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Formula~9! should read:
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Formula~27! should read:

Wk5
1

4
~Ak1ja1vk!S 2 exp~ iwk!sin 2uk1 i

N23
a

p Da011
1

4
~Ak1ja2vk!

3
@Bk exp~2iwk!2ha#2

uBk exp~2iwk!2hau2
S 2 exp~2 iwk!sin 2uk2 i

N23
a

p Da021@Bk exp~2iwk!2ha#

3Fcosuh

vM
2

a01

2
exp~2 iwk!sin 2uk2

a02

2
exp~ iwk!sin 2uk1 i

N23
a

2p
~a0

12a0
2* !G .

Formula~30! should read:
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Interaction of contact electrohydrodynamic waves in current-carrying semiconductors
R. A. Brazhe and T. A. Novikova

Ulyanovsk State Technical University, 432027 Ulyanovsk, Russia
~Submitted July 23, 1997; resubmitted March 24, 1998!
Zh. Tekh. Fiz.69, 1–4 ~August 1999!

It is shown that contact electrohydrodynamic waves similar to the waves on an interface between
two immiscible liquids can exist on an interface between two identical semiconductors with
different concentrations of free charge carriers. When a current flows, instabilities of such waves,
particularly an analog of the Kelvin–Helmholtz hydrodynamic instability, appear in one of
the layers. The possibility of practical utilization of contact waves interacting with currents is
discussed. ©1999 American Institute of Physics.@S1063-7842~99!00108-7#
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INTRODUCTION

Let us consider a structure consisting of two semic
ductor layers with different concentrations of free charge c
riers. Such a structure can be obtained, for example, by
autoepitaxial growth of a high-resistance overlayer on
semiconductor substrate.1 It was shown in Ref. 2 that contac
electrohydrodynamic waves of free charge carriers, simila
the waves on an interface between two immiscible liquid3

can propagate in the structure under consideration.
The ensemble of free charge carriers in a semicondu

can be regarded as a charged, weakly compressible qua
uid, if 1! the semiconductor is monopolar and nondegen
ate; 2! the free carriers are thermally excited and are cha
terized by a constant and isotropic effective massm* ; 3!
their motion in a transverse electric field is collisionle
~conforms to a ballistic regime4!, which is realized when the
thicknesses of the high-resistance layer (d1) and the low-
resistivity layer (d2) are smaller than the so-called ballist
lengthLb ,

d1,2,Lb , Lb5tsS 2\v0

m*
D 1/2

, ~1!

wherets510212210213 s is the spontaneous emission tim
for optical phonons andv0 is their cutoff frequency; 4! the
junction layer thicknessesd1,2 exceed the Debye screenin
radius

d1,2.r D , r D5S «0«kBT

n1,2e
2 D 1/2

, ~2!

and 5! the velocity distribution of the free carriers is insig
nificant. In such a case they are located near the bottom
the conduction band~electrons! or the top of the valence
band ~holes!, and their velocity v5(2E/m* )1/2'const.
Therefore, when a current of majority carriers flows in one
the semiconductor layers, the behavior of the charged
ticles in the contact region can be described as the rela
motion of two liquids of different density. This paper di
cusses the possibilities of the appearance of hydrodyna
instabilities in such a structure when the contact electro
drodynamic waves interact with the current of free charg
8691063-7842/99/44(8)/4/$15.00
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THEORETICAL MODEL

Figure 1 shows a structure consisting of two semico
ductor layers with different electron concentrations. The c
tact potential difference in ann2n1 junction equals5

Uc5
kBT

e
ln

n2

n1
, ~3!

wheren1 andn2 are the electron concentrations in the hig
and low-resistivity layers (n2.n1).

Electrohydrodynamic waves of free charges can be
cited by an external source in the junction region. Their f
quenciesv lie in the range2

vc<v<vd ; ~4!

vc5
en1,2m

«0«
, vd5

c0
2

D
. ~5!

Herevc is the Maxwell relaxation frequency,vd is the elec-
tron diffusional frequency,c0 is the velocity of propagation
of a wave disturbance,D5mkBT/e is the diffusion coeffi-
cient, andm is the electron mobility in the semiconductor.

FIG. 1. Semiconductor model investigated.
© 1999 American Institute of Physics
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Let us consider cadmium sulfide~CdS! at T5300 K as
an example of an electronic semiconductor. The upper la
of the structure used, which was grown epitaxially, ha
higher resistivity than does the lower layer:%155.0
31022 V•m and%251.031022V•m. The contact poten
tial difference ~3! across the boundary between the tw
layers is roughlyUc.0.04 V. The total thickness of th
n2n1 junction under these conditions is d
.(2«0«m%1Uc)

1/250.11mm @in CdS m50.035m2/(V• s)#,
the thicknesses of the transition regions in the upper
lower layers beingd15%1d/(%11%2)50.09 mm and d2

5%2d/(%11%2)50.02mm, respectively. According to~1!
and ~2!, the ballistic length in CdS isLb50.12 mm, the
Debye screening radius in the upper transition layer isr D1

.0.06 mm, and the value in the lower layer isr D2

.0.027 mm.
As the above estimates show, the condition for qua

hydrodynamic phenomena is satisfied in the structure un
consideration, since the thicknesses of the junctions in
layers are smaller than the ballistic length and greater t
the Debye radius~or approximately equal to it!.

We shall assume everywhere below that a longitudi
current of free electrons with a densityj 5en1ud (ud is the
mean electron drift velocity! flows in the upper layer of the
semiconductor. We can use the equations of hydrodynam
to determine how this current influences the propagation
contact electrohydrodynamic waves and ascertain the ty
of instabilities appearing.

DISPERSION RELATION

Let us use the model adopted above to examine the
havior of two ideal incompressible electron quasiliquids
the transition region of the semiconductor, the lower
which ~with a large concentration of free charges! is static
and occupies the regionz,0, while the upper liquid moves
with the velocityud ~Fig. 1!.

In the hydrodynamic approximation the system of eq
tions describing the medium under consideration3 includes
the equations of motion of the particles comprising the el
tron quasiliquids of densityn1,2m* in each of the layers

]u1,2

]t
1u1,2

]u1,2

]x
1u1,2

]u1,2

]z
1U1,2

]u1,2

]x

52
1

n1,2m*

]p1,2

]x
, ~6!

]v1,2

]t
1u1,2

]v1,2

]x
1v1,2

]v1,2

]z
1U1,2

]v1,2

]x

52
1

n1,2m*

]p1,2

]z
2

eE1,2

m*
, ~7!
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the continuity equation

]u1,2

]x
1

]v1,2

]z
50, ~8!

the condition for the pressures at the interface

p15p2 , ~9!

the boundary condition for the velocities

v1uz5d1
50, v2uz52d2

50, ~10!

and the evolution relation for the displacementh(x,t) of the
interface (z50)

]h

]t
1U1,2

]h

]x
5v1,22u1,2

]h

]x
. ~11!

The following notation is used in the equations just wr
ten down:u1,2 andv1,2 are the horizontal and vertical com
ponents of the particle velocities in then layer ~with the
subscript 1! andn1 layer ~with the subscript 2!; U1,2 are the
relative velocities of the electron quasiliquids, whereU2

[0 andU1 is equal to the electron drift velocity@U15ud

5 j /(en1)#; andE1,2 are the contact electric field intensitie
in the transition layers of the semiconductor.

A disturbance of the interface of then2n1 junction
propagates in the form of plane traveling waves. Let us
tain the dispersion relation for such waves in the linear
proximation. We seek the solution of Eq.~11! together with
~6!–~10! in the form

h5h0 exp@ i ~kx2vt !#, ~12!

u1,25A1,2cosh@k~z7d1,2!#exp@ i ~kx2vt !#, ~13!

v1,252 iA1,2sinh@k~z7d1,2!#exp@ i ~kx2vt !#, ~14!

p1,25
n1,2m* ~v2kU1,2!

k
u1,22n1,2m*

eE1,2

m*
z, ~15!

wherek is the wave number.
Substituting expressions~12!–~15! into ~11! and allow-

ing for the boundary condition~9!, we obtain the dispersion
relation for small fluctuations of the interface between t
electron quasiliquids:

~v2udk!2n1 tanhkd21v2n2 tanhkd1

5~n22n1!kv tanhkd1 tanhkd2 . ~16!

Herev5eEmax/m* is the effective acceleration of electron
in the contact electric field, whose maximum intensity
given by the expressionEmax5(E1,2)max5en1d1 /(««0). We
write the solution of the dispersion relation
v1,25k
udn1 tanhkd26~ tanhkd1 tanhkd2@~n22n1!vN1,2/k2n1n2ud

2# !1/2

N1,2
, ~17!
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whereN1,25n1 tanhkd21n2 tanhkd1.

ANALYSIS OF INSTABILITIES

In the long-wavelength approximation the dispersion
lation ~16! takes the form

a~v2udk!21bv22b~12a!vk2d250, ~18!

wherea5n1 /n2 andb5d1 /d2.
Its solution~17! is also modified:

v1,25k
ud6~@~12a!~11b/a!vd22ud

2#b/a!1/2

11b/a
. ~19!

The dispersion curvev(k) is presented in Fig. 2. The
upper branch of the dispersion curve corresponds t
positive-energy wave@the plus sign in~19!#, and the lower
branch corresponds to a negative-energy wave@the minus
sign in ~19!#, whose domain is located between the critic
points v50 and vgr5` (vgr is the group velocity!.6 The
coupling of negative- and positive-energy waves gives ris
an instability after the bifurcation pointvgr5`. In this re-
gion the frequency of the wave becomes complex. In hyd
dynamics a similar instability of internal waves in the she
flow of a liquid is known as the Kelvin–Helmholt
instability.7

Figure 2 shows the region in which the existence
stable negative-energy electrohydrodynamic waves is p
sible. It corresponds to the range of wave numbers satisfy
the inequality

kc,k,k* . ~20!

Here kc corresponds to the conditionv50, andk* corre-
sponds to the point wherevgr5`. At this point a region of

FIG. 2. Dispersion characteristics of contact electrohydrodynamic wave
an n2n1 junction.
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Kelvin–Helmholtz instability is adjacent to the region o
stable waves. Contact waves of either type~both positive-
and negative-energy waves! will be unstable, if their wave
numberk.k* or if the electron drift velocity exceedsud* :

ud* 5@vd2~12a!~11b/a!#1/2. ~21!

In other words, electrohydrodynamic waves are unsta
when the current density satisfies the inequality

j .en1ud* . ~22!

The condition for the wave number of negative-ener
waves~20! corresponds to the following range of electro
drift velocities:

ud
c,ud,ud* . ~23!

In the present case the value ofud
c is given by the ex-

pression

ud
c5ud* ~11b/a!21/2. ~24!

We present some numerical estimates for the two-la
CdS structure having the parameters indicated above.
electron drift velocities corresponding to the condition f
the excitation of negative-energy contact electrohydro
namic waves in the semiconductor lie in the range
3104,ud,4.53105 m/s. This corresponds to a range
intensities of the external longitudinal electric field fromEc

.2.73106 V/m to E* .1.33107 V/m, i.e., below the break-
down value. According to~22!, when E.E* ~or ud.4.5
3105 m/s! the contact waves experience Kelvin–Helmho
instability.

CONCLUSION

We note that the range of frequencies of contact elec
dynamic waves specified by the condition~4! for CdS ex-
tends from f min51.931011 Hz to f max51.531012 Hz. The
phase velocity of linear contact waves

c05S 12a

a1b
bvd2D 1/2

~25!

amounts to 9.33104 m/s, which corresponds to a waveleng
l50.093 mm and a frequencyf 51012 Hz.

Thus contact electrohydrodynamic waves with micr
wave frequencies can be excited by properly selecting
parameters of a two-layer semiconductor structure. T
propagation conditions for these waves can be varied
varying the current of charge carriers in one of the laye
Positive- and negative-energy contact waves are excited
definite range of electron drift velocities and exhibit instab
ity at ud.ud* @see~22!#.

The growth of instabilities within ann2n1 junction is
interesting from the standpoint of the possibility of finding
regime of amplification of contact electrohydrodynam
waves in their interaction with the current of majority car
ers in the high-resistance layer of the semiconductor.

Signal amplifiers~and generators! based on the prin-
ciples described can be promising for work in the terahe

in
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frequency range, which has been exploited to only a sm
extent. The development of classical microwave electro
devices~klystrons, magnetrons, traveling-wave tubes, e!
runs up against difficulties associated with their small g
metric dimensions. Acoustoelectronic devices cannot ope
in this range because of the excessively strong dampin
acoustic waves. Free-electron lasers are still the only o
electronic devices which permit the generation and amp
cation of signals at such frequencies, but they require c
bersome, expensive, and risky accelerator techniques. T
semiconductor structures with contact electrohydrodyna
waves of free carriers can offer a starting point for the
velopment of terahertz electronics.
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The passage of a plane wave through an inhomogeneous flat insulator layer of arbitrary thickness
without absorption is considered. A method is given for solving the problem in terms of
elementary functions, which reduces the number of independent parameters of the layer. A
similarity principle for layers having equivalent reflectivities is described. It is shown
that the electric field intensity can increase to infinity near the critical point where«50.
© 1999 American Institute of Physics.@S1063-7842~99!00208-1#
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There are several bottlenecks to research on the pas
of electromagnetic waves in a plane-layer medium with
absorption in the vicinity of a zero of the dielectric consta
For example, as was shown in Ref. 1, in the case of a lin
function «(z) the requirement that the solution vanish at
finity is incompatible with the requirement that the field
finite at the zero of«. A singular plane on which the mag
netic field H50 can be identified near the point whe
«50. It was demonstrated in Ref. 2 that the behavior oE
remains unchanged in character near the zero of« when the
variation of« deviates from a linear dependence. Investig
tions of the solution for a linear lossless layer in terms
Airy functions3 show that the electric field~E! is greater than
zero in the region where«,0, i.e., a wave penetrates int
that region. We previously4 refined this solution and showe
on a model of a layer of arbitrary thickness with«.0 that a
wave does not pass into the region where«,0. A critical
point corresponding to«50, which is associated with a
qualitative dependence of the solution on small change
the parameters of the medium, was identified.

Because of the critical point corresponding to«50, the
exact solution of the mathematical problem of the passag
a normally incident plane electromagnetic wave through
inhomogeneous flat insulator layer without absorption ta
on special significance. This basic solution from a bifurc
tion set of solutions corresponds to the limiting case
c1⇒0, Q1⇒0, r⇒`, «9⇒0, andH0⇒0, wherec1 is the
angular width of the flow of electromagnetic energy~the
beam! impinging on the layer,Q1 is the angle of incidence
of the beam on the layer,r is the radius of curvature of th
«5const level of the inhomogeneous medium,H0 is the am-
plitude of the constant magnetic field, and«95const is the
imaginary part of the dielectric constant for«.0.

This paper describes an investigation of the fields a
jump in « assigned by a flat linear layer of arbitrary thic
ness, which continues as a nonlinear layer with continuity
the function«(z) in the system, so that the phase shift o
wave passing through the layerDf!1 and «.0 ~in this
case the conservation law holds for the fields!. The nonlinear
portion, which plays an auxiliary role, is employed to elim
nate the reflected wave from the edge of the linear layer,
8731063-7842/99/44(8)/5/$15.00
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the function«(z) in the nonlinear portion is chosen on co
siderations of simplicity in obtaining a solution. Treating th
case of normal incidence does not entail a loss of genera
since the case of oblique incidence can be reduced to no
incidence simply by a change of variables.3 Moreover, the
‘‘resonance’’ properties of the singular point at«50 are
most pronounced under the presumed condition«9!«.

In accordance with the proposed solution method, a c
tinuously inhomogeneous layer can be represented by a
of homogeneous sublayers of variable thickness, so tha
adjacent sublayersd2[«n /«n115const and (d221)!1
~Ref. 4!. The employment of finite differences with a var
able step for the argument, i.e., the sublayer thickness, w
is matched to the variation of the wave impedance of
medium, permits reduction of the number of independ
parameters of the layer. The theoretical investigations
thereby simplified, and an efficient calculation algorithm c
be devised.

1. Let a plane wave impinge normally on an inhomog
neous flat layer («1 ,«N) of a lossless insulator of arbitrar
thickness extending fromz1 to zN in the case ofDf!1 and
«.0 ~Fig. 1!. The layer consists of two parts: a linear pa
from z1 to zL ~in region 2! with «(kz)5«(kz1)1a1k(z
2z1) and a nonlinear part fromzL to zN ~in region3! with
gr(«)[a/(«)3/25gr(«L)5const, wherea[d«/d(kz), a1

,0, k52p/l, andl is the wavelength in free space. In th
layer the function«(kz) is continuous along with its deriva
tive andugr(«1)u@1 ~sinceDf!1). In front of the layer~in
region 1! at z,z1 ~where«5«1) and beyond the layer~in
region 4! at z.zN ~with «5«N) the medium is homoge
neous, and there is only a transmitted wave beyond the la

Let us assign the solution of the wave equation

d2E

d~kz!2
1«~kz!E50 ~1!

in the homogeneous sublayers~in regions2 and 3!, whose
thicknesses are specified by the conditiond25«n /«n11

5const, in the form

Ex
n5An exp~2 iA«nkz!1Cn exp~ iA«nkz!, ~2!
© 1999 American Institute of Physics
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wheren51,2, . . . ,N; A151, andCN50.
Then, after satisfaction of the boundary conditions

the edges of the homogeneous sublayers, for the reflectiv
Rn5Cn/An and the wave amplitudesAn we obtain the fol-
lowing expressions:

Rn exp$2irn%5R0
n5

r n1R0
n11 exp$ iDrn11%

11r nR0
n11 exp$ iDrn11%

, ~3!

An115expH 2 i S 12
1

d D (
p51

n

rpJ Pn11,

Pn5 )
m51

n21 F11
d21

2
~12R0

m!G , ~4!

where

n51, . . . ,N21, R0
N50, DrN50,

rn5A«nkzn , «L /«15d22(L21),

r n5
d21

d11
; Drn115

2•~d221!

vngr~«1!
;

vn5H d3n for n,L,

1 for n.L.
~5!

We note that the reflectivityR0
n is assigned in a loca

coordinate frame with a center 0n , which is specified by the
conditionzn50. In the recurrence relations~3! the multiplier
rn5A«nkzn has been moved over to the left-hand side, a
gr(«n) is represented in terms ofgr(«1) ~owing to the par-
titioning method used!; therefore,R0

n does not depend explic
itly on «n andkzn .

2. The solution~2!–~5! is exact for the discrete model o
the medium. The finite-difference recurrence relations~3! re-
duce to a Riccati differential equation whenN⇒` (d2⇒1),
demonstrating the transition to the continuous model of
medium. Also, sinced andN are interrelated by the equalit
«1 /«N5d2(N21), if the form of «(kz) is assigned, the reflec
tivity R0

1 becomes a function of two variables asN⇒`: R0
1

5 f (gr(«1),(«N /«1)). The solution in region3 is easily ob-
tained from the Riccati equation~it is given in the Appen-
dix!. Therefore, using~A5!, we can takeN5L andR0

N5R0

in ~3! ~if «N⇒0, thenR05g1 ib).
3. The dependence ofR0

1 on two parameters allows us t
describe a similarity principle for layers involving the ide
tification of, for example, similar linear layers, in whic
these two parameters are equal, but the values ofa1 and«1

(gr(«1)5a1 /(«1)3/2) differ.5 If Df!1 in the case unde
consideration, we can neglect the phase factor in the c
brackets in~4!, i.e., we can takeAn>Pn, n51,2, . . . ,N, and
then in similar layers the reflectivities are equivalent and
wave amplitudes are equal. The similarity principle holds
two-part layers under the additional condition of equality
the values of«L /«N for the two layers. Figure 1 shows tw
similar layers.

4. Let us perform some investigations of the solution
a two-part layer when «N⇒0. In this case R0

1

5 f (gr(«1),«L /«1), and from ~3! we find that uR0
1u⇒1 as
n
es

d

e

ly

e
r
f

r

«L /«1⇒0. The latter is, of course, valid when«1⇒0
(Df⇒0). Thus the transmission coefficientSN /S151
2uR0u2⇒0 as«L /«1⇒0, and the flux density of the wav
tends to vanish as the point where«50 is approached.
Hence,uHyu⇒0 as«L⇒0.

Now let us determine the convergence of the product~4!,
taking L⇒` («L⇒0) and using d’Alembert’s convergenc
test for the corresponding series. Then, for sufficiently la
m we find that

q5
r m11

r m
@11r m~11R0

m11!#.1,

i.e., the product~4! diverges, and thus it is possible th
uEx

Lu⇒`. Similarly, it was found from the equation forH in
Ref. 6 that it is possible to haveu1/Hyu⇒` as«L⇒0.

5. If we representR0
n in ~3! in the form R0

n5uR0
nu(1

1 iDfn) andDfn!1, the variables can be separated and
solution, which does not depend on the form of«(kz) in this
case, can be represented in the form

uR0
nu5

A«1 /«N21

A«1 /«N11
. ~6!

In a first approximation formula~6! is valid for uR0
1u, and

formula ~A9! is valid in the next approximation. The mag
netic field intensity, like the reflectivity, does not depe
very critically on«(kz), permitting the use of formula~A9!
from the Appendix for a linear layer. However, the situati
is different for the electric fieldE. For example, it follows
from formula ~A8! that E depends importantly on«(kz) in
the layer. Therefore, it is best to use the relations~3!–~5! for
calculating a linear layer.

6. We note the instability of the solution with respect
Q in the half space«.0. Going over to oblique incidence b
performing the replacement«⇒«2«1sin2Q1, we can easily
show that an infinitesimally small value ofDQ1 ~which may
be caused, for example, by nonparallelism of the sublay!
causes the directionQ of the Poynting vector to tend top/2
as«⇒«1DQ1

2. Thus, the wave does not pass into the reg
where«,0. The result which we obtained is consistent w
the solution considered above for the case ofQ[0 and re-
fines the solution in terms of Airy functions that was give
previously3 for a linear layer. The approximate character

FIG. 1. Similar layersa andb have equivalent reflectivities whengr(«1a)
5gr(«1), «1a /«Na5«1 /«N , and «1a /«La5«1 /«L , ~the partitioning into
homogeneous sublayers presumes that«n /«n115const!.
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the latter solution fora1!1 and«151 was noted long ago
by Fock.7 The error in the calculation of the electric fie
intensity in it increases with decreasing« and, on the basis o
energy arguments, is determined by«1/4E. In many practical
cases, for example, in calculations of an atmospheric plas
this error can be neglected.

7. From the two solutions obtained for a linear layer w
«L⇒0 it follows that uRu⇒1 and thusSL /S1512uRu2⇒0.
The similarity principle for linear layers allows us to exten
the results of the investigation of the fields at a jump in« to
the vicinity of the point where« equals zero and the functio
«(kz) changes sign. As a result, the exact solution enable
to identify a singular plane where«50, so thatSL /S1⇒0,
E⇒`, andH⇒0 as«⇒0. The point where«50 is a criti-
cal point, near which the behavior of the solution depen
qualitatively on small changes in the parameters of the
dium.

The curvature of an«5const surface in the physica
problem leads to ‘‘reduction’’ of that surface to a point
«⇒0, since we then haveA«kr⇒0, which causes diffrac-
tion losses whenA«kr;1. The occurrence of absorptio
eliminates this phenomenon and causesE to become finite at
«50 and the singular plane to ‘‘spread’’ into a layer, who
thickness (Dz) obeys the lawkDz;uIm(«2 i«9)/a1u. De-
pending on the degree of absorption, the wave will eit
propagate along the layer or pass into the region wh
«,0. A sharp increase inE can then lead to nonlinear e
fects.

Branching of the solution is possible in the vicinity o
the point where«50 ~the solution is potentially multiple-
valued!. This is allowed by the similarity principle describe
above for the layers («1 ,«N), in which the reflectivities are
equivalent and beyond which the fields are approxima
equal. The solution of the mathematical problem under c
sideration is elementary, and it corresponds to the limit
transition, under which«9⇒0, Q⇒0, and r⇒`, in the
physical problem of the passage of a wave through an in
mogeneous insulator layer. There is a bifurcation set of
lutions, which branch off from the basic solution in respon
to small changes in the parameters.

8. When the fundamental parameterugr(«)u!1, the
short-wavelength asymptotic expression is valid. For
ample, a quantitative criterion for its applicability for a give
reflectivity was put forth in Ref. 5. Whenugr(«)u@1, the
long-wavelength asymptotic expression is applicable for
assigned value ofS/S1, and in this case qualitatively differ
ent solutions can be described by the proposed metho
solution. The familiar approximate solution for a linear lay
in terms of Airy functions is one of the possible solutions

9. Owing to the reduction of the number of independe
parameters in the expression for the reflectivity, the propo
method of solution, in addition to analytical investigations,
effective in computational investigations associated with,
example, the design of antenna systems for spacecraft~see
Ref. 8, Suppl. 2!.

The results of computer calculations of the reflectivit
R and the fieldsE are presented in Figs. 2 and 3 for values
gr(«1) equal to 10 and 20, respectively. Here«151, z0 cor-
responds to the point where«50, the solid curves show th
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results of calculations for the linear layer, and the dash
curves show the results for the nonlinear layer under inv
tigation. As follows from formula~4!, in the range of varia-
tion of the parameters consideredAn>Pn; therefore, the so-
lution does not depend on«1, i.e.,R5 f (gr(«1),«1 /«N) and

FIG. 2. Dependence of the reflectivityR and the electric field intensityE on
the coordinatez for gr(«1)510 in inhomogeneous layers of various thick
ness:«1 /«N50.23104 ~1!, 0.23106 ~2!, and 0.23109 ~3!.

FIG. 3. Dependence of the reflectivityR and the electric field intensityE on
the coordinatez for gr(«1)520 in inhomogeneous layers of various thick
ness~1–3 — same as in Fig. 2!.
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E5 f (gr(«1),«1 /«N). This is confirmed by the numerica
investigations. We note that the solution forE in the case of
the linear layer is less critical toward variation of the para
eters than in the case of the nonlinear layer, sincern is
smaller in the former case than in the latter. A quantitat
criterion for applicability of the long-wavelength approxim
tion can be given from a comparison of the fields for t
forms of «(kz) considered. The energy conservation law
used to monitor the accuracy of the calculations.

On the basis of the calculations, we shall use the con
tion gr(«).20 as a criterion for applicability of the long
wavelength approximationgr(«)@1 when«1 /«N@1.

10. When the influence of absorption is taken into a
count in the physical problem for a linear layer intersect
the point where«50, we introduce«95var in the nonlinear
portion («L ,«N) in such a way that«85«2 i«9 satisfies for-
mula ~A1! from the Appendix. Depending on the value
«L9 , the function«(kz) either intersects thez axis when«L9
;«L or asymptotically approaches thez axis («.0) when
«L9!«L . We can give the following estimatefor the suitab
ity of the model under consideration as applied to the la
case:«9!0.1a1

2/3.
The main results of the work are as follows. A meth

for solving the wave equation~1! in terms of elementary
functions that employs finite differences with a variable st
which is matched to the variation of the wave impedance
the medium without absorption, has been proposed. Re
tion of the number of independent parameters of the la
and application of the conservation law permitted simplific
tion of the investigation of the fields at a jump in«, which is
justified for small losses. The similarity principle for inho
mogeneous layers described allowed the results of inves
tions of the fields at a jump in« to be extended to the vicin
ity of the zero of«.

A critical point corresponding to«50, near which the
solution depends qualitatively on small changes in the
rameters, was discovered. For the transmission coefficien
the layer and the intensities of the electric and magn
fields we haveSN /S1⇒0, E⇒`, andH⇒0 as«⇒0.

The model considered in this work can easily be gen
alized to the case of a medium with losses, and the propo
method for solving the wave equation can be widely e
ployed in mathematical physics.

APPENDIX A:

Let us consider the solution of the wave equation~1! in
the nonlinear layer in region3 ~Fig. 1!, where the function
«(kz) is assigned by the conditiongr(«)5gr(«L)5const
and is represented forzL50 in the coordinate frame with a
center 0n by the expression

«5
b2

4~kz1b!2
. ~A1!

Here

b5
b

22A«L

5
2«L

2a1
, b54/gr~«L!, ubu!1,
-

e

i-

-

r

,
f
c-
r

-

a-

-
of
ic

r-
ed
-

and the wave equation~1! has an exact solution in elemen
tary functions, which was first obtained by Rayleigh:9

E35C1~kz1b!r 11C2~kz1b!r 2, ~A2!

wherer 1,250.5(16g) andg5A12b2.
We note thatE3⇒0 askz⇒2b, where« has a singu-

larity ~a pole!, and the solution for the case ofb2.1 was
considered in Ref. 3. The fields in regions2 and 4, respec-
tively, have the form

E45AN exp~2 iA«Nkz!,

E25exp~2 iA«Lkz!1R0 exp~ iA«Lkz!. ~A3!

The following conditions should be satisfied on th
boundary atz5zL :

E25E3 ,
dE2

d~kz!
5

dE3

d~kz!
.

Using them and the analogous boundary conditions
z5zN , as well as the expressions~A2! and ~A3!, we obtain
the following expression for the reflectivityR0:

R01 ib5g
~c11!

~c21!
,

where

C52
~g1 ib!

~g2 ib!
h, h5S 2

«1

«N
D g/2

, ~A4!

or, after some transformations,

R05
~h21!@g~h11!2 ib~h21!#

~h11!224hb2
,

uR0u25
~h21!2

~h11!224hb2
. ~A5!

When h@1, we haveR05g1 ib. Next, taking r 151
2b2/4 andr 25b2/4, we obtain

E25S A«L

A«
D b2/4F A«N

gA«
~23/2b21b31 ib~123/2b2!!

122b2/22 ibG , ~A6!

and from the conditionE35E4 on the boundary atz5zN we
have

E2uz5zN
5S A«L

A«N
D b2/4

@222b22 ib~222b2!#,

AN5expF i
b

2 S 12
A«N

A«1
D GE2uz5zN

. ~A7!

The mathematical solution of the problem is complet
by substitutingAN into ~A3!.

The solution for the reflectivityR0 from the nonlinear
layer under consideration can be obtained directly from
Riccati equation, and in this case it is equivalent to~A4!. If
the medium is lossless, the conservation law can be u
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Then the transmission coefficient, which is the ratio betwe
the mean values of the Poynting vector for the transmit
and incident waves, is given by the relationSN /S151
2uR0u2, whence for the fields in region4 we obtain

uE4u25
A«L

A«N

~12uR0u2!54S «L

«N
D b2/4

~12b2!, ~A8!

uH4u25
A«N

A«L

~12uR0u2!54S «N

«L
D 12b2/4

~12b2!, ~A9!

where

«L

«N
5

ua1ukz

2«L
11.

It follows from ~A5!, ~A8!, and ~A9! that uR0u⇒1,
E4⇒`, and H4⇒0 as«⇒0. This is a first approximation
for a linear layer characterized bygr(«1)54/b. We note that
E depends very significantly on«(kz) whenb!1, unlikeH
and R0 from ~A5!. Although the exact solutions~A8! and
n
d
~A9! describe the field only after passage through the lay
unlike ~A6!, they are attractive because of the simplicity
their form. An analysis of~A6! shows thatdE2 /dkz50
when«>10«N and then increases.
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Two new methods for obtaining exact solutions of the initial-value problem on an unbounded
straight line ~the Cauchy problem! for the inhomogeneous Burgers equation are
considered. They are applied to the cases of a stationary and a transient external force. A self-
similar solution and a solution which describes the localization~blocking! of solitary
traveling waves are obtained as examples. ©1999 American Institute of Physics.
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INTRODUCTION

The Burgers equation1!

v t22vvx2vxx5F ~1!

~where v5v(x,t), x is the coordinate, andt is the time!,
which was originally proposed for describing turbulenc1

has turned out to be an effective model of the dynamics
nonlinear dissipative media of diverse physical nature.2–4 In
particular, it was shown in Ref. 2 that Eq.~1! holds for an
extensive class of processes in hydrodynamics, nonlin
acoustics, and plasma physics. The Burgers equation w
nontrivial right-hand side, i.e., with an external forc
F(x,t)[” 0 ~the forced Burgers equation!, describes the dy-
namics of a physical system immersed in an external fiel~a
system with energy ‘‘pumping’’! and is a natural generaliza
tion of the homogeneous equation corresponding to auto
mous motions.

Although the literature devoted to Eq.~1! is indeed enor-
mous, it is still the subject of many studies~see, for example
Refs. 5–8!. Attention has recently focused specifically on t
forced Burgers equation.6–8 Exact solutions of the Cauch
problem for the forced Burgers equation in the case wh
the coordinate dependence on the right-hand side of Eq~1!
is singular, i.e., is described either by a Diracd function or
by its derivative, were obtained in Refs. 6 and 7. This pa
proposes a method which provides special exact solutions
the case whereF(x,t) is a continuous function.

As we know, the Hopf–Cole substitution9,10

v5ux /u ~2!

transforms the forced Burgers equation into a linear equa
for the new functionu(x,t)

ut2uxx5u E
x0

x

F~x8,t ! dx8. ~3!

If the right-hand side of Eq.~1! F(x,t)[0 ~just this case
was considered in Refs. 1, 9 and 10!, Eq. ~3! reduces to an
ordinary diffusion equation, and its solution for arbitrary in
tial conditions is written in quadratures, allowing us to al
write a solution for the Burgers equation with allowance
~2!. However, ifF[” 0, the construction of an analytical so
8781063-7842/99/44(8)/4/$15.00
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lution of equation~3! is a very complicated problem. A gen
eral algorithm for constructing a solution in the form of
series with insignificant restrictions on the form ofF(x,t)
was proposed in Ref. 11, but the expressions appearing
result are very cumbersome, making it difficult to use the
in practice. Nevertheless, because of the physical sig
cance of Eq.~1! there is unquestionable interest in obtaini
exact solutions for it which are expressed by relative
simple formulas and have a clear physical meaning.2 This is
the goal of the present work.

STATIONARY EXTERNAL FORCE: BLOCKING
OF A SOLITARY WAVE

We begin with the case in which the right-hand side
Eq. ~1! does not depend ont, i.e., F5F(x). Instead of the
classical substitution~2! we consider the modified form

v5~ux /u!1k~x!, ~4!

wherek(x) is a certain function.
Substituting~4! into ~1!, after some transformations w

have

~~ut22kux2uxx!/u!x5~k8~x!1k21F~x!2C~ t !!x ,
~5!

whereC(t) is an arbitrary function of time~the minus sign
was chosen for convenience!.

Integrating overx, from Eq. ~5! we obtain

ut52kux2uxx5~k8~x!1k21c~x!2C~ t !!u, ~6!

wherec8(x)5F(x).
Thus, in cases where the functionk(x) is a solution of

the Riccati equation

k8~x!1k252c~x!1C, ~7!

the function u(x,t) satisfies a linear equation of th
diffusion–convection type:

ut22kux5uxx . ~8!

In Eq. ~7! the time t appears only in the form of a pa
rameter, i.e., as the argument of the arbitrary functionC. We
note that if we setC(t)5const~just this case will be consid
ered below!, the solutions of Eq.~7! are stationary solutions
© 1999 American Institute of Physics



o

ich
m

o
E

i

f

ar

di

-
n

ne

nd

-

l

of

e
n-

his

etric

he

879Tech. Phys. 44 (8), August 1999 S. V. Petrovski 
of the Burgers equation. The meaning of the substitution~4!
is thereby made clear: Eq.~8! for the new unknownu(x,t)
describes a process evolving on top of the ‘‘background’’
the stationary profilek(x).

The solution of the Riccati equation~7! with a right-
hand side of arbitrary form is a complicated problem, wh
does not always admit writing a solution in a closed for
However, at least in some cases the system~7! and~8! turns
out to be more convenient for obtaining exact solutions
the forced Burgers equation than the approach based on
~2! and~3!. In particular, unlike Eq.~3!, Eq. ~8! has a family
of solutions in the form of a traveling wave@for k(x) of a
certain form#.

In fact, we seek a solution in the formu(x,t)5U(j),
wherej5x2y(t).

Making the substitution in~8!, we obtain the equation
for U(j)

2~y8~ t !12k~x!!U8~j!5U9~j!. ~9!

The transition to the coordinates of a traveling wave
correct if the variablesx and t enter into in Eq.~9! only in
terms of the variablej, i.e., if y8(t)12k(x)5f(j), wheref
is a certain function. Clearly, since the variablesx andj are
related by a linear transformation, this is possible only ik
and f are linear functions of their arguments, i.e., ifk(x)
5Bx1B1 and f(j)5bj1g, whereB, B1 , b, and g are
constants. Then, Eq.~7! yields

B1~Bx1B1!252c~x!1C, ~10!

whence, differentiating with respect tox, we obtainF(x)
522B(Bx1B1).

Thus, the inhomogeneous Burgers equation has
traveling-wave solution only if the external force is a line
function of the coordinate,3! i.e., if

F~x!522B2x ~11!

~if, with no loss of generality, we setB150, which can al-
ways be accomplished by selecting the origin of coor
nates!. Equation~7! takes the form

k8~x!1k25B2x21C. ~12!

It is not difficult to prove@for example, by direct substi
tution into ~12!# that Eq.~12! has the required linear solutio
k(x)5Bx only for the choice of integration constantC5B.

We note that for the Riccati equation knowledge of o
special solution permits finding its general solution~see, for
example, Ref. 12!. The general solution of Eq.~12! ~for
C5B) has the form

k~x!5Bx1exp~2Bx2!/~C11~p/4B!1/2erf~B1/2x!!,
~13!

where erf(z) is the error function, andC1 is an integration
constant or, more specifically,C1#RU$`%.

Any function of the one-parameter family~13! is a sta-
tionary solution of the Burgers equation with a right-ha
side in the form~11!.

From Eq.~9! and the condition of linearity of the func
tions k(x) andf(x) we obtain

y8~ t !12Bx5bj1g5b~x2y~ t !!1g, ~14!
f

.

f
qs.

s

a

-

whereb andg are constant coefficients.
Separating the variables, we have

~2B2b!x50, ~15!

whenceb52B and

y8~ t !1by2g50. ~16!

Setting y(0)50 ~which corresponds to the natura
choice of the initial conditionj(x,0)5x), we obtain

y~ t !5d@12exp~22Bt!#, ~17!

whered5g/2B.
Let us find the expression which describes the form

the wave. From~13!–~15! we have

2~2Bj1g!U8~j!5U9~j!. ~18!

Introducing the new variableU8(j)5p(j), we arrive at
the first-order equation

p8~j!52~2Bj1g!p, ~19!

which can easily be integrated to obtain

p[U8~j!5const exp~2Bj22gj!. ~20!

The case whereB,0 is apparently not of interest, sinc
the solution@which describes the deviation from the statio
ary profile k(x)5Bx# increases without bound asuxu˜`.
Therefore, we henceforth setB.0. The solution of Eq.~20!
is found without difficulty:

U~j!5a1b~11erf@B1/2~j1d!#!, ~21!

wherea andb are constants.
Returning to the original variablesx, t, andu, we have

u~x,t !5a1b~11erf@B1/2~x1d exp~22Bt!!# !. ~22!

Finally, introducing the notation m5(p/4B)1/2(a
1b)/b and taking into account~4!, we obtain the following
family of solutions of Eqs.~1! and ~11!:

v~x,t !5Bx1exp@2B~x1d exp~22Bt!!2#/

~m1~p/4B!1/2erf @B1/2~x1dexp~22Bt!!# !.

~23!

Obviously, whenumu.(p/4B)1/2, the function~23! is con-
tinuous for anyx and t @when umu,(p/4B)1/2, expression
~23! has discontinuities of the second kind; solutions of t
type, which have also attracted considerable attention,13,14

will not be considered in this paper#. It is not difficult to see
that the two-parameter family of solutionsv(x,t;d,m) de-
scribes the retarded motion of a dome-shaped asymm
wave along the linear profilek(x)5Bx. The value ofd char-
acterizes the initial position of the wave, and 1/m character-
izes its amplitude; the position of the wave relative to t
origin of coordinates and the straight linek(x)5Bx also
depends on the signs ofd andm. The final position~which is
established asymptotically ast˜`) is described by~13!
~whenC15m).

We note that because of the linearity of Eq.~8! a linear
combination of solutions of the form~23! is also a solution.
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Thus, the more generalN-wave solution of the forced Bur
gers equation with the external force~11! has the form

v~x,t !5Bx1S (
i 50

N

« i exp@2B~x1d i exp~22Bt!!2# D Y
S m1~p/4B!1/2(

i 50

N

« i

3erf@B1/2~x1d i exp~22Bt!!# D . ~24!

If the constantsd i differ strongly enough in absolute value
the solution ~24! is a set of N individual waves, which
‘‘gather’’ from the right and left toward the origin of coor
dinates. In this case, if the constantsd i are of the same orde
of magnitude, the individual waves merge, and the solut
~24! describes the evolution of the initial disturbance~which,
with an appropriate set of values for the parametersm, « i ,
d i , andN, can now have a fairly complicated form! to the
stationary distribution~13!.

TRANSIENT EXTERNAL FORCE: AUTOTRANSFORMATIONS

In the case considered above, the right-hand side of
Burgers equation~1! depended only on the variablex. In the
more general caseF5F(x,t). It is not difficult to directly
verify that in this case the transformation~4!, where we now
havek5k(x,t), also leads to a linear equation of the for
~8! for the new functionu(x,t). The coupling equation, how
ever, is no longer the Riccati equation, but coincides with
original equation~1!. Thus, in the case of a transient extern
force the substitution~4! describes ‘‘autotransformation’’ o
the solutions of the forced Burgers equation~1!, and if the
function k(x,t) is a solution of the Burgers equation~with a
right-hand side of arbitrary form!, then the function

v~x,t !5~ux /u!1k~x,t ! ~25!

is a solution~which corresponds to a different initial cond
tion! of the same equation~1!, andu(x,t) satisfies Eq.~8!.

The relation~25! can be used to construct exact solutio
in the case where the right-hand side of the Burgers equa
depends on time. As an example let us consider the m
equation describing the dynamics of a certain system i
linear field decaying with time

v t22vvx2vxx52ax/~ t1t0!2, ~26!

wherea andt0 are constants and in order to avoid singula
ties att.0 we sett0.0.

It is not difficult to see that the functionk(x,t)5bx/
(t1t0) is a solution of Eq.~26! under the conditionb
12b25a. The solutions of Eq.~26! have different proper-
ties, depending on the signs ofa andb. Since the purpose o
this section is to present an example of how to obtain ex
solutions of Eq.~1! using the autotransformation~25!, rather
than a detailed investigation of Eq.~26!, we confine our-
selves here to the single case ofa.0 and b5(1/4)((1
18a)1/221).0.

The solutionk(x,t) is not of interest because of its sim
plicity. However, it can be used to construct another so
n

e

e
l
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ct

-

tion, which has very interesting properties. By virtue of~25!
the expressionv5k1(ux /u) will also be a solution, if
u(x,t) satisfies the following equation:

ut2~2bx/~ t1t0!!ux5uxx . ~27!

We seek the solution of Eq.~27! in the self-similar form
u(x,t)5U(j), wherej5xf(t), and the form of the func-
tions U andf is subject to determination. Making the su
stitution in ~27!, we have

~xf22f8~ t !22bf21x/~ t1t0!!U8~j!5U9~j!. ~28!

The transition to self-similar variables is correct if the e
pression in brackets is a function ofj. To satisfy this condi-
tion we require that

f22f8~ t !5lf, 1/@~ t1t0!f#5n22f, ~29!

wherel andh are coefficients.
From ~29! we find that f(t)5h(t1t0)21/2 and l

520.5h22. Settingj(x,0)5x, we haveh5t0
1/2.

Equation~28! takes the form

2~2/t0!~b10.25!jU8~j!5U9~j!. ~30!

Introducing the notation (b10.25)/t05a2 ~sinceb.0; see
above!, from ~30! we obtain

22a2jU8~j!5U9~j!. ~31!

Equation~31! is easily integrated to obtain

U~j!5A1 erf~aj!1A2 , ~32!

where erf(z) is the error integral, andA1 and A2 are con-
stants.

Taking into account the relation~25!, we arrive at the
following exact solution of Eq.~26!;

v~x,t !5bx/~ t1t0!1@ t0 /~ t1t0!#1/2

3exp~2a2j2!/~¸1~Ap/2a!erf~aj!!, ~33!

wherej5x@ t0 /(t1t0)#1/2.
Whenu¸u.Ap/2a, the function~33! is continuous at all

x and t. Expression~33! describes the self-similar diffusion
and fading of a dome-shaped initial disturbance of a lin
field. Thus, the simple ‘‘seed’’ solutionk(x,t), which is not
of great interest in itself, can be used to generate more c
plex solutions through the transformation~25!.

We note, in conclusion, that an attempt to construc
‘‘many-particle’’ solution similar to the multiwave solution
~24! of the preceding section for Eq.~26! was unsuccessful
the expression obtained coincides exactly with~33!.

CONCLUSION

The new method proposed in this paper for construct
exact solutions of the forced Burgers equation on the basi
the modified Hopf–Cole transformation~2! was considered
separately for the cases of stationary and transient exte
forces. However, there is essentially a single method for b
cases: the substitution~2! reduces the forced Burgers equ
tion ~1! to the linear equation~8!, which describes the evo
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lution of an initial disturbance of some ‘‘original’’ solution
which can be either stationary or transient, depending on
type of external force.

The special exact solutions~23!, ~24!, and ~33! are un-
bounded asuxu˜`, raising some doubt as to their physic
significance at first glance. We note in this regard that
examination of solutions which are unbounded at infinity h
a long-standing tradition in mathematical physics~the text-
book example is the field of an infinitely long charged wire!.
The fact is that in a real physical system ‘‘infinity’’ signifie
satisfaction of the conditionL/ l @1, whereL is the external
scale of the system andl is the characteristic length of th
process being described~in the example with a wire this
means that a solution which increases logarithmically to
finity correctly describes the distribution of the field near t
axis of a real wire and is known to be incorrect at distan
from the axis greater than or of the order of the length of
wire!.

The properties of the solutions~23! and~24! completely
correspond to the situation described. The deviation
scribed by them from the stationary profile tends to zero
uxu increases. This means, in particular, that the inter
structure of the solutions determines the characteristic len
l, which depends only on the parameters of the problem
that the evolution of the initial disturbance takes place in
region from2 l to l. If L is a scale of the physical syste
which indicates the distances at which Eq.~1! is valid @par-
ticularly the distance at which the fieldF(x) can be consid-
ered linear#, when the conditionL@ l is satisfied, it can be
claimed that the dynamics of the system~for the correspond-
ing initial conditions! are described by Eq.~23! or ~24!.

The foregoing statements also apply to the self-sim
solution~33! except that now the lengthl also depends on th
duration of the treatment of the process~as a consequence o
the spreading of the initial disturbance!: l;T1/2. This addi-
tionally restricts the applicability of~33! to not excessively
long times.

We note, in addition, that all the solutions obtained a
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e-
s
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th
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e

suitable for describing processes in a system of finite siz
the case where conditions of special form, which can
specified by the form of~23!, ~24!, or ~33!, are satisfied on its
boundaries.

The last remark refers to autotransformations. Equat
~25! actually specifies only one ‘‘link’’ in an entire hierarch
of solutions. More specifically, after a certain ‘‘seed’’ sol
tion k0, we arrive at k15k01(ux

(0)/u(0)), then k25k1

1(ux
(1)/u(1)), k35k21 . . . , etc. The study of this hierarchy

is a fascinating problem and will be the subject of futu
investigations.

1!The left-hand side of the Burgers equation is usually written in the fo
v t1vvx2vxx , and the coefficient22 in Eq. ~1! was chosen for conve-
nience.

2!For further details on the importance of the exact solutions, see Ref.
3!This applies specifically to the inhomogeneous equation~1!. The existence

of solutions in the form of a traveling wave for the homogeneous Burg
equation is a well-known fact.3
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The multiphoton ionization of a bound electron state which is twofold degenerate with respect to
its orbital angular momentum is considered in a quasiclassical approximation. It is shown
that the ionization probability increases strongly in an intense electromagnetic field, in which
nonresonant mixing of the levels forming the degenerate state is significant, in comparison
to the case described by the Keldysh formula. It is also shown that such degeneracy leads to a
sharp increase in the intensity of the radiation scattered by the bound electron, and the
high-frequency cutoff of the emission spectrum is shifted to higher frequencies. ©1999
American Institute of Physics.@S1063-7842~99!00408-0#
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INTRODUCTION

This paper is devoted to an investigation of the physi
consequences of the accidental degeneracy of bound le
during interactions with an electromagnetic field. This mo
vates the choice specifically of an excited hydrogenic ato
which is known to havel-fold degeneracy (l is the orbital
angular momentum quantum number!. Two important effects
arising when a strong electromagnetic wave acts on a bo
electronic system are considered: multiphoton ionization
higher-harmonic generation. The multiphoton ionization
excited atoms was considered theoretically and experim
tally in Refs. 1–6. However, it was assumed in the theor
cal description of this phenomenon that the state being
ized does not have an ‘‘internal’’ structure, in the sense t
the mixing of closely positioned energy levels by the appl
electromagnetic field was not taken into account. This is j
tified for a hydrogenic atom only in fairly weak electroma
netic fields. In fact, fundamental reorganization of t
quasienergy spectrum takes place in strong fields owin
such mixing. This, in turn, leads to qualitative differences
the characteristics of the electrodynamic processes in c
parison to the ordinary case. Here we should mention Re
and 8, in which it was shown that the intrinsic dipole m
ment of the excited state of a two-level system has a sig
cant influence on the rate of its excitation, as well as on
intensity and line shape of the emission spectrum.

This paper consists of an Introduction followed by tw
other sections. The first of these sections describes the
vation of an analog of the Keldysh formula9 for the probabil-
ity of the multiphoton ionization of a twofold degenera
electronic state. It is shown that owing to the accidental
generacy of the level, the ionization rate increases expon
tially in comparison with the ionization rate of a nondege
erate state.

The last section explores the spectrum of higher-or
harmonics emitted by an excited hydrogenic atom. The g
eration of high-order harmonics by atoms has been inve
gated in many studies~see, for example, Refs. 10–15!.
According to the experimental results, the spectrum of h
8821063-7842/99/44(8)/5/$15.00
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monics contains a broad plateau with a sharp high-freque
cutoff, which is located at photon energies close toI 12
23Up , where I is the ionization potential andUp is the
ponderomotive energy of the electron. This phenomeno
of interest in connection with the possibility of obtainin
coherent high-frequency radiation~up to the x-ray range!.
Unfortunately, because of the rigid restrictions on the el
tromagnetic field intensity and the small ionization potenti
an excited atom is a less promising source than a grou
state atom. Nevertheless, all other conditions being equal
intensity of the radiation scattered by an excited hydroge
atom is much greater than in the ordinary case, i.e., in
absence of degeneracy. In addition, the strong mixing of
levels forming a degenerate state leads to an increase in
length of the plateau in the emission spectrum.

1. MULTIPHOTON IONIZATION OF AN EXCITED
HYDROGENIC ATOM

Let us consider a bound electron state which is twof
degenerate with respect to the orbital angular momentum
the field of a linearly polarized wave of frequencyv and
intensity E(t)5E0cosvt. In the Keldysh–Faisal–Reiss ap
proximation the ionization probability amplitude is found u
ing the formula

Ai f 52
i

\E dt dr C f* ~r ,t !eE~ t !•rC i~r ,t !, ~1!

C f~r ,t !5
1

~2p\!3/2
expF i

\
S S \k1

eE0

v
sinvt D •r

2E
0

t

dt
S \k1

eE0

v
sinvt D 2

2M
D G ,

C i~r ,t !5C1~r ,t !exp~2 ir sinvt !1C2~r ,t !exp~ ir sinvt !,
© 1999 American Institute of Physics
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C1,2~r ,t !5
1

A2
~Cs~r !6Cp~r !!expS i

\
It D . ~2!

Here C f(r ,t) is the wave function of a free electron wit
momentum\k in the field of a plane electromagnetic wav
C i(r ,t) is the wave function of the state being ionized in t
wave field;16 Cs(r ) andCp(r ) are the wave functions of th
degenerate state in the absence of an electromagnetic fiI
is the ionization potential;

r5
uE0•du

\v
, d5eE dr Cs* ~r !rCp~r !.

We present some explanations regarding the choice
the wave function of the initial state in the form~2!. It is
generally known that even a comparatively weak elec
magnetic field leads to intense mixing of states with the sa
energy between which transitions are allowed by the se
tion rules. In our case the parameterr is a measure of tha
mixing. Under conditions where the inequalityr*1 holds,
the transitions between levels forming a degenerate s
should be taken into account exactly, i.e., in all orders
perturbation theory. Only ifr!1 can the treatment be con
fined to a finite number of perturbation terms. It can easily
seen that even for fields with an intensity significantly bel
the atomic level there is no bound on the value ofr in the
general case. This stipulates the choice of the wave func
of the initial state in the form~2!, where mixing of theCs(r )
and Cp(r ) levels by an external electromagnetic field w
taken into account exactly in Ref. 16.

Utilizing the formula for expanding an exponential fun
tion in Bessel functions of real argument

exp~ irsinvt !5 (
m52`

`

Jm~r!exp~ imvt !,

we rewrite the expression~2! in the form

C i~r ,t !5 (
m52`

`

C i
(m)~r !Jm~r!expF i

\
~ I 2m\v!t G ,

C i
(m)~r !5C1~r !1~21!mC2~r !.

As follows from the last formulas, a bound quasistatio
ary electron state in the field of an electromagnetic wave
be interpreted as a superposition of states with the quas
ergies

«m52~ I 1m\v!; m50,61,62, . . . . ~3!

Taking into account the properties of Bessel functio
we can easily see that the maximum of the quasienergy
tribution corresponds to the valuesm;6@r#, where@ # de-
notes the integer part of the number. This means that o
the half-levels with«6[r]52(I 6@r#\v) are substantially
populated. Thus the electron is partially localized in a st
lying closer to the continuum edge than in the case
r50. Here the width of the barrier separating the quasis
tionary~discrete! states and the states of the continuous sp
trum is smaller than forr50. As will be shown below, this
;
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leads to an effective increase in the probability of the pass
of the electron through the potential barrier and ionization
the atom. We also note that since the electron is fou
mainly in states with the quasienergiesI 6@r#\v, the usual
condition for applicability of the quasiclassical approx
mation9 I /(\v)@1 is replaced by the more rigid conditio
I /(\v)2r@1. This means that the condition for a multiph
ton transition should be satisfied for the quasilevel which
closest to the continuum and is most strongly populated.

