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Neutralization of H 2 ions in collisions with fast, multiply charged ions
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The neutralization of H2 ions in collisions with fast, multiply charged ions is considered in the
parameter region where the Born approximation applies. An analytical formula is obtained
for the H2 neutralization cross section in such collisions. ©1999 American Institute of Physics.
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Atomic collisions involving negative ions have been t
subject of intensive research in the past decades~see, e.g.,
Refs. 1–3 and the literature cited therein!. The study of such
collisions can have important practical applications~e.g., for
obtaining beams of fast neutrals1!. For calculating the neu
tralization cross sections of negative ions in collisions w
fast charged particles having relatively low charges (Z!v,
whereZ is the charge of the particle andv is the collision
velocity; here and below we use the atomic system of un!
one can use the Born approximation.4 In the present pape
we consider the neutralization of H21 ions in collisions with
fast, multiply charged ions~MCIs! in the parameter region
Z*v@v0 (v0 is the characteristic orbital velocity of th
weakly bound electron in H2), where the Born approxima
tion is inapplicable. We note that for certain values of Z a
v in this parameter region the H2 neutralization cross sec
tions have been measured2 for collisions with Ne ions (Z
<4) and with Ar and Xe ions (Z<8). The neutralization of
H2 in collisions with MCIs has been studied theoretically
Refs. 1–3, 5, and 6 by the method of classical Monte Ca
trajectories,1 by a method proposed in Ref. 7 as a gener
zation of the Keldysh theory8 for photoionization in a high
field,2,3 in a two-state model,5 and by the coupled channe
method.6 In the present paper the problem of H2 neutraliza-
tion is treated by the approach proposed in Refs. 9 and 10
calculating the ionization cross sections of atoms in co
sions with fast MCIs. Unlike the methods listed above, t
approach can yield an analytical solution for the cross s
tion, and the results can be used over a rather wide rang
collision parametersZ andv, which will be specified below.

Let us examine the problem. In order to calculate
neutralization cross section one needs to know the electr
wave functions of the negative ion. The H2 ion has two
electrons, which are usually treated theoretically under
assumption that one of them is found in an almost hydrog
like 1s orbital, while the other is weakly bound, in a diffus
orbital of radius;¸21;4 (¸2/250.0275 is the electron af
finity of H2). In this paper we shall describe the negative i
in the one-electron approximation, assuming that the wea
bound active electron moves in the field of a ‘‘frozen’’ co
of the H2 ion ~the proton plus the tightly bound electron!. It
is known~see, e.g., Ref. 11! that the motion of an individua
particle under the influence of other particles can be
scribed as motion of this particle in an effective nonloc
7371063-7842/99/44(7)/4/$15.00
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potential. As in Refs. 5 and 12, we shall describe the int
action of the active electron with the core by the nonlo
separable Yamaguchi potential13

V~r ,r 8!52lug~r !&^g~r 8!u, ~1!

whereg(r ) is chosen in the form

g~r !5g~r !5~b/2p!1/2 exp ~2br !/r ~2!

with b50.913 andl50.659 ~Ref. 12!; r is the distance be-
tween the active electron and the nucleus of the H2 ion.

With this potential the Schro¨dinger equation is easily
solved for both the discrete spectrum and the continuum.
example, the bound state wave function is

w0~r !5Nr21~exp~2¸r !2exp~2br !!, ~3!

whereN5((2p)21¸b(¸1b)b2¸)22)1/2 is a normalizing
factor, and¸50.235 is specified according to the know
value of the electron affinity.

The wave function~4! has the correct asymptotic form
for r¸@1:

w0~r !51.51~~2p!21¸!1/2exp~2¸r !/r , ~4!

remaining finite asr→0. Below we will use the wave func
tions obtained with the use of the potential~1! to describe the
eigenstates of the discrete and continuous spectra of H2.

Let us consider a collision of a fast MCI with a negativ
hydrogen ion. We assume that the hydrogen ion is at res
the origin of the coordinate system and that the MCI is mo
ing along a classical rectilinear trajectoryR(t)5b1vt,
whereb is the impact parameter. It is known14 that the main
contribution to the cross sections of inelastic processe
collisions with fast MCIs comes from the region of impa
parametersb.r 0, wherer 0 is the characteristic dimension o
the atomic system~in our caser 0.¸21, the characteristic
size of H2). For b.r 0 the field of the MCI in the region
where the hydrogen ion is found is assumed to be unifor

W~r ,t !5Z/uR~ t !2r u.Z/R~ t !2ZR~ t !•r /R3~ t !. ~5!

The first term in Eq.~5!, which does not depend on th
electron coordinatesr, leads to a slight phase shift which
the same for all states, and we shall henceforth ignore it a
does not lead to electronic transitions. Electronic transitio
© 1999 American Institute of Physics
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are due to the dipole interactionW1(t)52ZR(t)•r /R3(t),
which can be regarded as acting over a finite time interva
fact,

E
2`

1`

dt W1~ t !5W1~ t50!•T, ~6!

whereT5T(b)52b/v has the meaning of the effective tim
of interaction with the field of the MCI.

Following the approach proposed in Refs. 9 and 10,
divide the region of impact parametersb.r 0 into two sub-
regions: 1! r 0,b!vt, wheret.r 0 /v0 is the characteristic
orbital time for the weakly bound electron in the H2 ion, and
2! b@Z¸/v. Using the wave function~3!, we can estimate
the characteristic orbital velocity of the electron in this st
as v0.(¸b)1/2.¸1/2, which givest.¸23/2. For what fol-
lows it is important to note that subregion 1 exists under
conditionv@v0;¸1/2 and that subregions 1 and 2 partial
overlap under the conditionv2@Z¸1/2, and we shall there-
fore assume below that both of these conditions hold.

In collisions in the first subregion the effective collisio
time T(b) is short (T!t), and to calculate the neutralizatio
probability w20(b) in this region we will use the zeroth
order sudden approximation15

w20~b!5wg~b!

5E d3ku K wkUexpS 2 i E
2`

1`

dt W1~ t ! D Uw0L U2

5E d3kU^wkuexp~ iq•r !uw0&u2, ~7!

wherew0 andwk are the wave functions of the bound sta
and the states of the continuous spectrum of H2, and q
52Zb/b2v has the meaning of the average moment
transfer to the electron from the field of the fast MCI.

The probability~7! can be evaluated using the conditio
of completeness of the states of the negative ion,

uw0&K w0U1E d3kUwkL ^wku51,

which leads to the expression

wg~b~q!!512
16p2N4

q2
~ tan21~q/2¸!1tan21~q/2b!

22tan21~q/~¸1b!!!2. ~8!

The contribution to the neutralization cross section fro
the states in the region of impact parametersb1!b!b2

~whereb2!vt, and the value ofb1 will be determined be-
low! has the form

Ds20~b1<b<b2!52pE
b1

b2

db bwg~b!

58p
Z2

v2Eq2

q1dq

q3
p~q!, ~9!

wherep(q)5wg(b(q)), q1,252Z/(vb1,2).
n

e

e

e

Conditions in the region of small impact parametersb
<r 0 for Z*v are characterized by large~in comparison with
the binding energy of the active electron in H2) energy
transfers to the electron. Indeed, forb.r 0 the average en-
ergy transfer can be estimated as«>2Z2/b2v2. It follows
that this energy is large even forb>r 0 ~and, of course, be-
comes even larger in the regionb,r 0). The large average
energy transfer leads to detachment of the weakly bo
electron with a probability close to unity. Here it is importa
to note the following. Even though expression~7! is formally
applicable only forb.r 0, calculations using this formula
gives reasonable values~close to unity! for the neutralization
probability ~for Z*v) in the regionb&r 0 as well. There-
fore, for Z*v we shall use expression~7! to calculate the
neutralization probability even in the region of small impa
parametersb&¸21. Since a calculation shows that the co
tribution ~9! to the neutralization cross section forq1.1 is
practically insensitive to the choice of the value ofq1, we
shall simply setq15` (b150) in Eq. ~9!.

The integral overq in Eq. ~9! is evaluated as follows
Sincep(q);(q/¸)2 for q!¸, we make use of the relation
¸!v andq2!¸ ~the latter holds forZ/(¸v)!b2!v/¸3/2) to
write

Ds20~b1<b<b2!58p
Z2

v2Eq2

`dq

q3
p~q!

5152.2
Z2

v2 S Eq2

¸3/2/vdq

q3
q2

10.1652Ȩ
3/2/v

` dq

q3
p~q!D . ~10!

The second term in parentheses is independent of
chargeZ of the MCI and depends on the velocityv only
through the lower limit of integration. Sincȩ3/2/v!1, this
dependence is, to good accurac,y logarithmic. Indeed,
write the second integral in~10! in the form

Ȩ
3/2/v

q1 dq

q3
w~q!5~0.1652!21 ln ~Cv/¸3/2!. ~11!

Numerical integration of the left-hand side of Eq.~11!
for different values ofv in the regionv/¸3/2@1 shows that
C50.46 practically independently of the value ofv in this
region of velocities. Thus, using Eqs.~10! and ~11!, we ob-
tain for the contribution~9! to the cross section

Ds20~b<b2!5152.2
Z2

v2
ln S 0.23v

Z
b2D . ~12!

In the region of impact parametersb@Z/(¸v) the neu-
tralization probability is small. In fact, forz/(¸v)!b!vt
we can use expressions~7! and ~8! to obtain

w20~b!51.34
Z2

b2v2¸2
!1; Z/~¸v !!b!v/¸3/2. ~13!
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Therefore, to describe the ionization atb@Z/(v¸) we
shall therefore use perturbation theory in the interact
W1(t). In the first order of perturbation theory we have f
the ionization probability~see, e.g., Ref. 16!

w20~b!5wp~b!5
4Z2

v4 E0

`

dk k2vk1
2 yk1

2 S K0
2S vk1

b

v
D

1K1
2S vk1b

v D D , ~14!

where vk15(k21¸2)/2 are the frequencies of the trans
tions, yk1

2 is the mean square value of the component of
dipole matrix element for H2 (yk1

2 5xk1
2 5zk1

2 5r k1
2 /3), and

K0 and K1 are modified Bessel functions.
For the contribution to the neutralization cross sect

from collisions with impact parametersb3<b,`, where the
point b3 lies in the rangeZ/(v¸)!b3!v/¸3/2, we obtain

Ds20~b>b3!52pE
b3

`

db bwp~b!5152.2
Z2

v2
ln S 1.123v

veff b3
D ,

~15!

where

veff5expS E
0

`

dk k2yk1
2 lnvk1Y E

0

`

dk k2yk1
2 D 50.081.

Because forZ¸1/2!v2 the two investigated subregion
of impact parameters partially overlap, we can setb25b3

and, summing the contributions~12! and~15!, we obtain for
the ionization cross section

s205152.2
Z2

v2
ln S 3.2v2

Z D . ~16!

Let us refine the parameter region in which the appro
taken above can be used. First, we have made use o
‘‘suddenness’’ of the collision,v@v0.¸1/2. Second, the par
tial overlap of the two regions of impact parameters cons
ered can take place forZ¸1/2!v2. Third, to minimize the
error introduced by the method used to calculate the con
bution to the cross section from collisions with small impa
parameters (b&r 0), it is necessary to haveZ*v. Conse-
quently, this approach is applicable in the parameter reg
v&Z!v2/¸1/2, v@¸1/2. Here we should also note the fo
lowing. Since the active electron in H21 has a very low
binding energy and a low orbital velocity on atomic scal
even collisions with particles withZ;1 and v;1 can be
treated as collisions with fast, ‘‘multiply charged’’ ions, an
the neutralization cross section of H2 in such collisions can
be estimated using formula~16!.

Figure 1 shows a comparison of the neutralization cr
sections calculated using formula~16! ~the solid curve! with
the experimental data of Ref. 2 on the cross sections
neutralization of H2 ions by Ne ions (Z<4) and by Ar and
Xe ions (Z<8) at a collision energy of 200 keV in th
center-of-mass frame. The results of the calculation us
formula~16! are in good agreement with the available resu
of numerical calculations of other authors2,5,6 in this region
of parametersZ andv.
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In this paper, as in Ref. 5, a bound-state wave funct
of the form ~3! was used in the calculation of the H2 neu-
tralization cross section. At the same time, in Refs. 2 an
this cross section was calculated for a wave function take
the form ~4! ~but for all r, 0<r ,`). We should therefore
like to conclude with a brief discussion of the influence
the form of the bound-state wave function on the calcula
value of the cross section in the region¸r &1. For this pur-
pose we carried out an additional calculation of the H2 neu-
tralization cross section using the asymptotic form~5! of the
wave function for allr (0<r ,`). We found that the main
contribution to the cross section still comes from the reg
of impact parametersb.¸21, and the calculated value of th
cross sections exceed those calculated using~16! by approxi-
mately 20%. An uncertainty of;20% in the theoretical data
while not exceeding the experimental error in the neutrali
tion cross section,2 is still appreciable. Therefore a realist
choice of the wave function foŗ r &1 is one of the main
ways of improving the accuracy in calculating the cross s
tions for neutralization of H2 in collisions with fast, multiply
charged ions. We note in this regard that the use of¸0(r ) in
the form ~3! is preferable to form~4!, since the latter has
clearly the wrong behavior at smallr.
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Investigation of an unstable diffusion process in isothermal three-component gaseous
mixtures under steady conditions
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The diffusional transport of a ternary gaseous mixture of helium, Freon-12, and argon is studied
under isothermal conditions by a steady-flow method. The experiments were done at
atmospheric pressure and a temperature of 298 K. The data are compared with the theory. It is
shown that the mass transfer of the components is influenced by convective flows.
© 1999 American Institute of Physics.@S1063-7842~99!00207-X#
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INTRODUCTION

Experimental studies of isothermal diffusion in certa
ternary gaseous mixtures have shown that under certain
ditions the difference in the diffusion velocities of the com
ponents can lead to stratification of the gaseous mixture
cording to density, which is followed in a gravitational fie
by macroscopic motions forming distinct structures.1–3 The
process wherein the convective flows are superposed on
molecular transport is defined as diffusionally unstable. T
detailed investigation4–7 of this effect has revealed a compl
cated dependence on many parameters and conditions b
the same time has made it possible to formulate the follo
ing physical model for the diffusional instability and the su
sequent dynamics of the process. In the case of multicom
nent diffusion, differences in the mobility of the componen
give rise to stratification into regions of different densities.
the change in concentration over the characteristic lengt
this region is small, then the mass transfer will occur at
microscopic level, and no convective flow of the gaseo
mixture will be observed. However, the influence of su
parameters as the pressure, temperature, viscosity, etc
the system can lead to a decrease in the linear size of
stratified region. Then the gradients can increase to cer
critical values, whereupon a sudden transition~bifurcation!
to macroscopic flows occurs. The unstable regime can
velop further only if the size of the ‘‘convection cells’’1 is
the same as the geometric dimensions of the diffusion ch
nel. It is clear that in that case the conventional study
multicomponent diffusion, both in the experimental a
computational/theoretical arenas, will not permit a su
ciently correct estimate of the true contribution to the to
mass transfer from the convective flows in the unstable
gime. Previous experiments involving the study of the dif
sional instability were carried out in closed apparatus by q
sisteady or unsteady methods1–7 and could not eliminate the
effect of circulation of the gaseous mixture between the
per and lower parts of the apparatus, as has been show
exist for the mass transfer in ternary systems with a dilu
gas.8 The standard methods of studying both in t
thermodynamic9,10 and kinetic11,12 approximations permit
7411063-7842/99/44(7)/4/$15.00
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one to determine the boundaries of the domain of applica
ity of the diffusional representations with the help of stabil
theory,13,14 as has been done by the authors~in analogy with
Ref. 13! in the linear approximation for a plane-laye
model.15 However, the relations obtained in Ref. 15 cann
be used to obtain information about the contribution of m
lecular diffusion and convection to the total mass trans
The behavior of diffusionally unstable systems under ste
conditions becomes a question of fundamental importan
the answer to which will permit estimation of the magnitu
of various effects accompanying mass transfer in closed
paratus.

EXPERIMENTAL RESULTS AND PROCEDURE

The experiments were carried out on the steady-flow
paratus schematically illustrated in Fig. 1. The idea of
method is to achieve conditions of binary diffusion by equ
izing the total volume gas flows in opposite directions. Th
was achieved by adjusting the hydrodynamic drag of one
the gases at the outlet from the pipe. The procedure
analogous to that of Ref. 16. The initial mixtures of gas
from bottles1 were passed through pressure regulators
dibutylphthalate-filled manostats2 and then to buffer tanks3
and capillaries4 for smoothing out pulsations, and then
heat exchangers5. The volume flow rates of the mixture
were measured by inclined rheometers6. Then the steady ga
flows entered the diffusion cell7, which consisted of two slot
channels connected by a diffusion cuvette having a heigh
7.8 cm and a cross section of 5.531.05 cm. In the centra
part of the cuvette there was a 2.035.0 cm inspection port
into which flat panes of glass were cemented; this permi
observation of the dynamics of the unstable process i
shadow device12 ~Ref. 17!.

From the diffusion cell the gaseous mixtures we
passed through containers for selecting the gases for ana
8, capillaries9, and fine-control valves10 and then to soap-
film flow meters11 with a graduation of 0.1 ml/div. The
velocity of the film was determined by a timer to an accura
of 60.1 s. The temperature was regulated at the neces
© 1999 American Institute of Physics
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FIG. 1. Diagram of the experimenta
apparatus implementing the stead
flow method.
ich
te

el
er
es
s
by
a

ow
T
m
e

um
-
d

m
-1

e

th
lu

nd
n-

n

at

-
ts

r
if-
d to
no-

onic
the
t a
ry
is

s is

n of
places in the apparatus to an accuracy of60.1 K and
equalled 298.0 K at atmospheric pressure.

The steady flows of the initial gaseous mixtures, wh
were maintained constant and equal in volume flow ra
passed into the upper and lower inlets of the diffusion c
the lower-density mixture into the upper inlet and the high
density mixture into the lower inlet. The fine-control valv
were used to equalize the volume flow rates of the gase
the outlet from the cell, a condition that was monitored
means of the soap-film flow meters. Thus we modeled
binary diffusion process in which the observed volume fl
rates of the gases in opposite directions were equal.
initial gas mixtures were analyzed on an ITR-1 interfero
eter with an error of not more than 0.1%, while the mixtur
from the samplers after diffusion were analyzed on
Khrom-4 chromatograph with an error of 0.3%.

The experiments were carried out for the system heli
~He! 1 Freon-12 (R12) – argon~Ar!. This system was cho
sen because, for the given geometric dimensions of the
fusion cuvette, the unstable process occurred in it at at
spheric pressure over a wide range of Freon
concentrations in the binary mixture.2,5

In the experiment conditions were always maintain
such that the density of the mixture~pure gas! in the upper
cell was less than the density of the pure gas~mixture! in the
lower cell. Fluctuations of atmospheric pressure during
course of the experiment did not exceed 0.4% of the va
91.9 kPa, which was taken as the mean value.

Figure 2 shows the concentrations of helium a
Freon-12 that have crossed over as functions of the Freo
concentration in the binary mixture~the argon concentration
is equal to the sum of the concentrations of helium a
Freon-12!: n — He, s — R12 ~experimental values!; the
solid curves are an approximation of the experimental d
Also shown in Fig. 1 are the concentrations~the dashed
curve for He, the dotted curve forR12! calculated from the
Stefan–Maxwell equations18 on the assumption of a diffu
sion process. The following binary diffusion coefficien
,
l,
-

at

n

he
-
s
a

if-
o-
2

d

e
e

12

d

a.

were used in the calculation for the gas pairs atP50.101
MPa, T5298.0 K: DHe-Ar50.750, DHe2R1250.385,
DAr2R1250.067 cm2

•s21. The calculations were done fo
the equilibrium values of the mole fractions and initial d
ferences of the concentrations of the components, referre
mean atmospheric pressure, as in the experiment. One
tices that the stable process is characterized by a monot
dependence of the diffused amount of the components on
Freon-12 concentration in the mixture. Then, beginning a
concentration of 0.04 mole fraction Freon-12 in the bina
mixture in the experiments, a completely different picture
observed. When the mixture is above and the pure ga

FIG. 2. Helium and Freon-12 concentrations versus the concentratio
R12 in a binary mixture with helium, diffusing in argon atT5298.0 K.
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below, a maximum enrichment of the pure gas in helium a
freon occurs. The unstable regime is manifested m
strongly for systems in which the density of the mixture
equal to or somewhat lower than the density of the p
component~argon!. For the opposite orientation of the sy
tem, when the mixture flows along the lower channel of
diffusion cell and the argon flows along the upper, the infl
ence of convection resulting from the buoyancy forces
weaker. Visual observations of the unstable regime by
technique of Ref. 17 revealed the presence of structural
mations moving along the diffusion channel in opposite
rections. In certain situations one can observe relatively
mobile strata in the channel, which, as the Freon-12
‘‘accumulated,’’ transform into convective flows which lea
to perturbations of the hydrodynamic type.

If conditions of hydrostatic instability are realized in th
system, i.e., when a heavier mixture, say 0.6 mole frac
helium and 0.4 mole fraction Freon-12, flows in the upp
part of the channel and a lighter gas~here argon! flows in the
lower part, the convection mechanism loses its anoma
character. The partial flowsQi of the components will obey
the conditionQHe/QR125cHe/cR12, whereci is the initial
concentration of thei th component. The symbolsm, d in
Fig. 2 illustrate this situation.

According to our studies, the concentration data can
separated into the following regions: 1! for a Freon-12 con-
tent in the binary mixture in the range 0,c,0.04 mole frac-
tion the system is diffusionally stable; 2! if the Freon-12
concentration lies in the range 0.04,c,0.5 mole fraction,
then the diffusion process is unstable independently of
orientation of the gases in the cell; 3! in the interval 0.50
,c,1.00 the convective mechanism of diffusion of the lig
component is quenched. This is evidenced by the experim
tal data and the results of a calculation for helium. A co
parison with Freon-12 gives poorer agreement, a circu
stance that can be attributed to the presence of a diffu
‘‘gate’’ in such mixtures.19

INTERPRETATION OF THE EXPERIMENTAL RESULTS

The results attest to a significant influence of convect
flows on the mass transfer in the unstable region un
steady-state conditions. In this case the data obtained by
steady-flow method will differ from the data obtained
closed devices.

Let us examine this question for the transport
Freon-12 in the case when the binary mixture is above
pure gas. The Freon-12 that ‘‘falls’’ down is carried by th
counterflowing argon to the outlet of the diffusion cell. It ca
therefore be asserted that whether the gases have cro
over from upper to lower or vice versa, there is practically
chance for them to return. The picture is completely differ
for the unstable process in closed systems, e.g., in a two-
diffusion apparatus.5 There one also observes enrichment
the lower part of the apparatus in the heavy component,
convective flows which transport the gas from the upper p
of the apparatus to the lower part encounter an upward b
flow, and this mixture can also contain some amount of
heavy component. A so-called circulation of the gas aris
d
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which is most often manifested in an unstable process
systems with a ballast gas.8

The domain of applicability of Fick’s laws for the stead
case can be estimated in the framework of stability theo
which is widely used in problems of thermal convection.13,14

The macroscopic motion of an isothermal ternary gase
mixture is described by the Navier–Stokes equation, wh
is supplemented with the equations of mass transfer of
components:13

rF]u

]t
1~u•¹!uG52¹p1h¹2u1S h

3
1j D¹~¹•u!1rg,

]r

]t
1¹•~ru!50, rS ]ci

]t
1u¹ci D5¹• j i ,

j152r~D11* ¹c11D12* ¹c2!,

j252r~D21* ¹c11D22* ¹c2!, ~1!

whereu is the velocity,r the density,p the pressure,h andj
the coefficients of shear and bulk viscosity,g the accelera-
tion of gravity,ci the concentration of thei th component,j i

the diffusional flux density of thei th component, andDi j* the
practical diffusion coefficients, which are defined in terms
the binary diffusion coefficients.

Equation~1! must be supplemented with the equation
state of the medium,

r5r~c1 ,c2 ,p!, T5const, ~2!

which relates the thermodynamic parameters in~1!.
Since the unsteady perturbations of mechanical equ

rium are small, we neglect terms quadratic in the pertur
tions, and, assuming that the concentrations are distrib
linearly and choosing scale units of measurement~distances
are measured in units of the characteristic linear dimensiod
of the cavity, the time in units ofd2/n, the frequency in units
of D22* /d, the concentration in thei th component in units of
Aid, and the pressure in units ofr0nD22* /d2), for a plane
vertical layer~the z axis is directed upward and perpendic
lar to the plane formed by thex andy axes! we can rewrite
Eq. ~1! in the form

P22

]c1

]t
2u5t11

]2c1

]x2
1

A2

A1
t12

]2c2

]x2
,

P22

]c2

]t
2u5

A1

A2
t21

]2c1

]x2
1

]2c2

]x2
,

]u

]t
5

]2u

]x2
1~R1t11c11R2c2!, ~3!

wherePii 5n/Dii* is the Prandtl number,Ri5gb iAid
4/nDii*

is the Rayleigh number,t i j 5Di j* /D22* , u5uz ,

b i52
1

r0
S ]r

]ci
D

P,T

,

Aig52¹ci0 , n5h/r, g is a unit vector, the average quant
ties are denoted by a subscript 0, and the perturbed quan
are written without a subscript.
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We seek a solution of equations~3! in the form

$c1 ,c2 ,u%5$c1
0 ,c2

0 ,u0%sinF ~n11!
p

2
xGexp@2lt#, ~4!

wheren51,3,5, . . . are thecharacteristic odd modes of th
perturbations.

The boundary conditions presuppose the vanishing
the velocities and the perturbations of the component c
centrationsci on the vertical planes bounding the layer of t
gaseous mixture,

u5c15c250, x561. ~5!

Substituting~4! into the system of equations~3! and tak-
ing ~5! into account, we obtain for the steady case the eq
tion of the neutral line separating the diffusion region and
region of monotonic instability:

t11S 12
A2

A1
t12DR11S t112

A1

A2
t21DR2

5F ~n11!
p

2 G4Ft112t12t21F ~n11!
p

2 G2G . ~6!

Figure 3 shows a plot in the coordinatesR1 ,R2 (R1 is
helium andR2 is Freon-12! of the region of molecular trans
port I and the region of the diffusional instabilityII for n
51 in the limiting case in which there are no ‘‘cross’’ e
fects (t i j 5t j i 50). Points1–5 correspond to systems wit
the following Freon-12 concentrations in the binary mixtu
1 — 0.05,2 — 0.15,3 — 0.22,4 — 0.22,5 — 0.25 mole
fraction. In this system at Freon-12 concentrations of
mole fraction in the binary mixture a transition occurs fro
the state of diffusion to the region of the monotonic instab
ity; this agrees qualitatively with the experimental data. T
discrepancy between the experimental data and the re
calculated using Eqs.~3!–~6! is apparently due to the non
linear distribution of the component concentrations in
diffusion channel; this happens for systems in which the

FIG. 3. Regions of diffusionI and diffusional instabilityII : line MM is the
neutral line of monotonic perturbations;s are experimental data points.
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nary diffusion coefficients of the components obey the c
dition D23!D12<D13 ~Ref. 19!. We also note that the spec
trum of critical Rayleigh numbers in the steady diffusio
problem is determined by the wave numbers~modes of the
perturbations! characterizing the set of convective forms
motion.13

CONCLUSIONS

In summary, these studies have shown that in the ste
regime one can determine the existence regions of con
tive flows arising under the influence of the buoyancy forc
The proposed calculation technique permits estimation of
critical parameters of the transition to the regime of conc
trational convection.

This study was done with the financial support of t
Science Foundation of the Republic of Kazakhstan~Project
No. 171-96 FN!.
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Critical conditions for instability of a highly charged oblate spheroidal drop
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The spectrum of capillary oscillations of a charged oblate spheroidal drop is calculated in neglect
of the interaction between modes by means of a perturbation expansion in the small
deviation of the equilibrium shape of the drop from spherical. The critical conditions for instability
of its nth mode with respect to the self-charge are calculated in the form of an analytical
function describing how the dimensionless Rayleigh parameter characterizing the stability of the
drop depends on the value of the spheroidal deformation. ©1999 American Institute of
Physics.@S1063-7842~99!00307-4#
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The problem of studying capillary oscillations, stabilit
and self-dispersal of a highly charged drop is encountere
diverse physical problems~see, e.g., Refs. 1–3 and the li
erature cited therein!. In this regard the case of spherical a
prolate spheroidal drops have been studied repeatedly.3 At
the same time, the stability of charged oblate sphero
drops has hardly been studied, although there have be
few published reports on this subject.4,5 The problem of
studying the stability of charged oblate spheroidal drops is
interest in connection with the physics of storm clouds,
which, according to observational data, a certain fraction
the drops have oblate spheroidal form,6–8 and also for prob-
lems of liquid-metal epitaxy and inkjet printing, wher
charged drops landing on the substrate with a nonzero ve
ity have for a certain interval an oblate spheroidal form,3 and
also in connection with the problem of St. Elmo’s fire, whi
is due to the instability in an external electric field of wat
drops that have precipitated on the objects around which
Elmo’s fire is observed.9,10 In Ref. 4, where a charged obla
spheroidal drop was investigated for stability against axisy
metric deformations, it was found that such a drop is sta
Moreover, it was asserted4 that the stability of a charged
spheroidal drop against its self-charge increases with incr
ing degree of oblateness~with increasing eccentricity!, and it
was concluded that the concentration of such drops in clo
should be high. In Ref. 5 it was shown that the conclusion
Ref. 4 that oblate charged drops have a heightened stab
was reached prematurely and that including possible non
symmetric deformations destroys the stability of such dro
Since the calculations of Ref. 5 were of a preliminary, qua
tative nature and their correctness can be disputed, it is
visable to do them more rigorously.

1. Let us consider the problem of stability against no
axisymmetric disturbances of the surface of a highly char
oblate spheroidal drop of an ideal incompressible, perfe
conducting liquid immersed in an ideal incompressible n
conducting medium. We shall assume that the sphero
shape of the drop is due to ‘‘outside’’ forces of a nonelec
cal nature, e.g., forces of acoustic~ultrasonic! pressure
Pa5P0Y20(cosQ), as implemented in Ref. 11, whereP0 is a
constant andY20 is the axisymmetric spherical harmon
7451063-7842/99/44(7)/5/$15.00
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Y20(cosQ)[P2(cosQ), whereP2 is a normalized Legendre
polynomial. We assume that the drop carries a chargeQ and
that its volume is that of a spherical drop of radiusR. We
will denote the coefficient of surface tension of the interfa
by s and the densities of the drop and medium byr1 andr2 ,
respectively. We shall solve the problem by the method
plied previously in Refs. 12 and 13.

The equation of the surface of an oblate spheroidal p
turbed by thermal capillary wave motion in the linear a
proximation in the square of the eccentricity is written
follows in a spherical coordinate system with origin at t
center of the drop:

r 5r ~Q!1j~Q,w,t !'R@12e2
•h~Q!R21

1j~Q,w,t !E21#;

r ~Q!5
R~12e2!1/3

~12e2sin2Q!1/2
; h~Q!5

R

6
~3cos2Q21!.

~1!

Heree5(12a2/b2)1/2 is the eccentricity of the spheroid,a
andb are its semiminor and semimajor axes,j(Q,w,t) is the
perturbation of the equilibrium spheroidal surface of the dr
due to capillary oscillations occurring on account of the th
mal motion of the molecules and having an amplitu
;AkT/s (k is Boltzmann’s constant andT is the absolute
temperature!. We also note that for the majority of liquid
the amplitude of such thermal capillary oscillations is of t
order of tenths of a nanometer.

Under the stated conditions the wave motions in the d
and surrounding medium will be of a potential charact
with velocity potentialsC1 andC2 , respectively, which for
an incompressible liquid are harmonic functions:14

¹2C i50 ~ i 51,2!,

r→0: C1~r ,t !→0;

r→`: C2~r ,t !→0 ~2!

and at the interface~for r 5r (Q)1j(Q,w,t)) the following
boundary conditions are satisfied: equality of the veloc
components normal to the boundary,
© 1999 American Institute of Physics
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]C1

]n1
52

]C2

]n2
[

]C

]n
, ~3!

the kinematic boundary condition

]j

]t
'

]C

]n
, ~4!

and the dynamical boundary condition

DP52r1

]C1

]t
1r2

]C2

]t
1PE2Rs2Pa , ~5!

whereDP is the pressure differential between the drop a
medium,PE andP0 are the pressures exerted by the elec
field and surface tension, respectively, andn1 andn2 are the
outward and inward normals to the surface of the dropn
[n152n2).

To determine the electrical potentialF produced by the
perturbed charged drop in the surrounding space, wh
should be a harmonic function, we have the boundary-va
problem15

¹2F50, ~6!

r→`: F→0, ~7!

r 5r ~Q!1j: F5const. ~8!

In the exposition below, in the linear approximation
uju/R, all the derivatives in the boundary conditions~3!–~5!
will be referred to the unperturbed surface of the dr
r 5r (Q), as is standard procedure in the theory of waves
infinitesimal amplitude.14

We also require that the volume of the drop remain c
stant,

E
v
dV5

4

3
pR3, ~9!

and that its center of mass does not move,

E
v
rdV50. ~10!

In Eqs.~9! and~10! the integration is over the volume o
the drop.

2. The subsequent analysis is carried out in the fram
work of perturbation theory by means of an expansion in
small parameterse2 and j to terms of order;e2, j, and
e2j, i.e., in the linear approximation in each of these. W
note that the small parameterse2 andj are independent, an
thate2@j. For this reason it might seem that if we are kee
ing terms of order;e2j, we should also take the term;e4

into account. Although this is a completely valid conclusio
we shall see below that the contribution to the dispers
relation for the capillary oscillations of a charged spheroi
drop has only terms;j ande4j, the terms;e2,e4 vanish-
ing when when the kinematic boundary condition is impos
~it contains a partial derivative with respect to time!. Since
this dispersion relation is what we are after, it would serve
purpose to complicate the mathematical formulas by keep
terms;e4 below.
d
c
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e
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-
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-

,
n
l
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o
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The time dependence of the velocity fieldU(r ,t), pres-
sure fieldp(U,t), and perturbation of the equilibrium surfac
j(Q,w,t) will be assumed exponential,;exp(st), wheres is
a complex frequency.

The harmonic solutions of equations~2! for velocity po-
tentials C j (r ,t) in a spherical coordinate system are na
rally sought in the form of series in the normalized spheri
harmonicsYkm(Q,w):

C1~r ,t !5 (
k50

`

(
m52k

k

Akmr kYkm~Q,w!exp~st!,

C2~r ,t !5 (
k50

`

(
m52k

k

Bkmr 2k21Ykm~Q,w!exp~st!. ~11!

Since the perturbation of the equilibrium surface of t
drop j(Q,w,t) is related to the velocity potentialsC i(r ,t)
by the kinematic boundary condition~4!, the function
j(Q,w,t) should also be written as an expansion in spher
harmonics:

j~Q,w,t !5 (
k50

`

(
m52k

k

ZkmYkm~Q,w!exp~st!. ~12!

The coefficientsAkm , Bkm , andZkm in expansions~11!
and ~12! are related to one another by the boundary con
tions ~3! and ~4!.

Conditions ~9! and ~10! impose certain restrictions o
the form of the thermal perturbationj(Q,w,t) of the equi-
librium surface of the liquid; the essence of these can
elucidated by substituting expressions~1! and ~12! into ~9!
and ~10!. We note that in our statement of the problem t
function j(Q,w,t) is independent and completely unrelat
to the equilibrium spheroidal shape of the drop; in taking
integrals~9! and ~10! we can therefore ignore the ‘‘cross
terms;e2j, e4j, etc. As a result, the integrals~9! and~10!
in the linear approximation ine2 andj can be reduced to the
form

E
0

2pE
0

p

j~Q,w,t !sinQdQdw50; ~13!

E
0

2pE
0

p

j~Q,w,t !Y1m~Q,w!sinQdQdw50;

m50, 61. ~14!

By virtue of the orthonormality of the spherical harmo
ics, it follows from ~13! and ~14! that Z1m50 (m50,61),
Z0050. This means that the summation overk in ~12! begins
with k52. By virtue of of the boundary conditions~3! and
~4!, this also holds for the series~11!.

To use the boundary conditions~3!, one must first write
out an expression for the vector normal, which in the gene
case is given by the relation

n5
“F

u“Fu
; F5r 2@R2e2h~Q!1j~Q,w,t !#.

In the approximation adopted here, this relation has
form



r-

r
ng

-

th

e

g

er-
ing

on in

747Tech. Phys. 44 (7), July 1999 A. I. Grigor’ev and S. O. Shiryaeva
n'F11e2
1

R2

]h~Q!

]Q

]j~Q,w,t !

]Q Ger1
1

R F2
]j~u,w,t !

]Q

1e2
]h~Q!

]Q
2e2

1

R

]@h~Q!j~Q,w,t !#

]Q GeQ

2
1

R sinQ

]j~Q,w,t !

]w F11e2
h~Q!

R Gew , ~15!

whereer , eQ , ew are the unit vectors of the spherical coo
dinate system.

Substituting expansion~11! into the boundary condition
~3! and taking expression~15! into account, we obtain afte
straightforward but awkward transformations the followi
relation between the coefficientsAkm andBkm in expansions
~11!:

Bkm'2
1

k11 H Fk2e2S ak
11

k

k11
bk

1D¸k
mGR2k11Akm

2e2Fak
21

k22

k21
bk

2Ggk21
m R2k21Ak22,m2e2

3Fak
31

k12

k11
bk

3Ggk11
m R2k13Ak12,mJ , ~16!

where we have used the notationak
15k22k23, ak

2

50.5(k223k12), ak
350.5(k21k24); bk

15k213k21,
bk

250.5(k21k24), bk
350.5(k215k16),

¸k
m5

k1k23m

3~2k21!~2k13!
,

gk
m5

1

2k11 F ~k22m2!@~k11!22m2#

~2k21!~2k13! G1/2

. ~17!

The coefficientsAkm and Bkm are related to the expan
sion coefficientsZkm in Eq. ~12! by the kinematic boundary
condition ~4!. Substituting~11! and ~12! into ~4! and using
Eq. ~16!, we get

Akm'R12kk21$@11e2k21ak
1¸k

m#sZkm1e2

3~k22!21ak
2gk21

m sZk22,m1e2

3~k12!21ak
3gk11

m sZk12,m%;

Bkm'2R21k~k11!21$@12e2~k11!21bk
1¸k

m#sZkm

2e2~k21!21bk
2gk21

m sZk22,m2e2

3~k13!21bk
3gk11

m sZk12,m%. ~18!

3. In order to use the dynamical boundary condition~5!
one must write out expressions for the electrical pressurePE

and the pressure of surface tensionPs . The electrical poten-
tial F near the surface of the drop is determined by
solution of the boundary-value problem~6!–~8!, which is
conveniently sought in the form

F5F01F11F21F3 , ~19!
e

where F0 is the potential obtained in zeroth order in th
small parameters used in the expansion,F1 is the correction
;e2, F2 is the correction;j, and F3 is the correction
;je2.

Substituting~19! into ~6!–~8!, we straightforwardly ob-
tain the following set of boundary-value problems for findin
F j , where j 50,1,2,3:

¹2F j50,

r→`: F j→0;

r 5R: F05Q/R; F15e2h~Q!
]F0

]r
;

F252j~Q,w,t !
]F0

]r
;

F35e2h~Q!j~Q,w,t !
]2F0

]r 2
2j~Q,w,t !

]F1

]r

1e2h~Q!
]F2

]r
. ~20!

The potentialsF j will be sought in the form of series in
spherical harmonics:

F j~r ,t !5 (
k50

(
m52k

Ckm
j ~ t !•r 2k21

•Ykm~Q,w!. ~21!

Imposing successively the boundary conditions of diff
ent orders at the surface of the drop, we obtain the follow
expression for the potential in the vicinity of the drop:

F~r ,t !'
Q

R H R

r
2e2h~Q!

R3

r 3
1

1

R

3 (
k50

`

(
m52k

k

ZkmS R

r D k11

Ykm~Q,w!exp~st!

2e2
1

R (
k50

`

(
m52k

k F ~k12!¸k
mZkm

1
k

2
gk21

m Zk22,m1
1

2
~k14!gk11

m Zk12,mG
3S R

r D k11

Ykm~Q,w!exp~st!J . ~22!

Using the solution of equation~22!, we can write the
electrical pressure to the adopted accuracy as an expansi
the small parameters,

PE5
1

8p
~E!25

1

8p
~“F~r ,t !!2'PE

01PE~j!;

PE
0'

Q2

8pR4 F12e2
2h

R G ;
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PE~j!'
Q2

4pR4 (
k50

`

(
m52k

k H @~k21!2e2

3~k24!¸k
m#

Zkm

R
e2

1

2R
~k25!gk21

m Zk22,m

2e2
1

2R
~k27!gk11

m Zk12,mJ
3Ykm~Q,w!exp~st!. ~23!

Here PE
0 is the electrical pressure on the spheroidal surf

of the drop, undistorted by the capillary motion, andPE(j) is
the correction to it due to surface perturbationj(Q,w,t).
The pressure of surface tensionPs beneath the distorted su
face of the liquid in the general case has the form16

Ps5s~“•n!,

where the unit vector normal to the perturbed spheroidal
face is represented by expression~15!.

As a result, we can write the Laplace pressure as
expansion in small quantities:

Ps5Ps
01Ps~j!;

Ps
05

2s

R F12e2
2h

R G ;
Ps~j!'

s

R2 (
k50

`

(
m52k

k

$@~k21!~k12!1e22~k21k

14!¸k
m#Zkm1e2~k223k16!gk21

m Zk22,m

1e2~k215k110!gk11
m Zk12,m%

3Ykm~Q,w!exp~st!. ~24!

In our statement of the problem we postulated that
equilibrium shape of the drop was spheroidal; accordingly
the dynamical boundary condition~5! the sum of the terms
of zeroth order and the terms of first order ine2 goes to zero,
leaving the equilibrium shape. Then the sum of the ter
linear in j, which are due to the deformation of the equili
rium surface of the drop by thermal capillary motion, al
vanishes, i.e., Eq.~5! gives

r1

]C1

]t
2r2

]C2

]t
2PE~j!1Ps~j!50.

Substituting the solutions~11! into this relation and us-
ing relations~18!, ~23!, and~24! and the property of orthogo
nality of the spherical harmonics, we arrive at an infin
system of coupled equations for the coefficientsZkm :

H V2F1

k S 12e2
k13

k
¸k

mD1h
1

k11 S 12e2
k22

k11
¸k

mD G
1@~k12!~k21!1e22~k21k14!¸k

m#24W@~k21!

2e2~k24!¸k
m#J Zkm

R
2e2

1

2
gk21

m

e

r-

n

e
n

s

3H V2F1

k
1e2

k23

k221
hG22~k223k16!24W~k25!J

3
Zk22,m

R
2e2

1

2
gk11

m H V2F k14

k~k12!
1

1

k11
h G

22~k215k110!24W~k27!J Zk12,m

R
50, ~25!

where we have introduced the dimensionless parameters

V25s2
r1R3

s
, h5

r2

r1
, W5

Q2

16psR3
.

The equations of system~25! have an every-other type
of coupling, and the system therefore actually decompo
into two subsystems for the even and odd capillary mod
and it has nontrivial solutions when the determinant of
coefficients vanishes. This condition yields the dispersion
lation of the problem, which is also of infinite order. How
ever, in the linear approximation in the square of the ecc
tricity ;e2, when one can neglect the interaction of t
modes~which appears only in the approximation;e4), the
system of equations~25! reduces to a system of uncouple
equations for the individual modes, and the dispersion re
tion can be written in the relatively simple form

V2F1

k S 12e2
k13

k
¸k

mD1h
1

k11 S 12e2
k22

k11
¸k

mD G
1@~k12!~k21!1e22~k21k14!¸k

m#

24W@~k21!2e2~k24!¸k
m#50. ~26!

As the parameterW is increased and passes through
certain critical value, the square of the complex frequen
passes through zero and becomes positive; this corresp
to the appearance of two solutions varying exponentially
time, one of which is experimentally decaying and the oth
exponentially growing, i.e., the system becomes unsta
Thus, assuming in~26! that V250, we obtain the following
relation, which can be used to find the critical value of t
parameterW separating the stable and unstable solutions

W* '
k12

4 F11e2
k2@k~k11!23m2#

~k21!~k12!~2k21!~2k13!G
~k>2;m50;61; . . .6k!. ~27!

It should be recalled that the conditions that the volu
of the drop be constant~9! and that its center of gravity no
move ~10! forbid the excitation of modes withk50 and
k51; the minimum value of the indexk in ~27! is therefore
k52.

It follows from ~27! that for all the axisymmetric mode
(m50) the critical values of the parameterW increase with
increasing oblateness of the drop~with increasinge2). For
the nonaxisymmetric modes the value ofW can be increasing
or decreasing, depending on the value of the indexm. For
example, fork52 the coefficient ofe2 in ~27! is positive for
m50,61 and negative form562. This means that a highly
charged oblate spheroidal drop is stable against axisymm
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ric capillary oscillations and also against nonaxisymme
oscillations withm561 but is unstable with respect to non
axisymmetric oscillations withm562.

4. Let us conclude with the observation that a simi
problem can also be formulated for prolate spheroidal dro
the stability of which against axisymmetric deformations h
not yet been investigated. The equation of the unpertur
surface of a prolate spheroidal drop in a spherical coordin
system is

r ~Q!5
R~12e2!1/6

~12e2 cos2Q!1/2
.

Here e5(12b2/a2)1/2 is the eccentricity of the spheroid
andb anda are its semiminor and semimajor axes. Since
entire analysis was done in the approximation linear ine2,
the equation of the free surface of the drop distorted by th
mal capillary wave motion is of the form

r 5r ~Q!1j~Q,w,t !'R@11e2h~Q!R211j~Q,w,t !R21#,

i.e., differs from the analogous expression for an oblate sp
roidal drop only in the sign of the terms;e2. All of the
results obtained above can therefore easily be carried ov
the case of a prolate spheroid — one must simply invert
signs of the terms;e2. Ultimately, the expression determin
ing the critical value of the parameterW is

W* '
k12

4 F12e2
k2@k~k11!23m2#

~k21!~k12!~2k21!~2k13!G
~k>2;m50;61; . . .6k!. ~28!

It follows from ~28! that for all the axisymmetric mode
(m50), increasing the eccentricity of the drop leads to
c

r
s,
s
d

te

e

r-

e-

to
e

a

lowering of the critical conditions for instability with respec
to the self-charge. For the nonaxisymmetric modes (mÞ0)
the situation in regard to the stability is determined by t
value of the indexm. For example, for the fundamental mod
(k52) the critical value of the parameterW increases with
increasinge2 in the casem52, while for m51 it decreases,
i.e., the picture is opposite to that for an oblate spheri
drop.
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Some observations on the appearance of instability of a plane charged liquid surface
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A dispersion relation is obtained for the capillary oscillations of a hemispherical protrusion
~oblate or prolate! on the plane surface of a conducting liquid in a uniform electrostatic field
parallel to the symmetry axis of the protrusion. For the fundamental mode of the capillary
oscillations realized on the protrusion the critical dependence of the parameter characterizing its
stability in an external electrostatic field is obtained as a function of the square of the
eccentricity as the protrusion is drawn out from the an oblate to a prolate hemisphere. Such a
change in shape lowers the threshold electric field for instability of the protrusion.
© 1999 American Institute of Physics.@S1063-7842~99!00407-9#
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When an infinite vacuum interface of a perfectly co
ducting liquid of densityr and surface tensions is subjected
to an electrostatic fieldE0 perpendicular to the free surfac
of the liquid, it is known1–6 that the interface is unstable wit
respect to perturbations of the form

z5z0 exp~St2kx! ~1!

(S is the complex frequency,t is the time,k is the wave
number, andx is the horizontal coordinate! if

WTF>
1

ak
1ak, a5A s

rg
,

WTF5
E0

2

4p~rgs!1/2
[

E0
2a

4ps
. ~2!

Herea is the capillary constant,g is the acceleration of free
fall, andWTF is the dimensionless Tonks–Frenkel parame
which characterizes the stability of the surface of the liq
against the charge induced on it by the fieldE.

The lowest value of the electric fieldE0 for which the
most easily excited mode withk51/a becomes unstable, i.e
for which the Tonks–Frenkel instability is realized, is dete
mined from the critical value of the Tonsk–Frenkel para
eterWTF52 ~Refs. 1 and 2!. Perturbations of the plane su
face of the liquid in the form~1! exist if only because of the
thermal motion of the molecules, in which casez0'AkT/s,
wherek is Boltzmann’s constant andT is the absolute tem
perature, and if the surface charge~the field E) reaches a
high enough value that condition~2! holds, the amplitudes o
some of the waves of the form~1! will begin to grow expo-
nentially in time.

The above statements are valid in the framework of
linear theory of instability (z0!1/k), which predicts the ex-
ponential growth of the amplitude of the perturbation to v
ues at which the amplitudez of the perturbation become
comparable to the wavelength 1/k, i.e., z,1/k; for z*1/k
one can no longer be guided by the results of this theory
the present time our understanding of the nonlinear stag
development of the Tonks–Frenkel instability is uncle
7501063-7842/99/44(7)/8/$15.00
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.

Nevertheless, it has been shown theoretically1–3 and experi-
mentally7 that the nonlinear stage of the Tonks–Frenkel
stability results in the formation of the so-called Tayl
cones, which are prolate hemispherical protrusions on
liquid surface with a conical tip from which highly charge
droplets are emitted, carrying away the excess charge8–10

The mechanism of formation of Taylor cones has been
subject of many studies.3,7,11–14Nevertheless, by virtue of o
the nonlinearity of the problem, correct results have be
obtained only for the initial and final stages of formation
these protrusions. The main regularities in the growth
emitting protrusions are known only on the qualitative lev
of the first paper by Tonks,1 although the problem itself is o
significant interest in connection with numerous academ
technical, and technological applications.

To reach reasoned conclusions about the intermed
stage of evolution of Taylor cones, it is useful to consider
question of stability of hemispherical protrusions~oblate or
prolate! on a plane surface of a conducting liquid in an ele
trostatic fieldE perpendicular to the surface. By solving th
problem and noting the behavior of the critical value of t
electrostatic field for instability of the protrusions as a fun
tion of the value of the spheroidal deformation, one can
tain information about the evolution of emitting protrusio
forming upon the onset of instability, when in the course
their growth they pass through a hemispherical shape.

Since we are interested specifically in the critical con
tions for instability of hemispherical protrusions of differe
eccentricities, we set aside the question of the mass flow
the growing protrusion and consider a model problem of
stability of a hemispherical drop with a given eccentricit
lying on an electrically conductive solid substrate in an el
trostatic field applied perpendicular to the substrate. T
statement of the problem may be of interest for treating
Elmo’s fire,9,10 for explaining the sharp enhancement of t
energy loss in electrical transmission lines during ra
storms,15 and for analysis of explosion and fire safety issu
in the storage of flammable liquids.16

1. Consider a drop of incompressible, perfectly condu
ing liquid with densityr and surface of surface tensions,
© 1999 American Institute of Physics
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lying on a plane conducting substrate. Let the whole sys
be located in an external uniform electrostatic field perp
dicular to the plane of the substrate. We assume that the
has the shape of an oblate axisymmetric hemispheroid
that the equation of the free surface in a spherical coordin
system with origin at the center of the base of the drop i

r ~Q!5
R~12e1

2!1/3

~12e1
2 sin2 Q!1/2

, e1
2512

d2

c2
,

whered andc are the semiminor and semimajor axes of t
spheroid, withd along the symmetry axis, andR is the radius
of a hemisphere of the same volume as the drop.

Let j(Q,t) be a perturbation of the equilibrium hem
spheroidal shape of the drop, due to the thermal motion
the molecules of the liquid. We consider the problem of c
illary oscillations and stability of the surface of such a dro
We shall derive the solution in an approximation linear in t
perturbation of the hemispheroidal shape of the dropuju/R
and in the square of the eccentricitye1

2 with accuracy to
terms;e1

2uju/R. In this approximation the equation of th
surface of the drop is written in the form

r 5r ~Q!1j'RF12e1
2 h~Q!

R
1

j

RG ;
h~Q!

R
[

1

6
~3 cos2 Q21!. ~3!

When the drop has the shape of a prolate hemispher
the equation of its free surface becomes

r ~Q!5
R~12e2

2!1/6

~12e2
2 cos2 Q!1/2

; e2
2512

c2

d2
,

whered andc are the semimajor and semiminor axes of t
spheroid, withd along the symmetry axis.

The expansion of this expression in powers ofe2
2 differs

from ~3! only in the sign of the coefficients ofe1
2 ande2

2:

r 5r ~Q!1j'RF11e2
2 h~Q!

R
1

j

RG ;
h~Q!

R
[

1

6
~3 cos2 Q21!. ~3a!

We shall henceforth regarde2 as some formal real pa
rameter that is not required to be the nonnegative squar
the eccentricity, and we shall solve the problem simu
neously for both the oblate hemispheroidal shape, wit
square of the eccentricitye1

2[2e2 ~when e2,0), and for
the prolate hemispheroid, with a square of the eccentri
e2

2[e2 ~if e2.0).
Since the liquid is assumed ideal, the wave motion in

drop will be potential motion. A complete mathematical fo
mulation of the problem of calculating the capillary oscill
tions of such a drop will have the form

¹2c50; ~4!

r→0: c→0; ~5!
m
-
op
nd
te

of
-
.

id,

of
-
a

ty

e

r 5r ~Q!1j, 0<Q,
p

2
:
]j

]t
'~n•“ !c; ~6!

DF2r
]c

]t
1FE5Fs ; ~7!

¹2F50; ~8!

r→`: F→F`52E0z52E0r cosQ; ~9!

r 5r ~Q!1j; Q5
p

2
: F5const50. ~10!

