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The e+e–   process, where ν is an electron, muon, or τ-lepton neutrino, is analyzed in detail for the
general form of the coupling constant of a Higgs boson with b quarks, with the (mb/v )(a + iγ5b) parameteriza-

tion of the  interaction. This process is shown to be highly sensitive to this coupling constant. Experiments

at the future with  = 500-GeV linear collider will provide limits of 2 and 20% for deviations of the param-

eters a and b, respectively, from their Standard Model values. Results concerning the e+e–   process
in combination with the independent measurements of the partial width  can testify to the CP origin of

the Higgs sector of the theory. © 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The origin of fermion mass is one of the important
problems of particle physics. The Higgs boson com-
pletely determines the electroweak-symmetry violation
and generation of masses. However, it is obvious that
the Standard Model in this aspect is not the final theory.
Therefore, a careful search for nonstandard coupling
constants of the Higgs boson [or, in fact, the admixture
of the lightest pseudo(scalar) Higgs boson] with fermi-
ons can provide important information about the real
mechanism of the origin of masses.

We previously discussed the possibility of detecting
deviations of the coupling constants of the Higgs boson
with τ leptons from their Standard Model values in
experiments at the future linear collider [1]. In this
work, we extend that analysis to the case of the cou-
pling of the Higgs boson with b quarks, which seems to
be preferable due to the larger Yukawa coupling. For
definiteness, we focus on the determination of the
(pseudo)scalar–b–  coupling constant at the future
500-GeV linear collider with a total emittance of 1 ab–1

according to the TESLA project [2]. We assume that the
Higgs boson will be discovered earlier at LHC. How-
ever, its properties will be studied in detail at the linear
collider.

All possible contributions to the e+e–  
process, where ν is an electron, muon, or τ-lepton neu-
trino, are taken into account. In particular, we empha-
size that processes accompanied by the fusion of gauge
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bosons make the dominant contribution among the pro-
cesses with the formation of the Higgs boson of MH <

180 GeV and  ≥ 500 GeV.

In various Standard Model extensions with addi-
tional scalar and pseudoscalar bosons, the lightest par-
ticle with zero spin can be a mixture of states with
indefinite parity. Therefore, the  coupling can gen-
erally be parameterized as

(1)

where v  = 246 GeV, mb is the mass of the b quark, and
a = 1 and b = 0 in the Standard Model. We discuss three
cases: (i) a and b are independent parameters, (ii) a = 1
and b is a free parameter, and (iii) b = 0 and a is a free
parameter. As will be shown, in the case of two inde-
pendent parameters, there are insensitivity regions
along circles in the a–b plane. This circumstance is
determined by the impossibility of distinguishing
between the a and b effects.

The cross section for the e+e–   process
involves terms linear in the parameter a, which are
determined by the interference contributions of dia-
grams with and without the Higgs boson, and terms
proportional to a2 and b2, which are determined by the
contribution of Higgs boson. This behavior of observ-
ables makes it possible to search for deviations of the
coupling constants from the Standard Model. In partic-
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ular, such deviations are predicted in supersymmetric
models.

The Standard Model predicts a value of about 180 fb
for the total cross section for the e+e–   pro-

cess at MH = 120 GeV and  = 500 GeV. The process
involving νe in the final state makes the major contribu-
tion to the cross section, in particular because only this
channel includes diagrams with fusion of gauge bosons
that make the basic contribution to the cross section.
For comparison, the cross section for the e+e– 

Hνe  process at  = 500 GeV is about 100 fb.

Figure 1 shows the total reaction cross section sum-
marized over all three neutrino types as a function of
the parameters ∆a ≡ a – 1 and b. The b dependence is
symmetric about the b = 0 straight line, because only
terms proportional to b2 contribute to the cross section.
At the same time, the ∆a dependence is substantially
asymmetric due to the contributions of the interference
between diagrams with the Higgs boson and back-
ground Standard Model diagrams, which determine the
presence of terms linear in ∆a. We emphasize that the
∆a dependence for  is than for τ+τ– [1] more pro-
nounced. In this work, we estimate the sensitivity of
experiments at the e+e– linear collider of the next gener-
ation to these parameters.

2. ANALYSIS AND RESULTS

Monte Carlo simulation of the data was carried out
by generating the observables in the form of the follow-
ing expansion in the coupling constants a and b multi-
plied by the kinematic factors:

bbνν
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Fig. 1. Total cross section for the e+e–   process
vs. the parameters (solid line) ∆a and (dashed line) b.

bbνν
(2)

where 2 is an observable and Ai are the kinematic fac-
tors, which are independent of a and b and result from
the calculation of diagrams and integration over the
phase space. The Monte Carlo method is used to simu-
late the factors Ai. Therefore, the coupling constants a
and b can be varied without the repetitive simulation of
the data for each (a, b) pair. In the case under consider-
ation, A3 = A4 = 0.

The generated event sample corresponds to statistics
expected at the TESLA collider. The detector response
is simulated by the SIMET 3.01 package [4]. We take
the efficiency of the b-jet pair as εbb = 56% according to
the b-taq algorithm [3]. The data are simulated with
MH = 120 GeV.

Figure 2 shows the differential distribution in
cosθeb, where θeb is the scattering angle of the b jet with
respect to the initial electron beam for the total contri-
bution of the Standard Model diagrams and for the con-
tributions of the diagrams involving the Higgs boson
exchange (including diagrams of interference with the
Standard Model). To illustrate the importance of the
contribution of the process involving νe, we present
both the contribution of the process involving νµ in the
final state (which is virtually similar to the process
involving ντ) and the total contribution from processes
involving all three neutrino types. It is easy to see that
the contribution from diagrams involving the Higgs
boson is small, while it is comparable with the total
Standard Model contribution in the total distribution.

To illustrate the effect of the variation in the param-
eters a and b, Fig. 3 shows the contribution of diagrams
involving the Higgs boson to the distribution in cosθeb

for the process involving νµ and for the sum of all three
processes for the Standard Model (a = 1, b = 0) and for
a = b = 0.5. It is seen that the distribution shapes are
very similar, as is expected, while normalizations differ
considerably.

The contributions from possible background pro-
cesses such as e+e–  e+e–ZZ  e+e–  (with a

missing e pair), e+e–  W+W–  , and

e+e–  ZZZ   either are small or can be
significantly suppressed to 0.2 fb [3].

The characteristics of a future detector and possible
sources of systematic errors are important. The system-
atic errors are expected to be equal to 0.5% in measure-
ments of emittance, 1% in the determination of accep-
tance, 1% in the measurements of branching ratios, and
1% in the separation of the contributions from the back-
ground processes. We also assume a Gaussian distribu-
tions of systematic errors. We apply the standard χ2 cri-
terion to analyze events and to determine bounds on the
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 coupling constants. Analysis of various differen-
tial distributions reveals that the most stringent bounds
on the model parameters are achieved from the data on
the cosθeb distribution when the kinematic region is

divided into 10 bin. The experimental error  for
the ith bin can be written as

(3)

where

(4)
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Fig. 2. Differential distribution in cosθeb for the processes

(a) e+e–   and (b) e+e–   summed

over all neutrino types. The solid and crossed points corre-
spond to the total Standard Model contribution and contri-
bution from diagrams involving the Higgs boson (including
interference terms).
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and  is the sum of the squared systematic errors
mentioned above.

Figure 4 shows the resulting limits on the parame-
ters for a 500-GeV TESLA-like linear collider [2] for
MH = 120 GeV. We consider three possible total emit-
tances of the collider: 100 fb–1, 1, and 10 ab–1. When the
parameters ∆a and b are independent, the admissible
region (at 95% C.L.) is the region inside the circles. The
horizontal straight lines correspond to the admissible
region for the parameter b at a = 1. The vertical straight
lines correspond to the admissible region for the param-
eter ∆a at b = 0.

δsyst
2

Fig. 3. Contribution from Higgs boson diagrams to the dif-
ferential distribution in cosθeb for the processes

(a) e+e−   and (b) e+e–   for

(solid points) a = 1 and b = 0 (Standard Model) and (crossed
points) a = b = 0.5.

bbνµνµ bbννω
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At the 95% C.L., the following bounds can be
obtained:

(5)

for b = 0 and free ∆a and

(6)

for ∆a = 0 and free b.
These results are more stringent than the bounds

obtained in a similar analysis of the process with τ lep-
tons in the final state by more than an order of magni-
tude, which is explained by the larger Yukawa coupling
constant for b quarks and higher sensitivity of this pro-
cess.

The resulting bounds can be extrapolated to the case
of small variations in the Higgs boson mass near
120 GeV by multiplying by a factor of (MH/120 GeV)2.

3. CONCLUSIONS

The sensitivity of measurements concerning the
e+e−   processes at the future linear collider to

new  coupling constants, which are predicted in

0.041– ∆a 0.039 for +≤ ≤ 100 fb 1– ;=

0.026– ∆a 0.027 for +≤ ≤ 1 ab 1– ;=

0.024– ∆a 0.024 for +≤ ≤ 10 ab 1–=

0.28– b 0.28 for +≤ ≤ 100 fb 1– ;=

0.23– b 0.23 for +≤ ≤ 1 ab 1– ;=

0.22– b 0.22 for +≤ ≤ 10 ab 1–=

bbνν
Hbb

Fig. 4. Admissible regions of the parameters ∆a and b (at
95% C.L.) for + = (long dashes) 100 fb–1, (solid lines) 1,
and (short dashes) 10 ab–1. The region inside the corre-
sponding concentric lines is the admissible region for two
independent parameters ∆a and b. The horizontal straight
lines correspond to the admissible regions for the parameter
b at ∆a = 0. The vertical straight lines correspond to the
admissible regions for the parameter ∆a at b = 0.
numerous extensions of the Standard Model, has been
analyzed. As was shown, future experiments will
enable one to detect possible deviations of the 
coupling constants from the Standard Model values
with a high accuracy, and processes involving gauge
bosons make an important contribution, experiments at
a TESLA-like collider will be able to provide bounds of
several percent on the parameter a (at fixed b) and tens
of percent on the parameter b (at fixed a). These results
are comparable with the data obtained in [2], where the
relative accuracy of determining the Yukawa constant
gHbb was predicted to be equal to 2.2% under a global fit

to data at + = 500 fb–1 and  = 500 GeV.
The concluding remark concerning future measure-

ments is as follows. Let us assume that new collider
experiments concerning the Higgs boson will reveal
deviation from the Standard Model predictions. In
addition, let us assume that independent measurements
of the partial width  (e.g., from the production
of the Higgs boson at a muon collider) will be carried
out. In this case, it is easy to see that  ~ (a2 + b2),
while

for the observables in the e+e–   process.
Combining the above results and the data concerning

, one can separate the contributions for a and b
and obtain the explicit evidence of the CP violation in
the Higgs sector.

We are grateful to A. Belyaev for stimulating discus-
sions and valuable remarks. The work of A.L. was sup-
ported by Fapesp (grant no. 2001/0691-4). The work of
A.Ch. and V.B. was supported by the Russian Founda-
tion for Basic Research (project nos. 99-02-16558 and
00-15-96645), the Ministry of Education of the Russian
Federation (project no. RF E00-33-062), and the
U.S. Civilian Research and Development Foundation
for the Independent States of the Former Soviet Union
(grant no. MO-011-0). The work of R.R. was supported
in part by Fapesp and CNPq.

REFERENCES
1. A. Chalov, A. Likhoded, and R. Rosenfeld, hep-

ph/0205146; J. Phys. G.: Nucl. Part. Phys. 29, 337
(2003).

2. R.-D. Heuer, D. J. Miller, F. Richard, et al., hep-
ph/0106315.

3. K. Desch and N. Meyer, LC Notes, LC-PHSM-2001-025,
http://www.desy.de/lcnotes/2001/025/ww-fus.ps.gz.

4. M. Pohl and H. J. Schreiber, SIMDET—A Parametric
Monte Carlo for a TESLA Detector, DESY Report 99-
030 (1999).

Translated by R. Tyapaev

Hbb

s

Γ H bb→

Γ H bb→

dσ
d2
------- A0 aA1 a2A2 b2A3+++=

bbνν

Γ H bb→
JETP LETTERS      Vol. 78      No. 1      2003



  

JETP Letters, Vol. 78, No. 1, 2003, pp. 13–16. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 78, No. 1, 2003, pp. 16–20.
Original Russian Text Copyright © 2003 by Troyan, Eremets, Gavrilyuk, Lyubutin, Sarkisyan.

                                                                                                   
Transport and Optical Properties of Iron Borate FeBO3 
under High Pressures

I. A. Troyan1, M. I. Eremets2, A. G. Gavrilyuk1, I. S. Lyubutin3, *, and V. A. Sarkisyan3

1 Institute of High-Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow region, 142090 Russia
2 Max-Planck Institut für Chemie, 55020 Mainz, Germany

3 Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskiœ pr. 59, Moscow, 119333 Russia
*e-mail: lyubutin@ns.crys.ras.ru

Received May 21, 2003

The optical absorption spectra of iron borate FeBO3 were measured in diamond anvil cells at high pressures up
to P = 82 GPa. The electronic transition with an abrupt jump in the absorption edge from ~3 to 0.8 eV was
observed at P ≈ 46 GPa. The resistance and its temperature dependence were directly measured for FeBO3 at
high pressures up to 140 GPa. It was established that the electronic transition at P ≈ 46 GPa was accompanied
by the insulator–semiconductor transition. In the high-pressure phase, the thermoactivation gap decreases
smoothly at 46 < P < 140 GPa approximately from 0.55 to 0.2 eV following the linear law. The extrapolated
value of the pressure at which the sample becomes fully metallic is equal to about 210 GPa. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 72.15.Eb; 71.30.+h; 78.40.Kc; 72.15.Jf
Iron borate FeBO3 belongs to the rare class of mate-
rials that are transparent in the visible region and pos-
sess spontaneous magnetization at room temperature.
FeBO3 crystal has the rhombohedral calcite structure
[1]. At normal conditions, it is an antiferromagnet with
weak ferromagnetism [2] and a Néel temperature of
about 348 K [3]. At normal pressure, iron borate is an
insulator with an optical gap of 2.9 eV [4]. By its elec-
tronic properties, FeBO3 is a typical representative of
the systems with strong electron correlation [5, 6].
Depending on the ratio between the Coulomb energy U
(d–d gap) and the charge-transfer energy ∆ (p–d
charge-transfer gap), these materials can be either Mott
insulators [5] or charge-transfer insulators [7–9]. Under
high pressure, one can expect that such systems
undergo the insulator–metal transition with a drastic
change in their magnetic and optical properties [7, 10].

In our recent high-pressure experiments, we
observed the magnetic moment collapse in iron borate
at P ~ 46 GPa (at room temperature) [11, 12] and the
structural phase transition at ~53 GPa with a jump of
~9% in the unit-cell volume [13]. The 57Fe Mössbauer
spectra also gave an indication of a drastic change in the
electronic properties at P ~ 46 GPa, in particular, of the
transition of Fe3+ ions from a high-spin (S = 5/2) to low-
spin (S = 1/2) state [12]. Nevertheless, the question of
metallization still remains open.

In this work, the resistance of the FeBO3 crystal was
directly measured at high pressures up to 140 GPa in a
diamond anvil cell. For each pressure, the temperature
dependence of resistance was also measured in the
0021-3640/03/7801- $24.00 © 20013
range 77–300 K. In addition, the behavior of the
absorption edge in the optical spectra was studied up to
82 GPa. A jump in the optical gap was observed at
46 GPa. The behavior of the optical gap and of the con-
ductivity activation energy indicates that, in the pres-
sure range P ~ 46 GPa, the crystal undergoes a phase
transition of the insulator–semiconductor type.

1. Optical absorption spectra. High-quality opti-
cally transparent FeBO3 single crystals were grown
from a solution in melt and were colored light green.

The optical absorption spectra were recorded over
the pressure range up to 82 GPa at room temperature in
a diamond anvil cell. The diamond anvil culets were
about 400 µm in diameter. A hole at the center of rhe-
nium gasket had a diameter of ~120 µm. For measure-
ments, a platelet of size ~50 × 50 × 5 µm with plane
coinciding with the basal plane (111) was split off from
a bulky FeBO3 single crystal. In the optical measure-
ments, the light beam in the high-pressure cell was
directed perpendicular to the crystal basal plane.
Poly(ethyl siloxane) (PES-5) was used as a pressure-
transmitting fluid providing quasi-hydrostatic condi-
tions. After pressure release, the single crystal was not
damaged. The optical setup for studying the absorption
spectra at high pressure allows measurements in the
visible and near-IR regions (from 0.3 to 5 µm). In the
visible region, a photomultiplier FEU-100 was used as
a detector, while, in the near-IR region, the light was
detected by a germanium diode cooled to the liquid
nitrogen temperature. The diameter of a light spot on
the sample was on the order of 20 µm. To eliminate pos-
sible spurious signals, the reference signal I0 was first
003 MAIK “Nauka/Interperiodica”
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measured outside the sample, whereupon the signal I
passed through the sample was measured. The absorp-
tion spectrum was calculated by the standard method

Fig. 1. Room-temperature absorption spectra of the FeBO3
single crystal at different pressures.

Fig. 2. Baric dependences of the optical absorption edge
(room temperature) and the conduction thermoactivation
energy (thermoactivation gap) obtained in the experiments
on the electrical resistance of iron borate FeBO3.

Thermoactivation
from the formula I = I0exp(–αd), where d is the sample
thickness and α is the optical absorption coefficient.

The evolution of optical absorption spectra of iron
borate with an increase in pressure at room temperature
is shown in Fig. 1. As P increases to 46 GPa, the energy
of the optical absorption edge slowly increases, after
which it drops abruptly from ~3 to ~0.8 eV at P ~
46 GPa, and then virtually does not change upon fur-
ther buildup of pressure to 82 GPa (Fig. 2). The jump in
the optical gap at 46 GPa correlates with the magnetic
moment collapse observed earlier in [11] and with the
spin crossover [12] in iron borate.

2. Setup for measuring resistance in a diamond
anvil cell and the measurement technique. The high-
pressure resistance was measured in a diamond anvil
cell on a special setup (Fig. 3) in the High-Pressure
Group at the Max Planck Institute (Mainz, Germany).
The method of fabricating electrocontacts (leads) was
designed by Prof. M.I. Eremts and successfully used up
to pressures of 250 GPa [14]. The essence of this
method is as follows. The metallic gasket is preliminary
pressed in the cell to obtain a sharp imprint of the anvil
culets. At the center of the imprint, a hole is drilled for
visual verification (with illumination from below) of
the arrangement of the sample and the electrocontacts.
Then a thick layer of a mixture of epoxy resin and a
micron-ground BN powder is applied to the gasket.
After the resin was polymerized, the gasket is pressed
with a force corresponding to one-half the maximal
experimental pressure. The sample of a thickness of
several microns is placed at the center of the prepared
gasket.

Two pairs of crossed leads (Fig. 3) cut from a 2-µm-
thick platinum foil are applied to the sample. This sim-
ulates the quasi-four-probe scheme of resistance mea-
surement. The outer ends of the platinum electrocon-
tacts are soldered to copper conductors that are firmly
fixed to the cell frame and brought outside to connect
with the measuring equipment.

The signals were measured using a two-channel dig-
ital “DSP Lock- in 7265” (Perkin-Elmer) lock-in detec-
tor. This instrument is equipped with high-quality
18-digit analogue-digital input converters (ADCs)
operating in the frequency range from 0.01 Hz to
150 kHz. Further filtration and locked-in detection of
the signal is performed digitally using a built-in proces-
sor. The instrument also contains a built-in generator of
precision voltage with the amplitude from 5 V to 1 µV.
In our measurements, the voltage frequency was 3 Hz,
allowing the errors introduced by the contact potentials
to be eliminated. In the general case, two channels of
the DSP Lock-in 7265 detector operate simultaneously;
channel A measures voltage, and channel B measures
current. To measure the resistance of high-ohmic sam-
ples (higher than 1 GΩ), only channel B was used. In
this case, the current through the sample was measured,
while the voltage applied to the sample was assumed to
be equal to the voltage of the driving generator. In addi-
JETP LETTERS      Vol. 78      No. 1      2003
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tion, the instrument has an integrating 16-digit ADC,
which was used for measuring voltage on a calibrated
temperature gauge. The accuracy of temperature mea-
surement was 0.1 K in the range 77–300 K. The soft-
ware allows all the measured parameters to be recorded
on a hard disk as functions of time and reading of the
chosen channel.