After calculating the integral over the coordinate a
some transformations associated with expansion of the fu
tions in Fourier series, we represent the expression~1! in the
form

Ai f 52
ie

\ E2p

p

dw S E0•D1~k~w!!expF i

\v
S E

0

w

dw8

3

S \k1
eE0

v
sinw8D 2

2M
1Iw2r\v sinwD G

1E0•D2~k~w!!expF i

\v
S E

0

w

dw8

3

S \k1
eE0

v
sinw8D 2

2M
1Iw1r\v sinwD G D

3 (
l 52`

`

dS \2k2

2M
1I 1~b2 l !\v D , ~4!

where

D1,2~k~w!!5
1

~2p\!3/2E dr exp~ ik~w!r !rC1,2~r !,

k~w!5k1
eE0

\v
sinw, b5

e2E0
2

4M\v3
.

We assume that the inequalityI /(\v)2r@1 is always
satisfied. In this case the exponential functions in~4! are
rapidly oscillating functions, and the saddle-point~stationary
phase! method can be used to calculate the integral. T
saddle points are found from the relation

~\k1~eE0 /v!sinw* !2

2M
1I 6r\v cosw* 50. ~5!

As in the derivation of the Keldysh formula,9 it can be
shown in our case that the main contribution to the ionizat
probability amplitude is made by smallk, which are such
that \2k2/(2M )!I . Therefore, confining ourselves to exp
nential accuracy in the calculation, we can setk50 in ~4!
and ~5! and thereafter obtain the following values for th
saddle points:
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w* 5 i sinh21 g1H p,

0,

g25g0
21gr

22A2gr
2~g0

211!1gr
4,

g0
25

I

2b\v
, gr

25
r2

8b2
.

Now there is no difficulty in finding the ionization rate
After some ordinary transformation we obtain

w;expF2
2I

\v
f ~g!G , ~6!

f ~g!5S 11
1

2g0
2D sinh21g2

g~112g0
22g2!

2g0
2A11g2

. ~7!

In the case ofr50 (g5g0) formula ~6! transforms into
the expression for the multiphoton ionization rate of a no
degenerate level obtained by Keldysh9

w0;expF2
2I

\v
f 0~g0!G ,

f 0~g0!5S 11
1

2g0
2D sinh21g02

A11g0
2

2g0
. ~8!

Since the inequalityf (g), f 0(g0) always holds for
rÞ0, it is clear that, all other conditions being equal, deg
eracy of the state being ionized with respect to the orb
angular momentum leads to an exponential increase in
ionization probability in comparison to the case ofd50. For
example, for the parameter valuesuE0u;107 V/cm and
v;1014s21, as well asI;3.45 eV andudu;10 D, which
correspond to the ionization potential and intrinsic dipo
moment of then* 52 state of the hydrogen atom, we ha
ln(w/w0);11. In the limiting cases in which ionization has
multiphoton or tunneling character, formula~6! undergoes
considerable simplification and takes the form

w;~2g!2
2I
\v expF 2I

\v

2g0
22g2

2g0
2 G , g@1, ~9!

w;expF2
4

3

I 2r\v

\v
AI 2r\v

2b\v G , g0!1. ~10!

It follows from ~9! that in the multiphoton regime th
ionization probability, as in the case ofr50, is proportional
to E0

2I /(\v) . The numerical value of the ionization rate is th
(g0 /g)2I /(\v)exp(I(g0

22g2)/(g0
2\v)) times greater than in the

ordinary case. Formula~10! formally coincides with the cor-
responding limiting case of the Keldysh formula~8!

w0;expF2
4

3

I

\v
A I

2b\vG , g0!1,

where the differenceI 2r\v appears instead of the ioniza
tion potentialI.
-

-
l

he

Thus, in the tunneling regime ionization takes pla
mainly from the quasienergy level« [r]52(I 2@r#\v),
confirming the qualitative arguments regarding the nature
the ionization of a degenerate state made at the beginnin
this section.

2. HIGHER-HARMONIC GENERATION BY AN EXCITED
HYDROGENIC ATOM IN THE FIELD OF A STRONG
ELECTROMAGNETIC WAVE

Considering a pulse of an electromagnetic field sh
enough that significant depletion of the bound state due
ionization does not occur during its action, we represent
wave function of the electron in the form

C~r ,t !5C i~r ,t !1E dt8 dr 8 G~r ,t,r 8,t8!eE~ t8!

•r 8C i~r 8,t8!,

G~r ,t,r 8,t8!52
iQ~ t2t8!

~2p2!3/2\
E dk expF i S S k1

eE0

\v
sinvt D

•r2S k1
eE0

\v
sinvt8D •r 8

2E
t8

t

dt
~\k1~eE0 /v!sinvt!2

2M\ D G , ~11!

where Q(x) is a Heaviside step function:Q(x)51 for
x.0 andQ(x)50 for x,0.

The intensity of the dipole radiation at the frequen
V5nv is proportional tournu2, wherern is the correspond-
ing Fourier component of the mean value of the coordin
operator

rn5
1

2pE2p

p

d~vt !exp~ invt !^r ~ t !&,

^r ~ t !&5E dt8 dr 8 dr C i* ~r ,t !rG~r ,t,r 8,t8!eE~ t8!

•r 8C i~r 8,t8!1h.c. ~12!

After several transformations with consideration of fo
mulas~2! and ~11!, we represent~12! in the form
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rn52
e\3

A2p4 (
l 52`

` E dkE
2p

p

dw1 dw2 expF i S a•k~cosw12cosw2!1
b

2
~sin 2w12sin 2w2! D G~D1~k~w1!!exp~ ir sinw1!

1D2~k~w1!!exp~2 ir sinw1!!
E~w1!exp~ i ~ lw11~n2 l !w2!!1E~w2!exp~ i ~ lw21~n2 l !w1!!

\2k2/~2M !1I 1~b2 l !\v

3~D1~k~w2!!exp~2 ir sinw2!1D2~k~w2!!exp~ ir sinw2!!, ~13!
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a5eE0 /~M\v2!, E~w!5E0cosw.

The exact calculation of the integrals runs up agai
serious difficulties. Therefore we use an approximate ca
lation method based on the so-called pole approximatio17

In this approximation it is assumed that the integral, in
principal value sense, in the expression

lim
«˜0

1

ix1«
52pd~x!1 i

p

x
,

where in our case

x5
\2k2

2M
1I 1~b2 l !\v,

is small compared with the contribution of the delta functio
Although there is no rigorous proof for the correctness
using the pole approximation, this approximation is proba
reasonable for multiphoton transitions.17,18 At worst, it can
be expected that the corrections to the results will be of
same order of magnitude as the results within the pole
proximation themselves. Utilizing the properties of the de
function formed in this approximation, we bring~13! into the
form

urnu25
1

2p2 H l\3E dkE
2p

p

dw1 dw2 An* ~w1!E~w2!•A0~w2!

3 (
l 52`

`

dS \2k2

2M
1I 1~b2 l !\v D J 2

,

An~w!5S D1~k~w!!expF i

\v S E
0

w

dw8

3
~\k1~eE0 /v!sinw8!2

2M
1Iw2r\v sinw D G

1D2~k~w!!expF i

\v S E
0

w

dw8

3
~\k1~eE0 /v!sinw8!2

2M
1Iw1r\v sinw D G

3exp~2 inw! D
~in the expression forurnu2 we have taken into account onl
the term making the leading contribution!.
t
u-

e

.
f
y

e
p-
a

We assume thatI /(\v)2r@1 andn2I /(\v)2r@1.
Then the exponential functions are rapidly oscillating fun
tions, and the integrals can be calculated by the saddle-p
method. The following equations must be solved to find
saddle points:

~\k1~eE0 /v!sinw1* !2

2M
1I 6r\v cosw1* 2n50, ~14!

~\k1~eE0 /v!sinw2* !2

2M
1I 6r\v cosw2* 50. ~15!

We note that the integral overw2 is equal to the multi-
photon ionization amplitude of the degenerate level~4! to
within exponential accuracy@consequently, the equations fo
the saddle points~5! and ~15! coincide#. Here, as in~4!, the
main contribution is made by small\k. On the other hand
for I /(\v)1r,n,I /(\v)2r12b and small\k the roots
of Eq. ~14! are real; therefore, as can easily be seen,
integral overw1 is expressed in terms of an oscillating fun
tion. Thus, its value depends comparatively weakly onk in
the sense that it does not decay exponentially with increa
k, unlike the integral overw2 . Therefore, for the values ofn
considered the main contribution torn is made by small\k,
which are much smaller than the Bohr momentum. Now
an approximation we can setk50 in Eqs.~14! and~15!, and
then they are easily solved. For the plus sign in front ofr in
Eqs.~14! and ~15!

w1* 56sin21 gn
(2) ; 6sin21 gn

(1)7p,

w2* 5 i sinh21 g1p

and for the minus sign in front ofr in ~14! and ~15!

w1* 56sin21 gn
(1) ; 6sin21 gn

(2)7p,

w2* 5 i sinh21 g,

where

gn
(6)5A n

2b
2g0

22gr
26A2gr

2S g0
2112

n

2b D1gr
4.

~16!

We suppose that the applied magnitude field is stro
enough thatg!1. We also assume thatI /(\v)!n/(2b)
!1. In this case we can setgn

(6)'An/(2b)2g0
26A2gr in

the exponential expressions containinggn
(6) , and we can set

gn
(6)'An/(2b) in the preexponential expressions. Then w

can obtain a fairly simple expression for the square of
modulus of the matrix element
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urnu2;
1

An
FD1SA2nMv

\ D 1~21! F I
\v 1b2nGD2

3SA2nMv

\ D G2

expF2
4

3

I 2r\v

\v
AI 2r\v

2b\v G

3S cosS 2

3 S n2
I

\v
1r DAn2

I

\v
1r

2b
2

p

4
D

1cosS 2

3 S n2
I

\v
2r DAn2

I

\v
2r

2b
2

p

4
D D 2

.

~17!

As follows from Eq.~17!, the intensities of the harmon
ics depend comparatively weakly onn, i.e., expression~17!
obtained describes a plateau in the emission spectrum o
atom. Relation~16! permits finding the high-frequency cu
off of the emission spectrum. The high-frequency cutoff
the spectrum is characterized by an abrupt drop in the in
sity of the emitted harmonics as the order of the harmo
increases. According to the relations obtained, this
achieved when all the rootsw1* become complex~since in
that case the value of the integral overw1 transforms from an
oscillating function into an exponentially decaying function!,
which occurs, in turn, when thegn

(6) are complex numbers
or ugn

(6)u.1. After a simple analysis of~16! with consider-
ation of these conditions we find the high-frequency cutoff
the emission spectrum:

nmax;
I

\v
12b1

r2

8b
.

The results obtained allow us to conclude that deg
eracy of the level promotes an increase in the intensity of
harmonics in comparison to the ordinary case ofd50. In this
case, as well as in multiphoton ionization, this increase
an exponential character. In addition, as can be seen from
last formula, because of the mixing of the levels forming t
degenerate state, the high-frequency cutoff of the spectru
shifted to higher frequencies byr2/(8b) in comparison to
the case ofd50 under the same conditions.

Generally speaking, calculations in the Keldysh–Fais
Reiss approximation~due to neglect of the influence of th
Coulomb potential on states in the continuous spectrum! pro-
vide only exponential accuracy in the results. Mainly for th
reason, the final formulas~6! and ~17! were also written to
within a pre-exponential factor~with respect to the field!.
This, of course, makes it difficult to compare directly t
numerical results with experimental results. Only their qua
he
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tative correspondence can be tested. For this reason
should discus the conditions under which the model con
ered in this paper is faithful to the real physical situatio
The correctness of its use presumes that the intensity of
applied electromagnetic field is considerably less than
atomic intensity for the level from which ionization or ha
monic generation occurs:uE0u!uEatu/n* 4, where uEatu;5
3109 V/cm and n* is the principal quantum number o
the level. The time of actiont of the pulse of the electro
magnetic field must be considerably shorter than
spontaneous relaxation time of the excited state:t!tsp

(tsp;1028 s21). In order to eliminate the resonant mixing o
atomic states by the exciting field, its frequency should
be a multiple of the frequencies of transitions to other bou
states of the atom. In addition, the relative shift of the lev
forming the degenerate state should be considerably sm
than the frequency of the electromagnetic field.

We note that the results obtained are applicable not o
to hydrogenic atoms, but also to other excited hydroge
systems, for example, excitonic series in solid inert gase19

or molecules which have an intrinsic dipole moment.
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Thermophoretic transport of moderately large spherical and cylindrical particles in two-
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E. R. Shchukin

Joint Institute of High Temperatures, Russian Academy of Sciences, 127412 Moscow, Russia

N. N. Kareva, Yu. I. Yalamov, and Z. L. Shulimanova

Moscow Pedagogical University, Moscow, Russia
~Submitted October 3, 1997; resubmitted January 11, 1999!
Zh. Tekh. Fiz.69, 21–27~August 1999!

The problem of the thermophoretic motion of moderately large solid spherical and cylindrical
particles in a two-component gas is solved for Re!1. The formulas obtained permit
direct estimation of the rate of thermophoretic motion of both single-layer and multilayer particles.
Corrections which depend directly on the Knudsen number are taken into account in the
derivation of these formulas. The thermal conductivity of the particles is assumed to be a function
which depends on the radial coordinate. It is shown that thermal diffusion and the dependence
of the thermal conductivity on the radial coordinate can have a significant influence on
the rate of thermophoretic transport of particles. ©1999 American Institute of Physics.
@S1063-7842~99!00508-5#
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In gases with an inhomogeneous temperature distr
tion, a thermophoretic force1–4 acts on particles, causing o
dered motion of the particles relative to the gaseous medi
The thermophoretic motion of particles takes place in ch
nels of heat and mass exchangers,4–7 in transilluminated re-
gions of clouds and fog,8 in the vicinity of drops washing
particles,9 and in filters intended for fine gas purification.4–7

For this reason, the derivation of formulas which would p
mit estimation of the rate of the thermophoretic motion
particles is of not only scientific, but also practical interes

The formulas which have been derived permit estimat
of the thermophoretic velocity of moderately larg
spherical1–3 and cylindrical10 particles only in one-
component gases with a constant value for the thermal c
ductivity of the particles. Under real conditions the therm
phoretic motion of particles can occur not only in on
component, but also in multicomponent gases.11,12 It should
also be noted that particles which are either homogeneou
inhomogeneous with respect to their thermophysical prop
ties appear in the composition of natural and industrial d
perse systems in air.11,13,14 Particles which are inhomoge
neous with respect to their thermophysical particles
found, for example, in condensation aerosols from metal
gical plants13 and chemical concerns14 and in the emissions
of chemical plants and motor vehicles,11,15 and form as a
result of the occurrence of natural processes such as volc
activity. The formulas derived in this paper permit estimati
of the thermophoretic velocity of moderately large so
spherical and cylindrical particles in a two-component g
with a thermal conductivity which depends on the radial c
ordinate. Particles with a Knudsen number in the ran
0.01<Kn<0.3 are classified as moderately large particle

Let us dwell first in greater detail on the solution of th
problem of the thermophoretic motion of a spherical partic
8871063-7842/99/44(8)/7/$15.00
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In deriving the formula for the thermophoretic velocity w
shall assume that the motion of a multilayer solid spheri
particle with a radiusRN takes place in a two-componen
gaseous medium in the external field of a temperature gr
ent. The particle consists ofN layers. Thekth layer is
bounded on its inner and outer sides by spherical surfa
with the radiiRk21 andRk , respectively. Within each of the
layers the thermal conductivity«k and its derivative with
respect to the radial coordinate are continuous functions.
coefficient«k depends on the radial coordinater. The sub-
script k in «k indicates the number of the layer. The inn
core is noted byk51, and the outermost layer is denoted
k5N. Motion of the particles occurs at Reynolds and Pec
numbers much smaller than unity. A restriction is impos
on the temperature gradient:

f TM pu¹Te`u

6pR2reTe`

!1,

whereM p is the mass of a particle,re is the density of the
gas, andf T is a scalar coefficient, which appears in the e
pression for the thermophoretic velocity.16

When this condition is satisfied, the thermophore
transport of particles can be described in a quasistation
approximation by virtue of the short relaxation times of t
temperature, concentration, and gas-dynamic fields, as
as the short characteristic time for viscous drag of a part
in comparison to the time needed for the particle to trave
a distance equal to its radius.

Under the conditions considered the distributions of
mass velocityv, the gas temperatureTe , the temperature of
the particle layersTk , and the relative concentrationc1 of
molecules of the first component in a particle–gas-medi
system are described by the following system
equations:1–3,16
© 1999 American Institute of Physics
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div v50, Dv50, DTe50,

div~«k¹Tk!50, Dc150. ~1!

Here c15n1 /n; n5n11n2, wheren1 and n2 are the con-
centrations of molecules of the first and second kinds in
gaseous medium; andD is the Laplacian operator.

In writing the Stokes equations it was taken into acco
that in the case of steady thermophoretic motion of a parti
the total force acting on the particle is equal to zero.1–3 In
this case thermophoretic transport of the particle takes p
at a constant pressure. Thus,¹p50 in the hydrodynamic
equations.

The system~1! was solved in a spherical coordinate sy
tem, whose origin coincides with the center of the particle
was assumed that the polar 0Z axis is parallel to the tem
perature gradient¹Te` . In the spherical coordinate syste
the boundary conditions under which the system~1! was
solved have the following form:2,3,17

v r U
r 5RN

5Cr
(c) Kn

D

R
divQc11Cr

(T) Kn
ne

RTe
divQTeU

r 5RN

,

~2!

vQ U
r 5RN

5CQ Kn RF r
]

]r S vQ

r D1
1

r

]v r

]Q G1~CD
(0)

1CD8 Kn!
D

R

]c1

]Q
1CD

(R)Kn D
]2c1

]r ]Q

1CD
(B)Kn DF ]2c1

]r ]Q
2

1

r

]c1

]Q G1~CT
(0)

1CT8 Kn!
ne

RTe

]Te

]Q
1CT

(R) Kn ne

1

Te

]2Te

]r ]Q

2CT
(B) Kn

ne

Te
F ]2Te

]r ]Q
2

1

r

]Te

]Q GU
r 5RN

, ~3!

Te2TNur 5RN
5CT

(T) Kn RN

]Te

]r
1CT

(n) Kn RNTe

]c1

]r U
r 5RN

,

~4!

2k
]Te

]r
1«N

]TN

]r
2kTeCq

(k)]c1

]r U
r 5RN

52TeCq
(c)Kn

k

R
divQc12Cq

(T)Kn
k

R
divQTeU

r 5RN

, ~5!

S ]c1

]r
1KT

1

Te

]Te

]r D U
r 5RN

5Cv
(c) Kn

1

R
divQc11Cv

(T) Kn
1

RTe
divQTeU

r 5RN

, ~6!
e

t
e,

ce

-
t

Tkur 5Rk
5Tk11ur 5Rk

,

2«k

]Tk

]r U
r 5Rk

52«k11

]Tk11

]r U
r 5Rk

, ~7!

v r ur˜`52uTZ cosQ, vQur˜`5uTZ sinQ, ~8!

Teur˜`5Te`1u¹Te`ur cosQ, c1ur˜`5c1` , ~9!

where

Kn5
l

RN
; l5meS p

2nrekTe
D 1/2

;

divQ5
]2

]Q2
1cotQ

]

]Q
;

k is Boltzmann’s constant;ne5me /re is the kinematic vis-
cosity; me is the dynamic viscosity;re5n1m11n2m2 is the
density of the gas;D andk are the interdiffusion coefficien
and thermal conductivity of the gas mixture;KT is the
thermal-diffusion ratio;uTZ is the projection of the thermo
phoretic velocity onto the polar 0Z axis; and the indexk in
~7! takes values fromk51 to k5N21.

The boundary conditions on the particle surface~2!–~6!
were written with allowance for corrections which depend
the Knudsen number.2,3,17In ~2!–~6! CD

(0) , CT
(0) , andCQ are

the diffusive, thermal, and isothermal slip coefficients;CD8
and CT8 are corrections for the surface curvature;CD

(B) and
CT

(B) are the Barnett slip coefficients, which appear as a
sult of consideration of the terms proportional to the seco
derivatives of the relative concentrations of the gaseous c
ponents and the temperature~with respect tor andQ) in the
distribution function of the gas molecules in the Knuds
layer; CD

(R) andCT
(R) are coefficients associated with the i

homogeneity of the gradients of the relative concentrati
of the gaseous components and the temperature~the appear-
ance of these corrections is also attributed to the surf
curvature!; CT

(T) and CT
(n) are the temperature jump coeffi

cients;Cv
(T) andCv

(c) , Cq
(T) andCq

(c) , andCr
(T) andCr

(c) are,
respectively, the gas-kinetic coefficients of the diffusion a
heat fluxes, as well as of the mass-average flux flowing in
Knudsen layer;Cq

(k)5DknKT /kc1c2 ~Ref. 14!; and Cq
(c)

5DknCq /k ~Ref. 14!. When estimates are obtained, the v
ues of the gas-kinetic coefficients appearing in~2!–~6! must
correspond toc15c1` , Te5Te` , andp5p` .

The boundary conditions~2!–~6! were written in accor-
dance with the results of Refs. 2, 3, and 17. Not only expr
sions for the gas-kinetic coefficients appearing in~2!–~6!,
but also concrete values of these coefficients were give
those papers. In the general case the gas-kinetic coeffic
appearing in the boundary conditions together with
Knudsen number are functions which depend on Kn.

The solutions of the system of equations~1! which sat-
isfy the boundary conditions at infinity have the followin
form:
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v r5S E

y3
2uTZD cosQ, vQ5S E

2y3
1uTZD sinQ, ~10!

Te5Te`1RNS y1
1

y2
AD u¹Te`ucosQ,

Tk5Te`1RN~Bk,1wk,11Bk,2wk,2!u¹Te`ucosQ, ~11!

c15c1`1RNM
1

y2

1

Te`
u¹Te`ucosQ, ~12!

whereE, M, A, Bk,1 , andBk,2 are integration constants, an
y5r /RN .

The functionswk,1 andwk,2 are linearly independent par
ticular solutions of the equation

«ky
2

d2wk

dy2
1

d

dy
~«ky

2!
dwk

dy
22«kwk50, ~13!

which are divergent aty50 (wk,1) and nondivergent a
y50 (wk,2).

Because of the finite value of the temperature at the c
ter of the particle we haveB1,150. In the general case th
dependence ofwk,1 and wk,2 on y can be found during the
numerical solution of Eq.~13!. If the expression for«k in an
annular region bounded by circles of radiiyk21 and yk can
be represented in the form of a convergent power series

«k5«k
(0)(

n50

`

an
(k)yn, a0

(k)51 ~14!

with a radius of convergence in the complex regiona>yk ,
the solutionswk,1 andwk,2 have the following form:

wk,15yH (
n523

`

bn,k
(1)yn1D (k)~ ln y! (

n50

`

bn,k
(2)ynJ ,

wk,25y(
n50

`

bn,k
(2)yn, b0,k

(2)51. ~15!

After substituting~14! and ~15! into Eq. ~13! and then
setting the coefficients in front of identical powersyn equal
to zero, we obtain the following recurrence relations for t
coefficientsbn,k

(1) andbn,k
(2) :

bn,k
n>22,nÞ0

~1!
52

1

n~n13! H D (k)~2n13!bn,k
(2)

1 (
m51

n13

@~~n2m!~n13!1m!bn2m,k
(1)

1D (k)~2n2m13!bn2m,k
(2) #am

(k)J ,

bn,k
n>1

~2!
52

1

n~n13! (
m51

n

@~n2m!~n13!

1m#am
(k)bn2m,k

(2) , b0,k
(2)51. ~16!

In determining the value ofbn,k
(1) it must be taken into ac

count that
n-

e

b23,k
(1) 51, b0,k

(1)50, D (k)5
2

3 (
m51

3

mam
k b2m,k

(1) .

For «k5const we havewk,151/y2 and wk,25y, respec-
tively. If «k5«k

(0)exp(a(k)y), «k
(0)5const, anda (k)5const,

then

wk,15
1

y2
exp~2a (k)y!,

wk,253F S 1

a (k)
2

2

ya (k)2
1

2

y2a (k)3D
2

2

y2a (k)3
exp~2a (k)y!G .

In the case of«k5«k
(0)(11a (k)y)g(k) and ua (k)u,1,

wk,25yH (
n523

`

bn,k
(1) yn1D (k)~ ln y! (

n50

`

bn,k
(2)ynJ ,

wk,25y(
n50

`

bn,k
(2)yn, b0,k

(2)51. ~17!

The recurrence relations forbn,k
(1) andbn,k

(2) are

bn,k
n>22,nÞ0

~1!
52

1

n~n13!
$a (k)~n21n~11g (k)!22!

3bn21,k
(1) 1D (k)~2n13!bn,k

(2)

1a (k)D (k)~2n111g (k)!bn21,k
(2) %,

bn,k
n>1

~2!
52a (k)

@n21n~11g (k)!22#

n~n13!
bn21,k

(2) ,

b0,k
(2)51. ~18!

In finding the values ofbn,k
(1) it must be taken into ac-

count thatb23,k
(1) 51, b0,k

(1)50, andD (k)5(2/3)a (k)b21,k
(1) . It

follows from ~18! that the values ofbn,k
(2) can be found using

the formula

bn,k
n>1

~2!
5~2a (k)!n) m51

n @m21~11g (k)!m22#

m~m13!
,

b0,k
(2)51.

The substitution of~10!–~12! into the boundary condi-
tions ~2!–~7! followed by the elimination of cosQ and sinQ
from them yielded a system of linear algebraic equatio
relative to the unknownsE, A, M, Bk,1 , Bk,2 , anduTZ . In the
course of solving this linear system we obtained an exp
sion for the projectionuTZ . The formula for the thermo-
phoretic velocity obtained with consideration of this expre
sion has the following form:

uT52 f T

ne

Te`
¹Te` , ~19!
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f T5
1

~112CQKn!~12Cv
(c)Kn!d1

3@d2$@~12Cv
(c)Kn!2~Cq

(k)2Cq
(c)Kn!KT#kD1

1@~12Cv
(c)Kn!CT

(T)2KTCT
(n)#Kn«N

(2)D2%

1d3$@12Kn~Cv
(c)22Cv

(T)CT
(n)Kn!#«N

(2)D2

22@Cq
(T)~12Cq

(c)Kn!2Cv
(T)~Cq

(k)

2Cq
(c)Kn!#Kn kD1%#. ~20!

In Eq. ~20! k is the thermal conductivity of the gas,

d15$2@~12Cq
(T)Kn!~12Cv

(c)Kn!1~Cq
(k)2Cq

(c)Kn!

3~Cv
(T)Kn2KT!#kD11@~112CT

(T)Kn!

3~12Cv
(c)Kn!12~Cv

(T)Kn2KT!CT
(n)Kn#«N

(2)D2%,

d25H @CT
(0)1Kn~~CT81CT

(B)!2~116CQKn!Cr
(T)!#

3~12Cv
(c)Kn!1

D

ne
@CD

(0)1Kn~~CD8 23CD
(B)

22CD
(R)!2~116CQKn!Cr

(c)!#Cv
(T)KnJ ,

d35H Kn~CT
(R)2CT

(B)Kn!~12Cv
(c)!

1
D

2ne
@CD

(0)1Kn~~CD8 23CD
(B)22CD

(R)!

2~116CQKn!Cr
(c)!#KTJ .

The expressions for the coefficientsD1 andD2 have the
form

D15detiaimi , D25detibimi ,

1< i<2N21, 1<m<2N21. ~21!

The values of the matrix elementsaim andbim are found
using the formulas

a2k21,2k225wk,1
(2) , a2k21,2k5wk,1

(2) ,

a2k21,2k52wk11,1
(1) ,

a2k21,2k1152wk11,2
(1) , 1<k<N21,

a2k21,m<2k2350,

a2k21,m>2k1250, a2k,2k225«k
(2)

dwk,1
(2)

dy
,

a2k,2k215«k
(2)

dwk,2
(2)

dy
, a2k,2k52«k11

(1)
dwk11,1

(1)

dy
,

a2k,2k1152«k11
(1)

dwk11,2
(1)

dy
, 1<k<N21,

a2k,m<2k2350, a2k,m>2k1250, a2N21,m<2N2350,
a2N21,2N225wN,1
(2) , a2N21,m<2N2350, bim5aim ,

1< i<2N22, 1<m<2N21, b2N21,m<2N2350,

b2N21,2N225
dwN,1

(2)

dy
, b2N21,2N215

dwN,2
(2)

dy
, ~22!

in which the indexk takes values fromk51 to k5N21;

yk5Rk /RN , wk,1
(1)5wk,1 , wk,2

(1)5wk,2uy5yk21
,

dwk,1
(1)

dy
5

dwk,1

dy
U

y5yk21

,
dwk,2

(1)

dy
5

dwk,2

dy y5yk21
,

«k
(1)5«kuy5yk21

, wk,1
(2)5wk,1uy5yk

, wk,2
(2)5wk,2uy5yk

,

dwk,1
(2)

dy
5

dwk,1

dy
U

y5yk

,
dwk,2

(2)

dy
5

dwk,2

dy
U

y5yk

, «k
(2)5«kuy5yk

.

In single-layer particles (N51) the expressions forD1

andD2 are

D15w1,2
(2) , D25

dw1,2
(2)

dy
. ~23!

When «15const, the coefficients~23! take the values
D151 andD251. In the case of a two-layer particle

D15F«1
(2)~w2,1

(1)w2,2
(2)2w2,2

(1)w2,1
(2)!

dw1,2
(2)

dy

2«2
(1)S w2,2

(2)
dw2,1

(1)

dy
2w2,1

(2)
dw2,2

(1)

dy Dw1,2
(2)G ,

D25F«1
(2)S w2,1

(1)
dw2,2

(2)

dy
2w2,2

(1)
dw2,1

(2)

dy D dw1,2
(2)

dy

2«2
(1)S dw2,2

(2)

dy

dw2,1
(1)

dy
2

dw2,1
(2)

dy

dw2,2
(1)

dy Dw1,2
(2)G . ~24!

When the coefficients«1 and «2 have constant values, for
mulas~24! become

D152y1F «1S 1

y1
3

21D 1«2S 2

y1
3

11D G ,

D252y1F «1S 1

y1
3

12D 12«2S 1

y1
3

21D G .

In the case of a one-component gas, the expression
f T ~20! takes the following, considerably simpler form:

f T52$@CT
(0)1Kn~~CT81CT

(B)!2~116CQKn!Cr
(T)!#

3~kD11«N
(2)CT

(T)KnD2!1Kn~CT
(R)2CT

(B)!

3~«N
(2)D222Cq

(T)KnkD1!%
1

~112CQKn!d1
,

whered152(12Cq
(T)Kn)kD11(112CT

(T)Kn)«N
(2)D2.

The problem of the thermophoretic motion of a mode
ately large multilayer cylindrical particle oriented perpe
dicularly to ¹Te` is solved in analogy to the foregoing. A
expression for the projection of the thermophoretic veloc
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uT onto the polar 0Z axis of the cylindrical coordinate sys
tem is found during the solution of the boundary-value pro
lem ~1!–~9!, in which r and Q are the cylindrical coordi-
nates, and divQ5]2/]Q2. The solutions of the system~1! in
the case of a cylindrical particle are

v r5S E

y2
2uTZD cosQ, vQ5S E

y2
1uTZD sinQ, ~25!

Te5Te`1RNS y1
A

y D u¹Te`ucosQ,

Tk5Te`1RN~Bk,1wk,11Bk,2wk,2!u¹Te`ucosQ, ~26!

c15c1`1RN

M

y

1

Te`
u¹Te`ucosQ, ~27!

whereE, A, M, Bk,1 , and Bk,2 are integration constants;y
5r /RN ; andB1,150.

The functionswk,1 andwk,2 are linearly independent par
ticular solutions of the equation

«ky
2

d2wk

dy2
1y

d

dy
~«ky!

dwk

dy
2«kwk50, ~28!

which are divergent aty50 (wk,1) and nondivergent a
y50 (wk,2).

The integration of~28! can be performed numerically o
in quadratures. If the expression for«k can be represented i
the form of a convergent power series~14!, the particular
solutions of~28! become

wk,15yH (
n522

`

bn,k
(1)yn1D (k)~ ln y! (

n50

`

bn,k
(2)ynJ ,

wk,25y(
n50

`

bn,k
(2)yn, b0,k

(20)51. ~29!

The values of the coefficientsbn,k
(1) andbn,k

(2) appearing in
~29! are found from the following formulas:

bn,k
n>21,nÞ0

~1!
52

1

n~n12! H (
m51

n12

@~n2m!~n11!1n#

3bn2m,k
(1) 1D (k)~2n2m12!bn2m,k

(2) ]am
(k)

12D (k)~n11!bn,m
(2) J ,

bn,k
n>1

~2!
52

1

n~n12! (
m51

n

@~n2m!~n11!

1n#am
(k)bn2m,k

(2) , b0,k
(2)51. ~30!

In determiningbn,k
(1) , it must be taken into account tha

b22,k
(1) 51, b0,k

(1)50, D (k)5
1

2 (
m51

2

mb2m,k
(1) am

(k) .

When«k5const, we havewk,151/y andwk,25y, respec-
tively. If «k5«k

(0)exp(a(k)y), then wk,15(1/y)exp(2a(k)y),
and
- wk,252F S 1

a (k)
2

1

ya (k)2D 1
1

ya (k)2
exp~2a (k)y!G .

In the case of«k5«k
(0)(11a (k)y)g(k)

and ua (k)u,1, we
have

wk,15yH (
n522

`

bn,k
(1)yn1D (k)~ ln y! (

n50

`

bn,k
(2) ynJ ,

wk,25y(
n50

`

bn,k
(2) yn, b0,k

(2)51.

The recurrence relations for the coefficientsbn,k
(1) and

bn,k
(2) ~30! have the following forms

bn,k
n>21,nÞ0

~1!
52

1

n~n12!
$a (k)~n21ng (k)21!bn21,k

(1)

12D (k)~n11!bn,k
(2)1a (k)D (k)~2n

1g (k)!bn21,k
(2) %,

bn,k
n>1

~2!
52a (k)

@n21ng (k)21#

n~n12!
bn21,k

(2) , b0,k
(2)51.

In finding the values ofbn,k
(1) , it must be taken into ac-

count that

b22,k
(1) 51, b0,k

(1)50, D (k)5
1

2
a (k)b21,k

(1) .

The values of the coefficientsbn,k
(2) ~30! can be found

from the formula

bn,k
n>1

~2!
5~2a (k)!n) m51

n @m21mg (k)21#

m~m12!
, b0,k

(2)51.

Also, in the case of cylindrical particles the expressi
for the thermophoretic velocity is equivalent to~19!. The
formula found during the solution of the boundary-val
problem~1!–~9! for the coefficientf T of multilayer cylindri-
cal particles has the following form:

f T5
1

~112CQKn!~12Cv
(c)Kn!d1

3@d2$@~12Cv
(c)Kn!2~Cq

(k)2Cq
(c)Kn!KT#kD1

1@~12Cv
(c)Kn!CT

(T)2KTCT
(n)#Kn«N

(2)D2%

1d3$@12Kn~Cv
(c)2Cv

(T)CT
(n)Kn!#«N

(2)D2

2@Cq
(T)~12Cv

(c)Kn!2Cv
(T)~Cq

(k)2Cq
(c)Kn!#KnkD1%#,

~31!

where

d15$@~12Cq
(T)Kn!~12Cv

(c)Kn!1~Cq
(k)2Cq

(c)Kn!

3~Cv
(T)Kn2KT!#kD11@~11CT

(T)Kn!~12Cv
(c)Kn!

1~Cv
(T)Kn2KT!CT

(n)Kn#«N
(2)D2%,
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d25H @CT
(0)1Kn~~CT81CT

(B)!2~114CQKn!Cr
(T)!#

3~12Cv
(c)Kn!1

D

ne
@CD

(0)1Kn~~CD8 22CD
(B)

2CD
(R)!2~114CQKn!Cr

(c)!#Cv
(T)KnJ ,

d35$Kn~CT
(R)!2CT

(B)!~12Cv
(c)Kn!

1
D

ne
@CD

(0)1Kn~~CD8 22CD
(B)2CD

(R)!

2~114CQKn!Cr
(c)!#KT%.

The values of the coefficientsD1 andD2 are found from
formulas~21!. The solutionswk,1 andwk,2 of Eq. ~28! must
be used to determined the values of the determinant elem
aim and bim . In the case of single-layer and two-layer pa

FIG. 1. Dependence of the coefficientf T for large spherical particles on th
relative concentration of hydrogen molecules.
nts

ticles, the expressions forD1 andD2 are equivalent to~23!
and ~24!. If the particle moves in a one-component gas,
expression~31! for f T takes the form

f T5
1

~112CQKn!d1
$@CT

(0)1Kn~~CT81CT
(B)!

2~114CQKn!Cr
(T)!#~kD11«N

(2)CT
(T)KnD2!

1Kn~CT
(R)2CT

(B)!~«N
(2)D22Cq

(T)KnkD1!%,

whered15(12Cq
(T)Kn)kD11(11CT

(T)Kn)«N
(2)D2.

The expressions~20! and ~31! for f T take their simplest
forms in the case of large particles, for which Kn50:

f T
(1)5

2@CT
(0)kD11CD

(0)KT~D/2ne!«N
(2)D2#

~2kD11«N
(2)D2!

,

f T
(2)5

@CT
(0)kD11CD

(0)KT~D/ne!«N
(2)D2#

~kD11«N
(2)D2!

.

The expression forf T
(1) can be used to find the values o

f T for spherical particles, and the expression forf T
(2) can be

used for cylindrical particles. If the molecular weights a

FIG. 2. Dependence of the coefficientf T on the Knudsen number:a54 ~1!,
2 ~2,4!, 0 ~3!, 4 ~5!.
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not excessively large, the product appearing inf T
(1) and f T

(2)

falls in the rangeCD
(0)KT,0. This means that diffusive slip

causes slowing of the thermophoretic motion of large p
ticles. The estimates made showed that in gas mixtures
strongly differing molecular weights the influence of diffu
sive slip on the thermophoretic velocity of large particles c
be significant, to the point of changing the direction of m
tion. This is demonstrated quite well by the course of
plots of f T in Fig. 1 for large spherical particles of glas
~curves1! and granite~curves2! versus the relative concen
tration of hydrogen molecules. When the calculations w
performed, it was assumed that the particles are in a
mixture consisting of H2 and N2 molecules. Their motion
occurs atTe`5293 K andp`5101 325 Pa. Curves18 and28
were constructed without taking the influence of diffusi
slip into account. The values of the gas-kinetic coefficie
were taken with accommodation coefficients equal
unity.3,17

The dependence of the thermal conductivity of the p
ticles on the radial coordinate can have a significant in
ence on the magnitude of the thermophoretic velocity. P
of the dependence of the coefficientf T for spherical particles
on the Knudsen number fork/« (S)50.1 are shown in Fig. 2
The curves in Fig. 2 were constructed for the case of
exponential dependence of the coefficient« for single-layer
particles ony5r /R.

It was assumed in obtaining the estimates that the
ticle is immersed in air withTe`5293 K andp`5101 325
Pa. The values of the gas-kinetic coefficients were ta
from Ref. 2.

In conclusion, we thank the Soros Foundation for
material support of this scientific study.
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Influence of charge relaxation on the capillary oscillations of a charged viscous
spheroidal drop
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A dispersion relation is derived for the spectrum of capillary modes of a charged spheroidal drop
of a viscous liquid with allowance for charge relaxation. It is shown that the finite charge
transport rate leads to lowering of the instability growth rates for various capillary modes of a
spheroidal drop of a low-viscosity liquid. As the degree of deformation of the drop
increases, the magnitude of the absolute change in the growth rate caused by the finite rate of
charge redistribution decreases. ©1999 American Institute of Physics.
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The problem of the capillary oscillations and stability
a charged viscous drop having the shape of a prolate sp
oid with consideration of the relaxation of the electric char
is of interest in connection with investigations of the mech
nism underlying the instability of a highly charged spheric
drop with respect to its self-charge. The same physical
ject, viz., a charged drop, is encountered in a very long lis
problems in technical physics, geophysics, scienti
instrument design, and chemical technology. For this rea
the investigation of the capillary oscillations and stability
a charged drop having the shape of a prolate spheroid
been the subject of a considerable number of studies.1–8 Nev-
ertheless, the question of the influence of the finite rate
charge redistribution in the liquid on the laws governing t
development of the instability of a spheroidal drop has
heretofore been explored, although such an influence ca
significant.9–11

1. We shall solve the problem of the axisymmetric ca
illary oscillations of a charged prolate spheroidal drop o
viscous liquid of finite conductivity in a vacuum in a sphe
cal coordinate system with its origin at the center of the dr
assuming that the spheroidal shape of the drop is impose
the action of some outside forces of nonelectrical nature.
presume that as the drop oscillates, redistribution of the e
tric charge occurs only on its surface, while the bulk cha
density equals zero. In addition, we assume that the d
material and the external medium are characterized by
constant dielectric constants«1 and«2.

The solution is found in dimensionless variables,
which the radius of the original spherical dropR, the density
of the liquid in the dropr, and the surface tensiona are
equal to unity:R51, r51, anda51.

The equation of the surface of a prolate spheroid p
turbed by capillary wave motion in spherical coordinates
the linear approximation with respect toe2, i.e., the square o
the eccentricity of the spheroid, has the form

r 5r ~Q!1j~Q,t !'11e2h~Q!1j~Q,t !,

where
8941063-7842/99/44(8)/9/$15.00
er-
e
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e
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e

r-

r ~Q!5~12e2!1/6~12e2 cos2 Q!21/2,

h~Q!5
1

6
~3 cos2 Q21!,

e is the eccentricity of the spheroid, andj(Q,t) is the axi-
symmetric perturbation of the equilibrium spheroidal dr
surface caused by capillary oscillations, which occur a
result of the thermal motion of the molecules and have
amplitude;AkT/a ~herek is Boltzmann’s constant, andT is
the absolute temperature!.

We also note that for most liquids the amplitude of su
thermal capillary oscillations is of the order of tenths of
nanometer.

The ensuing analysis is carried out within perturbati
theory by expansion in the small parameterse2 and j to
within terms;j and e2j, i.e., in the linear approximation
with respect toj. We note that the small parameterse2 andj
are independent, and it is assumed thate2!j. It would thus
appear that if we retain the terms;e2j, we should also take
into account the terms;e4. However, as will be seen below
only the terms;j ande2j make contributions to the disper
sion relation sought, and the terms;e2 ande4 vanish when
the kinematic boundary condition~which contains a partia
derivative with respect to time! is taken into account. For this
reason, retention of the terms;e4 in the calculations would
lead only to an unjustified complication of the mathemati
expressions describing the arguments made.

We assume that the dependences of the velocity fi
U(r ,t), the pressure fieldp1(U,t) within the liquid, and the
perturbation of the free surfacej(Q,t) on the time t are
exponential, i.e.,;exp(st), where s is the complex fre-
quency.

We write out the system of hydrodynamic equations d
scribing the motion of the viscous liquid in a drop that
caused by a small perturbation of the shape of its equilibri
surfacej(Q,t) and can therefore be characterized by t
velocity fieldU(r ,t), which is of the same order of smallnes
asj. The system consists of the Navier–Stokes equation
the incompressibility condition for a liquid,12
© 1999 American Institute of Physics
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dU

dt
[

]U

]t
1~U•“ !U52¹p11n DU; “•U50, ~1!

wheren is the kinematic viscosity coefficient andD is the
Laplacian operator.

The system of equations describing the electrostatic
the problem being solved has the form13

DF j50, j 51,2, ~2!

where the index 1 refers to the liquid, the index 2 refers
the external medium, andF j are the electric potentials.

On the perturbed, weakly spheroidal drop surface

F~r ,t ![r 2@11e2 h~Q!1j~Q,t !#50 ~3!

the following boundary conditions should be satisfied:10–13

]F~r ,t !

]t
1U•“F~r ,t !50; ~4!

~Pt
(2)2Pt

(1)!2n@t~n•“ !U1n~t–¹!U#50;

Pt
( j )5

« j

4p
EjnEj t ; ~5!

2~p12p2!12n n~n•“ !U2pE1pa50; ~6!

]m

]t
2s n•E11divS~mUt1mbE1t!50; F15F2 ;

~7!

r˜`: F2˜0; r˜0: F1˜const. ~8!

Here

m~Q,t !5
1

4p
~«2E2n2«1E1n!

is the surface density of the electric charge,Ej52“F j , Ut

is the component of the velocity vector tangent to the surf
~3!, divSA is the surface divergence,s is the electrical con-
ductivity of the liquid drop,b is the mobility of the charge
carriers in the liquid,En andEt are the normal and tangentia
components of the electric field intensity vector,n andt are
unit vectors of a normal and a tangent to the free surfacep2

is the pressure of the external medium, andpE andpa are the
pressures created by the electric forces and the force
surface tension. We also require satisfaction of the follow
conditions: constancy of the drop volume

E
V
dV5

4

3
p, ~9!

immobility of its center of mass

E
V
r dV50, ~10!

and conservation of the total chargeQ of the drop during
oscillations of its surface

E
S
m~Q,t ! dS5Q. ~11!
of

o

e

of
g

In ~9! and ~10! the integration is carried out over th
entire drop volume, and in~11! it is carried out over the
surface of the drop.

2. In the linear approximation with respect toU and j
Eqs.~1! take the form

]U

]t
52¹~p1~U,t !!1n DU; “•U50, ~12!

where p1(U,t) is the additional pressure within the liquid
which is of first order with respect toU ~i.e., with respect to
j).

When the problem is solved in the first-order approxim
tion with respect toU and j, it is sufficient to take the lin-
earized boundary conditions~4!–~7! on the unperturbed sur
face of the spheroidal dropr 5r (Q)'11e2h(Q).

We rewrite the conditions~4!–~6! in terms of the projec-
tions of the velocity vectorU(r ,t) onto the unit vectors of
the spherical coordinate system (Ur , UQ , and Uw!. As a
result, the kinematic boundary condition~4! takes the form

r 5r ~Q!: 2
]j~Q,t !

]t
1Ur1UQe2 sinQ cosQ50.

~13!

The dynamic boundary condition for the tangential co
ponent of the stress tensor~5! can be separated into tw
conditions, since two mutually perpendicular unit vecto
viz., tw andtQ , can be chosen at a given point on the pla
tangent to the drop surface. As a result, from~5! we obtain
the following conditions: 1!

r 5r ~Q!: ~ptw

(2)2Ptw

(1)!2nH ]Uw

]r
2

1

r
Uw

1e2 sinQ cosQF1

r

]Uw

]Q
2

1

r

cosQ

sinQ
UwG J 50, ~14!

whentw is chosen as the unit vector of the tangent; 2!

r 5r ~Q!: ~ptQ

(2)2PtQ

(1)!2nH ]UQ

]r
1

1

r

]Ur

]Q
2

1

r
UQ

1e22 sinQ cosQF1

r
Ur1

1

r

]UQ

]Q
2

]Ur

]r G J 50, ~15!

whentQ is chosen as the unit vector of the tangent.
The boundary condition~16! for the normal componen

of the stress tensor takes the form

r 5r ~Q!: H 2p1~U,t !12n

3F]Ur

]r
1e2 sinQ cosQS ]UQ

]r
1

1

r

]Ur

]Q D G
2pE~j!1pa~j!J 50, ~16!

where pE(j) and pa(j) are additions to the correspondin
pressures, which are of first order with respect toj.



e

s
ns

io
he
e
a

nt

ri

nc

po

ent

s

896 Tech. Phys. 44 (8), August 1999 S. O. Shiryaeva
Since the integration in~9! and ~10! is carried out over
the entire drop volume, in the linear approximation with r
spect toj these conditions can be written in the form

E
0

p

j~Q,t !sinQ dQ50; ~17!

E
0

2pE
0

p

j~Q,t !er sinQ dQ dw50. ~18!

Thus, the system of vector hydrodynamic equations~12!
with the boundary conditions~13!–~16! and the additional
conditions~17! and ~18!, as well as the system of equation
~2! for the electric potentials with the boundary conditio
~7! and~9! and the additional condition~11! comprise a com-
plete mathematical formulation of the problem posed.

3. We shall solve the stated problem by the scalarizat
method described in detail in Ref. 14, generalizing it in t
linear approximation with respect to the square of the ecc
tricity to the case of the simplest spheroidal region for
spherical coordinate system.6 For this purpose we represe
the velocity fieldU(r ,t) in the form of an expansion

U~r ,t !5N̂1F1~r ,t !1N̂2F2~r ,t !1N̂3F3~r ,t !, ~19!

whereFk(r ,t) are scalar functions, andN̂k are differential
vector operators, which take the following form in a sphe
cal coordinate system

N̂1[“; N̂2[“•r ; N̂3[“~“•r !.

Taking into account the expansion~19!, we easily trans-
form the system of vector equations~12! for U(r ,t) and
p1(U,t) into a system of scalar equations for the scalar fu
tions Fk(r ,t)

DFk~r ,t !2
s

n
~12dk1!Fk~r ,t !50 ~k51,2,3!;

p1~U,t !52sF1~r ,t !, ~20!

wheredk j is the Kronecker delta.
We also rewrite the boundary conditions~13!–~16! in

terms of the scalar functionsFk(r ,t): the kinematic bound-
ary condition is

r 5r ~Q!: sj2F]F1

]r
2

1

r
DVF3G

2e2 sinQ cosQ
]

]Q FF1

r
1

1

r

]

]r
~rF3!G50; ~21!

the dynamic boundary conditions for the tangential com
nents of the stress tensor are
-

n

n-

-

-

-

1

sinQ

]

]Q
sinQ~Ptw

(2)2Ptw

(1)!1nH DVF]F2

]r
2F2G

1e2Fh~Q!DVS ]2F2

]r 2
2

]F2

]r
13F2D 2

2

3
DV~F2!

2sinQ cosQ
]

]Q S ]2F2

]r 2
2

]F2

]r
2~31DV!F2D G J 50;

~22!

1

sinQ

]

] Q
sinQ~PtQ

(2)2PtQ

(1)!1nH DVF2S ]F1

]r
2F1D

1
]2F3

]r 2
2~21DV!F3G2e2S h~Q!F2~62DV!

3
]2F1

]r 2
24~32DV!

]F1

]r
216DVF1

2DVS ]3F3

]r 3
1~222DV!

]F3

]r
22~42DV!F3D G

1sinQ cosQ
]

]Q F2S 2
]2F1

]r 2
23

]F1

]r
2DVF1D

1
]3F3

]r 3
2~615DV!

]F3

]r
14DVF3G

12 cos2 QDVFF11
]F3

]r
1F3G D J 50; ~23!

the dynamic boundary condition for the normal compon
of the stress tensor is

r 5r ~Q!: sF112nH F ]2F1

]r 2
2DVS ]

]r S F3

r D D G
1e2 sinQ cosQ

]

]Q F2

r

]F1

]r
2

F1

r 2
1

]2F3

]r 2

1
]

]r S F3

r D2DVS F3

r 2 D G J 2pE~j!1pa~j!50;

DV[
1

sinu

]

]Q S sinQ
]

]Q D . ~24!

It is clear from the form of Eqs.~20! that in a spherical
coordinate system the dependence of the functionsFk(r ,t)
on the angleQ is specified by the spherical harmonic
Ym

0 (Q). Therefore, the solutions of the system~20! which
are regular atr 50 are written in the form

F1~r ,t !5 (
m50

`

Cm
1 r m Ym

0 ~Q!exp~st!;

F2,3~r ,t !5 (
m50

`

Cm
2,3i mSAs

n
r DYm

0 ~Q!exp~st!, ~25!
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wherei m(x) are modified spherical Bessel functions, andCm
k

are constants.
Since the functionj(Q,t) is related to the functions

Fk(r ,t) by the kinematic boundary condition, it is logical t
represent it in the form of the following expansion in th
spherical harmonics:

j~Q,t !5 (
m50

`

Zm Ym
0 ~Q!exp~st!, ~26!

whereCm
1 , Cm

2,3, andZm are constants.
The additional conditions~17! and ~18! permit refine-

ment of the range of variation ofm in the expansions~25!
and ~26!. Projecting~18! onto the axes of the Cartesian c
ordinate system, from~17! and ~18! we can easily find tha
Z05Z150. Therefore, in the expansions~25! and ~26! the
smallest value ofm should bem52.

4. The relationship of the unknown constantsCm
k (k

51,2,3) in the expansions~25! to the expansion coefficient
Zm of the perturbation functionj(Q,t) is determined from
the boundary conditions~21!–~24!, as are the expression fo
the complex frequency of the capillary oscillationss.

We first of all note that in the case of axisymmetr
oscillations the boundary condition~22! for F2(r ,t) is com-
pletely autonomous, i.e., it does not contain some other
known function, i.e.,F2(r ,t) does not influence the oscilla
tions of the drop surface and, therefore, will not
considered below. We shall focus our attention on
boundary conditions~21!, ~23!, and ~24! for F1(r ,t),
F3(r ,t), andj(Q,t).

We substitute the solutions~25! and~26! into the condi-
tion ~21!, utilizing the recurrence relations fori m(x) and
Ym

0 (Q) ~Ref. 15! and the orthonormality of the spheric
harmonics and neglecting the interaction of the capill
modes. In the linear approximation with respect toe2 we
obtain an equation of the form

Cm
1 @m1e2¸mg1#1Dm

3 S m~m11!1e2¸m

3F ~m11!g11As

n
f mSAs

n D g2G D 2sZm50. ~27!

Before transforming the boundary conditions~23! and
~24!, we must consider the electrical boundary-value pr
lem ~2!, ~7!, ~8!, and~11!. The solution of this problem wa
sought by expanding the potentialsF j , the boundary condi-
tions ~7! and ~8!, and the additional condition~11! in small
quantities;e2, j, ande2j. The condition for redistribution
of the charge over the drop surface~7! was explored using
the solutions for the hydrodynamic potentialsF j (r ,t) ( j
51,2,3) in the form~25!. As a result of some very cumbe
some calculations we were able to obtain a solution for
electric potentials and, using them, to write out the electr
part of the tangential component of the stress tensor
n-

e

y

-

e
l

1

sinQ

]

]Q
sinQ~PtQ

(2)2PtQ

(1)!

