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We discuss radiative corrections during the measurement of the e+e–  π+π– cross-section by the radiative
return method without photon tagging. The radiative corrections to the initial-state radiation process are com-
puted for DAΦNE conditions using the quasireal electron approximation for both the cross-section and the
underlying kinematics. The efficiency of experimental rules for event selection by the restrictions on the lost
invariant mass and so-called “track mass” is estimated. Some numerical calculations illustrate our analytical
results. © 2003 MAIK “Nauka/Interperiodica”.
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1. Testing the consistency of the SM requires a vari-
ety of measurements for which radiative corrections
play a crucial role. Among such corrections, effects
caused by hadronic vacuum polarization in the photon
propagator occupy a special place in electroweak preci-
sion physics. Because the interaction coupling between
quarks and gluons increases at low energies, the corre-
sponding contributions cannot be calculated by pQCD
but may be computed via dispersion integrals over the
experimental e+e–-annihilation data. Therefore, a pre-
cise determination of these effects in the running fine
structure constant αhad and in the muon anomalous
magnetic moment aµ depends on the precision of the
low-energy hadronic cross section σh(e+e–  had-
rons) [1–3]. A recent theoretical analysis of these
quantities [4] showed that existing data is insufficient
at least to solve two important problems: to make a
more precise prediction about the location of the light
Higgs mass [5] and to draw a conclusion about possi-
ble “new physics” (beyond the SM) which would con-
tribute to aµ [6].

The measurement of σh at e+e–-annihilation by radi-
ative return using the initial state radiation (ISR) pro-
cess has become an objective reality in resent years [7,
8]. Theoretical aspects of such measurements account-
ing for radiative corrections (RC) were studied firstly in
[9] for the case of collinear small-angle ISR events.
Further different approaches, including both analytical
calculations [10] and Monte Carlo generators [11],
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have been developed to describe the small- and large-
angle ISR photon events and satisfy experimental
selection rules used at Φ and b factories, where the
respective experiments have yet to begin.

It is the general opinion that the high-luminosity
DAΦNE machine operating in the Φ-resonance region
is the ideal collider to scan σh(q2) with the center-of-

mass energy  varying from the threshold up to
1 GeV just by ISR radiative events. In this region,
σh(q2) is mainly fulfilled by ρ resonance that decays
into the pair π+π–. The KLOE detector at DAΦNE mea-
sures the 3-momenta of charged pions and selects with
high efficiency events with a fixed value of the squared
pion invariant mass q2 = (p– + p+)2 in the ISR radiative
process

(1)

without straightforward registration of an ISR photon.
This approach makes it possible to use events with col-
linear photons, which fly in the so-called blind zone and
cannot be detected by KLOE calorimeters. Such a
method has some advantages, because the correspond-
ing cross section becomes larger by a logarithm

enhancement factor L0 = ln(E2 /m2), where E is the
beam energy, θ0 is the maximum angle of the collinear
photon, and m is the electron mass.

In the Born approximation, one can apply the quasi-
real electron method (QRE) [12] to write the cross sec-
tion of the process (1) with small-angle ISR photons in

q2

e– p1( ) e+ p2( ) π+ p+( ) π– p–( ) γ k( )+ + +

θ0
2
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terms of the cross section σ(q2) of the process e+ + e– 
π+ + π–

(2)

However, one must apply an additional restriction
on event selection to exclude background due to possi-
ble strong 3-pion decays: ω  π+π–π0 and Φ 
π+π–π0. The reason is that, in this case, the photon is not
detected, and these decays can in general imitate events
such as reaction (1), because the neutral pion also
remains invisible. It is obvious that, to get rid of such a
3-pion background, one may to select events with the
small lost-invariant mass Mlost, which is smaller than
the pion mass

(3)

At the Born level, this restriction is always satisfied,

because in this case  = k2 = 0. Thus, it has to be
taken into account only when calculating the contribu-
tion in RC to cross section (2) caused by additional hard
photon emission. Such an additional photon, in princi-
ple, can be radiated from the initial as well as from the
final states. But the collinear (with respect to the elec-
tron beam) final state radiation (FSR) is suppressed by

a factor of , and even for θ0 = 10° the approximation

in which terms of the order  are neglected has a very
high accuracy, on the level of RC. Therefore, one may
consider only the contribution to RC due to hard ISR
photons with their invariant mass less than mπ.

2. Instead of restriction (3), in [13] it was suggested
to select events with a small difference between the lost
energy and the lost 3-momentum modulus

(4)

where E± (p±) are the energies (3-momenta) of π±. For
reaction e+ + e–  π+ + π– + 2γ, the quantity Ω (K) is
the total energy (3-momentum) of two photons. In any
event, the lost squared invariant mass cannot be more

than 2E(Ω – |K|); therefore, choice η ≤ /2E2 . 0.039
provides an exclusion of the 3-pion background. Thus,
inequality (4), in fact, is equivalent to (3).

dσB

dq2
---------

σ q2( )
4E2

------------- α
2π
------P z L0,( ),=

P z L0,( )
1 z2+
1 z–
-------------L0

2z
1 z–
-----------,–=

z
q2

4E2
---------, L0

E2θ0
2

m2
-----------.ln= =

M lost
2 p1 p2 p+– p––+( )2 mπ

2 .<=

M lost
2

θ0
2

θ0
2

Ω K– ηE, Ω< 2E E+– E–,–=

K p+ p–+ , η 0.02,= =

mπ
2

Restriction (3) defines the upper limit of Ω variation
as

(5)

The corresponding RCs were calculated in [14]
neglecting terms of the order η.

In real experiments at DAΦNE, another rule for event
selection called “track mass” selection was used [7]:

(6)

The track mass Mtr for the multiphoton annihilation
process e+ + e–  π+ + π– + nγ is defined such that

E± = , provided that for the lost energy one
must use 2E – E+ – E– = |K| but not Ω , as given in (4).
It is clear that in the Born approximation Ω = |K|, Mtr =
mπ and for n > 1 always Mtr > mπ. At the measured
3-momenta p+ and p–,

(7)

To express the squared pion mass, we have to substitute
Ω instead of |K| on the right-hand side of Eq. (7). It is
clear from physical considerations that track mass
selection has to lead to some constraint like (4) and (5),
because there is no other possibility to avoid 3-pion
final states (at the measured 3-momenta of charged
pions) except to forbid large lost invariant mass.