For the high-pressure cell situated in a cryostat and
connected to the measuring system, the leakage current
was 0.5 pA at a pressure of 10 GPa (dielectric state of
the sample). For this reason, the actual experimental
accuracy of measurement was determined by the driv-
ing voltage generator. The resistance was measured for
a driving voltage of 0.01 V with an error of 1 µV, which
corresponded to an accuracy of 0.1%.

In our experiments, flat diamond anvils with a diam-
eter of 180 µm were used. A FeBO3 sample with a
thickness on the order of 4 µm was placed at the center
of a boron nitride gasket, so that there was no pressure-
transmitting medium in this experiment. Micron-sized
ruby chips were distributed over the sample. The pres-
sure scatter between the two nearest electrodes in the
sample was 3 GPa at a pressure of 100 GPa. This value
was caused by the nonhydrostatic pressure component
and taken as the error of pressure measurement.

The pressure was measured and fixed at room tem-
perature. Then the cell connected to the measuring
apparatus was placed in a helium blow-through cry-
ostat. The temperature gauge was attached to the cell
frame. The cell was cooled to 77 K for 3 h. For each
fixed pressure, the temperature dependence of the resis-
tance was measured for 8 h in the warming regime.
During the cooling, the pressure variation was not con-
trolled. The pressure was measured before and after the
temperature cycle. It was established that, after warm-
ing, the pressure increased by 10%. In numerous earlier
experiments, the pressure in the diamond anvil cell
increased upon cooling and was not released after
warming. For this reason, the pressure measured after
cell warming was taken as the pressure on the sample in
our experiment.

3. Results of resistance measurements and dis-
cussion. The study of electrical resistance of FeBO3
was carried out up to a pressure of 140 GPa. For each
fixed pressure, the temperature dependence of resis-
tance was measured in the range 77–300 K with the aim
to determine the conduction type (metallic or semicon-
ducting) and calculate the activation energy in the case
of nonmetallic conduction.

It was found that, over the entire pressure range
attained in the experiment, the sample remained high-
ohmic. Because of this, we measured the current
through the sample. It turned out that the resistance of
FeBO3 became measurable only in the high-pressure
phase after the electronic transition at P > 46 GPa. The
temperature dependences of the resistance of FeBO3
are given in Fig. 4a for the three pressure values 108.2,
128.2, and 140 GPa. One can see that this dependence
JETP LETTERS      Vol. 78      No. 1      2003
is typical of semiconductors. The plots of the loga-
rithm of resistance against the reciprocal temperature
are presented in Fig. 4b for different pressures. Since

Fig. 4. (a) Evolution of the temperature dependence of the
FeBO3 resistance for various pressures and (b) the depen-
dence of the logarithm of resistance on the reciprocal tem-
perature.

Fig. 3. Scheme of the experiment on measuring resistance
at high pressures in a diamond anvil cell.
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the temperature dependence of resistivity ρ obeys
the law

the activation energy Et for the conductivity can be
determined from the formula

The calculated pressure dependences of the thermoac-
tivation energies for conductivity in FeBO3 are pre-
sented in Fig. 2. Immediately after the electronic tran-
sition at P = 46 GPa, the thermoactivation gap Et equals
0.55 eV. In the high-pressure phase, the Et(P) gap
decreases linearly to 0.2 eV with increasing pressure in
the range 46 < P < 140 GPa, allowing the parameters to
be extrapolated to Et(0) = (0.70 ± 0.04) eV and
dEt/dP = –(0.0033 ± 0.0004) eV/GPa. Therefore, the
complete metallization occurs at a pressure of about
210 GPa.

At normal pressure, the high-spin Fe3+ 3d5 configu-
ration is an analogue of an orbitally nondegenerate (sin-
gle-band) Hubbard model with a half-filled band.
Strong electron correlations lead to the charge-carrier
localization [15]. One can assume that the phase transi-
tion at P ≈ 46 GPa is accompanied by the spin crossover

from a high-spin ( )( ) (S = 5/2) configuration of

the Fe3+ ion to its low-spin ( )( ) (S = 1/2)
configuration. The holes in the eg shell can serve as cur-
rent carriers providing semiconductor conduction [15].
With the buildup of pressure, the interionic distances
shorten and the bandwidth increases because of
strengthening of the cation–anion d–sp hybridization.
This results in the carrier delocalization and increases
the conductivity with pressure.

Note in conclusion that both the optical data and the
resistance measurements indicate that, from the view-
point of transport properties, the phase transition in iron
borate at 46 GPa is the insulator–semiconductor phase
transition.

This work was supported by the Russian Foundation
for Basic Research (project no. 02-02-1364a) and the
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Direct Observation of Localized Exciton States 
in CdS1 – xSex Solid Solutions

N. R. Grigor’eva, R. V. Grigor’ev, and B. V. Novikov
Research Institute of Physics, St. Petersburg State University, St. Petersburg, 198504 Russia

e-mail: N.Grigorieva@pobox.spbu.ru
Received June 4, 2003

A system of isolated localized exciton states corresponding to particular energies from the tail of the density of
states is observed in CdS1 – xSex crystals. From an analysis of the obtained photoluminescence excitation spec-
tra, the boundary between the free and localized excitons and the length of the tail region of the density of local-
ized states that make an essential contribution to radiative recombination are determined. It is shown that the
localized and free excitons prove to be separated and represent two exciton subsystems. The energies of actual
optical photons are accurately determined to be 23.6 ± 0.2 and 35.6 ± 0.3 meV for CdS0.70Se0.30 and 20.7 ± 0.2
and 31.4 ± 0.3 meV for CdS0.50Se0.50. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.35.-y
The energy states of excitons localized by the fluc-
tuation potential play an important part in the formation
of optical properties of solid solutions (SSs). The pro-
cesses of exciton localization in SSs based on II–VI
compounds have been most intensively studied for
CdS1 – xSex solid solutions [1–4]. Studying the emission
relaxation times in CdS1 – xSex crystals [2] allowed the
spectral boundary of mobility separating the regions of
free and localized excitons to be determined. The
authors of [5] carried out a theoretical analysis of the
photoluminescence (PL) spectra of the SSs under con-
sideration with regard to the finite exciton lifetime and
the exciton–phonon interaction. In this work, two mod-
els of a localized exciton were used for the most ade-
quate description of experimental data in a wide range
of compositions: (1) an exciton localized as a whole
and (2) a system formed by an electron interacting with
the averaged potential of a localized hole.

It is generally assumed that the emission of excitons
localized on composition fluctuations is mainly exhib-
ited in the low-temperature PL spectra of CdS1 – xSex

crystals in the range of concentrations from 3 to 60%.
In this case, the PL spectrum consists of a relatively
broad band located in the tail region of the density of
exciton states and phonon replicas of this band [1–5].
As the temperature increases, the band of localized
excitons decays and the emission of free excitons and
donor–acceptor pairs and band–acceptor emission arise
in the spectrum [3]. The important role of stacking
faults in the formation of reflectance and PL spectra for
CdS1 – xSex crystals of various compositions was
revealed in our works [6, 7].

In this work, we investigated the photoluminescence
excitation (PLE) spectra and selectively excited PL
spectra of crystals of SSs with compositions
0021-3640/03/7801- $24.00 © 20017
CdS0.70Se0.30 and CdS0.50Se0.50. The PLE spectra were
studied for various regions of the no-phonon band and
its phonon replicas.

Well-faceted crystals were obtained by sublimation
at 950°C from the gas phase. The starting mixture was
preliminarily homogenized by repeated sublimation.
The sample had a well-defined shape of hexahedra. The
faces studied were 1 × 3 mm in size on the average, and
the thickness of samples varied from 0.1 to 1 mm. The
samples were not doped specially in the process of
growth, and their surfaces were not treated after the
growth.

As was shown by x-ray spectrum analysis, x-ray dif-
fraction analysis, and HRTEM studies, our samples
exhibited a high degree of homogeneity. These samples
were single-phase SSs without separating an individual
CdS or CdSe component and represented single crys-
tals composed of crystalline blocks having a hexagonal
crystal structure and a structure with intermediate
anisotropy [6, 7].

The excitation of the samples was carried out
through a DFS-12 monochromator (with a spectral slit
width of ~1.3 meV), and the emission was measured at
a preset wavelength with the use of a DFS-24 mono-
chromator (with a spectral slit width of ~ 0.13 meV). A
DKsSh-150 lamp was used as the source of the contin-
uous spectrum. All investigations were carried out at
4.2 K. The reflectance and PL spectra were studied on
the same setup.

The PLE spectra were measured for 24 recording
points of emission in the spectral range that included
the no-phonon line and the first phonon replica from
2.246 to 2.195 eV for CdS0.70Se0.30 crystals and from
2.080 to 2.029 eV for CdS0.50Se0.50 crystals. Simulta-
003 MAIK “Nauka/Interperiodica”
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neously, the reflectance and PL spectra were measured
at excitation in the region of intrinsic absorption.

The excitation spectra for two actual regions of the
CdS0.50Se0.50 SS crystal are shown in Figs. 1 and 2. The
PLE spectrum presented in Fig. 1 is typical for the
emission recording region located in the short-wave-
length wing of the no-phonon PL line. The spectral
spacing between the features of the PLE spectrum and
the energy position of the recording point can be related
to the value of optical phonons. It is rather characteris-
tic that decay in the PLE spectrum is observed in the
region 2.101–2.083 meV, in which there is strong exci-
ton absorption; that is, emission is slightly excited in
this region, and fast relaxation through optical phonons
is most probable.

Another typical PLE spectrum shown in Fig. 2 was
obtained by recording emission in the region of phonon
replicas of the PL spectrum. Two sharp peaks M1 and
M2 are observed in its long-wavelength part. The spec-
tral contour of these peaks is asymmetrical; it has a tail
smoothly decaying toward high energies. The half-
width of the spectral contour lies within the range 1–
2 eV. The peaks arise at an energy of 2.076 eV and shift
along the spectrum following the shift of the wave-
length of the recorded emission. The distance between
the spectral position of the peaks and the wavelength of
the recorded emission always remains constant and
equal to 20.7 ± 0.2 meV for M1 and 31.4 ± 0.3 meV for
M2. The appearance and shift of the M1 and M2 peaks
occur in the spectral range from 2.076 to 2.049 eV, that
is, from the position of the no-phonon band maximum
in the PL spectrum to the beginning of the region of the
first phonon replica. The intensity of these peaks
reaches a maximum inside the indicated range, sharply
decays toward the short-wavelength region, and decays
more slowly toward the long-wavelength region. Broad
maxima corresponding to A and B excitons are

Fig. 1. Optical spectra of a CdS0.5Se0.5 crystal: (a) reflec-
tance spectrum, (b) PLE spectrum in the region of short-
wavelength PL decay (Ereg = 2.0799 eV), and (c) PL spec-
trum.
observed in the short-wavelength part of the PLE spec-
trum for this recording range. The distance between the
spectral position of the M1 and M2 peaks and the wave-
length of the recorded emission for the CdS0.70Se0.30 SS
crystals equals 23.6 ± 0.2 and 35.6 ± 0.3 meV, respec-
tively. The appearance and shift of the M1 and M2
peaks in this case occur in the spectral range from 2.233
to 2.195 eV.

The differences in the PLE spectra recorded for dif-
ferent regions of the PL spectrum are associated with
the action of different mechanisms of radiative recom-
bination in the no-phonon PL band, namely, with the
emission of free and localized excitons. The emission
in the short-wavelength part (up to the maximum) of
the no-phonon PL band in the CdS1 – xSex crystals is
mainly due to the emission of free excitons, and the
emission in the longer wavelength part of the no-
phonon band and in the region of phonon replicas is
mainly due to localized excitons.1

The PLE spectra of free and bound excitons in
binary II–VI compounds were comprehensively stud-
ied in the works [8, 9]. The authors of these works
found that the exciton lifetime in the crystals plays an
important part in the formation of the PLE spectra. If
the exciton lifetime in the band exceeds the thermal
equilibration time, the equilibrium distribution function
is exhibited in the exciton PL spectrum. In this case, the
shape of the PLE spectrum does not depend on the
energy of the created exciton (it is probable that it can
only depend on the exciton concentration in a certain

1 The separate contribution of these mechanisms to the PL of the
no-phonon band is also confirmed by our studies of the tempera-
ture dependence of the SS emission. As the temperature
increases, the PL of localized excitons decays faster than the PL
of free excitons; therefore, it is clearly seen how the free-exciton
line is exhibited in the contour of the no-phonon band (in its
short-wavelength part).

Fig. 2. Optical spectra of a CdS0.5Se0.5 crystal: (a) reflec-
tance spectrum, (b) PLE spectrum in the region of the first
phonon replica (Ereg = 2.373 eV), and (c) PL spectrum.

M2

M1
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spectral region). In the case when the radiationless
recombination time is long, the exciton lifetime
becomes shorter than the thermal equilibration time.
Here, only fast relaxation through optical phonons is
manifested. Maxima associated with relaxation through
optical phonons appear in the PLE spectrum.

An analysis of the PLE spectra indicates that the
free excitons in SSs are characterized by a short life-
time and have no time to come into thermal equilibrium
with the lattice; therefore, only fast relaxation with the
participation of optical phonons is revealed in the spec-
trum. Two maxima with different intensities correspond
to this mechanism in the PLE spectra presented in
Fig. 1. These maxima are separated from the exciton
line by the energies of optical phonons, 20.7 ± 0.2 and
31.4 ± 0.3 meV, respectively. In the similar spectrum
for the CdS0.70Se0.30 SS, the corresponding two maxima
are separated from the exciton line by approximately
23.6 ± 0.2 and 35.6 ± 0.3 meV.

This situation is especially well pronounced if the
recording energy of the excited emission lies in the
short-wavelength region of the PL spectrum formed by
the free-exciton emission. 

When the PLE spectrum is recorded in the region of
phonon replicas (Fig. 2), it is naturally expected that the
largest contribution to the PLE spectrum will be made
by the resonantly excited stationary state shifted with
respect to the registration energy (Ereg) by the optical
phonon energy [1]. In this case, individual localized
states can be directly observed in the spectrum recorded
in the region of phonon replicas. The localized states
that satisfy the above condition are manifested as nar-
row peaks. As Ereg is varied, these peaks shift along the
continuous tail of the density of states. Therefore, the
sharp peaks are always separated from the registration
energy by the same value equal to the energies optical
phonons that can propagate in CdS1 – xSex SSs. The
peak amplitude, depending on its energy position, is
proportional to the population of the localized states
and can be described based on the models proposed in
[5].

The highest energy position of the sharp peak
observed in Fig. 2 can be considered as the shallowest
localized state, and the energy of this state can be used
to estimate the position of the mobility edge EME. For
the CdS0.50Se0.50 SS, it comprises 2.076 ± 0.001 eV. The
position of the mobility edge with respect to the PL
spectrum determined in this way corresponds to the cal-
culated position obtained in the work [5] for the
CdS0.50Se0.50 SS. The position of the mobility edge with
respect to the PL spectrum for the CdS0.70Se0.30 SS is
determined by a value of 2.233 ± 0.001 eV.

The significant intensity of the sharp peaks indicates
that the exciton–phonon interaction is strong. The
asymmetry of the spectral contour of these peaks can be
explained by the relaxation of the localized exciton
JETP LETTERS      Vol. 78      No. 1      2003
with the participation of acoustic phonons, which
occurs within the supercluster.

It should be noted that sufficiently well-pronounced
features are observed in the PLE spectra recorded in the
region of phonon replicas (as in Fig. 2) in the region of
excitons A and B. These features must be associated
with the population mechanisms of the given localized
state. As distinct from the PLE spectrum displayed in
Fig. 1, the spectrum under consideration does not con-
tain maxima associated with fast exciton relaxation.
This indicates that the mechanism responsible in this
case for the population of localized states is different
from that in the case of the population of the states
above the mobility threshold. The absence of phonon
replicas designates that the mechanism of the formation
of localized excitons by their localization as an entity is
inefficient.

It is evident in Fig. 1 that only nonthermalized exci-
tons with a short lifetime exist in the crystal. In this
case, the formation of a localized exciton proceeds
through a capture of an electron by a hole localized on
a fluctuation. The hole is localized instantly, and the
electron lives long and has time to be thermalized. This
is due to the fact that composition fluctuations mainly
change the valence band edge, whereas the conduction
band is hardly distorted. Electron thermalization leads
to the fact that only features associated with an increase
in the electron concentration remain in the PLE spec-
trum.

Free electrons and holes can be created upon both
their direct excitation and exciton dissociation. The
process of exciton dissociation before their localization
results in the fact that direct energy exchange between
the systems of localized and free excitons is compli-
cated. The localized and free excitons become sepa-
rated and represent two exciton subsystems. These sub-
systems are separated by the so-called mobility edge.
The transition of excitons as a whole to the tail of local-
ized states is probably complicated because these states
are commonly occupied by the rapidly localized hole.

The independence of the two exciton subsystems
can be revealed by analyzing the phonon replicas of the
selectively excited PL spectra. A model analysis that
we performed based on [5] indicates that the phonon
replicas in the spectrum obtained upon excitation above
the mobility edge consist of the contribution of local-
ized excitons and the contribution of free excitons. The
contribution of the latter is described by the Maxwell–
Boltzmann distribution. The PL spectra excited both
above (Fig. 3a) and below (Fig. 3b) the mobility edge
allow one to verify that these contributions are differ-
ent. The position and shape of the phonon replicas in
the selectively excited PL spectrum shown in Fig. 3b
depend on the excitation energy. The shape of the
phonon replicas reflects the population of a small
region of the tail of the localized states and is described
by the expression const(ω – ω0)3exp(–(ω – ω0)/d),
where d is a parameter depending on the length of the
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tail region of the localized states and ω0 is the frequency
shifted from the mobility edge (Fig. 3a) or from the
excited light frequency (Fig. 3b) by the value of the
optical phonon.

In conclusion, it should be noted that it turns out to
be possible to observe the emission of excitons reso-
nantly excited to particular localized states by PLE
spectra. In other experiments, these states are mani-
fested as a continuous spectrum (for example, in study-
ing absorption spectra or PL upon excitation in the fun-
damental absorption region).

Thus, it proved to be possible to single out two
mechanisms of emission in the CdS0.70Se0.30 and
CdS0.50Se0.50 SSs by their PLE spectra. A system of sep-
arate localized states corresponding to particular ener-
gies from the tail of the density of states was observed.
An analysis of the PLE spectra obtained in this work
allowed the position of the boundary between the free
and localized excitons to be determined at 2.076 ±

Fig. 3. Selectively excited PL spectra of a CdS0.50Se0.50
crystal (arrows indicate the exciting light energy): (a) the
exciting light energy equals 2.0778 eV (the dashed lines
indicate the model contour of the first phonon replicas from
localized excitons; the dot line indicates that from free exci-
tons) and (b) the exciting light energy equals 2.0623 eV (the
dashed lines indicate the model contour of the first phonon
replicas from localized excitons).
0.001 eV for the CdS0.50Se0.50 SS and 2.233 ± 0.001 eV
for the CdS0.70Se0.30 SS. It was found that the localized
and free excitons are separated and represent two exci-
ton subsystems. These subsystems are separated by the
so-called mobility edge. The length of the tail region of
the density of localized states that make a significant
contribution to radiative recombination was deter-
mined. It was found equal to 38 ± 1 meV for
CdS0.70Se0.30 (in the range from 2.195 to 2.233 eV) and
27 ± 1 meV for CdS0.50Se0.50 (in the range from 2.049
to 2.076 eV). The energies of actual optical phonons
were accurately determined and comprised 23.6 ± 0.2
and 35.6 ± 0.3 meV for CdS0.70Se0.30 and 20.7 ± 0.2 and
31.4 ± 0.3 meV for CdS0.50Se0.50.