'4W
m

Lm
H «2~m11!@m~m11!1e2¸mgm

2 ~l!#Cm
1

1«2~m11!Fm~m11!21e2¸mS g2

s

n
1gm

3 ~l! D
1As

n
f mSAs

n Dm~m11!~11e2¸mzm~l!!GDm
3

2@~m221!l21e2¸m~m11!gm
1 ~l!#ZmJ

3Ym
0 ~Q!exp~st! ~28!

and the expression for the addition to the pressure create
the electric forces

pE~j!ur 5r (Q)'
Q2

4p«2
(

m52

`
1

Lm
H @m~m21!~l11~m11!

34bAp«2W!1e2¸m~~m24!Lm23

3~m21!l22~m11!gm
(1)~l!!#Zm1«2

3~m11!@m~m11!1e2¸m~3m1gm
(2)~l!!#

3Cm
1 1«2~m11!Fm~m11!S ~m11!

1As

n
f mSAs

n D D 1e2¸mS g2

s

n
13m

3~m11!1gm
(3)~l!1As

n
f mSAs

n D
3~3m1m~m11!zm~l!! D GDm

3 J
3Ym

0 ~Q!exp~st!. ~29!

Using the expression~28! and substituting the solution
~25! and ~26! into the dynamic boundary condition for th
tangential component of the stress tensor~23!, we obtain

Cm
1 H 2~m21!n14W«2

m~m11!

Lm
1e2¸mFb1n

14W«2

1

Lm
gm

(2)~l!G J 1Dm
3 H Fs12~m221!n

14W«2

m~m11!2

Lm
G2As

n
f mSAs

n D
3F2n24W«2

m~m11!

Lm
G1e2¸mFb2s1b3n

14W«2

1

Lm
S g2

s

n
1gm

(3)~l! D1As

n
f mSAs

n D
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3Fb4s1b3n14W«2

1

Lm
m~m11!zm~l!G G J

2
4W

Lm
$~m21!l21e2¸mgm

(1)~l!%Zm50. ~30!

In order to write out the dynamic boundary condition for t
normal component of the stress tensor, we must utilize
expressions for the addition to the pressure created by
electric forcespE(j) ~29! and the addition to the pressu
created by the surface tension forcespa(j), which, in the
axisymmetric case, has the form7

pa~j!' (
m52

`

@~m21!~m12!1e22~m21m14!¸m#

3Zm Ym
0 ~Q!exp~st!. ~31!

Substituting~25!, ~29!, and~31! into ~24!, we obtain

Cm
4 H Fs1g3n24W«2

m~m11!2

Lm
G

1e2¸mFms1g4n24W«2

~m11!

Lm
~3m1gm

(2)~l!!G J
1Dm

3 H m~m11!F2~m21!n24W«2

~m11!2

Lm
G

1As

n
f mSAs

n Dm~m11!F2n24W«2

~m11!

Lm
G

1e2¸mF2sg21~m11!g4n24W«2

~m11!

Lm

3S g2

s

n
13m~m11!1gm

(3)~l! D2As

n
f mSAs

n D
3S 2g5n14W«2

m~m11!

Lm
~31~m11!zm~l!! D G J

1ZmH ~m21!~m12!F12
4W

~m12!

m

Lm

3~l11~m11!4bAp«2W!G2e2¸mFg614W~m24!

24W
1

Lm
~3~m21!l21~m11!gm

(1)~l!!G J 50. ~32!

The following notation was used in~27!–~32!:

f mSAs

n D[

i m11SAs

n D
i mSAs

n D ; Dm
3 [Cm

3 i mSAs

n D ;

l1[s«114ps; l2[s«2 ; W[
Q2

16p«2
;

Lm[ml11~m11!l21m~m11!4Ap«2Wb;
e
he

¸m[
m~m11!

3~2m21!~2m13!
;

b152S m223m211
3

mD ;

b25~m22!S 12
3

m~m11! D ;

b352S m322m224m121
3

mD ;

b45S 12
3

m~m11! D ;

b552~m21m21!1
6

m~m11!
;

g15m~m21!23; g25m~m11!23; g352m~m21!;

g452~m323m224m13!;

g554m~m11!23; g652~m~m11!14!;

gm
(1)~l!5l2@~m24!1~m21! zm~l!#;

gm
(2)~l!5m~m11!@~m12!1zm~l!#26;

gm
(3)~l!5m~m11!2@m1zm~l!#;

zm~l!5
3

Lm
~l12l2!.

Setting the determinant of the system of equations~27!,
~30!, and~32! equal to zero, we obtain the dispersion relati
of the problem in the linear approximation with respect toe2:

s$s212~m21!~2m11!ns1m~m21!~m12!am%

2As

n
f mSAs

n D H S 2n2m~m11!
4W

Lm
D

3~s212m~m21!~m12!ns1m~m21!~m12!am!

1
4W

Lm
2nm~m421!sJ 1e2¸mH sS @s21m~m21!

3~m12!am#F2~m21!2
3~m22!

m~m11!
1S 12

3

m~m11! D
3As

n
f mSAs

n D G23@~2m21!~m12!am1m3# D
1

4W

Lm
H s

n
~m~m11!23!@s21m~m21!~m12!am#

12~m~m11!23!@2m~m22!s2m~m21!~m11!

3~m12!am#2As

n
f mSAs

n D ~s2~m222m23!14m2

3~m11!~m21m11!24Wm2~m11!~m12!

2zm~l!m~m11!~m~m21!~m12!am1s2!!J
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12nFs2S 2m328m21m211
3

m
2

3~m22!~m21!

~m11! D
1As

n
f mSAs

n D Fs2S 2m22m241
3~2m11!

m~m11! D
13S m21

~m21!

~m11! D ~m12!am13m3G G22ns
4W

Lm

3H 2~m11!@m~m11!23#@2m22m21#

1As

n
f mSAs

n D ~m~m11!~m21!~8m15!

29~m21!2zm~l!m~m11!~m21!~2m21!!J
14n2sAs

n
f mSAs

n D F5m315m224m2
6

~m11!GJ50.

~33!

Here

am[12
4

~m12!
W.

Setting e250 in ~33!, i.e., discarding the entire corre
sponding expression in the large curly brackets, we ob
the dispersion relation for the oscillation frequencies o
charged spherical drop of a viscous liquid of fini
conductivity.10

In the ensuing numerical analysis of Eq.~33! we shall
take«251 and set«1[«.

The qualitative form of the motions of the liqui
~branches of the dispersion relation! obtained by a numerica
calculation using~33! for nonzero eccentricity differ only
slightly from those obtained for a spherical drop10 and are
illustrated in Fig. 1, where the general form of the branch
of the dispersion relation~33! for the fundamental model o
a drop of a low-conductivity liquid (m52, e250.1, n
50.03, s50.1, «510, b50.1) is presented in the form o
plots of Res(W) and Ims(W). Curves1–3 specify the cap-
illary motions of the liquid in the drop, and curves1—R,
2—R, and 3—R characterize the damped relaxation
convection motions caused by the transport of charge du
equalization of the electric potential and the transport
charge by streams of liquid. Curve1—CP characterizes th
damped capillary–poloidal periodic motion of the liquid a
pearing as a result of the interaction of branch3 of the
damped harmonic capillary motion with branch4 of the
damped poloidal vortex motion. It is noteworthy that t
interaction of the harmonic capillary motion with the polo
dal motion was manifested only when the charge relaxa
effect was taken into account and that these two types
motion do not interact in an ideally conductive liquid.16

Curves4 and 5 characterize aperiodically damped poloid
motions @actually there is an endless set of poloidal vort
motions,10,16 but only the ones whose damping decreme
fall on the (Res,W) plane in the scale adopted are shown
in
a

s

to
f

n
of

l

s

the figure#. The real part of curve2 in the region Res.0
characterizes the growth rate of the instability of the dr
with respect to its self-charge.

As the numerical calculations showed, consideration
the finite electrical conductivity of the liquid and finite mo
bility of the charge carriers leads to a decrease in the in
bility growth rate in comparison to an ideally conductiv
liquid, for which these parameters are infinitely large.
low-viscosity liquids withn!1 the qualitative dependence
of the instability growth rate on conductivity and carrier m
bility for nonzero eccentricity are similar to the analogo
dependences for a spherical drop.10 Figure 2 presents plots o
the instability growth rate of the tenth mode (m510) as a
function of the conductivitys for a liquid such as dibutyl
phthalate (b50.1, «510, n50.1, W54) and various values
of the square of the eccentricity~curve 1 was obtained for
e250, curve2 for e250.1, and curve3 for e250.5). It is
seen that an increase ins leads to an increase in the inst
bility growth rate. It is also not difficult to see that the abs
lute change in the instability growth rate decreases with
creasing values of the square of the eccentricity. Sim
tendencies are also noted as the carrier mobility varies
can be seen from Fig. 3 (m510, s50.1, «510, n50.1,
W54; curve 1 corresponds toe250, and curve2 corre-
sponds toe250.5): as the eccentricity increases, the absol
change in the instability growth rate decreases, i.e., the ef
of the finite potential equalization rate, which is manifest
as an increase in the time for the development of instabil
abates as the degree of deformation rises. Such a phen

FIG. 1. Dependence of the real and imaginary components of the com
frequency on the dimensionless parameterW, which characterizes the sta
bility of a drop with respect to its self-charge.
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enon can be explained on the qualitative level by a decre
in the mean surface charge density as the drop is defor
and by alteration of the characteristic distances over wh
charge must be transported to equalize the electric poten

Numerical calculations for a high viscosity (n50.8) also
show that consideration of the finite electrical conductiv
and finite carrier mobility for a deformed drop leads to d
pendences which are the opposites of those presente
Figs. 2 and 3: ass andb increase, the instability growth rat

FIG. 2. Dependence of the instability growth rate of the tenth mode on
dimensionless electrical conductivity of the liquid.

FIG. 3. Dependence of the instability growth rate of the tenth mode on
dimensionless carrier mobility in the liquid.
se
ed
h
al.

-
in

of the same tenth mode decreases. This is probably bec
the mechanical stresses appearing upon redistribution o
charge over the surface of a high-conductivity liquid a
characterized by very short relaxation times and are ef
tively quenched by the viscosity in a high-viscosity liqu
without being manifested as an increase in the instab
growth rate of the respective mode, but with additional d
sipation of the energy of the capillary motions of the liqui

When the eccentricity is nonzero, an increase in the
electric constant of the liquid also leads to lowering of t
instability growth rate of a spheroidal drop.

It would also be interesting to ascertain how the ins
bility growth rates of the first few capillary modes of sph
roidal drops in various liquids depend on eccentricity. Figu
4 shows plots of the instability growth rate versus of t
square of the eccentricity for the second, sixth, tenth, a
twelfth modes~the numbers of the curves in the figure co
respond to the numbers of the modes! for a high-conductivity
liquid such as seawater, which corresponds to the dimens
less valuess5105, b51, «580, andn50.1, with W54
~the critical value of the Rayleigh parameter for realizi
instability of a drop, i.e., for a loss of stability of the funda
mental mode, isW51). The plots in Fig. 5, which are simi
lar to the curves in Fig. 4, were calculated for a low
conductivity liquid like dibutyl phthalate (s50.1, b50.1,
«510, andn50.1 withW54). It can be seen from the plot
presented that the instability growth rate of the fundamen
mode decreases ase2 increases~generally speaking, this is
consistent with Le Chatelier’s principle!. For higher modes
an increase ine2 leads to an increase in the instability grow

e

e

FIG. 4. Dependence of the instability growth rates of various modes on
square of the eccentricity.
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rates due to an increase in the surface charge density o
tips of the spheroid.4 Numerical calculations performed fo
various small values of the dimensionless viscosity show
the influence of the finite charge transport rate on the in
bility growth rate of various modes is weaker for low
viscosity liquids than for high-viscosity liquids.

At high viscosity values the viscosity exhibits its stro
gest damping influence on rapid motions of the liqu
~caused by the high instability growth rates of the high
modes!. This causes the time for development of the ins
bility of lower modes to become shorter than the time
development of the instability of higher modes. Cons
quently, unlike the breakup mechanism with the emission
hundreds of highly dispersed daughter droplets describe
Ref. 4, the drop acquires a tendency to break up into sev
parts of comparable size.17 At small eccentricity values in the
rangee2,0.1 this tendency is more pronounced in a lo
conductivity liquid than in a high-conductivity liquid. Con
versely, when the eccentricity is high, the tendency for d
sion of the drop into parts of comparable size is mo
pronounced in a high-conductivity liquid. This can be se
from Fig. 6, which presents the results of the calculations
the twelfth mode (m512), W54, andn50.1 in the various
liquids used in the experiments on the electrospraying
liquids in Ref. 18: curve1 is for a liquid like seawater (s
5105, b51, «580); curve2 is for a liquid like glycerol
(s550, b50.1, «550); curve3 is for a liquid like ethyl
alcohol (s510, b50.1, «525); curve4 is for a liquid like
distilled water (s51, b51, «580); and curve5 is for a
liquid like dibutyl phthalate (s50.1, b50.1, «510).

It is noteworthy that the range of variation ofe2 from 0

FIG. 5. Plots similar to the curves in Fig. 4, but for other values ofs, b,
and«.
the

at
a-

r
-
r
-
f
in

ral

-

-
e
n
r

f

to 0.5 used to construct the plots in Figs. 2–6 was taken o
for graphic purposes and for qualitative predictions of t
possible behavior of the instability growth rates as the sp
roidal deformation increases, since Eq.~33! was obtained for
the rangee2!1; therefore, the plots corresponding to lar
eccentricity values have a qualitative character.

CONCLUSION

Consideration of the finite equalization rate of the ele
tric potential for a highly charged prolate spheroidal drop
a low-viscosity liquid leads to lowering of the instabilit
growth rates. As the degree of deformation of the drop
creases, the absolute change in the instability growth
caused by the finite charge redistribution rate decrea
Drops of high-viscosity liquids display a different tendenc
The mechanical stresses appearing as a result of redist
tion of the charge over the surface of high-conductivity li
uids are characterized by very short characteristic relaxa
times and are effectively quenched in high-viscosity liquid
being manifested as a change in the instability growth rate
the respective mode to only a small extent.

The author thanks V. A. Koromyslov and M. I. Mu
nichev for their assistance in the numerical calculations.
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Resonant oscillations of an elastic membrane on the bottom of a tank containing a
heavy liquid

V. V. Alekseev, D. A. Inde tsev, and Yu. A. Mochalova

Institute of Mechanical-Engineering Problems, Russian Academy of Sciences, 199178 St. Petersburg, Russia
~Submitted April 8, 1988!
Zh. Tekh. Fiz.69, 37–42~August 1999!

A study is made of the resonant oscillation modes in a three-dimensional channel filled by a
heavy incompressible liquid, with a free surface at the top and an elastic membrane on the bottom.
It is shown that for definite relations between the parameters of the channel and the
inclusion there is a discrete spectrum, which extends only up to the waveguide cutoff frequency,
in addition to the continuous spectrum of oscillation frequencies. The oscillation modes of
the liquid have a localized character in the region of the inclusion. ©1999 American Institute
of Physics.@S1063-7842~99!00708-4#
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INTRODUCTION

One of the major questions regarding the dynam
strength of elastic structures is the existence of a spectru
natural oscillation frequencies. When the excitation f
quency coincides with one of the natural frequencies, re
nant oscillations appear in a structure, which lead, on the
hand, to acoustic emission into the surrounding medium a
on the other hand, to enhancement of the stressed state o
structure. Unlike elastic bodies of finite dimensions, wh
always have such a frequency spectrum, bodies which h
at least one boundary of infinite length can have a mix
~discrete and continuous! spectrum when the parameters
the mechanical inclusions present have certain values.1 One
special feature of contact problems~oscillations of elastic
bodies in liquids! is the indefiniteness of the response of t
liquid to an oscillating body. Depending on the frequen
range, the response can be defined as either inertia
dissipative.2 In the latter case dissipation is defined as
removal of energy from the oscillating body to infinity in th
form of waves which propagate in the liquid. In the prese
paper it is shown in the case of free oscillations of an ela
membrane fastened to the bottom of a channel of fin
depth, which is filled with a heavy incompressible liqui
that localized oscillation modes of the liquid~trapping
modes!, which correspond to the discrete spectrum of natu
oscillation frequencies of the particular mechanical syste
can appear when the parameters of the waveguide and
membrane have certain values. The continuous part of
spectrum is located above the waveguide cutoff freque
and corresponds to diverging waves on the surface of
liquid. We note that the discrete spectrum is confined to
region below the cutoff frequency, in contrast to the famil
problem of the oscillations of an absolutely rigid die on t
bottom of a channel.2

OSCILLATIONS OF A HEAVY LIQUID IN A CHANNEL WITH
A MEMBRANE ON ITS BOTTOM

Let us consider small oscillations of a heavy incompre
ible liquid with a free surface in a three-dimensional chan
9031063-7842/99/44(8)/5/$15.00
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of depthH that has an infinitely long elastic membrane
width 2a fastened to its bottom. The coordinate system
chosen so that thex,y plane coincides with the bottom of th
channel, they axis is directed along the membrane, and thz
axis is directed upward and passes through the midline of
membrane~see Fig. 1!. The bottom of the channel, except fo
the region2a<x<a, 2`,y,`, is absolutely rigid. The
disturbances acting in the liquid cause oscillations of
membrane, which are described by the functionW(x,y,t).
The combined oscillations of the liquid and the membra
can lead to the formation of a system of surface wa
propagating along thex andy axes.

The motion of the liquid is assumed to be governed b
velocity potentialF(x,y,z,t) and is described by the linear
ized system of equations

DF50, ~1!

]F

]z
1

1

q

]2F

]t2
50, z5H, ~2!

]F

]z
5H ]W/]t, uxu<a,

0, uxu.a, z50,
~3!

whereg is the acceleration of gravity andD is the Laplacian
operator.

The bottom of the channel is subjected to the pressu

puz5052r
]F

]t
2rgH W, uxu<a,

0, uxu.a,
~4!

wherer is the density of the liquid.
The motion of the membrane is described with cons

eration of~4! by the equation

M
]2W

]t2
2TS ]2W

]x2
1

]2W

]y2 D 1sW5r
]F

]t
1rgW, ~5!

whereM is the mass of the membrane per unit area,T is the
tension, ands is the stiffness of the elastic base.

The familiar radiation condition3 is used to formulate the
boundary condition atuxu˜`.
© 1999 American Institute of Physics
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The oscillations of the liquid and the membrane are
sumed to be periodic along they axis with a wave numberm
and to occur with a frequencyv; therefore, the oscillation
modes of the liquid and the membrane are represented in
form

W~x,y,t !5w~x!exp~ imy2 ivt !,

F~x,y,z,t !5w~x,z!exp~ imy2 ivt !.

The purpose of the present investigation is to find c
ditions under which there can exist a solution in the form
waves which do not propagate along thex axis, are localized
in the region over the membrane, and move along they axis.
After separating the exponential factor and performing F
rier transformation in the system of equations~1!–~3!, we
obtain the following problem for determiningw(x,z):

]2ŵ

]t2
2~k21m2!ŵ50,

]ŵ

]z
2

v2

g
ŵ50, z5H,

]ŵ

]z
52 ivŵ, z50, ~6!

where ŵ(k,z)5*2`
` w(x,z)exp(2ikx) dx and ŵ(k)

5*2`
` w(x)exp(2ikx) dx.
The solution of the problem~6! has the form

ŵ~k,z!5 iŵ
v

r Fgr2v2 tanhrH

gr tanhrH 2v2
coshrz2sinhrzG ,

wherer 25k21m2.
Performing the inverse Fourier transformation ofŵ(k,z)

at z50 using the properties of the convolution, we obtain

w~x,z!uz505 ivE
2a

a

w~j!G~x2j! dj, ~7!

whereG(x) is represented in the form

G~x!5
1

2p E
2`

` gr2v2 tanhrH

r ~gr tanhrH 2v2!
exp~ ikx! dk. ~8!

FIG. 1. Tank that has an elastic membrane on its bottom and is filled w
heavy liquid:1 — free surface;2 — tank bottom,3 — membrane.
-

he

-
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The expression forG(x) yields the dispersion relation

v25gAk21m2 tanhHAk21m2. ~9!

It follows from Eq. ~9! that the dispersion curvev2(k),
which specifies the surface waves in a layer, should not
gin from zero, but fromv

*
2 5gm tanhHm, which we call the

waveguide cutoff frequency. Atv,v* Eq. ~9! does not
have real rootsk(v); therefore, the system of surface wav
will not include waves which propagate along thex axis.
Such waves can exist only atv.v* . We now determine the
form of G(x) in these two cases.

a! In the case ofv,v* the dispersion relation~9! has
the purely imaginary roots6 ik0 for k0,m and 6 ikn (n
51,2, . . . ) for kn.m, which can be determined from th
relations

v25gAm22k0
2 tanhHAm22k0

2,

v252gAkn
22m2 tanHAkn

22m2, ~10!

respectively, and are first-order poles of the integrand in~8!.
We perform the integration in~8! on the complex plane us
ing the residue theorem. As a result of this integration,
obtain the following expression forG(x):

G~x!5
2Am22k0

2 exp~2ak0ux1u!

k0~sinh 2HAm22k0
212HAm22k0

2!

1 (
n51

` 2Akn
22m2 exp~2aknux1u!

kn~sin2HAkn
22m212HAkn

22m2!
. ~11!

The expression obtained contains only modes which
cay alongx and does not contain waves which propag
along thex axis. The dimensionless variablex15x/a is used
in Eq. ~11! and below. The subscript 1 is henceforth omitte

b! In the case ofv.v* the dispersion relation~9! has
the real roots6k0 and the purely imaginary roots6 ikn (n
51,2, . . . ) for kn.m, which can be determined from th
second relation in~10!. The integral~8! is calculated using a
radiation condition stating that atx˜6` there are only
waves which go to infinity. This is accomplished by a sta
dard procedure involving the limiting absorption principl
whereby the features on the real axis produced by the r
6k0 are eliminated. As a result of the integration of~8! we
obtain

G~x!5 i
2Am21k0

2 exp~ iak0uxu!

k0~sinh 2HAm21k0
212HAm21k0

2!

1 (
n51

` 2Akn
22m2exp~2aknuxu!

kn~sin 2HAkn
22m212HAkn

22m2!
. ~12!

The presence of an exponential function of imagina
argument in~12! indicates the presence of waves propag
ing along thex axis.

In accordance with~7!, Eq. ~5!, which describes the os
cillations of the membrane under the layer of liquid, tak
the form

a
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]2w

]x2
1

a2

T
~Mv22s2Tm21rg!w

52r
v2

T
a3E

21

1

w~j!G~x2j! dj ~13!

under the boundary conditionsw(61)50.
The problem of determining the steady oscillations

the liquid and the membrane was reduced to finding the
spectrum of eigenvalues of the integrodifferential opera
~13!, where the spectral parameter is the frequencyv2. It
was shown in Ref. 4 that an equation of the form~13! can be
reduced to a homogeneous Fredholm integral equation o
second kind. The existence of a discrete spectrum below
cutoff frequency follows from known theorems. Above th
cutoff frequency it is impossible to prove the existence o
real discrete spectrum of the problem~13! in the general case
because of the complex-valued nature ofG(x) and the ab-
sence of a general theory for nonself-conjugate operator

DETERMINATION OF THE REAL SPECTRUM OF
EIGENVALUES BELOW THE CUTOFF FREQUENCY

Obtaining an analytical solution of Eq.~13! in general
form is difficult because of the fairly cumbersome express
for G(x). Therefore, we shall henceforth adopt the lon
wavelength approximation, which is often used in practi
We shall study waves which propagate along they axis and
have a wavelengthl52p/m that is much greater than th
channel depthH. We shall also assume that the relati
a/H@1 is satisfied. Then, because of the small value of th
wave numbersm in the first expression in~10!, we obtain the
dispersion relation

v25g~m22k0
2!H. ~14!

The first term in the expression~11! for G(x) can be
represented in an approximation in the form

g1~x!5
1

2k0H
exp~2ak0uxu!.

The second term in~11! can be simplified using the fol
lowing arguments. The values ofkn are determined from the
second relation in~10!, which yields the inequality2p/2

1pn,HAkn
22m2,pn (n51,2, . . . ). Then, sincea/H

@1, the akn appearing in the exponents are much grea

than unity. In addition, the inequalityusin 2HAkn
22m2u

!2HAkn
22m2 holds for anyn. Then, applying the familiar

relation limz˜`z exp(2zuxu)52d (x) ~Ref. 5! to each term in
the sum in~11! and neglecting the sine in the denominat
we obtain the following approximate expression:

g2~x!5d~x!
2H

a (
n51

`
1

~knH !2
.

SettingknH5pn in the last expression, we can sum t
series obtained as a result. This gives

g2~x!5d~x!
H

3a
. ~15!
f
al
r

he
he

a

n
-
.

ir

r

,

Then, in the long-wavelength approximation we have
following expression forG(x):

G~x!5
1

2k0H
exp~2ak0uxu!1d~x!

H

3a
. ~16!

Substituting~16! into Eq. ~13!, we obtain

]2w

]x2
1g2w52A0E

21

1

w~j!exp~2ak0ux2ju! dj, ~17!

where we have introduced the following notation:

g25
a2

T S Mv22s2Tm21rg1
1

3
rHv2D ,

A05
1

2
ra3

v2

k0TH
.

Performing the double differentiation in Eq.~17! with
consideration of the conditionsw(61)50, we arrive at the
boundary-value problem

]4w

]x4
1B1

]2w

]x2
2B2w50 ~18!

with the boundary conditions

w~61!50,

]2w

]x2 U
x561

52A0E
21

1

w~j!exp~2ak0u612ju! dj.

~19!

Here we have introduced the following notation:

B15g22~ak0!2, B25~ak0!2g21rv2
a4

TH
. ~20!

Equation ~18! is equivalent to the equation describin
the oscillations of a beam with a forceB1 pressing on both of
its ends and a mass per unit lengthB2. The general solution
of Eq. ~18! has the form

w~x!5C1 sinhS1x1C2 coshS1x1C3 sinS2x

1C4 cosS2x,

where

S15A2B1/21AB1
2/41B2,

S25AB1/21AB1
2/41B2.

Substituting the general solution into the boundary co
ditions ~19!, we obtain an algebraic system for determini
the coefficientsC1 , C2 , C3, andC4. The explicit form of the
system is not presented here because of its cumbersom
ture. The determinant of this system, set equal to zero, g
a frequency equation for determiningv2, which separates
into two equations for the cases of symmetric oscillatio
(C15C350) and asymmetric oscillations (C25C450): a!
symmetric oscillations
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ak0 tanhak01S2 tanS2

~ak0!21S2
2

2
ak0 tanhak02S1 tanhS1

~ak0!22S1
2

5
exp~ak0!

2A0 coshak0
~S1

21S2
2!; ~21!

b! asymmetric oscillations

ak0 cothak02S2 cotS2

~ak0!21S2
2

2
ak0 cothak02S1 cothS1

~ak0!22S1
2

5
exp~ak0!

2A0 sinhak0
~S1

21S2
2!. ~22!

The quantitiesS1 , S2, andk0 in Eqs. ~21! and ~22! are
functions of the unknown parameterv2 through Eqs.~20!
and ~14!. In calculating the natural frequencies we confi
ourselves to the case of symmetric oscillations. We repre
Eq. ~21! in the form

tanS25S2
3 exp~ak0!

2A0 coshak0
1S2F exp~ak0!

2A0 coshak0
@S1

21~ak0!2#

1
ak0 tanhak02S1 tanhS1

~ak0!22S1
2 G

1
1

S2
F exp~ak0!

2A0 coshak0
S1

2~ak0!2

1
ak0 tanhak02S1 tanhS1

~ak0!22S1
2 ~ak0!2

2ak0 tanhak0G5F~S2!. ~23!

The solutions of Eq.~23! are determined graphicall
from the points of intersection of the plots of tanS2 and
F(S2). The domain ofF(S2) is bounded on the right by th
values ofS2 at which the condition

v2,v
*
2 5gm2H ~24!

is violated.
Calculations performed over a broad range of variat

of the waveguide and membrane parameters show tha
number of positive rootsv2 depends on the relation betwee
the parameters but is always restricted by the condition~24!.
For example, forM520 kg/m2, H51 m, s5104 N/m3, and
T5104 kg/s2, Eq. ~23! gives the following values for the
natural frequencies. In the case ofa/H55, for m50.1 m21

there is one solutionv2/v
*
2 50.34, and form50.2 m21

there is also one solutionv2/v
*
2 50.27. In the case ofa/H

510, form50.1 m21 there is one solutionv2/v
*
2 50.1, and

for m50.2 m21 there are two solutionsv2/v
*
2 50.11 and

0.92. The case in which the inequality

s1Tm22rg,0 ~25!

is satisfied should receive particular attention.
The calculations show that in this case Eq.~23! has only

negative rootsv2. Physically, Eq.~25! means that the mem
nt

n
he

brane has a weak tensionT and a low value for the stiffnes
of the elastic bases. Because of this the sagging of th
membrane begins to increase without bound due to the
ference in hydrostatic pressure acting on the stiff bottom
the sagging surface of the membrane. This difference in
drostatic pressure is equal torgw(x) and is represented b
the last term on the right hand side of Eq.~4!. The same
phenomenon can be interpreted on the basis of Eq.~18!,
which describes the oscillations of a beam with a forceB1

pressing on its ends. When the condition~25! is satisfied, the
force B1 exceeds a certain critical value, at which unr
stricted sagging of the beam~the familiar Euler instability!
occurs.

On the basis of the calculations performed it can be c
cluded that in the case ofv2,v

*
2 the integrodifferential

operator~17!, which is the long-wavelength approximatio
of the operator of the general form~13!, has a discrete spec
trum of positive eigenvaluesv2 when the condition
s1Tm22rg.0 is satisfied, and that their number is r
stricted. Thus, it can be stated that surface waves which
localized in the region above the membrane and move ov
along they axis can form in the layer of liquid. The existenc
of eigenfrequencies can lead to the appearance of reso
oscillations of underwater structures when they are loaded
forces which vary harmonically with time, as well as to
loss of buoyancy of a structure on the bottom of a reserv
as practical experience has shown.

DETERMINATION OF THE REAL SPECTRUM OF
EIGENFREQUENCIES ABOVE THE CUTOFF FREQUENCY

Let us consider the oscillations of a liquid and a me
brane forv2.v

*
2 . The functionG(x) appearing in Eq.~13!

is described by~12!. We retain the assumption of long wave
propagating along they axis. The structure of the rootskn is
the same as in the case ofv2,v

*
2 . Therefore, the approxi-

mate expression~15!, which was obtained for the case o
v2,v

*
2 , remains valid for the sum appearing in~12!.

We represent the functionG(x) in the form

G~x!5 iA1exp~ iak0uxu!1d~x!
H

3a
, ~26!

where

A15
2Ak0

21m2

k0~sinh 2HAk0
21m212HAk0

21m2!
.

After substituting~26! into Eq. ~13!, we obtain

]2w

]x2
1g2w52 ir

v2a3

T
A1E

21

1

w~j!exp~ iak0ux2ju! dj.

~27!

Let us determine the pressure on the bottom of the ch
nel atx.a. From ~4! and ~7! with consideration of~26! we
obtain
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p~x!52 irv2aA1exp~ iak0x!

3E
21

1

w~j!exp~2 iak0j! dj2r
v2H

3
w~x!.

The presence of a term containing exp(iak0x) in the last
expression signifies the presence of waves propagating a
the x axis. The existence of a discrete spectrum of osci
tions of the liquid and the membrane can be ensured onl
the absence of waves carrying off energy to infinity. For t
purpose, we must require satisfaction of the condition for
absence of radiation

E
21

1

w~j!exp~2 iak0j! dj50. ~28!

Let us examine the case of symmetric oscillations of
membrane. In this case the condition~28! has the following
form:

E
21

1

w~j!cos~ak0j! dj50. ~29!

In the case of symmetric oscillations, Eq.~27! with al-
lowance for the condition~29! takes the form

]2w

]x2
1g2w52r

v2a3

T
A1E

21

x

w~j!sin@ak0~x2j!# dj.

~30!

Differentiating Eq.~30! twice with consideration of the
boundary conditionw(1)50, we obtain the problem

]4w

]x4
1B3

]2w

]x2
2B4w50, ~31!

w~1!50, wxx~1!50, ~32!

where

B35g21~ak0!2, B452~ak0!2g21
2ra4k0

T
A1v2.

The presence of a Volterra integral operator on the rig
hand side of Eq.~30! leads to the additional condition

]3w

]x3
1g2

]w

]x
50, x51, ~33!

which ensures equivalence of the problem~31! and~32! and
the original problem~30!.
ng
-
in
s
e

e

t-

The solution of Eq.~31! for symmetric oscillations has
the form

w~x!5C2 coshS1x1C4 cosS2x, ~34!

where

S15A2B3/21AB3
2/41B4,

S25AB3/21AB3
2/41B4.

Substitution of the solution~34! into the boundary con-
ditions ~32! leads to a system of equations forC2 and C4,
which yields the frequency equation (S1

21S2
2)coshS1cosS2

50, as well as the equalityC250. It can be seen that th
frequency equation can hold only if cosS250, i.e., (S2)n

5p/21pn (n50,1, . . . ).
Let us determine the possibility that the condition

zero radiation~29! and also the condition~33! are satisfied
for solutions of the typew(x)5cos@(S2)nx#. A calculation of
the integral~28! under the condition cos@(S2)n#50 leads to
the equality

~S2!n

~S2!n
22~ak0!2

sin@~S2!n#cosak050, ~35!

which can hold only if cosak050. The condition~33! leads
to the opposite requirementak050.

The treatment of the case of asymmetric oscillatio
leads to a similar result. It can thus be concluded that
original operator~13! does not have a real discrete spectru
at v2.v

*
2 .
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Stability of a bubble in a dielectric liquid in an external electrostatic field
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Critical instability conditions are found for a gas bubble in a liquid dielectric in a uniform
external electrostatic fieldE0. It is shown that they depend both on the magnitude ofE0 and on
the properties of the liquid, as well as on the gas pressure in the bubble. In a linear
approximation with respect to the square of the eccentricity of an equilibrium spheroidal form,
the equilibrium eccentricity of the bubble exceeds the equilibrium eccentricity of a drop
in the fieldE0. The gas pressure in the bubble lowers the critical electric fieldE0 for development
of an instability in the bubble. ©1999 American Institute of Physics.@S1063-7842~99!00808-9#
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1. The instability of gas bubbles in a uniform electr
static fieldE0 is of interest in studies of the electrical brea
down of liquid dielectrics, since at the time of breakdown
region of reduced density develops at the cathode whic
treated as the appearance of a microscopic gas~vapor!
bubble.1,2 Although the bubble instability problem has a
important technological application, only a few studies ha
been made of the behavior of bubbles in electric fields, wh
many papers3 have dealt with the similar problem of th
instability of liquid drops in an electric fieldE0.

The classic paper on the state of a liquid drop in
external electrostatic is Ref. 4 which contains results that
be used for studying bubbles with the conductivities of
medium and drop taken into account. In that paper4 the shape
of drops with a finite conductivity and dielectric constant
a conducting medium were studied under the assumption
the drop has the spheroidal equilibrium shape inE0 and the
potential energy is to be minimized.4 Several scenarios fo
the drop behavior were studied, depending on the relat
ship of the physical properties of the drop and the surrou
ing medium:4 ~a! drop and medium are both absolute diele
trics, ~b! conducting drop in a dielectric medium,~c!
dielectric drop in a conducting medium,~d! zero deformation
of a spheroidal drop inE0, and~e! deformation of the drop to
an oblate spheroid. This paper4 was followed by others5,6 in
which the individual cases distinguished in it4 were exam-
ined in more detail.

The case of a dielectric drop and bubble in a dielec
medium have been studied in detail5 experimentally and
theoretically by determining the deformation experimenta
as a function of the magnitude ofE0 for gas bubbles in
hydrocarbon oil and water drops in silicone oil. It was fou
that the bubble stretches without limit, while a drop expe
ences an instability with the emission of large number
daughter droplets. In addition, it was shown5 that the shape
of a drop inE0 can be taken to be spheroidal with fairly goo
accuracy. Based on equating the pressures at the pole
equator of the drop and minimizing the energy of this state
was shown that liquid dielectric drops can become unsta
only if the dielectric constant of the drop exceeds that of
surrounding medium by a factor of 20. This condition
9081063-7842/99/44(8)/5/$15.00
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satisfied with ample margin for drops of a well conducti
liquid ~e.g., water! in a vacuum. This case has been stud
in detail theoretically.6 Based on the pressure balance at
points on the equilibrium surface~at the pole point and on
the equator! of a spheroidal ideal conducting drop, the ma
nitude of the deformations of the drop was determined a
function of the external electric fieldE0. It turned out that an
ideally conducting drop becomes unstable at a certain crit
field E0.

Since a gas bubble placed in a liquid dielectric is sta
for any field E0 ~because the dielectric constant of gases
low! according to Ref. 5, an attempt has been made7 to treat
the possible instability of a bubble inE0 in terms of the
compressibility of the gas. The behavior of vapor bubbles
a dielectric liquid was studied7 on the basis of the assump
tion that the equilibrium bubble shape inE0 is spheroidal and
using the requirement that the thermodynamic potentials
the system be equal, as well as on the basis of the princ
of minimizing the energy of the equilibrium state. The r
sults of these theoretical and experimental studies have b
confirmed by numerical calculations.8

Numerical solutions of the equations of electrodynam
and hydrodynamics have been used8 to obtain the shape o
liquid drops for different ratios of the conductivitiesl and
dielectric constantsa of the drop and the surrounding me
dium. The ranges of values ofl anda within which differ-
ent types of instability are possible was determined. T
types of instability were distinguished:8 the ‘‘dripping off’’
of small daughter droplets from sharp ends of the par
drop, and the division of a drop into two. The possible ty
of instability for each pair ofl and a was determined. An
instability which ends up with the ejection of fine drops w
observed for dielectric liquids when the dielectric constant
the drop liquid was 19–21 times that of the surroundi
medium or, in the case of a conducting liquid, if the condu
tivity of the drop was 28–29 times~a value given for liquids
with equal dielectric constants! that of the surrounding me
dium. It also turned out that the instability associated w
breakup of a drop into two is possible only in a conducti
liquid.

An analysis of the papers cited above shows tha
© 1999 American Institute of Physics
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bubble, which differs from a drop mainly in having a g
pressure and in its compressibility, can become unstable
when the gas filling it or the bubble walls are good cond
tors. If the bubble is in an absolute dielectric, it can expe
ence an instability only if the gas in the bubble is a go
conductor, perhaps through ionization. If the gas bubble i
a liquid that has even a weak conductivity, then charge c
riers from the liquid may settle on the bubble walls. In th
case, the good conductivity may be the result of high surf
mobility of the charge carriers compared to their bulk mob
ity. In the following discussion, in order to clarify the con
ditions for stability of a bubble in a liquid, we limit ourselve
to considering an idealized model of a bubble with idea
conducting walls in an absolute dielectric.

2. Let us suppose that the liquid dielectric with a diele
tric constant« has a free surface at atmospheric press
Pat. We consider an initially spherical bubble of radiusR0

with an ideally conducting surface in the dielectric. We sh
assume that the bubble is motionless, i.e., the buoyancy f
is balanced by the force of inertia~which may occur in a
rotation device5! or by a force owing to a temperature diffe
ence between the upper and lower layers of liquid.9 An equi-
librium spherical bubble must obey the pressure balance
ditions at its walls,

P05Pat12s/R0 , ~1!

wheres is the coefficient of surface tension at the interpha
boundary andP0 is the gas pressure in the bubble.

After creation of an electric fieldE0 in the dielectric, the
bubble is elongated alongE0 and acquires a shape similar
a spheroid of revolution,5–7 whose equation in spherical co
ordinates with the origin at the center of the drop has
form

F~r ,Q!5r 2R
~12e2!1/2

~12e2cos2 Q!1/2
[r 2Rh~Q!.

We set ourselves the question of whether the press
temperature, and volume of the gas in the bubble change
elongates. We assume that the rate at which the gas fi
the bubble dissolves in the dielectric is so low that its m
can be regarded as constant during the time of deforma
in the fieldE0. From a molecular standpoint, the pressure
the gas at the bubble boundary is determined only by
concentrationn of gas particles and the gas temperatureT,
i.e.,

P5nkT,

wherek is Boltzmann’s constant.
Let us examine the conditions for equilibrium at th

equator. Since the pressure of the electrostatic field is z
for the points on the equator, the equilibrium condition
easily written as

P5Pat12sH, ~2!

whereH is the Gaussian curvature at this point, with

2H5divS gradF~r ,Q!

ugradF~r ,Q!u D . ~3!
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For a point lying on the equator, the Gaussian curvat
in the linear approximation with respect toe2 is given by10

H5
1

R0
S 12

e2

3 D . ~3a!

We now assume that the electric field has increased
an infinitesimal amount, which causes an infinitesimal
crease in the eccentricity of the bubble. Equation~3a! im-
plies that for a spheroidal bubbleH,1/R0; then, on compar-
ing Eqs.~1! and~2! it is easy to see thatP,P0, i.e., the gas
pressure in the bubble decreases. From a molecular st
point, the pressure decrease can be caused by an increa
the volume or by a reduction in the temperature. Since
total heat capacity of the gas in the bubble is much less t
that of the entire liquid dielectric, it is natural to assume th
the deformation of the bubble in the fieldE0 is isothermal
and that the gas temperature does not change. Therefor
the external field, the bubble, which has well conducti
walls, not only is elongated into a spheroid of rotation in t
direction ofE0, but also increases in volume.

As the shape and volume of the bubble change, ther
a change in the energy of the system, which, under the c
ditions, should be regarded as a function of the radiusR of an
equally large spherical bubble and of the square of the
centricity, e2. The potential energy of the bubble is dete
mined by the sum of the surface and electrical energy, p
the work done on the system by the external forces as
bubble expands. The surface tension energy is given by10

Us52psR2~12e2!1/6S ~12e2!1/21
sin21e

e D . ~4!

The electrical energy for a bubble extended in the dir
tion of an external fieldE0 is given by10

UE52
1

2

«E0
2R3

3

e3

~12e2!~ tanh21e2e!
. ~5!

The change in the internal energy of the system owing
the work of isothermal expansion is11,12

Ug52NkT ln
V

V0
1Pat~V2V0!, ~6!

whereN is the number of gas molecules in the bubble andV0

is the initial volume of the bubble.
The change in energy of the system during elongat

including Eq.~6! and an expansion of Eqs.~4! and ~5! in a
series in the square of the eccentricity can be written as

DU54psR2S 11
2

45
e4D2

«E0
2R3

2 S 11
2

5
e21

58

175
e4D

2NkT ln
V

V0
1Pat~V2V0!24psR0

21
«E0

2R0
3

2
.

~7!

Setting the derivatives of the energy change~7! with
respect to the square of the eccentricitye2 and with respect
to the bubble radiusR equal to zero, we obtain a system
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two equations for the unknownse2 and R corresponding to
the equilibrium spheroidal shape of the bubble,13

e259
«E0

2R

16sp
[

9

16p
w,

123
«E0

2R

16sp
2~P2Pat!R/2s[b211

3

16p
w50, ~8!

wherew5(«E0
2R)/s andb5$(P2Pat)R%/2s.

Therefore, as opposed to a drop, whose equilibrium
centricity depends only onw,4,10 the stable state of a bubbl
is determined by two equations because the bubble vol
does not remain constant as it is deformed in the fieldE0.

3. We shall analyze the system of Eqs.~8!, assuming that
during deformation the bubble volume increases in a w
such that the radius of the equilibrium spherical bubble
creases by a factor of (K11), i.e.,

R5R0~11K !. ~9!

Using the isothermal condition and Eq.~9!, we express
the final pressure of the gas in the bubble in terms of
initial pressure as

P5
P0

~11K !3
. ~10!

We consider the initial pressure in the bubble to exce
atmospheric by a factor ofm, i.e.,

P05mPat. ~11!

Substituting Eq.~11! in Eq. ~1!, we findm

m511
2s

PatR0
. ~12!

Given Eqs.~9!, ~10!, and ~11!, we reduce the secon
equation of the system~8! to

12
e2

3
2S m

~11K !3
21D PatR0

2s
~11K !50. ~13!

Using Eq.~12!, we rewrite Eq.~13! as

12
e2

3
2S m

~11K !3
21D 1

m21
~11K !50. ~14!

If it is assumed that the relative increaseK in the radius
is small, in a linear approximation with respect toK ande2,
Eq. ~14! yields

K5
m21

2m11

e2

3
, ~15!

i.e., K is of the same order of smallness ase2. Substituting
Eq. ~9! into the first of Eqs.~8! and using Eq.~15!, we obtain
an expression for the square of the eccentricity of the bub

e25
9w

16p S 11
9w

48p

m21

2m11D , ~16!

where w5(«E0
2R0)/s is the Taylor parameter for th

bubble.
c-
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Equation~16! implies that accounting for the gas pre
sure in a bubble leads to a dependence of its equilibr
eccentricity on the initial gas pressure. In this regard, it
interesting to examine the effect of the gas pressure on
critical conditions for the instability of a gas bubble in a
electric fieldE0.

4. We shall do the calculation using a method6 based on
equating the pressures at the pole and at the equator.

Equation~3! yields the capillary pressure at the pole a
at the equator of a spheroidal bubble:

Ps
eq5

s~12e2!5/6

R0~11K ! S 11
1

~12e2!
D ,

Ps
p5

2s

R0~11K !~12e2!2/3
. ~17!

Using the expression for the electrostatic field at the s
face of a spheroidal bubble,14

E5E0

e3

~12e2!1/2~ tanh21e2e!

h~Q!cosQ

~12e2h2~Q!cos2 Q!1/2
,

it is easy to find expressions for the electric field pressure
the same points on the bubble,

PE
eq50, PE

p5
«E0

2e6

8p~12e2!2~ tanh21e2e!2
. ~18!

Given Eqs.~18!, ~17!, and ~20!, we rewrite the equal
pressure conditions at the equator and pole as

mPat

~11K !3
2

s~12e2!5/6

R0~11K ! S 11
1

~12e2!
D 2Pat50, ~19!

mPat

~11K !3
1

«E0
2e6

8p~12e2!2~ tanh21e2e!2

2
2s

R0~11K !~12e2!2/3
2Pat50. ~20!

Subtracting Eq.~19! from Eq. ~20! and using Eq.~12!, we
obtain a system of equations for the unknownsK and e2

which can be used to find the critical instability conditio
for an uncharged bubble with well conducting walls in
uniform external electrostatic fieldE0:

we6

16p~12e2!2~ tanh21~e!2e!2

5
1

~11K !H 1

~12e2!2/3
2

~12e2!5/6

2 F11
1

~12e2!
G J ,

~21!

m2~11K !32
~m21!~11K !2~12e2!5/6

2

3@11~12e2!21#50. ~22!
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Equations~21! and~22! determine the eccentricitye2 of
the bubble and the relative change in its radius,K, as func-
tions of the Taylor parameterw for a givenm.

To analyze the system of Eqs.~21! and ~22! we have
done numerical calculations and plotted the squaree2 of the
eccentricity andK as functions of the Taylor parameterw for
different values ofm. These curves are shown in Figs. 1a a
1b. It is clear that an increase in the initial internal press
in a bubble for fixedw leads to an increase in the equilibriu
bubble eccentricity. It is also evident that at some po
corresponding to the maximum ofw, the derivative]e2/]w
goes to infinity. According to Refs. 5 and 6, when the Tay
parameter reaches this critical valuew5w* , the bubble be-
comes unstable. Thus for a givenm the system of equation
~21! and ~22! has a unique solution corresponding to t
critical Taylor parameterw* that separates the stable a
unstable states of the bubble.

The critical Taylor parameterw* and critical square of
the eccentricitye

*
2 are plotted in Figs. 2a and 2b as functio

of the parameterm, which characterizes the pressure in t
bubble prior to its elongation. Evidently, an increase in
initial gas pressurem produces a significant drop in the crit
cal Taylor parameterw* but has very little effect on the
critical eccentricitye2 .

FIG. 1. The square of the eccentricity of a bubble~a! and the relative change
in the bubble radius~b! as functions of the Taylor parameter form51.1 ~1!,
2 ~2!, 5 ~3!.
*

e

t,

r

e

Figure 2b also shows plots ofg* 5P* /Pat and b*
5(P* 2Pat)R0 /(2s) at the time instability sets in for vari
ous values of the parameterm characterizing the initial pres
sure in the bubble.

5. We now ascertain how the compressibilityx of the
gas affects the critical Taylor parameter and the equilibri
eccentricity of the bubble. We shall assume that the gas p
sure in the bubble is given by

P5P02
1

x
~~11K !321!, ~23!

rather than by Eq.~10!, which is valid only for an ideal gas
By choosing different values ofx, it is possible to obtain

different special cases of a liquid drop,x51024 atm21, a
bubble of real gas,x51 atm21, and a bubble of ideal gas
x5(11K)3/P0.

If we do calculations similar to those in Sec. 4 using E
~23!, then we obtain two equations for determiningK ande2

as functions of the Taylor parameterw. The first equation
again has the form of Eq.~21!, while instead of Eq.~22!, we
obtain

FIG. 2. The critical Taylor parameter~a! and the critical dimensionless ga
pressure~1!, the square of the eccentricity~2!, and the parameterb* ~3! ~b!
as functions of the dimensionless initial pressure of the gas in a bubble
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Fm211
1

xPat
G~11K !2

~11K !4

xPat

2
~m21!~12e2!5/6

2 F11
1

~12e2!
G50. ~24!

For an ideal gas, i.e., forx5(11K)3/mPat, Eq. ~24!
transforms to Eq.~22!.

Calculations according to Eqs.~24! and ~21! are shown
in Figs. 3a and 3b. It is evident from Fig. 3a that increas
the coefficient of isothermal compressibilityx for a fixed

FIG. 3. The square of the eccentricity as a function of the Taylor param
for m52 ~a! and the critical Taylor parameter as a function of the init
pressure of the gas in a bubble~b! for: 1 — liquid drop with xPat51024;
2, 3 — gas bubble withxPat51 and4, respectively.
g

Taylor parameterw and initial gas pressurem leads to a rise
in the squaree2 of the eccentricity of the bubble. The plot o
e2 as a function ofw has a point at which the derivativ
]e2/]w becomes infinite. This makes it possible to det
mine the critical Taylor parameterw* . Plots of w* as a
function of the initial pressure in a bubble are shown in F
3b. Evidently, increasing the coefficient of isothermal co
pressibility causes a drop inw* .

Note that the compressibility and internal pressure h
a significant effect on the equilibrium eccentricity of th
bubble and on the critical Taylor parameterw* when the
initial bubble radius is less than a characteristicR* , i.e.,
when

R0<R* 52s/Pat.

CONCLUSION

Increasing the volume of a gas bubble as it is deform
in a uniform electrostatic fieldE0 leads to a dependence o
the critical Taylor parameterw* and the equilibrium eccen
tricity e2 of the bubble on the gas pressurem. Increasing the
initial gas pressurem leads to a reduction inw* and an
increase ine2. In addition, the critical Taylor parameterw*
and the equilibrium eccentricitye2 of the bubble depend on
the coefficient of isothermal compressibilityx.
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Local enhancement of a uniform electrostatic field near the tip of a spheroidal drop
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The enhancement in a uniform electrostatic field at the tip of a spheroidal drop is shown to
depend on the dielectric constant of the drop material, its initial radius, and the external electric
field and to become greater as these increase. The loss of stability of a drop in an external
electrostatic field that is accompanied by a very rapid growth in the magnitude of the spheroidal
deformation causes a rapid, transient enhancement of the field at its tip. ©1999 American
Institute of Physics.@S1063-7842~99!00908-3#
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Calculating the local enhancement of a uniform exter
electrostatic field at the tip of a dielectric spheroid is of
terest for analyzing physical aspects of the formation of fr
tal structures from natural smoke and dust aerosols,1,2 in re-
search on discharge initiation by streak lightning,3,4 and in
studies of the field evaporation of ions during mass sp
trometry of nonvolatile and thermally unstable substances5–8

Despite the simplicity with which this problem can be state
solving it involves certain computational difficulties; ther
fore, it has yet been solved, and the present paper is dev
to analyzing it.

ENHANCEMENT OF THE ELECTRIC FIELD NEAR THE TIP
OF A DIELECTRIC SPHEROID IN A UNIFORM
ELECTROSTATIC FIELD AS A FUNCTION OF THE SHAPE
OF THE SPHEROID AND ITS DIELECTRIC CONSTANT

When a dielectric spheroid in a vacuum is extend
along a uniform external electrostatic fieldE0, the electric
field inside it is uniform and coincides in direction withE0,
but its strengthEe is given by9

Ee5
E0

11~«21!nx
, ~1!

where« is the dielectric constant of the material andnx is the
depolarization coefficient, which depends on the shape~but
not on the size! of the spheroid as

nx5
k ln~k1Ak221!2Ak221

~k221!3/2
, ~2!

where k is the ratio of the semiaxes of the spheroid, w
k.1.

Given the continuity of the normal component of th
electric induction on passing through the interphase bou
ary, for the electric fieldEx in an external medium at the ti
of the spheroid we can write9

Ex5
«E0

11~«21!nx
. ~3!

If we assume in the zeroth approximation that the sh
of the particle is independent of the external field, i. e., if
speak of a rigid spheroidal particle, rather than a drop, t
9131063-7842/99/44(8)/5/$15.00
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Ex depends linearly onE0 and the clearest representation
the dependence of interest to use will be a plot of the fi
enhancementEx /E0 as a function of the dielectric constant«
of the substance and the ratiok of the semiaxes of the sphe
oid. Equations~2! and ~3! imply that

Ex

E0
5

«~k221!3/2

~k221!3/21~«21!@k ln~k1Ak221!2Ak221#
.

~4!

The graph in Fig. 1 shows that: 1! the field enhancemen
is greater for more elongated particles, and 2! the field en-
hancement is higher for particles with a higher dielect
constant.

For an ideally conducting particle, the limit of Eq.~3! as
«˜` gives

Ec5
E0

nx
. ~5!

The plot of the field enhancementEc /E0 as a function of
the ratiok of the semiaxes of a conducting spheroid in Fig
shows that the field enhancement increases monotonic
with increasingk.

