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Heavy-quark production on nuclei provides important
information on strong-interaction mechanisms and has
been intensively discussed (see, e.g., [1–3] for review of
experimental data, discussion of some phenomenological
models, and for additional references). In this note we
will discuss the phenomenon of changing the screening
regime to an antiscreening one in J/ψ hadro- and electro-
production when xψ ≡ xF decreases in the framework of
the BCKT model [4, 5] based on the reggeon approach.
For J/ψ hadroproduction, this phenomenon happens in
the region of negative xψ. An investigation of this region
can provide important information on the dynamics of
charmonium production and may allow discrimination of
different dynamical models [2, 4, 6].

Nuclear effects are usually discussed in terms of
conventional power-law parameterization FA(xψ) ∝

FN(xψ) , where FN(xψ) (FA(xψ)) is the inclusive J/ψ
production cross section on a nucleon (on a nucleus).
The function α(xψ) characterizes nuclear effects at dif-
ferent longitudinal momentum fraction xψ.

Experimental data on J/ψ hadroproduction reveal a
striking contradiction with the simplest theoretical
expectations. Experimentally [7–9], the function α(xψ)
decreases from 0.93–0.95 at xψ . 0 to values ~0.75 at
xψ . 0.8, thus indicating an increase in absorption as xψ
increases. The formation-time mechanism predicts the
opposite behavior. Instead of expected scaling with

, experiment shows approximate Feynman scaling
with xψ [8]. Comparison of J/ψ production data at dif-
ferent energies reveals an explicit breakdown of the
QCD factorization theorem for this process [10].

On the other hand, when comparing the x depen-
dence of α for J/ψ hadroproduction with that for light-
quark particle hadroproduction (inclusive production of

¶ This article was submitted by the authors in English.
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pions, nucleons, lambdas, etc.), one observes the same
trend—small absorption at x . 0, large absorption at
x . 1, and approximate Feynman scaling. The differ-
ence is only quantitative: α is about 0.4–0.5 at x . 1 for
light quarks instead of ~0.7 for heavy quarks. This
behavior of α(x) for light hadrons allows a natural
explanation by Regge theory. Small absorption at x ~ 0
is due to Abramovskii–Gribov–Kancheli (AGK) can-
cellation for inclusive spectra [11], and increased absorp-
tion at high x is due to violation of AGK rules because of
the momentum conservation requirement [12].

In [4], the model for heavy quark and lepton pair
production was constructed taking into account the
most essential aspects of the reggeon approach. In the
spirit of a parton picture [13], it was suggested that a
fast projectile, due to quantum-mechanical fluctua-
tions, looks like a cloud of virtual particles consisting
of light partons (quarks and gluons, or light-quark had-
rons, mainly pions) and (with some small probability)
heavy partons (say c  pair).1 Different constituents of
this fluctuation interact with nuclear matter and deter-
mine the dependence upon the atomic number A. There
are both elastic and inelastic interactions which, from
the viewpoint of reggeon diagrams, are different dis-
continuities of the same reggeon diagram. As a result,
there exist definite numerical relations between discon-
tinuities of different types (AGK rules [11]).

As was stressed in [4], one has to distinguish
between two types of reggeon diagram cuttings. For
diagrams of the first class, a registered particle is con-
tained inside a pomeron and appears in the intermediate
state only due to the cutting of this pomeron. In this

1 In reggeon theory, the mechanism for emitting these partons is
supposed to be a multiperipheral one. Creation of heavy quarks in
this model can be considered as an example of the “intrinsic
charm” mechanism which was discussed by Brodsky et al. [14,
10]. In the reggeon approach, one can consider any heavy compo-
nent on equal footing (e.g., “an intrinsic lepton pair” and so on).
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case, the AGK rules are always valid and all of the con-
tributions of many-pomeron diagrams to inclusive
spectra cancel. This happens because each additional
pomeron can be both cut and uncut, and, due to the
opposite signs of inelastic and elastic rescatterings,
they cancel. As a result, only the one-pomeron diagram
contribution survives, giving the spectra a linear A
dependence. This situation is typical for low x particles.

Another situation occurs if the particle to be regis-
tered is contained inside the “vertex” of a reggeon dia-
gram (we use the term “vertex” for that part of the dia-
gram that is common for several pomerons attached to
it). In this case, AGK cancellation is generally not valid.
The striking manifestation of this mechanism comes
from the A dependence of inclusive spectra at large x
close to 1 (momentum conservation mechanism [12]).
The fastest particles belong to the “vertex” but not to
the pomeron, and corresponding discontinuities give
α ≈ 1/3 for large A compared to α ≈ 1 for small x.

A similar effect exists if one observes a “vertex”
particle of some particular type, e.g., the J/ψ meson.
There are two sources of nuclear effects in this case [4].
The first one is connected with rescatterings of light
partons in fluctuation on different target nucleons or,
alternatively, in the antilaboratory frame, with the
fusion of fluctuations originating from different nucle-
ons of a fast nucleus. This mechanism plays a small role
at present energies plab & 103 GeV [4], and its contribu-
tion is inessential to the antiscreening effects that inter-
est us.

Another contribution is connected to rescatterings
of the charmed state itself. One of the important ingre-
dients of the model of [4] is the assumption that it is not
the J/ψ meson that propagates along the nucleus but
some primary colorless system containing both 
quarks (in the color state) and light quarks (to screen
this color charge). This state, denoted as X, can be 

mesons, the  state, or something else, but the
crucial point is that this system is of large size and,
therefore, strongly interacts with nucleons (with a cross
section on the order of 20–30 mb). Only at the last stage
does this X system converts into a J/ψ meson (or in ψ'),
which is registered experimentally. Note that large
nuclear effects in the observed J/ψ production at x ~ 1
require a large nuclear absorption cross section for any
model. In our model, these effects are due to large-dis-
tance nonperturbative dynamics.

After inelastic rescattering, the state X can no longer
be registered (e.g., due to conversion to a state with a
small projection into J/ψ). One can describe this effect
quantitatively by introducing a probability e to find the
state X after its inelastic rescattering. Then, for e = 1,
one has exact AGK cancellation; for e = 0, the situation
is similar to the momentum conservation mechanism
for light mesons when x is close to 1 (no AGK cancel-
lation) with α . 1/3; and, for 0 < e < 1, the situation is
an intermediate one with incomplete AGK cancellation.

cc

DD

D∗ D∗
Moreover, the momentum of the state X decreases after
each inelastic rescattering. This redistribution of the
longitudinal momentum of the state X is essential for
the antiscreening effects discussed below.

Let us denote the momentum fraction distribution of
the X system immediately after its production as F0(x).
The state X has a certain projection into the state J/ψ (as
well as into ψ', etc.). The xψ distribution can be obtained
from F0(x) by convolution with some projection func-
tion Gψ,

(1)

where the following notation was used:

(2)

or, in the rapidity variables,

(3)

where  = Y – y is the rapidity in the antilab frame.

The X state traveling through nuclear matter is sub-
ject to both elastic and inelastic rescatterings. As in [4],
the change of the x distribution due to inelastic rescatter-
ing will be described as a convolution with some func-

tion eG(z), where G(z) is normalized (  = 1),

and the parameter e determines the probability of again
having the X state after inelastic interaction (though
with different momentum). After k inelastic rescatter-
ings of the state X, we have k-fold convolution:

(4)

It is essential that the operation of convolution be com-
mutative and associative, so we first convolute F1 with
Gψ in Eq. (4) and thus get the k-fold convolution of the

J/ψ spectrum on the nucleon  with rescattering
functions G:

(5)

In order to obtain the J/ψ inclusive spectrum on a

nucleus, the functions  should be weighted with

cross sections  for k inelastic rescattering after X
production:

(6)

FN
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The explicit form of the weights  depends upon

the energy region [4]. However, the change  is
rather smooth and for simplicity we will use the same
low-energy expressions as in [4]:

(7)

where  is the cross section of J/ψ production on a
nucleon, σX is the cross section of interaction of the
state X with a nucleon, and TA(b) is two-dimensional
nuclear density as a function of the impact parameter b
(nuclear profile). These formulas correspond to rescat-
terings ordered in the longitudinal direction (low-
energy regime) and, after summation over k, give the
well-known optical-type formula for the production
cross section. Thus, we arrive at Eq. (6) for a J/ψ
nuclear inclusive cross section, where Fk(x) and 
are defined by Eqs. (5) and (7).

Let us discuss parameterizations of the distribution

functions entering the model. The function 
can be determined from experimental data on J/ψ pro-
duction on a nucleon. Its form strongly depends on the
projectile type a. For a hadron beam, it can be parame-
terized as

(8)

where βπ . 2 for a pion and βp . 3 for a proton beam.
For J/ψ production by photons (and electrons), the form
of this function is strongly different: the produced ψ par-
ticles are concentrated near xψ . 1, and the distribution
over xψ can be parameterized in a powerlike way:

(9)

with βγ ≥ 6. We chose the value βγ = 6.
As to the function G(x), it is natural to suggest its

similarity to the function . For simplicity, we
choose the same form

(10)

with β considered as a free parameter.
The terms of the series (6) in the number of rescat-

terings k decrease rapidly with k, and it is sufficient to
take several first terms into account (4–5). The corre-
sponding convolutions at fixed impact parameter b are
estimated analytically, and b integration was performed
numerically. We use for calculations the Woods–Saxon
parameterization of the nuclear density, with standard
values for the parameters taken from [15].

Before comparing theoretical predictions with
experimental data, let us first discuss the qualitative
character of the absorptive corrections. As discussed

σA
k 1+( )

σA
k 1+( )

σA
k 1+( ) σaN

ψ( ) b2
v v σX–( ) v σX( )k/k!,expd

0

T A b( )

∫d∫=
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ψ x( ) Ca 1 x–( )
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FγN
ψ( ) x( ) βγx

βγ,=

FγN
ψ( ) x( )

G x( ) βxβ,=
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above, at small x ≈ 0, we have AGK cancellation and the
extent of its violation is proportional to 1 – e—the prob-
ability of losing the state X after inelastic rescattering.
The particle can be lost for registration not only if it dis-
appears after interaction but also if it loses part of its
momentum and is shifted into a different region in x. As
a result, at large x values, the AGK rules are violated
and absorption effects can be observed (momentum
conservation effect). However, this is only a redistribu-
tion (not a loss) of particles for the whole x region. For
a cross section integrated over the x screening, (absorp-
tion) effects are connected only with the value 1 – e and
not with momentum conservation. For J/ψ photopro-
duction, the absorption effects were usually analyzed
only for an integrated cross section; this is a reason for
the rather small values of the effective cross sections
extracted for J/ψ absorption (3–5 mb). We want to dem-
onstrate here2 that, as a function of x, nuclear effects
can be rather large (with an effective cross section on
the order of 20–30 mb) but, integrally, they cancel
because of canceling contributions from screening and
antiscreening regions.

This is demonstrated in Fig. 1, where we show a
description of the NMC data [16] on the ratio R(Sn/Be)
of J/ψ electroproduction cross sections as a function of
x ≡ xF. Since, in this case, the J/ψ spectrum is concen-
trated at x close to 1, the antiscreening regime takes
place even at x & 0.8. Note that theoretical predictions
at small x value (x < 0.6) are less reliable due to their
sensitivity to small-x parameterization of functions

 and G(x). Let us mention that our model is valid
only for nondiffractive inclusive J/ψ production.

For J/ψ hadroproduction, the antiscreening regime
can be expected only for negative x. Figures 2a and 2b
show that, for J/ψ and ψ' hadroproduction, the change

2 This phenomenon was first discussed in the talk [5] based on our
unpublished results.

FγN
ψ( )

Fig. 1. Description of data [16] on ratio R(Sn/C) for J/ψ
electroproduction. The curve corresponds to model calcula-
tions at parameter values σ = 30 mb, e = 0.85, and β = 12.
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of regime happens at x ≈ –(0.3–0.5). This value depends
on parameters of the model—the less are the momen-
tum losses (the larger is β) and the less is e, the more
negative values of x are necessary for the onset of anti-
screening (see Fig. 2). For example, for the value of β =
4, the crossover happens even at x ~ –0.2.

It is important to note that it is not entirely adequate
to analyze such a delicate effect as the variation of
dependence on atomic number with a change of x or pT

in terms of the standard parameterizations Aα. In gen-
eral, α is not only a function of x and pT but also
depends on the atomic number A. This is demonstrated
in Fig. 2: there is a noticeable difference of solid and
dashed theoretical curves which correspond to different
choices of A ranges. Therefore, the α value obtained
from experiments depends significantly on the chosen
range of A and on the method of analysis. To exclude
this uncertainty, it is preferable to compare the ratios of
the cross sections for different nuclei with theory.

For simplicity, we have considered only one primary
state X. Under the approximation that all charmonia
originate from this state, nuclear effects should be uni-
versal for J/ψ, ψ', etc. In Fig. 2b, as an example we give
a comparison of data on ψ' hadroproduction from [7, 8]
with model calculations with a single X state at the
same parameter values as in Fig. 2a. Generalization to
several primary states can lead to different A dependen-
cies for different charmonia states.

Fig. 2. (a) Description of data [7, 8] on nuclear dependence
of J/ψ hadroproduction. Curves correspond to model calcu-
lations for different methods of extraction: solid curve is
from the ratio R(Fe/C), and dashed curve is from R(W/C).
The dotted line extracted from R(W/C) corresponds to e =
0.95. (b) Description of data [7, 8] on the nuclear depen-
dence of ψ' hadroproduction. The curve corresponds to
model calculations at parameter values σ = 30 mb, e = 0.85,
β = 12.
Let us mention that, in some theoretical models [2, 6]
used for the description of J/ψ, ψ' hadroproduction in the
negative x region, the function α(x) decreases (screening
effects increase) as |x| increases in this region.

Thus, the experimental investigation of nuclear
effects for charmonium production in the whole region
of x can provide valuable information for testing differ-
ent dynamical models. In the reggeon approach, one
can distinguish three different regions in the rapidity or
in the Feynman variable for J/ψ hadroproduction: in the
central region, one has strong cancellation of screening
diagrams and α is close to one (small absorption cross
section); at x > 0.2, due to violation of the cancellation
rule, the absorption effects increase and the effective
cross section is about 20–30 mb; at negative x less than
–(0.3–0.4), the antiscreening regime should be
observed. Data on the A dependence of charmonia pro-
duction in the negative x region will soon be available
from the HERA-B experiment [17].
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stimulating discussions. This work was partially sup-
ported by RFBR grants no. 01-02-17383 and 00-15-
96786, INTAS grant no. 00-00366, and DFG grant 436
RUS 113/721/0-1.
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The contribution of the muon anomalous magnetic moment aµ(hadr) to the vacuum polarization and electro-

magnetic coupling constant α(q2) for q2 =  is refined by using a new, more accurate value of the ρ-meson

width. The values aµ(hadr) = 678(7) × 10–10 and δαhadr( ) = 0.02786(6) were obtained in a QCD model with
an infinite number of vector mesons. © 2003 MAIK “Nauka/Interperiodica”.
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The purpose of this work is to refine the strong inter-

action contribution to the aµ(hadr) and δαhadr( ) val-
ues obtained in [1, 2]. There are two reasons for such a
calculation.

First, the new value [3, 4]

 keV (1)

was recently obtained for the electronic width of the ρ
meson. This value is more accurate than the  =

(6.77 ± 0.32) keV used in [1] and  = (6.72 ± 0.10) keV
used in [2] and obtained in [5] by analyzing old mea-
surements of the pion electromagnetic form factor.