Heren is the unit vector normal to the surface of the dro
c(r ,t) is the velocity potential,F is the electrical potential,
DF is the pressure differential inside and outside the dr
FE is the pressure exerted by the electric field, andFs is the
pressure of surface tension.

2. We represent the perturbationj(Q,t) of the hemi-
spheroidal surface of the drop in the form of a series
Legendre polynomials:

j~Q,t !5(
j 50

`

Zj~ t !Pj~cosQ!, ~11!

whereZj (t) are the time-dependent amplitudes of the in
vidual capillary modes of the drop.

In the oscillations of the surface of the drop, its volum
remains unchanged:

E
0

2p

dwE
0

p/2

sinQ dQ E
0

r (Q)1j

r 2dr2
2p

3
R3

'(
j 50

`
Zj~ t !

R
3E

0

1

Pj~x!dx50.

Here we have neglected terms;e2j on account of the fact
that the spheroidal deformation of the hemispheroid is in
pendent of the perturbation of the free surface of the liqu
Legendre polynomials on a hemisphere obey the inte
relations17

E
0

1

Pm~x!dx5H 1, if m50;

0, if m52n;

Am , if m52n11;

E
0

1

Pn~x!Pm~x!dx

5H 1

2n12
, if m5n;

0, if n2m52nÞ0;

Bnm , if m52n11 and n is even;

Aj[
~21!2m~2m!!

22m11m! ~m11!!
;
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Bnm[
~21!

n12 j
2 ~2m11!! n!

2n12m~n22m21!~n12m12!F S n

2D ! m! G2 .

~12!

With ~12! taken into account, the condition of consta
volume of the drop becomes

3
Z0~ t !

R
1(

j 50

`

3A
Z2 j 11~ t !

R
50,

and consequently,

Z05Z2 j 1150; ~ j 50,1,2, . . .!, ~13!

i.e., the zeroth mode and all the odd modes are not exc
Therefore, expression~11! can be rewritten as follows:

j~Q,t !5(
j 51

`

Z2 j~ t ! P2 j~cosQ!. ~14!

The solution of equation~4! which satisfies the boundar
condition ~5! has the following form in a spherical coord
nate system:

c~r ,t !5 (
m50

`

Cm~ t !r mPm~cosQ!. ~15!

HereCm(t) is the time-dependent amplitude of the potent
motions of the liquid due to the different modes. We wr
the unit vector normal to the surface of the perturbed he
spheroid in the approximation linear ine2 and uju/R as

n'F12e2
1

R2

]h~Q!

]Q

]j~Q,t !

]Q Ger2
1

R Fe2
]h~Q!

]Q

1
]j~Q,t !

]Q
2e2

1

R

]

]Q
~h~Q!j~Q,t !!GeQ , ~16!

whereer andeQ are unit vectors of the spherical coordina
system.

The kinematic boundary condition~6! with allowance
for expression~16! has the form

r'RF11e2
h~Q!

R G : ]j

]t
'

]c

]r
2e2

1

R
2

]h~Q!

]Q

1

r
2

]c

]Q
.

~17!

We assume that

Zm~ t !5Zm exp~St!. ~18!

Substituting~14! and~15! into ~17!, we reduce the kine-
matic boundary condition to the form

(
j 51

`

SZ2 j~ t !P2 j~cosQ!

' (
m50

`

Cm~ t !R(m21)FmPm~cosQ!1e2m~m

21!
h~Q!

R
Pm~cosQ!2e2

1

R

]h~Q!

]Q

]Pm~cosQ!

]Q G .
~19!
t

d.

l

i-

In the calculations below we shall use the recurrent
pansions for the Legendre polynomials:17

cosQP~cosQ!5amPm11~cosQ!1bmPm21~cosQ!;

h~Q!

R
Pm~cosQ!5

1

2
mmPm12~cosQ!1¸mPm~cosQ!

1
1

2
zmPm22~cosQ!;

sinQ
dPm~cosQ!

du
5mam@Pm11~cosQ!

2Pm21~cosQ!#;

1

R

]h~Q!

]Q

dPm~cosQ!

dQ
52mmmPm12~cosQ!

13¸mPm~cosQ!1~m

11! zmPm22~cosQ!;

am[
~m11!

~2m11!
; bm[

m

~2m11!
; mm[amam11 ;

¸m[
m~m11!

3~2m21!~2m13!
; zm[bm21bm . ~20!

Using ~20!, we transform~19! to

(
m50

` H SZm~ t !dm,2j2@m1e2~m~m21!

23!¸m#Cm~ t !R(m21)2e2
1

2
~m21!~m

22!mm22Cm22~ t !R(m23)2e2
1

2
@~m12!~m11!

22~m13!#zm12Cm12~ t !R(m11)J Pm~cosQ!50.

By virtue of the orthogonality of the Legendre polyno
mials, this equation holds if the coefficients of the differe
Pm all vanish. As a result, we obtain an infinite system
linear coupled equations for the coefficientsCm(t). For m
52 j , where j 51,2,3,4, . . . the system will be inhomoge-
neous, and, solving it by the method of successive appr
mations, we straightforwardly find

C2 j~ t !'
1

2 jR(2 j 21) H SZ2 j~ t !

2e2F2 j ~2 j 21!23

2 j
¸2 jSZ2 j~ t !

1
~ j 21!~2 j 21!

2~ j 21!
m2 j 22 SZ2 j 22~ t !

1
~ j 11!~2 j 11!2~2 j 13!

2~ j 11!
z2 j 12SZ2 j 12~ t !G J .

~21!
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For m52 j 11, wherej 50,1,2, . . . , weobtain a homo-
geneous system of equations with a nonzero determin
Such a system has only the trivial solution

C2 j 11~ t !50 ~ j 50,1,2, . . .! . ~22!

Let us write out the terms in Eq.~7!. The pressure ex
erted by the capillary forces on an arbitrary surface is de
mined by the well-known relation

Fs5s~¹•n!, ~23!

wheren is a unit vector normal to the surface.
For the surface~3! we find, using~16! and ~14!, that

Fs'2
s

R F11e22
h~Q!

R G1
s

R (
j 51

` F ~2 j 21!~2 j 12!

22b2 j e2
h~Q!

R G Z2 j~ t !

R
P2 j~cosQ!;

bm[m21m14. ~24!

Using relations~20!, we can reduce this expression
the form

Fs'Fs
(0)1dFs~j!52

s

R FP0~cosQ!1e2
2

3
P2~cosQ!G

1
s

R (
j 52

` H @~2 j 21!~2 j 12!2e22¸2 jb2 j #
Z2 j~ t !

R

2e2b2 j 22m2 j 22

Z2 j 22~ t !

R

2e2b2 j 12z2 j 12

Z2 j 12~ t !

R J P2 j~cosQ!, ~25!

whereFs
(0) is the pressure exerted by capillary forces on

unperturbed surface of a drop containing terms of zero o
of smallness and terms;e2; dFs(j) is the correction to the
capillary pressure due to the perturbationj(Q,t) and con-
tains terms;j and;e2j.

3. In order to write an expression for the pressure
erted by the electric field on the surface of a drop we m
solve the boundary-value problem~8!–~10!. We write the
electrical potentials in the form of an expansion,

F5F01F11F21F3 , ~26!

whereF0 is the zeroth order potential,F1 is the correction
of order e2, F2 is the correction of orderj, andF3 is the
correction of ordere2j.

Substituting ~26! into ~8!–~10!, we obtain four
boundary-value problems for each of the functionsF (q
51,0,2,3,)

¹2Fq50 ~q50,1,2,3!, ~27!

at r→`: F0→2E0rcosQ,

Fq→0 ~q51,2,3!; ~28!

at Q5
p

2
: Fq→0 ~q50,1,2,3!; ~29!
nt.

r-

e
er

-
t

at r 5R: F050,

F152e2h~Q!
]F0

]r
, F252j~Q,t !

]F0

]r
,

F352e2h~Q!j~Q,t !
]2F0

]2r

2j~Q,t !
]F1

]r
e2h~Q!

]F2

]r
. ~30!

The solutions of the above problems of finding potenti
Fq which satisfy conditions~28! and ~29! should be sought
in the form

F0~r ,Q!5 (
m50

`

@Am
(0) r m1Dm

(0) r 2(m11)#Pm~cosQ!;

Fq~r !5(
j 50

`

D2 j 11
(q) ~ t !S R

r D 2 j 12

P2 j 11~cosQ!

~q51, 2, 3!. ~31!

Substituting these equations and relation~14! into the
boundary conditions~28!–~30! and taking~20! into account,
we obtain expressions for the unknown coefficientsAm

( j ) and
Dm

( j ) :

A1
(0)52E0 ; Am

(0)50~;mÞ1!;

D1
(0)5E0R3; Dm

(0)50~;mÞ1!;

D1
(1)5

2

5
e2E0R; D3

(1)5
3

5
e2E0R;

D2m11
(1) 50 ~m52,3,4, . . .!;

D2 j 11
(2) 53E0@a2 jZ2 j~ t !1b2 j 12Z2 j 12~ t !#;

D2 j 11
(3) 5e23E0S a2 jF2

4

15
12~ j 12!¸2 j 11

1~ j 11!a2 j 21b2 j GZ2 j~ t !1b2 j 12

3F2
4

15
12~ j 12!¸2 j 111~ j 13!a2 j 12b2 j 13G

3Z2 j 12~ t !1~ j 11!a2 j 22m2 j 21Z2 j 22~ t !

1~ j 13!b2 j 14z2 j 13Z2 j 14~ t ! D ;

~ j 50,1,2, . . .!. ~32!

The coefficientsam , bm , zm , andmm are defined in~20!.
We can now write out expressions for the electric fie

and the pressure exerted by it on the free surface of the d
r 5R1e2h(Q)1j(Q,t):
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E52“•F'H E0 cosQF32e22S 2

5
23

h~Q!

R D G
26E0 cosQF12e22S 7

15
23

h~Q!

R D G j~Q,t !

R

1(
j 50

`

~2 j 12!F S 12e2~2 j 13!
h~Q!

R D D2 j 11
(2) ~ t !

R

1
D2 j 11

(3) ~ t !

R GP2 j 11~cosQ!J er

1H e2E0sinQS 116
h~Q!

R D23E0sin

3QF11e2S 7

5
111

h~Q!

R D G j~Q,t !

R

2(
j 50

` F S 12e2~2 j 13!
h~Q!

R D D2 j 11
(2) ~ t !

R

1
D2 j 11

(3) ~ t !

R G dP2 j 11~cosQ!

dQ J eQ .

FE5
E2

8p
'

9E0
2

8p
cos2 QF12e2S 8

15
24

h~Q!

R D G
2

1

4p H 6E0
2F116

h~Q!

R G j~Q,t !

R
2e26E0

2

3F13

15
2

9

15

h~Q!

R
242S h~Q!

R D 2G j~Q,t !

R

23E0 cosQ(
j 50

`

~2 j 12!F S 12e2S 4

15
1~2 j

11!
h~Q!

R D D D2 j 11
(2) ~ t !

R
1

D2 j 11
(3) ~ t !

R GP2 j 11~cosQ!

1e2E0sinQF116
h~Q!

R G
3(

j 50

` D2 j 11
(2) ~ t !

R

dP2 j 11~cosQ!

dQ J .

Using ~14!, ~20!, and the expressions~32! for
D2 j 11

(2) (t)/R and D2 j 11
(3) (t)/R and performing some straigh

forward but extremely awkward manipulations, we arrive
an expression for the electrical pressure on the surface
hemispheroidal drop in the form of an expansion in Legen
polynomials:

FE'F(0)1dFe~j!5
3E0

2

8p H P0~cosQ!

12F11e2
18

35GP2~cosQ!1e2
48

35
P4~cosQ!J

1
9E0

2

8p (
j 51

` H e2~3 j 27!m2 j 24m2 j 22

Z2 j 24~ t !

R

t
f a
e

1m2 j 22@~2 j 22!1e2f j
(1)#

Z2 j 22~ t !

R

1@~2 j 22!g2 j 2112 j g2 j1e2f j
(2)#

Z2 j~ t !

R

1z2 j 12@2 j 1e2f j
(3)#

Z2 j 12~ t !

R

1e23~ j 21!z2 j 12z2 j 14

Z2 j 14~ t !

R J P2 j~cosQ!;

gm5ambm11 ;

f m
(1)[~3m27!g2m231~5m27!g2m221~m26!g2m21

1~3m24!g2m2
1

15
~31m261!;

f m
(2)[g2m21F ~m26!g2m211~5m27!g2m22

2
1

15
~31m261!G1g2mF ~m25!g2m11

1~5m22!g2m2
1

15
~31m230!G

12~3m25!g2m21g2m ;

f m
(3)[3~m22!g2m211~5m22!g2m1~m25!g2m11

13~m21!g2m122
1

15
~31m230!. ~33!

4. Let us update the hydrodynamic term in the dynami
boundary condition~7! with the use of the solution~15! and
the coefficients~21! and ~22!, the functional form~18!, and
relations~20!. As a result, we find that the following equa
tions hold on the free surface of the drop:

r
]C

]t
'rS(

j 51

`

C2 j~ t ! R2 jF11e22 j
h~Q!

R GP2 j~cosQ!;

r
]

]t
'rR2S2 (

j 51

`
1

2 j F S 11e2
~2 j 13!

2 j
¸2 j D Z2 j~ t !

R

1e2
1

2
m2 j 22

Z2 j 22~ t !

R

1e2
j 12

2 j 12
z2 j 12

Z2 j 12~ t !

R GP2 j~cosQ!. ~34!

From the dynamical boundary condition~7! on the un-
perturbed surface of the drop we obtain the equation

DF1FE
(0)5Fs

(0) ,

which to zeroth order gives for the pressure different
across the unperturbed surface

DF52
s

R
2

3E0
2

8p
,
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and which to first order ine2 gives the familiar relation18,19

between the magnitude of the electric field and the squar
the eccentricity of the drop,e2:

e2'
9

16p

E0
2R

s
.

On the unperturbed surface of the drop the dynam
boundary condition~7! is written

2r
]c

]t
1dFE~j!5dFs~j!.

Substituting into this equation expressions~25!, ~33!,
and ~34! and making use of the orthogonality of the Le
endre polynomials, we obtain an infinite system of line
homogeneous coupled equations for the unknown amplitu
Z2 j (t)/R:

H 2V2
1

2 j F11e2
~2 j 13!

2 j
¸2 j G1W@~2 j 22!g2 j 21

12 j g2 j1e2f j
(2)#2@~2 j 21!~2 j 12!

2e22¸2 jb2 j #J Z2 j~ t !

R
1H 2V2e2

~ j 12!

4 j ~ j 11!

1W@2 j 1e2f j
(3)#1e2b2 j 12J z2 j 12

Z2 j 12~ t !

R

1H 2V2e2
1

4 j
1W@~2 j 22!1e2f j

(1)#1e2b2 j 21J
3m2 j 22

Z2 j 22~ t !

R
1$e2W3~ j 21!z2 j 12z2 j 14%

3
Z2 j 14~ t !

R
1$e2W~3 j 27!m2 j 24m2 j 22%

Z2 j 24~ t !

R
50;

V2[
rR3

s
S2; W[

9

4p

E0
2R

s
. ~35!

5. System~35! has a nontrivial solution if the determ
nant of the coefficients of theZj (t) equals zero. This condi
tion yields the dispersion relation of the problem:

det~amn!50;

amm52V2
1

2m F11e2
2m13

2m
¸2mG

1W@~2m22!g2m2112mg2m1e2f m
(2)#

2@~2m21!~2m12!2e22¸2mb2m#;

am m115H 2V2e2
~m12!

4m~m11!
1W@2m1e2f m

(3)#

1e2b2m12J z2m12 ;
of

l

r
es

am m215H 2V2e2
~1!

4m
1W@~2m22!1e2f m

(1)#

1e2b2m22J m2m22 ;

am m1253~m21!e2Wz2m12z2m14 ;

am m225~3m27!e2Wm2m24m2m22 ;

am m1h50 ~m51,2,3,. . . ; h563,64, . . .!. ~36!

Expressions foram , bm , zm , andmm are given in~20!,
and for gm and f m

( i ) in ~33!. In a system described by th
dispersion relation~36!, unstable solutions, exponentially in
creasing in time, appear when the free coefficient of the s
tem ~36! goes to zero, which corresponds to the appeara
of a zero solution forV2. Therefore, settingV250 in ~36!,
we obtain an equation of infinite order relating the critic
value of the parameterW for the onset of instability of the
mth mode and the deformation parametere2. The equation
thus obtained is conveniently solved by the method of s
cessive approximations, where the determinant of infinite
der is successively approximated by determinants of incre
ing finite order.20

The equation relatingW and e2 has, according to~14!,
an infinite number of solutions for different even capilla
modes of the hemispheroidal drop. We recall that the he
spheroidal deformation is characterized by a real param
e2: in the regione2,0 it is equal to the square of the ecce
tricity of the oblate hemispheroid taken with a minus sig
e250 corresponds to a regular hemisphere, ande2.0 is the
square of the eccentricity of a prolate hemispheroid.

Figure 1 shows the dependence of the critical value oW
for the second~branch1! and fourth~branch2! modes cal-
culated in the approximation of a 7th-order determinant. T
calculations show that in this approximation the accuracy
the determination of the critical values ofW for the funda-
mental mode is determined by the machine precision. Fr
the nature of the behavior of curves1 and2 one can say tha
the critical conditions for the onset of the instability studi
here tend to decrease as the hemispheroidal protrusio
drawn up from an oblate to a prolate shape. The res
show, in particular, that for drops that have precipitated

FIG. 1. Critical value of the Taylor parameter versus the square of
eccentricity of a hemispheroidal protrusion on a plane free surface
conducting liquid.
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electrical transmission lines, on tall objects during storms
on the walls of fuel tanks, the critical conditions for the ons
of electrostatic instability are considerably lower than t
critical conditions for the onset of the Tonks–Frenkel ins
bility.

6. As we have said above, the critical conditions f
instability of a charged plane surface obtain forWTF.2.
This means that for any specific electrically conducting l
uid in a uniform electrostatic fieldE normal to the plane of
the free surface of the liquid, as this field is increased t
value determined from the instability criterion@see Eq.~2!#

ETF
0 >A8pArgs, ~37!

the charged free surface of the liquid will lose stability.
other words, this happens when the attractive forces exe
by the electric fieldE0 on the charges induced on the fre
surface of the drop by the fieldE0 itself, which tend to in-
crease the area of the free surface of the liquid, exceed
capillary forces that tend to diminish the area of the fr
surface. As a result, virtual perturbations of the free surf
of the liquid due to the thermal motion of its molecule
which in the stable state have a physically infinitesimal a
plitude, begin to grow exponentially in time with a grow
rate that is determined by the amplitude of the virtual pert
bation at the time of the onset of instability~see, e.g., Ref.
21!. As the amplitude of the growing perturbation increas
so should the growth rate of the instability~or, in other
words, the rate of increase of the amplitude!, i.e., there is
positive feedback. Some of the behavioral regularities of
phenomenon can be investigated using relations~36!.

First, we see from relations~36! and Fig. 1 that as the
amplitude of the virtual hemispheroidal perturbation of t
free surface increases, the critical value of the parameterW*
for it decreases; this means that the critical value of the e
tric field E* at which the hemispheroidal protrusion becom
unstable is lowered. Since the instability of the initial pla
surface began at a value of the fieldETF

0 determined by rela-
tion ~37! and which remains unchanged during the en
development of the instability, we haveE* ,ETF

0 . In other
words, the initial fieldETF

0 will be above the critical field for
the hemispheroidal protrusion, and the rate of growth of
parameter in time~its exponential growth rate! is determined
by the differenceWTF

0 2W* at any point in time.
Using relations~36! in the approximation linear ine2

and ignoring the interaction of the modes, we can write
an expression for the exponential growth rate of a hemisp
roidal protrusion when its eccentricity is zero,e250, i.e.,
when the shape of the protrusion as it changes from an ob
to a prolate hemispheroid, passes through a hemisphe
shape.

If the interaction of the modes is neglected, the disp
sion relation~36! decomposes into a system of mutually u
coupled dispersion relations for the individual wave nu
bers. The most unstable is the mode withk51/a, and we
shall therefore limit consideration below to only the equat
of system~36! with m51,
r
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2V2
1

2 F11e2
5

2
¸2G1W@2g21e2f 1

(2)#2@422e2¸2b2#50.

~38!

If it is assumed in~38! that V250, it is straightforward
to find, for e25const, the critical valueW5W* at which a
hemispheroidal protrusion having a base with a character
linear dimensiona becomes unstable:

W* 5
422e2¸2b2

2g21e2f 1
(2)

. ~39!

We now recall that the onset of instability itself began
W54.5WTF

0 .W* . Substituting this value, i.e., 4.5WTF
0 , in

place ofW in ~38!, we obtain the following expression fo
the instability growth rated[ReV.0 of a hemispheroida
protrusion on a charged plane surface of a liquid subjecte
the electric field determined by~37!:

d[A9WTF
0 @2g21e2~ f 1

(2)25g2¸2!#24@22e2¸2~b215!#.

It is easy to see that the instability growth rated in-
creases with increasinge2.

CONCLUSION

The critical conditions for the onset of instability of
hemispheroidal drop of conducting liquid on an electrica
conducting solid substrate in a uniform external fieldE ~a
hemispheroidal protrusion on the free surface of an elec
cally conducting liquid undergoing the Tonks–Frenkel ins
bility ! are lowered as the eccentricity of the spheroid
creases and are significantly lower than the criti
conditions for the onset of instability of a plane free surfa
of the liquid in the fieldE. This circumstance provides
physical basis for the formation of Taylor cones and in
cates that the growth rate of the Taylor cone upon the on
of the Tonks–Frenkel instability will have a faster-tha
exponential growth.

1L. Tonks, Phys. Rev.48, 562 ~1935!.
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Critical equilibrium spheroidal deformation of a drop of dielectric liquid in a uniform
electrostatic field
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The stability of a dielectric drop, which in an external electrostatic field takes on the equilibrium
shape of a prolate spheroid, is analyzed using the principle of minimum total potential
energy of an isolated system. The values of the Taylor parameter and degree of spheroidal
deformation at which the drop loses stability are determined for a wide range of dielectric constants
of the substance of the drop. ©1999 American Institute of Physics.@S1063-7842~99!00507-3#
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The equilibrium shapes and stability of charged drops
uniform external electrostatic fields have been the subject
numerous experimental and theoretical studies in connec
with the investigation of elementary processes in sto
clouds and the development of new chemical technolog
and physical apparatus for analytical investigations~see, e.g.,
the reviews1,2 and the literature cited therein!. Nevertheless,
there are still many unanswered questions on this topic.
example, the majority of the theoretical studies have b
done for drops of a perfectly conducting liquid, and the qu
tion of how the critical equilibrium deformation of a drop o
dielectric liquid in a uniform electrostatic fieldE is related to
E and to the dielectric constant« of the liquid has remained
beyond the scope of these investigations. The present s
should fill this gap.

The analysis below is carried out in an approximation
which the equilibrium shape of a drop of dielectric liquid
a field E is assumed to be spheroidal3 and is based on the
principle of minimum potential energy of the equilibrium
shape of an isolated drop. We shall investigate the equ
rium states and the stability boundaries of a drop of dielec
liquid in the fieldE. The external medium will be assume
to be nonconducting, with a dielectric constant equal
unity, i.e., a vacuum.

1. The potential energy of an isolated drop in a fieldE
consists of the energy of surface tension and the electros
energy of the drop inE. The energy of surface tension of
prolate spheroidal drop is written4

Us52psR2S k22/31k4/3
tan21 ~Ak221!

Ak221
D , ~1!

whereR is the radius of a spherical drop having the sa
volume as the spheroidal drop under study,s is the coeffi-
cient of surface tension,k5a/b, anda andb are the semi-
major and semiminor axes of the prolate spheroid, resp
tively.

The electrostatic energy of a dielectric spheroid elo
gated along an external uniform electric fieldE in vacuum is
given in SI units by the expression5
7581063-7842/99/44(7)/5/$15.00
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Ue52
1

2
EPx5

2p«0E2R3~«21!

3@11~«21!nx#
, ~2!

where Px is the dipole moment of the spheroid,«0 is the
dielectric permittivity of free space, andnx is the depolariza-
tion coefficient of the spheroid, which has the form5

nx5
kln~k1Ak211!2Ak221

~k221!3/2
.

In the following stability analysis of the spheroidal shap
of the drop, its total potential energyUs1Ue will be ren-
dered dimensionless by dividing by the potential energy of
spherical drop of the same volume,

U5
Us1Ue

Uss1Ues
, ~3!

where

Uss54pR2s ~4!

is the energy of surface tension of a spherical drop, and

Ues52
2pR3E2«0~«21!

41«
~5!

is the electrostatic energy of a dielectric sphere in a fieldE.
We also introduce the dimensionless parameterW ~the

Taylor parameter!, the value of which characterizes the sta
bility of a drop in a fieldE ~a drop of an electrically con-
ducting liquid becomes unstable atw52.59; Ref. 6!:

W5
4p«0E2R

s
. ~6!

Substituting expressions~1!, ~2!, ~4!, and~5! into ~3!, we
rewrite ~3! in dimensionless form as

U5H 2pF 1

k2/3
1

k4/3 tan21 ~Ak221!

Ak221
G

2
W~«21!

11~«21!nx
J F4p2

W~«21!

2~21«! G21

. ~7!
© 1999 American Institute of Physics
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FIG. 1. Dimensionless energy of a drop of transformer oil
an electrostatic field, as a function of the deformation para
eterx: W50.01 ~1!, 0.1 ~2!, 0.2 ~3!, 0.3 ~4!, 0.4 ~5!, 0.5 ~6!,
0.6 ~7!, 0.7 ~8!, and 0.8~9!.
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2. For convenience in graphical representation of the
sults of a numerical analysis of relation~7!, we shall charac-
terize the degree of spheroidal deformation of the drop in
field E by the quantityx5 ln(a/b).

Figure 1 shows the curves ofU(x) for a drop of trans-
former oil («52.2) as calculated numerically from Eq.~7!
for different values of the Taylor parameterW. The presence
of a single minimum on theU(x) curves~the positions of the
minima are indicated in Fig. 1 by dots! over a wide range of
variation of the parameterW (0<W<40) indicates that for
this value of the dielectric constant of the substance th
always exists an equilibrium shape of the drop in the form
prolate spheroid. A comparison of the positions of the mi
mum on the curves for different values ofW ~see also Fig. 1!
shows that the eccentricity of the equilibrium spheroid
drop increases monotonically with increasing Taylor para
eterW.

In Figs. 2a and 2b the curvesU(x) are shown in differ-
ent scales for a drop of ethyl alcohol («546) at different
values of the Taylor parameterW. As the calculations show
and as can be seen from Fig. 2, for small values of the Ta
parameterW,2.3 the curves have a single minimum~curves
-

e

re
a
-

l
-

or

1–4 in Fig. 2a and 2b!, corresponding to a spheroidal dro
with a ratio of semiaxesk,1.4. As the Taylor paramete
increases to valuesW>2.3 there is a qualitative change i
the shape of theU(x) curves: nowU(x) has two minima
separated by a local maximum. After the first minimum, t
positions of which are denoted in Fig. 2b by dots, theU(x)
curve passes through a local maximum and then descen
a second minimum~the positions of which for differentW
are denoted in Fig. 2a by crosses!, corresponding to an equi
librium spheroidal shape with a ratio of semiaxesk.6. Fur-
ther growth of the degree of deformationx of the spheroid
leads to unbounded growth of the potential energy. As
Taylor parameterW is increased, the positions of both th
first and second minima are shifted to higher deformation

As the Taylor parameter is increased toW>3.24 the first
minimum ~and, with it, the local maximum! disappears, and
U(x) becomes a descending curve in the whole reg
0,k,6. Since the existence of stable equilibrium spheroi
drops with a ratio of semiaxesk.6, i.e., with an extremely
strong elongation, is unlikely on general physical groun
that have not been incorporated in the model, the value of
Taylor parameterW53.24 at which the first minimum van
large
FIG. 2. Dimensionless energy of a drop of ethyl alcohol. a: TheU(x) curves at large deformations; the crosses indicate the minima in the region of
deformations forW.2.3; b: the curves at small deformations; the minimum in the region of small deformations are indicated by dots;W51.6 ~1!, 1.8 ~2!,
2.0 ~3!, 2.2 ~4!, 2.4 ~5!, 2.6 ~6!, 0.8 ~7!, 3.0 ~8!, 3.2 ~9!, and 3.4~10!.
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FIG. 3. Dimensionless density of a drop o
water as a function ofW andx.
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ishes should be regarded as the upper boundary of the re
of W values in which stable spheroidal drops exist
«546.

TheU(x) curves calculated for a water drop («581) for
different values of the Taylor parameter~Fig. 3! are qualita-
tively similar to those shown in Fig. 2. The significant d
ferences are that: a! the second minimum on theU(x) curve
first appears at smaller values of the Taylor parameterW
.1.43); b! the positions of the local maximum ofU(x) are
shifted to larger deformations; c! the vanishing of the first
minimum and the local maximum ofU(x), i.e., its transition
to a monotonically descending function in the region of d
formations (0,k,1.6), is also observed at smaller valu
of the Taylor parameter (W.2.3).

3. The relation between the equilibrium spheroidal d
formation of a drop and value of the Taylor parameterW can
be found from the requirement that the total potential ene
of the drop in the equilibrium state be minimum,

]

]k
~Us1Ue!50, ~8!

which leads to the equation

2pF2
2

3
k25/31

4

3

k1/3C

A
1

k1/3

A2
2

k7/3C

A3 G
1@3kA2~2k211!B#

WA

D2
50,

which, with allowance for the requirement that the seco
derivative be positive,

]2

]k2
~Us1Ue!>0, ~9!

leads to the relation
ion
r

-

-

y

d

2pk1/3S 10

9
k231

4

9

C

A
k211

5

3

k23

A2
2

11

3

kC

A3

23
k

A4
13

k3C

A5 D 1
W

D2 H 2
~2k211!Bk

A
13A2

24kAB14k22122A@3kA2~2k211!B#

3S 3kA

«21
1BDD21J >0,

A5Ak221, B5 ln~k1Ak221!,

C5tan21~Ak221!,

D5
~k22«!Ak221

«21
1k ln~k1Ak221!.

A graph of the curveU5U(W,x) calculated from Eq.
~7! for a drop of water is shown in Fig. 3. The curveAD is
the projection of the solution of equation~8! on the surface
U(W,x), or, in other words, the curveAD passes through
points at whichU(x) takes on extremal averages. The lin
BF andCE are projections of the solution of equation~9! on
the surfaceU(W,x) and divides this surface into three part
to the right ofBF and to the left ofCE are the loci of points
at which

]2

]k2
~Us1Ue!.0,

and betweenBF andCE is the locus of points at which

]2

]k2
~Us1Ue!,0.

Thus the segmentsAB and CD correspond to minima
and segmentBC corresponds to maxima of the functio
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FIG. 4. Curves ofW(x) obtained from the solution of
equation~8! for «518 ~1!, 20 ~2!, 23 ~3!, 26 ~4!, 34
~5!, 46 ~6!, 81 ~7!, 200 ~8!, and` ~9!.
m

io

ny

ar
m

ub
A

th
ti

-

-

cal
il-
er-
in
r

es
s
he

as
tant

o
al-
le
U(x). It is clear from what we have said that the equilibriu
shapes of the drop correspond to the curveAB.

Figure 4 shows the results of a numerical calculat
using Eq.~8! for different values of the dielectric constant«.
The calculation shows that for«,20.8 an equilibrium shape
of the drop in the form of a prolate spheroid exists for a
value of the Taylor parameter~curves1 and2 in Fig. 4!. For
«.20.8 the equilibrium states of the spheroidal drops
observed up to a certain critical value of the Taylor para
eter W5W* ~denoted by pointsB3–B9 in Fig. 4!, and this
critical value depends on the dielectric constant of the s
stance of the drop, in agreement with the data of Ref. 7.
the dielectric constant increases, the critical valueW* de-
creases, reaching at«→` a minimum valueW* 052.57,
which is in good agreement with the results of a study of
boundaries of stability of conducting drops in an electrosta
field.6 The segmentsA–Bn in Fig. 4 correspond to equilib
rium spheroidal shapes of the drop. SegmentsBn–Cn of
curves3–9 correspond to local maxima of the functionU(x)
for W5const and«5const. The value of the Taylor param
n

e
-

-
s

e
c

eterW corresponding to the pointsC3–C9 determines when
the second minimum will appear on theU(x) curve.

At values of the Taylor parameter less than the criti
valueW* , for a drop to be brought to the region of instab
ity it is necessary to impart to it an energy sufficient to ov
come the potential barrier, the value of which is plotted
Fig. 5 ~curvesBn–Cn! as a function of the Taylor paramete
for various values of the dielectric constant«. Segments
A–Bn of the curves in Fig. 5 correspond to equilibrium stat
of the spheroidal drop, and the pointsBn correspond to state
of unstable equilibrium of the drop at the critical value of t
Taylor parameterW.

The three-dimensional surface presented in Fig. 6 w
determined from the relation between the dielectric cons
« of the substance of the drop, the Taylor parameterW, and
the parameterx, according to the solution of equation~8!.
CurveAB, like the pointsBn in Figs. 4 and 5, corresponds t
states of unstable equilibrium of the drop at the critical v
ues of the Taylor parameterW, and it separates the stab
FIG. 5. Height of the potential barrier
versus the Taylor parameter for«532
~1!, 46 ~2!, 81 ~3!, and` ~4!.
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FIG. 6. Interrelationship between the Taylor parameter, the dielectric constant of the substance of the drop, and the deformation parame
so
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spheroidal shapes of the drop~to the left of AB! from the
unstable states~to the right ofAB!.

CONCLUSION

The foregoing investigation has revealed that for an i
lated drop with dielectric constant« in a uniform electro-
static fieldE, the form of the potential energy of the drop
a function of the spheroidal deformation,U5U(x), depends
both on « and on the fieldE or the Taylor paramete
W;E2, the latter of which characterizes the stability of t
surface of the drop against the charge induced on it.
U(x) curves for different values of« andE ~or « andW) can
have either a single minimum or two minima separated b
local maximum. An analysis ofU5U(x,«,W) has made it
possible to map out the region of values ofx, «, and W
-

e

a

corresponding to equilibrium spheroidal shapes of the d
and to determine the critical conditions for loss of stabilit
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Point defects and ring defects in a nematic liquid crystal in a cylindrical capillary
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The bidirectional escape into the third dimension of a linear disclination of strengthm51 (L11
p )

in a cylindrical capillary with normal boundary conditions is investigated. It is shown that
in this case two types of defects arise in the capillary: point defects and ring defects, each of which
can be of the radial or hyperbolic type. Exact solutions are obtained for the equation of
equilibrium of the elastic field. The free energy of the point and ring defects is calculated
approximately in a narrow, long capillary. New scenarios are proposed for the escape of the
disclinationL11

p . © 1999 American Institute of Physics.@S1063-7842~99!00607-8#
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1. In nematic liquid crystals~NLCs! the director field
n(r ) can have singular points, lines, and surfaces at wh
the direction of the directorn is indeterminate. These singu
larities are called point, linear, and surface defects, resp
tively.

In an NLC in a cylindrical capillary with normal bound
ary conditions, the structure with a singularity on the a
(L11

p , a linear disclination withm51) becomes energeti
cally unfavorable at capillary radiir larger than a certain
critical valuerc and it ‘‘escapes’’ into the third dimension.1

The solution describing the unidirectional escape of a dis
nation of strengthm51 was obtained in Ref. 2. Howeve
for an NLC the two directions along the axis of the capilla
are equivalent. Therefore, it is of interest to consider
problem of bidirectional escape of a disclination, when
two directions are connected by a singular point. Suc
possibility was indicated in Ref. 1.

The goal of the present study is to investigate the b
rectional escape into the third dimension of a linear discli
tion of strengthm51 in the one-constant approximation
the continuum theory of NLCs.

2. Let us consider an NLC in a cylindrical capillary o
radiusr0 and length 2L, with normal boundary conditions
The components of the director in the cylindrical coordin
system are written as

nr5sina~z,r!; nw50; nz5cosa~x,r!, ~1!

wherea is the angle between the ‘‘line of force’’ and th
axis of the capillary,a(r5r0)5p/2.

In the one-constant approximation the free energy of
formation is1

F5
K

2 E
(V)

~~¹•n!21~¹3n!2!dV, ~2!

whereK is the Frank elastic modulus,V is the volume of the
NLC, andn is the director.

Using ~1! in expression~2!, we get
7631063-7842/99/44(7)/4/$15.00
h
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F5pKE
0

r0
drE

2L

L

dzS sin2 a

r
1sin 2a

]a

]r

22 sin2 a
]a

]z
1rS ]a

]r D 2

1rS ]a

]z D 2D . ~3!

Minimizing ~3!, we get the equation of equilibrium

2r2
]2a

]z2
12r

]

]r S r
]a

]r D5sin 2a. ~4!

Being a dimensionless quantity, the anglea can depend
only on dimensionless combinations of coordinates. We
sume thata depends only on the combinationz/r. Then,
after introducing the new variablex5sinh21(z/r), we write
Eq. ~4! in the form

2axx9 5sin 2a. ~5!

The intermediate result of integration is

~ax8!25c1sin2 a, ~6!

wherec>0 is a constant of integration.
After a second integration with the normal bounda

conditions taken into account, we have

E
p/2

a dj

Ac1sin2j
56 ln u, ~7!

where

u5
z/r1A11z2/r2

z/r01A11z2/r0
2

.

The substitution

j5
p

2
2c

reduces the left-hand side of Eq.~8! to an incomplete elliptic
integral of the first kind,

E
0

p/22a dc

A12k2 sin2 c
56

1

k
ln u, ~8!
© 1999 American Institute of Physics
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wherek51/A11c.
Hence

a5
p

2
6amS ln u

k D , ~9!

where am is the Jacobi amplitude.3

In order to study the elastic deformation field, we mu
consider a family of lines of force satisfying the differenti
equation

dr/nr5dz/nz , ~10!

which must be integrated with allowance for~1! and ~9!.
3. Let us first consider the casek51 (c50). Then~9! is

transformed to

a152 tan21 u or a25p2a1 . ~11!

The lines of force obtained as a result of the numeri
integration of~10! with allowance for~1! and~11! are drawn
in Figs. 1 and 2~these and the other figures pertain to
cylindrical capillary and show a section by a plane pass
through the axis!. As can be seen from these figures, bidire
tional escape of the disclination gives rise to point defects
the hyperbolicH and radialR types. In the limituzu@r0 we
obtain the well-known Cladis–Kleman relations2 corre-
sponding to unidirectional escape of the disclination:

a15H p22 tan21 ~r/r0!, z.0,

2 tan21 ~r/r0!, z,0,

a25p2a1 . ~12!

FIG. 1. Hyperbolic point defect (H).
t

l

g
-
f

For r0→` the anglesa1 and a2 go over to the well-
known solutions describing hyperbolic and radial point d
fects in an infinite space.4

Let us now evaluate the free energy ofH andR defects.
Here we limit discussion to the most interesting case o
long and narrow capillary (r0!L). Substituting~11! into
~1!, we get

F

2pKL
'31

p

2
q

r0

L
1O~r0

2/L2!, ~13!

whereq'1.5 for anH defect andq'3 for an R defect.
In calculating the energy we have expanded the in

grand in Eq.~3! in a series in powers of a small paramete
keeping the first two terms of the expansion. In the reg
uzu.r0 the small parameter isr/uzu, and in the regionuzu
,r0 it is uzu/r0 .

Expression~13! shows that the energy of a structure co
taining a point defect differs from the energy of a nonsing
lar structure by the presence of an additional term wh
appears because of the stronger distortion of the lines
force near the defect. Although this term does not contrib
substantially to the energy, its presence suggests that the
ergy gap betweenH and R defects is smaller than in fre
space.

In fact, in free space Eq.~11! becomes

a152 tan21~z/r1A11z2/r2!, a25p2a1 . ~14!

Integrating the equation of the lines of force~10! with
allowance for~14!, one is readily convinced thata1 corre-
sponds to anH defect anda2 to an R defect. Let us now
mentally select out an imaginary capillary of radiusr0 and

FIG. 2. Radial point defect (R).
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length 2L and calculate the energy of the elastic field in th
imaginary capillary. Substituting~14! into ~13!, we get

F (H)

4pK
5r0 tan21 ~L/r0!,

F (R)

4pK
52r0 tan21 ~L/r0!1L ln~11r0

2/L2!. ~15!

Assuming thatr0!L and keeping only the first term o
the series expansion in powers ofr0 /L, we obtain

F

2pKL
'

p

2
q

r0

L
1O~r0

2/L2!, ~16!

whereq52 for anH defect andq54 for anR defect.
Thus

F (R)2F (H)

2pKL
'

p

2

r0

L
2, ~17!

while for a real capillary

F (R)2F (H)

2pKL
'

p

2

r0

L

3

2
, ~18!

i.e., the energy gap decreases.
4. For k51 (c50) the singular structures forming in th

capillary are qualitatively different from those consider
above: they are now ring hyperbolicRH and radialRR de-
fects. Their elastic field is illustrated schematically in Figs
and 4.

For an analytical description of the rings we again lim
discussion to the case of a long and narrow capillary
consider the problem of unidirectional escape of the dis
nation in the casec50. This problem can be solved exactl
and all the results obtained will clearly be valid also f
bidirectional escape in the zeroth approximation in an exp
sion in powers ofr0 /L. Solving Eq. ~4! without the first
term on the left-hand side, we get

a5
p

2
6amS ln~r/r0!

k D . ~19!

FIG. 3. System of hyperbolic ring defects (RH).
d
i-

n-

Substituting~19! into ~10!, we get

dz

dr
56

sn~ ln~r/r0!/k!

cn~ ln~r/r0!/k!
, ~20!

where sn and cn are the sine and cosine of the Ja
amplitude.3

The right-hand side of~2! has a singularity determine
by the equation

cn~ ln~r/r0!/k!50 ~21!

or

r5r0 exp@2k~2m11!K~k!#, m50,1,2, . . . , ~22!

where

K~k!5E
0

p/2 dc

A12k2 sin2 c

is the complete elliptic integral of the first kind.
In other words, we have a family of infinitely many cy

lindrical surfaces whose radii fall off in a geometric progre
sion as the axis of the capillary is approached. On th
surfaces the anglea tends asymptotically to 0 orp, depend-
ing on the direction of escape. On the axis of the capillar
singularity arises due to the indeterminacy of the value of
angle a for r50 @see Eq.~19!#. Taking the relationk
51/A11c into account, we easily see that forc@1 the cyl-
inders almost uniformly fill the space inside the capillar
and forc!1 they are concentrated mainly near the axis. F
c50 we have the Cladis–Kleman escape.2

In view of what was said above, we can conclude th
‘‘in the zeroth approximation’’ this picture holds for ring
defects as well, the only difference being that forc50 the
system of radial ringsRR degenerates into a pointr defect,
while the system of hyperbolic ringsRH degenerates into a
point H defect.

FIG. 4. System of radial ring defects (RR).
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The free energy of the rings is found by substituting~19!
into ~3! and taking into account that the result thus obtain
is the zeroth approximation in an expansion in powers
r0 /L:

F

2pkKL
'

2

k
E~am~ ln~r0 /b!/k!!1 sn2~ ln~r0 /b!/k!

2~k8/k!2 ln~r0 /b!1q~k!
r0

L
1O~r0

2/L2!1 f 0 ,

~23!

where

E~w!5E
0

sinwA12k2t2

12t2
dt, k85A12k2,

q(k) is a bounded function ofk (q(k)→(p/2)q as k→1)
andb is a so-called cutoff parameter of the order of molec
lar scales;f 0 is the free energy~in units of 2pKL) of the
core of the singular structure (f 0 cannot be calculated in th
framework of continuum theory1!.

For c@1

F

2pKL
'c ln~r0 /b!1~1/c!

r0

L
1O~r0

2/L2!1 f 0 . ~24!

For c!1

F

2pKL
'31

p

2
q

r0

L
2c lnS cr0

2b D1O~r0
2/L2!1O~c!1 f 0 .

~25!

Expressions~24! and ~25! show that a system of ring
that almost uniformly fills the entire capillary region is ene
getically unfavorable, since its energy is of the same orde
the energy of a linear disclination of integer strength.1 Rings
d
f

-

as

bunched together near the axis, however, are almost as e
getically favorable as the nonsingular structureLNSL.

5. In summary, a linear disclinationL11
p can escape into

the third dimension in at least three ways. For a unidir
tional escape a structureLNSC forms which contains an infi-
nite number of cylindrical surfaces, on each of which t
direction of the director is asymptotically parallel to the ax
of the capillary, and a singularity on the axis of the capilla
A degenerate case of such a structure is a disclination es
ing in the Cladis–Kleman manner (LNSL). For bidirectional
escape a system of ring defects of the radialRR or hyperbolic
RH type form, which in the degenerate case go over to po
R or H defects, respectively.

In principle more complex scenarios for the escape
L11

p are possible, viz.,

L11
p °LNSC°

←
LNSL,

L11
p °RR°

←
R,

L11
p °RH°

←
H.

Here the symbols° and→ denote the more probable an
less probable scenarios, respectively. To determine whic
these is actually realized it will be necessary to do a m
accurate calculation of the free energy of the structures
scribed above and to consider specific mechanisms for
onset of instability.

1P. G. de Gennes,The Physics of Liquid Crystals@Pergamon Press, Oxford
~1974!; Mir, Moscow ~1977!, 400 pp.#.

2P. E. Cladis and M. Kleman, J. Phys.~Paris! 33, 591 ~1972!.
3E. Jahnke, F. Emde, and F. Lo¨sch, Tables of Higher Functions, 6th ed.
@McGraw–Hill, New York ~1960!; Nauka, Moscow~1977!, 344 pp.#.

4S. Chandrasekhar and G. S. Ranganath, Adv. Phys.35, 507 ~1986!.
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Results are presented from a study of the characteristics of a steady-state plasma in a He/H2

mixture at high pressures. The plasma is formed in the outer region of a multielectrode corona
discharge. It is shown that molecules of helium hydride form in such a medium, and their
decomposition is accompanied by continuum emission in the 350–650 nm region. The corona
discharge is distributed over the length and can be used in systems for the transverse
electric circulation of the working medium of atmospheric-pressure plasma radiation sources.
The reference spectra of the plasma emission and the dependence of the relative intensity
of the lines and the brightness of the bands of He2* on the value of the discharge current, pressure,
and composition of the working mixture are investigated. ©1999 American Institute of
Physics.@S1063-7842~99!00707-2#
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INTRODUCTION

Atmospheric-pressure He/H2 mixtures under excitation
in an electron-beam-controlled discharge~duration>0.1 ms!
are of considerable interest for application in IR lasers wo
ing at vibrational–rotational transitions of the hydrogen h
lide molecules~HF, HCl, etc.!, and both the case of room
temperatures of the gaseous medium1 and nitrogen tempera
tures (T5100 K!2 have been investigated in detail.

The possibility of building a periodic-pulse laser sour
working at the A–X transition of the excimer molecul
HeH* with lmax5460 nm andDl5310 nm for excitation of
a He/H2 mixture by modulated high-energy electron bea
or by optical pumping was demonstrated in Refs. 3–5.
order to maintain the optimum gas temperature, such sou
require circulation and cooling of the working medium.
these sources it may be appropriate to employ electric ci
lation of the gaseous mixtures by means of a multielectr
corona discharge6,7 distributed uniformly over the length o
the active medium of the source. Corona discharges are
used in electrofilters for removing solid particulates that ha
been sputtered in the electrode system of a plasma radia
source.. The conditions for achieving stable corona d
charges in He/H2 mixtures at high pressures has not be
studied before. At a lower pressures (<0.2 kPa! He/H2 mix-
tures have been used in laser plasma radiation sources
HeI atoms (l5706.5 nm!,8–10 but in that case the use o
electric circulation is hard to implement because of instab
ties of the corona discharge at low pressures of the gas
medium. In the majority of cases the He/H2 mixtures have
been investigated under pulsed excitation by electron be
or a transverse discharge; it is therefore of physical inte
to study the parameters of a dense plasma based on
mixture in the case of steady electrical-discharge pump
The plasma under such conditions of excitation should
supercooled, a circumstance which is important for the f
mation of the excimer molecules HeH* and He2H* and also
7671063-7842/99/44(7)/4/$15.00
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for studying the kinetics of the processes occurring in su
media.

In this paper we present the results of a study of
electrical and optical characteristics of a bipolar corona d
charge of negative polarity, ignited in the working mediu
of an atmospheric-pressure plasma radiation source usi
He/H2 mixture.

EXPERIMENTAL PROCEDURES AND CONDITIONS

The multielectrode corona discharge was investigated
the apparatus described in Refs. 11 and 12. The elect
system used consisted of one row of point electrodes an
semitransparent metallic grid. The rounding radius of the t
was 0.1–0.2 mm, and the radius of the wires in the grid w
0.15 mm. The density of tips in the row was 1 per centime
of length, and the total length of the electrode system was
or 17 cm. A dc voltage of negative polarity (U<10 kV, I
<15 mA! was applied to the tips across a limiting resist
with R51 –3 MV. The emission from the corona discharg
plasma was investigated with a panoramic view of the en
interelectrode gap. Radiation from the hot zones formed n
the tips was shielded. The radiation from the plasma w
analyzed with a DFS-12 monochromator, an FE´ U-106 pho-
tomultiplier, a U5-9 dc amplifier, and a chart recorder. T
resolution of the spectrometer was 0.1 nm or better. T
relative calibration of the radiation detection system w
done with the use of DVS-25 and SI 8-200 standard lam

A steady discharge regime was used. The possible p
ence of a pulsed component of the radiation from the plas
was monitored by means of a 14-FS linear electron mu
plier and an S1-79 fast pulsed oscilloscope.

SPATIAL, ELECTRICAL, AND OPTICAL CHARACTERISTICS

A corona discharge in a He/H2 mixture was stably ig-
nited at a pressure of 50–300 kPa and was observed
spatially uniform discharge similar to those in mixtures
He/Ar, Kr, and Xe.13 The transverse aperture of the coro
© 1999 American Institute of Physics
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discharge plasma was in the form of an isosceles trian
with the base on the grounded electrode. Increasing the v
age across the point electrodes gave rise to streamer b
down around one of the tips at a pressure exceeding 150
or to the ignition of an arc at lower pressure. Increasing
concentration of H2 molecules (P>5 –10 kPa! caused the
spatially uniform discharge in the outer region of the coro
discharge to vanish and led to the formation of bright h
zones near the tips, similar to what is found for a coro
discharge in He/N2 or He/CO mixtures.11

FIG. 1. Current–voltage characteristics of a negative corona discharg
helium atP5200 ~1! and in a He/H2 5 200/1.2 kPa mixture~2!.
le
lt-
ak-
Pa
e

a
t
a

Typical current–voltage~I–V! characteristics of the co
rona discharge in He and in a He/H2 mixture are shown in
Fig. 1. In helium the I–V characteristic of the corona d
charge has a close-to-linear form, while for a He/H2 mixture
it indicates the presence of two discharge stages, eac
which can be described by a linear I–V characteristic. T
growth rate of the current in the high-current stage of
corona discharge in a mixture with H2 is 3 mA/kV, while in
the low-current stage it is 0.25 mA/kV. The main differen
between the I–V characteristic in these media may be du
the formation of H2 negative ions in the He/H2 mixture at
higher charging voltagesU on the tips, and at lower voltages
to the efficient excitation of the high vibrational states H2(v)
~Ref. 14!, which enter into a dissociative attachment react
with electrons.1 The dependence of the ignition potential a
the region of stable existence of the discharge in terms of
value ofU as the pressure of the He/H2 mixture is changed
~at @H2#<5 kPa! was similar to the corresponding data f
mixtures of He/Xe/Ar, etc.13 The main carriers of positive
change in the investigated medium are H3

1 and He2
1 ions4,5

while the negative charge is carried mainly by H2 ions and
electrons.

Figure 2 shows the emission spectrum of a corona
charge plasma in a He/H2 mixture atI 51.5 mA. The spec-
trum is shown without allowance for the relative calibratio
of the spectrometer (kl). The spectra were interpreted wit
the aid of tables of Refs. 15 and 16. The emission spectr
a plasma based on He or a He/H2 mixture typically exhibited

in
FIG. 2. Panoramic spectrum of the emission from a corona discharge plasma in a He/H2 mixture.
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a continuum in the region 360–650 nm. Observed agains
background of this continuous radiation are the most inte
lines of the He atom: 388.9, 501.6, and 587.6 nm, an
series of molecular bands of He2* in the blue-green region o
the spectrum. The dashed curve in Fig. 2 shows the c
tinuum emission in a pure helium medium~at @He#5200
kPa! ~this continuum can be identified13 with C–A transitions
of He2

1) under the same excitation conditions as for t
plasma in the He/H2 mixture. The intensity of the continuum
emission of the plasma in the He/H2 mixture is significantly
higher than in the helium medium.

Figure 3 shows the dependence of the relative inten
of the emission~with allowance forkl) on the value of the
corona discharge current, and Fig. 4 shows the brightnes
the He2* bands as a function of the partial pressure of2

molecules in the He/H2 mixture. The 587.6 nm line was th
most intense line in the corona discharge plasma in
He/H2 mixture, while the 388.9 nm line was predominant
pure He. Admixtures of H2 molecules to He had the greate
influence on the intensity of the 388.9 nm line and only
weak influence on the 587.6 nm line~Fig. 3!. At discharge
currents<0.8 mA their intensity ratio is inverted. Increasin
the number of H2 molecules in the He/H2 mixture leads to a
strong quenching of the emission in the He2* bands.