By expanding the difference  – with respect
to small quantities ∆Mtr/E and (Ω – |K|)/E and using
inequality (6), we arrive at

(8)

At fixed the squared dipion invariant mass q2, the
energies of pions can be expressed via the scattering
angle of a pion with respect to the electron beam direc-
tion and the pion mass by the following relation:

(9)

Ωmax E 1 z–( ) 1 η
2
---+ 

  .=

M tr mπ ∆M tr . 10 MeV.<–

p±
2 M tr

2+

M tr
2 1

4
--- 2E K–( )2 2 p+

2 p–
2+( )

p+
2 p–

2–( )2

2E K–( )2
---------------------------+– .=

M tr
2 mπ

2

Ω E 1 z–( ) 1 η x( )
1 z+
-----------+ ,<

η x( )
2mπM tr

E2
------------------ f x( ),=

f x( )
4x

1 x+( )2
-------------------, x

E–

E+
------.= =

E–
2z 1 z 1 z–( )cK–+[ ]

1 z+( )2 1 z–( )2c2–
----------------------------------------------------,=
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z2
----- 1 z+( )2 1 z–( )2c2–[ ]– ,=
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where θ is the π– polar angle.
In the limiting cases z = 1 (very soft the ISR photon)

and z = /E2 (at threshold), E+ = E– and f(x) = 1. In the
most interesting region of ρ resonance, the ratio E–/E+
changes between 2 and 0.5, which gives

The minimum and maximum values of the ratio E–/E+
correspond to back-to-back events when a pion with the
smaller energy flies in the direction of the ISR photon
(c = 1), and a pion with the larger energy, in the oppo-
site direction (c = –1). If the angle θ increases, the max-
imum (minimum) value of this ratio decreases
(increases) and most events tend to concentrate near
f(x) . 1. Thus, with good enough accuracy, one can cal-
culate RC in the case of track mass event selection by
the simple substitution

(10)

in the analytical formulas of work [14]. It follows from
comparison that inequalities (5) and (8) at f(x) = 1.

In Fig. 1a, we compare the total RC for event selec-
tion with restrictions (6) (curve 1) and (4) (curve 2) in
terms of quantity δRC defined as

(11)

where dσobs is the observed cross section, which
includes effects of radiative corrections, and dσB is
defined by Eq. (2). One can see that use of the track
mass selection leads to slight loss (for about 1.5–2%) in
events in the region of ρ resonance (0.5 < z < 0.7) as
compared with selection defined by rule (4). It is said
that the efficiency of selection (4) is slightly higher than
selection (6). As we see, it depends on RC caused by an
additional hard photon emission.

3. To estimate the absolute efficiency of event selec-
tion by restrictions (4) or (6), one needs to know the
number of events without any such restriction. The rest
of this paper is dedicated to calculation of RCs in this
case provided that at least one collinear ISR photon
flies in the direction of the electron beam. For such
events, the inequality

(12)

is valid, and to describe radiation of this photon, we use
the QRE approximation for both the cross section form
and underlying kinematics.

The total RC includes contributions due to addi-
tional virtual, soft (with energy less than ∆E, ∆ ! 1),
and hard (with energy more than ∆E) photon emission.
Virtual and soft corrections do not depend on restric-
tions on the quantity Ω – |K| and must be taken as given

mπ
2

8
9
--- f x( ) 1.< <

η η
1 z+
-----------, η

4mπ∆M tr

E2
---------------------- 0.0225= =

dσobs

dq2
------------

dσB

dq2
--------- 1 δRC+( ),=

Kp1 K Ec0, c0> θ0,cos=
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in [14]. It is convenient to divide the correction caused
by hard photons into three parts. The first one describes
events when both photons fly inside the narrow cone
with the opening angle 2θ0 along the electron beam
direction. The corresponding contribution to the cross
section at the accuracy used also does not depend on the
above-mentioned restrictions and was found in [14].

The second part corresponds to events when one
photon flies in the electron beam direction while the
second one flies along the positron beam inside the nar-
row cone with the opening angle 2 ,  ! 1. In the
QRE approximation, the respective cross section has
the form

(13)

where the energy fraction of a photon in the electron
beam direction is 1 – z/y, and in the positron beam, 1 –
y. To determine the lower limit of integration, we have
to bear in mind that the event must be considered as
radiation along the electron beam (due to inequality
(12)); therefore, the energy fraction 1 – z/y must be

larger than 1 – y or y > .

It is convenient to represent the result of integration
on the right-hand side of Eq.(13) as

θ0' θ0'

dσ2
H

dq2
----------

σ q2( )
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2π
------ 

 
2
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',( )

yd
y

-----,

z

1 ∆–

∫=

L0'
E2θ0'

2

m2
------------,ln=

z

dσ2
H

dq2
----------

σ q2( )

4E2
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2π
------ 

 
2

=

× 2P z L,( ) 1 z–( ) L0 1–( ) 1 3z2+
2 1 z–( )
------------------- zLL0ln–ln

Fig. 1. z dependence of the quantity δRC as given by
Eq. (11) for different restrictions on event selection. Curves
in Fig. 1a derived at θ0 = 5° by the help of formulas (63) in
[14] and rule (10). Curve 1 takes into account restriction (6),
and curve 2, restriction (4). Figure 1b illustrates RC without
any restriction on the lost invariant mass for θ0 = 5° (curve 1)
and θ0 = 10° (curve 2) derived at this work using Eqs. (22)
and (23).
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(14)

Note that the parameter θ0 defines rule (12) for event
selection and is a physical one, while the infrared
parameter ∆ and angular collinear parameter  are
auxiliary and have to disappear in the final result for the
total RC. The auxiliary angular parameter vanishes
when the third part of the RC, due to hard photon emis-
sion, is added. This part corresponds to events when
one hard photon with 4-momentum k1 = (ω1, k1)
belongs to the forward narrow cone (with respect to the
electron beam) and the other one with 4-momentum
k2 = (ω2, k2) escapes both (forward and backward) nar-
row cones, but 3-momentum K = k1 + k2 lies inside the
forward cone as defined by condition (12).

+
z 1 z+( )

1 z–
------------------- zln 1– z+ 

  L L0+( ) 2 1 z–( ) 1 z–( )lθln–

–
2z

1 z–
----------- z 2P z L0,( ) L 1–( ) ∆ G4lθ'–ln–ln ,

lθ'
θ0'

4
-----,ln=

G4
1 3z2+
2 1 z–( )
------------------- z 1 z–+ln 

  L0=

–
z 1 z+( )

1 z–
------------------- z 2 1 z–( ) 1 z–( ),ln+ln

L
4E2

m2
---------.=

θ0'
In accordance with the QRE approximation, the
starting point for our calculations of the respective dif-
ferential cross section, suitable for the unrestricted pion
phase space, is the following:

(15)

where θ2 is the polar angle of the noncollinear photon

and for (p1, p2, k) see, for example, [15]. Since our
aim is to derive the differential distribution in the
squared pion invariant mass q2, it is convenient to use
the relation between q2 and c2 to avoid integration over
c2 on the right-hand side of Eq. (15). In addition, it is
convenient to use the total photon energy Ω instead
of ω2,

(16)

Because the photon with 4-momentum k2 is a non-
collinear one, we can neglect the electron mass in the

expression for  on the right-hand side of Eq. (15)
and write the distribution over the dipion squared
invariant mass in the following form:

dσ3
H σ q2( )

4E2
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2π
------P x L0,( )=

× Lµν
γ x p1 p2 k2, ,( )g̃µν

α
4π2
--------
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2

xω2
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ω2
---------- 2πω2dω2dc2, c2 θ2, xcos 1
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γ

q2 4E E Ω–( ) 2ω1ω2 1 c2–( ),+=

ω2 Ω ω1, dc2
dq2

2ω1ω2
----------------, dω2– dΩ.= =

Lµν
γ

(17)

dσ3
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σ q2( )
4E2
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2π
------ 

