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The problem of the cosmological constant and vacuum energy is usually thought of as the subject of general
relativity. However, vacuum energy is important for the Universe even in the absence of gravity, i.e., in the case
when Newton’s constant G is exactly zero, G = 0. We discuss the response of the vacuum energy to the pertur-
bations of the quantum vacuum in special relativity and find that, as in general relativity, the vacuum energy
density is on the order of the energy density of matter. In general relativity, the dependence of the vacuum
energy on the equation of state of matter does not contain G and thus is valid in the limit G  0. However,
the result obtained for the vacuum energy in a world without gravity, i.e., when G = 0 exactly, is different.
© 2003 MAIK “Nauka/Interperiodica”.
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The problem of vacuum energy appears to be more
general than the cosmological constant problem, which
arises in general relativity [1]. Earlier, we discussed
vacuum energy and its relation to the cosmological con-
stant considering general relativity as an effective the-
ory [2, 3]. We found that the energy of the equilibrium
vacuum state at zero temperature is zero due to the gen-
eral thermodynamic Gibbs–Duhem relation applied to
the vacuum as a medium. The nonzero value of the vac-
uum energy, or more exactly the gravitating part of the
vacuum energy, comes from perturbations of the vac-
uum state. In typical situations, the perturbations of the
vacuum are caused by gravitating matter, and thus the
induced vacuum energy density must be on the order of
the energy density of matter, which results in a cosmo-
logical constant consistent with observations [4].

Now we extend the discussion of vacuum energy to
the case of special relativity, i.e., to a Universe without
gravity. Although in a world without gravity the cosmo-
logical constant is absent, the vacuum energy still plays
an important role in the structure of the Universe. We
find how the vacuum energy responds to matter in spe-
cial relativity and how this allows us to stabilize a static
special-relativity Universe filled with matter having an
arbitrary equation of state.

The cosmological term in the action for general rel-
ativity is

(1)

¶This article was submitted by the author in English.
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The corresponding stress-energy tensor of the vacuum
is obtained by variation of the action over the metric
tensor gµν,

(2)

Here, ρvac is the vacuum energy density and uµ is the
4-velocity of the vacuum. Since the equation of state for
the vacuum is

(3)

the energy-momentum tensor does not depend on the
4-velocity uµ and thus is the same in any coordinate sys-
tem.

Equation (2) with equation of state (3) is valid for
the vacuum in special relativity too, i.e., in the absence
of the dynamical field gµν. These equations are obtained
by the conventional procedure used in quantum field
theory, when one introduces a fictitious field, such as
fictitious gauge fields or a fictitious metric, and calcu-
lates the response of the vacuum to these fields. More-
over, the equation of state Pvac = –ρvac is even more gen-
eral, since it is valid even in the nonrelativistic theories,
where the role of quantum vacuum is played by the
ground state of the quantum condensed matter. This
equation of state comes from the general thermody-
namic Gibbs–Duhem relation applied to the homoge-
neous ground state of condensed matter (see, e.g., [3]).

Let us consider the Universe in special relativity
(i.e., in the absence of gravity, G = 0), which is filled
with nongravitating homogeneous matter—a perfect
cosmic fluid—and discuss how the vacuum responds to

Tµν
vac ρvacuµuν Pvac uµuν gµν–( )+ ρvacgµν.= =

Pvac ρvac,–=
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the matter and stabilizes this Universe. The energy-
momentum tensor of matter is

(4)

where vµ is the 4-velocity of matter and ρM and PM are
energy density and pressure of matter in the comoving
frame.

In the general coordinate frame, the energy and
momentum density of matter are

(5)

The obvious consequence of Eq. (5) is that the energy
and the momentum of matter do not satisfy the relativ-
istic relation between the energy and momentum

(6)

The reason for this is related to the external forces act-
ing on matter, which violate the Lorentz invariance,
since they establish a preferred reference frame in
which these forces are isotropic. These forces are pre-
sented in Eq. (5) through the pressure PM of matter,
which is supported by the external pressure (see Sec-
tion 14 of [5]).

If the Universe is completely isolated from the
“environment,” the external pressure is absent, PM =
Pexternal = 0, and Lorentz-invariant equation (6) is
restored. But the typical matter considered in cosmol-
ogy, such as a relativistic plasma, does not exist at zero
pressure as an equilibrium state, except for the extreme
limiting case of cold matter. Thus, in special relativity,
the Universe must either be empty or contain matter
that can exist in equilibrium at zero pressure (the matter
in a cold liquid state, for example).

The vacuum gives an alternative scenario for an
equilibrium static Universe with matter to exist in spe-
cial relativity. The equilibrium state is achieved when
the pressure of the cosmological matter is compensated
by the partial pressure of the vacuum, so that the exter-
nal pressure goes to zero,

(7)

and the Universe (matter + vacuum) can be in equilib-
rium without external environment. For this equilib-
rium Universe, Eq. (6) for the energy and momentum of
the whole Universe is also restored.

Using equation of state (3) and the equilibrium con-
dition (7), one obtains the density of the vacuum energy
induced by matter with pressure PM in the equilibrium
Universe:

(8)

Tµν
M ρMv µv ν PM v µv ν gµν–( ),+=

ρ̃M

ρM v 2

c2
------PM+

1 v 2

c2
------–

---------------------------, pM v
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----ρM PM+

1 v 2

c2
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--------------------.= =

P E
v

c2
----.=

Pexternal Pvac PM+ 0,= =

ρvac PM.=
Since the vacuum momentum is zero,

pvac = 0, (9)

the total energy density and momentum density of the
system (matter + vacuum) become

(10)

They satisfy the relativistic equation (6), and the corre-
sponding density of the rest mass of the system is

(11)

The extra factor  in the denominator of the
rest mass is cancelled by the relativistic transformation
of the volume: the volume V in the frame of measure-
ment and the volume Vcomoving in the comoving frame

are related as dV = dVcomoving , so that the
total rest energy of the system is

(12)

Thus, the whole world represents a relativistic object
whose rest mass is the sum of the rest energies of the
matter and quantum vacuum. The energy density of the
quantum vacuum induced by the nongravitating (G = 0)
matter is completely determined by the equilibrium
condition (7) and equation of state for matter PM =
wMρM:

(13)

We can compare the vacuum energy (13) in the Uni-
verse in special relativity, i.e., when G = 0, with the vac-
uum energy in Universes in general relativity, i.e., when
G ≠ 0. For the Einstein static closed Universe [3, 6], the
vacuum energy induced by the gravitating matter is

(14)

and for the Gödel steady-state rotating Universe [3, 7],
it is

(15)
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In all three Universes, the density of the vacuum energy
induced by matter is proportional to the energy density
of matter. Equations (14) and (15) for worlds with grav-
ity do not depend on Newton’s constant G and thus are
valid in the limit G  0. But they do not coincide with
Eq. (13) for a world without gravity, i.e., when G is
exactly zero. While in special relativity the vacuum
response to matter is determined by the condition of
zero external pressure, Pexternal = 0, in the case of gravi-
tating matter the condition of gravineutrality is added
[3]. The pressure and energy of the gravitational field
contribute to both conditions even in the limit G  0.
These contributions come from the space curvature in
the Einstein Universe and from the local rotational met-
ric in the Gödel Universe.

As distinct from static gravitating Universes, which
experience different types of gravitational instabilities,
in special relativity a Universe with matter is stable if
the quantum vacuum itself is the stable object. In the
latter case, small perturbations of the vacuum state,
caused by cold or hot matter, do not destabilize the sys-
tem. This fact is well known for the condensed-matter
analogues of the Universe—quantum liquids, where the
role of the quantum vacuum is played by the superfluid
condensate and the role of the relativistic matter is
played by “relativistic” quasiparticles, with c being the
maximum attainable speed for low-energy quasiparti-
cles. Examples are provided by Bose superfluid 4He
and Fermi superfluid 3He-A. Both quantum liquids are
stable at T = 0 and P = 0, and their stability is not vio-
lated by the massless “relativistic” quasiparticles that
appear at T ≠ 0 forming the analogue of matter in these
toy Universes. For both liquids, equation (13) is valid
with the “relativistic” equation of state wM = 1/3 if the
liquids are isolated from the environment [2]. Although
in both quantum liquids there are low-frequency collec-
tive modes corresponding to the dynamics of the effec-
tive metric, this effective gravity does not obey the gen-
eral covariance and is not Newtonian at large distances.
As a result, the effective gravity in these liquids does
not modify special-relativity equation (13).
JETP LETTERS      Vol. 77      No. 12      2003
For such condensed matter systems, the relativistic
equations (10) obtained for the energy and momentum
of a Universe in special relativity are also applicable,
but with one reservation. As distinct from its special-
relativity counterpart, the quantum vacuum (conden-
sate) in condensed matter does not obey the effective
Lorentz invariance obeyed by the excitations of the
condensate—quasiparticles. In particular, the momen-
tum density of the quantum condensate is nonzero. As
distinct from Eq. (9), the superfluid condensate moving
with the so-called superfluid velocity us carries the
momentum density pvac = mnus, where m is the mass of
particles making up the condensate (atoms of liquid)
and n is their number density. As a result, for quantum
liquids, the relativistic equations are valid only in the
reference frame moving with the condensate. Full cor-
respondence between the quantum vacuum and a super-
fluid condensate could occur only for such hypothetical
condensates whose “atoms” are massless, m = 0. How-
ever, the difference between the relativistic quantum
vacuum and nonrelativistic quantum condensate does
not change the conclusion that the vacuum response
stabilizes a nongravitating Universe.

I thank A.A. Starobinsky for fruitful discussions.
This work was supported by the ESF COSLAB Pro-
gramme and by the Russian Foundation for Basic
Research.
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The maximal Lyapunov characteristic exponent of chaotic motion was calculated as a function of the system
energy by numerical integration of the Hénon–Heiles problem. Contrary to the conclusions of Benettin et al.
[4], this dependence is not exponential but is close to a power law. As to the energy dependence of dynamic
entropy, it is close to an exponential law, in agreement with [4]. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 05.45.Pq
The Hénon–Heiles problem traditionally attracts the
attention of researchers, because it uncovered a chaotic
type of behavior in Hamiltonian mechanics [1]. The
Hamiltonian of the problem has the form [1–3]

(1)

where q1 and q2 are the coordinates and p1 and p2 are the
conjugate momenta.

Hénon and Heiles [1] numerically integrated a sys-
tem described by Hamiltonian (1) to construct the
Poincaré section in its phase space and reveal the
regions of chaotic motion. The chaos regions expand
with increasing energy and, for the energy E ≡ H = 1/6,
almost the whole phase space accessible to the motion
is filled by the chaotic component [1].

A qualitative character of the motion (regular/cha-
otic) can be determined by calculating the Lyapunov
characteristic exponents (LCEs; see, e.g., [2]). LCE
characterizes the mean velocity of the exponential
divergence of close trajectories in the phase space. If
the LCE is zero, the motion is regular, and if it is non-
zero, the motion is chaotic. In the case of a Hamiltonian
system with N degrees of freedom, the trajectory is
characterized by N pairs of exponents; in each pair, the
exponents are equal in magnitude but have opposite
signs. To determine the character of motion, it suffices
to calculate the maximal LCE (MLCE). The motion of
the system is unpredictable on the time interval given
by a value reciprocal of the MLCE.

Benettin et al. have constructed the MLCE as a
function of the energy E of the system with Hamilto-
nian (1) (Fig. 7 in [4]). Analyzing this dependence,
Benettin et al. concluded that it obeyed an exponential
law. This widely known result is included in the Licht-
enberg and Liberman’s monograph devoted to nonlin-
ear and chaotic dynamics (Fig. 5.8 in [2]).

It should be noted that this result was obtained from
rather limited numerical data. Benettin et al. con-

H
1
2
--- p1

2 p2
2 q1

2 q2
2+ + +( ) q1

2q2
1
3
---q2

3,–+=
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structed 28 points in the curve for the entire energy
range studied. According to the estimates presented
below, a time interval of t = 2 × 104 time units, where
the authors of [4] carried out integration at each point
for the system with Hamiltonian (1), is insufficient for
obtaining proper asymptotic values for MLCE. In this
work, we construct the curve with a considerably
higher (more than a hundred times) energy resolution.
The corresponding MLCEs are determined for a sub-
stantially longer time intervals, up to t = 107. The use of
such times allows the resulting MLCEs to be verified
much more reliably.

In calculating the MLCE, we used two methods: the
method of “shadow trajectory” (used also in [4]) and
the so-called HQR method.

The essence of the first method is as follows (for
details, see, e.g., [2, 4, 5]). Let us take two close phase
trajectories, “reference” and “shadow,” which are sepa-
rated at zero time by d0. The approximation to MLCE
at a time interval of n steps is calculated by the formula

(2)

where di is the distance between the reference and
shadow trajectories at the ith step and ∆t is the time
step. When calculating, it is necessary to periodically
renormalize the distance between the reference and
shadow trajectories, in order that it be relatively small.

We take the initial values of three variables to be the
same for all energies: q1 = 0, q2 = –0.15, and p2 = 0. The
value of p1 for a given energy E is determined from
Eq. (1). As in [1, 4], we set p1 ≥ 0. The shadow trajec-
tory is initially displaced by d0 = 10–7 along the q2 vari-
able from the reference trajectory. The iteration step is
∆t = 0.1. The magnitude of the vector of displacement
from the reference to the shadow trajectory is renormal-
ized at each iteration. Energy is varied from 0.0841 to
0.1666 (i.e., up to the limiting value E = 1/6) with a step

Ln
1

n∆t
---------

di

di 1–
----------,ln

i 1=

n

∑=
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of 2 × 10–5. Below the chosen minimal E value, the cha-
otic region becomes too narrow to be detected; the
maximal value is chosen from the consideration that, at
higher energies, the motion ceases to be oscillatory. The
equations of motion were solved using the Dorman–
Prince integrator [6] implementing the eighth-order
Runge–Kutta method.

The MLCE was calculated four times for the same
set of initial data and the time intervals t = 104, 105, 106,
and 107. Due to the increase in t, the chaotic and regular
orbits can be separated, so that one can assure whether
the computation time is sufficient for determining the
exact MLCE values or not: the current MLCE value
must flatten out and not change with increasing compu-
tation time. Our numerical simulation indicates that the
flattening time is t = 105–107. This time increases with
a decrease in energy (Fig. 1).

The log–log plot of the calculated MLCE L against
energy E, as obtained for the maximal integration time
t = 107, is shown in Fig. 2. The graph of a power law
L ∝  Eα approximating the uppermost data at the section
where the observed dependence is linear is also shown
(in logarithmic coordinates, it is a straight line  =
α  + β). The choice of the section and the “upper-
most” curve were guides to the eye and, hence, are
approximate. For t = 104, 105, 106, and 107, we found
α = 2.7, 3.0, 3.4, and 3.6 and β = 1.26, 1.46, 1.78, and
1.95, respectively. The approximation was made for the
uppermost (rather than average) values, because the so-
called “stickness effect” strongly influences the
observed dependence. Chaotic motion in Hamiltonian
dynamics is characterized by Hamiltonian intermit-
tence [7]: a trajectory may adhere for a long time to the
boundaries of the chaotic region, where the motion is
close to regular. In this case, the local LCEs are small,
rendering the estimates of the resulting LCEs incorrect
[7]. In Fig. 2, the stickness effect shows as downward
spikes in the curve. A fine structure is also seen in the
curve. It is caused by the absorption of the chaotic lay-
ers of marginal resonances by the main chaotic region
as the energy increases.

The approximate exponential function L =
0.0034exp(22E) of Benettin et al. [4] is also drawn in
Fig. 2. One can see that it satisfactorily describes the
real dependence only at high energies.

We also calculated the MLCE by the HQR method
suggested by von Bremen et al. [8]. This method allows
the calculation of the entire LCE spectrum. It is based
on the QR expansion of the tangential mapping matrix
using the Hausholder transformation (this is reflected in
the name of the method). The base algorithms were
implemented in [9]. We use a modernized algorithm
[10] that differs from [9] in that the tangential mapping
matrix is calculated by the joint integration of the initial
system and the system of variational equations.

With the Hénon–Heiles system, the second element
of the Lyapunov spectrum must be zero, because the

Llog
Elog
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system has two degrees of freedom and is autonomous.
As the computation time increases, the MLCE vs.
energy curve stabilizes, whereas the curve for the
energy dependence of the second element (nearly a hor-
izontal line) moves down and tends asymptotically to
the zero level. The energy dependence of the LCE
obtained by the HQR method for the maximal integra-
tion time t = 107 is shown in Fig. 3. The initial condi-
tions are the same as used above in the calculations by
the shadow trajectory method. As in Fig. 2, the power-
law approximation is also shown in Fig. 3. For t = 104,
105, 106, and 107, one has α = 2.75, 3.1, 3.5, and 3.6 and
β = 1.32, 1.55, 1.88, and 1.90, respectively.

Fig. 2. Energy dependence of MLCE. The solid line is the
power-law approximation, and the dashed line is the func-
tion of Benettin et al. [4].

Fig. 1. Time dependence of the current MLCE value for sys-
tem (1) at various energies; logE = (a) –1.025, (b) –0.975,
(c) –0.925, (d) –0.875, (e) –0.825, and (f) –0.780.
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The α and β dependences on the integration time are
shown in Fig. 4 for both computational methods. The
HQR data distinctly demonstrate the flattening out at
large integration times. For the shadow-trajectory data,
this tendency is less pronounced. However, the HQR
method is, undoubtedly, more accurate. For this reason,
the values α = 3.6 and β = 1.9 can be considered accu-
rate to 0.1.

Let us consider whether the character of the MLCE
vs. energy dependence changes upon the generalization
of Hamiltonian (1). The general system with the Hamil-
tonian

(3)

coincides with the Hénon–Heiles system (1) at ε = 1,
and it is close to the integrable system at the ε values
close to zero [3]. Figure 5 presents the shadow-trajec-
tory (t = 106) MLCE energy dependence for ε = 0.5, 0.8,
and 1.0. One can see from the figure that, as ε
decreases, the curve moves down in parallel to itself.
Hence, the character of the dependence is retained and
expressed as a power law  = α  + β with the
same coefficient α = 3.4. One can assume that, as t
increases, the ultimate α value would be 3.6, as in the
case of Hamiltonian (1). The parameter β for the curves
in Fig. 5 is equal to 1.78, 1.45, and 1.18.

Apart from the LCE, the relative measure µ of a cha-
otic component in the phase space, when determined, is
an important characteristic of the chaotic motion.
Hénon and Heiles [1] calculated the relative area  =
1 – µ occupied by the regular trajectories of a system
with Hamiltonian (1) at the (q2, p2) surface of section
for q1 = 0 and a fixed E (for a given E, p1 can be found
from Eq. (1); only the values p1 ≥ 0 are used). The
resulting energy dependence of this area is presented in

H
1
2
--- p1

2 p2
2 q1

2 q2
2+ + +( ) εq1

2q2
1
3
---q2

3–+=

Llog Elog

µ̃

Fig. 3. Energy dependence of the LCE spectrum. A power-
law approximation to the MLCE is shown.
Fig. 7 in [1]. This graph has received wide acceptance
and, in particular, is presented in [11]. As for the energy
dependence of the MLCE [4], it was constructed using
rather limited numerical data. In this work, we use three
independent methods for calculating µ.