Therefore, the increase of a uniform electrostatic fie
near the tip of a rigid spheroid depends on the dielec
constant« of the material and on the ratiok of the semiaxes
of the spheroid, but is independent of its size.

DEPENDENCE OF THE ELECTRIC FIELD NEAR THE TIP
OF A SPHEROIDAL DROP ON THE STRENGTH OF THE
UNIFORM EXTERNAL ELECTROSTATIC FIELD AND THE
DROP SIZE

If we assume thatnx in Eq. ~3! is the depolarization
coefficient of a dielectric drop in an equilibrium state, th
the parameterk can no longer be regarded as independe
since it depends on the Taylor parameterW for an equilib-
rium spheroidal drop shape. The parameterW characterizes
the stability of a drop relative to the polarization charge a
is a function of the external electrostatic fieldE0, the radius
R, and the coefficient of surface tensions of the drop:10
© 1999 American Institute of Physics
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FIG. 1. Field enhancement in the neigh
borhood of the tip of a dielectric spher
oid as a function of the ratio of the semi
axes of the spheroid and of the dielectr
constant of the material.
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W5
4p«0E2R

s
. ~6!

The functionk5k(W) for the equilibrium state of a drop
in an electrostatic field is determined by the conditions fo
minimum total potential energy of the drop,

]U

]k
50, ~7!

]2U

]k2
>0. ~8!

The total potential energy of a drop in this case can
regarded as the sum of the energy of surface tension and
electrostatic energy of the drop in the fieldE0. Taking the
potential energy of a spheroidal drop in dimensionless
referring it to the energy of a spherical drop, we obtain

FIG. 2. Field enhancement for a conducting spheroidal drop as a functio
the ratio of the semiaxes of the spheroid.
a

e
the

d

U[Us1Ue5H 2pF 1

k2/3
1

k4/3 tan21 ~Ak221!

Ak221
G

2
W~«21!

6@11~«21!nx#
J F4p2

W~«21!

2~21«! G21

. ~9!

Substituting Eq.~9! in Eq. ~7! and solving the resulting
equation analytically forW, we obtain

W52pF2

3
k25/32

4

3

k1/3C

A
2

k1/3

A2
1

k7/3C

A3 G
3@3kA2~2k211!B#21

D2

A
,

where

A5Ak221, B5 ln~k1Ak221!,

C5 tan21 ~Ak221!,

D5~k22«!Ak221 ~«21!211k ln~k1Ak221!. ~10!

After similar transformations of Eq.~8!, we find

W5 2pk1/3S 10

9
k231

4

9

C

A
k211

5

3

k23

A2
2

11

3

kC

A3
23

k

A4

13
k3C

A5 D D2H ~2k211!Bk

A
23A214kAB24k21 1

12A@3kA2~2k211!B#S 3kA

«21
1BDD21J 21

. ~11!

Equations~10! and ~11! are transcendental with respe
to k. In addition, as can be seen from plots of Eqs.~10! and
~11! ~surfaces1 and 2 in Fig. 3, respectively!, the inverse
functionk5k(W) is multivalued and becomes single-value
only for «,20.8, when Eq.~10! becomes monotonically in

of
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FIG. 3. The Taylor parameter as a func
tion of the ratio of the semiaxes of the
spheroid and of the dielectric constant.
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creasing. Surface1 corresponds to the extreme values of t
energy of a spheroidally deformed drop and surface2 deter-
mines the location of the zeros of the second derivative
the drop energy with respect to the magnitude of the sp
roidal deformation. The equilibrium states of the drop cor
spond to the locus of points on surface1 lying outside sur-
face2.

Some calculations using Eqs.~10! and ~11! for drops of
water («581) are shown in Fig. 4. Curve AD in this figur
corresponds to the solution of Eq.~7! and determines the se
of points (k, W) at which the total potential energy of
spheroidally deformed drop takes its extreme values.
curves FG and HJ in this figure correspond to the solution
Eq. ~8! and determine the boundary of the regions where
second derivative of the total potential energyU of the drop
with respect to the spheroidal deformationk have a fixed
sign. The set of points where]2U/]k2.0 lies below the
curve FG and above the curve HJ, and]2U/]k2,0 in the
region between the curves FG and HJ. Therefore, the
ments AB and CD of curve AD correspond to state of t
drop with a minimum potential energy, while segment B
corresponds to local maxima of the potential energy of
drop as it is deformed spheroidally. The presence of suc
‘‘potential barrier’’ inhibits spontaneous lengthening and d
struction of the drop when the Taylor parameterW,W* .
For W5W* the height of the potential barrier is zero b
cause of the discontinuity in the potential energy as a fu
tion of the spheroidal deformation, so that when the d
enters this state it begins to lengthen spontaneously; her
amplitude of the spheroidal deformation increases m
more rapidly than exponentially.11 Using the generally
f
e-
-

e
f
e
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-
p
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FIG. 4. The logarithm of the ratio of the semiaxes of a spheroidal dr
x5 ln k, as a function of the Taylor parameterW according to Eqs.~7!
and ~8!.
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FIG. 5. Enhancement in the electrostatic field at the tip of a spheroidal drop in its subcritical equilibrium state as a function of the equilibrium spherical drop
radius and of the external electric field.
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accepted terminology, we refer to the states correspondin
segment AB of the curve as subcritical, to those with a T
lor parameterW5W* as critical, and to those correspondin
to segment CD as supercritical.

For liquids with a dielectric constant«.20.8 and a sur-
face tension coefficients, we can propose the following
scheme for calculating the electric field near the tip o
spheroidal drop of radiusR in its equilibrium state in an
external electrostatic fieldE0: 1! starting with a known value
of « it is necessary to find the critical Taylor parameterW*
by jointly solving Eqs.~7! and ~8! numerically; 2! starting
with the specific characteristics of the drop and field,s, R,
and E0, Eq. ~6! is to be used to find the corresponding i
stantaneous value ofW; 3! if the value of the Taylor param
eter found in the preceding step isW,W* , then the param-
eterk for the equilibrium state of the drop must be found
numerical solution of Eq.~7!; 4! finally, Ex can be found
using Eq.~4!.

In order to reduce the volume of numerical calculatio
it is appropriate to find analytical expressions which appro
mateW* 5W* («) andk5k(«,W) with sufficient accuracy.

For « ranging from 20.8 tò , the expression

W* 5
101126.6«10.308«2

260.819.05«10.12«2
~12!

is accurate to the third significant digit, which is sufficie
for most practical calculations.

Since approximation of a function of two variables is
extremely complicated problem, an approximation
k5k(W) was found for«581. For subcritical Taylor param
eters, this approximation gives
to
-

,
i-

r

k5
4.0821.85W10.1658W2

4.0822.167W10.2693W2
. ~13!

Equation ~13! is also accurate to the third significan
digit.

These approximations make it possible to determine
electrostatic field at the tip of an equilibrium spheroidal w
ter drop in an external electrostatic fieldE0 as a function of
the strengthE0 of this field and of the radiusR of an equally
large spherical drop. A plot of the resulting function
shown in Fig. 5. Curve AB in this graph corresponds to t
critical states of the drop.

If we assume that, as the external field is increas
when the drop reaches a critical state, it begins to elong
and enters a supercritical equilibrium spheroidal state~Fig.
4!; then, on interpolating the numerically calculate
k5k(W) for the supercritical states by the function

k520.676W2112.14W12.33, ~14!

it is possible to obtain the curve shown in Fig. 6. Expe
ments show that the supercritical drop states are not st
and, furthermore, that drop breakup is observed before a
percritical equilibrium spheroidal state is reached. Howev
a sudden increase in the electric field at the tip of a sphe
dal drop on passing from a subcritical to a supercritical st
can precede its breakup. This also applies to emission
turberances formed on a plane liquid surface in the Tonk
Frenkel instability and may be the basis of the ‘‘catho
spot’’ phenomenon.12–14
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FIG. 6. Strength of the electrostatic field at the tip of a spheroidal drop as a function of equilibrium spherical drop radius and of the external electrostatic field.
The discontinuous increase in the electric field~transition from curve AB to CD! corresponds to a transition from a subcritical to a supercritical equilibri
state.
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CONCLUSION

The enhancement of a uniform external electrosta
field E0 in the neighborhood of the tip of a spheroidal rig
particle is determined by the eccentricity~degree of spheroi-
dality! of the particle and dielectric constant of the partic
material, but is independent of the geometric size of the p
ticle. The enhancement for a uniform external electrost
field in the neighborhood of the tip of a drop which takes
spheroidal shape in a fieldE0 depends on the characteristi
of the drop material~dielectric constant, coefficient of sur
face tension! and on the drop size, as well as on the stren
of the external field. When a drop loses stability with resp
to the polarization charge, its eccentricity increases very r
idly in time ~faster than exponentially! and this leads to such
a rapid rise in the field enhancement at its tip that the d
breaks up or the polarization charge begins to be ejecte
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results
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The electrical charging of jet engines during efflux of combustion products is studied.
Measurements are made of the electrical current beyond the exit section of a nozzle as a function
of such parameters as the characteristic length of the space charge region, the electrical
potential of the engine, and the pressure of the surrounding medium. Possible practical applications
of the results~estimating the charging current and the rate of rise and maximum value of
the potential on a flight vehicle! are discussed. ©1999 American Institute of Physics.
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INTRODUCTION

Jet engines are a major source of static electricity
flight vehicles, as they eject charged particles of combus
products during their operation.1 This effect, which is known
as engine charging, may cause some undesirable ef
~electrical discharges on board the vehicle, interference w
control and radio communication systems, disturbances
the ionospheric plasma, etc.!. Practical work on improving
the reliability of flight vehicles has drawn the attention
researchers to the problem of engine charging.

Of the factors which contribute to engine charging, tw
have been studied: violation of the quasineutrality condit
for the combustion products, which form a weakly ioniz
multicomponent gas, in the boundary layer,2,3 and the devel-
opment of instabilities in the distribution of electrical char
over the entire volume of the outflowing combustio
products.4 A space charge develops near the channel w
because of a difference in the thermal speeds of the elect
and ions, and in a moving gas this charge gives rise to
electrical currentJw along the wall and, when it flows out th
channel~nozzle!, a currentI a in the surrounding space. In th
one-dimensional approximation2

Jw5eE
0

d

@ni~x!2ne~x!#v~x!dx, ~1!

where Jw is the current per unit length of the transver
channel cross section,ni(ne) is the ion~electron! density,d
is the thickness of the space charge layer,v(x) is the outflow
velocity, and thex axis directed perpendicular to the surfac

The currentJw was calculated for three hypothetic
cases: a Maxwellian velocity distribution of the electrons a
collisionless motion of the ions within the charged laye2

and surfaces that ideally reflect and absorb char
particles.3 The currentJw is positive and, for other condition
fixed, it is higher for higher charged particle densities~for
higher temperature, and for lower ionization potential of t
combustion products!.

The development of instabilities in the electrical char
distribution is related to an acoustic interaction that produ
9181063-7842/99/44(8)/5/$15.00
n
n

cts
th
of

n

ll
ns
n

.

d

d

e

s

macroscopic fluctuations in the combustion product volum
Their characteristic spatial and time scales greatly exceed
corresponding Debye length and electron–neutral atom
lision time. The sign of the unneutralized charge relea
into the air, and of the corresponding currentI a , changes
from positive to negative as the initial charged particle de
sity is lowered.4

Besides the contributions of these factors to eng
charging, one can indirectly~by specifying the initial data
and boundary conditions at the channel wall! include thermi-
onic emission from the walls and from macroscopic partic
contained in the combustion products, deposition of el
trons on macroscopic particles, easily ionized alkali metal
fuel impurities, etc. The picture of engine charging based
these ideas is, on the whole, consistent with the availa
experimental data.1–3,5–7However, these data are limited i
volume and have been obtained by different methods
under nonidentical conditions, so is hard to proceed w
further scientific interpretation of engine charging or im
provements in the physical and mathematical model for
mechanism. In this paper we present some generalized
sults from experimental studies of the electrical charging
liquid- and solid-fuel jet engines. As opposed to the ear
data,1–3,5–7 here a larger number of parameters were de
mined~associated both with processes taking place inside
engine and with the external conditions!, and these have
been obtained on the basis of a unified methodological
proach.

EXPERIMENTAL SETUP. MEASUREMENT TECHNIQUES

Our initial considerations regarding the setup of the e
periment were based on solutions of a one-dimensio
model of the flow of a charged gas beyond the exit section
a unipolar charge source8 and reduced to the following. In
general, the currentI a in the surrounding space should d
pend on the internal~applying purely to the engine! and ex-
ternal conditions. The external conditions are the set of
rameters that determine the density of the space ch
beyond the exit section of the nozzle: the characteri
© 1999 American Institute of Physics
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length l a of the space charge region, the electrical poten
U of the engine, and the electric fieldEa at the nozzle. The
electric fielduEau<min$Ep ,Es%, whereEp(Es) is the electri-
cal breakdown strength of the combustion products~sur-
rounding medium!. If l a˜0, then the currentI a˜I m , where
I m is the maximum current~saturation current!, whose mag-
nitude is determined only by the internal conditions: t
composition, temperature, and pressure of the combus
products, etc.

The measurement setup chosen in accordance with t
considerations is shown in Fig. 1. The parameterl a was de-
termined using a profiled electrode or neutralizer moun
beyond the nozzle exit. If the electrode was mounted so
its inner surface was washed by the cold, essentially
ionized periphery of the stream~Fig. 1b!, then it acted as a
collector of the radially drifting unneutralized charges in t
stream, and the current in the measurement circuit
I'I a . When the electrode was placed immediately adjac
to the exit section and the profile of its inner surface matc

FIG. 1. Setup for measurements with ‘‘hot’’~a! and ‘‘cold’’ ~b! electrodes
and a neutralizer~c!: ~1! insulator,~2! electrode,~3! current amplifier,~4!
mirror–galvanometer oscillograph,~5! load resistance,~6,7! annular corona
and shielding electrodes.
l

on

se

d
at
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s
nt
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the nozzle profile, the electrode was washed by the hot
~actually, the core! of the stream, so that the processes le
ing to charging could show up equally on the nozzle wa
and on the electrode. The signal measured in this case eq
the difference between the currents to the electrode and
gine, I 5I e2I d , while the current in the stream in the exit
electrode segment isI a5kI, wherek is a coefficient which is
to be determined. If the gap between the nozzle and
electrode is small and the change~over the length of the gap
and the electrode! in the parameters of the combustion pro
ucts can be neglected, then forI e}De andI d}Da , whereDe

(Da) is the exit diameter of the electrode~nozzle!, then the
coefficientk51/(De /Da21). The use of a neutralizer mad
it possible to avoid direct contact between the electrodes
the stream. The unneutralized charge in the stream was
tralized by creating an electrical charge of the required d
sity and polarity in a corona discharge between electrode~6
and 7 in Fig. 1c! connected to a high voltage source. T
measured signalI'I a . In order to avoid an electrical dis
charge on the engine and the leads to the measuremen
cuit, the neutralizer was mounted some distance from
nozzle exit. A scheme with a ‘‘hot’’ electrode was use
when the outflow was fully expanded andl a /Da,0.2. In this
case, it was sufficient to use only the instrumentation in
electrode circuit~switch ke in Fig. 1 open!; this was impor-
tant when it was difficult to isolate the engine fro
‘‘ground’’ ~switch kd closed!. In the case of underexpande
outflow, but also withl a /Da>0.2, the measurements we
done using a scheme with a ‘‘cold’’ electrode~grounded en-
gine! or a neutralizer~isolated engine!. Comparison tests o
the three measurement schemes forl a /Da'0.2 yielded sat-
isfactory agreement. A variable load resistanceRn ~5 in Fig.
1! was used to measure the potentialU. Under atmospheric
conditions, it was not possible to vary the parameterEa .
This became possible when the smaller-sized engines w
placed in a vacuum chamber.

MEASUREMENT RESULTS AND DISCUSSION

Measurements were made on a number of engines
different types of fuel, combustion chamber pressuresP0 and
temperaturesT0, and diameters of the nozzle throat,DC , and
exit section,Da ~Table I!.

TABLE I.

Engine
No. Fuel P0, MPa T0, K DC , mm Da , mm

1 Liquid 0.3 3100 3.5 10
2 ’’ 0.6 3150 5.0 30
3 ’’ 0.6 3150 5.0 30
4 ’’ 0.6 3150 7.0 40
5 ’’ 0.620.7 3150 10 13
6 ’’ 0.620.7 3150 12.1 87
7 Solid 4.0 3300 18 40
8 ’’ 5.6 2300 29 60
9 ’’ 3.024.5 3480 36239 90

10 ’’ 5.7 3600 225 1575
11 ’’ 3.2 3400 250 1125
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The measured currentsI a for l a /Da<0.2 andRn50 are
listed in Table II.

An asterisk* denotes flows in a nozzle with separatio
at a cross sectionDeff,Da . In this case,Da was replaced by
the full-expansion valueDeff . Significant fluctuations in the
current I a were observed in all the engines.~The character
and possible causes of the current fluctuations are discu
in Ref. 3.! This is reflected in Table II by indicating th
typical range of the fluctuations. In the experiments on
gines Nos. 7 and 9–11, including those with arbitrary valu
of l a /Da , the currentI a was positive~i.e., the engines were
charged negatively! and polarity reversal of the current wa
not observed; this justified assuming that the wall currentJw

TABLE II.

Experiment Jw , mA/m

Engine I a , I a /pDa , absorbing reflecting

No. mA mA/m wall wall

1 020.6 0220 ••• •••
5 025 02120 ••• •••
6 029 0250* ••• •••
7 502200 47021880 590 2000
9 1002700 35022450 590 2000

10 75024500 1272765 120 410
11 5002750 1752260* 330 450
ed

-
s

makes a significant contribution to engine charging. The
lidity of this assumption is confirmed by estimates ofJw in
accordance with Ref. 3 that are in qualitative agreement w
the range of the experimental data onI a . In the case of
engines Nos. 1–6 and 8, the sign ofI a was not constant and
could vary in successive experiments. Furthermore, of th
engines ~Nos. 2–4! with an identical design, one wa
charged predominantly positively, and the other two, ne
tively. This is illustrated by Fig. 2, which shows the elect
cal chargeq(t)52*0

t I a•dt leaking through the measure
ment circuit from the engines as a function of time f
several successive experiments under identical conditions
l a /Da.50 andRn50. One of the possible reasons for th
change in sign is the observed dependence of the curren
the excess oxidant coefficienta in liquid-fuel engines5 ~the
specified value ofa for engines Nos. 1–6 was 0.6–0.8!. The
loss of structural material from the engine had a signific
effect on the currentI a but no change in sign was observe
Figure 3 shows averaged~over 5–10 experiments! plots of
q(t) for throat bushings made from three different materi
~Fluoroplastic-4~Teflon!, molybdenum, and graphite! with
different erosion rates: 105, 62, and;0 g/s. The fact thatI a

decreases as more material is removed has a simple phy
explanation: the material that is carried away~in the gaseous
and condensed phases! reduces the electron density in th
combustion products because of a lowering of the temp
ture in the boundary layer on account of the screening ef
FIG. 2. q(t) for engines No. 2~a!, 3
~b!, 4 ~c! and 8~d!.
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and because of absorption of part of the electrons by ma
scopic particles.9

The experimental data onI a as a function ofl a for
Rn50 on engine No. 9 and in model charged streams~a
portion of these data has been published previously by
author3! are generalized in Fig. 4. For dimensionless coor
nates we chosel a85 l a / l n , wherel n is the length of the initial
segment of the stream,10 andI a850.735I a( l n8)/I a(2) ~Ref. 3!.
Despite substantial differences in the experimental con
tions, in these coordinates the data are grouped withi
fairly narrow corridor, which suggests a universal charac
for the functionI a8( l a8). That is, the value ofI a( l a) required
for particular conditions may be determined roughly if t

FIG. 3. q(t) for l a /Da'0.1 ~engine No. 9!: 1 — graphite,2 — molybde-
num,3 — teflon.

FIG. 4. Current in the gasI a as a function of the length of the space-char
zone:1 — engine No. 9, degree of underexpansion10 n5121.5, degree of
heating10 Q57; 2 — water vapor;P050.7, 1.3 MPa;Pa50.1 MPa; Dc

52.0, 1.1 mm,Da52.35, 1.3 mm,n51.3, 2.45,Q51.35, 1 . . . 45; 3 —
silicone liquid vapor; P050.28 MPa; Pa50.07 MPa; Dc5Da52 mm;
n52.3; Q51.1; 4 — organofluoric liquid vapor; P050.12 MPa;
Pa50.03 MPa;Dc52.0 mm;Da52.0, 3.0 mm;n52.4, 0.5;Q51.05, 0.95.
o-

e
i-

i-
a
r

value of I a is known for some fixed value ofl a . The rela-
tionship between the currentI a and the engine potential~the
current–voltage characteristic! was determined by varying
the load resistance~Fig. 1! over 0<Rn<`. The resulting
data are plotted in the space of coordinatesI a* 5I a /I a (Rn

50), U* 5U/U (Rn5`) in Fig. 5. Based on these data, it
possible to construct an approximate current–voltage cha
teristic in dimensional variables if two points are know
such as the current atRn50 and the potential atRn˜`.

The effect of the pressure of the surrounding medi
~the flight altitude! on Ea and, therefore, onI a , has been
studied in small-sized engines mounted in a pressure ve
The results are shown in Fig. 6. At pressures of 1022103 Pa,
the current is low, but beyond this range, the current
creases. The pressure dependence ofI a resembles the wel
known Paschen curve of gas discharge theory.

FIG. 5. The currentI a as a function of the electrical potential of the engin
l a /Da'50 ~1!, 15 ~2!, 12.5–16.5~4!. All the other parameters correspond
Fig. 4.

FIG. 6. The currentI a as a function of ambient pressure:1 — engines Nos.
2, 3, l a /Da'50; 2 — engine No. 6,l a /Da<0.2.
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CONCLUSION

These experimental studies have yielded measurem
of the electrical currentI a asl a /Da˜0, which represents the
maximum possible currentI m at the nozzle exit of an engin
and is a parameter that depends only on the engine cha
teristics, and a determination of the currentI a as a function
of the three major parameters which affect it: the lengthl a of
the space charge region, the electrical potentialU of the en-
gine, and the pressurep of the surrounding medium. Thes
results can be applied to practical problems~for estimating
the charging currentI d52I a and the rate of rise and max
mum value of the potential on a flight vehicle! if I m , l a , U,
andp are known for the particular conditions. The value ofl a

will depend on a number of factors: the charged parti
mobility, the degree of ionization of the combustion pro
ucts, the parameter of the surrounding medium, etc.,
finding it is an independent problem~according to estimates
at an altitude of 400–500 km, 426, l a /Da,L/Da , where
L is the characteristic geometric size of the flight vehicl!.
The rate of rise of the potential of a flight vehicle when t
engine is turned on is

FdU

dt G
U5U0

5
I d

C11C2
,

whereC1 andC2 are the capacitance of the flight vehicle a
of the vehicle–earth system.
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The maximum potential can be estimated from the c
dition that the charging and discharge currents are balan
at the point where the corresponding current–voltage ch
acteristics intersect.

The author thanks P. P. Andreev, V. A. Nikol’ski�, and
S. G. Rebrov for assistance in doing the experiments.
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Transient spectroscopy of surface states in a constant subthreshold current mode
for MIS transistors
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The spectrum of surface states at a semiconductor–insulator interface is studied through the
relaxation of the gate voltage of an MIS transistor measured with a constant subthreshold current.
The proposed method makes permits study of these states in both halves of the semiconductor
gap and is convenient for testing integrated circuits. The possibilities of this method
are illustrated using the example of radiation induced changes in the distribution of surface
states. ©1999 American Institute of Physics.@S1063-7842~99!01108-3#
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The analysis of relaxation processes resulting from
refilling of nonequilibrium surface states is an effecti
means of studying insulator–semiconductor interfaces. S
mons and Wei1 were the first to point out the possibility o
directly determining the population of surface states from
transient currents in a metal–insulator—semiconduc
~MIS! structure during switching from enrichment to de
depletion. They neglected the effect of the change in
depth of the space-charge region of the semiconductor
limited the applicability of the method by the conditionCi

@Csc , whereCi andCsc are the capacitances of the insul
tor and semiconductor, respectively. This limitation w
eliminated by Johnson’s method of constant-capacita
transient spectroscopy of surface states~CC-DLTS!.2 This
mode ensures a constant depth of the space-charge re
during relaxation and eliminates the effect of the semic
ductor on the measurements. The constant-capacit
method makes it possible to study surface states in the ha
the gap adjacent to the majority carrier band. Difficulti
arise in the middle of the gap because surface currents
velop owing to the uncontrolled accumulation of minori
carriers at the surface.3 In the case of measurements on M
transistors, it is also possible to attain extreme sensitivity
the transient spectroscopic methods by using their intrin
amplifying effect. Note that, in studies of the transient refi
ing of surface states in the MIS elements of large integra
circuits with small dimensions, a constant depth of the spa
charge region is most easily attained by keeping the d
current constant, rather than the gate capacitance. The r
ation of the gate voltageVg of an open MIS transistor, whos
magnitude exceeded that of the threshold voltageVT , has
been measured4 in this mode~with a constant drain voltage!.
It was possible to detect the refilling of discrete surface sta
in an MIS transistor with dimensions of 131mm.4 However,
by keeping the drain current constant in an open transisto
was possible to study the surface states only near the m
ity carrier band.

In this paper we study the spectrum of surface sta
through the relaxation of the gate voltage of an MIS trans
tor in a constant subthreshold current mode. This var
9231063-7842/99/44(8)/5/$15.00
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makes it possible to study surface states in both halves o
semiconductor gap.

THEORETICAL PART

For concreteness, we shall consider ap-channel MIS
transistor. In these transistors, the spectrum of surface s
in the upper half of the gap~adjacent to the majority carrie
band of the semiconducting substrate of the transistor! is
studied through the relaxation ofVg(t) as it is switched from
enrichment into a state at the start of a weak inversion. In
state at the start of an inversion, the Fermi quasilevel of
minority carriers,EFp , at the surface lies near the middle
the gap and the surface band bendingcs equals the bulk
potentialwB of the semiconductor, while the correspondin
voltage at the gate of the transistor,Vmg , can be referred to
as the ‘‘midgap’’ voltage. Surface states in the lower half
the gap~adjacent to the minority carrier band! are studied
using the relaxation ofVg(t) during switching of an MIS
transistor from strong inversion to a state in the ‘‘midgap
The drain voltage should be high enough to ensure satura
of the drain current. When the current is saturated with
spect to the drain voltage in the weak inversion region,
semiconductor surface is an equipotential over essentially
entire channel length.5 This means that the charge relaxatio
process in the surface states can be examined in a one
mensional approximation.

When an MIS transistor is switched from enrichment
inversion, two processes refill the surface states: emissio
electrons from the surface states into the conduction b
and capture~recombination! of free holes at the surfac
states. The kinetics of the charge variation at the surf
states,Qit(t), obeys the equation

Qit~ t !5qE
EFp

E(t)

Dit~E! exp@2~en1cp!t#dE, ~1!

whereq is the charge of an electron,Dit(E) is the density of
surface states,en andcp are the coefficients of electron emis
sion and hole capture~recombination!, respectively,EFp is
© 1999 American Institute of Physics
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the location of the Fermi quasilevel for the minority carrie
in the semiconductor, andE(t) is the energy level of the
surface states at timet.

The coefficient of electron emission from surface sta
is determined by their energy,

en5snv thni expS E2Ei

kT D , ~2!

while the capture coefficient is determined by the free h
concentration and is given in terms of the Fermi quasile
EFp by

cp5spv thni expS Ei2EFp

kT D . ~3!

Hereni is the intrinsic carrier concentration in the semico
ductor,v th is the thermal speed,sn and sp are the surface
state cross sections for capture of electrons and holes, res
tively, Ei is the Fermi level in the intrinsic semiconductor,k
is Boltzmann’s constant, andT is the absolute temperature
Equating the emission and recombination coefficients de
mines the location of the demarcation levelED above which
the surface states are mainly emptied by emission and be
which they are mainly discharged by recombination,

ED2Ei5Ei2EFp1kT ln~sp /sn!. ~4!

Electron are emitted into the conduction band succ
sively as the depth of the energy of the surface states
creases. Here the energy level of the surface states
which electron are emitted at timet is given by the well
known expression1

E~ t !5Ei2kT ln~snv thni t !. ~5!

The timet is reckoned from the time the MIS transist
is switched from enrichment to weak inversion. Equatio
~3!–~5! imply that the timetD at which the electron emissio
reaches surface states at the demarcation energyED is in-
versely proportional to the hole capture coefficient, i.e.,

tD5cp
21 . ~6!

Given Eqs. ~3!–~6!, Eq. ~1! for the variation in the
charge in the surface states can be written in the form

Qit~ t !5q expS 2
t

tD
D E

EFp

E(t)

Dit~E!dE. ~7!

When a constant drain current is maintained during
laxation of an MIS transistor, the variation in the gate vo
age is determined only by refilling of the surface states,
by the kinetics of the chargeQit(t), i.e.,

Vg~ t !5Vg02
Qit~ t !

Ci
, ~8!

whereVg0 is the gate voltage which att50 ensures flow of
the chosen level of constant current under conditions of fi
enrichment of the transistor channel;Ci5« i /di is the geo-
metric volume of the subgate insulator layer,« i is the ab-
soulte permittivity of the insulator, anddi is its thickness.
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Equations~7! and~8! can be used to express the dens
of surface states in terms of the gate voltageVg(t) and its
time derivativedVg(t)/dt at timet, which are related by Eq
~5! to the energy of the surface states,

Dit~ t !5
Ci

qkT
expS t

tD
D FVg02Vg~ t !

tD
2

dVg~ t !

dt G t. ~9!

The system of Eqs.~5! and ~9! makes it possible to de
termine the energy distribution of the density of surfa
states in the upper half of the gap from the relaxation beh
ior of the gate voltage measured with a constant subthres
current. The upper and lower limits of the energy interv
that can be studied are determined according to Eq.~5! by
the minimal measurement time and the demarcation ene
ED , respectively.

Practical realization of this method requires an init
determination of the demarcation timetD and the capture
cross section for the majority carriers,sn . Note that with Eq.
~7!, Eq. ~8! can be rewritten in the form

Vg~ t !5Vg`2
q

Ci
expS 2

t

tD
D E

Ei

E(t)

Dit~E!dE, ~10!

whereVg` is the final steady state value of the gate volta
Vg(t˜`), which is given by

Vg`5Vg02
q

Ci
E

Ei

EFp
Dit~E!dE. ~11!

Taking the logarithm of Eq.~10!, we obtain

lnFCi~Vg`2Vg~ t !!

q G52
t

tD
1 lnE

Ei

E(t)

Dit~E!dE. ~12!

On plotting the relaxation curve in the coordinates

lnFCi~Vg`2Vg~ t !!

q G5 f ~ t !,

we can determinetD from the slope of the curve. Then, b
numerically differentiating the relaxation curveVg(t), for
each fixed temperature Eq.~9! yields Dit for times t,tD .

In order to find the majority carrier capture cross sect
sn from theseDit(t) curves, one determines the correspon
ing values of the temperature and time satisfying the con
tion Dit5const~see the inset to Fig. 2!, i.e., the pointst1 and
t2 for the curves taken atT1 andT2, respectively. Using the
resulting values oft i and Ti , one can construct the curv
ln(vthnit)5 f (1/kT), which is a straight line, provided tha
sn5const, and from the slope of this line, determine t
capture cross sectionsn . The lower portion of the gap is
studied by switching the MIS transistor from a strong inve
sion region into a state in the ‘‘midgap.’’ The ‘‘midgap’
voltageVmg was determined from the theoretical value of t
subthreshold currentI mg by a standard method.6 Refilling of
the surface states in this case is determined by a si
mechanism — emission of holes from the surface states
the valence band. Equation~9! transforms to the simple form

Dit~ t !52
Ci~ t !

qkT

dVg~ t !

dt
. ~13!
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FIG. 1. Block diagram of the apparatus for transient spectroscopy of surface states in the subthreshold saturation current mode.
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Here the energy and time are related by the formula1

E~ t !5Ei1kT ln~spv thnit !. ~14!

Note also that, in order to determine the capture cr
sectionsp for minority carriers, only one relaxation curve
measured at a fixed temperature, is needed. Thus, the sy
of Eqs.~13! and ~14! yields a spectrum of the surface stat
in the lower half of the gap of the semiconductor.

MEASUREMENT APPARATUS

Figure 1 shows a block diagram of the apparatus
transient spectroscopy of the surface states with saturatio
the subthreshold current. The apparatus includes the foll
ing functional units:

1! A vacuum cryostat1 with a temperature control unit2
that regulates the temperature of the sample3 between 80
and 723 K within 0.5 K. The reference voltage for this unit
provided by a TsAP1 digital-to-analog converter4 based on
a KR594PA1 integrated circuit.

2! A current generator based on a K574UD2 fast ope
tional amplifier5 which provides dynamic maintenance of
constant subthreshold current. The level of the current is
termined by the reference voltage provided by a TsA
digital-to-analog converter6 based on a KR594PA1 inte
grated circuit and can reach 10210 A.

3! A fast 10-channel analog-to-digital converter~ADC!
7 assembled from 8-channel K1107PV4 ADCs with an
cess time of 1028 s and used to measure the relaxation vo
age at the gate of the MIS transistor owing to refilling of t
surface states.
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4! A buffer ~buffer RAM! 8 for preliminary recording of
the data from the ADC and sending it on to the computer
has a capacity of 1031024 bits and is based on
K1500RU415 static, emitter-coupled logic RAM device wi
a minimum access time of 231028 s.

5! A timing pulse generator9 made up of discrete
emitter-coupled logic devices and used to strobe the A
and buffer.

6! A TsAP3 digital-to-analog converter10 based on a
KR594PA1 integrated circuit, used to specify the parame
of the bias pulses delivered to the gate of the MIS transis

7! A fast electronic switch11 for switching the signals
delivered to the gate of the MIS transistor.

8! A programmable timer12 based on a KR580VI53
integrated circuit for producing the timing diagram for th
measurement process~specifying the temporal parameters
the bias pulse, controlling the switching device, the AD
and the buffer!.

9! An Élektronika-60 microcomputer13 for controlling
the measurement process and processing the data.

10! A matching device14 for coupling the measuremen
unit to the microcomputer.

The apparatus works as follows. When the specifi
temperature is reached, a voltage pulse is delivered to
gate of the transistor and converts the surface in the sub
region into an enriched or inverted state~depending on the
half of the semiconductor gap being studied!. Here the
switching device disconnects the feedback circuit to ens
maintenance of a constant subthreshold current. Afte
steady state is reached~no more than 0.01 s!, the bias voltage
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is removed and the feedback circuit is turned on to ren
and maintain a specified level of the subthreshold curren
varying the gate voltage on the MIS transistor. After the e
of the transition process~no more than 531028 s!, which is
determined by the speed of the operational amplifier in
current generator, the fast ADC begins to measure the re
ation of the gate voltage on the MIS transistor as the surf
states are refilled and the data are then recorded in the bu
The sampling time of the ADC can be varied fro
231028 to 1023 s in various parts of the relaxation curv
When the buffer is full or the measurement of the curve
complete, the data are read out by the computer. Then
measurement is repeated at the same or a different tem
ture. The time required to measure a single relaxation cu
is less than 0.02 s when the data are recorded in the comp
memory and less than 0.1 s when the data are recorde
a disk.

EXPERIMENTAL RESULTS

The proposed method was used to determine the ra
tion induced changes in the spectrum of surface states.
measurements were made on thep-channel of an MIS tran-
sistor with a subgate oxide layer thicknessd0x598 nm, chan-
nel lengthL53 mm, channel widthW5100mm, and doping
concentration in the substraten051014cm23. The energy
spectrum of the surface states was changed by irradia
with soft x rays with an energyEx520 keV at doses of up to
106 R followed by low temperature annealing at 723 K. T
samples were irradiated on an IRIS-M3 x-ray system.

Typical relaxation curvesVg(t) for these MIS transis-
tors, measured with a saturation subthreshold current a
x-ray bombardment at doses of 105 R and 53105 R, are
shown in Fig. 2. The energy distributions of the surfa
states,Dit(E), calculated from these experimental data a
shown in Fig. 3.

The surface state spectra calculated in this method
be compared with data obtained from these same sample
the standard stationary subthreshold current method.7 The
steady-state current–voltage characteristics were meas

FIG. 2. Relaxation curvesVg(t), measured during switching of an MIS
transistor into a weak inversion from enrichment~d — T5300 K, m —
T5250K) from a strong inversion(l — T5300) after x-ray irradiation:
D5105 (1!, 53105 R ~2!.
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on the apparatus described in Ref. 8. Recall that the stat
ary drain–gate current–voltage characteristic of a lo
channel MIS transistor in the subthreshold region is given
the equation7

I D5I 0 expS Vg2VT

S D , ~15!

where

S5
kT

q

Ci1Csc1Css

Ci

and Css is the capacitance due to refilling of the surfa
states.

The changes in the current–voltage characteris
caused by the x-ray irradiation are shown in Fig. 4.

FIG. 3. Energy spectra of the density of surface states after x-ray irradia
~labels1 and2 are as in Fig. 2!.

FIG. 4. Subthreshold portions of the drain–gate current–voltage chara
istics ofp-channel transistors after x-ray irradiation~labels1 and2 are as in
Fig. 2!.
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The average density of surface states,Dit , was calcu-
lated from the parameterS, which is determined experimen
tally from the slope of a plot of ln(ID /I0) versusVg :

Dit5
1

q FCi S qS

kT
21D2CscG . ~16!

The averaged values of the densityDit of surface states
determined from the curves of Fig. 4 using Eq.~16! are
shown in Fig. 3 by the dashed lines and equal 231012 and
2.631012cm22eV21 for irradiation doses of 105 and
53105 R, respectively. These are in good agreement w
the results obtained by the method proposed here.

To summarize, using the relaxation of the gate voltage
an MIS transistor in the constant subthreshold current m
for studying the spectrum of the surface states at a insula
h

f
e

r–

semiconductor interface offers the possibility of studying t
surface states in both halves of the semiconductor gap an
convenient for testing of integrated circuits.
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Optimization of a differential absorption and scattering lidar for sensing molecular
hydrogen in the atmosphere
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The lidar equation for remote sensing of molecular hydrogen in the atmosphere by differential
absorption and scattering is solved to optimize the lidar system. The background
conditions are taken into account. ©1999 American Institute of Physics.
@S1063-7842~99!01208-8#
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The widespread use of differential absorption and sc
tering lidars in the infrared to probe for atmospheric g
molecules suggests that they might be also used for rem
sensing of molecular hydrogen in the atmosphere.1 The dif-
ferential absorption and scattering method is highly sensi
because, of all the known spectroscopic effects, resonan
sorption has the largest cross section in the visible and2

In a differential absorption and scattering lidar of this typ
probing is done at two wavelengths, one of which coincid
with a maximum in the absorption band of the molecu
being studied while the other lies outside this band. Inform
tion on the distribution of the concentration of the molecu
is extracted by comparing the detected lidar signals
the two wavelengths within a sufficiently narrow spect
interval.

There is, therefore, some interest in a numerical solu
of the lidar equation for differential absorption and scatter
detection of H2 molecules in order to choose an optimu
variant of the lidar system.

We write the lidar equation for elastic backscatter in t
form3

P~l,R!5P0K1A2T2~l0!r/R2, ~1!

whereP(l,R) is the backscatter signal power at waveleng
l0 arriving at the detector rom a distanceR; P0(l0) is the
laser power at its wavelength;K1 is the lidar constant;A2 is
the area of the receiver telescope;T(l0) is the transmission
of the atmosphere at the wavelength of the laser light an
the backscatter signal; and,r is the reflection coefficient o
the topographic target or the combined scattering coeffic
for elastic Mie and molecular Rayleigh scattering.

All the information on the molecular hydrogen conce
tration is contained in the factorT(l0), which, in general,
can be written in the form4

T~l,R!5expF2E
0

R

k~l!dRG , ~2!

where the attenuation coefficientk(l,R) is given by an
equation of the form

k~l,R!5kA~l,R!1N~R!s0~l!, ~3!
9281063-7842/99/44(8)/4/$15.00
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where the first term is the atmospheric attenuation at the l
wavelength without the hydrogen molecules and the sec
is the product of the H2 concentration and the resonan
absorption cross section of these molecules.

Then, following the idea of differential absorption an
scattering,4 we take two lidar equations of the type~1! for
two laser wavelengthsl0 and l1 , where the second wave
length lies outside the absorption band of H2 , and divide one
by the other. Dividing yields an equation for the general ca
of differential absorption and scattering, where it is assum
that all the wavelength dependent factors are different:

P~l0 ,R!

P~l1 ,R!
5

P0K10r0

P1K11r1

3expH 22E
0

R

@k~l0 ,R!2k~l1 ,R!#dRJ .

~4!

Substituting an equation of the type~3! for the attenua-
tion coefficients at both wavelengths in Eq.~4!, we finally
write the differential absorption and scattering equation
the form

E
0

R

N~R!dR5
1

2s0
lnFP~l1 ,R!P0K10r0

P~l0 ,R!P1K11r1
G

2E
0

R

@kA~l0 ,R!2kA~l1 ,R!dR#. ~5!

We now determine the quantities in Eq.~5! for our case.
The wavelength at the maximum of the IR band for H2 mol-
ecules is taken to be 2.4mm. According to Ref. 5, a purely
vibrational transition is forbidden in hydrogen, while rot
tional transitions in whichj changes by61 are allowed.
However, it has been pointed out6 that, because of externa
perturbations, forbidden transitions can become allowed~in-
duced! as a result of deformations of diatomic molecules
collisions in the atmosphere. Data6 on pressure-induced ab
sorption by nitrogen molecules under atmospheric conditi
in the neighborhood of the fundamental vibration at 4mm
yield an estimate for the nitrogen absorption cross sectio
1 atm on the order of 10224cm2. This is a minimum value,
which does not include the intensity of the laser radiatio
© 1999 American Institute of Physics
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TABLE I. Calculated power ratios of the differential absorption and scattering signals from molecular H2 for
ranging distances of 0.01210.0 km and molecular concentrations of 101021016 cm23.

N, cm23 1010 1011 1012 1013 1014 1015 1016

R, m Ratio of the differential absorption and scattering signal powers,P(l1 ,R)/P(l0 ,R)

10 1.00007 1.00009 1.00027 1.00207 1.02027 1.22149 7.3895
100 1.00074 1.00092 1.00272 1.02094 1.22228 7.39438

1000 1.00743 1.00924 1.02757 1.23023 7.44245
2000 1.01491 1.01857 1.05591 1.51346
3000 1.02245 1.02798 1.08502 1.8619
4000 1.03004 1.03749 1.11494 2.29057
5000 1.03769 1.04707 1.14568 2.81792
6000 1.0454 1.05675 1.17727 3.46669
7000 1.05317 1.06652 1.20973 4.26482
8000 1.06099 1.07638 1.24309 5.2467
9000 1.06887 1.08632 1.27737 6.45464

10000 1.07681 1.09636 1.31259 7.94069
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which in our case is at least 1 MW / cm2. Studies7 of the
absorption by hydrogen molecules of IR laser radiation
10.6 mm have revealed the existence of IR absorption
hydrogen molecules and yield an estimate for the absorp
cross section~an increase by 5 orders of magnitude at
power of 1 MW! on the order of 10219cm2. The IR absorp-
tion spectrum of molecular hydrogen induced by an elec
field ~up to 12 kV/cm! has been studied8 by intracavity spec-
troscopy. In this paper we consider the case of absorp
induced by external perturbations~pressure and high powe
laser radiation! in the neighborhood of 2.4mm.

In addition, it is also possible to create an experimen
situation in which a sum of rotational bands is detected
suitable choice of the transmission passband for the l
monochromator.

The wavelength outside this band was chosen to
2.1mm, in order to fit within the transparency region
the atmosphere.9 A lidar of this sort can be built using pulse
solid state lasers with rods of YAG : Cr : Er an
YAG : Cr : Ho.10,11

Furthermore, for the specific case of our lidar, we se
rate a factorjp(l) that depends on the spectral sensitivity
the detector from the lidar constantK1 , i.e.,

K15K2jp~l!. ~6!

The remaining factors in Eq.~1! have the following val-
ues: A250.008 m2; K250.4 for a wavelength of 1.06mm;
peak laser powers ofP051, 10, and 100 kW with the ratio o
the powers of the laser light at the two chosen waveleng
equal to the reciprocal of the spectral sensitivities of the
tectors at the same wavelengths; ranging distan
R50.01, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0
10.0 km; concentrations of 101021016cm23 for the mol-
ecules being studied; spectral sensitivities of the LFD-2 a
lanche photodiodes at the chosen wavelengths12 equal to 0.1
and 0.05 of the maximum at a wavelength of 1.4mm; attenu-
ation coefficients9 kA equal to 0.0314 and 0.035 km21, re-
spectively, for the wavelengths of interest to us; reson
absorption cross section of the hydrogen molecule4 s050.8
310218cm2; reflection coefficients of the topographic ta
t
y
n
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gets estimated from the data of Ref. 3 to be 0.3 for a cor
reflector and 0.15 for a matte surface; and, a total atm
spheric scattering coefficient4 of 1027.

The data listed above have been used in numerical
culations of the ratio of the differential absorption and sc
tering signal powers according to Eq.~5! for the chosen con-
centrations of hydrogen molecules and wavelengths and
ranging distances of 0.01 to 10.0 km in order to search
the optimum variant of the lidar system. The results of t
calculations for molecular H2 are listed in Table I. The table
shows that this ratio is a minimum for very low concentr
tions and distances and is excessive for high concentrat
at any distance. The calculations were not done where
ratio exceeded 10, since the dynamic range of the dete
system was taken to be 104, in accordance with Refs. 12 an
13. For a distance of 10 m, the range of accessible con
trations is 101221016cm23 and for a distance of 10 km
10821013cm23 for the integrated value over the entire bea
path. These results show that the differential absorption
scattering method, like ordinary IR absorption,13 has lower
and upper bounds on the range of possible products of
concentration and layer thickness, which are determined
the optical design and detector of the lidar. The first row
Table I lists signal ratios for a 10 m path, which are ess
tially the same as those for a similar path length of 10
located at distances of from 100 m to 10 km from the lid
This means that a lidar of this sort can determine molecu
H2 densities of 101221016cm23 with a spatial resolution of
10 m along a path of up to 10 km in length.

Later, the power of the lidar signal was calculated us
Eq. ~1! for different experimental situations for a hydroge
concentration integrated over the entire path. The results
listed in Table II. This table implies that increasing the las
power leads to a proportionate increase in the signal pow
and a reduction in the concentration of the molecules a
leads to an increase in the power without a change in
spectral dependence of the factors in Eq.~1!. As the distance
is increased, the signal powers decrease, which makes it
possible to probe high concentrations at large distances.
signal power for a segment of the beam path 10 m lo
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TABLE II. Calculated power of the differential absorption and scattering signals from molecular H2 for laser
powers of 12100 kW, molecular densities of 101021016 cm23 integrated over the path, ranging distances
0.01210.0 km and different scattering targets.

Na , cm23 1016 1014 1012 1010

R, m r P, kW Backward differential absorption and scattering signal power, W

10 0.15 100 1.2431028 4.91 5.99 6.0
10 1.2431029 0.49 0.599 0.6
1 1.24310210 0.049 0.0599 0.06

0.3 100 2.4731028 9.82 11.98 12.0
10 2.4731029 0.98 1.198 1.2
1 2.47310210 0.098 0.01198 0.12

1027 100 3.2831026 3.9931026 431026

10 3.2831027 3.9931027 431027

1 3.2831028 3.9931028 431028

100 0.15 100 8.131023 5.8831022 631022

10 8.131024 5.8831023 631023

1 8.131025 5.8831023 631023

0.3 100 1.6231022 0.117 0.12
10 1.6231023 1.1731022 1.231022

1 1.6231024 1.1731023 1.231023

1027 100 5.4131029 3.9231028 431028

10 5.41310210 3.9231029 431029

1 5.41310211 3.92310210 4310210

1000 0.15 100 1.23310212 4.8831024 5.9531024

10 1.23310213 4.8831025 5.9531025

1 1.23310214 4.8831026 5.9531026

0.3 100 2.46310212 9.7731024 1.1931023

10 2.46310213 9.7731025 1.1931024

1 2.46310214 9.7731026 1.1931025

1027 100 3.26310210 3.97310210

10 3.26310211 3.97310211

1 3.26310212 3.97310212

10000 0.15 100 7.6531027 5.5431026

10 7.6531028 5.5431027

1 7.6531029 5.5431028

0.3 100 1.5331026 1.1131025

10 1.5331027 1.1131026

1 1.5331028 1.1131027

1027 100 5.1310213 3.69310212

10 5.1310214 3.69310213

1 5.1310215 3.69310214

TABLE III. Calculated powers of the differential absorption and scattering signals from molecular H2 for a
laser power of 100 kW, local molecular densities of 101021016 m23 of a 10 m path length, ranging distances
0.1210.0 km, and different scattering targets.

Backward differential absorption and scattering signal power~W! for a laser powerP5100 kW

Na , cm23

R, m r 1016 1014 1012 1010

100 0.15 1.24310210 4.9131022 5.9931022 6.031022

0.3 2.47310210 9.8231022 0.1197 0.1199
1027 3.2731028 3.9931028 3.99831028

1000 0.15 1.23310212 4.88331024 5.9431024 5.96431024

0.3 2.45310212 9.76631024 1.18831023 1.19331023

1027 3.26310210 3.968310210 3.976310210

10000 0.15 1.16310214 4.62631026 5.6431026 5.65131024

0.3 2.33310214 9.2531026 1.12831025 1.1331025

1027 3.08310212 3.76310212 3.767310212
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separated from the laser by a distance of 10 km was ca
lated for concentrations of 101021016cm23. Table III shows
only the maximum powers for a peak laser power of 100 k
and distances of 100, 1000 and 10 000 m. An analysis
these results shows that the power varies by more tha
orders of magnitude, so that not all of the data can be
tected by a lidar of this type. The optimum is to use a lase
the lidar whose output power can be changed as the con
tration of H2 molecules varies, so that it is possible to obta
a maximum backscattered signal power for distances of
210.0 km.

All these results, however, are for the case of zero ba
ground illumination. Since background thermal radiation h
a strong effect on the power detected by a lidar, we h
calculated the background power at the detector,Pb(l,R).
The spectral brightness of the IR background,Sb(l), was
taken from Ref. 4. Using this value ofSb(l), an equation of
the type14

Pb~l,R!5Sb~l!T~l,R!K2jp~l!A2V~R!Dl, ~7!

was used to calculate the background powerPb(l,R) for our
case, whereV(R) is the solid angle of the field of view o
the receiver telescope andDl is the spectral bandwidth o
the receiver.

Following Ref. 4, we shall consider the minimum allow
able signal to noise ratio to be 1.5 and define the minim
powerPm that can be detected by the lidar as

Pm51.5Pb~l,R!. ~8!

Some calculations for the chosen experimental situa
yield the following: 5310214W for a distance of 100 m
5 310216W for 1 km, and 5310218W for 10 km. A com-
parison of these results with the data of Tables II and
~where the empty places mean that the calculated power
less thanPm) shows that the power exceeds the backgrou
by the greatest amount for concentrations below 1016cm23

for the entire range of distances and below 1014cm3 up to 1
u-

of
8

e-
n
n-

.1

k-
s
e

n

I
re

d

km. A 100 kW laser makes it possible to detect a concen
tion of molecules below 1014cm23 for any of these dis-
tances.

The above results, therefore, demonstrate the possib
of choosing optimum laser parameters for differential a
sorption and scattering sensing of molecular hydrogen in
atmosphere at a given distance. Taking the background
ditions into account limits the prospects for such a laser o
at high concentrations and large distances.
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Élektron. ~Moscow! 17, 859 ~1990! @Sov. J. Quantum Electron.17, 778
~1990!#.

8L. N. Sinitsa, Opt. Atmos. Okeana8, 157 ~1995!.
9A. M. Prokhorov~ed.!, Laser Handbook@in Russian#, Sov. Radio, Mos-
cow ~1978!, Vol. 1, pp. 382, 385.

10H. Weber, M. Bass, T. Varitumos, and D. Bua, Sov. J. Quantum Elect
QE-9, 1079~1973!.

11N. Sugimoto, N. Sims, K. Chan, and D. K. Killinger, Opt. Lett.15, 302
~1990!.

12M. D. Aksenenko and M. L. Baranochnikov, inOptical Radiation Detec-
tors. A Handbook@in Russian#, Radio i Svyaz’, Moscow~1987!, pp. 68,
69.

13Kh. I. Zil’bershte�n ~ed.!, Spectral Analysis of Pure Substances@in Rus-
sian#, Khimiya, St. Petersburg~1994!, 336 pp.

14H. Inaba and T. Kobayasi, Opto-Electronics4~2!, 101 ~1972!.

Translated by D. H. McNeill



TECHNICAL PHYSICS VOLUME 44, NUMBER 8 AUGUST 1999
Theory of nonlinear directional couplers
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A method is proposed for obtaining exact analytical solutions for the system of nonlinear
equations for the propagation of electromagnetic waves in directional couplers with an arbitrary
nonlinearity in the propagation constant. The resulting solutions can be used to determine
the operating characteristics of nonlinear directional couplers. ©1999 American Institute of
Physics.@S1063-7842~99!01308-2#
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It has been shown1,2 that using nonlinear directional cou
plers opens up broad possibilities for creating ultrafa
purely optical switching devices. In the overwhelming m
jority of published papers, it is assumed that the nonlin
directional couplers are based on optically nonlinear me
with a Kerr nonlinearity in the refractive index or in th
propagation constant. In such media, however, the thres
power for switching is rather high. By now, a satisfacto
theory for the propagation of light in nonlinear direction
couplers with a Kerr nonlinearity has been developed, ex
analytical solutions have been obtained for the system
nonlinear equations for the intensities of the propagat
waves in terms of elliptical functions, and the switchin
characteristics have been studied.1 In addition, couplers
based on semiconductors, with their inherent giant reson
nonlinearities, are of great interest, since they can ensu
substantial reduction in the switching power. Media whi
are modeled by a system of two-level atoms inherently h
a saturation effect which substantially modifies the refract
index and absorption coefficient. Numerical studies ha
been made3–5 of the effect of saturation in the refractiv
index of the medium and it has been shown that the op
tional characteristics of the directional couplers are qual
tively different from those of Kerr media. Evidently, med
with excitonic and biexcitonic nonlinearities offer eve
greater promise.6 Here the dependence of the refractive ind
of the medium on the intensity of a propagating wave can
rather complex. We know of no papers in which an analy
cal solution has been obtained for the nonlinear equat
describing the propagation of light in nonlinear direction
couplers with a non-Kerr nonlinearity. There is, therefo
some interest in obtaining these solutions for an arbitr
dependence of the ‘‘propagation constant’’ on the wave
tensity. Here we shall show that the traditionally employ
system of first order, nonlinear differential equations
coupled waves propagating in the same direction in t
channels of a nonlinear directional coupler can be sol
exactly in quadrature form for an arbitrary dependence of
‘‘propagation constant’’b on the intensityJ of the propagat-
ing wave.