 
2

–L0
4 L0 1–( )EΩz

ω1
2

---------------------------------–
zE2L0
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E ω1–
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

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2 1 z+( )2 4z– 1 z–( )2–[ ] E2 1 z+( ) 1 2L0–( )EΩz Ωz

2L0 1 z–( ) Ω 2ω1–( )E–+ +
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---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


 dω1dΩ

EΩz

------------------,

Ωz Ω E 1 z–( ), Z– ω1 Ω ω1–( ) EΩz.–= =
This distribution differs from that given in [14],
where restriction (4) was also applied and approxima-
tion Ω = E(1 – z) used for all terms nonsingular at this
point. It is not a case for the considered situation,
because the upper limit of integration with respect to Ω
now differs considerably from E(1 – z). To find the inte-
gration region in (17), we have to take into account,
together with condition (12), 

(18)
–c0' c2 c0, ∆E ω1 Ω ∆E,–< << <

c0' θ0' .cos=
The system of inequalities (12) and (18) defines the
integration region with respect to ω1 and Ω as given by
relations (47) in [14] with one very essential change:

Ωmax = 2E(1 – ). This region is shown in Fig. 2.

The list of all necessary integrals which contribute
in the limiting case 1 – c0 ! 1, 1 –  ! 1 is

z

c0'

1
EΩz

---------- 2 1 z–( ),
1

Ωz E ω1–( )
--------------------------- z2 2Li2 1 z–( ),+ln= =
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(19)

where we omit for brevity the symbol of the integral
and differentials dω1 and dΩ on the left sides of these
relations.

The corresponding cross section reads

(20)
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As one can see, terms containing  enter with opposite
signs in (14) and (20) and vanish in their sum.

To eliminate the infrared auxiliary parameter ∆ and
write the total RC to the Born cross section (2) of radi-
ative process (1) under the considered conditions for
event selection, we have to sum all possible contribu-
tions:

(21)

The expressions for dσS + V and  are given by
Eqs. (30), (31) and (35)–(37) in [14], respectively.
Using these expressions, as well as (14) and (20), after
some algebraic exercise, we arrive at

(22)

where P2θ(z) is the well-known θ term of the second-
order electron structure function in a nonsinglet chan-
nel caused by photonic corrections

and
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dq2
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dq2
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4E2
------------ α

2π
------ 

 
2

P2θ z( )L0
2[=

+ P z L0,( )H1 lθ z,( ) L0H2 z( ) H3 z( )+ + ] ,
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 = 1 z+( ) z 2– 2z+ln+
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Fig. 2. The integration region with respect to ω1 and Ω in
cross section (17), as defined by inequalities (47) in [14]
(where all the notation is also given) but with Ωmax =

2E(1 – ).z
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(23)

The quantity J(z) in H3 is defined as

where

In Fig. 1b, we show the quantity δRC (at two values
of θ0) defined in the same way as in Eq. (11), where

– 4 1 z–
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1
2
--- zln

2
– 5π2

3
-------- 4Li2 z–( ) 2Li2 z( ),–+ +ln
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8
3
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2
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3
--------------Li2 1 z–( )+

– 4 1 z–( )Li2
1 z–

1 z+
--------------- 
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J
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0
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δRC = dσRC/dσB and now dσRC is given by Eq. (22).
Change of the limiting angle from 5° up to 10°
increases the RC by about 1.5%. On the other hand, the
curves on Figs. 1a and 1b at fixed angle θ0 indicate that
the use of restrictions (4) or (6) decreases the number of
events by about 10% as compared with the considered
case, without constraint on the lost invariant mass.

Both these effects can be understood very easily at
the qualitative level because they are caused by an
expansion of the real photon phase space, which pro-
vides an additional positive contribution into RC. Note
that the loss in events due to use of restrictions (4) or (6)
is rather small and is a very modest sacrifice for the
3-pion background that can be removed by them.

The authors thank G. Venanzoni and V.A. Khoze for
fruitful discussions, which stimulated the appearance
of this paper.
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The effective chiral Lagrangian is derived from QCD in the framework of the field correlator method. It con-
tains the effects of both confinement and chiral symmetry breaking due to a special structure of the resulting
quark mass operator. It is shown that this Lagrangian describes light pseudoscalar mesons, and Gell-Mann–
Oakes–Renner relations for pions, eta and K mesons are reproduced. The spectrum of radial excitations of pions
and K mesons is found and compared to experimentally known masses. © 2003 MAIK “Nauka/Interperiod-
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1. QCD is known to possess two highly nontrivial
features at low temperatures, namely, confinement and
chiral symmetry breaking (CSB). At some critical tem-
perature, phase transitions of deconfinement and chiral
symmetry restoration occur. From lattice calculations,
it is known that these two phase transitions take place
at the same temperature [1, 2]. The fact that two critical
temperatures coincide was not fully understood. This
work is a continuation of a series of papers [3–5], where
it is argued that CSB occurs due to confinement in a
very nontrivial way.

It was shown in [3] that effective four-quark interac-
tion leading to spontaneous chiral symmetry breaking
occurs in QCD due to confinement and is associated
with the QCD string. Thus, CSB is closely connected to
confinement. In this approach, the effective chiral
Lagrangian (ECL) containing fields of light pseudosca-
lar mesons is derived from the QCD Lagrangian. This
is done by integrating out gluon fields and performing
bosonization. At the same time, confinement is taken
into account through the specific form of gluon-field
correlators.

As a result, expanding in powers of (derivatives) of
bosonic fields, one obtains the ECL similar to the cele-
brated Gasser–Leutwyler Lagrangian [6], but in the
nonlocal form [3].

We expand ECL in powers of meson fields and
reproduce the standard Gell-Mann–Oakes–Renner
relations, while meson masses are zero in the chiral
limit. It is shown that the vanishing of meson masses
happens due to cancellation of two terms in the Green’s
functions of mesons. The poles of the Green’s function
corresponding to radial excitations of pseudoscalar
mesons are displaced from the masses obtained in the

¶ This article was submitted by the authors in English.
0021-3640/03/7802- $24.00 © 20057
Hamiltonian approach without CSB effects (see, e.g.,
[7] and references therein) and are shifted down by less
than 15%.

2. We consider a Euclidean partition function for
quarks and gluons in the presence of external classical
currents vµ, aµ, s, and p:

(1)

Here, f, g = 1, 2, 3 are flavor indices, ta are generators
of color SU(3) group, trtatb = δab/2, a = 1, …, 8. Sg.f. and
Sgh are gauge-fixing and ghost terms.

Next, we use the generalized contour gauge [8, 9]

(2)

Here, zν(s, x) belongs to a set of contours with the prop-
erties zν(0, x) = x0, zν(1, x) = xν, and x0 is a fixed point.
In what follows, the exact position of contours is unim-
portant for our analytical results, while for numerical
estimates we will assume that contours are chosen to
minimize the spectrum (and area of the string world
sheet), to be called the minimal set of contours.