The first one was proposed by Hénon and Heiles in
[1]. The essence of this method is as follows. On the
surface of a certain phase-space section, the initial val-
ues of the variables (q2, p2) are fixed, whereupon the
equations of motion are integrated for two close (refer-
ence and shadow) trajectories. The separation between
them is calculated at the final point of integration. If the
initial data correspond to the chaotic component, the
separation between the reference and shadow trajecto-
ries increases exponentially with time. No exponential

Fig. 4. The calculated α and β values as functions of the
integration time. Crosses are for the shadow-trajectory
method, and circles are for the HQR method.

Fig. 5. Energy dependence of MLCE for a system with gen-
eralized Hamiltonian (3); ε = (crosses) 0.5, (circles) 0.8, and
(points) 1.
JETP LETTERS      Vol. 77      No. 12      2003
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increase occurs for the regular trajectory. Therefore,
one can distinguish between the chaotic and regular tra-
jectories. The initial data grid is specified, and then the
relative measure of the chaotic region is determined
from the relative number of the chaotic trajectories on
the grid.

The initial conditions are taken as follows: q1 = 0
and q2 and p2 are specified on a uniform rectangular
grid q2 ∈  [–0.6, 1.1] and p2 ∈  [–0.7, 0.7]; p1 is deter-
mined by Eq. (1) for given q1, q2, p2, and E. As in the
case of MLCE, the shadow trajectory is shifted by 10–7

along the q2 coordinate from the reference trajectory. To
separate the chaotic and regular trajectories, the distri-
bution of distances between the final phase-trajectory
points is constructed. The separation criterion is deter-
mined from the analysis of mode distribution. A similar
procedure, although for the MLCE, was applied in [5].
The relative area µ occupied by the chaotic component
in the section is determined from the formula µ = nch/n,
where nch is the number of grid points corresponding to
the chaotic trajectories and n is the number of all grid
points accessible to the motion.

The second method is different from the first one in
that not the final distances between the trajectories but
the MLCEs are calculated on the same initial data grid.
The MLCEs are calculated by the shadow-trajectory
method. The MLCE distribution is constructed first.
The chaotic and regular trajectories are separated as a
result of the mode analysis of MLCE distribution (for
details, see [5]), and the value µ = nch/n is calculated.

The third method is a “single trajectory” method.
The surface of the phase-space section is divided into
identical rectangular meshes. Then the initial data for a
chaotic trajectory are specified at the section and the
trajectory is integrated over a sufficiently long time
interval. When integrating, the number of grid meshes
intersected by the trajectory is tallied. The ratio of the
number of these meshes to their total amount in the
region accessible to motion gives the relative area of
chaotic component. This method was first applied by
B.V. Chirikov [12] in the analysis of the phase space of
standard mapping.

The calculations by the first, second, and third meth-
ods were carried out on grids containing, respectively,
200 × 200, 50 × 50, and 400 × 400 meshes; the trajec-
tories were integrated, respectively, on the time inter-
vals t = 103, t = 104, and t = 108. In the latter case, there
was a single trajectory, whereas in the first two cases
the number of trajectories was equal to the number of
grid meshes.

The areas  calculated for the regular component
by the three methods are shown in Fig. 6. One can see
that the Hénon–Heiles method overestimates  as
compared to the MLCE distribution analysis and the
single-trajectory method. The data obtained by the third
method seem to be most accurate, because this method
allows the finest phase-space subdivision. The energy

µ̃

µ̃
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dependence obtained by this method for the relative
measure of the chaotic component is presented in
Fig. 7.

In Fig. 6, the data from [1] are additionally pre-
sented together with the linear approximating function

 = 1–17.6(E – 0.11) used, on the basis of these data,
by Benettin et al. [4] in their calculations for 0.11 < E
< 1/6. These data strongly deviate from the real  val-
ues (sometimes more than twofold).

Using the available numerical data on the MLCE
and on the relative area of chaotic component, we can

µ̃

µ̃

Fig. 6. Relative measure of the phase-space regular compo-
nent of system (1) as a function of energy. The points corre-
spond to the calculations by the first method, the circles are
for the second method, and the crosses are for the third
method. The data from [1] are drawn as triangles, and the
linear approximation [4] to these data is shown by the
dashed line.

Fig. 7. Relative measure of the phase-space chaotic compo-
nent of system (1) as a function of energy.

E
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calculate the energy dependence of the dynamic
entropy of the system. This dependence was obtained
by Benettin et al. in [4]. According to [4], the dynamic
entropy is calculated by the formula h = Lµ.

To calculate the dynamic entropy, we used the
MLCE values calculated by the shadow-trajectory
method with the maximal integration time interval t =
107 (the result virtually does not change for the HQR
data). The values used for µ were obtained by the sin-
gle-trajectory method, because they are most reliable.
The resulting dependence and its exponential approxi-
mation h = h0 + Aexp(kE), with h0 = –0.046 ± 0.003, A =
0.0067 ± 0.0008, and k = 19.36 ± 0.66, is shown in
Fig. 8. The parameters are given with their standard
errors. The obtained dependence is also approximated
well by the function h = AEk/(Bk + Ek), with A = 0.190 ±
0.006, B = 0.157 ± 0.001, and k = 7.97 ± 0.15. The prox-
imity of k to an integer number is noteworthy; i.e., we
deal, in fact, with a rational function. The correlation
coefficient is R ≈ 0.998 for the exponential approxima-
tion and R ≈ 0.999 is for the approximation by a rational
function. In Fig. 8, the Benettin et al. [4] function h =
0.060(E – 0.11)exp(22E) is additionally presented for
0.11 < E < 1/6. One can see that it describes the real
dependence only at high E values.

In summary, the analysis of the energy dependence
constructed for the MLCE of the Hénon–Heiles prob-

Fig. 8. Energy dependence of the dynamic entropy of sys-
tem (1). Exponential approximation. The Benettin et al.
dependence [4] is also shown (dashed line).
lem by two (shadow-trajectory and HQR) methods has
shown that this dependence is not exponential and is
close to a power law with an exponent of ≈3.6. For the
generalized Hamiltonian (3) with ε = 0.5, 0.8, and 1.0,
the dependences also obey a power law with nearly the
same exponent. The energy dependence constructed in
this work for the measure of chaotic component by
three independent methods also refines, to a large
degree, the hitherto accepted positions; the difference
with the previous estimates of µ reaches 100% or
greater. This dependence has discontinuities and is not
described by a simple approximating function.
Although the energy dependence of dynamic entropy,
in agreement with [4], can be described by the expo-
nential function, it can also be well and even better
described by a rational function.

We are grateful to V.V. Kouprianov for discussions
and consultations. This work was supported by the Rus-
sian Foundation for Basic Research, project no. 03-02-
17356.
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We present analytical and numerical studies of a new electron plasma wave interaction mechanism, which
reveals trapping of Langmuir waves in ion holes associated with nonisothermal ion distribution functions. This
Langmuir ion hole interaction is a unique kinetic phenomenon governed by two second nonlinear differential
equations in which the Langmuir wave electric field and ion hole potential are coupled in a complex fashion.
Numerical analyses of our nonlinearly coupled differential equations exhibit trapping of localized Langmuir
wave envelops in the ion hole, which is either standing or moving with sub- or super ion thermal speed. The
resulting ambipolar potential of the ion hole is essentially negative, giving rise to bipolar slow electric fields.
The present investigation thus offers a new Langmuir wave contraction scenario that has not been rigorously
explored in plasma physics. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.35.Hr
More than three decades ago, Hasegawa [1], Karp-
man [2, 3], and Zakharov [4] presented an elegant
description of strong electromagnetic and Langmuir
wave turbulence in which high-frequency photons and
plasmons interact nonlinearly with low-frequency ion-
acoustic waves via the ponderomotive force arising due
to the spatial gradient of the high-frequency wave
intensity. This nonlinear interaction is typically
described by the two-fluid and Poisson–Maxwell equa-
tions, and the governing equations admit the localiza-
tion of photon and plasmon wave packets, leading to
the formation of envelope light and Langmuir wave
solitons (also called cavitons) [5–8]. The latter are com-
posed of electron/ion density depression, which traps
photon and Langmuir wave envelops. Moreover,
Yan’kov [9] studied the response of kinetic untrapped
ions in the Langmuir envelope soliton theory and pre-
dicted the formation of sub ion thermal small-ampli-
tude negative potential wells in plasmas. On the other
hand, Mokhov and Chukbar [10] found a Langmuir
envelope soliton accompanied by a small-amplitude
negative potential well created by a localized Langmuir
wave electric field in a quasineutral plasma with
nonisothermal ions whose temperature is much smaller
than the electron thermal temperature. In two and three
dimensions, one encounters photon self-focusing,
Langmuir wave collapse [4, 11]. The formation of cav-
itons has been observed in the ionosphere [12], as well
as in several laboratory experiments [13–15].

In this letter, we present for the first time a new
Langmuir turbulent state in the presence of ion phase-
space vortices [16–19] that are associated with density
holes and bipolar electric fields in collisionless plas-
mas. Ion phase-space vortices are natural products of

¶ This article was submitted by the authors in English.
0021-3640/03/7712- $24.00 © 20647
ion-beam driven two-stream instabilities, and they play
a very important role in laboratory experiments [20–
22], as well as in the near-Earth plasma environment
[23–25]. They are described by a wide class of Bern-
stein–Greene–Kruskal solutions to the Vlasov–Poisson
equations. In the following, we show that nonlinearly
coupled Langmuir waves and fully nonlinear ions holes
admit a new class of solutions. Specifically, we demon-
strate the existence of standing and sub ion thermal ion
holes that trap Langmuir wave envelopes.

We consider an unmagnetized electron–ion plasma
in the presence of Langmuir waves and large-amplitude
ion holes. At equilibrium, we have ne0 = ni0 = n0, where
nj0 is the unperturbed number density of the particle
species j (j equals e for electrons and i for ions). The

Langmuir wave frequency is ω = (  + 3k2 )1/2,

where ωpe = (4πnee2/me)1/2 is the electron plasma fre-
quency, ne is the number density of electrons, e is the
magnitude of the electron charge, me is the electron
mass, k is the wavenumber, VTe = (Te/me)1/2 is the elec-
tron thermal speed, and Te is the electron temperature.
Large-amplitude Langmuir waves interacting nonlin-
early with ion holes generate a Langmuir wave enve-
lope whose electric field E evolves slowly (in compari-
son with the electron plasma wave period) according to
the nonlinear Schrödinger equation

(1)

ωpe
2 VTe

2

2iωp
∂
t∂

---- v g
∂
x∂

-----+ 
  E 3VTe

2 ∂2E

dx2
---------+

+ ωp
2 1

ne

n0
-----– 

  E 0,=
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where ωp = (4πn0e2/me)1/2 is the unperturbed electron

plasma frequency and v g = 3k /ωp is the group
velocity of the Langmuir waves. We note that (1) is
derived by combining the electron continuity and
momentum equations, as well as by using Poisson’s
equation with fixed ions, and by retaining the arbitrarily
large electron number density variation ne associated
with ion holes in the presence of the Langmuir wave
ponderomotive force. Assuming that the phase speed of
ion holes is much smaller than the electron thermal
speed, we readily obtain from the inertialess electron
equation of motion the electron number density in the
presence of the ponderomotive force of Langmuir
waves. The result is

(2)

where τ = Te/Ti, Ti is the ion temperature, φ = eϕ/Ti,
W2 = |E|2/16πn0Ti, and ϕ is the electrostatic potential of
the ion hole. We note that the W term in Eq. (2) comes
from the averaging of the nonlinear term mevhe · ∇ vhe

over the Langmuir wave period 2π/ωpe, where vhe ≈
− ieE/meωpe is the electron quiver velocity in the
Langmuir wave electric field.

If the potential has a maximum φmax > 0, then there
exist in general trapped ions where φ < φmax, while at
the point where φ = φmax there are no trapped ions. Sim-
ilar to Schamel [16], we chose at this point a displaced
Maxwellian distribution for the free ions. The ion dis-
tribution function associated with ion holes can then be
obtained by solving the ion Vlasov equation for free
and trapped ions, which have speeds larger and smaller
than [2(φmax – φ)]1/2, respectively. The electric potential
will turn out to be essentially negative, with only a
small-amplitude positive maximum φmax compared to
the large-amplitude negative potential well with a min-
imum at φmin ≡ –ψ. Thus, the potential is restricted by
−ψ ≤ φ ≤ φmax, where ψ plays the role of the amplitude.
Integrating the sum of the free and trapped ion distribu-
tion functions over velocity space, we obtain the ion
number density [17]

(3)

where M = V/VTi is the Mach number, V is the ion hole
speed, VTi = (Ti /mi)1/2 is the ion thermal speed, mi is
the ion mass, and α is a (negative) parameter which
determines the number of trapped ions. The normal-
ization constant b is chosen so that when φ = 0, the
total density of ions is n0. Furthermore, we have

denoted [17] I(x) = exp(x)[1 – erf( )], K(x, y) =

VTe
2

ne n0 τ φ W2–( )[ ] ,exp=

x̂

ni n0b
M2

2
-------– 

  I φmax φ–( ) K
M2

2
------- φmax φ–, 

 +exp=

+
2

π α
--------------WD α φ φmax–( )( ) ,

x

(2/ ) cosθexp(–y  + xcos2θ)erf( cosθ)dθ,

and the Dawson integral WD(x) = exp(–x2) dt.

A plateau in the resonant region is given by α = 0, and
α < 0 corresponds to a vortexlike excavated trapped ion
distribution. For positive α, we use [26] WD(ix) =

i( /2)exp(x2)erf(x) (where i = ) and replace the

term (2/ )WD[ ] in Eq. (3) with

(1/ )exp[–α(φ – φmax)]erf[ ]; we note
especially that M = 0, α = 1 leads to a Boltzmann dis-
tribution ni = n0exp(–φ) for the ion density. The Lang-
muir wave ponderomotive force acting on ions is
weaker by the electron to ion mass ratio in comparison
with that acting on electrons, and, therefore, it is
ignored in Eq. (3). The electron ponderomotive force is
transmitted to ions via the ambipolar potential φ, which
is determined from Poisson’s equation

(4)

where λDe = (Te/4πn0e2)1/2 is the electron Debye length.

We are interested in quasi-steady-state solutions of
Eqs. (1)–(4), which are fully nonlinear. We insert E(x,
t) = W(ξ)exp{i[X(x) + T(t)]} and φ(x) = φ(ξ), where ξ =
x – Vt and W(x), X(x), T(x) are assumed to be real, into
Eqs. (1)–(4) and obtain the coupled set of the nonlinear
equations

(5)

and

(6)

where ξ is normalized by λDe and λ = 2 (dT/dt) –

3k2 (1 – V2/ ) represents a nonlinear frequency
shift. The system of Eqs. (5) and (6) admits the first
integral in the form of a Hamiltonian
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(7)

where in the unperturbed state (|ξ| = ∞) we have used
the boundary conditions W = 0, φ = 0, ∂W/∂ξ = 0,
∂φ/∂ξ = 0. The constant H0 is chosen so that H = 0 at
|ξ| = ∞. The auxiliary functions are defined as P(x y) =

I(x) + 2 (1 – y–1) + (2/y )WD( ) and

h(x, a, b) = (x, y)dy.

Because we are interested in symmetric solutions
defined by W(ξ) = W(–ξ) and φ(ξ) = φ(–ξ), the appro-
priate boundary conditions at ξ = 0 are W = W0, φ = –ψ,
∂W/∂ξ = 0, and ∂φ/∂ξ = 0. Hence, from Eq. (7) we have

(8)

which shows how the maximum values of W0 and ψ are
related to M, φmax, and λ for given values of τ and α. A
practical application of the Hamiltonian (7) is to check
the correctness of any numerical scheme used to solve
Eqs. (5) and (6), while Eq. (8) depicts the parameter
regimes for the existence of trapped plasmons in ion
holes.

In the absence of the Langmuir waves, ion holes are
governed by the energy integral [27]

(9)

where the Sagdeev potential for our purposes with
φmax = 0 is [17]

(10)

Equation (9), which is obtained from Eq. (7) in the limit
of vanishing Langmuir wave electric fields, determines
the profile of ion holes. The latter exist provided that
Ψ(φ) is negative between zero and ±φ0. Multivalued
solutions of Ψ(0) are ensured provided that ∂2Ψ/∂2φ =
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0, while at φ = φ0(–φ0), we must have ∂Ψ/∂φ > 0 (<0).
The condition Ψ(φ0, M) = 0 gives a relation between φ0
and M for given values of α and τ. It turns out that ion
holes without Langmuir waves have only a negative
potential, as presumed earlier.

We have carried out numerical studies of the equa-
tions governing ion holes with and without Langmuir
waves for τ = 0.1 and α = –1.0. First, we consider small-
amplitude Langmuir waves which are not strong
enough to modify the ion hole but which can be linearly
trapped in the density well of the hole. Accordingly, for
W2 ! 1, Eq. (5) turns into a linear eigenvalue problem
of the form 3(d2W/dξ2) + [1 – exp(φ) – λ]W = 0, with
the eigenvalue λ and the corresponding eigenfunction
W, and where φ is obtained by assuming W = 0 in the
solution of Eq. (6) (see the numerical solution of Eq. (6)
in the form of ion density profiles and the associated
ambipolar potentials, respectively, in the upper and
lower panels of Fig. 1). The eigenvalue problem will
have a continuous spectrum for λ < 0, corresponding to
“free particles” (in the language of quantum mechan-
ics), and a point spectrum for λ > 0, corresponding to
“trapped particles.” We have numerically investigated
the cases corresponding to four different Mach num-
bers displayed in Fig. 1 and found the corresponding
positive eigenvalues listed in the second column of the
table below, where each eigenvalue λ is associated with
a bell-shaped eigenfunction W. Only one positive
eigenvalue was found for each case, and thus these
cases only admit the ground states for waves to be lin-
early trapped.

Next, we studied the presence of finite-amplitude
Langmuir waves in the ion hole, in which the fully non-
linear system of equations (5) and (6) has to be solved
numerically. The numerical solutions reveal that the ion
hole deepened and widened, allowing the eigenvalue λ
to be larger. We investigated the special case with a
nonlinear shift of 0.1 of λ as listed in the fourth column

Fig. 1. Ion holes without Langmuir waves (W = 0) for dif-
ferent Mach numbers M with τ = 0.1 and α = –1.0.
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in the table above and found solutions for all cases
except for M = 1.4; the numerical solutions are depicted
in Fig. 2. We can see from Figs. 1 and 2 that the pres-
ence of trapped finite-amplitude Langmuir waves
makes the ion density depletion both deeper and wider,
and the same holds for the ambipolar potential well.
The deepening of the ambipolar negative potential well
is a feature closely related to the strongly nonisother-
mal trapped ion distribution function. For this case, the
electrostatic potential had small-amplitude maxima
φmax on the order of ≈10–3 on each side of the ion hole;
this maximum of the potential increased with increas-
ing M.

In order to investigate the conditions for existence of
ion holes in the presence of strong Langmuir fields, we
numerically solved Eq. (8) for ψ as a function of M (see
Fig. 3). We used the same parameters τ = 0.1 and α =
−1.0 as above. Here, we assumed the Langmuir field to

Table

Small amplitude problem Finite amplitude problem

M λ M λ

1.4 0.0013 1.4 0.1013

0.9 0.0463 0.9 0.1463

0.7 0.0772 0.7 0.1772

0.0 0.1906 0.0 0.2906

Fig. 2. Ion holes in the presence of Langmuir waves for dif-
ferent Mach numbers M with τ = 0.1 and α = –1.0.
be given as an external parameter (say, W0 = 0.8) and
with a nonlinear shift that follows λ(M) = 0.3–0.14M,
as obtained approximately from the table above. This
slightly overestimates the Langmuir field W0 for small
M and slightly underestimates the field for the highest
M (see the upper panel in Fig. 2). We assumed a maxi-
mum potential of φmax = 0.003. We found that, for this
set of parameters, the solution had an upper bound M =
1.25 for the existence of localized solutions, which is
clearly smaller than the existence in the absence of the
Langmuir fields. In a more exact mapping of the exist-
ence of ion holes, one needs more carefully to explore
the relationships between different parameters in
Eq. (8), possibly by solving system of equations (5) and
(6) for different cases. Furthermore, the stability of the
time-dependent system is not explored here but could
be studied by direct simulations of the Vlasov–Poisson
system.