Thus small admixtures of H2 molecules to He have a
considerable effect on the shape of the I–V characteristic
a corona discharge; they lead to significant growth of
brightness of the continuum emission in the 360–650
range and to strong quenching of the emission at the 38
nm line of HeI and in the bands of He2* .

DISCUSSION OF THE RESULTS

Excited He atoms (n52,3) are formed in a dense
weakly ionized plasma in a dissociative recombination17 or

FIG. 3. Relative intensity of the emission in the lines of the He atom i
corona discharge plasma in a He/H2 5 200/1.2 kPa mixture~1–3! and in He
~4,5!: 587.6~1,5!, 501.6~2!, 388.9 nm~3,4!.
he
e
a

n-

ty

of

e

of
e

.9

stepwise excitation process. The dissociative recombina
reaction can occur only with He2

1 ions (v>3).18 A compari-
son of the distribution of the relative intensities of the H
lines with the distribution of the effective cross sections
stepwise excitation of the corresponding lines of He~Ref.
19! showed that they do not correlate with each other. The
fore, a better candidate for the population of HeI (n53,4) is
the dissociative recombination of He2

1 ions (v>3) with
electrons.

The continuum emission from a plasma in a He/H2 mix-
ture appears as a result of the formation of HeH* excimer
molecules.5 In the ground state the HeH molecule is u
bound, while the lower excited states are stable, with a bi
ing energy>2.3 eV.20,21 The HeH continuum observed i
Ref. 20, with a maximum at 250 nm, belongs to the tran
tion B2P2X2S1 of the HeH molecule, while the longer
wavelength emission from HeH can be attributed to the s
tem A2S1 –X2S1 ~Ref. 21!. The stateA2S1 has a short
lifetime with respect to predissociation, 0.65 ps, mu
shorter than the corresponding lifetime of HeH(B,v51 –5),
which is 56–5 ns.22

The formation of HeH* molecules in the corona dis
charge plasma in a He/H2 mixture occurs as a result of th
reactions3–5,21

He1H2~C1Pu ,B1Su
1!→HeH* 1H, ~1!

H~2s,2p!12He→HeH* 1He, ~2!

HeH11e1~He!→HeH* 1~He!, ~3!

He2H11e1~He!→HeH* 1~He!. ~4!

The predominant population of the 33D state of HeI,
which is the upper level for the 587.6 nm line, is due to t
selective character of the dissociative recombination reac

a

FIG. 4. Brightness of the emission in the He2* bands versus the H2 partial
pressure in He/H2 mixtures with @H2#5200 kPa: 1 — 505.7 nm line
He2(e3Pg–a3Su

1) ~0,1!; 2 — 473.3 nm line of He2(E1Pg–A1Su
1) ~1,0!;

3 — 464.9 nm line of He2(e3Pg–a3Su
1) ~0,0!.
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for He2
1 ions (v>3)17 and the mixing of such states b

electron impact. Since the rate constant for the mixing of
33D states of HeI is negative,23 they play the role of an
energy acceptor, and the 587.6 nm line stands out cons
ably in intensity in the emission spectrum of the plasma. I
corona discharge plasma H2 molecules lead to quenching o
the emission in the lines of HeI except for the 587.6 nm li
at discharge currents<0.8 mA ~Fig. 3!. The increase in in-
tensity of this emission line of HeI may be due to depopu
tion of its lower level through processes of Penning ioni
tion of the H2 molecules.24,25 At atmospheric pressure of th
working mixture one of the main channels for formation
He2

1(C) ions is the reaction26

He2* 1He1→He2
1~C!1He1e, ~5!

and therefore the admixture of H2 molecules to He decrease
the density of He2

1(C) ions. As a result, the He2
1(C–A)

continuum is transformed to a more intense HeH(A–X) con-
tinuum ~Fig. 2!. Interaction processes between He2

1 ions and
H2 molecules are characterized by high rates and give a
stantial contribution to the formation of HeH1 and He2H1

ions:25

He2
11H2→H HeH11H1He,

He2H11H.
~6!

Subsequently the HeH1 and He2H1 ions recombine
with slow electrons in reactions~3! and ~4!, which result in
the formation of HeH* molecules.

A processing of the dependence of the brightness of
He2* band at 505.7 nm~the most sensitive to the H2 content
in the He/H2 mixture! on the H2 density using the Stern–
Volmer formula for the quenching of luminescence27 showed
that the productktt5(1.460.2)310216 cm3 (t is the life-
time of He2* ). Fort510 ns the effective rate constant for th
quenching of He2

1 by H2 molecules is (1.460.2)31028

cm3/s.

CONCLUSIONS

A study of the characteristics of a multielectrode coro
discharge in a high-pressure He/H2 mixture has shown the
following.

At P550–300 kPa and hydrogen contents@H2#<5 kPa
the discharge covers the entire interelectrode gap and e
in a steady-state regime, while at higher H2 contents it is
characterized by a set of pointlike hot zones forming near
electrode tips.

The current–voltage characteristic of the discharge is
scribed by two straight lines with different rates of curre
growth, indicating the presence of two different stages of
discharge.

In the 360–650 nm region the emission of HeH(A–X)
and He2* molecules is detected, and also the 388.9, 50
and 587.6 nm lines of HeI.
e
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The main mechanism populating the excited states
HeI is the dissociative recombination of He2* (v) ions with
electrons.

H2 molecules efficiently quench the emission at tran
tions of HeI and He2.

The discharge studied can be used for transverse ele
circulation of the working medium in radiation sources u
lizing HeH* molecules in high-pressure plasmas.
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Modeling of diffusion and absorption processes of tritium in beryllium membranes
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The permeation of tritium produced in thermonuclear fusion through metallic membranes, which
is a topical problem in radiation physics, is addressed. A physical model for the permeation
of hydrogen through a beryllium membrane is proposed which takes into account the oxide layer
on the surface of the membrane. The model is implemented in the form of a system of
differential equations, which is solved by numerical methods. As a result of the computer modeling
it is shown that as the temperature is raised, the oxide layer in a certain interval blocks the
permeation of tritium in the membrane, and it is found that the tritium is distributed in a rather
limited region of the membrane over its thickness. This circumstance will permit the use
of special processing by etching or mechanical treatment. ©1999 American Institute of Physics.
@S1063-7842~99!00807-7#
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1. INTRODUCTION

Currently the most promising power plants are co
trolled fusion reactors. The parts of these reactors which
in direct contact with the working plasma are exposed
intense radiation over long periods of time. The gases
leased in the operation of a fusion reactor~isotopes of hy-
drogen, helium, etc.! actively interact with the materials o
the first wall and divertor. Along with the gases a large nu
ber of radiation defects are formed in these structures; m
fication of the crystal structure occurs, and radiation e
brittlement, pitting, and blistering are observed. All of the
strongly complicate the mechanisms of migration and occ
sion of the gases, making it necessary in some cases t
consider the established physicochemical ideas.

Beryllium membranes are most often proposed for us
the first wall and divertor components of fusion reactors
devices for controlling the flux of tritium and ensuring th
safe operation of the reactor. Over the course of their i
diation and the introduction of structural defects, the prop
ties of these membranes change considerably, particu
their permeability to hydrogen isotopes. In this study
have attempted to devise a computer model that would si
late the permeation of tritium through beryllium membran
for specified initial distributions of the various radiation d
fects in the membrane material.

2. PHYSICAL MODEL

Typical particle fluxes near the irradiated surface
a membrane in a fusion reactor are of the order
1021 DT/m2s. The saturation concentration in an oxide fi
several microns thick is reached in a few minutes. Con
quently, the boundary conditions for the initial flux from th
irradiated side should be the condition of constant concen
tion. The expected concentration of mobile hydrogen ato
at the entrance is proportional to the solubility of hydrog
in beryllium and, according to Sievert’s law, to the squa
7711063-7842/99/44(7)/4/$15.00
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root of the saturation pressure. In test calculations descr
below we took the pressure in the subsurface layer of
membrane in the interval 1.33–13.3 kPa.

In the majority of cases it is necessary to take into
count that the beryllium membrane is coated by a thin ox
layer. Data on the solubility of hydrogen isotopes in BeO a
limited. In this paper we use the formula

S51.25310211exp$0.8 eV/kQ%@atomic fraction/APa#,
~1!

which was obtained by fitting the experimental data of R
1. We note that the activation energy20.8 eV was taken
from the paper of Macaulay-Newcomb and Thomson2 and
was obtained at temperatures below 873 K. For the coe
cient of diffusion of tritium in BeO the best approximation
the experimental data, according to Ref. 3, is the expres

D51.3131029 exp$21.335/kQ%@m2/s#. ~2!

In view of the small interatomic distances in the crys
lattice of beryllium the question of the solubility of hydroge
isotopes in pure polycrystalline beryllium is still open to di
cussion. In Ref. 3 the formula

S51.7631027 exp$20.17/kQ%~atomic fraction/APa!
~3!

was proposed for temperatures in the range 500–600 °C.
the diffusion coefficient under these same conditions it
customary to use the values given by Jones and Gibson4

D51.31310211exp$21.335/kQ%@m2/s# ~4!

or ~for a membrane of ultrapure Be! by Abramovet al.,5

D56.731029 exp$20.294/kQ%@m2/s#. ~5!

3. MATHEMATICAL MODEL

As the initial mathematical model of the process of d
fusion and absorption of tritium atomsT in a plane metallic
membraneM of thicknessL, in the presence of lattice defec
© 1999 American Institute of Physics
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~vacanciesV and bivacancies 2V) and the possible formation
of clustersTV, T2V, 2T2V, we take a system of differentia
equations of the Johnson–Lam type,6

]Cn /]t2Dn~]2Cn /]x2!5Fn , n51,2,3,5,7,10. ~6!

Here Cn5Cn(x,t) are the unknown concentrations of m
grating defects in atomic fractions, which by extension w
also be referred to as particles or elements, at the pointx of
a one-dimensional sampleD5$xPR:0<x<L% at timet; Dn

are the corresponding diffusion coefficients, andFn are poly-
nomial functions ofC1 ,C2 , . . . ,Cn having a form deter-
mined by the character of the interactions and the interac
constants in the following seven elementary processes~‘‘re-
actions’’! involving the formation or annihilation of six type
of defects:

V1V→K112V, V1T→K13TV,

2V1T→K232VT, 2V→K2V1V, ~7!

2VT→K7V1VT, V1VT→K152VT,

T12VT→K372V2T. ~8!

The coefficients written above the arrows in the re
tions are their rate constants, which depend exponentially
the absolute temperatureQ of the sampleM by the Arrhen-
ius laws:

Kmn5Kmn
0 exp~2Emn /kQ!,

Kn5Kn
0 exp~2En /kQ!.

HereEmn andEn are the activation energies of the reaction
k is Boltzmann’s constant, and the coefficientsKmn

0 andKn
0

are independent ofQ and are expressed in terms of the p
rameters of the crystal lattice.

For the sake of specificity, we stipulate that the values
the subscripts 1, 2, 3, 5, 7, and 10 in Eqs.~6! correspond to
defectsV, 2V, T, TV, 2VT, and 2V2T in the order written.
This numbering is used because the model under discus
is a specialization of the more general model of Ref. 9,
which a system of 11 differential equations of the form~6!
was used. The defectsVT and 2V2T are assumed to b
stabilized, nondecaying, and the diffusion coefficientsD5

andD10 are assumed to be zero. All of the remaining diff
sion coefficients are taken to be functions with an expon
tial dependence on the absolute temperatureQ: Dn

5Dn
0exp(2Bn /kQ), whereBn is the energy of migration o

the corresponding particle.
Interstitial tritium atomsT are implanted to a depthl,

0, l ,L, through the entrance~irradiated! surfaceS0 of the
membraneM, which in the one-dimensional case corr
sponds to the pointx50, at a specified pressureP of the
gaseous tritium near the surfaceS0 . In the model a boundary
layer of depthl adjacent to the irradiated surface of the me
brane is assumed to be filled by a BeO oxide film, and
interval l ,x,L corresponds to a membrane layer filled w
high-purity~99%! Be. The initial concentrations of vacancie
and bivacancies over the sample are assumed given. Su
quently the above-described ensemble of point defects
l

n

-
n

,

-

f

ion
n

-

-
e

se-
i-

grates into the interior ofM and enters into reactions~7!, ~8!.
The tritium T can escape from the sample through the e
surfaceSL(x5L).

In accordance with the stated assumptions, let us spe
the mathematical model as an initial/boundary-value pr
lem for a system ofn56 equations~6! with right-hand sides
of the form

F152K11C1
21K2C22K13C1C32K14C1C4

2K15C1C52K16C1C61K7C71K8C8 ,

F25K11C1
22K2C22K23C2C32K24C2C4 ,

F352K13C1C32K23C2C32K37C3C72K38C3C8

1K45C4C51K49C4C91K9C9 ,

F55K13C1C32K15C1C51K7C72K45C4C5 ,

F75K23C2C31K15C1C52K37C3C7

2K47C4C71K9C92K7C7 ,

F105K37C3C7 . ~9!

The nonlinear terms in the right-hand sides of system~6!
take into account the binary interactions of particles a
clusters via ‘‘reactions’’~7! and ~8!.

The penetration of defects into the membrane and
escape of gases through the surfacesS0 andSL are also regu-
lated by the proper choice of initial and boundary conditio
that adequately model the conditions of external pump
and removal of particles while maintaining the overall ma
and flux balances. The mechanisms for the penetration
escape of particles through the surface of the membrane
be of different natures and, strictly speaking, should be
scribed by individual models of seepage through barrie
These topics and the mechanisms of reactions of type~7! and
~8! will not be discussed in detail in this paper.

In the spatially one-dimensional model under consid
ation the simplest forms of boundary conditions are tho
which characterize either the values of the concentrationsCn

of defects or the fluxes of these concentrations at the
trance and exit. We choose the boundary conditions in
form

]Cn /]xux5050, ]Cn /]xux5L50, if nÞ3;

C3~0,t !5S•AP; C3~L,t !50, ~10!

and the initial conditions

Cn~x,0!5Cn
0~x!, n51, 2, 3, 5, 7, 10 ~11!

From a mathematical standpoint, nonlinear systems
the type~1! often turn out to be stiff, and the correspondin
explicit finite-difference schemes are unstable even for sm
time steps. A general approach for dealing with problems
stiffness is to use implicit iterative methods.7,8 The physical
cause of these effects is the onset of rapidly damped trans
processes that must be dealt with by the numerical sch
and which, in the end, have no effect on the solution. F
numerical modeling of diffusion processes at macrosco
times one must go over to a reduced model. The averag
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property of the reduction operator, which is described in R
9, leads to a computationally stiff system of different
equations which can be integrated numerically even at m
roscopic~of the order of 1 s! time steps with a simultaneou
improvement of the computational stability.

Because the reduced model coincides exactly with
initial system, up to the notation for the coefficients, we w
not stop to write it out here but will go on to a description
a discrete analog of the model.

Consider on the interval@0,L# a uniform meshvH

5$xi5 iH ; i 50 . . .N;NH5L% with stepH.0. At the inter-
nal mesh points of the grid we approximate each equatio
system~6! with right-hand sides~7! and ~8! by the familiar
difference scheme of second-order accuracy in time an
predictor–corrector scheme in space.8 The algebraic system
of difference equations thus obtained is supplemented by
difference forms of the boundary-value and initial-val
problems~10! and~11!. The implantation depthl is assumed
to be comparable to the mean free path of theT atoms in the
membrane; in the discrete problem we assume thatl 52H.

The algorithm for solving the stated problem inclusio
the successive application of tridiagonal inversion8 at each
time step, and the time stept is chosen from the condition
for stability of the calculation.

4. RESULTS OF THE COMPUTER MODELING

The main results of the calculation were obtained un
the following general conditions. A beryllium membrane
thicknessL50.6 mm, the irradiated side of which is coate
by a thin oxide film 0.0024 mm thick, is irradiated by
tritium plasma at temperatures in the interval 573–773
The pressureP in different simulations had values of 2, 7
and 13.3 kPa. The solubility and diffusion coefficients
BeO and Be and the initial concentrations of vacancies
bivacancies over the sample were taken according to the
ommendations of Ref. 3, as described in Sec. 1 above.

FIG. 1. Distribution of the tritium concentrations over the sample at the t
t51800 s for a temperatureQ5573 K and pressures ofP1513.3 kPa~1!,
P257.0 kPa~2!, andP352.0 kPa~3!.
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segment@0,L# was divided intoN5200 parts. The following
values were used for the diffusion coefficients of mobile d
fects: D155.031025exp(20.68/kQ), D258.031025exp
(20.66/kQ), D351.3131027exp(21.335/kQ), and D7

51.031026exp(20.9/kQ). The remainingDn were as-
sumed to be zero. Figure 1 shows the results of test calc
tions of the distribution of tritium over the sample in a mem
brane of thicknessL50.6 mm at T5573 K for various
tritium pressures in the subsurface layer. The calculat
time was 1800 s. The diffusion coefficient was calculat
according to Gibson’s formula.4 The tritium concentrations
at the entrance were proportional to the solubilityS and to
the square root of the pressure. The initial concentration
vacancies over the sample was linear, with a maximum at
entrance of (C02(x/L))•731024 atomic fraction. The con-
centration of bivacanies was constant and equal to 131024

atomic fraction.
As we see from Fig. 2. The final distribution of vaca

cies over the volume after the calculation time could chan
appreciably in an initial segment of length 0.01 cm; here
bottom curve corresponds to the highest initial pressure, 1
kPa. The trend of the curves showing the distribution of
complexTV over the sample under the conditions describ
above have the same general features as the curves of F
but the maximum penetration depth of tritium is appro
mately 1.3 times larger than the maximum depth at which
appreciable number ofTV complexes is observed.

The calculations showed that the final distribution of b
vacancies in the initial segment, to a depth of 0.01 cm, qu
tatively reiterates the vacancy distribution.

To study the temperature dependence of the concen
tions of T, V, 2V, andTV in the model, with the entrance
surface of the membrane coated with a thin oxide film,
vacancy and bivacancy concentrations were taken to be
stant and equal to 531024 and 131024 atomic fractions,
respectively, and the temperatures wereQ15573 K and
Q25773 K. The tritium pressure was 13.3 kPa, and the ti

eFIG. 2. Distribution of the vacancy concentrations over the sample at t
t51800 s under the same conditions as in Fig. 1, curves1–3.
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t53600 s. We see from Fig. 3 that as the temperatur
raised there is a sharp decrease in the initial and final di
butions of tritium over the sample, even though the pene
tion depth of tritium is approximately the same in the tw
cases, a little more than 0.02 cm. The final distribution ofTV
complexes over the sample has a similar trend~Fig. 4!. The
qualitative behavior of the curves of the final distributions
V and 2V remains unchanged, as expected. Noticeable
viations to lower values from the initial distribution are o
served down to depths of 0.015 cm. Thus as the tempera
is increased fromQ15573 K to Q25773 K the oxide layer
block the flux of tritium in the membrane.

The model calculations showed a slowing of the esc
of tritium from the unirradiated side of the membrane as
initial concentrations of vacancies was increased and in c
parison with the defect-free case; this can be explained
the formation of immobile mixed clusters ofTV and 2T2V
in the membrane.

The distribution of tritium trapped by the membran
over its thickness~as we see from Fig. 2! occupies a rathe
limited region of the membrane. From everything we kno

FIG. 3. Distribution of the tritium concentration over the sample in t
presence of an oxide layer, forQ5773 K ~a!, 573 K ~b! and t53600 s.
is
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this may make it possible to remove the accumulated triti
by etching or mechanical treatment.
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Hooke’s law is generalized to the case of arbitrary elastic or plastic indentation«5(2/Ap)
3(w1 /AA), where«5q/Er is the elastic strain,q is the average pressure over the contact area,
Er is the reduced elastic~Young’s! modulus,A is the projected area of the contact,w1 is
the deformation in elastic indentation by a flat punch. On this basis a relation is obtained between
the reduced hardnessH and unreduced hardnessHh , which depends on the ratiows /w1

5ms ; ws is the elastic deformation along the perimeter of the indent, andms>0.78. It is shown
that the correctionDEr to the elastic modulusEr determined from the condition of
linearity of the initial part of the unloading diagram, isDEr50.27(DP/Pm), whereDP is the
value used in the calculation ofEr for the length of the linear part of the diagram,
reckoned from the maximum loadPm . It is shown that for metallic construction materials of
medium hardness one hasq5HM , whereHM is the Meyer hardness. With increasing
HM and increasing anglew at the tip of the indenter, the ratioHM /q grows by an exponential
law. © 1999 American Institute of Physics.@S1063-7842~99!00907-1#
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INTRODUCTION

In domestic practice the terms reduced (H) and unre-
duced (Hh) ~micro!hardness have been regulated by the
GOST 9450-76~ST SÉV 1195-78! standard and are dete
mined in the first case by its conventional measurement f
the projection of the loaded plastic indent and in the sec
case (Hh) from the displacementh ~depth of the indent!.
Here Hh is measured continuously as the loadP on the in-
denter is increased, by recording three variables:P, h, and
the timet ~Ref. 1!. In the rest of the world no such termino
ogy has been developed,2–8 even though there is an obviou
need to distinguish this sort of test from the conventio
measurement of the~micro!hardness. Analysis and exper
ments show1 that the quantitiesH and Hh characterize two
independent properties of a material, and their ratio is a n
indicator of its physicomechanical properties. The efficacy
testing in which theP–h–t diagram is recorded is enhance
many-fold and can provide comprehensive information
only about the physicomechanical properties but also ab
the structural characteristics of the material.1,9–18 The limit-
ing sensitivity in the recording of the displacement and
load are of the order of 1 nm and 131024 N, respec-
tively,2–7 which permits investigation not only of thin films
coatings, and individual phases but also the structure o
single-phase material, with a resolution of the order of
nm. At such a resolution it becomes possible to investig
phase transformations in silicon on the basis of an analys
the features of the hysteresis loop.7,16–18

HOOKE’S LAW DURING INDENTATION

A typical P–h diagram is shown in Fig. 1. Parts1–3
depend, for a fixed shape of the indenter, on three prope
7751063-7842/99/44(7)/7/$15.00
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of the material: the resistance to plastic deformations~curve
1!, creep or stress relaxation~curve2!, and the elastic prop-
erties~curve 3!. The hysteresis loop of widthd is recorded
under repeated loading of the same indent. It determines
intensity of the accumulation of reversible plastic deform
tions under cyclic loading and, hence, the intensity of w
and the kinetics of crack growth in fatigue.

In the analysis of theP–h diagrams a decisive role i
played by the elastic deformations in the indentation, and

FIG. 1. Typical indentation diagram with three segments:1 — loading and
continuous measurement of the hardnessHh as a function ofh; 2 — hold
under load~relaxation or creep regime!, 3 — unloading with repeated load
ing and recording of a hysteresis loop of widthd. The scales along theP and
h ~or w for unloading! axes depend on the hardnessHh of the material.
© 1999 American Institute of Physics
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beginnings of a theory of such testing based on their anal
are being worked out.9–12 A number of properties have bee
discovered by which an analytical relation betweenH and
Hh can be established and experimentally confirmed.12

Figure 2 illustrates the elastic recovery of an indent,
cluding that in the material forming a noticeable ridge
extruded material~rim! around it, with a heightDh. Because
the normal recovery along the perimeter of the indent is l
than at its center, the angle of the unloaded ind
increases.19,20 It is noteworthy that the no change in th
transverse dimensiona of the indent is observed.20,21

Let us digress from the shape of the indenter and disc
its average pressureHM ~Meyer hardness!, which is distrib-
uted according to ana priori unknown law over the area o
the plastic indent. An analysis10 based on the known solu
tions of contact problems in the theory of elasticity22 shows
that the initial stage of the elastic unloading of the plas
indent, which commences after the creep on segment2 has
practically ceased,10 is independent of the specific charact
of the pressure distribution over its area and is determined
the level of hardness and the elastic modulusE of the mate-
rial.

Including allowance for the stiffnessdP/dhc of the de-
vice, the formula forE becomes10

E5
12n2

22AA

Ap
S dh

dP
2

dhc

dP D2
12n i

2

Ei

, ~1!

whereA is the projected area of the indent, andn, n i , E, and
Ei are the Poisson’s ratios and elastic moduli of the mater
of the sample and indenter.

To describe the process of unloading of the plastic
dent, it is advisable to place the origin of the coordina
system at the point where the unloading starts, with
maximum valuesP5Pm andh5hm and to change fromh to
the symbolw used in mechanics. When this is done, expr
sion ~1! assumes the more compact form

dP

dw
5S5S 2

Ap
DAA•Er , ~2!

whereS is the stiffness, including the stiffnessdP/dhc of the
device,10 Er is the contact elastic modulus: (1/Er)5(1
2n2/E)1(12n i

2)/Ei .
A circular indent and a square indent with a side ofAA

are practically equivalent:10,22,23in the case of uniform pres
sure for the square indent the stiffnesss decreases by 0.6%
is
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according to the estimate of Ref. 10 and by 1.2% accord
to Ref. 23~calculation by the finite-element method; for th
trihedral indent made by a Berkovich pyramid this decre
reaches 3.4%!.

In analyzing the relationship betweenH and Hh it is
important to pay attention to the not-so-obvious circu
stance that the displacementh on the diagram does not re
spond to the value ofEi and is equal to the displaceme
recorded for an absolutely stiff indenter. This follows fro
the condition that at the instant the indenter touches the
face of the sample it is not yet loaded, and so the subseq
dependenceP(h) is determined solely by the geometry o
the indenter~instrument!, since the transverse dimension
the indenter, like that of the indent, does not change
loading.20,21 Consequently,h is the instrumental displace
ment, set by the geometry of the indenter. Another feature
this displacement is that it is measured from the initial s
face of the sample, whereas in measurements of the red
hardness the transverse dimension of the indent is meas
with allowance for the rim heightDh. Therefore, the relation
betweenH andHh depends solely on the normal elastic d
formation ws along the perimeter and the rim heightDh.
Then, by definition, the relation betweenH and Hh in an
indent obtained at a fixed loadPm is written in accordance
with Fig. 2 in the form1,12

S H

Hh
D 1/2

5
h

hd
5

hd1ws2Dh

hd
. ~3!

An analysis of the known solutions of the contact pro
lem in the theory of elasticity22,24 has been systematized i
Table I,1,12 where the following additional notation has bee
adopted:Pe5Pm /A is the mean pressure over the area of
indent,w1 is the deformation in an elastic indentation by
flat punch having a fixed areaA and productErAA, m is an

FIG. 2. Relationships among the different components of the elastic de
mations in an indent, both with allowance for the rim of heightDh ~to the
right of the axis! and without allowance for the rim~to the left of the axis!.
The dashed and solid curves are contours of the indent under load and
removal of the load.
TABLE I. Basic relations between the elastic deformations in circular and square indents.

Means of loading Pressure distribution law w/w15m ws /w1 2us /ws

Punch with flat end p5P/(2pax) 1.0 1.0
Uniform pressure p5pe 4p 0.81 p(122n)/8(12n)
Conical punch exp(2p/pe)5(11x)/(12x) 2 22(4/p)
Spherical indenter p53pex/2 1.5 0.75 4(122n)/3p(12n)
Concentrated force p→` (122n)/2(12n)
Square indent p5pe 4/p 0.635*

0.865**
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index characterizing the pressure distribution over the c
tact area, andus is the radial deformation along the perimet
of the indent. This last deformation has the opposite sign
that the dimensiond52a increases during unloading, but th
increase is practically zero, as follows from the formula
Table I and as is confirmed by experiment:20,21 ws /d!1;
ws>25us ; us /d>0.

For a flat punch it follows from Eq.~2! that Pm andw1

are linearly related:

Pm5w1Erd. ~4!

The derivativedP/dw at the initial point of the elastic
unloading curve of a plastic indent intercepts theh axis at a
distancew1 from the valuehm . This is the minimum pos-
sible value at a given hardnessHM and elastic modulusE
~Refs. 1, 12, and 25!. It follows from Fig. 1 that there is a
simple relation betweenw andw1 if the unloading curve is
approximated4,11 by P5Bwm ~see Table I!:

m5w/w1 , ~5!

wherem can vary in the interval from 2 to 1.
In elastic indentation by a cone one hasm52 and w

52w1, for a spherical indenterm51.5 andw51.5w1, for a
flat punchm1 andw5w1, and in the model of a uniform
pressure distributionm54/p andw>1.27w1. When the de-
formation ws is normalized byw1 we obtain, according to
Table I, its extrapolated dependence onm ~Fig. 3!.12 For
plastic indent made by a Vickers pyramid one hasm51.3
– 1.5~Refs. 1 and 12!. We see from Fig. 3 that for a circula
indent in this interval ofm values the function (ws /w1)
3(m) is close to a constant, in contrast to the functi
(ws /w)(m). For a Berkovich pyramid a wider interval ofm
values, 1.2–1.6, was obtained in Ref. 4.

Table I also gives two values for the deformation alo
the perimeter of a square indent during its uniform load
— wsd ~denoted by *), measured at the ends of the dia
nals, andwsm ~denoted by**), measured in the middle o
the square. In a linear approximation, proceeding from
known deformationws , we obtain the following expression
for a circular indent in the intervalm51.27–1.5:

ws /w150.8120.26~m21.27!, ~6!

FIG. 3. Analysis values of the elastic deformations in circular and squ
indent of dimension 2a, as functions of the indexm of the pressure distri-
bution over the area of the indent~1 — w2 /w1, 2 — ws /w).
-

o

g
-

e

wsd /w150.63520.204~m21.27!, ~7!

wsm/w150.86520.28~m21.27!. ~8!

If one should start from the averaged deformationwsc

5ws along a side of the square indent, the approximat
formula~6! would apply. It is preferable to formula~7!, since
present-day hardness meters measure the real projected
of the indent with allowance for the rim-related distortions
the square shape.

In Fig. 4 the experimental values ofHh /H are compared
with the values calculated according to formula~3!. The de-
formation on the contour of the indent was found using f
mula ~6! for a mean valuem51.4, which givesws /w1

50.78 for a circular indent. The height of the rim was tak
equal to zero. Also shown in Fig. 4 are the results of exp
mental measurements, including the data of Ref. 26. T
position of the experimental points shows that if the valu
of m and of the blunting of the tip of a sharp indenter a
measured more carefully, then the ratioHh /H can be used to
measure the height of the rim, which depends on the coe
cient of strain hardening of the material and determines
basic mechanical characteristics. More complete results
experimental measurements are presented in Table II, w
also gives the ratio of the differentials of the elastic wo
dAe to the total workdA in the indentation; this ratio was
analyzed in Ref. 25. Note the different deviation from t
calculated curve for the two points corresponding to t
types of glass: construction-grade soda–lime glass, and
grade quartz glass. The calculated rim heights for these
differ by more than 10%. Experiments show that this diffe
ence can be much larger for metallic glasses of differ
compositions. Careful interference measurements of the
height and the profiles of unloaded indents were made
Ref. 27. It follows from an analysis of these data that
traditional construction materials the rim height can alter
ratio Hh /H by more than a factor of 1.2.

Taking into account thatPm /A5HM , we obtain from
relation ~4!

HM

Er
5

2

Ap

w1

AA
5

4

p

w1

d
. ~9!

re
FIG. 4. Calculated~solid curves! and experimental~points! plots of Hh /H
versusHM /Er for ws /w150.78 ~1!, 0.61 ~2!; 1 — data of Ref. 26.
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TABLE II. Physico-mechanical properties of materials.

No. Material HV, GPa HVh /HV E, GPa HM /E HM/Er d/w1, % dAe /dA

1 30KhGSA 2.50 1.08 210 0.013 0.015 14.0 0.96
2 12Kh18N9T 1.60 1.04 204 0.085 0.010 7.0 0.31
3 45 2.46 1.12 195 0.013 0.015 14.0 0.97
4 L62 brass 1.33 1.08 98 0.014 0.015 9.0 0.62
5 D16 Duralumin 1.61 1.06 80 0.021 0.022 4.5 0.45
6 Ti alloy 2.47 1.08 130 0.020 0.022 7.0 0.70
7 Ni–Al–Cr 7.10 0.94 210 0.037 0.040 6.0 1.02
8 Glass 6.25 0.85 74 0.091 0.092 8.5 3.16
9 KV glass 6.95 0.68 71 0.110 0.110 5.0 1.99
10 FeAl3 7.20 0.77 110 0.071 0.073 1.0 0.28
11 GaAs 5.93 0.74 118 0.055 0.061 ••• 0.46
12 Si 11.00 0.65 150 0.079 0.087 ••• 0.62
13 a-Al2O3 25.00 0.77 430 0.063 0.086 ••• 0.65
14 BN 45.00 0.57 550 0.088 0.130 ••• 0.87
15 B 32.00 0.72 400 0.080 0.115 ••• 0.86
or

un
i

e
ee
a
st

n
st

e

e

of

-

s-

is
in

i-
de

b-

n

Relation ~9! does not change whenHM is replaced by
the true mean pressureq and true contact areaA. We obtain
the following expression for Hooke’s law for any, elastic
plastic, local contact loading:

q

Er
5

2

Ap

w1

AA
. ~10!

For tensile testing, Hooke’s law iss/E5«. Conse-
quently

«5
2

Ap

w1

AA
. ~11!

ELASTIC CONTACT AREA

We have takenHM5q andd5dc , wheredc is the di-
mension including the plastic and elastic contact zone aro
the perimeter of the indent. Analytical estimates made
Ref. 28 show that this approximation holds in many cas
Let us use the data of Table I to obtain a relation betw
HM and q. In addition, we must find the conditions for
more precise experimental determination of the ela
modulus«, as discussed in Refs. 3–6 and 23.

In elastic indentation by a pyramid or an equivale
cone, the elastic contact along the perimeter of the pla
indent is described by the equations

P5
2

Ap

Er

cotw
w2, w5

p

4
dcotw, ~12!,~13!

and the variable pressurep is distributed as a function of th
polar coordinater by the law

p5
pe

2
ln

11x

12x
, ~14!
d
n
s.
n

ic

t
ic

where 2w is the angle at the vertex of the cone,pe is the
mean pressure for a purely elastic contact,x is a quantity
which determines the dimensionr along the perimeter of
which the pressurep acts,

x2512r 2/a2, ~15!

wherea5dc/2 is the radius of the perimeter on which th
pressurep is equal to zero.

We are interested in the boundary of the plastic region
dimensionr on which the pressurep5HM . Let the same
load Pm be distributed in one case over the regiona and in
the other over the regionr. Dividing the numerator and de
nominator of the right-hand side of~14! by Pm , we get

x2512~q/HM !, ~16!

whereq5Pm /(pa2) is the mean pressure over the total ela
tic and plastic contact area, andPm /(pr 2)5HM is the hard-
ness measured from the unloaded plastic indent.

The unloading along a perimeter of widthDr 5a2r is
elastic. For a conical indenter we substitute~13! into ~12!
and divide byA to get

pe5
1

2
Er cot w. ~17!

The pressure distribution in the plastic contact zone
close to uniform.29 Therefore, we suppose, with a certa
margin of error, that the pressurep in the expression for the
dimensionx is equal toHM ~analysis of the pressure distr
bution using the data of Ref. 29 gives an order-of-magnitu
estimate ofHM51.1q). After substituting this value into
~14! and doing some straightforward manipulations we o
tain

expS 4

cotw

HM

Er
D5

11x

12x
. ~18!

With the values found forx, formulas~16! and~15! give
values for the ratiosq/HM and Dr /a, and, as can be see
from a comparison of~16! and ~15!,
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S HM

q D 1/2

5
dc

d
5

r 1Dr

r
. ~19!

Solutions of equations~18! and ~19! are presented in
Table III. The quantity (4/cotr)(HM/Er) is denoted asy. For
a Vickers pyramid 2w5136°, and so 4/cotw511.11. Then
y511.11HM /Er . For this particular case the values
HM /q and dc /d are given for variousHM /Er . It is seen
from the table that forHM /Er.0.03 the ratio HM /q
.1.03, and it increases rapidly with increasingHM /Er . Let
us also look at the calculations for another particular ca
typical for steels:E5200 GPa,n50.25, Ei51141 GPa,n i

50.07 ~Ref. 4!. For these values we haveHM /Er

51.19HM /E. Then valuesHM /q.1.03 are already reache
at HM /E.0.027. Similar calculations can be done for oth
anglesw. For 2w.136° it is convenient to use the approx
mation tanc5c, wherec5(90°2w). If c is decreased by
a factor of 5, so thatc5(22/5)°, then the ratio of the tan
gents of these angles is 5.2, i.e., it increases in compar
with the ratio of the tangents of these angles by only 4%.
such an indenter, valuesHM /q.1.03 are reached a
HM /E.(0.03)/550.006.

Let us examine indenter shapes further. For an ela
process of indentation by a parabolic~spherical! indenter,
according to Table I, we write in analogy with~14!

p5~3/2!pex. ~20!

On the other hand, for an elastic process

P5dc
3Er /~6R!. ~21!

After dividing by A, we get

pe5
4

3p

a

R
Er . ~22!

Under the conditionp5HM the substitution of~20! into
relation ~22! yields

q

HM
512S p

2

HM

Er

R

a D 2

. ~23!

Let us compare the two indenters in more detail. Tak
the ratio of Eq.~20! to Eq. ~14!, making use of the fact tha
for small x one can write ln@(11x)/(12x)#>2x, and substi-
tuting pe from Eq. ~22! into ~17!, we obtain

TABLE III. Relation between the mean contact pressureq and the Meyer
hardnessHM for a Vickers pyramid for different values ofHM /E
(HM /E5y/11.32).

y expy HM /q dc /d

0.1111 1.1175 1.003 1.001
0.3333 1.3956 1.028 1.014
0.5555 1.7428 1.079 1.039
0.7777 2.1765 1.159 1.077
1.1110 3.0375 1.342 1.158
1.4443 4.2392 1.619 1.272
1.7777 5.9161 2.021 1.422
2.2221 9.2266 2.834 1.683
e,

r

on
r

ic

g

ps

pc
5

4

p

a

R

1

cotw
, ~24!

where the subscripts and c denote spherical and conica
indenters, respectively.

Here a/R and cotw characterize the angle between t
normal to the surface of the sample and the tangent to
profile of the indent at a point located along its perimet
For equal values ofw we obtain from the geometric relation

~a/R!~1/cotw!5sinw. ~25!

As w increases, the value of expression~25! approaches
unity, and, hence,

ps /pc>~4/p!. ~26!

From an analysis of relations~24!–~26! one can con-
clude that to a first approximation the width of the elas
girdle along the perimeter of the plastic indent is the sa
for indents made by conical and spherical indenters at
same angles of indentationc(90°2w).

The accuracy to whichE and, hence, the ratioHh /H are
determined is higher if the initial segment of the unloadi
curve of the plastic indent is linear. The existence of t
indicator was pointed out in Refs. 1, 3, 9, and 10, and
necessity of taking the nonlinearity of this segment into
count was demonstrated in Refs. 4 and 16. In this connec
let us analyze the flat-punch model, which is also given
Table I. In this model the elastic contact is described by
linear relation~4!. The sharp edge of the punch is dulled o
the segment of the transition fromd to dc . The geometry of
this transition is specified by the geometry of the real coni
or spherical indenter. Consequently, the unloading on
segment on which the dimension of the contact area
creases fromdc to d is described by the relations alread
considered, which also determine its length. Comparing
mulas~19! and~12! for a conical indenter with relation~13!
substituted into it, we conclude that the loadP in the unload-
ing from dimensiondc to d is given by P/Pm5q/HM . It
follows from the foregoing discussion that this segment
the unloading curve become appreciable forHM /Er.0.03
and grows rapidly as this ratio increases. From a compar
of formulas ~26! and ~21! it follows that this segment in-
creases for a spherical indenter.

If the ratioEi /E is large, then the further elastic unload
ing approaches the model of a rigid punch, since all poi
on the plastic indent area recover by the same amountDws ,
equal to the rise of the indenter. The distribution of the cou
terpressure in the unloading will vary in accordance with
formula

px5DP/~2pa2/x!5pe /~2x!, ~27!

whereDP is the decrease of the load during unloading, a
px is the variable value of the counterpressure.

On the part of the unloading fromdc to d the pressure
along the perimeter of the indent declines to zero and t
increases to a valuepx>2HM . Under this condition Eq.
~27! becomes2HM5pe /(2x), or

x5pe /~2HM !, ~28!
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wherepe increases during unloading, from zero toHM at the
completion of the unloading, whilex increases from 0 to 0.5

Substitutingpe for q in ~16!, we obtain atx50.5 the
limiting value of the counterpressure

pem50.75HM . ~29!

Up to this limiting value of the counterpressure the
mension of the contact area remains unchanged and equ
d. Therefore, pe /HM5DP/Pm . As the unloading
progresses, reverse plastic deformations arise, and alon
perimeter of the indent there is an increase in the widthDr /r
of the girdle over which a uniform pressure with a valueq is
distributed. For such a pressure distribution the pressurewe

5(4/p)w1>1.27, where 4/p5me , and the unloading also
takes place by a linear law similar to~4!, but here the slopes
of the unloading branches are different:dP/dw1(4/
p)dP/dwe . In the linear relation~4! and the others like it,
the quantitiesd andw1 or d andwe are interchangeable: th
value ofP does not change if one of these is increased
the other decreased by the same factor. This property all
one to treat the unloading of a plastic indent as a sum of
linear processes in which the parametersd1 andd2 vary but
their sum remains equal tod. For one of theses process
me5p/4. Their specific contribution is determined from th
boundary conditions. At the start of the unloading, condit
~2! holds, and accordinglydw/dP5w1 /Pm . At this time the
girdle over which the pressure is distributed uniformly h
zero width. If upon completion of the unloading the press
is distributed uniformly over the entire area of the plas
indent, then we obtain a deformationwe5(4/p)w1. At an
intermediate position the contribution of this deformation
given by Dwe5(4/p)Dw1(DP/Pm). The specific contribu-
tion of both processes is the sum

Dw5
4

p
Dw1

DP

Pm
1Dw1

P

Pm
5Dw1S 4

p

DP

Pm
1

P

Pm
D .

~30!

It follows from a comparison of relations~30! and ~2!
that the expression in parentheses in the right-hand sid
~30! is equal to the correction to the valueEw found under
the assumption thatDP is a straight line segment. The tru
value of the modulusEr for this sum of two linear processe
with each of their properties~4! taken into account, is found
from the equation

d•Er5
DP

Dw S 4

p

DP

Pm
1

P

Pm
D . ~31!

At the initial point of the unloading processDP/Pm

50, P5Pm , and the correction is zero. AsP decreases and
DP increases, this correction increases linearly. We ob
for Er the expression

Er /Ew511@~4/p!21#DP/Pm , ~32!

where Ew is the value found from relation~2! along the
segment of the unloading curve of lengthDP that was as-
sumed to be a straight line segment.
l to

the

d
s

o

s
e

of

in

In the model of the unloading of a rigid punch the lim
iting value wasDPm50.75. In a real process this is less a
depends on several parameters. IfE/Ei increases, then the
contribution of the elastic deformation of the indenter i
creases, as a result of which the flat model of the punc
transformed into a convex model, andDPm decreases. The
real pressure distribution over the area of the indent is ch
acterized by a rise toward the center of the indent, which a
decreasesDPm . There is a similar influence of deviation
from a circular shape of the indent. It increases in the
quence from conical or spherical indenter to Vickers, Be
ovich, and Knoop pyramids. With increasing number of
peated loading cycles the reverse plastic deformation lead
a self-matching of the surfaces of the indent and indenter,
reverse plastic deformation becomes exhausted, andDPm

also tends toward zero, and the hysteresis loop change
cordingly. The intensity of the reverse plastic deformati
processes and their exhaustion as the number of repe
loading cycles increases also depend on the strain-harde
coefficient of the material. As it increases, so does the
mensionDz /d of the plastic zone under the indent, the i
tensity of the reverse plastic deformations decreases owin
their retardation by the plastic zone, and a greater numbe
repeated unloading cycles is needed in order to exh
them.

CONCLUSION

In summary, the branch of the first unloading of an i
dent consists of three segments. The initial segment invo
elastic unloading of a girdle along the perimeter of the
dent. Its length and indexm depend onHM /Er and the type
of indenter used. For a conical or pyramidal indenterm52,
and for a spherical indenterm51.5. On the second segme
the unloading occurs in accordance with a rigid-pun
model, with an accumulation of reverse plastic deformat
as the unloading proceeds. The length of this segment
creases with increasing ratioE/Ei and asymmetry of the in-
dent. This last is most pronounced for a Knoop pyramid.
the final segment the contact area of the indenter with
surface of the plastic indent begins to decrease. The con
tration of the pressure at the center of the indent causes
index m and the curvature of this segment to increase. Af
10–15 repeated loading cycles the reverse plastic defor
tion has decreased and stabilized. The indexm increases with
increasing ratioE/Ei and strain-hardening coefficientk. The
influence ofk is due to the fact that the length of the seco
segment decreases with increasingDz /d, while on the third
segment the indexm increases and pressure is increasin
concentrated at the center of the indent. This scheme of
unloading processes and the technique of refined determ
tion of the elastic modulus agree with the data of Ref.
where the following values ofm were obtained: for tungsten
and aluminum 1.51 and 1.38, respectively, and for sapph
quartz, and fused silica 1.47, 1.43, and 1.25, respectivel

The experimental measurements presented in Tabl
and discussed above also agree with the analysis given
the relation between the reduced and unreduced hardnes
the determination of the height of the rim.
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Electron emission during pulsed polarization switching of ferroelectric ceramics
A. N. Pavlov, I. P. Raevski , and V. P. Sakhnenko

Scientific-Research Institute of Physics at Rostov State University, 344104 Rostov-on-Don, Russia
~Submitted March 18, 1998; resubmitted June 19, 1998!
Zh. Tekh. Fiz.69, 49–52~July 1999!

It is shown that in the pulsed polarization switching of polycrystalline ferroelectrics in high fields
the external field is damped by the electronic subsystem associated with the crystallite
boundaries. Therefore, the reorganization of a ferroelectric system with a high density of surface
states at the crystallite boundaries is not irreversible, and the system returns to its former
state after the polarization-switching voltage is removed. Because of this, electron emission from
the surface of a ferroelectric ceramic can be brought about by unipolar pulses. ©1999
American Institute of Physics.@S1063-7842~99!01007-7#
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INTRODUCTION

Electron emission from ferroelectrics is observed un
various kinds of external influences~light, heat, mechanical
etc.!. There has recently been considerable interest in
phenomenon of electron emission from ferroelectrics un
the influence of an external polarization-switching elect
field.1–5 It has been established that this emission can
obtained both from crystals and from ceramics, that it ha
unipolar character, that it last a short time~of the order of
tens of nanoseconds!, that the emission capability can re
cover after the polarization-switching field is removed, a
that the amount of charge emitted correlates with the va
of the spontaneous polarizationPs . In Refs. 1–5 the ques
tions of the formation of the emission potential and differe
microscopic mechanisms of emission were discussed
ferroelectric crystals. However, there have been no report
models that take into account the specifics of the emiss
processes during the polarization switching of a ferroelec
ceramic, for which promising experimental results have b
obtained.3 At the same time, our studies6–8 of charge trans-
port processes have shown that the formation of the inte
electric field in ferroelectric ceramics has a number of fu
damental differences from that in crystals on account of
presence of intercrystallite boundaries, and that these di
ences affect the formation of the emission potential.

DESCRIPTION OF THE MODEL

Let us consider the behavior of a polarized polycryst
line ferroelectric in an external polarization-switching fie
~Fig. 1!. In polycrystalline ferroelectrics there are a numb
of interacting subsystems that respond to the external ele
field, among them: 1! ferroelectric~ionic!, 2! electronic in
the bulk of the crystallites, 3! electronic, related to the sur
face of the crystallites. The interaction with this last su
system is due to the fact that under certain conditions
synthesis and annealing, localized surface states of the
ceptor type arise at the interfaces between crystallites6,9 the
screening of these filled states owing to the redistribution
electrons in the bulk of the crystallites gives rise to the f
mation of an electron-depleted surface layer near the bou
7821063-7842/99/44(7)/4/$15.00
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aries of the crystallites; this layer is of the Schottky type a
is positively charged9 ~Fig. 2!. The appreciable electric field
existing in the Schottky regions has a large influence on
distribution of the polarizationP.7 In the equilibrium state of
the ferroelectric the spontaneous polarizationPs is screened
by the electronic subsystem. If the ferroelectric subsystem
taken out of its former state~e.g., by a sudden polarizatio
reversal!, the electronic subsystem will adjust to the ne
state of the ferroelectric subsystem, i.e., a rescreening
occur, which can come about through motion of the char
in both the internal and external circuits. The rescreening
to the motion of charges in the external circuit can be acco
panied by the escape of electrons from the open surfac
the ferroelectric, i.e., emission. The response times of
electronic~surface and bulk! and ionic subsystems to an ex
ternal influence are different. If a sudden polarization rev
sal is brought about by a fieldE>Ec ~whereE is the external
electric field andEc is the coercive field, e.g., for BaTiO3 the
theoretical value isEc;107 V/m), then the ferroelectric sub
system readjusts overtc0;10212 s. ForE,Ec the switch-
ing time of the ferroelectric system increases
tc;tc0exp(Ec /E) ~Ref. 10!. For example, forE;106 V/m
~Ref. 3! we obtaintc;1028 s. In order to observe any kind
of switching effect it is necessary to satisfy the conditi
tc,t i , where t i is the time of the external polarization
switching pulse. The response time of the electronic b
subsystem to an external influence can be estimated by
ceeding from the Maxwell relaxation timet r5«0«r;1021

s («0 is the permittivity of free space,«;104 is the dielectric
constant,r;106 V•m ~Ref. 11! is the electrical resistivity!.

FIG. 1. Arrangement of the objects:1 — electrodes,2 — sample,3 — gap.
© 1999 American Institute of Physics
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Owing to the large dielectric constant of a ferroelectric, t
external voltage applied to the electrodes creates a signifi
electric field in the gap.2 In order for an electron to leave th
surface of a ferroelectric, it must undergo a transition fro
some surface state to a free state. At an average exte
electric field Eav;106 V/m, «;104, a sample thickness
L;1023 m, and a gap thicknessr;1026 m ~Fig. 2!, the
electric field in the gap will be;109 V/m,5 which causes
electron emission4 from the surface energy states with a s
nificant activation energy (;0.5 eV) over the time
;10212 s necessary for the displacement of an electron
distance of the order of one lattice constant under the in
ence of the external electric field. The integrated value of
emitted charge is limited by the density of surface sta
which can reach;1018 m2.

In the crystal the screening processes occurring in
external circuit due to emission of the surface electrons
lead to pinning of the new state of the ferroelectric syste
However, in a polycrystalline material during a brief
(;1027 s) polarization-switching pulse the electrons in t
bulk of the crystallites do not have sufficient time to react
the pulse, and as a result the electric fields due to this e
tronic subsystem in the Schottky regions remain the sam
they were before the polarization-switching pulse was
plied. Thus, after the polarization-switching pulse has end
the ferroelectric system in a ceramic is subjected two t
competing factors: the field of the emission-modified el
tronic system associated with the open surface of the sam
tends to stabilize the new polarization direction, while t
conserved fields of the Schottky regions tend to restore
previous state. The restoration of the initial state of the fer
electric system plays an extremely important role in organ
ing an efficient emission process. It can happen that, a
suppression of the new polarization-switching pulse of
previous polarity, the whole cycle is repeated anew. The
fore, the time of the polarization-switching pulse should
less than the timet r required for reorganization of th
Schottky regions at the grain boundaries. Thus, in order
the emission current to be large and for the switching bac
occur after removal of the polarization-switching field it
necessary to satisfy the conditiont r.t i.tc.ts and to have
the restoring effects due to the Schottky regions be predo
nant over the emission-related effects that pin the new s
It is most important to consider the role played in these p
cesses byNs , the density of surface states at the crystal
boundaries, since that is primarily what determines the fie
in the Schottky regions.

FIG. 2. Diagram of the electron-depleted surface layers:1 and 2 are
Schottky regions I and II.
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RESULTS OF THE CALCULATIONS

Let us give some illustrative numerical estimates
barium titanate BaTiO3 , since electron emission during po
larization switching has been observed for this compou1

and the parameters of the thermodynamic potential h
been well determined. To trace how the emission proces
are influenced by the densityNs of deep surface states of th
acceptor type at the crystallite boundaries, we have m
some model calculations based on the thermodynamic
rameters of BaTiO3 inferred from the data of Ref. 12. In th
calculations we used the following values: temperatureu
5300 K, density of impurity states of the donor type in th
bulk of the crystalliteNd5231025 m23, activation energy
of these donor statesEd50.5 eV, activation energy of the
surface states Es51.2 eV, and crystallite thicknes
d51026 m. Then the bulk conductivity in the crystallites
r;103V•m, which ensures satisfaction of the conditio
t r.t i.tc.ts . Therefore, in the polarization switching an
the accompanying electron emission from the open surf
of the ferroelectric, the distribution of the electron dens
and the Schottky regions in those crystallites which are
cated in the interior of the ferroelectric remain uncharg
Figures 3 and 4 show the results of calculations of a num
of parameters as functions of the degree of emission, wh
is characterized by the quantityhe , which is related to the
chargeDQ escaping from the surface of the sample by t
relation he5DQ/Ps . We assume thatqNs, f r.Ps (q is the
elementary electron charge, andNs, f r is the density of sur-
face states on the free surface of the ferroelectric samp!.
Therefore, the surface chargeQ5qNs, f r and the adjacen
Schottky region together provide complete screening ofPs in
the ground state. Since emission alters the surface charg
the free surface, the field in the bulk of the crystalli
changes, and a new polarizationP5Ps(12he) is estab-

FIG. 3. Total energyW versus the degree of emissionhe in the absence of
external voltage (u50) for a ferroelectric crystal~1! and for ferroelectric
ceramics withNs5331018 ~2!, 431018 ~3!, and 531018 m22 ~4!.
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lished. Figure 3 shows the total energy per unit area of
sample together with the gap as calculated for different
grees of emission in the absence of an external voltage;
energy includes the energy of the ferroelectric and electro
subsystems and the energy of their interaction. It follo
from Fig. 3 that for a crystal or ceramic with smallNs ,
polarization switching accompanied by emission leads t
new stable state of the system, i.e., is irreversible, since
total energy of the new state is lower than that of the ini
state. At the same time, Fig. 3 shows that for a ceramic w
large Ns , polarization switching accompanied by emissi
leads to an unstable new state, and the initial state is e
getically favorable. The calculated dependence of the ele
field Eg in the gap~Fig. 4! shows that a deviation of th
external field~at zero potential difference between the ele
trodes! for a ceramic with a large density of surface sta
~curve 3! gives rise to an electric field in the gap in th
direction corresponding to restoration of the original surfa
charge (Eg,0); this promotes reversibility of the polariza
tion switching process. Thus the calculations whose res
are presented in Figs. 3 and 4 suggest that in the case
large density of surface states the polarization switching
reversible at values of the degree of emission (he.1) for
which the region of irreversible processes has been rea
in a crystal or ceramic with a low density of surface stat
At lower degrees of emission (he,1), where, in accordanc
with Fig. 4, a crystal or ceramic with a low density of surfa
states exhibits a tendency toward restoration of the in
state when the external polarization-switching voltage
turned off, this tendency is weaker for a ceramic with lar
Ns .