Second, the function R(s) is calculated by new for-
mulas obtained in [6], where the proper analytic prop-
erties of the QCD polarization operators were taken
into account in conjunction with the renormalization
group. The function R(s) for three flavors has the form

(2)

where the function r(s) was calculated in [6] using the
renormalization group and taking into account the
absence of nonphysical singularities in the QCD polar-
ization operators. All formulas for calculating r(s) are
given in [6].

The calculation of the hadronic contribution to the

quantities aµ(hadr) and δαhadr( ) [1, 2] is based on the
QCD model with an infinite number of vector mesons,
which was developed in [5, 7, 8]. This model satisfies
all requirements of the Wilson operator product expan-

Mz
2

Γ0
ee 6.85 0.11±( )=

Γ0
ee

Γ0
ee

R s( )
3
2
--- 1 r s( )+( ),=

Mz
2
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sion, automatically includes nonperturbative effects
[9], and is very useful for calculating integrals of the
function

(3)

In this model, the function R(s) is written in the form

(4)

Here,  and  describe the contributions of the
u and d quarks in states with isospin I = 1 and 0 (ρ and
ω families, respectively); Rs(s), Rc(s), and Rb(s) present
the contributions of s (ϕ family), c (J/ϕ family), and b
(ϒ family) quarks, respectively. The narrow-resonance
approximation, which applies if Γk ! Mk (Mk is the

mass of the kth resonance), is used. If MkΓk @  –

, then the function R(s) is smooth beginning with
the kth resonance, and all formulas of the narrow-reso-
nance model are valid [10]. To calculate the integral of
R(s) in the QCD model with the infinite number of vec-
tor mesons, it is sufficient to know only the mass and
electronic widths of several light resonances. In partic-
ular, for the ρ family, these are the ρ(770), ρ(1450), and
ρ(1700) resonances. Compared to [1, 2], corrections
associated with the new value of electronic width of the

ρ meson are introduced only to . The changes in
other families are negligible.

R s( )
σ e+e– hadrons( )

σ e+e– µ+µ–( )
--------------------------------------------------.=

R s( ) Rud
I 1= s( )=

+ Rud
I 0= s( ) Rs s( ) Rc s( ) Rb s( ).+ + +

Rud
I 1= Rud

I 0=

Mk
2

Mk 1–
2

Rud
I 1=
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The calculation of the hadronic contribution to the
muon (g – 2) factor yields

(5)

where

(6)

The experimental value  obtained in [11–15] is
equal to

(7)

To compare the Standard Model predictions with the
experiment, we divide aSM into different contributions

, (8)

where

(9)

 = 116584706(3) × 10–11 is the pure electromag-

netic correction [16, 17],  = –100(6) × 10–11

is the (α/π)3-order hardon contribution [18, 19],

 = 86(35) × 10–11 is the contribution of the

hadronic light-by-light scattering [20–22], and  =
154(3) × 10–11 is the contribution of the weak interac-
tions [23]. As a result, we obtain

(10)

i.e.,  is less than the experimental value  by
3.6σ.

The result given by Eqs. (5) and (10) should be com-
pared with the recent most precise aµ(hadr) values cal-
culated by integrating formula (5) with the cross sec-
tions measured for annihilation e+e–  hadrons [24,
25]. According to [24],

(11)

aµ hadr( )
α2

3π2
-------- sK s( )R s( )/sd

4mπ
2

∞

∫ 678 7( ) 10 10– ,×= =

K s( ) x2 1 x2/2–( ) 1 x2+( ) 1 x 2–+( )+=

× 1 x+( )ln x– x2/2+[ ] 1 x+
1 x–
------------x2 x;ln+

x
1 1 4mµ

2 /s–( )1/2
–

1 1 4mµ
2 /s–( )1/2

+
------------------------------------------.=

aµ
exp

aµ
exp 11659203 8( ) 10 10– .×=

aµ
SM aµ

QED aµ
tot+ hadr( ) aµ

weak+=

aµ
tot hadr( ) aµ hadr( ) aµ

HO hadr( ) aµ
LBL hadr( ),+ +=

aµ
QED

aµ
HO hadr( )

aµ
LBL hadr( )

aµ
weak

aµ
SM 1165916930 78( ) 10 11– ,×=

aµ
exp aµ

SM– 404 112( ) 10 11– ,×=

aµ
SM aµ

exp

aµ hadr( ) 6847 70( ) 10 11– ,×=

aµ
exp aµ

SM– 337 108( ) 10 11– 24[ ] .×=
The  value is smaller by 3σ than the experimental

value  obtained in [24]. According to [25],

(12)

The  value is smaller by 3.3σ than the experimental

value  obtained in [25]. Note that the analysis of the
hadronic decay of the τ lepton reveals a 0.9σ discrep-

ancy between  and .

The calculation provides the value

(13)

for the hadronic contribution to the electromagnetic
coupling constant α(Mz). This result should be com-
pared to the results δαhadr = 0.02744(36) [26],
0.02803(65) [27], 0.02780(6) [2], 0.0280(7) [28],
0.02754(46) [29], 0.02784(22) [30], 0.02778(16) [31],
0.02779(20) [32], 0.02770(15) [33], 0.02787(32) [21],
0.02778(24) [35], and 0.02741(19) [36], which were
obtained by calculating the integral in Eq. (13) with the
experimental cross section for the e+e– annihilation into
hadrons.

We emphasize that the quantity δαhadr is calculated
here with the highest accuracy.
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Molecular-dynamics (MD) simulation of the destruction of a crystal film heated by a femtosecond laser pulse
was carried out. Heating is assumed to be instantaneous, because there is no time for the material to be displaced
during the pulse. Film destruction is caused by the interaction of unloading waves. It can be considered as a
model of a more complex process of splitting out of a thin surface layer from a massive target in the case where
the layer remains solid after heating. It was found that the crystal order is broken due to the stretching strains
and to the strong anisotropy of residual stress, resulting in a bipartition of the layer separating from the target.
The lattice stretching and the formation of anisotropic stresses are due to the expansion of a heated lattice.
© 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.80.Ba, 68.60.Dv; 79.20.Ds; 81.40.Vw
The use of ultrashort laser pulses opens up possibil-
ities for improving the spatial resolution in surface pro-
cessing (e.g., splitting off ultrathin layers or producing
microreliefs on an irradiated surface) [1–7]. Another
important application of ultrashort pulses is that the
laser action splits off ultrathin layers from a solid body.
After splitting off, these layers fly a distance of over
several hundred of their thicknesses (several microns).
Then they should separate into ultradispersed solid par-
ticles. These particles find various technological uses in
sputtering [8], bombardment [9, 10], or analysis after
the subsequent electrostatic acceleration [11, 12]. Apart
from the applied aspects, the problem of laser-induced
destruction of surface layers is of general physical
interest.

The physical aspects of the action of ultrashort
pulses on materials has been studied both experimen-
tally and theoretically. In particular, optical methods
were used to study a broad class of materials (metals,
semiconductors, dielectrics) which can absorb laser
pulses of a duration on the order of 100 fs [3, 4]. The
ultrafast (during times comparable to the reciprocal
Debye frequency) melt phenomenon was studied [13,
14]. The formation of the interference pattern (Newton
fringes) was observed for all the studied metals and
semiconductors in a certain range of light energy Q (on
the order of 0.1 J/cm2) [3, 4]. This phenomenon is not
observed for nanosecond and longer laser pulses, since
the stress amplitudes are small, because the acoustic
relaxation (the corresponding pressures are on the order
0021-3640/03/7711- $24.00 © 0606
of the saturation vapor pressures) and the ablation
material runaway have mainly an evaporation character
[1, 2, 8, 15, 16].

It was revealed in [17–19] that the interference
fringes form due to splitting off of condensed material
from the target. The ultrashort pulse energy is absorbed
by the electron subsystem and transmitted to crystal lat-
tice through electron–phonon relaxation within 10–
100 ps [20–23]. The thickness δ of the heated layer near
the crystal boundary with vacuum is equal either to the
penetration depth of the electron heat wave within the
electron–phonon relaxation time or to the skin layer
depth, according to which of these values is greater [18,
19, 22]. At the hydrodynamic stage, a layer with thick-
ness δ is split off. The calculations [18, 19, 22] and
measurements of crater depth [3, 4] indicate that δ is on
the order of 100 interatomic spacings. The molecular
dynamic modeling is the most adequate method in this
situation [19, 24, 25].

We now turn to the description of the problem and
its solution. The heated layer expansion along the x axis
is modeled by the molecular-dynamics (MD) method
with periodic boundary conditions for the transverse y
and z coordinates. At zero time t = 0, the heated film
occupies the region –δ < x < δ and borders vacuum at
the boundaries of this region. The MD calculations
were carried out for the Lennard-Jones interatomic
potential. At t = 0, atoms are packed into a face-cen-
tered cubic (fcc) lattice with the average density n0 cor-
responding to the equilibrium state (p = 0) at tempera-
2003 MAIK “Nauka/Interperiodica”
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ture T = 0. The simulation amounts to the solution of
the equations of motion for atoms and calculation of the
macroscopic characteristics of the system. The simula-
tion procedure is described in [19, 24, 25].

Figure 1 shows the phase diagram in n, pxx variables,
where pxx is the longitudinal stress. For the tempera-
tures considered T < T3 (T3 is the triple point tempera-
ture), the vapor pressure is exponentially small. For this
reason, the binodal b (condensed phase–vapor equilib-
rium curve) on the linear pressure scale virtually coin-
cides with the straight line pxx = 0. The curves ms and mf

(Fig. 1) are the boundaries of a two-phase (liquid–solid
body) melting region on the solid and liquid phases,
respectively. The section 3–3' corresponds to the triple
point. After the absorption of laser energy, the sub-
stance undergoes transition from the initial state (n0,
T = 0, p = 0; fcc lattice; A point in Fig. 1) to the state
(n0, T0, pi; i point), which is the initial state for the sub-
sequent hydrodynamic motion. The points correspond-
ing to these initial states fill the isochore n ≡ n0 (pxx ≥ 0).
They are parameterized by the initial temperature T0,
which, in turn, is determined by the absorbed energy Q.
At the point i, the pressure is isotropic: pxx = pyy = pzz =
pi. We are interested in the crystal motion. Solid phase
corresponds to the section of isochore n0 above the
melting curve ms. At this section, the lattice symmetry
(fcc) and constant (4/n0)1/3 are the same as for the cold
crystal (n0, T = 0).

Therefore, the instantaneous heating of the sub-
stance is described by the A  i transition in the phase
diagram (Fig. 1). The subsequent motion is isentropic.
The substance expansion proceeds along the lower part
of isentrope 1 (bsr) outgoing from point i to lower den-
sities. In the one-dimensional approximation, the
expanding layer remains planar. This motion deforms
the crystal only along the longitudinal axis x, while the
atomic positions in the transverse directions y and z
remain unchanged. The character of motion depends on
the lattice orientation about the x axis, along which the
expansion occurs. Below, we consider the (110) orien-
tation. In this case, the fcc crystal (i point; n = n0)
deforms into a body-centered rhombohedral (bcr) crys-
tal (curve 1; n < n0). The isentrope for an fcc crystal
with constant (4/n)1/3 (n is the current density) corre-
sponds to curve 2 (fcc). From the comparison of curves
1 and 2 in Fig. 1 it is seen that, for the uniaxial expan-
sion, the pressure decreases faster than for the isotropic
expansion. In points S (intersection of the isentrope and
spinodal), the magnitude of stress pxx is maximal. The
curves drawn in Fig. 1 were obtained for the Debye
model. They correspond well to other calculations [26–
28], to the reference data on inert gases [29], and to the
MD calculations presented below.

It has already been pointed out that Newton rings are
observed only for a certain range of laser intensities
Qd < Q < Qu. To explain this phenomenon, we note that
there is a certain threshold in damaging the target. For
JETP LETTERS      Vol. 77      No. 11      2003
laser intensities below a certain threshold, the surface
layer does not split off, and Newton rings are not
observed. As this threshold is overcome, a layer of
thickness ~δ is split off, and the rings appear. There-
fore, the lower boundary Qd of the intensity interval, for
which the rings are observed, corresponds to the split-
off threshold. The disappearance of the rings at the
upper boundary Qu is explained by the fact that, as Q
increases, the thickness of the split-off condensed layer
decreases (cf. [17–19]).

The split-off material is usually studied experimen-
tally and semiempirically [30–35]. Ordinarily, the split-
off process is analyzed for the shock-wave load. This
situation differs from our fast (supersonic) heat load,
because the shock wave compresses more and heats
less. Accordingly, the threshold isentrope starting at the
Hugoniot curve is farther from the melting region in the
phase diagram than the isentrope starting at the isoch-
ore n0. Whereas one can use Hooke’s law, with a certain
plasticity section, in studying the near-threshold shock
destruction in the acoustic approximation (low temper-
atures [32–34]), heat load requires a phase-plane anal-
ysis. In this work, MD simulation of the thermal
destruction upon an instantaneous heating was carried
out. Note that our simulation is free of the semiempiri-
cal assumption about the destruction kinetics, and the
number of atoms is equal, in the order of magnitude, to
the atoms in the experiment.

The MD results are as follows. To describe the ini-
tial threshold temperature, a series of calculations with
different T0 values were carried out. It was shown that

Fig. 1. Melting region ms–mf; section 3–3' represents the tri-
ple point; isochore of initial states A  i; and above-
threshold isentropes 1 (bcr) and 2 (fcc) (T0 = 0.8). The
points bj, Sj (j = 1, 2) correspond to the intersections of isen-
tropes with binodal and spinodal. Numerical values are in
units of Lennard-Jones potential.
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the destruction threshold corresponds to the tempera-
ture T0 = 0.75. Hereafter, the quantities are given in MD
units [19, 24, 25]. Isentropes 1 and 2 in Fig. 1 corre-
spond to T0 = 0.8, which is slightly above the destruc-
tion threshold. Let us consider this case in more detail.
At the starting stage of moving from the boundary with
vacuum, a self-similar rarefaction propagates, in which
the profile is determined by the variable ξ = (x – δ)/t.
The wave consists of the section i – b1 (Figs. 1, 2),
where the pressure pxx decreases from its initial value to
zero, and of the plateau b1 – v, where the stream is con-
stant and pxx = 0 (dashed line in Fig. 2). The wave points
i and b1 correspond to the i and b1 states (Fig. 1) in iso-
tropic curve 1. An important feature of the stream is the
presence of a plastic rarefaction wave 2–3 (Fig. 2)
where the fcc lattice is destroyed. Without this feature,
the plateau would correspond to the trivial flow, for
which the density n, the pressure p, and the velocity U
are constant.

Let us now discuss the stream structure and the rea-
sons for the appearance of a plastic rarefaction wave. In
liquid, the stresses pjj (j = x, y, z) are isotropic, so that
the longitudinal and transverse stresses are zero in the
i–b1 wave and at plateau b1–v. A different situation
occurs in a solid state. Stresses pjj in initial state i are
isotropic. As the crystal expands, a stress anisotropy
appears in the i–b1 wave. As an example, Fig. 2 shows
the dependences of pxx and pzz on ξ. The stresses pjj in
the i–b1 wave decrease because of the unit-cell defor-
mation. This is also evidenced by both the Debye and
MD computations.