It should be stressed that the properties of the
present Langmuir envelope solitons significantly differ
from those based on Zakharov’s model [4], which uti-
lizes the fluid ion response for driven (by the Langmuir
wave ponderomotive force) ion-acoustic perturbations
and yields subsonic density depression accompanied by
a positive localized ambipolar potential structure. Fur-
thermore, consideration of a Boltzmann ion density dis-
tribution, viz. ni = n0exp(–φ), would correspond to the
case M = 0 and α = 1 in Eq. (6). Here, as shown in
Fig. 4, we have a localized Langmuir wave electric field
envelope trapped in a standing ion density cavity. The
corresponding slow ambipolar potential is positive and
localized.

In the numerical solutions of Eqs. (5) and (6), the
second derivatives were approximated by a second-
order centered difference scheme [28], and the values
of W and φ were set to zero at the boundaries of the
computational domain at ξ = ±40. The resulting nonlin-
ear system of equations was solved iteratively. We used
2000 sampling points to resolve the solution.

In summary, we have presented the first analytical
and numerical studies of a novel nonlinear plasma state
in which the Langmuir waves interact with fully nonlin-
ear ion holes. It is found that Langmuir waves have a
dramatic effect on the ion hole in that the formation of
envelope Langmuir solitons (Langmuir waves trapped
in an ion hole) becomes an eigenvalue problem, and
only discrete eigenstates are allowed. Self-trapped
Langmuir waves in an ion hole are found to be either
standing or moving with sub- or super ion thermal
speed. An ion cavity loaded with Langmuir waves is
typically wider and is accompanied by a negative local-
ized ambipolar potential. Physically, the broadening of
the ion hole and the enhancement of negative ambipolar
potential occur because the ponderomotive force of the
Langmuir waves locally expels electrons, which pull
ions along to maintain the local charge neutrality. The
deficit of ions in plasmas, in turn, produces more nega-
tive potential within the ion hole that is now widened
JETP LETTERS      Vol. 77      No. 12      2003
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and enlarged to trap the localized Langmuir wave elec-
tric field envelope. Hence, the properties of the ion
holes in the presence of Langmuir waves are signifi-
cantly different from ion holes without the Langmuir
waves, or cavitons involving the fluid [2, 3] or a Boltz-
mann ion response. In conclusion, we stress that the
present localized structures are outside the realm of the
two-fluid model, as they involve a trapped ion vortex
state, which can be dealt with within the framework of
a kinetic description only. We have thus solved one of

Fig. 4. A Langmuir caviton with a Boltzmann ion distribu-
tion for M = 0, λ = 0.1, τ = 0.1, and α = 1.0.

Fig. 3. Numerical solutions of Eq. (8), depicting ψ(= –φmin)
vs. M for (dashed line) W0 = 0.0 and (solid line) W0 = 0.8,
with λ = 0.1 and α = –1.0. We see that the ion hole loaded
with the Langmuir wave electric fields has an upper bound
on the Mach number, which is smaller than that without the
Langmuir wave fields.

W0 = 0.8
W0 = 0
JETP LETTERS      Vol. 77      No. 12      2003
the fundamental problems of nonlinear plasma physics,
which has potential applications in space and labora-
tory plasmas that are driven by electron and ion beams.

This work was partially supported by the European
Commission through contract no. HPRN-CT-2001-
00314, as well as by the Deutsche Forschungsgemein-
schaft through the Sonderforschungsbereich 591.
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The effect of ultrastrong magnetic fields generated in a relativistic-intensity subpicosecond laser plasma on the
acceleration of fast electrons was studied. It is shown that resonance electrons can continuously accumulate
energy from the circularly polarized laser field in the presence of a longitudinal magnetic field. For the linear
polarization and a transverse magnetic field, energy accumulation has a pulse-periodic character, and the elec-
tron trajectories correspond to electron rotation in the Larmor orbit in a quasi-stationary magnetic field, while
the energy strongly oscillates. In both cases, electron energy may attain values higher than 100 MeV for inten-
sities of 1020 W/cm2. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.38.Kd; 52.27.Ny
In the interaction of subpicosecond laser petawatt
pulses with solid targets, a high-energy component
with an energy of up to ~100 MeV was observed in the
spectrum of electrons generated at laser intensities
higher than 1020 W/cm2 [1, 2]. The possibility of accel-
erating electrons in the laser electromagnetic field to
energies exceeding, by an order of magnitude, their
oscillation energy was confirmed by the numerical PIC
calculations [2]. Mechanisms such as electron acceler-
ation in the wake-wave field and electron betatron res-
onance in a quasistatic electric and magnetic fields of a
plasma channel are also discussed (see, e.g., review
[3]).

It is shown in this work that electrons can be accel-
erated by a laser wave to energies higher than 100 MeV
in a subpicosecond laser plasma under conditions
where the electron cyclotron frequency

(1)

in a quasistatic magnetic field Bs is on the order of the
laser frequency ω. The scale of the required magnetic
fields is given by

because

For the laser wavelength λ = 1.05 µm, one has B0 =
107 MG. Magnetic fields in the range 340–460 MG
have already been observed in the dense plasma region
in the course of interaction of a laser pulse of a duration
of 0.7–1 ps and intensity I ≈ 1020 W/cm2 with a solid
target [4].

ωc e0Bs/mc=

B0 mcω/e0,=

ωc/ω Bs/B0.=
0021-3640/03/7712- $24.00 © 20653
Our analysis is based on the equations of motion for
an electron in a laser field and a constant magnetic field,
because electron collisions can be neglected at relativis-
tic energies. Circularly and linearly polarized laser
waves are considered. The direction of the magnetic field
corresponds to different mechanisms of its generation.

1. Autoresonance in a circularly polarized laser
field. Magnetic-field generation by the interaction of a
subpicosecond circularly polarized laser pulse of rela-
tivistic intensity with dense-plasma electrons was con-
sidered theoretically in [5] for the electron below-criti-
cal density. It follows from [5] that, if a laser pulse of
relativistic intensity I ≥ 1020 W/cm2 propagates in the
self-channeling regime with electron expulsion from
the channel, a uniform magnetic field with an induction
of higher than 100 MG is generated in the central
region of the beam. For right-hand polarization of the
laser wave, the direction of a quasistatic magnetic field
coincides with the direction of its wave vector.

The covariant equation of motion for an electron in
the channel has the form

(2)

Here, uµ is the 4-velocity and τ is the “intrinsic” time
(e = –e0 is the electron charge). The electromagnetic
field tensor is

(3)

m
uµd

dτ
-------- e

c
--Fµνuν.=

Fµν Bs e2
µe1

ν e1
µe2

ν–( )=

–
mc2

e
---------ξ f 1

µν ϕcos f 2
µν ϕsin+( ),
003 MAIK “Nauka/Interperiodica”



 

654

        

BELYAEV 

 

et al

 

.

                                                                         
where ϕ = kµxµ is the wave phase, kµ = (ω/c)nµ is the

wave 4-vector, and  = kµ  – kν (  = (0, iα ),
nµ = (1, i3) are linearly independent 4-vectors and iα are
three-dimensional unit vectors of the coordinate sys-
tem). The tensor Fµν corresponds to a constant mag-
netic field Bs = Bsi3 and the electromagnetic wave with
right-hand circular polarization

(4)

Equation (2) has the integral of motion dϕ/dτ =
const, which relates the electron energy E = mc2γ to the
electron longitudinal momentum pz:

(5)

Using this integral, Eq. (2) can be solved analytically
[6]. From the solution, it follows that the energy of elec-
trons, whose initial velocity satisfies the cyclotron
autoresonance condition

(6)

increases with time t. This can be expressed in the para-
metric form as 

(7)

The coefficient k depends on the ratio ωc/ω and laser
intensity I:

(8)

f s
µν es

ν es
µ eα

µ

El
mcω

e
-----------ξ i1 ω t z/c–( )cos i2 ω t z/c–( )sin+[ ] ,=

Bl i3 El×[ ] .=

d pz dE/c.=

γ0 1
v 0z

c
--------– 

  ωc

ω
------,=

γ γ0 kτ2, t+ γ0τ
kτ3

3
-------.+= =

k
ωωcξ

2

2
---------------

2πe2

m2c3
-----------

ωc

ω
------ I .= =

Fig. 1. Energy of a resonance electron in the circularly
polarized laser wave with an intensity of 1020 W/cm2 in a
longitudinal magnetic field.
The dependence (7) can be approximated by the
expression

(9)

for I > 1019 W/cm2, t > 100 fs, and initial electron
energy E0 = mc2γ0 < 5 MeV. This leads to the scaling
law E ∝  I1/3.

The dependence E(t) (7) for an initially nonrelativ-
istic electron, ωc = ω, and I = 1020 W/cm2 is shown in
Fig. 1. In estimates, we assume that the acceleration

time is determined by the diffraction length Lz ≈ π /λ.
For the focal radius r0 ≈ 5 µm and wavelength λ = 1 µm
[4], one has Lz ≈ 80 µm. In the self-channeling regime,
this value can be an order of magnitude larger. The elec-
tron trajectory in the relativistic regime is determined
from the equations

(10)

From Eqs. (7) and (10) it follows that the electron
acquires an energy of 175 MeV during 260 fs on the
length Lz. The transverse radius of the orbit does not
exceed 6 µm, which corresponds to the focus size.

As the electron energy increases in the electric field
of the laser wave, the longitudinal electron momentum
(5) increases due to the action of the wave magnetic
field. Since pz = Ev z/c2, the time dependence of the lon-
gitudinal velocity is given by the expression

v z = c(1 – mc2/E(t)).

For the intensity considered, an electron acquires rela-
tivistic energy in a time interval shorter than the period
of laser radiation and moves in the longitudinal direc-
tion with a velocity close to the velocity of light. It fol-
lows from Eqs. (10) that the electron leaves the acceler-
ation region at an angle

to the axis of the laser beam.
It is of interest to estimate the synchrotron radiation

loss for the accelerated ultrarelativistic electron mov-
ing in an ultrastrong magnetic field. The radiation
energy-loss rate for a charged particle is given by the
formula [7]

With allowance for the τ dependence of the 4-velocity
(7) and (10), one gets

γ 9kt2( )1/3 γ0–=

r0
2

dx
dτ
------ cξωτ ωτ,

dy
dτ
------cos cξωτ ωτ,sin= =

zd
τd

-----
c
2
---ξ2ω2τ2.=

v 2/ξωτ= 8 10 2–  rad×≈

P
2e2

3c3
-------- du

dτ
------ 

 
2

.–=

P
2e2ξ2ω2

3c
-------------------- 1 ω2τ2+( ).=
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It follows that the integrated losses during the accelera-
tion time are ~1 keV. The ratio of the lost and acquired
power increases with time but is still rather small:

justifying the neglect of the radiation reaction force in
equation of motion (2).

2. Electron acceleration by a linearly polarized
laser wave in the presence of a transverse magnetic
field. Among the possible mechanisms of generating
quasistatic magnetic fields by the interaction of an
ultrastrong subpicosecond laser pulse with a solid tar-
get, there is a Weibel instability that appears due to the
anisotropic velocity distribution of photoelectrons
formed upon the over-barrier ionization of atomic ions
[8]. According to [8], the magnetic field in the dense
plasma region rapidly increases to reach Bs ≈ 70 MG in
a time on the order of the laser period for a linearly
polarized laser radiation at a wavelength of 1 µm with
an intensity of 1019 W/cm2. The resulting quasistatic
magnetic field is parallel to the magnetic field of the
laser wave.

In this case, the electromagnetic field tensor has the
form

It corresponds to a constant magnetic field Bs = Bsi2 and
a linearly polarized electromagnetic wave

The solution to equation of motion (2) can be repre-
sented in the form of a combination of the linearly inde-
pendent 4-vectors

where  = (1, –i3). The resulting nonlinear system of
differential equations is

(11)

In this case, du2/dt = 0; i.e., the electron motion along
the magnetic field proceeds with a constant velocity
and does not affect the motion in the perpendicular
plane. In the limiting cases Ω = 0 and ξ = 0, the system
of Eqs. (11) gives the proper analytic expressions for
the electron motions in the field of a linearly polarized
wave and in a uniform magnetic field, respectively.

P
dE/dt( )

------------------- 2 10 5– ,×≈

Fµν Bs e1
µe3

ν e3
µe1

ν–( ) mc2

e
---------ξ f 1

µν ϕ .cos–=

El
mcω

e
-----------ξ i1 ϕ , Blcos

mcω
e

-----------ξ i2 ϕ .cos= =

uµ u1e1
µ u2e2

µ l3nµ l4nµ,+ + +=

nµ

du1

dτ
-------- Ωl3– Ωl4 2ωξl4 ϕ ,cos+ +=

dl4

dτ
-------

Ω
2
----u1,

dϕ
dτ
------–

2ω
c

-------l4,
dt
dτ
----- 1

c
--- l3 l4+( ),= = =

4l3l4 c2 u1
2 u2

2, Ω+ +
eBs

mc
--------.= =
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In the general case, this system of equations can be
solved only numerically. In the calculations, the energy
K(t) = mc2(dt/dτ – 1) acquired by an electron during a
laser pulse of duration 1 ps was determined. It was
assumed for definiteness that the initial electron veloc-
ity was zero and that the laser wavelength was λ =
1.05 µm. The solution showed strong oscillations
(Fig. 2a), and its validity was checked by comparison
with the solutions by three methods: the Bulirsch–Stoer
method for smooth solutions, the variable-step Runge–
Kutta method, and the Stiff method for rigid systems.

It is seen from Fig. 2a that an electron undergoes
impulsive transitions between “levels” with certain
mean energies. Analysis of the time dependence of the
electron velocity for relativistic intensities and different
values of Ω indicates that this mean energy corresponds
to the electron motion in a constant magnetic field Bs in
a circular orbit with the relativistic Larmor frequency
|Ω|/γ and velocity close to c. The energy oscillations
reach a minimum when the electron velocity is in oppo-
sition to the wave vector, because the phase of the elec-
tromagnetic wave in the electron trajectory changes
most rapidly in this case. When the electron velocity is

Fig. 2. (a) Electron kinetic energy and (b) trajectory in a lin-
early polarized laser wave with Ω = ω and an intensity of
1020 W/cm2 in a transverse magnetic field.
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aligned with the wave vector, the phase changes rela-
tively slowly. If, simultaneously, the electron is brought
into the acceleration phase where the projections of its
velocity onto the longitudinal and transverse directions
are aligned with the corresponding projections of elec-
tromagnetic force, it acquires a portion of energy and
moves to a new circular orbit with large radius
(Fig. 2b). In the general case, an electron can acquire or
lose a considerable portion of energy, on the order of
several tens of MeV, in a time interval shorter than the
Larmor period. During the time of quasistationary
phase, an electron can either acquire or lose almost the
same energy portions, so that its energy changes only
slightly.

Interestingly, the electron trajectory is determined
by the constant magnetic field, although it is an order of
magnitude lower than the electric field of the laser
wave. According to [9], this occurs if the condition
Bsγ2 @ El is fulfilled for the relativistic electron ener-
gies. The perturbative analysis of the electron accelera-
tion mechanism at nonrelativistic intensities in a trans-
verse magnetic field is presented in works [9] and [10].
According to the classification of the latter work, the
impulsive electron-energy changes correspond to the
scattering from the resonance.

The above mechanism accounts for the electron
acceleration in the case where Ω deviates appreciably
from ω. For instance, if Ω = 0.05ω and intensity I =
1020 W/cm2, the electron energy attains 170 MeV in
350 fs. The corresponding transverse size of the accel-
eration region is 8 µm, and the longitudinal size is
100 µm. If Ω = ω and the wave magnetic field is aligned
with the constant magnetic field at zero time, the elec-
tron energy reaches ~105 MeV in ~530 fs (Fig. 2a). It
is only required that the focus diameter exceed the
diameter (33 µm) of the preceding orbit. The oscilla-
tions of electron energy and the dependence of their
dynamics on the initial conditions provide continuous
energies, with which electrons leave the focal region.

In summary, ultrastrong magnetic fields generated
in dense laser plasma at relativistic intensities have a
deciding action on the trajectory of an accelerated elec-
tron. In a circularly polarized laser field and in a longi-
tudinal magnetic field, resonance electrons can contin-
uously accumulate energy. If the resonance electrons
uniformly occupy the focal region, more than 50% of
them accumulate an energy higher than 100 MeV at an
intensity of 1020 W/cm2 and move forward at an angle
less than 0.1 rad. For the linear polarization and trans-
verse magnetic field, energy is acquired in the impulse–
periodic character. The mean electron trajectory corre-
sponds to the rotation in the Larmor orbit in a quasista-
tionary magnetic field, and energy strongly oscillates.
For the indicated intensity, the upper bound for the
electron spectrum can also exceed 100 MeV.

We are grateful to V.P. Kraœnov for discussions. 
This work was supported by the ISTC, project
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The intriguing problem of the “missing” MHD integrals of motion is solved in this paper; i.e., analogues of the
Ertel, helicity, and vorticity invariants are obtained. The two latter have been discussed earlier in the literature
only for specific cases, and the Ertel invariant is presented for the first time. The set of ideal MHD invariants
obtained appears to be complete: to each hydrodynamic invariant corresponds its MHD generalization. These
additional invariants are found by means of the fluid velocity decomposition based on its representation in terms
of generalized potentials. This representation follows from the discussed variational principle in Hamiltonian
(canonical) variables, and it naturally decomposes the velocity field into the sum of “hydrodynamic” and “mag-
netic” parts. The “missing” local invariants are expressed in terms of the “hydrodynamic” part of the velocity
and therefore depend on the (nonunique) velocity decomposition; i.e., they are gauge-dependent. Nevertheless,
the corresponding conserved integral quantities can be made decomposition-independent by the appropriate
choice of the initial conditions for the generalized potentials. It is also shown that the Weber transformation of
MHD equations (partial integration of the MHD equations) leads to the velocity representation coinciding with
that following from the variational principle with constraints. The necessity of exploiting the complete form of
the velocity representation in order to deal with general-type MHD flows (nonbarotropic, rotational, and with
all possible types of breaks as well) in terms of single-valued potentials is also under discussion. The new basic
invariants found allow one to widen the set of the local invariants on the basis of the well-known recursion pro-
cedure. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 47.65.+a; 47.10.+g
The fact that in dissipation-free hydrodynamics
there exist vorticity, helicity, and Ertel invariants makes
it evident that corresponding analogues have to exist for
the ideal MHD as well. But in spite of the fact that for
the dissipation-free MHD flows there exist additional
topological invariants, namely, magnetic helicity and
cross-helicity, introduced by Moffatt [1], the analogues
of the vorticity and helicity invariants have not yet been
discussed with the necessary completeness (cf., for
instance, the recent review [2]). Related quantities were
mentioned for the specific cases of symmetric flows in
[3–5], while the vorticity and helicity invariants for
incompressible flows were obtained in [6, 7]. A com-
plete discussion of the generalized vorticity and helicity
invariants for the compressible MHD flows without any
restrictions relating to the flow symmetry and an intro-
duction of the generalized Ertel invariant will be pre-
sented below (see also [8]). Note here that these gener-
alized invariants cannot be expressed in terms of the
conventional Euler variables (the velocity, pressure,
entropy, magnetic field, etc.)—their definition involves
the specific decomposition of the velocity, which is nat-
ural in terms of the Weber transformation (or in terms

¶ This article was submitted by the author in English.
0021-3640/03/7712- $24.00 © 20657
of the Clebsch representation) and involves subsidiary
fields. Suppose this fact was the main obstacle in their
derivation. The necessary subsidiary fields are related
to the specific symmetry of the MHD equations. This
symmetry is naturally expressed in terms of the
Lagrange variables labeling the fluid particles: the cor-
responding symmetry group consists in relabeling
(cf. [2] and references therein). In the Hamiltonian
approach, these Lagrange labels are generalized coor-
dinates, and the velocity field is expressed in terms of
their gradients multiplied by conjugate momenta
constituting a Clebsch-type representation (cf. [9] and
[2, 10]).