This work was supported by the Russian Foundation
for Basic Research, project no. 02-02-16690, and the
Ministry of Education of Russian Federation together
with the Administration of St. Petersburg, project
no. PD02-1.2-272.
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Phase transitions occuring in a quasi-one-dimensional organic compound (TMTSF)2PF6 near the boundaries
between the paramagnetic metallic (PM), antiferromagnetic insulator (AFI), and superconducting (SC) states
were studied experimentally. A controlled transition through the phase boundary was achieved by maintaining
the sample at fixed temperature T and pressure P, while the critical pressure was tuned by varying a magnetic
field B. When the PM/AFI phase boundary was crossed due to the variation of a magnetic field, history effects
were observed: the resistance was found to depend on the trajectory described by the system before arriving at
a given point (P–B–T) of the phase space. The results of the experiment give evidence for the formation of a
macroscopically inhomogeneous state characterized by the inclusions of a minor phase that is spatially sepa-
rated from the major phase. Away from the phase boundary, the homogeneous state is restored. After this, upon
approaching the phase boundary in the back direction, the system exhibits no features of the minor phase up to
the very boundary. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.Kz; 74.70.Kn; 75.30.Fv
The interplay (i.e., coexistence or competition) of
the magnetic spin ordering and the superconducting
electron pairing is a matter of considerable interest [1–
3]. The phase diagram of quasi-one-dimensional
(TMTSF)2PF6 is similar to that of cuprate superconduc-
tors. In the absence of a magnetic field, the phase dia-
gram has a narrow pressure interval (≈0.53–0.6 GPa)
within which a decrease in temperature leads to two
sequential electronic phase transitions (Fig. 1) [3, 4]:
first, from the paramagnetic metallic (PM) phase [5] to
the antiferromagnetic insulator (AFI) phase with the
formation of a spin-density wave and, second, from the
AFI to the superconducting (SC) state. Figure 1 also
shows the vertical trajectory P = 0.54 GPa, which inter-
sects two phase boundaries (the two points of intersec-
tion correspond to second-order phase transitions). The
intersection of the boundaries leads to changes in the
resistance: it has a metallic character (dR/dT > 0) in the
PM phase, activated character (R ∝ exp(∆/T)) in the
AFI phase, and is zero in the SC phase.

Theoretically, in addition to the classical single-
phase state of the system near the phase boundary, the
appearance of heterophase states is also possible: for
example, a microscopically mixed two-phase state or a
macroscopically inhomogeneous state with a spatial
phase separation. These states can be distinguished by
studying the properties of the system in a close vicinity
0021-3640/03/7801- $24.00 © 20021
of the transition point. In particular, for an inhomoge-
neous state with inclusions of one phase in the other
phase, one can expect some prehistory and hysteresis
effects: the properties of the system at a given point of
the P–T diagram may depend on the trajectory
described by the system before arriving at this point. By
contrast, there is no reason to expect any prehistory
effects for the mixed state. In principle, two states can
be distinguished by the qualitative difference that
should be manifested in the transport characteristics
when the system crosses the phase boundary upon
varying pressure at a constant temperature. However, in
practice, such an experiment is difficult to realize,
because an in situ pressure sweep near 1 GPA at a tem-
perature near 1 K causes considerable technical prob-
lems.

In this paper, we present the results of solving the
aforementioned problem in a different way. From our
magnetic-field measurements and from the results
reported by other authors (e.g., [6]), it follows that an
increase in a magnetic field is accompanied by a dis-
placement of the AFI/PM boundary T(P) toward higher
temperatures. Since the field dependence of the bound-
ary T0 is smooth and monotonic, it is possible to control
its position by magnetic field and, thus, to cause the
system to cross the phase boundary by varying the mag-
netic field at a fixed pressure P and temperature T. This
003 MAIK “Nauka/Interperiodica”
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experimental approach allowed us to perform measure-
ments without using a smooth pressure sweep at low
temperatures.

Our measurements showed that, when the system
crosses the PM/AFI boundary at low temperatures (T &
4 K), its magnetoresistance exhibits strong prehistory
effects: depending on the direction of the field sweep,
the minor phase is observed away from the phase
boundary, in the depth of the major phase. These effects
directly indicate that, in the vicinity of the AFI/PM/SC
phase boundary, the sample is in a macroscopically
inhomogeneous heterophase state.

The samples were (TMTSF)2PF6 single crystals
grown by the electrochemical method. Their typical
dimensions were 2 × 0.8 × 0.3 mm along the a, b, and c
crystal axes, respectively. The sample under investiga-
tion and a manganin pressure gauge were placed in a
nonmagnetic pressure cell [7] filled with a Si-organic
pressure-transmitting liquid. The required pressure was
produced in the cell at room temperature, after which
the cell was slowly cooled (for ~12 h). The pressure cell
with the sample was placed in a cryostat containing a
superconducting solenoid. Measurements were per-
formed in the cryostat with 4He pumping. A magnetic
field was directed along the c axis, and the measuring
current was along the a axis. To realize the idea of the
experiment, the initial values of P and T were chosen
slightly above P0 and T0, so that the PM–AFI transition
could occur with an increase in magnetic field.

For the initial point chosen in this way, the resis-
tance was found to vary insignificantly with magnetic
field increasing up to B ≈ 7 T (Fig. 2a). As the field
increases further, the resistance sharply increases by

Fig. 1. Phase P–T diagram of (TMTSF)2PF6 in the absence
of magnetic field. The phases in the plot are denoted as fol-
lows: PM is a paramagnetic metal, AFI is an antiferromag-
netic insulator, and SC is a superconductor. The vertical line
represents the isobaric trajectory P = 0.54 GPa. The dots on
the trajectory indicate two phase transitions: from PM to
AFI and from AFI to SC.
two to three orders of magnitude, which points to the
transition from the metallic PM phase to the AFI phase.
It should be noted that, starting with B ≈ 8 T, nonmono-
tonic periodic resistance variations are observed on the
background of the monotonically increasing resistance
component, which are not typical of the AFI phase.

In the case of the back field sweep, i.e., when B
decreases from 16 to 7 T, a strong hysteresis (~50%) is
observed in the resistance (Fig. 2a) while the nonmono-
tonic component practically disappears. The hysteresis
of R(B) and the appearance and disappearance of the
nonmonotonic component depend only on the field
magnitude |B| and do not depend on the field direction,
i.e., R(B) = R(–B) for the same history of varying quan-
tity |B|. The hysteresis magnitude increases with
increasing magnetic field. When the field sweep from 0
to 16 T is repeated, the dependence R(B) described
above is completely reproduced.

Fig. 2. (a) Dependence of the resistance on magnetic field
in the case of crossing the PM/AFI boundary. The sharp
increase in R(B) at B ≈ 7 T corresponds to the PM–AFI tran-
sition. (b) Dependence of the derivative dR/dB on magnetic
field for the resistance shown in Fig. 2a in the increasing and
decreasing magnetic field. The vertical arrows indicate the
jumps in R, which correspond to the transitions between the
FISDW phases.
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The nonmonotonic resistance component is more
pronounced in the derivative dR/dB shown in Fig. 2b. It
is significant that the nonmonotonic component is
observed only when the field increases and disappears
when the field decreases from 16 T to lower values. The
vertical arrows in Fig. 2b indicate the positions of the
boundaries between the phases of the field-induced
spin-density wave (FISDW) [8] for the field sweep in
the PM state [5] in the FISDW region. The positions of
the peaks of dR/dB in Fig. 2b agree well with the
expected boundaries of the FISDW phases. We empha-
size again that the presence of these peaks would be
natural for the PM state but is quite unexpected for the
AFI state. The dependence dR(B)/dB does not exhibit a
peak at B ≈ 14 T, which should be expected for the PM
state [8]. The absence of this peak evidences a complete
disappearance of the PM phase and the recovery of the
homogeneous AF state in the field B ≥ 14 T. In support
of this interpretation, we note that, in stronger magnetic
fields B > 14 T, one can see “rapid oscillations” (RO),
which are characteristic of the AFI phase in
(TMTSF)2PF6 (see Figs. 2b and 3) [9].

Figure 3 shows the field dependences of the deriva-
tive dR/dB for different temperatures. One can see that,
as the temperature increases, the hysteresis observed in
R(B) for the forth and back field sweeps disappears. It
is important that, at the low temperature T = 1.4 K, the
hysteresis manifests itself not only in the magnitude of
the resistance (or in dR/dB), but also in the qualitatively
different behavior of the R(B) dependence. When the
field increases, the R(B) dependence exhibits jumps
(indicated by arrows for B = 8–12 T), which are charac-
teristic of the FISDW phase transitions in the PM
phase, although the system evidently transformed to the
AFI phase starting with a field of ≈6 T (which is evi-
denced by the strong increase in the resistance in
Fig. 2a and by the appearance of the ROs). In the back
field sweep, these “anomalous” jumps are practically
absent while the expected ROs are seen [9].

Discussion. Evidently, the results of our experi-
ments do not agree with the behavior that should be
expected for a microscopically mixed state with the two
coexisting phases. In this state, the hysteresis effects
and the dependence of the phase composition on the
history cannot take place. The behavior described
above is also not typical of the homogeneously “over-
cooled” or “overheated” phases in first-order phase
transitions. In addition, for a second-order phase transi-
tion in a homogeneous system, which actually is the
AFI–PM transition, no hysteresis or overheating/over-
cooling effects should occur. In the phase-space region
where only the PM (or AFI) phase should exist, features
of the opposite phase are evidently observed in addition
to the expected features of the “correct” phase. Thus,
the appearance of the hysteresis at the second-order
transition and the evident features of both phases in the
same phase-space region suggest that the phase compo-
sition of the system becomes inhomogeneous.
JETP LETTERS      Vol. 78      No. 1      2003
The experiments described above demonstrate that
the transition from metallic to antiferromagnetic state is
accompanied by the appearance of a hysteresis in the
dependence of the resistance on magnetic field. The
results obtained from the experiments unambiguously
indicate that, near the PM/AFI phase boundary, an
inhomogeneous state with inclusions of the minor
phase embedded in the major phase is formed. This
conclusion agrees well with the data obtained earlier
[4] from the isobaric temperature sweeps at B = 0.
However, in contrast to the cited paper [4], our conclu-
sion is based on the results that do not depend on any
model assumptions about the spatial arrangement of the
inhomogeneous state, because for the identification of
the phase composition we used a qualitative difference
in the behavior of the resistances in the AFI and PM
phases. Note that the hysteresis of the magnitude and
the character of the resistance variation is unrelated to
any inhomogeneity of the sample and does not depend
on time; it is a stationary and reproducible effect.
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The temperature dependence of the magnetic susceptibility χ(T) is studied in the region of the magnetic and
charge ordering of La2NiO4.125 single crystals that differ in the degree of ordering of the excess oxygen. In the
absence of the ordering of the excess oxygen, χ(T) obeys the dependence χ(T) ≈ C/T2, which is explained by
the formation of 1D FM Heisenberg chains of impurity states with S = 1/2. The ordering of oxygen creates
favorable conditions for the formation of 2D FM Heisenberg lattices of impurity states with S = 1/2 that obey
the exponential dependence χ(T) ≈ C(T)2exp(4πJS2/kT), which is an indication of the formation of a 2D quan-
tum Heisenberg ferromagnet. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.Cr; 75.40.Cx; 75.10.Jm
In recent years, much attention has been attracted to
studying unusual magnetic charge superstructures, so-
called stripes. It is believed that it is in the microscopic
mechanism of the generation of these objects that the
keys to understanding phenomena like high-Tc super-
conductivity in cuprates and giant magnetoresistance in
manganites [1] lie. At the same time, the expedience of
describing stripes as an exceptionally new, exotic for-
mation is subject to an intensive discussion by authors
that use more “traditional” concepts (see M. Braden
et al. [1]). Remaining within the framework of tradi-
tional concepts, some theoretical models suggest that
doping the starting antiferromagnetic (AFM) dielectric
compound gives rise to a subsystem of impurity com-
plexes [2]. At a relatively low temperature, each of
these complexes consists of an impurity and a hole
localized in its vicinity. The hole is localized on the
orbitals of atoms that belong to magnetic planes of the
basic lattice, forming a complex impurity state. The
crystal and magnetic lattices are strongly distorted in
the region of the impurity state. More often, the process
of hole localization at low concentrations is considered
as the formation of a small-radius polaron bound with
an acceptor [3]. This is a deep-level impurity model. As
the concentration of holes increases, a tendency arises
toward the ordering of oxygen into either one-dimen-
sional chains or two-dimensional lattices [4], which are
manifested as magnetic charge superstructures.

It is evident that the mechanism of the formation of
such superstructures cannot be understood without
understanding their unusual magnetic properties. The
first stripes were observed in La2NiO4 + x at x ~ 0.125
[5–7]; at present, their conducting and magnetic prop-
erties have been poorly understood; and only very lim-
ited data are known on magnetization and susceptibility
0021-3640/03/7801- $24.00 © 20025
[5, 8]. In addition, all these stripes were obtained in a
strong magnetic field of ~1 T, which gives no way of
carrying out a correct analysis of the temperature
dependence χ(T). Such an analysis is an important
independent source of information about the magnitude
and sign of the exchange interaction J, the value of
magnetic moments S, the character of magnetic anisot-
ropy, and the dimensionality of the magnetic system.

The goal of this work was to study the magnetic
properties of magnetic charge structures in a weak
magnetic field and their correlation with the processes
of oxygen ordering in La2NiO4.125 single crystals. This
study led to observing a magnetic state that was
described well by the model of a 2D quantum Heisen-
berg ferromagnet with S = 1/2.

In these investigations, La2NiO4 + x single crystals
with a mass of ~0.08 g grown by crucibleless zone
melting [10] were used. The necessary oxygen concen-
tration x = 0.125(2) was gained by annealing at T ≈
650°C at the corresponding oxygen pressure [11] and
was refined by the value of the crystal lattice parameter
c = 12.668(1) Å measured at room temperature [12].
The crystal lattice parameters and the occurrence and
character of the ordering of the impurity oxygen were
determined by x-ray diffraction analysis on a DRON3
setup. Neutron diffraction analysis performed on an
IR-8 reactor at Kurchatov Institute Russian Research
Center showed that the crystal possessed a high degree
of bulk homogeneity with mosaicity that did not exceed
15' along the c axis. Magnetic properties were studied
by measuring the initial magnetic susceptibility χ(T) in
a weak alternating magnetic field h = h0sin(wt), h0 =
1 Oe, f = 1 kHz. The measurement procedure was
described in detail in [13]. Simultaneously with the sus-
003 MAIK “Nauka/Interperiodica”
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ceptibility, the electrical resistance Rab(T) (E || ab) was
measured. The measurements were carried out by the
four-contact method with a sample 1 × 1 × 0.5 mm in
size cut off from the main crystal. The contacts were
made by baking a silver paste.

Fig. 1. Temperature dependence of the molar susceptibility
χ[010](T) of a La2NiO4.125 single crystal. The QW symbol
marks χQW(T). The inset displays χ[010](T) and χ[001](T).

Fig. 2. Light circles show the behavior of ∆χ(T) in low-tem-
perature annealing. Black triangles represent the variation
of the height of the intensity of the superstructure reflex
(3 − h, 2.67 + h, 0) displayed in the inset. Black circles and
squares correspond to the data reported by Tranquada [7]
and Nakajima [6], respectively.
The experimental temperature dependence of the
magnetic susceptibility χ[010](T) is shown in Fig. 1. We
found no susceptibility anisotropy in the ab plane
χ[100] = χ[010] = χ[110], which may be associated with
both the twinning of 1D FM chains [7] and the isotropic
properties of the 2D lattice of magnetic polarons.
Below 200 K, the behavior of χ[010](T) starts to deviate
strongly from the behavior at T > 200 K. A stepwise
decrease in χ[010] accompanied by a small hysteresis is
observed at Tc = 110.5 K, which is characteristic of
first-order transitions. Upon cooling, the susceptibility
value somewhat exceeds the value observed upon heat-
ing. This hysteresis correlates with the hysteresis of the
superstructure wave vector of the magnetic charge
structure observed below Tc in [9]. At the same time, as
distinct from [5, 8], we found an anomalously strong
growth of the transverse susceptibility χ[001](T) (inset in
Fig. 1). At the temperature Tc = 110.5 K, the ratio
χ[010]/χ[001] ~ 2. An application of additional constant
longitudinal and transverse magnetic fields of ~1.5 kOe
does not lead to a change in χ(T).

With the use of x-ray diffraction analysis, we found
and investigated weak reflexes of the impurity super-
structure (2.67, 3, 0) and (3, 2.67, 0). Scanning was per-
formed along the (3 – h, 2.67 + h, 0) direction. The
reflexes obtained at 295 K are shown in the inset in
Fig. 2. These reflexes indicate that the charge in the
CuO2 plane undergoes 2D modulation. It was found in
[8] that the charge modulation (1/3, 0, 1) coincides with
the spin modulation at T > Tc = 110.5 K. The variation
of the intensity of these reflexes upon cooling is shown
in Fig. 2 by black triangles. Each point was measured
for ~30 min. The behavior of the intensity of the super-
structure reflex and the temperature of its disappear-
ance TO ~ 305 K coincide with the data on oxygen
ordering obtained by Tranquada [7] and Nakajima [6],
which are presented in Fig. 2 by black circles and
squares, respectively. The intensity of superstructure
reflexes mirrors the process of oxygen ordering in our
crystals. It is apparent that the long-range order in the
arrangement of impurity atoms disappears above
305 K. After quenching from 320 down to 295 K, the
superstructure reflex is restored in ~3 h. That is, in the
case of sufficiently rapid cooling, strict order in the
arrangement of the impurity atoms has no time to be
established. By varying the rate of quenching and car-
rying out subsequent low-temperature annealings, we
investigated the connection of the anomalous behavior
of susceptibility with the degree of ordering of the
impurity oxygen.

The dependence  obtained with a sample that
was rapidly dipped, after heating to 320 K, into liquid
nitrogen is presented in Fig. 1. As was expected, the
quenching led to a strong decrease in the anomalous
growth of χ[010](T). However, the susceptibility value
below Tc and the hysteresis did not change after the
quenching, which was confirmed by repeated tempera-

χ 010[ ]
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ture cycling from 78 to 200 K. Because oxygen remains

immobile in this temperature range, (T) and the
hysteresis are determined exclusively by the ordering
of holes.

The restoration of the anomaly ∆χ(Tc) = χ[010](Tc) –

(Tc) with the use of annealing normalized to a
maximum is shown in Fig. 2 by light circles. The hold
time of a sample was different at different annealing
temperatures. This time is indicated in the figure. The
anomaly starts to grow rapidly upon warming above
210 K and attains a maximum value at ~250 K. Further
warming tends to decrease the anomaly. At annealing
temperatures in the range 250–300 K, the total hold
time of samples necessary for attaining an equilibrium
state is no less than 3 h. The ratio ∆χ(250 K)/∆χ(300 K) ≈
3/2. Upon heating above 303 K, the anomaly height
decreases much faster. In this case, annealing is carried
out by heating up to a prescribed temperature followed
by immediate cooling. It is evident that the change ∆χ
upon annealing correlates with the behavior of the
intensity of the superstructure reflex obtained from our
x-ray diffraction data and from the neutron diffraction
data [6, 7]. From this correlation, it follows that ∆χ(T)
is directly proportional to the number of ordered impu-
rity atoms.

