting and damp-
of the lower triple-layer electrode were liquid anodizeding resistors in sensor No. 2 as compared with sensor No. 1
through the photomask left from the previous etching operasmoothed the field—voltage characteristics of the sensor, al-
tion at a voltage up to 20V with a rate of rise of 1 V/s. The though it did not completely suppress the resonances.
same photoresist mask was then used to deposit the x-ray The flux noise spectrum of sensor No. 1 measured using
amorphous AJO;. The thickness of the deposited insulator a SQUID preamplifiétis shown in Fig. 3 and corresponds to
was 200nm. A negative mask was then prepared for th8.5 u®,/Hz"2 This noise level ensures good resolution
second layer of insulation, which differed from the first to (70 pT/HZ/? for the component of the magnetic field re-
reduce the probability of shorting through the two layers ofcorded using a 1810um pick-up coil, although it is con-
insulation, and a second AD; layer 200 nm thick was de- siderably higher than the known estintaté the white noise
posited through this negative mask. level.

The shunting, load, and damping resistors for the circuit  Since one possible cause of the excess sensor noise may
were fabricated by rf magnetron sputtering of titaniumbe that the resonances are not completely suppressed, we
through a negative photoresist mask. The titanium was demade a more detailed study of these resonance properties.
posited using a Leybold AG Z-400 system at an Ar pressur&npukuet al®’ developed an electrodynamic model to study
of 1 Pa. The thickness of the deposited metal was 130 nrthe resonance properties of SQUIDS. This model describes
and the resultant resistance wa€A]. the frequency dependence of the circuit impedance for

The main superconducting metallization connecting allSQUIDS of conventional configuration with well-coupled
the components of the sensor circuit electrically was a 200multiturn planar input coils. The relative simplicity of the
nm-thick layer of Nb deposited by the lift-off technique us- electrodynamic system of this sensor as compared with con-
ing a negative photomask. ventional dc SQUIDS means that a simple model can be
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used to estimate the resonance properties of its inductivments are the inductances of the pick-up &d?, the slit in
circuit, including the strip structure connecting the pick-upthe main part of the SQUILS, and the tapering in the strip
coil and the main part of the SQUID. structure for efficient operation of the local heatdiS and

Figure 4a shows the equivalent electric circuit of thealso the damping resist&®&D. Two sections of the strip struc-
model. Here the lumped elements are components of thire are represented by the transmission line secfidrk
SQUID circuit whose dimensions are much smaller that theand TL2 having different lengths and wave impedances. On
wavelength, at least for frequencies up to 500 GHz, whichthe basis of the sensor geometry, the values of the circuit
correspond to a voltage of up to 1 mV at the Josephson junczomponents were estimated as followsS=30pH, LTS
tions (much higher than the working voltageThese ele- =2 pH,LP=16pH (for a 10<10um coil), andRD=4 ().
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FIG. 3. Spectrum of equivalent noise flux of SQUID sen&or
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a ing resistorRD. The curves clearly show the resonant struc-
ture of the frequency dependence of the circuit impedance.
The frequencies of the first three resonances were estimated
as 9, 36, and 66 GHz, which are equivalent to Josephson
junction voltages of 18, 72, and 13&/. Their position cor-
responds to the numbets-3 in Fig. 2a. It can be seen that

b the resonances ne@rand 3 do in fact occur. Resonance
25 near 18uV is possible but is insignificant because of its
T closeness to the superconducting branch and the appreciable
0k broadening of the current—voltage characteristic. Thus, these
calculations allowed us to identify resonances and study the
7 influence of the shunting resistors on their Q-factor.
o 2
N ok CONCLUSIONS
A sensor for a magnetic SQUID microscope has been
st f developed and investigated experimentally. AXIO xm
pick-up coil and a sensor noise level 38P/HzY? were
L L ] L ! { obtained, giving a resolution of 70 pT/MZfor the recorded

0 o 20 306H240 0 60 70 magnetic field component. An electrodynamic model of the
sensor quantization circuit yielded an estimate of the reso-

FIG. 4. Calculation of resonances of SQUID microscope sensor: a —ance behavior of the sensor in satisfactory agreement with
equivalent circuit of model used to calculate impedance of SQUID (:ircuit;the measured results
b — frequency dependence of SQUID circuit impedanRd(= 100 (1) )

and 60 (2)). This work was supported by the Russian Fund for Fun-

damental ResearctProject No. 96-02-19250and by the
“InterSQUID” Project of the Ministry of Science and Tech-

The characteristics of the transmission lines were deterdology of the Russian Federation.

mined in accordance with conventional formulas for a nio- ~ We are grateful to S. N. Polyakov, S. A. Gudoshnikov,
bium Superconducting Strip"ne in the absence of |Osses' and Yu. V. Maslennikov for assistance at various Stages of

this study.
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the SQUID circuit for two different resistances of the damp- Translated by R. M. Durham
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Efficiency of successive compression of radio pulses in a chain of coupled resonators
S. N. Artemenko

Research Institute of Nuclear Physics, Tomsk Polytechnic University, 634050 Tomsk, Russia
(Submitted February 20, 1998
Zh. Tekh. Fiz69, 118—119(July 1999

Calculations are made of the efficiency and gain for the series compression of radio pulses in a
chain of coupled resonators. ®399 American Institute of Physid$1063-784£99)02407-1

Didenko et al! reported results of experiments to pro- where b; is the amplitude of the traveling wave in the
duce high-power ultrawide-band radio pulses by successivigh-stage resonatot; =T;/2¢«; is the time constant of thigh
resonant compression in a chain of resonators connected logsonator,q; is the attenuation constant for a round trip in
waveguide sections of arbitrary length. In this type of sys-this resonator{);~h,/\T;T;_ is the frequency of the rela-
tem, additional energy losses always occur during theive transfer of energy from one resonator to another and
buildup period in the connecting waveguide sections as &ack, andT; is the round-trip time for a wave in thigh
result of reflection losses from the resonators in each stage. lésonator.
is easily shown that these losses may-b&0% for a two- It follows from Eg.(1) that in order to ensure that energy
stage system and~15-20% for a three-stage system. is transferred from the previous stage to the next stage within
Hence, the efficiency of similar three-stage “hot” systemsthe round-trip time for a wave in the previous resonator, the
cannot exceed 40%. The gain of the system will also deeoupling parameter between the resonators must satisfy the
crease as a result of these losses. In view of this, the succesguality
sive compression of radio pulses in a chain of coupled reso- _—
nators with no connecting waveguide sections, in which the hi=(mVTi /Ti-1)/2 )
resonator of the previous stage is connected directly to the In this case, using the well-known expression for the
next-stage resonator is undoubtedly of interest. storage efficiency of the first statje

An example of this type of system is shown in Fig. 1, _ P 2
wherel is an ?f generatoépis a fer{ite isolator3 is a phage M= AB7i(1=exq = U1+ B)/271)) to(1+ ) ©)
shifter, 4 are the storage resonators of each stdgare we can easily derive the following expressions for the effi-
switches that switch the resonators from storage mode toiency » and the gairi\/lﬁI of a system olN resonators:
output mode§ is the load, and; andh, are the intrareso- N N
nator coupling elements. The system uses an interference ,,_ an exp—T;_ 1/7'.)~771H (1-T,_4/7)
method of rapidly regulating the resonator coupling with an
external load, which is most frequently used in practice. The
idea of the system involves using the vibrational traqsfer of _ 771H (1-2a,—1), @)
energy from one resonator to another for the successive com-
pression of radio pulses. In order to minimize the losses in
the system, the coupling between the stages of the series
should be selected so that over the time taken for the wave to /)t

r
1

make a round trip in the previous-stage resonator, the energy :_; 7 i no*f

has been completely transferred to the next-stage resonator. B a u 1

In this case, energy will only be lost to the resonator walls 2

during the transfer of energy from one stage to another 4 4

(losses in the switches and the reflection losses in the first 5|e

stage are not considered since these exist in any compression hy

systen).
In order to determine the efficiency and gain, we shall 5

use the results of Ref. 2, in which the present author showed

that the process of energy transfer from one resonator to

another with the instantaneous switching of strong coupling &

between them obeys a law described by the function

. FIG. 1. System for successive compression of radio pulses in a chain of
204\ _ 12
bi(t)=b_; exp(—t/7) T;_y si’(Qit)/T;, (o coupled resonators.

1063-7842/99/44(7)/2/$15.00 844 © 1999 American Institute of Physics
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Mﬁ,z tol/ Ty, (5) with a peak power of=1 GW can be obtained in the 10cm
wheret, is the input pulse duration, range with an input pulse duration ofu3s, an output pulse
. S . duration of 3ns after the second stage, a first-stage storage
These expressions indicate that for the successive conle. f 60% d £ 2 M .
ression in a system of coupled resonators the efficiency an%f iciency of 5U%, and a generator power o arnng
P IP mind that in Eq(4) T;_; should be replaced by the energy

the gain may be significantly higher than those for a series Ol ansfer timet,,, T, ,<t, < ,). When the ratio of the energy

resonators connected by waveguide sections of arbitrar, ansfer time to the time constant of the second-stage reso-

Ien.g'th and are a'T“OSt exclusively determined by the Storagr(?ator is<0.1, the overall efficiency of the system will be
efficiency of the first stage.