For the MHD case, the velocity representation
includes an additional term proportional to the mag-
netic field originally introduced in [11]. Below, we use
a representation that decomposes the velocity field into
two parts, say, a “hydrodynamic” one, which coincides
with the velocity representation for the hydrodynamics,
and a “magnetic” part (the latter vanishes identically
for zero magnetic field). The generalized integrals of
motion are then expressed using the hydrodynamic part
of the velocity representation. Such decomposition of
the velocity is not unique, and the corresponding inte-
003 MAIK “Nauka/Interperiodica”
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grals of motion undergo some changes caused by the
change in the generalized potentials (gauge transforma-
tions). We show that such changes can be eliminated by
an appropriate choice of the initial conditions for the
generalized potentials.

As it may seem, the velocity representation follow-
ing from the variational principle is somewhat artificial;
we prove its equivalence to that obtained from the gen-
eralization of the Weber transformation (cf. [12, 13])
for the compressible nonbarotropic MHD flows (for the
incompressible flows, this was done in [6]; for the baro-
tropic case, see [14]).

Based on the additional invariants found, it is possi-
ble to derive a wide set of new invariants resulting from
the recursion relations (cf. [15, 16]; see also [2, 10]).
These sets of invariants are briefly discussed in the
paper as well.

Let us start with the MHD equations in the Hamilto-
nian form. The dissipation-free MHD flows can be
described in terms of the canonical variables (cf., for
instance, [2]). Here we need the more complete set of
the canonical variables enabling one to describe gen-
eral-type flows. An example of such an approach,
allowing us to deal with discontinuous motion as well,
is presented in [8, 17]. For our case, the appropriate
Hamiltonian density * can be chosen in the form

(1)

where ρ, ε, and s denote density, internal energy, and
entropy, respectively; A is the vector potential; and
H = curlA.1 The velocity field v is expressed in terms
of the generalized coordinates, 4 = (Q, M), and conju-
gate momenta, 3 = (P, A)

(2)

(3)

Here, subindexes h and M correspond to the “hydrody-
namic” and “magnetic” parts of the velocity field. The
hydrodynamic part, vh, corresponds to the generalized
Clebsch representation for the conventional hydrody-
namics (compare, for instance, papers [17–19]), and the
magnetic part, vM, coincides with the conventional
MHD term if we replace the divergence-free field M by
curlS. The latter was first introduced by Zakharov and
Kuznetsov (cf. [11]).

1 The action differs slightly from that proposed in [17]. The main
difference consists in introducing the vector potential for the
magnetic field. Therefore, the canonical pair is A, M instead of
H, S, where S = curlM. We do not deal with the discontinuous
flows and omit the surface term in the action.

* 3 4 ∇ 4, ,( )

=  ρv2

2
-------- ρε curlA( )2

8π
-------------------- M ∇Λ⋅( ),+ + +

Q ϕ m s, ,( ), P ρ l σ, ,( ),= =

v v 3 4,( ) vh vM,+≡=

vh ρ 1– P∇ Q, vM– ρ 1– H M×[ ] .–= =
The set of canonical equations

(4)

or, in explicit form,

(5)

(6)

(7)

(8)

includes mass conservation, entropy transport, and
magnetic field dynamic equations. Here, w and T are
the enthalpy and temperature, dot denotes time deriva-
tive, and D ≡ ∂t + (v · ∇ ) is the substantial (material)
derivative.

From the velocity representation (Eq. (3) and
Eqs. (5)–(8)), it strictly follows that the velocity field
satisfies the Euler equation with the magnetic force
taken into account,

(9)

where p is the fluid pressure.
Note here that variation of the action

(10)

with respect to Λ leads to the divergence-free condition
for the subsidiary field M, divM = 0. This is consistent
with the equation of motion for M, which leads to
∂t(divM) = 0. Therefore, supposing that divM = 0 holds
for some initial moment, we arrive at the conclusion
that this is valid for an arbitrary moment. On the other
hand, putting Λ ≡ 0 in the action leads to vanishing of
the Λ term in the vector potential equation of motion,
making it gauge-dependent. It proves convenient to
deal with Λ ≠ 0, which makes it possible to use different
gauge conditions for the vector potential.

We do not include the subsidiary field Λ into the set
of the canonical variables but suppose it to be an inde-
pendent variable in the variational principle with the
action defined by Eq. (10), dealing with the extended
Hamiltonian description (cf. [20]). Alternatively, one
can include it into the set of generalized coordinates.
Denoting corresponding conjugate momentum πΛ and
adding to the Hamiltonian density (Eq. (1)), the term

πΛν results in  = –δ*/δΛ = –divM,  = δ*/δπΛ =
ν. The subsidiary function ν can be expressed in terms

of other variables as ν = ∂t∆–1([v × H] – ) + ν0, where
∆ denotes the Laplace operator and ν0 is an arbitrary
solution of the Laplace equation. πΛ is a linear function
of t, πΛ = πΛ(t0) – (t – t0)divM, as follows from (8). Put-
ting πΛ(t0) and divM(t) ≡ divM(t0) = 0, we arrive at the

4 δ*/δ3, 3̇ δ*/δ4,–= =
.

ρ̇ div ρv( )+ 0, Dϕ w v 2/2,–= =

Dm 0, λ̇m div λmv( )+ 0,= =

Ds 0, σ̇ div σv( )+ ρT ,–= =

Ȧ v curlA×[ ] ∇Λ ,–=

Ṁ curlH
4π

-------------- curl v M×[ ] ,+=

ρDv ∇ p– 4π( ) 1– curlH H×[ ] ,+=

! t r 3∂t4 *–( )d∫d∫=

π̇Λ Λ̇

Ȧ
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specific case with the a posteriori zero-valued πΛ. Note
also that for M(t0) = 0, some generalized invariants
become gauge-independent (see below).

The canonical description introduced for MHD is
equivalent (obviously, up to the gauge transformations
of the subsidiary fields) to the conventional description.
This fact strictly follows from the generalization of the
Weber transformation. The latter consists in partial
integration of the Euler equation. Suppose that the fluid
particles are labeled by Lagrange markers a = (a1, a2,
a3). Then the label of the particle passing through point
r = (x1, x2, x3) at time t is

(11)

The particle paths and velocities are given by the
inverse function

(12)

Representing the equation of motion in the form

(13)

multiplying it by dxk/dai, and performing simple trans-
formations, we have

(14)

Introducing subsidiary fields ϕ, σ, and M governed by
equations (compare second equations in (5), (7), (8))

(15)

we can represent the right-hand side of Eq. (14) as the
sum of the substantial derivatives in accordance with
identities:

which makes it possible to integrate the Euler equa-
tion (14):

(16)
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Multiplying this relation by ∂ai/∂xj allows one to revert
from Lagrangian, (a, t), to the Eulerian, (r, t), variables,

(17)

The velocity representation following from the
Weber transformation obviously coincides with the
above-introduced generalized Clebsch representation if
one identifies b with l/ρ and a with m. This proves the
above-mentioned equivalence between description of
the general-type magnetohydrodynamic flows in terms
of canonical variables introduced and the conventional
description in Lagrange or Euler variables. Moreover,
this indicates that the velocity representation of the
form of Eq. (3) is the basic one. The possible reductions
based upon the Darboux (in other words, Pfaff’s) theo-
rem lead to the restrictions for the motion or, otherwise,
involve non-single-valued functions (cf. [2]).

The decomposition of the velocity in the “hydrody-
namic” and “magnetic” parts allows one to obtain
“missing” MHD invariants. Namely, strict but rather
cumbersome calculations show that the generalized
vorticity

(18)

satisfies equation

(19)

For the barotropic flows, wh/ρ becomes a frozen-in
field,

(20)

presenting a clear generalization of the hydrodynamic
vorticity for the MHD case. Note that the quantity w/ρ,
w ≡ curlv, is not a frozen field due to the nonpotential
character of the Lorentz force.

Starting with Eq. (19), one can prove the generaliza-
tion of the Thompson theorem: circulation Γ of vh over
the closed substantial contour # lying on the entropy-
constant surface is the integral of motion

(21)

Analogously, the pseudoscalar hH ≡ (vh · wh) (gener-
alized helicity) is conserved for the barotropic flows

(22)

The corresponding integral-conserved quantity (H can
be obtained by integration of hH over substantial vol-

ume  such that on its boundary the normal component
of the generalized vorticity vanishes, ωhn = 0 (note that
it is sufficient to require fulfillment of the latter condi-

v ∇ϕ– bk∇ ak–
σ
ρ
--- ∇ s– h M×[ ] .–=

wh curlvh≡

ẇh ∆ρ ∇ p×[ ] /ρ2 curl v wh×[ ] .+=

D
wh

ρ
------ 

  wh

ρ
------ ∇⋅ 

  v for p p ρ( ),= =

DΓ D vh dl⋅( )
#

∫°≡ 0 for s # const.= =

ḣH divqH+ 0, hH vh wh⋅( ),==

qH hHv χ v 2/2–( )wh, χ p/ρ.d∫≡+=

Ṽ
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tion for the initial moment only due to the frozen-in
character of wh/ρ),

(23)

For the incompressible case, the generalized vorticity
and helicity were introduced earlier in the paper [6].

The generalization of the Ertel invariant is repre-
sented by the quantity αE = (wh · ∇ s)/ρ following from
the conventional hydrodynamics expression by substi-
tution wh = curlvh instead of w = curlv,

(24)

without any restrictions concerning the flow. Integra-
tion of hE = ραE over the substantial volume yields the
following conserved integral:

(25)

(E in its structure is not gauge-invariant, in contrast
to the hydrodynamic case. Let us examine its change
under gauge transformation vh  , vM  

with  +  = vh + vM. Then

(26)

Now we can proceed in two ways. First, making use of
the identity [∇ s × X] = curl(sX) – s · curlX and taking
into account that the integral of the first term vanishes

(which is trivial for a closed boundary ∂  and assumes
the necessary decreasing of the integrand for the infi-

nite volume ), we have

(27)

From representation (26), it immediately follows that
the integral Ertel invariant becomes gauge-independent

for the substantial volume  chosen in such a way that
its boundary coincides with the entropy-constant sur-
face,  = const.

The second way is as follows. Substituting into
Eq. (26)  – vM = –[h × (M' – M)], we obtain

(28)

Inasmuch as both M' and M satisfy the second equation
in (8), their difference,  = M' – M, is governed by the

corresponding homogeneous equation ∂t  = curl[v ×
], i.e.,  = /ρ is a frozen-in field. From this prop-

erty, it follows that the vector quantity W ≡ [∇ s × [h ×

D(H 0 for wh n⋅( )
Ṽ∂

0, (H rhH.d

Ṽ

∫≡= =

DαE 0,=

(E rhE, D(Ed

Ṽ
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Ṽ
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Ṽ
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Ṽ∂

vM'

(E' (E– Σ n ∇ s h M' M–( )×[ ]×[ ]⋅( ).d

Ṽ∂

∫=

M

M

M m M
]] entering the integrand is a frozen-in field (this can
be proved by strict calculations and also follows from
the recursion relations between different types of
invariants; see, for instance, [2, 10] and Eqs. (31), (32)
below). Therefore, if we restrict ourselves to zero initial
condition for the field M,  = 0, the initial value of
W becomes zero, and, consequently, the initial value of
its normal component on the surface of the substantial

volume ∂  is zero. But the normal component of the
frozen-in field is invariant of the motion. Thus, we
arrive at the conclusion that condition (n · W) = 0 holds
true for an arbitrary moment, and (E becomes gauge-
invariant if we imply zero initial conditions for the sub-
sidiary field M. Note that this choice does not impose
any constraint on the motion.

There are also other possibilities to make (E gauge-
independent. For instance, we can restrict ourselves to
a subset of the initial conditions for M such that

 = f , where f is an arbitrary function. (Then

divM = div  = (∇ f · ) and, for the particular

choice of f such that (  · ∇ f) = 0, we have divM =
0.) For these initial conditions, M and M' are collinear
to H at the initial moment, and therefore the initial
value of (n · W) is zero, and, consequently, it is zero for
all moments. Thus, we can make the conclusion that the
gauge dependence of the Ertel invariant can be partly
eliminated by appropriate choice of the initial condi-
tions or substantial volumes.

The performed analysis of the additional MHD inte-
grals of motion makes it quite evident that, along with
the well-known MHD integrals of motion (cf. [2]), they
form the basis of the MHD local invariants. Starting
with these invariants, one can obtain a wide set of
invariants by means of recursion relations between dif-
ferent types of invariants. Recall that for hydrody-
namic-type systems there exist four types of local
invariants. By definition they obey the following equa-
tions:

(29)

(30)

Here, α and I represent the scalar and vector Lagrange
invariants, J is frozen-in field, and L presents Lamb-
type momentum invariant (cf. [16]). The main repre-
sentative of the fourth-type invariants is the fluid den-
sity ρ; all other ρ-type invariants can be obtained by
multiplying the local Lagrange invariants by ρ. The
recursion relations

(31)

(32)

allow one to construct new invariants in terms of the
initial ones. The procedure is somewhat different for
the general-type motion and barotropic (or isentropic)

m

Mt t0=

Ṽ

Mt t0= Ht t0=

Mt t0= Ht t0=

Ht t0=

Dα 0, DI 0, DJ J ∇⋅( )v– 0,= = =

DL L ∇⋅( )v L curlv×([ ]+ + 0.=

L' ∇α , α' J L⋅( ),= =

J' L L'×[ ] /ρ, L' ρ J J'×[ ]= =
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flows. Let us consider the general case. The basic set of
invariants can be chosen as

(33)

Applying recursion relations, we first obtain new L-type
invariants, Ls = ∇ s, LE = ∇α E. These invariants allow us
to get new α-type,

(34)

and J-type, J' = [∇ s × ∇α E]/ρ, invariants. The first
invariant in Eq. (34) was obtained in [21]. It is evident
that invariants αP and αE are members of the infinite
sets of (monomial) invariants

(35)

where $ = (h · ∇ ). The first set was discussed in [2],
and the second is the new one together with the gener-
alized Ertel invariant αE. The more general set of the
scalar invariants can be represented by expression αf =

f({ }, { }), where f is an arbitrary function.
Note that the set {αf} is closed relative to the operation $.

We can proceed further constructing new scalar
invariants by applying operation $1 = (J' · ∇ ) to the sca-
lar invariants obtained at the previous step and obtain-
ing new L- and J-type invariants. The problems relating
to the complete set of the local invariants, their gauge
invariance, and specific types of flows will be discussed
further.

The results obtained can be summarized as follows.
First, the variant of introducing the canonical descrip-
tion of the MHD flows by means of the variational prin-
ciple is presented. It is shown that in order to describe
general-type MHD flows it is necessary to use in the
generalized Clebsch-type representation for the fluid
velocity field the vector Clebsch variables (the
Lagrange markers and conjugate momenta) along with
the entropy term (compare papers [18, 19] describing
hydrodynamic case) and the conventional magnetic
term. This complete representation allows one to deal
with general-type MHD flows, including all types of
breaks (see [17]). Second, the generalization of the
Weber transformation for the MHD flows is performed.
Third, the equivalence between the velocity representa-
tions, following, respectively, from the Weber transfor-
mation, and that introduced by means of the variational
principle is proved. Fourth, the generalized Ertel invari-
ant for MHD flows is found. Fifth, the generalized vor-
ticity and helicity invariants for the compressible baro-
tropic MHD flows are obtained. Sixth, the relations
between the local and integral invariants are discussed
along with the gauge dependence of the latter. Seventh,
as a consequence of the completeness of the represen-

s αE h, , H/ρ.=

αP h ∇⋅( )s, αE
1( ) h ∇⋅( )αE,= =

αP
m( ) $m

s, αE
m( ) $mαE, m 0 1 …,, ,= = =

αP
m( ) αE

m( )
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tation proposed, we arrive at the correct limit transition
from the MHD to the conventional hydrodynamic
flows. The results obtained allow one to deal with com-
plicated MHD problems by means of the Hamiltonian
variables. The use of such an approach was demon-
strated for the specific case of incompressible flows in
the series of papers devoted to the nonlinear stability
criteria.

This work was supported by INTAS (grant no. 00-
00292).
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Commensurate Oscillations of the Magnetoresistance
of a Two-Dimensional Electron Gas in GaAs Quantum Wells
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Oscillations of the magnetoresistance commensurate with the spatial modulation period of the growth surfaces
were observed in selectively doped GaAs quantum wells with AlAs/GaAs superlattice barriers grown by molec-
ular beam epitaxy. The experimental data obtained are explained by the lateral potential modulation of the two-
dimensional electron gas in narrow GaAs quantum wells with corrugated heteroboundaries and agree with the
two-dimensional distribution of the local capacitance in such structures. © 2003 MAIK “Nauka/Interperiod-
ica”.

PACS numbers: 73.63.Hs; 73.21.Fg
Numerous experimental studies showed that heter-
oboundaries in semiconductor structures grown by
molecular beam epitaxy (MBE) are not perfectly pla-
nar. To some extent, irregularity (corrugation) of heter-
oboundaries is present in any real MBE structure. Of
the number of possible reasons leading to the irregular-
ity of heteroboundaries, the two most important ones
should be singled out: the roughness of the initial sub-
strate surfaces [1] and the self-organization of the
mounded surface in the growth process [2]. In this
work, it is shown that the mounding behavior of the
growth surfaces arising in the MBE process leads to the
appearance of a long-range scattering potential in
selectively doped structures.

The structures under study were selectively GaAs-
doped quantum wells 10 nm thick with AlAs/GaAs
superlattice barriers [3, 4] grown by MBE on
GaAs(100) substrates. The misorientation angle of the
substrates did not exceed 0.02°. The surface morphol-
ogy of the prepared structures was studied using atomic
force microscopy (AFM). Magnetotransport experi-
ments were carried out at a temperature of 4.2 K in
magnetic fields up to 2 T on L-shaped Hall-effect
bridges, in which the measuring current flowed along

the [110] and [ ] directions.