Let us now examine Fig. 5, which corresponds to
external field of 109 V/m, i.e., a field such that emissio
conditions will be attained in the gap. Plotted along the v
tical axis is the average of the external electric fieldEav, and
along the horizontal axis ishe , a measure of the degree o
emission. The figure shows the value ofEav that is required
in order for emission to continue at a givenhe . The negative

FIG. 4. FieldEg in the gap versus the degree of emissionhe at u50 for a
crystal ~1! and for ceramics withNs5331018 ~2! and 531018 m22 ~3!.
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values ofEav for a crystal and for a ceramic with smallNs

indicate that during polarization switching at that stag
which corresponds to the metastable part of the hyster
loop, the sample itself become a voltage source. This
dency is less pronounced for a ceramic with smallNs and is
altogether absent for a ceramic with largeNs . This is be-
cause a significant portion of the potential in a ceramic fa
across the nonreorganizing Schottky regions, where there
high-field region~Fig. 6! because of the small« ~Fig. 7!. The
local value of« is given by the expression«0(«21)5(a
13bP215gP4)21. Herea, b, andg are the parameters o
the thermodynamic potential of the ferroelectric, and«0 is
the permittivity of free space. Negative values of« corre-
spond to metastable parts of the hysteresis loop.7 The larger
the value ofNs , the larger is that part of the Schottky regio
which corresponds to the metastable segments of the hy
esis loop, where« is small. Since the linear dimensionsl I

FIG. 5. Average fieldEav versushe at a field in the gapEg5109 V/m for a
crystal ~1! and for ceramics withNs5331018 ~2! and 531018 m22 ~3!.

FIG. 6. Distribution of the fieldEs,II in Schottky region II for an average
field Eav5143106 V/m andNs5331018 ~1! and 531018 m22 ~2!.
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and l II of the Schottky regions I and II on the parts of th
crystallite surface onto which the positive and negat
bound charges due toPs emerge are quite different (l I, l II)
because of the difference in the dielectric constants of th
regions,8 the data in Figs. 6 and 7 are given for Schott
region II, which has the larger dimensions. Figure 5 sho
that for a crystal or for a ceramic with smallNs the depen-
dence ofEav on he is multivalued, and therefore even whe
the average field is lower than the coercive field (Eav,Ec) it
is possible, if the polarization-switching field is applied for
long enough time, to have a transition to states for which
polarization switching becomes irreversible~the region of
largehe). For a ceramic with largeNs , irreversible polari-

FIG. 7. Distribution of the inverse dielectric constant«21 in Schottky re-
gion II at an average fieldEav5143106 V/m and Ns5331018 ~1! and
531018 m22 ~2!.
e

se

s

e

zation-switching processes will not occur even for hi
polarization-switching fields (Eav.Ec).

CONCLUSION

During the polarization switching of ferroelectric mat
rials, which have large dielectric constants, electric fields
produced which can cause electron emission from the sur
of the ferroelectric. In polycrystalline ferroelectrics there a
regions of low dielectric constant in the regions of the cry
tallites near the grain boundaries; these affect the forma
of the internal fields and promote restoration of the init
state after the polarization-switching voltage is turned o
For this reason, at high densities of surface states one
achieve higher degrees of emission without leaving the
gion of reversible polarization-switching phenomena than
possible in a crystalline ferroelectric or a polycrystallin
ferroelectric with a low density of surface states.
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Inclusion of a nonzero volume fraction of the new phase in the kinetics of crystallization
of melts
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The growth rate of nuclei is calculated in self-consistent mean field approximation with
allowance for the screening of a selected nucleus from heat fluxes, and an expression is obtained
for the screening length of the heat flux. It is shown that the growth rate of a nucleus
depends on the degree of crystallization of the melt. The influence on the crystallization process
of collisions of the particles as they coalesce into a polycrystalline solid is investigated. A
refinement of the size distribution function in the thermal Ostwald ripening stage is obtained.
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At present there is much interest in the theoretical
scription of the crystallization of melts.1–6 The construction
of a complete theory describing all stages of this proc
~nucleation, independent growth of the nuclei, Ostwald r
ening! is of enormous significance both for the physics
phase transitions and for practical metallurgy. The stage
nucleation of the new phase in melts was investigated
Refs. 2 and 3, and a theory of the Ostwald ripening of
ensemble of nuclei in a crystallizing multicomponent m
was constructed in Refs. 4 and 5. However, all of the p
posed theories of Ostwald ripening4–6 are based on the ap
proximation of zero volume fraction, i.e., in the derivation
all the basic relations it was assumed that the volume oc
pied by the particles of the new phase is strictly zero. T
simplification affects such parameters of the nucleat
theory as the screening length of the heat fluxes and
growth rate of an island of given radius.7 It must also be
taken into account that in studying the thermal Ostwald r
ening the heat sinking is taken into account only in the h
balance equation, i.e., the theory treats the evolution of
system as a whole, on the macroscopic level. In this pa
we shall consider the influence of heat sinking on a mic
scopic level, i.e., at the level of the growth of an individu
nucleus.

The influence of a nonzero volume fraction of the ne
phase in the diffusional growth of a nucleus and in the
composition of supersaturated solid solutions was first inv
tigated in Refs. 8–10. One should also mention Ref. 11
which a method based on a classical diagram technique
used.

In this paper we shall consider the crystallization
melts with allowance for the finite distance between nuc
and derive expressions for the growth rate and scree
length in the self-consistent effective-medium approximat
with allowance for the screening of heat fluxes at a selec
nucleus.
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Another goal of this study is to investigate the influen
of the nonzero volume fraction in the late stage of the fir
order phase transition in melts — the stage of thermal O
wald ripening.4–6

Let us turn to a derivation of expressions for the grow
rate of a nucleus of radiusR with allowance for the screening
of the heat fluxes.

SELF-CONSISTENT EFFECTIVE-MEDIUM APPROXIMATION
WITH ALLOWANCE FOR THE SCREENING
OF THE HEAT FLUXES TO A SELECTED NUCLEUS

Let us select a nucleus of the new phase in a superco
one-component melt. For the sake of definiteness, let us
sume that it has spherical symmetry. Heat is removed fr
the melt with a sink strengthK,0 that is constant in time
The temperatureT(r ,t), wherer is the coordinate of a poin
in space andt is the time, will be determined by the hea
conduction equation in a nonmoving fluid:

rCP

]T

]t
52¹• q1K, q52x¹T ~1!

with boundary conditions at the surfaceSi of some i th
nucleus of radiusR:

~q•n!uSi
5b~T2TR!uSi

, ~2!

wherer is the density of the melt,x is the thermal diffusiv-
ity, CP is the specific heat, andb is the specific boundary
flux of atoms to the nucleus.

To solve the problem of the many-particle dynamics
is necessary to solve Eq.~1! with the boundary conditions~2!
imposed at all the nuclei. This problem obviously cannot
solved exactly. To solve it we shall use the self-consist
mean field approximation.9,10 The essence of this approach
to replace the spatially nonuniform thermal fieldT(r ,t) by a
uniform field that has been averaged over all the islands
the ensemble and which is modulated by the field of
© 1999 American Institute of Physics
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selected nucleus. The evolution of the temperature field
time is governed by the heat balance equation in the sys
and that makes this approach self-consistent. In the pre
study we take into account that the volume fraction of
new phase is nonzero, and so the distance between islan
finite. It is clear that the thermal field in the region close
the selected nucleus is formed mainly by that nucleus,
the influence of the entire ensemble begins to play a subs
tial role only at a certain distance from the nucleus. Thus
a selected nucleus one can define a zone of influenc
which there are no other nuclei, and approximate this z
by a sphere of radiusR0(R). Physically this means that a
the heat removed by the external sinkK is released by the
given nucleus. Thus the entire space occupied by the cry
lizing melt will be divided into two zones: the sphere
influenceR,r ,R0, and the outer regionr>R0, which we
shall first describe separately and then match the solut
obtained. It can be shown that inside the sphere of influe
R,r ,R0, Eq. ~1! holds in the quasisteady approximation

2¹• q1K50. ~3!

In the outer regionr>R0 we should go over from the se
of localized heat sources at each nucleus to a continu
medium with continuously distributed sinks. For this we ge
eralize the approach developed in Ref. 10 for the case
island growth from an adsorbed vapor on the surface o
substrate. We shall perform an averaging of equation~1! in a
‘‘physically’’ infinitesimal volume DV containing a large
number of nuclei:

^•••&5 lim
DV→0

1

DV E
DV8

•••dV8. ~4!

After performing operation~4! for Eq. ~1!, we write the
latter in the form

rCP

]^T&
]t

52~¹• ^q&!macro2 Ĩ 1K~12h!, ~5!

where

~¹• ^q&!macro5
1

DV R
S

q•dS;

S is a surface enclosing the individual nuclei in the volum
DV,

Ĩ 5
1

DV (
i

R
Si

q•dS

is the specific flux of heat released by the entire ensembl
nuclei at the physical pointr , andh is the volume fraction
constituted by the nuclei.

We shall show below that the temperature changes s
stantially within the sphere of influence of a given nucle
while outside it^T& differs from the mean temperatureT̄ of
the melt only over the screening length for the screening
the heat flux by the surrounding centers, and we can rep
the ]^T&/]t in Eq. ~5! by dT̄/dt.
in
m,
nt

e
s is

d
n-
r
in
e

al-

ns
e,

us
-
of
a

of

b-
,

f
ce

Combining Eqs.~3! and~5!, we obtain the desired aver
aged heat conduction equation for the selected nucleus
self-consistent mean fieldT̄ with allowance for the screening
of the heat fluxes:

@2¹• q1K#Q~R02r !

1F2~¹• ^q&!macro2 Ĩ 1K~12h!2rCP

dT̄

dt
G

3Q~r 2R0!50, ~6!

whereQ(x) is the Heaviside step function,

Q~x!5H 1, x>0,

0, x,0.

The boundary conditions for~6! are

x
dT

dr U
r 5R

5b~T~R!2TR!; ^T&ur→`5T̄~ t !. ~7!

The mean temperatureT̄(t) is determined self-
consistently from the heat balance equation. In addition,
the solution of equation~6! we must supplement~7! with the
condition for the ‘‘matching’’ of the temperaturesT and^T&
and the heat fluxesq and^q̄& at the boundary of the sphere o
influence (r 5R).

We use the solution of equation~6! with boundary con-
ditions ~7! in the following way. We write the temperatureT
of the melt and the heat flux densityq in the form

T5T01T1 , q5q01q152x~¹T01¹T1!. ~8!

Here, of course, for the average temperature of the m
T̄5T̄01T̄1, the fluxq1 and temperatureT1 are due solely to
the presence of the sinkK ~for K50 we haveT150 and
q150) and are nonzero only inside the sphere of influen
They are determined from the natural condition at the bou
ary of the sphere of influence:q1ur 5R0

50. Inside the sphere

of influence we assume that^T1&5T̄1.
The fluxq0 in ~8! is due to the exchange of heat betwe

nuclei, and we will call it the exchange flux. For this flux th
boundary of the sphere of influence does not have any
nificance. Making a change of various in Eq.~6! and bound-
ary conditions~7!, we get the heat conduction equation f
T1 ~9! with the corresponding boundary conditions~10!:

2¹• q11K50, ~9!

x
dT1

dr U
r 5R

5bT1~R!; T1ur 5R0
5T* ; T1ur .R0

5T̄1 .

~10!

The quantityT* is determined from the self-consistenc
condition

4p

3 E
0

`

R0
3~R! f ~R,t !dR51 ~11!

and the requirement
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x
dT1

dr U
r 5R0

50.

Here f (R,t) is the size distribution of the nuclei. Assum
ing that in the effective-medium region (¹•^q1&)macro50,
we obtain Eq.~12! with the boundary conditions~13! for
calculating the value ofT0:

2¹• q0•Q~R02r !

1F2~¹•^q0&!macro2 Ĩ 1K~12h!2rCp

dT̄

dt
G

3Q~r 2R0!50, ~12!

x
dT0

dr U
r 5R

5b~T0~R!2TR!; T0ur→`5T̄0 . ~13!

Thus we have reduced Eq.~6! with boundary conditions
~7! to the system of equations~9!, ~12! with boundary and
auxiliary conditions~10!, ~11!, and~13!.

First we must find the fluxq1 from Eq. ~9!. Since its
solution does not present any difficulties, we shall imme
ately write the value of the heat fluxq1 from a growing
nucleus of radiusR:

2q1R5x
dT1

dr U
r 5R

52
KR

3

1
xR

0

1
6

R

S K

x D ~R0
22R2!1T* 1

KR

3b

~R02R!1
xR0

bR

, ~14!

where

T* 5
1

3 S K

x D R0
3

R S 12
R

R0
D S 11

1

2

R

R0
D1

K

3bR2
~R0

32R3!.

~15!

Then, substituting~15! into ~14!, we obtain

2q1R5
K

3R2
~R0

32R3!. ~16!

Let us find the radius of the sphere of influence of t
selected nucleusR0(R) from expressions~11! and ~15!. We
introduce the notation x[R0 /R, a53xT* /KR2, g

[x/bR, g05x/RR̄. Then system~11! and ~15! becomes

4p

3 E
0

`

x3
• f ~R,t !•R3dR51, ~17!

~x21!2S x1
1

2D1g~x321!5a. ~18!

The solution of system~17!, ~18! does not present an
particular mathematical difficulties, and we therefore tu
immediately to the results. Letx@1 (R!R0), which corre-
sponds to a rather sharp distribution functionf (R,t) and a
low degree of crystallization (h1/3!1). ThenR0(R) will as-
sume the form
i-

R0~R!5
R

2~11g0! Fl1S R̄

R
D 2/3

•l1/3
2~11g0!2h1/3

h1/3 G ,

~19!

wherel[(11g0)/(11g).
Let us examine two limiting cases.
1. If b→0, then the growth or melting of the nuclei i

limited by the boundary kinetics. In this caseR0(R) can be
written in the form

R0~R!5
R2/3R̄1/3

h1/3
;R2/3. ~20!

If b→` ~the growth or melting of the nuclei is limited
by the heat removal, and the boundary kinetics does not p
a role!, we will have

R0~R!5
R

2 F11S R̄

R
D 2/3

22h1/3

h1/3 G.
R1/3R̄2/3

h1/3
;R1/3. ~21!

Thus from the solution of system~9!, ~10! we have ob-
tained an expression for the flux~16! due to the sinking of
heat from the system and expressions~19!–~21! for the ra-
dius of the sphere of influence. Now we must find the e
change fluxq0. We obtain a solution of equation~12! with
the boundary conditions~13!. In the effective-medium region
(r>R0), for a random distribution of the nuclei with respe
to their size and location, we can write the following expre
sion for the averaged heat fluxĨ (r ):

Ĩ ~r !5E
0

`

4pR2@^q0R~r !&1q1R# f ~R,t !dR. ~22!

Here ^q0R& is the averaged exchange flux to a nucleus
radiusR, andq1R is ther-independent fluxq1 to the nucleus.
The total heat fluxI from all the nuclei in the system can b
written as

I 5
1

V (
i

R
Si

q•dSi52E
0

`

4pR2~ q̄0R1q1R! f ~R,t !dR.

~23!

Writing ^q0R& in the form

2^q0R&5xw~R!~ T̄02TR!1xw~R!~^T0&2T̄0!, ~24!

wherew(R) is a function to be determined, and combinin
~22!–~24!, we obtain an expression forĨ :

Ĩ 5I 1
x

l 2
@^T0&2T̄0#,

wherel 2254p*0
`R2w(R) f (R,t)dR.

Then Eq.~12! can be reduced to

2¹• q02
x

l 2
~T02T̄0!Q~r 2R0!

1FK~12h!2I 2rCP

dT̄

dt
GQ~r 2R0!50. ~25!
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The expression in the square brackets in Eq.~25! is in-
dependent ofr and must go to zero in order for a physic
~bounded asr→`) solution to exist; this corresponds to th
heat balance equation

K~12h!5CP

dT̄

dt
r1I . ~26!

Thus Eq.~12! goes over to the following equation:

2¹• q02
x

l 2
~T02T̄0!Q~r 2R0!50, ~27!

x
dT0

dr U
r 5R

5b@T0~R!2TR#, T0ur→`5T̄0 . ~28!

We note that the parameterl in ~27!, which has the di-
mensions of length and depends on the distribution funct
has the physical meaning of the screening length for the
flux to the given nucleus. An expression for this index w
be obtained below.

Since the solution of equation~27! with boundary con-
ditions~28! does not present any fundamental difficulties,
will immediately write out the expression for the heat flu
q̄0R :

2q̄0R5
x

RS 12
R

R01 l D1
x

b

~ T̄02TR!, ~29!

where the screening lengthl for the heat flux is determined
from the equation

l 25
1

4pNR̄
F11g02

R̄

R0~R̄!1 l
G .

Let us now give a formula for the growth rate of th
nucleus with allowance for the screening of the therm
fields,

dR

dt
5

1

rL
~ q̄0R1q1R!,

and, substituting into this equation the expressions forq̄0R

and q1R and considering, for example, the caseb→0, i.e.,
when the growth rate of the particle is limited by the rate
incorporation of the atoms, we obtain an expression
dR/dt in the form

dR

dt
5

ba

RLrs
F R

Rcr
2

K

3 S 1

R1/3
A~12h!1/3

h

3S 1

3/4pND 1/9

2R2D G . ~30!

Comparing expression~30! with the formula for the
growth rate of a nucleus obtained5 without taking the screen
ing of the thermal fields into account, we see that as
degree of crystallizationh increases, the growth rate be
comes comparatively smaller. We note that the results
tained above were obtained in the approximation of a ra
low degree of crystallization. Let us now turn to an analy
n,
at

l

f
r

e

b-
er
s

of the late stage of the first-order phase transition, when
particles grow together into a continuous polycrystalli
solid and the degree of crystallization approaches unity.

ALLOWING FOR THE ‘‘COLLISIONS’’ OF NEW-PHASE
NUCLEI IN THE OSTWALD RIPENING STAGE

In Refs. 5 and 6 the theory of Ostwald ripening durin
crystallization of a melt was treated in an approximation
which the volume fraction of the new-phase nuclei in t
melt is assumed to be zero. As the volume of the new ph
increases, the influence of collisions1! of nuclei on their size
distribution should become more noticeable. For exam
the collision of grains of the new phase occurs during cr
tallization of melts in the stage of formation of a continuo
polycrystalline solid.6

Let us write a system of equations describing the hea
Ostwald ripening of an ensemble of nuclei in a on
component melt with allowance for the nonzero volume fra
tion of the new phase. This system consists of the contin
equation~31!, which includes a collision integralI col , the
heat balance equation~32!, and an expression in gener
form ~33! for the growth rate of the nuclei:

] f ~R,t !

]t
1

]

]R
@ f ~R,t !VR#5I col , ~31!

Q05Q~ t !1
4

3
pLrs E

0

`

f ~R,t !R3dR, ~32!

dR

dt
5

const

Rp21 S R

Rcr
21D . ~33!

Here L is the latent heat of fusion,rs is the density of the
new-phase fraction of the particles,f (R,t) is the size distri-
bution function of the islands,I col is the collision integral,
Q(t) is the quantity of heat in the melt at a given time, con
is the constant in the equation for the growth rate of
nucleus,5 and Q0 is the quantity of heat in the melt at th
start of the Ostwald ripening.

To take the collisions of the nuclei into account, we u
the method developed by Lifshits and Slezov in Ref. 1
which treated the decomposition of supersaturated solid
lutions. In fact, it has been shown5 that in dimensionless
form, the equations describing the thermal and diffusio
Ostwald ripening of an ensemble of new-phase nuclei h
the same mathematical structure. We use this formalism
introduce the relative variablesu5R/Rcr(t) and ‘‘time’’ t
5 lnx2, wherex5DT/DT0, whereDT and DT0 are the in-
stantaneous and initial values of the supercooling of the m

Choosing the origin of coordinates at some nucleus,
note that all the other nuclei will move toward the chos
center ~since the coordinates of their centersr i do not
change, andRcr(x)→`). Here the majority of the nuclei will
melt without having reached the chosen center, and co
sions will not occur. We write the total system of equatio
describing the thermal Ostwald ripening with allowance
collisions of the grains in the relative variablesu andt as
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]w

]t
1

]

]u S w~u,t!
du

dt D5I col ,

wut505w0 , ~34!

FIG. 1. Form of the size distribution function of the particles:1 — for zero
volume fraction of the new phase;5 2 — with a nonzero volume fraction of
the new phase.
i

s

12
D0T

Q0
l 2t/35 l tE

0

`

w~u,t!u3du, ~35!

du3

dt
5~u21!g2u3. ~36!

Here Eq.~34! is the continuity equation in the space of va
ablesu,t; Eq. ~35! is the heat balance equation in the ne
variables, and Eq.~36! is the growth rate of an island. Equa
tion ~35! describes the heat balance in the system, expres
~36! is the dimensionless growth rate of the nucleus, andw is
the dimensionless distribution function. We note that the s
tem of equations~34!–~36! is mathematically identical to the
system described in Ref. 11 and can be solved by the s
method. Here we shall write down immediately the expr
sion for the dimensionless size distribution function of t
particle with allowance for ‘‘collisions’’ in the first approxi-
mation,w1(t,z), wherez5R3/Rcr

3 ,
w155
1

et

1

tcol
eDA

e2c

b
z<z0 A5E

z8

2z0

ec* I col
0 ~z8!dz8,

1

et

1

tcol

e2c*

b E
z

2z0

ecI col~z8!dz8 z0<z,2z0,

0 z>2z0.

~37!
n,

he

for
3-
’’

ius

ger
par-
unt.

r-
Here

c5

¦

c* 1D z.z0 c* 5
4

3
ln~Az13!1

5

3
lnuAz2Az0u

1
1

12A z

z0

2 ln
33e

25/3
,

c* z,z0 D5
3p

2A3

4

Dg

g0

Dg5g02g.0.

The collision integral has the form

I col5
1

x

1

tcol

3m

4p H 1

2E0

` 1

e2t
v~z2z8,z8!w~z

2z8,t!w~z8,t!dz82
1

et
w~z,t!E

0

` 1

et
v~z,z8!J .

Herev(z,z8) is the effective relative volume in which nucle
z interact with nucleiz8. The relative collision time is of the
order of unity,tcol.1, since all the parameters in the expre
 -

sion describing the melting of a smaller grain in a collisio
du3/dt.2g2u3, and in the initial conditionsuut505u0

.1.
Figure 1 shows the form of this function. We see that t

distribution function~37! has a ‘‘tail’’ corresponding to the
formation of particles of large sizes.
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Theory of the generation of mechanical vibrations by laser radiation in solids
containing internal stresses on the basis of the thermoelastic effect
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The behavior of the nonsteady deformations in solids containing internal stresses under
irradiation by temporally modulated laser radiation is analyzed. In the framework of the nonlinear
theory of thermoelasticity a model is proposed for the excitation of mechanical vibrations
with allowance for the dependence of the thermoelastic coupling parameter on the initial
deformation. For the case of a piezoelectric method of detecting the mechanical vibrations
in a uniformly deformed sample, an analytical expression is obtained for the electrical signal taken
off from the piezoelement. The behavior of the piezoelectric signal under various conditions
is investigated, and the results are compared with the available experimental data and found to be
in qualitative agreement. ©1999 American Institute of Physics.@S1063-7842~99!01207-6#
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The detection of mechanical stresses in solids is an
portant research area in the development of modern mec
ics, nondestructive monitoring, and diagnostic tools. Vario
methods are used for this purpose. Among the most imp
tant of these are ultrasonics,1 Raman spectroscopy,2,3 x-ray4

and neutron5,6 diffraction, magnetics,7 and also methods
based on the use of holographic interferometry.8–10 In addi-
tion, recently there has been serious attention devoted to
vestigating the possibility of using the thermoelastic eff
for diagnostics of the mechanical stresses in solids.11–16 In
that approach the mechanical stresses are ordinarily dete
from the thermoelastic strains generated in the object by t
porally modulated laser radiation. An important advantage
the thermoelastic method is that it can be applied to obje
of various natures, since the thermoelastic effect is quite
versal. The feasibility of this approach has already been c
firmed by a number of experimental studies for metals11,14,15

and ceramics.12,13,16Nevertheless, the mechanism by whi
the mechanical stresses influence the results of the laser
moelastic measurements remains insufficiently clear. In R
14 a model of the formation of the thermoelastic signal w
proposed which attributed its dependence on the mecha
stresses mainly to the stress dependence of the thermop
cal parameters of the material. On the other hand, in Ref
it was shown experimentally that a dependence of the t
moelastic signal on the residual stresses can be observ
ceramics even in the absence of any noticeable change
their thermophysical properties.

To explain the aforementioned features, in this pape
propose a different model for the formation of the the
moelastic signal generated in solid objects by laser radiat
The important distinction of this model is that it takes in
account the dependence of the thermoelastic coupling c
ficient on the mechanical stresses. Such a dependence
been noted previously both for the coefficient of therm
expansion17 and for the elastic modulus.18 Since the ther-
moelastic coupling coefficient in the case of an isotro
7921063-7842/99/44(7)/5/$15.00
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solid is a product of these two quantities, it is important
include such a dependence in the thermoelastic coupling
efficient as well.

Let us discuss the generation of mechanical vibratio
by laser radiation in a solid containing mechanical stresse
the framework of nonlinear mechanics with initial strains19

Here we shall assume that the initial strains are not sm
Therefore, the displacement vector of points of the solid w
be assumed to be specified in the form

u~r !5r1U~r !1Du~r !, ~1!

whereU(r ) describes the initial strain, and the vectorDu(r )
describes the displacement of particles of the solid due
thermoelastic strains under the influence of the laser ra
tion.

The equation of motion of the elements of the solid
nonlinear mechanics20 can be written in the form

]Pik

]xk
5r0Düi , ~2!

wherePik5(]ui /]xm)tkm is the Piola–Kirchhoff tensor,tkm

is the stress tensor, which is related to the internal ene
densityW of the solid by the relationtkm5]W/]ukm , with
the strain tensor

ukm5
1

2 S ]uk

]xm
1

]um

]xk
1

]ul

]xk

]ul

]xm
D ,

andr0 is the density of the solid in the initial state.
The energy density of a strained solid can be written

the form a sum,W5WE1WT (WE is the mechanical energ
density, andWT is the energy density due to the thermoela
tic strains!. In this paper it is assumed that the solid is is
tropic in the initial state, and the mechanical part of its e
ergy is determined in the Murnaghan model,21 according to
which the mechanical energy density can be written
© 1999 American Institute of Physics
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WE5~l12m!
I 1

2

2
22mI 21~ l 12m!

I 1
3

3
22mI1I 21nI3 ,

~3!

where l and m are the Lame´ coefficients, l ,m,n are the
Murnaghan constants,I 15ukk ,

I 25
1

2
@~ukk!

22ulmulm#,

and

I 35
1

3 Fuikuil ukl1
3

2
uikuikull 1

1

2
~ull !

3G .
The stress tensort i j

(E) associated with the mechanical e
ergy can be determined from the relation

t i j
(E)5

]WE

]I 1

]I 1

]Ui j
1

]WE

]I 2

]I 2

]Ui j
1

]WE

]I 3

]I 3

]Ui j
. ~4!

Taking expression~3! into account, we write the stres
tensort i j

(E) in explicit form as

t i j
(E)5FlI 11S l 1

n

2D I 1
222mI2G

3d i j 1@2~m1mI1!2nI1#Ui j 1nUpiUp j . ~5!

The thermoelastic energy density is due solely to
strains caused by the action of the laser radiation on
solid. In determining it we shall assume, in analogy with R
17, that the thermoelastic coupling coefficient depends
early on the strain tensor. Then the thermoelastic energy
sity of the solid can be written as

WT52g ik~uik2Uik!DT, ~6!

whereg ik5g0(d ik1bUik), g0 is the thermoelastic coupling
coefficient for the unstrained solid,b is a coefficient that
determines the dependence of the thermoelastic couplin
the initial strain,Uik is the initial strain of the solid, and
DT5T2T0 , with T0 the temperature of the surrounding m
dium.

In what follows we shall assume that the strainsDuik

arising as a result of the action of laser radiation on the s
are small. Then the thermoelastic energy~6! of the solid will
be determined up to terms linear inDuik by the equation

WT52g0~d ik1bUik!~T2T0!Duik . ~7!

For b50 Eq. ~7! reduces to the usual expression for t
thermoelastic energy density of an isotropic solid. We n
that the value of the coefficientb in accordance with Ref. 17
is given approximately byb>KEgg/3 (K is the compress-
ibility, E is the elastic modulus, andgg is the Grüneisen
coefficient!, and for metals at small strains it typically has
value between 1 and 2.

The stress tensort i j
(T) , corresponding to the thermoela

tic energy~6!, can be found from the expression

t i j
(T)5

]WT

]Ui j
52g0~d i j 1bUi j !~T2T0!. ~8!

Using expressions~2!, ~5!, and ~7!, we can obtain the
equation of motion for the components of the displacem
e
e
.
-
n-

on

id

e

t

vectorDui in explicit form. Assuming the oscillations of th
temperature in the sample are small and keeping only
term to the first power ofDT, we obtain the equation o
motion in the form

aiklp

]2Duk

]xl]xp
1bikp

]Duk

]xp
5g0F]DT

]xi
1

]

]xk
S ]Ui

]xk
DTD G

1g0b
]

]xk
F S Uki1

]Ui

]xp
UkpDDTG

1r0Düi , ~9!

where

aiklp5d ikt lp
(0)1Nlikp1

]Ui

]xm
Nlmkp ,

bikp5dki

]t lp
(0)

]xl
1

]Nlikp

]xl
1

]2Ui

]xl]xm
Nlmkp1

]Ui

]xm

]Nlmkp

]xl
,

Ni jkp52ci j akp14md i j akmUmp1b~akidp j1ak jdpi!

1n~Um jakmdpi1akiUp j!1n~Umiakmdp j

1ak jUpi!,

aki5
1

2 S d ik1
]Uk

]xi
D ,

ci j 5Fl12S l 2m1
n

2D I 1Gd i j 1~2m2n!Ui j ,

and t i j
(0) are the components of the initial strain tensor.

Equation ~9! can be used to determine the nonstea
strain in the solid provided that one knows the distribution
the initial strain in it and the temperature distribution pr
duced by the laser radiation. In addition, for solving t
equation obtained one needs to specify the boundary co
tions. In accordance with the nature of the problem to
solved, the initial strain of the solid should be regarded
given. As to the thermophysical properties of the solid,
shall assume that the appearance of the internal stresses
does not lead to substantial changes. Such a situation
been observed experimentally in a number of ceramics,
example.16

The boundary conditions on Eq.~9! in the general case
are determined by the means employed for detection of
variable strains in the object. In this paper we consider
case when these strains are detected by means of a piez
ment attached to the sample~see Fig. 1!. For this case it is
necessary to write the boundary conditions at the upper
lower surfaces of the solid. Under the influence of exter
stresses the surface of the sample is slightly deform
Therefore, e.g., on the upper surface of the sample,
boundary condition can be written in the form

nkPikuz5Z(x,y)50, ~10!

wherez5Z(x,y) is the equation of the upper surface of th
object deformed by the internal stresses.

When applying boundary condition~10! to the problem
under study one should keep in mind that we are interes
only in the nonsteady component of the strains. Below,
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accordance with the usual assumptions of nonlinear mec
ics, we shall replace the boundary condition at the deform
surface by a boundary condition at the undeformed surfac22

Here we take into account the fact that the initial deform
tion of the surface occurs under the influence of static in
nal stresses. Then, after linearization with respect toDui and
DT, we obtain on the basis of the foregoing comments
following form for the boundary condition~10!:

nkF tkm
(0) ]ui

]xm
1S d ik1

]Ui

]xm
D ~Dtkm

(E)1tkm
(T)!GU

z50

50, ~11!

where Dtkm
(E) is the variable component of the mechanic

stress generated in the object by the laser radiation.
At the boundary of the object with the piezoelementz

5 l , we use the condition of continuity of the normal com
ponent of the stress vector. Using Eq.~9! and the stated
boundary conditions, one can find the components of
displacement vector of the particles of the solid when m
chanical vibrations are excited in it by laser radiation. In t
paper we limit consideration to the case of a uniform
strained solid with vector components of the initial stra
specified in the formUi5A( i )xi ~the A( i ) are constants char
acterizing the uniform strain along different directions!. In
this case Eq.~9! simplifies and can be put in the form

f k
( i )5

]2Dui

]xk]xk
1hk

( i ) ]2Duk

]xk]xi
5g( i )

]DT

]xi
1r0Düi , ~12!

where

f k
( i )5F tkk

(0)1
~11A( i )!2

2
~b1nUii 1nUkk!G ,

b52m1~2m2n!Upp ,

hk
( i )5~11A( i )!~11A(k)!

3Fcii 12mUkk1
1

2
~b1nUii 1nUkk!G ,

g( i )5g0~11A( i )!~11bUii !,

FIG. 1. Geometry of the sample and piezoelement:1 — sample,2 — pi-
ezoelement.
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cii 5K2
2

3
m12S l 2m1

n

2DUpp1~2m2n!Uii .

We note that the expressions forf k
( i ) , hk

( i ) , cii , andg( i )

on the right-hand side are not to be summed over repe
indices. Equation~12! can be used to determine the strain
the solid, provided that the temperature distribution produ
in it by the exciting laser radiation is known. As we hav
said above, we are assuming that the appearance of th
ternal stresses in the solid will not appreciably alter its th
mophysical parameters. In addition, we shall assume tha
surface of the sample is illuminated uniformly by the las
radiation and that the laser radiation is modulated in ti
according to a harmonic law. Then if the exciting laser
diation is completely absorbed at the surface of the sam
and is modulated in time by a harmonic law, the nonstea
component of the temperature inside the sample will
given by the expression

DT~z,t !5DTse
2sz1 ivt, ~13!

wheres(11 i )Av/2k, wherek is the thermal diffusivity of
the sample,DTs is the amplitude of the oscillations of th
surface temperature of the sample, andv is the angular fre-
quency of modulation of the exciting radiation.

The requirement of continuity of the normal compone
at the boundary between the sample and piezoelement ca
used to find the signal taken off from the piezoelement. F
this one must use the familiar equations relating the m
chanical and electrical characteristics of a piezoelemen23

For the problem under consideration these equations ca
written in the form

t33
(P)5C(ET)

]u3
(p)

]z
2e(T)E3 , ~14a!

D35e(T)
]u3

(p)

]z
1« (ST)E3 , ~14b!

wheret33
(P) is the mechanical stress inside the piezoeleme

u3
(p) is the displacement vector of the points of the piezoe

ment,D3 is the electric displacement,E3 is the electric field,
and C(ET), « (ST), and e(T) are characteristics of the piezo
electric which are defined as in Ref. 23.

For the quasistatic case, when the acoustic waveleng
much greater than the characteristic dimensions of the pie
element, its deformation along the thickness can be assu
uniform. Then with the use of Eq.~14b!, we obtain the fol-
lowing expression for the voltage signalV(t) detected at the
output of an open-circuited piezoelement:

V~ t !52
e(T)

« (ST)
l 1

]u3
(p)~ t !

]z U
z5 l

, ~15!

wherel 1 is the thickness of the piezoelement.
In expression~15! one can go over from the strains i

the piezoelement to the strains in the sample by making
of the continuity equation for the normal component of t
stress at the sample–piezoelement boundary,

t33
(p)5P33uz5 l . ~16!
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In accordance with the character of the quantities
pearing in expression~16!, for finding the variable compo
nents of the signal from the piezoelement it is sufficient
know theDu3(z,t) component of the displacement vecto
For harmonic modulation of the exciting laser radiation,
write this component in the formDu(z,t)5Du(z,v)eivt,
and using Eq.~12! and the indicated boundary conditions, w
obtain forDu3(z,v) the following result:

Du3~z,v!52
U3

(0)e2s l

cosQl
cosQz

1Fg0~11A(3)!~11bU33!

f 3
(3)1h3

(3)
DTs1sU3

(0)G
3sinQ~z2 l !1U3

(0)e2sz, ~17!

where

U3
(0)52

g0s~11A(3)!~11bU33!

~ f 3
(3)1h3

(3)!s21r0v2
DTs ,

Q5A r0v2

f 3
(3)1h3

(3)
.

The mechanical and electrical characteristics of the
ezoelement are related by Eqs.~14!. Then with the use of the
continuity equation for the normal component of the stres
the sample–piezoelement boundary, we obtain the follow
expression for the voltage signalV(v) registered at the out
put of an open-circuited piezoelement:
e
na
w

ica
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n
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V~v!52C~ f 3
(3)1h3

(3)!
]Du3

]z
uz5 l , ~18!

where we have introduced the notation

C5
e(T)l 1

C(ET)« (ST)1e(T)2 .

Using relations~17! and~18!, one can find the piezoelec
tric signal in explicit form:

V~v!52C~ f 3
(3)1h3

(3)!H QU3
(0)e2s l tanQl

1QFg0~11A(3)!~11bU33!

f 3
(3)1h3

(3)
DTs1sU3

(0)G
2sU3

(0)e2s lJ . ~19!

Expression~19! can be used to determine the piezoele
tric signal under rather general conditions. In this paper
shall assume that the sample is quite thick in respect to
propagation of thermal waves, i.e., we can sete2s l>0. Here
let us consider separately the cases of low and high mod
tion frequencies of the exciting radiation. We begin with t
case of low frequencies, for whichkr0v,( f 3

(3)1h3
(3)).

Then, using expression~19!, we obtain for the signal from
the piezoelectric transducer
V~v!5 iCkr0
3/2v2

g0~11A(3)!~11bU33!DTs

H ~11A(3)!S K1
4

3
m D1@ t33

(0)1~11A(3)!~2lU pp1~4m1n!U33!#J 3/2. ~20!

In the region of high modulation frequencies of the exciting radiation, forkr0v.( f 3
(3)1h3

(3)), expression~19! leads to the
result

V~v!52Cr0
1/2v

g0~11A(3)!~11bU33!DTs

H ~11A(3)!S K1
4

3
m D1@ t33

(0)1~11A(3)!~2lU pp1~4m1n!U33!#J 1/2. ~21!
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Expressions~20! and ~21! can be used to analyze som
general behavioral regularities of the piezoelectric sig
from objects containing internal stresses. In this paper
shall consider only the physical and not the geometr
nonlinearities,19,22 i.e., we shall assume thatA(3)!1. In ac-
cordance with the results of Ref. 17 the coefficientb is posi-
tive. Therefore, the presence of tensile stresses in the sa
enhances the thermoelastic coupling and increases the p
electric signal, while the presence of compressive stre
diminishes it.

Besides the quantities which determine the depende
of the piezoelectric signal on the Murnaghan constants
the quantities appearing explicitly in expressions~20! and
l
e
l

ple
zo-
es

ce
d

~21!, the initial stress tensort33
(0) also in general has such

dependence. However, in accordance with expression~5!, the
dependence on the Murnaghan constants in the tensort33

(0)

enters only through terms quadratic in the initial strain
Since even under substantially nonlinear conditions the
tial strains are usually characterized by quantities much
than unity, the influence of the Murnaghan constants on
piezoelectric signal arises mainly through the terms linea
the initial strains and which are written out explicitly in th
denominators of expressions~20! and ~21!.

Expressions~20! and ~21! can also be used to analyz
the possibility of determining the Murnaghan constants o
material under the conditions of the problem under disc
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sion. For example, we see from the two expressions
measurement of the dependence of the piezoelectric si
on the initial strainU11 ~or U22) in the absence of a strai
U33 will enable one to determine the Murnaghan constanl.
For a known l expressions~20! and ~21! can be used to
determine the coefficientb and the quantity (4m1n) from
the dependence of the piezoelectric signal on the initial st
U33 for U115U2250. However, it is not possible here t
determine the constantsm and n independently within the
framework of the problem under discussion.

In Ref. 15 experiments on the excitation of mechani
vibrations in loaded titanium rods by laser radiation we
reported. The experiments were in fact done under co
tions of low-frequency excitation of acoustic vibrations.
agreement with expression~20! it was found that the piezo
electric signal increases when mechanical vibrations are
cited by laser radiation in the zones where tensile stre
exist and decreases in regions of compressive stress. O
basis of data on the value of the coefficientb for metals17

one can estimate the influence of internal stresses on
piezoelectric signal. For example, for the conditions of R
15 expression~20! shows that the stress dependence of
thermoelastic coupling coefficient leads to roughly a 10
change in the piezoelectric signal.

This value is somewhat smaller than that obtained
Ref. 15. However, it should be kept in mind that for th
majority of metals the Murnaghan constants have nega
values. Then, in accordance with expressions~20! and ~21!,
the stress dependence of the piezoelectric signal due to
chanical nonlinearities will be analogous to the depende
on the thermoelastic coupling coefficient. Under these c
ditions the total change in the piezoelectric signal will
somewhat larger than the value due solely to the chang
the thermoelastic coupling coefficient. Unfortunately, it
difficult to make a more detailed estimate of the piezoelec
signal on account of the lack of data on the Murnaghan c
stants for titanium. Strong changes in the piezoelectric sig
have also been recorded near the ends of cracks forme
Vickers indentation13,16,24 in ceramics. It has been shown24

that the changes in the piezoelectric signal in this case
due to the presence of internal stresses. Here, in accord
with the results of Ref. 16, the size of these changes o
narily amount to several tens of percent.

In summary, the proposed theory enables one to de
mine the basic features of the generation of acoustic vib
tions by laser radiation in solid objects containing intern
at
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stresses in the framework of the nonlinear theory of th
moelasticity and also to explain qualitatively the existing e
perimental results. To achieve quantitative agreement
theory with experiment it will be necessary to develop t
theory further to more fully take into account the peculia
ties of the experimental investigations.
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Quantitative x-ray topographic analysis of the defects of 6 H-SiC single crystals and
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Planar dislocation pileups~PDPs! and curvilinear dislocation segments~CDSs! are considered as
indicators of the local elastic shear stress fields~LESSFs! that existed in the growing single
crystals at the time of stabilization of their dislocation structure. Calculations using the theory of
dislocations with the experimental parameters of PDPs and CDSs measured from the x-ray
topograms~taken by the Lang and divergent-polychromatic-beam~DPB! methods! give values of
the LESSFs in the range (0.2– 1.5)3106 Pa for thin single-crystal wafers of SiC (6H)
grown by sublimation in a graphite container. A strong nonuniform bending of the single-crystal
wafers is observed; for the x-ray topographic study of the dislocation structure in these
wafers the DPB method is preferable to the Lang method on account of its low sensitivity to
bending. © 1999 American Institute of Physics.@S1063-7842~99!01307-0#
on
ia

ec

s
t b
a
he
d

he
d
n
de

e
a

he
g
r
th

bl
a

a
t

ab
th

si

e
n

ay

-
oint
he
x-
po-
ken

ere

a

se
ys-
ere

the
the

r-
in-
ese
in-
ns
ll
his
ing.
nd-
tals
ng
re-
the

ing
The use of silicon carbide wafers grown by sublimati
in the Lely method as substrates for the growth of epitax
structures for making a wide range of high-power microel
tronic and optoelectronic microdevices~see, e.g., Ref. 1!
makes it necessary to study the various types of defect
these materials. A practical outcome of such studies migh
the optimization of the technology for preventing the form
tion of certain types of defects both during the growth of t
single-crystal substrates and epitaxial structures and also
ing the fabrication of the microdevices. In addition to t
electrophysical, optical, and electron-microscope metho
the development and production of efficiently operating a
reliable microdevices based on SiC will also require non
structive methods of quantitative x-ray topographic~QXTG!
and diffractometric~QXD! analysis of the defects of th
single-crystal substrates, the grown epitaxial structures,
the actual device structures fabricated on them.

The QXTG and QXD methods occupy a special nic
among methods of investigating structural defects in sin
crystals and epitaxial systems. The quantitative data p
vided by these methods has played an important role in
laboratory development and industrial production of relia
injection heterolasers emitting cw at room temperature
wavelengths of 0.85, 1.30, and 1.55mm.2 The data provided
by the QXTG and QXD methods will no doubt provide
physical basis for speeding up the optimization of the grow
processes and the development and production of reli
microdevices with the necessary output parameters in
case of SiC technology as well.

In this paper we employ the methods of QXTG analy
to study thin (150– 400mm) wafers ofa-SiC of structural
type 6H, grown by sublimation and precipitation on th
walls of a graphite container. The wafers had hexago
faceting with the greatest development of the$0001% basal
planes, and a diameter of up to 12 mm.
7971063-7842/99/44(7)/4/$15.00
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For studying the dislocations we used the direct x-r
topographic methods of Lang3 in collimated beams of the
characteristicKa1 andKa2 radiation of a molybdenum an
ode and a divergent polychromatic beam from a quasip
source~DPB!2,4 from the same anode. For such radiation t
value of mt lay in the range 0.07–0.18. This provided e
tinction contrast of the dislocations recorded on the to
grams, both those taken by the Lang method and those ta
by the DPB method. In the Lang method the topograms w

taken successively at symmetric reflections of the$112̄0%
and$303̄0% type.

In contrast to the Lang method, the DPB method is
method of multiple-beam x-ray topography.2,4–6 In the DPB

method from three to five reflections of the$112̄0%, $33̄00%,
and $224̄0% type for the fundamental zonal ellipse, who
axis @0001# is perpendicular to the basal surface of the cr
tals and around 15 reflections of the other zonal ellipses w
taken on the same photographic plate.

Figure 1 shows the a panoramic topogram of one of
silicon carbide crystals, taken by the Lang method in

(112̄0) reflection. On it are recorded two comparatively na
row curvilinear bands with a clear image of a set of non
tersecting dislocation lines. In the vast region between th
bands the images of the dislocation lines are practically
visible or appear with extremely low contrast. This mea
that the given 6H-SiC single crystal, and, incidentally, a
the other silicon carbide single crystals investigated in t
study, has a pronounced nonuniform macroscopic bend
Because of the high sensitivity of the Lang method to be
ing, a large part of the area of the investigated single crys
in Laue diffraction and linear scanning is out of the reflecti
position, and the defect structure of these regions is not
vealed, whereas on those parts of the topograms from
regions of the same crystal which are found in the reflect
position for the characteristicKa1 andKa2 lines of the an-
© 1999 American Institute of Physics
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ode, the dislocation structure of the crystals is revealed w
excellent contrast and with a high linear resolution~around
3 mm in Fig. 1!.

As we see from the topograms of the other 6H – SiC
crystals, the configurations of the reflecting regions are v
different. For the given crystal the shape of the reflect
regions and their position relative to the edges of the cry
depend on the type of reflecting planes and the precise
entation of the crystal relative to the incident beam. All
this points to an extremely strong nonuniform bending of
investigated single-crystal wafer of 6H – SiC. The observed
nonuniform bending strongly complicates the study of
defect structure of 6H – SiC crystals by the Lang method.

The DPB x-ray topographic method, which permits o
taining rather high image contrast for individual dislocatio
in polychromatic radiation2,4–6 is, because of this, signifi
cantly less sensitive than the Lang method to the effects
nonuniform bending of the single-crystal wafers. Figure
shows a topogram of one of the diffractional reflectio
(303̄0) of the fundamental zonal ellipse, taken by the DP
method. It clearly reveals the dislocation structure of t
nonuniformly bent 6H – SiC wafer. This same image wa
recorded in two other reflections, (1120̄) and (21̄1̄0), of the
fundamental zonal ellipse and also in certain reflections
other zonal ellipses. The x-ray topograms taken by the D
method for the other 6H – SiC samples also quite clearly re
vealed their dislocation structure. On them one can ea
follow the extinction of the images of individual dislocation
as the magnitude and direction of the diffraction vect
changed, making it possible to identify the types of the d
locations.

The Lang and DPB methods in 6H – SiC crystals re-
vealed dislocations localized mainly in the basal plan

FIG. 1. Panoramic topogram of one of the silicon carbide crys

(6H-SiC), taken by the Lang method in the (1120̄) reflection of strictly
collimated characteristicKa1 andKa2 radiation of a molybdenum anode
th
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They have Burgers vectors of the typeb151/3̂ 101̄0& and
b251/3̂ 112̄0&. The maximum linear density of dislocations
in the 6H – SiC samples studied wasNd<63102 cm21 in
the basal plane, which corresponds to a dislocation dens
Nd<63104 cm22 for the $hk10% planes, perpendicular to
the basal glide planes of the dislocations. Besides curviline
dislocations one also observes strictly rectilinear~sectorial!
dislocations and also rectilinear dislocations with 120-degr
bends, the individual rectilinear segments of which coincid
with the crystallographic directions of the^112̄0& type.

My main goal was to elucidate the physical causes of t
generation of dislocations in the growing 6H – SiC single-
crystal wafers and to determine the location of the actuat
dislocation sources that have generated the dislocations.
also necessary to ascertain the stage in which the genera
and propagation of the dislocations occurs — during grow
or during the cooling of the grown crystals.

Judging from the direction of the convexities of the dis
location half-loops and the individual branches of the curv
linear dislocations~Fig. 2a!, their sources were localized in
the region where the growing single-crystal wafer o
6H – SiC touched the wall of the graphite crucible. Theoret
cally the calculation of thermoelastic stresses acting on t
region where the crystal is fastened to the wall of the cr
cible showed that because of the large differences in t
coefficients of thermal expansion and in the behavior
these coefficients as functions of temperature, thermoela
stresses arise in the region where the graphite touches
single-crystal 6H – SiC wafer, and these stresses, increasi
as the grown crystal and crucible are cooled to room te

s

FIG. 2. Topograms of one of the diffractional reflections (3030̄) of the
fundamental zonal ellipse, taken by the DPB method. a: The topogram de
onstrates the direction of convexities of the dislocation half-loops and t
individual curvilinear dislocations; the arrow indicates the region where t
growing single-crystal wafer touched the wall of the graphite crucible; b,
typical one-sided planar dislocation pileups~PDPs! for curvilinear ~b! and
rectilinear~c! dislocations squeezed by elastic stresses into the corner reg
~b! or parallel to the crystallographic planes of the natural lateral faceting
the hexagonal single-crystal wafers~c!.
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perature, can exceed the yield strength of graphite, (3 –
3106 Pa.11 This means that the single crystals may p
away from the walls of the container during cooling. T
evidence confirms that this happened more than once.
provides grounds for assuming that the generation of di
cation half-loops in single-crystal 6H – SiC wafers most
likely occurs during cooling of the container after the grow
of the single crystals.

In a number of samples we recorded typical one-sid
planar dislocation pileups~PDPs! of curvilinear dislocations
squeezed by elastic stresses in the basal planes into the
ner regions of the hexagonal single-crystal wafers~Fig. 2b!.
We also recorded planar pileups of rectilinear dislocatio
~Fig. 2c! parallel to the crystallographic planes of the natu
lateral faceting of the wafers.

Using the dislocations as indicators, in this paper
have used the parameters of the curvilinear dislocation
ments of individual dislocations7 and groups of planar dislo
cation pileups~PDPs!,2,8,9as obtained from measurements
the topograms and from calculations, to calculate, for
first time for SiC (6H), the local elastic stressest l acting in
specific growing crystals on account of these dislocatio
Here for the PDPs the values oft l were calculated using th
formula from Ref. 8:

t5$@G/~12n!#sinan1G cosan%bNn /pLn , ~1!

where G52.631010 Pa is the shear modulus,n50.20 is
Poisson’s ratio,10 b53.1310210 m is the Burgers vector o
the dislocations for 6H – SiC, a is the angle of the Burger
vector relative to the dislocation lines, andLn is the length
andNn the number of dislocations in any of the PDPs.

PDP-based estimates of the elastic stresses actin
6H – SiC single-crystal wafers under real growth conditio
gave for the local shear stress the valuet l1'13106 Pa ~or
100 Js/mm2).

Calculations according to the measured radii of cur
ture of the segments of individual curvilinear dislocation7

gave a range of values of the local elastic stressest l2'2
3105– 1.53106 Pa ~or 20– 150 Js/mm2). We see that the
values of the local elastic stresses obtained by differ
methods for the same 6H – SiC crystal agree with one an
other and should be trustworthy. The range of values
tained for the local elastic shear stresses in real 6H – SiC
crystals is close to the critical values of the shear stres
necessary for excitation of the dislocation sources that g
erate dislocations in the basal glide planes at high temp
tures.

The sinuosity observed for some of the dislocation lin
is a sign of their stopping by impurities, which precipita
out, apparently incoherently, in the active glide planes.