The reason we use the contour gauge is that it allows
us to express gauge field Aµ through field strength ten-
sor Fµν. Now we are in position to integrate out gluon

Z DADψDψ S0 S1 Sint Sg.f. Sgh+ + + +( )–[ ] ,exp∫=

S0
1
4
--- x4 Fµν

a( )2
,d∫=

S1 i x4 ψ f ∂̂ v̂ γ5â s iγ5 p+ + + +( )
fg

ψg,d∫–=

Sint x4 ψ f g Â
a
taψ f .d∫–=

Aµ x( ) s
∂zν s x,( )

∂s
--------------------

∂zρ s x,( )
∂xµ

--------------------Fνρ z s( )( ).d

0

1

∫=
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field Aµ, expressing the result in terms of field correla-
tors:

(3)

We use the cluster expansion to evaluate this average
over gluon fields

(4)

It is clear that gauge-invariant quantities like the spec-
trum and the Green’s functions computed with the help
of Seff do not depend on the chosen contours if all terms
of cluster expansion are retained in (4). In what follows,
we will use the Gaussian approximation and consider
only the first two terms in the cluster expansion, n = 1,
2. As was shown in [10, 11], the Gaussian approxima-
tion on minimal surfaces is accurate to within a few per-
cent. Thus, we have

(5)

Here, i, j, k, l are color indices, α, β, γ, δ are spinor indi-
ces. Inserting parallel transporters Φ(x, x0) and Φ(y, x0),
which are identically equal to unity in the contour
gauge, one finally gets an expression for effective
action:

(6)

Z DψDψ S1 Seff+( )–[ ] ,exp∫∫=

Seff–[ ]exp Sint–[ ]exp〈 〉 A.=

Sint–[ ]exp〈 〉 A

1–( )n Sint
n〈 〉〈 〉

n!
------------------------------

n

∑ 
 
 

,exp=

Sint〈 〉〈 〉 Sint〈 〉 A 0,≡=

Sint
2〈 〉〈 〉 Sint

2〈 〉 A Sint〈 〉 A
2– Sint

2〈 〉 A,= =

………………………………………

Seff –
1
2
--- x4 y4 ψiα

f x( )ψ jβ
f x( )ψkγ

g y( )ψlδ
g y( )dd∫=

× s t
∂zρ s x,( )

∂s
--------------------

∂zλ s x,( )
∂xµ

--------------------
∂zρ' t y,( )

∂t
--------------------

∂zλ' t y,( )
∂yν

--------------------dd

0

1

∫
× Fρλ z s x,( )( )[ ] ij Fρ'λ' z t y,( )( )[ ] kl〈 〉 A γµ( )αβ γν( )γδ.

Seff
1
2
--- x4d yψiα

f x( )ψ jβ
f x( )ψkγ

g y( )ψlδ
g y( )

4
d∫–=

× δjkδil
1
Nc

------δijδkl– 
  Jαβγδ x y,( ),

Jαβγδ x y,( ) γµ( )αβ γν( )γδJµν x y,( ),=

Jµν x y,( )
1

Nc
2 1–

---------------=

× s t
∂zρ s x,( )

∂s
--------------------

∂zλ s x,( )
∂xµ

--------------------
∂zρ' t y,( )

∂t
--------------------

∂zλ' t y,( )
∂yν

--------------------dd

0

1

∫
× tr Fρλ z s x,( ) x0,( )Fρ'λ' z t y,( ) x0,( )〈 〉 A,

F u x0,( ) Φ x0 u,( )F u( )Φ u x0,( ).≡
Performing bosonization and keeping only scalar–isos-
calar and pseudoscalar–isovector (corresponding to
pions, K and η mesons) terms, one arrives at the quark–
meson Lagrangian (see [4] for details):

(7)

It is now straightforward to integrate out quark fields to
obtain the effective chiral Lagrangian:

(8)

Here, tr refers to flavor and spinor indices and to space
coordinates. Ms is the effective quark mass operator and
φa are fields of pseudoscalar mesons (up to the dimen-
sional factor 2/f, f is the decay constant, φa = 2πa/f).

The classical equations of motion are given by

(9)

This leads to solutions

(10)

The second equation in (10) is a nonlinear equation for

, and the existence of a nontrivial solution is a
manifestation of the chiral symmetry breaking, since

 is scalar. The system of equations (10) for 
and S(x, y) was considered in [12] for the special case

Z DψDψDMsDφa SQM–[ ] ,exp∫=

SQM x4 y4 ψiα
f x( )[dd∫–=

× i ∂̂ v̂ γ5â s iγ5 p+ + + +( )αβ
fg

δ 4( ) x y–( )(

+ iMs x y,( )Ûαβ
fg

x y,( ) )ψiβ
g y( )

– 2N f J x y,( )( ) 1– Ms
2 x y,( ) ] ,

J x y,( ) Jµµ x y,( ),=

Ûαβ
fg

x y,( ) iγ5taφa x y,( )( )αβ
fg .exp=

Z DMsDφa SECL–[ ] ,exp∫=

SECL 2N f x4 y4 J x y,( )( ) 1– Ms
2 x y,( )dd∫ W φ( ),–=

W φ( ) Nctr i ∂̂ v̂ γ5â s iγ5 p+ + + +( )[ln=

+ iMs x y,( )e
iγ5taφa x y,( )

] .

NcTr Sφ x y,( )– Ms x y,( )e
iγ5taφa x y,( )

γ5ta( ) 0,=

NcTr iSφ x y,( )e
iγ5taφa x y,( )

( )

– 4N f J x y,( )( ) 1– Ms x y,( ) 0,=

Sφ x y,( ) x〈 | 1

i∂̂ iMse
iγ5taφa+

---------------------------------- y| 〉 .≡

φa
0( ) x y,( ) 0,=

Ms
0( ) x y,( )

Nc

4N f

----------J x y,( )Tr S x y,( )( ),=

S x y,( ) Sφ x y,( ) φ 0= .≡

Ms
0( )

Ms
0( ) Ms

0( )
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of heavy–light mesons, and it was shown that it has a

confining scalar solution for (x, y) . σ|x –
x0|δ(4)(x – y) for large distance |x – x0| from the quark to
the (heavy) antiquark at the point x0. It is clear that the
same type of solution occurs at large interquark dis-
tances for light–light mesons, which means that con-
finement and CSB occur spontaneously and simulta-
neously from the nontrivial solution of the system (10).

3. We consider ECL (8), expanding it in powers of
the field φa up to the second order, and we introduce
current quark masses }f ≡ diag(mu, md, ms). Neglecting
external currents, one obtains

(11)

Taking the trace in flavor indices (see [4] for details),
one arrives at the following expression for the term qua-
dratic in meson fields:

(12)

where, for example,

(13)

Here, Su and Sd are quark propagators (10) with current
mass of corresponding quark in the denominator. Here,
we have taken the local limit of nonlocal operators
Ms(x, y)  Ms(x)δ4(x – y), φ(x, y)  φ(x), which is
obtained when the gluonic correlation length Tg in the
correlator 〈FF〉  tends to zero.