We note that successive compression in a chain o lose to 55%, whereas for compression with reflection losses

coupled resonators may also be effepctive with oversize resohe overall efficiency does not exceed 35% because of the
b > Mmay al . . ~exponential decay of the first-stage output signal.

nators whose use in a series coupled via waveguide sections

is usually only limited by the first stage because of the ex-

ponential decay_ qf t_he output pqlses of these resona.tors. Th|§A_ N. Didenko, S. A. Novikov, S. V. Raziret al, Dokl. Akad. Nauk

opens up possibilities for shaping nanosecond radio pulsessssra21, 518(1991 [Dokl. Akad. Nauk36, 792 (1991)].

with relatively high stored energy in compression systemsis. N. Artemenko, Izv. Vyssh. Uchebn. Zaved. Radioli@, 1289(1987.

where the energy is coupled out via interference switches S. V- Baraev and O. P. Korovin, Zh. Tekh. Fif), 2465 (1980 [Sov.

. ) . = Phys. Tech. Phy5, 1444(1980].
based on rectangular waveguide T-junctions. For example, in

accordance with Eq94) and (5), nanosecond radio pulses Translated by R. M. Durham
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An analysis is made of the influence of electron injection from the cathode on the electrical
conductivity and nonuniform thickness distribution of the piezoelectric properties of
metal—insulator—metal structures using an electrostrictive, optically transparent FE ceramic such
as lanthanum-containing lead zirconate titar@eZT). Because thin-film insulators, in

contact with metal electrodes, exhibit semiconducting properties, the theory put forward by Mott
and Gurney for insulating diodes can be used to calculate the electric fields and currents.

The distribution of the polarization over the thickness of the piezoelectric layer was determined
by means of an asymptotic solution, and relations were formulated for the electroelasticity

of FE ceramic plates and shells. A detailed analysis was made of the electromechanical bending
effect in homogeneous piezoelectric plates used as optical radiation modulators. It is

shown that these formulas can be used for a computational and experimental determination of
the distribution of the polarization over the thickness of thin-film piezoelectric structures.

© 1999 American Institute of PhysidsS1063-784£99)02507-9

INTRODUCTION ditional (considerably weakgralternating field is used to
control the functional parameters of piezoelectric transduc-
Experimental and theoretical data have been used ters. In the ordered polar phase in a FE, nonlinear effects
show that the bending of homogeneous thin piezoelectrigccur which are determined not only by the direction of the
plates may be caused by the electronic subsystem, whicdxternal electric fields but also by the direction of the polar-
determines the nonuniform polarization of the ferroelectricization vector. This is accompanied by the appearance of a
(FE). The distribution of the electric field, current, and po- polar thermopower and “even” electrical conductivity with
larization over the thickness metal—insulator—-méMIM)  respect to the fieldunipolarity effect).
structures based on the electrostrictive FE ceramic PLZT has The optical inhomogeneity induced by the external fields
been determined with allowance for electron injection from(photorefractioh can be attributed to space-charge-limited
the cathode. Since the frequency of the electromagneticurrents’ In the present paper we will obtain an upper lim-
waves interacting with the FE crystal is much higher than thdting estimate for the current—voltage characteristic of an
frequency of the crystal lattice vibrations, only the electronsMIM structure. An analysis of various characteristics of FEs
interact with the light. Thus, the electronic subsystem maysuch as the metallic type of conductivity and the final polar-
have a significant influence on the optical properties of dzation can be used to explain the physical principles and for
FEL2 mathematical modeling of the high-temperature supercon-
Varying the external electric field is the simplest meansductivity of lanthanum-doped metal oxide compoufhys.
of controlling the electrooptic and piezoelectric properties of  The need to calculate the electrical conductivity of thin-
ferroelectric semiconductors and may be used in variouilm MIM structures arises for various reasons. This conduc-
piezo- and optoelectronic devices in which piezo- and elastivity appears in comparatively weak electric fields, and an
tooptic effects take place simultaneoudly.The possibility investigation of the electrical conductivity as a function of
of using FEs to produce an unconventional controlled rethe external electric field can provide information on the
flecting surface for antennas in spacecraft communicatiomost important physical properties of FEs, especially the lo-
systems was examined in Ref. 6. calization of the wave functions and the distribution density
Having a successful combination of physical propertiesof carrier trapping and recombination centers.
(high photosensitivity, electrooptic and piezoelectric effects, A study of the energy spectrum of crystalline FEs is one
electrical and mechanical strength, and suitability for fabri-of the main tasks of solid-state physics. An important factor
cation technology FE ceramic PLZT is used in various de- in the formation of the energy spectrum is the mechanical
vices such as space—time modulators, optical recording aleformation of the crystal lattice, which makes its own con-
information, sensors, and actuatérs?® tribution (up to 40% to changing the band gapThe three-
Studies of the spatial distribution of the electric field, thedimensional electroelasticity relations formulated here deter-
thermionic emission current, and the polarization can unravehine the mechanical stresses and strains of a FE as a
the mechanisms for charge transfer in FEs exposed to elefunction of the electric field and the electronic subsystem.
tric, thermal, and mechanical fields. In an electrostrictive FE  As a result of a mathematical modeling, we can solve the
ceramic a strong static field creates polarization and an adnaverse problem by comparing the calculated results with the

1063-7842/99/44(7)/4/$15.00 846 © 1999 American Institute of Physics
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experiment. The experimental determination of the polarizawherek is the Boltzmann constantg, is the dielectric con-
tion distribution in thin-film MIM structures presents consid- stant of the insulator; is the permittivity of free spacd; is
erable technical difficulties. In the present study we put forthe absolute temperaturd,is the potential difference at the
ward a substantiation for a semi-inverse method ofelectrodes of the MIM structurel= ukT (u is the mobility
determining the distribution of the polarization over the of the free charge)s;is the Debye screening length, is
thickness of thin-film piezoelectric structurésomparable the effective density of quantum states in the conduction

with the electron mean free path band, which is given by:
Experimental investigations of the photoelectric proper- a2

ties of the electric charge in CdS crystals showed that emis- | 27mmkT

sion currents may form in MIM structuré€.Kruminset al2 ¢~ ( h2 ’

and Khalilov and Dimz&reported experimental studies of

the influence of the emission currents on the photoelectritvhereh is Planck’s constant aneh is the effective electron
processes in optically transparent PLZT ceramic, which ignass.

used in optical switches, holographic memory elements, and The main system of equations is reduced to a single
other devices for recording and processing optical informagquation

tion. In the present study the electric fields, currents, and 5

distribution of the polarization over the thickness of MIM — +E—+j(x)=0. 3)
structures are determined explicitly for thermionic emission ~ dx? dx

from the cathode. The following boundary condition is an analytical ex-

pression for the properties of the injected cathode:
THEORY OF EMISSION CURRENTS IN

METAL-INSULATOR-METAL STRUCTURES E(0)=0 (for x=0). (4)
In thin-film MIM structures in comparatively weak elec- We also use the following condition to solve E§):
tric fields electrons are injected from the cathode, their con- h
centration decreasing abruptly with increasing distance from f E(x)dx=—U, (5)
0

it. In this case, the diffusion component of the current may
be comparable with the drift component. Known analytical\yhereh s the thickness of the insulator aktiis the voltage
solutions only allow for the drift component of the current, pepyeen the electrodes located on the surface of an insulating
which in many cases is taken to be constant over the th'Ckrayer having the coordinates= =+ h/2.

ness of the insulatdf:*® In accordance with the system of equatidf and the

The electric fields and_monopolar ?njection currents i“boundary conditior(4), we take the distribution&(x) and
MIM structures are determined by solving the Bessel €quaj ) over the thickness of the insulating layer in the follow-
tion, whose integration constants depend on the current an g form:

thickness of the dielectric. Calculation of the integration con-

stants yields complex transcendental equatidrEhus, de- E(x)=Bx", (6)
spite the simplifications noted earlier, the most comprehen- . _ap

sive results of calculating the emission currents and electric JO)=Agt Agx 5, @)
fields were only obtained by computer. Here an asymptotigvhereA; (i=1,2) are unknown constants.

solution of this problem is obtained allowing for electron Using Egs.(5) and (6), we calculateB; and then the

drift and diffusion. function E(x)
The density of the thermionic emission current from the
cathodej(x) (x is the coordinate measured from the cath- B,=— EUh*3’2 E(x)=— §Ux1’2h*3’2. @)

ode), the electric fieldE(x), and the concentration of elec-
trons injected into the insulatox(x) are determined from the

Substituting Egs(6) and (7) into Eq. (3), btai
following system of dimensionless equatiofis: ubstituting Eqs(6) and (7) into Eq. (3), we obtain
2

dE___dn . B, Bl
x- N &"‘n =J(x). (1) 4 2

+A+AX¥%=0.

Equating to zero the sum of the coefficients with the
same powerg in this equality, we findA; andA,, and then
the functionj(x) from Eq. (7)

The units of the instantaneous coordinatéhe distance
from the cathodg the current density, the electric fieldE,
and the concentration of injected electrangare calculated

using the formulas _ 9u? 3 U
12 I0==—g 35 g ©
[ eleokT — edn _ kT h*  S(hx)
| ame?n B E= ox’ The first term in formuld9) is the known expression for
the current—voltage characteristic, which was obtained ne-
n=Ne’, = ﬂ @) glecting the diffusion current of electrons injected into the

kT’ insulator*?
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The following assumptions were made to derive the
- electroelasticity relations.
1) The polarizatiorP5, the fieldEs, and the constar®,,
o P depend linearly on the coordinatewhich is measured from
~ = the central surface of the shelt-h/2>z>/2; Fig. 2,
210k £@
8 —= P;=Pla, E;=Ela,
Ly ~
= Q1=Q%a, a=(1/2+2/h), (11)
] I I 1
a a.5 7.0 15 2.0 where Pg and Q(l’2 are the values corresponding to the coor-
T /T dinatez=h/2 (Fig. 2) and Eg= —2Vy/h (his the shell thick-
. P ness.
Eﬁ\.o:clié.The functionE(x). The coordinatex=0 is positioned near the 2) In accordance with the Kirchhoff—Love hypothe’§es

and the polarization distributiorfl1), we take the shell
strains in the following form:

For FE ceramic PLZT the functiok(x) calculated us- 27

ing formula(8) is plotted in Fig. 1. This can be approximated slzsio 1+ Y +2zx;, (12

by a linear dependence on(dashed curvewith sufficient

accuracy for practical applications. where £? and »; (i=1,2) are the relative strains and the
changes in the principal curvatures of the central surface of

ELECTROELASTICITY RELATIONS FOR PIEZOELECTRIC the shell. , ,

TRANSDUCERS NONUNIFORMLY POLARIZED OVER 3) On the basis of the experimental data we take the

THICKNESS dielectrci constant of the FE ceramic as a constant averaged

over the shell thickness. From the fundamental system of
For the most general case of the geometric profile ofquations(10) we have

piezoelectric transducers we shall consider a shell of revolu-
tion made of an electrostrictive ceramic in the nonpolar
phase(inverse piezoelectric effegtin which a strong static

field induces polarization and an additional much weaker
alternating electric field creates working strains of the piezo-
elements. When the polarization lies in the direction of the  o,=

o1 (e1+pe,—Esy),

551( 1-u?)