In a DPB study of 6H – SiC single crystals with a thick
ness of 400mm and an unetched surface, defects of the s
face on the upper basal planes were observed after gro
for the natural faceting of the crystals. In Fig. 3 these surf
defects are recorded in the form of comparatively small lo
regions of black-and-white contrast. Their diffraction dime
sions are from 50 to 200–1000mm, and they are distributed
with a density of up to 13104 cm22. Their physico-
chemical nature can be only hypothesized. Most likely th
4)
l

is
-

d

or-

s
l

e
g-

e

s.

in
s

-

nt

-

es
n-
a-

s

r-
th
e
l

-

y

are island deposits of some sort of reaction products wh
interfere with the mechanism of layered growth of the h
moepitaxial single-crystal film. However, physically the
play the role of local concentrators of the macroscopic elas
stress field due to the nonuniform bending of the sing
crystal 6H – SiC wafers grown and cooled to room temper
ture.

The topograms of such samples revealed only individu
dislocations and with rather low contrast. It is as if they a
‘‘leveled out’’ or weakly transilluminated in a fog. The sup
pression of the image of bulk defects by surface defects is
effect that is generally familiar to x-ray topographers. Th
author himself has published several papers on t
subject.2,4,6,11,12After a chemical processing of the surface o
the crystals the images of the surface defects vanish from
topograms. Consequently, the surface defects themse
must also vanish from the surface of the single crystals a
result of chemical dissolution, which indirectly confirm
their surface island character.

FIG. 4. Defects of the structure of one of the samples of a homoepita

6H – SiC film–substrate system, revealed by the DPB method in the (110̄)
reflection of the polychromatic and of the characteristic line radiation o
molybdenum anode.

FIG. 3. Topogram of defects of the surface of one of the 6H – SiC crystals,
recorded in the form of different-sized local regions of black-and-wh

contrast. The topogram was taken by the DPB method in the (1120̄) reflec-
tion of the polychromatic and characteristic line radiation of the molybd
num anode.
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The DPB method was also used to study the defect st
ture of one of the samples of a homoepitaxial 6H – SiC film–
substrate system. It became clear that the defect structu
the substrate of this homoepitaxial single-layer structure
characterized by an extremely strong dislocation netwo
the dislocations of which are emitted both by sources at
crystal–container heterointerface and by an internal sou
lying in a region of the crystal far from the heterointerfa
~the arrow in Fig. 4!. The contrast of the substrate disloc
tions is lowered by the influence of the nonuniform elas
field of the epitaxial film.

In some of the DPB topograms the region of the epit
ial film was partially shifted relative to the substrate. In th
region one can clearly see that the distribution of the int
sity over the area of the topogram, on which the image w
produced by polychromatic x radiation, is discrete in the a
muthal and Bragg directions. This contrast is similar to t
which we observed in Ref. 13 for mosaic single-crystal film
of CdTe grown on mica substrates. For this reason one
draw the preliminary conclusion that the grown sing
crystal film is mosaic. To us this means that the growth c
ditions of the 6H – SiC homoepitaxial film were such that th
operative growth mechanism was not the layer-by-la
growth that is typical for ideal homoepitaxy but rath
growth by the heterogeneous formation and growth of a
of three-dimensional nuclei. Some of them, in growin
transform into mosaic blocks with small angles of mutu
and maximum misorientation. The three-dimensio
c-
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nucleus formation during homoepitaxy might be stimulat
by surface contaminants on the substrate, which in ot
samples have been observed in x-ray topography as de
of a surface layer of the single crystals.
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Ser. Mikroélektronika ~TsNII Élektronika, Moscow!, No. 1 ~1975!.

7G. F. Kuznetsov, Obzory po E´ lektronno� Tekhnike. Ser. Mikroe´lektronika
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Properties and structure of GaAs films grown by molecular beam epitaxy on GaAs
substrates with the „100…, „111…A, and „111…B orientations
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The structural perfection of GaAs epitaxial films grown by molecular beam epitaxy on substrates
with the ~100!, (111)A, and (111)B orientations is investigated by double-crystal and triple-
crystal x-ray diffractometry. It is found that the ratiog of the molecular fluxes of arsenic and
gallium has a strong influence on the structural quality of the epitaxial films. The optimum
values of the parameterg are found for each of the substrate orientations~100!, (111)A, and
(111)B. © 1999 American Institute of Physics.@S1063-7842~99!01407-5#
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INTRODUCTION

Silicon is widely used as a doping impurity in the grow
of epitaxial structures of III–V semiconductor compound
in particular, in GaAs and its solid solutions. In molecu
beam epitaxy~MBE! on GaAs substrates with the~100! ori-
entation, epitaxial films withn-type conductivity are formed
In the case of silicon doping an electron concentration of
to 631018 cm23 can be achieved in the films. It is als
known that when (111)A substrates are used for MBE, sil
con exhibits amphoteric properties:1–3 at small values of
g(g5PAs /PGa, wherePAs andPGa are the vapor pressure
of As and Ga in the growth zone of the epitaxial films in t
MBE apparatus! layer of predominantlyp-type conductivity
form on account of the incorporation of the Si atoms in t
As sublattice, while at largeg one obtains films ofn-type
conductivity. This phenomenon opens up new possibilit
for fabrication novel semiconductor devices with lateralp–n
junctions, buried-heterostructure quantum-well lasers,
other devices. Therefore, the epitaxial growth of III–V laye
on substrates of different orientations, with the use o
single dopant — silicon — is of great scientific as well
practical interest.4–7 However, analysis of the the publishe
data shows that there is significant disagreement in the
perimental results obtained by different authors. For
ample, in Ref. 5 it was found that the change in the cond
tivity type from p to n in epitaxial films grown on substrate
with the (111)A orientation occurs atg.5, whereas accord
ing to the data of Ref. 6, this occurs atg.48. There are no
data on the dependence of the quality of the crystal lattice
films grown on substrates of different orientations or un
different growth conditions.

In this paper we report a study of the influence of t
ratio of the As and Ga fluxes on the electrophysical a
structural properties of GaAs epitaxial films grown by MB
on GaAs substrates with the (100), (111)A, and (111)B
orientations, with Si used as a dopant.
8011063-7842/99/44(7)/3/$15.00
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FILM GROWTH AND INVESTIGATION PROCEDURES

Epitaxial films of GaAs were grown by MGE on sem
insulating GaAs substrates with the~100!, (111)A, and
(111)B orientations. In order that the films be grown und
the same conditions, the samples were grown three at a t
on the~100!, (111)A, and (111)B substrates, for each valu
of g. A specified value ofg was reached by changing th
temperature of the As cell, while the temperature of the
cell was held constant (TGa5960 °C) for all the growth
processes. The substrate temperatureTg during growth
was 600 °C. The thickness of the undoped buffer la
was ;0.5 mm, with an impurity concentration o
531014 cm23, and the thickness of the silicon-doped lay
was;0.20mm. The temperature of the Si molecular sour
corresponded to the value at which the electron concen
tion ne in the doped layer on the~100! substrate was;1
31018 cm23. For the nonconducting samples the thickne
of the doped layer was increased to 1–1.5mm. For all the
samples the conductivity type and carrier concentration w
measured by theC–V method.

TABLE I.

Sample g Substrate Conductivity Carrier
No. orientation type concentration, cm23

1 16 ~100! n 131018

2 16 (111)A p 8.031016

3 16 (111)B n ,1015

4 36 ~100! n 9.631017

5 36 (111)A p 2.231016

6 36 (111)B n .1015

7 50 ~100! n 9.731017

8 50 (111)A n 4.131017

9 50 (111)B n .1015

10 77 ~100! n 1.131018

11 77 (111)A n 9.031017

12 77 (111)B n 8.531017
© 1999 American Institute of Physics



s
lo

al
1

es

er
le
lm

-

a
o

ic

o

d
C
e

r

he
w

t-
xia
C
r
e
po
i-
e

di-
-

ec
s

1)

in
ted

tra
po-
ng

3

802 Tech. Phys. 44 (7), July 1999 Galiev et al.
The structural perfection of the grown epitaxial film
was studied on a triple-crystal x-ray spectrometer; here s
ted single crystals of Ge~111! or Ge~004!, with threefold
reflection, were used as monochromators, and Ge~111! or
Ge~001! single crystals were used as the analyzer cryst
The x-ray beam illuminated a region of dimensions
34 mm on the sample. Both reflection diffraction curv
~RDCs! and triple-crystal x-ray diffraction~TXD! spectra
were recorded.

RESULTS AND DISCUSSION

The growth conditions of the epitaxial films, the carri
concentration, and the type of conductivity of the samp
are presented in Table I. We see that all of the epitaxial fi
grown on substrates with the~100! orientation~samples1, 4,
7, and 10! haven-type conductivity, with an electron con
centration ne;1018 cm23 for all values of g. The films
grown on (111)B substrates, while also exhibitingn-type
conductivity, have small values ofne (ne<1015 cm23) for
g,50, and only forg577 doesne58.531017 cm23, which
is smaller than for epitaxial films grown on~100! substrates.
The situation for epitaxial films grown on (111)A substrates
is more complicated. In our experiments, as in Ref. 6,
small g the doping of the epitaxial film by silicon leads t
p-type conductivity ~sample2! with np>8.031016 cm23.
As g is increased from 16 to 36 there is a decrease innp to
2.231016 cm23. Apparently forg536 there is substitution
of Si atoms in the Ga and As sites simultaneously, wh
leads to partial compensation of the conductivity. Asg is
increased further to 50 there is a change in the type of c
ductivity ~from p to n), and atg577 the concentrationne

reaches values;9.031017 cm23.
Let us now consider the results of x-ray diffraction stu

ies of the structure of epitaxial films. Figure 1 shows RD
measured by double-crystal diffractometry. Table II giv
values of the reflection coefficientsPr and the half-widthsW
for both the virgin surfaces and for the epitaxial samples~the
sample number can be found in Table I from the parameteg
and the substrate orientation!. As we see from Table II, of
the samples with the~100! orientation sample1 had values
of Pr and W most closely corresponding to those for t
virgin surfaces. This is apparently because that sample
grown at a partial pressureg closest to the optimum growth
conditions for the~100! orientation. Asg was increased,Pr

decreased and the half-widthW increased; these changes a
test to increasing distortions of the structure in the epita
film. The largest deviations of the parameters of the RD
from the values for the virgin surfaces were observed fog
536. Apparently at this ratio of As and Ga pressures ther
appreciable formation of structural defects, with a decom
sition of the solid solution due to nonuniform growth cond
tions. At large values ofg the process stabilizes, and th
formation of epitaxial films occurs under favorable con
tions for stoichiometric growth, as is reflected in the im
provement of the parameters of the RDCs~sample10!. For
illustration in Fig. 2 we show the dependence of the refl
tion coefficientsPr on g for the samples studied. It follow
from Fig. 2 and Table II that the largest changes ofPr are
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observed for samples grown on substrates with the (11A
orientation. Since a decrease ofPr and an increase ofW are
indicative of an increasing degree of structural distortions
the sample,8 the largest number of defects would be expec
to form in the range 20,g,40 ~in the case of silicon dop-
ing!, corresponding to the transition fromp-type to n-type
conductivity in epitaxial films with the (111)A orientation,.

To check this we analyzed the TXD spectra. The spec
were recorded by scanning the analyzer crystal with the
sition of the sample held fixed, with an angular detuni
from the exact Bragg angle ofa5u2uB (uB is the Bragg

FIG. 1. Reflection diffraction curves~RDCs! for GaAs epitaxial films grown
on AaAs substrates with the~100!, (111)A, and (111)B orientations. The
curves are labeled with the sample Nos;VS is the virgin surface.

TABLE II.

Orientation

(111)A (111)B ~100!

Pr , % W, 9 Pr , % W, 9 Pr , % W, 9

Virgin
surfaces 85 18.9 86 18.3 66 11.

g516 72 23.2 59 22.0 60 11.7
36 43 37.3 43 38.0 49 13.9
50 81 19.5 53 27.2 59 13.6
77 82 18.9 43 45.6 58 13.0
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angle!, as the angle of the analyzer crystal was scanned
this arrangement, the presence of defects in the sample
give rise to a diffuse peak~a broad hump atu'0) in addi-
tion to the peak due to the Bragg component of the scatte
~narrow peak atu5229); the intensity, shape, and angul
position of this diffuse peak are determined entirely by
number and type of the defects. The TXD spectra of
GaAs~100! virgin surfaces and the epitaxial films grown o
substrates of this orientation are shown in Fig. 3. We see
on the curveVS ~virgin surface! the intensity nearu>0 is
very low ~slightly above background! and is constant. At the
same time, the diffuse scattering from sample1 ~curve1! is
easily seen. As the partial pressure is raised (g577) the
diffuse maximum increase~curve 10!. This result indicates
that the epitaxial growth conditions on substrates with
~100! orientation are better atg516. A somewhat different
situation is observed for the samples grown on (111)A sub-
strates. In the case when the films grown exhibitn-type con-
ductivity, a large valueg577 corresponds to epitaxial film
with the least distorted structure. In this case the diffuse p
is minimal ~curve 11! and much weaker than for sample8,
which was grown atg550. It should also be noted that th
electron concentration in sample11 is significantly higher
than in sample8. For epitaxial films withp-type conductivity
the intensity of the diffuse peak in the TXD spectrum
noticeably greater than that of the Bragg scattering com
nent. Thus under the growth conditions investigated we w
unable to grow silicon-doped epitaxial films with a structu
comparable in perfection to the virgin surface.

CONCLUSION

In summary, the comprehensive studies reported h
have shown that when GaAs films are grown by MBE
GaAs substrates in a single technological cycle with Si u
as the doping impurity, the films grown on substrates w

FIG. 2. Coefficient of reflectionPr of GaAs epitaxial films grown on GaAs
substrates with the~100! and (111)A orientations, plotted versus the ratio o
the arsenic and gallium fluxes.
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the ~100!, (111)A, and (111)B orientations are quite differ-
ent both in terms of the degree of perfection of the struct
and also in their electrical properties. It was found that
ratio of the molecular fluxes of arsenic and gallium duri
growth have a strong influence on the structural perfection
GaAs films. The optimum values of the parameterg, for
which the GaAs films form with the most perfect structur
were determined for substrate orientations~100!, (111)A,
and (111)B. It was found that the crystal structure of GaA
epitaxial films grown on substrates with the (111)A orienta-
tion is almost always more perfect than that of films grow
on (111)B substrates.
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FIG. 3. Triple-crystal x-ray diffraction~TXD! spectra for GaAs epitaxial
films grown on GaAs substrates with the~100! and (111)A orientations. The
curves are labeled by the sample Nos;VS is the virgin surface.
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Low-temperature diffusion of gold in germanium under the influence of atomic
hydrogen
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An investigation is made of the diffusion of gold in germanium under the influence of the energy
released by the recombination of hydrogen atoms to form molecules. Crystals ofn-type
germanium with gold films (d5131027 m! are exposed to atomic hydrogen for various times
~up to 104 s! at temperatures close to room temperature. The diffusion of gold in the
germanium is analyzed by laser mass spectrometry, and also by measuring the surface resistance,
the minority carrier lifetime, and the infrared transmission spectra. Mechanisms are
proposed for the stimulation of heterodiffusion and accompanying processes. ©1999 American
Institute of Physics.@S1063-7842~99!01507-X#
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INTRODUCTION

The high-temperature diffusion processes employed
introduce electrically active and recombination impuriti
into semiconductor crystals to a calculated concentration
given depth are accompanied by many deleterious eff
such as the redistribution of already implanted impurities,
formation and growth of parasitic films, the creation of a
preciable mechanical stresses at the heterointerface,
many others. Thus we are faced with the problem of o
mizing these heterodiffusion regimes in terms of reduc
the process temperature without increasing its duration.

A drastic reduction in the overall temperature in the p
cess system is best achieved by using local stimulation of
impurities in semiconductors. Accelerating the heterod
fusion under the influence of atomic hydrogen is an effect
means of achieving this. When hydrogen atoms recombin
form molecules, a comparatively large energy is relea
~4.5 eV per recombination event!,1 which, when transferred
to a surface impurity atom, may stimulate heterodiffusi
processes in the subsurface and bulk regions of semicon
tor crystals.

The present author and coworkers2,3 investigated the
low-temperature diffusion of copper and nickel in germ
nium under the influence of atomic hydrogen. However,
diffusion of gold atoms is of greater practical interest, sin
gold is a more efficient recombination impurity in germ
nium.

METHOD OF INVESTIGATION

The substrate material was~111!-oriented,n-type single-
crystal germanium withr51.53103 V•m and dislocation
density 106 m22. The wafers were etched in a 40% HF, 20
HNO3, 40% H2O mixture with added AgNO3 to remove the
damaged layer and were then ultrasonically cleaned.

Gold films were deposited by thermal evaporation
vacuum. The substrate temperature during the film dep
tion was of the order of 400 K, so that no significant diff
sion of gold into the germanium occurred. The thickness
8041063-7842/99/44(7)/3/$15.00
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the films was monitored using an MAR-2 x-ray microan
lyzer and was (1 – 1.2)31027 m. The surface state of th
samples was monitored by measuring the surface resist
Rs using a four-probe method and also using an MIM-7 m
croscope at 5003 magnification.

Atomic hydrogen was prepared by dissociation of hyd
gen molecules in a plasma formed by an rf discharge. T
molecular hydrogen was released from a solution of 2
KOH and distilled water by electrolysis. The hydrogen w
then passed through a prefilter to collect any KOH dropl
and a drying column~filled with granular KOH alkali!, be-
fore being fed into the working chamber. The atomic hyd
gen concentration in the working chamber was measured
a calorimetric method4 and also by an electron paramagne
resonance method and reached 531020m23 at a pressure of
15–20 Pa in the system.

The samples were placed on an aluminum holder 0.2
from the discharge zone, which prevented any hydroxyl ra
cals and H1 ions from reaching the sample.4 The tempera-
ture of the samples was measured using a Chromel–C
thermocouple attached to their surface. The samples w
only heated by the energy released as a result of recomb
tion, and their temperature did not exceed 330 K.

The distribution of the gold concentration in the germ
nium was investigated by laser mass spectrometry. The
vestigations were carried out using an E´ MAL-2 system in
which laser sputtering was followed by separation of the io
in electric and magnetic fields and detection in an io
sensitive material. The gold concentration was determi
from the optical density of the corresponding line in the ma
spectrum.

The influence of the gold atoms on the minority carr
lifetime was studied by a point contact modulation metho5

The infrared transmission spectra of the samples were
measured using an IKS-21 spectrometer.

EXPERIMENTAL RESULTS AND DISCUSSION

The films were sputtered and became thinner under
influence of the energy released by the adsorption~2–2.5 eV!
© 1999 American Institute of Physics



te

th
a
is
d

m
a

lm
ye

a
e
lm
C
e
e
t
m
m
i-
ac
pr
r
la
e

bu

y-
.
d

re-
e

ini-
as

ent

any
ce
at

old

pre-
10)
ic
Ge

ch-
red
ich
bot-
Ge

a-
ha-
yer
he
sed
tion

nd
-
e
ng
de-
f Au
the

he

e

805Tech. Phys. 44 (7), July 1999 V. M. Matyushin
and subsequent recombination~1.5–2 eV! of hydrogen atoms
on the gold surface. The surface resistanceRs of the samples
therefore increased and, after the films had been comple
removed, became the same asRs for the initial germanium.
Since gold has no volatile compounds with hydrogen,
sputtering mechanism is a purely physical one in which
amount of energy sufficient to detach it from the film
transferred to a surface atom, together with momentum
rected from the crystal surface into the gas phase.

In the stage of the hydrogen treatment when the Au fil
were still continuous, no gold was observed in the germ
nium. Only after a critical thickness (d;531028 m! had
been reached, at which discontinuities appeared in the fi
did gold atoms begin to penetrate into the subsurface la
of the germanium and then diffuse into the bulk.

Figure 1 shows the gold concentration in germanium
ter treatment in atomic hydrogen for various times. Curv1
was obtained for a germanium sample on which a gold fi
had been deposited and then etched off using a 3:1 H
HNO3 mixture ~aqua regia!. It can be seen from this curv
that no significant diffusion of gold into the germanium tak
place when these films are deposited. During treatmen
atomic hydrogen for 1800 s a considerable number of ato
penetrated from the film into the bulk of the germaniu
~curve2 in Fig. 1!. At this stage of the treatment the max
mum concentration of gold was observed in the subsurf
layers of germanium. During the subsequent treatment
cess, the germanium layers doped with gold were sputte
and the gold concentration decreased in the subsurface
ers. However, the gold concentration in the deeper lay
increased as a result of the gold being dispersed in the
of the Ge~curve 3 in Fig. 1!. Prolonged treatment in H (t
.104 s! resulted in total sputtering of the Au-doped Ge la
ers and no gold atoms were observed in the germanium

The properties of Ge crystals doped with Au were stu

FIG. 1. Distribution of Au concentration in Ge after treatment of t
samples in atomic hydrogen for various times:1 — untreated Ge sample
with Au film, 2 — Ge sample with Au film treated in H for 1800 s, and3 —
Ge sample with Au film treated in H for 3600 s.
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ied by measuring the minority carrier lifetimet. We know
that the addition of gold to germanium accelerates the
combination of electrons and holes and reduces the lifetimt
if Au atoms occupy lattice sites.6 Figure 2 givest as a func-
tion of the hydrogen treatment time. It can be seen that
tially t remains constant, since only sputtering of the film h
occurred. Under further treatment a decrease int is observed
as a result of the Au being driven into the Ge. Subsequ
treatment almost completely restoredt to its initial value.

Control samples were annealed in order to eliminate
influence ont from hydrogen atoms adsorbed on the surfa
or diffusing into the bulk. The samples were annealed
423 K for 7200 s, during which the values oft remained
constant. This confirms that the change in the lifetimet for
these samples is only caused by the incorporation of g
into the germanium under the influence of hydrogen.

The change in the transmission spectra revealed ap
ciable absorption at wavelengths in the range (7.3–
31026 m for Ge samples with Au films treated in atom
hydrogen, whereas the initial germanium and also the
samples from which the Au film had been removed by et
ing in aqua regia were transparent in this part of the infra
~Fig. 3!. The absorption peak corresponds to 0.2 eV, wh
coincides with one of the energy levels created near the
tom of the valence band when a gold atom occupies a
crystal lattice site.6

It has been confirmed that gold is introduced into germ
nium under the influence of hydrogen by a two-stage mec
nism in which Au atoms are driven into the subsurface la
and then diffuse into the bulk of the Ge. The drive-in of t
Au atoms occurs directly under the influence of the relea
energy. The energy release time for the chemical interac
of hydrogen atoms is of the order of 10210s ~exchange in-
teraction time!, so that the process of energy release a
dissipation is consistent with aQ-burst.6 Since the tempera
ture in theQ-burst region is fairly high, of the order of th
melting point, defect formation and multiphonon scatteri
mechanisms play an increasing role. The formation of
fects and phonon processes promotes the implantation o
surface atoms in the subsurface layers. An estimate of

FIG. 2. Lifetime of minority carriers in Ge with Au film as a function of th
treatment time in atomic hydrogen.
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mean free pathsL i and L'for longitudinal and transverse
phonons, respectively,7,8 showed that L i@L' and
L i;1028 m, i.e., the depth of the active zone where th
hydrogen-stimulated phonon processes take place mos
fectively is comparable with the depth of the concentrati
maximum at the middle stage of the hydrogen activati
process~curve2, Fig. 1!.

Gold atoms expelled from the active zone then diffu
into the bulk of the Ge. The diffusion coefficient was calc
lated using the approximation of diffusion into a sem
infinite crystal with a zero initial concentration across a su
face at which the impurity concentration is kept consta
These conditions correspond best to curve2 in Fig. 1. The
diffusion coefficient calculated from this curve is of the ord
of 3310217m2/s. From a comparison ofDM and DV , the
coefficients of diffusion of Au in Ge by the interstitial an
vacancy mechanisms, respectively,9,10 which at the experi-
mental temperature (T5330 K! have the valuesDM58.2

FIG. 3. Transmission spectra of Ge samples with Au film:1 — initial Ge
sample,2 — Ge sample after removal of Au in aqua regia,3 — Ge sample
with Au film treated in H for 1800 s~Au residue removed in aqua regia!, and
4 — Ge sample with Au film.
ef-
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310220m2/s and DV51.4310240m2/s, we can conclude
that the hydrogen-stimulated diffusion of Au atoms into t
bulk occurs predominantly by an interstitial mechanism. U
der normal conditions this mechanism is realized only
high temperatures (T.1000 K!, so that the equilibrium be-
tween gold at lattice sites AuS and in interstitial positions
AuI ,

AuI�AuS1DQ,

is shifted to the left only at high temperatures. Under t
influence of atomic hydrogen the concentration AuI is high
even atT5330 K as a result of gold being driven into inte
stitial positions in the active zone. However, at low, close
room temperatures, when AuI encounters a vacancy it be
comes localized in a lattice site, as is confirmed by meas
ments of the lifetimet ~Fig. 2! and the transmission spectr
~Fig. 3!.

CONCLUSIONS

To sum up, the presence of atomic hydrogen effectiv
stimulates the diffusion of Au into Ge at temperatures clo
to room temperature. The incorporation of gold into the g
manium involves Au atoms being driven into the Ge subs
face layers to a depth of the order of 1028 m, where defect
formation mechanisms take place and the released ener
dissipated by multiphonon mechanisms, and this is follow
by diffusion of Au into the bulk of the crystals predom
nantly by an interstitial mechanism. However, a considera
fraction of the gold atoms are localized in Ge lattice sites
interaction with vacancies.

Low-temperature heterodiffusion under the action of h
drogen can be effectively used in electron technology to
plant recombination impurities into semiconductor crysta
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An analysis is made of the electric field strength of structures formed by point and filamentary
dipoles in a dielectric medium. Formulas and the results of calculations are presented.
© 1999 American Institute of Physics.@S1063-7842~99!01607-4#
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Structures and substructures which impart new qualit
to instruments and devices are used in electrical enginee
and electronics to screen and control carrier fluxes. They
used in electroacoustic transducers in telephone equipm
thyristors, bipolar and field-effect transistors, and in devic
to regulate high voltages and high currents.1–4

It follows from Refs. 5 and 6, which examined the con
version of energy from a charged particle flux into electr
magnetic radiation in a periodic electric field, that substru
tures are potentially useful in energy converters.

Filamentary and spherical conducting inclusions of sm
radius are substructure elements at which dipole mome
are induced in an electric field. In this context we shall an
lyze the laws governing the electric field distribution for a
rays of spherical inclusions and ‘‘gratings’’ of filamentar
dipoles.

We shall calculate the electric fieldE0 acting on a dipole
located at the center of an array and thez componentEz(z)
of the electric field on thez axis as a function of the distance
from the (x,y) plane, in which the dipoles are distributed a
the nodes of a square array, for three cases: 1! the z axis
passes through the central node of the array, as shown
Figs. 1a and 1b,Ez(z)5E1; 2! the origin is shifted along the
x axis by a half periodd/2, Ez(z)5E2; 3! the origin is
shifted along thex andy axes by a half period,Ez(z)5E3.
We postulate that the dipoles are oriented along thez axis
and have the same dipole momentm.

The field E0 acting on the central dipole is the sum o
the fields of all the other dipoles, each elementary dipole
which, being located at a distancer5(x21y2)0.5 from the
center of the array at a point with coordinatesx5md and
y5nd ~wherem andn are integers, andd is the period of the
array!, contributes a fieldEmz given by7

Emz52
m

4p«

1

r3
52l~m21n2!21.5, ~1!

wherel5m/(4p«d3), and« is the absolute permittivity.
The fieldE0 is given by

E05lH 22F (
m51

M

m231 (
n51

N

n2312 (
m51

M

(
n51

N

~m2

1n2!21.5G J 5lR0 , ~2!
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where R0 is the expression in braces; the upper limits
summationM and N are related to the number of points o
the array Mx and Ny along the x and y axes: M5(Mx

21)/2, N5(Ny21)/2.
If the number of points along the two axes is the sam

Mx5Ny , expression~2! simplifies to

R0524F (
m51

M

m231 (
m51

M

(
n51

N

~m21n2!21.5G . ~3!

When constructing expression~3!, we assumed that the
dipoles located in each of the four quadrants make the s
contribution.

The z component of the electric field produced on thez
axis at the pointz5kd by an elementary dipole with coordi
natesx5md andy5nd is given by7

Ez5l
2k22~m21n2!

~k21m21n2!5/2
. ~4!

Summing the fields of all the dipoles, we obtain thez
component of the electric field asE15lR1 , E25lR2, or
E35lR3, which are expressed in terms of the coefficien
R1 , R2, andR3 given by the following formulas:

R15
2

k3
14 (

m51

M
2k22m2

~k21m2!5/2

14 (
m51

M

(
n51

N
2k22~m21n2!

~k21m21n2!5/2
, ~5!

where the first term gives the contribution of the central
pole, the second gives the contribution of the dipoles loca
on thex and y axes, and the third gives the contribution
the dipoles loacted in the quadrants;

R252 (
m51

M
2k22~m20.5!2

@k21~m20.5!2#5/2

14 (
m51

M

(
n51

N
2k22@~m20.5!21n2#

@k21~m20.5!21n2#5/2
, ~6!

where the first term is due to the dipoles on the axis and
second to the dipoles in the quadrants, and
© 1999 American Institute of Physics
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R354 (
m51

M

(
n51

N
2k22@~m20.5!21~n20.5!2#

@k21~m20.5!21~n20.5!2#5/2
~7!

is due to the dipoles in the quadrants.
Expressions~5!–~7! are written assuming that thez axis

passes through the center of the rectangular array; in Eq~5!
the number of points along thex andy axes is odd, in Eq.~6!
the number of points along thex axis is even and the numbe
along they axis is odd, and in Eq.~7! the number of points
along both axes is even.

To calculate the field of a grating made up of filamenta
dipoles extended along they direction and situated in the
(x,y) plane, we can use the expression for the electrical
tential of a filamentary dipole8

w5
m

2p«

z

z21x2
, ~8!

wherem5qd, d is the distance between the filaments andq
is the charge per unit length of a dipole formed by two p
allel filaments carrying charges of opposite sign; thez axis
passes through the filament and is directed perpendicula
they axis, from the negative filament to the positive filame

Expression~8! yields expressions for the components
the electric field produced by a filamentary dipole along
x, y, andz axes,

Ex5
m

2p«

2xz

~z21x2!2
, Ey50,

Ez5
m

2p«

z22x2

~z21x2!2
.

We introduce the notationc5m/(2p«d2), whered is
the distance between the filamentary dipoles, and we exp
the electric field asE45cR4 , E55cR5, or E65cR6. The
field E4 produced at a central dipole filament by all the oth
filamentary dipoles is given by the coefficient

R4522 (
m51

M

m22.

For a grating consisting of 2M11 filamentary dipoles
the field E5 at a pointz5kd on the z axis, which passes
through the central filament of the grating, is expressed

FIG. 1. Planar dipole array: a — from above~in plane!, b — in theplane of
the array~side view!.
o-

-

to
.
f
e

ss
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terms ofR5, and for a grating of 2M filaments the fieldE6

on the z axis, which passes through the plane at a po
equidistant between the two central dipoles, is expresse
terms ofR6,

R55k2212 (
m51

M
k22m2

~k21m2!2
,

R652 (
m51

M
k22~m20.5!2

@k21~m20.5!2#2
.

Results of calculatingR1 , R2 , R3 , R5, andR6 for short
distances from the array (k<5, M5N550) are presented in
Table I. For large distances (k>10) Table II gives only the
values ofR3 andR6, since here the coefficientsR1 , R2, and
R3 are approximately equal, as areR5 andR6.

Let us analyze the data given in Table I. At distanc
from the array not exceeding one periodd, the electric field
is highly nonuniform, and the componentEz changes sign as
we move along thex and y axes. The total electric field is
several times lower than that created by one of the nea

TABLE I. Values of the coefficients in the expressions for calculating
electric field at smallk.

k R1 R2 R3 R5 R6

0.0 223.24644 216.40418 29.82960
0.1 1991.303 220.45643 215.37890 96.81367 28.91620
0.2 241.93217 214.23478 212.74208 21.99407 26.76874
0.3 66.91961 28.23017 29.46759 8.37208 24.47807
0.4 25.14579 24.16417 26.42897 3.82603 22.69656
0.5 10.95109 21.90894 24.06327 1.90320 21.52761
0.6 5.17967 20.79583 22.42357 0.99320 20.83959
0.7 2.58776 20.28304 21.37325 0.53731 20.43383
0.8 1.35425 20.05637 20.73576 0.30206 20.21568
0.9 0.74610 0.04130 20.36291 0.17875 20.09724
1.0 0.43942 0.08373 20.15037 0.11359 20.03347
1.2 0.20121 0.10735 0.03440 0.06058 0.01901
1.4 0.13668 0.11159 0.09002 0.04555 0.03400
1.6 0.11882 0.11228 0.10634 0.04126 0.03826
1.8 0.11379 0.11237 0.11104 0.04004 0.03946
2.0 0.11235 0.11235 0.11236 0.03968 0.03979
3.0 0.11152 0.11207 0.11262 0.03946 0.03985
5.0 0.11065 0.11119 0.11173 0.03922 0.03960

Note: k50, R0528.921609,R4523.250265.

TABLE II. Values of the coefficients in the expressions for calculating t
electric field at largek.

k R3 R6

10 1.077131021 3.846031022

20 9.384931022 3.448231022

50 4.618931022 2.000031022

100 1.130631022 8.000131023

200 2.218431023 2.353031023

500 1.568631024 3.960431024

1000 1.990031025 9.975131025

2000 2.496931026 2.498431025

3000 7.403331027 1.110831025

4000 3.124031027 6.249031026

5000 1.599731027 3.999631026

1000 1.999931028 9.999731027
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dipoles. At distances between approximately 2d and 5d
from the array the electric field is nearly uniform and d
pends weakly on the coordinates. Asz increases betwee
20d and 100d the field Ez above an array of point dipole
decreases approximately as 1/z2 and that above a grid o
filamentary dipoles decreases as 1/z. At fairly large distances
from the array (k>1000), ten or more times greater than t
dimensions of the array, the field above the center of
array is almost the same as that above an elementary d
multiplied by the number of dipoles forming the array. Th
one can assess the difference in the behavior of the ele
field distribution above individual dipoles and arrays a
take these into account when designing instruments and
vices with substructures, for instance when calculating
forces exerted on electric charges and polarizable parti
by a dipole array.
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e
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Surface waves of the potential type at the interface between a metal
and an inhomogeneous medium
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A study is made of surface waves of the potential type propagating along the interface between a
metal and a plasma of nonuniform density, with the thermal motion of the electrons taken
into account. Dispersion relation for these waves are derived and solved for a linear plasma density
profile. The influence of the nonuniformity of the plasma density on the dispersion properties
of the waves is studied. Cases of negative and positive gradients are considered.
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Structures formed by a plasma and a metal surface
currently being studied intensively.1–3 This interest has bee
stimulated by the many possible applications of these st
tures. They are frequently encountered in various plas
technology and fusion facilities~limiters, divertors!, in probe
diagnostics of plasmas, in studies of the properties of an
nas in plasmas, and in semiconductor electronic devi
Surface waves can propagate in these structures.1 The first
theoretical4–6 and experimental7 papers on the subject wer
concerned with surface waves at the interface between
magnetoactive plasma of a semiconductor and a metal. H
ever, the present author and coworkers8,9 showed that surface
waves can also exist at the interface between a metal a
free plasma if the thermal motion of the electrons in t
plasma is taken into account. The approximation of a hom
geneous plasma was usually considered in all these stu
However, the assumption that a plasma bounding a m
surface is homogeneous cannot always be justified. Un
real conditions the plasma is usually inhomogeneous.1

Here we consider surface waves at the interface betw
a metal and an inhomogeneous free plasma with allowa
for the thermal motion of the electrons. As we know,1 unlike
the case of volume waves in an inhomogeneous pla
whose frequency is the solution of the local dispersion re
tion v5v(k,x), the frequency of the surface waves is
integral function of the density and does not depend on
coordinates.

We shall consider a free~in zero external magnetic field!
plasma occupying the half spacex.0, bounded by a meta
surface in the planex50. The system of equations descri
ing the electromagnetic field of a particular surface wave
the plasma consists of the Maxwell equations and the eq
tions of quasihydrodynamics with allowance for the gas
netic pressure1

curlE52
1

c

]H

]t
, curlH5

1

c

]E

]t
1

4p

c (
a

ja ,

]Va

]t
5

ea

ma
E2

¹pa

nama
,

]na

]t
1 div ~nava!50,
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ja5eanava ; pa5naTa , ~1!

whereea , ma , pa , na , Ta , andva are the charge, mass
gaskinetic pressure, density, temperature, and hydrodyna
velocity of particles of speciesa (a5e,i ).

The solutions of the system~1! must satisfy boundary
conditions at the interface. Since the frequencies of the w
disturbances in the plasma of interest to us are consider
lower than the natural frequencies of the disturbances in
metal, the condition for continuity of the tangential comp
nent of the electric field gives the quasistatic boundary c
dition Et

pl(x50)50 ~Ref. 10!. Allowance for the thermal
motion of the plasma electrons increases the order of
differential equation describing the spatial distribution of t
electromagnetic field. Thus an additional boundary condit
is required, for which we take the commonly used kinema
condition that the normal component of the hydrodynam
electron velocity is zero,11 which corresponds to specula
reflection of the particles from the plasma boundary.

We shall assume that the unperturbed plasma den
varies along the normal to the interfacen05n0(x) and that
an E wave propagates along thez axis. The dependence o
the components of this wave on the coordinates and the
is given by

A~r ,t !5A~x!exp@ i ~k3z2vt !#,

i.e., we are considering surface waves traveling along
interface. We shall analyze undamped waves, neglecting
lisions of the plasma electrons and assuming that the met
a perfect conductor. Without the ion motion, system~1!
yields a system of equations for the electric field compone
Ex , Ez

bT
2 d2Ex

dx2
2

bT
2

n0~x!

dn0~x!

dx

dEx

dx
2~k3

22k2«!Ex

5 ik3F ~12bT
2!

dEz

dx
1

bT
2

n0~x!

dn0~x!

dx

dEz

dx G ,
d2Ez

dx2
1~k3

22k2«!Ez5 ik3~12bT
2!

dEx

dx
, ~2!
© 1999 American Institute of Physics
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wherebT5vTe /c, vTe is the thermal velocity of the plasm
electrons, c is the speed of light, and«(x)51
2(Ve(x)/v)2 (Ve(x)5A4pe2n0(x)/me is the electron
plasma frequency!.

The magnetic field of the wave is expressed in terms
EX andEZ from the following equation

ikHy5 ik3Ex2
dEz

dx
. ~3!

If the plasma density profilen0(x) is such that there is
no point x5x0 at which the dielectric constant«(x) of the
inhomogeneous plasma vanishes, the solution of the sys
~2! may be sought in the form12

E5Et1El . ~4!

In this case the single wave process in this system
characterized by the frequencyv and the wave numberk3,
but is a superposition of two waves: the electromagnetic
larization waveEt and a wave associated with the therm
motion of the electronsEl ~space charge wave!. These waves
have different skin depths along the normal to the me
surface. Azarenkov and Kondratenko8 showed that the in-
equalityq1

21@q2
21 holds for the skin depths of the wavesEt

andEl ~whereq1
21 is the skin depth ofEt andq2

21 is the skin
depth ofEl , respectively!

q15Ak3
22k2«, q25Ak3

22k2«/bT
2. ~5!

If the nonuniformity of the density is such that

q@1
21 , a@q2

21 , ~6!

where a5n0udn0 /dxu21 is the inhomogeneity paramete
the inhomogeneity can be considered to be unimportant f
space charge wave but important for the polarization com
nent of the surface wave. The influence of the electron th
mal motion on the polarization componentEt can be ne-
glected. Thus, we can setbT50 to determine the fieldEt.
We shall consider waves for whichk3

2@uk2«u. If this condi-
tion is satisfied, these surface waves will be potential wav8

The system of equations describing the components of
electric field of the transverset and longitudinall compo-
nents then has the form:

d2Ez
t

dx2
1

1

«~x!

d«~x!

dx

dEz
t

dx
2k3

2Ez
t 50, Ex

t 5
i

k3

dEz
t

dx
, ~7!

d2Ez
l

dx2
2q2

2Ez
l 50, ik3Ex

l 5dEz
l /dx. ~8!

In general, Eq.~7! for Ez
t cannot be solved for an arb

trary law «(x). However, exact solutions of Eq.~7! can be
constructed for some particular cases.

Let us analyze a linear plasma density profile with
negative gradient,n0(x)5n0(12x/a). For this law of varia-
tion the solutions of Eq.~7! can be expressed in terms of
zeroth-order modified Bessel function:13

Ez
t 5B•I 0~k3j!, j5a

«~0!

«~0!21
2x. ~9!
f

m
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-
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a
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The other components of this wave field are expresse
terms of a first-order modified Bessel function:

Ex
t 52 iB•I 1~k3j!, Hy

t 52 i
k«

k3
B•I 1~k3j!. ~10!

We obtain the dispersion relation for the surface wa
from the condition that the tangential component of the
sultant electric fieldE at the metal–plasma interface is ze
and from the kinematic boundary condition. This equati
reduces to the form:

12
Ve

2~0!

v2

k3

q2

I 1~k3j~0!!

I 0~k3j~0!!
50. ~11!

If the density nonuniformity is weak,k3a@1, Eq. ~10!
can be simplified, and we can obtain the following solutio

k35k30H 11
@12«~0!#3

2«2~0!@22«~0!#k30a
J , ~12!

where k305v2/vTeVe(0) is the solution of the dispersio
relation for a surface wave at the interface between a ho
geneous plasma and a metal. For the low-frequency ra
(v2!Ve

2(0)) we have

k35k30F11
1

2k30a
G . ~13!

Let us now analyze a linear plasma density profile with
positive gradient,n0(x)5n0(11x/a). Using another change
of variable,

z5a
«~0!

«~0!21
1x ~14!

we obtain a solution of Eq.~7! in the form of a zeroth-order
Macdonald function13

Ez
t 5C•K0~k3z!. ~15!

The other wave components are expressed in terms
first-order Macdonald function

Ex
t 52 iC•K1~k3z!, Hy

t 52 i
k«

k3
C•K1~k3z!. ~16!

In this case we obtain the dispersion relation for t
surface wave as

12
Ve

2~0!

v2

k3

q2

K1~k3z~0!!

K0~k3z~0!!
50. ~17!

This equation can also be simplified for cases of we
inhomogeneity,k3a@1. As a result, we obtain the following
equation for the wave vector of the surface wave:

k35k30H 12
@12«~0!#3

2«2~0!@22«~0!#k30a
J . ~18!

For the low-frequency range (v2!Ve
2(0)) we obtain

k35k30F12
1

2k30a
G . ~19!
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For arbitrary density nonuniformity, solutions of Eq
~11! and~17! can be obtained numerically, and the results
these calculations are plotted in Fig. 1. In this case, the s
depthLs5c/Ve(0) was taken to be the natural unit of leng
for normalization. It is easy to see that the frequency o
surface wave for the negative-gradient profilen0(x)5n0(1
2x/a) is always lower and the frequency for the positiv
gradient profilen0(x)5n0(11x/a) is always higher than the
corresponding frequency for a homogeneous plasma. Fi
2 shows the change in the phase velocity of the wave a
function of its frequency for various density gradients. Th
behavior of the curves is consistent with the wave dispers

FIG. 1. Frequency of surface wave as a function of wave number for var
plasma density profiles:1 — increasing density inside plasma,2 — de-
creasing density, 0 — homogeneous plasma,a/Ls50.5, andvTe /c50.002.

FIG. 2. Phase velocity of surface wave as a function of frequency.
notation is the same as in Fig. 1:k3 /Ls52, vTe /c50.002.
f
in

a

re
a

n

in a homogeneous plasma, where an increase in the pla
density causes a decrease in the wave number and a
crease in the phase velocity of the wave. Figure 3 gives
wave frequency as a function of the inhomogeneity para
etera. Low valuesa→0 correspond to abrupt inhomogen
ity, and for these cases we need to check that the in
assumptions are satisfied. High valuesa→6` correspond to
a homogeneous medium, so that the curves have a com
limit which is equal to the surface wave frequency in a h
mogeneous plasma.

To conclude, we have established that surface wave
the potential type can propagate along the interface betw
a metal and an inhomogeneous plasma when the the
motion of the plasma electrons is taken into account. Disp
sion relations were obtained and solved for these wav
Cases of negative and positive plasma density gradients w
considered.

The dispersion curves for the surface waves at a me
inhomogeneous plasma interface do not differ qualitativ
from those for an interface between a metal and a homo
neous plasma. The dependence of the natural frequenc
the surface wave on its wave vector is shifted to the
~right! along the abscissa for a plasma with a positive~nega-
tive! density gradient.

These results show that the nonuniformity of the plas
density influences the surface wave characteristics in an
tegral manner.
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FIG. 3. Wave frequency versus inhomogeneity parameter:1 and 2 as in
Fig. 1, k3 /Ls52, vTe /c50.002.
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It is shown that electromagnetic surface waves propagating along the azimuthal angle can be
excited efficiently by an annular electron beam in a cylindrical metal waveguide partially
filled with a magnetoactive plasma. A self-consistent system of differential equations is obtained
to describe the nonlinear interaction between the beam particles and an azimuthal surface
wave in the single-mode regime. This system of equations is analyzed numerically and the
influence of the parameters of this waveguide structure on the development of the resonant
beam instability is determined. ©1999 American Institute of Physics.@S1063-7842~99!01807-3#
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INTRODUCTION

Studies of plasma–beam interaction are attracting c
tinuing interest primarily because of the major practic
value of the expected results, which are finding extens
fields of application, ranging from beam heating of plasm
in controlled fusion devices and for conducting geophysi
experiments in space, to solving problems in plasma e
tronics. The present theoretical study is devoted to solvin
problem relevant to one line of plasma electronics resear1

which involves studying the interaction between charg
particle beams and the natural modes of plasma wavegu
Studies of electromagnetic wave generation processes
erned by the parameters of the beam and the plasma w
guide are aimed at producing rf amplifiers or oscillators w
the highest possible efficiency, permitting continuous f
quency tuning over a wide range, and having comparativ
small dimensions, the highest possible radiation power,
so on. Obviously, all these requirements cannot be satis
simultaneously by a single device. The present study is
attempt to construct a nonlinear theory for a plasma elect
ics device which could satisfy two criteria to a certain exte
i.e., it would offer continuous tuning of the radiation fre
quency in a fairly compact device.

At present, the conditions for the onset of beam ins
bilities and nonlinear interaction between charged part
beams and plasma in a strong external magnetic field an
a finite magnetic field have been studied in fairly great det
The influence of the spectrum of generated waves on
nature of the beam–plasma interaction has also been
lyzed without taking the influence of the plasma boundar
into account.2–4 The bounded dimensions of the plasma n
only lead to changes in the dynamics of excitation of volu
waves but also creates conditions for the excitation of s
face waves.5 Surface waves have various distinguishing fe
tures compared with volume waves: the energy of the sur
8141063-7842/99/44(7)/5/$15.00
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waves is transferred along the plasma boundary and ca
extracted comparatively easily from the interaction zone.1

Here we study the possibility of exciting a surface mo
of extraordinary polarization which is a natural mode for
cylindrical metal waveguide partly filled with a cold magn
toactive plasma. The wave propagates along the azimu
angle at right angles to an external static axial magnetic fi
and is called6 an azimuthal surface wave~ASW!. However,
this wave is only a surface wave in the region of the plas
cylinder; in the insulator separating the metal wall of t
waveguide from the plasma, this electromagnetic disturba
propagates as a volume wave. We note that such plas
filled waveguide structures are currently being studied fa
intensively ~see Refs. 7 and 8! and the literature cited
therein!, so that this choice of subject is highly topical.
linear theory of the beam excitation of ASWs was put fo
ward in Ref. 9, and the case of dissipative ASW instabil
was studied in Ref. 10.

We propose to excite ASWs using a cylindrical me
waveguide of radiusR2 containing a coaxial plasma colum
of radiusR1, whereR22R1!R1. In the spaceR1,r ,R2 an
annular electron beam rotates about the plasma colu
~which may be a semiconductor plasma or a gas plasma
tained in a thin-walled dielectric tube!. The beam densitynb

is substantially lower than the plasma densitynp . An exter-
nal static magnetic fieldB0 is oriented along thez axis. We
assume that the electrical conductivity of the metal wa
guide wall is sufficiently high that we can use the bounda
condition for the tangential component of the ASW elect
field at the metal surface in the formEt(R2)50.

We used a hydrodynamic plasma model, Maxwel
equations, and the equations of motion for the beam parti
in the gapR2.r .R1 between the plasma insert and th
metal wall of the waveguide to obtain a system of differe
tial equations for describing the nonlinear stage of the be
excitation of ASWs. Bearing in mind the inequality for th
© 1999 American Institute of Physics
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beam particle and plasma densitiesnn!np , we neglected the
influence of the beam on the ASW dispersion properties
the influence of the self-field of the beam on the electrom
netic field in which it propagates.

DERIVATION OF THE SYSTEM OF EQUATIONS

In the cold plasma approximation, Maxwell’s equatio
can be divided into two independent subsystems, one
which describes the field of an ASW of extraordinary pol
ization. Assuming that the wave field depends on the timt
and the azimuthal anglew as E,H}exp(imw2ivt) and that
the space is uniform along thez axis, we obtain a second
order differential equation for the magnetic componentHz of
the ASW field and expressions linking the ASW field wi
Hz in the region of the plasma cylinderr ,R1:

]2Hz

]j2
1

1

j

]Hz

]j
2S 11

m2

j2 D Hz50, ~1a!

Er5
«2

k«1c2

]Hz

]r
1

mHz

krc2
,

Ew5
im«2Hz

kr«1c2
1

i

kc2

]Hz

]r
, ~1b!

wherej5krc, k5vc21, c is the speed of light,c25(«2
2

2«1
2)«1

21, «1 and«2 are the components of the permittivit
tensor of a cold magnetoactive plasma~see Ref. 5, for ex-
ample!.

The fields of the ASW in the region occupied by th
beam are described by the following system of differen
equations:

]2Hz

]z2
1

1

z

]Hz

]z
2S 12

m2

z2 D Hz5Fb , ~2a!

Er5
4p

iv
j r2

mHz

z
,

Ew5
4p

iv
j w2 i

]Hz

]z
, ~2b!

where

Fb52
4p

vz F ]

]z
~ j wz!2 im jr G , z5kr,

j r52ueu(
i 51

N

d~r 2r i !d~w2w i !
]r

]t
,

j w52ueu(
i 51

N

rd~r 2r i !d~w2w i !
]w

]t
,

andd(x2x0) is a delta function.
The solutions of the system~1a!, ~1b! for the ASW field

in the plasma region are a modified Bessel functionI m(j) for
the Hz component, and linear combinations ofI m(j) and its
derivative with respect to the argumentI m8 (j) for the com-
ponentsEr andEw . We used the boundary condition that th
ASW field is bounded on the waveguide axis (r 50). The
d
-

of
-

l

system of equations~2a! and~2b! was solved by variation of
a parameter. The components of the ASW field in the reg
R1,r ,R2 are expressed in terms of the first-order Bes
functionsJm(z), the Neumann functionsNm(z), their deriva-
tives with respect to the arguments, and the component
the beam current densityj r and j w .

We shall use the following boundary conditions to d
rive equations describing the behavior of the amplitude
the envelope and the wave phase. The tangential ele
field of the ASW vanishes at the surface of the wavegu
metal wall:

Ew~R2!50. ~3!

The field Ew is continuous at the plasma bounda
r 5R1:

$Ew~R1!%50. ~4!

The ASW magnetic fieldHz is also continuous at the
plasma boundaryr 5R1

$Hz~R1!%50. ~5!

We also assumed that there are no currents at the su
of the metal wall of the waveguide and the plasma surfa
j w(R1)5 j w(R2)50.

Using standard procedures for averaging and separa
out the slow time~see, for instance, Ref. 1!, we find equa-
tions for the amplitude of the envelope and the wave ph
for the case where natural waveguide modes are excited
the dissipative processes in the plasma are neglected:

]A

]t
52

aDp

NzPL (
i 51

N Fm

w

]Ri

]t
L1~z i !sin~mw i1Q2vt !

1Ri
2 ]w i

]t
L2~z i !cos~mw i1Q2vt !G ,

]Q

]t
5

aDp

NzPLA(
i 51

N FRi
2 ]w i

]t
L2~z i !sin~mw i1Q2vt !

2
m

w

]Ri

]t
L1~z i !cos~mw i1Q2vt !G , ~6!

whereA5EyB0
21 is the dimensionless envelope amplitud

Q is the phase,a5nbnp
21 , z5uveuVe

21 , w5vVe
21 ,

Ri5r iVec
21, ve and Ve are the electron cyclotron an

plasma frequencies, respectively,L5Jm(z1)Nm8 (z2)
2Jm8 (z2)Nm(z1), z15kR1 , z25kR2 , L1(z i)5Jm(z i)Nm8
3(z2)2Jm8 (z2)Nm(z i), L2(z i)5Jm8 (z i)Nm8 (z2)2Jm8 (z2)Nm8
3(z i),

Dp5
I m8 ~cz1!

cI m~cz1!
1

m«2

«1c2z1

, P5
d

dw FDp1
L2~z1!

L G .
The equation of motion for the beam electrons can

conveniently written in terms of the particle momentu
p5gmeV ~g is the relativistic factor!

dp

dt
5eE1

e

c
@V3~H1B0!#. ~7!
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Substituting into Eq.~7! the ASW field for the region
R1,r ,R2, we obtain the following system of equations f
the i th particle:

]Ri

]t
5uveu

n i

zg i
,

]w i

]t
5uveu

ui

zg iRi
,

]n i

]t
52uveu

ui

g i
S 12

ui

zRi
D1AR1S m

R1
2w

ui

g i
D

3S 1

z1Dp
2RaD sin ~mw i1Q2vt !,

]ui

]t
5uveu

n i

g i
S 12

ui

zRi
D1

AwR1

z1
FRa211

Ra

Dp

3S m2

z1
2z1D G cos~mw11Q2vt !