The two terms in (13) correspond to connected and
disconnected diagrams, which cancel each other in the
zero momentum limit. This cancellation is exact in the

Ms
0( )

W φ( ) Nctr i ∂̂ } f Mse
iγ5taφa+ +( )[ ]ln=

=  Nctr i ∂̂ } f Ms+ +( )---ln

+ –Msγ5taφa
i
2
---Mstatbφaφb– 

  ,

W 2( ) φ( )
Nc

2
------tr iS Mstatbφaφb( )[–=

+ S Mstaφa( )γ5Sγ5 Mstbφb( ) ] .

W 2( ) φ( ) x4 y4 Wππ x y,( )φπ* x( )φπ y( ) ∫dd∫–=

+ WKK x y,( )φK* x( )φK y( ) W
K

0
K

0 x y,( )φ
K

0* x( )φ
K

0 y( )+

+
1
2
--- Wij x y,( )φi x( )φj y( )

i j, 3 8,=

∑ ,

Wππ x y,( )
Nc

4
------Tr Su x y,( )Ms y( )γ5Sd y x,( )γ5Ms x( )[=

+ iSu x x,( )Ms x( )δ4 x y–( ) u d( )+ ] .
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chiral limit. To be more precise, the quadratic term for
zero momentum (i.e., when φ(x) = const) takes the form

(14)

Taking into account that

(15)

where  and  denote a quark condensate
in Minkowski and Euclidean space, respectively, and
that φa = 2πa/f, where f is the decay constant and πa are
physical meson fields, one finds

(16)

Here,  = (mu + md)/2. We have neglected differences
between quark condensates for different flavors, cor-

rections are on the order of . Small mixing of φ3 and
φ8 states due to isospin symmetry breaking (propor-
tional to mu – md) yields a correction ε to pion and η
meson masses:

(17)

Thus, ECL (8) leads to the correct Gell-Mann–Oakes–
Renner relations for all light pseudoscalar mesons.

4. Let us now consider the Green’s functions of
mesons generated by the pseudoscalar currents:

(18)

W 2( ) φ( ) zero momentum
Nc

4
------ x4 mu md+

2
-------------------d∫=

× Tr iSu x x,( )– iSd x x,( )–( )φπ*φπ …+ O m2( ).+

ψψ〈 〉 M i ψψ〈 〉 E–=

=  –
1
Z
---δZ v a s p, , ,[ ]

δs x( )
--------------------------------- –NcTr iS x x,( )( ),=

ψψ〈 〉 M ψψ〈 〉 E

f 2M
π±
2 2m̂ qq〈 〉 O m4( )+=

f 2M
π0
2 2m̂ qq〈 〉 ε– O ε2( ) O m2( )+ +=

f 2M
K

±
2 mu ms+( ) qq〈 〉 O m2( )+=

f 2M
K

0
2 md ms+( ) qq〈 〉 O m2( )+=

f 2Mη8
2 2

3
--- m̂ 2ms+( ) qq〈 〉 ε O ε2( ) O m2( ).+ + +=

m̂

mq
2

π0 δ( )φ3 δ( )φ8,sin+cos∼
η8 – δ( )φ3 δ( )φ8,cos+sin∼

2δ( )tan 3
md mu–

2ms mu md+( )–
---------------------------------------,=

ε
qq〈 〉 mu md–( )2

4ms 2 mu md+( )–
------------------------------------------, δ . 0.6°.=

Gab x y,( ) Ja
5 x( )Jb

5 y( )〈 〉 1
Z
--- δ2Z

δpa x( )δpb y( )
-------------------------------,= =

Ja
5 x( ) ψ x( )γ5taψ x( ),=

p fg x( ) pa x( )ta
fg.=
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From the ECL, one obtains

(19)

Taking Ms at the stationary point (10) and expanding Sφ

in terms of φ around  = 0, one finds

(20)

As argued in [4], the coupling constant  is on the

order of , and, thus, in large Nc limit, pion
exchanges are suppressed. This allows us to neglect
pion fields in connected terms (the first term in equa-
tion (19)) and consider only one pion exchange in the
disconnected term. The resulting expression will con-
tain two terms, both on the order of Nc.

Taking into account that S(x, y) = diag(Su(x, y), Sd(x,
y), Ss(x, y)) is diagonal in flavor, one finds

(21)

Other Green’s functions differ only in flavor indices.

Here, (z1, z2) =  is the propagator of
the pion field. This formula can be illustrated with the
Feynman diagram:

(22)

To find the pion propagator, one should consider
equations (12), (13):

(23)

Gab x y,( )
1
Z
--- DMsDφa SECL–[ ]exp∫=

× NcTr Sφ x y,( )γ5tbSφ y x,( )γ5ta( )[

– Nc
2Tr Sφ x x,( )γ5ta( )Tr Sφ y y,( )γ5tb( ) ] .

φa
0( )

Sφ x y,( ) S x y,( )=

+ xS x z,( )Ms z( )γ5φa z( )taS z y,( ).4d∫
gπqq

Nc
–1/2

Gπ+π+ x y,( )
Nc

2
------Tr Sd x y,( )γ5Su y x,( )γ5( )=

–
Nc

2

4
------ z4

1 z4
2Tr Su x z1,( )Ms z1( )γ5Sd z1 x,( )γ5( )dd∫

× Tr Sd y z2,( )Ms z2( )γ5Su z2 y,( )γ5( )Gππ
φ z1 z2,( ).

Gππ
φ φπ* z1( )φπ z2( )〈 〉

Gπ+π+ x y,( )
Nc

2
------

Nc
2

4
------ .–=

d

u

d d

uu π+

Gππ
φ x y,( )( ) 1–

Wππ x y,( )=

=  
Nc

4
------Tr 2Sd x y,( )Ms y( )γ5Su y x,( )Ms x( )γ5[

+ i Sd x x,( )Ms x( ) Su y y,( )Ms y( )+( )δ4 x y–( ) ] .
Going over to the momentum space G(x, y) =

/(2π)4exp(ik(x – y))G(k), where we have also

taken into account that the Green’s function is transla-
tionally invariant, i.e., depends only on (x – y), one has

(24)

Due to Eqs. (14)–(16), the pion propagator (23) has a

pole at k2 = –  and can be rewritten as

(25)

As argued in [4], all three Green’s functions ,

, and  have the same set of poles, which

are poles of the quark model (i.e., confined  system
without chiral symmetry breaking) in pseudoscalar
channel, and can be represented as

(26)

where

(27)

ϕn(r) is the 3D spin-singlet wave function of  sys-
tem, and M(0) is a constant related to the mass operator
Ms, evaluated in [5] through σ = 0.18 GeV2 and

k4d∫

Gπ+π+ k( )
Nc

2
------G

π+π+
0( ) k( )=

–
Nc

2

4
------G

π+π+
0 M,( ) k( )G

π+π+
φ k( )G

π+π+
0 M,( ) k( ),

G
π+π+
0( ) x y,( ) Tr Sd x y,( )γ5Su y x,( )γ5( ),≡

G
π+π+
0 M,( ) x y,( ) Tr Su x y,( )Ms y( )γ5Sd y x,( )γ5( ).≡

M
π±
2

G
π+π+
φ k( )