It is evident that the ordering process of impurity
states participating in electron transport must affect the
temperature behavior of conductivity. Experimental
temperature dependences of the electrical resistance
Rab(T) ~ R0exp(E/kT) and the activation energy E(T) =
d(lnRab)/dT–1 measured for the same sample, which
was cooled at different rates (Fig. 3). The difference
∆R(T) = RSl(T) – RQW(T) is shown in the inset. It is evi-
dent that the temperature dependences ∆χ(T) and
∆R(T) are similar above Tc. However, the events associ-
ated with ordering are most pronounced in E(T). The
value E ≅ 400 K indicates that a great part of holes at
T < 200 K is localized on impurity states. At a temper-
ature of 170 K, E(T) exhibits a distinct peak. A strong
decrease in E(T) is observed below 130 K. At tempera-
tures of 110 and 102 K, which correspond to magnetic
charge transitions [9], sharp spikes exist in ESl(T). It is
known from the neutron diffraction data that the mag-
netic correlation length ξ ~ 10 Å (Nakajima [6]) at T ~
160 K becomes equal to the average distance between
impurity states [9]. Therefore, the occurrence of short-
range order in the magnetic hole structure is the most
probable reason for the appearance of a peak in E(T) at
170 K. The short-range order is determined by the mag-
nitude of the magnetic interaction J between the nearest
impurity states or magnetic polarons and, therefore, is
independent of the degree of oxygen ordering and the
quenching rate. Because holes are strongly bound with
the impurity oxygen atoms, the ordering of the impurity
must be favorable to the relaxation of elastic strains in
the crystal lattice and to the development of long-range
order in the system of magnetic polarons. The sharp
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decrease in the activation energy E(T) below ~130 K is
most likely associated with the long-range order devel-
oping in the system of impurity states. Quenching leads
to a decrease in the activation energy at T > 115 K, a
shift of the kink temperature toward low temperatures,
and the disappearance of spikes at 110 and 102 K,
which are directly associated with the long-range order
in the system of holes. The appearance of spikes at
these temperatures and the disappearance of these
spikes after quenching points to a change in the type of
long-range order.

The dimensionality of the structure, the magnitude
of the magnetic interaction between polarons J, and the
value of the magnetic moment S can be determined
from the temperature dependence of the susceptibility
χ[010](T) = χ0 + χS(T). Here we use the simplest sugges-
tion that χ0 is a weakly temperature-dependent part of
the susceptibility and χS(T) is the contribution associ-
ated with the formation of the magnetic hole structure.
When the power dependence χS ~ (T – Tc)–γ is used, an
unusually high value of the critical index γ > 6 is
obtained. It is known that an anomalously high value of
γ indicates that the susceptibility exponentially depends
of the temperature, which is a distinctive feature of low-
dimensional magnetic systems.

Several magnetic systems are known in which the
susceptibility decreases by an exponential law with
increasing temperature. Firstly, these are 1D Ising fer-
romagnetic chains of spins S[010] = 1/2 with the aniso-
tropic interaction J[010][14–19]. The longitudinal mag-
netic susceptibility of such chains under the condition
T < J/k obeys the equation

(1)

Secondly, these are 2D FM Heisenberg lattices of spins
S [18, 20, 21]. The magnetic susceptibility of a 2D
quantum system at T < J/k obeys the equation

(2)

where f is the fraction of holes with respect to the num-
ber of Ni atoms, and χ0 ~ const.

Let us suggest that polarons with S = 1/2 are ordered
into 1D FM Ising chains. Fitting with the use of Eq. (1)
gives the values J/k = 240 ± 20 K and χ0 = 9.6 ×
10−4 emu/mol. The fitting was carried out by the least-
squares method. However, it is known that a maximum
at Tmax = 0.82J/k ~ 200 K must be observed in the trans-
verse susceptibility within the model of 1D FM Ising
chains. The absence of such a maximum in the trans-
verse susceptibility in the temperature range under
study allows the model of 1D FM Ising chains with S =
1/2 to be declined.
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Fig. 3. (a) Temperature dependence of the electrical resis-
tance Rab(T) of a sample slowly cooled down from 290 K
and quenched from 320 K. The inset displays the difference
∆Rab(T) = RSl(T) – RQW(T). (b) Temperature dependence of
the activation energy obtained at different cooling rates.

Fig. 4. Experimental values of the temperature dependence
of the susceptibility χS(T) = χ[010](T) – χ0. Fitting depen-

dences are shown in solid lines: (a) ln{χS(T)/T2} = –lnC +

4πJS2/kT and (b)  = C/T2.χS
QW

T( )
Suppose that the anomalous behavior of the suscep-
tibility is associated with the formation of 2D FM
Heisenberg lattices and obeys Eq. (2). The experimen-
tal dependence χS(T) is presented in Fig. 4a on a semi-
logarithmic scale as a function of the inverse tempera-
ture, χ0 = 9.6 × 10–4 emu/mol. The exponential behavior
is clearly defined on these coordinates. The exponent
was obtained by fitting 4πJS2/k = 900 ± 20 K, which
gives J/k = 75 ± 20 K for S = 1, S  ∞ and J/k =
300 ± 20 K for S = 1/2. The value J/k = 75 K does not
satisfy the condition T < J/k and drops out completely
beyond the limits of the temperature range at hand. For
the factor before the exponent, the fitting gives a value
of 3.4 × 10–11 emu/mol. Substituting J/k = 300 K and
S = 1/2, we obtain the share of the holes making a con-
tribution to the anomaly f ≈ 3 × 10–3. From here it fol-
lows, firstly, that a very small amount of holes (less than
5%) participates in the formation of the ferromagnetic
lattice. Secondly, the value of the magnetic moment of
the impurity state S = 1/2 correlates with the theoretical
estimates of the value of the magnetic moment of
polarons [2, 3].

From quenching experiments, we found that,
because of the disordering of oxygen, the value of J ~
const for a small decrease in the anomaly height. When
the anomaly height becomes less than 50%, χS(T)
ceases to obey the exponential dependence.

The feature observed in (T) appears only
slightly. Therefore, its analysis is of qualitative charac-

ter. In the analysis of (T), we use some evident
assumptions about the behavior of the magnetic sys-
tem. Firstly, from the general behavior of the suscepti-
bility, it is evident that χ0 is independent of quenching,
and we may use the value obtained in the previous anal-
ysis. Secondly, the weak effect of the cooling rate on
the behavior of the main features of E(T) caused by the
formation of short-range order and the weak variation
of J with steadily increasing disorder indirectly indicate
that the values of J and S are independent of quenching.

The temperature dependence (T) is described

well by the power law (T) = χ0 + CT–γ. Fitting
with the use of the least-squares method gives the val-
ues of the power γ = 1.9 ± 0.2 and the coefficient C =
5.5 ± 0.5 emu/mol. The quadratic dependence is shown
in Fig. 4b in a more explicit form.

From the theory of critical phenomena, it is known
that the value γ ≈ 2 corresponds to either a 2D FM Ising
lattice in the vicinity of T ~ Tc or 1D FM Heisenberg
chains at T ≤ J/k. The values of Tc for various 2D Ising
lattices are given in the review [17, p. 235]. For the

square lattice, kTc = 2J/ln(  – 1) ≈ 2.7J. From our
measurements, Tc < 110 K and J/k ! 110 K; that is, the
value of J/k proves to be much less than the lower
boundary of the temperature range in which the fitting
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was performed. This fact indicates that the application
of the 2D Ising model to a quenched sample is incor-
rect.

Suppose that the behavior of (T) is determined
by 1D FM Heisenberg chains. According to the theory
[20, 22, 23], the susceptibility of 1D FM Heisenberg
chains obeys the dependence

(3)

Then, from the preceding analysis, it follows that the
disordering of the impurity leads to a transition from
the 2D FM Heisenberg lattice to a system of 1D FM
Heisenberg chains. Setting the coefficient before T–2

equal to C = 5.5 emu/mol and taking J/k ~ 300 K and
S = 1/2, we obtain f ≈ 0.1, that is, 50% holes.

Thus, whereas 1D FM Heisenberg chains are
formed even in the absence of the ordering of impurity
oxygen atoms, the ordering of oxygen is the decisive
factor in the formation of 2D FM Heisenberg lattices. 

Based on an analysis of the anomalous behavior of
the susceptibility χ(T) measured in a weak field, it is
shown that the ordering of holes in La2NiO4.125 single
crystals leads to the formation of 1D FM Heisenberg
chains of bound polarons with the intrachain magnetic
interaction J/k = 300 ± 20 K and the magnetic moment
S = 1/2. The ordering of the impurity creates favorable
conditions for the formation of 2D quantum FM
Heisenberg lattices of impurity states with S = 1/2 and
the value of J/k = 300 ± 20 K. Thus, La2NiO4.125 is a
unique object for studying the properties of a 2D quan-
tum Heisenberg ferromagnet, because the latter has
been observed to date only in experiments with 3He
(see references in [21]).
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A. R. Bishop, et al., Phys. Rev. Lett. 82, 4679 (1999).

5. K. Yamada, T. Omata, K. Nakajima, et al., Physica C
(Amsterdam) 221, 355 (1994).

6. J. M. Tranquada, D. J. Buttrey, V. Sachan, and J. E. Lo-
renzo, Phys. Rev. Lett. 73, 1003 (1994); K. Nakajima,
Y. Endoh, S. Hosoya, et al., J. Phys. Soc. Jpn. 66, 809
(1997).

7. J. M. Tranquada, J. E. Lorenzo, D. J. Buttrey, and
V. Sachan, Phys. Rev. B 52, 3581 (1995).

8. J. M. Tranquada, P. Wochner, A. R. Moodenbaugh, and
D. J. Buttrey, Phys. Rev. B 55, R6113 (1997).

9. P. Wochner, J. M. Tranquada, D. J. Buttrey, and
V. Sachan, Phys. Rev. B 57, 1066 (1998).

10. A. M. Balbashev, D. A. Shulyatev, G. Kh. Panova, et al.,
Physica C (Amsterdam) 256, 371 (1996).

11. H. Tamura, A. Hayashi, and Y. Ueda, Physica C (Amster-
dam) 258, 61 (1996).

12. D. E. Rice and D. J. Buttrey, J. Solid State Chem. 105,
197 (1993).

13. A. A. Nikonov, Prib. Tekh. Éksp., No. 6, 168 (1995)
[Instrum. Exp. Tech. 38, 807 (1995)].

14. V. L. Ginsburg and V. M. Fain, Zh. Éksp. Teor. Fiz. 39,
1323 (1960) [Sov. Phys. JETP 12, 923 (1960)].

15. S. Katsura, Phys. Rev. 127, 1508 (1962).
16. M. E. Fisher, J. Math. Phys. 4, 124 (1963); H. A. Kram-

ers and G. H. Wannier, Phys. Rev. 60, 252 (1941).
17. C. Domb, Adv. Phys. 9, 164 (1960); Adv. Phys. 9, 235

(1960).
18. D. S. Fisher and D. R. Nelson, Phys. Rev. B 16, 2300

(1977).
19. Jill. C. Bonner and M. E. Fisher, Phys. Rev. 135, A640

(1964).
20. M. Takahashi, Phys. Rev. Lett. 58, 168 (1987); Phys.

Rev. B 36, 3791 (1987).
21. P. Kopietz and S. Chakravarty, Phys. Rev. B 40, 4858

(1989).
22. M. E. Fisher, Am. J. Phys. 32, 343 (1964).
23. M. Takahashi and M. Yamada, J. Phys. Soc. Jpn. 54,

2808 (1985).

Translated by A. Bagatur’yants



  

JETP Letters, Vol. 78, No. 1, 2003, pp. 30–33. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 78, No. 1, 2003, pp. 36–39.
Original Russian Text Copyright © 2003 by Bykov, Nomokonov, Bakarov, Estibals, Portal.

                                                                                 
Resonance Backscattering in Submicron Rings
A. A. Bykov1, *, D. V. Nomokonov1, A. K. Bakarov1, O. Estibals2, and J. C. Portal2

1Institute of Semiconductor Physics, Siberian Division, Russian Academy of Sciences,
pr. Akademika Lavrent’eva 13, Novosibirsk, 630090 Russia

*e-mail: bykov@thermo.isp.nsc.ru
2Grenoble High Magnetic Fields Laboratory, MPI-FKF and CNRS B.P.166, F-38042 Grenoble, France

Received June 5, 2003

Quasiperiodic peaks of the resistance as a function of gate voltage were observed in submicron rings fabricated
on the basis of a two-dimensional electron gas in a GaAs quantum well with the AlAs/GaAs superlattice barri-
ers. In magnetic fields higher than 1 T, the peaks disappeared. The negative magnetoresistance observed in the
peak maxima is explained by the magnetic-field-induced suppression of the resonance backscattering that
appears in the triangular quantum dots situated in the branching regions of a ring interferometer. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 73.23.-b; 72.20.My
The negative four-terminal magnetoresistance aris-
ing in the waist of a high-mobility two-dimensional
electron gas (TEG) is one of the classical examples of
charge-carrier backscattering in semiconductor micro-
structures [1]. This negative magnetoresistance has a
classical nature and is due to an increase in the proba-
bility of charge-carrier passage through the waist upon
a decrease in the cyclotron radius. In this case, the
dependence R4t(Vg) of the four-terminal resistance on
the gate voltage is caused by a change in the TEG con-
centration and waist width and has a monotonic nonres-
onant character.

In this work, it is established experimentally that, at
low temperatures, the R4t(Vg) dependence in submicron
rings fabricated on the basis of a high-mobility TEG
exhibits quasiperiodic resistance peaks that disappear
upon an increase in the magnetic field. The negative
magnetoresistance observed in the peak maxima is
explained by the magnetic-field-induced suppression of
the resonance backscattering appearing at certain gate
voltages in the rings under study.

The rings were fabricated on the basis of a TEG in a
GaAs quantum well with the AlAs/GaAs superlattice
barriers [2–4] by electron-beam lithography and ion-
plasma etching. The TEG mobility and the concentra-
tion in the original structure grown from molecular-
beam epitaxy at 4.2 K was µ = 4 × 105 cm2/Vs and ns =
1.6 × 1012 cm–2, respectively. The atomic-force micro-
scope (AFM) image of the ring is shown in Fig. 1a. The
effective ring radius, as determined from the period of
the h/e oscillations, was on the order of reff . 0.13 µm.
The AuTi/GaAs Schottky barrier was used as a planar
gate. Experiments were carried out in the temperature
range from 0.1 to 30 K in magnetic fields up to 5 T. The
0021-3640/03/7801- $24.00 © 20030
resistance was measured using the four-terminal
scheme.

The schematic view of a ring with the depletion
regions appearing along the etching edges is shown in

S

D

1 µm

(a)

Fig. 1. (a) AFM image of the ring structure. (b) Schematic
drawing of the ring: 1 and 3 are the input and output waists
connecting the ring with the broad TEG regions; 2 and 4 are
the waists arising in the ring; and S, D, and G denote,
respectively, the source, the drain, and a planar gate.
003 MAIK “Nauka/Interperiodica”
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Fig. 1b. The interferometer has four waists, which
divide the ring in the tunneling regime into two triangu-
lar quantum dots [5, 6]. The waists at the ring input and
output are denoted by 1 and 3, and the waists inside the
ring (interferometer arms) are denoted by 2 and 4. The
AFM image suggests that the resistances of waists 1
and 3 are higher than for waists 2 and 4, because the
surface of a semiconductor structure has small etching
pits at the interferometer input and output [7].

The results of measuring R4t as a function of gate
resistance for different values of a magnetic field are
shown in Fig. 2a. In the zero-field dependence, one can
clearly see the gate peaks separated by about 0.05–0.07 V
and completely disappearing in magnetic fields higher
than 2 T. The gate peaks, on the background of the
monotonically improved passage with increasing Vg,
are due, in our opinion, to the resonances in the triangu-
lar quantum dots, which, as follows from the electro-
static calculations [5, 7], take place at the input and out-
put of small rings. The application of a relatively weak
magnetic field destroys these resonances.

The magnetic-field dependences of a four-terminal
resistance for Vg (indicated by asterisks in Fig. 2a at the
peak maximum and minimum between the peaks) are
shown in Fig. 2b. In curve 1, recorded at the peak max-
imum, one can clearly see a drastic decrease in the
resistance with increasing magnetic field up to 0.5 T.
Away from the resonance (curve 2 in Fig. 2b recorded
at the minimum between the peaks in Fig. 2a), the mag-
netoresistance varies weakly. The negative magnetore-
sistance at the peaks can be qualitatively explained by
the magnetic-field-induced suppression of the back-
scattering in an open triangular billiard [8], as is sche-
matically shown in the figure for one (input) quantum
point in the transmission regime, which is close to the
open regime. In zero field, most electrons are scattered
backward from the wall of the triangular quantum well,
whereas, in the presence of a magnetic field that distorts
their trajectories, the probability of passing through the
triangular dot increases. However, this classical model
does not explain the fact that the negative magnetore-
sistance disappears in the minima between the peaks.

The reflection resonances in the transmission
regime intermediate between the open and closed rings
(Fig. 2a) were observed up to 30 K, and their amplitude
at temperatures below 4.2 K virtually did not change.
However, at lower temperatures, the R4t(Vg) depen-
dences in the high-ohmic region (in the closed regime)
showed resistance peaks with maxima as high as 0.5–
1 MΩ . A typical R4t(Vg) curve at a temperature of 0.1 K
is shown in Fig. 3a. A gating peak with a magnitude of
350 kΩ is clearly seen. In the closed regime, tunnel
waists appear in narrow regions 1 and 3 (Fig. 1b), while
the ring is divided into two triangular quantum dots
connected with each other laterally at the interferome-
ter arms. In this situation, the gating is explicitly seen
only upon lowering the temperature. As follows from
Fig. 3a, the resistance peaks in this case become nar-
JETP LETTERS      Vol. 78      No. 1      2003
rower and high-ohmic under the conditions of reso-
nance reflection.

Let us discuss the results obtained. In the closed
regime, the experimental data should be analyzed in
terms of quantum states in the triangular regions. In a
triangular region modeled by the Hénon–Heiles poten-
tial, the three most characteristic states in the absence
of a magnetic field are the “linear,” “triangular,” and
“smile” states [9]. The evolution of these states in a
magnetic field roughly describes the change in the char-

Fig. 2. (a) The R4t(Vg) dependence at T = 1.5 K in the
regime close to the open regime for different B values: B =
(1) 0, (2) 0.4, and (3) 2.0 T. Asterisks indicate the Vg values
for which the R4t(B) dependences were measured. (b) The
R4t(B) dependences at T = 1.5 K at the (1) maximum and
(2) minimum in Fig. 2a. The classical electron trajectories
in the triangular region are schematically shown in the inset
for the cases of the absence and presence of a magnetic
field.
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acter of electron passage through the triangular region
with changing magnetic field. In the absence of a mag-
netic field, the greatest contribution to gating comes
from the state with the wave function localized mainly
along the triangle height. In the inset in Fig. 3a, it is
denoted as “lin”). The tails of the wave function of this
state very weakly overlap in the corner regions, where
the triangles are joined together, which appreciably

Fig. 3. (a) The R4t(Vg) dependence at T = 0.1 K in the closed
regime for different B values: B = (1) 0 and (2) 1.0 T. Aster-
isk indicates the peak for which the R4t(B) dependence was
measured. Two characteristic quantum states in the closed
triangular region are schematically shown in the inset: “lin”
and “tr.” (b) Experimental R4t(B) dependence of the ring in
the closed regime at T = 0.1 K for the peak indicated by
asterisk in Fig. 3a (1). (2) The calculated curve correspond-
ing to the Raikh–Glazman model [10] with parameters B0 =
2.0 T and B1 = 0.294 T. A ring with four tunneling waists is
schematically shown in the inset.
diminishes the probability of electron passage through
the interferometer. Another characteristic state in the
triangular region is triangular (denoted as “tr” in the
inset in Fig. 3a), which is weakly bound to all three cor-
ners, because it is localized at the central region of the
triangle. For this reason, in magnetic fields not strongly
disturbing the spatial structure of this state, it should
only slightly influence the transport through the trian-
gular region [8]. The experimental dependence of the
magnetoresistance in the closed ring-operation regime
is shown in Fig. 3b.