Studies of the relief using AFM showed an anisotro-
pic character of the surface morphology on all grown
structures. A decrease in the As4 flow led to an increase
in the height of the spatial modulation and the degree of
anisotropy of the growth surfaces, all other factors
being the same [1]. A characteristic AFM image of the
surface relief of a structure grown at a minimum As4

110
0021-3640/03/7712- $24.00 © 20662
flow required for the maintenance of the As-stabilized
surface superstructure is shown in Fig. 1a. The results
of a correlation analysis of this surface are presented in
Fig. 1b. The anisotropy and periodic character of the
surface morphology are clearly seen in the figure. The
mobility of the two-dimensional electron gas (2DEG)
in this structure at T = 4.2 K for the concentration ns =
1.7 × 1012 cm–2 was µxx = 170 × 103 cm2 V–1 s–1 in the
[110] direction and µyy = 280 × 103 cm2 V–1 s–1 in the

[ ] direction. That is the mean free path by the
momentum in the [110] direction lpxx ~ 2.5 µm
exceeded the spatial modulation period of the growth
surfaces dxx ~ 0.8 µm in the same direction.

The dependences ρxx(B) and ρyy(B) are presented in
Fig. 2a for the measuring current flowing along the

[110] and [ ] directions, respectively. A difference
is observed in the ρxx(B) and ρyy(B) values due to the
anisotropy of the morphology of heteroboundaries,
which is typical of such systems [5, 6]. A maximum
appears in the ρxx(B) dependence at B = Bmax, which
points to one-dimensional periodic potential modula-
tion of the 2DEG [7]. This assumption is fully con-
firmed by the fact that commensurate oscillations are
observed in the magnetoresistance (MR) in the vicinity
of B = Bmax (Fig. 2b). These oscillations arise in the one-
dimensional periodic potential when the conditions
Rc = (n + 1/4)axx are fulfilled, where Rc = (2mEF)1/2(eV)–1

is the classical radius of the cyclotron orbit, EF is the
2DEG Fermi energy, axx is the potential modulation
period, and n is a positive integer [8]. An analysis of the
position of maxima in the magnetic field showed that

110

110
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these are due to the potential modulation of the 2DEG
with a period axx ~ 0.8 µm, which coincides, to the
accuracy of measurements, with the spatial modulation
period of the heteroboundaries in the [110] direction
determined by AFM.

This experimental fact allows the conclusion to be
drawn that the nonplanarity of the growth surfaces is
the reason for the lateral potential modulation of the
2DEG in selectively GaAs-doped quantum wells. The
magnitude of the potential modulation of the 2DEG
calculated by the equation V0 = Bmaxaxx(EF/2π2m)1/2

from the work [9] make up 10–15 meV for EF ~
60 meV. The theoretical dependence of the 2DEG MR
in the one-dimensional periodic potential [8] with the
modulation amplitude V0 = 10 meV and the period axx =

0
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0 2 4 6 8 µ
0
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20
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Fig. 1. (a) Two-dimensional AFM image of the surface
relief of a “corrugated” MBE structure. The arrow indicates

the [ ] direction. (b) Autocorrelation functions of the

relief in the [110] and [ ] directions.

110

110
JETP LETTERS      Vol. 77      No. 12      2003
0.8 µm is represented by curve 1 in Fig. 2b. As is evi-
dent in the figure, the amplitude of the commensurate
oscillations observed in this work is significantly
smaller than the theoretical value. We relate this exper-
imental result to the fact that the potential modulation
of the 2DEG in the studied GaAs quantum wells with

Fig. 2. (a) Longitudinal 2DEG MR in the [110] and [ ]
directions (ρxx and ρyy, respectively) at T = 4.2 K for the

concentration ns = 1.7 × 1012 cm–2. (b) (1) Theoretical
dependence of the 2DEG MR for the concentration ns = 1.7 ×
1012 cm–2 and the mobility µxx = 170 × 103 cm2 V–1 s–1 in
a one-dimensional potential with the period axx = 0.8 µm
and the amplitude V0 = 10 meV. (2) The longitudinal MR in
the [110] direction with the subtracted monotonic compo-
nent.

110
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corrugated heteroboundaries is not strictly periodic and
one-dimensional [10].

The above interpretation of the experimental data is
also in qualitative agreement with the two-dimensional
distribution of the local capacitance in the studied
structures (Fig. 3a). The local capacitance was mea-
sured using a SOLVER P47-H NT-MDT atomic force
microscope operating in the noncontact mode using a
double-pass procedure that takes into account the effect
of the surface relief on the measured local capacitance.
In this case, the surface topography is measured during
the first passage of the probe (Fig. 1a), and the capaci-
tance signal is measured during the second passage
(Fig. 3a) when the probe moves above the surface along
the already measured trajectory. The use of this proce-
dure allows one to assume that the surface inhomoge-

0
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0 2 4 6 8 µ

0

0.1
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a. u.

–0.1

–0.2

Fig. 3. (a) Local capacitance distribution over the surface of

a corrugated MBE structure. The arrow indicates the [ ]
direction. (b) Autocorrelation functions of the local capaci-

tance distribution in the [110] and [ ] directions.

110

110
neity of the 2DEG concentration is the main reason for
the variation of the local capacitance. The results of the
correlation analysis of the two-dimensional image of
the local capacitance are given in Fig. 3b. The identity
of the autocorrelation functions of the height and
capacitance distributions (Fig. 1b and Fig. 3b) is an
additional argument that corroborates the conclusion
that the lateral potential modulation of the 2DEG in
narrow GaAs quantum wells is caused by the morphol-
ogy of the growth surfaces.

We believe that the variation of the width of the
GaAs quantum well along nonplanar heteroboundaries
is one of the most probable reasons leading to the lat-
eral modulation of the 2DEG potential in the MBE
structures under study [11, 12]. It should be noted that
the nonplanarity of the growth surfaces in selectively
doped MBE structures will lead not only to the varia-
tion of the distance between the quantum-well heter-
oboundaries but also to the variation of the spacer
thickness and to nonuniform incorporation of the
dopant. That is, in the general case, there are several
mechanisms of the generation of the long-range scatter-
ing potential in MBE structures with self-organized
corrugated heteroboundaries. Without going into the
analysis of particular mechanisms leading to the lateral
potential modulation of the 2DEG in GaAs quantum
wells, the following inferences about the character of
the long-range scattering potential in such structures
can be made based on a comparison of the relief of the
growth surfaces, the local-capacitance distribution, and
magnetotransport measurements.

The long-range scattering potential caused by the
nonplanarity of the growth surfaces in MBE structures
grown on GaAs(100) substrates is anisotropic. The
amplitude and the two-dimensional form of the long-
range scattering potential in GaAs quantum wells with
AlAs/GaAs superlattice barriers depend on the growth
conditions. In conditionally “smooth” structures, it has
no clearly defined period and is manifested only in the
anisotropy of the 2DEG conductivity [5]. MR anisot-
ropy was observed in all the samples studied in this
work and was smaller in the structures with a smaller
height of the relief of the growth surfaces, all other fac-
tors being the same. In well-defined “corrugated” MBE
structures, the long-range scattering potential is quasi-
periodic and leads not only to the conductivity anisot-
ropy but also to commensurate MR oscillations.

Thus, the 2DEG MR in narrow GaAs quantum wells
with AlAs/GaAs superlattice barriers exhibits oscilla-
tions commensurate with the spatial modulation period
of the growth surfaces. The experimental data obtained
are explained by the lateral potential modulation of the
2DEG in narrow GaAs quantum wells with self-orga-
nized nonplanar heteroboundaries. These data point to
the importance of the spatial modulation of the growth
surfaces in the appearance of the long-range scattering
potential in selectively doped MBE structures.
JETP LETTERS      Vol. 77      No. 12      2003
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Tunneling measurements have been carried out on slightly overdoped Bi2Sr2CaCu2O8 + x single crystals below
and above the critical temperature by break-junctions and in-plane point-contacts. An anomaly was found in the
tunneling I(V) characteristics. Analysis of the data shows that the anomaly is caused by the superconducting
condensate. In the extracted I(V) characteristics of the condensate, the constant asymptotics points to the pres-
ence of one-dimensionality in Bi2212. The anomaly found here puts additional constraints on the final theory
of high-Tc superconductivity. © 2003 MAIK “Nauka/Interperiodica”.
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Soon after the discovery of superconductivity (SC)
in cuprates [1], it became clear that the concept of the
Fermi liquid is not applicable to cuprates: the normal-
state properties of cuprates are markedly different from
those of conventional metals [2]. The pseudogap, which
manifests itself in electronic excitation spectra of
cuprates above the critical temperature Tc, is one of the
main features of high-Tc SCs. There is a consensus on
the doping dependence of the pseudogap in hole-doped
cuprates: the magnitude of the pseudogap decreases as
the hole concentration increases. Angle-resolved pho-
toemission spectroscopy (ARPES) measurements per-
formed in Bi2Sr2CaCu2O8 + x (Bi2212) show that the
ARPES spectra consist of two independent contribu-
tions—from the pseudogap (hump) and the SC conden-
sate (quasiparticle peak) [3]. As the temperature
decreases, the quasiparticle peak appears in the spectra
slightly above Tc on one side of the hump, meaning that
the pseudogap and the SC gap coexist below Tc in
Bi2212.

In addition to their peculiar normal-state properties,
a number of experiments show that some SC properties
of cuprates deviate from the predictions of BCS theory
for conventional SCs [2]. For example, the BCS isotope
effect is almost absent in optimally doped cuprates. As
another example, let us compare tunneling data
obtained in cuprates and theoretical predictions for
conventional SCs. Figure 1 shows a theoretical I(V)
curve for classical SCs (Fig. 6 in [4]) and a tunneling
I(V) characteristic obtained in an underdoped Bi2212
single crystal (Fig. 1 in [5]). In the tunneling regime,
depending on the normal resistance of a junction, the
theoretical I(V) curve at high positive (low negative)
bias lies somewhat below (above) the normal-state
curve, as shown in Fig. 1a. In conventional SCs, the so-

¶ This article was submitted by the author in English.
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called Blonder–Tinkham–Klapwijk (BTK) predictions
are verified by tunneling experiments. In cuprates, as
one can see in Fig. 1b, the BTK theory is violated: the
I(V) curve at high positive (low negative) bias passes
not below (above) the line which is parallel to the I(V)
curve at high bias but far above (below) the line. This
anomaly cannot be explained by the d-wave symmetry
of the order parameter. This question, for the first time,
was raised elsewhere [6]. This finding is the main moti-
vation of the present work.

The data shown in Fig. 1b are obtained in an under-
doped Bi2212 single crystal in a SC–insulator–SC
(SIS) tunneling junction. If the anomaly is an intrinsic
feature of SC in Bi2212, it has to be present in tunnel-
ing spectra in the overdoped region of Bi2212 as well.
Second, if it is not a SIS-junction effect, it must also
manifest itself in SC–insulator–normal metal (SIN)

Fig. 1. (a) Theoretical tunneling I(V) characteristic at T = 0
for a SIN junction of a SC with the isotropic energy gap [4].
The line is the normal-state curve. (b) Measured I(V) curve
in a SIS junction of an underdoped Bi2212 single crystal
with Tc = 83 K, obtained at T = 4.2 K [5]. The line is parallel
to the I(V) curve at high bias, and the arrows show the offset
from the line.
003 MAIK “Nauka/Interperiodica”
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junctions. Third, the line in Fig. 1b is not the normal-
state curve; therefore, it is necessary to obtain tunneling
spectra in the normal state. Finally, knowing the nor-
mal-state curves, one can estimate the contribution in
tunneling spectra from the SC condensate. This work
deals with the questions raised above. Tunneling mea-
surements presented in this paper have been performed
on overdoped Bi2212 single crystals below and above
Tc by break-junctions and in-plane point-contacts,
which reveal that the anomaly found in the tunneling
I(V) characteristics originates from the SC condensate.
In the extracted I(V) characteristics of the SC conden-
sate, the constant asymptotics points to the presence of
one-dimensionality in Bi2212. The anomaly found here
puts additional constraints on the final theory of SC in
cuprates.

It is important to note that the anomaly in tunneling
I(V) curves was already discussed in [6]; however, in
[6], the anomaly was inferred from abnormal-looking
tunneling characteristics. In this work, we show that
this anomaly is intrinsically present in any I(V) curve
obtained below Tc in Bi2212. Also, the I(V) characteris-
tics measured above Tc were not considered in [6].

The overdoped Bi2212 single crystals were grown
using the self-flux method as described elsewhere [7].
The Tc value was determined by the four-contact
method. The transition width is less than 1 K. Experi-
mental details of the measurement setup can be found
elsewhere [7]. In short, many break-junctions were pre-
pared by gluing a sample with epoxy on a flexible insu-
lating substrate and then were broken in the ab-plane by
bending the substrate with a differential screw at low
temperature in a He ambient. The electrical contacts
(typically with a resistance of a few ohms) are made by
attaching gold wires to a crystal with silver paint. The
I(V) and dI(V)/dV characteristics are determined by the
four-terminal method by using the standard lock-in
modulation technique. In in-plane SIN tunneling junc-
tions, Pt–Ir wires sharpened mechanically were used as
normal tips.

Figure 2a shows SIS tunneling spectra obtained by
a break-junction at T = 8.5 K in an overdoped Bi2212
single crystal with critical temperature Tc = 88 K. The
conductance dI(V)/dV exhibits typical features of SIS-
junction conductance data in Bi2212: well-defined qua-
siparticle peaks, a zero-bias peak due to the Josephson
current, dips and humps outside the gap structure. As
the main result, the I(V) characteristic in Fig. 2a is sim-
ilar to the I(V) curve shown in Fig. 1b. The gap magni-
tude ∆, however, is smaller in the overdoped region.
Figure 2b shows a set of tunneling I(V) characteristics
obtained in different overdoped Bi2212 single crystals
with Tc = 87–89 K. Comparing Figs. 1b, 2a, and 2b, it
is evident that the anomaly is present not only in the
underdoped region of Bi2212 but in the overdoped
region as well.

Figure 2c depicts tunneling spectra which are simi-
lar to those in Fig. 2a but obtained in a SIN junction.
JETP LETTERS      Vol. 77      No. 12      2003
Because of the SIN junction, the quasiparticle peaks in
the conductance shown in Fig. 2c appear at a bias twice
as small as the peak bias in Fig. 2a. The I(V) curve in
Fig. 2c clearly indicates that the observed anomaly is
not a SIS-junction effect but an intrinsic feature of tun-
neling I(V) characteristics obtained in Bi2212.

The next question that we discuss is how to obtain
tunneling I(V) characteristics in the normal state. There
are at least three different solutions. The first two con-
sist in applying a magnetic field below Tc, while the
third solution is to measure I(V) above Tc. In the first
case, a magnetic field with a magnitude larger than the
upper critical magnetic field Hc2 in Bi2212 renders the
whole sample normal. In the second case, by applying
a magnetic field with a magnitude larger than the lower
critical field Hc1, vortices will enter the sample. In the
latter case, the normal-state characteristics can be
obtained inside vortex cores. Because Hc2 in Bi2212 is
very large, the first solution cannot be realized in labo-
ratory conditions. The second solution seems to be suit-
able; however, tunneling spectra obtained inside vortex
cores have subgap structures which are usually inter-
preted as a manifestation of bound states [8]. Moreover,
technically, it is not easy to realize such measurements.
So, we are left with the straightforward solution: to
measure I(V) characteristics somewhat above Tc. The
main disadvantage of measurements performed above
Tc is the presence of substantial thermal fluctuations.

Fig. 2. (a) Tunneling I(V) and dI(V)/dV characteristics
obtained at T = 8.5 K in a SIS junction of an overdoped
Bi2212 single crystal with Tc = 88 K. (b) Set of I(V) curves
obtained at T = 5–14 K in different overdoped Bi2212 single
crystals with Tc = 87–89 K. The curves are offset for clarity.
(c) I(V) and dI(V)/dV characteristics obtained at T = 9 K in
a SIN junction of an overdoped Bi2212 single crystal with
Tc = 87.5 K. In all plots, the lines are parallel to the I(V)
curves at high bias. The label of the horizontal axis in plot
(a) is the same as in plot (c).
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Figure 3a depicts tunneling spectra obtained at T =
119 K in the same Bi2212 single crystal as those in
Fig. 2a. Figure 3b presents a set of I(V) curves mea-
sured at T = 115–125 K in different overdoped Bi2212
single crystals. The data in Figs. 3a and 3b are obtained
in SIS junctions. Figure 3c shows tunneling data
obtained in a SIN junction at T = 117 K in the same
Bi2212 single crystal as those in Fig. 2c. The tempera-
tures between 115 and 125 K presented in Fig. 3 were
not chosen by accident: in slightly overdoped Bi2212,
the onset of SC occurs at 110–116 K [7]. This temper-
ature range is above the onset of SC in our Bi2212 sam-
ples and, as a consequence, the data in Figs. 3a–3c
mainly provide the contribution from the normal-state
pseudogap.

Considering the I(V) characteristics shown in Fig. 3,
one can see that, at high positive (low negative) bias,
they pass somewhat below (above) the line which is
parallel to the I(V) curves at high bias. Thus, the anom-
aly in the I(V) characteristics found below Tc vanishes
somewhat above Tc. Then, it is obvious that the anom-
aly in the I(V) curves originates from the SC conden-
sate. In Fig. 3, one can see that a straight line can be
used as a first approximation for a normal-state I(V)
curve, for example, in Fig. 1b. In the I(V) curves mea-
sured above Tc, a small “negative” offset from straight
lines is caused by the pseudogap: measurements per-
formed in underdoped Bi2212 show that this offset is
larger than that in Fig. 3. Thus, it scales with the mag-
nitude of the pseudogap.

Fig. 3. (a) I(V) and dI(V)/dV characteristics obtained at T =
119 K in the same SIS junction as those in Fig. 2a. (b) Set
of I(V) curves obtained at T = 115–125 K in different over-
doped Bi2212 single crystals with Tc = 87–89 K. The curves
are offset for clarity. (c) I(V) and dI(V)/dV characteristics
obtained at T = 117 K in the same SIN junction as those in
Fig. 2c. In all plots, the lines are parallel to the I(V) curves
at high bias. The label of the horizontal axis in plot (a) is the
same as in plot (c).
We turn now to the last question raised above. From
the tunneling characteristics obtained deep below Tc

and somewhat above Tc, by taking the difference
between the spectra, one can estimate a contribution in
the tunneling spectra from the SC condensate. This is
equivalent to the procedure usually used in neutron
scattering measurements. In our case, however, this
procedure only leads to an estimation of the contribu-
tion, because by subtracting the spectra we assume that
the pseudogap crosses Tc without modification. This is
not obvious, particularly at low bias [9].

In order to compare two sets of tunneling spectra,
they have to be normalized. The conductance curves
can be easily normalized at high bias. How to normalize
the corresponding I(V) curves is not a trivial question.
The conductance curves at high bias, thus, far away
from the gap structure, are almost constant. Conse-
quently, in a SIS junction, by normalizing two conduc-
tance curves at high bias, the equation (dI(V)/dV)1, norm .
(dI(V)/dV)2, norm holds at bias |V| @ 2∆/e, where e is the
electron charge. By integrating the equation, we have
I(V)1, norm . I(V)2, norm + C, where C is a constant, mean-
ing that the corresponding I(V)i, notm curves are parallel
to each other at high bias.

In Fig. 4a, the two I(V) characteristics from Figs. 2a
and 3a were normalized as described in the previous
paragraph: the normal-state I(V) curve is normalized by
its value at maximum positive bias, and the I(V) curve
from Fig. 2a is adjusted to be parallel at high bias to the
normalized normal-state curve. Figure 4b depicts their
difference as well as the difference between their nor-
malized conductances. The same procedure has been
performed for the tunneling spectra obtained in a SIN
junction, which are shown in Figs. 2c and 3c. The dif-
ferences are depicted in Fig. 4d. The conductances in
Figs. 4b and 4d are presented as examples; however,
they are not the primary focus of the study: we exclu-
sively discuss the I(V) characteristics. The I(V) data
shown in Fig. 1b, which are obtained in an underdoped
Bi2212 single crystal, went through the same normal-
ization procedure, and the result is presented in Fig. 4c.
In the latter case, the straight line shown in Fig. 1b was
used as a normal-state curve. The I(V) characteristics
shown in Fig. 2b and their corresponding normal-state
curves were normalized in the same manner, and the
obtained differences are presented in Fig. 4e.