2
Nc

------ 1

G
π+π+
0 MM,( ) k( ) G

π+π+
0 MM,( ) k2 M

π±
2–=( )–

------------------------------------------------------------------------------,=

G
π+π+
0 MM,( ) x y,( ) Tr Su x y,( )Ms y( )γ5Sd y x,( )Ms x( )γ5( ).≡

G
π+π+
0( )

G
π+π+
0 M,( ) G

π+π+
0 MM,( )

qq

G
π+π+
0( ) k( )

cn
2

k2 mn
2+

-----------------,
n 0=

∞

∑–=

G
π+π+
0 M,( ) k( )

cncn
M( )

k2 mn
2+

-----------------,
n 0=

∞

∑–=

G
π+π+
0 MM,( ) k( )

cn
M( )( )2

k2 mn
2+

-----------------,
n 0=

∞

∑–=

cn

mn

2
------ϕn 0( ),=

cn
M( ) mn

2
------M 0( )ϕn 0( ),=

qq
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Tg = 1 GeV–1 to be M(0) = 148 MeV. Thus, one has for
the pion Green’s function

(28)

Clearly, the Green’s function (28) has pole at k2 =

− , and all poles of the quark model are cancelled,

since the same set of poles appears in functions Ψ(k)
and Φ(k). The radial excitations of the π± meson are
given by zeros of the function Φ(k). In the first approx-
imation, it reads

(29)

The masses of K0 and  radial excitations can be
found from (29) by replacing π meson mass and refer-
ence spectrum with those for K mesons. Numerical
results for masses of radial excited states are presented
in the next section.

It should be mentioned that the η meson requires
separate consideration because of its mixing with isos-
calar state η', which is different for mesons and their
radial excitations. Study of the η-meson spectrum and
mixings is planned for a future work.

5. Masses and wave functions of the reference spec-
trum can be obtained from the QCD string Hamiltonian
(first derived in [13–15] and improved to take into
account quark self-energy in [16]), where we have put
L = 0:

(30)

Here, m1 and m2 are current masses of quarks, µ1 and µ2

are einbein parameters, to be found from the eigenval-

ues of Hamiltonian (30) via ∂ (µ1, µ2)/∂µ1 = 0,

∂ (µ1, µ2)/∂µ2 = 0;  = µ1µ2/(µ1 + µ2), and pr is the
radial component of momentum. This Hamiltonian
allows one to find spin-averaged masses and wave func-

Gπ+π+ k( )
Nc

2
------ Ψ k( )

k2 M
π±
2+( )Φ k( )

------------------------------------,–=

Ψ k( )
cn

2 cm
M( )( )2

k2 mn
2+( ) mm

2 Mπ
2–( )

------------------------------------------------,
n m, 0=

∞

∑=

Φ k( )
cn

M( )( )2

k2 mn
2+( ) mn

2 Mπ
2–( )

-----------------------------------------------.
n 0=

∞

∑=

M
π±
2

k2 m1
2 1 δ1+( ),–=

δ1
1

m1
2

------
c1

2 m1
2 m0

2–( ) m0
2 M

π±
2–( )

c1
2 m0

2 M
π±
2–( ) c0

2 m1
2 M

π±
2–( )+

---------------------------------------------------------------------.–=

K
0

H
m1

2

2µ1
--------

m2
2

2µ2
--------

µ1 µ2+
2

-----------------
pr

2

2µ̃
------ σr

4
3
---

α s

r
-----.–+ + + +=

Mn

Mn µ̃
JETP LETTERS      Vol. 78      No. 2      2003
tions. Spin–spin interaction can then be taken into
account as a perturbation:

(31)

Here, ∆SE is the quark self-energy term due to field cor-
relators. The factor η is a calculable function of current
quark masses but is close to 1 when quark masses are
small.

Next, we plug in numbers:

(32)

Taking into account that the lowest state is shifted
exactly to the physical value of meson mass (due to the
Gell-Mann–Oakes–Renner relations), we finally get the
following chiral shift of reference (quark model) spec-
tra:

pions:

π(1S) 0.51 GeV  0.14 GeV (exact),

π(2S) 1.51 GeV  1.25 GeV (exp : 1.3 GeV),

π(3S) 2.18 GeV  1.98 GeV (exp : 1.8 GeV);

K mesons:

K(1S) 0.63 GeV  0.49 GeV (exact),

K(2S) 1.57 GeV  1.43 GeV (exp : 1.46 GeV),

K(3S) 2.21 GeV  2.1 GeV (exp : 1.83 GeV).

It can be seen that masses of radial excitations are
shifted by less than 15%, and the shifts are small for
high excitations. Moreover, one can estimate that
δM/M(4S) . 0.05 for pions and δM/M(4S) . 0.04 for K
mesons. Also, one can see that masses of higher excita-
tions and the slope of the radial Regge trajectory differ
from the experimental. The reason is that Hamiltonian
(30) does not take into account effects of string break-
ing, which are important for highly excited states, since
they have a large spatial extent. Our consideration can
be refined by including these effects, which has been
done for mesons without chiral effects in [17].

6. Effective chiral Lagrangian (8) is derived directly
from the QCD Lagrangian in the framework of vacuum
correlators method. This Lagrangian correctly
describes light pseudoscalar mesons, which are mass-
less in the chiral limit and satisfy the Gell-Mann–
Oakes–Renner relations when quark masses are non-
zero.

The poles of the quark model Green’s function are
shifted by less than 15%, and the shift is small for
highly excited states.

Mn Mn µ1 µ2,( )
32παss1s2

9µ1µ2
------------------------- ϕn 0( ) 2+=

+
4
3
---

α s

r3
-----

3 s1n( ) s2n( ) s1s2–〈 〉
µ1µ2

-------------------------------------------------- ∆SE,+

∆SE
2σ
π

------ 1
µ1
----- 1

µ2
-----+ 

  η ; η 0.9–1.∼–=

mu 0.005 GeV, md 0.009 GeV,= =

ms 0.17 GeV, σ 0.18 GeV2, α s 0.3.= = =
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Optical Orientation of Atoms in Spontaneous Raman Scattering 
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A general approach to the problem of spontaneous transfer of light-induced anisotropy in the scheme of Raman
scattering of resonance elliptically polarized light is developed. Depending on the type of the field-excited
(a)  (b) transition, the stationary distribution of atoms over the sublevels of the final level (c) coupled with
the excited level only by the (b)  (c) spontaneous transition is either isotropic and does not depend on field
parameters or anisotropic. In the latter case, the anisotropy is determined by both field polarization and (at fairly
large level momentum values) field detuning and intensity. © 2003 MAIK “Nauka/Interperiodica”.
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1. The anisotropy of internal atomic states, which
arises as a result of resonance interaction between
polarized light and levels degenerate with respect to
angular momentum projections, plays an important role
in the explanation of many superhigh-resolution polar-
ization spectroscopy results [1], the stability of polar-
ization modes of gas laser generation [2], atomic laser
cooling [3], the formation of optical lattices [4], polar-
ization resonance fluorescence [5], etc.