Let us consider a directional coupler consisting of tw
different optical waveguides whose propagation constantsb1
9321063-7842/99/44(8)/3/$15.00
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andb2 depend on the intensitiesJ1 andJ2 of the light propa-
gating in each of the waveguides as

b15b011 f 1~J1!, b25b021 f 2~J2!, ~1!

whereb01 andb02 are constants andf 1(J1) and f 2(J2) are
arbitrary continuous functions of the intensity.

We shall assume that the coupling constantg of the cou-
pler is independent of the intensity, which is essentially
ways true.1,2 In this case, the nonlinear differential equatio
for the amplitudesE1 and E2 of the coupled waves propa
gating in thex direction in each of the optical waveguides
the coupler have the form

dE1

dx
52 ib01E12 i f 1~J1!E11 igE2 ,

dE2

dx
52 ib02E22 i f 2~J2!E21 igE1 . ~2!

In essentially all published papers, this system of eq
tions is solved under the assumption that each of the fie
has its own amplitude and phase and one goes from Eq~2!
to a system of nonlinear equations for the amplitudes
phase differences.1,2 We believe the following approach
which leads to a solution for Eqs.~2! in quadrature form, is
more convenient. Let us introduce the new functions

J15
c

8p
uE1u2, J25

c

8p
uE2u2,

Q5
c

8p
~E1* E22E2* E1!, R5

c

8p
~E1* E21E2* E1!.

~3!

Using Eq.~2! and the system of coupled~2! equations,
we obtain the following system of nonlinear differenti
equations for the new functions:

dJ1

dx
5 igQ,

dJ2

dx
52 igQ, ~4!

dQ

dx
5 i ~b012b02!R1 i @ f 1~J1!2 f 2~J2!#R

12ig~J12J2!, ~5!
© 1999 American Institute of Physics
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and

dR

dx
5 i ~b012b02!Q1 i @ f 1~J1!2 f 2~J2!#Q. ~6!

We shall find solutions for this system with the simple
boundary conditions. Let laser light of intensityJ1ux505J0

be incident on the entrance end of one of the waveguide
the coupler~say, the first!. ThenJ2ux505Qux505Rux5050.
Equation~4! easily yields the following integral of the mo
tion:

J11J25J0 , ~7!

which is a consequence of the conservation of energy in
system. Using Eqs.~7!, ~4!, and~6!, we obtain

R5
Db0

g
~J12J0!1

1

g
@F1~J1!1F2~J2!2F1~J0!#, ~8!

where the new functionF(J) is introduced in the form

Fi~J!5E
0

J

f 1~J8!dJ8; i 51, 2, ~9!

with F1(0)5F2(0)50 anddb05b102b20. After this, with
the aid of Eqs.~8! and~4! we obtain from Eq.~5! an integral
of the motion:

Q2524J1J21
1

g2
@Db0J21F1~J0!2F1~J1!2F2~J2!#2.

~10!

Using Eqs.~4! and~10!, one can obtain a representatio
of the phase trajectory of the solution in the (J2 , dJ2 /dx)
plane for the intensity of a wave propagating in the seco
waveguide of the nonlinear directional coupler,

S dJ2

dx D 2

1W~J2!50, ~11!

where

W~J2!5@Db0J21F1~J0!2F1~J02J2!2F2~J2!#2

24g2J2~J02J2! ~12!

plays the role of the potential energy of a conservative n
linear oscillator. The conditionW(J2)50 can be used to
determine the minimum and maximum intensitiesJ2 of the
wave in the second waveguide of the nonlinear directio
coupler. Similar expressions are easily written down forJ1,
as well.

Finally, from Eq. ~1! it is easy to obtain a solution fo
J2(x) in quadrature form,

E
0

J2 dJ2

A2W~J2!
5x. ~13!

The solution~13!, together with Eq.~7!, completely de-
scribes the spatial distribution of the wave intensities in b
waveguides of the nonlinear directional coupler.

Assuming that the optical waveguides are linear, i.e,
suming thatf 1(J1)5 f 2(J2)50, from Eq.~13! we obtain the
standard result7,8
t

in

e

d

-

l

h

s-

J2~x!5
J0

11S Db0

2g D 2 sin2A11S Db0

2g D 2

gx. ~14!

If the optical waveguides are nonlinear with Kerr corre
tions to the propagation constants,f 15a1J1 and f 25a2J2,
wherea1 anda2 are constants, then from Eq.~12! we obtain

W~J2!5J2F1

4
~a11a2!2J2

32~Db01a1J0!~a11a2!J2
2

1@4g21~Db01a1J0!2#J224g2J0G , ~15!

while the integral~13! can be expressed in terms of the J
cobi elliptic functions.1 Rather than present all the possib
solutions, we shall note just one unique simple solution. A
suming that one waveguide of the nonlinear directional c
pler is self-focusing, while the other is self-defocusing~i.e.,
a252a1), we obtain a solution characteristic of a line
directional coupler,

J25
4g2

4g21~Db01a1J0!2
J0

3sin2Ag21
1

4
~Db01a1J0!2x. ~16!

Here the coupling length and transfer efficiency depe
on the intensityJ0 of the light delivered to the front end o
the first waveguide.

If we assume that both waveguides of the nonlinear
rectional coupler are identical and their ‘‘propagation co
stants’’ are characterized by a saturation effectb15b2

5b01a(11J/Js)
21,where Js is the saturation intensity

then from Eq.~12! we easily obtain

W~J2!524g2H J2~J02J2!2
a2

4g2

3F lnS 11
J2

Js
D lnS 11

J02J2

Js
D

lnS 11
J0

Js
D G 2J . ~17!

Equation~13! can be integrated further using Eq.~17!
only numerically.

Note that the assumption of nonzero transfer from
front ends of both waveguides of the nonlinear directio
coupler, i.e.,J1ux505J01 andJ2ux505J02, does not, in prin-
ciple, make it any more difficult to obtain the general so
tions.
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Results are presented on the polarization characteristics~rotation of the plane of polarization and
polarization ellipticity! as a function of the layer thickness and the absorption anisotropy in
strongly absorbing media having a helical structure. A strong resonancelike change in the
polarization ellipticity is found as a function of the anisotropy of the absorption at
frequencies of diffractional interaction of the light with the medium. A change in the sign of
rotation of the plane of polarization of the light is observed as the layer thickness is
varied. It is established that sign of the rotation also changes as the absorption anisotropy varies.
These effects are studied under conditions of interaction of light with a half space and with
a layer of medium of finite thickness. Some new features are identified in the previously observed
effect wherein the absorption of radiation in media having a periodic structure decreases as
the layer thickness increases. ©1999 American Institute of Physics.@S1063-7842~99!01408-7#
ing
es
he
a
o
y
oa
ica
er
ti
in
9
g
an
si
e
a
a
ty
e
if

ite
t

rb
nt
e
o

he

ti
ls
hi

ti

ef.
as
ss.
f the
uc-
ent

re-
ite
rac-

on
re

The

a-
y

INTRODUCTION

Studies of the optical properties of strongly absorb
helical periodic media were reported in Refs. 1–5. Th
media include cholesteric liquid crystals, chiral smectics,
lical magnetic media, and artificial ferromagnetic helic
structures. These media come within the definition of gyr
ropy given by Fedorov,6 although in the natural state the
cannot exhibit spatial dispersion and cannot be magnet
tive. Some characteristics of the Faraday effect in hel
periodic media under conditions of oblique incidence w
studied in Ref. 7. The optical activity spectra were inves
gated in Ref. 8 the propagation of light in media possess
dielectric and magnetic helicity was examined in Ref.
Some features of the amplitude characteristics of stron
absorbing helical media were studied in Refs. 10 and 11,
an effect wherein the absorption decreases with increa
layer thickness and increasing absorption anisotropy. Th
it was shown that when light is incident normally on a plan
layer of helical periodic medium, three diffraction mech
nisms take place: diffraction of light by the periodic helici
caused by refraction anisotropy, diffraction of light by th
periodic helicity caused by absorption anisotropy, and d
fraction of light in a bounded volume caused by the fin
nature of the layer thickness. The present paper reports
results of a further study of the properties of strongly abso
ing helical periodic media. Some unique effects are ide
fied, i.e., a change in the sign of rotation with varying lay
thickness and with varying absorption anisotropy, and als
resonancelike variation of the ellipticity as a function of t
absorption anisotropy.

Whereas the wavelength dependences of the polariza
characteristics of media having a helical structure and a
the influence of isotropic and anisotropic absorption on t
dependence have been studied in fairly great detail,1–5 the
same cannot be said of the dependence of the polariza
9351063-7842/99/44(8)/6/$15.00
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characteristics on the layer thickness. We merely note R
12, in which the rotation of the plane of polarization w
studied experimentally as a function of the layer thickne
As far as we are aware, no studies have been made o
polarization characteristics of media having a helical str
ture as a function of the absorption anisotropy. In the pres
paper we attempt to fill this gap.

In order to facilitate our analysis of the mechanisms
sponsible for the observed behavior for a layer of fin
thickness, we first deem it necessary to analyze the inte
tion of light with a half space.

BOUNDARY-VALUE PROBLEM FOR A HALF SPACE

We shall consider the case of light normally incident
a half space filled with a medium having a helical structu
whose axis is perpendicular to the boundary surface.
field in the medium at the distancez from the boundary has
the form1,2

E~z,t !5$@E1
1 exp~ ik1z!1E2

1 exp~ ik2z!# exp~ iaz!n1

1@j1E1
1 exp~ ik1z!1j2E2

1exp~ ik2z!#

3exp~2 iaz!n2% exp~2 ivt !, ~1!

where

j1,252d/@12~x6b1,2!
2#;

k1,252pb1,2A«m/l; a52p/s;

b1,25A11x26g; g5A4x21d2;

d5«a /«m ; x5l/sA«m;

«m5~«11«2!/2; «a5~«12«2!/2; ~2!

n65(x6 iy)/A2 are the unit vectors of the circular polariz
tions, «1 and «2 are the principal values of the permittivit
© 1999 American Institute of Physics
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tensor in the plane perpendicular to the axis of the medi
l is the wavelength in vacuum,s is the pitch of the helix,
and the amplitudesE1,2

1 are determined from the bounda
conditions.

The influence of the periodicity of the structure and t
helix parameters on the change in the field and also
wavelength dependence of the fields excited in the med
have been analyzed in detail in many studies~see, in particu-
lar, Refs. 1–3!. In accordance with formula~1!, the rotation
of the plane of polarization may be expressed in the form

w5w02az, ~3!

wherew0 is the rotation of the plane of polarization if th
field in the medium is expressed in the form

E~z,t !5$@E1
1 exp~ ik1z!1E2

1 exp~ ik2z!#n1

1@j1E1
1exp~ ik1z!1j2E2

1 exp~ ik2z!#n2%

3exp~2 ivt !. ~4!

Since the analytical formulas are cumbersome, the
pendences of the polarization characteristics on the distanz
from the boundary and also on the imaginary part of
dielectric anisotropy«a9 are best analyzed by means of n
merical calculations using the formulas put forward above
single prime will denote the real part of a particular quant
and a double prime will denote the imaginary part.

Figure 1a gives the rotationw0 of the plane of polariza-
tion and Fig. 1b gives the polarization ellipticitye as a func-
tion of the distancez from the boundary for anisotropic ab
sorption at the following characteristic wavelengths of t
incident light:1 — l5sAu«mu(12udu)'0.615mm and2 —
l5sAu«mu(11udu)'0.635mm ~near the boundary of the
selective reflection region!, 3 — l50.2mm,sAu«mu, and
4 — l51.5mm.sAu«mu ~far from the selective reflection
region!. Note that here and subsequently, to be specific,
consider the case«a9.0 when studying the dependences
w0 ande both on«a9 and on the distancez from the boundary
~under conditions of anisotropic absorption!.

It can be seen from Fig. 1 that under conditions of a
isotropic absorption ‘‘saturation’’ of the rotation is observ
at the frequencies of diffractional interaction of the light wi
the medium: after passing through a peak the rotation un
goes damped oscillations about a certain value. Saturatio
the rotation has also been observed experimentally.12

An interesting pattern is observed near the lon
wavelength boundary. Here, before reaching saturation
rotation decreases, goes to zero, changes sign, and only
reaches saturation. The calculations show that this pat
only occurs for specific values of the absorption anisotro
For «a9,0 the opposite pattern is observed. In particular,
change in the sign of the rotation is observed near the sh
wavelength boundary of the selective reflection region.

It can be seen from the figures that the polarization
lipticity also saturates at the frequencies of diffractional
teraction of the light with the medium. In this case, where
near the short-wavelength boundary of the selective refl
tion region the ellipticity saturates by decreasing, near
long-wavelength boundary it saturates by increasing.
,
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Figure 2a gives the rotationw0 and Fig. 2b gives the
polarization ellipticitye as a function of the absorption an
isotropy@the parameter ln(2«a9)# for the same wavelengths o
the incident light as in Fig. 1. These figures demonstr
resonancelike behavior of the ellipticity as a function of t
absorption anisotropy at wavelengths near the selective
flection region. It can also be seen that at specific wa
lengths the sign of rotation also changes as the absorp
anisotropy varies.

DISCUSSION

In order to identify the mechanisms responsible for t
observed behavior, we shall use an expression for the w
field in the medium. In cases of weak anisotropy the am
tude of one of the natural waves having nondiffracting c
cular polarization is much smaller than the amplitudes of
other waves, so that Eq.~4! can be expressed in the form

E~z,t !5$@E1
1 exp~ ik1z!1E2

1 exp~ ik2z!#n11j2E2
1

3exp~ ik2z!n2% exp~2 ivt !. ~5!

This is a fairly good approximation and can expla
many of the characteristic features of the properties of hel
periodic media. In particular, the saturation of the rotati
and the ellipticity under conditions of anisotropic absorpti

FIG. 1. Rotation of the plane of polarization~a! and the ellipticity~b! as
functions of the parameterz/s for anisotropic absorption:«152.29, «28
52.143,«1950.1, «2950, ands50.42mm.
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FIG. 2. Rotation of the plane of polarization~a! and the ellipticity~b! as
functions of the parameter ln(2«a9) for anisotropic absorption:z550s; the
other parameters are the same as in Fig. 1.
near the short-wavelength boundary can be attributed to
fact that the different natural waves undergo different a
sorption. This can be seen from the expressions fork1 and
k2. It can also be confirmed analytically using for the imag
nary parts of the wave numbers the following approxim
expressions obtained under the condition 12uxu, uxu@«a9 ,
«a8 , «m9 :

k19'p«m9 /~lA«m8 !,

k29'
p

lA«m8
F «m9 2

«a9«a8

2«m8 uxu~12uxu!
G , uxu5l/~sA«m8 !.

~6!

The results of an exact calculation ofk19 andk29 as func-
tions of the wavelength for various values of«a9 and«m9 ~Fig.
3! confirm what we have said. Near the short-wavelen
boundaryl15sAu«m8 u(12udu) we find k29;0 and thusk19
@k29 ~absorption suppression effect!. An increase in thick-
ness leads to a rapid decrease in the amplitudes of the na
waves, proportional to exp(2k1,29 z). Sincek19@k29 , those am-
plitudes which are proportional to exp(2k19z) decrease rap-
idly and become negligible asz increases. Consequently,
some distance from the boundary lying near the sh
wavelength boundary, the field may be expressed in the f

E~z,t !5E2
1 exp~ ik2z!~n11j2n2! exp~2 ivt !. ~7!

It therefore follows that the ellipticity ise5(uj2u21)/
(uj2u11) and does not depend onz. Moreover, sinceuj2u
'1 near the selective reflection region, we finde'0.

The rotation of the plane of polarization at some distan
from the boundary is determined only by the real and ima
nary parts ofj2 and also does not depend onz. After com-
paratively rapid variations~in regions of rapidly varying
-

-

in
FIG. 3. Imaginary parts of the non
resonant k19 and resonantk29 wave
numbers as functions of the wave
length l for various values of the ab-
sorption anisotropy«a9 and the average
absorption«m9 : 1 — «a95«m9 50; 2 —
«a95«m9 50.05; 3 — «a950, «m9 50.05;
the other parameters are the same as
Fig. 1; 1–3 — k19 , 18–38 — k29 .
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FIG. 4. Imaginary parts of the non
resonant and resonant wave numbe
as functions of the absorption aniso
ropy: 1 — l150.615mm, 2 — l2

50.635mm; the other parameters ar
the same as in Fig. 1;1, 2 — k19 ;
18, 28 — k29 .
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wave amplitudes!, the rotation goes to saturation. Th
change in the sign of rotation observed near the lo
wavelength boundary of the selective reflection region
curs because, under certain conditions of anisotropic abs
tion, the natural wave, whose amplitude is usually neglec
begins to play an important role. Near the long-wavelen
boundary we findk19,k29 ~anomalously strong absorption!.
This implies that whereas for smallz the field can be repre
sented as the sum~5!, asz increases further the amplitudes
the natural waves which are proportional to exp(2k29z) de-
crease more rapidly, and beyond a certain value ofz they
become smaller than the amplitude of the natural w
whose field was neglected@i.e., the natural wave with ampli
tude proportional toj1exp(2k19z)#. The amplitude of this
wave decreases far more slowly with increasingz. The direc-
tion of rotation begins to change near these values ofz. As z
increases further, the field can be expressed as the sum

E~z,t !5E1
1 exp~ ik1z!~n11j1n2! exp~2 ivt !. ~8!

Thus whereas for smallz the field is formed by the sum
of circular waves~5! and the rotation takes place in on
direction, for largez the field has the form~8! and the rota-
tion changes direction, since the fast circular componen
replaced by a slow one. Similarly, i.e., by studying the ch
acteristics of the natural waves in the medium, we can
plain other features in the dependences of the polariza
characteristics on the distancez from the boundary. Charac
teristic features in the dependences ofw0 and e on the pa-
rameter ln(2«a9) can also be explained.

Near the short-wavelength boundary, the wave am
tudes proportional to exp(2k29z) vary negligibly as ln(2«a9)
increases, whereas the amplitude of the other wave, pro
tional to exp(2k19z), decreases rapidly~in the absence of ab
-
-

rp-
d,
h

e

is
-
x-
n

i-

r-

sorption this amplitude is greater than the other two!. Thus
resonancelike behavior is observed in the dependence ofe on
ln(2«a9).

Note that the sign of rotation changes with varying a
sorption anisotropy atl50.2mm ~far from the selective re-
flection region; short-wavelength region!. This effect is also
caused by the different damping of the natural waves in
medium as the absorption anisotropy varies and by the
creased effect of this difference as this anisotropy varies

Near the long-wavelength boundary, as ln(2«a9) in-
creases, the wave amplitudes proportional to exp(2k29z) be-
gin to decrease more rapidly than those proportional
exp(2k19z). Moreover, as near the short-wavelength boun
ary, this amplitude is greater than the other two in the
sence of absorption. Here, however, a peculiarity appears
the absorption anisotropy increases further, the wave am
tudes proportional to exp(2k29z) begin to decrease mor
slowly than the other wave amplitude, proportional to e
(2k19z) ~the diffraction mechanism caused by the absorpt
anisotropy begins to have an influence, with the result t
the mechanism of absorption suppression begins to c
into play!. Figure 4 givesk19 andk29 as functions of the ab-
sorption anisotropy at wavelengths near the sho
wavelength and long-wavelength boundaries of the selec
reflection region, which confirm what we have said. Th
above a certain value of ln(2«a9), the amplitude proportiona
to exp(2k19z) becomes smaller than the other two. As a res
of this behavior of the natural wave amplitudes as functio
of the parameter ln(2«a9), we observe a resonancelike chan
in the ellipticity and a change in the sign of rotation as fun
tions of this parameter near the long-wavelength boundar
the selective reflection region.

This reasoning suggests that the reduced absorptio
radiation in periodic media with increasing layer thickne
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discovered in Refs. 10 and 11, may also be observed nea
long-wavelength boundary of the selective reflection reg
~when «a9.0). This reduced absorption is observed at
absorption anisotropy for which the diffraction mechanis
attributed to the absorption anisotropy is already apprecia
Calculations made for a layer of finite thickness confirm th
Figure 5 gives the value ofQ512(R1T) ~characterizing
the optical energy absorbed in the medium! plotted as a func-
tion of the layer thickness~whereR is the reflection coeffi-
cient andT is the transmission coefficient! for various values
of the absorption anisotropy near the long-wavelen
boundary of the selective reflection region. It can be s
that above a certain level of absorption anisotropy the va
of Q decreases with increasing layer thickness. We also n
that, as can be seen from Fig. 5, for the given parameter
the medium the decreasing radiation absorption with incre
ing layer thickness is observed at ‘‘enormous’’ levels of a
sorption anisotropy~near the long-wavelength boundary
similar effect is observed at a much lower level of absorpt
anisotropy!. Naturally, the lower the refraction anisotrop
~first diffraction mechanism!, the sooner~i.e., at a lower level
of absorption anisotropy! the decrease in absorption with in
creasing layer thickness set in near the long-wavelen
boundary~since this effect is a manifestation of the diffra
tion of light on the periodic structure created by the abso
tion anisotropy!. Numerical calculations confirm this state
ment. In fact, the calculations show that for the parame
«1852.29, «2852.285~d'0.001!, ands50.42mm, this effect
begins to appear for«a950.02.

To conclude this section, we note that as the calculati
have shown, changes in the sign of rotation with vary
layer thickness and varying absorption anisotropy for a c
lesteric liquid crystal having the parameters«1852.29, «28
52.143~d50.033!, ands50.42mm are observed for trans
mission coefficientsT of the order of 10211– 10212, i.e.,
there is no transmitted wave. However, this does not im
that the identified effects are purely ‘‘theoretical.’’ The ca
culations show that these effects depend strongly on the
fraction anisotropy«a8 . As the refraction anisotropy de
creases, the transmission coefficient increases rapidly
those regions where the sign of rotation changes. For

FIG. 5. Results of the absorption of radiationQ in a layer as a function of
the parameterd/s for «a9 : 1 — 0.00005,2 — 0.0005,3 — 0.005,4 — 0.05,
5 — 0.25, 6 — 0.5; «m9 5«a9 , «1852.29, «2852.25, s50.42mm, and
l50.635mm.
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ample, for the parameters«1852.29, «2852.285 ~d50.001!,
s50.42mm, a change in the sign of rotation is observed
values of the transmission coefficientT of the order of
1021– 1022. Thus, these effects are fully ‘‘experimental,
i.e., they are amenable to measurement. From this it
follows that the change in rotation identified in this study
a manifestation of the diffraction of light by the period
helicity caused by the absorption anisotropy.

BOUNDARY-VALUE PROBLEM FOR A LAYER

Let us analyze the normal transmission of light throug
layer of helical periodic medium whose axis is perpendicu
to the boundary surfaces. Figure 6a givesw0 and Fig. 6b
gives e plotted as functions of the layer thicknessd for the
same wavelengths of the incident light as in Fig. 1 but
different values of«a9 and «m9 in the case when the light is
transmitted through the layer.

Figure 7a givesw0 and Fig. 7b givese plotted as func-
tion of the parameter ln(2«a9) for the same wavelengths of th
incident light as in Fig. 1.

The characteristics and relationships observed in
case can also be attributed to the behavior of the amplitu

FIG. 6. Rotation of the plane of polarization~a! and the ellipticity~b! as
functions of the parameterd/s for various wavelengths of the incident ligh
for anisotropic absorption. The other parameters are the same as in Fi
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and phases of the waves excited in the medium. In this ca
however, the field in the medium has the form~at the second
boundary!

E~d,t !5$@~g2d22x!1@~2b12 l 1! exp~ ik1d!

1~2b11 l 1! exp~2 ik1d!#/~2b1!

1~g1d12x!@~2b21 l 2! exp~ ik2d!

1~2b22 l 2! exp~2 ik2d!#/~2b2!#n1

1@~g2d12x!@~2b12 l 1! exp~ ik1d!

1~2b11 l 1! exp~2 ik1d!#/~2b1!#1@~g1d22x!

3@~2b22 l 2! exp~ ik2d!1~2b22 l 2!

3exp~2 ik2d!#/~2b2!#n2% exp~2 ivt !/~4ga1a2!,

FIG. 7. Rotation of the plane of polarization~a! and the ellipticity~b! as
functions of the absorption anisotropy ln(2«a9) for anisotropic absorption:
d550s. The other parameters are the same as in Fig. 1.
e,

where l 1,25g62, a1,25cos(k1,2d)7 iul 1,2sin(k1,2d)/(k1,2d),
u5pd/A«m/l.

A comparison between the curves in Figs. 1a and 1b
those in Figs. 4a and 4b shows that in most cases they
similar. However, there are some important differences.
particular, the dependence of the ellipticitye on z near the
short-wavelength boundary under conditions of anisotro
absorption differs substantially from the dependence ofe on
the layer thicknessd under similar conditions. This differ-
ence demonstrates once again the difference between
half-space problem and the layer problem~although the layer
is arbitrarily thick!.

We reiterate that the effects identified in this study a
observed in periodic helical media near the selective refl
tion region, and they occur because the interaction betw
light and these media is accompanied by the excitation
different natural waves whose amplitudes, phase velocit
and attenuation differ. Thus, depending on the variation
the parameters of the medium responsible for these w
characteristics, quite unusual patterns of wave interac
with the medium can be obtained.

In conclusion, we note that these results can be appl
in particular, to ellipsometry in the design of various ellips
metric systems using layers of media of finite thickness h
ing a helical structure.

The authors are grateful to G. A. Vardanyan and O.
Eritsyan for valuable discussions.
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Periodic surface photoreliefs in glassy and hyperelastic polymers
V. V. Mogil’ny , Yu. V. Gritsa , and S. V. Kovalev

Belarus State University, 220050 Minsk, Belarus
~Submitted July 13, 1998!
Zh. Tekh. Fiz.69, 79–83~August 1999!

The formation and degradation of periodic photoreliefs on the surface of polymer layers having
significantly different glass-transition temperatures are investigated for various process
activation temperatures. It is established that the main factor limiting the resolution of periodic
relaxation photoreliefs at the surface of glassy polymer layers containing dimerizing
anthracene derivatives is the presence of shear stresses. Their action is suppressed by the thermal
decomposition of dimers, a process which gives rise to inverted reliefs of higher spatial
frequencies. It is shown that the resolution can be enhanced by more than an order of magnitude
by using a polymer matrix in the hyperelastic state. ©1999 American Institute of
Physics.@S1063-7842~99!01508-1#
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Reversible photoreliefs formed by heating expos
glassy layers of polymethyl methacrylate containing pho
dimerizing derivatives of anthracene are described in Re
The reliefs were formed as a result of the expansion of
posed regions caused by the thermally activated relaxatio
nonequilibrium centers~photoproducts and their neighbo
hoods!. The technological simplicity of producing these ph
toreliefs suggests that they may be used to recorded re
phase holograms and to form other optical elements.
particular importance in this context are periodic reliefs a
the extent to which they can reproduce the spatial frequ
cies of an image. Quite clearly, the resolution of the pho
reliefs is determined by the properties of the polymer mat
which in turn depend on the relationship between the te
perature at which the relief begins to form and the gla
transition temperature of the material. Here we investig
the formation and degradation of periodic photoreliefs on
surface of polymer layers with significantly different glas
transition temperatures for various process activation e
gies.

Polymer layers 25– 27mm thick were prepared by
pouring ingredients dissolved in chloroform~polymer
110 mol. % 9-anthraldehyde! onto a glass substrate and th
drying for 24 h at 293 and 323 K to a constant weight. Po
methyl methacrylate~PMMA! and polybutyl methacrylate
~PBMA! were used as the polymer base. In order to achi
a uniform photoproduct distribution over thickness, t
samples were exposed to radiation from a DKSSh-1
xenon lamp ~ZhS-16 light filter! or an argon laser
(l5488 nm) at the long-wavelength edge of the absorpt
spectrum of 9-anthraldehyde. The exposure field was form
by an optical test pattern ~having the period
d525– 88mm) or by the interference of two laser beam
(d55 – 20mm). For the selected layer thickness, the diffra
tion spreading of the boundaries for exposure through
optical test pattern did not exceed 10% of the smallest
riod. The concentration of 9-anthraldehyde and the degre
photoconversion were determined using the electron abs
tion spectra. The layer thicknessl 0 , the relief heightl, and
9411063-7842/99/44(8)/4/$15.00
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its modulation amplitudeD l ~Fig. 1! were determined using
an MII-4 microinterferometer. The value ofD l was taken
positive if the thickness of the exposed region exceeded
of the unexposed region. For small periods (d,20mm) D l
and the degree of photoconversion were determined b
holographic method. This involved measuring the diffracti
efficiencies of the transmission and reflection relief ho
grams and using the formula for the diffraction efficiency
two-dimensional phase gratings2 to determineD l and the
amplitude of modulation of the refractive indexDn. Know-

FIG. 1. Profile of periodic relief at the surface of PMMA (1,18,2,28) and
PBMA films (19,29) after annealing for 20 (1,18) and 515 min (2,28) at
364 K and annealing for 270 (19) and 4800 min (29) at 308 K. Spatial
period 70~1,2! and 25mm (18,19,28,29).
© 1999 American Institute of Physics
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ing the molecular refractions of 9-anthraldehyde and its p
toproduct~photodimer!,3 we determined the degree of ph
toconversion. The holograms were reconstructed using
He–Ne laser, whose radiation is not absorbed
9-anthraldehyde, which first eliminated any further pho
conversion and second, allowed us to consider the hologr
to be pure phase ones. During the reconstruction of reflec
holograms, the influence of light reflected by the rear bou
ary of the substrate was eliminated by its wedge shape.

Photoreliefs can be formed on the surface of PMM
layers~the glass-transition temperature of the pure polym4

is Tg5373 K) at temperatures both close to and considera
lower thanTg . Figure 2 gives the modulation amplitudeD l
for reliefs obtained using the optical test patte
(d>25mm) plotted as a function of the spatial period f
various annealing regimes. Ford.70mm the kinetics of the
modulation amplitude is similar to that of the height of t
nonperiodic relief described in Ref. 1. During annealing
326 K the amplitude increases monotonically to around
of the initial layer thickness~with '80% photoconversion!.
An increase in temperature to 364 K leads to a trebling of
amplitude followed by a drop caused by decomposition
the photodimers1 ~Fig. 1, curves1 and2 and Fig. 2, curves3
and4!. For smaller periods (d;25mm) D l increases mono
tonically at the low-temperature annealing stage, but d
not exceed 0.2–0.3% of the layer thickness. An increas
temperature initially barely increasesD l but then causes a
steeper drop and a reversal of the sign of this amplit
~inversion of the relief! ~Fig. 1, curves18 and28 and Fig. 2,
curves1–4!.

At the maximum positive modulation amplitude of th
reliefs we observe an appreciable~tenfold! drop in D l when
moving to smaller periods in the range 70– 25mm ~Figs. 2a
and b, curves3!. This drop inD l is the result of a reduction

FIG. 2. Amplitude of modulation of the periodic relief at the surface
PMMA films as a function of the spatial period after annealing for 95~1!
and 320 min~2! at 326 K and for 20~3! and 515 min~4! at 364 K. Molecu-
lar weight of PMMA 200 000~a! and 42 000~b!.
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in the depth of the dip~Fig. 1, curve18), i.e., it can be
represented as the result of the unexposed material b
‘‘entrained’’ by the expanding exposed material. The over
relief heightl is appreciable ('0.3mm) even whenD l tends
to 0. The drop inD l is caused by approximately the sam
increase in the thickness of the unexposed regions and
crease~compared with the maximum possible! in the ex-
posed regions.

The decrease in the amplitudeD l and the ensuing limi-
tation of the resolution of the periodic reliefs are probab
caused by shear stresses. The relatively rapid expansio
duces shear deformations and consequently shear stres
the boundary of the expanding exposed material and lead
entrainment of the unexposed polymer. Naturally, the eff
is intensified as the period decreases. In this interpreta
the effect is similar to induced plasticity.5 It may then be
possible to suppress the effect by reducing the mechan
moduli and the relaxation times of the stresses. This
easily be achieved by increasing the annealing tempera
to values close to or exceedingTg . However, heating the
matrix above 350 K causes thermolysis of photodimers6 and
thus cannot be used directly in the PMMA layers.

Annealing at temperatures exceedingTg without thermo-
lyzing the photodimers was achieved in PBMA layers hav
a glass-transition temperature of 293 K~Ref. 4!. Figure 3
gives the modulation amplitude of the relief as a function
the period after short-term annealing at 308 K. The most s
nificant difference compared with the PMMA layers is th
considerably larger range of reproducible spatial frequen
~whose maximum increases by more than an order of m
nitude!. A reduction in the shear stresses is evidently cau
by the polymer being transferred from the glassy to the
perelastic state. Another difference is the increase inD l with
decreasingd at the initial stage of annealing~Fig. 3, curves1
and2!. This behavior is evidently attributable to the increa
ing contribution of cold flow5 to the process of relief forma
tion. The exposed polymer becomes deformed, but keep
specific volume, which causes shrinkage of the unexpo
material~Fig. 1, curve19). Under longer-term annealing~up
to 40 h! the modulation amplitude only increases for lar

FIG. 3. Amplitude of modulation of the periodic relief at the surface
PBMA films as a function of the spatial period after annealing for 0.5~1!, 1
~2!, 4.5 ~3!, and 13.5 h~4! at 308 K.



943Tech. Phys. 44 (8), August 1999 Mogil’ny  et al.
FIG. 4. Kinetics of the modulation amplitude~a! and the relief height~b! at the surface of PBMA layers at 308 K for spatial periods of 88~1!, 67 ~2!, 48 ~3!,
35 ~4!, 30 (5) mm; c — approximation of descending sections of the curves in Fig. 4, a — by exponential functions; d — dependence ofg on d22

demonstrating the diffusion behavior of the relief degradation.
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periods and begins to decrease for small periods, pas
through a maximum. Further annealing~for more than 40 h!
leads to a reduction inD l for all spatial periods~Fig. 4a!. At
higher temperatures this decay takes place within sho
times.

Potential causes of this degradation of the periodic re
are residual shear stresses, surface tension forces, and
diffusion of 9-anthraldehyde and its photodimer. Diffusio
of 9-anthraldehyde increases its concentration near the
torelief maxima, i.e., cannot cause a reduction inD l . Thus,
any diffusion degradation of the relief can only be attribut
to migration of the photodimer.

In cases where the initial sinusoidal distribution of t
photoproduct is destroyed by diffusion, the modulation a
ng

er

f
lso

o-

d

-

plitude of its concentrationDc will vary with time as given
by7

Dc~ t !5Dc0exp~2gt !, ~1!

whereDc0 is the initial amplitude of the modulation of th
concentration,g5D(2p/d)2, andD is the diffusion coeffi-
cient.

For a rectangular initial distribution, we can transfor
the right-hand side of Eq.~1! into a sum of exponential func
tions whose leading term, as before, has the form~1!.7 As-
suming thatD l;Dc(t), we obtain the exponential kinetic
of the relief modulation amplitude

D l ~g!5D l 0 exp~2gt !. ~2!
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A similar time dependence is observed for mechan
reliefs on the surface of plastic materials which deterior
under the action of surface tension forces and possibly
sidual mechanical stresses. The fundamental difference
is the dependenceg;d21 ~Ref. 8!. Approximating the de-
scending sections of thet dependences ofD l with exponen-
tial functions ~Fig. 4c!, we established thatg depends lin-
early ond22 ~Fig. 4d! which argues in favor of the diffusion
mechanism of relief degradation. The slope of the line in F
4d gives the calculated diffusion coefficientD'3.5
310217m2/s at 308 K. Monitoring the diffraction efficiency
of the transmission holograms revealed thatDn decreases to
zero over the degradation times of the periodic relief, wh
provides direct evidence in support of the diffusion mec
nism. As a result of the photodimer concentration be
equalized, the overall relief height was half that of the ma
mum.

We have therefore established that using the hyperela
state of polymers can substantially reduce the limiting role
shear stresses, although the formation of a relief under th
conditions is impeded by the evolving material diffusion
the photoproduct. It has been noted that on the surface o
PMMA layers reliefs may also form nearTg ~Fig. 2, curve
3!. Recording transmission phase holograms showed tha
d>6 mm, no appreciable diffusion effects occur under the
conditions. However, the high rate of the process and
ensuing absence of any relaxation stresses cause an a
ciable drop in the frequency characteristic of the reliefs
spatial frequencies exceeding 30 mm21. The only method of
varying the rate of relief formation caused by photodimeri
tion is to vary the annealing temperature. A reduction
temperature, while slowing the relief formation, also i
creases the stress relaxation time, so that the resolution
not be increased. In addition, as the temperature decre
the induced plasticity threshold is reached, so that
T,315 K no relief forms at all.

Slow deformation without any reduction in temperatu
was achieved during the thermal decomposition of
photodimers.6 Figures 2a,b giveD l as a function of the pe
riod d under high-temperature~364 K! annealing~curves3
and4!. Decomposition of the dimers leads to erasure of
relief at large periods and the appearance of an antiph
periodic relief with d,35mm ~Fig. 1, curves1,18,2, and
28). The different behavior of the relief at the formation a
degradation stage is attributable to the significantly differ
rate of these processes. Shrinkage of the exposed regio
limited by the rate of photodimer decomposition and is co
siderably slower than the expansion at the same tempera
l
e
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This creates conditions for the relaxation of shear stres
below the induced plasticity threshold and for the conser
tion of strains in the exposed zones. Slow compression
create an antiphase photorelief with its amplitude maxim
shifted toward higher spatial frequencies. We established
means of a holographic method that the resolution of
periodic photorelief increased fivefold when its profile w
inverted~Fig. 2a, curve4!. The almost complete absence
any periodic photorelief at the beginning of high-temperat
annealing and the appearance of an antiphase relief a
same temperature~and consequently the same surface te
sion! means that the surface tension cannot be considere
be a significant factor under these conditions.

The influence of the molecular weight of PMMA on th
relief formation processes confirms the proposed mechan
~Fig. 2a,b!. In fact, a linear polymer having a lower molecu
lar weight has a lower glass-transition temperature,4 and con-
sequently the mechanical relaxation processes are fa
This then increasesD l for small periods and reduces th
maximum negative amplitude for inversion of the relief~Fig.
2b!.

Hence, the main factor limiting the resolution of period
relaxation photoreliefs at the surface of glassy polymer l
ers containing dimerizing anthracene derivatives are
shear stresses which build up during annealing. Their ac
is suppressed by the thermal decomposition of photodim
which forms inverted reliefs of higher spatial frequencie
Hyperelastic polymer matrices can increase the resolution
more than an order of magnitude. A factor limiting the s
bility of the photoreliefs in this case is their diffusional de
radation.
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Effect of pulsed excitation of a bounded medium on a plane electromagnetic wave
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An analysis is made of the transformation of a plane monochromatic electromagnetic wave in
response to a temporal change in the permittivity and conductivity of a semibounded
medium. The change in the parameters of the medium takes the form of a rectangular pulse of
arbitrary duration and amplitude. The detailed structure of the electric field and its
evolutional redistribution are determined. The asymptotic formation of a backward wave is
demonstrated, whose amplitude may exceed that of the primary wave for parameters typical of a
semiconductor. ©1999 American Institute of Physics.@S1063-7842~99!01608-6#
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INTRODUCTION

The transformation of electromagnetic waves in me
with time-varying parameters has attracted widespread in
est because of its numerous applications~such as the propa
gation of electromagnetic waves in a nonsteady-state
dium, radio communications, geophysical probing, prob
of unstable objects by short electromagnetic pulses, amp
cation and conversion technology, and so on!. The need to
solve these problems also arises in studies of ultrafast e
tromagnetic phenomena in semiconductor and quantum e
tronics. For instance, the generation of optical pulses
semiconductor structures may be controlled at such a
that the accompanying transient processes can no longe
ignored.1

The transformation of electromagnetic fields accom
nying time variations in the parameters of a medium ha
been studied by many authors~for example, Refs. 2–6! with
the most detailed studies usually being made for an ab
change in a single parameter.7,8 In the present paper we in
vestigate how a plane monochromatic electromagnetic w
is influenced by a synchronous pulsed change in the per
tivity «(t) and conductivitys(t) of a medium which takes
place in the half spacex>0 and begins at zero time. Up t
zero time the medium is homogeneous, nonabsorbing,
has permittivity«0. The pulse is rectangular and has a du
tion t, so that in the half spacex>0 the change in the pa
rameters of the medium is described by

«~ t !5«0@Q~2t !1Q~ t2t!#1«1@Q~ t !2Q~ t2t!#,

s~ t !5s1@Q~ t !2Q~ t2t!#, ~1!

where«1 ands1 are the permittivity and conductivity of th
medium in the half spacex>0 over the time intervalt
P@0,t#, Q(t) is the Heaviside unit step function, and th
medium in the half spacex,0 remains nonconducting
throughout and has the permittivity«0.

If E0(t,x) is the primary field in the unperturbed me
dium, the electromagnetic field in a nonsteady-state med
occupying the half spacex>0 is described by a Volterra
integral equation of the second kind, which in this case
the form4
9451063-7842/99/44(8)/9/$15.00
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E~ t,x!5E0~ t,x!

1E
0

`

dt8 E
0

`

dx8K~ t,t8,x,x8!E~ t8,x8!. ~2!

HereK(t,t8,x,x8) is the kernel of the integral equation,

K~ t,t8,x,x8!52~1/ā2~ t !!H s̄~ t !1~1/2!~12ā2~ t !!
]

]tJ
3d~n0~ t2t8!2ux2x8u!, ~3!

ā(t)5A«0 /«(t), n05c/A«0, s̄(t)52ps(t)/«1 ; c is the
speed of light in vacuum, andd(t) is the Dirac delta func-
tion.

The solution of Eq.~2! in the regionx>0 is written in
terms of the resolventR(t,t8,x,x8) by means of the integra

E~ t,x!5E0~ t,x!

1E
0

`

dt8 E
0

`

dx8R~ t,t8,x,x8!E0~ t8,x8!. ~4!

The resolvent can be obtained from the equation

R~ t,t8,x,x8!5K~ t,t8,x,x8!

1E
0

`

dt9 E
0

`

dx9K~ t,t9,x,x9!R~ t9,t8,x9,x8!

~5!

and for the case«(t)5«15const,s(t)5s15const consists
of two terms,

R~ t,t8,x,x8!5R1~ t,t8,x,x8!1R2~ t,t8,x,x8!, ~6!

which are determined by means of an inverse Laplace tra
formation as follows:

Rn~ t,t8,x,x8!5exp~2s̄1~ t2t8!!E
a2 i`

a1 i`

~dp/2p i !

3Sn~p,t,t8x,x8!exp~p~ t2t8!!, n51,2.

Here we find
© 1999 American Institute of Physics
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S1~p!5
a

2n0
S a2

p2s̄1

p1s̄1

21DAp22s̄1
2

3expH 2pt82
ux2x8u

n1
Ap22s̄1

2J ,

S2~p!5
a

2n0
S aAp2s̄1

p1s̄1

21D 2

Ap22s̄1
2

3expH 2pt82
x1x8

n1
Ap22s̄1

2J , ~7!

wherea5A«0 /«1, a.s̄1 , s̄152ps1 /«1 , n15c/A«1, and

ReAp22s̄1
2.0.

The first term in Eq.~6! is the resolvent of the un
bounded problem, and the second term allows for the in
ence of the boundary formed at zero time and separating
steady-state and nonsteady-state half spaces. Hence, ex
sion ~4! with the resolvent~6! determines the field inside th
nonsteady-state medium after an abrupt change in its pa
eters to the valuess̄1 and«1 over the entire time intervalt
P@0,t# of the excitation of the medium.

In the regionx,0 the field is determined using the sam
relation~2! which in this case in an integral formula expres
ing the external field in terms of the internal one.

FIELD IN A REGION OF EXCITED MEDIUM IN THE TIME
INTERVAL †0,t‡

Let us assume that the primary field is a plane mo
chromatic waveE0(t,x)5exp$i(vt2kx)%, k5v/n0. After the
abrupt excitation of the medium~i.e., after a jump in the
permittivity and conductivity of the medium in the regionx
>0), in the time intervaltP@0,t# the field is described by
the integral obtained from formula~4! by substituting the
expressions~6! and ~7!

E2~ t,x!5E1~ t,x!2aE
a2 i`

a1 i` dp

2p i

p2s̄11 iv

p2s̄12 iv

3
a~p2s̄1!2Ap22s̄1

2

p22s̄1
21k2n1

2

3exp~~p2s̄1!t2~x/n1!Ap22s̄1
2!,

Re~Ap22s̄1
2!.0. ~8!

HereE1(t,x), which is the result of integrating the first pa
of the resolvent,R1, is the sum of two plane waves

E1~ t,x!5B1
1exp~2s̄1t !exp$ i ~Vt2kx!%

1B1
2exp~2s̄1t !exp$2 i ~Vt1kx!% ~9!

having the amplitudes

B1
652a2@~a221!v262s̄1~ iV7s̄1!#

3$2iV@ iV7~ s̄11 iv!#%21

and the frequencyV5Aa2v22s̄1
2.
-
he
res-

m-

-

-

The waves~9! are also the transformed field for an u
bounded medium and comprise the well-known result,7,8 i.e.,
a primary plane wave, wave1 in Fig. 1 ~here and below we
will use the term ‘‘waves’’ to mean their amplitude coeffi
cients!. After an abrupt change in the parameters of the m
dium, wave1 initially splits into two plane waves: forward
and backward. The forward wave@the first term in expres-
sion ~9!, B1

1 in Fig. 1a# propagates in the same direction
the primary waveE0(t,x), while the backward wave@second
term in expression~9!, B1

2 in Fig. 1a# propagates toward the
interface formed between the two media,x50. These waves
have the same wave number as the primary wave but a

frequencyV. In cases of high conductivitys̄1.kn1, the
frequency becomes imaginary and the transformed wave
comes aperiodic. Both waves decay exponentially with ti
as a result of the appearance of the conductivitys1 in the
regionx>0. In this case of a bounded medium, express
~9! describes the entire transformed wave in the regionx
>0 immediately after the excitation of the medium.

The influence of the boundary of the excited half spa
is given by the integral term in formula~8!. This is only
nonzero in the bandxP@0,n1t#, which is the region of influ-
ence of the boundary of the nonsteady-state half space on
field. For t˜` the poles of the integrand in formula~8!
immediately give steady-state waves since the integrals o
the sections asymptotically go to zero. However, the en
transient process remains outside the field of view and
cases of short-lived excitation of the medium, important
formation on the field structure is lost. Thus, the evolution
the field at all stages of variation in the medium is of intere
For this purpose we shall analyze approximations of exp
sion ~8! in two limiting cases:x'n1t (x,n1t), i.e., the field
near the moving frontier of influence of the boundary, a
x!n1t, i.e., late-time approximation. We rewrite expressi
~8! in the form

FIG. 1.
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E2~ t,x!5E1~ t,x!1A2e~ t,x,2s̄12 iv!1B2
1e~ t,x,2 iV!

1B2
2e~ t,x,iV!2Q~ t2x/n1!aI0

3~ s̄1At22~x/n1!2!1A3f ~ t,x,2s̄12 iv!

1B3
1 f ~ t,x,2 iV!1 B3

2 f ~ t,x,iV!, ~10!

where I 0(t) is a modified Bessel function of the first kind
and the constants are given by

A252a2
2v

~12a2!v22i s̄1

,

B2
656a2

V7s̄1

2iV

iV7~ s̄12 iv!

iV7~ s̄11 iv!
,

A352a3
2iv2

~12a2!v22i s̄1

,

B3
656a3

v2

2iV

iV7~ s̄12 iv!

iV7~ s̄11 iv!
.

The functionse and f in formula ~10! are nonzero in the
region x,n1t and are determined by the following expre
sions, in accordance with Ref. 9

e~ t,x,b!5E
a2 i`

a1 i`

~dp/2p i !

3exp$pt2~x/n1!Ap22s̄1
2%~p1b!21,

f ~ t,x,b!52E
a2 i`

a1 i`

~dp/2p i !

3exp$pt2~x/n1!Ap22s̄1
2%

3~p1b!21~p22s̄1
2!21/2. ~11!

Applying the Efros10 theorem to these functions, we re
write expression~10! in the form

E2~ t,x!5E1~ t,x!1Q~ t2x/n1!exp~2s̄1t !

3H A2 exp$~ s̄11 iv!~ t2x/n1!%

1B2
1 exp$ iV~ t2x/n1!%1B2

2 exp$2 iV~ t

2x/n1!%

2aI0~ s̄1At22~x/n1!2!1
s̄1x

n1

3E
x/n1

t

dj~A2 exp$~ s̄11 iv!~ t2j!%

1B2
1 exp$ iV~ t2j!%1B2

2 exp$2 iV~ t2j!%!

3I 1~ s̄1At22~x/n1!2!~ t22~x/n1!2!21/2

2E
x/n1

t

dj~A3 exp$~ s̄11 iv!~ t2j!%1B3
1

3exp$ iV~ t2j!%1 B3
2 exp$2 iV~ t2j!%!I 0

3~ s̄1At22~x/n1!2!J . ~12!

Formula ~12! completely describes the electromagne
field distribution in the half space after excitation of the m
dium in the time intervaltP@0,t#.

Near the frontier of influence of the boundary, the a
proximate expression for the field to within the first order
smallness with respect tos̄1(t2x/n1) has the form

E2~ t,x!'E1~ t,x!1$exp~2s̄1x/n1!F1~x!exp$ i ~vt2kx!%

1exp~2s̄1t !F2~x!exp$ iV~ t2x/n1!%

1exp~2s̄1t !F3~x!exp$2 iV~ t2x/n1!%

1exp~2s̄1t !F4~x!%. ~13!

Here we have

F1~x!52av~~12a2!v22i s̄1!21~ s̄11 iv!21

3~ s̄11 i ~12a!v1s̄1
2x/n1!,

F2~x!52
a2

2iV

s̄12 i ~v1V!

s̄11 i ~v2V!

3~ s̄12 iV1 iV21av21 iV21

3~ s̄12 iV!s̄1
2x/n1!,

F3~x!52B4~ s̄11 iV1 iV21av2

1 iV21~ s̄12 iV!s̄1
2x/n1!~ s̄12 i ~v2V!!21,

B45a2i ~2V!21@s̄12 i ~v2V!#2@s̄11 i ~v1V!#21,

F4~x!52a1a~~12a2!v22i s̄1!21~a2~11a2!

3v3V2222ia2v2~ s̄11 iv!212~ s̄1
2/2!

3@2v~s̄11 iv!211 iV21~~11a2!

3v12i s̄1!#x/n1!.

It can be seen from expression~13! that a jump in the
parameters of the medium in a bounded region leads to
appearance of a wave spectrum having nonuniform am
tudes near the frontier of influence of the boundary. The fi
wave;F1(x) is an analog of an ordinary transmitted wav
The wave;F2(x) is a ‘‘quasi-antipode’’ of the waveB1

1

from the field E1 ~9!, since its phase has the formiV

3(t2x/n1)5 i (Vt2A12a2(s̄1 /v)2kx). It will be shown
below that this wave recombines asymptotically with t
wave B1

1 . It should be noted that in the absence of a co
ductivity jump, no continuous spectrum forms, and the
waves recombine almost immediately. The third wa
;F3(x) is the result of the waveB1

2 being reflected from the
interface formed between the two media. Hence, the p
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ence of a conductivity jump in a bounded medium gives r
to a transient process which brings the field to a steady s
only after a certain time.

It also follows from expressions~9! and~13! that a jump
in the permittivity of the medium in the half space gives
field discontinuity at the moving plane of influence of th
boundary

x5n1t: E2~x/n110,x!2E2~x/n120,x!

5a~a21!exp~2s̄1t !.

The evolution of the electromagnetic field toward t
steady-state regime will be described by the late-time
proximation of expression~10!. In order to obtain this ap-
proximation we shall use a representation9 of the integrals
e(t,x,b) and f (t,x,b), in terms of Lifshitz–Hankel func-
tions @formulas~A1! and~A2! in the Appendix#. In this rep-
resentation the zeroth-order Lifshitz–Hankel function
given by a Neumann series11 @formula ~A3! in the Appen-
dix#. Retaining only the first term in this series and subs
tuting the late-time (t@x/n1) approximations for the func
tions e(t,x,b) and f (t,x,b) into formula ~10!, we find that
the following approximate expression for the fieldE2(t,x)
holds for long times:

E2~ t,x!'B1
2 exp~2s̄1t !exp$2 i ~Vt1kx!%

1A4 exp~2s̄1x/n1!exp$ iv~ t2x/n1!%

1B4 exp~2s̄1t !exp$2 i ~Vt2kx!%

1exp~22s̄1t !Q1~ t,x!, ~14!

where

A4A2

s̄11 i ~12a!v

s̄11 iv
.

Thus, in the region 0!x!n1t the following asymptoti-
cally remain~Fig. 1b!: the forward transmitted waveA4, ini-
tiated by wave1, the backward waveB1

2 , transferred from
the regionx.n1t, and the forward waveB4 generated by its
being reflected from the interface with the media. The wa
A4 decays with increasing distance from the bounda
(;exp(2s̄1x/n1)), unlike the wavesB1

6 andB4, which decay
with time (;exp(2s̄1t)). The absence of the waveB1

1 in
expression~14! and its presence in expression~13! indicates
that this wave gradually ‘‘disappears’’ with increasing d
tance from the planex5n1t. The termQ1 in formula ~14!
is the continuous wave spectrum caused by the ju
in the conductivity of the medium and we findQ1(t,x)˜0
for t˜`. An expression forQ1 is given in Sec. 4 of the
Appendix.