Fig. 2. Self-similar structure of the motion: rarefaction
wave i–b1; compression region 1–2; plastic rarefaction
wave 2–3 breaking crystal order; and the region of an
approximately uniform flow 3–v.
The material is accelerated due only to the longitu-
dinal component. In the i–b1 wave, it is “unloaded” to
zero (the bottom horizontal dashed section in the pxx(ξ)
curve in Fig. 2). A bcr crystal undergoes the transition
to the b1 state (Fig. 1). The lattice in this crystal remains
loaded in the transverse directions in the plateau region
(the residual transverse stresses are shown by the upper
dotted line in Fig. 2). The residual stresses are compa-
rable to the initial pressure pi and make up 60% of pi in
the y (–110) direction and 35% in the z (001) direction.
The difference in the stresses is due to the inequiva-
lence of the (–110) and (001) directions. As a result, a
strongly anisotropic state forms at the plateau, for
which the transverse-to-longitudinal stress ratio tends
formally to infinity. The transverse stresses are pre-
cisely those which store the initial energy lattice com-
pression, whose partial release in the bcr lattice
destruction brings about the 2–3 wave.

Let us now analyze the dynamic effects caused by
plastic wave 2–3. In the expansion process, the material
is thermally isolated, so that the change in the internal

energy E is caused by the work . With the uniax-

ial stretching, pressure pxx decreases rapidly (cf. curves
1 and 2 in Fig. 1). Therefore, the energy Efcc(n) of the
fcc lattice is lower (in isentrope 2) than the energy
Ebcr(n) of the bcr lattice (in isentrope 1). For the density
nb1 corresponding to the intersection of isentrope 1 and
the binodal, the Debye calculation gives ∆Emax(nb1) =
0.071 for the energy difference of the lattices. Since the
energy Efcc corresponds to the equilibrium lattice (the
lowest energy state), this is the maximum possible
value.

The destruction of the bcr crystal is accompanied by
energy release. In this case, the residual transverse
stress decreases (Fig. 2), while the longitudinal stress
slightly increases. Due to the increase in stress pxx, the
material is additionally stretched. Let us consider the
influence of this effect on the flow character. The
energy release ∆E increases the expansion velocity U3v

in the region 3–v  behind the plastic wave 2–3 (U3v >
U12; Fig. 2) and increases the longitudinal pressure
(p12 > p3v = 0) in the region 1–2 ahead of wave 2–3.
Region 3–v  terminates at the boundary with vacuum,
so that the pressure pxx is zero (p3v = 0). A two-wave
structure arises (compression and rarefaction waves),
because the region with enhanced pressure 1–2 propa-
gates along the plateau with a longitudinal sound veloc-
ity that is higher than the plastic wave velocity.

We calculate this structure ignoring the width of
transition region 2–3 (the density is assumed to
decreases jumpwise). We write the mass, momentum,
and energy conservation laws for the coupled jumps 1
and 2–3. Ahead of the jump 1 (weak shock wave), the
bcr lattice is in the state b1 (density nb1 and longitudinal
pressure pxx = 0). We use the system of coordinates
related to the material in the state b1. The parameters of

p Vd∫
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δxaddx = 0

t/ts = 2.32

Fig. 3. Onset of the formation of the central x = 0 and peripheral x = xadd fracture regions, t = 2.3ts. The right half (x > 0) of the layer
is shown. The label δ indicates the initial position of the boundary with vacuum.
uniform flow in the region 1–2 are determined from the
pressure p12: the velocity u12 = –p12/ρb1cb1, density

excess (over nb1) δn12 = p12/m , and the velocity of
jump 1 cb1 + p12/ρb1cb1, where ρb1 = nb1m, m is the
atomic mass, and cb1 is the longitudinal sound velocity
at the point b1. Let D be the velocity of wave 2–3 (as
adopted, relative to the material ahead of jump 1). From
the mass and momentum balance equations for the
jump 2–3, we find the velocity of uniform flow in the
region 3–v  u3v = (cb1 – D)p12/ρb1cb1D and a decrease in

density δn3v = –(cb1 – D)2p12/m D2. Energy balance

gives / D2 = 2∆E/m.

These relations agree well with the MD calculation.
Using the MD data on p12 and D and the above equa-
tion, we calculate the energy release ∆E in the plastic

cb1
2

cb1
2

p12
2 ρb1

2

Fig. 4. Density profile after averaging over the transverse
coordinates at t = 2.32ts. The central fracture appears at x ≈
0. The position xadd of the additional fracture and the initial
position δ of the layer boundary with vacuum are shown.
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wave. It proves to make up 15% of the maximum pos-
sible ∆Emax(nb1).

The formation of two-wave structure has important
consequences. In particular, it results in the appearance
of two additional (apart from the central at x = 0) dis-
continuities lying symmetrically about the center at a
considerable distance from it. Let us explain how this
happens. Due to the increased pressure in region 1–2,
the second unloading step arises. At the first step, the
pressure pxx decreases from pi to p12, and at the second
step it decreases from p12 to zero. At the second step,
the material is stretched substantially. A decrease in the
density in wave 2–3 (Fig. 2) comprises 40% of the
decrease in the primary wave i  b1. A decrease in
pressure at the first step pi  p12 is sufficient to break
the crystal at the center x = 0. The excess of the initial
temperature T0 over the threshold (T0)thr is small, so that
the central fracture occurs at the time tfr ≈ 1.8δ/ci when
the characteristic b1 appears at the center. The stress pxx

is approximately constant along the characteristic b1
reflected from the center. It is on the order of the limit-
ing pressure at which the fracture happens. For this rea-
son, when the reflected characteristic b1 meets the plas-
tic wave 2–3, which additionally stretches the material,
a new discontinuity appears (Fig. 3). The estimate for
the position xadd of this discontinuity gives xadd ≈ 0.3δ.
The coordinates of the central and additional disconti-
nuities correspond to the maxima at the density profile
(Fig. 4). This profile is obtained by averaging with
respect to the coordinates y and z.
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Subnanosecond electron beams with the record current amplitude (~70 A in air and ~200 A in helium) were
produced at atmospheric pressure. The optimal generator open-circuit voltage was found for which the electron-
beam current amplitude produced in a gas diode was maximal behind a foil. It was established that the electron
beam was produced at the stage when the cathode plasma closely approaches the anode. It was shown that a
high-current beam can be produced at high pressures because of the presence of the upper branches in the
curves characterizing the electron-escape (runaway) criterion and the discharge-ignition criterion (Paschen
curve). © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.80.Tn; 52.59.Mv; 84.30.Ng; 51.50.+v
INTRODUCTION

The first communications on the detection of X-ray
emission from pulsed discharges in dense gases
appeared late in the 1960s [1, 2]. Later on, the forma-
tion of fast electrons and X-ray radiation in gas-filled
diodes at elevated pressure was studied by a number of
scientific groups [3, 4]. However, the amplitudes of
electron-beam current did not exceed a few fractions of
an ampere (109 electrons) in air at atmospheric pressure
and several tens of amperes (1012 electrons) in helium
at a pressure of 22 torr [3]. It was shown in 2003 [5] that
the electron-escape criterion has a basically nonlocal
character in gas and corresponds to the situation where
the electron-multiplication length (reciprocal
Townsend coefficient [6]) becomes comparable to the
interelectrode distance. Since the Townsend coefficient
decreases at large E/p values (E is the electric-field
strength and p is the gas pressure), we deal with the
upper branches of the curves characterizing the dis-
charge-ignition criterion (Paschen curve) and the crite-
rion for electron escape from the gap without multipli-
cation. If the positions of the upper branches of these
curves are known, one can determine the voltages at
which the conditions for the electron escape are met for
a given gas pressure and type and for a given interelec-
trode gap.

It is the purpose of this work to produce electron
beams with the maximum possible amplitude in gas
diodes at atmospheric pressure.
0021-3640/03/7711- $24.00 © 20611
EXPERIMENTAL SETUP

Our study was carried out using three different
nanosecond pulse generators, which were described in
detail in [7–9]. Generator 1 (SINUS) with a wave resis-
tance of 30 Ω produced, on a matched load, a ~200-kV
pulse with a duration of ~3 ns at its half-maximum and
a duration of ~1 ns of its leading edge [7]. This genera-
tor was used with a diode filled with helium and air at a
pressure of 760 torr and with two cathodes.

Cathode no. 1 was a set of three cylinders (with
diameters 12, 22, and 30 mm) made from a 50-µm-
thick titanium foil, which were inserted into each other
and attached to a 36-mm-diameter duralumin substrate
in such a way that they had a common axis. The ring
height decreased by 2 mm on going from the smaller
cylinder to the larger.

Cathode no. 2 was a 29-mm-diameter graphite pellet
with the rounded edges and convex, with a radius of
curvature of 10 cm, toward the foil. It was placed on a
copper holder with a diameter of 30 mm. The design of
the gas diode is shown in Fig. 1. The electron beam was
extracted through a 45-µm-thick AlBe foil or through a
50% transparent grid. With this discharge-gap geome-
try, the electric field was enhanced near the cathode.

Generator 2 (RADAN-303) with a wave resistance
of 45 Ω produced, on a matched load, voltage pulses
from 50 to 170 kV (open-circuit voltage up to 340 kV)
with a duration of ~5 ns at the pulse half-maximum and
a duration of ~1 ns of the pulse leading edge [8]. The
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Experimental setup: (1) generator, (2) cathode,
(3) foil or grid, (4) additional foil for measuring beam-elec-
tron energy, (5) shunt for measuring beam current, and
(6) shunt for measuring the total current in gas diode.

Fig. 2. (a) Oscillograms (1, 3) of the current pulses behind
a 45-µm-thick AlBe foil and (2, 4) of the voltage pulses at
the gas diode, as obtained with generator 2 in air at atmo-
spheric pressure. The diode gap is d = 16 mm and the gen-
erator open-circuit voltage is (1, 2) 260 and (3, 4) 155 kV.
(b, c) Oscillograms of the electron-beam current behind a
45-µm-thick AlBe foil obtained with generator 3. The diode
gap is d = 16 mm and the collector diameter is (b) 20 and
(c) 50 mm.

(a)

(b) (c)
bias on the gas space could be smoothly varied by
changing the spark gap.

Generator 3 (RADAN-220) with a wave resistance
of 20 Ω produced a voltage pulse with an amplitude of
~220 kV, a duration of ~2 ns at the pulse half-maxi-
mum, and a duration of ~0.3 ns of the pulse leading
edge [9]. The design of the gas diode was the same for
both RADAN generators and similar to that shown in
Fig. 1. The flat anode, through which the electron beam
escaped, was made from a 45-µm-thick AlBe foil. To
extract the electron beam, 10-µm-thick aluminum foil
or grids with a light transparency of 50–70% were also
used. The cathode was a tube made from a 50-µm-thick
steel foil with a diameter of 6 mm attached to a metallic
rod of the same diameter. The distance between the
cathode and anode varied from 13 to 20 mm.

The beam current was measured using a collector in
the form of a copper disk with a diameter of 50 mm
placed at a distance of 10 mm from the foil. The disk
was connected to the accelerator body by a coaxial
cable or, simultaneously, by a coaxial cable and a low-
ohmic shunt. Small-area electrodes connected to the
accelerator body by a coaxial cable, a graphite elec-
trode connected to the accelerator body by a strip line,
and the classical Faraday electrode were also used as a
beam collector. The design of the Faraday cylinder
allowed the gas to be pumped out by a backing pump
from the space between the foil and the measuring elec-
trode. The electron energy distribution was determined
by the foil method. A TDS-684B oscillograph with a
bandwidth of 1 GHz and 5 points per 1 ns was used to
record the signals from the capacitor voltage divider,
collector, and shunts. The recording system resolution
was no worse than 0.3 ns. The discharge glow was pho-
tographed with a digital camera.

RESULTS OF MEASUREMENTS

From the measurements of the gas-diode voltage
pulses and the electron-beam current, as well as from
the variation of the discharge shape upon changing the
anode–cathode gap, cathode type, and gas-diode volt-
age, the following was established.

At atmospheric pressure of air in the gas diode, an
electron beam with maximum current appears at the
leading edge of the voltage pulse. It has a duration of no
more than 0.4 ns at the half-maximum (Fig. 2). As the
collector dimensions were reduced (to improve the time
resolution), the beam-current pulse duration at the half-
maximum was no more than 0.3 ns (Fig. 2b). It should
be noted that, for the highest time resolution of the
recording system, the durations of the leading and trail-
ing current-pulse edges were different. The leading
edge was smoother.

The positive pulse in the current oscillogram is
caused by the unavoidable, though minimized, for the
subnanosecond pulses, induction between the collector
and the recording cable. With an increase in the collec-
JETP LETTERS      Vol. 77      No. 11      2003
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tor size, the induction effect decreased, and the positive
spike in the beam-current oscillogram decreased to
~10% (Fig. 2c). However, in this case, the time resolu-
tion was slightly impaired, and the duration of the cur-
rent pulse behind the foil increased (by ~30%). For the
highest beam currents, the pulse maximum was ordi-
narily observed immediately after the discharge-gap
bias had reached its maximum. Under optimal condi-
tions, the current-beam amplitude behind the foil was
~200 A at a gas pressure of 1 atm for generator 1 in
helium and higher than 40 A in air for generator 1 and
70 A for generator 2 (Figs. 2b, 2c).

With an increase in the voltage amplitude, the beam-
current maximum shifted to the onset of the voltage
pulse and, for the maximum voltages, terminated at its
leading edge, while the beam-current amplitude
decreased under these conditions. As the open-circuit
voltage decreased, the beam delay time increased to
~1 ns, and a beam appeared at the beginning of the qua-
sistationary phase of the voltage pulse; however, the
beam-current amplitude also noticeably decreased.
Note that these trends were quite stable and were
observed while extracting the electron beam through
both the foil and the grid.

For a fixed interelectrode distance, duration of volt-
age-pulse front, and gas pressure and type (in a given
particular case, 1 atm in air), there is a rather narrow
voltage optimum in the generator no-load run, for
which the amplitudes of the electron-beam current
behind the foil are maximum (Fig. 3). We have
observed the presence of this optimum. It should be
noted that the gap-bias and discharge-current ampli-
tudes depend on the open-circuit voltage of generator 2
almost linearly under the beam-generation conditions,
inspite of the appreciable change in the beam-current
amplitude (Fig. 3, curves 2, 3). This strongly hampers
the determination of the conditions under which the
beam-current amplitude is maximal.

The discharge current appears with a short time
delay after applying voltage to the gap and advances the
electron-beam current behind the foil by 0.3–1 ns. The
magnitude and duration of the discharge current appre-
ciably exceed the beam-current amplitude and dura-
tion. For example, the amplitudes of discharge current
and beam were, respectively, 2400 and 40 A in air for
an open-circuit voltage of ~270 kV of generator 1 and
a gap of 17 mm. After the beam-current pulse, the dis-
charge ordinarily persisted at the quasistationary stage
with a duration of few nanoseconds for a constant gap
bias and had a volume character.

The photographs of plasma glow in the gas diode, as
obtained from its end for the grid anode and from its
side for the foil anode, are presented in Fig. 4. One can
see that the discharge has the shape of volume jets, with
the bright dots only at the cathode.
JETP LETTERS      Vol. 77      No. 11      2003
INTERPRETATION OF THE RESULTS

In interpreting the beam formation process, we use
the nonlocal criterion for the appearance of an appre-
ciable number of electrons escaping the volume with-
out multiplication, αid = 1 [5]. Here, αi is the Townsend
coefficient and d is the separation between the anode
and cathode. We assume that the electron beam is
formed at the instants of time when plasma approaches
the anode.