1
AwR1n i

g i
S 1

z1Dp
2RaD sin ~mw i1Q2vt !,

~8!

whereRa5r iR1
2121, n5prme

21c21, u5pwme
21c21, andn

andu are the dimensionless momenta of the beam parti
~radial and azimuthal, respectively!.

In order to derive the last two equations in the syst
~8!, we used the initial assumption that the region occup
by the beam is relatively narrow, i.e.,R22R1!R1. This al-
lowed us to substantially simplify the expressions contain
in the system~8!, by using asymptotic expansions of cylin
drical Bessel functions and their Wronskians~see Ref. 11!,
and consequently significantly reduced the computing tim
The time required for direct calculations of cylindrical fun
tions increases drastically, creating additional difficulties
joint solution of the systems of equations~6! and ~8! was
obtained numerically.

FIG. 1. Evolution of the dimensionless amplitudeA as a function of the
dimensionless timet for uveu50.098572Ve , R155.0, R255.5.
s

d

d

e.

RESULT OF THE NUMERICAL SIMULATION

A fourth-order Runge–Kutta method was used to obt
a numerical solution of the joint system~6! and ~8!. The
number of macroparticles used to simulate the electron b
was N5450. A specular reflection model~the particles did
not disappear as a result of the interaction! was used for the
interaction between the beam particles and the plas
boundary or the metal waveguide wall. The results of a
merical investigation of the development of the reson
beam instability of an ASW are plotted in Figs. 1–4. For t
numerical simulation we used the following values of t
waveguide and beam parameters: initial wave amplitu
A51023, phaseQ50, radial momentum of the beam pa

FIG. 2. Distribution of beam particles in coordinate~a! and phase~b! space
for the same values of the parameters as in Fig. 1 andt50.02.



m
-

do
rs

ve
f
is
e

W

r
n
of

ex,
W,
tio

-

icle
-
n-
al

817Tech. Phys. 44 (7), July 1999 Girka et al.
ticles n i50, angular momentum of the particlesui5zRi

~62%!, and ratio of the electron beam density to the plas
density a51022. The initial distribution of the beam par
ticles over the anglew was approximately uniform with a
small random deviation~Dw561%!, and the initial radial
distribution of the beam particles was assumed to be ran
in the regionR1,r ,R2. The other waveguide paramete
were:R22R150.1R1 , uveu50.098572Ve . In Fig. 1 the la-
bels 2, 3, and 4 are the azimuthal mode indicesm of the
ASW.

It was shown in Ref. 9 that there is a region of effecti
wave numberkeff5mcR1

21Ve where the highest values o
the ASW beam instability growth rate are localized. Th
corresponds tokeff'0.4, so that for the computations th
value of R1 was selected so thatkeff50.4. A study of the

FIG. 3. a,b — As Fig. 2a,b, respectively, fort50.6.
a

m

influence of the choice ofkeff on the development of beam
instability confirms the results obtained in Ref. 9. The AS
amplitude did in fact increase more slowly ifkeff had values
of 0.3, 0.2 or 0.5, 0.6. A decrease inkeff caused a greate
slowing of the growth of the ASW amplitude than did a
increase, a finding which is also consistent with the results
Ref. 9. A change in the sign of the azimuthal mode ind
which determines the direction of propagation of the AS
leads to cutoff of the instability. A decrease in the ra
uveuVe

21 and an increase in the parametera lead to a reduc-
tion in the time interval over which the ASW amplitude in
creases from the initial value to the maximum.

Figures 2–4 show the development of the beam part
distribution in coordinate space~angular and radial coordi
nates! and phase~angular coordinate and angular mome
tum! space when an ASW is excited with the azimuth

FIG. 4. a,b — As Fig. 2a,b, respectively, fort50.03.
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mode indexm52. We selected the most characteristic m
ments in dimensionless timet, when the initial~t50!, al-
most uniform beam particle distribution~in both coordinate
and phase space this resembled a continuous undefo
ring! begins to become distorted (t50.02), breaks up into
bunches (t50.06), and is converted into two~according to
the mode indexm52) incipient bunches (t50.3). Figures
2a, 3a, and 4a show the distribution of the beam particle
coordinate space for an ASW with the azimuthal mode ind
m52 at dimensionless timest50.02, 0.06, and 0.3. The
change in the distribution of the beam particles in ph
space as a function of time can be seen from Figs. 2b,
and 4b. A study of these figures reveals that as the reso
beam instability of the ASW develops, the particle distrib
tion over the anglew in coordinate space evolves from a
initial approximately uniform distribution over the azimuth
angle to form two particle bunches form52 ~the number of
these bunches is equal to the azimuthal mode index of
ASW!. In phase space, as a result of being trapped by
wave field, the beam particles form patterns similar to
spokes in a wheel~the number of these spokes being t
same as the mode indexm).

CONCLUSIONS

We have investigated the excitation of an ASW havin
frequency in the rangeuveu,v,AVe

21ve
2/42uveu/2, by an

annular electron beam rotating about a plasma column w
partially fills a cylindrical metal waveguide. This waveguid
structure is placed in an axial static magnetic field. The re
nant beam instability of the ASW was investigated in t
single-mode approximation. Nonlinear interaction betwe
the electron beam and the natural waveguide modes ca
-

ed

in
x

e
b,
nt

-

e
e

e

a

h

o-

n
ses

the beam to break up into bunches which are gradu
trapped in the potential wells of the wave. After this tra
ping, the instability reaches a stage of nonlinear saturat
This saturation state is characterized by a slight variation
the amplitude of the envelope about a certain equilibri
value. The azimuthal mode index has the strongest influe
on the character of the development of the ASW beam in
bility.
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Theory of absorption of electromagnetic radiation by highly inhomogeneous
two-component systems
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Calculations are made of the permittivity of a composite formed by a mixture of a dielectric
matrix and macroscopic magnetic inclusions. It is shown that the dielectric loss tangent in this
material is a complex function of their concentrationx, and this function is determined. The
dependence of the absorption maximum onx is determined and it is shown that the maximum is
only observed in the presence of foreign inclusions. Conditions for the existence of an
absorption maximum are obtained for the two most interesting physical cases. A method of
calculating the components of the depolarization tensor is proposed for a thin-film composite.
© 1999 American Institute of Physics.@S1063-7842~99!01907-8#
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Studies of the properties of complex composite co
pounds have recently attracted major interest for various
sons. The first and main reason from the physical poin
view is that these compounds exhibit anomalous proper
compared with ‘‘normal’’ materials of homogeneous comp
sition. In particular, some physical parameters, such as
thermal conductivity̧ ~see Refs. 1–4, for instance!, because
of its strong dependence on the concentrationx of the dis-
perse impurity phase, have somewhat unusual tempera
dependences which are only manifested when¸ passes
through an extremum. Another reason is that these c
pounds can be~and are!! considerably cheaper than hom
geneous structures while at the same time possessing va
physical characteristics that are identical to or superior
those of the homogeneous materials in a specific rang
parameters~such as temperature, frequency, and app
field!.

In the present paper an investigation will be made o
composite having a dielectric matrix~say, polypropylene!
and we shall select macroscopic magnetic particles as
impurity phase. The dielectric constant and dielectric lo
tangent, important in practical applications, will then be c
culated as a function of the frequency of the applied elec
field, the concentration of the magnetic phasex, and the tem-
peratureT.

Let us assume that the composite is a very thin film.
alternating electric field is directed along the plane of
film parallel to thez axis~Fig. 1!. To determine the dielectric
constant of this medium, we shall proceed as follows. Si
the electric displacement vectorD can be determined from
the relationD52dF/dE1, whereF is the free energy pe
unit volume of the composite andE1 is the electric field
inside the composite, we write, neglecting interaction
tween the host matrix and the impurities,

F5~12x!F01xF1 , ~1!

whereF0 is the free energy of the dielectric matrix andF1 is
the free energy of the magnetic particles.
8191063-7842/99/44(7)/6/$15.00
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Consequently, the components of the electric displa
ment vector are

Da5~12x!D0b]E0ib /]Eia1xD1b]E1ib /]Eia , ~2!

where the subscripts area,b5x,y,z, D1 is the electric dis-
placement inside the magnetic particles,D0 is the electric
displacement in the pure dielectric~in the host matrix!, and
here and everywhere below a summation over repea
Greek indices is implied.

We adopt the following procedure to calculate the d
rivatives in expression~2!. We express the internal fieldsE0i

andE1i in the form

E0i5E14pa0E0i~N02L0!,

E1i5E14pa1E1i~N12L1!, ~3!

whereN0 andN1 are coefficients of the depolarization tens
and depend on the shape of the objects, the coefficientsL0,1

are given byE0,1L54pL0,1P0,1, whereE0,1L is the Lorentz
field, anda0,1 are the polarizabilities of the two phases~di-
electric and magnetic!.

We have a similar relation for the ‘‘total’’ fieldEi :

Ei5E14paEi~N2L !. ~4!

HereN are the coefficients of the depolarization tensor of
entire composite and the coefficientsL are determined by

EL54paLEi .

It now follows from expressions~3! and ~4! that

]E0ib /]Eia5~]E0ib /]Eg!~]Eg /]Eia!

5@11~«21!~L2N!#/@11~«021!

3~L02N0!#, ~5!

]E1ib /]Eia5~11~«21!~L2N!!/~11~«121!

3~L12N1!!, ~6!

Then, since
© 1999 American Institute of Physics
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D05«0E0i , D15«1E1i , D5«Ei ,

in accordance with expressions~2! and ~3!, « is given by

«5@~12x!«0 /~11~«021!~L02N0!!21x«1 /~1

1~«121!~L12N1!!2#@11~«21!~L2N!#2.

Solving this equation for«, we find

«5~122z~L2N!~11N2L !!/2z~L2N!2

2$@~122z~L2N!~11N2L !!/2z~L2N!2#2

2~11N2L !2/~L2N!2%1/2, ~7!

where

z5~12x!«0 /~11~«021!~L02N0!!21x«1 /

3~11~«121!~L12N1!!2. ~8!

Let us assume that the magnetic inclusions are sph
of radiusR. We then haveL15N151/3, and expression~8!
is simplified substantially:

z5~12x!«0 /~11~«021!~L02N0!!21x«1 . ~9!

It can be seen from formula~7! that in the limiting cases
when the sample is purely magnetic or purely dielectric,
obtain the natural expressions«5«1 and«5«0.

Formula~7! can be used to calculate the dependence«
on the frequency v of the applied electric field
E5E0exp(ivt), whereE0 is the amplitude of the field. Fo
this purpose we assume that

«0511 i«09 , «15«181 i«19 .

Extremely cumbersome but simple algebraic calcu
tions lead us to the following expressions for«8 and«9:

FIG. 1. Geometric configuration of coordinate axes and applied ele
field.
es

e

-

«85$z112a~a21!~z1
21z2

2!2z1@d11~d1
2

1d2
2!1/2#1/2/A22z2@~d1

21d2
2!1/2

2d1#1/2/A2%/2a2~z1
21z2

2!, ~10!

«95 $z2@d11~d1
21d1

2!1/2#1/22z1@~d1
21d2

2!1/22d1#1/2

2z2A2%/2A2a2~z1
21z2

2!, ~11!

where

d15114a~a21!z1 , d254a~a21!z2 ,

z15x1~12x!A/C, z25~12x!B/C1x«09 ,

A5«08@~12b1b«08!22b2~«09!2#12b~«09!2~12b1b«08!,

B5«09@~12b1b«08!22b2~«09!2#22b«08«09~12b1b«08!,

C5@~12b1b«08!22b2~«09!2#214b2~«09!2~12b1b«08!2,

a5L2N, b5L02N0 , A.0, z1.0, C.0. ~12!

Using formulas~11! and ~12! we can easily calculate
tand. In fact, since the inequalityd1@d2 is satisfied for any
frequencies, we find

tand5«9/«85~xB1~12x!«09!/

~xA1~12x!C!~114a~a21!z1!1/2.

~13!

Formula~13! can be simplified still further if we assum
that the composite is a very thin film. In this case we ha
N051, L050, and thusa51, so that

tand5@xB1~12x!«09#/@xA1~12x!C#. ~14!

This formula shows that tand has no extrema as a func
tion of the magnetic inclusion concentrationx.

We shall consider the case whenb is small orb50 ~the
coefficientsb will be calculated exactly a little later!. Then,
we obtain

tand5@~12x!«091x«19#/@~12x!«081x#. ~15!

Substituting

«195vt1 /~11v2t1
2!, «095u«0uvt0 /~11v2t0

2!,

«085u«0u/~11v2t0
2!,

we find

tand5
@~12x!t0s~11s2!/t11xs~11s2t0

2/t1
2!#

~11s2!@x~11s2t0
2/t1

2!1~12x!u«0u#
, ~16!

wheres5vt1.
It therefore follows from expression~16! that when the

frequency dependence is taken into account, the dielec
loss tangent has a well-defined maximum at a specific
quency. Note that tand for a completely homogeneous mat
rial is simply equal tovt0, as expected. The qualitative di
ference between the absorptivities of the composite an
homogeneous dielectric can be seen clearly from Fig. 2.

In order to find the extremum frequency, we need
solve the cubic equation

y31A1y213B1y23C150, ~17!

ic
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where

y5s2, A15~9R1 /R2!212R0 /R3 ,

B15~R1R0 /R2R3!1~R1 /R2!2R0 /R3 ,

C15R0R1 /R2R3 ,

R05~12x!u«0u1x, R15~12x!q1x,

R253~xq21~12x!q!, R35xq2, q5t0 /t1 . ~18!

Equation~17! has a single solution~sincey.0 !!, which is
determined by the condition

A,0. ~19!

Expressions~19! and~12! yield the following inequality

x2g112xg22u«0u,0, ~20!

where

g15~q21!~ u«0u212q223q!,

g25q220.5qu«0u10.5.

If g1.0, which is satisfied by conditions~21! or ~22!,
we find

1,q,~ u«0u15/4!1/221.5, ~21!

whereu«0u.5, or

~ u«0u15/4!1/221.5,q,1, ~22!

where the inequality 1,u«0u,5 must be satisfied.
If conditions ~21! and ~22! are satisfied, the concentra

tion of magnetic additives satisfies

x,@~g2
2/g1

2!1u«0u/g1#1/22g2 /g1 . ~23!

If g1,0, which, unlike conditions~21! and ~22!, is sat-
isfied by a different ‘‘ballpark’’ of given~exactly solvable!!
timest0 andt1, we obtain

0,q,~ u«0u15/4!1/221.5, q,1, ~24!

or

q.1, q.~ u«0u15/4!1/221.5. ~25!

The system of inequalities~24! is not satisfied under rea
conditions ~unlessu«0u51). Thus, there remains only on
possibility

FIG. 2. Dependence of tand on the frequency of the applied alternatin
electric field in two physical cases:1 — homogeneous~single-phase! mate-
rial, and2 — two-phase structure.
q.~ u«0u15/4!1/221.5. ~26!

This inequality corresponds to concentrations

x.@~g2
2/g1

2!1u«0u/g1#1/22g2 /g1 . ~27!

We shall now give numerical estimates of the right-ha
sides of inequalities~23! and~27!. Assuming thatq is of the
order of unity, we findg1;1, g2;2u«0u, and as a result, we
obtain two possibilities:x is greater than or smaller tha
2u«0u. In reality only x,2u«0u is possible, and this mean
that

x,1. ~28!

In accordance with inequality~23!, if conditions ~21!
and ~22! are satisfied, we find

x,x0 ,

wherex05@(g2
2/g1

2)1u«0u/g1#1/22g2 /g1.
We write this inequality in expanded form

t1,t0,@~ u«0u15/4!1/221.5#t1 , if ~ u«0u.5!, ~29!

@~ u«0u15/4!1/221.5#t1,t0,t1 ,

if ~1,u«0u,5!, ~30!

It should be noted that in principle, inequalities~29! and~30!
can be satisfied by selecting suitable magnetic and diele
materials. For magnetic structures at temperaturesT,Tc ,
whereTc is the magnetic phase transition temperature~and
this is the temperature range we are dealing with!, the times
t1 are determined by: a! magnon–magnon, b! magnon–
phonon, and c! phonon–phonon relaxation mechanisms.5–8

One particular mechanism will predominate in different te
perature ranges. For a dielectric the relaxation timet0 should
be determined by the relaxation of the polarizationP. It
should be noted that in the case of a phonon relaxa
mechanism in both the dielectric and the magnetic substa
the behavior of the timest1 andt0 is qualitatively the same
but differs quantitatively. This is because the interaction c
stants between phonons in the dielectric and the magn
substance differ substantially, since they depend on the s
metry of the material. If this mechanism is taken to be t
main one,q will simply be equal to the ratio of the appro
priate striction constantsK1 andK2, i.e.,

q5K2 /K1 . ~31!

Thus, the conditionq;1 is quite realistic. Conversely, i
the magnon interaction mechanism predominates in the m
netic substance (t1magn,t1phon), the inequality t1,t2

,@(«2015/4)1/221.5#t1 is satisfied, andu«0u.5 @see Eq.
~29!#. In this case, tand has a well-defined maximum. If in
equality~29! is not satisfied, no absorption maximum occu
and tand increases linearly with frequency.

We shall now analyze the particular case whenb50,
which is achieved ifL05N0. The expression for tand @see
formula ~14!# simplifies substantially, and, taking formul
~12! into account, we find

tand5@~12x!«091x«19#/@x1~12x!«08#. ~32!
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The analysis of formula~32! is quite simple if (1
2x)«09@x«18 , which can be achieved for low concentratio
of the magnetic phase.

Setting

«095u«0uvt0 /~11v2t0
2!, «195vt1 /~11v2t1

2!,

«085u«0u/~11v2t0
2!,

we find

tand5@ u«0u~12x!vt0#/@~12x!u«0u1x~11v2t0
2!#. ~33!

The extremum of this function is localized at

v5vmax5@11~12x!u«0u/x#1/2/t0 . ~34!

For a given frequency of the external field, the conce
tration of the magnetic phase corresponding to the regio
maximum absorption is found from Eq.~34! as

xopt5u«0u/~v2t0
21u«0u21!. ~35!

Briefly summarizing this analysis, we note that the a
sorption of electromagnetic radiation by dielectric comp
ites can be regulated by adding magnetic, metallic, or o
foreign substances to the host matrix. At this point, particu
attention should be drawn to the fact that for metal inclusio
the range of optimum absorption of electromagnetic rad
tion should be shifted toward shorter wavelengths. This
because the relaxation times in the electronic subsystem
generally appreciably shorter than those in the magnon
phonon subsystems~see Ref. 9, for example!, and, conse-
quently, the absorption maximum undergoes a hierarch
shift toward high frequencies.

CALCULATION OF DEPOLARIZING FACTORS

We shall consider the problem of calculating the dep
larizing factorsN0 ~the coefficientsb! in the case of practica
importance when the dielectric is a film and the foreign
clusions may be considered to be voids. We shall ass
~Fig. 3! that the geometry of the configuration of spheric
voids is an axisymmetric ‘‘disk’’ figure, i.e., along thez axis
the voids are distributed along concentric circles with
voids at the center of the circle, and we shall calculateN0 for
this figure. According to the definition of the components
the depolarization tensor,10 we have

Nik5~1/4p!E ~]2/]xi]xk!~1/r !dV

5~1/4p!E E
S
~]/]xi !~1/r !dSk . ~36!

Beginning our calculations withNzz, we write N0zz in
the form

N0zz5~1/4p!E E dxdyE
2d

d

~]2/]z2!~1/r !dz. ~37!

To find the inner integral, we envisage a on
dimensional structure and represent this schematically a
Fig. 4, where the spheres~the voids are assumed to b
spheres with some size spread! are denoted by two transvers
-
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bars separated by a distance 2¸, and neighboring bars are
distanced apart. If the length of this thread isd* , it is easy to
see that the total number of voids is

nmax5~d* 2¸!/~d12¸!. ~38!

Then, since the concentrationx5¸(112nmax)/d* , and
12x5dnmax/d* , formula ~38! can be used to find a relatio
betweend and¸:

¸5xd/2~12x!. ~39!

With this in mind, the inner integral is written as

Jin52z/r 3u2d* /2
d* /2

52 Ȩd1¸

~]/]z!~z/r 3!dz

2E
d13¸

2d13¸

~]/]z!~z/r 3!dz2 . . .

~the ellipsis stands for terms withd⇒2d, ¸⇒2¸). For low
concentrations of the magnetic phase as far asx<1/2 the
functions obtained as a result of integrating can be expan
in powers of¸. As a result, we find

N0zz5~1/4p!E E
2M

M

dxdyH 2¸/~x21y21¸2!3/2

14¸ (
n51

nmax

~x21y21n2d2!23/2J . ~40!

FIG. 3. Schematic diagram of a disk structure of voids. The concen
circles lie in they–z plane.

FIG. 4. Arbitrary representation of spherical voids in the form of line
gaps.
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Converting to polar coordinates we obtain

N0zz5~¸/2!H 2~r21¸2!21/222(
n51

nmax

~r21n2d2!21/2J u0
M .

~41!

Having divided the radial threads into regions

rP@0;d11¸#ø@d113¸;2d113¸#

ø@2d115¸;3d115¸#ø . . . ,

whered15A2d and

Nmax5~M2¸!/~d112¸!, ~42!

as a result~as above!, by expanding expression~41! in pow-
ers of¸, we obtain the approximation

N0zz5125¸2/2d1
2 (

N51

Nmax

@1/Nd22d1¸/~d1
21N2d2!3/2#.

Substituting expression~39! and taking into account tha
d15A2d, we finally obtain

N0zz5125x2/16~12x!21$x/2~12x!% (
N51

Nmax

1/N. ~43!

We now have only to estimate the sum of the terms
the divergent harmonic series. We have the approximati

( ~1/N!5NmaxlnNmax,

and, allowing for Eqs.~42! and ~39!, we find

N0zz5125x2/16~12x!21@x2ln~x/2!#/4~12x!. ~44!

For the componentsN0xx5N0yy , we have

N0xx5N0yy5~12N0zz!/255x2/32~12x!2

2@x2ln~x/2!#/8~12x!. ~45!

Thus, these formulas clarify the dependence ofb on the con-
centration of voids. At this point, it should be reemphasiz
that the magnetic macroscopic additives have been repl
purely formally by voids. Note that in our notatio
b5N0xx .

It can be seen from formula~45! that the dependence o
the coefficientsb on the concentration of the magnetic pha
for small x is extremely weak~proportional tox2!, but even
so, when the dependenceb(x) is taken into account, the
functional behavior of tand becomes very complex and ca
be represented schematically as in Fig. 5. It should be n
that this nonstandard behavior of tand is characteristic of any
two-component structure when a foreign substance ha
the concentrationx is added to the host matrix, provided th
this substance is not a dielectric!

Calculations of the dielectric constant in the form giv
above do not exhaust the possibilities of using other formu
to find «. In particular, we can use the nonequilibrium de
sity matrix method to determine the polarization coefficie
a and therefore«. In fact, we have
f

d
ed

ed

g

s
-
t

a ik~v!5E ^@di~0,x1!,dk~ t,x2!#&

3exp~ ivt !d3x1d3x2dt/\V3, ~46!

where di(t,x) is the atomic dipole moment operator, th
brackets as usual indicate a commutator, and the angle br
ets denote averaging over the equilibrium density matrix

Direct calculations of this expression are fairly comp
cated~see Refs. 2 and 3, for example, where the Kubo f
mula was used to calculate the thermal conductivity!, and
cannot be made in a general form. However, this form
works in simple particular cases, and if we define the spec
form of the operatordi and the interaction Hamiltonian o
the various subsystems, it can be simplified and the calc
tions brought to a logical conclusion. If we neglect the inte
action between the two phases, dielectric and magnetic~at
this point we note that any quantity of the phases m
exist3,11 but we shall then need to make some modification
the following formula!, formula~46! may be rewritten some
what differently, i.e.,

a ik~v!5xE
V1

^@d1i~0!,d1k~ t !#&exp~ ivt !dt/\V1~12x!

3E
V0

^@d2i~0!,d2k~ t !#&exp~ ivt !dt/\V, ~47!

which now contains the dipole moment operatorsd1 andd2

corresponding to the two phases,x5V1 /V, 12x5V0 /V,
V11V05V, whereV1 is the volume of the magnetic phas
andV0 is the dielectric component of the host matrix.

CONCLUSIONS

The dielectric constant of two-phase systems~dielectric
1 macroscopic magnetic particles! calculated above can b
used to predict various characteristics of the absorption
external electromagnetic radiation by these substances.

1. The value of tand for these structures has a wel
defined maximum which is determined only by the impur
phase concentrationx ~if x50 there is no maximum!, and the
absorption maximum is localized in a specific waveleng
range.

2. In these composites the depolarizing factors begin
depend strongly on the impurity-phase concentration.

FIG. 5. Dependence of tand on the concentration of the magnetic phase
two real cases:1 — N2 does not depend onx, 2 — N2 is a function ofx.
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3. These composites~with a specific concentrationx! can
be used for shielding from a specific type of electromagn
radiation in a particular frequency range.

This work was partly supported by the Russian Fund
Fundamental Research, Grant No. RFBR-96-03-03237.
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Perturbed machine phase ellipse and particle tracking in ultrahigh-energy linear
accelerators
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An investigation is made to determine how inaccuracies in mounting the quadrupole lenses
influence the dilution of the transverse emittance of the beam. The study is made for two specific
designs of 500 GeV linear colliders, thermal and superconducting. The analytical prediction
is compared with the results of numerical calculations on the averaging of the beam emittance
dilution effects for various sets of random deviations of the lenses from the accelerator
axis. © 1999 American Institute of Physics.@S1063-7842~99!02007-3#
ai
ti
t

r a
he
th
a
ec
, i
ea
na
e

ra
to

je
s

tin
e
is
a
a
tr
o

t b
t

rio
e
c
se
s
u
a
,
th

nc
a

el-
he
ses
ex-
ers.
ults

or
ire

the
ticle
cel-
tor
ase
and

e

m
le

es,
xis,

r.
e-
be

he
tron
s

A meticulous study of the beam behavior along the m
linac with allowance for all the tolerances on the magne
and accelerating elements is required in order to preserve
nominal emittance of the electron beam in a linear collide
energies of 0.5–1 TeV. For numerical simulations of t
beam dynamics, various codes for particle tracking in
main linac1–3 have been developed with comprehensive
lowance for dilution of the transverse emittance of the el
tron beam,4 and these continue to be refined. At this point
should be noted that the enlargement of the normalized b
emittance in the main linac as compared with the nomi
normalized beam emittance should not exceed a few perc

The main beam broadening effects can be attributed
perturbation of the central trajectory caused by inaccu
installation of the quadrupole lenses along the accelera
Even with tolerances of the order of 100mm for the displace-
ment of the lenses relative to the axis, the perturbed tra
tory may exceed the beam dimensions by several order
magnitude, leading to transverse beam instability caused
the excitation of transverse modes in the accelera
sections.5 The only method of allowing for inaccurat
mounting of the quadrupole lenses along the accelerator
consider the deviations of the lenses relative to the axes
random set of uncorrelated displacements with a me
square alignment precision. However, the perturbed cen
beam trajectory may differ by orders of magnitude for tw
different sets so the beam emittance dilution effects mus
averaged over a large set of deviations of the lenses from
axis. The important question then arises as what crite
should be used for the reliability of the particle tracking r
sults relative to the number of averagings. The particle tra
ing results are usually confined to averaging over 20–30
of random deviations of the lens center from the axis. Thi
because, up to energies of around 50 GeV, the mean-sq
dimensions of the beam in the main linac vary negligibly
the number of averagings is increased further. However
will be shown below, this cannot serve as a guarantee of
reliability of the results at higher accelerator energies, si
it does not take into account the larger number of lenses
the accumulation of averaging errors.
8251063-7842/99/44(7)/3/$15.00
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Here we introduce the mean-square perturbed phase
lipse of the transverse oscillations of the centroid of t
beam due to inaccurate installation of the quadrupole len
along the accelerator. The area of the phase ellipse is
pressed analytically in terms of the accelerator paramet
The agreement between the numerical and analytical res
for the particle tracking will then serve as the criterion f
the reliability of the particle tracking results along the ent
accelerator. The perturbed phase ellipse is determined by
focusing system along the accelerator and the rate of par
acceleration, and is an important characteristic of the ac
erator from the point of view of tolerances for the accelera
elements. In addition, a knowledge of the perturbed ph
ellipse can be applied to optimize the focusing system
select a strategy for correcting the perturbed orbit. W
present results of an investigation for the thermal~SBLC,
frequency of rf system 3 GHz! and superconducting
~TESLA, frequency of rf system 1 GHz! designs of 500 GeV
linear colliders.6 The equation describing the central bea
trajectory, allowing for random deviations of the quadrupo
lenses from the accelerator axis, is given by

1

G~z!

d

dz
G~z!

d

dz
x~z!2Kx~z!@x~z!2xqk#50, ~1!

wherez andx are the longitudinal and transverse coordinat
xqk are the random displacements of the lenses from the a
Kx is the power of the quadrupole lenses, andG is the Lor-
entz factor of an equilibrium particle along the accelerato

The particular solution of the equation of motion corr
sponding to the perturbed central beam trajectory may
expressed in the form

xc~z!5Ab~z!

G~z! (k
KkLqkxkAbkGk sin@f~z!2f~zk!#,

~2!

where b(z) and f(z) are the instantaneous values of t
amplitude function and the phase of the transverse beta
oscillations,Lq is the length of a quadrupole lens, and term
with the subscriptk correspond to their values in thekth
quadrupole.
© 1999 American Institute of Physics
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We assume that the random deviations of the len
from the axis are uncorrelated, and consequently the c
terms make no contribution to the mean-square displacem
of the central trajectory (^xkxl&50 for kÞ l )

^xc
2&5^xq

2&
b~z!

G~z! (
k

Kk
2Lqk

2 bkGk sin2@f~z!2f~zk!#,

~3!

where ^xq
2&1/2 is the root-mean-square displacement of

centers of the lenses relative to the axis.
At this stage, by analogy with the free betatron oscil

tions of the particles, we can introduce the mean-square
turbed instantaneous phase ellipse of the beam

g^xc
2&12a^xcxc8&1b^x82

2&5A2, ~4!

where the area of the ellipse~divided byp) is

A25
^xq

2&
G~z! (

k
Kk

2Lqk
2 bkGk , ~5!

anda, b, andg are the parameters of the Twiss matrix.
We shall assume that, as usual, the focusing system

the accelerator is a symmetric FODO structure~where F is a
focusing lens, D is a defocusing lens, and O is a free g!,
which includes accelerating sections. Then, replacing
summation over lenses by a summation over periodic c
and using the relations for a symmetric FODO structure,

bmax1bmin5
2Lc

sinm
, KLqLc54 sin

m

2
, ~6!

we obtain

A2516
^xc

2&
LcG~z! (

n
Gn tan

mn

2
, ~7!
s
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wheremn is the phase shift of the betatron oscillations in t
nth cell, andLc is the length of a FODO cell.

If the number of cells is large and the and energy inc
ment per cell is comparatively small, we can convert fro
summation over cells to an integral over energy, which in
particular case of a constant phase shift gives the follow
analytical expression for the area of the perturbed phase
lipse:

A258
^xq

2&

Lc
2

E0

DE
tan

m

2

E0

E~z! F S E~z!

E0
D 2

21G , ~8!

whereE0 andE(z) are the initial and instantaneous equili
rium beam energies andDE is the energy increment per un
length.

The mean-square displacement of the lenses is relate
the toleranceaq by aq

253^xq
2&. We note immediately that the

commonly used phase shift per periodp/2 ~Ref. 4! is far
from optimum from the standpoint of the perturbed cent
beam trajectory, and, in view of the fact that the amplitude
the free betatron oscillations is determined by a beta fu
tion, this shift can be reduced to values of the order ofp/6
without materially affecting the maximum amplitude of th
free betatron oscillations. Table I gives the main parame
for the thermal~SBLC! and superconducting~TESLA! de-
signs of linear colliders.6

TABLE I.

Cell length Energy increment Phase Lens displac
Accelerator Lc , m DE, eV/m shift m mentaq , mm

SBLC 12 17 p/2 100
TESLA 48 25 p/3 500
-
he

s:

e-
FIG. 1. Evolution of the area of the mean
square perturbed phase ellipse along t
SBLC main linac with a 100mm tolerance
for the installation of the quadrupole lense
1 — analytical prediction,2 –4 — averag-
ing over 25, 50, and 100 sets of random d
viations, respectively.
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FIG. 2. Evolution of the area of the mean
square perturbed phase ellipse along t
TESLA main linac with a 500mm tolerance
for the installation of the quadrupole lense
1–4 — as in Fig. 1.
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The ;1 GHz superconducting accelerator is dist
guished by a beam tube of comparatively large aper
whose transverse wakefields are considerably weaker
those of the;3 GHz thermal accelerator for the same p
rameters of the accelerated beam. This means that one
have four~rather than two! accelerating modules per perio
of the FODO focusing system, substantially reducing
perturbed phase ellipse and consequently increasing the
erances for the installation accuracy of the quadrup
lenses.

Figures 1 and 2 show the change in the area of the m
square perturbed phase ellipse for the thermal and super
ducting accelerators for 25, 50, and 100 sets of rand
equally probable deviations of the lenses from the axis,
also the analytical prediction. As we can see, the part
tracking results show good agreement with the analytical
culations when the mean-square perturbed trajectory is a
aged over 100 or more sets of lens displacements. We
note that even when averaged over 50 sets of deviations
mean-square phase ellipse differs appreciably from the
one at electron energies higher than 100 GeV for the ther
variant and 250 GeV for the superconducting variant, wh
must be borne in mind when interpreting the particle track
results to determine the mean-square dilution of the be
emittance at the accelerator exit. If the accelerator also h
system for guiding and final focusing of the particles at
collision point of the accelerated beams, we can also see
re
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important it is to have an accurate idea of the central tra
tory and the mean-square beam emittance at the accele
exit.

We have derived a simple analytical formula which d
scribes the perturbed mean-square phase ellipse in linea
celerators at high energies. The area of the ellipse may s
as a measure of the accuracy of the particle tracking al
the accelerator when determining the mean-square pa
eters of the beam. In addition, the perturbed phase ellips
an important characteristic of an accelerator from the po
of view of tolerances for the installation of the quadrupo
lenses and from the point of view of optimizing the enti
focusing system.
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V. A. Novolodski , O. M. Artamonov, and S. A. Komolov
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A combined analysis is made of the low-energy total current and secondary electron emission
spectra at the initial stage of formation of a silver coating on a W~110! surface. It is
shown that the features observed in the spectra are related to the energy structure of the density
of empty states lying above the vacuum level. The dynamics of changes in these features
in the total current spectra as the film thickness increases indicates that at the initial stage the silver
coating is characterized by the Ag~111! orientation, but as the thickness increases, the
Ag~110! orientation predominates. ©1999 American Institute of Physics.
@S1063-7842~99!02107-8#
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INTRODUCTION

The electron spectra of the surface of silver were stud
by two methods of electron spectroscopy in which the ene
structure of the solid was studied in the same range of e
tron energies. The first method was secondary electron s
troscopy~SES!, in which we studied the spectra of the tru
secondary electron emission near the cascade maximu
the energy range between 0 and 30 eV~Ref. 1!. The primary
electron energy and current are kept constant during rec
ing of the SES spectra. The secondary electron emission
recorded in a narrow solid angle using a hemispherical
ergy analyzer. This SES method was described in deta
Refs. 2 and 3, and the emission spectra are given in the f
N(E).

The other method was total current spectrosco
~TCS!,4,5 in which the current of electrons propagating in t
sample circuit is recorded when its surface is exposed
constant current of primary electrons whose energy va
uniformly between 0 and 30 eV. The total current spectr
is identical to the spectrum of electron reflection into an
verted hemisphere, provided that the primary current is
same and that all electrons leaving the solid are collec
i.e.,

I TCS~E!52I refl~E!.

An advantage of total current spectroscopy is that
experimental equipment is simple compared with that
quired to record the reflection spectra. The total current sp
tra are expressed as the derivativedI(E)/dE of the current
flowing in the sample circuit.

In the present study we analyze silver films on sing
crystal tungsten W~110! and also polycrystals of silver. Th
surface was analyzed in a vacuumP5631028 Pa. The sil-
ver films were depositedin situ by thermal evaporation. The
silver films and polycrystals were studied by total curre
spectroscopy. The surface of the tungsten substrate was
pared by a standard method of oxidation followed by he
ing. The silver sample was purified by heating in vacuum
several hours until the surface recrystallized.
8281063-7842/99/44(7)/3/$15.00
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EXPERIMENTAL RESULTS

The secondary electron emission spectra near the
cade maximum were studied at primary electron energiesEp

between 10 and 400 eV. From energiesEp525 eV and
higher ~the energy is measured from the Fermi level!, the
spectra exhibited fundamentally the same profile, as sho
in Fig. 1 ~curve 3!. This curve has two peaks, one being
cascade peak recorded at 7.5 eV and the other an emis
peakA recorded atE517.6 eV, which is a characteristic fea
ture of the emission spectrum of silver. This feature on
appeared in the emission spectrum at primary electron e
gies aboveEp525 eV. As Ep increases further, the ampli
tude of this peak increases in proportion to the increase in
amplitude of the cascade peak. For thin~0.8–2 ML! silver
films on the surface of tungsten this peak is located at 16
16.5 eV, but as the film thickness is increased from 2
6 ML, the peak shifts toward higher energies as far
17.6 eV, and then its energy position remains unchan
with further growth of the film.

The total current spectra of the film surface and the
ver polycrystal were identical for films more than 6 M
thick. This spectrum is shown in Fig. 1~curve2!. At a pri-
mary electron energy of 4.5 eV relative to the Fermi level
observed a primary peak typical of this type of spectrum
is associated with the energy threshold for the entry of e
trons into the solid and corresponds to the vacuum level
silver. The value of 4.5 eV is the electron work function f
a silver surface.

As the primary electron energy increases, the total c
rent spectra reveal other features characteristic of silve
energies of 7.2, 9.7, 17.3, and 23 eV denoted asB, C, A, and
D, respectively, in Fig. 1~curve2!.

For thin ~0.5–2 ML! silver films the amplitudes of fea
turesB, C, andD are small. PeakA predominates in the tota
current spectrum of the thin film, and is shifted 1 eV to t
left relative to its position in Fig. 1~curve2!.

DISCUSSION OF RESULTS

Figure 1 ~curve 1! gives the calculated integral densi
of electron energy states for silver.6 The amplitude of the
© 1999 American Institute of Physics
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FIG. 1. Spectra of silver:1 — density of elec-
tron energy states,2 — total current spectrum,
and3 — secondary electron emission spectrum
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empty states is four times that of the filled states. The low
arrows indicate the density-of-states peaks correspondin
different directions of the dispersion relation for the electr
energy. For instance, the features denoted byX indicate the
G –X directions perpendicular to the Ag~110! face whereas
those denoted byL indicate the direction perpendicular to th
Ag~111! face. The numbers in parentheses afterX and L
correspond to different branches of the same direction on
dispersion relation.

The nature of the emission peaks in the SES spectra
been fairly well studied.7–9 For instance, peakA in the SES
spectra of silver can be attributed to a maximum of
empty electron energy states above the vacuum leve
17.6 eV. Primary electrons with energyEp sufficient to ion-
ize filled valence states below the Fermi level~Fig. 1, curve
1! excite electrons from these states. These secondary
trons occupy empty states between the excited state an
level of Ep . They can enter vacuum from these states if
energy of these states is higher than the vacuum level.
maximum density of empty states corresponds to the em
sion peak in the SES spectrum. In Fig. 1~curve1! the group
of density-of-states peaks at 16.3–17.7 eV shows good
respondence with emission peakA in the SES spectrum~Fig.
1, curve 3!. This shift of the emission peak from 16.3
17.6 eV with increasing thickness of the silver film is clea
caused by a change in the crystalline orientation of the
face in the thin and thick silver films on W~110!. We know10

that thin silver films have the orientation Ag~111!, whereas
thick ones become polycrystalline. The position of peakA in
the SES spectrum of the thin film coincides with the 16.3
density-of-states peak characterizing the Ag~111! face. The
shift of peakA toward 17.6 eV as the film becomes thick
matches the 17.7 eV density-of-states peak in Fig. 1~curve
1!, which corresponds to the Ag~110! face.

The matching between the energy position of peakA on
the TCS and SES spectra requires some explanation.
emission peakA in the SES spectrum indicates that 17.6 e
electrons are emitted from silver, while the TCS peakA in-
dicates that primary electrons of this energy are absorbe
the silver film. Both these peaks coincide with an extrem
r
to

e

as

e
at

ec-
the
e
he
s-

r-

r-

he

by

of the density of empty electron states in silver, i.e., the sa
density-of-states peak is responsible for the emission and
sorption of electrons having the same energy in the sil
film.

No contradictions arise here because peakA appears in
the emission spectra only when the primary electron ene
Ep reaches a certain value which is higher than the energ
the 17.6 eV emission peak. Figure 2 shows the behavio
the emission spectra as the energy of the primary elect
decreases from 33.5 to 21.5 eV. The cascade peak b
ground has been subtracted from the curves. It can be
that the emission peakA decreases with decreasingEp . At
Ep521.5 eV ~curve 7 in Fig. 2!, the emission spectrum
barely reveals any peak. AsEp decreases, beginning a
Ep527.5 eV~curve4 in Fig. 2! the suppressed peakA over-
laps with the left wing of a group of peaks characterizing t
electron energy losses. This group consists of energy
peaks which are attributed to the energy lost by primary e
trons in the excitation of various plasma oscillations that
characteristic of silver. We know11 that this group consists o
high-intensity peaks with maxima at 3.6, 3.8, and 7.5–8 e
Unlike the emission peaks, whose energy position rema
constant in all the emission spectra of a particular mater
the characteristic losses keep their position constant rela
to the peak of elastically reflected electrons. For instance,
the emission spectra of silver shown in Fig. 2, the right-ha
energy boundary for the loss band is 3.2 eV from the ela
reflection peak, whereas the left-hand boundary is 7–8
from this peak. AsEp decreases, this group of losses shi
with the elastic reflection peak, as shown by the dotted arP.

The energy position of theA emission peak remains con
stant in Fig. 2, while its amplitude decreases with decreas
Ep . This variation of the amplitude of peakA shows that as
Ep decreases, there is a lower probability of filled valen
states becoming ionized and a lower probability of em
states being filled with excited electrons, which reduces
emission. It can be seen from Fig. 2 that even
Ep525.5 eV ~curve 5 in Fig. 2! the SES spectrum contain
no emission peakA, although the characteristic loss pea
are still visible. For Ep517.6 eV the emission spectrum
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should change qualitatively because at this energy the c
ficient of elastic reflection of the electrons decreases. Thi
indeed observed for the total current spectrum~Fig. 1, curve
2! at an electron energy of 17.3 eV. This spectrum revea
peak A which indicates increased absorption of electro
having this energy. ForEp517.5 eV primary electrons are
evidently ‘‘trapped’’ at empty energy states of silver, and
reduction in the coefficient of elastic reflection is observe

The total current spectra are expressed as the deriva
of the currentdI(E)/dE flowing through the sample. There
fore, the maximum in the total current spectrum should c
respond not to the density maximum but to the maximu
upward slope of the density of empty states, as is obser
experimentally~Fig. 1, curves1 and2!. This corresponds to
a shift of peakA by 0.3 eV to the left in the total curren
spectrum relative to peakA in the SES spectrum.

In the total current spectra for thin silver films the sh
of peakA at 16.5 eV, as was noted above, matches the s
of peakA in the SES spectrum and also indicates the p
dominant crystalline orientation of the thin Ag~111! films.

The total current spectra of thick films and silver pol
crystals exhibit peaksB, C, andD ~Fig. 1, curve2!. These
extrema show good agreement with the features in the d
sity of states~Fig. 1, curve1!. All these features~Fig. 1,
curve1! corresponding to peaksB, C, andD are character-
istic of the Ag~110! face. The peaksB, C, and D are also

FIG. 2. Secondary electron emission spectra with the cascade maxim
subtracted:Ep533.5 ~1!, 31.5~2!, 29.5~3!, 27.5~4!, 25.5~5!, 23.5~6!, and
21.5 ~7!.
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present in the total current spectrum, with corresponde
being observed for these in the density-of-states spect
but not in the SES spectrum. The more complex structure
the total current spectra as compared with the SES spe
between 0 and 30 eV can be attributed to the absence o
cascade maximum in this method of recording. In particu
the high-intensityB peak, which has the same energy po
tion as the cascade maximum, is obscured by it and is th
fore not recorded in the emission spectra. FeaturesC andD
are weak and only appear in the SES spectra at the n
level, whereas they are quite significant in the total curr
spectra.

CONCLUSIONS

The use of a combination of low-energy secondary el
tron spectroscopy methods~SES and TCS! has allowed us to
identify the main features of the density of empty electr
states located in the 0–20 eV range above the vacuum l
at the initial stage of the formation of thin silver films. Th
energy position of the experimental points in the energy
pendence of the density of empty states was determined
was found to be in good agreement with the results of th
retical calculations.

The behavior of the main features in the total curre
spectrum confirms that thin silver films on a W~110! tung-
sten surface possess the Ag~111! orientation, whereas for
thick films the Ag~110! orientation predominates.
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Influence of lubricant on the motion of a body in an electromagnetic railgun accelerator.
I. Electric current distribution in the accelerated body and the rails

É. M. Drobyshevski , É. N. Kolesnikova, and V. S. Yuferev

A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
~Submitted January 21, 1998!
Zh. Tekh. Fiz.69, 103–111~July 1999!

An investigation is made of the influence of a liquid conducting film inserted in the gap between
the accelerated metal projectile and the rails in a railgun accelerator on the distribution of
the current density and the magnetic induction in the rails and the projectile. The film is assumed
to be fairly thin, so that the variation of the magnetic induction across the film can be
neglected. The problem is considered in a plane geometry. Approximate expressions are derived
for the thickness of the velocity skin layer as a function of the thickness and conductivity
of the film. The equations for diffusion of the magnetic field in the rails and in the projectile are
integrated numerically. It is shown that the presence of a liquid conducting film can
significantly suppress the velocity skin effect. Nevertheless, even when fairly thick films of fairly
high resistivity are used, the nonuniformity of the electric current density distribution in the
projectile still remains very high for the magnetic Reynolds numbers of practical interest. ©1999
American Institute of Physics.@S1063-7842~99!02207-2#
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INTRODUCTION

As we are well aware, velocities significantly in exce
of 1–2 km/s have yet to be achieved in electromagnetic
celerators with a metal projectile~armature!. The reason for
this is that at these velocities the metal contact between
rails and the projectile disappears and is replaced by an
discharge, with the result that most of the electric curr
energy is not expended in accelerating the body but in s
taining the electric arc and eroding the contacting surfac
According to present thinking there are two main reasons
this transition. The first involves the onset of the veloc
skin effect,1–18and the second is related to the characteris
of current flow across the contact interface between the
conductors and to wear of the sliding contact.5,6,19–23In the
velocity skin effect, when an accelerated body moves at h
velocities, the magnetic field and current flowing through
are concentrated in its rear section, causing an abrup
crease in the Joule heat release in the contact zone and g
rise to a melting wave which propagates forward over
surface of the accelerated body in the direction of moti
When this wave reaches the front edge of the moving bo
the metal contact between the body and the rails disapp
and is replaced by an arc discharge.

Various approaches have been put forward to desc
the velocity skin effect. Only a few of these~Refs. 14 and 15,
for instance! are based on direct numerical integration of t
equations for diffusion of the magnetic field and heat trans
in the rails and the moving body and in most cases, appr
mate semianalytical models were used, based on variou
sumptions. Calculations of the velocity at which the me
contact goes over to arcing made using various models
values of 0.5–2 km/s, depending on the projectile design
the conductivity of the rails. It was shown in Refs. 4,11,1
and 17 that when the projectile is made of a high-resistiv
8311063-7842/99/44(7)/8/$15.00
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material, the transition velocities in the contact zone m
exceed 2.5 km/s. The transition velocity can also be
creased by depositing a high-resistivity layer on the surf
of the rails.7,9,15However, Glinovet al.7 noted that the resis
tivity of this layer must be between three and four orders
magnitude higher than that of copper.

In studies of the velocity skin effect it is usually assum
that the contact between the rails and the moving body
ideal. However, the real pattern of current flow across
interface of a sliding contact between solid surfaces is
from ideal, and this is the second reason for the transition
the plasma regime. In addition, as a result of the roughn
of the contact surfaces, current flows across the contact
over the entire nominal contact zone but in so-called alp
spots, where the two surfaces approach each other at
tances comparable to the interatomic distance and the ele
current lines become concentrated. At high current dens
the alpha spots will undergo heating and melt, which m
impair the contact and cause a transition to arcing. In p
ticular, Basilevski� et al.6 showed on the basis of experime
tal data that at least up to velocities of 1850 m/s, this tran
tion is almost independent of velocity and only depends
the nominal contact area, the contact compression force,
the electric action (* I 2dt).

Another factor influencing the quality of the contact
frictional heating and wear of the contacts. The influence
frictional heating in railgun accelerators was studied in Re
5, 6, and 22–24. At high sliding velocities the contact s
faces of the bodies will melt, giving rise to a molten film25–27

and additional wear of the contact surfaces. Estimates s
that melting of the contact boundary of a projectile due
frictional heating may begin at approximately the same
locities as does the melting due to Ohmic heating as a re
of the velocity skin effect.
© 1999 American Institute of Physics
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Consequently, as our analysis shows, in existing des
of electromagnetic accelerators the motion of bodies at h
velocities is limited by the simultaneous action of the tw
factors mentioned: 1! the velocity skin effect, and 2! local
damage to the contact surface as a result of the flow of e
tric current and frictional heating. The velocity skin effect
a fundamental constraint arising from the principle of t
electromagnetic acceleration of bodies, and special proje
designs must be employed required to overcome this. H
ever, we can hardly expect any significant success in
direction if we do not solve the second problem and ens
good electrical contact between the projectile and the ra
Moreover, we can consider that the constraint of the velo
skin effect only begins to become the limiting factor in th
case.

A substantial improvement in the electrical contact b
tween the rails and the metal projectile can be achieved
specifically inserting a liquid conducting lubricant in the g
between them. First, this eliminates the problem of curr
concentration in alpha spots, and second, the local frictio
heating at the rails–armature interface can be reduced ap
ciably because dry friction is replaced by viscous dissipati
At first glance, it seemed that the molten film formed as
result of the melting of the contacting surfaces during mot
of the projectile in the railgun could be used as the liqu
film. However, it would be almost impossible to ensure
stable state and maintain a continuous liquid film betwe
the projectile and the rails by melting the projectile. In ad
tion, this film could not suppress the velocity skin effe
because its resistivity would differ very little from that of th
projectile. Therefore, in order to achieve a real effect fro
the use of lubricant, a foreign, electrically conducting liqu
must be intentionally inserted in the gap from outside. Qu
obviously, the presence of a liquid film may have negative
well as positive influences. In particular, the high electri
resistance of the films leads to additional Joule heating.

Bearing these factors in mind, we attempt to make
detailed theoretical and numerical study of the action o
liquid conducting lubricant on various aspects on the ac
eration of a metal projectile. The following problems we
considered: the influence of the liquid film on the distributi
of the magnetic field and electric current in the armature
rails, the flow of lubricant in the gap between the rails a
the accelerated body, and the influence of the film on hea
of the accelerated body. The first problem is considered
the present paper and the others will be examined in our
two studies of this problem. The specific method of insert
the lubricant in the gap between the rails and the projectil
not discussed. In principle, this can either be accomplis
by depositing a suitable layer on the surface of the rails or
supplying lubricant from the projectile. Here we simply a
sume that the rails and the metal projectile are separated
gap filled with a liquid conducting lubricant. All these prob
lems are considered in a plane geometry.

FORMULATION OF THE PROBLEM

In order to simplify the problem we confine ourselves
the simplest projectile shape, i.e., a rectangle. The proble
ns
h
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shown schematically in Fig. 1. The coordinate system is
lated to the projectile such that the rails move at the veloc
U in the positive direction of thex axis. Since the problem is
planar, only they component of the magnetic induction
nonzero, its distribution in the armature and the rails be
given by the following equations and boundary condition
in the armature

]Ba

]t
5

]

]x S Da

]Ba

]x D1
]

]z S Da

]Ba

]x D , ~1a!

for x50 Ba50, for x5 l Ba5B0 ,

for z5d
]Ba

]z
50, ~1b!

in the rails

]Br

]t
1U

]Br

]x
5

]

]x S Dr

]Br

]x D1
]

]z S Dr

]Br

]z D , ~2a!

for x50 Br50, for z52` Br50,

for z50 and x> l Br5B0 , ~2b!

whereB0 is the magnetic induction in the space between
rails behind the accelerated body, which in this geome
depends only on time,d is half the distance between the rail
l is the projectile length,D is the diffusion coefficient of the
magnetic field, and the subscriptsa and r refer to the arma-
ture ~projectile! and the rails, respectively.

Problems~1! and~2! must be supplemented by two cou
pling conditions at the rails–armature contact line~i.e., for
z50 and 0<x< l ), taking into account that a liquid conduc
ing film is present in the gap between the rails and the ar
ture. When deriving these conditions, we assumed that
film is so thin that any change in the magnetic induction o
the film thickness can be neglected. This assumption hold
long as the thickness of the velocity skin layer is subst
tially greater than the thickness of the liquid film. To a fir
approximation, this last condition may be written in the for

FIG. 1. Schematic of railgun accelerator~a! and gap between rails and
projectile ~b!: 1 — projectile ~armature!, 2 — rails, and3 — liquid film.
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h!Da
2/DrU, whereh is the film thickness. Hence, the firs

condition at the rails–accelerated body interface has the f

for z50 and 0<x< l Br5Ba . ~3!