RESPONSE OF AN EXTERNAL FIELD TO THE EXCITATION
OF A BOUNDED REGION OF MEDIUM

We obtain an expression for the electric field in the
gion of unperturbed mediumx<0 in the time intervalt
P@0,t# by substituting expression~8! into formula ~2!
e
te

-

-

e

p

-

E3~ t,x!5E0~ t,x!1QS t1
x

n0
D H s̄11

1

2
~12a2!

]

]tJ
3H A5 expH ivS t1

x

n0
D J

1~a2/2iV1B5
1!expH iVS t1

x

n0
D J

1~a2/2iV1B5
2!expH iVS t1

x

n0
D J

1C5 expH 2~11a2!~12a2!21s̄1S t1
x

n0
D J

1eS 2s̄1S t1
x

n0
D DA6ZS t1

x

n0
,2s̄12 iv D

1B6
1ZS t1

x

n0
,iV D1B6

2ZS t1
x

n0
,2 iV D

1 C6ZS t1
x

n0
,~11a2!~12a2!21s̄1D J . ~15!

Here we have

A5528a2
2s̄11 i ~11a2!v

~2s̄11 i ~12a2!v!2
,

A654a3
~v22i s̄1!v

~2s̄11 i ~12a2!v!2
,

B5
66

a2~11a2!i ~ s̄16 iV!

2V~~11a2!s̄16~12a2!iV!
,

B6
656

a5iv

~11a2!s̄16~12a2!iV
,

C55
16a2s̄1

~2s̄11 i ~12a2!v!2
, C652s̄1C5 ,

ZS t1
x

n0
,b D52E

a2 i`

a1 i`S dp

2p i DexpS pS t1
x

n0
D D

3~p1b!21~p22s̄1
2!21/2. ~16!

An asymptotic approximation (t@2x/n0) for the func-
tion Z(t1x/n0 ,b) can be obtained from the correspondin
approximation for the functionf (t,x,b), by making the sub-
stitution t˜t1x/n0 , x/n0˜0 @formula ~A4! in the Appen-
dix#. Substituting the expression thus obtained for the fu
tion Z(t1x/n0 ,b) into formula~15!, we obtain the late-time
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approximation for the electric field outside the nonstea
state half space

E3~ t,x!'E0~ t,x!1Q~ t1x/n0!H A7 exp$ i ~vt1kx!%

1B7 exp$2 iV~ t1x/n0!%

1F s̄11~1/2!~12a2!
]

]t GQ2~ t,x!J , ~17!

where

A7524a2~2s̄11 i ~12a2!v!21~ s̄11 i ~11a2!v

2av~v22i s̄1!~2s̄112iv!21!,

B752a2~2iV!21~2s̄12 i ~12a2!V!.

It follows from expression~17! that at zero time the
planex52n0t separates from the interface formed betwe
the two mediax50 and propagates toward negativex at the
velocity n0. This plane defines the left-hand boundary of t
region of external field formed by reflection of the prima
wave1, which results in the formation of the waveA7, and
also by the propagation of the waveB1

2 across the interface
between the media, resulting in the formation of the waveB7

~Fig. 1b!. The phase velocities of these waves are the sa
as the phase velocity of the primary wave. The freque
and wave number of the waveA7 are the same as the corr
sponding characteristics of the primary wave, while the f
quency and wave number of the waveB7 areV andV/n0,
respectively. The functionQ2(t,x) ~Appendix Sec. 4! in for-
mula ~17! describes the continuous wave spectrum in
regionx,0, which vanishes whent˜`.

We find the electric field in the right-hand neighborho
of the planex52n0t by rewriting the integral~16! using the
Efros theorem, in the form

Z~ t1x/n0 ,b!52E
0

t1x/n0
dj

3exp$2b~ t1x/n02j!%I 0~ s̄1j!. ~18!

Then, to within the first order of smallness with respe
to v(t1x/n0), we obtain an approximate expression for t
field E3(t,x) near the frontier of influence of the bounda
x52n0t

E3~ t,x!'E0~ t,x!1Q~ t1x/n0!$A7 exp$ i ~vt1kx!%

1B7 exp$2 iV~ t1x/n0!%

22a~~2a322a21!v22~ s̄11 iv!s̄1!

3~2s̄11 i ~12a2!v!22%. ~19!

The last term in formula~19! is a constant componen
originating from the continuous wave spectrum, and it diffe
radically from the corresponding term in formula~17!, where
the continuous spectrum of the waves forms a complex fu
tion of space–time coordinates.
-

n

e
y

-

e

t

s

c-

RESIDUAL EFFECTS AFTER REMOVAL OF THE
EXCITATION OF THE MEDIUM

The electric field in the entire space after an abrupt
turn of the parameters in the regionx>0 to the initial state is
expressed by

E~ t,x!5E0~ t,x!1~1/a2!H s̄11~1/2!~12a2!
]

]tJ
3E

0

t

dt8 E
0

`

dx8d~n0~ t2t8!2ux2x8u!E2~ t8,x8!.

~20!

After substituting expression~8!, we find that the field
consists of three groups of components occupying differ
regions in space~Fig. 2!,

E~ t,x!5E0~ t,x!1E4~ t,x!1E5~ t,x!1E6~ t,x!. ~21!

The first group are the waves which exist in regionsIIa,
IIc, and IV and propagate in the direction of the prima
wave

E4~ t,x!5Q~x1n0~t2t !!H 2Q~2t1x/n0!E0~ t,x!

1F s̄11~1/2!~12a2!
]

]t G@~Q~ t2x/n0!A8

2Q~2t1x/n0!k22n1
22~B3

1 exp~ iVt!

1B3
2 exp~ iVt!!!E0~ t,x!2a2V21

3exp~2~ s̄11 iv!t!sin~vt!exp$2~vt1kx!%

1exp$ iV~ t2x/n0!%~Q~2t1x/n0!k22n1
22B3

1

1Q~ t2x/n0!B8
1!1exp$2 iV~ t2x/n0!%

3~Q~2t1x/n0!k22n1
22B3

21Q~ t2x/n0!B8
2!

1A8e~t,2~1/a!~ t2x/n02t!,2s̄12 iv!

FIG. 2.
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12a~2as̄11~12a2!iv!~B8
1e~t,2~1/a!

3~ t2x/n02t!,iV!1B8
2e~t,2~1/a!

3~ t2x/n02t!,2 iV!!#J Q~x!. ~22!

The second group are waves propagating in the oppo
direction, which exist in regionIa:

E5~ t,x!5F s̄11~1/2!~12a2!
]

]t G$A5E0~ t,x!

1B5
1 exp$ iV~ t1x/n0!%1B5

2 exp$2 iV~ t

1x/n0!%1C5 exp$2u12a2u21s̄1~ t1x/n0!%

2V21exp~2s̄1~ t1x/n0!!2sin~V~ t1x/n0!!

1exp~2s̄1~ t1x/n0!!A6Z~ t1x/n0 ,2s̄1

2 iv!1B6
1Z~ t1x/n0 ,iV!1B6

2Z~ t1x/n0 ,

2 iV!1C6Z~ t1x/n0 ,~11a2!u1

2a2u21s̄1!%Q~2x! ~23!

and in regionsIb, IIa, IIb:

E6~ t,x!5F s̄11~1/2!~12a2!
]

]t G
3$Q~2x!exp~2~ s̄12 iv!t!sin~Vt!

3exp$2 i ~vt1kx!%

1A5e~t,~1/a!~ t1x/n02t!,2s̄12 iv!

1B5
1e~t,~1/a!~ t1x/n02t!,iV!

1B5
2e~t,~1/a!~ t1x/n02t!,2 iV!

1C5e~t,~1/a!~ t1x/n02t!,

3~11a2!u12a2u21s̄1!

1A6 f ~t,~1/a!~ t1x/n02t!,2s̄12 iv!

1B6
1 f ~t,~1/a!~ t1x/n02t!,iV!

1B6
2 f ~t,~1/a!~ t1x/n02t!,2 iV!

1 C6f ~t,~1/a!~ t1x/n02t!,~11a2!u1

2a2u21s̄1!% ~24!

Here we have

A852
1

a

~12a2!v22ais̄1

~12a2!v22i s̄1

,

B8
65

i

2V

~11a2!v62iV

~12a2!v22i s̄1

.

Thus at timet5t, as a result of the parameters of th
medium in the half spacex>0 returning abruptly to the ini-
tial state, two planesx56n0(t2t) become detached from
ite

the boundaryx50 and propagate in opposite directions
the velocityn0. For this reason the planex5n1t propagating
in the regionx>0 also splits into two diverging planes:x
56n0t1(n17n0)t. These planes delimit regions of differ
ent field structure.

Using the approximate expressions given above for
integrals~11! and ~16!, we obtain the late-time approxima
tion (t@x/n1) for the field ~21!

E~ t,x!'At~ t,x!E0~ t,x!1Bt~ t,x!exp$2 i ~vt1kx!%

1Ct~ t,x!exp$~ i /a!~vt2kx!%

1Dt~ t,x!exp$2~ i /a!~vt1kx!%

1Q~n0~t2t !2x!E3~ t,x!

1(
i 53

4

Q~~n11~21! in0!t1~21! i 21n0t2x!

3Q~x1~21! in0~t2t !!exp~2s̄1t!Qi~ t,x,t!.

~25!

The field components in this expression have the follo
ing origin. Each of the wavesB1

2 , B4, and B1
1 splits into

forward and backward waves. The resulting waves, hav
the same phase velocities, interfere to form a forward wa

At~ t,x!5exp~2~ s̄11 iv!t!~s̄12~12a2!iv/2!

3~B8
1exp~ iVt !1B8

2exp~2 iVt !! ~26!

and a backward waveBt

Bt~ t,x!52a2~2V!21~2s̄12 i ~12a2!v!Q~x1n0~ t2t!!

3exp~2~ s̄12 iv!t!$cos~Vt!

1 iQ~~n11n0!t2n0t2x!sin~Vt!%. ~27!

The phase characteristics of these waves are the sam
those of the primary wave. The forward waveAt only exists
in region IV. The backward waveBt , in regionsIIa, Ib, and
IIb has the amplitude

2~a2/2V!~2s̄12 i ~12a2!v!exp~2~ s̄12 iv!t!sin~Vt!,
~28!

and in regionsIV, IIc, andIVa

2~a2/2V!~2s̄12 i ~12a2!v!exp~2~ s̄12 i ~v1V!!t!.
~29!

Splitting of the waveA4 gives the forward waveCt

which exists in regionsIIa, IIc, andIVa

Ct~ t,x!5Q~x1n0~t2t !!Q~~n12n0!t1n0t2x!

3exp~2~ s̄11 i ~111/a!v!t!A8 ~30!

and the backward waveDt , which exists in regionsIa, IIa,
and IIb,

Dt~ t,x!5Q~x1n0~ t2t!!Q~~n11n0!t2n0t2x!

3exp~2~ s̄12 i ~111/a!v!t!A7 . ~31!
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These waves have frequencies and wave numbers e
to v/a andk/a, respectively.

The termsQi in expression~25! describe the spatial dis
tribution of the continuous wave spectrum, which appear
time t5t and disappears fort˜`. The expression for thes
terms is given in Sec. 4 of the Appendix.

The termE3(t,x) in formula ~25! describes the field in
region Ia ~Fig. 2! and is the same as the corresponding
pression for the field in this region~Fig. 1b! before the me-
dium returns abruptly to the initial state. This implies that t
field structure is conserved in regionsIa and III .

Thus, after the medium has returned abruptly to the
tial state in space two pairs of forward and backward wa
form: At , Bt andCt , Dt ~Fig. 2! and also a continuous wav
spectrum. The frequencies and wave numbers ofAt and Bt

are the same as those of the primary wave, while the frequ
cies and wave numbers ofCt andDt differ from the corre-
sponding characteristics of the primary wave by the coe
cient A«1 /«0. In the steady-state regime when all th
interface planes go to infinity, only the primary wave and t
waveBt remain in the space. The asymptotic expression
the electric field has the following form:

E~ t,x!5E0~ t,x!2~a2/2V!~2s̄12 i ~12a2!v!sin~Vt!

3exp~2~ s̄12 iv!t!exp$2 i ~vt1kx!%. ~32!

The modulus and phase of the backward wave amplit
Bt5uBtuexp(iF) will be given by

uBtu5
a

2
A4b2a21~12a2!2

12b2a2

3sin~aTA12b2a2!exp$2ba2T%, ~33!

F5T1arctan~~a221!/2ba2!, ~34!

where the normalized quantitiesb52ps1 /(«0v) and T
5vt have been introduced.

In this model we can introduce the attenuation of
electromagnetic wave as well as its amplification. Forma
this can be described by negative conductivity. For exam
when free carriers are injected into a semiconductor, the
mittivity of the semiconductor changes and the sign of
conductivity is reversed.12,13 If the refractive index of the
medium is a complex quantityn5n81 in9, the parametersa
andb are expressed in terms of the real and imaginary p
of the refractive index as follows:

a25
«0

n822n92
, b5

T

«
n8n9. ~35!

For typical values of the refractive index of a semico
ductor such as InGaAsP (n8'3.6, n9'0.01) ~Ref. 13!, the
parameters values of the order ofa'1, b'0.05.

The behavior of the modulus of the backward wave a
plitude as a function of the permittivity jumpa is plotted in
Fig. 3 for various values of the dissipation coefficientb. The
negative values ofb model an active medium having gain.
can be seen that for any sign of the dissipation coefficient
backward wave may undergo amplification. This effect
ual
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evidently caused by the transfer of energy from the sou
which varies the parameters of the medium and the elec
magnetic field.

CONCLUSION

We have shown that the pulsed excitation of the para
eters of a bounded medium over a time interval of fin
duration forms a complex field structure from a prima
plane monochromatic wave. This structure is a system
spatial regions separated by parallel planes propagatin
velocities equal to the corresponding phase velocities of
waves. Each region is characterized by a discrete se
waves and by a continuous wave spectrum. Asymptotica
in a finite region of space, out of these sets of waves th
remains a wave which is backward relative to the prima
wave, having the phase characteristics of the primary w
but a different amplitude. For typical semiconductors th
amplitude may exceed that of the primary wave.

APPENDIX

1. It was shown in Ref. 9 that the functionse(t,x,b) and
f (t,x,b) can be expressed in the form

e~ t,x,b!5Q~ t2x/n1!$e2bt cosh~~x/n1!Ab22s̄1
2!

1~2i s̄1At22~x/n1!2!21@~bx/n12tAb22s̄1
2!

3exp~a1j!Je0~a1 ,j!1~bx/n11tAb22s̄1
2!

3exp~a2j!Je0~a2 ,j!#%; ~A1!

FIG. 3. Modulus of the backward wave amplitudeBt as a function of the
relative change in the permittivitya. Solid curve —b50, dashed curve —
b50.1, dot-and-dash curve —b520.1.
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f ~ t,x,b!5Q~ t2x/n1!~b22s̄1
2!21/2

3$exp~2bt !sinh~~x/n1!Ab22s̄1
2!

1~2i s̄1At22~x/n1!2!21@~bx/n12tAb22s̄1
2!

3exp~a1j!Je0~a1 ,j!2~bx/n11tAb22s̄1
2!

3exp~a2j!Je0~a2 ,j!#%; ~A2!

where a65(2bt6(x/n1)Ab22s̄1
2)( i s̄1At22(x/n1)2)21,

j5 i s̄1At22(x/n1)2,

Je0~a6 ,z!5E
0

z

dze2a6zznJn~z!

is an nth-order Lifshitz–Hankel function andJn(z) is an
nth-order Bessel function. Here we assume t
Re (Aa6

2 11).0 if Re(a6)>0 and Re(Aa6
2 11),0 if

Re(a6),0.
2. The zeroth-order Lifshitz–Hankel functionJe0(a6 ,z)

is given by the Neumann series11
t

Je0~a6 ,z!5~a6
2 11!21/21

exp~2a6z!

G~1/2!~a6
2 11!

3 (
k50

`

~2~a6
2 11!21z21!k

3G~k11/2!@Jk11~z!2a6Jk~z!#. ~A3!

3. The late-time approximation for the functionZ(t
1x/n0 ,b) has the following form

Z~ t1x/n0 ,b!'2Q~ t1x/n0!~b22s̄1
2!21/2

3H exp~2s̄1~ t1x/n0!!

2
i s̄1

b22s̄1
2

tAb22s̄1
2

t1x/n0
@ I 1~ s̄1~ t1x/n0!!

1~b/ i s̄1!I 0~ s̄1~ t1x/n0!!#J . ~A4!

4. Functions describing the continuous wave spectra
different spatial regions
Q1~ t,x!52
a2

~12a2!v22i s̄1
H S 2ivs̄1

~ s̄11 iv!2

avt1~ s̄11 iv!x/n1

At22~x/n1!2

2
~11a2!av3t2V~x/n1!~~11a2!vs̄122iV2!

iV$a2v2t22V2~x/n1!2%
s̄1At22~x/n1!2D I 1~ s̄1At22~x/n1!2!

1S 2v
2~11a2!av3V~ t22~x/n1!2!1 i s̄1

2t~x/n1!~~11a2!vs̄112iV2!

V~a2v2t22V2~x/n1!2!
D I 0~ s̄1At22~x/n1!2!J . ~A5!
Q2~ t,x!52 i
a

2s̄11 i ~12a2!v

t

t1x/n0

3H s̄1F 4a2

2s̄11 i ~12a2!v
2

2a2~12a2!V

v~2s̄12 i ~12a2!v!
G

3I 1~ s̄1~ t1x/n0!!1F 2ia2~11a2!Vs̄1

v~2s̄12 i ~12a2!v!

2
4a2~v2 i s̄1!

2s̄11 i ~12a2!v
2

4u12a4us̄1

a~2s̄11 i ~12a2!v!

12s̄11 i ~12a2!vG I 0~ s̄1~ t1x/n0!!J ; ~A6!
Q3~ t,x,t!52
ia2~ t2x/n02t!

~a221!v22i s̄1

3S S 2i s̄1

s̄11 iv

t2x/n02t

aAa2t22~ t2x/n02t!2

2~ s̄1/2a!At22~1/a2!~ t2x/n02t!2

3
~~a211!v12i s̄1!

a4v2t22V2~ t2x/n02t!2D
3I 1~ s̄1At22~1/a2!~ t2x/n02t!2!

2I 0~ s̄1At22~1/a2!~ t2x/n02t!2!~1/a!

3S 2

t2x/n02t
2

s̄1
2Vt~~a211!v12ias̄1!

a4v2t22V2~ t2x/n02t!2D D .

~A7!
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Q4~ t,x,t!5
a3

2s̄11 i ~12a2!v
S S 4i s̄1

~ s̄11 iv!2

$av~v22i s̄1!t22~ s̄11 iv!~2s̄11 i ~11a2!v!~ t1x/n02t!

~2s̄11 i ~12a2!v!Aa2t22~ t1x/n02t!2

1 ia~11a2!
2a4s̄1vt1~2s̄1

21~12a2!v2!~ t1x/n02t!

~2s̄12 i ~12a2!v!~a4v2t22V2~ t1x/n02t!2!
s̄1Aa2t22~ t1x/n02t!2

216au12a2uAa2t22~ t1x/n02t!2s̄1

at2 i ~11a2!~ t1x/n02t!

~2s̄11 i ~12a2!v!~~11a2!2~ t1x/n02t!224a4t2!
D

3I 1~ s̄1At22~1/a2!~ t1x/n02t!2!2S 8
2s̄11 i ~11a2!v

2s̄12 i ~11a2!v
2a~11a2!s̄1

2
2vV~a2t22~ t1x/n02t!2!2 i s̄1t~ t1x/n02t!V21~2s̄21~11a2!v2!

~2s̄12 i ~11a2!v!~a4v2t22V2~ t1x/n02t!2!

116s̄1

u12a4u~a2t22~ t1x/n02t!2!2 ia~12a2!t~ t1x/n02t!

~2s̄11 i ~12a2!v!~~11a2!2~ t1x/n02t!224a4t2!
D I 0~ s̄1At22~1/a2!~ t1x/n02t!2!D .
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Electrostrictive mechanism of microwave losses in a planar strontium titanate film
capacitor
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An analysis is made of the dielectric losses in the microwave range in a planar ferroelectric
capacitor caused by electrostrictively excited sound in the ferroelectric in the presence of a bias
field ~induced piezoeffect!. An approximate expression is obtained for the dielectric loss
tangent as a function of the bias field and the frequency. Numerical estimates are made for single-
crystal strontium titanate at 78 K. This loss mechanism may be a determining factor for the
fabrication of planar capacitors using high-quality ferroelectric films having properties close to
those of the single crystal. ©1999 American Institute of Physics.@S1063-7842~99!01708-0#
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INTRODUCTION

Field-controlled microwave devices using ferroelectr
in the paraphase are opening up new possibilities for
development of devices exhibiting various advantages o
existing analogs.1–3 A decisive factor determining the poss
bility of using ferroelectrics in microwave technology is th
acceptable level of dielectric losses in these materials in
microwave range. An important mechanism responsible
the microwave losses in ferroelectrics is the electrostric
conversion of electromagnetic field energy into hyperso
vibrational energy in a sample whose dimensions are c
parable with the hypersound wavelength. The contribution
electrostriction has been estimated qualitatively for b
~Ba,Sr!TiO3 samples.4 The influence of acoustic vibration
excited by electrostriction in a thin SrTiO3 film on the noise
of a ferroelectric parametric amplifier was investigated
Refs. 1 and 5. The use of planar capacitors or copla
lines6,7 in microwave technology is currently attracting inte
est, and experimental8 and theoretical9 studies have been
made of various mechanisms for microwave losses in m
rials such as SrTiO3. In this context, it is interesting to stud
the microwave losses induced by electrostriction in a fa
thin dielectric film, when the film thickness is comparab
with the wavelength of sound in the material at microwa
frequencies. Numerical estimates will be made for SrTi3

~STO! at T578 K. At this temperature strontium titanate
combination with a high-temperature superconductor i
promising material for microwave applications.10

1. FORMULATION OF THE PROBLEM

A typical design of a planar capacitor is shown in F
1a, whereh is the thickness of the STO film~usually h
>0.5–1mm!, g is the gap width~usuallyg> 2–10mm!, H is
the substrate thickness~usually H>0.5–1.0 mm!, w is the
width of the active zone of the capacitor~usuallyw> 0.5–
1.0 mm!, andL is the length of the capacitor electrodes~usu-
ally L> 0.5–1.0 mm!. Figure 1a also shows the distributio
of the electric displacementD. For g@h we can assume
9541063-7842/99/44(8)/6/$15.00
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approximately that the electric displacement in the capac
active zone does not depend on the coordinates.

The electric displacementD consists of ac and dc com
ponents

D5Dac1Ddc. ~1!

The presence of a dc componentDdc leads to the forma-
tion of an induced piezoeffect and to the excitation of hyp
sound which is linearly related to the ac componentDac. The
boundaries of the active region determine the emitter s
which, being comparable with the sound wavelength,
equivalent to satisfying the spatial phase-matching con
tions. In the active region of the planar capacitor nearly
lindrical hypersonic waves are excited, propagating from
STO film into the substrate. In order to simplify the calcul
tions this wave excitation mechanism may be represente
two wave processes: a! plane waves excited in the activ
region which propagate along the STO film below the el
trodes; b! plane waves excited in the active region whi
propagate along the normal to the film into the substra
Having made this approximation, we reduce the problem
two independent one-dimensional plane problems.

1. A narrow, infinitely long, free ferroelectric rod~film!
of thicknessh positioned along thez axis ~Fig. 1b!. Between
the cross sectionsz52 l andz5 l (2l 5g) there is an active
region in which the electric displacement componentsDdc

andDac do not depend on the coordinates. The strictive
citation of hypersound is attributed to the diagonal comp
nent Q of the electrostriction tensor. The presence of th
conducting electrodes in the regionsz52 l and z5 l does
not influence the conditions for the excitation of hypersou
We postulate that the STO film is mechanically free both
the ‘‘air’’ side and on the substrate side. This simplificatio
should not significantly influence the condition for the ex
tation of longitudinal modes propagating along the interfa
specified above.

2. A semi-infinite rod of widthg positioned along thez
axis ~Fig. 1c!. At the end of the rod there is an active regio
0<z>2l (2l 5h), in which the electric displacement com
© 1999 American Institute of Physics
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FIG. 1. Planar capacitor: a — schematic, using the following notation:1 — electrodes,2 — ferroelectric film,3 — substrate; b,c — models used to calcula
the excitation of longitudinal acoustic waves propagating parallel and perpendicular to the surface of the film, respectively.
ff-
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ponentsDdc and Dac are perpendicular to thez axis. The
strictive excitation of hypersound is attributed to the o
diagonal componentRk of the electrostriction tensor. Assum
ing that the acoustic characteristics of the STO film and
substrate are similar, we eliminate reflections at the interf
from our analysis; thus we are assuming that the se
infinite rod is acoustically homogeneous.
e
e
i-

2. FUNDAMENTAL RELATIONS BETWEEN THE DIELECTRIC
AND MECHANICAL CHARACTERISTICS OF A
STRONTIUM TITANATE FILM

The electric displacement vectorDm and the elastic
stress tensorskl may be used as independent variables. T
usual relations between the dielectric and mechanical qu
tities, taking into account the electrostriction effect11–13give
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ui j 5si jkl skl1Qi jmnDmDn ,

Em5«0
21«mn

21Dn22Qi jmns i j Dn , ~2!

whereui j are the components of the strain tensor,si jkl and
Qi jmn are the components of the elastic compliance and e
trostriction tensors, respectively,Em are the components o
the electric field strength tensor,«mn are the components o
the permittivity tensor, and«0 is the permittivity of free
space.

If the electric field strength vectorEm and the elastic
stress tensorsml are taken as independent variables, we c
write

ui j 5si jkl skl1Ri jmnEmEn ,

Dm5«0«mnEn22Ri jmns i j En , ~3!

where Ri jmn are the components of a modification of th
electrostriction tensor different to~2!.

We know that strontium titanate exhibits appreciable
isotropy at low temperatures in a crystal converted to
single-domain state in terms of a structural pha
transition.14 Anisotropy in the film may also be caused b
nonuniform mechanical stresses.15 In order to simplify the
problem we shall assume that the STO film is isotropic. In
isotropic medium the permittivity tensor is converted into
scalar,«mn5« r , where« r is the relative permittivity of the
medium, and the electrostriction tensor has two independ
components:Qi jmn has the diagonal componentQ and the
off-diagonal componentQk and the tensorRi jmn has the
componentsR and Rk , respectively. For an isotropic me
dium we have12,13

R5Q•«0
2«2, Rk5Qk•«0

2«2. ~4!

The elastic compliance tensor of an isotropic medi
also has two independent components: the diagonal com
nent s and the off-diagonal componentsk . We usually find
usku,usu; for example, in strontium titanate at 78 K we ha
sk>21.4310212m2/N and s>4.6>10212m2/N ~Ref. 16!.
For simplicity we shall neglect the contribution of the of
diagonal component of the elastic compliance tensor; in
approximation the systems of equations~2! and~3! only de-
scribe the strictive excitation of longitudinal waves.

Assuming that these simplifications have been made,
substitute Eq.~1! into Eqs.~2! and ~3!. Then assuming tha
the ac components of the electric field strength vectors
the electric displacement are much smaller than the co
sponding static component, we neglect the squares of t
quantities. We then obtain

uz
ac5ssz

ac12QDz
dcDz

ac,

Ez
ac5«0

21«21Dz
ac22Qsz

acDz
dc, ~5!

uz
ac5ssz

ac12RkEz
dcEz

ac,

Dz
ac5«0«Ez

ac12Rksz
acEz

dc. ~6!

In both systems of equations, the time-varyingz compo-
nent of the strain tensor is related to ther z component of the
particle displacement vector of the medium during deform
tion or wave propagation
c-

n

-
e
e
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is

e
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uz5
]r z

]z
. ~7!

In addition, in order to incorporate the acoustic waves
the calculations, we need to use the wave equation17

d2r z

dz2
1k2r z50, ~8!

wherek is the wave number of the longitudinal hyperson
wave.

3. INFINITE ROD WITH LONGITUDINAL ELECTRIC
DISPLACEMENT IN THE ACTIVE ZONE

We shall consider the first problem~Fig. 1b!. In this
case, the regions of compression and rarefaction in the
gitudinal hypersonic wave will be parallel to the electrod
~Fig. 1b! so that at any point between the electrodes,
electric displacementDz

ac will be the same and the electri
field strengthEz

ac will be a function of the coordinatez. In
view of this, it is convenient to use the electric displacem
vector Dm and the elastic stress tensors i l as independen
variables for the calculations. Assuming that the above
proximations have been made, we shall seek joint soluti
of the system~5! and Eq.~8! allowing for Eq.~7!. We shall
use the following boundary conditions: at the interface b
tween the active zone and the free infinite rodz5 l and z
52 l the particle displacementsr z and the mechanica
stressesszz are continuous, and only outgoing waves exist
all external regions relative to the active region.

By solving the system~5!, ~7!, and~8! under the bound-
ary conditions specified above~see Appendix A!, we can
determine the electric field strength in the active region

Eac~z!5~1/«0« r !@11 iW sinkl coskz#Dac, ~9!

where we assume thatW!1 and introduce the following
notation:

W5V•F, V5~4/s!Q2«0
3 , F5« r

3~Edc!~Edc!2. ~10!

IntegratingEac(z) over the length of the active zone
(2 l ,l ), we obtain the potential difference between the el
trodesI 5 ivDacS, whereS is the electrode area~the cross-
sectional area of the rod! and we find the impedance betwee
the electrodes

Z52 i @1/~vC!#~11 iW~sin2 kl !/kl !, ~11!

whereC is the capacitance between the electrodes.
We shall assume that« r5«82 i«9, and tand5«9/«8.

Then we have

tand5W~sin2 kl !/kl. ~12!

The factor (sin2 kl)/kl is a rapidly oscillating function. In
real samples, the spread of acoustic properties of the mat
within the geometric dimensions of the active region leads
averaging of these oscillations. We express the phase ve
ity of the longitudinal hypersonic waves in the formv l(x)
5v l(11x), where x is a random quantity which obeys
Gaussian distribution with a zero average and an rms de
tion x0. We then have



ct
h
n

t
he
c-

gt
t
a
tio

n

th

-

a
e of
two
the

th
the

957Tech. Phys. 44 (8), August 1999 O. G. Vendik and L. T. Ter-Martirosyan
^~sin2kl !/kl&5@1/~Apx0!#E
2`

`

$sin2@kl/~11x!#/

@kl/~11x!#%exp@2~x/x0!2#dx. ~13!

For x0!1 the selected limits of integration barely affe
the physical constraints on the permissible values of the
persound velocity, but significantly simplify the integratio
procedure. Figure 2 gives the function (sin2 kl)/kl and the
results of calculations using formula~13! for x050.1 and
0.2. Forkl>5 averaging yields the simple result

^~sin2 kl !/kl&>1/2kl. ~14!

4. SEMI-INFINITE ROD WITH A TRANSVERSE ELECTRIC
FIELD IN THE ACTIVE ZONE

We shall now consider the second problem~Fig. 1c!. In
this case, the regions of compression and rarefaction in
longitudinal hypersonic wave will be perpendicular to t
electrodes~Fig. 1c! so that at all points between the ele
trodes the electric field strengthEz

ac will be the same, and the
electric displacementDz

ac will be a function of the coordinate
z. It is therefore convenient to use the electric field stren
vector Em and the elastic stress tensorskl as independen
variables for the calculations. Assuming that the above
proximations have been made, we shall seek a joint solu
of the system~6! and Eq.~8!, with Eq. ~7! taken into ac-
count. To do this we shall use the following boundary co
ditions: atz50, sz50 ~free end!; at z52l the particle dis-
placementsr z and the mechanical stressessz are continuous
at the interface. Moreover, only outgoing waves exist in
external region relative to the active zone.

FIG. 2. Factor from Eq.~12! determining the dependence of tand on the
microwave field frequency for various values of the rms deviation of
velocity of sound in the material:x050 ~1!, 0.1~2!, 0.2~3!.
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By solving the system~6!–~8! under the boundary con
ditions specified above~see Appendix B! we can determine
the electric displacement in the active region

Dac5« r«0@11 iWk~cos 2kl21!sinkz#Eac, ~15!

where we assume thatWk!1, and taking Eq.~4! into ac-
count, we introduce the following notation:

Wk5Vk•F, Vk5~4/s!Qk
2«0

3 , F5« r
3~Edc!~Edc!2.

~16!

The potential difference between the electrodes isU
5Eacg; the displacement current is

I 5 iv~S/2l !E
0

2l

Dac~z!dz, ~17!

whereS5w•2l is the electrode area.
The impedance between the electrodes is then

Z52 i ~1/vC!~11 i2Wk~sin4 kl !/kl !. ~18!

Consequently, we have

tand52Wk~sin4 kl !/kl. ~19!

The average of the oscillating function (sin4 kl)/kl, ob-
tained by analogy with Eq.~13! is plotted in Fig. 3. Forkl
>5, averaging yields the simple result

^~sin4 kl !/kl&>~3/8!•~1/kl !. ~20!

5. DISCUSSION

It was noted in Sec. 1 that the dielectric losses in
planar capacitor caused by electrostriction in the presenc
a dc bias field are the total losses obtained using the
calculation models, where the size of the active region in
first model is equal to the gap width (2l 5g) and that in the

e

FIG. 3. Factor from Eq.~19! determining the dependence of tand on the
microwave field frequency for various values of the rms deviation of
velocity of sound in the material:x050 ~1!, 0.1~2!, 0.2~3!.
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second is equal to the thickness of the ferroelectric filml
5h). Combining formulas~12! and ~19!, allowing for Eqs.
~10! and ~16!, we obtain

tandS5@V^@sin2~kg/2!#/~kg/2!&

12Vk^@sin4~kh/2!#/~kh/2!&#F. ~21!

Let us give quantitative estimates of the quantities
pearing in this formula,

k5v/v l , ~22!

wherev is the frequency of the microwave field in the plan
capacitor andv l is the longitudinal velocity of sound in th
ferroelectric. For STO we have16 v l>7500 m/s.

In order to estimate the value of the parameterF(Edc)
defined in Eqs.~10! and~16!, it is convenient to use a mode
description of the dielectric properties of the ferroelectric.1,18

Figure 4 gives the results of calculating the parame
F(Edc) for strontium titanate atT578 K. In accordance with
the model used,1,18 the parameterjs is a measure of the de
gree of structural imperfection of the material: for a hig
quality single crystal we havejs50.018, and for a deposite
film js>1. Note that the parameterF(Edc) of interest de-
pends weakly on the density of material defects. Usually
bias field of at leastEdc53 MW/m must be applied to have
controlling effect on an STO film. From Eqs.~10! or ~16! we
find thatEdc>3 MV/m andF>1.431022V2/m2.

Bearing in mind that in STO we haves5s11>4.6
310212m2/N, Q>0.066 m4/C2, and uQku50.01 m4/C2

~Refs. 16 and 19!, we find in accordance with Eqs.~10! and
~16! that V52.62310224m2/V2 and Vk56.01310226

m2/V2. Using formula~21! we can then take these quantit
tive estimates to calculate the dielectric loss tangent i
ferroelectric layer of a planar capacitor caused by the e
trostrictive conversion of microwave electric field ener

FIG. 4. The parameterF as a function of the bias field strength for stro
tium titanate atT578 K.
-

r

a

a
c-

into hypersonic energy, which is ultimately dissipated
heating the material. Figure 5 gives the calculated value
tand as a function of frequency for various sizes of plan
capacitor.

In planar capacitors, at frequencies of 1–10 GHz the
perimental values of tandS lie in the range 0.02–0.05~Refs.
1, 7, and 8! for Edc50 and generally decrease with increa
ing bias field. For a suitable choice of capacitor dimensio
and microwave field frequency the calculated values of tad
plotted in Fig. 5 may be comparable with the experimen
values. The contribution of this loss mechanism may b
decisive factor if, as a result of refinements in the film tec
nology, all sources of losses are eliminated apart from
fundamentally unavoidable scattering of the soft mode
thermal vibrations of the crystal lattice.1,9

CONCLUSIONS

An approximate solution has been obtained for the pr
lem of the excitation of longitudinal hypersonic waves by
microwave electric field in a planar ferroelectric sample a
result of the piezoeffect induced by the dc electric fie
Moreover the boundaries of the active region ensure
spatial phase-matching conditions are satisfied.

In the planar capacitor structures using strontium titan
films studied so far in the microwave range atT578 K, the
dielectric losses as a result of this effect are not a domin
factor although, when the film technology is refined and
overall microwave losses are therefore reduced, this
mechanism may prove a decisive factor and will require f
ther study.

The authors are grateful to S. P. Zubko for assista
with the calculations.

This work was carried out as part of the Governme
Program ‘‘Physics of Condensed Media’’~Project No.
98055!.

FIG. 5. Calculated values of tand for a single-crystal strontium titanate film
as a function of the microwave field frequency atT578 K and the following
dimensions of the active zone of the planar capacitor~in micron!: g510
~1, 2! and 2~3, 4!; h52 ~1!, 0.5 ~2!, 0.2 ~3!, and 1~4!.
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APPENDIX A

We shall take the subscript I to denote the active reg
and the subscripts II and III to denote the left and right pa
of the rod, respectively. The complex amplitudes of the d
placementsr z can then be given as:

r I5AIe
2 ikz1BIe

ikz, r II5BIIe
ikz,

r III 5AIIIe
2 ikz, ~A1!

and for the componentsuzz of the strain tensor we then ob
tain using Eq.~7!

uI52 ikAIe
2 ikz1 ikBIe

ikz, uII5 ikBIIe
ikz,

uIII 52 ikAIIIe
2 ikz. ~A2!

We then use formula~5! to obtain the componentsszz of
the mechanical stress tensor in the appropriate regions

s I52 i ~k/s!AIe
2 ikz1 i ~k/s!BIe

ikz22QDz
dcDz

ac/s,

s II5 i ~k/s!BIIe
ikz, s III 52 i ~k/s!AIIIe

2 ikz. ~A3!

The boundary conditions in this problem have the for
for z52 l

s I~2 l !5s II~2 l ! and r I~2 l !5r II~2 l !,

and forz5 l

s I~ l !5s II~ l ! and r I~ l !5r II~ l !. ~A4!

Substituting Eqs.~A1! and~A3! into Eq.~A4!, we obtain
a system of linear equations for the complex amplitudesAI ,
BI , BII , andAIII . Solving this system gives

AI5 i ~Q/k!Dz
dcDz

ace2 ikl ,

BI52 i ~Q/k!Dz
dcDz

ace2 ikl . ~A5!

Substituting Eq.~A5! into Eq. ~A3! gives

s I52~Q/s!Dz
dcDz

ac~e2 iklcoskz21!. ~A6!

Substituting Eq.~A6! into Eq.~5! with allowance for Eq.
~10! gives an expression forEz

ac(z), which forW!1 is easily
converted into Eq.~9!.

APPENDIX B

We shall denote the active region by the subscript I a
the rest of the rod by the subscript II. The complex amp
tudes of the displacementsr z can then be written as:

r I5AIe
2 ikz1BIe

ikz, r II5AIIe
ikz, ~B1!

and for the componentsuzz of the strain tensor we obtai
using Eq.~7!

uI52 ikAIe
2 ikz1 ikBIe

ikz, uII52 ikAIIe
2 ikz. ~B2!

We then use Eq.~6! to find the componentsszz of the
mechanical stress tensor in the selected regions

s I52 i ~k/s!AIe
2 ikz1 i ~k/s!BIe

ikz2~2/s!RkEz
dcEz

ac,

s II52 i ~k/s!AIIe
2 ikz. ~B3!

The boundary conditions in this problem have the for
for z50
n
s
-

:

d
-

:

s I~0!50,

and forz52l

s I~2l !5s II~2l ! and r I~2l !5r II~2l !. ~B4!

Substituting Eqs.~B1! and ~B3! into Eq. ~B4!, we then
obtain a system of linear equations for the complex am
tudesAI , BI , andAII . Solving the system gives

AI5 i ~1/k!RkEz
dcEz

ac~22e2 i2kl!,

BI52 i ~1/k!RkEz
dcEz

ace2 i2kl. ~B5!

Substituting Eq.~B5! into Eq. ~B3! gives

s I5~2/s!RkEz
dcEz

ac~e2 ikz1 ie2 i2klsinkz21!. ~B6!

Substituting Eq.~B6! into Eq.~6! gives an expression fo
Dz

ac(z), which for Wk!1 is easily transformed to give
Eq. ~15!.
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Modulational instability of high-intensity spin waves exhibiting amplification is studied in
magnetic films under conditions of three-magnon decay. The mechanisms for this effect and for
randomization of the envelope under self-modulation are identified. ©1999 American
Institute of Physics.@S1063-7842~99!01808-5#
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Stochastic self-modulation of microwave spin oscil
tions and waves under conditions of three-magnon decay
been observed experimentally in various studies in bulk
romagnetic samples~see, for example, Refs. 1 and 2! and
also in thin ferromagnetic films~see Refs. 3 and 4!. It has
been established that a ferromagnetic spin system typic
exhibits a wide variety of scenarios for the transition
chaos of the spin wave envelope and a wide range of
chastic oscillation regimes. In films the number of parame
cally interacting spin waves is limited because of the discr
nature of the spectrum. Consequently, oscillatory mot
characterized by a few degrees of freedom is establishe
the spin system of films. This constraint allows us to mak
more effective study of the stochastic dynamics of s
waves.

Despite the major interest in this problem demonstra
by researchers, the mechanism giving rise to modulation
high-intensity spin waves in ferromagnetic films under co
ditions of three-magnon decay and its subsequent random
tion has not yet been definitively established. The task for
present study was therefore to make an experimental
theoretical investigation of the modulational instability
high-intensity surface spin waves in ferromagnetic films a
to explain the behavior observed.

Various experiments were carried out to obtain inform
tion on the self-modulation properties of high-intensity s
face spin waves. Unlike known studies on the se
modulation of spin waves, the experimental appara
comprised a spin wave delay line similar to that used in R
5 with a microwave amplifier in the feedback circuit. Th
type of system can produce an exponential increase in
amplitude~gain! of the surface spin wave with time, limite
by nonlinear effects in the ferromagnetic film. The expe
mental conditions corresponded to the decay instability
first-order surface spin waves. The active element wa
VNA25 Mini-Circuits Integrated amplifier and the sampl
were 17mm thick epitaxial films of yttrium iron garnet, hav
ing a saturation magnetization of 1750 G and a linear di
pation parameter of 0.5 Oe with free surface spins. The s
waves were excited and detected using microstrip trans
ers 30mm wide and 5 mm apart. A prototype of the dela
line was placed in a magnetic field tangential to the surf
9601063-7842/99/44(8)/4/$15.00
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of the film, whose strength varied in the rangeH0 5 400–
600 Oe. The growth rateg of the spin wave amplitude wa
varied by means of a variable attenuator connected in se
with the amplifier. The microwave signal generated by t
system was detected in order to isolate the amplitude mo
lation signal and the result was fed to the analog-to-dig
converter of a computer for further processing.

The results of the investigations showed4 that low-
dimensional strange attractors form in the system, whose
bedding dimensions increase with increasingg. The transi-
tion from regular to chaotic self-modulation as the grow
rate of the spin wave amplitude increases is usually acc
panied by one or two period-doubling bifurcations, aft
which the envelope oscillations become stochastic and
modulation frequency increases continuously with increas
g. Figures 1a–1d~left-hand side! show oscilloscope traces o
the envelope asg increases systematically from 0.1~a! to
0.5ms21 ~d!; the values ofg are given for the linear regime
and were recorded for a magnetizing fieldH05447 Oe. The
spin-wave carrier frequency was 3040 MHz and its wa
number 87 cm21. The right-hand diagrams show one
dimensional point mappings of the preceding maximum
the trace to the next one, corresponding to the oscillosc
traces. It can be seen that asg increases, the envelope osc
lations change from regular to stochastic. The transition
chaos shown in the figure is the most characteristic of a s
wave envelope in ferromagnetic films under three-magn
interaction conditions. One characteristic feature of the os
lations of the spin wave power is clearly visible, i.e., th
these are of a relaxation nature. Sections of slow and
motion can be clearly identified on the traces.

In order to explain these results we made some theo
ical calculations. By jointly integrating the nonlinear equ
tion of motion for the magnetization and the magnetosta
equations using an expansion of the variable magnetiza
in terms of spin wave modes and the tensor Green’s fu
tions of the magnetostatic equations,6–8 we obtained a sys-
tem of nonlinear differential equations for the slowly tim
varying amplitudes of three parametrically coupled sp
waves:

ȧ1~ t !5c1a2* ~ t !a0~ t !eidt2ba1 ,
© 1999 American Institute of Physics
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FIG. 1. Oscilloscope traces of spin
wave power and point maps fo
g50.1– 0.5ms21.
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ȧ2~ t !5c2a1* ~ t !a0~ t !eidt2ba2 ,

ȧ0~ t !52c3a1~ t !a2~ t !e2 idt1ga0 , ~1!

where a0 , a1, and a2 are the complex amplitudes of th
initial and parametrically excited spin waves,b is the relax-
ation parameter of the parametric spin waves, andd is the
detuning from resonance.

The coefficients of the systemc1 , c2, andc3 are given
by

c15vM~ln1kl001mn1km00!~ln2k1mn2k!I n10n2

0 ~ uku!,

c25vM~ln2kl001mn2km00!~ln1k1mn1k!I n20n1

0 ~2uku!,

c352vM~ln2kl001mn2km00!~ln1k1mn1k!1~ln1kl00

1mn1km00!~ln2k1mn2k!I n20n1

0 ~ uku!. ~2!

Here we have lnk5A(Ank1vn)/2vn and mnk

5A(Ank2vn)/2vn. The matrix elementI 0 describes the
nonlinear parametric interaction of the spin waves and
given by
is

I nn8n9
0

~kz!5
2

LE2L/2

L/2 E
2L/2

L/2

GQ~j,j8,kz!

3Fn~j8!Fn8~j!Fn~j!dj dj8.

All the other notation is as in Ref. 6.
When deriving the system~1!, we assumed that the spi

wave amplitude of the pump does not vary in space but o
in time. This assumption was justified by the fact that t
characteristic time of variation of the amplitude is an order
magnitude greater than the wave round-trip time in the de
line–amplifier ring system. The second assumption was
the pump wave has the wave numberk50 and parametri-
cally excites spin waves whose wave vectors have the s
modulus but opposite directions.

Approximate calculations using the formulas~2! show
that for the experimental conditions described above, the
efficients of the system~1! have the valuesc15745ms21,
c25752ms21, andc351497ms21.

A system of the type~1! was first investigated in Ref. 9
where it was shown that this system may have stocha
solutions. Following Ref. 9, we write in terms of real var
ables

X5A0cos~w1dt !, Y5A0sin~w1dt !, Z5A1
25A2

2 .
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Here Ai and w i are the real amplitude and phase of thei th
wave, andw5w02w11w2. The system~1! then has the
form

Ẋ52sZ1gX12sY22dY,

Ẏ5gY22sXY1dX, Ż52Z~sX2b!, ~3!

wheres5Ac1c2c3 .
The system~3! was integrated numerically using

fourth-order Runge–Kutta method. The resulting time d
pendences of the initialP0 and parametricP1,2 wave inten-
sities forb59 ms21, d58 ms21, andg50.2ms21 are plot-
ted in Fig. 2. For these values of the coefficients the envel
oscillations are regular. It can be seen that energy excha
takes place between the initial spin wave and the param
waves. In the sections of slow motion, the amplitude of
initial wave increases exponentially with time as a result
this amplification. The amplitudes of the parametric wav
remain small. In accordance with Eq.~1!, in this situation the
nonlinear wave interaction is very weak. Thus, removal
the fundamental wave energy by the parametric waves
little influence on the growth process. When the amplitude
the initial wave reaches a certain level, parametric amp
cation begins to play a significant role. Energy begins
transfer rapidly from the fundamental wave to the parame
ones, i.e., decay takes place. In this case, nonlinear atte
tion of the initial wave predominates over external ampl
-

e
ge
ric
e
f
s

f
as
f
-
o
ic
ua-

cation and, as a result, the amplitude decreases rap
When the amplitude of the initial wave falls below a thres
old level, the decay is replaced by a reverse, coalesce
process, but because of dissipation and detuning from r
nance, only a small fraction of the energy is returned to
fundamental wave. This process is repeated cyclically,
sulting in self-modulation of the fundamental wave.

FIG. 2. Theoretical time dependence of the initial and parametric w
power forb59 ms21, d58 ms21, andg50.2ms21.
e
r

FIG. 3. Theoretical time dependences of th
initial spin wave power and point maps fo
b59 ms21, d58 ~a!, 7 ~b!, 6 ~c!, and
2 ms21 ~d!; g50.2 ~a!, 0.3 ~b!, 0.4 ~c!, and
0.5ms21 ~d!.
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Depending on the values of the parametersb andd, the
solutions of the system~3! may be singly periodic, multiply
periodic, or stochastic. As the parameterg varies, the self-
modulation frequency varies but the oscillation regime
mains almost unchanged. Figure 3 shows that for spe
values of the parameters, the system of equations obta
has solutions qualitatively the same as the envelope osc
tions observed experimentally. The point maps construc
using the calculated time series are shown on the right-h
side of Fig. 3. The circles show the fixed mappings cor
sponding to steady-state oscillation regimes. It can be s
that these calculated maps are similar to those observed
perimentally. These observations indicate that the c
structed theoretical description of stochastic self-modula
is quite adequate.

As a result of studying the system of equations~3!, we
established that a transition from regular to chaotic envel
oscillations similar to that observed experimentally can o
take place if the parametersg andb vary simultaneously. In
this case, an increase in the gaing increases the self
modulation frequency while a simultaneous decrease in
detuning from resonanced makes the oscillation regim
more complex. We can attempt to explain this relations
between the parametersg andd by the presence of a nonlin
ear shift of the natural frequencies of the spin waves a
result of an increase in the oscillation amplitude with
creasing gain.

Thus, we can draw various conclusions. Self-modulat
of nonlinear spin waves exhibiting amplification is a rela
ation process. As the gain increases, the envelope osc
tions become more complex and may become stochastic
result of a simultaneous decrease in the detuning from r
nance. In this case, the bifurcation values ofg, the types of
regimes established, and the scenarios for the transitio
chaos are determined by the relaxation frequency of the p
metrically excited spin waves. This phenomenon can be
plained in terms of the model of three interacting waves.
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Ref. 4 the present authors showed that strongly stocha
envelope oscillations are characterized by around six deg
of freedom. By making additional allowance for the mul
wave nature of the decay process, it would be possible
describe the stochastic dynamics of an envelope for largg.

A mechanism similar to that described can also be p
posed to explain stochastic self-modulation under transv
pumping in yttrium iron garnet spheres1,2 under conditions of
parametric instability of first-order spin waves. In this ca
in Ref. 1 the term responsible for the gain must be repla
by a term describing the transfer of energy from an exter
source. The sections of increasing amplitude of the ini
high-intensity wave can then be nonexponential but mos
the other established dependences are broadly conserve

These results give some idea of the reason for the
pearance and randomization of the self-modulation of s
waves and may be used as a basis for further research.
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Using an atomic force microscope in the surface modification regime to determine the
migration energy of surface defects
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The lines of constant force and the profiles of the horizontal force component are calculated for
the scanning of the tip of an atomic force microscope over a surface vacancy in a close-
packed lattice with allowance for atomic displacements. The character of the lines of force is
studied in all three scanning regimes that arise for different values of the force: without
modification of the surface by the tip, migration of a single vacancy by a single interatomic
distance in the direction opposite to the motion of the tip, and ‘‘dragging’’ of a vacancy by the tip.
It is shown that the profiles of the horizontal force component can be used to calculate the
activation energy for surface migration of a vacancy. An estimate is made of the scanning force
for which these effects may be observed experimentally. ©1999 American Institute of
Physics.@S1063-7842~99!01908-X#
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INTRODUCTION

Recently, atomic force microscopy has found numero
applications, not only in studies of surface microstructu
~see, for example, Refs. 1 and 2! but also for studying atomic
friction.3–5 We know that in the contact mode, when th
dominant forces between the tip of the atomic force mic
scope~AFM! and the surface of the sample are repuls
forces of an exchange nature, the highest horizontal res
tion, a few angstroms, can be achieved by using a sharp6

Experimental and theoretical investigations~see, for ex-
ample, Refs. 7–13! have shown that the nature of the sca
ning and the resulting constant-force surfaces depend on
atomic structure of the apex of the tip. In particular, in t
simplest case of a ‘‘single-atom’’ tip~when only one atom a
the very apex interacts with the surface atoms! at fairly high
scanning forces in the contact mode the constant-force
faces have breaks10–13 into which the tip inevitably sinks,
becoming set into the surface.4,14 In order to achieve continu
ous scanning, a fairly large atomic cluster should be loca
at the apex of the tip9–11 ~‘‘cluster’’ tip !.

Results reported in Refs. 11, 13, 15, and 16 indicate
an AFM can be used for the diagnostics of point defe
localized at the surface of a solid. This conclusion was
cently confirmed experimentally17 in a comparative study o
vacancies on a pre-irradiated surface, using scanning tun
ing and atomic force microscopy. The next step could be
attempt to use AFM to determine the energy characteris
of the defect migration process, particularly vacancies.18 In-
formation currently available on these characteristics is q
inadequate. Although some results were obtained by m
ematical modeling~see Refs. 19–21 and the literature cit
therein!, these were extremely sensitive to the choice of
tential ~see the discussion of this topic in Ref. 20!. In addi-
9641063-7842/99/44(8)/6/$15.00
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tion, the migration process is strongly influenced by therm
fluctuations,21 which also complicates the calculations. Thu
the possibility of directly determining the activation ener
for defect migration by AFM is of some considerab
interest.