The mechanism of negative magnetoresistance in
such a system can qualitatively be described by the
model suggested by Raikh and Glazman in [10]. In this
model, a magnetic field appreciably strengthens the
binding of the states in two quantum dots connected by
tunneling through the saddle point. In our case, two tri-
angular quantum dots are joined together by two waists
(2 and 4 in the inset in Fig. 3b). The main role in the
transport is played by the states near the Fermi level.
The binding of these states strongly depends on the
overlap of their wave functions on both sides of the bar-
rier. In zero magnetic field, this overlap is weak,
because the wave functions at the input and output bar-
rier cross-sections rapidly oscillate with different peri-
ods. In a magnetic field, the wave functions acquire an
additional phase, which makes the periods of these
oscillations closer and, hence, drastically increases the
wave-function overlap. As a result, the magnetic field
appreciably strengthens the binding of quantum dots,
giving negative magnetoresistance of the form [10]

The experimental curve for the negative magnetore-
sistance corresponding to the asterisked peak in Fig. 3a
is shown in Fig. 3b together with the curve correspond-
ing to the Raikh–Glazman model (both curves are nor-
malized to the zero-field resistance). The parameters of
the model for the calculated curve are B0 = 2.0 T and
B1 = 0.294 T. With these parameters, the experimental
and theoretical curves coincide well with each other at

low fields B ! Bc, where Bc = /B1 is the field for
which the magnetoresistance in the model [10] is min-
imal.

The parameters B0 and B1 contain the geometric and
energetic characteristics both of the tunneling saddle
waists between the quantum dots and of the dots them-
selves. The values of these parameters coincide qualita-
tively with the parameters of triangular dots obtained in
the model calculations [7] of small rings. This fact indi-
cates that the saddle waists 2 and 4 are narrow and
extended. This conclusion seems to be natural, if one
recalls that, before their formation, these waists were
open sections of the ring with the appropriate profile of
the restricting potential. Unfortunately, the complicated
character of the dependence of parameters B0 and B1 on
the saddle geometry and energetics did not allow us to

R B( )/R 0( ) B2/B0
2( )/ B/B1( ).cosh

2
exp=

B0
2
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gain more detailed information about the potential
relief of the tunneling waists from the comparison of
the experimental and calculated curves.

In summary, this work presents the experimental
results on measuring the charge-carrier transport
through individual submicron-sized rings based on a
high-mobility TEG with high density. Quasiperiodic
gating peaks have been observed as functions of gating
voltage. Such a behavior is explained by the resonance
electron backscattering in the triangular quantum dots
at the ring input and output. The negative magnetoresis-
tance at the peak maxima is qualitatively explained by
the strengthening of binding between the triangular
dots with an increase in the magnetic field and is in
agreement with the Raikh–Glazman model.

We are grateful to A.V. Latyshev for the AFM char-
acterization of the rings and to V.A. Tkachenko and
O.A. Tkachenko for discussion of results. This work
was supported by the Russian Foundation for Basic
Research, project no. 01-02-16892.
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The generalized Ashkin–Teller model involving both biquadratic and bilinear interactions between the Ising
subsystems (σ and s) and equivalent to the anisotropic Ising model with spin 3/2 is considered. For a certain
magnitude of the opposite-sign bilinear interactions along the horizontal and vertical axes of a square lattice,
the exact analytic solution is obtained that describes the phase transition between the disordered (〈σ〉  = 〈s〉  =
〈σs〉  = 0) and the correlated ordered (〈σs〉 ≠ 0 and 〈σ〉  = 〈s〉  = 0) states. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 64.60.Cn; 75.10.Hk
The exactly solvable two-dimensional lattice mod-
els in statistical physics play an important part in the
theory of phase transitions [1]. They are developed due
to their own logic that alludes to those modifications of
the Hamiltonian for which new exact solutions can be
obtained, as well as due to the problems associated with
the description of phase transitions in various real sys-
tems, such as two-dimensional antiferromagnets [2],
artificial two-dimensional lattices of ferromagnetic
nanoparticles [3], and adsorbed molecular monolayers
[4, 5]. Among the models allowing four states of a par-
ticle in the lattice site, the Ashkin–Teller model and a
model with spin 3/2 is actively used. In essence, these
models are equivalent (for the same number of interac-
tion types between spins 3/2 and the same limitations
on the parameters of these interactions), allowing the
results obtained for a certain model to be extended to
the other model [6, 7].

To describe the orientational phase transitions in
systems with an essentially anisotropic multipolar Cou-
lomb interaction, a more detailed study of the anisotro-
pic models is necessary. For example, the phase transi-
tion in a square lattice of dipoles with four possible ori-
entations along the square diagonals was considered
using a short-range dipolar model reducible to the
exactly solvable anisotropic Ising model [8]. In the case
of four orientations of the molecular long axes along
the axes of a square lattice, a more complicated situa-
tion arises because of the presence of fluctuation inter-
actions between two Ising subsystems of spins 1/2 and
the appearance of a new type of orientational order
(occurrence of the preferable orientation of the molec-
ular long axes in the absence of spontaneous polariza-
tion) [9]. It turned out that this new type of ordering
0021-3640/03/7801- $24.00 © 20034
allows an exact analytic description not only for the
corresponding Bethe lattice [9] but also for a square lat-
tice. It is the purpose of this work to show that (a) the
most general formulation of the anisotropic model for
spins 3/2 is equivalent to the generalized Ashkin–Teller
model including not only the biquadratic but also the
bilinear interactions between the Ising subsystems and
(b) the generalized Ashkin–Teller model has the exact
analytic solution at a certain magnitude of the opposite-
sign bilinear interactions along the horizontal and ver-
tical bonds (so-called fluctuation interactions).

The most general formulation of the anisotropic
Ising model with the interactions between spin pairs
Si = ±1/2 and ±3/2 at the neighboring sites i and j of an
arbitrary lattice is characterized by the Hamiltonian of
the form [6, 7]

(1)

The simplest relationship between spins Si and a pair of
spins σi, si = ±1 is given by

(2)

Substitution of Eq. (2) into Eq. (1) gives the Hamilto-
nian in the σ, s variables:

H
1
2
--- JijSiS j KijSi

2S j
2 LijSi

3S j
3+ +

i j≠
∑–=

+
Mij

2
------- SiS j

3 Si
3S j+( ) ∆iSi

2
.

i

∑–

Si σi
1
2
---si.+=
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(3)

where new interaction parameters are introduced:

(4)

A model with Hamiltonian (3) can be considered as
the generalized Ashkin–Teller model. It is different
from the original Ashkin–Teller model [10, 11] (see
also [1]) in that the interaction parameters along differ-
ently oriented bonds (i, j) are different and that the
bilinear interactions (proportional to the J2, ij parame-
ters) between the Ising σ and s subsystems are
included. The on-site σisi interactions can be compen-
sated through the appropriate choice of the parameters
∆i. In [6], the conditions for reducing the Ising model
with spin 3/2 to the standard Ashkin–Teller model were
formulated; in our more general formulation, they are
equivalent to the additional condition J2, ij = 0 (a similar
conclusion about the reducibility to the eight-vertex
model, though with a condition less general than J2, ij = 0,
can be found in [7]).

Let us now turn to a square lattice. Assume that the
parameters J1, , and J4 are identical along all the

neighboring bonds and that J1 =  and ∆ = –5J4 (to
compensate the on-site bilinear interactions). Let the
system anisotropy consist only in that the interaction
parameters J2, ij along the horizontal (i, j = x) and verti-
cal (i, j = y) bonds are opposite in sign: J2 = J2, x = – J2, y .
The corresponding Hamiltonian is

(5)

A Hamiltonian of this form was introduced in [12] and,
with J2 ≈ 0.6J1, J4 ≈ –0.2J1, and J1 ≈ 0.8 meV, described
the orientational phase transition well in a 2 × 1 mono-
layer of CO molecules adsorbed at the NaCl(100) sur-
face.

H
1
2
--- J1 ij, σiσ j J1 ij,' sis j J2 ij, σis j siσ j+( )+ +[

i j≠
∑–=

+ J4 ij, σisiσ js j ]
5
4
--- J4 ij,

j

∑ ∆i+
 
 
 

σisi

i

∑–

+
5
4
--- 5

8
--- J4 ij,

j

∑ ∆i+
 
 
 

,

j1 ij,

J1 ij,'

J2 ij, 
 
 
 
  1 49/16 7/4

1/4 169/64 13/16

1/2 91/32 5/4 
 
 
 
  Jij

Lij

Mij 
 
 
 
 

,=

J4 ij, Kij.=

J1'

J1'

H J1 σmnσm 1 n,+ smnsm 1 n,+ σmnσm n 1+,+ +(–[
mn

∑=

+ smnsm n 1+, ) J2 σmnsm 1 n,+(–

+ smnσm 1 n,+ σmnσm n 1+, smnsm n 1+, )––

– J4 σmnsmnsm 1 n,+ σm 1 n,+ σmnsmnσm n 1+, sm n 1+,+( ) ] .
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For 0 ≤ J2 ≤ J1, the ground-state energies of this
Hamiltonian and the corresponding spin distributions
over the sites of a square lattice are given by

(6)

These states are degenerate with respect to the parame-
ter J2. The degeneracy also holds for an arbitrary rela-
tion between the parameters J1 and J2. For example, if
0 ≤ J1 ≤ J2, the parameters J1 and J2 change places, and
then the degeneracy occurs with respect to the parame-
ter J1. For arbitrary signs of parameters J1 and J2, of
importance is which of the absolute values |J1| or |J2| is
larger. In determining the ground-state structure, the
larger value competes with –J4 (J4 < 0), while the
smaller corresponds to the degeneracy parameter.
Clearly, after redefining the spin variables, each of the
resulting phase regions can be described by Hamilto-
nian (5) with the substitution J1  J2 and/or changing
signs of J1 and J2. For this reason, the statistical proper-
ties of all phase regions are identical, and, without loss
of generality, one can restrict oneself to the consider-
ation of the region 0 ≤ J2 ≤ J1.

A particular case of Hamiltonian (5) with J4 = 0 was
considered in [9]. It corresponds to a quasi-dipolar
model with four possible molecular orientations along
the axes of a square lattice. In [9], the term “fluctuation
interactions” was introduced for the bilinear s–σ inter-
actions proportional to J2 and not contributing to the
ground state. Accordingly, we call the model character-
ized by Hamiltonian (5) the generalized Ashkin–Teller
model with fluctuation interactions. The phase diagram
of this new model is expected to be highly intricate,
because each of the particular cases J2 = 0 [1] and J4 =
0 [9] is characterized by the presence of at least three
phases: 〈σ〉  = 〈s〉  = 〈σs〉  = 0 (phase I), 〈σ〉  = 〈s〉  ≠ 0 with
〈σs〉  ≠ 0 (phase II), and 〈σ〉  = 〈s〉  = 0 with 〈σs〉  ≠ 0 (phase
III). The construction of a complete phase diagram (for
J2 and J4 ≠ 0) is a rather intriguing but as yet unsolved
problem, which requires the use of certain approximate
or numerical methods (in [9], e.g., the Bethe lattice with
coordination number 4 and J4 = 0 was considered, and
the Monte Carlo modeling was performed on a square
lattice). At present, only the exact solutions describing
the phase transition between phases I and II in the triv-
ial case J2 = J4 = 0 (two-dimensional Ising model) and
in the case –J1 ≤ J4 ≤ J1, J2 = 0 are known [1]. For this
reason, the new exact solution presented below for the
transition between phases I and III in another particular
case J1 = J2 is of special interest.

H0

N 4J1– 2J4–( ),  σmn smn 1,    J4 J1;–>= =

2NJ4,          σmnsmn 1–( )m n+ , J4 J1.–<=



=
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Let us introduce new spin variables τmn correspond-

ing to the ground states given by Eq. (6),

(7)

The correspondence between the four pairs of possible
values of spin variables and the four orientations of vec-
tor emn in the dipolar model, suitable for the graphical
interpretation of the solution, is illustrated in Fig. 1a. In
terms of the variables τmn and σmn, Hamiltonian (5) can
be rewritten as

(8)

Hereafter, the upper signs correspond to J4 > – J1 and
the lower signs correspond to J4 < – J1 (J1 > 0). For J1 =
J2, the expressions in the square brackets can take only
the two values 4J1 and 0. The first corresponds to the
horizontal bond with τmn = τm + 1, n = 1 or the vertical
bond with τmn = τm, n + 1 = –1. In all other cases, the
value is zero. This implies that the diagrammatic
σ-expansion of the partition function using the identity
exp(aσ) = cosha + σsinha (σ = ±1) [13] contains only
the horizontal and vertical chains sharing none of the
lattice sites (Fig. 1b). The subsystem of σ spins
becomes quasi-one-dimensional without long-range
order, 〈σ〉  = 0. Because of this, the summation over the

τmn

σmnsmn,              J4 J1;–>

1–( )m n+ σmnsmn, J4 J1.–<



=

H J1 1 τmnτm 1 n,+±( )[{
mn

∑–=

+ J2 τmn τm 1 n,+±( ) ]σmnσm 1 n,+

+ J1 1 τmnτm n 1+,±( )[
– J2 τmn τm n 1+,±( ) ]σmnσm n 1+,

+ J4 τmnτm 1 n,+ τmnτm n 1+,+( ) } .

Fig. 1. (a) Scheme of the correspondence between four pairs
of spin variables σmn = ±1 and smn = ±1 (or τmn = σmnsmn)
and four orientations of the vector enm. (b) Example of the
distribution of spin variables over the sites of a square lat-
tice. For the J1 = J2 case, the solid lines connect the inter-
acting σ spins; the interaction energies are ±4J1 (the sign is
determined by the values of σ variables). After the summa-
tion over the states of σ spins, the effective interaction
energy of a pair of neighboring τ1 and τ2 spins becomes

equal to – , where  depends on temperature and is

determined by Eqs. (10)–(12).

J̃τ1τ2 J̃
                                          

2N states of σ spins will nullify all terms containing
even one hyperbolic sine multiplier, so that the partition
function takes the form

(9)

(Kj = Jj/T, j = 1, 2, 4). Since the arguments of hyperbolic
cosines take only two values 4K1 and 0, one can use the
identity

(10)

to reduce the partition function to

(11)

Here,  denotes the partition function of a two-
dimensional Ising model with the effective Hamilto-
nian

(12)

where the interaction parameter  depends on temper-
ature and accounts for the thermodynamically averaged
interaction of two neighboring σ spins. The tempera-
ture of the phase transition from a disordered (〈τ〉  = 0)
to the correlated ordered (〈τ〉  ≠ 0) state is found from

the equation sinh  for the critical temperature
of a two-dimensional Ising model:

(13)

The phase diagram of the generalized Ashkin–Teller
model with fluctuation interactions is shown in Fig. 2
for the particular case J1 = J2. The coexistence lines for
phases I and III are determined from Eq. (13). The
points with K1 = K2 = 0 and K4 = ±0.4407 (circular
marks in Fig. 2) correspond to the critical values of a
two-dimensional Ising model with respect to the spin

Z H/T–( )exp
τ{ } σ{ },
∑=

=  2N K1 1 τmn+( ) 1 τm 1 n,+±( )cosh[ ]{
mn

∏
τ{ }
∑
× K1 1 τmn–( ) 1 τm n 1+,±( )cosh[ ]

× K4 τmnτm 1 n,+ τmnτm n 1+,+( )[ ] }exp

1 τ1+( ) 1 τ2+( )K1cosh 1 τ1+( ) 1 τ2+( )K̃1[ ] ,exp=

K̃1
1
4
--- 4K1cosh( )ln=

Z 2N 4K1cosh( )N /2ZIsing K̃( ),=

K̃
K̃1 K4,    K1 K4 0,>++

–K̃1 K4 , K1 K4 0.<++



=

ZIsing K̃( )

Heff J̃ τmnτm 1 n,+ τmnτm n 1+,+[ ] ,
mn

∑–=

J̃ T K̃ ,=

J̃

2K̃ 1=

4K1cosh

=  
3 2 2+( ) 4K4–( ),   K1 K4 0>+exp

3 2 2+( ) 1–
4K4–( ), K1 K4 0.<+exp
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variable τ. The point with K4 = 0 and K1 = K2 = 0.6121
(square mark in Fig. 2) determines the exact value Tc =
1.6337J1 of the phase-transition temperature in a quasi-
dipolar model with four possible molecular orientations
along the axes of a square lattice. The value Tc = 1.94J1
obtained in [9] for the corresponding Bethe lattice can
be regarded as the result of the cluster approximation
for a square lattice.

It is of interest to compare our phase diagram with
the Ashkin–Teller diagram with J2 = 0. The phase-sep-
aration lines for phases I and III contain the same points
K1 = 0 and K4 = ±0.4407. Whereas the I–III lines in the
left part of the diagram has the same asymptotic value
K1 = – K4, the I–III line for K2 = 0 in the right part
reaches the bifurcation point K1 = K4 = 0.2747 (rhombic
mark in Fig. 2) that corresponds to the coexistence of
three phases (dotted lines in Fig. 2). It is easy to under-
stand that, as the parameter J2 increases, the region
occupied by phase II is expelled by phase III, and the
bifurcation point moves up and to the left, approaching
the line K1 = – K4 at J2  J1.

Note in conclusion that we have obtained the exact
analytic solution for the generalized Ashkin–Teller
model, in which the parameter J2 of bilinear fluctuation
interactions between Ising subsystems is equal to the
parameter J1 of bilinear interactions between the neigh-
boring spins in each subsystem. The phase diagram
constructed for this solution shows that phase III

Fig. 2. Phase diagram of the generalized Ashkin–Teller
model for the particular cases J1 = J2 (solid lines separating
phases I and III) and J2 = 0 (dashed lines separating phases
I, II, and III in the region K4 > –K1). The singular points dis-
cussed in the text are marked.

1
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(〈σs〉  ≠ 0 at 〈σ〉  = 〈s〉  = 0) can arise due not only to the
biquadratic but also to the bilinear interactions between
the Ising subsystems (the latter type of interactions is
also typical of the anisotropic model with spin 3/2 and
of the dipolar model). Our exact solution provides the
key to understanding the formation mechanism of
phase III. At J2 = J1, one of the spin subsystems
becomes quasi-one-dimensional, allowing the explicit
summation of the partition function over the states of
this spin subsystem. Then the result of the summation
over the states of the second spin subsystem is formally
expressed through the partition function of a two-
dimensional Ising model with an unusual interaction
parameter that results from the thermodynamic averag-
ing over the spins of the first subsystem.
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The results of classical and quantum studies of the laser-radiation self-frequency conversion processes in peri-
odically poled active nonlinear crystals are overviewed. The theoretical and experimental results of studying
quasi-phase-matched self-frequency doubling and summation of the laser and pump frequencies in an active
nonlinear periodically poled Nd:Mg:LiNbO3 crystal are presented. The possibility of producing frequency- and
polarization-entangled states and the sub-Poisson field statistics through a consecutive nonlinear optical fre-
quency conversion in periodically poled nonlinear crystals is considered. © 2003 MAIK “Nauka/Interperiod-
ica”.
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1. INTRODUCTION

Active nonlinear crystals combine active (lasing)
properties, owing to the presence of rare-earth impuri-
ties (e.g., Nd3+, Er3+, Yb3+), and nonlinear optical prop-
erties. In such crystals, the laser frequency can undergo
self-frequency conversion if the lasing at a certain fre-
quency is accompanied by the nonlinear conversion of
the latter. Studies of active nonlinear crystals were
begun back in 1960s [1, 2] and continue to the present
day [3–6]. Nowadays, the following active nonlinear
crystals are most frequently used in the self-frequency
conversion experiments: Nd:YAl3(BO3)4 [7–10],
Nd:YCa4O(BO3)3 [11], Nd:CdCa4O(BO3)3 [12], and
Yb:YAl3(BO3)4 [13].

Recent achievements in selective (diode) laser-
pumping technique [3, 6] and the appearance of new
active nonlinear crystals with high nonlinearity, high
concentration of rare-earth ions, and high optical dam-
age threshold [14–17] have opened up new possibilities
for designing compact laser radiation sources [18].