Analyzing the I(V) characteristics shown in
Figs. 4b–4e, which, in the first approximation, repre-
sent the contribution from the SC condensate, it is easy
to observe the general trends of the curves. First, at high
bias, the curves reach a plateau value. Second, at the
gap bias, the curves rise/fall sharply. Last, at low bias,
the curves go to zero. In Figs. 4b–4e, the negative slope
of the curves at low bias, implying a negative differen-
tial resistance, is an artifact. This artifact is simply a
consequence of the rough estimation used here [9]. Tout
ensemble, Fig. 4f depicts an idealized I(V) characteris-
tic summarizing the observed tendencies. The first
JETP LETTERS      Vol. 77      No. 12      2003
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Fig. 4. (a) Two normalized I(V) characteristics from Figs. 2a and 3a, obtained in the same Bi2212 single crystal (Tc = 88 K) at dif-
ferent temperatures. The normalization procedure: the normal-state curve is normalized by its value at maximum positive bias, and
the other curve is adjusted to be parallel at high bias to the normalized normal-state curve. (b) Difference between the two I(V)
curves presented in plot (a), and the difference between their normalized conductances shown in Figs. 2a and 3a. (c) Difference
between the I(V) curve and the line shown in Fig. 1b, which were normalized before subtraction as those in plot (a). The straight
line is used as an estimate of the normal-state curve. (d) Difference between the two I(V) curves from Figs. 2c and 3c, normalized
before subtraction as those in plot (a), and the difference between their normalized conductances. The data are obtained in a SIN
junction. (e) Differences between I(V) characteristics shown in Fig. 2b and their corresponding normal-state curves, normalized
before subtraction as those in plot (a). (f) Idealized I(V) characteristic of SC condensate in a SIN junction, and its first derivative.
The curves are normalized by their maximum values. In plots (b) and (d), the gray boxes cover the parts of the conductances that
are below zero and have no physical meaning. In plots (b)–(e), the current difference is presented in percent. 
derivative of the I(V) characteristic is also shown in
Fig. 4f. The constant asymptotics of the I(V) character-
istic are the fingerprints of the presence of one-dimen-
sionality in the system [6]. In Figs. 4b–4e, one can see
that the contribution from the SC condensate in these
I(V) characteristics at high bias is 25–55% above the
contribution from the pseudogap. It is important to note
that the asymptotics of some I(V) curves obtained in
Bi2212 below Tc look similar to those in Fig. 1a; how-
ever, the anomaly discussed here always appears in the
difference obtained between two normalized I(V)
curves measured below and above Tc in one sample.

As shown elsewhere [6], the I(V) characteristic in
Fig. 4f can be fitted by the hyperbolic function f(V) =
A(tanh[(eV – ∆)/eV0] + tanh[(eV + ∆)/eV0]), where e is
the electron charge, V is the bias, ∆ is the maximum SC
gap, and A and V0 are constants. The conductance
dI(V)/dV curve can be well fitted by the derivative
[f(V)'] = A1(sech2[(eV – ∆)/eV0] + (sech2[(eV + ∆)/eV0]).
The hyperbolic tanh and sech2 fits are in good agree-
ment with predictions of the bisoliton model [10],
which is based on the nonlinear Schrödinger equation.
The bisoliton theory utilizes the concept of bisolitons–
electron (or hole) pairs coupled in a singlet state due to
local deformation of the lattice [10].
JETP LETTERS      Vol. 77      No. 12      2003
Finally, it is worth mentioning that the anomaly
found here is also present in an I(V) characteristic
obtained in optimally doped YBa2C3O6.95 [11]. It is
interesting that the anomaly is also present in the I(V)
characteristics measured in some nonsuperconducting
materials—in the stripe-ordered perovskite
La1.4Sr1.6Mn2O7 [12] and in quasi-one-dimensional
charge-density-wave conductor NbSe3 [13] (in NbSe3,
the anomaly is at zero bias). However, this issue is
already beyond the scope of this study and will be dis-
cussed elsewhere.

In summary, tunneling measurements have been
carried out on slightly overdoped Bi2Sr2CaCu2O8 + x
single crystals below and above Tc by break-junctions
and point-contacts. An anomaly was found in the tun-
neling I(V) characteristics. Analysis of the data shows
that the anomaly is caused by the superconducting con-
densate. The constant asymptotics of the I(V) character-
istic of the condensate, shown in Fig. 4f, are the finger-
prints of the presence of one-dimensionality in Bi2212
[6]. The anomaly found here puts additional constraints
on the final theory of high-Tc superconductivity.

I thank N. Miyakawa for sending the data from [5],
Yu.I. Latyshev for sending unpublished data related to
[13], and V.Z. Kresin for comments on the manuscript.
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We consider the behavior of quasiparticles in the superconducting state of high-Tc metals within the framework
of the theory of the superconducting state based on the fermion condensation quantum phase transition. We
show that the behavior coincides with the behavior of Bogoliubov quasiparticles, whereas the maximum value
of the superconducting gap and other exotic properties are determined by the presence of the fermion conden-
sate. If at low temperatures the normal state is recovered by the application of a magnetic field suppressing the
superconductivity, the induced state can be viewed as a Landau–Fermi liquid. These observations are in good
agreement with recent experimental facts. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.20.-z; 74.25.Fy; 74.72.-h
The Landau–Fermi liquid (LFL) theory explains the
major part of the low-temperature properties of Fermi
liquids [1]. The LFL theory has demonstrated that the
low-energy elementary excitations of a Fermi liquid
look like the spectrum of an ideal Fermi gas and can be
described in terms of Landau quasiparticles (LQ) with
an effective mass M*, charge e, and spin 1/2. As well,
the LFL theory gives theoretical grounds for the BCS
(Bardeen, Cooper, and Schrieffer) theory [2] of conven-
tional superconductivity, which accounts for many of
the fundamental properties of superconductors. In turn,
the BCS theory is based on the notion of quasiparticles,
which represent elementary excitations of a supercon-
ducting electron liquid and are called Bogoliubov qua-
siparticles (BQ). In the case of high-Tc metals, when the
understanding of their striking behavior remains among
the main problems of condensed matter physics, a num-
ber of primary ideas of the LFL theory and BCS theory
have been called into question. Therefore, there exists a
fundamental question as to whether or not a theory of
high-Tc metals can be developed in terms of LQ and
BQ.

It was reported recently that the full energy disper-
sion of single-particle excitations and the correspond-
ing coherence factors as a function of momentum were
measured on high-Tc cuprate Bi2Sr2Ca2Cu3O10 + δ, Tc =
108 K) by using high-resolution angle-resolved photo-
emission spectroscopy [3]. All the observed features
qualitatively and quantitatively agree with the behavior
of BQ predicted from BCS theory. This observation
suggests that the superconducting state of high-Tc

¶This article was submitted by the authors in English.
0021-3640/03/7712- $24.00 © 20671
cuprate is BCS-like and implies the basic validity of
BCS formalism in describing the superconducting state
[3]. On the other hand, such properties as the pairing
mechanism, the maximum value of the superconduct-
ing gap ∆1, the high density of states, and other exotic
properties are beyond BCS theory.

Striking experimental facts on the transport proper-
ties of the normal state induced by applying a magnetic
field greater than the upper critical field Bc were
obtained in hole-doped cuprates at overdoped concen-
tration (Tl2Ba2CuO6 + δ) [4] and at optimal doping con-
centration (Bi2Sr2CuO6 + δ) [5]. These data have clearly
shown that there is no sizable violation of the Wiede-
mann–Franz (WF) law. Measurements for strongly
overdoped nonsuperconducting La1.7Sr0.3CuO4 have
demonstrated that the resistivity ρ exhibits T2 behavior,
ρ = ρ0 + ∆ρ with ∆ρ = AT2, and the WF law is verified
to hold perfectly [6]. Since the validity of the WF law
is a robust signature of LFL, these experimental facts
demonstrate that the observed elementary excitations
cannot be distinguished from LQ. Thus, these experi-
mental observations impose strong constraints for mod-
els describing the electron liquid of the high-tempera-
ture superconductors. For example, in the cases of a
Luttinger liquid [7], spin–charge separation (see, e.g.,
[8]), and, in some solutions of t–J model [9], a violation
of the WF law, was predicted.

In this letter, we consider the superconducting state
of high-Tc metals within the framework of the theory of
the superconducting state based on the fermion conden-
sation quantum phase transition (FCQPT) [10–12]. We
show that the superconducting state is BCS-like, the
003 MAIK “Nauka/Interperiodica”
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elementary excitations are BQ, and the primary ideas of
the LFL theory and BCS theory are valid. At tempera-
tures T  0, the normal state recovered by the appli-
cation of a magnetic field larger than the critical field Bc

can be viewed as LFL induced by the magnetic field. In
this state, the WF law is held and the elementary exci-
tations are LQ.

At T < Tc, the thermodynamic potential Ω of an elec-
tron liquid is given by the equation (see, e.g., [13])

(1)

where N is the number of particles, S denotes the
entropy, and µ is the chemical potential. The ground-
state energy Egs[k(p), n(p)] of an electron liquid is a
functional of the order parameter of the superconduct-
ing state k(p) and of the quasiparticle occupation num-
bers n(p). Here we assume that the electron system is
two-dimensional, while all results can be transported to
the case of the three-dimensional system. This energy is
determined by the known equation of the weak-cou-
pling theory of superconductivity

(2)

Here, E[n(p)] is the Landau functional determining the
ground-state energy of a normal Fermi liquid. The qua-
siparticle occupation numbers

(3)

and

(4)

where the coherence factors v(p) and u(p) are obeyed
the normalization condition

(5)

The distribution function f(p) of BQ defines the entropy

(6)

We assume that the pairing interaction λ0V(p1, p2) is
weak and is produced, for instance, by electron–
phonon interaction. Minimizing Ω with respect to κ(p)
and using the definition ∆(p) = –δΩ/k(p), we obtain the
equation connecting the single-particle energy ε(p) to
the superconducting gap ∆(p),

(7)

The single-particle energy ε(p) is determined by the
Landau equation

(8)

Ω Egs µN TS,––=

Egs = E n p( )[ ] λ 0V p1 p2,( )k p1( )k∗ p2( )
p1d p2d

2π( )4
-----------------.∫+

n p( ) v 2 p( ) 1 f p( )–( ) u2 p( ) f p( ),+=

k p( ) v p( )u p( ) 1 2 f p( )–( ),=

v 2 p( ) u2 p( )+ 1.=

S 2 f p( ) f p( )ln[∫–=

+ 1 f p( )–( ) 1 f p( )–( )ln ] dp

4π2
--------.

ε p( ) µ– ∆ p( ) 1 2v 2 p( )–
2v p( )u p( )
---------------------------.=

ε p( ) δE n p( )[ ]
δn p( )

-----------------------.=
Note that E[n(p)], ε[n(p)], and the Landau amplitude

(9)

implicitly depend on the density x, which defines the
strength of FL. Minimizing Ω with respect to f(p) and
after some algebra, we obtain the equation for the
superconducting gap ∆(p)

(10)

Here, the excitation energy E(p) of BQ is given by

(11)

The coherence factors v(p), u(p) and the distribution
function f(p) are given by the ordinary relations

(12)

(13)

Equations (7)–(13) are the conventional equations of
the BCS theory [2, 13], determining the superconduct-
ing state with BQ and the maximum value of the super-
conducting gap ∆1 ~ 10–3εF provided that one assumes
that the system in question has not undergone FCQPT.

Now we turn to a consideration of a superconduct-
ing electron liquid with the fermion condensate (FC),
which takes place after the FCQPT point. If λ0  0,
then the maximum value of the superconducting gap
∆1  0, as well as the critical temperature Tc  0,
and Eq. (7) reduces to the equation [10, 11, 14]

(14)

At T  0, Eq. (14) defines a new state of electron liq-
uid with FC [10, 15], which is characterized by a flat
part of the spectrum in the (pf – pi) region and has a
strong impact on the system’s properties up to temper-
ature Tf [10, 11, 16]. Apparently, the momenta pi and pf

have to satisfy pi < pF < pf, where pF is the Fermi
momentum. When the Landau amplitude FL(p = pF ,
p1 = pF) as a function of the density x is sufficiently
small, the flat part vanishes, and at T  0 Eq. (14) has
only the trivial solution ε(p = pF) = µ, and the quasipar-
ticle occupation numbers are given by the step function,
n(p) = θ(pF – p) [10]. At some critical density x = xFC,
the amplitude becomes strong enough so that Eq. (14)
possesses the solution corresponding to a formation of
the flat part of spectrum; that is, FC is created [17, 18].
Note that a formation of the flat part of the spectrum has
been recently confirmed in [19].

FL p p1,( ) δE2 n p( )[ ]
δn p( )δ p1( )
----------------------------=

∆ p( ) 1
2
--- λ0V p p1,( )

∆ p1( )
E p1( )
-------------- 1 2 f p( )–( )

p1d

4π2
--------.∫–=

E p( )
δ Egs µN–( )

δf p( )
----------------------------- ε p( ) µ–( )2 ∆2 p( )+ .= =

v 2 p( ) 1
2
--- 1 ε p( ) µ–

E p( )
--------------------– 

  ,=

u2 p( ) 1
2
--- 1 ε p( ) µ–

E p( )
--------------------+ 

  ,=

f p( ) 1
1 E p( )/T( )exp+
------------------------------------------.=

ε p( ) µ– 0, if 0 n p( ) 1; pi p p f .≤ ≤< <=
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Now we can study the relationships between the
state defined by Eq. (14) and the superconductivity. At
T  0, Eq. (14) defines a particular state of a Fermi
liquid with FC, for which the modulus of the order
parameter |k(p)| has finite values in the (pf – pi) region,
whereas ∆1  0 in this region. Observe that f(p,
T  0)  0, and it follows from Eqs. (3) and (4)
that if 0 < n(p) < 1 then |k(p)| ≠ 0 in the region (pf – pi).
Such a state can be considered as superconducting,
with an infinitely small value of ∆1, so that the entropy
of this state is equal to zero. It is obvious that this state,
being driven by the quantum phase transition, disap-
pears at T > 0 [11]. Any quantum phase transition that
takes place at temperature T = 0 is determined by a con-
trol parameter other than temperature, for example, by
pressure, by magnetic field, or by the density of mobile
charge carriers x. The quantum phase transition occurs
at a quantum critical point. At some density x  xFC,
when the Landau amplitude FL becomes sufficiently
weak and pi  pF  pf, Eq. (14) determines the crit-
ical density xFC at which FCQPT takes place, leading to
the formation of FC [10, 11]. It follows from Eq. (14)
that the system becomes divided into two quasiparticle
subsystems: the first subsystem in the (pf – pi) range is
characterized by the quasiparticles with the effective
mass  ∝  1/∆1, while the second one is occupied by

quasiparticles with finite mass  and momenta p < pi.
The density of states near the Fermi level tends to infin-
ity, N(0) ∝   ∝  1/∆1 [11].

If λ0 ≠ 0, then ∆1 becomes finite. It is seen from
Eq. (10) that the superconducting gap depends on the
single-particle spectrum ε(p). On the other hand, it fol-
lows from Eq. (7) that ε(p) depends on ∆(p) provided
that at ∆1  0 Eq. (14) has a solution determining the
existence of FC. Let us assume that λ0 is small so that
the particle–particle interaction λ0V(p, p1)can only lead
to a small perturbation of the order parameter k(p)
determined by Eq. (14). Upon differentiation of both
parts of Eq. (7) with respect to the momentum p, we
find that the effective mass  = dε(p)/d

becomes finite [11],

(15)

It follows from Eq. (15) that the effective mass and the
density of states N(0) ∝   ∝  1/∆1 are finite and con-
stant at T < Tc [11, 14]. As a result, we are led to the con-
clusion that, in contrast to the conventional theory of
superconductivity, the single-particle spectrum ε(p)
strongly depends on the superconducting gap, and we
have to solve Eqs. (8) and (10) in a self-consistent way.
On the other hand, let us assume that Eqs. (8) and (10)
are solved, and the effective mass  is determined.
Now one can fix the dispersion ε(p) by choosing the

MFC*

ML*

MFC*

MFC* p p pF=

MFC* pF

p f pi–
2∆1

----------------.∼

MFC*

MFC*
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effective mass M* of system in question equal to 
and then solve Eq. (10) as is done in the case of the con-
ventional theory of superconductivity [2]. As a result,
one observes that the superconducting state is charac-
terized by BQ with the dispersion given by Eq. (11), the
coherence factors v, u are given by Eq. (12), and the
normalization condition (5) is held. We are led to the
conclusion that the observed features agree with the
behavior of BQ predicted from BCS theory. This obser-
vation suggests that the superconducting state with FC
is BCS-like and implies the basic validity of BCS for-
malism in describing the superconducting state. It is
exactly the case that was observed experimentally in
high-Tc cuprate Bi2Sr2Ca2Cu3O10 + δ [3].

Consider other differences between the conven-
tional superconducting state and the superconducting
state with FC. We consider the case when Tc ! Tf. This
means that the order parameter k(p) is slightly per-
turbed by the pairing interaction, because the particle–
particle interaction λ0V is small compared to the Lan-
dau amplitude FL, and the order parameter k(p) is gov-
erned mainly by FL [10]. We can solve Eq. (10) analyt-
ically by taking the Bardeen–Cooper–Schrieffer
approximation for the particle–particle interaction:
λ0V(p, p1) = –λ0 if |ε(p) – µ| ≤ ωD; i.e., the interaction
is zero outside this region, with ωD being the character-
istic phonon energy. As a result, the maximum value of
the superconducting gap is given by [14]

(16)

Here, the Fermi energy εF = /2 , and the dimen-
sionless coupling constant β is given by the relation β =
λ0 /2π. Taking the usual values of β as β . 0.3, and
assuming (pf – pF)/pF . 0.2, we get from Eq. (16) a
large value of ∆1 ~ 0.1εF, while for normal metals one
has ∆1 ~ 10–3εF. Now we determine the energy scale E0
which defines the region occupied by quasiparticles
with the effective mass 

(17)

We have returned back to the Landau–Fermi liquid
theory, since high-energy degrees of freedom are elim-
inated and the quasiparticles are introduced. The only
difference between LFL, which serves as a basis when
constructing the superconducting state, and Fermi liq-
uid after FCQPT is that we have to expand the number
of relevant low-energy degrees of freedom by introduc-
ing a new type of quasiparticle with the effective mass

 given by Eq. (15) and the energy scale E0 given by
Eq. (17). Therefore, the dispersion ε(p) is characterized

MFC*

∆1 . 
λ0 pF p f pF–( )

2π
---------------------------------- 1 2+( )ln

. 2βεF

p f pF–
pF

----------------- 1 2+( ).ln

pF
2 ML*

ML*

MFC*

E0 ε p f( ) ε pi( ) . 
2 p f pF–( )pF

MFC*
--------------------------------  . 2∆1.–=

MFC*
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by two effective masses  and  and by the scale
E0, which define the low-temperature properties,
including the line shape of quasiparticle excitations
[11, 14], while the dispersion of BQ is given by
Eq. (11). We note that both the effective mass  and
the scale E0 are temperature-independent at T < Tc,
where Tc is the critical temperature of the superconduct-
ing phase transition [14]. Obviously, we cannot directly
relate these new LFL quasiparticle excitations with the
quasiparticle excitations of an ideal Fermi gas, because
the system in question has undergone FCQPT. None-
theless, the main basis of the Landau–Fermi liquid the-
ory survives FCQPT: the low-energy excitations of a
strongly correlated liquid with FC are quasiparticles.