We adopt the usual procedure to obtain the second c
dition. We integrate the Maxwell equation

]B

]t
52¹3E

over the regionABCD in Fig. 2. Since

E
ABCD

~¹3E!ds52 R r
ABCD

~Ezdz1Exdx!

then, bearing in mind that the tangential component of
electric field at the rails–film and film–armature interfaces
continuous and that the integral*Ezdz over the sectionCD
~film–armature interface! is nonzero and given by
2Ez,a„h(xA)2h(xB)…, we obtain

2~Ex,r2Ex,a!dx1~h~xA!2h~xB!!Ez,a

1E
0

h(xB)

Ez, fdz2E
0

h(xA)

Ez, fdz52S h
]B

]t
2B

]h

]t Ddx.

~4!

However, we find

Ex,r5
j x,r

s r
52Dr

]Br

]z
, Ez,a5

j x,a

sa
52Da

]Ba

]z
,

Ez,a5
j z,a

sa
5Da

]Ba

]x
,

FIG. 2. Distribution of thex and z components of the electric curren
density at the rails–projectile interface without a liquid film~variant 1A!: Re
5 1000 ~solid curves!, 300 ~dashed curves!, 100 ~dot-dash curves!, and 30
~dotted curves!.
m

n-

e
s

Ez, f5
j z, f

s f
52uB5D f

]B

]x
2uB, ~5!

where the subscriptf refers to the film,s is the conductivity,
D51/m0s, andu is the flow rate of the liquid in the film.

Substituting Eqs.~5! into ~4!, dividing bydx, and letting
the differenceuxA2xBu tend to zero, we have

Dr

]Br

]z
2Da

]Ba

]z
5

]

]x S D fh
]Ba

]x D2Q
]Ba

]x
2Da

]h

]x

]Ba

]x

2h
]Ba

]t
1Ba

]h

]t
. ~6!

On the right-hand side of expression~6! the magnetic
induction in the film will be replaced by the magnetic indu
tion in the armature, since it is assumed that the chang
the induction over the film thickness is small. The last tw
terms in Eq.~6! can be neglected, since the time taken
diffusion of the magnetic field in the film is substantial
shorter that the characteristic time of variation of the ma
netic field under the influence of external factors such as
acceleration of the armature. The third terms on the rig
hand side of expression~6! can also be neglected, since it
assumed that the resistance of the film is much higher t
that of the rails and the armature. If this were not the ca
the influence of the film would be utterly insignificant.

Thus, the second condition at the rails–armature bou
ary finally has the form

for z50 and 0<x< l

Dr

]Br

]z
2Da

]Ba

]z
5

]

]x S D fh
]Ba

]x D2Q
]Ba

]x
, ~7!

where

Q~x!5E
0

h

u dz

is the liquid flow rate in the film.
Condition ~7! differs from the conditions normally use

at the rails–armature interface because of the second term
the right-hand side, which takes into account the veloc
distribution in the cross section of the film.

Since the acceleration of the armature is fairly high, t
problem~1!–~3!, and ~7! is generally nonsteady-state. Ne
ertheless, for our calculations of the magnetic field and e
tric current distribution we neglected the time derivative
assuming the problem to be quasisteady. This assump
holds if the characteristic magnetic field diffusion timetdiff is
substantially shorter than the characteristic timetmov required
for the velocity of the accelerated body to change. Estima
show that this condition is fairly well satisfied for the rai
but is not generally satisfied in the armature. We have u
this approximation anyway, for the following reasons. Fir
the main idea of the calculations was to study the influe
of the liquid film on the motion of the body in the railgu
accelerator. The use of a quasisteady approximation does
prevent us from addressing this problem, since it does
distort the character of this influence. Second, the qu
steady approach drastically simplifies the numerical solut
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of the problem. In fact, in order to obtain a correct descr
tion of the velocity skin layer we need to use meshes wh
become extremely dense toward the rear edge of the a
ture. Thus, in the nonsteady-state approach it would be
essary to use nonsteady-state meshes whose density
creased as the problem is solved. Third and last, in the
majority of studies dealing with the velocity skin effect, th
velocity of the body has been assumed to be constant,
nonsteady effects have also been neglected. Therefore, i
next Section we consider the steady-state version of prob
~1! and ~2!.

CONVERSION TO DIMENSIONLESS FORM

In Eqs. ~1! and ~2! and in the boundary conditions~3!
and ~7!, we transform to dimensionless variables~the tilde
will be omitted subsequently!

B̃5B/B0 , D̃5D/D* , h̃5h/h0 , x̃x5x/ l ,

j̃5 j
l

m0B0
,

in the armature

z̃5z/ l , j̃ x52
]B̃

] z̃
, j̃ z5

]B̃

] x̃
,

and in the rails

z̃5zARe/l , j̃ x52ARe
]B̃

] z̃
, j̃ z5

]B̃

] x̃
, ~8!

where Re is the magnetic Reynolds number Re5Ul /D* , h0

is the height of the gap forx50, andD* is the typical value
of the magnetic field diffusion coefficient.

As a result, we have in the armature

]

]x S Da

]Ba

]x D1
]

]z S Da

]Ba

]z D50, ~9a!

for x50 Ba50, for x51 Ba51,

for z5d
]Ba

]z
50, ~9b!

in the rails

]Br

]x
5

1

Re

]

]x S Dr

]Br

]x D1
]

]z S Dr

]Br

]z D , ~10a!

for x50 Br50, for z52` Br50,

for z50 and x>1 Br51, ~10b!

at the interface between the rails and the armature~for
z50 and 0<x<1)

Br5Ba and AReDr

]Br

]z
2Da

]Ba

]z

5
]

]x S «1D fh
]Ba

]x D2«2

]Ba

]x
, ~11!

where«15h0 / l and«25Q/D* .
-
h
a-
c-
in-
st

nd
the
m

It should be noted that Eq.~11! not only describes the
case when the rails and the armature are separated by a
film but also cases where solid thin coatings are applied
the rails or the accelerated body. In the first case we mus
«25«1 Re and in the second«250. For a liquid film the
flow rate depends on the velocity and acceleration of
moving body, the shape of the gap between the rails and
armature, the viscosity of the lubricant, and the magne
pressure. However, for fairly thin films of the order of a fe
microns thick the velocity profile in the cross section of t
films is close to linear. In this case, a good approximation
«2 may be the expression«25«1 Re/2, which is obtained if
the liquid flow rate in the film is taken to beQ5Uh/2. It
should be noted that for lubricants whose specific gravity
substantially higher than that of the accelerated body,
expression underestimates the flow rate and therefore o
estimates the capacity of the film to suppress the velo
skin effect.

In order to solve Eq.~10A! we generally require anothe
boundary condition forx→`. However, since for large mag
netic Reynolds numbers this equation has the character
features of a boundary-layer equation, this condition is
fact unnecessary for its numerical solution.

METHOD OF SOLUTION

The main feature of the problem~9!–~11! is that the
solution of the Laplace equation~9! must be joined with the
solution of Eq. ~10!, which contains the convective term
This has the result that at the pointx51, z50 a singularity
appears in the solution and a velocity skin layer form
around this point. For accurate calculations of this layer
shall seek a solution of the problem~10! in the form
Br5B11B2, where the first termB1 is determined by the
boundary-layer equation

]B1

]x
5

]

]z S Dr

]B1

]z D ~12a!

with the boundary conditions

for x50 B150, for z52` B150,

for z50 and x>1 B151, ~12b!

and the second termB2 is given by

]B2

]x
5

1

Re

]

]x S Dr

]B2

]x D1
]

]z S Dr

]B2

]z D
1

1

Re

]

]x S Dr

]B1

]x D ~13a!

with the boundary conditions

for x50 B250, for z52` B250,

for z50 B250. ~13b!

In this case, the following conditions are satisfied at t
rails–armature interfacez50 and 0<x<1:
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B15Ba and DrAReS ]B1

]z
1

]B2

]z D2Da

]Ba

]z

5
]

]x S «1D fh
]Ba

]x D2«2

]Ba

]x
. ~13c!

Problem ~12! describes a boundary-layer solution, a
problem ~13! describes a correction to the boundary-lay
solution near the pointx51, z50, where the velocity skin
layer forms, since the rate of change of the magnetic fi
near this point is of the same order along thex andz coor-
dinates, and consequently, the second derivative with res
to x cannot be neglected near this point. Hence, Eqs.~9!,
~12!, and~13! determine the magnetic field distribution in th
rails and the moving body.

If the coefficient of magnetic field diffusion in the rails
assumed to be constant, we can write the following exp
sion for the solution of problem~12!:

B15E
0

x ]Ba

]x U
z50

erfc S 2
z

2ADr~x2x8!
D dx8

for 0<x<1, z<0,

B15E
0

1 ]Ba

]x U
z50

erfc S 2
z

2ADr~x2x8!
D dx8

for x.1, z<0. ~14!

Condition ~13C! then has the form

ADr Re S 1

Ap
E

0

x ]Ba

]x U
z50

dx8

Ax2x8
1

]B2

]z D 2Da

]Ba

]z

5
]

]x S «1D fh
]Ba

]x D2«2

]Ba

]x
. ~15!

If we neglect the correctionB2, calculation of the mag-
netic field in the armature can be reduced to solving
problem~9! with the condition~15! at z50 ~Ref. 2!.

Equations~9!, ~12!, and~13! or ~9!, ~14!, and~15! were
integrated numerically by a finite-difference method. For
curate calculations of the velocity skin effect we used a n
uniform mesh with increasing density toward the bounda
x51 andz50. The mesh-point coordinates were calcula
using formulas from Ref. 28. The minimum step was
lected in the range 0.0001–0.0004 with 21 or 41 mesh po
per unit length.

QUALITATIVE ANALYSIS OF THE INFLUENCE OF THE
LIQUID FILM IN THE VELOCITY SKIN LAYER

Before analyzing the results of the numerical calcu
tions, we shall assess the influence of the liquid film on
velocity skin layer using Eq.~15!. We taked to be the char-
acteristic scale of variation of the magnetic field in the v
locity skin layer in the armature~this dimension is the sam
along thex andy axes!. Then, assuming that the film thick
ness is constant (h51) and neglecting the correctionB2 in
Eq. ~15!, we obtain
r

ld

ect

s-

e

-
-
s
d
-
ts

-
e

-

ADr Re

Apd
2

Da

d
5

«1D f

d2
2

«2

d
. ~16a!

The left-hand side of Eq.~16A! vanishes for

d15
p

Re

Da
2

Dr
. ~16b!

This value ofd determines the thickness of the veloci
skin layer in the absence of a liquid film.2,10 The right-hand
side of Eq.~16A! vanishes for

d25«1D f /«252D f /Re. ~16c!

This implies, first, that the liquid film will increase th
thickness of the velocity skin layer provided thatpDa

2/Dr

<2D f . Second, it is easy to see that as the film thickn
increases, i.e., as«1 increases, the thickness of the veloci
skin layer tends towardd2. Let us compare this result with
the case where the resistive layer is located on the surfac
the armature. In this case, as has been noted, we find«2

50. Then, for fairly large«1 for which «1@Dad/D f , we
obtain the well-known expression10

d5S pD f
2«1

2

D1 ReD 1/3

.

Thus, from the point of view of increasing the thickne
of the velocity skin layer, a liquid layer is less effective tha
resistive coatings deposited on the surface of the armatu

The limiting value of the velocity skin-layer thicknes
was obtained assuming thatD f is fixed and the film thickness
increases. If the film thickness is fixed andD f tends to in-
finity, it follows from Eq. ~15! that the magnetic field distri-
bution in the armature will tend toward linear,j z→1, and
j x→0. However, the magnetic field distribution in the ra
will tend toward expression~14!. Consequently, thex com-
ponent of the electric field density in the rails atz50 will be
j x52Ax Re/pD and can thus be fairly large. In this case, t
main Joule dissipation will therefore be concentrated in
rails and not in the armature. It is also clear that each va
of Re will correspond to a particular value ofD f for which
this limiting magnetic field distribution is nearly attaine
This value ofD f can be estimated using expression~16!,
with d set equal to 1 or by seeking a solution as a serie
reciprocal powers of«D f . As a result, we have

«1D f.
8

3Ap
ADr Re1

«1

2
Re.

Thus if we takeD* 5Da , we find, forDr50.7 and Re
51000 that the contact resistance of the film is forty tim
the resistance of the metal projectile~in terms of its height!
per unit area.

RESULTS OF NUMERICAL CALCULATIONS

As we know, the conductivity of metals depends app
ciably on temperature. However, in order to make the m
netic field calculations independent of the temperature dis
bution and thereby significantly simplify the problem, th
temperature dependence of the diffusion coefficients was
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glected in the present study. The projectile was assume
be aluminum and the rails copper. The diffusion coefficie
of aluminum and copper were taken to be their values
600 °C, i.e., 0.049 m2/s for aluminum and 0.035 m2/s for
copper. The coefficient of magnetic field diffusion in th
rails used wasD* . The diffusion coefficients in the rails an
the liquid film were always assumed to be constant, while
diffusion coefficient in the armature was assumed to
piecewise-constant so that we could estimate the influenc
resistive inserts in the armature. Thus, the dimensionless
fusion coefficients in the rails and the armature areDr51
and Da51.4, and a hypothetical diffusion coefficient of 1
was used for the resistive inserts in the armature. Three ty
of armature were considered: uniform aluminum withDa

51.4 ~A!, having a resistive layer~B!

Da5H 1.4, at d/2.z.0.01,

14 at z,0.01;

and having a resistive insert in the rear part of the arma
~C!

Da5H 1.4, at x,12A3z,

14, at x.12A3z.

This last variant simulates a chevron armature for wh
the rear walls form an angle of 30° with the surface of t
rails. In all three variants the armature was assumed to
square. The film material was liquid indium with a diffusio
coefficient of 0.253 m2/s ~dimensionless valueD f57.2).
However, we also used hypothetical values of the film dif
sion coefficient substantially higher than this value and
related to any specific material. All the films considered
listed in Table I.

TABLE I.

Variant Film thickness«1 D f

Dependence of
film thickness onx

1 0
2 0.0001 7.2 No
3 0.001 7.2 -‘‘-
4 0.001 30 -’’-
5 0.001 100 -‘‘-
6 0.01 100 -’’-

TABLE II. Maximum z component of current density and thickness
velocity skin layer for a uniform armature.

Reynolds number

Variant 30 100 300 1000

j z,max dVSL j z,max dVSL j z,max dVSL j z,max dVSL

1A 30.9 0.114 64.7 0.046 121 0.019 245 0.006
2A 28.1 0.115 56.5 0.046 108 0.019 219 0.006
3A 17.6 0.116 34.3 0.049 64.7 0.021 131 0.00
4A 20.3 0.058 35.4 0.029 65.2 0.014
5A 11.9 0.08 19.3 0.046 33.1 0.024
6A 3.9 0.19 6.1 0.124 11.3 0.066
to
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e
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The calculations were made for four magnetic Reyno
numbers 30, 100, 300, and 1000. If the projectile length
0.01 m, these Reynolds numbers correspond to projectile
locities of 105, 350, 1050, and 350 m/s. Note that in all the
variants the constant resistance of the film was substant
lower than the value at which the limiting magnetic fie
distribution is established in the armature and the rails. T
parameters were used for the nonuniformity characteristic
the electric current density distribution: the maximumz com-
ponent of the currentj z,max and the extent of that part of th
rails–armature interfacedVSL across which 50% of the elec
tric current flows. This last value may be taken as an estim
of the velocity skin-layer thickness. Table II shows that
the absence of a film this value is almost the same as
estimated thickness of the velocity skin-layer~16B! for mag-
netic Reynolds numbers of 300 and 1000.

In this geometry the maximumz component of the cur-
rent always occurs at the point (x51, z50). However, it
was found that the value ofj z at this point depends strongl
on the mesh step. It is possible that in our particular mo
this value is in general infinite. At least, we were unable
determine this with a sufficient degree of reliability for an
reasonable crowding of the mesh. Thus, forj z,max we took
the value of j z at the rails–armature interface at the po
x50.9997. On the one hand, this point is fairly close
x51 and in this range of parameters is always inside
velocity skin layer and on the other, the current at this po
can be calculated with a sufficient degree of reliability. O
viously this choice ofj z,max is somewhat arbitrary but it can
nevertheless effectively demonstrate the influence of the
thickness on the electric current density distribution.

The calculations have shown that near the rear edg
the armaturej z is substantially higher than thex component
of the electric current density in all variants except the arm
ture with a resistive insert~variant C!. In this last case, since
the diffusion coefficient in the armature undergoes a ju

TABLE III. Maximum z component of current density and thickness
velocity skin layer for an armature with a resistive layer~Re 5 1000!.

Variant j z,max dVSL

3B 33.1 0.039
4B 26.5 0.041
5B 19.5 0.047
6B 10.0 0.074

TABLE IV. Maximum z component of the current density and thickness
velocity skin layer for an armature with a resistive insert in the rear sect

Reynolds numbers

Variant 100 1000

j z,max dVSL j z,max dVSL

1C 22.4 0.18
3C 8.9 0.18 44.5 0.039
4C 6.8 0.18 30.5 0.043
5C 5.3 0.18 19.6 0.052
6C 2.8 0.27 9.1 0.087
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FIG. 3. Distribution of thex and z components of the
electric current density at the rails–armature interfa
with a liquid film ~variant 4A!: «150.001, D f530;
Re5 1000~solid curves!, 300~dashed curves!, and 100
~dot-dash curves!.
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the
along an interface inclined at an angle of 30° to the surf
of the rails, thex component of the current becomes ve
appreciable and may even exceed thez component. Thus, for
this variant j z,max is not a sufficiently representative chara
teristic of the nonuniformity of the current density distrib
tion. The values ofj z,max anddVSL for the different variants
eare given in Tables II–IV, and Figs. 3 and 4 show the d
tributions of thex and z components of the electric curren
density at the rails–armature contact interface. Thex compo-
nent of the electric current density shown in these figu
was calculated from the armature side. However, thex com-
ponent of the current density at the contact interface on
ce

FIG. 4. Distribution of thex and z components of the
electric current density at the rails–armature interfa
with a liquid film ~variant 6A!: «150.01, D f5100;
Re5 1000~solid curves!, 300~dashed curves!, and 100
~dot-dash curves!.
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rails side is much greater. In the absence of any film this m
be because copper has a higher conductivity than alumin
The presence of a resistive film increases this discontin
still further. In the limit that the contact resistance of the fi
tends to infinity, as we showed in the previous section,j x

will tend toward zero in the armature and toward 2Ax Re/p
in the rails. This is, as it were, in compensation for the
duction in the velocity skin effect. Table V gives the max
mumx component of the current densityj z,max in the rails at
the interface with the projectile. It can be seen that as
contact resistance of the film increases, the maximumx com-
ponent of the current density in the rails initially increases
a result of the influence of the film and then begins to
crease as a result of a general reduction in the current de
caused by the suppression of the velocity skin effect.

These results allow us to draw the following concl
sions.

In the absence of a film, the maximum current dens
increases substantially more slowly with increasing magn
Reynolds number than the directly proportional relations
predicted from formula~16A! for the thickness of the veloc
ity skin layer.

The influence of the film is primarily observed as a r
duction in the maximum current density. Moreover, the sk
layer thickness~the value ofdVSL) increases far more slowly
as the contact resistance of the film increases.

A combination of a liquid film and resistive inserts in th
armature can significantly suppress the velocity skin effe
Nevertheless, even when fairly thick films are used with
fairly high resistivity, the nonuniformity of the electric cur
rent density distribution in the armature for the Reyno
numbers of practical interest is still very high. For instan
in variant 6A the thickness of the velocity skin layer is on
7% of the armature length, although the contact resistanc
the film is 1.5 times the resistance of the armature~in terms

TABLE V. Maximum x component of the current density in the rails at t
interface with the armature.

Variant Re5 300 Re5 100

1A 92.3 215
2A 112 258
3A 115 269
4A 94.2 215
5A 73.2 164
6A 37.7 102
y
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of its height! per unit length. In this case, for a current
300 kA and a projectile size of 0.01 m the voltage dr
across the liquid film will be 9 V. In order to completel
eliminate the velocity skin effect at high armature velociti
the contact resistance of the film should be ten times
resistance of the projectile. In this case, the voltage d
across the film will be tens of volts.

This work was partly supported by DERA~Contract No.
SMC/4C2061!.
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Characteristics of a thin-film sensor for a scanning SQUID microscope
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A description is given of the design, fabrication technology, and characteristics of a sensor for a
scanning magnetic microscope using a thin-film dc SQUID with Nb/Al2O3/Nb shunted
Josephson tunnel junctions. It is shown that at a sample temperature of 4.2 K the spatial resolution
of this detector is 10mm with a field resolution of 70 pT/Hz1/2. © 1999 American Institute
of Physics.@S1063-7842~99!02307-7#
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INTRODUCTION

Scanning magnetic microscopes using thin-film
SQUIDS with Nb/Al2O3/Nb shunted Josephson tunnel jun
tions are being increasingly widely used in unique phys
experiments~see Refs. 1 and 2, for example!. The spatial
resolutiondx of these devices, currently 1–2mm, is deter-
mined by the larger of two quantities: first, the distanceZ
between the object and the pick-up coil, and second,
linear dimensionD of the pick-up coil. The resolution for the
recorded component of the magnetic inductiondBz is deter-
mined by the spectral density of the equivalent noise fl
SFn in the measuring frequency band and is inversely p
portional to the areaA of the pick-up coil.

Since the signal and noise characteristics of the senso
a scanning magnetic microscope depend on the values
relationships between the pick-up coil inductanceLp , the
inductance of the main part of the SQUID quantization c
cuit containing the Josephson junctionsLs , and the induc-
tance of the connecting microstriplineLstr, and also on vari-
ous other parameters, the problem of designing
optimizing the multilayer thin-film structure of a SQUID
sensor to give selected values ofdx anddBx is of separate
interest.

Here we describe the design, fabrication technology,
characteristics of the sensor for a scanning SQUID mic
scope designed to operate at 4.2 K with a spatial resolutio
the order of 10mm and a field resolution of 70 pT/Hz1/2.

DESCRIPTION OF THE SENSOR OF THE SCANNING SQUID
MICROSCOPE

A schematic of the sensor, which is similar to that us
in Refs. 1 and 3, is shown in Fig. 1a. In this system a pick
coil LP of the required size is positioned some distance fr
the main SQUID circuit containing the Josephson junctio
JJ and is connected to it by a low-inductance strip structu
This design can minimize the distortion of the magnetic fi
of the sample by the superconducting parts of the SQU
integrated microcircuit.

In addition to Josephson junctionsJJ, the main part of
the SQUID contains shunting resistorsRS, a feedback coil, a
damping resistorRD, and symmetric power input resisto
RB. Figure 1b shows a diagram of the integrated SQU
8391063-7842/99/44(7)/5/$15.00
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microscope sensor. The sensor is fabricated by multila
technology and has two layers of main superconducting m
allization with a minimum reproducible size of 2.5mm, and
3.533.5mm planar Nb/Al2O3/Nb Josephson junctions. Th
sensor is mounted on a 337 mm rectangular silicon sub
strate.

A particular feature of the system is the two resistorsRB
designed for a symmetric input current supply. This meth
of coupling in the supply current allows the pick-up coil
operate with almost zero dc current and can substanti
reduce the back-effect influence of the SQUID on the obj
under study.

In order to achieve a spatial resolution for the SQU
microscope close to the effective size of the pick-up coil,
distance between the coil and the surface of the sample m
be of the order of or smaller than the size of this coil. For t
purpose the silicon substrate of the chip with the SQU
sensor was tapered near the pick-up coil~Fig. 1b!. In the
scanning microscope the chip with the sensor is attached
spring-loaded cantilever at a small angle to the surface of
sample and the pointed corner of the chip glides directly o
the surface~Fig. 1c!.

During operation of the scanning microscope a magn
flux considerably greater than the flux being measured m
be trapped~or frozen during cooling! in the inductive circuit
of the SQUID sensor. A local heaterRTS is provided to
remove it from the SQUID circuit without extracting th
entire device from the liquid helium. The heater is a resist
‘‘snake’’positioned above part of the SQUID circuit. Whe
current flows through the heater, this part of the circuit
locally overheated above the critical temperature and lo
its superconducting properties, thereby releasing the trap
magnetic flux from the circuit.

FABRICATION TECHNOLOGY

The sensor microcircuit is fabricated on a$100%-oriented
single-crystal unoxidized silicon substrate and includes
following layers: 1! an Al2O3 insulating sublayer betwee
the substrate and the auxiliary superconducting metallizat
2! auxiliary superconducting Nb metallization, 3! the lower
Nb electrode of the Nb/AlOx/Nb triple layer, 4! the upper Nb
electrode of the triple layer, 5! two layers of Al2O3 insula-
© 1999 American Institute of Physics
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FIG. 1. Sensor for SQUID microscope: a — equivalent circuit
diagram of sensor,1 — SQUID current in,2 — SQUID volt-
age out,3 — common output,4 — outputs of SQUID feedback
coils, 5 — outputs of local heater; b — schematic of sensor
LP — pick-up coil ~40340mm variant!, SQ — main part of
SQUID with Josephson junctionsJJ, resistorsRSandRD, and
feedback coil,RTS— local heater resistor,RD — symmetric
input power resistors,CB — edge of sensor substrate; the co
tact areas are numbered as in Fig. 1a; c — schematic configu-
ration of sensor and sample during scanning:1 — sensor,2 —
surface of sample~view from surface of sample!.
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tion between the lower electrode and the main supercond
ing metallization, 6! a layer of Ti resistors, 7! the main su-
perconducting Nb metallization, and 8! a layer of Ti/Au
contact pads.

The x-ray amorphous Al2O3 sublayer plays the role of a
barrier layer which protects the substrate during the sub
quent etching of the layer of auxiliary metallization. Th
aluminum oxide was deposited by rf magnetron sputtering
a mixture of Ar and O2 using a Leybold AG Z-400 system
The Ar pressure was 1 Pa and the oxygen pressure 0.2
The thickness of the deposited insulator was 150 nm. Lift-
photolithography was then used to form windows in the
blayer to provide electrical contact between the layer of a
iliary metallization and the silicon substrate, which is r
quired for the subsequent anodization of the lower electro

The auxiliary superconducting metallization, also us
for the electrical connections between the lower electr
and other elements of the circuit, was a 200 nm thick laye
Nb. The Nb was deposited by dc magnetron sputtering a
ct-
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n

Pa.
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Ar pressure of 131022 mbar and 2.5 A discharge curren
using a Leybold AG L-560 system. The rate of depositi
was 140 nm per minute. During pump-down prior to t
deposition of the Nb, a Meissner trap was cooled with liqu
nitrogen. This resulted in a residual pressure of the orde
231027 mbar in the chamber. The substrates were attac
to a water-cooled holder, and to improve the thermal con
they were stuck on with vacuum grease.

After the Nb film had been deposited, a mask w
formed on it by photolithography for pattern etching. Th
was carried out by reactive ion etching in SF6 at 20
norm.cm3/s at 10 Pa pressure and 50 W discharge power.
end of etching was determined from the change in the co
ficient of reflection of laser radiation from the surface of t
film.

As we know, in order to obtain high-quality tunnel junc
tions with niobium electrodes, we need to fabricatein situ a
sequence comprising a lower niobium electrode, a thin a
minum layer which is deposited thermally and then oxidiz
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to form a tunnel barrier, and finally the upper niobium ele
trode. We deposited a lower niobium electrode 200 nm th
~using the same deposition parameters as for the laye
auxiliary superconducting metallization!. Then, after a
30 min pause to stabilize the substrate temperature, we
posited 6 nm of aluminum by rf magnetron sputtering at
Ar pressure of 131022 mbar and 30 W power. The rate o
deposition under these conditions was of the order of 9
min. As a result of the specific growth mechanism, the a
minum film smooths out growth roughness on the niobi
surface and thereby creates conditions for fabricating a
mogeneous layer of thermal oxide which functions as
tunnel barrier. We carried out oxidation in pure oxygen a
pressure of 4 mbar for 25 min and then deposited a 100
thick niobium upper electrode.

The pattern in the lower electrode was produced by
active ion etching carried out in three stages. First in an6
plasma~20 norm.cm3/s, 10 Pa, 50 W! we etched the uppe
niobium layer as far as the barrier layer, at which the etch
naturally terminated. The pressure was then reduced to
and the power increased to 100 W, which allowed us to e
through the barrier layer and the layer of residual alumin
~the point at which the etching of these layers ended w
determined using a laser interferometer!. The pressure and
power were then returned to their initial levels and the
maining lower electrode was etched.

In the upper electrode of the triple layer we then form
a pattern for Josephson junctions in a ‘‘column’’ 0.1mm
high and 3.533.5mm in cross section. This operation wa
performed by reactive ion etching in an SF6 plasma ~20
norm.cm3/s, 10 Pa, 50 W! until a natural stop was reached
the barrier layer.

We then fabricated the insulation layers between
lower electrode and the main superconducting metallizat
The first layer of insulation in fact consists of two layers
layer of anodic niobium oxide and a deposited Al2O3 layer.
This was formed using the same photoresist mask as
used to etch the upper electrode~self-matched process!. The
side surfaces of the Josephson junctions and the open su
of the lower triple-layer electrode were liquid anodiz
through the photomask left from the previous etching ope
tion at a voltage up to 20 V with a rate of rise of 1 V/s. Th
same photoresist mask was then used to deposit the x
amorphous Al2O3. The thickness of the deposited insulat
was 200 nm. A negative mask was then prepared for
second layer of insulation, which differed from the first
reduce the probability of shorting through the two layers
insulation, and a second Al2O3 layer 200 nm thick was de
posited through this negative mask.

The shunting, load, and damping resistors for the circ
were fabricated by rf magnetron sputtering of titaniu
through a negative photoresist mask. The titanium was
posited using a Leybold AG Z-400 system at an Ar press
of 1 Pa. The thickness of the deposited metal was 130
and the resultant resistance was 1V/h.

The main superconducting metallization connecting
the components of the sensor circuit electrically was a 2
nm-thick layer of Nb deposited by the lift-off technique u
ing a negative photomask.
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The contact areas required for the connections to
terminals of the measuring system were formed by depo
ing a 50-nm-thick titanium sublayer via a negative pho
mask to achieve the required adhesion of a 100-nm-th
gold layer which was deposited next.

RESULTS OF MEASUREMENTS AND ELECTRODYNAMIC
MODEL

Table I gives the main parameters of two sensors stud
with different sizes of pick-up coils. HereD is the size of the
pick-up coil, I C , RN , VC , andLS are the maximum critical
current, the normal resistance, the characteristic voltage,
the inductance of the SQUID circuit,DV is the percent
modulation of the field–voltage characteristic of the SQUI
andRS /RD is the ratio of the resistances of the shunting a
damping resistors. The experimental current–voltage
field–voltage characteristics of these sensors are plotte
Fig. 2. These clearly show characteristic features in the fo
of steps at different voltages, denoted by1–3 in Fig. 2a.

We know that these steps are associated with the ex
tion of Josephson oscillations at a frequency correspond
to a particular voltage, in resonance with oscillations in t
SQUID microstrip structures which comprise high-Q ca
ties. The appearance of these oscillations leads to var
undesirable consequences and particularly an appreciabl
crease in the SQUID noise level near these steps.

In practical devices these resonances are partially
completely eliminated by introducing and selecting damp
resistors. A comparison of the sensor characteristics sh
that a reduction in the resistance of the shunting and da
ing resistors in sensor No. 2 as compared with sensor N
smoothed the field–voltage characteristics of the sensor
though it did not completely suppress the resonances.

The flux noise spectrum of sensor No. 1 measured us
a SQUID preamplifier4 is shown in Fig. 3 and corresponds
3.5 mF0/Hz1/2. This noise level ensures good resolutio
(70 pT/Hz1/2) for the component of the magnetic field re
corded using a 10310mm pick-up coil, although it is con-
siderably higher than the known estimate5 of the white noise
level.

Since one possible cause of the excess sensor noise
be that the resonances are not completely suppressed
made a more detailed study of these resonance prope
Enpukuet al.6,7 developed an electrodynamic model to stu
the resonance properties of SQUIDS. This model descr
the frequency dependence of the circuit impedance
SQUIDS of conventional configuration with well-couple
multiturn planar input coils. The relative simplicity of th
electrodynamic system of this sensor as compared with c
ventional dc SQUIDS means that a simple model can

TABLE I.

Sensor D, I C , RN , VC , RS /RD , LS , DV, DV/VC

No. mm mA V mV pH mV

1 10310 45 3.3 150 1 60 66 0.43
2 20320 40 2.2 70 1 80 31 0.43
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FIG. 2. Current–voltage~1! and field–
voltage~2, 3! characteristics of sensors1
~a,b! and2 ~c,d!.
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used to estimate the resonance properties of its induc
circuit, including the strip structure connecting the pick-
coil and the main part of the SQUID.

Figure 4a shows the equivalent electric circuit of t
model. Here the lumped elements are components of
SQUID circuit whose dimensions are much smaller that
wavelength, at least for frequencies up to 500 GHz, wh
correspond to a voltage of up to 1 mV at the Josephson ju
tions ~much higher than the working voltage!. These ele-
ve

he
e
h
c-

ments are the inductances of the pick-up coilLP, the slit in
the main part of the SQUIDLS, and the tapering in the strip
structure for efficient operation of the local heaterLTS, and
also the damping resistorRD. Two sections of the strip struc
ture are represented by the transmission line sectionsTL1
andTL2 having different lengths and wave impedances.
the basis of the sensor geometry, the values of the cir
components were estimated as follows:LS530 pH, LTS
52 pH, LP516 pH ~for a 10310mm coil!, andRD54 V.
FIG. 3. Spectrum of equivalent noise flux of SQUID sensor~1!.
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The characteristics of the transmission lines were de
mined in accordance with conventional formulas for a n
bium superconducting stripline in the absence of losses,

Z05120pi
d

w
A112l/d

« r
, c5

c0

A« r~112l/d!
,

whereZ0 is the wave impedance,c is the speed of light in the
line, c0 is the speed of light in vacuum,l585 nm is the
depth of penetration of the magnetic field in the superc
ductor,« r58 is the permittivity of the insulator between th
strips,d5400 nm is the insulator thickness, andw5110mm
is the strip width.

Figure 4b gives results of calculating the impedance
the SQUID circuit for two different resistances of the dam

FIG. 4. Calculation of resonances of SQUID microscope sensor: a
equivalent circuit of model used to calculate impedance of SQUID circ
b — frequency dependence of SQUID circuit impedance (RD 5 100 ~1!
and 6V ~2!!.
r-
-

-

f
-

ing resistorRD. The curves clearly show the resonant stru
ture of the frequency dependence of the circuit impedan
The frequencies of the first three resonances were estim
as 9, 36, and 66 GHz, which are equivalent to Joseph
junction voltages of 18, 72, and 132mV. Their position cor-
responds to the numbers1–3 in Fig. 2a. It can be seen tha
the resonances near2 and 3 do in fact occur. Resonance1
near 18mV is possible but is insignificant because of i
closeness to the superconducting branch and the apprec
broadening of the current–voltage characteristic. Thus, th
calculations allowed us to identify resonances and study
influence of the shunting resistors on their Q-factor.

CONCLUSIONS

A sensor for a magnetic SQUID microscope has be
developed and investigated experimentally. A 10310mm
pick-up coil and a sensor noise level 3.5mF0/Hz1/2 were
obtained, giving a resolution of 70 pT/Hz1/2 for the recorded
magnetic field component. An electrodynamic model of t
sensor quantization circuit yielded an estimate of the re
nance behavior of the sensor in satisfactory agreement
the measured results.
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Efficiency of successive compression of radio pulses in a chain of coupled resonators
S. N. Artemenko

Research Institute of Nuclear Physics, Tomsk Polytechnic University, 634050 Tomsk, Russia
~Submitted February 20, 1998!
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Calculations are made of the efficiency and gain for the series compression of radio pulses in a
chain of coupled resonators. ©1999 American Institute of Physics.@S1063-7842~99!02407-1#
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Didenko et al.1 reported results of experiments to pr
duce high-power ultrawide-band radio pulses by succes
resonant compression in a chain of resonators connecte
waveguide sections of arbitrary length. In this type of s
tem, additional energy losses always occur during
buildup period in the connecting waveguide sections a
result of reflection losses from the resonators in each stag
is easily shown that these losses may be;10% for a two-
stage system and;15– 20% for a three-stage system
Hence, the efficiency of similar three-stage ‘‘hot’’ system
cannot exceed 40%. The gain of the system will also
crease as a result of these losses. In view of this, the suc
sive compression of radio pulses in a chain of coupled re
nators with no connecting waveguide sections, in which
resonator of the previous stage is connected directly to
next-stage resonator is undoubtedly of interest.

An example of this type of system is shown in Fig.
where1 is an rf generator,2 is a ferrite isolator,3 is a phase
shifter, 4 are the storage resonators of each stage,5 are
switches that switch the resonators from storage mode
output mode,6 is the load, andh1 andh2 are the intrareso-
nator coupling elements. The system uses an interfere
method of rapidly regulating the resonator coupling with
external load, which is most frequently used in practice. T
idea of the system involves using the vibrational transfer
energy from one resonator to another for the successive c
pression of radio pulses. In order to minimize the losses
the system, the coupling between the stages of the se
should be selected so that over the time taken for the wav
make a round trip in the previous-stage resonator, the en
has been completely transferred to the next-stage reson
In this case, energy will only be lost to the resonator wa
during the transfer of energy from one stage to anot
~losses in the switches and the reflection losses in the
stage are not considered since these exist in any compre
system!.

In order to determine the efficiency and gain, we sh
use the results of Ref. 2, in which the present author sho
that the process of energy transfer from one resonato
another with the instantaneous switching of strong coup
between them obeys a law described by the function

bi
2~ t !5bi 21

2 exp~2t/t i !Ti 21 sin2~V i t !/Ti , ~1!
8441063-7842/99/44(7)/2/$15.00
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where bi is the amplitude of the traveling wave in th
i th-stage resonator,t i5Ti /2a i is the time constant of thei th
resonator,a i is the attenuation constant for a round trip
this resonator,V i'hi /ATiTi 21 is the frequency of the rela
tive transfer of energy from one resonator to another a
back, andTi is the round-trip time for a wave in thei th
resonator.

It follows from Eq.~1! that in order to ensure that energ
is transferred from the previous stage to the next stage wi
the round-trip time for a wave in the previous resonator,
coupling parameter between the resonators must satisfy
equality

hi5~pATi /Ti 21!/2. ~2!

In this case, using the well-known expression for t
storage efficiency of the first stage3

h154bt1~12exp~2t~11b!/2t1!!2/t0~11b!2 ~3!

we can easily derive the following expressions for the e
ciencyh and the gainMN

2 of a system ofN resonators:

h5h1)
i 52

N

exp~2Ti 21 /t i !'h1)
i 52

N

~12Ti 21 /t i !

5h1)
i 52

N

~122a i21!, ~4!

FIG. 1. System for successive compression of radio pulses in a cha
coupled resonators.
© 1999 American Institute of Physics
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MN
2 5ht0 /TN , ~5!

wheret0 is the input pulse duration.
These expressions indicate that for the successive c

pression in a system of coupled resonators the efficiency
the gain may be significantly higher than those for a serie
resonators connected by waveguide sections of arbit
length and are almost exclusively determined by the stor
efficiency of the first stage.

We note that successive compression in a chain
coupled resonators may also be effective with oversize re
nators whose use in a series coupled via waveguide sec
is usually only limited by the first stage because of the
ponential decay of the output pulses of these resonators.
opens up possibilities for shaping nanosecond radio pu
with relatively high stored energy in compression syste
where the energy is coupled out via interference switc
based on rectangular waveguide T-junctions. For example
accordance with Eqs.~4! and ~5!, nanosecond radio pulse
m-
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f
o-
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with a peak power of'1 GW can be obtained in the 10 cm
range with an input pulse duration of 3ms, an output pulse
duration of 3 ns after the second stage, a first-stage sto
efficiency of 60%, and a generator power of 2 MW~bearing
in mind that in Eq.~4! Ti 21 should be replaced by the energ
transfer timetn , Ti 21!tn!t i). When the ratio of the energy
transfer time to the time constant of the second-stage r
nator is<0.1, the overall efficiency of the system will b
close to 55%, whereas for compression with reflection los
the overall efficiency does not exceed 35% because of
exponential decay of the first-stage output signal.

1A. N. Didenko, S. A. Novikov, S. V. Razinet al., Dokl. Akad. Nauk
SSSR321, 518 ~1991! @Dokl. Akad. Nauk36, 792 ~1991!#.

2S. N. Artemenko, Izv. Vyssh. Uchebn. Zaved. Radiofiz.30, 1289~1987!.
3S. V. Baraev and O. P. Korovin, Zh. Tekh. Fiz50, 2465 ~1980! @Sov.
Phys. Tech. Phys.25, 1444~1980!#.

Translated by R. M. Durham
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Calculation of the electrostriction effect in thin-film metal–ferroelectric–metal structures
V. M. Bogomol’ny 
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~Submitted March 4, 1998!
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An analysis is made of the influence of electron injection from the cathode on the electrical
conductivity and nonuniform thickness distribution of the piezoelectric properties of
metal–insulator–metal structures using an electrostrictive, optically transparent FE ceramic such
as lanthanum-containing lead zirconate titanate~PLZT!. Because thin-film insulators, in
contact with metal electrodes, exhibit semiconducting properties, the theory put forward by Mott
and Gurney for insulating diodes can be used to calculate the electric fields and currents.
The distribution of the polarization over the thickness of the piezoelectric layer was determined
by means of an asymptotic solution, and relations were formulated for the electroelasticity
of FE ceramic plates and shells. A detailed analysis was made of the electromechanical bending
effect in homogeneous piezoelectric plates used as optical radiation modulators. It is
shown that these formulas can be used for a computational and experimental determination of
the distribution of the polarization over the thickness of thin-film piezoelectric structures.
© 1999 American Institute of Physics.@S1063-7842~99!02507-6#
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INTRODUCTION

Experimental and theoretical data have been used
show that the bending of homogeneous thin piezoelec
plates may be caused by the electronic subsystem, w
determines the nonuniform polarization of the ferroelec
~FE!. The distribution of the electric field, current, and p
larization over the thickness metal–insulator–metal~MIM !
structures based on the electrostrictive FE ceramic PLZT
been determined with allowance for electron injection fro
the cathode. Since the frequency of the electromagn
waves interacting with the FE crystal is much higher than
frequency of the crystal lattice vibrations, only the electro
interact with the light. Thus, the electronic subsystem m
have a significant influence on the optical properties o
FE.1,2

Varying the external electric field is the simplest mea
of controlling the electrooptic and piezoelectric properties
ferroelectric semiconductors and may be used in vari
piezo- and optoelectronic devices in which piezo- and e
tooptic effects take place simultaneously.3–5 The possibility
of using FEs to produce an unconventional controlled
flecting surface for antennas in spacecraft communica
systems was examined in Ref. 6.

Having a successful combination of physical propert
~high photosensitivity, electrooptic and piezoelectric effec
electrical and mechanical strength, and suitability for fab
cation technology!, FE ceramic PLZT is used in various de
vices such as space–time modulators, optical recording
information, sensors, and actuators.2,7–9

Studies of the spatial distribution of the electric field, t
thermionic emission current, and the polarization can unra
the mechanisms for charge transfer in FEs exposed to e
tric, thermal, and mechanical fields. In an electrostrictive
ceramic a strong static field creates polarization and an
8461063-7842/99/44(7)/4/$15.00
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ditional ~considerably weaker! alternating field is used to
control the functional parameters of piezoelectric transd
ers. In the ordered polar phase in a FE, nonlinear effe
occur which are determined not only by the direction of t
external electric fields but also by the direction of the pol
ization vector. This is accompanied by the appearance
polar thermopower and ‘‘even’’ electrical conductivity wit
respect to the field~unipolarity effect8!.

The optical inhomogeneity induced by the external fie
~photorefraction! can be attributed to space-charge-limit
currents.9 In the present paper we will obtain an upper lim
iting estimate for the current–voltage characteristic of
MIM structure. An analysis of various characteristics of F
such as the metallic type of conductivity and the final pol
ization can be used to explain the physical principles and
mathematical modeling of the high-temperature superc
ductivity of lanthanum-doped metal oxide compounds.10

The need to calculate the electrical conductivity of th
film MIM structures arises for various reasons. This cond
tivity appears in comparatively weak electric fields, and
investigation of the electrical conductivity as a function
the external electric field can provide information on t
most important physical properties of FEs, especially the
calization of the wave functions and the distribution dens
of carrier trapping and recombination centers.

A study of the energy spectrum of crystalline FEs is o
of the main tasks of solid-state physics. An important fac
in the formation of the energy spectrum is the mechan
deformation of the crystal lattice, which makes its own co
tribution ~up to 40%! to changing the band gap.11 The three-
dimensional electroelasticity relations formulated here de
mine the mechanical stresses and strains of a FE a
function of the electric field and the electronic subsystem

As a result of a mathematical modeling, we can solve
inverse problem by comparing the calculated results with
© 1999 American Institute of Physics
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experiment. The experimental determination of the polari
tion distribution in thin-film MIM structures presents consi
erable technical difficulties. In the present study we put f
ward a substantiation for a semi-inverse method
determining the distribution of the polarization over t
thickness of thin-film piezoelectric structures~comparable
with the electron mean free path!.

Experimental investigations of the photoelectric prop
ties of the electric charge in CdS crystals showed that em
sion currents may form in MIM structures.1,2 Kruminset al.2

and Khalilov and Dimza8 reported experimental studies o
the influence of the emission currents on the photoelec
processes in optically transparent PLZT ceramic, which
used in optical switches, holographic memory elements,
other devices for recording and processing optical inform
tion. In the present study the electric fields, currents, a
distribution of the polarization over the thickness of MI
structures are determined explicitly for thermionic emiss
from the cathode.

THEORY OF EMISSION CURRENTS IN
METAL–INSULATOR–METAL STRUCTURES

In thin-film MIM structures in comparatively weak elec
tric fields electrons are injected from the cathode, their c
centration decreasing abruptly with increasing distance fr
it. In this case, the diffusion component of the current m
be comparable with the drift component. Known analytic
solutions only allow for the drift component of the curren
which in many cases is taken to be constant over the th
ness of the insulator.12,13

The electric fields and monopolar injection currents
MIM structures are determined by solving the Bessel eq
tion, whose integration constants depend on the current
thickness of the dielectric. Calculation of the integration co
stants yields complex transcendental equations.13 Thus, de-
spite the simplifications noted earlier, the most compreh
sive results of calculating the emission currents and elec
fields were only obtained by computer. Here an asympt
solution of this problem is obtained allowing for electro
drift and diffusion.

The density of the thermionic emission current from t
cathodej (x) ~x is the coordinate measured from the ca
ode!, the electric fieldE(x), and the concentration of elec
trons injected into the insulatorn(x) are determined from the
following system of dimensionless equations:12

dE

dx
52n,

dn

dx
1nE5 j ~x!. ~1!

The units of the instantaneous coordinatex̄ ~the distance
from the cathode!, the current densityj̄ , the electric fieldĒ,
and the concentration of injected electronsn̄ are calculated
using the formulas

x̄5S «33
T «0kT

4pe2n
D 1/2

, j̄ 5
edn

x̄
, Ē5

kT

ex̄
,

n̄5Nce
c, c5

eU

kT
, ~2!
-

-
f

-
s-

ic
is
d
-
d

n

-
m
y
l

k-

-
nd
-

n-
ic
ic

-

wherek is the Boltzmann constant,«33
T is the dielectric con-

stant of the insulator,«0 is the permittivity of free space,T is
the absolute temperature,U is the potential difference at th
electrodes of the MIM structure,d5mkT ~m is the mobility
of the free charges!, x̄ is the Debye screening length,Nc is
the effective density of quantum states in the conduct
band, which is given by:

Nc52S 2pmkT

h2 D 3/2

,

whereh is Planck’s constant andm is the effective electron
mass.

The main system of equations is reduced to a sin
equation

d2E

dx2
1E

dE

dx
1 j ~x!50. ~3!

The following boundary condition is an analytical e
pression for the properties of the injected cathode:

E~0!50 ~ for x50!. ~4!

We also use the following condition to solve Eq.~3!:

E
0

h

E~x!dx52U, ~5!

whereh is the thickness of the insulator andU is the voltage
between the electrodes located on the surface of an insula
layer having the coordinatesz56h/2.

In accordance with the system of equations~1! and the
boundary condition~4!, we take the distributionsE(x) and
j (x) over the thickness of the insulating layer in the follow
ing form:

E~x!5B1x1/2, ~6!

j ~x!5A11A2x23/2, ~7!

whereAi ( i 51,2) are unknown constants.
Using Eqs.~5! and ~6!, we calculateB1 and then the

function E(x)

B152
3

2
Uh23/2, E~x!52

3

2
Ux1/2h23/2. ~8!

Substituting Eqs.~6! and ~7! into Eq. ~3!, we obtain

2
B1

4
x23/21

B1
2

2
1A11A2x23/250.

Equating to zero the sum of the coefficients with t
same powersx in this equality, we findA1 andA2, and then
the functionj (x) from Eq. ~7!

j ~x!52
9

8

U2

h3
2

3

8

U

~hx!3/2
. ~9!

The first term in formula~9! is the known expression fo
the current–voltage characteristic, which was obtained
glecting the diffusion current of electrons injected into t
insulator.12
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For FE ceramic PLZT the functionE(x) calculated us-
ing formula~8! is plotted in Fig. 1. This can be approximate
by a linear dependence onx ~dashed curve! with sufficient
accuracy for practical applications.

ELECTROELASTICITY RELATIONS FOR PIEZOELECTRIC
TRANSDUCERS NONUNIFORMLY POLARIZED OVER
THICKNESS

For the most general case of the geometric profile
piezoelectric transducers we shall consider a shell of rev
tion made of an electrostrictive ceramic in the nonpo
phase~inverse piezoelectric effect!, in which a strong static
field induces polarization and an additional much wea
alternating electric field creates working strains of the pie
elements. When the polarization lies in the direction of
shell thickness, the equations for the electrostriction eff
for temporally constant stressess i , strains« i , and electric
fields E3 have the form14

«15s11
E s11s12

E s21Q12E3
2 ,

«25s11
E s21s12

E s11Q12E3
2 , ~10!

where« i ( i 51,2) are the strains of the shell in the directio
of the unit vectors,t1 andt2 ~Fig. 2!, s i are the mechanica
stresses,S1i

E are the elastic compliance constants of the
ramic,Q12 is the electrostriction constant, andE3 is the elec-
tric field.

FIG. 1. The functionE(x). The coordinatex50 is positioned near the
cathode.

FIG. 2. Distribution of the polarization in an MIM structure. The coordina
z50 is positioned at the middle surface of the piezoelectric layer.
f
u-
r

r
-

e
ct

-

The following assumptions were made to derive t
electroelasticity relations.

1! The polarizationP3, the fieldE3, and the constantQ12

depend linearly on the coordinatez, which is measured from
the central surface of the shell (2h/2@z@/2; Fig. 2!,

P35P3
0a, E35E3

0a,

Q125Q12
0 a, a5~1/21z/h!, ~11!

whereP3
0 andQ12

0 are the values corresponding to the coo
dinatez5h/2 ~Fig. 2! andE3

0522V0 /h ~h is the shell thick-
ness!.

2! In accordance with the Kirchhoff–Love hypotheses15

and the polarization distribution~11!, we take the shell
strains in the following form:

«15« i
0S 11

2z

h D1z¸ i , ~12!

where « i
0 and ¸ i ( i 51,2) are the relative strains and th

changes in the principal curvatures of the central surface
the shell.

3! On the basis of the experimental data we take
dielectrci constant of the FE ceramic as a constant avera
over the shell thickness. From the fundamental system
equations~10! we have

s15
1

s11
E ~12m2!

~«11m«22Ê3!,

s25
1

s11
E ~12m2!

~«21m«12Ê3!,

Ê35~11m!Q12~E3
0!2, m52

s12
E

s11
E

, ~13!

wherem is the Poisson ratio.
Expressing the internal mechanical stresses in the s

T1 andT2 and the bending momentsM1 andM2 in terms of
integrals of the stressess1 and s2 ~15!, we obtain the fol-
lowing relations for the electroelasticity:

T15DTF«1
01m«2

02
~11m!

4
Q12

0 ~E3
0!2G ,

T25DTF«2
01m«1

02
~11m!

4
Q12

0 ~E3
0!2G ,

M15DM@~2/h!~«2
01m«1

0!1¸11m¸22E3M#,

M25DM@~2/h!~«2
01m«1

0!1¸21m¸12E3M#,

DT5
h

s11
E ~12m2!

, DM5
h3

12s11
E ~12m2!

,

E3M5
3

4

~11m!

h
Q12

0 ~E3
0!2. ~14!

We consider a bracket-mounted homogeneous pie
electric plate nonuniformly polarized over its thickness~Fig.
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1!. We shall determine the deflection of the free end un
the following conditions, which are satisfied over its ent
length

T15M150, ¸15const

~T25M25«25¸25m50!. ~15!

From the first and third equations in~14! and ~15! we
have

«1
05Q12

0 ~E3
0!2/4, ~2/h!«1

01¸12E3M50. ~16!

We determine the change in the curvature¸1 from the
system~16!

¸15Q12
0 ~E3

0!2/2h.