Assuming αi(E, p) = pξ(E/p), where ξ(E/p) is the
function characteristic of the gas of interest, one can
rewrite the criterion for the appearance of an apprecia-
ble number of electrons escaping the volume without
multiplication, αi(Ecr , p)d = 1, in the form
pdξ(Ucr/pd) = 1. Here, Ecr = Ucr/d. This criterion deter-
mines a horseshoe-shaped curve Ucr(pd) universal for
the given gas, beyond which a considerable fraction of
electrons escape the volume without multiplication
(Fig. 5).

An important fact is that the Ucr(pd) is an upper
branch. This branch occurs because the Townsend coef-
ficient decreases with increasing E/p. In turn, a
decrease in the Townsend coefficient is caused by a
decrease in the ionization cross section with increasing
the energy of an incident electron and by the fact that
the energy of multiplied electrons increases with E/p.

Note that one can hardly experimentally attain the
values of U and pd for the upper branch, in particular,
because of the influence of the cathode processes
occurring at high electric field strengths [4]. To attain
the upper branch in a dense gas, one must raise, rather
rapidly, the electrode voltages and use electrodes, first
of all a cathode, with a high plasma-formation thresh-
old. Under our conditions, the voltage must be raised up
to hundred kilovolt within a fraction of nanosecond.

Fig. 3. The amplitudes (1) of the electron-beam current
behind a 45-µm-thick AlBe foil, (2) of the bias on the gap,
and (3) of the discharge current as functions of open-circuit
voltage for generator 2.
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The function Ucr(pd) is simply related to the ignition
voltage Ubr(pd) of a self-sustained discharge. It is deter-
mined from the Townsend–Paschen condition
pdξ(Ubr/pd) = L ≡ ln(1 + 1/γ) [6], where γ is the coeffi-

(‡)

(b)

(c)

Fig. 4. The gap-discharge glow photographed (a) from the
end, (b) from the side, and (c) at an angle. Generator 3 and
a grid with a mesh with 1-mm sides.
cient of secondary electron emission and Ubr(pd) =
LUcr(pd/L). The function Ubr(pd) not only includes a
portion of the familiar Paschen curve but also contains
an additional upper branch discussed above. The
Ucr(pd) and Ubr(pd) curves obtained by numerical sim-
ulation for helium are shown in Fig. 5 together with the
low-pressure experimental data [10, 11, 6]. Assuming
d = 28 mm, Umax = 200 kV, and p = 1 atm for the corre-
sponding experimental conditions and uniform distri-
bution of electric field in the gap (the latter assumption
is rather crude for the gas diodes used), we obtain pd =
2 × 103 torr cm. The corresponding point (Umax, pd) is
drawn in Fig. 5 by a large circle. One can see that, to
satisfy the electron-escape criterion, the pd value
should be approximately 30 times smaller than the
experimental value. This contradiction cannot be elim-
inated by strengthening the cathode electric field. In
addition, the electric field at the voltage pulse edge is
much weaker than the maximal value. The electron
escape criterion can be met at times when the plasma
from cathode approaches anode. At Umax = 200 kV and
for uniform electric-field distribution in the gap, the
escape criterion is met for pd = 53 torr cm. For exam-
ple, it is met for d = 0.7 mm. This point is denoted in
Fig. 5 by a large square.

For Umax = 200 kV and d = 0.7 mm, the ionization-
wave velocity reaches 1010 cm/s. Correspondingly, the
beam duration is τ ~ d/u ~ 10–2 ns. As was demonstrated

Fig. 5. (Solid thick line) the Ucr(pd) function characterizing
the electron escape criterion in helium, and (solid thin line
L = ln(1 + 1/γ) = 2.45) the Ubr(pd) function characterizing
the discharge ignition criterion [5]. Light points are for the
Penning experiment [10]; black points are the experimental
results [11]; and the dashed line is for the experimental
results from [6]. The large light circle at the top right corre-
sponds to the maximal voltage obtained in our experiments
at atmospheric pressure for the interelectrode separation d =
28 mm. The large square corresponds to the situation where
the “plasma cathode” approaches the anode at d = 0.7 mm.
JETP LETTERS      Vol. 77      No. 11      2003
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above (Fig. 2b), the beam duration does not exceed
0.3 ns at the half-maximum. It is quite possible that,
after improving the time resolution, the beam-current
pulse duration will be shorter and, accordingly, its
amplitude will be larger.

The processes of plasma formation and ionization-
wave propagation from cathode to anode are rather
complicated and call for additional study. We will point
out only the simplest positions. From the experimental
data it follows that the ionization in the discharge gap is
inhomogeneous and has the form of several jets
(Fig. 4). The field at the end of the propagating plasma
concentrates. As a result, the plasma propagation veloc-
ity may become comparatively high, so that the elec-
tron-escape criterion may be met (and the electron
beam may form) at somewhat larger plasma-to-anode
distances than in the planar geometry.

For example, if a bulge at the flat capacitor plate is
shaped like a half of a prolate ellipsoid of revolution,
the field magnification factor near the ellipsoid end is
k = 2ε3(1 – ε2)–1[ln((1 + ε)/(1 – ε)) – 2ε]–1, where a and
b are, respectively, the major and minor semiaxes and

ε =  is the ellipsoid eccentricity [12]. For
the semiaxes a = 8 mm and b = 0.7 mm, the field near
the ellipsoid end is by k = 36 higher than the field between
the capacitor plates and may reach E/p ~ 1000 V/(torr cm)
at the middle of the gap. This field corresponds to ion-
ization propagation velocity u ~ 3 × 109 cm/s. For such
a velocity, the generation of escaping electrons should
start after approximately one nanosecond, as is the case
in the experiment. Clearly, different jets may approach
the anode at different times, thereby broadening the
beam-current pulse.

Note also that the presence of a narrow maximum in
the beam-current vs. generator open-circuit voltage
curve (Fig. 3) is explained by the necessity of matching
the instant of plasma approach to the anode and the
maximum of interelectrode voltage.

CONCLUSIONS

Subnanosecond electron beams with the record cur-
rent amplitude (~70 A in air and ~200 A in helium) and
electron energy (50–130 keV) were produced at atmo-
spheric pressure in a gas diode. At a certain optimum of

1 b/a( )2–
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the generator open-circuit voltage the electron-beam
current amplitudes behind the foil are maximal.

The assumption about the generation of electrons
escaping at the instant of plasma approach to the anode
allows the qualitative explanation of observed beam
characteristics such as the generation delay and the
short duration of the current pulse. An important fact is
used that the curves have upper branches characterizing
both the discharge ignition criterion (Paschen curve)
and the criterion for electron escape from the gap with-
out multiplication.
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A semiclassical method is suggested for the description of the energy spectrum of a two-dimensional magnetic
Bloch electron in a periodic potential not necessarily smaller than the cyclotron energy. With this method, each
Landau band is described as a spectrum of the appropriate one-dimensional Harper-type operator and repre-
sents a series of minibands, with the near-edge minibands being flat within the exponential accuracy. It is shown
that, irrespective of the potential shape, all these minibands do not contribute to the quantized Hall conductivity.
© 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.43.Cd; 71.70.Di
In the standard theories of integer quantum Hall
effect, each filled Landau level makes a contribution of
quantum e2/h to the Hall conductivity [1], so that, as the
Fermi level rises, the Hall conductivity monotonically
increases with the e2/h jumps that were discovered
experimentally by K. von Klitzing. In a weak periodic
potential V, each Landau level spreads into a band with
a width no greater than 2max |V |; each band, in turn, is
split into magnetic subbands. If the number of mag-
netic-flux quanta Φ0 = hc/|e | of the magnetic flux Φ
through the unit cell of the periodic potential V is ratio-
nal and can be represented as a noncancelable fraction
Φ/Φ0 = N/M, each of the Landau bands splits into N
subbands [2]. As a result, the “flux–energy” diagram
for the spectrum of Landau periodic operator assumes
a complex fractal structure that was predicted by Azbel
and constructed numerically in the approximation of
Harper equation [3] (Hofstadter’s butterfly). From the
well-known gauge arguments of R. Laughlin, it follows
that each subband has an integer number of conductiv-
ity quanta, which changes in a rather irregular way
upon the transition from one subband to the other and
obeys a certain Diophantine equation [1] (this number
exactly equals the Chern number for the corresponding
vector bundle of the Bloch magnetic functions [4]).
Therefore, in the presence of a periodic potential in the
fields where Φ/Φ0 is on the order of unity, the depen-
dence of Hall conductivity on the Fermi energy
becomes nonmonotonic and, generally, exhibits irregu-
lar jumps, again with the magnitudes being multiples of
e2/h. These jumps have recently been observed by
K. von Klitzing et al. in [5] (in full agreement with the
predictions of theory [1]) in measuring the magnetore-
0021-3640/03/7711- $24.00 © 20616
sistance of a two-dimensional electron gas in a square
superlattice with a ~100-nm unit cell. It should be noted
that the idea of that experiment was suggested as early
as in [3].

Inasmach as V in [5] was .0.6 meV, the superposi-
tion or partial overlap of the Landau bands did not need
to be taken into account in that work. However, this
effect cannot be neglected for the larger potential V. As
was shown numerically in [6], if V becomes compara-
ble to the cyclotron energy "ωc, the Landau bands over-
lap and are even rearranged upon further increase in V.
It is significant that, after the crossover, the Chern num-
ber for several lower-lying bands is zero; i.e., these
bands do not contribute to the Hall conductivity [6]. A
more detailed numerical analysis of the influence of the
overlap between the Landau bands on the Hall resistiv-
ity was carried out in [7]. It should be taken into
account that the flux–energy diagram for a periodic
Landau operator is different from the ideal self-similar
Hofstadter butterfly [8]. The subband Hall conductivity
is also affected by the form of the potential curve, in
particular, by the presence or absence of the center of
inversion [9].

In this work, we propose a semiclassical approach to
the Landau bands that is independent of the potential
shape and the band overlap. Only two parameters are
assumed to be small: εB = (lM/L)2, where lM is the mag-
netic length and L is the characteristic size of the lattice
period of potential V, and the value of the parameter
εV = εBmax |V |/"ωc. The ratio max |V |/"ωc should not
necessarily be small, so that our approach also applies
to the regime of Landau band rearrangement [6]. In the
003 MAIK “Nauka/Interperiodica”
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typical situations, the estimates for the parameters εB

and εV are as follows: if B . 10 T then lM . 10 nm; for
the periodical quantum-dot or quantum-antidot arrays,
L . 100–500 nm. Hence, εB ~ 10–3; for the electron
effective mass in GaAs m = 0.067me, one gets "ωc .
15 meV. For this reason, one has εV & εB for V & 15 meV.
Within this approach, we demonstrate that, irrespective
of the form of the potential curve, all minibands lying
at the wings of Landau levels (and not only the lowest
lying subbands) make no contribution to the Hall con-
ductivity. Thus, when describing the influence of the
overlap of Landau bands on the quantization of Hall
conductivity, one should take into account only the
overlap between rather narrow central regions of the
smeared Landau levels.

The Hamiltonian of a Bloch magnetic electron in the
Landau gauge has the form

where the potential V has a lattice with periods and the
basis a1 = (L, 0) and a2. In the dimensionless coordi-

nates X = x/L and potential v  = V/max |V |,  is written

as  = mL2 , where

Here,  = –iεB∂/∂Xj.

The perturbation theory with respect to the small
parameter εV can provide only crude information;
moreover, it requires additional assumptions about the
relationship between εB and εV , because the parameter
εB is small. Nevertheless, the smallness of εB allows the
fine structure of Landau levels to be described semi-
classically.

Since the classical trajectories in the (X1, X2) plane

for the unperturbed Hamiltonian ((P1 + X2)2 + ) are

cyclotron orbits with radii  centered at (y1, y2), one
can pass on to the new canonical variables, namely, to
the generalized momenta I, y1 (or p, y1) and generalized
positions ϕ, y2 (or q, y2), according to the formulas

(ϕ is the orbital angular coordinate). In these variables,
the corresponding classical Hamiltonian H0 is

Ĥ
"

2

2m
------- –i∂1 eB/c"( )x2+( )2 ∂2

2–( ) V x1 x2,( ),+=

Ĥ

Ĥ ωc
2Ĥ

0

Ĥ
0 1

2
--- P̂1 X2s+( )2

P̂2
2

+[ ] ε Vv X1 X2,( ).+=

P̂ j

1
2
--- P2

2

2I

X1 q y1, P1+ y2, X2– p y2,+= = =

P2 q, p– 2I ϕ , qcos 2I ϕsin= = =

H0 I εVv 2I ϕsin y1+ 2I ϕcos y2+,( ).+=
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After angular averaging of H0, the drift of the center
of the cyclotron orbit is described by the averaged
Hamiltonian

(J0 is the zero-order Bessel function). One can also
show that there is a canonical variable change (p', q', y') =
(p, q, y) + O(εV) such that

but the estimate of the residue  in this formula
does not suffice to describe the H0 fine structure. How-
ever, it was shown in [10], that this procedure can be
iterated up to the canonical change of the variables (P,
Q, Y) = (p, q, y) + O(εV), to bring the H0 Hamiltonian to

the form H0(p, q, y; εV) = *0 (P2 + Q2), Y1, Y2; εV  +

O( ), with the right-hand side periodic in the vari-
able Yj and with a positive constant C.

The quantization of *0 brings about the  opera-
tor, whose semiclassical spectrum coincides with that

of  and  to an accuracy of O((εB + εV)ν) for an

arbitrary ν. Since the operators  = –iεB∂/∂Q and  =

Q commute with  = –iεB∂/∂Y2 and  = Y2,  com-
mutes with the Hamiltonian of harmonic oscillator

(  + ). Therefore, the eigenfunctions Ψ of the

operator  can be sought in the form Ψ(Q, Y2) =
ψn(Q)ϕn(Y2), where ψn are the oscillator functions for
the En = (n + 1/2)εB level (n = 0, 1, 2, …) and ϕn satisfy
the equation

(1)

Here,  are found from the classical Hamiltonian

*n(Y1, Y2) = *0(En, Y1, Y2, εV) by the quantization  =
–iεB∂/∂Y2 (these operators are conventionally called the

Harper-type operators). Since mL2 εB = "ωc, En is
exactly the nth Landau level. Hence, the spectrum of oper-

ator  describes the spreading of the nth Landau level
into band under the action of the periodic potential V.
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Therefore, each Landau band in our approach is
described by Eq. (1), and the initial spectral problem
reduces to the family of one-dimensional spectral prob-
lems, allowing the problem to be integrated.