(e2+pe1—Es),

= 2
shell thickness, the equations for the electrostriction effect St(1—nu%)
for temporally constant stresses, strainse;, and electric £
i * - S12
fields E; have the forr Eu= (14 w)QWEY? p=— = 13
£1= 50,01+ 55,02+ Q1E3, 1

where u is the Poisson ratio.
Expressing the internal mechanical stresses in the shell
whereg; (i=1,2) are the strains of the shell in the direction T, andT, and the bending momenk$; andM, in terms of
of the unit vectorsy, andr, (Fig. 2), o; are the mechanical integrals of the stresses, and o, (15), we obtain the fol-
stressesSE, are the elastic compliance constants of the celowing relations for the electroelasticity:
ramic, Q. is the electrostriction constant, akg is the elec-
o (1+pu)

_E E 2
£2=S110+ S0+ Q1E3, (10

o (1tw)

To=Drl e+ pei— TQ‘L(E%)Z}

M=Dy[(2h)(e3+ ped) + sy + pxy— Eayl,

M,=Dy[(2/h)(e3+ ped) + xp+ g — Eayl,

D h D h*
T:—l M:—!
Sh(1-u?) 12sTy(1- u?)
3(1+u)
Baw=7 — — QB3> (14

FIG. 2. Distribution of the polarization in an MIM structure. The coordinate We consider a braCket'molunted hor_‘r‘noge_neoug piezo-
z=0 is positioned at the middle surface of the piezoelectric layer. electric plate nonuniformly polarized over its thickn€Bgy.
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1). We shall determine the deflection of the free end under 2. Formula(9) refines the current—voltage characteristic
the following conditions, which are satisfied over its entireof an insulating diode obtained by Mott and Gurney. The

length first term in this formula is the same as the well-known
T,=M,=0, »,=const expressioiLl2 and the second term allows for carrier drift.
3. ExperimentS and theoretical estimatE's-®~8indi-
(To=Mz=g=x,=u=0). (15  cate that electrons are injected from the electrodes in electric
From the first and third equations {14) and (15) we  fieldsEz = 250-500 V/cm. These experimental and theoret-
have ical data suggest that the electrooptic and piezoelectric prop-

erties of FEs depend strongly on their electronic subsystem.

In particular, formulag6)—(9) can be used for a quantitative
We determine the change in the curvatwrgfrom the  estimate of the influence of thermionic emission on photo-

system(16) and electrooptic effects in ferroelectric semiconductors.

x1=QI(ES)?/2h.

Taking into account this last expression and @@), we
determine the deflection of the free end of the plate using the

o1=QUE4, (2Mh)el+x;—Eqy=0. (16)

following formula: 1H. Y. Fan, inSemiconductors and Semimetalsl. 3 (Optical Properties
12A E 0 EO 2 of llI-IV Compoundsedited by R. K. Willardson and A. C. BeéAca-
f an _ le( 3) demic Press, New York, 1967pp. 405—-419.
2 2h ’ 2A. E. Krumins and V. Y. Fritzberg, Ferroelectri@g(1), 149 (1981).

3K. Kern, J. Phys. Chem. Solidz3, 249 (1962.
Asey=[e1(hI2)—&,(—h/2)1Ih=QIED¥h, (17 4G. Harbeke, J. Phys. Chem. Soligl4, 957 (1963.
) ) 5L. S. Kamzina and N. N. Kiaik, Fiz. Tverd. TelalLeningrad 29, 1868
wherel is the length of the plate;(*h/2) are the relative (1987 [Sov. Phys. Solid Stat29, 1074(1987)].
strains at the shell surfaces having the coordinates h/2. 6|. S. Bedareva and S. V. Koshevaya, Radiotekh. Elektrt). 1118
For the field E3=6000V/cm and the parameters _(1995.

- )
— — 0 _ _ —10 A. Wegner, S. R. Bruck, and A. Y. Wu, Ferroelectrit$6, 195 (1995.
|=30mm, h=0.15mm, Q},=—~1.45<10"*mn?/V, and ¢ Su 5 Dimza, Ferroelectric89, 59 (1986).

n=0.34, the deflection of the free end of the plate is sg v kryiov and v. E. Leparski zh. Tekh. Fiz67(10), 51 (1997 [Tech.
f=0.14 mm. Phys.42, 1158(1997)].

Formula(17) can be used to obtain an integral estimate!®A. S. Shcherbakov, M. N. Katsnel'son, A. V. Trefilet al, Ferroelectric
of the change in the polarization over the thickness of thin Anomalies and Superconductivity in Metal-Oxide Compoyhis 6 [in
piezoelectric layer§10—200um). Defining the polarization ui“?‘L'Jaﬂ’zjghkggtaréilzgsﬁ}ezré . dLeningrad 17, 1274 (1878 [Sov
distribution using formuld17), we can calculate the deflec-  ppys solid stata7, 823(1975]. ’ '
tion of the free end of a bracket-mounted sample. By comi2m. A. Lampert and P. MarkCurrent Injection in Solid$Academic Press,
paring the calculated result with the experiment, we can de- New York, 1970, 351 pp.
termine the real distribution of the polarization over the °E- I Adirovich, Fiz. Tverd. TelaLeningrad 2, 1410(1960 [Sov. Phys.
thickness of the piezoelectric element by this method of caly, > State2, 1282(1960] o .
culation and experiment. The results of the numerical calcu- Y&éﬁ',ﬂ”oiif;nfj'eéﬁi'fgfgﬁ ig;gals and Their Applications in Ultrasonics
lations presented her@ig. 1) are confirmed by the results s, p. Timoshe’nko, M. Lessels, and A. M. Medpplied Elasticity
obtained using numeric&l'” and analyticdf methods and  (Westinghouse Technical Night School Press, East Pittsburgh,)1925

also by the experimental data. 1244 PP, ,

J. Lindmayer, J. Reynolds, and C. Wrigley, J. Appl. Pt84.809(1963.
17Ch. Schnitler, Phys. Status Solidi #6(2), 179 (1978.
183, Esener and S. H. Lee, J. Appl. Phg8, 1380(1985.
9A. S. Bogdanovich, M. M. Nekrasov, Yu. A. Sikorglt al, Izv. Vyssh.
Uchebn. Zaved. Radiofif, 72 (1962.

CONCLUSIONS

1. The distributions of the electric fields and currents
over the thickness of MIM structures have been determined
explicitly by means of an asymptotic solution. Translated by R. M. Durham
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The Bean critical state model is used to calculate voltages and voltage waveforms in hard
superconductors carrying ac and dc transport currents. A comparison with the experiment shows
that these characteristics are accurately described by this model. The voltage rectification

effect by current-carrying superconductors is explained.199 American Institute of Physics.
[S1063-784299)02607-0

Superconducting composites based on silver-sheathdd the alternating self-field. A change in the magnetic flux
bismuth superconducting ceramic having a high critical curgives rise to a self-induction emf in the sampdg(t)
rent density (.~ 2x 10* Alcm?) have now been fabricatdd. =—d®d(t)/dt and causes the voltage drop(t)=—e,(t).
These materials can be used to carry ac and dc transpddence, the voltagea(t) across a superconductor carrying an
current and as conductors for superconducting magnets. Thic transport current is determined by the sum of two contri-
films of high-temperature superconductors can be used ihutions
microelectronics. Bulk materials based on,®i,Ca,Cu;O
ceramic can be used to transfer current between ﬁquid— u(t) =ur(t) +u (t). @

rents by superconductors is now the subject of very intesnsivghase as the current and is determined by the current—
researct{see Refs. 2-6, for instanceBoth experimentd®  \oltage characteristic of the superconductor. The “induc-
and theoretical studié$ are focusing particular attention on tjye” voltage componenti (t) contains a cophasal compo-
the hysteresis losses. The voltage wave form, and the curreAent and aquadrature component whose phase differs by
and frequency dependences of the voltage and losses hagge from that of the current and may be determined using the
been investigated experimentdlt§ and theoretically**>’"  (ritical-state model.

The generation of harmonics by superconducting bismuth 2 we shall determine the active component of the

ceramié and yttrium film§ carrying ac transport currents sample voltage. To be specific, we shall assume that the
was studied by an inductive method. The behavior of a sucurrent—voltage characteristic of the superconductor is a

perconducting plate carrying an ac current in a perpendiculasower law
magnetic field was studied in Ref. 10. Gristehal? were
most likely the first to investigate the transport of an ac cur-  Ur(l) =uc(l/1¢)*, (3]
rent I (t) =14.+1,L£03wt containing a dc component. They
reported the experimental observation of a voltage “rectifi-
cation” effect by the dc current and used the Kim critical-
state modét for the casdl(t)| <l to show that the magni-
tude of the rectified voltage depends
frequency of the ac current.