In order to study the energy characteristics of a defe
we need to use an AFM in the surface modification regim
where the AFM tip can change the positions of the atoms,
example, by shifting an atom into an adjacent vacancy~the
possibility of these processes for an interstitial atom at
surface of silicon was discussed in Ref. 4!. In order to inter-
pret these experimental results, we need to make calculat
which take into account the motion of the atoms under
influence of the tip. For this purpose it is convenient to us
simple model developed in Ref. 7 which, however, can fai
accurately describe scanning in the contact mode when
forces of attraction between the tip and the surface can
neglected~this model was also used in Ref. 22 to determi
the influence of atomic mobility on the breaks in th
constant-force surface!. In this model, which is developed
here to describe scanning processes in the surface mod
tion regime, the potential energyU of the sample plus AFM
tip system is expressed as the sum of the interaction en
Uts between the tip atoms and the sample atoms and
interaction energiesUs andUt of the sample and tip atom
among themselves. The first of these terms describing
exchange repulsion of the tip and the surface can be re
sented approximately as the sum of the potentialsa/r 12,
wherea is the phenomenological constant of the exchan
interaction andr is the distance between the interacting
oms. The termsUs and Ut are considered to be the lattic
energies in the harmonic approximation~apart from the con-
tribution of atoms adjacent to a vacancy, Sec. I!. As a result,
© 1999 American Institute of Physics
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the constant-force surfacesz5z(x,y,F0) and also the posi-
tions of the various sample and tip atomsr i may be deter-
mined as solutions of the system

2
]U

]z
5F0 , gradr i

U50. ~1!

In the present study we calculate the constant-force li
and also the horizontal force profiles when a cluster tip sc
in the contact mode above the surface of a close-packed
tice containing a vacancy. We show how the force lines lo
in various scanning regimes which depend on the for
without any modification of the surface, with a change in t
position of the defect by a single lattice parameter in
direction opposite to the direction of scanning, and w
complex modification of the surface when the AFM t
‘‘drags’’ the vacancy during the scanning process.

1. CONSTANT-FORCE LINES DURING SCANNING ABOVE A
VACANCY IN A CLOSE-PACKED LATTICE

In order to eliminate the dependence of the results on
phenomenological parameter of the exchange interactioa,
whose value is not known accurately, we shall use dim
sionless values of the coordinates, forces, and energies:

r̃5
r

a
, F̃5

F

F0
, Ũ5

U

F0a
, ~2!

wherea is the equilibrium distance between the atoms in
unperturbed close-packed lattice andF0512a/d13 is the
force acting on a single-atom tip situated at the initial hei
d above the surface atom.

Taking into account the reasoning put forward in t
Introduction, the dimensionless interaction energy betw
the tip and the sample is written as

Ũts5
1

12S d

aD 13

(
i , j

1

r̃ i j
12

, ~3!

where r̃ i j is the dimensionless distance between the tip
sample atoms.

Following Refs. 10, 11, and 13, we can use a tip mo
which can describe the continuous scanning above a vac
for any initial heights d ~the tip is simulated by a
paraboloid23 with radius of curvatureR55a/3 and having a
cluster of seven atoms at its apex, with one atom positio
at the distanceh'0.22a beneath the center of a regul
hexagon with sides of lengthb50.85a formed by the other
six atoms; for further details see Refs. 10, 11, and 13!. The
subscriptj in Eq. ~3! then has values between 1 and 7. T
results obtained in Ref. 22 indicate that allowing for the m
bility of the cluster atoms at the apex of the tip has only
negligible influence on the profile of the constant-force s
faces and the profiles of the horizontal force component.
this reason we shall subsequently only take into account
mobility of the sample atoms. Hence, the tip energyUt is
assumed to be constant during scanning and may be
glected.
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If the lattice energyUs is considered in the harmoni
approximation, the general expression for the elastic d
placement energy24 allowing for the symmetry of a close
packed lattice may be expressed in the form

Ũs5
1

2 (
i ,k

D̃ ( i ,k)~D r̃ i ,D r̃ k!, ~4!

whereD r̃ i5 r̃2 r̃ i
(0) describe the displacements of the eq

librium positionsr̃ i of the lattice atoms during scanning from
their equilibrium positionsr̃ i

(0) in a lattice which does no
interact with the tip~as we know, the scanning process c
be considered to be quasistatic!.

The dimensionless constantsD̃ ( i ,k) are related to the ma
trix of the force constants of a particular solid by

D̃ ( i ,k)5
ad13

12a
D ( i ,k). ~5!

It was shown in Ref. 22 that calculations of the contin
ous force surfaces can be confined to the simplified ene
representation~4!, assuming that during scanning only tho
atoms in the surface layer of the sample exposed to the d
action of the tip undergo displacements and neglecting
ensuing small displacements of neighboring atoms. This
sumption implies that the force constant matrixD̃ ( i ,k)

5D̃d ik is diagonal.
All the above reasoning has referred to the elastic d

placements of atoms in a perfect lattice. We shall now c
sider the scanning of an AFM tip above a surface vacancy
this case, the force acting from the tip may be so great th
causes elastic displacements of atoms adjacent to the
cancy, directed toward the vacancy. Let us assume th
vacancy is positioned at the pointx̃v

(0)50 and four lattice
atoms having coordinatesx̃i

(0)522,21, 1, 2 for i
51, 2, 3, 4, respectively, lie on a single straight line~Fig.
1!. Here we neglect atomic relaxation in the nearest nei
borhood of a vacancy for a sample which does not inter
with the tip. This is justified by the fact that the calculatio
performed below are only a modeling of those data wh
should be obtained experimentally using an AFM. The
data automatically allow for the influence of relaxation, fi
ing the actual position of all the atoms.

When describing the inelastic displacements of ato
adjacent to a vacancy, we need to bear in mind that displa
ments along thex axis play a dominant role for the vacanc
migration process~Fig. 1!. Thus to a first approximation we
need only change the dependence onDx in the energy of
these atoms and replace the corresponding terms~4! by25

FIG. 1. Configuration of atoms near a vacancy.
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Ũn~D x̃i !5
D̃n

2p2
sin2~pD x̃i !, ~6!

where the dimensionless constantD̃n is related to the dimen
sional constantDn by ~5!.

In fact, for displacements of an atom away from an a
jacent vacancy~according to Fig. 1 this occurs whenD x̃2

,0 and D x̃3.0) we can assumeD̃n'D̃, neglecting any
small change in this quantity near the vacancy. When
displacement is toward the vacancy, we generally findD̃n

,D̃. For small displacements the energy~6! has the same
form as the corresponding contribution in Eq.~4!. At the
pointsD560.5a, i.e., midway between the vacancy and t
neighboring atoms, this energy has a maximum correspo
ing to a potential barrier of height~in conventional units!

DE5
Dna2

2p2
. ~7!

If, under the action of the tip, atom2 in Fig. 1 is dis-
placed to the right byDx250.5, it takes the place of th
vacancy, while the vacancy is displaced to the left. Equa
~6! will then describe the potential energy of atom2 in the
new positionx̃2

(0)50.
We shall now calculate the constant-force lines when

AFM tip scans from the initial position above atom1 with
the coordinatex̃1

(0)522 to the final position above atom4
with the coordinatex̃4

(0)52. In all cases the initial tip heigh
is d50.5a. The parametersD̃ and D̃n can be conveniently
expressed in the form

D̃5
1

D l̃
, D̃n5

1

D l̃ n

, ~8!

whereD l̃ has the meaning of the elastic displacement of
lattice atom under the action of a force equal to the scann
force andD l̃ n is introduced by analogy.

The solution of system~1! can be used to describe thre
scanning regimes for various values ofD l̃ n ~note that the
result is almost independent of the value ofD l̃ , so that we
shall only use a single value here,D l̃ 50.05). The first re-
gime, corresponding to scanning without any modification
the surface, is established forD l̃ n,0.6. In this case, even i
atom2 undergoes inelastic displacements, they remain fa
small. When the tip approaches the pointx521, the atom
describes half a closed trajectory with the maximum d
placementD x̃2,0.5. When the tip is situated above the po
x̃521, the atom is again located atx̃521, but with D z̃2

520.05, i.e., below its initial position. For illustration Fig
2a gives the constant-force curve obtained by solving
system~1! with the potential energy equal to the sum~3!, ~4!,
and~6! which is almost independent of the specific value
D l̃ n,0.6. Thus, if the atom does not pass through the po
tial barrier and no modification of the surface occurs,
atomic displacements have no significant influence on
constant-force lines even if they are so large that they can
be considered to be elastic.
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The second possible scanning regime, with modificat
of the surface, occurs whenD l̃ n'0.6. In this case, atom2 is
displaced by the tip over the distanceD x̃250.5 and passes
through the maximum of the potential barrier when the
reaches the pointx̃521 ~i.e., the position above the equi
librium position of atom2 in the unperturbed lattice!. In Fig.
2b the solid curve gives the constant-force line obtained
solving the system~1! and the dashed curve gives that whic
would be obtained by scanning in the first regime~i.e., with-
out any modification of the surface! above a vacancy initially

FIG. 2. Constant-force lines when an AFM tip scans above a vacancy.
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positioned at the pointx̃v
(0)521. After transition through the

potential barrier, atom2 is found at the pointx̃2
(0)50, and

the scanning continues as if the vacancy had been initi
located at the pointx̃v

(0)521. It can be seen from Fig. 2
that it is difficult to determine from the behavior of th
constant-force line in the interval~22,0! whether the va-
cancy was initially positioned at the point21 or had mi-
grated from the point 0. The only difference between th
two cases is the smaller depth of the minimum~by an order
of magnitude of 0.05a) at the point21.5 compared with
point 0.5 if migration has taken place.

However, scanning in the regionx̃.0 leads to more
appreciable changes on the constant-force line. After
AFM tip has reached the region slightly to the right of t
new position of atom2 ~note that the vacancy is positione
to the left!, this atom becomes appreciably displaced to
left, although it does not pass through the potential bar
~the possibility of such a transition is discussed below!. This
displacement leads to substantial changes in the cons
force line: the tip falls byDz'0.15 and the maximum of the
constant-force line has an unusual tapered profile~Fig. 2b!.
Consequently, the constant-force lines can be used to di
guish between the first and second scanning regimes.

We shall now analyze the third possible regime for sc
ning of the AFM tip above a vacancy, which is established
higher forces~in our calculations forD l̃ n.0.6) and leads to
deeper modification of the surface compared with the sec
regime. A characteristic feature of the third regime is th
atom2 passes through the potential barrier~and the vacancy
migrates to its initial position! when the tip is to the left of
the point x̃521. This leads to major changes in the ent
subsequent scanning process.

When the tip is in the region to the right of atom2 in its
new equilibrium position at the pointx̃2

(0)50, it transfers this
atom through the potential barrier to the left to its initi
position. This conclusion is an obvious consequence of
complete symmetry between the initial situation and that
countered after the first migration event. As a result, atom3
is again closest to the vacancy on the right. After the AF
tip has moved to the right of this atom, it transfers it to t
vacancy site. In this way, the vacancy is displaced to
right and occupies a position to the left of atom4, and so on.

Hence, at the beginning of scanning the tip displaces
vacancy to the left by a single interatomic distancea and
during the subsequent scanning process drags it to the r
The tip thus transfers each successive atom past whic
scans to the left through the potential barrier. The cor
sponding constant-force line~solid curve! calculated by solv-
ing the system~1! is plotted in Fig. 2c. Also plotted is the
dashed constant-force line obtained by scanning the tip w
out any surface modification above a vacancy situated
tially at the pointx̃v

(0)521. It can be seen from a compar
son of Figs. 2b and 2c that it is impossible to determine
nature of the surface modification by the AFM tip from a
analysis of scanning over the interval~22,1!. However, the
nature of the modification can easily be determined by a
lyzing the intervalx.1. If the vacancy only undergoes
single migration to the left, the subsequent behavior of
ly
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constant-force line will be the same as that for a perf
lattice. If the tip drags the vacancy, these lines have cle
defined characteristic features.

2. HORIZONTAL FORCE COMPONENT AND ESTIMATE OF
THE ACTIVATION ENERGY OF THE VACANCY
MIGRATION PROCESS

As we have shown in the previous Section, when
AFM tip scans above a vacancy in the contact mode, vari
scenarios may take place, without and with different types
surface modification. The type of interaction between the
and the vacancy is reflected not only on the constant-fo
lines but also on the profiles of the horizontal force comp
nent. In addition, as we shall show subsequently, these
files contain important additional information which can
used to give a quantitative estimate of the activation ene
of the vacancy migration process.

During scanning the horizontal forces acting on the
can be measured independently~see, for example, Refs. 2–5!
and they can be calculated to interpret the experimental
sults. Having determined the pointz̃ on the constant-force
surface and also the position vectorsr i of the sample atoms
for each tip position (x̃,ỹ) as a result of solving the system
~1!, it is easy to determine the horizontal forcesFx and Fy

acting on the tip during adiabatic scanning.26 In dimension-
less units, we have

F̃x5S d

aD 13

(
i , j

x̃1 x̃(t) j2 x̃i

r̃ i j
14

, ~9!

where x̃(t) j is the component of the position vector of th
cluster atoms at the apex of the tip~a similar expression is
obtained for they component!.

We shall now give the results of calculating the horizo
tal force using formula~9! for all three scanning regimes o
the AFM tip above a vacancy calculated in the previous S
tion. For the first regime~no surface modification,D l̃ n

,0.6), the horizontal force profiles are plotted in Fig. 3a.
for the constant-force lines, the results here are also alm
independent ofD l n .

For the second regime, corresponding to the simp
modification of the surface (D l̃ n'0.6), the horizontal force
profiles are shown by the solid curve in Fig. 3b~the dashed
curve gives the horizontal force profile when no modificati
occurs and the vacancy occupies the positionx̃v

(0)521!. It
can be seen from Fig. 3b that when migration occurs,
force profile becomes asymmetric. This asymmetry is m
appreciable when the tip scans directly above the vaca
i.e., over the interval~21.5,0.5!, and provides the fundamen
tal possibility of determining the height of the potential ba
rier overcome by atom2 ~see below!.

The profile of the horizontal force component for th
third scanning regime is shown by the solid curve in Fig.
~the dashed curve, as in Fig. 3b corresponds to a vacanc
the point x̃v

(0)521). As for the constant-force lines, a di
ference between Figs. 3c and 3b is only observed when
scanning is analyzed over the intervalx̃.1.



a
o
3
t

s
i
rc
tip

in
he

ca
e
3

en

e.
the

rves

on

e

ep
rves
es
-

ion
an-

al-
dis-
he

e
e

an
r

nts

n

968 Tech. Phys. 44 (8), August 1999 Blagov et al.
We shall now estimate the activation energy of the v
cancy migration process using measured profiles of the h
zontal force component similar to those shown in Figs.
and 3c. For this purpose we shall consider scanning of the
near atom2, which is displaced to the right by the tip. In thi
region the scanning is fairly smooth, without any breaks
the constant-force line. We also note that the horizontal fo
component is determined not only by interaction of the
with atom2 but also with other atoms in the cell.

We shall postulate that an AFM was used to determ
horizontal force profiles for two different scenarios: when t
tip shifts atom2 to the site of a vacancy (F̃x) during scan-
ning and when scanning takes place without any modifi
tion of the surface (F̃x

(0)). These data were simulated abov
and are given by the solid and dashed curves in Fig.

FIG. 3. Profiles of the horizontal force component when an AFM tip sca
above a vacancy.
-
ri-
b
ip

n
e

e
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b,

respectively. The work of the tip in displacing atom2 to the
vacancy site can then be expressed as~in conventional units!

A52F0aE
x̃1

(0)

x̃2
(0)

~ F̃x2F̃x
(0)!dx̃, ~10!

where x̃1
(0)522 and x̃2

(0)521 are thex coordinates of at-
oms1 and2 in the unperturbed lattice.

This work is obviously proportional to the area betwe
the solid and dashed curves in Fig. 3b.

It is expected that only one profile,F̃x , will be obtained
in an experimental study in the surface modification regim
However, it should be noted that when the tip scans in
range betweenx̃2

(0)521 and x̃v
(0)50, we obtainF̃x5F̃x

(0) ,
as can be seen from Fig. 3b, i.e., the solid and dashed cu
are the same. In addition, the profileF̃x

(0) is symmetric rela-
tive to the pointx̃2

(0)521. In consequence, expression~10!
for the work may be rewritten as

A52F0aE
x̃1

(0)

x̃v
(0)

F̃xdx̃. ~11!

It is interesting to examine how the work~10! and the
height of the potential barrier~7! agree in our model. Taking
into account the relationD l̃ n5F0 /(aDn), derived from ex-
pressions~5! and~8!, we can express the latter as a functi
of D l̃ n

DE5
F0a

2p2D l̃ n

. ~12!

For D l̃ n'0.6, for which vacancy migration occurs, w
have from expression~12! DE50.084F0a. On the other
hand, calculations using formulas~10! or ~11! and the pro-
files in Fig. 3b giveA50.083F0 a ~in order to obtain this
result we performed numerical integration with the st
0.05a, i.e., the same step as that used to calculate the cu
in Fig. 3b!. The quantitative agreement between the valu
obtained forA andDE confirms the consistency of the pro
posed method and the possibility of using formula~11! to
determine the activation energy of the vacancy migrat
process using the horizontal force profiles obtained by sc
ning.

We shall now use our model to obtain approximate v
ues of the scanning force for which a vacancy can be
placed by the AFM tip to a new position. We shall take t
data for aluminum (a52.87 Å! as an example. According to
different estimates, the migration energyEm5DE5A is
Em

(1)'0.9 eV or Em
(2)'0.5 eV ~Refs. 25 and 27!. Thus, the

scanning forceF05A/(0.083a) at which migration takes
place isF0

(1)'6.0 nN orF0
(2)'3.4 nN. Such forces are quit

normal for AFMs operating in the contact mode. Thus w
expect that vacancy migration under the influence of
AFM tip will be recorded experimentally in the very nea
future.

3. DISCUSSION OF RESULTS

The foregoing simple model of harmonic displaceme
of surface atoms under the influence of an AFM tip~with the

s
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exception of the displacements of atoms adjacent to a
cancy, which are considered as anharmonic! was used to
calculate constant-force lines and profiles of the horizon
force component for scanning above a vacancy in a clo
packed lattice. It was found that depending on the param
D l̃ n , which characterizes the mobility of the atoms adjac
to the vacancy, three fundamentally different scanning
gimes are possible: without surface modification, migrat
of a single vacancy over a single interatomic distance in
direction opposite to the direction of scanning, and dragg
of the vacancy by the AFM tip. These regimes were cal
lated assuming that the tip scans along the line of the sur
atoms. However, it is easy to establish that vacancy mig
tion under the influence of the tip takes place similarly wh
the tip scans at a small angle to this axis.

The physically different values of the dimensionless n
malized parameterD l̃ n correspond to different values of th
scanning force above the same sample and not to diffe
elastic properties of the sample material. Thus, by system
cally scanning above a vacancy with increasing forces
determining the profiles of the horizontal force componen
each time, we can determine the force at which the fi
scanning regime is replaced by the second.

The most important conclusion reached in this study
that the activation energy for the migration of a surface
cancy can definitely be determined using measured pro
of the horizontal force component in scanning regimes wh
the surface is modified by the AFM tip. Estimates made
ing published data show that these regimes can be achi
for forces typical of an AFM in the contact mode. This su
gests that the results obtained above may be confirmed
perimentally.

The authors are grateful to V. I. Panov for interest in t
work and for fruitful discussions.
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Description of force surfaces in atomic force microscopy with allowance
for the mobility of the lattice atoms
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The surfaces of constant force and the profiles of the horizontal component of the force during
scanning of the tip of an atomic force microscope above the surface of a close-packed
lattice in the contact mode are calculated taking account of the mobility of the lattice atoms. It is
shown that when the mobility is taken into account, the previously observed discontinuities
on the surface of constant force arise at smaller scanning forces on the tip above the surface than
in the immobile-atom approximation. The force surfaces arising when scanning above
vacancies are obtained. The possibility of using atomic force microscopy data for diagnostics of
point defects on a solid surface is discussed. ©1999 American Institute of Physics.
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INTRODUCTION

Atomic force microscopy has been widely used in rec
years for investigations of surface microstructure~see, for
example, Refs. 1 and 2!. The highest resolution of an atom
force microscope~AFM! in the horizontal direction with re-
spect to the surface under study is obtained in the so-ca
contact mode,3 where the force interaction between the
and the surface is determined primarily by quantu
mechanical repulsion of an exchange nature, acting betw
the nearest atoms of the tip and surface. The typical dista
between the apex of the tip and the surface isd'(0.5–0.7)a,
wherea is the equilibrium distance in the unperturbed crys
lattice.

A large number of works, some employing an appro
mation where the lattice atoms are immobile~see, for ex-
ample, Refs. 4–8!, and some taking into account the rela
ation of the atoms during scanning,4,9,10have been devoted t
the calculation of the constant-force surfaces along which
AFM tip is scanned. As was shown in Refs. 6–8, when
monatomic tip is scanned above a close-packed lattic
sufficiently small initial heights, the constant-force surfa
has discontinuities which are concentrated above the in
atomic gaps in the crystal lattice. As a result of the prese
of discontinuities on the constant-force surface, the AFM
drops into the surface under study at the location of a
continuity. This has been repeatedly observed by differ
authors.9,11,12This phenomenon is also discussed in Ref.
To ensure continuous scanning with any initial height a
containing of a cluster of several atoms at the apex mus
used.4,5,7,8,14

Since discontinuities of constant-force surfaces occur
quite large repulsive forces, it is of interest to study th
phenomenon and to calculate the continuous force surf
arising for a cluster apex of a tip with allowance for th
9701063-7842/99/44(8)/7/$15.00
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mobility of the lattice atoms. The simple model proposed
Ref. 4 can be used to describe the displacements of the a
during scanning without modification of the surface und
study. The basic assumptions of this model are as follo
The potential energyU of the system AFM tip plus experi
mental sample can be represented in its most general for
a sum of the interaction potential energyUts between the tip
and sample atoms and the interaction energiesUt andUs of
the tip and sample atoms with one another. During scann
the coordinates of the tip and sample atoms change a
result of atomic relaxation. For a fixed position of the ap
of the tip relative to the surface~for fixed x,y) the constant-
force surfacez5z(x,y,F0) and the coordinates of individua
atoms can be obtained by solving the system of equation

2
]U

]z
5F0 , gradr i

U50, ~1!

wherer i are the radius vectors of all tip and sample ato
whose mobility is taken into account.

The potentialUts can be obtained as a sum of Lennar
Jones repulsive pair potentials,1 since in the contact mode a
other interactions, specifically, the attractive forces,5 can be
neglected. Following Ref. 4, in the next Section the pote
tials Ut andUs are described in the harmonic approximatio

CONSTANT-FORCE SURFACES ON A CLOSE-PACKED
LATTICE WITH ALLOWANCE FOR ATOMIC RELAXATION

As noted in the introduction, the constant-force surfac
during scanning of an AFM tip above the sample surface
be found by solving the system of equations~1!. The explicit
form of the total potential energyU of the system tip plus
sample is required for specific calculations. To obtain res
which are independent of the semiempirical exchange in
action constant, we introduce the dimensionless coordina
© 1999 American Institute of Physics
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force, and energyr̃5r /a, F̃5F/F0 , and Ũ5U(F0a), re-
spectively, whereF0512a/d13 is the force acting on a mon
atomic tip located at an initial heightd above a surface atom
Then

Ũts5
d13

12a13 (
i , j

1

r̃ i j
12

, ~2!

where the summation extends over all atoms of the tip
sample andr̃ i j is the distance between the tip and sam
atoms.

With allowance for the symmetry properties of a clos
packed lattice, the potential energyUs of the sample atoms
which in our approach is interpreted as the elastic vibratio
energy of the lattice,15 can be written as

Ũs5
1

2 (
i ,k

D̃s
( i ,k)~D x̃(s) iD x̃(s)k1D ỹ(s) iD ỹ(s)k

1D z̃(s) iD z̃(s)k!. ~3!

Here D x̃(s) i5 x̃(s) i2 x̃(s) i
(s) and so on describe the displac

ments of the equilibrium positionsx̃(s) i occupied by the lat-
tice atoms during the scanning process as a function of t
equilibrium positionsx̃(s) i

(0) in a lattice which is not interact
ing with the tip. The dimensionless constants appearing
Eq. ~3! can be expressed in terms of the matrix of for
constants of the solid under study as

D̃s
( i ,k)5

ad13

12a
Ds

( i ,k) . ~4!

The dimensionless potential energyŨt of the tip atoms
~with s replaced byt) can be represented similarly to Eq.~3!.

Two models of an AFM tip are used below to calcula
the force surfaces: a monatomic tip, whose apex cont
only one atom, and a cluster tip, whose apex contains a c
ter of seven atoms. In the first case, taking account of
displacement of a single atom at the apex relative to the o
atoms in the tip, which actually do not interact with the a
oms in the sample, has no effect on the results obtained
need not be taken into account at all. Then the summatio
Eq. ~2! extends only over the atoms in the sample. In
second case, one of the atoms in the cluster drops to a
tanceh relative to the plane of the other six atoms arrang
in a hexagon with sides of lengthb. If it is assumed that the
tip is a paraboloid of revolution with radius of curvatu
R55a/3, then stable scanning for arbitrary initial heigh
obtains forb50.85a andh5b2/(2R)'0.22a.7,8,16,17

Two different approximations were used to solve t
system~1!. In the first one it was assumed that each atom
the surface layer of the sample is displaced only by the
rection action of the tip, and this displacement does not l
to displacements of neighboring lattice atoms. This assu
tion, which is valid for sufficiently small displacement
means that the constantsD̃s

( i ,k) in Eq. ~3! are zero foriÞk.
Since it also follows from symmetry considerations th
these constants do not depend on the number of the ato
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is expedient to introduce the notationD̃s
( i , j )[D̃s . It is con-

venient to write the parameterD̃s asD̃s51/D l̃ s , whereD l̃ s

is the elastic displacement of an atom of the sample acte
by a force equal to the scanning force.

A two-dimensional image of a constant-force surface
presented in Fig. 1. This image was obtained by solving
system ~1! using the first approximation with initial sca
heightd50.65a and mobility of lattice atomsD l̃ s50.05~the
scan force shifts an atom by 0.05a from its position of equi-
librium!. Here and below, the two-dimensional image is t
result of sectioning the corresponding three-dimensio
surfaces by 10 horizontal planes separated by the
Dh̃5( z̃max2z̃min)/10. A lighter tone corresponds to a great
height, and a darker tone corresponds to a smaller he
Smooth sections of the constant-force surface in regi
above the atoms of the surface under study and sharp p
in the regions between atoms where the constant-force
face is discontinuous are clearly seen in Fig. 1. An attemp
solve the system~1! numerically near the discontinuitie
leads to a divergent iteration process. We note that when
mobility of the sample atoms is taken into account, the init
scanning heights for which the constant-force surfaces
discontinuous increase. Thus, in the approximation of imm
bile lattice atoms the condition that there be no discontin
ties for a monatomic tip isd.0.61a.7,8

The second, and more accurate approximation use
solve the system~1! took account of the fact that the dis
placement of the surface atoms by the direct action of
AFM tip leads to displacements of their nearest neighb
also, including the neighbors in the second atomic layer
the sample. In other words, displacements of all atoms in
first coordination spheres of the atoms in the sample that
directly affected by the tip were taken into account. Just
above, it was assumed that the tip directly displaces th
surface atoms located at the vertices of an equilateral
angle. To simplify the calculations, taking account of t
smallness of the displacements of the atoms in a regime
no modification of the surface, it was also assumed that
displacements of neighboring atoms are independent of
another. Then the dimensionless potential energy~3! can be
written as

Ũs5
1

2
D̃s (

i
@~D x̃(s) i !

21~D ỹ(s) i !
21~D z̃(s) i !

2#

1D̃s
(1) (

i 51

3 S D x̃(s) i (
j

D x̃(s) j1D ỹ(s) i (
j

D ỹ(s) j

1D z̃(s) i (
j

D z̃(s) j D 1D̃s
(2) (

i 51

3 S D x̃(s) i (
k

D x̃(s)k

1D ỹ(s) i (
k

D ỹ(s)k1D z̃(s) i (
k

D z̃(s)kD . ~5!

Here D̃s
(1)[D̃s

( i , j ) , where the indicesi and j enumerate the
nearest-neighbor atoms in the surface layer of a close-pa
lattice, and D̃s

(2)[D̃s
( i ,k) , where i and k enumerate the



lattic

972 Tech. Phys. 44 (8), August 1999 Blagov et al.
FIG. 1. Two-dimensional image of discontinuities on a constant-force surface with a monatomic tip scanned above the surface of a close-packede.
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nearest-neighbor atoms in the surface and second laye
the sample. From obvious geometric considerations we h
D̃s

(2)52D̃s/6 andD̃s
(1)52D̃s/4.

The second, and more accurate, approximation for s
ing the system~1! will exacerbate even more the situatio
with discontinuities arising in the constant-force surfac
when a monatomic tip is scanned above a closed-packed
tice. Thus, ford50.7a the first approximation gives continu
ous constant-force surfaces all the way up to atomic mob
ties characterized by a valueD l̃ s50.09, whereas in
the second case discontinuities are observed even
D l̃ s50.05. This discontinuity, of width'0.05a, occurs in
the region above an interatomic gap. At the same time,
results are essentially identical in the region where both
proximations give continuous constant-force surfaces. To
lustrate this assertion, in Fig. 2 we show the force conto
calculated in the first~dashed curve! and second~solid curve!
approximations, with an initial tip heightd50.7a and
D l̃ s50.04.

Using the monatomic tip model, we shall now consid
the scanning of a cluster tip above the surface of a clo
packed lattice for values of the parameters such that cont
ous scanning is impossible. For simplicity, we shall use
first approximation to solve the system~1! ~as illustrated
above, this does not introduce any substantial errors w
calculating continuous constant-force surfaces!, and of the
seven atoms we shall take into account the displacemen
the atom located at the apex of the tip relative to the other
of
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atoms. It is convenient to represent the dimensionless par
eterD̃t , related with the force constant of the tip material,
the form D̃t51/D l̃ t .

A three-dimensional image of the constant-force surfa
was calculated for the parametersd50.5a ~all results
below are presented for this value ofd), D l̃ s50.05 and
D l̃ t50.01. The crystallographic axes of a cluster at the a
of the tip and the surface were assumed to be parallel
coincident with the scan direction. This surface differs on

FIG. 2. Comparison of force contours with a monatomic tip scanned ab
a line of atoms in the sample using different approaches to describe
mobility of the atoms.
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by the depth of the relief from the corresponding surface
the immobile-atom model8 ~in the present case, the differen
tial of the relief isD z̃50.411 as opposed toD z̃50.39 as-
suming the atoms of the tip and samples to be immobile!. It
is interesting to note that when the mobility of the atoms
taken into account, the form of the relief also changes so
what, the change consisting in the fact that on a force c
tour corresponding to scanning along a line of lattice ato
the relief differential decreases with increasing mobility.
an illustration, the force contours obtained with vario
sample and tip atom mobilities are presented in Fig. 3:D l̃ s

50.05 and D l̃ t50.05 ~solid curve!, D l̃ s50.1 and D l̃ t

50.05~dashed curve1!, andD l̃ s50.1 andD l̃ t50.1 ~dashed
curve2!. In this case the relief differentials are, respective
D z̃50.239, 0.288, and 0.213, but the change in relief
mains beyond the sensitivity of the AFM.

FIG. 3. Force contours with a cluster tip scanned along a line of atoms
different mobilities of atoms in the sample and in the tip.
n

s
e-
n-
s

,
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We note that the computational results for the consta
force surfaces depend on the orientation of the tip.
an example, force contours obtained forD l̃ s50.05 and
D l̃ t50.01 with the crystallographic axes of the tip parallel
those of the surface~solid curve! and with an angle of 30°
between them~dashed curve! are presented in Fig. 4. As on
can see from the figure, the maximum vertical differen
between the two lines does not exceedD z̃50.12; this can
only have a small effect on the experimental constant-fo
surfaces.

We shall now briefly discuss the computational resu
for constant-force surfaces with a cluster tip scanned ab
the surface of a close-packed lattice containing a point de
of the vacancy type. In accordance with what we have s
above, in calculating continuous force surfaces the res
obtained using the first and second approximations to so
the system~1! are essentially identical. For this reason,

nd

FIG. 4. Force contours versus the orientation of a cluster at the apex o
tip.
nt
e

FIG. 5. Force contours with a cluster tip
scanned above a vacancy for differe
mobilities of an atom at the apex of th
tip.



ed

in
tip
-

a

c
tip
ck
gi

fo
b
de
i
o

ion
red
ove

the
of
in-
of
, it
e
tal

974 Tech. Phys. 44 (8), August 1999 Blagov et al.
simplify the calculations the first approximation was us
here and in the next Section.

The calculations of the constant-force surface dur
scanning of a cluster tip with the mobilities of sample and
atomsD l s50.05 andD l t50.01 showed that the total differ
ential of the relative heights isD z̃50.411, and the difference
of the heights of the peaks above the surface atoms
above a vacancy is 0.13a ~in the model with immobile lattice
atoms these quantities are,8 respectively, D z̃50.43 and
0.15a ~Ref. 8!. We note that for scanning above a vacan
the results depend more strongly on the mobility of a
atom than for scanning above an unperturbed close-pa
lattice. As an example, force contours calculated for a ri
cluster at the apex of the tip (D l̃ t50; solid curve! and for the
mobility of an atom at the apex of the tipD l̃ t50.05~dashed
curve! are presented in Fig. 5. At the same time, just as
an unperturbed lattice, taking account of the possible mo
ity of atoms in the scanning mode without the surface un
investigation being modified gives only negligible changes
the constant-force surface, which lie outside the sensitivity
g
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y

ed
d

r
il-
r

n
f

the AFM. Of course, this only strengthens the conclus
that a vacancy in a close-packed lattice can be discove
according to the change in the constant-force surface ab
the vacancy.6–8

EFFECT OF THE MOBILITY OF ATOMS ON THE
HORIZONTAL COMPONENT OF THE FORCE

The measurement of the horizontal component of
force during scanning of an AFM tip along the surface
constant vertical component gives substantial additional
formation that can be used, specifically, for diagnostics
point surface defects by the AFM method. For this reason
is of interest to determine the effect of the mobility of lattic
atoms on the form of the computed profiles of the horizon
component of the force.

Assume that a point on the constant-force surfacez̃, the
coordinates of the sample atomsx̃(s) i , ỹ(s) i , andz̃(s) i and the
coordinates of the tip atomsx̃(t) i , ỹ(t) i , and z̃(t) i have been
found by solving the system of equations~1! for each posi-
e
-

FIG. 6. Horizontal force with a cluster
tip scanned along a line of atoms on th
surface and different mobilities of the at
oms.
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tion of the tip relative to the surface (x̃,ỹ). Then the dimen-
sionless horizontal force is given by the expression

F̃x5S d

aD 13

(
i j

x̃1 x̃(t) j2 x̃(s) i

r̃ i j
14

~6!

and a similar expression for they component.
Curves of the horizontal force componentF̃x versusx

for scanning along a line of atoms on a defect-free surf
with various mobilities of the sample and tip atoms are p
sented in Fig. 6a:D l̃ s50.05 andD l̃ t50.05 ~solid curve!,
D l̃ s50.1 andD l̃ t50.05~dashed curve1!, andD l̃ s50.1 and
D l̃ t50.1 ~dashed curve2!; compare with Fig. 3 for the force
contours. As is evident from Fig. 6a, the horizontal comp
nent of the force vanishes directly above the ato
of the surface under study and at points midway betw
them. Moreover, for an unperturbed close-packed lat
uF̃x,minu5F̃x,max, as should be on the basis of symmetry co
siderations. These results agree with the results obtained
viously in the immobile-atom approximation.16,17 The force
differentials F̃x,max2F̃x,min for the lines in Fig. 6a are, re
spectively, 1.482, 1.390, and 1.276. Therefore, as the mo
ity of the atoms increases, the force differential decrea
but this cannot affect the interpretation of the experimen
data.

Figure 6b shows the horizontal force componentF̃x ver-
susx when a tip with a rigid cluster at the apex~solid curve!
and with the mobility of an atom in the tipD l̃ t50.05
~dashed curve! is scanned along a line of atoms containi
a vacancy. The mobility of the atoms in the sample
D l̃ s50.05. Peaks with various heights are clearly seen
Fig. 6b. Thus, point defects in the surface under study ap
ciably alter the profile of the horizontal component of t
force. However, the mobility of a tip atom has little effect o
the result, just as in the case of an unperturbed lattice.

Thus far it has been assumed that the crystallograp
axes of the surface are parallel to those of the cluster at
apex of a tip. Figure 7 shows for comparison the horizon
force componentF̃x versusx̃ for scanning above a defec
free surface for parallel axes~solid curve! and axes making
an angle of 30°~dashed curve!. The other parameters ar

FIG. 7. Horizontal component of the force versus the orientation of a clu
at the apex of the tip.
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D l̃ s50.05 andD l̃ t50.01. As one can see from Fig. 7, th
lines of horizontal component of the force are much mo
sensitive to the tip orientation than the force contours~com-
pare with Fig. 4!. Therefore, in principle, the orientation of
cluster tip relative to the surface under study can be de
mined experimentally according to the profiles of the ho
zontal force.

DISCUSSION

In the present work the effect of the mobility of lattic
atoms on the constant-force surface and the profiles of
horizontal component of the force for scanning of the AF
tip above a close-packed lattice was studied.

It was shown that the appearance of discontinuities
the constant-force surface depends strongly on the mob
of the atoms in the sample. In the immobile-atom appro
mation, discontinuities arise only if the initial scannin
heights are sufficiently small (d/a<0.61), whereas disconti
nuities are also observed ford'(0.7–0.8)a and realistic val-
ues of the mobility~this result was predicted qualitatively i
Ref. 8!. This makes the discontinuities more important fro
the standpoint of interpreting experimental results.

Constant-force surfaces were calculated taking into
count the mobility of atoms in the sample and in the
above a defect-free surface and above a vacancy. Diffe
approximations were used to describe the mobility of
lattice atoms, and it was confirmed that in the continuo
scan mode the results obtained are essentially identical.

A calculation of the horizontal component of the forc
taking account of the mobility of the atoms demonstra
that the profile of this force near a vacancy is substantia
different from the force on a defect-free section of the s
face. It was shown that profiles of the horizontal compon
of the force are more sensitive than a constant-force sur
to the relative orientation of the surface under study and
cluster of atoms at the apex of the tip.

The results obtained can be used for diagnostics of p
defects by atomic force microscopy~see Ref. 18, where a
vacancy was first detected in this manner!.

We thank V. I. Panov for his interest in this work and f
fruitful discussions.
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A method of controlled extraction of the energy stored in a capacitor with the required power
over a long period of time is proposed. It is shown that capacitors can be used as
autonomous source of electric power. ©1999 American Institute of Physics.
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1. Capacitors are electric storage devices with uniq
properties. Their internal resistance is low, and they can h
a specific energy capacity and are ecologically clean sou
of electricity.1–3 However, such sources are not widely us
because of uncontrollable character of their discharge
cess. In the present paper a method is proposed for
trolled, loss-free extraction of the energy stored in a cap
tor with the required power on a specific load~user! over a
quite long working time. The proposed method shows t
capacitors can be used as efficient autonomous source
electric power.

2. The essence and principle of operation of the meth
are as follows~Fig. 1!. A small portion of the energy store
in a capacitor with a high capacitanceC1 ~we call this the
tank capacitor! is extracted with a definite frequencyf and
reciprocal duty factoŗ by another capacitor~we call this the
dispenser capacitor! with capacitance C2 , such that
C2!C1 . Then, this small energy dose is transferred to a lo
Rl with the same frequency and reciprocal duty factor. Su
a scheme with an appropriate choice of parameters~dis-
penser capacitance, duty factor, frequency, switches,
transfer devices! permits controlling the discharge of the c
pacitorC1 and permits feeding energy uniformly to a userRl

for a long working timeT with the required nominal powe
Wn .

In summary, the main idea of the method is that inste
of direct, uncontrolled discharging of a tank capacitorC1 on
a loadRl , a dispenserC2 is introduced to regulate the pro
cess of discharging the tank capacitor. In the absence
dispenser, the energy stored in the tank capacitor, depen
on the intrinsic discharge timetd5RlC1 and the fixed work-
ing timeT, will either be spilled out immediately at the sta
of the process withtd!T according to an exponential law o
if td@T, for the same stored energy the required powerWn

will not be released to the load. The dispenser permits
energy stored in the tank to be extracted in fixed portio
uniformly and with the required nominal power, by lengt
ening or shortening the discharge timetE to the value of the
required working timeT. In the scheme presented, the ma
variable physical quantities are the voltage, duty factor,
quency, pulse duration, and current in a pulse. By vary
9771063-7842/99/44(8)/3/$15.00
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these quantities from zero to their nominal values it is p
sible to regulate the delivery of energy to the loadRl and
thereby to control the power delivery as required in a ran
from zero to the nominal value, i.e., 0<W<Wn . The nomi-
nal numerical values of the indicated physical quantities
determined by the specific problem. Evidently, switches w
play a large role in this control process, since the abo
indicated physical quantities all can be changed by us
these switches exclusively. They can be implemented st
turally either by a purely mechanical method or by a pur
electronic method or by both methods simultaneously.

It should be noted especially that the proposed elec
scheme functionally consists of two parts. The first part i
circuit that charges the dispenser from the charged tank,
the second part is a circuit that discharges the dispenser
load Rl . The operation of the proposed scheme is based
the use of capacitors containing dielectrics with short po
ization times~from 10214 to 1028 s). Then energy can be
transferred rapidly~in 1 – 1023 s) to the load without energy
loss when charging the capacitorC2 from C1 . On this basis
the operation of the first part of the scheme satisfies the l
of electrostatics, since the dispenser is charged by connec
it directly to the tank, without a charging resistance, and
this reason it occurs without losses. This part of the sche

FIG. 1. Diagram of a scheme for controlled extraction of the energy sto
in a capacitor:C1 — tank capacitor;C2 — dispenser capacitor;K — fast
switch; S — all possible devices for transferring power to the loadRl .
© 1999 American Institute of Physics
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contains only energy losses due to leakage currents on
enormous insulating resistance of the dielectric in the t
capacitorC1 . The second part of the scheme operates
cording to the laws of electrodynamics, since the dispens
discharged across a discharge resistance~load!. This part of
the scheme is a dissipative system, and its operation is
companied by some energy losses.

We note that the term ‘‘dispenser’’ is also used in Ref.
However, in our scheme the dispenser is charged from
autonomous source of electric power — the tank capac
— and not from a charging device, as considered in Ref
that is constantly switched on and is powered by an exte
electric circuit. Moreover, in our scheme the dispenser se
to transfer a definite portion of energy directly to the us
~useful load! and not for charging a capacitor with a capa
tance much greater than that of the dispenser. Howeve
practice the dispenser scheme of Ref. 4 can be used to
cover electric energy.

3. We shall now give a quantitative treatment of t
method. Let us assume that we are required to supply to
individual autonomous userRl nominal electric powerWn

for a quite long working timeT with the possibility of con-
tinuously regulating the delivery of this power from zero to
nominal value, i.e., 0<W<Wn . This requires an amount o
electricity

DE5WnT. ~1!

If a capacitor is chosen as an autonomous source of e
tric power, then a storage capacitor with the appropriate
pacitanceC1 will be required. As is well known, the maxi
mum electric energy that can be stored in capacitors w
capacitanceC is E05CV0

2/2, whereV0 is the maximum volt-
age between the capacitor plates. However, the electric
ergy stored in a capacitor, however large its capacity, can
always be extracted with the required nominal powerWn

during a long working time intervalT. Indeed, if a maxi-
mally charged capacitor is connected directly to a load, t
the energy of the capacitor is discharged according to
exponential law in timetE5RlC/2, and an amount of energ
DE50.64E0 will be released from the capacitor in this tim
tE . The fixed working time in which this energy is extracte
from the capacitor must beT5tE . Then the extracted powe
will be W50.64CV0

2/(2T).
In practice, however, it is by no means always possi

to find a capacitor with parameters~dielectric, breakdown
voltage, specific volume capacitance, and others! satisfying
the conditions noted above: the release of the required no
nal powerWn to a loadRl in a working timeT. If the ca-
pacitanceC!2T/Rl , then the capacitor will be discharge
in time tE!T and a high powerW @Wn will be released in
the load ~which is very undesirable!. However, if
C@2T/Rl , then tE@T and a lower powerW!Wn will be
released in the load~which does not satisfy the user!. For this
reason the discharging of the capacitor must be regulate
the first case the discharge timetE needs to be lengthene
and in the second case the discharge time needs to be s
ened to the working timeT. The discharge process must b
regulated almost with no losses of energy stored in the ta

This result is illustrated in Fig. 2, where the relatio
he
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between the squared maximum voltageV0
2 between the ca-

pacitor plates with the maximum accumulated energyE0 and
the capacitanceC for the same dielectric is displayed on
logarithmic scale. The quantityV0

2/(1.6WnRl) is plotted
along the ordinate, and the quantityCRl /(2tE) is plotted
along the abscissa. It is easy to verify that the condit
tE5T holds on this plot only at the point with the coord
nates~1,1!. If C,1, thentE,T (W.Wn) and the discharge
process needs to be extended~the regionCD in the figure!.
However, if C.1, thentE.T (W,Wn) and the discharge
process needs to be compressed~the regionC). We note that
the plot presented is universal for the problems being c
sidered, since it is normalized explicitly with respect to
fixed parametersE0 , Wn , T, and Rl and is valid for all
dielectrics.

The point~1,1! on the plot is a reference point. At thi
point not only is the method normalized with respect to
fixed parameters, but the required working timeT5tE is
matched with the required maximum energyE051.6DE
stored in the tankC1 , which is very important to do. At the
point ~1,1! two conditions must hold simultaneously
T5RC1/2 on the one hand andE051.6Wn /T on the other.
This is possible, since the required maximum energyE0 with
fixed capacitanceC152T/Rl can be provided by using a
appropriate dielectric with the correct volumen, according
to the well-known formulaE05«0« rU

2n/2, where«0 is the
permittivity of free space,« r is the dielectric constant, andU
is the electric field in the dielectric. We shall call capacito
for which tE5T andE051.6WnT hold simultaneously ‘‘nor-
mal.’’ In the plot they correspond to the point~1,1!. On this
basis we shall also term the point~1,1! ‘‘normal.’’ The co-
ordinates on theC axis indicate simultaneously the require
shortening or lengthening of the discharge timetE to the
value tE5T at the unit point (1,1). The proposed method i
based precisely on effectuating this process of bringing
discharge timetE of the capacitor to the unit~normal! point
~1,1! on the plot, wheretE5T andE051.6WnT.

The plot displayed in Fig. 2 makes it possible to det
mine whether or not the discharge time for the chosen t

FIG. 2. SquareV0
2 of the voltage between the capacitor plates versus

capacitanceC of the capacitor:Wn — nominal power,Rl — load, tE —
energy discharge time of the capacitor,tE5RlC/2; N — ‘‘normal point’’ —
with coordinates~1,1!.
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capacitor with the prescribed parametersE0 andV0
2 needs to

be shortened or lengthened in order to deliver to the loadRl

the required nominal power in the working timeT.
We shall now discuss the requirements that the dispe

must meet. The dispenserC2 extracts energy from the tan
C1 in short pulsest i and low dosesDEt i

with a reciprocal
duty factor¸ and frequencyf. The operating frequency of th
dispenser is determined by the time periodt during which a
complete cycle of charging and discharging of the dispen
occurs (f 51/t). The reciprocal duty factor of the process
¸5t/t i . It is assumed thatt i<t, so that¸>1.

The energy required per pulse in order to deliver
required nominal power to the user is

DEt i
5Wnt. ~2!

When the dispenser is discharged across the useful l
the energy changes by a factore in time t i5td/2, where
td5RlC2 is the intrinsic discharge time of the dispenserC2 .
Therefore the dispenser capacitanceC2 can be expressed i
terms of the parameterst,R, andk as

C252t/~Rl¸!. ~3!

4. We shall now consider the operation of the propos
scheme as a whole. If the discharge timetE of the capacitor
C1 is comparable to the working timeT, i.e., we have a
normal capacitor, then the capacitorC1 will be discharged
across a load according to an exponential law. In this ca
dispenser is required for uniform delivery of electric ener
to the load. This can be done using a dispenser opera
with a reciprocal duty factoŗ 51, since for large values o
¸ power will be lost in this case. In the ‘‘normal’’ regime th
capacitanceC2 of the dispensing capacitor is determined
the relation

C25
2t

Rl
. ~4!

If tE !T, then a dispenser is required in order
lengthen the discharge time of the capacitorC1 to the work-
ing time T and to delivery electric energy to the loadRl

uniformly. For this the dispenser must operate with a rec
rocal duty factor¸5T/tE@1. In this case, its capacitanc
must be¸ times smaller than that of the dispenser in t
normal regime~4!.

Finally, if tE.T, then the discharging of the capacit
C1 must be compressed to the required working timeT.
However, a single dispenser used for this purpose does
provide the required power on the load. This difficulty can
overcome by multiplying the voltage by using a chain ofn
auxiliary capacitors connected in series.3,4 Specifically, if we
chargen auxiliary capacitors simultaneously from the c
pacitor C1 using a parallel arrangement and then conn
them in series into a chain, then we obtain a single work
dispenser with plate voltagen times greater than the plat
voltage of the capacitorC1 . The number of such auxiliary
er

er

e

d,

d

a

ng

-

ot
e

t
g

dispenser capacitors isn5AtE /T. The entire chain of ca-
pacitors as a whole will operate as a single dispenser wi
reciprocal duty factoŗ 51. The capacitance of such a sing
dispenser should beC252t/Rl , just as in Eq.~4!.

We note that ifAtE /T is very large, then it is possible to
develop and use a procedure for multiplying the voltage b
number of auxiliary dispensers much less thann5AtE /T.
For this, the collection of auxiliary dispensers must be se
rated by voltage into several groups of capacitors. Capaci
in the first group must be charged simultaneously fromC1 .
Then these capacitors are connected in series into a ch
and the entire chain charges each capacitor in the sec
group separately. In turn, the charged capacitors in the
ond group are connected into a new group and such a c
is used to charge the capacitors in the next group, and so
This voltage multiplication procedure can be perform
without energy loss, since dispensers with a short charg
time (t i<1028 s) will be used. We note that the capacitan
of a single dispenser, consisting of the last chain of cap
tors, should always be determined by Eq.~4! and total volt-
age on such a dispenser should beV25AtE /TV1 , whereV1

is the voltage on the plates of the tank capacitorC1 .
We call attention to another important aspect of the o

eration of the scheme considered here. As energy is extra
from the capacitorC1 , the voltage on its plates will decreas
exponentially fromV0 to ;0.6V0 in a time tE . The maxi-
mum dispenser voltage will also decrease to this value. T
means that the amount of energyDEt i

per pulse transferred
by the dispenser into the load will also gradually decreas
time by a factore to 0.37DEt i

. All this occurs for all three
regimes considered above. This phenomenon can be
vented by adjusting the discharge time of the tank capac
using additional dispensers. For this, it is sufficient to d
crease the discharge time of the tank capacitor by a facto
2. In practice this can be accomplished with two dispens
connected in series into a chain. The capacitance of eac
these dispensers must be two times greater than the ca
tance of the dispenserC2 used to correct the discharge tim
of the capacitorC1 . The total capacitance of the chain o
tained should once again be determined by the relation~3! or
~4!, depending on the ratio oftE andT, i.e., depending on the
regime used.

We thank A. A. Rukhadze and A. N. Dovbne for encou
agement and their interest in this work.
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3A. R. Von Hippel,Dielectric Materials and Their Applications@Technol-
ogy Press of M. I. T. and Wiley, New York, 1954; Gose´nergoizdat, Mos-
cow, 1959#.

4D. A. But, B.L. Alievski�, S. R. Mizyurin, and P. V. Vasyukevich,Energy
Storage Systems@in Russian#, Énergoatomizdat, Moscow, 1991.
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Effect of magnetic field pulses on the anelastic properties of nitrogen-containing steel
O. I. Datsko, V. I. Alekseenko, and A. L. Brusova

A. A. Galkin Donetsk Physicotechnical Institute, Ukrainian Academy of Sciences, 340114 Donetsk, Ukraine
~Submitted July 23, 1998!
Zh. Tekh. Fiz. Zh. Tekh. Fiz.69, 122–123~August 1999!

The effect of weak magnetic field pulses on the dynamic properties of dislocations interacting
with impurity–defect complexes is determined by the internal-friction method. The effect
is characterized by an increase in the plasticity of a material under the conditions of microplastic
deformation and slowing of strain hardening. ©1999 American Institute of Physics.
@S1063-7842~99!02208-4#
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According to Ref. 1, treatment with weak magnetic fie
pulses (H,106 A/m) changes the state of impurity–defe
complexes~IDCs! on dislocations. Therefore it should b
possible to affect the anelasticity and microplastic deform
tion ~MPD! and strain hardening~SH! by applying magnetic
field pulses~MFPs! to a material.

We used nitrogen-containing chromium–mangan
Kh14G10AS~0.1% C, 14% Cr, 10% Mn, and,1.5% each
for N and Si! austenitic steel. Two different processes lea
ing to a change in the structure of the material can occu
such steels as a result of plastic deformation. One proce
theg –a martensitic transformation in austenite. Prelimina
x-ray analysis showed that ag –a martensitic transformation
is not observed after MPD. Moreover, it was found that
compounds Fe2N, Fe3N, and Fe4N are not present in the
initial material after MPD and post-MPD relaxation. The a
sence of a martensitic transformation during MPD and
absence of the aforementioned compounds is a compri
necessary condition for the appearance and study of the
process, which occurs in the given material because the
bile nitrogen atoms can segregate on dislocations.

The experimental samples were 333360 mm rectangu-
lar prisms. They were obtained mechanically from rolled m
terial.

The change in the state of the dislocation–IDC syst
was monitored by measuring the low-frequency internal fr
tion ~IF Q21) with frequency 1 Hz ~inverted torsional
pendulum2! in an amplitude-independent range with a stra
amplitude of the material«5431025. The investigations
showed that in the initial samples the IF does not cha
with time; this attests to kinetic stability of the dislocation
IDC system under normal conditions~no MPD and no MFP!.

Microplastic deformation was conducted during me
surements of the amplitude-dependent IF by straining
material in the amplitude range«5431025– 1631025. To
initiate SH the material was subjected to MPD~by twisting!
to a relative deformation«5231023.

The experimental samples were treated with MFPs
cording to the following regime: The amplitude of the MF
intensity wasH533105 A/m, the pulse repetition frequenc
9801063-7842/99/44(8)/2/$15.00
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was 10 Hz, the duration of the leading edge of the pulse w
1024 s, and the treatment times were 2 min~this is the mini-
mum time for determining the statistical average IF! and 100
min. The basic assumptions of the method are describe
Ref. 3.