Let us now use the analysis of Harper operators

[11]. At the edges of the spectrum of operator , there
are minibands with widths exponentially small in the
parameter εB. The corresponding Bloch magnetic

eigenfunctions of the operator  for the rational flux
Φ/Φ0 are constructed in [10]. Namely, by denoting
Φ/Φ0 = N/M and enlarging the lattice Λ (i.e., going to
the lattice with basis Ma1 and a2 [4]), one has the fol-
lowing semiclassical eigenfunctions in the X coordi-
nates satisfying the magneto-Bloch periodic conditions
with the quasimomentum k:

(2)

where L1 = (1, 0) and L2 = (L21, L22) are the periods of
the normalized potential v  and ψ is a certain localized

function quasimode of the  operator [12]. From
Eq. (2) it directly follows that the vector bundle of the
Bloch magnetic functions for the exponentially narrow
miniband is trivial and, therefore, has the zero Chern
class. According to the standard theory of the Hall
quantum effect [1], this means that the Hall conductiv-
ity for this miniband is zero. Thus, after the Fermi level
crosses the minibands, the quantized Hall conductivity
at the Landau level wings does not change. As to the
minibands in the middle of Landau bands, the corre-
sponding contribution to the Hall conductivity requires
additional calculations, which can conveniently be per-
formed using the Usov formulas [13]. The calculations
of this type depend on the particular form of the poten-
tial V and have been carried out, e.g., in [9]. The sim-
plest examples indicate that the dependence on the
Fermi level is nonmonotonic, in accordance with [1].

In summary, a semiclassical approach is proposed to
reduce the description of the Bloch magnetic electron
spectrum to a series of one-dimensional problems. With
this approach, each Landau band (smeared Landau
level) coincides with the spectrum of some one-dimen-
sional Harper-type operator obtained by the quantiza-
tion of a classical Hamiltonian on the torus for a given
level. At the wings of Landau bands, there are exponen-
tially narrow minibands, and the vector bundle of the
corresponding semiclassical Block magnetic functions
has the zero Chern class. Therefore, these minibands do
not contribute to the quantized Hall conductivity, and
they can be neglected when considering the influence
of overlap of Landau bands on the Hall quantization
pattern. It is significant that the method described in

*̂n

Ĥ
0

Ψ X k,( ) e
2πi k1l1 k2l2–( ) iNl2L21/2–

l1 l2 Z∈,
∑=

× ψ X Ml1L1– l2L2–( )e
iNl2 X1–

,

Ĥ

this work applies when the lattice potential V is compa-
rable to the cyclotron energy; if |V | ! "ωc, our results
agree with [14]. Interestingly, the structure of layering
of the Bloch magnetic functions for the exponentially
narrow (i.e., flat, to the exponentially small field correc-
tions) minibands is the same as for the layering of the
fermion eigenfunctions for a lattice in the presence of a
magnetic field [15].

This work was supported by the Russian Foundation
for Basic Research, INTAS, and DFG.
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The effect of high pressure up to 65 GPa on the crystal structure and optical absorption spectra of NdFeO3
orthoferrite single crystals is studied in diamond anvil cells. At P ~ 37.5 GPa, an electronic transition at which
the optical absorption edge jumps from ~2.2 to ~0.75 eV is observed. The equation of state V(P) is studied on
the basis of the X-ray diffraction data obtained under pressure. This study reveals a first-order structural phase
transition at P ~ 37 GPa with a jump of ~4% in the unit cell volume. It is shown that the phase transition
observed in rare-earth orthoferrites at 30–40 GPa is a transition of the insulator-to-semiconductor type. © 2003
MAIK “Nauka/Interperiodica”.

PACS numbers: 61.50.Ks; 62.50.+p; 64.70.Kb; 78.40.Kc
1. INTRODUCTION

The orthorhombic orthoferrites RFeO3, where R is a
rare-earth element, crystallize as CaTiO3 perovskite-
type structures, in which R occupies the Ca sites and Fe
occupies the Ti sites. The space group of orthoferrites
is Pbnm [1, 2]. All Fe3+ ions are crystallographically
equivalent and have an octahedral oxygen environment.
A change in R leads to a orthorhombic distortion, which
almost does not affect the oxygen octahedra around the
iron ions but tilts the octahedron axis off the c axis and,
hence, changes the Fe–O–Fe valence bond angle [3].
The mean values of the Fe–O and O–O interatomic dis-
tances are practically constant for the whole RFeO3
rare-earth series and make 2.011 and 2.844 Å, respec-
tively [2]. The deviation from the cubic symmetry
grows as the R3+ ion radius decreases (a chemical com-
pression), so that this deviation is minimal in LaFeO3
and maximal in LuFeO3.

The magnetic structure of an orthoferrite is such that
each iron ion is surrounded by six Fe3+ ions, and the Fe–
O–Fe superexchange angle is within 157° > ϕ > 142°
(for R varying from La to Lu) [3]. As a result of the
Fe3+–O2––Fe3+ strong negative exchange interaction,
two magnetic sublattices are formed with almost anti-
parallel moments. The small angle between the mag-
netic moments of the iron sublattices gives rise to a
weak ferromagnetic moment [4, 5]. The magnetic
moments of the R ions are ordered only at very low tem-
peratures, while at T > 10 K they do not affect the basic
magnetic properties of orthoferrites.
0021-3640/03/7711- $24.00 © 20619
In our recent studies of the effect of high pressure on
both the Néel temperature TN and the hyperfine mag-
netic fields on nuclei in NdFeO3 and LuFeO3 orthofer-
rites [6], we separated the radial and angular contribu-
tions to the Fe–O–Fe exchange interaction and the
hyperfine interaction and estimated their magnitudes
and signs. The X-ray studies of a LuFeO3 single crystal
[7] showed that, as the pressure P increases, all three
parameters, a, b, and c, of the unit cell decrease, and,
under the pressures P > 30 GPa, the parameters a and b
become equal, which presumably testifies to a transi-
tion to the tetragonal phase [8]. In addition, for LuFeO3
in the same pressure range, we observed an electron
transition accompanied by a drop in the optical absorp-
tion edge from ~ 2.2 to ~ 1.2 eV [9].

Recently, for LaFeO3 orthoferrite, Hearne with
coauthors [10] revealed a transition from magnetic to
nonmagnetic state (at room temperature) at approxi-
mately the same pressures. It was interpreted as the
transition of the Fe3+ ions from the high-spin state S =
5/2 to the low-spin state S = 1/2 (spin crossover).

In this paper, we study the structure and the optical
absorption spectra of a NdFeO3 single crystal under
high pressures up to 65 GPa obtained in diamond
anvils. At P ~ 37.5 GPa, we observed an electronic tran-
sition with a drop in the optical absorption edge from
~2.2 to ~0.7 eV. This drop testifies to an insulator-to-
semiconductor transition. In the same pressure interval,
we observed a first-order structural phase transition
with a drop of about 4% in the unit-cell volume.
003 MAIK “Nauka/Interperiodica”



 

620

        

GAVRILIUK 

 

et al

 

.

                                                                                          
2. EXPERIMENTAL TECHNIQUE

High-quality NdFeO3 single crystals were grown by
the hydrothermal method at the Shubnikov Institute of
Crystallography of the Russian Academy of Sciences.
The effect of high pressures up to 40 GPa on the optical
absorption spectra of NdFeO3 orthoferrite was studied
in a diamond anvil cell at room temperature. The dia-
mond anvils were about 400 µm in diameter. The diam-
eter of the hole at the center of the rhenium gasket was
about 120 µm. The sample used for the measurements
was a plate with the dimensions ~50 × 50 × 10 µm. The
plate was split from a bulk NdFeO3 single crystal. The
orientation of the plate was not identified. The pressure-
transmitting medium was polyethyl siloxane liquid
(PES-5), which provided a quasi-hydrostatic compres-
sion. After the pressure was relieved, single crystal
remained undestroyed. The optical system used for
studying the absorption spectra under high pressure
allowed the measurements in the visible and near-infra-
red ranges (from 0.3 to 5 µm). The experimental setup
used mirror optics for focusing the light beam on the
sample and also for focusing the transmitted radiation

Fig. 1. Optical absorption spectra of a NdFeO3 single crys-
tal at room temperature under different pressures. The dots
represent experimental points, and the solid lines display
the nonlinear approximation (see text).
onto the entrance slit of an optical monochromator. In
this way, it was possible to avoid chromatic aberration.
In the visible range, the role of the detector was played
by a photomultiplier (FEU-100), and in the near-infra-
red region, the light was detected by a germanium diode
mounted on a cold finger, which was cooled by liquid
nitrogen. The diameter of the light spot on the sample
surface was about 20 µm. To eliminate possible stray
signals, we first measured the reference signal I0 out-
side the sample and then the signal I transmitted
through the sample. The absorption spectrum was cal-
culated by the standard method, from the formula I =
I0exp(–αd), where d is the sample thickness and α is
the optical absorption coefficient.

The X-ray structural studies were performed under
high pressures up to 65 GPa at room temperature in a
diamond anvil cell. The sample was NdFeO3 powder
obtained by grinding a single crystal in an agate mortar.
The diameter of the diamond anvils was 400 µm, and
the diameter of the hole in the tungsten gasket was
about 120 µm. The pressure-transmitting medium was
the same PES-5 liquid. One third of the active volume
of the cell was filled with the sample, and two thirds,
with the PES-5 liquid. The high-pressure cell allowed
the detection of diffraction reflections up to the angles
2θ = 25°. The X-ray source radiation was a generator
with a molybdenum rotating anode and with a special
focusing system [11]. The spectra were measured in the
transmission geometry by a two-dimensional detector
of the Image-Plate type.

For the pressure measurements, including the esti-
mate of the pressure gradient from the sample diameter,
we used the ruby fluorescence shift. The gradient was
found to be no higher than 4–5 GPa at maximal pres-
sure.

3. RESULTS AND DISCUSSION

3.1. Optical absorption spectra. The optical spectra
of the NdFeO3 single crystal exhibit rather wide
absorption bands corresponding to the d–d optical tran-
sitions of the Fe3+ ion in the crystal ligand field (Fig. 1).
At normal pressure, the shape of the spectrum coin-
cides with those obtained previously in [12, 13]. Nar-
row peaks corresponding to the f–f transitions of the
Nd3+ ions are observed at the background of broad
bands [12]. It was found that the energy pressure coef-
ficients characterizing these transitions are approxi-
mately two orders of magnitude smaller than the pres-
sure coefficients of the absorption lines corresponding
to the d–d transitions of the Fe3+ ions. In rare-earth ions,
the 4f shells lie relatively deep, and the size of their
wave functions is much smaller than the interionic dis-
tances; therefore, their energies weakly depend on pres-
sure. For example, for the f–f transitions 4I9/2  2H11/2,
the pressure slope is –0.26 meV/GPa.

The samples remain transparent for wavelengths up
to ~8 µm. At normal pressure, below the absorption
JETP LETTERS      Vol. 77      No. 11      2003
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edge, which occurs at ~ 2.4 eV, three broad absorption
peaks are observed with maxima at (2.29 ± 0.02),
(1.73 ± 0.02), and (1.23 ± 0.01) eV [12]. Two broad
bands at ~1.23 and ~1.73 eV are caused by the Fe3+

6A1  4T1 and 6A1  4T2 transitions in the crystal
ligand field (octahedral oxygen environment) [12, 13].
The third band near 2.29 eV should correspond to the
6A1  4E1, 4A1 transitions, but it is not observed at
atmospheric pressure because it lies under the optical
absorption edge [12]. Only when the pressure grows
does this band shift to the transmission region and
become observable.

We found that, as the pressure increases, the ener-
gies of all d–d transitions, namely, 6A1  4E1, 4A1;
6A1  4T2; and 6A1  4T1, linearly decrease (Fig. 2)
and their pressure coefficients are –(16.5 ± 0.7), –(9.5 ±
0.7), and –(10.69 ± 0.4) meV/GPa, respectively (see
table). The optical absorption edge shifts somewhat
slower, with a pressure coefficient of –(6.94 ±
1.62) meV/GPa. However, at P = 37.5 GPa, the absorp-
tion edge exhibits a jump from ~2.2 to ~0.75 eV, which
testifies to the electronic transition of the insulator-to-
semiconductor type. A similar transition was observed
by us in LuFeO3 [7].

As a rule, the Fe3+ ion in the octahedral environment
does not exhibit any strong absorption in the visible
range. Therefore, the strong absorption in oxides is
attributed to the charge transfer dn  dn + 1L, where
n = 5 and L is a hole in the oxygen p band [12–14].
From the theoretical point of view, rare-earth orthofer-
rites are the strongly correlated electronic systems, in
which, according to the Mott–Hubbard model, the gap
∆ formed in the excitation spectrum due to the ligand-
to-Fe3+ charge transfer is smaller than the Coulomb
interaction energy U [15]. For example, for LaFeO3, the
parameters of the model determined from the X-ray and
UV photoemission data are ∆ = (2.4 ± 0.7) eV and U =
(7.4 ± 0.7) eV [16].

We have established that the quality of the photolu-
minescence spectra measured in our experiment is
impaired by the presence of the contribution from the
diamond anvils. Nevertheless, we can conclude that, at
room temperature, the spectrum of a NdFeO3 single
crystal consists of a single broad line whose maximum
(~2.1 eV) is close to the optical absorption edge. In the
pressure range P < 27 GPa, this spectrum weakly
depends on pressure.

3.2. Equation of state V(P). The evolution of the
X-ray diffraction patterns obtained for NdFeO3 powder
in the pressure range up to P = 65 GPa is shown in Fig. 3.
As the pressure increases, all peaks shift toward greater
angles and become broader (presumably, because of the
pressure gradient growth). In the pressure interval P ~
35–38 GPa, some peaks disappear, indicating a struc-
tural transition. The measurements under decreasing
pressure revealed a hysteresis in the region of this tran-
JETP LETTERS      Vol. 77      No. 11      2003
sition, which means that the transition is of the first
order.

Figure 4a shows the pressure dependences of the
unit cell parameters a, b, and c. At P ~ 25 GPa, the
parameters a and b become equal, and, at P ~ 35 GPa,
the parameters a and c decrease in a jumplike manner.
In the pressure interval 60–65 GPa, an anisotropy of
compressibility is observed: the b axis slightly expands
while the a axis continues to shorten. The transition is
characterized by the presence of two-phase region (see
Fig. 4b): upon loading, the X-ray reflections from the
low-pressure (LP) phase can be traced up to 42 GPa,
and when the pressure decreases, the high-pressure
(HP) phase is retained down to 30 GPa. With allowance
for the pressure gradient, the hysteresis is equal to
approximately 6 GPa.

Fig. 2. Pressure dependences of energy for the d–d transi-
tions of the Fe3+ ion (6A1  4E1, 6A1; 6A1  4T1; and
6A1  4T2) and the pressure dependence of the optical
absorption edge for NdFeO3 at room temperature. The dots
represent experimental points, and the solid lines show the
linear approximation.

Parameters of the optical absorption spectra of a NdFeO3 sin-
gle crystal at normal pressure at room temperature

Transition Energy at normal 
pressure (eV)

Pressure coeffi-
cients dE/dP 
(meV/GPa)

Absorption edge 2.42 ± 0.03 –6.94 ± 1.62
6A1  4E1, 4A1 2.29 ± 0.02 –16.5 ± 0.7
6A1  4T2 1.73 ± 0.02 –9.5 ± 0.7

A1  4T1 1.23 ± 0.01 –10.69 ± 0.4
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Figure 4b shows the dependence of the relative unit-
cell volume, V/V0 on pressure. The experimental depen-
dence was approximated by the equation of state V(P)
in the Birch–Mournagan form, which was used to cal-
culate the bulk elastic modulus B0 at the fixed value of

its derivative  = 4. For the initial LP phase, we found
B0 = 244 ± 4 GPa. After the transition to the HP phase,
this value was practically retained: B0 = 239 ± 4 GPa;
the mean approximation error was equal to 3.7 GPa. At
the structural phase transition near P ~ 37 GPa, the unit-
cell volume was found to exhibit a jump of ~ 4%.