In the present paper we use the Bean critical stat

wherel . is the critical current of the sample determined as
usual from the criterioug=u,=1 puV/cm.

Figure 1 gives the voltage for a superconductor carrying
. an ac current. In this case, if the transport current contains
linearly on theboth ac and dc components, the working point on the super-
conductor current—voltage characteristic is shifted. 2). If
2 , ?dc>0 the positive half-wave of the current is amplified and
modef? to calculate the voltage and its wave form for a e negative half-wave suppressed. This leads to the appear-

superconductor carrying an ac transport currB=lac  ance of a constant, frequency-independent voltage compo-
+1,L£050t and we explain the origin of the frequency- nent at the sample

independent component of the rectified voltage observed in

Ref. 2. 17

1. When a transport curreh§(t) flows through a super- “Rc:ffo ug(l(t))dt. ©)
conductor, magnetic flux vortices form at its edges for a
certain value of the current. Under the action of the Lorentz ~ This explains the effect of voltage rectification by a su-
force these vortices move toward the center of the samplgerconductor, which was observed experimentally in Ref. 2.
This vortex motion leads to energy dissipation and causes @&he magnitude of the rectified voltage is determined by
drop in the voltageug(t) at the sample. Moreover, if the the type of current—voltage characterigtic case(2) by the
transport current is ac, it induces an alternating self-magnetiexponentx), and by the amplitude of the ac and dc transport
field with the flux d(t), which leads to the appearance of currents. For instance, for a power function with the expo-
hysteresis losses caused by magnetic reversal of the samplenta=3 the rectified voltage is

1063-7842/99/44(7)/3/$15.00 850 © 1999 American Institute of Physics
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1.0

]
=
<

+jaLowt), (j4candj,Loswt are the densities of the dc and
ac transport currents, respectivetyjs the thickness of the
plate, and the plus and minus signs correspond to opposite
sides of the plate we can obtain the distribution of the mag-
netic induction in the sample. The following cases are pos-
sible: (@) 1 4.+ 1,<l., when the amplitude of the ac current
plus the dc current is less than the critical currdhy; the

S
(]

Jj(t) /], , a.u.
S
<

L sk '\\‘ 4-05 opposite case, whehy+1,.<|.. Here we only consider
L i case(a) since this has practical applications. In this case, the
~1.0 . ) N ! . | | -10 superconductor is in the critical state over the entire period.
0.00 0.01 %02 0.03 0.04% The induction in the sample is given by
s
’ (o, 0<|x|=<x,,
FIG. 1. Time dependences of the curréfit) =] 4.t j 0wt (joc=0.7j, . .
ja=0) and the active sample voltage for j4.=0 (a) and 0.2, (b). Jac"'ldc_ 1+ @) sgnx,  Xo=|X|<Xm
e d ’ ’
uRc:ucﬁ(slacldc"_ZIdr)' (4) < Je
c B(x)=B e (6)
3. We shall determine the inductive voltage component X sgnl + 7. |39 Xm=|X| =X,
u (t) for an infinite plate using the Bean critical-state .
model!? According to this model, the current flowing Jae oswt — ( 1— @)
through a superconductor is only nonzero in that part of the Je d
sample where the induction B+ const, the current depends . e
only on temperature, and is equal to its critical value. As the k xsgnl + 7. sgnx, Xe<|x|< >

external field varies, the distribution of the magnetic induc- o .
tion initially varies in the outer part of the sample and then inthe x is directed perpendicular to the plane of the plate,
the inner part. This is caused by magnetic flux trapping ak=0 corresponds to the middle of the plate

pinning centers. As a result, the change in induction lags 2md d fact
behind the change in the external field in terms of phase, B.=—|., on—(l—ac-—dc ,
which in this case is determined by the current. ¢ 2 le
The magnetic field in the sample is described by Max- d i
well equations xn=§(1— J—ac)
Cc
B=27 5)
curlB=—j, d ' :
c° Xe== 1—J—f"°(1+cos<utsgnl) ,
2\7 2j,

wherec is the velocity of light and . is the critical current
density. sgni is the sign ofdI(t)/dt.
Solving Eq.(5) and bearing in mind that the field at the By integrating expressiof6) over the half-thickness of
sample boundary is equal to the sum of the fields initiatedhe plate, we can determine the magnetic field fiux) per
by the dc and ac transport currenit,= = (27d/c)(jgc  unit length(across half the plajeBy then differentiating this
expression with respect to time, we obtain the self-induction

emf
4r
B 100 7d?wj3 i
2k eL=-C = 02 K(smwt—cos(otlsmwtb (7)
i or and the voltage drop per unit length(t) = — e (t) (Fig. 3).
~ T The total sample voltage(t) =ug(t) +u,(t) is plotted in
S 2k Fig. 4 and its profile is broadly consistent with the results
s obtained in Ref. 2. The difference can evidently be attributed
-4t to the experiments since the experimental curves obtained in
B Refs. 2 and 4 diffefwithout the dc component of the trans-
] N R T S S T T T S TS T WA S O WO ) port curren). It follows from Eq. (7) thatu(t) is directly
5 -0 05 00 05 10 15 20 proportional to the frequency of the ac current and does not
1=/Jer @.u. depend on the dc component of the transport current. Using

FIG. 2. Current—voltage characteristic of superconducior 8) and volt- the values of the sa_mple thickneds-100um, the width
age ug during passage of the transport Currq](]t):jdc-i,-jal:co&ut' jac W~4mm, and the Cl‘ltlca| Curl’el’it:=83A from Ref 5, we
=0.7¢, jac=0.2. can find that
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%.00r A0.075 : jo(T,0)
. 0.75F ) lc(T,H):m.
X sk 10.050 0
~ 0.25F : S . .
- = NS The sample voltage for the case in Ref. 2, il&(t)]
X 000 1600 2. <, is given by
= 0251 4- a . .
ITJ _050: — 0'25 S 7Td2(,l) JEZIC . t t| . t|+ Trd]ac (t)
s Tuavr 1o U k=——> | Sinwt—coswt|sinw e(t)|.
S o) 17050 N 2e2 e cHo
~1.00 I I ! ! L L 4-0.75 (8)
0.00 0.01 050‘2 0.0 0.04 The expressiore(t) contains both constant and har-
’ monic components whose magnitude and amplitude depend
FIG. 3. Time dependences of the currg(t) = g+ j . COS0t (jac=0.7j¢, on the ratiol 4./ ,c and are of the order of magnitude of che.
jac=0.2¢) and the inductive voltage, . Thus, compared with Eq.7), expression8) has an addi-

tional term which contains the dc rectified component of the
sample voltage. However, this component is negligible be-
cause of the smallness of the ratig,./cHy~10 3-10"2.
, To sum up, the Bean critical-state model has been used
% Jac to calculate the voltage for a current-carrying supercon-
Yoo . ductor. The results show good agreement with the experi-
mental ones. An explanation has been put forward for the
origin of the frequency-independent rectified voltage compo-
in Eq. (7) is of the same order of magnitude as nent for superconductors carrying an ac transport current.
~102-10* wVicm at frequencyw=50Hz and transport The results can be used to design systems for both high-
current densityj,«~j.. This value ofA; agrees with the current and low-current electronics.
experimental data from Refs. 4 and 5. The author would like to thank Yu. A. Genenko for help-
Grishin et al? calculated the sample voltage using theful discussions.
Kim critical-state model, in which the critical current de-
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A formula for the average generalized conductivity of composites, which specifically allows for
an inductive coupling channel and the shape of the microconductor sections. is used to
analyze the optimum energy release in the poorly conducting phasd.999 American Institute

of Physics[S1063-784299)02707-5

Composites having two components with different con- We also note that in the cade=2, formula (1) is
ductivities are now widely used. We note that a materialmatched with the accurate result whep,=1/2 (Ref. 6
based on a cast microconductor may prove a potentially use-
ful composite. In the present paper, an analysis is made of Im=vE13,.
the problem of optimizing the concentration of the conduct-
ing component to maximize the energy release at the NoNse
conducting component. This problem is undoubtedly of

We shall postulate that for cases of inductive coupling
need to replackby

enormous practical value and in the limit of infinitely high [,=1(1+Y/R), 3)

resistance of the nonconducting component, it can give an . ) )

indication of the “percolation level” of the system. whereY/R is the ratio of the reactance to the resistance for a
1. The generalized conductivity of a system may dependingle element in a composite.

on the geometry of the phaskhe Odelevskiformuld is For a microconductdrwe have

well-known for a stochastic bulk mixture of powders. Bara- YIR~(r/68)?, (4

nov and Shchegldvand Baranot derived an expression

which can be used to analyze a mixture of infinitely thinwherer is the radius of the microconductor coré,is the
cylinders on a plane and can also allow for an inductiveskin layer depth, anéd~ (wuuqo) 2.

particle coupling channel in the composite. We give the for-  For the real cores of a cast amorphous microconductor
mula for the average generalized conductivity in the fotm (r~1-20um), the region wherer—é& belongs to the
ultrahigh-frequency and microwave rangesYIR~1, then

— 2
Im=AXG 3 a)+ VAKX 2 ,8) Fa Yy, (1) I,~4 and the level of strongly varying conductivifyee Fig.
where 1, curve3) is x3~0.25-0.27.
2. When a highly conducting phase is added to a poorly
A 21X —axy) +2o(Xp—axy) conducting one(such as a microconductor in rubhethe
2 ’ energy(heaj release in the poorly conducting phase has an

extremum at the percolation threshold. We determine this

X, p are the volume concentrations of components having th?rom7
conductivity>.; , (the subscript “2” will refer to the micro-
conductoy, wherex; +x,=1. a3,
We then set O k2,=0, (5)

_ i ) wherek is a parameter which determines the fraction of the
-1’ current passing through the poorly conducting phase.