The general statement of the problem of the reso-
nance interaction between polarized light and atoms
includes closed and open optical transitions. In closed
transitions, the total occupancy of the working levels
remains unchanged, and the optical ordering effect
reduces to the redistribution of atoms over the Zeeman
sublevels of the ground and excited states as a result of
induced and spontaneous processes. Nonzero multipole
moments are formed on the atomic level in the station-
ary state, which means the formation of a macroscopic
anisotropy in the atomic ensemble. The theory of the
resonance interaction between elliptically polarized
light and atoms was developed for closed transitions in
a series of our works [6]. Most of the optical transitions
are, however, open; that is, atoms excited by a reso-
nance field from the ground state through at the
(a)  (b) transition can experience transitions to
other lower levels (b)  (c), as in spontaneous Raman
scattering [7]. We should then expect spontaneous
decay to transfer not only the occupancy but also light-
induced anisotropy created by the field in the excited
state (b) to the (c) level. If this final level is long-lived
(metastable or ground, as, for instance, when both lev-
els (a) and (c) are hyperfine structure components),
light-induced anisotropy is accumulated at it with time.

                          
0021-3640/03/7802- $24.00 © 20063
The statement of the problem of spontaneous decay
of a state excited by stationary external polarized light
goes back to the classical problems of polarization res-
onance fluorescence of atoms [5] and spontaneous
Raman scattering [7], where it is also necessary to
know how the final atomic levels are polarized. How-
ever, the final, integral in time, result of spontaneous
decay to atomic levels in an open system of transitions
has not been analyzed. Neither has the question been
discussed of the information (memory) about the
pumping field that such a process retains. More specif-
ically, this is the question of the occupancy and anisot-
ropy of open transition levels that are formed in station-
ary interaction with polarized light and of their depen-
dence on external field parameters. Such questions
arise in studying the problem of optically pumping
atoms between hyperfine structure components by
polarized light in the problem of laser frequency stabi-
lization and in several other problems, where the state
of atomic level anisotropy (multipole moments) should
be controlled and the dependence of this state on light
field polarization should be known. Precisely this
aspect of the problem of interaction between polarized
light and atoms at open optical transitions is considered
below.

We stress once more that the interaction scheme
under consideration is virtually equivalent to the
scheme of spontaneous Raman scattering, but our ulti-
mate goal is the determination of the anisotropic sta-
tionary distribution of atoms over magnetic sublevels
rather than obtaining information about the spectral,
angular, and polarization dependences of spontaneous
radiation.

2. The simplest open transition model is a three-
level atom (see figure), whose two lower levels (a) and
003 MAIK “Nauka/Interperiodica”
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(

 

c

 

) are ground-state levels (for instance, these may be
two hyperfine components) coupled with the excited
state (

 

b

 

) by allowed electric dipole transitions. An
external monochromatic light field with frequency 

 

ω

 

and arbitrary elliptical polarization is in resonance with
the (

 

a

 

)  (

 

b

 

) transition,

(1)

where 

 

E

 

 is the complex field amplitude. The unit com-
plex vector of elliptical polarization 

 

e

 

 is defined in the
coordinate system in which the 

 

z

 

 axis is perpendicular
to the plane of the ellipse and the 

 

x

 

 and 

 

y

 

 axes are
directed along its principal axes,

(2)

Here, the light ellipticity parameter 

 

ε

 

 is defined in the
interval –

 

π

 

/4 

 

≤

 

 

 

ε

 

 

 

≤

 

 +

 

π

 

/4 by setting the ratio between the
small and large ellipse semiaxis lengths equal to

. The sign of 

 

ε

 

 determines the direction of light
field polarization vector rotations.

The action of the light field described by (1) causes
light-induced transitions between levels (

 

a

 

) and (

 

b

 

),
whereas spontaneous decay from the excited state (

 

b

 

)
redistributes atoms between the lower (

 

a

 

) and (

 

c

 

) states,
including redistribution over their Zeeman sublevels.
We assume that the (

 

c

 

)  (

 

b

 

) transition is far from
resonance with the external field; that is, the (

 

c

 

) level is
only related to (

 

b

 

) by spontaneous radiation. The radia-
tion width of the excited level 

 

γ

 

b

 

 = 

 

γ

 

ba

 

 + 

 

γ

 

bc is the sum
of the partial spontaneous decay rates in the channels
(b)  (a) and (b)  (c), and the relative arrange-

     

E t( ) Ee iωt–( )exp c.c.,+=

e εex i εeysin+cos=

=  ε π/4+( )e 1–cos ε π/4–( )e+1.cos–

ε( )tan

                               

Scheme illustrating problem statement: a polarized field is
in resonance with the (a)  (b)optical transition, and
spontaneous pumping over from the (b) to the (c) level
occurs. The distribution over magnetic sublevels in the (c)
state is studied. 
         

ment of the low-level energies is unimportant in the
problem under consideration.

The evolution of atomic internal states is described
by a linear dynamic equation for the density matrix .
In the most general form, this equation can be written as

(3)

where  is the Liouville operator including both light-

induced and spontaneous processes. The action of  on
the density matrix in the model of purely radiation
relaxation can be written in the form

(4)

where the irreducible tensor part of the dipole moment

operator  is expressed through Clebsch–Gordan
coefficients,

(5)

(  can be written similarly). The effective Hamil-
tonian

(6)

is the sum of the Hamiltonian of the free atom taking
into account (b) level damping (δ = ω – ωba is the detun-

ing from the resonance,  =  and

the Hamiltonian of resonance interaction (  = e · (ba)
and Ω is the Rabi frequency).

Clearly, the stationary density matrix of atoms
should satisfy the equation

(7)

as t  +∞. However, generally, this equation does not
determine the stationary state unambiguously, because

the zero subspace of the superoperator  can be degen-
erate. Such a situation is, in particular, characteristic of
open transitions, whose special feature is the existence
of states uncoupled with the field; that is, states in
which the atom ceases to absorb light. Generally, two
types of such states exist in the three-level system under
consideration. The first type corresponds to the com-
plete pumping over of atoms from the (a) to the (c)
level, which does not participate in resonance interac-
tion. The second type is related to the effect of coherent
population trapping at the level (a), that is, to a possi-
bility of the existence of a coherent superposition of

ρ̂

td
d ρ̂ L̂ ρ̂{ } ,=

L̂

L̂

L̂ ρ̂{ } i Ĥρ̂ ρ̂Ĥ
†

–( )– γba D̂q
†

ba( )ρ̂D̂q ba( )
q 0 1±,=

∑+=

+ γbc D̂q
†

bc( )ρ̂D̂q bc( ),
q 0 1±,=

∑

D̂q ba( )