The structural change under pressure mainly refers
the variation of the tilt angle ϕ of the oxygen octahe-
dron axis with respect to the c axis and the decrease in
the Fe–O interionic distance. Preliminary calculations

B0'

Fig. 3. Evolution of the X-ray diffraction patterns for
NdFeO3 under (a) increasing and (b) decreasing pressure.
showed that, upon the LP HP transition, the tilt
angle ϕ increases from ~151° to ~ 167°, while the Fe–
O distances decrease to 1.82 Å along the c axis and to
1.79 and 1.89 Å in the basal plane. In the new HP phase,
the orthorhombic symmetry is retained, but the (hhl)
reflections with odd indices l disappear, indicating that
the symmetry rises to the body-centered one. This is
caused by the change in the tilt of the octahedra in the
new structure and by the increase in the O–Fe–O bond
angles. A similar change in the perovskite structure was
observed for CaTiO3 with increasing temperature [17].
The structure of the new phase will be described in
more detail in a future publication.

Fig. 4. Dependences of (a) the unit-cell parameters and
(b) the reduced volume of the unit cell of NdFeO3 on hydro-
static pressure. In plot (b), the empty squares correspond to
increasing pressure and the full squares, to decreasing pres-
sure.
JETP LETTERS      Vol. 77      No. 11      2003
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3.3. Dependence of the exchange integral on the
unit-cell volume. Anderson [18] showed that, in antifer-
romagnetic oxides with a superexchange, TN is propor-
tional to the exchange integral J. Using the dependence
V(P) obtained for NdFeO3 and the dependence TN(P)
obtained by us earlier [6], it is possible to verify the
Bloch empirical relation J ∝  Vε (where ε = –10/3) pro-
posed for transition oxides [19]. For this purpose, we
plotted the logarithm of TN reduced to zero pressure
versus the logarithm of the reduced volume V (Fig. 5).
The linear approximation of the resulting dependence
with allowance for the relation J ∝  TN ∝  Vε gave ε =
(∂lnJ/∂lnV) = (∂ln(TN)/∂lnV) = –(3.8 ± 0.1). Although
this value of ε is somewhat greater than the Bloch value
(ε = –10/3), it is in a fairly good agreement with the
Bloch model.

4. CONCLUSIONS

We can conclude that, within the experimental error,
the pressure corresponding to the structural transition
coincides with the pressure at which the electronic tran-
sition was detected by the jump of the optical absorp-
tion edge. It should be noted that, in the high-pressure
phase, the optical gap does not drop to zero but takes on
a value typical of semiconductors. This fact indicates
that the structural and electronic transitions do not lead
to the insulator-to-metal transition but only transform
the orthoferrite to the semiconductor state. Thus, from
the viewpoint of electronic structure, the transition
observed in NdFeO3 at 37 GPa is an insulator-to-semi-
conductor transition.

In the pressure region near ~40 GPa, the structural
transitions were recently observed in the LaFeO3 [10]

Fig. 5. Dependence of the Néel temperature TN on the unit-
cell volume of NdFeO3 on a logarithmic scale. The solid
line shows the linear fitting to experimental points, and the
dashed line corresponds to ε = 10/3 in the Bloch model.
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and PrFeO3 [20] orthoferrites, in iron borate FeBO3
[21], and in hematite Fe2O3 [22]. According to the
Mössbauer spectroscopy data, these transitions are
accompanied by a magnetic moment collapse due to the
Fe3+ transition from the high-spin state S = 5/2 to the
low-spin state S = 1/2. Presumably, the electronic tran-
sition observed in NdFeO3 in our experiments is also
associated with spin crossover (S = 5/2)  (S = 1/2)
in iron ions and implies the transition to a magnetically
disordered state at room temperature (magnetic-to-non-
magnetic transition).

We found that the crystal structures of the low-pres-
sure and high-pressure phases have identical elastic
properties. The bulk moduli B0 of these phases, which
were calculated from the compressibility of the unit
cell, proved to be virtually equal. The structural transi-
tion is accompanied by a considerable hysteresis with a
two-phase region extending over 6–10 GPa. The main
structural features of the HP phase include a decrease in
the Fe–O interionic distances, a change in the tilt of the
oxygen octahedra with respect to the c axis, and an
increase in the O–Fe–O bond angles; presumably, these
features are responsible for the higher symmetry of this
phase.
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The structure of paramagnetic centers formed by impurity Ho3+ ions in synthetic forsterite is studied by sub-
millimeter EPR spectroscopy in the frequency range 65–200 GHz. It is found that Ho3+ enters into the Mg2+

sublattice in the form of single ions and dimer centers. The concentration of dimer centers considerably exceeds
the concentration of single ions, which points to the molecular self-organization of Ho3+ impurity ions into
dimers during the growing of the crystals from melt. Possible structures of the dimer center are discussed. The
parameters of the effective spin Hamiltonian describing the behavior of the electron–nuclear sublevels of the
two lowest electronic levels of the Ho3+ 5I8 ground multiplet are determined for a single ion and a dimer center.
© 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.72.Ss; 76.30.Kg
Some of trivalent rare-earth (RE) ions (Ho3+, Tm3+,
Er3+, etc.) in dielectric crystals exhibit up-conversion
luminescence. Crystals doped with these ions are of
interest as active media for solid-state up-conversion
visible lasers optically pumped by standard near-infra-
red diode lasers. In this case, a relatively small distance
between the interacting RE ions is one of the most
important condition for efficient up-conversion in crys-
tals proceeding through the mechanism of cooperative
interaction. This condition is met, in particular, when
the crystals contain associations composed of two RE
ions occupying neighboring cationic sites (in what fol-
lows, such associations will be conventionally called
dimers for the sake of brevity). When the distribution of
impurity ions over lattice sites is strictly statistical, the
ratio of dimer Cdim and single-ions Csing concentrations
is determined by the equation obtained in [1],

(1)

where c is the total mole fraction of impurity ions in the
crystal with respect to the major host component sub-
stituted by the impurity ions. In this case, the probabil-
ity of dimer formation at low RE concentrations typical
for most laser materials is also rather low.

Therefore, materials in which the self-organized
dimerization of impurities leads to a substantial excess
of the concentration of dimer centers over the level
determined by Eq. (1) are of special interst to up-con-
version lasers.

Cdim/Csing 2c 1 c2–( ),=
0021-3640/03/7711- $24.00 © 20625
The occurrence of self-organization of this kind was
found, for example, in CsCdBr3 single crystals doped
with RE ions [2] or Cr3+ ions [3]. The efficiency of up-
conversion luminescence with pumping in a region of
1 µm for the Ho3+-activated CsCdBr3 crystals with con-
centrations of only 10–1–100 at.% reaches 30% of its
value under the direct excitation of the luminescent ion
by short-wavelength pumping sources [4, 5].

The mechanism leading to the association of impu-
rity ions into dimers is connected in the case of
CsCdBr3 with the condition of the conservation of crys-
tal electroneutrality upon the substitution of trivalent
impurity ions for bivalent host cations [6]: trivalent RE
ions substitute for bivalent Cd2+ cations to form [Re3+–
VCd–Re3+] (VCd is a vacancy in the cadmium sublattice)
associations whose total electric charge equals the
charge of three substituted Cd2+ ions, so that crystal
electroneutrality is conserved.

The formation of impurity–vacancy associates of
this kind, which are favorable to a decrease in the dis-
solution energy of heterovalent impurities, is character-
istic of forsterite (Mg2SiO4) crystals as well [7]. In par-
ticular, it was observed previously for Cr3+ ions in our
work [8].

Note that forsterite significantly outperforms bro-
mides in its thermophysical properties, which alleviates
the problem of creating a number of efficient solid-state
lasers on its basis operating in various modes. Thus,
tunable laser generation was obtained with
003 MAIK “Nauka/Interperiodica”
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Cr4+:Mg2SiO4 crystals in the range 1.170–1.370 µm [9]
with a differential efficiency of up to 38% [10] and
power in the continuous-wave mode of up to 1.1 W
[11]. Pulses shorter than 20 fs were also obtained [12].

This work reports the observation of the impurity
ion dimerization in the holmium-doped forsterite crys-
tals.

EXPERIMENTAL

The structure of paramagnetic centers formed by
Ho3+ impurity ions in synthetic forsterite was studied
by submillimeter EPR spectroscopy in the frequency

Table 1.  Concentrations of doping impurities in melt

Sample, no.
Concentration, wt % (mol %)

Ho2O3 Na2O Al2O3

1 2.3 (2.0)

2 (Figs. 1c, 1d) 2.3 (2.0) 0.16 (1.0)

3 4.6 (4.0) 0.16 (1.0) 0.19 (1.0)

4 (Figs. 1a, 1b) 9.1 (8.0) 0.16 (1.0) 0.19 (1.0)

Fig. 1. EPR spectra of holmium ions in forsterite at B || b
and B1 || B; frequency ν = (a) 80, (b), (c) 114, and
(d) 170 GHz. Arrows in spectra (b) and (c) indicate lines
that belong to a single Ho3+ ion at position M2.
range 65–535 GHz on a quasi-optical spectrometer
[13]. The experiments were carried out at a sample tem-
perature of 4.2 K in the Voigt geometry. The microwave
magnetic-field vector B1 in all cases was directed paral-
lel to an external magnetic field B induced by a resistive
electromagnet in the range 0–0.9 T.

The measurements were performed for four samples
grown by the Czochralski method. Some samples also
contained additional optically inactive and nonpara-
magnetic Na+ and Al3+ ions, which were introduced to
improve the solid-state solubility of holmium in forster-
ite. The concentration of impurity ions in the melt is
reported in Table 1.

However, it should be considered that, when forster-
ite is growing, the RE distribution coefficients between
the crystal and the melt do not exceed 0.01–0.02 [14].
Thus, the actual concentrations of holmium in our crys-
tals are approximately two orders of magnitude smaller
than its concentrations in the corresponding melts indi-
cated in Table 1, and a direct measurement of the Ho3+

concentrations in the crystals by X-ray spectral
microanalysis showed that these values do not exceed
0.1 wt %.

OBJECTIVE RESULTS

In total, we found four types of paramagnetic cen-
ters formed by holmium impurity ions in forsterite. In
this paper, we will restrict ourselves to the description
and analysis of the results related only to two of them.
The structures of the other two centers call for further
refinement, and their discussion will be published else-
where.

Centers of the type discussed in this work were
observed in all the samples studied. The EPR spectrum
of the center of the first type (from here on, the first cen-
ter) recorded at a frequency of 80 GHz for the sample
indicated in Table 1 under no. 4 is presented in Fig. 1a.
It consists of eight narrow equally spaced lines. Mea-
surements of resonance transitions for this center in the
frequency range 70–120 GHz showed that the reso-
nance frequencies of hyperfine (HF) components of the
spectrum linearly depended on the magnetic field.

The EPR spectrum of the center of the second type
is more complicated, and its shape depends on the fre-
quency of recording. Such a spectrum recorded for
sample no. 2 (Table 1) at a frequency of 170 GHz in suf-
ficiently strong magnetic fields is given in Fig. 1d. In
this spectrum, the resonance signal from the second
center is manifested in a pure form. It consists of a large
number of narrow lines collected in eight groups. In
spite of the sophisticated form of the spectrum and the
dependence of its shape on the recording frequency, the
measurements carried out at different frequencies
(Fig. 2) allowed us to trace the magnetic-field depen-
dence of the frequencies of particular HF components
in the spectrum. It was found that this dependence is
nonlinear for the second center, and the initial splittings
JETP LETTERS      Vol. 77      No. 11      2003
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in a zero magnetic field fall in the range 100–120 GHz.
Figures 1b and 1c present the spectra recorded at a fre-
quency of 114 GHz for samples no. 4 and no. 2, respec-
tively. These spectra represent a superposition of sig-
nals belonging to both centers mentioned above (how-
ever, the individual HF components of the signal from
the second center are resolved much worse than in
Fig. 1d). The arrows in Figs. 1b and 1c show the lines
belonging to the first center.

The study of the orientation dependence of the spec-
tra showed that the first center has two magnetically
nonequivalent ion sites in the crystal lattice (two differ-
ently directed magnetic z axes) and the second site con-
tains four magnetically nonequivalent ion sites. Here,
for both of the sites, the angle between the projections
of the magnetic z axis onto the crystallographic plane
ab and the b axis (from here on, the Pbnm space group
is used) equals +29 ± 1° and –29 ± 1°. However,
whereas these axes lie strictly in the ab plane in the case
of the first center, these axes deflect from this plane by
an angle of ~ +4 ± 1° and –4 ± 1° for the second center.

RESULTS AND DISCUSSION

The forsterite structure described in [15] belongs to
the orthorhombic system. It consists of a closely packed
hexagonal motif of oxygen anions, in which half of the
available octahedral voids are occupied by Mg2+ ions at
two crystallographically nonequivalent positions, ordi-
narily designated as M1 and M2 and characterized by
the Ci and Cs point symmetry groups, respectively.
Each unit cell contains four magnesium positions of
each of these types.

The M2 positions are somewhat larger than M1: the
average M2–O and M1–O bond lengths equal 0.222 and
0.210 nm, respectively [16]. The coordination octahe-
dra occupied by Mg2+ ions are arranged as layers paral-
lel to the bc plane. The M1 octahedra form a linear
chain aligned with the crystallographic axis c, and the
M2 octahedra are located at the sides of this chain. The
projection of the octahedra of one chain onto the bc
plane is shown in Fig. 3. The second chain of the occu-
pied octahedra is displaced by a/2 and b/2 with respect
to the first chain and is connected with it by the glide
reflection planes ac and bc.

In the general case, this character of symmetry
determines the occurrence of four magnetically non-
equivalent ions for position M1 and two for position M2
[17].

Holmium has one stable isotope 165Ho with the
nuclear spin I = 7/2. Therefore, the EPR HF structure of
a single Ho3+ ion consists of eight allowed transitions
between nuclear sublevels with the same projections of
the nuclear moment onto the quantization axis (∆Iz = 0).

The signal of the first center shown in Fig. 1a has
just this shape. With regard to the aforesaid, it may be
JETP LETTERS      Vol. 77      No. 11      2003
Fig. 2. Magnetic-field dependence of frequencies of the HF
components of Ho3+ EPR spectra at B || b. Circles and trian-
gles designate experimental points for a single ion and a
dimer, respectively. Dashed straight lines and solid lines
correspond to calculated dependences for a single ion and a
dimer. Arrows show the frequencies of measurements cor-
responding to Fig. 1.

Fig. 3. Projections of M1 and M2 coordination octahedra of
the forsterite structure onto the bc plane.

(M1)
(M1)

(M2)
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inferred that the first center found in this work corre-
sponds to the Ho3+ ion at the M2 position.

For all centers, we observed resonance transitions
between the two lowest electronic levels with a zero-
field splitting lying in the range 0–110 GHz. Measure-
ments in the range up to 500 GHz did not reveal other
resonance transitions. This means that the energy of the
third level significantly exceeds the splitting between
the two lowest levels. Therefore, in the first approxima-
tion, we may consider that the states of the two lowest
electronic levels are not mixed in a magnetic field with
higher lying states.