This equation was obtained using an approximation in
which the termdk/dx; is neglected. As we shall see, in the
asymptotic limitX;—0 the solution does not depend on the
parameteik (physically this approximation can be justified
by the fact thatk should be a continuous function of the
concentration as far as the percolation threshold being stud-
ied; allowance fordk/dx; merely complicates the solution
and does not produce any significant result

We note the regiortfork) of variation ofk (Ref. 7)

a

wherel is a certain spatial dimension.

If 1=3, we obtain the Odelevskformula. If =2, we
obtain a formula which for low concentrations of the con-
ducting phase is “matched” with a similar formul&8)
from Ref. 5 which was obtained for ordered thin cylinders on
a plane(perpendicular to the direction of measuremefhe
level of strongly varying conductivit. ,, obtained from the
graph for this casésee Fig. 1, curvéd) x5~0.5—0.57 corre-
sponds to the percolation level on a planar lattif the
Odelevski formula this level isx;~0.3—0.38). In this case,
we arbitrarily take the percolation level to mean the region of 1=k=
abruptly varying conductivity.

2

(1-x1)2,
X121+ (1=x9)2,

1063-7842/99/44(7)/2/$15.00 853 © 1999 American Institute of Physics
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X, —2/3 (3,—0)

was obtained(a similar but very cumbersome formula is
obtained for arbitrary 1). We shall give the principal
asymptotic result of this theory

1 x5 1N(S,—0)

(generalizing this result we postulate that the percolation
threshold and the parameteare inversely proportiongal

To sum up, we have put forward simple approximate
formulas for the conductivity in the theory of an effective
e . 7 \ medium. We have solved an extremum problem which can
0.2 0.3 0.4 0.5 0.6 z, be used to estimate the percolation threshold and relate this

to the coupling parametér The parametdrcan characterize
FIG. 1. Generalized conductivity calculated using form(afor X, /3, the geometry of the mixture particles or the inductiea-
=10°for 1=2 (1), 3(2), and 4(3). pacitive coupling. Note that a qualitative experimental con-
firmation has been obtained for this thedry. i

The author is grateful to P. |. Khadzhi and. P.
yavski for discussions of this work.

wherex; is the concentration corresponding to this extre-g;
mum (which lies near the percolation threshpld

The value of the parametkrat the percolation threshold
for a planar (=2) or two-dimensional problem can be ob-

. . . . 1 ’ i _Ei
tained from the results given in Ref. 6, which we shall use. .- - Dufnev and V. V. Novikov, Inzh-Fiz. Zh41(1), 172(1981.

2y I. Odelevski, Zh. Tekh. Fiz.21, 678 (1951).

Thus, for the planar problen £2) we have 33. A. Baranov and Yu. A. Shcheglov)ektron. Obrab. Mater., No. 6, 73
' 1<2 (E >3 ) (6) 4S. A. Baranov, Vest. Pridnest. Univ., No. 1, 1¢8094.
1= 2 22_21 2 1/ 5V. I. Odelevski, Zh. Tekh. Fiz.21, 667 (1951).

6A. M. Dykhne, Zh. Eksp. Teor. Fiz59, 110(1970 [Sov. Phys. JETB2,
which agrees with the exact resuliee, for example, Ref)6 63 (1970]. ;
(X1—>1/2 3,—0) 7S. A. Baranov and Yu. A. Shcheglov)ektron. Obrab. Mater., No. 1, 71
' X . 1985.
A formula for the bulk problem was derived and put (1983
forward in Ref. 7, where the asymptotic value Translated by R. M. Durham
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Investigations of the operation of a cold-cathode magnetron gun as part of a traveling-wave

linear accelerator are described. Two operating regimes of the gun are observed: with and without
the microwave field of the prebuncher near the gun. In the regime with no microwave field,
short(around 2 nspulses of accelerated electrons of up to 0.5 A were obtained with a gun current
up to 20 A. The presence of a microwave field near the gun makes it possible to obtain a

beam of longer duratiofup to 1.0us), but with a current of up to 20 mA at the accelerator exit

and 1 A from the gun. The operating mechanism of the gun is attributed to a secondary-

electron current rise and the establishment of self-sustained secondary emission. A comparison
between the conditions of beam production from a thermionic gun and that studied for

the same injection energies indicates that the characteristics of this gun are acceptable for injection
into an accelerator. €999 American Institute of Physid$$1063-784299)02807-X

INTRODUCTION (nanoseconddurations in a stored energy regime. The injec-
The development of accelerator technology and the rejgor complex consisted of two accelerating sections and one

lated technology for powerful microwave sources is impos_mjector section, which were fitted with a regeneration system

ing new requirements on sources of high-power electror® €nhance the stored energy; this comprised bunching cavi-

beams. Alternatives to the conventional thermionic cathodéIes inserted inside focusing solenoids and a universal triode
. un with beam compression based on a porous metal thermi-

sources are needing to be considered increasingly frequently. . . ) )
g gy freq ic cathode. For the experiments the triode gun was dis-

One such alternative is a secondary-emission magnetron g antled and the maanetron qun was mounted on its insula
in cases where a high current density and long service lifd" 9 gun w u IS Insu

are both required.The long service life of the cathode cre- tor.

ates new possibilities in accelerator technology such as the The apparatus is shown schemgtlcglly n F|g. 1. The
@agnetron guMG was formed by cylindrical coaxial elec-
r

production of commercial, sealed accelerator models inste . L
of the existing pumped systems. In addition, as wil b:t odes inserted inside a prebuncher soler8@&l The cathode

shown subsequently, a magnetron gun with an unheateg con5|st_ed of a thin metal_ rod aro_und Smm in diameter
cathode can produce shérianosecondoeam current pulses mounted in a high-voltage insulatdérin the drift channel,

in the accelerator from comparatively long voltage pulses awhose walls were formed by the anodeSuch a small cath-

the gun. This has important practical applications for theOde diameter was selected to reduce the influence of the

development of high-current, short-pulse accelerators since Wa?net'? field atlthe catr?octje Olrt] the palssag? m;r:he b?:n;. A
facilitates the formation of the high-voltage pulses requireosyS em for supplying short voltage pulses 1o the cathode,

to supply the gun. It is also postulated that a magnetron guﬁ/hwh served to control the temporarily dismantled Pierce

with an unheated cathode will be stable to bombardment b{Ode gun, was used to measure the F:urrent from the cath-
return electrons reflected from the accelerating structure wit de. It cop&;ted of a co§1X|aI cable which served as the sec-
appreciable energy, which may limit the pulse frequency an ndary winding for a high-voltage pul_se transform%‘r._

the cathode service life, as experience of operating these a his cabl_e Sl.JppI'Ed the gun purrent _5|gnal from the .h'gh'
celerators has shownA magnetron gun has various charac- volta_ge CII’CUItS_ to a measuring oscilloscofi@. The_ na -
teristics that can influence its operation as part of a IinearOrmlng the_u_nlversal |n_Jector complex was described in
electron accelerator. Of particular note are that the cathode %reater detail in our previous study.

not screened from the magnetic field and the beam is tubular.

The aim of the present study is to make a preliminary asses&uUN TESTS

ment of their influence and the operating characteristics of

this gun as part of a resonant linear electron accelerator. When high-voltage pulses were supplied to the cathode

using the pulse transformer, current pulses of up to 20A
were obtained from the cathode after switching on @&
solenoid current, which created a magnetic field near the
For the tests we used the universal injector complex ofun. The duration of these pulses varied between 20 ns and
the LUE300 acceleratot. The injector complex was de- 0.5us depending on the regime. The current—voltage char-
signed to extend the scope of the LA3B0 accelerator in acteristic of the gun plotted in Fig. 2 is nearly quadratic. By
terms of increasing the beam current and obtaining shomising the same cathode material as in the gun studied

DESCRIPTION OF APPARATUS

1063-7842/99/44(7)/5/$15.00 855 © 1999 American Institute of Physics
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FIG. 1. Schematic of experimerMG — magnetron gun with unheated catho@e— cathode| — high-voltage insulatorA — anode(drift tube), PT —
pulse high-voltage transformedrM — linear modulatorCD — induction current detectoRG — prebuncher cavitiesSG Sl, SA— focusing solenoids of
prebuncher, injector, and accelerating sectié®s;- injector sectionAS— accelerating sectiol§S— collimating section, its power supply system was not
switched on during these experiments, this section was used as a collimator to estimate the emittahoad, F — phase shiftersRFSL andRFS2 —
sources of microwave poweklystron amplifier, Q — quadrupole lense$;,C — Faraday cup, antD — oscilloscope.
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FIG. 2. Current—voltage characteristic of magnetron gomagnetic field
220 mT): a — experimental datd — approximation by quadratic parabola.

previously? we can compare their parameters on the basis of
similarity theory using the formula from Ref. 1
U2
I—C—Da, ey
BDClnD_C

wherel is the beam current of the magnetron gbp,andD
are the diameters of the gun cathode and anode, respectively,
C is a parameter which depends on the emission properties
of the cathodelJ is the gun voltage, anB is the magnetic
induction.

A comparison reveals that the current is higher in our
case, evidently because of the stronger magnetic field. This
departure from the above relationship agrees qualitatively
with the dependence of the current on the magnetic field
measured latetwhere the decrease in current with increas-
ing field is weaker than an inversely proportional depen-
dence.