As was shown above, the properties of these new
quasiparticles are closely related to the properties of the
superconducting state. We may say that the quasiparti-
cle system in the range (pf – pi) becomes very “soft”
and is to be considered as a strongly correlated liquid.
On the other hand, the system’s properties and dynam-
ics are dominated by a strong collective effect having
its origin in FCQPT and determined by the macro-
scopic number of quasiparticles in the range (pf – pi).
Such a system cannot be perturbed by the scattering of
individual quasiparticles and has features of a “quan-
tum protectorate” [11, 20, 21].

At Tc < T, the order parameter κ vanishes, and the
behavior of the system in question can be viewed as the
behavior of an anomalous electron Fermi liquid, or
strongly correlated liquid, with the resistivity being a
linear function of temperature, while the effective mass
behaves as  ∝  1/T [11, 16]. Obviously, in this
regime one observes strong deviations from the LFL
behavior and cannot expect that the WF law will be
held.

As any phase transition, FCQPT is related to the
order parameter, which induces a broken symmetry. As
we have seen, the order parameter is the superconduct-
ing order parameter k(p), while ∆1, being proportional
to the coupling constant (see Eq. (16)), can be small.
Therefore, the existence of such a state, that is, an elec-
tron liquid with FC, can be revealed experimentally,
since the order parameter k(p) is suppressed by the crit-

ical magnetic field Bc, when  ~ . If the coupling
constant λ0  0, the weak critical magnetic field
Bc  0 will destroy the state with FC converting the
strongly correlated Fermi liquid into LFL. In this case,
the magnetic field plays the role of the control parame-
ter determining the effective mass [22],

(18)

Equation (18) shows that by applying a magnetic
field B the system can be driven back into LFL with the
effective mass , which is finite and independent of

ML* MFC*

MFC*

MFC*

Bc
2 ∆1

2

MFC* 1

B
--------.∝

MFC*
the temperature. This means that the low-temperature
properties depend on the effective mass in accordance
with the LFL theory. At T > T*, the system possesses
the behavior of a strongly correlated liquid. Here, T* ∝

 is the temperature at which the transition from LFL
to the strongly correlated liquid takes place. Such
behavior was observed experimentally in the heavy-
electron metal YbRh2Si2 [23]. If λ0 is finite, the critical
field is also finite, and Eq. (18) is valid at B > Bc. In that

case, the effective mass  is finite and temperature-
independent at T < Tc, and low-temperature elementary
excitations of the system can be described in terms of
LQ. Thus, the system is driven back to LFL and has the
LFL behavior induced by the magnetic field at least at
T < Tc, while the low-energy elementary excitations are

characterized by  and cannot be distinguished
from LQ. As a result, at T  0, the WF law is held in
accordance with experimental facts [4, 5].

The existence of FCQPT can also be revealed exper-
imentally, because at densities x > xFC, or beyond the
FCQPT point, the system should be LFL at sufficiently
low temperatures [18]. Recent experimental data have
shown that this liquid exists in heavily overdoped non-
superconducting La1.7Sr0.3CuO4 [6]. It is remarkable
that, up to T = 55 K, the resistivity exhibits the T2

behavior and the WF law is verified to within the exper-
imental resolution [6].

In summary, we have shown that the superconduct-
ing state with FC is characterized by BQ. The behavior
of these BQ agrees with the behavior of BQ predicted
from BCS theory and suggests that the superconducting
state with FC is BCS-like and implies the basic validity
of BCS formalism in describing the superconducting
state, although the maximum value of the supercon-
ducting gap and other exotic properties are determined
by the presence of the fermion condensate. We have
also demonstrated that the low-temperature transport
properties of high-Tc metals observed in optimally
doped and overdoped cuprates by the application of a
magnetic field higher than the critical field can be
explained within the framework of the fermion conden-
sation theory of high-Tc superconductivity. The quasi-
particles are LQ and the WF law is held. The recent
experimental observations of BQ in the superconduct-
ing state and verifications of the WF law in heavily
overdoped, overdoped, and optimally doped cuprates
clearly favor the existence of FC in high-Tc metals.
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A many-electron model is proposed for the band structure of FeBO3 with regard to strong electron correlations
in the d4, d5, and d6 configurations. Under normal conditions, FeBO3 is characterized by a dielectric charge-
transfer gap in the strong correlation regime U @ W. With increasing pressure, not only does the d-band W width
grow but simultaneously the effective Hubbard parameter Ueff sharply drops, which is due to the crossover of
high-spin and low-spin ground state terms of the Fe2+, Fe3+, and Fe4+ ions. It is predicted that a transition from
the semiconducting antiferromagnetic state to the metallic paramagnetic state will occur in the high-pressure
phase with increasing temperature. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.20.-b; 71.30.+h; 71.15.-m
1. A first-order phase transition from the magnetic to
nonmagnetic state of FeBO3 was observed at the pres-
sure Pc = 46 GPa in a series of recent works [1–3]. This
transition was accompanied by the structural transition
with a 8.6% decrease in volume. A number of indirect
data point to the metallization of the system at P > Pc;
however, no ultimate clarity in the problem of magnetic
and electric properties in the high-pressure phase has
been achieved so far. From the general point of view, the
metallization and the disappearance of localized mag-
netic moments with increasing pressure are not surpris-
ing, because the bandwidth W increases and the Mott–
Hubbard insulator with U @ W transforms to the metallic
state with U < W [4]. However, in the case of FeBO3, as
in many other real substances, the simple picture based
on the Hubbard model becomes complicated because of
the presence of a great number of d(f) orbitals.

In this work, a many-electron model is proposed that
takes into account all d orbitals and the strong electron
correlations of d electrons. The energies of both high-
spin and various low-spin terms of the Fe2+, Fe3+, and
Fe4+ ions were calculated. It turned out that the electron
system under normal conditions occurs in the strong
electron correlation regime with a dielectric charge-
transfer gap, as classified in [5]. As the pressure grows,
not only does the band width W change but the splitting
of the eg and t2g electrons in the crystal field ∆ increases
as well. It is the growth of ∆ that is responsible for the
crossover of the high-spin 6A1g (S = 5/2) and low-spin
2T2g (S = 1/2) terms of Fe3+ and high-spin and low-spin
terms of Fe2+ and Fe4+. As a result, not only does the
collapse of the magnetic moment take place, as was
found in [1–3], but a rearrangement of the diagram of
the d5  d4 and d5  d6 excitations takes place as
well, so that the effective Hubbard parameter Ueff =
0021-3640/03/7712- $24.00 © 20676
E(d6) + E(d4) – 2E(d5) sharply decreases. In this fact,
we see the nontrivial feature of the phase transition in
FeBO3 under pressure.

2. The first-principles one-electron band-structure
calculations of FeBO3 by density functional methods in
the local-density approximation [6] and in the general-
ized gradient approximation [7] and also the molecular
orbital calculation of the FeB6O6 cluster [8] revealed
the following pattern of the electronic structure of
FeBO3. The empty conduction band εc is mainly
formed by the boron s and p states, the valence band top
εv is mainly formed by the oxygen s and p states, and
the band gap between them Eg0 in the antiferromagnetic
phase is 2.5 eV [6], which is sufficiently close to an
optical absorption edge of 2.9 eV [9]. The d-electron
band lies close to the valence band top with the width
2Wd ≈ 2.8 eV and the crystal-field parameter ∆ ≈ 1 eV
[6]. The hybridization of Fe d electrons with O s and p
electrons is very small [6, 8], much smaller than in 3d-
metal oxides. This is due to a very strong hybridization
inside the BO3 group; in fact, the (BO3)3– ion is formed,
and the oxygen orbitals are closed on boron, which
determines the smallness of p–d hybridization. This cir-
cumstance significantly simplifies the many-electron
model, because one may calculate the dn (n = 4, 5, and
6) terms of iron in the crystal field rather than the terms
of the metal–oxygen complex, as in copper oxides [10].

The intraatomic part of the d-electron Hamiltonian
can be written as

(1)

Ham ελnλσ
Uλ

2
------nλσnλσ+ 

 
λσ
∑=

+ Vλλ 'nλσnλ'σ' Jλλ 'aλσ
+ aλσ'aλ'σ'

+ aλ'σ–( ),
σ σ',
∑

λ λ ',
∑
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where nλσ = aλσ, aλσ designates the creation opera-
tor of a d electron on one of the five orbitals λ with the
spin projection σ,  = –σ. The first term describes the
atomic d levels in the crystal field, the small uniaxial
crystal-field component is neglected, and it is assumed
that ε(t2g) = εd – 2∆/5 and ε(eg) = εd + 3∆/5. The other
terms in Eq. (1) correspond to the Coulomb intraorbital
Uλ and interorbital Vλλ ' repulsions and also to the Hund
exchange Jλλ '. For the sake of simplicity, we will
neglect the orbital dependence of the Coulomb matrix
elements considering that there are three parameters U,
V, and J related to each other by the known condition
U = 2V + J.

The energies ES(dn) of the lowest levels of the dn

configuration with spin S equal

(2)

E1/2(d5) = 5εd – 2∆ + 2U + 8V – 4J,

The one-electron Green’s function without regard
for interatomic hopping is calculated exactly with the
use of the Hubbard X operators Xpq = |p〉〈 q| constructed
on the eigenstates |q〉  (Eq. (2). Such functions were cal-
culated for the metals of the iron group in the limit
U  ∞ in the works [11, 12]. In this case, the energy
of the d-electron quasiparticles is determined not by the
many-electron terms themselves but by their differ-
ences

. (3)

It is these energies that determine the one-electron band
structure of the substance along with the s- and p-elec-
tron bands of boron and oxygen. As distinct from the
ordinary band states, the quasiparticles specified by
Eq. (3) have a variable spectral weight determined by
the filling factors Fij = Ni(dn + 1) + Nj(dn), where Nj(dn)
is the filling probability of the ith term of the dn config-
uration. This probability is calculated self-consistently
through the equation for the chemical potential [11–
13].

3. In order to relate the quasiparticle energies (3) to
the conduction and valence bands, we will make use of

aλσ
+

σ

E2 d4( ) 4εd 3∆/5– 6V 6J ,–+=

E1 d4( ) 4εd 8∆/5– U 5V 3J ,–+ +=

E0 d4( ) 4εd 8∆/5– 2U 5V 2J ,–+ +=

E5/2 d5( ) 5εd 10V 10J ,–+=

E3/2 d5( ) 5εd ∆– U 9V 6J ,–+ +=

E2 d6( ) 6εd 2∆/5– U 14V 10J ,–+ +=

E1 d6( ) 6εd 7∆/5– 2U 13V 7J ,–+ +=

E0 d6( ) 6εd 12∆/5– 3U 12V 6J .–+ +=

Ωij Ei dn 1+( ) E j dn( )–=
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the results of the calculation [6], according to which the
valence-band top εv coincides with that of the one-elec-
tron d band. Thus, we obtain the condition εv = εd + Wd.
The U and J parameters are found by a comparison of
the energies ∆E1 = E3/2(d5) – E5/2(d5) and with ∆E2 =
E1/2(d5) – E5/2(d5) with exciton peaks at 1.3 and 1.9 eV
in the absorption spectra [14]. As a result, we found U =
1.45 eV and J = 0.35 eV and calculated the energies of
all terms given in Eq. (2) (Fig. 1). It is evident in Fig. 1
that, of all the intraatomic d quasiparticles, the transi-
tions Ωv = E5/2(d5) – E2(d4),  = E5/2(d5) – E1(d4), and

 = E5/2(d5) – E0(d4) with electron annihilation and

also Ωc = E2(d6) – E5/2(d5),  = E1(d6) – E5/2(d5), and

 = E0(d6) – E5/2(d5) with electron creation have a
nonzero weight. All Ωv energies were found to be lower
than the valence band top, and Ωc fell within the gap Eg0

(Fig. 2). The Ωc and Ωv energies are the centroids of the
upper and lower Hubbard bands, which are formed if
the d–d hoppings t are subsequently taken into account.
The effective parameter

(4)

The interatomic hopping in the antiferromagnetic
phase is suppressed because of the spin–polaron effect
[15]. In the case of hopping between nearest neighbors,
the effective hopping integral is determined by the
product of the filling factors on two sites belonging to
the opposite sublattices A and B [16]. Thus, for the
lower Hubbard band, we obtain

(5)

Ωv'

Ωv"

Ωc'

Ωc"

Ueff Ωc Ωv– E2 d6( ) E2 d4( ) 2E5/2 d5( )–+= =

=  U 4J ∆–+ 1.85 eV.=

tv
2 t2 XA

+5/2 +5/2,〈 〉 XA
+2 +2,〈 〉+( )=

× XB
+5/2 +5/2,〈 〉 XB

+2 +2,〈 〉+( ),

Fig. 1. Diagram of Fe4+, Fe3+, and Fe2+ terms; the cross
marks the lowest 6A1g term filled at T = 0. The numbers on
the left indicate the spin, and the numbers above indicate the
energy (eV) of the term relative to the lowest term for each
configuration.
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where |+5/2〉  and |+2〉  are spin sublevels of the E5/2(d5)
and E2(d4) terms split in the internal molecular field
according to their spin projections. If level |+5/2〉  is the
lowest for sublattice A and is filled, then the lowest level
for sublattice B |–5/2〉  is unfilled at T = 0 (with neglect
of the zero quantum functions). Therefore,

 = 0 at T = 0, the occupation numbers of all
d4 and d6 sublevels also equal zero for FeBO3, so that
the widths of the Hubbard bands are close to zero. This
is why the diagram of density of states in Fig. 2 can be
compared with the experiment in the antiferromagnetic
phase of FeBO3. Note that, according to this diagram,
FeBO3 belongs to the class of dielectrics with a gap
caused by the charge-transfer processes. In this case,
we consider that a hole with the energy εv is created on
oxygen and a d electron with the energy Ωc is created
on iron (d5p6  d6p5 process).

4. As pressure is built up, the crystal-field parame-
ters ∆ and the interatomic hopping t increase. The latter,
as we can see from Eq. (4), only slightly affects the
band structure in the antiferromagnetic phase. The
growth of ∆ is more important and leads to the cross-
over of high-spin and low-spin terms. It is evident from

XB
+5/2 +5/2,〈 〉

Fig. 2. Diagram of the density of states of FeBO3 at normal
pressure in the antiferromagnetic phase.

Fig. 3. Diagram of the Fe4+, Fe3+, and Fe2+ terms in the
high-pressure phase.
Eq. (2) that, as ∆ increases, the E1/2(d5) term goes down
more rapidly than the E3/2(d5) term; therefore, the cross-
over with spin 5/2 takes place for S = 1/2. It is this
crossover that was observed by the Mössbauer effect in
[1–3]. We do not study here the thermodynamics of the
system under pressure. This was made in first principles
calculations [7]. We are interested in understanding
how the crossover is manifested in the electronic struc-
ture. Thus, we will consider the high-pressure (HP)
phase P > Pc, in which ∆(P) > ∆c = (U + 7J)/2. The
crossover of terms S = 2 and S = 1 for the d4 configura-
tion also takes place at this pressure, and the crossover
of terms S = 2 and S = 0 for the d6 configuration takes
place even earlier (at lower pressure). The schematic
diagram of many-electron levels in the HP phase is
shown in Fig. 3. The rearrangement of all terms leads to
a change in the effective Hubbard parameter in the HP
phase

(6)

so that, along with the growth of the bandwidth, the
importance of strong correlations decreases, and we
expect the metallization of the system in the paramag-
netic phase. Because we do not know the width of the d
band, we may speak with confidence only about a ten-
dency toward metallization. Consider two possible
variants.

(1) As the band width, we take the result of the band-
structure calculation with Wd = 1.4 eV. Then, at Ueff=
0.2 eV, we expect the metallic paramagnetic state. If the
system is characterized by Fermi surface nesting, it will
transform into a spin-density-wave state (band ferro-
magnet) [17–19] with decreasing temperature below

(7)

where N(εF) ~ 1/Wd is the density of states at the Fermi
level. The electrical properties below TN are character-
ized by a dielectric gap Eg = 2Ueff〈Sz 〉 . Assuming that,
at T = 0, 〈Sz 〉  = 1/2 in the HP phase, we obtain Eg =
0.2 eV. For TN, at Ueff = 0.2 eV and Wd = 1.4 eV, we
obtain the estimate TN = 10 K from Eq. (7).

(2) It is possible that the d band is narrower than the
overall bandwidth and than Ueff. Then the system in the
HP phase will remain a Mott–Hubbard insulator and
will transform into the metallic state with further
growth of the pressure. For the Mott–Hubbard insula-
tor, TN can be roughly estimated within the effective
Heisenberg model with S = 1/2. This model in the spin-
wave approximation gives [20]

(8)

where C is the Watson integral and I(0) is the Fourier
transform of the interatomic exchange interaction. If

Ũeff E1 d4( ) E0 d6( ) 2E1/2 d5( )–+=

=  U 3J–( )/2 0.2 eV,=

T N 1.14Wd
1

N εF( )Ueff
------------------------– 

  ,exp=

T N I 0( )S S 1+( )/3C,=
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I(0) did not depend on the pressure, TN in the HP phase
would be lower than TN at P = 0 by a factor of 35/3.
However, as the interatomic distance decreases, I(0)
grows. According to [3], the growth is linear, and TN ≈
600 K in the vicinity of Pc (at P = 0, TN = 348 K). With
regard to the increase in the exchange interaction, we
obtain the estimate TN ≈ 50 K for the HP phase. The
electronic structure of a Mott–Hubbard insulator is

characterized by the existence of local levels  =

E1/2(d5) – E1(d4) (filled) and  = E0(d6) – E1/2(d5)
(empty at T = 0) and by the dielectric ground state with
the gap Eg ~ Ueff.

Thus, both considered variants lead to the conclu-
sion that the HP phase is characterized by a dielectric
antiferromagnetic ground state with the gap Eg =
0.2 eV. Both variants give values of TN that are consis-
tent with each other by the order of magnitude. The dis-
tinctions appear above TN: the metal–insulator transi-
tion in the first variant and a semiconductor that trans-
forms into a metal upon further buildup of the pressure,
in the second variant. It is necessary to note that all
quantitative estimates for the HP phase (for ∆c, Ueff, and
TN values) should be considered as being qualitative, by
the order of magnitude, rather than quantitative. Thus,
the growth of the pressure will undoubtedly result in an
increase in the uniaxial component of the crystal field,
which will lead to further splitting of the eg and t2g

states. Hence, the energies of all terms can change by a
value comparable to ∆. Nevertheless, it is unlikely that
the qualitative conclusion that Ueff significantly
decreases upon the inversion of high-spin and low-spin
terms will change if the model is refined. The conclu-
sion that antiferromagnetism is retained in the HP
phase, but with a lowered magnetic moment of the sub-
lattice, was also obtained in [7]. In this work, the con-
clusion is drawn that the ground state is metallic at P >
Pc. The interplay between the electrical and magnetic
properties in the HP phase calls for further, primarily
experimental investigation.