One thus can describe the level energies using the
effective spin Hamiltonian [18]

(2)

for the effective electron spin S = 1/2 and the nuclear
spin I = 7/2. Here, the first term corresponds to the ini-
tial splitting between the electronic levels in a zero
magnetic field, the second term corresponds to the Zee-
man energy of electronic levels, and the third term cor-
responds to the HF interaction between the electron and
nuclear spins. The energies of electron–nuclear levels
in this case are calculated analytically, 

(3)

The eight lines in the spectrum in Fig. 1a correspond to
the allowed transitions between the HF sublevels with
the same projections of the nuclear spin of the two elec-
tronic levels (∆Iz = 0). The linear field dependence
means that ∆ = 0 for this center. A least-squares fit of
the Hamiltonian parameters (Eq. (2)) gave the values
given in Table 2. The theoretical magnetic-field depen-
dences of the resonance frequencies calculated with
these parameters for the first center and the correspond-
ing experimental data are presented in Fig. 2. Note that
the value of the magnetic moment associated with the
states of the two lowest electronic levels µ = (gz/2)µβ =
9.25µβ, where µβ is the Bohr magneton, is close to the
highest possible value µ = 10 for the ground-state 5I8

multiplet of the Ho3+ ion. The parameter A can be used
to determine the HF coupling constant for the Ho3+ ion
in forsterite: Ap = A(gL/gz) = 0.83 + 0.02 GHz, where
gL = 1.25 is the Lande g factor. This is close to the value
Ap = 0.812 GHz obtained for Ho3+ in holmium nicoti-
nate [19].

The second center, we believe, has a dimeric struc-
ture. The field dependences of the electron–nuclear lev-

Heff ∆Sx gzµBBzSz ASzIz+ +=

W
1
2
--- gzµβBz AIz+( )2 ∆2+ .±=

Table 2.  Parameters of the effective spin Hamiltonian for a
Ho3+ single ion and a Ho3+ dimer in forsterite

∆ (GHz) gz A (GHz) J (GHz)

Single ion 0 18.5 ± 0.2 12.3 ± 0.2

Dimer 51.5 ± 1 17.9 ± 0.2 11.8 ± 0.2 11.4 ± 0.5
els of a dimer can be described using the effective spin
Hamiltonian [20]

(4)

where Hi (i = 1, 2) is the effective Hamiltonian of indi-
vidual ions given by Eq. (2) and the right-hand term
corresponds to the interaction energy between the ions
in a dimer.

The eigenvalue of the Hamiltonian (Eq. (4)) can be
conventionally represented as four electronic levels
with zero-field energies –2∆, ±J/2, and +2∆, consisting
of 64 HF sublevels each.

Sixty-four allowed transitions (∆Iz1 = ∆Iz2 = 0) with
nonlinear (as follows from Eq. (3)) magnetic-field
dependences of the resonance transition frequencies are
possible between the HF components of each pair of
electronic levels. Theoretically, in total, we could
observe 6 × 64 = 384 HF components of resonance
transitions.

However, the spectra of –2∆  –J/2 and +J/2 
+2∆ transitions, as well as –2∆  +J/2 and –J/2 
+2∆ transitions, are superposed on each other because
of the closeness of their frequencies. The –J/2  +J/2
transition has a very small splitting in a zero magnetic
field that does not fall into the frequency range of our
EPR spectrometer. Moreover, the transitions between
the electronic levels ±J/2 and +2∆ has a too low inten-
sity, because the population of the ±J/2 levels is low at
4.2 K. The probability of the –2∆  +2∆ transition is
low, and signals of the HF components of this transition
also have a rather low intensity.

Thus, in reality, we observe only 2 × 64 HF compo-
nents corresponding to the –2∆  –J/2 and –2∆ 
+J/2 transitions. In our case, both of these transitions
are allowed, because the HF coupling energies and
energies of interaction between the ions in a dimer are
values of the same order of magnitude and the even and
odd states with respect to a transposition of particles are
mixed. The parameters of the Hamiltonian (Eq. (4))
giving the best fit of the calculated dependences of the
resonance frequencies of these transitions to the exper-
imental results are given in Table 2. 

The theoretical dependences of the HF components
with the same projection of the nuclear spin of the two
ions in a dimer calculated with these parameters are
shown in Fig. 2 as solid lines. These dependences rep-
resent two families of curves corresponding to two tran-
sitions. The experimental points assigned to the
−2∆  –J/2 transition are designated by “corner-up”
triangles, and points assigned to the –2∆  +J/2 tran-
sition are designated by “corner-down” triangles.

Given the strictly statistical distribution of Ho3+ ions
in forsterite, the fraction of dimer centers in our sam-
ples should be extremely small according to Eq. (1). At
the same time, as is evident from the spectra given in
Figs. 1b and 1c, the concentrations of dimer centers are
not at all lower but, apparently, and on the contrary,

H Hi∑ 2JSz1Sz2,–=
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considerably higher than the concentrations of single
ions (only if the specific integral intensity of dimer sig-
nals does not exceed the similar value for single ions by
many orders of magnitude; the probability of this is
small, but we cannot exclude such a possibility).

This fact points to the existence of a mechanism in
forsterite that leads to the self-organization of Ho3+ ions
into dimers. It is likely that this mechanism is analo-
gous to the mechanism observed previously for Cd ions
in CsCdBr3 [2, 3, 6]. In this case, the dimeric structure
must consist of two Ho3+ ions and an Mg2+ vacancy.

We analyzed two possible structures of such a dimer
that provide the best agreement of the calculated ener-
gies of dipole–dipole interaction with the experimental
value of J. These structures are designated in Fig. 3 as
“variant 1” and “variant 2.”

In the structure of variant 1, Ho3+ ions substitute
Mg2+ at positions M2, and a vacancy in the magnesium
sublattice M1 is located between them. This vacancy
violates the mirror symmetry of the crystal field at posi-
tion M2 occupied by impurity ions, which removes the
restriction according to which the magnetic axis z of the
ion at position M2 should lie strictly in the ab plane or
be strictly perpendicular to it. Correspondingly, at an
arbitrary deflection of the magnetic axis z from this
plane, the number of such axes in a unit cell is bred by
the crystal symmetry elements up to four. It is this pat-
tern of orientational dependences of the signal of the
second center that we observe (see above).

In the case of variant 2, two Ho3+ ions are arranged
in octahedra of the same linear chain (see Fig. 3). The
Mg2+ vacancy at position M1 is located between these
two Ho3+ ions. In this case, the dimer is formed by mag-
netically equivalent ions located in different unit cells,
and the number of magnetically nonequivalent dimer
centers equals 4, as in the case of single ions at M1. The
Cr3+ ions in forsterite have a similar structure [8].

In addition, as follows from the structural data, octa-
hedra containing the Ho3+ ions that form the dimer are
separated by a distance of 0.642 or 0.6 nm in the case
of variant 1 or 2, respectively. These distances are suf-
ficiently large, which allows us to consider the interac-
tion between the Ho3+ ions in the dimer as being of a
purely magnetic-dipole nature. Because we know the
value and orientation of the magnetic moment of the
Ho3+ ions from the experiment, the dipole–dipole inter-
action energy can be calculated by the equation

(5)

where r is the distance between the ions, θ is the angle
between the axis z of the magnetic moment and the
radius-vector connecting the ions. The dipole–dipole
interaction energy Jt calculated by Eq. (5) for variants 1
and 2 equals 7.44 and 9.46 GHz, respectively. In both
cases, it is considerably smaller than the experimental

J
1
2
---

gz
2µβ

2

r3
----------- 3 θcos

2
1–( ),=
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value J = 11.4 GHz. The difference between the calcu-
lated and experimental values of the dipole–dipole
interaction energy can be explained by the displace-
ment of the Ho3+ impurity ions towards each other rel-
ative to the equilibrium positions of lattice sites. This
displacement can be caused by the action of the Cou-
lomb forces associated with the effective negative
charge of the magnesium vacancy between these ions.
Such a displacement was observed previously for RE
dimers of similar structure in CsCdBr3, where the dis-
tance between ions decreased by δr ~ 0.07 and 0.08 nm
for Cd3+ [2] and Ho3+ [21] ions at comparable values of
r. The value of δr for Ho3+ ions in forsterite that we cal-
culated from the experimental value of J must comprise
0.085 and 0.036 nm for structural variants 1 and 2,
respectively.

Thus, based on the available data, one cannot make
an unambiguous choice between one or another struc-
ture of the dimer center. We believe that variant 1 is
more probable. The closeness of the directions of the
principal magnetic axis z of a single ion at position M2
and the ions in a dimer counts in favor of this variant.
Moreover, from the viewpoint of the ratio between the
sizes of ions Ho3+/Mg2+ on the one hand and positions
M2/M1 on the other hand, the predominant location of
holmium at M1 seems to be unlikely: larger Ho3+ ions
must prefer more “capacious” positions M2.

The smaller difference between the experimental
and calculated values of the dipole–dipole interaction
energy supports variant 2.

To refine the structure of the observed holmium
dimer centers in forsterite, studies by other methods are
required, for example, by X-ray diffraction with refine-
ment of the position occupation. However, in order to
use this technique effectively, higher concentrations of
holmium ions in the crystals are required.

In any case, the high concentration of holmium
dimers that we found in forsterite is an encouraging
result from the viewpoint of obtaining efficient up-con-
version luminescence in forsterite crystals activated by
Ho3+ ions and further using these crystals as up-conver-
sion converters of IR laser radiation into the visible
spectral region.

We are grateful to V.A. Shustov for performing
X-ray diffraction experiments.
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Possible types of nanomachines based on many-wall carbon nanotubes and their operation modes are consid-
ered. Potential relief and energy barriers for the relative motion of a nanotube wall are studied. Fundamentally
new nanomachines based on the threadlike relative motion of nanotube walls are proposed. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 85.85.+j; 61.46.+w
1. INTRODUCTION

Progress in nanotechnology in recent decades has
given rise to the possibility of manipulation with
nanometer-size objects [1]. The principal schemes of
nanometer-size machines (nanomachines) where con-
trolled motion can be realized are considered [2]. Thus,
the search for nanoobjects that can be used as the mov-
able elements of nanomachines is a very actual chal-
lenge in the development of nanomechanics. The low
frictional relative motion of carbon nanotube walls [3–
5] and the unique elastic properties [6] of these walls
allows them to be considered as promising candidates
for such movable elements. A set of nanomachines
based on the relative sliding of walls along the nano-
tube axis or their relative rotation is proposed [5, 7–10].

All of these nanomachines correspond to the case
where the corrugation of the interwall interaction
energy has little or no effect on the relative motion of
nanotube walls. However, all carbon nanotube walls
have the helical symmetry [11, 12] and this gives the
possibility for neighbouring walls of a nanotube to be a
nut-and-bolt pair. The present work is devoted to a fun-
damentally new type of nanomachines where the rela-
tive motion of nanotube walls occurs along helical
“thread” lines. The possibility of controlling this
motion by the potential relief of the interwall interac-
tion energy is considered. A theory for the dynamics of
the relative motion of nanotube walls is developed. Pos-
sible types of these nanomachines are discussed. Two
operation modes for these nanomachines are analyzed:
the Fokker–Planck operation mode, where the relative
motion of walls occurs as diffusion with drift under the
action of external forces, and the accelerating operation
mode, where the relative motion of walls is controlled
by external forces. The values of the controlling forces
corresponding to these modes are estimated.

¶ This article was submitted by the authors in English.
0021-3640/03/7711- $24.00 © 20631
2. BARRIERS TO THE RELATIVE MOTIONS
OF WALLS ALONG A THREAD LINE

By potential relief we mean the dependence of the
interwall interaction energy U of two neighbouring
nanotube walls on the coordinates describing the rela-
tive position of the wall. Such coordinates are the angle
φ of relative rotation of the wall about the nanotube axis
and the length z of relative displacement of the wall
along it. Several types of potential relief, including the
type where valleys form helical lines, were considered
by Dresselhaus et al. for a set of double-wall nanotubes
[12]. However the barriers to the relative motions of
walls along the helical thread lines and to transitions
onto neighbouring thread lines have not been previ-
ously calculated. Here, we present the first calculation
of such barriers. As is discussed below, such nanotubes
have some advantages for applications in nanoma-
chines.

The interwall interaction is adopted here to be a 6–
12 Lenard–Jones potential U = 4e((σ/r)12 – (σ/r)6) with
parameters e = 2.968 meV and σ = 3.407 Å (see [12]).
The walls are considered to be rigid. Account of the
wall deformation is not essential for the shape of poten-
tial relief both for double-wall carbon nanotubes [13]
and nanoparticles [14]. The length of the longer inner
wall is chosen so that all pairs of atoms with inter-
atomic distances within the cutoff distance are taken
into account.

The walls of a double-wall nanotube are commensu-
rate if the ratio of wall unit cell lengths is a rational frac-
tion and incommensurate otherwise. Here, we have
studied the threadlike potential relief for a set of nano-
tubes with both commensurate and incommensurate
walls. The threadlike pattern of potential relief arises
due to the essential difference between barriers U1 to
the relative motion of walls along the thread line and U2
to the transition of the system to a neighbouring thread
line (U1 ! U2). The threadlike potential relief for a
(6,4)@(16,4) nanotube is plotted on Fig. 1.
003 MAIK “Nauka/Interperiodica”
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The barriers to any kind of relative motion of incom-
mensurate walls fluctuate near their average value anal-
ogously to the sum of functions cosl, where l is integer
[13]. The dependencies of barriers U1 and U2 on the

0 50 100
Wall relative rotation angle, deg

0

2

4

6
Wall relative displacement, A

b2

b1

Fig. 1. The potential relief of the interwall interaction
energy of the (6,4)@(16,4) nanotube as a function of rela-
tive displacement of the wall along the nanotube axis and
relative rotation angle of the wall about the nanotube axis;
b1 and b2 are the unit vectors of the lattice formed by min-
ima of the potential relief. The energy is measured from its
minimum The equipotential lines are drawn at an interval of
10–2 meV per atom.

Fig. 2. The dependence of the barrier U1 for the relative
motion of walls along the thread line on the length H of the
outer wall for nanotubes with incommensurate walls. Filled
circles, filled triangles, and filled squares correspond to
(6,4)@(16,4), (8,2)@(12,8), and (8,2)@(17,2) nanotubes,
respectively.
outer wall length are shown in Figs. 2 and 3, respec-
tively. One can see that barriers change by an order of
magnitude for all nanotubes considered, while the outer
wall length changes by only few nanometers. Note that
these dependencies for both barriers, at least for two of
three considered nanotubes, are quasiperiodic func-
tions.

However, the quantity that characterizes the possi-
bility of a double-wall nanotube having a threadlike
pattern of potential relief is not the barrier itself but
rather the barriers ratio γ = U2/U1. It is natural to call
this ratio the relative thread depth. The dependence of
the relative thread depth on the outer wall length is
shown on Fig. 4. If the average periods of the men-
tioned quasiperiodic functions are close and oscilla-
tions of functions are in phase for both barriers, then the
relative thread depth γ can be large for substantial
changes of the outer wall length. The example of such
a possibility is the (8,2)@(12,8) nanotube.

The barriers for any kind of relative motion of com-
mensurate walls with lengths corresponding to an inte-
ger number of nanotube elementary cells are given by
the relation Ua = UuNu, where Uu is the barrier per unit
cell of the nanotube and Nu is the number of unit cells
in the nanotube (the interaction with atoms on the edge
of wall is disregarded here). Thus, the barrier Ua for a
sufficiently long nanotube is proportional to its length
and can make it possible to obtain a given value of the
barrier by the choice of the nanotube length. To system-
ize the search of double-wall nanotubes with commen-
surate walls that can be a nut-and-bolt pair, the notion
of an equivalence class of walls can be introduced [15].
Analysis shows that for some double-wall nanotubes
with an integer number of elementary cells, the barriers
can be extremely small in comparison with the total
interwall interaction energy. The reason for this is the
following. The potential field produced by each wall
can be expanded on the basis of a harmonics invariant
under the symmetry group of the wall [16]. Only har-
monics with a symmetry compatible with both walls
can contribute to the interwall interaction potential
relief U(φ, z). Therefore, it was found that the barrier
for relative wall rotation for some nanotubes is less than
the calculation accuracy [17]. One can expect analo-
gous results for the majority of nanotubes with chiral
commensurate walls.