HIGH-CURRENT ACCELERATION REGIME

When rf power was supplied to the accelerating sections
and the beam guide system was suitably aligned, an acceler-
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FIG. 4. Oscilloscope traces of pulses in electron cyclotron resonance re-
gime a — gun voltage, b — accelerated electron current at accelerator exit.

FIG. 3. Capture coefficient as a function of voltage for a conventional gun

with a thermionic cathode. EXCITATION OF CURRENT IN A COLD-CATHODE
MAGNETRON GUN NEAR THE ELECTRON CYCLOTRON
RESONANCE FREQUENCY

ated electron current of up to 0.5A was obtained from the  During testing of the cold-cathode magnetron gun in the
injector complex with a gun current of around 12 A and volt- ynjversal injector complex we observed that the supply of rf
age around 45kV. The low beam capture coefficient in theyower to the cavity influenced the excitation of current in the
acceleration regime is probably related to the low injectiongun. The gun was positioned near the prebuncher cavity in a
energy, which corresponds to a low gun voltage. It can benagnetic field, as shown in Fig. 1. In this case, the micro-
seen from later measurements of the capture coefficient for @ave field through the short section of drift channel, which
conventional Pierce gun with a thermionic cathode as a funccomprised a cutoff waveguide, could penetrate to the gun
tion of the accelerating voltage, which are plotted in Fig. 3,cathode. We initially observed a current from the cathode
that the capture coefficients are similar at correspondingvhich was not captured in the acceleration regime. The cur-
voltages. The duration of the relativistic electron pulse at theent flowed for almost the entire duration of the voltage pulse
accelerator exit was around 20 ns. The duration of the guat the cathodgaround 1us, 60kV). The current from the
current and voltage were significantly greater, 50ns ang¢athode reached 1 A and occurred in a narrow range of mag-
1 us, respectively. The reduction in the pulse duration at theyetic fields near 136—140 mT. By tuning the phase of the
output Faraday cup is mainly attributable to two factors: thepuncher, it was possible to obtain a current of electrons ac-
short(up to 1 ng excitation time of the secondary emission celerated to energies higher than a few MeV at the exit from
in the gun near its peak voltage and the stored energy regim@e injector complex with a magnitude of up to 20 mA and a
during supply of the gun and the accelerating sections. Thgulse duration corresponding to that of the voltage pulse.
pulse leading edge is formed by the rapid excitation of secTypical oscilloscope traces of the pulses are shown in Fig. 4.
ondary emission and the duration will depend on the storedhe duration of the microwave pulse exceeded that of the
energy and the beam current, increasing as the stored energyin voltage pulséaround 2us) and the locking system was
increases and decreasing as the current increases. tuned so that during the voltage pulse the microwave power
Only the bunching and injector accelerating sectionscould be considered to be constant. Thus, in order to obtain a
were switched on for the tests. The accelerated beam passpdam at the exit from the complex, we need to supply volt-
through an “empty” section, i.e., without a microwave age to the gun and apply microwave power, with a quite
power supply and focusing solenoid. In addition, this sectionspecific magnetic field in the gun and microwave phase ratio
had a low series coupling resistaficand for the current in the prebuncher and in the bunching and accelerating sec-
achieved in our case the influence of the induced field on thgons,
beam motion can be neglected. Thus, the section only plays Bearing in mind that the operating frequency of the com-
the role of a collimator in the form of a long tube with a plex to which the prebuncher is tuned is 2797 MHz and is
known aperture. In this case, for the lengttand the diam-  close to the electron cyclotron oscillation frequency, we can
eterd an upper estimate of the beam emittéhcan be ob-  make the following assumptions as to the nature of the pro-
tained as the product of the angular spreldd and the ap-  cesses. Electrons emitted from the cylindrical side surface of

ertured divided by m, as given by the cathode as a result of field emission when a voltage pulse
d2 is applied, move over trajectories close to cycloidal and re-
IS I turn to the cathode. Under the action of a relatively weak

microwave field, whose oscillation period is the same as the
Substituting numerical values for the aperture 3.0 cm angberiod of their motion, some of the electrons emitted at ap-

the length of the drift tube 200 cm, we obtain the estimatepropriate times acquire additional energy from the micro-

14 cmmrad. wave field and bombard the cathode. Under the influence of
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the electron bombardment the cathode begins to emit sec- e 0?2 a2
ondary electrons, which also acquire additional energy be- I1(r)=—Cln_+ ?(f— r
cause the period of their motion matches that of the field.

The power supplied to the buncher, a few kilowatts perwherer is the radial coordinate of the electranandm are
pulse, was clearly sufficient to give a coefficient of second-the electron charge and mass, respectively,

ary emission greater than unity. This should lead to a rapid

rise in the secondary emission current from the side surface C=—,
of the cathode until this is limited by the space charge field. In 9

The nonuniformity of the field near the cathode edge will a

then cause the incipient electron bunches to be expelled 1Qrg onstant characterizes the electric field in terms of the

ward the buncher and the accelerating system. Acceleratiogbp”ed voltagd and the radii of the anodeand cathode.
of the bunches will only be possible when the acceleratingmdQ:eB/m is the cyclotron frequency. ’

phase of the field in the section coincides with the moments  1ig equation has the quadrature solution
of expulsion of the bunches. We know that in a multipactor

electron gun, which uses a similar effect, the phase dimen- r dr @
. . ) . r= _
sion of the clusters is extremely smalDn this basis and a = 211(r)

also from observations of the phase tuning to achieve accel-

eration, we can postulate that the phase dimension of the The period of the motion was calculated as twice the

cluster is also small in our case. Another argument in suppotime 2, for motion as far as the maximum radiyg,,, for

of the hypothesis that the bunch has a small phase dimensiavhich TI(r5)=0. Substituting numerical values for the

may be the relatively low gun current in the cyclotron reso-geometric dimensions of the gun=0.15cm ancb=1.5cm

nator regime. No direct measurements were made of thend experimental datdhe average magnetic field induction

phase dimensions of the bunches because of the need to cdrem the interval in which emission is excitdgl=138 mT

vert the complex to a different operating program. and the gun voltagd) =30kV), computer calculations give
We need to consider the slight disagreement between thibe frequencyF=2.967 GHz, which agrees satisfactorily

working frequency of the oscillations and the cyclotron fre-with the working frequency of 2.797 GHz.

quency. Conventionall§ cyclotron resonance in magnetrons

is characterized by the product of the magnetic inducBon

and the wavelengtih. For free electrons in the absence of

e . ) .~~~ CONCLUSIONS
external electric fields the following numerical relation is

obtained for resonance 1. The main characteristics and operating stability of a
magnetron gun with a cold secondary-emission cathode have
BA=1.065 T cm. 2) been confirmed in the frequency regime up to and including
50 Hz.

We also know that the electron efficiency of magnetrons._ . 2. A relativistic electron beam hgs been obtained at the
xit from a resonant accelerator having a magnetron gun as

and magnetron oscillations with a smooth anode has a diﬁm electron source with capture no worse than that for con
near 1.2T cm(Ref. 8. An increase in the produd\ is i P
ventional guns.

attributable to the nonuniformity of the electric field gener- . .
y g 3. It has been shown that an accelerating complex with

ated by a thin cathode. The resonant frequency should d%fn unheated magnetron gun can naturally form high-current

end, albeit slightly, on the voltage at the magnetron gun. A L . .
P gnty 9 g g anosecond pulses of relativistic electrons with microsecond

rerg:cji:te o;tt?rllse ii?:i?:r:ocre en;i?ysr?c?v:rk: eindlc;lijble‘;h:;Tﬁ:drezlg%gh-voltage pulses at the gun. This can be achieved because
P g. large secondary-emission current is excited rapidly by the

nance occurs at a voltage below the peak value. This formul%i h voltage under conditions where enerayv is stored in the
(2) is also valid for electron oscillations between the elec- 9 9 9y
ccelerating structure.

trodes of a planar magnetron in the absence of space charge: . .
Since in our case the ratio of the anode and cathode dian}:_ite(;l.nltta:ratshgenig ensé?g:hii t;:?(; Y/vv?tinnige ;ﬁ;gr}il?jrslscsz-
eters is large, this product may be larger for a cylindrical 9 Y Y

magnetron. It can be calculated exactly neglecting the influ-resreggd'ir;g ttr?eelzg:rglr;r;)t/glrm;r:j r(arz(l)z;?/ri];t?é ”:ajlee f:ttlroonnés gkr)(;
ence of space charge. This influence can be neglected sin(s,% ; ) T "
Q served at its exit over the entire time of application of

h inning of the rise in th ndary emission th X . .
at the beg g of the rise in the secondary emission t voltage to the gun. Satisfactory agreement is obtained be-

space charge will not significantly influence the electron mo-, e .
tion. The electron transit time from the cathode and back fO}ween the calculated electron oscillation frequency in the gun

a cylindrical magnetron will be determined using formulasand the working frequency of the microwave field in the
given in the Appendix to the lectures in Ref. 9. The equationaccelerator_. L
for the radial electron motion beginning at the cathode is 5 A dlstmgms_hmg feature of the electron cyclotrpn
resonance regime is that the current is an order of magnitude
lower and the current at the accelerator éuittil this com-
dlI pletely disappeajsdepends strongly on the phase of the rf

r=—— : "
dr’ field exciting the current.
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Results are presented from an experimental investigation of a low-pressure glow discharge with a
wedge-shaped hollow cathode in a plasma electron source, where this discharge is initiated

by reflex and magnetron discharges. 1©99 American Institute of Physics.
[S1063-784299)02907-4