However, in spite of the appearance of new active
nonlinear crystals with quadratic nonlinearity, the capa-
bilities associated with increasing the number of non-
linear optical transformations and parametric effects
have not been extended. The main reason is that the
capabilities of homogeneous nonlinear and active non-
linear crystals are limited because of their dispersion
properties. The use of nonlinear and active nonlinear
crystals with a periodic inhomogeneity [18], in which
the quasi-phase-matched light wave interaction can be
implemented if the modulation period of nonlinear sus-
0021-3640/03/7801- $24.00 © 20038
ceptibility is properly chosen, allows the range of prac-
tically realizable nonlinear optical processes to be sub-
stantially extended.

This has motivated our studies of laser-radiation
self-frequency conversion processes in periodically
poled active nonlinear crystals (PPANCs). A character-
istic feature of a PPANC is that its polar axis periodi-
cally changes its direction, resulting in a periodic
change in the sign of some of the nonlinear susceptibil-
ities. The modulation of the nonlinear susceptibility
and, correspondingly, modulation of the wave coupling
on going from layer to layer produces a “nonlinear” lat-
tice. As a result, a PPANC can be used to practically
implement quasi-phase-matched frequency conversion,
for which the detuning of interacting waves is compen-
sated by the reciprocal nonlinear-lattice vector.

Our studies at the interface between laser physics
and nonlinear optics have shown that the combination
of the PPANC selective pumping and the wave quasi-
phase-matching technique extends the class of three-
wave interaction processes because of the inclusion of
laser and pumping waves into the nonlinear processes.

Of great interest is the study of the quantum proper-
ties of the processes occurring in active nonlinear and
periodically poled nonlinear crystals. Until now, para-
metric photon down-conversion, for which the fre-
quency of a created photon is lower than the pump fre-
quency, has been the main source of nonclassical light
[19]. This traditional process can be implemented
through both phase-matched and quasi-phase-matched
wave interactions. In the interactions studied in this
work, two nonlinear processes are coupled to each
003 MAIK “Nauka/Interperiodica”
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other. These are either two nonlinear optical processes
or the laser and the nonlinear optical processes. In the
first case, one deals with the consecutive interactions,
and in the second case, with the frequency self-fre-
quency conversion. These situations are cardinally dif-
ferent from the well-known three-frequency process.
For instance, in the consecutive processes, the frequen-
cies of the created photons can be both higher and lower
than the pump frequency, and there is a quantum corre-
lation between them.

In this review, we report our results obtained over
the past three years under the partial support of the Rus-
sian Foundation for Basic Research (project no. 00-02-
16040). In Section 2, the results of classical theory of
the intracavity three-wave interaction processes in a
PPANC are presented. The following stationary gener-
ation regimes with self-frequency conversion are con-
sidered: laser self-frequency doubling and self-fre-
quency halving, frequency summation with the pump
wave, and the consecutive third harmonic generation
and parametric amplification at low-frequency pump-
ing. Section 3 reports the experimental data on quasi-
phase- matched self-frequency conversion of the laser
and pump frequencies. The PPANC grown technique is
also briefly discussed. Section 4 is devoted to the quan-
tum analysis of the processes of quasi-phase-matched
laser-frequency conversion in PPANCs. In Section 5, it
is shown that the frequency- and polarization-entangled
photon states can be produced through the consecutive
nonlinear optical frequency transformations in periodi-
cally poled nonlinear crystals. In Section 6, the para-
metric amplification at a low-frequency pumping is
considered in the context of nonclassical light genera-
tion. The possibility of generating a radiation with sub-
Poisson photon statistics is also demonstrated.

2. QUASI-PHASE-MATCHED 
LASER-FREQUENCY SELF-FREQUENCY 

CONVERSION IN PPANC

2.1. Three-Frequency Quasi-Phase-Matched Wave 
Interactions

Consider a PPANC placed inside a cavity formed by
two plane mirrors applied to the crystal ends (Fig. 1). In
the case of quasi-phase-matched frequency self-con-
version, laser action in a crystal occurs, e.g., at fre-
quency ω1 and, simultaneously, the waves with fre-
quencies ω1, ω2, and ω3, such that ω1

 + ω2 = ω3, are
involved in the quasi-phase-matched nonlinear interac-
tion. We assume that one of the cavity mirrors totally
reflects the radiation at the frequencies of all interacting
waves, while the intensity reflection coefficient of
another (exit) mirror is Rj for the wave with frequency
ωj (j = 1, 2, 3).
JETP LETTERS      Vol. 78      No. 1      2003
The corresponding process of quasi-phase-matched
frequency self-frequency conversion is described by
the following set of equations [20]:

(1)

(2)

(3)

(4)

(5)

In Eqs. (1)–(5), Ij (j = 1, 2, 3) is the intensity of the
ωjth wave normalized to the saturation intensity IS of the
active medium; ϕ is the phase difference between the
interacting waves; N is the inverse population normal-
ized to its threshold value; index q corresponds to the
frequency amplified due to the crystal active properties;
νj = 2(1 – Rj)/(1 + Rj) + 2αjL are the dimensionless linear
losses in the cavity for the ωjth wave, where L is the
crystal length and αj are the linear losses in crystal; the

parameter εj = 8192Fjπ3L2IS /cn1n2n3 m2

is the nonlinear wave-coupling coefficient with allow-
ance for the quasi-phase-matching Λ = 2πm/∆k, where

dI1 2,

dt
-----------

=  
1

n1 2, TC

--------------- –ν1 2, I1 2, ε1 2, I1I2I3 ϕ θ+( )sin–( ),

dI3

dt
-------

1
n3TC

----------- –ν3I3 ε3I1I2I3 ϕ θ+( )sin+( ),=

dϕ
dt
------

I1I2I3

2 n1 n2 n3–+( )TC

------------------------------------------
ξ2

I2
--------- ϕ ψ2+( )cos

=

+
ξ1

I1
--------- ϕ ψ1+( )cos

–
ξ3

I3
--------- ϕ ψ3+( )cos 2δΨ

I1I2I3

------------------+




,

dIq

dt
-------

νqIq

nqTC

----------- N 1–( ),=

dN
dt
-------

1
T ||
----- 1 η N Iq IqRq 1+ +( )–+( ).=

e jχ jik
2( )eiek( )2 λ j

2

Fig. 1. Active nonlinear PP crystal inside a cavity. M1 and
M2 are the cavity mirrors, Λ is the PP period, l is the domain
length, PS is the spontaneous polarization vector in the

domain, and χ(2) is the coefficient of quadratic nonlinear
susceptibility.
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Λ is the modulation period of the quadratic nonlinear-
susceptibility coefficient, m is the quasi-phase-match-
ing order (an odd number), and ∆k = k1 + k2 – k3 is the
wave mismatch; ej, kj = 2π/λj, and nj are the polarization
unit vector, the wave number, and the crystal refractive
index for the jth wave, respectively;  is the qua-
dratic nonlinear- susceptibility tensor; the function

χ jik
2( )

F j

1 R1R2R3 2 R1R2R3 ∆kL δΨ+( )cos+ +

1 R j+( )2
---------------------------------------------------------------------------------------------------=
is associated with the cavity mirrors; δΨ/2 is the addi-
tional phase difference acquired by the waves upon
their reflection from the cavity mirrors; 1 + η =
δPpump/Pth is the ratio of pump power absorbed in crys-
tal to its threshold value, and δ is the pump absorption
coefficient; TC is the cavity passage time; T|| is the
inverse-population relaxation time in the active
medium; ξj = εjA2/4Fj; θ = arcsin(B/(Fj(1 + Rj)2)); and
ϕj = arcsin(B/A), where
A 1 R1R2R3/R j
2 2 ∆kL δΨ+( ) R1R2R3/R j

2cos+ +( ),=
and

Set of equations (1)–(5) describes, in general form,
the process of quasi-phase-matched laser-radiation
self-frequency conversion in a PPANC. The right-hand
side of Eq. (4) should be substituted for the term
νjIj/njTC in Eq. (1) or (2), depending on which of the ω1, 2
or ω3 waves is amplified by the active medium.

The following quasi-phase-matched laser-frequency
self-frequency conversion processes were studied in
detail: frequency self-frequency doubling, self-fre-
quency halving, and addition (mixing) involving the
pump wave. These processes were studied for the peri-
odically poled Nd:Mg:LiNbO3 crystal, in which the
most intense lasing occurs at a wavelength of 1.084 µm
[21].

B 1 R1R2R3/R j
2

+( ) ∆kL/2 δΨ/2+( ).cos=

Fig. 2. Normalized second harmonic intensity (I2ω) at the
exit from the cavity vs. the crystal length (L) and the reflec-
tion coefficient (R2ω) of the exit mirror for the second har-
monic.
In the case of quasi-phase-matched self-doubling,
laser generation in a periodically poled Nd:Mg:LiNbO3
crystal (1.084 µm) is accompanied by the radiation in
the green region (0.542 µm) because of the frequency
doubling. For the process considered, ω1 = ω2 = ω and
ω3 = 2ω, and the system of Eqs. (1)–(5) has two steady-
state solutions for the second harmonic intensity:

(6)

(7)

In deriving expressions (6) and (7), it was assumed
that the cavity Q factor is high for the laser frequency ω
(R1 = R2 = 1) and δΨ = 0. Note that, for δΨ ≠ 0, the sys-
tem of interest has no simple analytic solution. Depend-
ing on the values of parameters ν1, 3, ε1, 3, R3, and η, one
obtains either of two steady-state solutions (6) or (7).

A typical behavior of intensity is shown in Fig. 2 for
the stable branch of solutions (6) and (7). One can see
from this figure that, for a certain optimal crystal length
and a certain reflection coefficient R2ω of the exit mir-
ror, the second harmonic output intensity (power) is
maximal. The calculations were carried out for a peri-
odically poled Nd:Mg:LiNbO3 crystal with a length of
0.5 cm, a nonlinearity period Λ = 7 µm, and the quasi-
phase-matching order m = 1. The ee–e interaction was
used, for which lithium niobate crystal has the greatest
nonlinear coefficient d33 = 34.4 pm/V. The other param-
eters used in the calculations were as follows: IS =
10 kW/m2 (data from [20]), Ppump = 2 W, Pth = 1.25ν1,
δ = 0.5, αω = 0.08 cm–1, α2ω = 0.1 cm–1, and the beam
radius in the cavity was 100 µm. It was assumed that the
pump power absorbed in the crystal obeyed the expres-
sion δPpump = Ppump(1 – exp(–τL)), where τ is the pump

I3

ε3

4ν3
2

-------- ν1ν3 ε1ε3( ) 1/2––( 1/2–=

+ ν1ν3 ε1ε3( ) 1/2– 1/2+( )2
2ην 1ν3 ε1ε3( ) 1/2–+ )

2

,

I3

4ν1η R3 ν3 1 R3+( )–

4 R3 4ν1 R3 ν3 1 R3+( )+( )
---------------------------------------------------------------------.=
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linear absorption coefficient. The value τ = 2ln2 cm–1

was taken.
In the case of quasi-phase-matched self-halving, the

laser generation in a periodically poled Nd:Mg:LiNbO3
crystal (at 1.084 µm) is accompanied by the second
subharmonic generation (at 2.168 µm) as a result of fre-
quency half-division. The resulting two-micron radia-
tion is harmless to human eyes and, hence, it may be of
interest in a number of applications. For the frequency
self-halving, the set of Eqs. (1)–(5) also has an analytic
solution in the case of stationary generation. The
behavior of intensity corresponding to this regime is
shown in Fig. 3. It follows from this figure that the pro-
cess has a threshold character and that the subharmonic
generation is possible only in a high-Q cavity. The
curves in Fig. 3 were calculated for an Nd:Mg:LiNbO3
crystal with the domain structure period Λ = 22 µm
(m = 1), Ppump = 3 W, and αω/2 = 0.08 cm–1. The other
parameters were the same as in the case of frequency
self-doubling.

In the case of quasi-phase-matched self-frequency
summing in Nd:Mg:LiNbO3, the pump radiation
(0.81 µm) that is not absorbed in crystal interacts non-
linearly with the laser frequency (1.084 µm) to create a
wave with the sum frequency (0.464 µm). The corre-
sponding wavelength for the crystal under study lies in
the violet region. For this process, the set of Eqs. (1)–
(5) also has an analytic solution. The stable branch of
this solution is shown in Fig. 4. The calculations were
carried out for the Nd:Mg:LiNbO3 crystal with the non-
linearity modulation period Λ = 4.2 µm (m = 1),
Ppump = 2 W, α3 = 0.1 cm–1 and R2 = 0. The other param-
eters were as in the cases considered above.

2.2. Frequency Self-Conversion in Consecutive 
Wave Interactions

Apart from the traditional nonlinear optical interac-
tions considered above, periodically poled crystals
allow the sequential [22] and simultaneous [23] three-
wave interactions. The use of PPANCs opens new pos-
sibilities of simultaneous generation at several frequen-
cies in the same crystal.

Let, as above, the PPANC be situated inside the cav-
ity (Fig. 1). Let the laser radiation in a crystal be gener-
ated at the frequency ω1, and the conditions for quasi-
phase-matched consecutive interaction of four waves
ω1, ω2, ω3, and ω4, such that ω1 + ω2 = ω3 and ω1 + ω3 =
ω4, be fulfilled. We assume that one of the cavity mir-
rors totally reflects all interacting waves, while the
intensity reflection coefficients of another mirror are Rj

(j = 1, 2, 3, 4).
In this case, the wave interaction obeys the follow-

ing set of equations [24]:

(8)
dI1

dt
-------

1
n1TC

----------- –ν1I1 ε21I1I2I3 Ψ2cos–( ),=
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(9)

(10)

(11)

dI2

dt
-------

1
n2TC

-----------=

× –ν2I2 ε32I2I3I4 Ψ3cos– ε22I1I2I3 Ψ2cos–( ),

dI3

dt
-------

1
n3TC

-----------=

× –ν3I3 ε33I2I3I4 Ψ3cos– ε23I1I2I3 Ψ2cos+( ),

dI4

dt
-------

1
n4TC

----------- –ν4I4 ε34I2I3I4 Ψ3cos+( ),=

Fig. 3. Normalized subharmonic intensity (Iω/2) at the exit
from the cavity vs. the crystal length (L) and the reflection
coefficient (Rω/2) of the exit mirror for the subharmonic.

Fig. 4. Normalized intensity (Isum) of sum frequency at the
exit from the cavity vs. the crystal length (L) and the reflec-
tion coefficient (Rsum) of the exit mirror for the sum fre-
quency.
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(12)

(13)

(14)

(15)

where Ψ2, 3, ε2i, ε3p, ξ2i, and ξ3p are, respectively, the
phase differences and the nonlinear wave-coupling
coefficients (i = 1, 2, 3, p = 2, 3, 4).

The calculations carried out with the dispersion data
taken for the periodically poled Nd:Mg:LiNbO3 crystal
from [25] showed that, for the properly chosen modu-
lation period of nonlinear susceptibility and quasi-
phase-matching orders, the following sequential quasi-
phase-matched processes can occur in this crystal. (i)
Parametric amplification at low-frequency pumping:
ω3  ω1 + ω2 and ω2 + ω3  ω4, if the wave ω3 is
amplified due to the active crystal properties and the
frequency ω4 > ω3 is generated as a result of frequency
summation, and (ii) third harmonic generation ω +
ω  2ω and ω + 2ω  3ω, if the wave with fre-
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  ,
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I2
-----------– 

 =

–
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Fig. 5. Normalized intensity (I4) of the wave with frequency
ω4 at the exit from the cavity vs. the crystal length (L) and
the reflection coefficient (R4) of the exit mirror for the wave
with frequency ω4.
quency ω is amplified in the crystal. It should be noted
that, in contrast to the conventional nonlinear periodi-
cally-poled crystals, one fails to realize the sequential
quasi-phase-matched interactions for multiple frequen-
cies, i.e., the situation for which ω1 = ω2 = ω, ω3 = 2ω,
and ω4 = 3ω, in the active nonlinear crystals [22].

Let us now turn to the quasi-phase-matched para-
metric amplification at low-frequency pumping. In the
Nd:Mg:LiNbO3 crystal, this process proceeds as fol-
lows: 1.084 µm  2.163 µm + 2.173 µm and
2.173 µm + 1.084 µm  0.728 µm. To observe this
process in the first quasi-phase-matching order for the
ee–e interactions, the RDS period should be Λ =
20.7 µm. The behavior of intensity corresponding to
the steady-state solution to the set of Eqs. (8)–(15) is
presented in Fig. 5. The calculations were performed
with Ppump = 3 W, ν1 = ν2 = ν3 = 0.08, and α4 = 0.1 cm–1.
The other parameters were the same as in the previous
cases.

In this crystal, the quasi-phase-matched consecutive
third harmonic generation in the low quasi-phase-
matching orders can be realized with a laser wavelength
of 1.387 µm. The corresponding period must be Λ =
13 µm. This process proceeds in the following way:
1.387 µm  0.6935 µm + 0.6935 µm and 1.387 µm +
0.6935 µm  0.462 µm. The third harmonic fre-
quency falls within the violet wavelength range.

EXPERIMENTS ON QUASI-PHASE-MATCHED 
LASER-FREQUENCY SELF-FREQUENCY 

CONVERSION

3.1. Periodically Polled Active Nonlinear 
Nd:Mg:LiNbO3 Crystals

There are several methods of forming regular
domain structure in active nonlinear crystals. Among
them are the standard growth (Czochralski) method, the
method of post-growth crystal processing through
applying a high voltage (so-called high-voltage
method), and the diffusional method. At present, quasi-
phase-matched frequency self-frequency conversion
has been experimentally observed in the crystals that
were prepared by all the indicated methods [26–31].
The best results were obtained for the active nonlinear
RDS crystals grown by the Czochralski method [18].

The Czochralski method allows the preparation,
directly in the course of growth, of RDS crystals con-
taining relatively smooth and flat domain walls with a
broad range of periods and a crystal volume of several
cm3 [32, 33]. If the symmetry axis of the heat field does
not coincide with the crystal rotation axis, the tempera-
ture periodically changes at the growth front, resulting
in the modulation of the crystal chemical composition.
The composition inhomogeneity gives rise to so-called
growth rotational bands. On cooling with passing
through the Curie point, a local field produced by the
concentration gradient of rare-earth impurities Nd, Er,
or Yb leads to the formation of a domain structure. The
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spontaneous polarization vectors in the adjacent
domains form an angle of 180° with each other. The
maxima and minima of impurity concentration corre-
spond to the domain walls, while the impurity modula-
tion period corresponds to the period of domain struc-
ture [34, 35]. Therefore, rare-earth ions in PPANCs
serve the functions of an active ion and of a “building
material” in the formation of a regular domain struc-
ture. The presence of MgO in a periodically poled crys-
tal diminishes the photorefractive damage of a PPANC,
thereby improving its quality. The PPANC period is
determined by the ratio of pulling rate to the crystal
rotation velocity during the growth.

3.2. Frequency Self-Doubling in the Nd:Mg:LiNbO3 
Periodically Poled Crystal

To observe frequency self-frequency doubling [18],
a Nd:Mg:LiNbO3 crystal with a regular domain struc-
ture and a composition close to its congruent ratio
([Li]/[Nb] = 0.942) was grown by the Czochralski
method from a melt along the normal to the close-

packed face . For the experiments, a sample
with a length of 7 mm and a period of domain structure
of about 7 µm was cut from the grown crystal. After
bleaching, the sample was placed into a 20-centimeter
hemispherical cavity near the flat mirror with a high
reflectivity (99.9%) at the laser wavelength (1.084 µm)
and a high transmittance (85%) at a diode pumping
wavelength (Fig. 6). The exit mirror of the cavity was a
spherical mirror with a high reflectivity at the laser
wavelength and a high transmittance (80%) at the sec-
ond harmonic wavelength (0.542 µm). The sample was
pumped by a diode laser (0.81 µm). The radiation at the
laser generation frequency was linearly polarized and
corresponded to the π polarization (4F3/2  4I11/2 laser
transition). The second harmonic and the pump polar-
izations coincided with the laser polarization. Accord-
ing to our calculations, the effective nonlinear coeffi-
cient for the ee–e interaction in lithium niobate was
12 pm/V under the conditions of our experiment. The
laser radiation power and the second harmonic power
as functions of the pump power absorbed in the crystal
are shown in Fig. 7. The solid line in Fig. 7 is the theo-
retical dependence corresponding to the steady-state
solution to the set of Eqs. (1)–(5) for self-frequency
doubling with the parameters used in the experiment.
The best agreement between the experimental and the-
oretical data was obtained for an effective nonlinear
coefficient of 5 pm/V.