3. DYNAMICS OF RELATIVE MOTIONS
OF WALLS

Let us now study the dynamics of relative motion of
double-wall nanotube interacting walls under the action
of external forces. One wall is treated as fixed and the
motion of the second wall relative to the first is exam-

ined. The external forces  acting on movable wall
atoms does not cause its deformation if these forces
have equal magnitudes for each atom and can be
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divided into two components  and  directed along
the wall axis and the tangent to its circumference,
respectively. The forces of the considered types can
have, for example, an electrostatic nature [10] or be
applied by a nanomanipulator [5] or laser electric field
[7, 8]. Analysis shows that, for the case considered, the
motion of one wall of a double-wall carbon nanotube
relative to a fixed wall is equivalent to the two-dimen-
sional motion of a particle whose mass equals that of
the movable wall in the potential field U(r) and under
the action of an external force F, where r = (z, L), L =

φR1, R1 is the radius of the movable wall and F = (Na ,

Na ), and Na is the number of movable wall atoms.

We consider an ensemble of “particles” whose
motion is described by this effective equation of
motion, where forces F have all the properties
described above and the potential U(r) corresponds to
the lattice as is shown in Fig. 1, for example. The rela-
tive motion of walls can be diffusion with drift only in
the case of kT ! U1, U2, where U1 and U2 are the barri-
ers between minima of U for motion along lattice vec-
tors b1 and b2, respectively. We restrict ourselves to the
case of U1 ! U2, where diffusion is one-dimensional.
The probabilities ω1 and ω2 of displacements between
neighbouring minima in the line of the direction of dif-
fusion and against it, respectively, are approximately
given by the Arrhenius formula

(1)

where Ω is a frequency which has the same order of
magnitude as the oscillation frequency of the particle
near the minimum, Fx is the projection of F on motion
direction, and δ is the distance between neighbouring
minima in the motion direction. Then, the first term of
the exponents expansion (therefore, the condition
Fxδ/2 ! kT is also necessary) is used to obtain the Fok-
ker–Planck equation for a particle concentration n:

(2)

Here D and B are, respectively, the diffusion coeffi-
cient and mobility of particles given by

(3)

(4)

Note that the Einstein ratio D = kTB is fulfilled.
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4. DISCUSSION

We consider here two types of nanomachines based
on the relative motion of nanotube walls. Let us first
discuss some possible advantages of applying nano-
tubes with a threadlike potential relief of the interwall
interaction energy in nanomachines where the direction
of forces applied on a movable wall does not corre-
spond to the kind of wall motion desired. In the case
where the potential relief has a negligible effect on the
relative motion of walls, the directions of forces applied
on a movable wall must correspond to the direction of

Fig. 4. The dependence of the ratio γ = U2/U1, which char-
acterizes the thread depth on the length H of the outer wall.
Filled circles, filled triangles, and filled squares correspond
to (6,4)@(16,4), (8,2)@(12,8) and (8,2)@(17,2) nanotubes,
respectively. 

Fig. 3. The dependence of the barrier U2 to the transition of
the system onto a neighbouring thread line on the length H
of the outer wall. Filled circles, filled triangles, and filled
squares correspond to (6,4)@(16,4), (8,2)@(12,8) and
(8,2)@(17,2) nanotubes, respectively.
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relative motion of walls; namely, if the relative motion
of walls is sliding along the nanotube axis, as takes
place in constant-force nanosprings [5], gigahertz
oscillators [9], and mechanical nanoswitch [10], then
the forces applied on a movable wall are bound to be
directed along the nanotube axis (first-type forces). If
the relative motion of walls is relative rotation, as takes
place in nanobearings [7] and nanogears [8], then the
forces applied on a movable wall must to be directed
along the tangent to its circumference (second type
forces).

However, the presence of a threadlike potential
relief of the interwall interaction energy remove the
restriction on the directions of forces applied on a mov-
able wall. The analysis above shows that relative
motion of walls along a helical line of “thread” is pos-
sible for both of the discussed types of external forces
and any superposition of these. Therefore, the forces of
the first type produce not only a relative sliding of walls
along the axis but also their relative rotation. Therefore,
a nanomachine based on wall motion can operate as a
nanowbirligig. The proposed way to convert the forces
directed along the nanotube axis into the relative rota-
tion of walls can be used in nanobearings and nanoge-
ars. The second-type forces producing a rotational
moment gives rise not only to relative rotation but also
to relative motion of walls along the nanotube axis.
This effect provides the possibility to construct a nano-
machine based on a carbon nanotube that is analogous
to an old-fashion faucet where rotation of the handle
converts into forward motion of a rod.

Here, we also propose a principally new type of
nanomachines that may be based on nanotubes with
only a threadlike potential relief of the interwall inter-
action energy. The use of an alternating-sign force to
operate the relative position of walls can produce wall
motion that is analogous to the motion of an auger in a
perforating drill. Such a perforating nanodrill can be
used for the modification of a surface in nanometer
size.

Another new type of nanodevices which we propose
here are based on relative motion of nanotube walls are
electromechanical nanodevices. For example, the con-
ductivity of a system consisting of two carbon nano-
tubes and a fullerene between them [18] can be tuned
within orders of magnitude by rotation of one nanotube
or its displacement along the axis. This tuning can be
controlled with the help of a nanodevice based on the
relative motion of nanotube walls. As a result, a vari-
able nanoresistor can be constructed, where a nanotube
wall is both a movable element and an element of the
electric circuit.

Let us discuss possible operation modes of nanoma-
chines based on relative motion of nanotube walls
along a thread line. As we have shown above, in the
case when conditions kT ! U1, U2 and Fxδ/2 ! kT are
fulfilled, the relative motion of carbon nanotube walls
is described by the Fokker–Planck equation (2). Here,
the operation mode of a nanomachine based on such a
motion is called the Fokker–Planck operation mode.
This mode is appropriate for use in a nanomachine if
the average xdr = BFxt that passes by a wall along a heli-
cal line of thread as a result of drift is greater than the

average distance xdif =  that passes by this wall as
a result of diffusion. This condition is fulfilled for dis-
placements xdr @ δ, that is, for tens of relative jumps of
a wall along a helical thread line between the minima of
the interwall potential U(r). Such displacement along a
helical line corresponds to less than one revolution of a
wall about the nanotube axis or the nanometer displace-
ment along this axis. Although the Fokker–Planck
operation mode does not allow precise control of the
relative positions of walls, this mode can be used, for
example, in a perforating nanodrill for the perforation
of layers whose thickness is less than the average dis-
placement xdr of a wall (that plays the role of auger) as
a result of drift.

For forces Fxδ/2 @ kT, the stochastic contribution to
relative motion of walls can be neglected. In this case,
the relative motion of walls is accelerated and, as dis-
cussed above, equivalent to the two-dimensional
motion of one particle. Here, the operation mode of a
nanomachine based on such motion is called the accel-
erating operation mode. In this mode, the controlled
relative displacement of walls along a helical line of
thread for a distance that is less than δ is possible. This
mode can be used, for example, in a variable nano-
resistor.

Let us estimate the range of forces that can be used
to control the relative motion of carbon nanotube walls
in a nanomachine operating both in Fokker–Planck and
in accelerating operation modes. Our estimations are
made for nanotube (8,2)@(12,8). The ratio of barriers
γ = U1/U2 of this nanotube is preserved within the range
of 25–40 for all considered lengths of the outer wall.
The conditions kT ! U1, U2 and Fxδ/2 ! kT give the
maximal force FFP corresponding to the Fokker–Planck
mode FFP ! U1/δ, where

(5)

Here, R1 and R2 are the radii of the inner and outer wall,
respectively; and χ is the angle between the helical line
of thread and wall circumference.

For nanotube (8,2)@(12,8) we have (1) a value of χ
equal to that of the chiral angle θ =10.89° and (2) a
magnitude of U1 ≈ 0.6 meV corresponding to an outer
wall length that equals the length of a unit cell of the
wall. As a result, we get δ = 1.86 Å and FFP ! 10–12 N.

Using too high a force in controlling the relative
motion of walls in the accelerating mode can give rise
to twist-off. The twist-off can occur only if the projec-
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tion Fy of the external controlling force on the direction
normal to the thread line will satisfy the inequality

(6)

where y is the relative displacement of the wall in the
direction normal to the thread line and δy is the distance
between the neighbouringy thread lines

(7)

For controlling forces greater than Fac = 2U2/δy, the rel-
ative motion of walls in the direction normal to the
thread line must be taken into account. For controlling
forces less than Fac, it is sufficient to consider the rela-
tive motion of walls only along the thread line; for the
nanotube (8,2)@(12,8), on substituting in Eq. (6) δy =
2.23 Å, U2 = 20 meV, and a magnitude of χ equal to the
chiral angle θ, we get Fac ≈ 3 × 10–11 N.
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sional electron gas excited by a linear alternating current is discussed. © 2003 MAIK “Nauka/Interperiodica”.
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By the conventional methods of experimental study
of the Hall effect (including the quantum Hall effect),
either ρxy and ρxx in a rectangular sample or σxx in a
Corbino disk are measured. Of interest is to develop a
method for direct measurement of the σxy magnetocon-
ductivity tensor component. The goal of this work was
to suggest an experiment of a new type for measuring
σxy. The suggested experiment is nonstationary but also
low-frequency (i.e., with negligible dispersion of mag-
netoconductivity).

It is based on the measurement of the response of a
two-dimensional electron system to a linear alternating
current flowing near it. Let us consider a straight thin
superconducting wire placed at distance ∆ from a two-
dimensional electron plane x–y parallel to the y axis. A
current of the given frequency ω and amplitude J0 flows
through the wire. A superconducting wire was selected
to exclude from consideration the scalar potential gra-
dient along the wire. In this case, the y component of
the vector potential  produced by the current
through the wire is the only perturbation. Obviously, it
is only a bare perturbation (this is indicated by the
index 0), and the shielding effect of the two-dimen-
sional electrons is not taken into account. The wire
must remain superconducting in magnetic fields of sev-
eral tesla, in which the quantum Hall effect occurs. The
voltage V at the frequency ω is measured in the experi-
ment along the x axis between two points on different
sides of the perturbing linear current.

The set of Maxwell equations and the constitutive
equation relating the current to the field should be
solved self-consistently to determine the voltage V tak-
ing into account the shielding effect of electrons. It is
convenient to introduce the scalar and vector potentials
ϕ and A, respectively, and use the continuity equation.
Using the Fourier transform for x, y, and time, we
obtain

(1)

Ay0

ϕkω
2π
εR
------ρ k ω,( )e R z– ,=
0021-3640/03/7711- $24.00 © 0636
(2)

where R = ; j and ρ are the surface densi-
ties of the current and the charge, respectively; and ε is
the background dielectric constant. The second term in
square brackets corresponds to the perturbing linear
current J0δ(x)δ(z – ∆)ey, where ey is the unit vector
along the y axis and  is the magnetoconductivity ten-
sor, which has the following components for an initially
isotropic medium: σxx = σyy ≡ σ0 and σxy = –σyx ≡ σ1.

Substituting the expressions for the potentials into
Eq. (2) and eliminating ϕ and ρ using the continuity
equation, we obtain two linear equations for the current
components jx and jy. The solution for jx is

(3)

The expression in square brackets in Eq. (3)
(denominator) takes into account the electron shielding
effect. If the shielding effect is neglected, the expres-
sion in brackets reduces to unity; in the region of Hall
plateaus σ0 ! σ1 ! c, it is close to unity. On the other
hand, in the interplateau regions the shielding factor for
a frequency on the order of 10 Hz and higher and for a
characteristic distance of ~1 cm to the wire can exceed
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unity by several orders of magnitude in samples with a
sufficiently high mobility.

Further calculations can be performed along two
alternative lines. The electric fields Ex and Ey can be
calculated from the expressions for the currents jx and jy

using the equation j =  for an infinite homogeneous
medium. Then, the potential difference V can be calcu-
lated by integrating Ex from x1 = –L to x2 = L. The alter-
native possibility is to determine the charge density
ρ(x) from the continuity equation and solve the Poisson
equation. It is found that the sample is polarized by the
perturbation; a dipole moment oscillating with fre-
quency ω is generated along the x direction. The two
methods of calculation lead to the same expression for
the x component of the electric field in the plane of the
system:

(4)

Equation (4) is obtained under the assumption that the
electromagnetic wavelength at frequency ω is consider-
ably greater than the characteristic distances x and 1/γ.
It is also assumed that R = |k|. In the general case, the
expression for the potential difference V(–L, L) is rather
cumbersome. However, for ∆ ! L, 1/γ it can be simpli-
fied:

(5)

In the plateau region, σ0 can be smaller than σ1 = e2/h ~
3 × 107 cm/s by 7–8 orders of magnitude. In this case,
for L ~ 1 cm the exponential in Eq. (5) is negligible
even for ω/2π ~ 10 Hz, while the assumption R = |k| is
accurate to (ωL/2πc)2 ~ 10–19. Thus, the measured volt-
age V is mostly proportional to σxy. In the interplateau
regions, the voltage V (at the same low frequencies)
decreases by several orders of magnitude, because
ωL ! σ0, and becomes proportional to the frequency
and to the ratio σ1/σ0. The order of magnitude of the
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effect in the region σ0 ! σ1 is V ~ 0.1 V for J0 = 1 A (ε =
12), and the values of ω and L are such that the expo-
nential in Eq. (4) can be neglected.

Let us now consider the applicability of the solution
for an infinite homogeneous medium to an actual finite
sample. It should be noted that the local relation
between the current and the field determined by Eq. (2)
with the constant σ tensor components breaks down
because of the presence of edge channels near the
boundaries of a rectangular sample. This difficulty can
be avoided by using a Corbino disk instead of a rectan-
gular sample. In this case, the wire should form an
almost closed ring (connected to the terminals of an ac
generator) placed over the inside part of the structure,
i.e., over the two-dimensional electron gas. The y axis
is taken along the azimuthal direction and the x axis is
taken along the radial direction. The potential differ-
ence V is measured between the inner and outer elec-
trodes of the Corbino disk. The results obtained above
qualitatively apply in the case under consideration if the
width 2L of the region occupied by two-dimensional
electrons is considerably smaller than its radius, so that
a rectangular coordinate system can be used locally. At
the same time, the width 2L should be large in compar-
ison with the characteristic length 2πσ0/εω of electric-
field attenuation (see Eq. (4)), to satisfy the zero bound-
ary conditions at infinity that were implicitly used in
calculations. In the plateau region at σ0 ~ 10–7σ1, this
length becomes smaller than 10–2 cm even for ω >
10 Hz. To make the obtained formulas applicable in the
interplateau regions, where σ0 far exceeds the estimate
given above, the frequency of the excitating current
should be increased correspondingly. It should be noted
that there is a considerable frequency margin (7–8 orders
of magnitude) to dispersion of σ0 and σ1.
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