One of the most effective methods for the heat treatmential drop reach the cathode potential drop at the opposite part
of semiconductor materials and devices is the electron beawf the hollow cathode and enter the cathode, not along the
method! In particular, cw ribbon electron beams of width normal but at a certain angle to it since the surfaces of the
1-3mm with power densities up to 1 kW/érand electron wedge-shaped hollow cathode are not parallel. The normal
energies less than 10keV are suitable for recrystallizingzelocity component of these electrons is such that they can-
polycrystalline silicon on an insulatdf In order to deliver not overcome the cathode potential drop and reach the oppo-
these beams with a small angle of convergence, the emittesite part of the hollow cathode, and they are reflected by the
should provide emission current densities up to 100 mA/cm electric field of the cathode potential drop without energy
It is advisable to solve this problem using cw plasma emit{osses. This electron reflection can be repeated many times
ters in which a plasma of the required density and homogeand in consequence, the average lifetime of the primary elec-
neity is generated in special gas-discharge structures. In thtsons and thus the gas ionization efficiency are increased sub-
type of plasma electron source a linear emission channel magtantially. This effect may mean that a discharge can exist at
be fabricated in the anode or cathode electrodes of thkw pressure without being sustained by electrons injected
plasma generator. In this case, the comparatively large chafrom an auxiliary discharge.
nel cross section prevents a substantial pressure drop from Initiation of the main discharge by a magnetron dis-
being established between the working volume of the emiteharge takes place as followBig. 1b). A switch Sis set to
ting plasma generator and the accelerating gap for the emiposition a, whereupon an auxiliary magnetron discharge is
ted electrons. Under these conditions the electrode structuignited between the cathoddsand 3, its anode being the
of the plasma electron source should contain special initiatwedge-shaped hollow cathodg The switch S is then
ing systems in the plasma generator to facilitate the ignitiorswitched to positiorp and the main discharge is ignited be-
of a discharge at low pressure. tween the wedge-shaped hollow cathode formed by elec-

Here we present results of an investigation of a low-trodesl and 3 and the anodé During the switching time no
pressure discharge in an electrode structure with a wedgenagnetron discharge burns since no voltage is taken from the
shaped hollow cathode, where this discharge is initiated bgnode4 and at this time it is the anode for the magnetron
reflex and magnetron dischargésigs. 1la and 1b In the discharge. The minimum required magnetron discharge cur-
first case, a reflexauxiliary) discharge is initiated in a dis- rent for which the main discharge can be initiated is higher
charge cell formed by a planar cathdean anode, and the  than that in the first initiation system and is 200 mA for an
planar outer part of a wedge-shaped hollow cath®dgelec-  argon flow rate of 6.8 fmPa/s.
trons from the reflex discharge penetrate through a 3mm Figure 2 shows current—voltage characteristics of a dis-
diameter aperture to the inside of the wedge-shaped hollowharge with a wedge-shaped hollow cathode initiated by re-
cathode and initiate the main discharge. The minimum reflex (a) and magnetrofib) discharges. We knotthat a low-
quired auxiliary discharge current is 50 mA with a working voltage hollow-cathode discharge can only burn stably at
gas(argon flow rate of 4.5mmPa/s. A 6x 2.5mm emis- currents exceeding a certain critical level. A reduction in the
sion slit is provided in the main-discharge anddé\fter the  discharge current specifically leads to expansion of the cath-
main discharge has been ignited, the auxiliary discharge isde potential drop zone, whose opposite sections can ulti-
guenched by removing the voltage,y. For an argon flow mately overlap inside the cavity. This is usually accompa-
rate of 4.5 MimPa/s, the pressure in the accelerating gap wasied by an abrupt increase in the discharge burning voltage
~10"2Pa and that in the wedge-shaped cathode wasr the discharge is quenched, as occurs in our case. The
~10 ! Pa. A wedge-shaped hollow cathode was selected fgpoints on the extreme left of the experimental curves in Fig.
the following reasons. The primary electrons leaving the2 correspond to the critical values of the main discharge
cathode surface at a certain initial velocity as a result oturrent. As the gas flow rate increases and the discharge
ion-electron emission and accelerated in the cathode potelurning voltagel 4 decreases, the critical currents decrease.

1063-7842/99/44(7)/2/$15.00 860 © 1999 American Institute of Physics
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4—51,5—6.8, and6 — 8.4.

Using these plasma emitters we obtained emission cur-
rents I, up to 200mA with an emission efficiency
=0.5-0.7 @=I./14, wherely is the main discharge cur-
ren) and economyH = 1.7-2.3 mA/W. A comparison be-
tween the characteristics of the main discharge initiated by
reflex and magnetron discharges showed that in the first case,
the critical currents are lower and a lower working gas flow
rate is required although the design and power supply system

E_MMT are slightly more complex. The choice of a particular variant
to develop a plasma electron source with a ribbon beam de-

FIG. 1. Schematic diagrams of a plasma electron source with a ribbon bearR€Nds on the specific requirements for the source.
where the main discharge is initiated by refi@x and magnetrortb) dis- The author would like to thank Yu. A. Burachevskor

charges1 — planar cathode? — auxiliary discharge anod& — wedge- assistance with the experiment.
shaped hollow cathodel — main discharge anod® — permanent ring
magnet, and — collector.

UHCC
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Enhancement of the measurement sensitivity in real-time optical image processing
for objects with a periodic structure

A. M. Lyalikov

Ya. Kupala Grodno State University, 230023 Grodno, Belarus
(Submitted July 23, 1998
Zh. Tekh. Fiz.69, 138—139(July 1999

A possible method of real-time visualization of large-scale objects giving enhanced measurement
sensitivity using incoherent illumination is reported. 1®99 American Institute of
Physics[S1063-78499)03007-X

Displacements, deformations, macroscopic defects, an@l;=T/m, wherem=2,3,4,....This approach was used ear-
also surface relief can be visualized by using coatings in théer in a Talbot interferometer to enhance the sensitivity of
form of grids or retrodyes applied artificially to the object measurements to visualize phase obfeatsl also to visual-
being studied’ and also by using the natural surface struc-ize the spatial orientation of photographed buildings, but in
ture such as various types of inclusions and characteristithis last case only at the optical processing stage of the
formations®* These optical methods of deciphering informa- photograph$.
tion on the state and parameters of an object are similar to If the spatial orientation of planar surfaces such as build-
speckle photography and holographic interferometry but unings needs to be visualized in real time using the technique
like these methods, they can be used to study objects giroposed in Ref. 6, a normal amplitude grating with a corre-
appreciable dimensions such as multistorey buildings merelgponding reduction in the period of the carrier bands will be
by using natural sunlight. When objects with a periodic sur-used as a standard transparency to enhance the sensitivity of
face structure are studied, the sensitivity of the measureghe measurements. However, if the surface profile of the ob-
ments can only be regulated at the stage of optical processirjgct differs from planar and needs to be visualized in real
of the photographs using an image of these objcts. time with the measurement sensitivity enhanoetimes, for

In the present paper it is shown that the sensitivity of theexample, its macrodefects compared with a standard object,
measurements can be enhanced by real-time incoherent ofre standard transparency should be a photograph with the
tical processing of images of objects having a periodic strucamplitude transmission
ture. The use of incoherent illumination means that it is pos-
sible to use a method of enhancing the sensitivity of the
measurements to study large-scale objects by illuminating FmxX m
them with sources of white light or simply with sunlight. 7(X,y)~ cog — §¢0(x,y) , (2

We postulate that an optical system produces an image
of an object with a periodic surface structure. Examples of
these objects are slit-mask amplitude scréersd various
types of brickwork or tiled structurésFor almost all these Wheregy(x,y) determines the deviation of the surface pro-
objects the illuminance distribution in the image of the peri-file of the standard object from a plane.
odic structure, where thg axis is oriented parallel to the For this purpose we record a photograph of a standard
image, may be represented as a Fourier series expansion object under nonlinear conditions and then copy it in a pho-

tograph copying systehwhich isolates the waves diffracted

in the = Ith diffraction orders wheré=m/2. Recording the
' (1) photograph of the standard object under nonlinear conditions

ensures that the highest diffraction ordeli$> 1) appear on
wherea,, are coefficients and is the period of the image of the image of the periodic structure in the nonlinear photo-
the structure. graph. When the photograph is copied, the magnification of

Depending on the object the functigr{x,y) may deter- the optical system should be exactly one, and the recording
mine the deviation of the surface profile from a pfme  conditions should preferably be linear to eliminate higher
simply the orientation of the object in spat&he task for harmonics which complicate the treatment of the visualized
investigating this type of object is to visualize the behaviorpattern.
of o(X,y). When the object is observed through a standard transpar-

Unlike earlier method3® to enhance the sensitivity of ency of the type(2), the illuminance distribution will be
measurements to visualiz&(x,y) in real time, we suggest determined by the produdfx,y)r(x,y). It can be shown
that an image of the periodic structure of an object should béhat in order to describe the pattern of moirmges which
projected onto a standard transparency in the form of amappear on the combined image of the object with the stan-
amplitude diffraction grating with a carrier-band period dard transparency, we can confine ourselves to the product

+ o

NX
1(X,y)~ 2, a, oS
n=1

T +Nne(X,y)
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mX a
T Lo y)—e(xy)]=(2N+1) 5, 4

whereN=0,1,2,... .