3.3. Frequency Summation in the Nd:Mg:LiNbO3 
Periodically Poled Crystal

For the experiment with frequency summation [36],
the Nd:Mg:LiNbO3 periodically poled crystal was
grown by the Czochralski method. The prepared non-
linear sample was 6 mm in length and had a domain

0112( )
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period of about 4 µm. The experimental scheme was
analogous to the scheme of frequency self-frequency
doubling, with the only difference that the exit mirror
had a transmittance of about 90% for the sum wave.
The nonabsorbed portion of pump radiation was
involved in the nonlinear interaction with the pump and
laser frequencies. This gave rise to the wave with the
sum frequency; its length was measured by a mono-
chromator and found to be 0.464 µm, in accordance
with the calculated value. The laser, pump, and sum
radiations were linearly polarized and corresponded to
the π polarization. The laser radiation power and the
sum-wave power as functions of the pump power
absorbed in the crystal are shown in Fig. 8. The solid
line in this figure is the theoretical dependence corre-
sponding to the steady-state solution to the set of
Eqs. (1)–(5) for this process with the parameters used
in the experiment. As in the case of self-frequency dou-
bling, the best agreement between the experimental and
theoretical data was achieved for an effective nonlinear
coefficient of 5 pm/V.

Fig. 6. Schematic of the experimental setup: (1) diode laser;
(2) and (3) are the flat and (exit) spherical cavity mirror,
respectively; and (4) is the active nonlinear Nd:Mg:LiNbO3
periodically poled crystal.

Fig. 7. Laser radiation power Plas and the second harmonic
power P2ω as functions of the pump power Ppump absorbed
in the crystal.
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4. QUANTUM THEORY OF LASER-FREQUENCY 
SELF-FREQUENCY CONVERSION

Let us now turn to the three-frequency interactions,
in which the wave ω1 is amplified due to the crystal
active properties and the waves with frequencies ω1, ω2,
and ω3 are involved in the quasi-phase-matched inter-
action (ω1 + ω2 = ω3). For a ring cavity with a PPANC
inside (Fig. 9), we derived the following set of Heisen-
berg–Langevin equations for the evolution of the field
and atomic operators [37]:

(16)

(17)

(18)

(19)

da1 2,

dt
------------ –

ν1 2,

2
---------a1 2, iεa2 1,

+ a3 F1 2, t( ),+ +=

da3

dt
-------- –

ν3

2
-----a3 iεa1a2 F3 t( ),+ +=

dσ
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------

2TC

T ⊥
--------- –σ igT ⊥ aqN+( ) Γ t( ),+=

dσ+

dt
---------

2TC

T ⊥
--------- –σ+ igT ⊥ aq

+N–( ) Γ+ t( ),+=

Fig. 8. Laser radiation power Plas and the sum-frequency
power Psum as functions of the pump power Ppump absorbed
in the crystal.

Fig. 9. Schematic of the active nonlinear periodically poled
crystal inside a ring cavity.
(20)

In this set of equations,  and aj are the photon cre-
ation and annihilation operators satisfying the commu-
tation rules [aj(t), (t)] = δjk (δjk is Kronecker delta);
ε  is the nonlinear wave-coupling coefficient; σ =

 and N =  are, respectively, the
polarization operator and the operator of inverse popu-
lation of the whole active medium, where σν and Nν are,
respectively, the polarization and inverse population of
the νth active atom and M is the total number of active
atoms in the crystal; t is the dimensionless time normal-
ized to 2TC; νj = 1 – Rj + αjL are the linear losses in the
crystal and at the cavity mirrors for the wave with fre-

quency ωj; g =  is the interaction
constant of an atom and electromagnetic field; T|| and
T⊥  are, respectively, the inverse-population and polar-
ization relaxation times; V is the quantization volume;
P = kq(1 + η)/2g2TCT⊥  is the pump parameter; and Γ(t)
and ΓN(t) are the noise operators associated, respec-
tively, with the polarization and inverse population of
the active medium. The appearance of these operators
and the terms (2TC/T⊥ )σ, (2TC/T⊥ )σ+, and 2TC(P – N)/T||
appearing in the set of Eqs. (16)–(20) is caused by the
interaction of the electromagnetic field with the thermal
bath.

The set of Eqs. (16)–(20) was solved by the standard
method. The operators were represented as the sums of
stationary values (classical quantities) and fluctuation
operators. This approach was used to obtain analytic
expressions for the spectra of fluctuation operators at
the exit from cavity and to analyze the possibility of
nonclassical light generation [37]. The analysis was
carried out for the quadrature field components

(21)

The fluctuation spectra of one of the quadrature field
components at the frequency of the second harmonic
obtained in the course of self-frequency doubling is
shown in Fig. 10. The unit level in Fig. 10 corresponds
to the standard quantum level, i.e., to the vacuum fluc-
tuation level. One can see in Fig. 10 that, by properly
choosing the converter parameters, one can sizably
enhance the efficiency of fluctuation suppression for
the quadrature component considered. With the param-
eters used, the maximal suppression efficiency is
approximately 70%. In accordance with the uncertainty
principle, the fluctuations of the conjugate quadrature
component (Y component) prove to be higher than the
standard quantum level. In this section, all calculations
are performed with the same parameters as those used
in Section 2 in the classical analysis of the frequency
self-frequency conversion processes. The remaining
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parameters are T⊥  = 6.7 × 10−10 s, TC = 3 × 10–11 s, and
M = 1018.

In the quantum study of frequency self-frequency
halving, one should take into account that this process,
apart from the lasing threshold, is characterized by the
subharmonic-generation threshold. For this reason, two
regimes can be considered: (i) the above-threshold and
(ii) the subthreshold subharmonic-generation regimes.
The fluctuation spectra for one of the quadrature sub-
harmonic components for these regimes are presented,
respectively, in Figs. 11 and 12. One can see in these
figures that the maximal fluctuation-suppression effi-
ciency for the converter parameters used is about 50%
for the above-threshold regime and about 90% for the
subthreshold regime. Thus, by properly choosing the
crystal, pumping, and cavity parameter, one can appre-
ciably enhance the efficiency of fluctuation suppression
in the process considered.

It should be noted that the processes of simultaneous
laser generation and nonlinear laser-frequency conver-
sion in a cavity were studied earlier for gas lasers [38,
39]. In gas lasers, the photon lifetime in a cavity is
much longer than the inverse-population and polariza-
tion relaxation times in the active medium, allowing the
analysis of nonlinear equations to be greatly simplified.
Moreover, the results obtained in [36, 37] cannot be
applied to solid-state lasers.

5. THE FORMATION OF ENTANGLED STATES
IN SIMULTANEOUS QUASI-PHASE-MATCHED 

PARAMETRIC CONVERSION PROCESSES

The quasi-phase-matched interactions can be used
to produce entangled quantum states in the collinear
wave-interaction geometry [38, 39]. We will focus on
the process of parametric generation of frequencies ω1

Fig. 10. Fluctuation spectrum S2ω(Ω) of the second har-
monic field X quadrature for various reflection coefficients
R2ω of the exit mirror; Ω = 2TCω. The curves are con-
structed for the pump power Ppump/Pth = 20.
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and ω2 in the pump field of frequency ω3, such that ω3 =
ω1 + ω2. Let us consider two methods of frequency
down-conversion in a periodically poled crystal: (i) the
wave with frequency ω1 is ordinary (index o) and the
wave with frequency ω2 is extraordinary (index e), and
(ii) the wave with frequency ω1 is extraordinary and the
wave with frequency ω2 is ordinary. In these cases, the
condition for simultaneous quasi-phase-matching is
written as

(22)

(23)

∆k 1( ) k3 k1
o( ) k2

e( )–– 2πm1/Λ ,= =

∆k 2( ) k3 k1
e( ) k2

o( )–– 2πm2/Λ ,= =

Fig. 11. Fluctuation spectrum Sω/2(Ω)of the subharmonic
field X quadrature for various reflection coefficients Rω/2 of
the exit mirror; Ω = 2TCω. The curves are constructed for
the pump power Ppump/Pth = 20.

Fig. 12. Fluctuation spectrum Sω/2(Ω) of the subharmonic
field X quadrature for various reflection coefficients Rω/2 of
the exit mirror; Ω = 2TCω. The pump power Ppump/Pth = 8.
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where m1 and m2 are the quasi-phase-matching orders.
Our analysis showed that quasi-phase-matching condi-
tions (22) and (23) can be met in the LiNbO3 crystal.
The corresponding nonlinear wave-coupling coeffi-
cients are nonzero if the pump wave is ordinary (the
processes are due to the nonlinear susceptibility d15).

In the approximation of a given classical pump field,
these processes are described by the interaction Hamil-
tonian [40, 41]

(24)

where h.c. stands for Hermitian conjugation, βj = γjA3,
γj is the nonlinear coefficient, and A3 is the pump ampli-
tude.

In the Schrödinger representation, the evolution of
the state vector of a two-frequency field obeys the well-
known relation

(25)

where |ψ(0)〉  is the vector of initial state.
For the vacuum initial states of the fields with fre-

quencies ω1 and ω2, one has

Then, by inserting Eq. (24) into Eq. (25), one obtains
the following expression for the field state at the nonlin-
ear crystal output in the first order in coefficients β1 and
β2 [40]:

(26)

where the indices (o) and (e) denote the photon polar-
ization state.

The state vector associated with the measured pho-
tons takes the form

(27)

where |H 〉 j =  and |V 〉 j = .

Therefore, according to Eq. (27), photons with fre-
quencies ω1 and ω2 generated in these processes are in
the polarization-entangled state. From state (27) one
can obtain two Bell’s states by changing the sign of the
β2/β1 ratio. This ratio determines the degree of entan-
glement, because it depends on the ratio γ2/γ1 of nonlin-
ear coefficients and the ratio m1/m2 of quasi-phase-
matching orders. In our opinion, this way of producing
entangled quantum states can be simply realized,
because it uses only one periodically poled crystal and
the collinear geometry of interacting waves. In the
experiments [41], two nonlinear crystals were used for
producing polarization-entangled states.
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6. NONCLASSICAL LIGHT GENERATION UPON 
PARAMETRIC AMPLIFICATION 

IN A LOW-FREQUENCY PUMP FIELD

The sequential quasi-phase-matched interactions of
light waves in nonlinear and active nonlinear periodi-
cally poled crystals open up new possibilities in non-
classical light generation. In recent years, we have
developed a quantum theory of the sequential interac-
tions between light waves with multiple frequencies
[40, 42–46]. The quantum properties of waves with fre-
quencies ω and 3ω in a given classical pump field with
frequency 2ω were studied in detail.

The process of interest is described by the interac-
tion Hamiltonian of the form [42]

(28)

Here, βj = γjA2, γj is the nonlinear coefficient, and A2 is
the pump amplitude.

In the Heisenberg representation, the following set
of operator equations corresponds to this process:

(29)

(30)

The solution to Eqs. (29) and (30) can be represented as
[45]

(31)

(32)

The operators aj0 and  are related to the entrance of
the periodically poled crystal, and the phase π is related
to the pump phase.

For |β3| > |β2|, the functions in Eqs. (31) and (32) are
given by the expressions

(33)

(34)

(35)

where κ = 1/ , γ = , and ε = |β2/β3|.
For the case |β3| < |β2|, the corresponding functions

are given in [43]. The interaction Hamiltonian (28) and
solutions (31) and (32) can be used to calculate the sta-
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tistical characteristics of radiation with frequencies ω
and 3ω.

We first consider the formation of frequency-entan-
gled states. In the Schrödinger representation, one has
for the state of a two-frequency field at the crystal
output

(36)

Here, |ψ(0)〉  is the initial state vector in the absence of
a signal at the entrance of the crystal; it can be written
as

(37)

where |0〉 j is the vacuum field state for the frequency jω.
In the second order in nonlinear coefficients |β2| and

|β3|, the field state at the crystal output can be written in
the following compact form:

(38)

(39)

Here, 11 and 12 are the normalization factors:

(40)

with

and the figures inside the ket-vectors stand for the num-
ber of photons.

From the analysis of Eqs. (38) and (39), it follows
that only two ω photons appear in the first approxima-
tion. In the second approximation, either four ω pho-
tons or one photon with frequency ω and one photon
with frequency 3ω are generated. From these expres-
sions, it also follows that the photons with generated
frequencies are in the entangled state. One photon with
frequency 3ω is detected if and only if one ω photon is
detected. The degree of entanglement of these states is
[40, 42]

(41)

Note that it depends on the product of coefficients |β2|
and |β3|. It should be taken into account that expression
(41) only applies if q < 1.

The analysis of fields at frequencies ω and 3ω
showed [42] that, for the vacuum initial states, the radi-
ation with these frequencies proved to be in the quadra-
ture-squeezed state, and photons obeyed the super-
Poisson statistics, as in the case of the usual parametric
process in a high-frequency pump field. On the other
hand, if a coherent signal at frequency ω or 3ω is fed to
the entrance of a nonlinear crystal, fields with sub-Pois-
son photon statistics can be generated [45].
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The photon statistics can conveniently be analyzed
using solutions (31) and (32). Let us consider the
behavior of a mean number of photons 〈n1(z)〉  and
〈n3(z)〉  at frequencies ω and 3ω, respectively, and the
Fano factors ^1 and ^3 defined as

(42)

(43)

The phase sensitivity of this process in the case when
the initial signal at one of the frequencies is coherent
can clearly be seen from the expressions for the mean
number of photons. Let the initial field with frequency
ω be in the coherent state |α〉1 and the field at frequency
3ω be in the vacuum state |0〉3; i.e., the state of the input

field is |ψ(0)〉  = |α〉1|0〉3, where α = |α| , |α| =
, 〈n10〉  is the mean number of photons, and ϕ10 is

the phase of the signal wave. In this case, the mean
numbers of photons at the crystal output are given by
the expressions

(44)

(45)

The dependence of the mean number of photons on
the phase difference between the pump ϕ and signal ϕ10
waves is clearly seen. Analysis showed that the sub-
Poisson photon statistics can be obtained for the phase
relationship Φ = ϕ – 2ϕ10 = –π/2.

The dependence of the mean numbers of photons at
frequencies ω and 3ω on the interaction length is shown
in Fig. 13a for Φ = –π/2. For the signal frequency ω,
this number first decreases with increasing interaction
length, whereupon it increases at distances z such that
|β2|z * 1. The behavior of the mean number of photons
at frequency 3ω (Fig. 13b) is more complicated. In this
case, after the increase, it may decrease at certain inter-
action distances. For curve 1 in Fig. 13b, this occurs at
|β2|z * 0.5.

For the relationship Φ = –π/2 between the pump and
signal phases, the Fano factors are given by the expres-
sions

(46)
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(47)

An analysis of the behavior of the Fano factor showed
[45, 46] that it is less than unity at certain distances,
which corresponds to the sub-Poisson statistics. Notice
once more that, if a signal at the entrance of a nonlinear
crystal is absent, one always deal with the super-Pois-
son photon statistics. We established that the greater the
initial number of signal photons, the smaller the Fano
factor, i.e., the stronger the suppression of photon fluc-
tuations. Therefore, with the nonlinear interaction con-
sidered, one can suppress the photon fluctuations at fre-
quency ω and generate a sub-Poisson light at frequency
3ω. This effect is accompanied by a decrease in the
intensity of the initial signal. The mean numbers of
photons and the Fano factors at frequencies ω and 3ω

^3
1
n3〈 〉

---------- n10〈 〉 G+ G––( )2 G+ G––( )2[{=

+ u– F–+( )2 ] 2u–
2F–

2+

+ 2G–
2G+

2 F–G+ u–G–+( )2 } .+

Fig. 13. Normalized mean number of photons (a) 〈N1〉  and
(b) 〈N3〉  at, respectively, frequencies ω and 3ω vs. the
reduced interaction length |β2|z for various ratios of the
coefficients |β3/β2|: (1) 2, (2) 1, (3) 0.5, and (4) 0 (〈Nj 〉  =
〈nj 〉/〈n10 〉). The curves are constructed for the initial mean
number of photons 〈n10〉  = 100.
 are shown in Fig. 14 as functions of the mean initial

number of coherent-signal photons. The curves in
Fig. 14 clearly demonstrate that the formation of a sub-
Poisson light at the signal frequency is due to the
removal of photons from this signal.

The most favorable conditions for the formation of
sub-Poisson photon statistics occur at |β2|z = 1 [45, 46].
The intensity of a coherent signal necessary for this
condition to be met in the periodically poled LiNbO3

crystal can be estimated as follows. Consider the inter-
acting extraordinary waves. The nonlinear coefficient is
β2 = 8π2d33|A2|/λnm2, where λ is the pump wavelength
and n is the refractive index at the same wavelength. For
the crystal length z = 1 cm, λ = 0.5 µm, and quasi-
phase-matching order m2 = 3, one obtains I2 ≈ 2 ×
107 W/cm2 for the pump intensity. This laser intensity
can readily be obtained in the experiment. Thus, for the
sequential nonlinear optical transformations, one can
produce fields with the sub-Poisson photon statistics at
frequencies both lower and higher than the pump fre-
quency.

Fig. 14. Minimal values of the Fano factors (a) ^1 and
(b) ^3 and of the corresponding normalized mean numbers
of photons 〈N1〉  and 〈N3〉  vs. the initial mean number of pho-
tons. The graphs are calculated for (a) |β3| = 0 and
(b) β3/β2 = 2.

^1
^1

^1

^1
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7. CONCLUSIONS

In this work, the results of combined investigations
of the processes of light wave interactions in active
nonlinear and nonlinear crystals with regular domain
structure have been reported. The results of studying
the processes of laser-frequency self-frequency conver-
sion and sequential nonlinear optical interactions in
crystals with regular domain structure are presented.
The classical and quantum analyses of the processes of
this class, such as laser-frequency self-frequency dou-
bling and self-frequency halving, have been carried out.
The calculations confirmed both the possibility of high-
efficiency frequency conversion and the possibility of
obtaining sources with suppressed quantum fluctua-
tions.

An important problem associated with the influence
of the aperiodic domain structure on the nonlinear opti-
cal interactions was not discussed in this review. The
studies in this direction are in their infancy. Neverthe-
less, some interesting results have already been
obtained in this respect. The influence of the aperiodic
crystal structure on the sequential third harmonic gen-
eration was considered in [47]. In [48], the statistical
theory of second harmonic generation in a disordered
domain structure with fluctuating phase mismatch and
nonlinear wave-coupling coefficient was developed.
We have recently established that stochastic quasi-
phase-matching, analogous to the usual quasi-phase-
matching, may take place in crystals with the random
aperiodic structure.

Experimental study of the statistical properties of
light fields produced in the sequential interactions and
laser-frequency self-frequency conversion is, no doubt,
an important problem. The theory of these processes
also calls for further elaboration.

Our studies form new avenue of investigations in
nonlinear and quantum optics. It is associated with sev-
eral simultaneous coupled wave interactions in nonlin-
ear and active nonlinear crystals. The use of these pro-
cesses allows one to increase the number of generated
wavelengths in the same crystal and fabricate a minia-
ture laser source for a number of applications.