The investigations showed that when a MFP is switch
on, the IF increases abruptly, and when the MFP is switc
off, the IF remains constant for 60 min and then decrea
monotonically, approaching the initial value~Fig. 1, curve
1!. With the MFP switched on the IF remains at the lev
reached after increasing abruptly~curve2!.

The observed behavior of the IF could be due to
change in the interaction of dislocations with IDCs as a
sult of impurity atoms being transferred into a state with
different value of the interaction potential, and it attests
the fact that MFPs can change the energy state of
dislocation–IDC system, plasticizing the experimental ma
rial.

The study of the effect of a MFP on MPD shows tha
magnetic field increases the general level of the amplitu
dependent IF relative to the initial value of the IF~Fig. 2!,
thereby facilitating depinning of dislocations from stop
Therefore an MFP influences equally effectively a pinn
dislocation ~amplitude–independent IF!, depinning it, and
the very process that leads to depinning of dislocations fr
stops~amplitude-dependent IF!.

The kinetics of the IF level during SH~with and without
the application of a MFP!, occurring after MPD is displayed
in Fig. 1 ~curves 3 and 4!. As one can see, in these cases
level of the amplitude-independent («5431025) disloca-
tion IF decreases monotonically. Comparing these IF cu
shows that SH with the application of an MFP is slower a
terminates at higher values of the IF~curve 4!. This shows
that less strongly pinned IDCs form on dislocations. In oth
words, the application of an MFP tends to decrease the
gree of pinning of dislocations by impurities and increase
plasticity of the material.

The time dependences of the IF during SH of a mate
can be described in the Harper model4, taking account the
© 1999 American Institute of Physics
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relationQ21;Lc
4 ~whereLc is the distance between pinnin

points!, as

Qt
215Q`

211@Q0
212Q`

21#@exp~2t/t!2/3#4,

whereQ0
21 and Q`

21 are the IF at the start and end of th
process under study,t is the time, andt is the relaxation time
constant.

The analytic expression presented was used to estim
the relaxation time of SH under ordinary and MFP con
tions: t1570 min in the first case andt25110 min in the
second case.

FIG. 1. Time dependence of the internal friction in Kh14G10AS steel:1 —
after the MFP is switched off,2 — after the MFP is switched on,3 — after
MPD, 4 — after MPD in the presence of a MFP.
te
-

In summary, it has been shown experimentally in th
work that MFPs can effectively influence the dynamics
pinned linear defects and the processes leading to depin
and pinning of such defects. A material containing linear a
point defects plasticizes as a result of these effects.

1O. I. Datsko, V. I. Alekseenko, and A. D. Shakhova, Fiz. Tverd. Te
~St. Petersburg! 38, 1799~1996! @Phys. Solid State38, 992 ~1996!#.

2V. S. Postnikov,Internal Friction in Metals@in Russian#, Metallurgiya,
Moscow, 1974, 324 pp.

3O. I. Datsko and V. I. Alekseenko, Fiz. Tverd. Tela~St. Petersburg! 39,
1234 ~1997! @Phys. Solid State39, 1094~1997!#.

4S. Harper, Phys. Rev.83, 709 ~1951!.

Translated by M. E. Alferieff

FIG. 2. Amplitude dependence of the internal friction in Kh14G10AS ste
1 — no MFP,2 — in the presence of a MFP.
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Nanotubes and force interactions in an atomic force microscope
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The conditions for nanotubes to be used as atomic force microscope~AFM! probes are analyzed.
It is shown theoretically for the first time that single- and multilayer tubes with diameters
ranging from 0.5 to 5 nm give atomic-level resolution of the surface. The presence of cylindrical
symmetry makes each surface atom of a nanotube ‘‘imaging.’’ For a definite ratio of the
diameter of a single nanotube and the period of the surface structure, the atomic resolution
vanishes. Such nanotubes are of special interest for probing the details of the large-scale
relief and for investigations in nanotribology. In contrast to silicon and other~solid! probes,
nanotubes are not blunted on contact with the surface, but rather they bend and their
initial shape is restored when the stress is removed. The critical loads for an AFM to function in
the repulsive regime are determined. ©1999 American Institute of Physics.
@S1063-7842~99!02308-9#
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The problem of searching for new probes for AFMs r
mains pressing, because existing structures~based on silicon
and other solid materials! do not meet adequately the in
creasing requirements of this important field of physical
search. The main problems are due to the destruction
blunting of probes coming into hard contact with surfac
and to poor shape control. For this reason, there is no reli
relation between the measured forces and theoretical mo

One way to solve this problem is to use nanotubules
C60 fullerene molecules.1,2 Experiments show that an AFM
probe tip formed by a nanotube can provide atomic-le
resolution.3 Specifically, it has been noted that such stru
tures possess a very high elastic modulus~;1–5 TPa! and
resonance frequency~.200 kHz!.

The present work is a continuation of Ref. 2. Our obje
tive is to investigate theoretically the resolution of an AF
by calculating the interaction forces acting between sing
and multilayer nanotubes~different lengths and diameters!
and a solid surface. The minimum distance to which a na
tube approaches a surface is estimated on the basis o
calculations, and the operating regimes of an AFM are
termined.

Two different models are used. In the first one the s
face is treated as a semi-infinite medium with volume den
n2 and a single-layer nanotube is treated as a hollow cylin
with a uniform surface densityn1 of atoms, which is located
at a distanceh from the surface. The second model takes in
account the specific atomic structure of the sample surfa

The nanotube is assumed to be attached to a cantile
in the form of a rectangular plate with areaSand thicknessd
~Fig. 1!. This is the configuration employed in Ref. 3.

The interaction potential between a single atom of
nanotube and a surface atom is chosen as a combination
repulsive potential at short distances that is obtained by
proximating the computational results obtained with t
electron-gas model2 a Lennard–Jones potential at mediu
distances, and a retarded Casimir potential at large distan
9821063-7842/99/44(8)/4/$15.00
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U~r !55
b

r
exp~2ar !, 0<r<r 1 ,

2DS 1

r 6
2

r 0
6

2

1

r 12D , r 1<r<l0/2p,

2
23\ca1a2

2pr 7
, r .l0/2p,

~1!

where r is the distance between the atoms;D51.49
31025 eV•nm6; r 050.381 nm~for carbon atoms in graphite
layers!;4 l0 is the characteristic wavelength of the absorpti
spectrum;c and\ are speed of light in vacuum and Planck
constant;a1,2 are the polarizabilities of a carbon atom and
surface atom; and,b, a, andr 1 are adjustable parameters.

The coefficient in the Casimir potential is exact for th
interaction of identical atoms, while for different atoms th
geometric-mean is used.

FIG. 1. Diagram of the cantilever of an AFM with a nanotube:1 — canti-
lever,2 — nanotube,3 — piezoelectric drive.
© 1999 American Institute of Physics
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TABLE I. Analytical expressions for the interaction forces in an AFM in the continuum approximation~model
1!.

System Interaction force

Nanotube–sample~van der Waals forces!
F~h!52

AR

3

z0~3h213hz01z0
2!

~h1z0!
3h3

Nanotube–sample~Casimir forces!
F~h!52

23\ca1a2n1n2pR

10

z0~4h216z0h214hz0
21z0

3!

~h1z0!4h4

Cantilever–sample~Casimir forces!
F~x!52

23\ca1a2n1n2S

20

d~4x316dx214xd21d2!

~x1d!4x4
,

x5h1z0

Nanotube–sample~repulsive forces!
F~h!5

ARr0
6

45

1

h9

r 1<r<l0/2p

Nanotube–sample~repulsive forces!
F~h!5S2p

a
D2

n1n2Rb exp~2ah!

r ,r 1

Note: In the formulas,z0 andR are the nanotube length and radius, respectively, andA5p2n1n2D.
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In standard AFM structures with solid probes, it is ord
narily assumed that the interaction of the cantilever with
sample is negligibly weak and is due to the repulsion
attraction of a small group of atoms at the probe tip. For
AFM operating with a nanotube, the tube can be fractions
a micron long, so that the contribution of the upper part
the tube and cantilever, which are located within the rang
the retarded Casimir forces, to the force could be substan

Using the continuum approximation~model 1! and the
potential ~1! it is easy to find all components of the forc
interactions of an AFM with the surface. The resulting fo
mulas are presented in Table I.

To estimate the effect of the cantilever and the top p
of the nanotube, calculations of the resulting attractive fo
were performed for the system silicon cantilever–nanotub
graphite surface as a function of the gap widthh. The results

FIG. 2. Interaction force versus the distance:1 — with the Casimir forces
and the contribution of the cantilever taken into account;2 — calculation in
the van der Waals approximation, neglecting the contribution of the ca
lever.
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are shown in Fig. 2 and correspond to the following geom
ric dimensions:z05d51 mm, S5303100 mm, andR55
nm. Curve1 was obtained taking into account the Casim
forces arising between the sample, the cantilever, and the
part of the nanotube; curve2 was obtained neglecting thes
forces and neglecting the contribution of the cantilever.
follows from Fig. 2 that the contributions of the force inte
actions with the cantilever and the top part of the nanotu
must be taken into account even at distancesh.1.5 nm. As
the length of the nanotube decreases, this distance beco
even smaller.

It is of interest to estimate the critical distance to whi
a nanotube approaches the surface. In the contact reg
stable operation of an AFM is possible if the interacti
force does not exceed the Euler critical value5

FE5
p2EJ

mz0
2

, ~2!

FIG. 3. Critical distance versus the nanotube length and radius.
i-
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FIG. 4. Surfaces obtained with a single-laye
nanotube (R55 nm!: a — graphite, force dif-
ferentialDF56.38231029 N; b — arbitrary
square lattice of carbon atoms with perio
0.246 nm,DF55.17731029 N.
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and
whereE is the elastic modulus;J is the moment of inertia of
the transverse cross section~for a circular section
J5pR4/4); and,m50.7 in the mounting shown in Fig. 1.

Using Eqs.~1! and ~2! we obtain for the correspondin
critical gap width

hmin55A
9 ARr0

6mz0
2

45p2EJ
, hmin>r 1 ,

1

a
lnS n1n2bRmz0

2

a2EJ
D , hmin<r 1 .

~3!

It is evident from Eq.~3! that the critical distance fo
probing a surface with a nanotube is determined by the
mensions and the physical characteristics of the tube.
dependence ofhmin on the nanotube radius and length
presented in Fig. 3.

To study the resolving power of nanotubes as AF
probes computer simulation of the images of several surfa
was performed using model 2, taking into account the ato
structure of the surface. The calculations employed
nanotube–surface atom potential
i-
he

es
ic
e

Ut~h,r!52Rn1

3E
0

pE
0

z0
U~A~h1z!21r21R222rRcosw!dzdw,

~4!

wherer is the distance from the point of projection of th
nanotube axis to the surface atom andU(r ) is the pair po-
tential ~1!.

The interaction with all surface atoms was found usi
Eq. ~4! by direct summation. A procedure for smoothing t
numerical data using the direct and inverse Fourier tra
forms was used to improve image contrast.

Images of an arbitrary square lattice of carbon ato
~with edge lengthd50.246 nm! and a graphite surface
which were obtained by a single nanotube with a radius
5 nm, are shown in Figs. 4a and 4b. It was assumed
h50.3 nm.

Figures 5a and 5b show images of the same surfa
witha three-layer nanotube with layer radii 1, 1.35, and
nm. It is evident from the images presented that single-
m,
FIG. 5. Surfaces obtained with a multilayer nanotube: a — graphite,DF54.41831029 N; b — arbitrary square lattice of carbon atoms with period 0.246 n
DF52.32731029 N.
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multilayer nanotubes give a quite high contrast.
In the simulation process, it was found that for certa

combinations of the nanotube radii and periods of the surf
structure the image contrast is inverted. This geometric ef
is due to a change in the effective number of atoms in
surface structure that fall within the ‘‘field of view’’ of the
carbon atoms localized on the nanotube surface. This e
is illustrated in Fig. 6, which shows the vertical force appli
to a nanotube with a fixed point of projection of the axis
the graphite surface as a function of the radiusR. Since Eq.
~4! gives a directly proportional increase of the force w

FIG. 6. For explanation of image inversion for a square lattice~period 0.246
nm!: 1 — F/R; 2 — N/R.
ce
ct
e

ct

increasingR, the ratioF/R, obtained after Fourier smoothin
~curve1!, is plotted along the ordinate. Curve2 showsN/R,
where N is the number of surface atoms in the ‘‘zone
visibility’’ of the nanotube. The corresponding zone w
ring-shaped with radiiR6DR (DR50.1 nm!. Figure 6
shows that the periodic variation of the force contrast is d
to oscillations of the ‘‘effective number’’ of atoms probed

For certain values of the nanotube radius and lattice
riod, the effective number of interacting atoms can chan
negligible at each step as the image is formed. In this c
the atomic resolution vanishes. Such a combination of t
size and lattice period is of special interest for studying
mechanism of friction interactions in nanotribocontac
formed by a nanotube and a surface. It is also importan
use nanotubes for these purposes because the radius o
contact zone in this case is clearly determined, while
ordinary contacts it depends on the clamping force.

1David L. Wilson, Pranov Dalal, and Kenneth S. Kump, J. Vac. Sci. Te
nol. A 14, 2407~1996!.

2G. V. Dedkov, Pis’ma Zh. Tekh. Fiz.23~12!, 37 ~1997! @ Tech. Phys. Lett.
23, 469 ~1997!#.

3Dai Hongjie, H. Hafner Jason, and G. Rinzler Andrew, Nature~London!
384, 147 ~1996!.

4L. A. Girifalco and R. A. Lad, J. Chem. Phys.25, 693 ~1956!.
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Critical conditions for spontaneous relaxation in self-organizing dissipative film
systems
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It is established that the necessary conditions for spontaneous relaxation of elastic strain energy
in a copper–As60Se40 self-organizing dissipative heterostructure is that the elastic
deformation energy and the temperature must reach their threshold values. It is shown that in the
temperature range 270–340 K the spontaneous relaxation of elastic deformation energy is
accompanied by structural–chemical ordering and anomalous diffusion of copper into the glassy
chalcogenide semiconductor layer. The maximum concentration of copper dissolved in the
films is 40 at. %. Conductivity inversion fromp to n type is observed in doped layers obtained by
this method. ©1999 American Institute of Physics.@S1063-7842~99!02408-3#
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A great deal of attention has been devoted to relaxa
processes in oxide and metallic glasses.1,2 However, these
processes have been little studied in glassy chalcogenide
structures.3

In the present work we investigated the spontaneous
laxation of elastic deformation energy in a copper–As60Se40.
self-organizing thin-film heterostructure.

A distinguishing feature of films of glassy chalcogeni
semiconductors~GCSs!, as compared with their crystallin
analogs, is that they contain a high concentration of str
tural and chemical defects. This promotes the accumula
of high elastic deformation energies in films.

Kinetic curves of the variation of the surface resistiv
of Cu–As60Se40 heterolayers with different thickness ratio
are displayed in Fig. 1. We produced a Cu–GCS heterost
ture at temperature 293 K. It follows from the figure that t
maximum rates of diffusion of copper into the GCS laye
are attained with a GCS–copper thickness ratio of 8,
which the elastic deformation energy density in the GCS fi
corresponds to the threshold value. In the process, the d
pative heterostructure Cu–GCS transforms into a new
dered state. The internal parameter controlling this transi
is the elastic deformation energy density.

Figure 2 shows the kinetic curves of the surface resis
ity of Cu–GCS heterolayers with a GCS–copper thickn
ratio of 8 at various temperatures. As the temperature
creases, the rate of copper diffusion into the GCS layer
creases, and atT5340 K the rate changes abruptly. Th
maximum concentration of copper dissolved in GCS films
40 at. %. Structural-chemical ordering occurs during the p
cess of spontaneous relaxation of the elastic deformation
ergy. The copper diffusing in the form of a positive
charged Cu1 ions into the GCS layer becomes uniform
distributed in the layer and interacts chemically with t
components of the glass, producing glass-forming struct
units consisting of the unstable chemical compou
CuAsSe2 . These structural units and the structural un
As2Se3/2 and As2Se4/2 ~Ref. 4! join together into polymer
9861063-7842/99/44(8)/2/$15.00
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formations, where arsenic atoms are copolymerizers. T
expands the region of glass formation. As the copper c
centration in the films increases further, molecular fragme
with intercluster boundaries appear. The granular structur
amorphous As2Se3 films has been observed in Ref. 5. Whe
the copper concentration exceeds 30 at. %, the molec
clusters of the unstable compound CuAsSe2 decompose ac-
cording to the reaction

3 CuAsSe25Cu3AsSe412 AsSe, ~1!

forming the stable crystal compound Cu3AsSe4 . All chemi-
cal ordering processes in the system occur according to
law of mass action.

Since at temperatures below the critical temperatu
which is 270 K ~Fig. 3!, the acoustic modes are ‘‘frozen’
and the process of spontaneous relaxation of the elastic
formation energy is not observed. Hence it follows that sp
taneous relaxation of elastic deformation energy and di
sion of copper into the GCS layer are possible only
temperatures above the critical temperature and when
elastic deformation energy density reaches its thresh
value.

FIG. 1. Kinetic curves of the surface resistivity of Cu–GCS heterolayer
T5293 K for different thickness ratios:dGCS/dCu55 ~1!, 8 ~2!, and 10~3!.
© 1999 American Institute of Physics
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Inversion of conductivity fromp to n type was observed
in doped layers obtained by this method. It is due to
presence of zero-valence quasiatoms Cu0 with weakly bound
valence electrons in the system. These atoms appear
result of a disproportionation reaction of Cu1 ions according
to the scheme

Cu1
˜Cu211Cu0. ~2!

To check the existence of heterovalent copper io
Cu21, Cu1, and Cu0 in the system, we investigated th
x-ray-electron spectra of the internal lines Cu2p3/2,
As3d5/2, and Se3d5/2 and the Auger line Cu~LMM!, which
were obtained on the E´S-2401 electronic spectrometer. Th
shape and position of the copper spectral lines (Et Cu2p3/2

5933.0 eV, EkinCu(LMM )5917.4 eV) indicated that Cu0

and Cu1 are present in the system, while the satellite a

FIG. 2. Kinetic curves of the surface resistivity of heterolayers w
dGCS/dCu58 for temperatures 310~1! and 340 K~2!.
e

s a

s

a

shift of 8.5 eV from the main peak attested to the presenc
Cu21. The electrophysical properties of the doped layers w
be studied in further investigations.

We thank O. M. Kanunnikova for performing the x-ra
electron analysis of the samples.
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FIG. 3. Surface resistivity of Cu–GCS heterolayers versus the tempera
for dGCS/dCu58.
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The requirements on dielectrics for solving the problem of accumulating, storing, and regulating
the extraction of electric energy by means of electric capacitors with the required nominal
power over a long time are examined and established. ©1999 American Institute of Physics.
@S1063-7842~99!02508-8#
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1. In Ref. 1 we called attention to the possibility of usin
capacitors as autonomous sources of electric power. To s
this problem a method was proposed for controlled extr
tion of energy stored in a capacitor that makes it possible
release a prescribed nominal power in a load over a l
period of time. The electric energy accumulated in a cap
tor depends strongly on the dielectric used in t
capacitor.2–5

In the present paper we examine the requirements
dielectrics to solve the problems of the accumulation, s
age, and controlled extraction of electric energy in a lo
period of time with the required nominal power using capa
tors.

2. The insulating medium for the purpose indicated m
satisfy the following two requirements above all. First,
must possess a high specific volume energy capacity.
will make it possible to produce a compact source of elec
energy. Second, it must possess a high volume resisti
i.e., it must be a good dielectric. Since the leakage curre
are small, this will make it possible to preserve for a lo
time the energy stored in a capacitor. The possibility of la
dissipative power losses in the dielectric during the discha
ing of the capacitor on a load is also of concern here.
shall discuss these requirements in greater detail.

3. A capacitorCb making it possible to accumulate th
maximum energyE051.6WHT is required to supply nomi-
nal powerWH to a user for a timeT.1 The specific volume
electric capacity of a capacitor is given by the formu
rn5«0« rU0

2/2 («0 is the permittivity of empty space,« r is
the relative permittivity, andU0 is the breakdown field
strength!, where U05V0 /d (V0 is the breakdown voltage
and d is the thickness of the dielectric layer between t
capacitor plates!. The smallest volumen of the dielectric
layer between the capacitor plates that is required for
case is determined from the expressionE05rnn.3,6–8

As insurance against breakdown of the dielectric,
shall take as the maximum voltage on the capacitor pla
half the breakdown voltageV0/2. In this case the minimum
spatial volume of the dielectric in the capacitor will be
9881063-7842/99/44(8)/2/$15.00
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«0« rU0
2

. ~1!

4. We shall now consider the energy losses in the diel
trics used in storage capacitors. Energy losses due to vol
leakage currents and discharge currents on a load in the
ternal electric discharge circuit of the capacitor occur in
dielectric in a capacitor. In the first part of the electr
arrangement1 in the tank capacitor circuit the energy loss
are due only to leakage currents. There are no other lo
here, since the dispenser is charged from the tank with
any energy losses. This is because dielectrics with rapid
larization (1021421028 s) are used in both capacitors. In th
second part of the arrangement1, as the dispenser is dis
charged on a load, dissipative power losses occur in the
penser because of powerful discharge currents in the lo
There are virtually no other energy losses here. Therefore
total energy losses in the method proposed in Ref. 1
controlled extraction of the energy stored in a capacitor c
sist of the energy losses due to the leakage currents of
tank capacitor in the dispenser charging circuit and the
ergy losses due to dissipative power losses in the disch
circuit of the dispenser.

The energy losses due to volume leakage currents
characterized by the time constanttc5«0« rr of the capaci-
tor, and they are determined only by the electric parame
of the dielectric (r — volume resistivity!. The ratioT/tc is
proportional to the relative energy losses due to volume le
age currents of the tank capacitor. However, since the fa
of e energy discharge time of the capacitor is half the intr
sic discharge time of the capacitor,tc/2 should be used in-
stead oftc . Then the relative energy losses due to volum
leakage currents of the tank capacitor will be determined
the relation

Py5
2T

tc
. ~2!

Let us now consider the dissipative power losses in
dispenserCd . We note that the dissipative power lossesWnd

in the dispenser are compensated by corresponding po
© 1999 American Institute of Physics
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lossesWn in the tank capacitor. The relation betweenWn and
Wnd can be determined as follows. The dissipative spec
volume dielectric power losses are determined by
relation2 Pn5U0

2/(2r). Using the formulasCb5«0« r /d2,
E051.6DE (DE5WHT), and E05CbV0

2/2, we can deter-
mine the total dielectric dissipative power losses of the ta
capacitor asWn5Pnn or Wn51.6DE/tc . We note that for a
dispenser, similarly, Wnd51.6DEt i /tc , where DEt i

5WHt is the amount of energy transferred by the dispen
to the load in one pulse. The nominal power is determined
the formulaWH5DEt i /t, so thatDE5NDEt i and there-
fore Wn5NWnd .

Since the nominal power isWH5DE/T, comparingWn

and WH we obtain, using Eq.~2!, the relative dissipative
power losses in our method as

P050.8Py . ~3!

The relation~3! shows that in the present method t
relative dissipative power losses can be expressed in term
the relative energy losses due to leakage currents. There
the total relative energy losses in our method will
P5Py1Pd , i.e.,

P53.6
T

tc
. ~4!

The expression~4! shows that the dielectrics in the ca
pacitors Cb and C] will always be in states that are no
overloaded, so that there is no need to fear loss of the die
tric properties of the dielectrics and other problems aris
when dielectrics overheat.

5. The results obtained make it possible to formulate
requirements on dielectrics. To this end we introduce
parameters («,r) and (« rU0

2), which are convenient for de
scribing the electric characteristics of a dielectric in the pr
lem at hand.

Sincetc5«0« rr, we find, taking Eq.~4! into account,
that (« rr)53.6T/(«0P)5431011T/P ~we have used here
the value«058.854310212 F/m!. At present, relative losse
P<1022 are considered to be low, and they are very go
for wide practical applications. In this case« rr5431013T.
This relation shows the values of the parameters« r and r
required to preserve the accumulated energy for the requ
working time with losses not exceedingP<1022. For con-
venience we call the product« rr the ‘‘figure of merit’’ of the
dielectric. Its dimensions in the SI system areV•m. For
example, if the user requires nominal power for worki
time T530 h ~105 s! with losses not exceedingP<1022

~1%!, then a dielectric with figure of merit« rr5431013

V•m is required.
To clarify the specific volume energy capacity of capa

tors we shall use Eq.~1!. Substituting into it the numerica
value of«0 we obtain« rU0

25431011WHT/n.
This relation shows the values of the parameters« r and

U0
2 required to accumulate for a given dielectric volume t

required amount of electric energy. For convenience we
the parameter« rU0

2 the ‘‘measure of strength’’~with respect
to volume!. Its dimensions in the SI system are~V/m!2.

Therefore the dielectric must satisfy the requirements
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~« rU0
2!5431011

WHT

n
, ~5!

~« rr!5431011
T

P
. ~6!

6. We shall now consider a specific typical situatio
where the user requires electric energy with nominal pow
WH5100 kW in timeT530 h, and the user admits a pow
source with volume n<1021 m3 and energy losses
P<1022. This requires a tank capacitor with capacitanceCb

that is capable of storing the maximum energyE054.8
3103 kWh. Then, according to Eqs.~5! and ~6!, the dielec-
tric in the tank capacitor must satisfy

~« rU0
2!>431022~V/m!2, ~7!

~« rr!>431018V•m. ~8!

These requirements are quite stringent. Considering
progress made in insulator technology,11 there is hope that
dielectrics satisfying the requirements~7! and ~8! will be
produced in the near future. For other cases where the
ume is not very critical, existing dielectrics9–11 which pos-
sess two orders of magnitude lower values of the measur
strength~7! and figure of merit~8! could be quite suitable for
this purpose.

In closing, we express our sincere appreciation to A.
Rukhadze and A. N. Dovbne for their active support a
their interest in this work.
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omizdat, Moscow, 1986, 1987!; Vol.3 ~Énergoatomizdat, Moscow, 1988!.
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A double-gap planar magnetic lens
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An analytical model and equations for describing the field of a planar magnetic lens with two
concentric nonmagnetic gaps are developed. It is demonstrated that the ‘‘half-width’’ of
the magnetic field of the lens can be controlled by varying independently the currents in the
excitation coils of the two gaps. This makes it possible to control the focal length and
the spherical aberration of the lens. It is shown that when oppositely directed currents are used
in the excitation coils, a planar magnetic lens that does not rotate the image can be
obtained. ©1999 American Institute of Physics.@S1063-7842~99!02608-2#
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INTRODUCTION

Planar magnetic lenses with a single ring-shaped n
magnetic gap are being increasingly used in standard
scanning electron microscopy as electronic object
lenses.1–3 Because of their geometric characteristics th
lenses make it possible easily to place the experimental
ject in the region of maximum magnetic field. Such an
rangement of the object decreases the spherical aberr
and makes it possible to place a secondary-electron dete
outside the nonmagnetic gap of the lens. To speed up
simplify the analysis of the electron-optic characteristics
such lenses we have proposed3 a simple analytical model o
the magnetic field of a planar magnetic lens, taking into
count the main geometric features of the lens, and we h
checked this model experimentally. The on-axis magn
inductionBz(0,0,z) in our model is described by the formu

Bz~0,0,z!5m0NI~~r1
21z2!21/22~r2

21z2!21/2!

3~ ln~r1 /r2!!21, ~1!

wherem054p31027 H/m is the magnetic constant in the S
system,r1 andr2 are, respectively, the inner and outer ra
of the ring-shaped nonmagnetic gap,Z is the coordinate
along the axis of the electron-optic system, andNI is the
number of ampere-turns in the excitation coil. The ‘‘ha
width’’ a of the axial magnetic induction distributio
Bz(0,0,z), described by Eq.~1!, in the field of the lens was
found to be strictly related with the outerr2 and innerr1

radii of the nonmagnetic gap of a planar lens as

a5A2r1r2~r1
21r1r21r2

2!21/2. ~2!

However, for certain applications, for example, the
vestigation of VLSI integrated circuits, it would be helpful
have a magnetic objective lens such that the half-width of
9901063-7842/99/44(8)/2/$15.00
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on-axis magnetic induction distributionBz(0,0,z) is a
smooth function of the shape of the object. This can be
complished with a planar magnetic lens possessing not
but two ring-shaped nonmagnetic gaps. In such a lens, e
nonmagnetic gap will have its own excitation coil in whic
the current can be varied independently.

Our aim in the present work is to extend the analytic
model developed for planar magnetic lenses in Ref. 3
lenses with two nonmagnetic gaps.

STATEMENT OF THE PROBLEM

Just as in Ref. 3, we shall assume that the magn
scalar potential in the model adopted for the magnetic len
given on the plane containing the flat edge of the central p
tip and the edges of two outer pole tips concentric with
central one. Once again we shall assume, following Glas4

that the magnetic field inside the narrow nonmagnetic gap
orthogonal to the inner surfaces of the gaps. The magn
scalar potentialFk(r), corresponding to such a field, insid
the nonmagnetic gaps will satisfy the logarithmic law

Fk~r!5Ak ln~r!1Bk , ~3!

where r5(x21y2)1/2 is the distance from the axis of th
lens to the point of interest;K51,2 is the number of the
nonmagnetic gap; and,Ak and Bk are constants, which ac
cording to Glaser4 are determined from the boundary cond
tions on the neighboring pole tips.

We shall assume the potential within the flat boundar
of the magnetic poles to be constant, the constants for ne
boring poles differing by the amountm0(NI)k , where (NI)k

is the number of ampere-turns in the excitation coil, cor
sponding to the given nonmagnetic gap with numberK,
wherek51,2. Finally, the magnetic scalar potential on t
entire boundary plane is
© 1999 American Institute of Physics
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F~r!5 (
k51

2

Ck~Q~r!2Q~r2r2k21!!

1
ln~r/r2k!

ln~r2k21 /r2k!
~Q~r2r2k21!2Q~r2r2k!!,

~4!

whereCk5m0(NI)k and Q(r) is the Heavisideu function,
defined as

Q~r2r i !5H 0 r,r i ,

1 r>r i .
~5!

Therefore we have a Dirichlet problem for the Lapla
equation in the half spacez>0 with a boundary condition o
the form ~4! on the planez50.

METHOD OF SOLUTION

Using the Green’s function for the Dirichlet problem fo
a half space,5 we obtain the following expression for th
on-axis distribution of the magnetic scalar potential
Z>0:

F~x,y,z!ux5y505F~0,0,z!5zE
0

` F~r!rdr

~r21z2!3/2
, ~6!

where the potentialF~r! is given by Eq.~4!.
Using Eq. ~6! for the magnetic scalar potential on th

axis of the system we obtain for the on-axis magnetic ind
tion distribution

Bz~0,0,z!52
]F

]z
~0,0,z!52m0(

k51

2

Dk~~r2k21
2 1z2!21/2

2~r2k
2 1z2!21/2!21. ~7!

Here

2k5~NI !k~ ln~r2k21 /r2k!!.

Continuing the field in the form~7! symmetrically to
negative values ofz, as in Ref. 3, gives a bell-shaped fiel
which, according to Ref. 4, can be approximated as

Bz~0,0,z!5B0 /~11~z/a!2!,

whereB05Bz(0,0,0) is the maximum field on thez axis at
z50, and the ‘‘half-width’’ of the field, according to Ref. 4
is given by

a5~22B0 /B9!1/2, ~8!

where
r

-

B9[
]2

]z2
Bz~0,0,z!

at z50. Substituting into Eq.~8! the values ofB0 and B9
calculated using the field~7!, we obtain for the half-widtha

a5S 22(
k51

2

Dk~r2k21
21 2r2k

21!/ (
k51

2

Dk~r2k21
23 2r2k

23!D 1/2

.

~9!

Let us now examine the behavior of the half-widtha of
the field for different ratios between the currents in the fi
and second excitation coils. Let both nonmagnetic gaps
narrow, i.e.,r2k5rk* 1D, r2k215rk* 2D, and r2k2r2k21

52D!rk* , whererk* is the average radius of thekth ring-
shaped gap. Since the coefficientsDk;(NI)k , setting D1

@D2 in Eq. ~9! we obtain amin'r1*A2/3, and settingD2

@D1 we obtain, correspondingly,amax'r2*A2/3.
When the excitation currents in the two coils are a

proximately the same, intermediate values of the half-wi
a are obtained. Thus, the half-width of the field can be re
lated continuously in the ranger1* A2/3<a<r2* A2/3 by
varying the relative magnitude of the currents in the first a
second excitation coils of a flat double-gap magnetic len

Analyzing Eq. ~7! for the on-axis magnetic induction
distribution, we note that if the currents in the excitatio
coils of the two nonmagnetic gaps flow in opposite dire
tions, then the condition

E
z0

0

Bz~0,0,z!dz50, ~10!

which corresponds to no rotation of the image of the obj
when the object is imaged using a planar magnetic lens,
hold. The object is located in the planez5z0, and its image
is located in the planez50.
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An analytical expression is obtained for the electron energy term by solving a two-center Dirac
problem. This expression has the correct asymptotic form in two limiting cases — the
Popov approximation and the nonrelativistic problem. ©1999 American Institute of Physics.
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The two-center problem~i.e., the problem of the motion
of an electron in the field of two fixed Coulomb centers w
chargesZ1 and Z2 separated by a distanceR! is a classic
problem of nonrelativistic quantum mechanics with applic
tions in the theory of the chemical bond, in the physics
m-meson processes, and so on. An extensive literature is
voted to it~see, for example, Refs. 1–3!. The corresponding
problem for the Dirac equation exhibits a number of n
features that make solution difficult: 1! the variables in the
Dirac equation with the potential

V52aS Z1

r 1
1

Z2

r 2
D

are not separable in any orthogonal coordinate system; 2! for
largeZ falling into a center occurs; and, 3! the wave function
is a multicomponent function, and forZa'1 all components
are of the same order of magnitude.

Interest in the two-center relativistic problem arose af
it was indicated in Ref. 4 that quantum electrodynamics
be checked in experiments on heavy-ion collisions. As
well known,6,7 for chargesZ'Zcr5170 the lowest energy
level of the single-center Dirac equation sinks into the low
continuum and spontaneous positron creation starts. S
nuclei with Z'170 do not exist, in Ref. 4 it was suggest
that these fields could be obtained in heavy-ion collisions.
obtain the positron production cross section it is necessar
known the energy of quasimolecular states (Z1 ,Z2 ,e2) as a
function of distance, i.e., the energy term. In this connecti
numerical5 and analytical6,7 calculations of the energy term
and the critical distance~i.e., the distance for which the term
sinks into the lower continuum! were performed. In Ref. 5
which contains the results of extensive numerical calcu
tions, the Dirac equation for a two-center Coulomb poten
was solved by diagonalizing the Dirac Hamiltonian in a tw
center basis. Approximate analytical calculations of the
ergy term and the critical distance were performed in a se
of works by V. S. Popov.6–8 But the formulas obtained in
these works permit calculating the energy term and the c
cal distance only numerically or for

Z11Z22Zcr

Zcr
!1
9921063-7842/99/44(8)/3/$15.00
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~the condition of small supercriticality! and for small inter-
center distances.

In the present work, the Dirac equation for a two-cen
problem is solved by a method similar to the method
linear combination of atomic orbitals~LCAO!, widely used
to solve the nonrelativistic two-center problem.2 As is well
known, the LCAO method in application to the hydroge
molecular ion and the hydrogen molecule makes it poss
to calculate the energy term in analytical form. Howev
similar calculations for the Dirac electron have not yet be
performed. The analytical formula obtained by applying th
method to the relativistic two-center problem permits calc
lating the energy term in a wide range of total nucle
charges and intercenter distances.

The system of units\5c5me51 is used throughout;R
is the distance between nuclei;r 1 andr 2 are the distances o
the electron from the nuclei; and,Z15Z25Z.

The motion of a relativistic electron in the field of tw
Coulomb centers is described by the stationary Dirac eq
tion

HC5EC, ~1!

whereH5a•p1b1V is the Dirac Hamiltonian, anda and
b are Dirac matrices.

We shall solve Eq.~1! by the LCAO method, choosing
the wave function in the form

C5d1C11d2C2 ,

where C1 and C2 are the wave functions of an electro
moving in the field of the first and second centers, resp
tively.

As is well known,2 the symmetry of the problem (Z1

5Z2), the normalization conditions^CuC&51 and
^C j uC i&51 ( j 51,2), and the fact that the ground sta
should not have any nodes give

d15d25d5
1

A2~11S!
,

whereS5^C1uC2& is the overlap integral.
The electron energy can be calculated as the matrix

ment

E5^CuHuC&, ~2!
© 1999 American Institute of Physics
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where

^Cu5@wx#, uC&5Fw

x
G

is a bispinor in the standard representation.
As mentioned above, we take for the functionsC1 and

C2 the relativistic wave functions of a hydrogen-like atom9

with effective chargeQa

w j5Ar j
g21e2Qar jF1

0G5AgjF1

0G ,
x j5 iABr j

g21e2Qar jFcosu

eiw sinuG5 iABgjFcosu

eiw sinuG ,
wheregj5r r

g21e2Qar j ; j 51,2; and,

A
~2Qa!

3
2

A4p
A 11g

2G~112g!
~2Qa!g21,

B5
12g

Qa
, g5A12Q2a2.

Substituting these wave functions into Eq.~2! we obtain
for the energy an expression containing five integrals wh
can be expressed analytically in terms of the completeG(x)
and incompleteG(x,y) gamma functions10 as

E5
2pA2bR2g

11S FQa~ I 11I 2!

1
ag

2Qa
~ I 31I 4!22Za~ I 21I 5!G , ~3!

S52pA2R2g11bI4 ,

where the integralsI 1–I 5 have the form

I 15
1

a2g
2G~2g!,

I 25
1

a2g F S 22
a2

3~2g21! DG~2g,a!

1S 1

3
1

a

3~2g21! Da2ge2aG ,
I 35

1

a2g11
4gG~2g!,

I 45
1

a2g11 F S 4g2
2a2g

3~2g21! DG~2g,a!

1S 21
2ag

3~2g21! Da2ge2aG ,
I 55

1

a2g11 F ~a2g!G~2g,2a!

1~a1g!G~2g!
1

2
~2a!2ge22aG ,
h

a52QaR, b5
2

11g
.

Thus, we have obtained the energy term of the elect
as a function of the distanceR, the chargeZ, and the test
chargeQ. For Qa!1 ~g .1! Eq. ~3! assumes the form

E5Q2a2F1~a!1QaF2~a!, ~4!

where

F1~a!5
1

2

11e2aS 11a2
a2

3 D
11e2aS 11a1

a2

3 D ,

F2~a!52Za

112e2a~11a!1
1

a
2S 1

a
11De22a

11e2aS 11a1
a2

3 D .

The expression~4! is identical to that obtained in the
nonrelativistic LCAO method for the molecular hydroge
ion.2

The chargeQ is, generally speaking, a function ofR and
Z, i.e.,

Q5Q~R,Z!,

where, as is well known,2

QuR˜052Z, ~5!

QuR˜`5Z. ~6!

Figure 1 shows the functionQ/Z versusR for relativistic
and nonrelativistic systemsEr2Er with chargeZ568, ob-
tained by numerically minimizing expressions~3! and ~4!,
respectively. As one can see, in the limitsR˜` and
R˜0 the effective charge approaches the charge of the
lated and unified atoms, respectively.

Figure 2 shows the relativistic and nonrelativistic ener
terms for chargeZ568. It is evident that the relativistic cor
rections become substantial for smaller values ofR.

FIG. 1. Q/Z for z568: dashed curve — dependence obtained by minim
ing the expression for the nonrelativistic term; the solid curve is obtained
minimizing the expression for the relativistic term.
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Calculating the limit of expression~3! as R˜0 taking
account of Eq.~4!, we find ~unified atom!

E~R˜0!5A124Z2a2.

and in the limitR˜` ~isolated atom!, we have taking ac-
count of Eq.~5!,

E~R˜`!5A12Z2a2.

We note that in the cases considered above, the t
charge of the nuclei is less than 137. ForZ11Z2.137, gen-
erally speaking, the finite sizes of the nuclei must be ta
into account, i.e., regularization of the Coulomb potentia
required at short distances. However, forZ11Z2.137 Pop-
ov’s formula ~for the critical distance at which the groun
state level sinks into the lower continuum!, obtained in Ref.
6 by the method of joining asymptotic expressions at la
distances from the nuclei, can be obtained directly from
~3! under the same assumptions as in Ref. 6. Indeed, sinc
this caseg5 iA4Z2a221, a!1, andQ52Z, from the con-
dition of sinking into the lower continuum

E~Rcr!521

FIG. 2. Energy term forZ568. The dashed curve is for a nonrelativist
system and solid curve is for a relativistic system.
tal

n
s

e
.
in

we have

@~12g!4g12g#a2g524gG~2g11!

or

~2R!22g
4g

~12g2!g~~g21!4g22g!
G~2g11!51[e2p i .

Simple transformations convert this expression into
form

RcrC expS 2
p

A4Z2a221
D .

This expression is identical to that obtained previously
Ref. 8.

In summary, we have obtained an analytical express
~3! for the energy term of a relativistic electron moving
the field of two stationary Coulomb centers. This express
is valid in a wide range of total nuclear charges and int
center distances. If the total charge of the nuclei is close
the critical value (Z11Z2;170), Popov’s well-known
formula6–8 for the critical distance between the nuclei
which the level sinks into the lower continuum and electro
positron pair creation occurs, obtains from this formula.
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The distribution of the potential and intensity of the electric field in dielectric structures with a
nonuniform surface charge is analyzed. Computational formulas are proposed and
computational results are presented. ©1999 American Institute of Physics.
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Nonuniform structures whose physical properties vary
a regular manner in space and give devices and systems
qualities have been increasingly used in recent years fo
formation transmission and processing.1–8 For example, an
electret electroacoustic transducers with nonuniform
charged polymer-film surfaces are much more reliable
have a much longer service life than transducers based
uniformly charged films.9

We shall examine a method for calculating the elec
field above nonuniformly charged electrets. Let a regular
riodic distribution of either the potentialV or surface charge
densitys be given on a flat interface between two dielect
media with relative permittivities«1 and «2 . Let the inter-
face be the (x,y) coordinate plane, and let us represe
V(x,y) or s(x,y) as Fourier expansions.

We consider first the case where the potential on
(x,y) plane is constant,Vs , inside zero outside rectangula
spots~Figs. 1a and b!.

We represent the distributionV(x,y) as a product of
Fourier series

V~x,y!5VsF1~x!•F2~y!5VsF1•F2, ~1!

where

F15d/a1~2/p! (
m51

m21 sin~pmd/a!cos~2pmx/a!,

~2!

F25h/b1~2/p! (
n51

n21 sin~pnh/b!cos~2pny/b!.

~3!

Let the potentialw(x,y,z) above the (x,y) plane be ex-
pressed as

w~x,y,z!5VsF1~x!F2~y!F3~z!.

Solving the Laplace equationDw(x,y,z)50 we obtain the
potential distribution above the (x,y) plane, placed on the
interface between the two media with relative permittiviti
«1 and«2 , the first of which fills the bottom half-space an
the second the top half-space:
9951063-7842/99/44(8)/3/$15.00
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w~x,y,z!52Ecz1Vs8H ~dh/ab!1~2/p!F ~h/b!

3 (
m51

m21 exp~22pmz/a!

3sin~pmd/a!cos~2pmx/a!1~d/a!

3 (
n51

n21exp~22pnz/b!sin~pnh/b!

3cos~2pny/b!G1~4/p2! (
m51

(
n51

~mn!21

3exp~2lmnz!sin~pmd/a!cos~2pmx/a!

3sin~pnh/b!cos~2pny/b!J , ~4!

FIG. 1. Nonuniformly charged structure: a — plan view, b — section vie
© 1999 American Institute of Physics
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whereEc is the average value ofEz , thez component of the
electric field above the (x,y) plane;

lmn52p@~m/a!21~n/b!2#0.5. ~5!

The electric field componentsEx5Ex(x,y,z), Ey

5Ey(x,y,z), and Ez5Ez(x,y,z) above a periodically
charged plane can be obtained by differentiating the exp
sion for the potentialw(x,y,z) with respect to the corre
sponding coordinates: Thez component of the field intensity
above the plane calculated according to the formula

Ez~x,y,z!52]w~x,y,z!/]z5Ec1VsH 4F ~h/ab!

3 (
m51

exp~22pmz/a!sin~pmd/a!

3cos~2pmx/a!1~d/ab!

3 (
n51

exp~22pnz/b!sin~pnh/b!

3cos~2pny/b!G1~4/p2!

3 (
m51

(
n51

lmn~mn!21

3exp~2lmnz!sin~pmd/a!cos~2pmx/a!

3sin~pnh/b!cos~2pny/b!J , ~6!

is shown in Fig. 2.
The electric field componentEz(x,y,0) on the (x,y) sur-

face can be obtained from Eq.~6!, settingz50.
The average valueEc of the field normal to the (x,y)

surface depends on the electric charge distribution in sp
If the source of the electric field are only charges in the (x,y)
plane, thenEc is related with the average surface char
densitysc as

Ec5sc /@«0~«11«2!#. ~7!
s-

e.

If the total charge on a plane is zero,sc50, we must set
Ec50 in Eqs.~4! and ~6!.

If the surface charge density in the (x,y) plane~Figs. 1a
and b! is constant,1ss , inside and zero outside the recta
gular spots, then

sc5ss~dh/ab! ~8!

and the distributions(x,y) can be represented as a produ
of Fourier series

s~x,y!5ssF1~x!F2~y!, ~9!

whereF1(x) and F2(y) are determined from Eqs.~2! and
~3!.

The potential distribution is determined by the expre
sion

w~x,y,z!5ss /@«0~«11«2!#H 2~dh/ab!z1~1/p2!F ~ha/b!

3 (
m51

m22 exp~22pmz/a!sin~pmd/a!

3cos~2pmx/a!1~db/a! (
n51

n22

3exp~22pnz/b!sin~pnh/b!cos~2pny/b!G
1~4/p2! (

m51
(
n51

~mnlmn!
21exp~2lmnz!

3sin~pmd/a!cos~2pmx/a!sin~pnh/b!

3cos~2pny/b!J , ~10!

whence we can obtain thez component of the field, shown in
Fig. 3, as
FIG. 2. Distribution of thez componentEz of the electric field above a nonuniformly charged surface with a fixed distribution of the potentialVs .
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FIG. 3. Distribution of the fieldEz above a nonuniformly charged surface for the case where the surface charge densityss is given within the rectangles.
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Ez~x,y,z!5ss /@«0~«11«2!#H ~dh/ab1~2/p!!

3F ~h/b! (
m51

m21exp~22pmz/a!

3sin~pmd/a!cos~2pmx/a!1~d/a!

3 (
n51

n21exp~22pnz/b!sin~pnh/b!

3cos~2pny/b!G1~4/p2! (
m51

(
n51

~mn!21

3exp~2lmnz!sin~pmd/a!cos~2pmx/a!

3sin~pnh/b!cos~2pny/b!J . ~11!

The method considered above can be used to calcu
the electric field in electroacoustic transducers with elect
consisting of nonuniformly charged dielectric films.
te
ts

The proposed method for calculating electrets with
regular surface charge distribution was used to develop s
ware for a control and measurement system intended for
in operations of controlling the parameters of electroacou
transducers.

1Optics and Communications: Optical Transmission and Processing
Information ~Mir, Moscow, 1984!, 468 pp.

2A. W. Snyder and J. D. Love,Optical Waveguide Theory@Chapman and
Hall, New York-London, 1983; Radio i Svyaz’, Moscow, 1987, 656 pp#.

3S. M. Sze,Physics of Semiconductor Devices, 2nd ed.@Wiley, New York,
1981; Mir, Moscow, 1984, 456 pp.#.

4A. Blicher, Field-Effect and Bipolar Power Transistor Physics~Academic
Press, New York, 1981; E´nergoatomizdat, Leningrad, 1986, 248 pp.#.

5J. Kaufhold, A. Jastrebov, and M. Volokobinsky, Jahresbericht 1995
Deutsche Telekom FH Dieburg, 1995, pp. 103–113.

6Y. Tarui ~ed.!, VLSI Technology: Fundamentals and Application
~Springer-Verlag, Berlin–New York, 1986; Radio i Svyaz’, Moscow
1985, 480 pp.#.

7I. Brouda� and Dzh. Mere�, Physical Principles of Microtechnology,
edited by A. V. Shal’nov~Mir, Moscow, 1985, 496 pp.!.

8E. Dieulesaint and D. Royer,Elastic Waves in Solids@Wiley, New York,
1981; Mir, Moscow, 1982, 424 pp.#.

9G. A�zenbletter, Author’s Abstract of Candidate’s Dissertation@in Rus-
sian#, Leningrad, 1982, 21 pp.

Translated by M. E. Alferieff



TECHNICAL PHYSICS VOLUME 44, NUMBER 8 AUGUST 1999
On the nature of the mobile charge in passivating coatings based on lead–borosilicate
glasses

S. I. Vlasov, P. B. Parchinski , A. A. Nasirov, and B. A. Olmatov

Tashkent State University, 700095 Tashkent, Uzbekistan
~Submitted June 18, 1998!
Zh. Tekh. Fiz.69, 141–142~August 1999!

The temperature dependences of the mobile charge in lead–borosilicate glass passivating
coatings are investigated. Mechanisms are proposed for the formation of the mobile charge in the
structure of the glass. It is shown that the temperature dependence of the mobile charge
becomes stronger with increasing content of the crystal phase in the interior volume of a
passivating coating. ©1999 American Institute of Physics.@S1063-7842~99!02908-6#
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Mobile charge in insulator coatings used for passivat
semiconductor surfaces strongly influences the charact
tics of the passivated devices.1 In Ref. 1 it was observed tha
mobile charge is present in the interior volume of passivat
coatings based on lead–borosilicate glasses. Our objectiv
the present work is to determine the mechanism leadin
the formation of this charge.

The composition and fabrication method of the coatin
investigated are similar to those described in Ref. 3. T
experimental structures were divided into two grou
group-1 coatings melted atT5680 °C and group-2 coating
melted atT5700 °C.

The method of high-frequency capacitance–volta
characteristics was used to investigate the charges loca
in the interior volume of the insulator.4 The measurement
were performed by the bridge compensation method in
dark in the temperature range from230 to180 °C with the
holding time t052 min at each point. The frequency of th
test signal was 80 kHz–1.5 MHz, which satisfies the crite
for the capacitance–voltage characteristics of met
insulator–semiconductor structures~MIS structures! to be
high-frequency characteristics.5 The typical capacitance–
voltage dependences for coatings in both groups are
played in Fig. 1. Hysteresis due to the presence of mo
chargeQm is observed for all samples. The width of th
hysteresis loop is independent of the duration of the enr
ing voltage. The mobile charge was determined as

Qm5C0DV, ~1!

whereC0 is the capacitance of the insulator andDV is the
width of the hysteresis loop.

For group-1 coatings the chargeQm5(2.260.2)
31029 C/cm2 remains constant in the entire experimen
temperature range. The observed shift of the capacitan
voltage characteristics on the voltage axis is due to the t
perature dependence of the chargeQss of the surface states.6

For group-2 coatings the values ofQm increase with
decreasing temperature. The broadening in the lower pa
the hysteresis loop, reaching a maximum atC/C050.7, is
interesting. The temperature dependence ofQm for group-2
coatings at the characteristic pointsC/C050.7 and 0.9 is
9981063-7842/99/44(8)/2/$15.00
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presented in Fig. 2. As the temperature increases toT
540 °C, the broadening in the lower part of the hystere
loop vanishes, and the mobile charge becomesQm2

5(2.4
60.2)31029 C/cm2 and remains constant with further in
crease in temperature. This behavior of the capacitan
voltage characteristics indicates the following. For bo
groups of structures, for an enriching voltage electrons

FIG. 1. Typical capacitance–voltage characteristics for group-1~a! and
group-2~b! coatings:T5220 ~1! and 40 °C~2!.
© 1999 American Institute of Physics
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injected from the semiconductor into the interior volume
the glass. The glass contains Pb21 ions, which are well
known to have a high polarizability.7 The localization of
electrons near the ions of the easily polarizable elements
sults in the formation of polarons, which drift between h
erovalent Pb ions as the external field varies.8 Polaron drift
shifts the center of charge in the insulator and shifts
capacitance–voltage characteristics along the voltage a9

In the experimental temperature range the polaron mob
is independent of the activation energy,7 which explains the
independence ofQm from T in group-1 coatings, as well a
in group-2 coatings at temperaturesT.40 °C. In this case,
Qm in structures from both groups depends only on the nu
ber of electrons trapped by lead ions and is determined
the composition of the glass. This is confirmed by the f
that the mobile charge in the group-2 coatings at temp
tures T.40 °C becomes equal to the mobile charge
group-1 coatings.

The temperature dependence of the mobile charge
served in group-2 coatings at temperaturesT,40 °C is ex-
plained as follows. As the temperature of formation of t
coatings increases from 680 to 700 °C, the number and
ume of inclusions of the crystal phase in the glass struc

FIG. 2. Mobile charge versus the temperature forC/C050.95 ~1! and
0.7 ~2!.
f
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increase sharply.2 The potential barriers formed in the pro
cess prevent electron extraction from the interior volume
the glass. ThenQm is determined by the condition

Qm5Q02E
0

t0
j ~ t !dt1Qm1

, ~2!

whereQ0 is the charge initially trapped on the potential ba
riers,Qm1

is the charge due to polaron drift,j (t) is the ther-
mionic current, andt is the measurement time at a fixe
voltage.

The thermionic emission current increases with tempe
ture ~the dependence ofj (t) on T is determined by the emis
sion mechanism1!, and forT.40 °C the relaxation time of
the charge trapped on the barriers becomes less thant0 . In
group-1 coatings, where the number of phase nonunifor
ties is much smaller,2 the charge localized on them relaxes
a time less thant0 in the entire experimental temperatu
range.

In summary, the presence of a mobile charge in pa
vating coatings based on lead–borosilicate glasses is du
electron localization near the easily polarizable lead ions
relaxation of the charge accumulated on the potential ba
ers. As the content of the crystal phase in the glass volu
increases, the mobile charge becomes temperature-depe
and as a result the characteristics of the passivated dev
show temperature instabilities.
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