Taking into account this last expression and Eq.~12!, we
determine the deflection of the free end of the plate using
following formula:

f 5
l 2D¸1

2
5

l 2Q12
0 ~E3

0!2

2h
,

D¸15@«1~h/2!2«1~2h/2!#/h5Q12
0 ~E3

0!2/h, ~17!

wherel is the length of the plate,«1(6h/2) are the relative
strains at the shell surfaces having the coordinatesz56h/2.

For the field E3
056000 V/cm and the paramete

l 530 mm, h50.15 mm, Q12
0 521.45310210mm2/V, and

m50.34, the deflection of the free end of the plate
f 50.14 mm.

Formula~17! can be used to obtain an integral estima
of the change in the polarization over the thickness of t
piezoelectric layers~10–200mm!. Defining the polarization
distribution using formula~17!, we can calculate the deflec
tion of the free end of a bracket-mounted sample. By co
paring the calculated result with the experiment, we can
termine the real distribution of the polarization over t
thickness of the piezoelectric element by this method of c
culation and experiment. The results of the numerical ca
lations presented here~Fig. 1! are confirmed by the result
obtained using numerical16,17 and analytical18 methods and
also by the experimental data.19

CONCLUSIONS

1. The distributions of the electric fields and curren
over the thickness of MIM structures have been determi
explicitly by means of an asymptotic solution.
r

e

n

-
e-

l-
-

d

2. Formula~9! refines the current–voltage characteris
of an insulating diode obtained by Mott and Gurney. T
first term in this formula is the same as the well-know
expression12 and the second term allows for carrier drift.

3. Experiments19 and theoretical estimates13,16–18 indi-
cate that electrons are injected from the electrodes in ele
fieldsE3 5 250–500 V/cm. These experimental and theor
ical data suggest that the electrooptic and piezoelectric p
erties of FEs depend strongly on their electronic subsyst
In particular, formulas~6!–~9! can be used for a quantitativ
estimate of the influence of thermionic emission on pho
and electrooptic effects in ferroelectric semiconductors.
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The Bean critical state model is used to calculate voltages and voltage waveforms in hard
superconductors carrying ac and dc transport currents. A comparison with the experiment shows
that these characteristics are accurately described by this model. The voltage rectification
effect by current-carrying superconductors is explained. ©1999 American Institute of Physics.
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Superconducting composites based on silver-shea
bismuth superconducting ceramic having a high critical c
rent density (I c;23104 A/cm2) have now been fabricated1

These materials can be used to carry ac and dc trans
current and as conductors for superconducting magnets.
films of high-temperature superconductors can be use
microelectronics. Bulk materials based on Bi2Sr2Ca2Cu3Oy

ceramic can be used to transfer current between liq
nitrogen and liquid-helium temperature. Transport of ac c
rents by superconductors is now the subject of very inten
research~see Refs. 2–6, for instance!. Both experimental4–6

and theoretical studies3,7 are focusing particular attention o
the hysteresis losses. The voltage wave form, and the cu
and frequency dependences of the voltage and losses
been investigated experimentally2–6 and theoretically.2,3,5,7

The generation of harmonics by superconducting bism
ceramic8 and yttrium films9 carrying ac transport current
was studied by an inductive method. The behavior of a
perconducting plate carrying an ac current in a perpendic
magnetic field was studied in Ref. 10. Grishinet al.2 were
most likely the first to investigate the transport of an ac c
rent I (t)5I dc1I accosvt containing a dc component. The
reported the experimental observation of a voltage ‘‘rect
cation’’ effect by the dc current and used the Kim critica
state model11 for the caseuI (t)u,I c to show that the magni
tude of the rectified voltage depends linearly on t
frequency of the ac current.

In the present paper we use the Bean critical s
model12 to calculate the voltage and its wave form for
superconductor carrying an ac transport currentI (t)5I dc

1I accosvt and we explain the origin of the frequenc
independent component of the rectified voltage observe
Ref. 2.

1. When a transport currentI tr(t) flows through a super
conductor, magnetic flux vortices form at its edges for
certain value of the current. Under the action of the Lore
force these vortices move toward the center of the sam
This vortex motion leads to energy dissipation and caus
drop in the voltageuR(t) at the sample. Moreover, if th
transport current is ac, it induces an alternating self-magn
field with the flux F(t), which leads to the appearance
hysteresis losses caused by magnetic reversal of the sa
8501063-7842/99/44(7)/3/$15.00
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in the alternating self-field. A change in the magnetic fl
gives rise to a self-induction emf in the sampleeL(t)
52dF(t)/dt and causes the voltage dropuL(t)52eL(t).
Hence, the voltageu(t) across a superconductor carrying
ac transport current is determined by the sum of two con
butions

u~ t !5uR~ t !1uL~ t !. ~1!

The ‘‘active’’ voltage componentuR(t) has the same
phase as the current and is determined by the curre
voltage characteristic of the superconductor. The ‘‘indu
tive’’ voltage componentuL(t) contains a cophasal compo
nent and a~quadrature! component whose phase differs b
90° from that of the current and may be determined using
critical-state model.

2. We shall determine the active component of t
sample voltage. To be specific, we shall assume that
current–voltage characteristic of the superconductor i
power law

uR~ I !5uc~ I /I c!
a, ~2!

where I c is the critical current of the sample determined
usual from the criterionuR5uc51 mV/cm.

Figure 1 gives the voltage for a superconductor carry
an ac current. In this case, if the transport current conta
both ac and dc components, the working point on the sup
conductor current–voltage characteristic is shifted~Fig. 2!. If
I dc.0 the positive half-wave of the current is amplified a
the negative half-wave suppressed. This leads to the app
ance of a constant, frequency-independent voltage com
nent at the sample

uRc5
1

TE0

T

uR~ I ~ t !!dt. ~3!

This explains the effect of voltage rectification by a s
perconductor, which was observed experimentally in Ref
The magnitude of the rectified voltageuRc is determined by
the type of current–voltage characteristic~in case~2! by the
exponenta), and by the amplitude of the ac and dc transp
currents. For instance, for a power function with the exp
nenta53 the rectified voltage is
© 1999 American Institute of Physics
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uRc5uc

1

2I c
3 ~3I ac

2 I dc12I dc
3 !. ~4!

3. We shall determine the inductive voltage compon
uL(t) for an infinite plate using the Bean critical-sta
model.12 According to this model, the current flowin
through a superconductor is only nonzero in that part of
sample where the induction isBÞconst, the current depend
only on temperature, and is equal to its critical value. As
external field varies, the distribution of the magnetic indu
tion initially varies in the outer part of the sample and then
the inner part. This is caused by magnetic flux trapping
pinning centers. As a result, the change in induction l
behind the change in the external field in terms of pha
which in this case is determined by the current.

The magnetic field in the sample is described by Ma
well equations

curlB5
4p

c
j c , ~5!

wherec is the velocity of light andj c is the critical current
density.

Solving Eq.~5! and bearing in mind that the field at th
sample boundary is equal to the sum of the fields initia
by the dc and ac transport currentsH tr56(2pd/c)( j dc

FIG. 1. Time dependences of the currentj (t)5 j dc1 j accosvt ( j ac50.7j c ,
j dc50) and the active sample voltageuR for j dc50 ~a! and 0.2j c ~b!.

FIG. 2. Current–voltage characteristic of superconductor (a53) and volt-
age uR during passage of the transport currentj (t)5 j dc1 j accosvt, j ac

50.7j c , j dc50.2j c .
t

e

e
-

t
s
e,

-

d

1 j accosvt), ( j dc and j accosvt are the densities of the dc an
ac transport currents, respectively,d is the thickness of the
plate, and the plus and minus signs correspond to oppo
sides of the plate!, we can obtain the distribution of the mag
netic induction in the sample. The following cases are p
sible: ~a! I dc1I ac,I c , when the amplitude of the ac curren
plus the dc current is less than the critical current;~b! the
opposite case, whenI dc1I ac,I c . Here we only consider
case~a! since this has practical applications. In this case,
superconductor is in the critical state over the entire peri
The induction in the sample is given by

B~x!5Bc

¦

0, 0<uxu<x0 ,

S j ac1 j dc

j c
211

2uxu
d D sgnx, x0<uxu<xm ,

F2S j ac

j c
211

2uxu
d D

3sgnİ 1
j dc

j c
Gsgnx, xm<uxu<xt ,

F j ac

j c
cosvt2S 12

2uxu
d D

3sgnİ 1
j dc

j c
G sgnx, xt<uxu<

d

2
,

~6!

the x is directed perpendicular to the plane of the pla
x50 corresponds to the middle of the plate

Bc5
2pd

c
j c , x05

d

2 S 12
j ac1 j dc

j c
D ,

xn5
d

2 S 12
j ac

j c
D ,

xt5
d

2 S 12
j ac

2 j c
~11cosvt sgnİ ! D ,

sgnİ is the sign ofdI(t)/dt.
By integrating expression~6! over the half-thickness o

the plate, we can determine the magnetic field fluxF(t) per
unit length~across half the plate!. By then differentiating this
expression with respect to time, we obtain the self-induct
emf

eL[2
1

c

]F

]t
5

pd2v

2c2

j ac
2

j c
~sinvt2cosvtusinvtu! ~7!

and the voltage drop per unit lengthuL(t)52eL(t) ~Fig. 3!.
The total sample voltageu(t)5uR(t)1uL(t) is plotted in
Fig. 4 and its profile is broadly consistent with the resu
obtained in Ref. 2. The difference can evidently be attribu
to the experiments since the experimental curves obtaine
Refs. 2 and 4 differ~without the dc component of the trans
port current!. It follows from Eq. ~7! that uL(t) is directly
proportional to the frequency of the ac current and does
depend on the dc component of the transport current. Us
the values of the sample thicknessd;100mm, the width
w;4 mm, and the critical currentI c58.3 A from Ref. 5, we
can find that
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A15
pd2v

2c2

j ac
2

j c

in Eq. ~7! is of the same order of magnitude a
;1022– 1021 mV/cm at frequencyv550 Hz and transpor
current densityj ac; j c . This value ofA1 agrees with the
experimental data from Refs. 4 and 5.

Grishin et al.2 calculated the sample voltage using t
Kim critical-state model, in which the critical current de
pends on temperature, as in the Bean model, and on the
field

FIG. 3. Time dependences of the currentj (t)5 j dc1 j accosvt ( j ac50.7j c ,
j dc50.2j c) and the inductive voltageuL .

FIG. 4. Time dependences of the currentj (t)5 j dc1 j accosvt ( j ac50.7j c ,
j dc50.2j c) and the total voltageu(t).
cal

j c~T,H !5
j c~T,0!

11H/H0
,

whereH0;0.1 T.
The sample voltage for the case in Ref. 2, i.e.,uI (t)u

,I c , is given by

uLK52
pd2v

2c2

j ac
2

j c
S sinvt2cosvtusinvtu1

pd jac

cH0
e~ t ! D .

~8!

The expressione(t) contains both constant and ha
monic components whose magnitude and amplitude dep
on the ratioI dc/I ac and are of the order of magnitude of one2

Thus, compared with Eq.~7!, expression~8! has an addi-
tional term which contains the dc rectified component of
sample voltage. However, this component is negligible
cause of the smallness of the ratiod jac/cH0;1023– 1022.

To sum up, the Bean critical-state model has been u
to calculate the voltage for a current-carrying superc
ductor. The results show good agreement with the exp
mental ones. An explanation has been put forward for
origin of the frequency-independent rectified voltage com
nent for superconductors carrying an ac transport curr
The results can be used to design systems for both h
current and low-current electronics.

The author would like to thank Yu. A. Genenko for hel
ful discussions.

1M. J. Minot, Adv. Cryogenic Eng. A40, 131 ~1994!.
2A. M. Grishin, J. Niska, B. Loberg, and H. Weber, J. Appl. Phys.76, 6947
~1994!.

3K. -H. Müller and K. E. Leslie, IEEE Trans. Appl. Supercond.AS-7, 306
~1997!.

4S. P. Ashworth, Physica C229, 355 ~1994!.
5M. Ciszek, A. M. Campbell, and B. A. Glowacki, Physica C233, 203
~1994!.

6H. Eckelmann, M. Daumling, M. Quilitz, and W. Goldacker, Physica
295, 198 ~1998!.

7W. T. Norris, J. Phys. D3, 489 ~1970!.
8A. M. Grishin, V. N. Koreniski, K. V. Rao, and A. N. Ulyanov, Appl
Phys. Lett.65, 487 ~1994!.

9A. M. Grishin, V. F. Drobot’ko, A. A. Mazaev, V. D. Stasovski�, and V.
A. Khokhlov, Fiz. Nizk. Temp.19, 635~1993! @Low Temp. Phys.19, 453
~1993!#.

10E. H. Brandt and M. Indenbom, Phys. Rev. B48, 12 ~1993!.
11Y. B. Kim, C. F. Hempstead, and A. R. Strand, Phys. Rev.129, 528

~1963!.
12C. P. Bean, Phys. Lett.8, 250 ~1962!.

Translated by R. M. Durham



TECHNICAL PHYSICS VOLUME 44, NUMBER 7 JULY 1999
Generalized conductivity and optimum energy release
S. A. Baranov
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A formula for the average generalized conductivity of composites, which specifically allows for
an inductive coupling channel and the shape of the microconductor sections. is used to
analyze the optimum energy release in the poorly conducting phase. ©1999 American Institute
of Physics.@S1063-7842~99!02707-5#
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Composites having two components with different co
ductivities are now widely used. We note that a mate
based on a cast microconductor may prove a potentially
ful composite. In the present paper, an analysis is mad
the problem of optimizing the concentration of the condu
ing component to maximize the energy release at the n
conducting component. This problem is undoubtedly
enormous practical value and in the limit of infinitely hig
resistance of the nonconducting component, it can give
indication of the ‘‘percolation level’’ of the system.

1. The generalized conductivity of a system may depe
on the geometry of the phases.1 The Odelevski� formula2 is
well-known for a stochastic bulk mixture of powders. Bar
nov and Shcheglov3 and Baranov4 derived an expression
which can be used to analyze a mixture of infinitely th
cylinders on a plane and can also allow for an induct
particle coupling channel in the composite. We give the f
mula for the average generalized conductivity in the form3,4

Sm5A~xi ,S i ,a!1AA2~xi ,S i ,a!1aS1S2, ~1!

where

A5
S1~x12ax2!1S2~x22ax1!

2
,

x1,2 are the volume concentrations of components having
conductivityS1,2 ~the subscript ‘‘2’’ will refer to the micro-
conductor!, wherex11x251.

We then set

a5
1

l 21
, ~2!

wherel is a certain spatial dimension.
If l 53, we obtain the Odelevski� formula. If l 52, we

obtain a formula which for low concentrations of the co
ducting phase is ‘‘matched’’ with a similar formula~28!
from Ref. 5 which was obtained for ordered thin cylinders
a plane~perpendicular to the direction of measurement!. The
level of strongly varying conductivitySm obtained from the
graph for this case~see Fig. 1, curve1! x2

c;0.5– 0.57 corre-
sponds to the percolation level on a planar lattice~for the
Odelevski� formula this level isx2

c;0.3– 0.38). In this case
we arbitrarily take the percolation level to mean the region
abruptly varying conductivity.
8531063-7842/99/44(7)/2/$15.00
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We also note that in the casel 52, formula ~1! is
matched with the accurate result whenx1,251/2 ~Ref. 6!

Sm5AS1S2.

We shall postulate that for cases of inductive coupli
we need to replacel by

l 15 l ~11Y/R!, ~3!

whereY/R is the ratio of the reactance to the resistance fo
single element in a composite.

For a microconductor4 we have

Y/R;~r /d!2, ~4!

where r is the radius of the microconductor core,d is the
skin layer depth, andd;(vmm0s)1/2.

For the real cores of a cast amorphous microcondu
(r;1 – 20mm), the region wherer 2d belongs to the
ultrahigh-frequency and microwave ranges. IfY/R;1, then
l 1;4 and the level of strongly varying conductivity~see Fig.
1, curve3! is x4

c;0.25– 0.27.
2. When a highly conducting phase is added to a poo

conducting one~such as a microconductor in rubber!, the
energy~heat! release in the poorly conducting phase has
extremum at the percolation threshold. We determine
from7

dSm

dx1
2kS250, ~5!

wherek is a parameter which determines the fraction of t
current passing through the poorly conducting phase.

This equation was obtained using an approximation
which the termdk/dx1 is neglected. As we shall see, in th
asymptotic limitS1→0 the solution does not depend on th
parameterk ~physically this approximation can be justifie
by the fact thatk should be a continuous function of th
concentration as far as the percolation threshold being s
ied; allowance fordk/dx1 merely complicates the solutio
and does not produce any significant result!.

We note the region~fork! of variation ofk ~Ref. 7!

1>k>F ~12x1!S2

x18S11~12x18!S2
G 2

,

© 1999 American Institute of Physics
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where x18 is the concentration corresponding to this ext
mum ~which lies near the percolation threshold!.

The value of the parameterk at the percolation threshol
for a planar (l 52) or two-dimensional problem can be o
tained from the results given in Ref. 6, which we shall u
Thus, for the planar problem (l 52) we have

x18>
1

2
1

AS1S2

S22S1
~S2.S1!, ~6!

which agrees with the exact results~see, for example, Ref. 6!
(x18→1/2, S1→0).

A formula for the bulk problem was derived and p
forward in Ref. 7, where the asymptotic value

FIG. 1. Generalized conductivity calculated using formula~1! for S2 /S1

5103 for l 52 ~1!, 3 ~2!, and 4~3!.
-

.

x18→2/3 ~S1→0!

was obtained~a similar but very cumbersome formula
obtained7 for arbitrary l ). We shall give the principal
asymptotic result of this theory

x28→1/l ~S1→0!

~generalizing this result we postulate that the percolat
threshold and the parameterl are inversely proportional!.

To sum up, we have put forward simple approxima
formulas for the conductivity in the theory of an effectiv
medium. We have solved an extremum problem which c
be used to estimate the percolation threshold and relate
to the coupling parameterl. The parameterl can characterize
the geometry of the mixture particles or the inductive~ca-
pacitive! coupling. Note that a qualitative experimental co
firmation has been obtained for this theory.4

The author is grateful to P. I. Khadzhi and E´ . P.
Sinyavski� for discussions of this work.
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Unheated magnetron gun as an electron source for a resonant linear accelerator
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Investigations of the operation of a cold-cathode magnetron gun as part of a traveling-wave
linear accelerator are described. Two operating regimes of the gun are observed: with and without
the microwave field of the prebuncher near the gun. In the regime with no microwave field,
short~around 2 ns! pulses of accelerated electrons of up to 0.5 A were obtained with a gun current
up to 20 A. The presence of a microwave field near the gun makes it possible to obtain a
beam of longer duration~up to 1.0ms!, but with a current of up to 20 mA at the accelerator exit
and 1 A from the gun. The operating mechanism of the gun is attributed to a secondary-
electron current rise and the establishment of self-sustained secondary emission. A comparison
between the conditions of beam production from a thermionic gun and that studied for
the same injection energies indicates that the characteristics of this gun are acceptable for injection
into an accelerator. ©1999 American Institute of Physics.@S1063-7842~99!02807-X#
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INTRODUCTION

The development of accelerator technology and the
lated technology for powerful microwave sources is imp
ing new requirements on sources of high-power elect
beams. Alternatives to the conventional thermionic cath
sources are needing to be considered increasingly freque
One such alternative is a secondary-emission magnetron
in cases where a high current density and long service
are both required.1 The long service life of the cathode cre
ates new possibilities in accelerator technology such as
production of commercial, sealed accelerator models ins
of the existing pumped systems. In addition, as will
shown subsequently, a magnetron gun with an unhe
cathode can produce short~nanosecond! beam current pulse
in the accelerator from comparatively long voltage pulses
the gun. This has important practical applications for
development of high-current, short-pulse accelerators sin
facilitates the formation of the high-voltage pulses requi
to supply the gun. It is also postulated that a magnetron
with an unheated cathode will be stable to bombardmen
return electrons reflected from the accelerating structure w
appreciable energy, which may limit the pulse frequency a
the cathode service life, as experience of operating these
celerators has shown.2 A magnetron gun has various chara
teristics that can influence its operation as part of a lin
electron accelerator. Of particular note are that the cathod
not screened from the magnetic field and the beam is tubu
The aim of the present study is to make a preliminary ass
ment of their influence and the operating characteristics
this gun as part of a resonant linear electron accelerator

DESCRIPTION OF APPARATUS

For the tests we used the universal injector complex
the LUÉ-300 accelerator.3 The injector complex was de
signed to extend the scope of the LUE´ -300 accelerator in
terms of increasing the beam current and obtaining s
8551063-7842/99/44(7)/5/$15.00
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~nanosecond! durations in a stored energy regime. The inje
tor complex consisted of two accelerating sections and
injector section, which were fitted with a regeneration syst
to enhance the stored energy; this comprised bunching c
ties inserted inside focusing solenoids and a universal tri
gun with beam compression based on a porous metal the
onic cathode. For the experiments the triode gun was
mantled and the magnetron gun was mounted on its ins
tor.

The apparatus is shown schematically in Fig. 1. T
magnetron gunMG was formed by cylindrical coaxial elec
trodes inserted inside a prebuncher solenoidSG. The cathode
C consisted of a thin metal rod around 3 mm in diame
mounted in a high-voltage insulatorI in the drift channel,
whose walls were formed by the anodeA. Such a small cath-
ode diameter was selected to reduce the influence of
magnetic field at the cathode on the passage of the beam
system for supplying short voltage pulses to the catho
which served to control the temporarily dismantled Pie
triode gun, was used to measure the current from the c
ode. It consisted of a coaxial cable which served as the
ondary winding for a high-voltage pulse transformerPT.
This cable supplied the gun current signal from the hig
voltage circuits to a measuring oscilloscopeIO. The rig
forming the universal injector complex was described
greater detail in our previous study.3

GUN TESTS

When high-voltage pulses were supplied to the cath
using the pulse transformer, current pulses of up to 2
were obtained from the cathode after switching on theSG
solenoid current, which created a magnetic field near
gun. The duration of these pulses varied between 20 ns
0.5ms depending on the regime. The current–voltage ch
acteristic of the gun plotted in Fig. 2 is nearly quadratic.
using the same cathode material as in the gun stud
© 1999 American Institute of Physics
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FIG. 1. Schematic of experiment:MG — magnetron gun with unheated cathode,C — cathode,I — high-voltage insulator,A — anode~drift tube!, PT —
pulse high-voltage transformer,LM — linear modulator,CD — induction current detector,RG — prebuncher cavities,SG, SI, SA— focusing solenoids of
prebuncher, injector, and accelerating sections,IS — injector section,AS— accelerating section,CS— collimating section, its power supply system was n
switched on during these experiments, this section was used as a collimator to estimate the emittance,L — load, F — phase shifters,RFS1 andRFS2 —
sources of microwave power~klystron amplifiers!, Q — quadrupole lenses,FC — Faraday cup, andIO — oscilloscope.
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FIG. 2. Current–voltage characteristic of magnetron gun~magnetic field
220 mT!: a — experimental data, b — approximation by quadratic parabol
previously,4 we can compare their parameters on the basi
similarity theory using the formula from Ref. 1

I 5C
U2

BDcln
Da

Dc

, ~1!

whereI is the beam current of the magnetron gun,Da andDc

are the diameters of the gun cathode and anode, respecti
C is a parameter which depends on the emission prope
of the cathode,U is the gun voltage, andB is the magnetic
induction.

A comparison reveals that the current is higher in o
case, evidently because of the stronger magnetic field. T
departure from the above relationship agrees qualitativ
with the dependence of the current on the magnetic fi
measured later,5 where the decrease in current with increa
ing field is weaker than an inversely proportional depe
dence.

HIGH-CURRENT ACCELERATION REGIME

When rf power was supplied to the accelerating secti
and the beam guide system was suitably aligned, an acc
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ated electron current of up to 0.5 A was obtained from
injector complex with a gun current of around 12 A and vo
age around 45 kV. The low beam capture coefficient in
acceleration regime is probably related to the low inject
energy, which corresponds to a low gun voltage. It can
seen from later measurements of the capture coefficient f
conventional Pierce gun with a thermionic cathode as a fu
tion of the accelerating voltage, which are plotted in Fig.
that the capture coefficients are similar at correspond
voltages. The duration of the relativistic electron pulse at
accelerator exit was around 20 ns. The duration of the
current and voltage were significantly greater, 50 ns a
1ms, respectively. The reduction in the pulse duration at
output Faraday cup is mainly attributable to two factors:
short ~up to 1 ns! excitation time of the secondary emissio
in the gun near its peak voltage and the stored energy reg
during supply of the gun and the accelerating sections.
pulse leading edge is formed by the rapid excitation of s
ondary emission and the duration will depend on the sto
energy and the beam current, increasing as the stored en
increases and decreasing as the current increases.

Only the bunching and injector accelerating sectio
were switched on for the tests. The accelerated beam pa
through an ‘‘empty’’ section, i.e., without a microwav
power supply and focusing solenoid. In addition, this sect
had a low series coupling resistance3 and for the current
achieved in our case the influence of the induced field on
beam motion can be neglected. Thus, the section only p
the role of a collimator in the form of a long tube with
known aperture. In this case, for the lengthL and the diam-
eterd an upper estimate of the beam emittance6 can be ob-
tained as the product of the angular spreadd/L and the ap-
ertured divided byp, as given by

«<
d2

pL
.

Substituting numerical values for the aperture 3.0 cm a
the length of the drift tube 200 cm, we obtain the estim
14 cm•mrad.

FIG. 3. Capture coefficient as a function of voltage for a conventional
with a thermionic cathode.
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EXCITATION OF CURRENT IN A COLD-CATHODE
MAGNETRON GUN NEAR THE ELECTRON CYCLOTRON
RESONANCE FREQUENCY

During testing of the cold-cathode magnetron gun in
universal injector complex we observed that the supply o
power to the cavity influenced the excitation of current in t
gun. The gun was positioned near the prebuncher cavity
magnetic field, as shown in Fig. 1. In this case, the mic
wave field through the short section of drift channel, whi
comprised a cutoff waveguide, could penetrate to the g
cathode. We initially observed a current from the catho
which was not captured in the acceleration regime. The c
rent flowed for almost the entire duration of the voltage pu
at the cathode~around 1ms, 60 kV!. The current from the
cathode reached 1 A and occurred in a narrow range of m
netic fields near 136–140 mT. By tuning the phase of
buncher, it was possible to obtain a current of electrons
celerated to energies higher than a few MeV at the exit fr
the injector complex with a magnitude of up to 20 mA and
pulse duration corresponding to that of the voltage pu
Typical oscilloscope traces of the pulses are shown in Fig
The duration of the microwave pulse exceeded that of
gun voltage pulse~around 2ms! and the locking system wa
tuned so that during the voltage pulse the microwave po
could be considered to be constant. Thus, in order to obta
beam at the exit from the complex, we need to supply vo
age to the gun and apply microwave power, with a qu
specific magnetic field in the gun and microwave phase r
in the prebuncher and in the bunching and accelerating
tions.

Bearing in mind that the operating frequency of the co
plex to which the prebuncher is tuned is 2797 MHz and
close to the electron cyclotron oscillation frequency, we c
make the following assumptions as to the nature of the p
cesses. Electrons emitted from the cylindrical side surfac
the cathode as a result of field emission when a voltage p
is applied, move over trajectories close to cycloidal and
turn to the cathode. Under the action of a relatively we
microwave field, whose oscillation period is the same as
period of their motion, some of the electrons emitted at
propriate times acquire additional energy from the mic
wave field and bombard the cathode. Under the influenc

n

FIG. 4. Oscilloscope traces of pulses in electron cyclotron resonance
gime: a — gun voltage, b – accelerated electron current at accelerator
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the electron bombardment the cathode begins to emit
ondary electrons, which also acquire additional energy
cause the period of their motion matches that of the fie
The power supplied to the buncher, a few kilowatts p
pulse, was clearly sufficient to give a coefficient of secon
ary emission greater than unity. This should lead to a ra
rise in the secondary emission current from the side sur
of the cathode until this is limited by the space charge fie
The nonuniformity of the field near the cathode edge w
then cause the incipient electron bunches to be expelled
ward the buncher and the accelerating system. Accelera
of the bunches will only be possible when the accelerat
phase of the field in the section coincides with the mome
of expulsion of the bunches. We know that in a multipac
electron gun, which uses a similar effect, the phase dim
sion of the clusters is extremely small.7 On this basis and
also from observations of the phase tuning to achieve ac
eration, we can postulate that the phase dimension of
cluster is also small in our case. Another argument in sup
of the hypothesis that the bunch has a small phase dimen
may be the relatively low gun current in the cyclotron res
nator regime. No direct measurements were made of
phase dimensions of the bunches because of the need to
vert the complex to a different operating program.

We need to consider the slight disagreement between
working frequency of the oscillations and the cyclotron fr
quency. Conventionally,8 cyclotron resonance in magnetron
is characterized by the product of the magnetic inductionB
and the wavelengthl. For free electrons in the absence
external electric fields the following numerical relation
obtained for resonance

Bl51.065 T•cm. ~2!

We also know that the electron efficiency of magnetro
and magnetron oscillations with a smooth anode has a
near 1.2 T cm~Ref. 8!. An increase in the productBl is
attributable to the nonuniformity of the electric field gene
ated by a thin cathode. The resonant frequency should
pend, albeit slightly, on the voltage at the magnetron gun
result of this dependence may be the double-humped p
profile at the accelerator exit shown in Fig. 4, if the res
nance occurs at a voltage below the peak value. This form
~2! is also valid for electron oscillations between the ele
trodes of a planar magnetron in the absence of space ch
Since in our case the ratio of the anode and cathode d
eters is large, this product may be larger for a cylindri
magnetron. It can be calculated exactly neglecting the in
ence of space charge. This influence can be neglected
at the beginning of the rise in the secondary emission
space charge will not significantly influence the electron m
tion. The electron transit time from the cathode and back
a cylindrical magnetron will be determined using formul
given in the Appendix to the lectures in Ref. 9. The equat
for the radial electron motion beginning at the cathode is

r 52
dP

dr
,
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P~r !5
e

m
C ln

r

a
1

V2

8 S r 2
a2

r D 2

, ~3!

wherer is the radial coordinate of the electron,e andm are
the electron charge and mass, respectively,

C5
U

ln
b

a

,

the constantC characterizes the electric field in terms of th
applied voltageU and the radii of the anodeb and cathodea,
andV5eB/m is the cyclotron frequency.

This equation has the quadrature solution

t5E
a

r dr

A22P~r !
. ~4!

The period of the motion was calculated as twice t
time 2tmax for motion as far as the maximum radiusr max, for
which P(r max)50. Substituting numerical values for th
geometric dimensions of the guna50.15 cm andb51.5 cm
and experimental data~the average magnetic field inductio
from the interval in which emission is excitedB5138 mT
and the gun voltageU530 kV!, computer calculations give
the frequencyF52.967 GHz, which agrees satisfactori
with the working frequency of 2.797 GHz.

CONCLUSIONS

1. The main characteristics and operating stability o
magnetron gun with a cold secondary-emission cathode h
been confirmed in the frequency regime up to and includ
50 Hz.

2. A relativistic electron beam has been obtained at
exit from a resonant accelerator having a magnetron gun
the electron source with capture no worse than that for c
ventional guns.

3. It has been shown that an accelerating complex w
an unheated magnetron gun can naturally form high-cur
nanosecond pulses of relativistic electrons with microsec
high-voltage pulses at the gun. This can be achieved bec
a large secondary-emission current is excited rapidly by
high voltage under conditions where energy is stored in
accelerating structure.

4. It has been established that when the resonator is
cited near the magnetron gun and with magnetic fields c
responding to electron cyclotron resonance, injection is
served in the accelerator and relativistic electrons
observed at its exit over the entire time of application
voltage to the gun. Satisfactory agreement is obtained
tween the calculated electron oscillation frequency in the g
and the working frequency of the microwave field in th
accelerator.

5. A distinguishing feature of the electron cyclotro
resonance regime is that the current is an order of magni
lower and the current at the accelerator exit~until this com-
pletely disappears! depends strongly on the phase of the
field exciting the current.
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6. The estimated beam emittance~14 cm•mrad! can
solve the problem of the practical application of accelerat
with this type of electron source.

In conclusion, the authors would like to thank A. N
Opanasenko for assistance with the calculations and st
lating discussions.
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Initiation of a low-pressure glow discharge in a plasma electron source with a ribbon
beam

V. Ya. Martens
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Results are presented from an experimental investigation of a low-pressure glow discharge with a
wedge-shaped hollow cathode in a plasma electron source, where this discharge is initiated
by reflex and magnetron discharges. ©1999 American Institute of Physics.
@S1063-7842~99!02907-4#
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One of the most effective methods for the heat treatm
of semiconductor materials and devices is the electron b
method.1 In particular, cw ribbon electron beams of wid
1–3 mm with power densities up to 1 kW/cm2 and electron
energies less than 10 keV are suitable for recrystalliz
polycrystalline silicon on an insulator.2,3 In order to deliver
these beams with a small angle of convergence, the emi
should provide emission current densities up to 100 mA/c2.
It is advisable to solve this problem using cw plasma em
ters in which a plasma of the required density and homo
neity is generated in special gas-discharge structures. In
type of plasma electron source a linear emission channel
be fabricated in the anode or cathode electrodes of
plasma generator. In this case, the comparatively large c
nel cross section prevents a substantial pressure drop
being established between the working volume of the em
ting plasma generator and the accelerating gap for the e
ted electrons. Under these conditions the electrode struc
of the plasma electron source should contain special ini
ing systems in the plasma generator to facilitate the ignit
of a discharge at low pressure.

Here we present results of an investigation of a lo
pressure discharge in an electrode structure with a we
shaped hollow cathode, where this discharge is initiated
reflex and magnetron discharges~Figs. 1a and 1b!. In the
first case, a reflex~auxiliary! discharge is initiated in a dis
charge cell formed by a planar cathode1, an anode2, and the
planar outer part of a wedge-shaped hollow cathode3. Elec-
trons from the reflex discharge penetrate through a 3
diameter aperture to the inside of the wedge-shaped ho
cathode and initiate the main discharge. The minimum
quired auxiliary discharge current is 50 mA with a workin
gas~argon! flow rate of 4.5 m3mPa/s. A 6032.5 mm emis-
sion slit is provided in the main-discharge anode4. After the
main discharge has been ignited, the auxiliary discharg
quenched by removing the voltageUad. For an argon flow
rate of 4.5 m3mPa/s, the pressure in the accelerating gap
;1022 Pa and that in the wedge-shaped cathode
;1021 Pa. A wedge-shaped hollow cathode was selected
the following reasons. The primary electrons leaving
cathode surface at a certain initial velocity as a result
ion-electron emission and accelerated in the cathode po
8601063-7842/99/44(7)/2/$15.00
nt
m

g

rs

-
e-
is

ay
e
n-
m

t-
it-
re
t-
n

-
e-
y

m
w
-

is

s
s

or
e
f
n-

tial drop reach the cathode potential drop at the opposite
of the hollow cathode and enter the cathode, not along
normal but at a certain angle to it since the surfaces of
wedge-shaped hollow cathode are not parallel. The nor
velocity component of these electrons is such that they c
not overcome the cathode potential drop and reach the o
site part of the hollow cathode, and they are reflected by
electric field of the cathode potential drop without ener
losses. This electron reflection can be repeated many ti
and in consequence, the average lifetime of the primary e
trons and thus the gas ionization efficiency are increased
stantially. This effect may mean that a discharge can exis
low pressure without being sustained by electrons injec
from an auxiliary discharge.

Initiation of the main discharge by a magnetron d
charge takes place as follows~Fig. 1b!. A switch S is set to
position a, whereupon an auxiliary magnetron discharge
ignited between the cathodes1 and 3, its anode being the
wedge-shaped hollow cathode3. The switch S is then
switched to positionp and the main discharge is ignited b
tween the wedge-shaped hollow cathode formed by e
trodes1 and 3 and the anode4. During the switching time no
magnetron discharge burns since no voltage is taken from
anode4 and at this time it is the anode for the magnetr
discharge. The minimum required magnetron discharge
rent for which the main discharge can be initiated is high
than that in the first initiation system and is 200 mA for
argon flow rate of 6.8 m3mPa/s.

Figure 2 shows current–voltage characteristics of a d
charge with a wedge-shaped hollow cathode initiated by
flex ~a! and magnetron~b! discharges. We know4 that a low-
voltage hollow-cathode discharge can only burn stably
currents exceeding a certain critical level. A reduction in t
discharge current specifically leads to expansion of the c
ode potential drop zone, whose opposite sections can
mately overlap inside the cavity. This is usually accomp
nied by an abrupt increase in the discharge burning volt
or the discharge is quenched, as occurs in our case.
points on the extreme left of the experimental curves in F
2 correspond to the critical values of the main discha
current. As the gas flow rate increases and the discha
burning voltageUd decreases, the critical currents decrea
© 1999 American Institute of Physics
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If the main discharges with different systems of initiation a
compared, attention is drawn to the fact that in the sec
case~Fig. 1b!, even at higher working gas flow rates, th
critical currents are higher than in the first case~Fig. 1a!.
This is possibly because of differences in the magnitude
configuration of the magnetic field in the upper part of t
wedge-shaped hollow cathode.

FIG. 1. Schematic diagrams of a plasma electron source with a ribbon b
where the main discharge is initiated by reflex~a! and magnetron~b! dis-
charges:1 — planar cathode,2 — auxiliary discharge anode,3 — wedge-
shaped hollow cathode,4 — main discharge anode,5 — permanent ring
magnet, and6 — collector.
d

d

Using these plasma emitters we obtained emission
rents I e up to 200 mA with an emission efficiencya
50.5– 0.7 (a5I e /I d , where I d is the main discharge cur
rent! and economyH 5 1.7–2.3 mA/W. A comparison be
tween the characteristics of the main discharge initiated
reflex and magnetron discharges showed that in the first c
the critical currents are lower and a lower working gas flo
rate is required although the design and power supply sys
are slightly more complex. The choice of a particular varia
to develop a plasma electron source with a ribbon beam
pends on the specific requirements for the source.

The author would like to thank Yu. A. Burachevski� for
assistance with the experiment.
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FIG. 2. Current–voltage characteristics of discharge with wedge-sha
hollow cathode initiated by reflex~a! and magnetron~b! discharges. Work-
ing gas — argon; Gas flow rateQ, m3mPa/s:1 — 3.4, 2 — 4.5, 3 — 5.6,
4 — 5.1, 5 — 6.8, and6 — 8.4.
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Enhancement of the measurement sensitivity in real-time optical image processing
for objects with a periodic structure

A. M. Lyalikov
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A possible method of real-time visualization of large-scale objects giving enhanced measurement
sensitivity using incoherent illumination is reported. ©1999 American Institute of
Physics.@S1063-7842~99!03007-X#
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Displacements, deformations, macroscopic defects,
also surface relief can be visualized by using coatings in
form of grids or retrodyes applied artificially to the obje
being studied1,2 and also by using the natural surface stru
ture such as various types of inclusions and character
formations.3,4 These optical methods of deciphering inform
tion on the state and parameters of an object are simila
speckle photography and holographic interferometry but
like these methods, they can be used to study object
appreciable dimensions such as multistorey buildings me
by using natural sunlight. When objects with a periodic s
face structure are studied, the sensitivity of the meas
ments can only be regulated at the stage of optical proces
of the photographs using an image of these objects.5

In the present paper it is shown that the sensitivity of
measurements can be enhanced by real-time incoheren
tical processing of images of objects having a periodic str
ture. The use of incoherent illumination means that it is p
sible to use a method of enhancing the sensitivity of
measurements to study large-scale objects by illumina
them with sources of white light or simply with sunlight.

We postulate that an optical system produces an im
of an object with a periodic surface structure. Examples
these objects are slit-mask amplitude screens3 and various
types of brickwork or tiled structures.4 For almost all these
objects the illuminance distribution in the image of the pe
odic structure, where they axis is oriented parallel to the
image, may be represented as a Fourier series expansio

I ~x,y!; (
n51

1`

an cos F2pnx

T
1nw~x,y!G , ~1!

wherean are coefficients andT is the period of the image o
the structure.

Depending on the object the functionw(x,y) may deter-
mine the deviation of the surface profile from a plane3 or
simply the orientation of the object in space.4 The task for
investigating this type of object is to visualize the behav
of w(x,y).

Unlike earlier methods,5,6 to enhance the sensitivity o
measurements to visualizew(x,y) in real time, we sugges
that an image of the periodic structure of an object should
projected onto a standard transparency in the form of
amplitude diffraction grating with a carrier-band perio
8621063-7842/99/44(7)/2/$15.00
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T15T/m, wherem52,3,4,. . . . This approach was used ea
lier in a Talbot interferometer to enhance the sensitivity
measurements to visualize phase objects7 and also to visual-
ize the spatial orientation of photographed buildings, but
this last case only at the optical processing stage of
photographs.8

If the spatial orientation of planar surfaces such as bu
ings needs to be visualized in real time using the techni
proposed in Ref. 6, a normal amplitude grating with a cor
sponding reduction in the period of the carrier bands will
used as a standard transparency to enhance the sensitiv
the measurements. However, if the surface profile of the
ject differs from planar and needs to be visualized in r
time with the measurement sensitivity enhancedm times, for
example, its macrodefects compared with a standard ob
the standard transparency should be a photograph with
amplitude transmission

t~x,y!; cos2 Fpmx

T
1

m

2
w0~x,y!G , ~2!

wherew0(x,y) determines the deviation of the surface pr
file of the standard object from a plane.

For this purpose we record a photograph of a stand
object under nonlinear conditions and then copy it in a p
tograph copying system9 which isolates the waves diffracte
in the 6 l th diffraction orders wherel 5m/2. Recording the
photograph of the standard object under nonlinear conditi
ensures that the highest diffraction orders (u l u.1) appear on
the image of the periodic structure in the nonlinear pho
graph. When the photograph is copied, the magnification
the optical system should be exactly one, and the record
conditions should preferably be linear to eliminate high
harmonics which complicate the treatment of the visualiz
pattern.

When the object is observed through a standard trans
ency of the type~2!, the illuminance distribution will be
determined by the productI (x,y)t(x,y). It can be shown
that in order to describe the pattern of moire´ fringes which
appear on the combined image of the object with the st
dard transparency, we can confine ourselves to the prod
© 1999 American Institute of Physics



ic
th

the

e

the
ns
rd,
ized
uld
red

ask
ig-
ure-

n

o

863Tech. Phys. 44 (7), July 1999 A. M. Lyalikov
1

2
am cos H pmx

T
@w0~x,y!1w~x,y!#J

3cosH pmx

T
@w0~x,y!2w~x,y!#J . ~3!

Regions for which the second cosine in Eq.~3! vanishes
will correspond to poor visibility of the image of the period
structure of the object. In this case, the equations for
family of moiré fringes are

FIG. 1. Moirépatterns visualizing a surface macrodefect in the slit mask
a television picture tube without enhanced measurement sensitivity~a! and
with doubled sensitivity~b!.
e

px

T
@w0~x,y!2w~x,y!#5~2N11!

p

2m
, ~4!

whereN50,1,2, . . . .
The factor 1/m on the right-hand side of Eq.~4! indicates

that for the visualization of a macrodefect determined by
difference @w0(x,y)2w(x,y)#, the sensitivity of the mea-
surements increasedm times compared with the usual moir´
pattern.4–6

Slit masks of television picture tubes were used as
object to confirm this method experimentally. The deviatio
of the surface macrorelief of the mask from the standa
which characterize the surface macrodefects, were visual
using a system described in the first part of Ref. 5. It sho
be noted that the surface profile of these slit masks diffe
from planar.3 Figure 1 shows a moire´ pattern which visual-
izes the surface macrodefect in real time~a! and a moire´
pattern with the measurement sensitivity doubled~b!. The
standard transparency was a photograph of a standard m
copied in the first positive or negative diffraction orders. F
ure 1b is more informative because of the enhanced meas
ment sensitivity.

This work was supported by the Ministry of Educatio
of the Republic of Belarus.
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Increase in the correlation length of nonmonochromatic radiation during propagation
in a single-mode optical fiber containing random inhomogeneities and the
influence of this increase on the operation of a fiber ring interferometer

G. B. Malykin and V. I. Pozdnyakova

Institute of Applied Physics, Russian Academy of Sciences, 603699 Nizhni� Novgorod, Russia
~Submitted July 23, 1998!
Zh. Tekh. Fiz.69, 140–143~July 1999!

An analysis is made of the conditions under which the coupling of orthogonal polarization
modes at random inhomogeneities in single-mode optical fibers leads to an increase in the
correlation length of a source of nonmonochromatic radiation. It is shown that when long-
base fiber ring interferometers with a single-mode fiber ring system possessing weak linear
birefringence are used, the correlation length of the nonmonochromatic radiation at the
interferometer exit is increased, which means that the interference pattern can have satisfactory
visibility even when there is an appreciable difference between the interferometer arms as
a result of the Sagnac effect due to the Earth’s rotation. The calculations were made by
mathematical modeling of random inhomogeneities in the fiber. ©1999 American
Institute of Physics.@S1063-7842~99!03107-4#
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The correlation length of nonmonochromatic radiation
one of the most important parameters in optical interfero
etry, especially fiber interferometry. For some application
is advantageous to have a short correlation length and
others a long correlation length. For instance, in fiber opt
tomography1 the spatial resolution of adjacent layers of t
sue is mainly determined by the correlation length and
order to improve the resolution it is necessary to have
shortest possible correlation length. Conversely, in Mich
son and Mach–Zehnder interferometers with different a
lengths, the correlation length must be increased otherw
the visibility of the interference pattern may very poor.

A difference between the interferometer arms is an
evitable consequence of their inadequate balancing. We
an example where the counterpropagating waves in a fi
ring interferometer~FRI! cover essentially different paths
Scully et al.2 suggested measuring the postulated anisotr
of the velocity of light using an FRI fabricated using
single-mode optical fiber with a large-area ring system.
timates show that in order to achieve the required accur
the area of the FRI ring system should be at least several
of square kilometers. Since the FRI rotates with the Ea
the Sagnac effect leads to an appreciable difference in
optical lengths for the counterpropagating waves in the r
system, of the order of a few hundred micron, and visibil
of the interference pattern at the interferometer exit will
very poor. A deterioration in the visibility of the interferenc
at the exit of an FRI with a wide-band radiation source w
observed by Burns and Moeller,3 who studied an FRI with a
comparatively small-area ring system but having a high
gular rotation speed.

The aim of the present study is to show that after pro
gating through a fairly long section of single-mode fiber w
weak linear birefringence, the correlation length of no
monochromatic radiation may increase considerably as a
8641063-7842/99/44(7)/4/$15.00
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sult of the coupling of polarization modes at fiber inhom
geneities. We also study the influence of an increase in
correlation length on the operation of an FRI with a sing
mode fiber ring system possessing weak linear birefringen
The physical meaning of this effect can be explained as
lows. When the conditionL@h21 is satisfied, whereL is the
fiber length in the FRI ring system andh is the polarization
conservation parameter for the single-mode fiber4 ~the value
of h21 characterizes the fiber length at which effective e
ergy exchange takes place between the polarization mod!,
radiation propagating along the slow and fast axes of b
fringence of the fiber is repeatedly transferred from one
larization mode to another. As a result, the spectral cha
teristics of the radiation at the FRI exit differ substantia
from those at the entrance: if the input radiation spectr
was Gaussian, at the exit it becomes extremely jagged~al-
though conserving its previous width!, which increases the
correlation length.5 In other words, the single-mode fiber is
two-channel system and each channel has a single pola
tion mode. In the absence of any inhomogeneities in
fiber, these channels are independent, i.e., no energy is
changed between them, and the spectral characteristics o
radiation in each polarization mode will be the same as th
at the FRI exit. However, in the presence of random inh
mogeneities, energy exchange takes place between the
channels, fast and slow polarization modes, which chan
the profile of the spectrum in each polarization mode. In
absence of dichroism the spectrum of the total intensity
both polarization modes for a wave propagating in one p
ticular direction in the FRI ring system remains constant a
is the same as the radiation spectrum on entry to the F
Hence, this effect is a consequence of the fact that the fi
used to fabricate the FRI ring system is a two-channel s
tem in which coupling takes place between the two chann
as a result of random inhomogeneities.
© 1999 American Institute of Physics
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FIG. 1. Radiation spectrum at FRI en
trance ~dashed curve! and exit ~solid
curve! for «51024.
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In order to calculate the correlation function of no
monochromatic radiation after passage through the sin
mode fiber, we use a model proposed in our earlier study6 to
describe random inhomogeneities in a single-mode fib
This model assumes that the axes of linear birefringenc
the fiber are randomly twisted and that the entire length
the fiber may be divided into sections of random leng
whose twist is random but constant. Regardless of the lin
birefringence of the fiber, the length of the random sectio
has a Poisson distribution with an average of 2.5 cm and
random twist is uniformly distributed in the range62 rad/m.
As we showed in Ref. 6, calculations of the parameterh as a
function of the linear birefringence of a single-mode fib
based on this model of random inhomogeneities give g
agreement with experiments carried out by various auth
using different types of single-mode fibers. It should
noted that in order to ensure that the envelope of the ra
tion spectrum at the FRI exit is jagged, the twist of the ax
of birefringence over the fiber length need not be rand
and may vary periodically. In this last case, however,
dependence of the visibility of the interference pattern at
FRI exit on the difference between the optical length of
armsDL will decrease periodically to zero. Figure 1 show
the radiation spectrum at the FRI entrance and exit. Note
in the case«!1, when the polarization nonreciprocity of th
FRI is small,7,8 the spectra for the counterpropagating wav
at the FRI exit are almost the same. We also note that in
absence of a polarizer~«51!, the spectrum for the orthogona
polarizations in each of the counterpropagating waves is
tually complementary and, as we have already noted,
spectrum of the total intensity of both polarizations of ea
counterpropagating wave is the same as the radiation s
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trum at the FRI entrance. The correlation length of no
monochromatic radiation at the FRI exit without a polariz
was not considered in the present study.

In order to determine the correlation length, we calc
lated the visibility of the interference pattern at the FRI e
as a function of the optical path difference of the FRI ri
systemDL for the counterpropagating waves

g5
I max2I min

I max1I min
, ~1!

whereI is the radiation intensity at the FRI exit.
The value ofg was calculated for two cases: 1! the FRI

ring system was made from a fiber without random inhom
geneities, 2! the FRI ring system was made from a real fib
with random inhomogeneities. We write an expression
calculate the radiation intensity at the FRI exit

I 5uEx
11Ex

2u21uEy
11Ey

2u2, ~2!

whereEx
1 ,Ey

1 ,Ex
2 , andEy

2 are the components of the ele
tric fields of the counterpropagating waves at the FRI ex

The calculations were made for an FRI ring syste
20 km long, made of a single-mode fiber for which the d
ference between the refractive indices in the slow and
axes of linear birefringence wasDn51026, using a 0.8mm
radiation source and linewidths of 10 and 1 nm. The exti
tion coefficients of the polarizer« were 1024 and the azi-
muths of the axes of linear birefringence at the FRI entran
a1 anda2 coincided with the direction of transmission of th
polarizer. The dependence ofI on DL constructed using ex
pression~2! resembles damped oscillations with a peri
equal to the wavelength against the background of a cons
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FIG. 2. Visibility of interference pat-
tern at FRI exit as a function of the
optical path difference of the counter
propagating waves caused by the Sa
nac effect for an ideal single-mode fi
ber without random inhomogeneitie
(g1 — dot-and-dash line! and for a
real fiber with random inhomogene
ities (g2 — solid curve, dashed curve
— range of possibleg2 values for
various realizations of random inho
mogeneities in a the fiber ring system!.
The length of the ring system is
21 km, the average wavelength of th
radiation source isl050.8mm, and
the linewidth isDl510 ~a! and 1 nm
~b!.
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pedestal. The values ofI max and I min were defined as the
maximum and minimum of the curve per period. The resu
of the numerical simulation showed that the radiation sp
trum at the FRI exit was highly jagged, as was predicted

Figure 2 gives the dependenceg(DL). It can be seen
from Fig. 2a that when the bandwidth of the radiation sou
is 10 nm for optical length differences up toDL;25mm, the
visibility of the interference pattern at the FRI exit does n
depend on the presence of random inhomogeneities in
fiber. For largeDL the visibility of the interference pattern a
the exit of an FRI with a fiber ring system containing rando
inhomogeneities is substantially higher~approximately one
thousand times higher! than that for a fiber without random
inhomogeneities. When the bandwidth is 1 nm~Fig. 2b! as
far asDL;220mm the visibility of the interference patter
when random inhomogeneities are present in the fibe
slightly lower than that without inhomogeneities, but th
becomes substantially higher~approximately five hundred
times higher!.

The main result of this study is that we have shown
means of a numerical simulation of random inhomogenei
s
c-

e

t
he

is

y
s

in a single-mode fiber that the correlation length of radiat
after propagating through an FRI ring system made o
single-mode fiber with random inhomogeneities is consid
ably greater than the correlation length without random
homogeneities. This means that sources of nonmonoc
matic radiation can be used in unequal-arm fib
interferometers fabricated using single-mode fibers w
weakly linear birefringence and interference patterns of s
isfactory visibility can be obtained. The presence of rand
inhomogeneities in the fiber ring system of an FRI leads
the appearance of an additional phase drift of the interfere
pattern at the FRI exit, unrelated to the rotation, whose or
of magnitude does not exceed«, as has been shown by th
results of theoretical7,8 and numerical calculations.9 This im-
poses the constraint that the fiber temperature must be
stable otherwise the phase of the interference of the coun
propagating waves will vary with temperature. Thus, t
presence of random inhomogeneities in the single-mode fi
on the one hand causes some deterioration in the FRI c
acteristics, since it leads to an additional zero shift but on
other hand, it can produce an interference pattern of satis
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tory visibility in the presence of nonreciprocal effects whi
result in a difference between the optical paths for the co
terpropagating waves.
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