The factor i on the right-hand side of E@4) indicates
that for the visualization of a macrodefect determined by the
difference[ ¢o(X,y) — ¢(X,y)], the sensitivity of the mea-
surements increased times compared with the usual moire
pattern?=°

Slit masks of television picture tubes were used as the
object to confirm this method experimentally. The deviations
of the surface macrorelief of the mask from the standard,
which characterize the surface macrodefects, were visualized
using a system described in the first part of Ref. 5. It should
be noted that the surface profile of these slit masks differed
from planar® Figure 1 shows a moirpattern which visual-
izes the surface macrodefect in real tif@® and a moire
pattern with the measurement sensitivity doublel The
standard transparency was a photograph of a standard mask
copied in the first positive or negative diffraction orders. Fig-
ure 1b is more informative because of the enhanced measure-
ment sensitivity.

This work was supported by the Ministry of Education
of the Republic of Belarus.
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Increase in the correlation length of nonmonochromatic radiation during propagation
in a single-mode optical fiber containing random inhomogeneities and the
influence of this increase on the operation of a fiber ring interferometer
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(Submitted July 23, 1998
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An analysis is made of the conditions under which the coupling of orthogonal polarization
modes at random inhomogeneities in single-mode optical fibers leads to an increase in the
correlation length of a source of nonmonochromatic radiation. It is shown that when long-

base fiber ring interferometers with a single-mode fiber ring system possessing weak linear
birefringence are used, the correlation length of the nonmonochromatic radiation at the
interferometer exit is increased, which means that the interference pattern can have satisfactory
visibility even when there is an appreciable difference between the interferometer arms as

a result of the Sagnac effect due to the Earth’s rotation. The calculations were made by
mathematical modeling of random inhomogeneities in the fiber.13®9 American

Institute of Physicg.S1063-784%9)03107-4

The correlation length of nonmonochromatic radiation issult of the coupling of polarization modes at fiber inhomo-
one of the most important parameters in optical interferom-geneities. We also study the influence of an increase in the
etry, especially fiber interferometry. For some applications itcorrelation length on the operation of an FRI with a single-
is advantageous to have a short correlation length and fanode fiber ring system possessing weak linear birefringence.
others a long correlation length. For instance, in fiber opticallhe physical meaning of this effect can be explained as fol-
tomography the spatial resolution of adjacent layers of tis- lows. When the conditioh>h~1 is satisfied, wheré is the
sue is mainly determined by the correlation length and irfiber length in the FRI ring system ardis the polarization
order to improve the resolution it is necessary to have theonservation parameter for the single-mode fitfthve value
shortest possible correlation length. Conversely, in Michelof h™! characterizes the fiber length at which effective en-
son and Mach-Zehnder interferometers with different armergy exchange takes place between the polarization modes
lengths, the correlation length must be increased otherwiseadiation propagating along the slow and fast axes of bire-
the visibility of the interference pattern may very poor. fringence of the fiber is repeatedly transferred from one po-

A difference between the interferometer arms is an indarization mode to another. As a result, the spectral charac-
evitable consequence of their inadequate balancing. We citeristics of the radiation at the FRI exit differ substantially
an example where the counterpropagating waves in a fibdrom those at the entrance: if the input radiation spectrum
ring interferometer(FRI) cover essentially different paths. was Gaussian, at the exit it becomes extremely jaggéd
Scully et al? suggested measuring the postulated anisotropshough conserving its previous widthwhich increases the
of the velocity of light using an FRI fabricated using a correlation length.In other words, the single-mode fiber is a
single-mode optical fiber with a large-area ring system. Estwo-channel system and each channel has a single polariza-
timates show that in order to achieve the required accuracyion mode. In the absence of any inhomogeneities in the
the area of the FRI ring system should be at least several teffiber, these channels are independent, i.e., no energy is ex-
of square kilometers. Since the FRI rotates with the Earthchanged between them, and the spectral characteristics of the
the Sagnac effect leads to an appreciable difference in theadiation in each polarization mode will be the same as those
optical lengths for the counterpropagating waves in the ringat the FRI exit. However, in the presence of random inho-
system, of the order of a few hundred micron, and visibility mogeneities, energy exchange takes place between the two
of the interference pattern at the interferometer exit will bechannels, fast and slow polarization modes, which changes
very poor. A deterioration in the visibility of the interference the profile of the spectrum in each polarization mode. In the
at the exit of an FRI with a wide-band radiation source wasabsence of dichroism the spectrum of the total intensity of
observed by Burns and Moellémho studied an FRI with a both polarization modes for a wave propagating in one par-
comparatively small-area ring system but having a high anticular direction in the FRI ring system remains constant and
gular rotation speed. is the same as the radiation spectrum on entry to the FRI.

The aim of the present study is to show that after propaHence, this effect is a consequence of the fact that the fiber
gating through a fairly long section of single-mode fiber with used to fabricate the FRI ring system is a two-channel sys-
weak linear birefringence, the correlation length of non-tem in which coupling takes place between the two channels
monochromatic radiation may increase considerably as a res a result of random inhomogeneities.

1063-7842/99/44(7)/4/$15.00 864 © 1999 American Institute of Physics
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In order to calculate the correlation function of non-trum at the FRI entrance. The correlation length of non-
monochromatic radiation after passage through the singlanonochromatic radiation at the FRI exit without a polarizer
mode fiber, we use a model proposed in our earlier $ttmly was not considered in the present study.
describe random inhomogeneities in a single-mode fiber. In order to determine the correlation length, we calcu-
This model assumes that the axes of linear birefringence dated the visibility of the interference pattern at the FRI exit
the fiber are randomly twisted and that the entire length ofis a function of the optical path difference of the FRI ring
the fiber may be divided into sections of random lengthsystemAL for the counterpropagating waves
whose twist is random but constant. Regardless of the linear
birefringence of the fiber, the length of the random sections _ ! max— I min )
has a Poisson distribution with an average of 2.5cm and the I maxt Tmin’
random twist is uniformly distributed in the range? rad/m.
As we showed in Ref. 6, calculations of the paramétas a
function of the linear birefringence of a single-mode fiber
based on this model of random inhomogeneities give goo

wherel is the radiation intensity at the FRI exit.
The value ofy was calculated for two cases} the FRI
ing system was made from a fiber without random inhomo-

agreement with experiments carried out by various authorg(.ene't'es’ Zth? FRI ring sy_;tem was m‘.”‘de from a real. fiber
with random inhomogeneities. We write an expression to

using different types of single-mode fibers. It should be L2 : .
noted that in order to ensure that the envelope of the radigZ/culate the radiation intensity at the FRI exit

tion spectrum at the FRI exit is jagged, the twist of the axes ||+ 4+ E-|2+|EF +E; |?, )

of birefringence over the fiber length need not be random . o

and may vary periodically. In this last case, however, thevhereE, ,E;’ ,Ex , andE, are the components of the elec-
dependence of the visibility of the interference pattern at theric fields of the counterpropagating waves at the FRI exit.
FRI exit on the difference between the optical length of the  The calculations were made for an FRI ring system
armsAL will decrease periodically to zero. Figure 1 shows 20 km long, made of a single-mode fiber for which the dif-
the radiation spectrum at the FRI entrance and exit. Note thderence between the refractive indices in the slow and fast
in the case=<1, when the polarization nonreciprocity of the axes of linear birefringence wasn=10"°, using a 0.§um

FRI is small’® the spectra for the counterpropagating wavesradiation source and linewidths of 10 and 1 nm. The extinc-
at the FRI exit are almost the same. We also note that in théon coefficients of the polarizes were 10* and the azi-
absence of a polarizég=1), the spectrum for the orthogonal muths of the axes of linear birefringence at the FRI entrances
polarizations in each of the counterpropagating waves is mue; anda, coincided with the direction of transmission of the
tually complementary and, as we have already noted, thpolarizer. The dependence bbn AL constructed using ex-
spectrum of the total intensity of both polarizations of eachpression(2) resembles damped oscillations with a period
counterpropagating wave is the same as the radiation speegual to the wavelength against the background of a constant
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pedestal. The values df,,, and |, were defined as the in a single-mode fiber that the correlation length of radiation
maximum and minimum of the curve per period. The resultsafter propagating through an FRI ring system made of a
of the numerical simulation showed that the radiation specsingle-mode fiber with random inhomogeneities is consider-
trum at the FRI exit was highly jagged, as was predicted. ably greater than the correlation length without random in-
Figure 2 gives the dependenggAL). It can be seen homogeneities. This means that sources of nonmonochro-
from Fig. 2a that when the bandwidth of the radiation sourcgnatic radiation can be used in unequal-arm fiber
is 10 nm for optical length differences upAd_~25um, the  interferometers fabricated using single-mode fibers with
visibility of the interference pattern at the FRI exit does notweakly linear birefringence and interference patterns of sat-
depend on the presence of random inhomogeneities in thsfactory visibility can be obtained. The presence of random
fiber. For largeAL the visibility of the interference pattern at inhomogeneities in the fiber ring system of an FRI leads to
the exit of an FRI with a fiber ring system containing randomthe appearance of an additional phase drift of the interference
inhomogeneities is substantially high@pproximately one pattern at the FRI exit, unrelated to the rotation, whose order
thousand times highgthan that for a fiber without random of magnitude does not exceed as has been shown by the
inhomogeneities. When the bandwidth is 11iFig. 2b as  results of theoreticAf and numerical calculatior’sThis im-
far asAL~220um the visibility of the interference pattern poses the constraint that the fiber temperature must be kept
when random inhomogeneities are present in the fiber istable otherwise the phase of the interference of the counter-
slightly lower than that without inhomogeneities, but thenpropagating waves will vary with temperature. Thus, the
becomes substantially highéapproximately five hundred presence of random inhomogeneities in the single-mode fiber
times highey. on the one hand causes some deterioration in the FRI char-
The main result of this study is that we have shown byacteristics, since it leads to an additional zero shift but on the
means of a numerical simulation of random inhomogeneitiesther hand, it can produce an interference pattern of satisfac-
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