5. In conclusion, we note that the proposed model of
the FeBO3 band structure takes into account strong
electron correlations and describes the optical absorp-
tion spectrum. The main mechanism of the change of
the electronic structure with pressure is the increase in
the crystal field, which leads to the inversion of high-
spin and low-spin terms for the d4, d5, and d6 configura-
tions. An unusual mechanism of the transition from the
strong correlation regime to the regime of weak corre-
lation is revealed. This mechanism involves a decrease
in the effective Hubbard parameter along with the usual
growth of the band width.

I am grateful to I.S. Édel’man for the discussion of
the results and to K. Parlinskiœ and V. Sarkisyan, who
sent some unpublished results.
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The antiferromagnetic resonance spectrum was experimentally studied for a noncollinear RbMnBr3 antiferro-
magnet under a mechanical pressure applied to the sample in various directions. It is shown that the incommen-
surate magnetic phase existing in the initial system in the presence of regular crystallographic distortions is sen-
sitive to the pressure applied along one of the sample axes. The critical transition field to the commensurate
phase decreased under pressure. It was also found that the pressure influences the uniaxial anisotropy appearing
in the crystal basal plane in the presence of orthorhombic distortions. These effects were analyzed with allow-
ance for the domain structure of the sample. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 76.50.+g; 75.50.Ee
In recent years, the crystal and magnetic properties
of the RbMnBr3 compound have been intensively stud-
ied because of the discovery of an ordered helical state
in it that is incommensurate with the crystal lattice
spacing at low temperatures. The origin of this state is
in the periodical modulation of exchange interaction in
the presence of small distortions of a trigonal lattice.

The compound of interest belongs to the ABX3 type
and crystallizes into the simple hexagonal structure
with the P63/mmc space group (unit-cell parameters a
and c). The magnetic ions inside the face-shared halo-
gen octahedra form a chain along the sixfold axis C6
and a trigonal lattice in the basal plane perpendicular to
this axis. In this case, the in-plane exchange interac-
tions of magnetic ions prove to be the same and much
weaker than the intrachain exchange (J' ! J).

At room temperature, the crystal lattice of RbMnBr3

is hexagonal with unit-cell sizes  ×  times
greater in the basal plane (space group P63cm [1]). This
structure appears due to the second-order phase transi-
tion resulting in the periodic displacement of one third
of the magnetic ions, together with their halogen envi-
ronment, along the C6 axis. Lattice distortions of this
type give rise to a “honeycomb” modulation of
exchange interaction in the hexagonal plane, as shown
in Fig. 1a.

On further cooling to Tc = 220 K, one more phase
transition (of the first kind) is observed in RbMnBr3.
X-ray studies suggest that the crystal lattice in the low-
temperature phase is orthorhombic, while the rectangu-
lar unit cell is four times larger than the initial cell and

has the sizes 2a × a × c. In [2], it was assumed that,
after the second phase transition, the periodic displace-

3 3

3
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ment of magnetic atoms is rearranged and a possible
structure was proposed which corresponded qualita-
tively to the above-mentioned parameters.

However, the structure factor suggested in [2] for
the lattice basis did not explain the systematic absence
of some reflections in the X-ray diffraction patterns. In
recent work [3], a new variant of periodic displace-
ments is discussed (zig-zag chains of ions shifted alter-
nately upward and downward; Fig. 1b), which com-
pletely satisfies the experimental data. The exchange
interaction between the ion spins in the zig-zags is
stronger than between the zig-zags.

Below TN = 8.5 K, a zero-field incommensurate anti-
ferromagnetic magnetic structure is observed in
RbMnBr3. It shows magnetic Bragg peaks at wave vec-
tors Q = (h/8 + ξ, h/8 + ξ, l) in units of the initial recip-
rocal lattice, where h and l are integers and ξ = 0.0183 ±
0.0004 [4]. A strong magnetic crystal anisotropy holds
spins in the basal plane. The existence of incommensu-

Fig. 1. Two types of distortion of the ideal hexagonal crystal
lattice. Magnetic ions situating in the basal plane or shifted
upward and downward from it are shown, correspondingly,
by the gray, white, and black circles; the strong exchange
spin interactions of magnetic ions are shown by the heavy
lines.
003 MAIK “Nauka/Interperiodica”
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rability is explained by the low symmetry of a distorted
crystal structure allowing the Lifshitz invariant (of an
exchange nature). This problem can also be considered
within the framework of the microscopic row model
[5], which explains the incommensurability by the
above-mentioned modulation of exchange interaction.
In a magnetic field lying in the basal plane, the incom-
mensurate magnetic structure becomes unfavorable,
and the first-order transition to a noncollinear commen-
surate phase (ξ = 0) occurs at a certain field H* .
29 kOe. The magnitude of this field is related to the rel-
ative in-plane exchange variation δ = ( /J' – 1) by the

expression H* = He , where He = 4S
is the field of spin collapse into the collinear phase [6].
The period of commensurate magnetic structure corre-
sponds to the quadruple period of the orthorhombic lat-
tice along the zig-zag and to the double period in the
perpendicular direction [3]. This is consistent with the
experiment [7], where the noncollinear phase showed
four 2+Mn NMR branches that, ordinarily, correspond
to the presence of eight sublattices in the spin system.

The interconnection between the crystallographic
distortions and the incommensurability in RbMnBr3
can be checked experimentally by studying its mag-
netic properties under the conditions of uniaxial com-
pression of a sample of this compound. The pressure
will distort its crystal structure in a certain direction,
thereby changing the ratio between the exchange inter-
actions in the basal plane. Antiferromagnetic resonance
(AFMR) provides one way to observe the incommensu-
rability. In the AFMR spectra of incommensurate mag-
nets (see [6]), the resonance absorption at frequencies
corresponding to the fields H ~ H* and the lower acous-
tic branch shows a hysteresis for different directions of
field sweeping [8]. In fields H @ H*, the hysteresis dis-
appears, and the AFMR spectrum takes its conventional
form. This effect allows estimation of the transition
field by comparing the field dependence of absorption
at different frequencies. In this work, the pressure effect
on AFMR of several RbMnBr3 samples was studied in
fields close to H* at pressures up to 200 bar. For com-
pression in the direction perpendicular to the binary
plane, the absorption intensity strongly changed mono-
tonically, indicating a decrease in the incommensurate
transition field. The presence of the crystallographic
domains inside bulky samples showed that this effect
also depends on the mutual orientation of the compres-
sion direction and the direction of orthorhombic distor-
tion of a hexagonal lattice.

Experimental results. Samples for the study were
grown by the Bridgman method from the starting RbBr
and MnBr2 powders. They were mixed in the due sto-
ichiometric ratio and placed in a quartz tube, which was
then evacuated, unsoldered, and passed through an
oven at 760°C with a velocity of 1 mm/h. The resulting
crystals were annealed for several days at a temperature
of about 400°C. The RbMnBr3 single crystals with a

J1'

π δ3 J J1' 2J'+( )
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size of about 1 cm3 had flat cleavages along the binary
planes, which allowed the orientation of their C6 axis
perpendicularly to the field direction to within ±0.5°.

To accomplish uniaxial compression of a sample
inside the cavity, a special transmission spectrometer
was designed. Apart from the input and output
waveguides and the absorbing cell (cylindrical cavity
with a diameter of 15 mm and a height of 10 mm), the
spectrometer was equipped with a cable, one of whose
ends was attached to the calibration spring and the
other, to a lever mechanism. The spring was placed
inside a bellows seal outside a helium Dewar flask, and
the lever mechanism was attached to the waveguide
walls immediately nearby the cavity. The second end of
the spring was attached to a piston which moved on
guides by a thread along the setup axis. A coil with a
ferromagnetic core was placed inside the spring and
allowed the spring stretching to be measured with a
high accuracy by measuring its inductance. This ruled
out the error that was introduced by the atmospheric
pressure, bellows rigidity, and friction in the determina-
tion of the force applied to the sample. The sample was
glued to a quartz cylinder that was put at the cavity bot-
tom and kept from above by a copper rod. The force
transmitted to the rod from the lever mechanism corre-
sponded to the spring stretching force. Although the
introduction of a quartz rod into the cavity deteriorated
its Q factor (from 104 to 1–2 × 103, depending on the
resonance mode), this did not hamper the resonance
measurements. The whole setup, including the cavity
with the sample, was placed in an evacuated volume. A
magnetic field parallel to the setup axis was produced
by a superconducting solenoid providing smooth
reversible sweeping up to 60 kOe. Measurements were
made at frequencies from 33 to 43 GHz mainly at a
temperature of 1.3 K (appreciably lower than TN of
RbMnBr3) obtained by pumping out 4He vapor. The
sample under study was a platelet with an area of about
4 mm2 and a thickness of 1 mm.

The absorption lines of a RbMnBr3 sample under
various pressures are shown in Fig. 2. The spectra were
recorded for up- and downfield sweeping at two fre-
quencies, ν = (a) 33.2 and (b) 42.6 GHz. For the first
one, the resonance field of the emitted relativistic
AFMR branch (splitted in low fields) is somewhat
lower than the transition field to the commensurate
phase of the spin system, and, for the second frequency,
it lies approximately in the hysteresis region. As seen
from Fig. 2a, this absorption is absent at zero pressure
for the upfield sweep and appears only upon the down-
field sweep. With the buildup of pressure, the absorp-
tion amplitude in both sweep directions increases
smoothly, and the resonance lines broaden. The posi-
tion of the weaker maximum virtually does not change,
while the stronger maximum shifts to lower fields. The
intensity ratio α = Iup/Idoun for the split lines increases
monotonically from 0 to approximately 2/3 (see Dis-
cussion). The second resonance line (near 40 kOe in
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Fig. 2a and absent in Fig. 2b) corresponds to the AFMR
exchange branch, which softens after spin collapse into
the collinear phase. It is also influenced by pressure,
broadens, and shifts to lower fields. At a maximum
force of 7.5 kg (see inset in Fig. 2a), this line is split by
approximately 2 kOe. At the higher frequency (Fig. 2b),
pressure influences the relativistic branch in a similar
manner, i.e., leads to a monotonic increase in the
absorption amplitude, line width, and the parameter α
(the latter increases almost to 1), as well as to a down-
field shift of the left absorption maximum. The main
distinction is that the right line in this case remains vir-
tually unchanged up to the maximal pressure, because
it occurs in fields higher than H*.

Discussion and conclusions. As is noted above, the
intensity ratio of the absorption lines of the relativistic
AFMR branch for the up- and downfield sweeping can
be used as the main characteristic for estimating the

Fig. 2. Magnetic-field dependence of the resonance absorp-
tion at frequencies ν = (a) 33.2 and (b) 42.6 GHz for various
pressures applied to the sample (T = 1.3 K). The dotted lines
correspond to the upfield sweep and the solid line are for the
downfield sweep. The fragment enclosed in the oval is
shown on an enlarged scale in the inset.
transition field H* from magnetic measurements. The
hysteresis of the first-order transition determines the
difference in the microwave absorptions in the com-
mensurate phase. The observed pressure-induced
change in the absorption amplitude for the upfield
sweep and the convergence of the intensities Iup and
Idown (Fig. 3a) are evidence that the uniaxial sample
compression in the direction perpendicular to the
binary plane reduces the transition field to the commen-
surate phase, which is estimated at 2–3 kOe. This fact
confirms the interconnection between the appearance
of the incommensurate magnetic structure and the peri-
odic variation of the exchange interactions in the basal
plane. It remains to analyze the question of the influ-
ence of uniaxial compression on the positions of reso-
nance peaks, i.e., the pressure-induced shifts of reso-
nance frequencies.

Note, first of all, that the splitting of a resonance line
due to the uniform spin-density oscillations in a mag-
netic field is caused by the presence of three crystalline
domains in the sample. They have approximately the
same volume and differ in the direction of the orthor-
hombic distortions in the basal plane of the original
hexagonal crystal. The distortions in each domain give
rise to the anisotropy with the axis directed perpendic-
ular to the binary plane. The anisotropy axes of differ-
ent domains form an angle of 120° with each other. In
our experiment, the magnetic field is directed along one
(x1) of these axes and forms an angle of ±60° with x2
and x3. The intensity ratio of approximately 2 : 1
between the left and right peaks is evidence that the
right peak corresponds to the rational field direction.

The field dependence of the relativistic AFMR
branch in the commensurate phase at H ⊥  x and H || x
(in the basal plane) is expressed by ν(H) = f(H2 ± ),Hc

2

Fig. 3. (a) The Iup/Idown ratio of the absorption peaks from
domain 1 (squares) and domains 2 and 3 (circles): ν = (light
symbols) 33.2 and (black symbols) 42.6 GHz. (b) The
parameter κ (see text) as a function of pressure; circles cor-
respond to the relativistic branch, and crosses are for the
exchange branch. The straight lines are guides to the eye.

κ
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where f is the increasing function (for weak distortions

of a trigonal spin structure, f(x) ~ ) and Hc is the crit-
ical field at which the anisotropy energy and the mag-
netic energy are equalized at H || x. In the commensu-
rate structure, this should induce the in-plane spin-sys-
tem rotation by 90°; however, in the incommensurate
phase, this transition is not observed.

The value of Hc can be estimated from the splitting
of this AFMR branch in a magnetic field at a given fre-
quency in different domains. In domain 1, the field is
directed along the easy axis (low-intensity line) and at
an angle of 60° to this axis in domains 2 and 3. The crit-
ical field is determined by the parameter κ =

 (the factor 2/3 instead of 1/2 gives an

approximate correction to the mutual orientation of
domains 2 and 3 at an angle of 60° rather 90°) and equal
to Hc(P = 0) . κ0 . 7.5 kOe at zero pressure. It is seen
from Fig. 2 that this field increases under pressure,
although only in domains 2 and 3, because the corre-
sponding resonance line shifts to lower fields, while the
resonance of domain 1 is not shifted. The simple esti-
mate Hc(P) . κ0 + 3∆κ(P) shows that the field Hc

increases in domains 2 and 3 approximately twofold at
the maximal pressure (Fig. 3b).

The field corresponding to the collapse of sublat-
tices into a collinear phase also depends on the field
direction. For the two limiting orientations H || x and

H ⊥  x, it is  =  ± . Because of this, the split-
ting is also observed for the resonance line correspond-
ing to the AFMR exchange branch (see Experimental
results). The corresponding results obtained by fitting
the resonance absorption at various pressures by two
Lorentzian peaks are shown in Fig. 3b. The fact that the
obtained Hc values deviate from the results for the rela-
tivistic branch is explained by the large line widths of
the AFMR exchange branch, which hampers the exact
line resolution at low pressures.

x
3
2
---

2
3
--- Hres1

2 Hres2

2–( )

He
2 He0

2 Hc
2
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Note in conclusion that the transition field to the
commensurate phase depends also on Hc. For this rea-
son, its change in domains 2 and 3 (where Hc depends
on P) is a combined effect. The pressure-induced shift
of AFMR lines also affects the estimate of H* by the
method used in this work. Because of this, the observed
pressure-induced changes in the resonance-peak inten-
sities in the first domain can be considered as the only
direct evidence of the H* dependence on the exchange
modulation in the basal plane.

We are grateful to I. A. Zaliznyak for the idea of the
experiment and to A.I. Smirnov and M.E. Zhitomirskiœ
for helpful discussions. This work was supported in
part by the Russian Foundation for Basic Research,
project nos. 01-02-17557 and 03-02-16579. S.S.S. is
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English. The translation of manuscripts submitted in
Russian, as well as the editing of manuscripts submit-
ted in English, is performed by the International Aca-
demic Publishing Company (IAPC) “Nauka/Interperi-
odica.”

The total length of any paper should not exceed five
journal pages in the Russian edition. This length
approximately corresponds to 25 KB in LATeX format,
including 1 KB for each figure. You can estimate the
manuscript length more accurately by preparing it
according to an example that is available on the Web
server for the journal (http://www.jetpletters.ac.ru) by
using the style file (jetpl.cls) available on the same
server.

Manuscripts may be submitted to the Editorial
Board in the following ways:

(1) Conventional mail to the following address:
Pis’ma Zh. Éksp. Teor. Fiz., ul. Kosygina 2, Moscow,
117334 Russia. A manuscript should be submitted in
duplicate with figures on separate sheets (for half-tone
figures, one additional copy should be submitted).
Please append the e-mail and postal addresses (includ-
ing the postal code), the office and home phone num-
bers, and the complete name and patronymic of the
author to whom correspondence should be addressed.
The authors of English manuscripts should also submit
a floppy disk containing the text in LATeX format. 

(2) Electronic mail to the e-mail address let-
ters@kapitza.ras.ru. In this case, each figure should be
submitted in the form of an individual file in PostScript
(*.ps), EncapsulatedPostScript (*.eps), or PaintBrush
(*.pcx) formats.

Acceptance or rejection of a paper for publication is
decided by the Editorial Board with a proposal from the
0021-3640/03/7712- $24.00 © 20684
Editorial Board member specializing in the appropriate
section. A manuscript can be rejected if it is not topical
enough, does not provide considerable development as
compared to other publications in this field, considers
too specific a subject, etc. As a rule, the referee’s reports
on rejected papers are not sent. The authors may resub-
mit a rejected manuscript, appending an explanatory
letter to it. In this case, the manuscript will be put under
additional review.

The Editorial Board sends (or hand delivers if the
authors live in Moscow) five reprints of the papers pub-
lished in the Russian edition. The English version is
sent to the authors in electronic form by IAPC
“Nauka/Interperiodica.”

MANUSCRIPT PREPARATION

The first page of a manuscript should have the fol-
lowing form:

THE TITLE

Initials and Surnames of the Authors

Institutions where the authors work, including city
and postal code (the e-mail address 
of one of the authors is desirable)

Text of the Abstract

PACS: … (see http://publish.aps.org/PACS/).

Then, after one empty line, the main text follows.

Because abstracts may now be distributed sepa-
rately from the papers (databases, online systems,
etc.), the abstract text should be self-contained with no
references or abbreviations and with understandable
notation.

Abbreviations must be given in capital letters with
no periods and should be explained as they are first
introduced. Footnotes in the main text must be num-
bered consecutively in order of their appearance.

Cited references must be given in a general list at the
end of a manuscript and should be numbered with an
ordinal number (e.g., [1]) consecutively as they are
mentioned in the main text. The reference to a journal
article should cite the following: the initials and sur-
names of the authors, journal name, volume number (in
boldface type), the first page of the paper, and year
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enclosed in parentheses. If an article is written by more
than four authors, indicate only the first three, e.g.,
1. A. B. Ivanov, V. G. Petrov, I. M. Sergeev, et al., Zh. Éksp.

Teor. Fiz. 92, 290 (1990) [JETP 71, 161 (1990)].
References to books must cite the following: the ini-

tials and surnames of the authors, the complete book
title, and the year and place of publication (in the case
of translated books, give the information for the origi-
nal in parentheses).

Use decimal points instead of commas. Three-vec-
tors with no arrow above them must be given in bold-
face type.

We recommend that authors preparing figures elec-
tronically adhere to the following rules: prepare figures
in the frame; direct dashes on the axes inside the figure;
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when possible, use Times font; use numerals (including
those on the axes in an insert) and lowercase letters with
a height of 3–4% of the maximum figure size (height or
width) of the figures; put measurement units on the axes
in parentheses. When preparing the figure, keep in mind
that, as a rule, the width of a figure in printing does not
exceed 82 mm; in exclusive cases, a figure can be set at
the entire width of the sheet (up to 160 mm).

Examples of the preparation of a manuscript and fig-
ures, as well as a style file, are available on our Web
server (http://www.jetpletters.ac.ru/).

Translated by R. Tyapaev
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