We are grateful to I.I. Naumov, V.V. Firsov,
A.V. Nikandrov, and E.Yu. Morozov for the contribu-
tion to the project. 
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It is shown that the Maxwell–Garnett equation predicts resonance in a heterogeneous material consisting of
ellipsoids embedded in a matrix, even if the ellipsoids are made from a transparent material. It is suggested that
the resonance of this type be denoted as collective because it cannot be achieved in a single ellipsoid. However,
the problem of applicability of the Maxwell–Garnett equation in the range of ellipsoid concentrations corre-
sponding to the resonance condition remains unsolved. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 77.22.Ej
1. Resonance in a single ellipsoid. The so-called
plasmon resonance occurring in spherical or ellipsoidal
metallic particles is well known [1]. It was shown in [2]
that the plasmon resonance in prolate metallic ellip-
soids of revolution is shifted in frequency with respect
to the resonance in spherical particles. The intensity of
resonance in ellipsoids is also notably higher than in
spheres. This follows from the equation relating the

field strength  in an ellipsoid to the uniform field
strength Ek in the medium surrounding the ellipsoid [3]:

(1)

Here, Ek is the projection of an external field onto the
ellipsoid axis; index k assumes three different values
for the three axes a, b, and c of the ellipsoid; the lengths
of the ellipsoid axes are also denoted by a, b, and c; εm =

 +  is the dielectric constant of the medium

(matrix) surrounding the ellipsoid; εel =  +  is the
dielectric constant of the ellipsoid material; and the
value of Ak is determined by the following integral [3]:

(2)

where k = a, b, c; da ≡ a, db ≡ b, and dc ≡ c. Equation (1)
is valid if the transverse size of the ellipsoid is consid-
erably smaller than its length. This condition is dis-
cussed in more detail, for example, in [2]. For the opti-
cal wavelength range, the transverse size of the parti-
cles should not exceed several tens of nanometers to
satisfy this condition.

In the literature, Ak is often referred to as the depo-
larization parameter. The dependences of Ak of an ellip-
soid of revolution (a = b) on the aspect ratio ξ (ξ = c/a)
are shown in Fig. 1 for the field directed along the ellip-

Ek
el( )

Ek
el( ) 2εm

εel εm–( )Ak 2εm+
-------------------------------------------Ek.=

εm' iεm''

εel' iεel''

Ak
abc

s dk
2+( ) s a2+( ) s b2+( ) s c2+( )

------------------------------------------------------------------------------- s,d

0

∞

∫=
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soid axis c (Ac) and perpendicularly to this axis (Aa). It
can be seen from Fig. 1 that 0 < Ac < 2 and 0 < Aa < 1.

The condition for plasmon resonance follows from
Eq. (1):

(3)

The parameter Ak does not exceed 2, so that the reso-
nance condition can be met only if  or  is nega-
tive. The width and intensity of resonance depend on
the parameter Ak  + (2 – Ak) : the smaller its value,
the narrower and more intense the resonance.

It follows from Eq. (3) that

(4)

Equation (4) shows that the optical density of the ellip-
soid material can be higher (Ak < 1) or lower (Ak > 1)
than the optical density of the surrounding medium.
However, the latter is possible only for an oblate ellip-
soid (spheroid) in a field directed along its axis, because
this requires Ak > 1 (see Fig. 1).

εel' Ak 2 Ak–( )εm'+ 0.=

εel' εm'

εel'' εm''

εel' /εm' 2 Ak–( )/Ak.=

Fig. 1. Dependence of the depolarization parameter of an
ellipsoid of revolution on its aspect ratio ξ.
003 MAIK “Nauka/Interperiodica”
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Collective dielectric resonance. The frequency of
plasmon resonance in a medium consisting of metal
spheres embedded in a matrix depends on the concen-
tration of spheres, as follows from the Maxwell–Gar-
nett equation for the dielectric constant of a heteroge-
neous medium [4-6]:

(5)

where ε is the effective dielectric constant of the heter-
ogeneous medium, εb is the dielectric constant of the
material of the spheres, and η is the relative concentra-
tions of the spheres. Although the Maxwell–Garnett
equation has long been discussed in the literature [1],
the problem of the dependence of the plasmon reso-
nance position on the concentration of nanoparticles
had not attracted special attention until the works [6, 7]
were published. Taking into account the results consid-
ered in the preceding section, it can be expected that the
resonance in a medium consisting of ellipsoids has
interesting specific features.

The dielectric constant a material based on oriented
ellipsoids is described by a tensor. Analysis of the case
of an arbitrary mutual orientation of the ellipsoids and
the external field is a challenging task. It becomes con-
siderably simpler if the field is directed along the ellip-
soid axis or perpendicular to it, i.e., along one of the
principal axes of the tensor of the dielectric constant of
a heterogeneous medium. Further consideration will be
restricted to this case. For the field directed along one
of the principal axes, the Maxwell–Garnett equation
takes the form

(6)

By solving this equation for εa(c), one gets

(7)

ε εm–
ε 2εm+
----------------- η

εb εm–
εb 2εm–
-------------------,=

εa c( ) εm–
εa c( ) 2εm+
-------------------------

2
3
---η

εel εm–
εel εm–( )Aa c( ) 2εm+

-------------------------------------------------.=

εa c( ) εm

1 2Fa c( ) η( )+
1 Fa c( ) η( )–

--------------------------------,=

Fig. 2. Dependence of the effective dielectric constant of a
transparent heterogeneous material on the relative concen-
tration of ellipsoids: A = 0.1, /  = 10.εel' εm'

ε
 where

(8)

In the general case, Fa(c)(η) = (η) + i (η) is a
complex quantity. The condition for resonance amounts
to the real part of the denominator in Eq. (7) vanishing:
1 – (η) = 0. In the expanded form, this condition
is written as follows:

(9)

For spherical particles (A = 2/3), the condition (9) can
be met only if  < 0 or  < 0. That is why the authors
of [6, 7] considered the optical properties of a heteroge-
neous medium consisting of metal nanospheres.

The fundamental difference between conditions (9)
and (3) is that condition (9) for ellipsoidal particles can
be met if the media with positive real parts of the dielec-
tric constant (including transparent media) are used. It
is suggested that this type of resonance be denoted as
collective because it cannot be achieved in a single
ellipsoid. As follows from Eq. (9), the media with the
required ratio of dielectric constants should satisfy the
condition 1 > η > 1.5A. As an example, the dependence
of the dielectric constant of a transparent material con-
sisting of ellipsoids with A = 0.1 on η is shown in Fig. 2
(from here on, indices in εa(c) and Aa(c) are omitted). The
aspect ratio ξ of these ellipsoids should be ~0.07 (sphe-
roids) or ~5.4 (prolate ellipsoids). It can be seen that, as
the concentration of particles approaches a critical
value, the dielectric constant increases indefinitely.
Obviously, such an increase is not observed in actual
materials: various losses occurring even in transparent
materials (including dispersion losses) remove the sin-
gularity without eliminating the resonance.

However, what is the reason for raising the question
formulated in the title of this work? The point is that the
limits of applicability of the Maxwell–Garnett equation
for high concentrations of particles in a dielectric
medium have long been discussed in the literature.
There is experimental data [1, Fig. 125] showing that,
in some cases, the Maxwell–Garnett equation is valid
for concentrations up to 40%. However, as shown
below, the Maxwell–Garnett equation has a more seri-
ous flaw.

Let us assume that the matrix is made from an

absorbing material, so that εm =  + , where  >
0. In this case, the dependence of ε'' on the concentra-
tion parameter η takes the form shown in Fig. 3. It can
be seen that, as the concentration of particles exceeds a
certain value, εm becomes negative. This means that a
composite medium consisting of absorbing compo-
nents can become amplifying if the concentration of
ellipsoids is sufficiently high. This conclusion contra-

Fa c( ) η( ) 2
3
---η

εel εm–
εel εm–( )Aa c( ) 2εm+

-------------------------------------------------.=

Fa c( )' Fa c( )''

Fa c( )'

Aa c( )
2
3
---η– 

  εel' 2
2
3
---η Aa c( )–+ 

  εm'+ 0.=

εel' εm'

εm' iεm'' εm''
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dicts the energy conservation law. Does it mean that all
consequences of the Maxwell–Garnett equation should
be rejected? It is hard to answer this question: all con-
sequences cannot be taken to be invalid beforehand. For
a long time, a better equation describing the dielectric
constant of heterogeneous media has been searched for,
but without any considerable success. In particular,
there is still no adequate formula providing more bal-
anced consideration of the dielectric constants of a
medium and particles than the Maxwell-Garnett equa-
tion. For a good review of the literature on the subject
see [1]. In our opinion, the possibility of such interest-
ing effects as the collective dielectric resonance should

Fig. 3. Dependence of ε'' on the relative concentration η of
ellipsoidal particles: A = 0.1,  = 1.5,  = 0.1.εm' εm' '
JETP LETTERS      Vol. 78      No. 1      2003
give an additional impetus to the search for a more per-
fect equation describing the dielectric constant of het-
erogeneous media. This is one of the topical problems
of the further theoretical and experimental studies of
the electrodynamics of heterogeneous materials
(including composite materials).

I am grateful to V.V. Klimov, V.S. Zuev, and
I.E. Protsenko for stimulating discussion. This work
was supported by the Russian Foundation for Basic
Research, project no. 00-02-16660.
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New types of light fields localized in nanometer-sized regions of space were observed and analyzed. The
possibility of using these nanolocalized fields in atom optics for atom focusing and localization is discussed.
© 2003 MAIK “Nauka/Interperiodica”.
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Atom optics is a new type of optics (along with pho-
ton, electron, and neutron optics). It has emerged in the
last 20 years as a result of studying the action of elec-
tromagnetic radiation on spatial atomic motion [1–5].
Atom optics is subdivided into two types: (a) atom
optics based on the mechanical micro- and nanostruc-
tures (e.g., zone plates) and (b) atom optics based on the
use of laser radiation in the presence of static electric
and magnetic fields. Atom optics encompasses physical
problems that are associated with studying atomic
interactions with surfaces and electromagnetic fields in
an effort to determine those interaction potentials
which provide a controlled action on the spatial atomic
motion; among these problems are diffraction of atomic
waves and their interference, focusing of atomic waves,
mirror reflection, atomic localization in a confined spa-
tial region (atomic traps), and the increase in the phase
density of atomic ensembles.

Laser atom optics has a number of limitations of
both fundamental and technical character; since the
laser fields are spatially nonlocalized, the elements of
atom optics are also nonlocalized. As a result, such
imperfections as aberration of atom lenses, low diffrac-
tion efficiency of atomic waves, and limiting contrast of
interference fringes in atomic interferometers are inher-
ent in the elements of atom optics.

From general physical considerations, it is clear that
spatially localized potentials are more favorable for
constructing the elements of atom optics. At present,
only two types of spatially localized laser fields are
known: (a) a surface (evanescent) light wave arising
upon total internal reflection (one-dimensional light
localization) and (b) a light field appearing upon its dif-
fraction by structures with characteristic sizes smaller
than the light wavelength. The most familiar example
of the second type of localized light field is provided by
a field arising upon the diffraction by an aperture with
a size smaller than the wavelength in an ideally con-
ducting screen. In this case, a local three-dimensional
0021-3640/03/7801- $24.00 © 20008
field maximum forms near a small aperture, with sizes
mainly determined by the sizes [6–8].

A serious disadvantage of the field localized near an
isolated aperture is that it is inevitably connected with
the field of the associated standing wave. When an atom
moves in this region, it may undergo spontaneous
decay, which is highly undesirable in many problems of
atom optics. In this work, new types of a spatially local-
ized nanometer-sized light field free of the above-men-
tioned disadvantage are proposed. The possibility of
using such a nanofield in the problems of atom optics
(atom nanooptics) is considered.

The scheme of producing spatially localized light
nanofield is illustrated in Fig. 1a. Two flat conducting
screens with a distance between them on the order of or
shorter than the light wavelength, d ≤ λ, form a planar
two-dimensional waveguide for laser radiation that
enters the waveguide from the side. As known [9], the
solutions to the Maxwell equations for a waveguide
consisting of two parallel ideally conducting planes
allow the propagation of radiation in a waveguide of an
arbitrarily small thickness d, including the thickness
much smaller than the radiation wavelength. The solu-
tion inside the waveguide coincides with a plane wave

Fig. 1. Geometry of the formation of (a) photon hole and
(b) photon dot by nanoapertures in a planar optical
waveguide formed from two conducting planes.
003 MAIK “Nauka/Interperiodica”
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whose electric field is directed perpendicular to the
planes. In fact, this system is a double-wire line and
provides two-dimensional nanometer-sized light local-
ization [9].

Now let two small coaxial apertures with radius a !
λ be formed in a conducting screen (Fig. 1). If the aper-
ture diameters are much smaller than the wavelength of
incident radiation, it will practically not pass through
these apertures but will be strongly modified near each
of the apertures. In fact, the field is reduced near the
apertures in the region with the characteristic sizes on
the order of the aperture diameter, i.e., much smaller
than the radiation wavelength λ. The volume of this
region is V ~ a2d ! λ3. A field modification of this kind
can naturally be called a “photon hole.”

The determination of the field distribution near the
apertures in the waveguide walls is a challenging task
of electrodynamics. In the particular case of a nanoap-
erture (a ! λ), the problem becomes quasistatic.
Indeed, let the wave propagate along the Z axis, as
shown in Fig. 1a, and be polarized along the Y axis.
Then, in the absence of apertures, the nonzero field
components (for the traveling wave) are

(1)

where k = ω/c.
In the presence of small apertures, this problem

reduces, to a first approximation, to the quasistatic
problem. The corresponding general solution is
obtained by solving the integral equation for the charge
densities in planes [10]. If the waveguide thickness d is
larger than the aperture diameter, λ > d @ a, one can
ignore the mutual influence of apertures, so that the
problem reduces to the superposition of fields caused
by the diffraction by individual apertures. The problem
of the modification of a uniform field in the presence of
a conducting plane with a round aperture in it can be
solved analytically [11]. The resulting expression for
the potential ϕ of electric field E = – ∇ϕ  has the form

(2)

where r2 = x2 + z2.
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The distribution of the equipotential lines (2) and
the electric-field energy density proportional to E2 =
(∇ϕ )2 are shown in Fig. 2. One can see in Fig. 2 that a
photon hole or, to be more precise, photon saddle with
the characteristic sizes determined by the aperture size
and the waveguide thickness actually appears near the
apertures.

We now consider one more way of field localization
in nanometer-sized regions (Fig. 1b). It generalizes the
method of localization near an aperture [8] but is free
from the drawback associated with the presence of a
standing wave. Let us again take two ideally conducting
planes with apertures in them, but let the planes be sep-
arated by d = λ/2. In this case, one of the solutions

Fig. 2. (a) Isolines of potential (2) describing a photon hole
with a/d = 1/3, and (b) electromagnetic-field intensity for a
photon hole with a/d = 1.
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(TE01) in the absence of apertures has the nonzero com-
ponents

(3)

Physically, solution (3) corresponds to the standing
wave whose wave vector is perpendicular (directed
along the Y axis) to the planes. At the same time, Eq. (3)
is a portion of the standing wave formed upon the
reflection of a plane wave incident normally onto one of
the planes. Due to the condition d = λ/2, the other plane
occurs in the node of this standing wave and does not
affect it.

If the apertures are small compared to the wave-
length, a ! d = λ/2, their mutual influence can be
ignored, and one can use the solution to the problem of
diffraction by a single aperture [6–8]. For the circular
polarization, the field components are

(4)

and the time-averaged squared electric field modified
by the apertures takes the form

(5)
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Fig. 3. Electromagnetic-field intensity for a photon dot with
a/d = 0.5.

Plane with 
nanoaperture
where

(6)

and

(7)

The intensity distribution of the field near the aper-
tures of a planar waveguide and inside the waveguide is
shown in Fig. 3 for a waveguide with a half-wavelength
thickness and a aperture radius a = λ/4. It is seen from
the figure that the field outside the waveguide drops
rather rapidly in the direction perpendicular to the
waveguide plane and has a maximum inside the
waveguide; i.e., a “photon dot” arises. The characteris-
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tic size of such a photon dot is V ~ a2 ! λ3. The sharp

field-intensity spikes near the aperture edge appear
because the conductivity of the waveguide walls is
assumed to be infinite. In the waveguides with a finite
wall conductivity, the spike amplitudes will be less pro-
nounced. Of prime importance is that the maximum
(measured from the level in the absence of apertures) at
x = y = 0 is twice its value for the case of a single aper-
ture. This is caused by the constructive interference of
the fields scattered by apertures, allowing the use of
fields lower than in the case of a single aperture.

Consider two examples of application of the spa-
tially localized light field (photon dots and apertures) in
atom focusing and localization.

Atom lens. We first consider the possibility of using
localized fields for focusing atomic beams by the gradi-
ent force proportional to the electric-field strength. For
the positive detuning between the laser frequency and
the atomic-emission frequency, an atom is expelled to
weaker fields, whereas, for the negative frequency
detuning, it is drawn into the region with stronger
fields.

In the case of a photon hole, the nanometer-sized
weak-field region is surrounded inside the waveguide
by a strong field and, in the case of positive frequency
detuning, an atom passing through the aperture will be
drawn to the axis of the system; i.e., focusing will
occur. As was mentioned above, it is quite important
that the focused beams mainly move in the weak-field
region, where the defocusing spontaneous-decay pro-
cesses are highly improbable.

In the case of negative frequency detuning, atoms
are drawn in by a photon dot, and, hence, focusing
again takes place. In a photon dot, an atom moves
through the strong-field region, and, thus, the spontane-
ous decay probability is higher than in the photon hole.
However, the passage time through the nanometer
region is short, so that the influence of the spontaneous
decay on the focusing can again be ignored.

The theory of focusing atomic beams in the regions
both with maxima and minima of an electric field is
well elaborated. In particular, it was shown in [12, 13]
that, in the absence of spontaneous decay, an atomic
beam can be focused on an area with a diameter on the
order of atomic de Broglie wavelength, which is equal
to several Angströms for thermal beams. These results
fully apply to our photon dots and apertures, because
the spontaneous decay can be ignored in our case.

Atomic trap. For a system with the symmetry con-
sidered above, the optical-field configurations have
extreme points where the gradient is zero. The configu-
rations of these fields can naturally be considered as the
possible trap configurations. The configuration of a
photon dot is stable and is genuinely three-dimensional
(Fig. 3), with the characteristic volume on the order of

λ
2
---
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a2λ/2 ! λ3. The depth of such a trap is twice the depth
of a single-aperture trap [8].

The extreme point of a photon hole is a saddle point
(Fig. 2b): for the positive detuning, the radial motion is
stable, while the motion along the axis is unstable. The
opposite situation occurs for the negative detuning.
However, it is desirable to determine the stable trap
configuration for a nanometer-sized photon hole (all its
dimensions can be much smaller than the wavelength!).
The stable three-dimensional trap configuration in the
case of a photon hole can be formed after slight
waveguide modification with the use of the gravita-
tional field. One such variant of a three-dimensional
trap based on a photon hole is shown in Fig. 4.

In the scheme proposed, a photon hole with positive
frequency detuning localizes atoms in the radial direc-
tion. From below, atoms are localized due to the expo-
nentially decaying field that is formed upon the total
internal reflection of a plane wave with the positive fre-
quency detuning. The gravitational field provides
atomic localization from above.

Therefore, both optical-field configurations pro-
posed in this work provide three-dimensional atomic
localization in nanometer-sized regions.

Note that one can produce a large number (lattice) of
aperture pairs and, accordingly, the same number of
localized fields (zero-dimensional photon holes and
dots). Such a lattice allows simultaneous control of
many atomic beams. In turn, such lattices can be used
to form periodic lattices of localized atoms (atom lat-
tices [14]) with a period independent of the light wave-
length. The properties of such periodic lattices can be
similar to the properties of planar photonic crystals
[15], but, as distinct from the latter, they can combine
both photon-dot lattices and lattices of localized atoms.
On the whole, the approach suggested in this work
forms, together with [8, 12, 13], the concept of atom
nanooptics, i.e., atom optics based on optical
nanofields.

We are grateful to Prof. V.G. Minogin,
P.N. Melent’ev, and Prof. Shimizu (Japan) for helpful

Fig. 4. Scheme of the three-dimensional trap configuration
for a photon hole with the use of a surface wave formed
upon the total internal reflection from a dielectric layer
beneath the waveguide.
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