D̂q ba( ) Fb mb,| 〉CFa ma; 1 q,,
Fb mb,

Fa ma,〈 |
mb ma,
∑=

D̂q bc( )

Ĥ δ iγb/2+( )Π̂b– ΩV̂ h.c.+( )+=

Π̂b Fb mb,| 〉 Fb mb,〈 |
mb∑

V̂ D̂

L̂ ρ̂ +∞( ){ } 0=

L̂
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Zeeman sublevels that does not interact with the field
(dark or coherent population trapping states) at the level
(

 

a

 

) [6]. In the presence of both types of such states,
some atoms are trapped at the level (

 

a

 

), and the rest, at
the level (

 

c

 

). The distribution of atoms over the set of
unbound states cannot be determined by Eq. (7) alone.
There are many methods that allow the stationary dis-
tribution (+

 

∞

 

) to be unambiguously related to the ini-
tial distribution (0) using evolution equation (3). For
our purposes, the following variant is the most suitable.
The integration of (3) in time from 

 

t

 

 = 0 to 

 

t

 

 = +

 

∞

 

 yields
the algebraic equation

(8)

This equation relates (+

 

∞

 

) and (0) to the matrix ,
which determines the characteristic times of ordering
of atoms over internal degrees of freedom (generalized
relaxation times),

(9)

Given the initial matrix (0), a solution to system (7),
(8) unambiguously determines the stationary density
matrix (+

 

∞

 

). As concerns the initial conditions, we
assume that, at 

 

t

 

 = 0, the atoms are at level (

 

a

 

) with an
isotropic distribution over sublevels; that is, (0) =

/(2

 

F

 

a

 

 + 1). Further, we will be interested in the sta-
tionary distribution at the final level (

 

c

 

) (at 

 

F

 

c

 

 

 

≠

 

 0),
which, according to (8), (4), is expressed for the given
initial conditions through the operator of the relaxation
time of the excited level (

 

b

 

) as

(10)

Note that, generally, at arbitrary angular momentum
values, system (7), (8) of operator equations is fairly
complex, and, as with closed transitions, its solutions
are fundamentally different depending on the relative
angular momenta of the levels 

 

F

 

a

 

 and 

 

Fb (which are
related by the selection rules Fb – Fa = 0, ±1) and the
presence or absence of the coherent population trap-
ping effect for the Fa  Fb transition excited by the
field.

3. Briefly consider the principal results that follow
from our analysis of system (7), (8).

First, if the spectrum of the  operator does not
contain zero eigenvalues, that is, if states uncoupled
with the field are absent at the excited level (b), the sta-
tionary distribution on the (c) level is isotropic and does
not depend on the polarization, intensity, or detuning of
the pumping field. This most contraintuitive result char-
acterizes all transitions with Fb – Fa = –1 at an arbitrary
elliptical field polarization,

ρ̂
ρ̂

ρ̂ +∞( ) ρ̂ 0( )– L̂ τ̂{ } .=

ρ̂ ρ̂ τ̂

τ̂ ρ̂ t( ) ρ̂ +∞( )–( ) t.d

0

+∞

∫=

ρ̂

ρ̂

ρ̂a

Π̂a

ρ̂c +∞( ) γbc D̂q
†

bc( )τ̂bD̂q bc( ).
q 0 1±,=

∑=

     

V̂ V̂
†
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(11)

and for the Fb – Fa = 0 transitions at half-integer
momentum values and polarizations different from cir-
cular (ε ≠ ±π/4),

(12)

Note that resonance fluorescence, integral in time, is
then completely isotropic and nonpolarized, because

 ∝  . The distribution over the excited state (b)
sublevels is, however, anisotropic at any fixed finite
time t, which presupposes some angular and polariza-
tion dependence of scattered light. In addition, the char-
acteristic time of attaining stationary state (12) for the
Fb – Fa = 0 transitions with half-integer momentum val-
ues substantially depends on the ellipticity and tends to
infinity as ε  ±π/4.

The situation is quite different for the other transi-
tions, that is, the Fb – Fa = 1 transitions and the Fb –
Fa = 0 transitions with integer momentum values. For
these transitions, there are always states uncoupled
with the field at the excited (b) level [6]. For this reason,
the  matrix cannot be isotropic. As a result, the sta-
tionary distribution at the (c) level is anisotropic and
depends on the pumping field polarization. In the limit-
ing cases of linear (ε

 

 = 0) and circular (

 

ε

 

 = 

 

±

 

π

 

/4) polar-
izations, a solution can be obtained for arbitrary
momentum values [8]. Without reproducing this solu-
tion, note that  then does not depend on the
detuning 

 

δ

 

 and Rabi frequency 

 

Ω

 

. In the general case
of arbitrary ellipticity values, we found a solution to the
problem for comparatively small level momenta (

 

F

 

a

 

 =
0, 1/2, and 1). For 

 

F

 

a

 

 = 0 and 1/2 and 

 

F

 

a

 

 = 

 

F

 

b

 

 = 1, the
stationary distribution at the (

 

c

 

) level was as previously
independent of 

 

δ

 

 and 

 

Ω

 

 (naturally, the distribution
depended on the ellipticity parameter 

 

ε

 

). For instance,
for the configuration of the levels 

 

F

 

a

 

 = 0  

 

F

 

b

 

 =
1  

 

F

 

c

 

 = 1, the nonzero components of orientation

 and alignment , which characterize the station-
ary anisotropy at the (

 
c
 
) level, have the form

(13)

However, even for the 

 

F

 

a

 

 = 1  

 

F

 

b

 

 = 2 open transi-
tion, the  density matrix depends on all pump-
ing field parameters, that is, 

 

ε

 

, 

 

δ

 

, and 

 

Ω

 

. In particular, at

 

F

 

c

 

 = 2 and in the weak field limit 

 

Ω

 

 

 

!

 

 

 

γ

 

b

 

, the stationary
multipole moments for the (

 

c

 

) level are functions of the
detuning 

 

δ

 

 and ellipticity 

 

ε

 

,
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(14)

ρ10
c( ) 2 10 2ε( ) 11 c2+( ) –9 –25 22c2+( )δ̃
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---------------------------------------------------------------------------------------------------------------------------------=
where, for brevity, we used the notation  = δ/γb and
c = cos(2ε) and assumed the equality of the partial
decay rates γba = γbc. One can see that, at a field polar-
ization different from linear and circular, the anisotropy
of the (c) level substantially depends on δ (for instance,
the change in orientation caused by the retuning 0 < δ <
5γb may amount to dozens percent). It appears that this
tendency should also be characteristic of levels with
larger momentum values.

4. Note in conclusion that the theoretical results
obtained in this work can be checked in sub-Doppler
polarization spectroscopy experiments, in a scheme
with a strong pumping field and a weak probe field
tuned in resonance to some transition from the (c) level.
The isotropy of the  density matrix would then
mean the absence of the signal of polarization plane
rotation for the probe field. As concerns the specific
dependence on the detuning given by (14), it results in
a selective velocity dependence of the elements of the

 density matrix in an elliptically polarized field
taking into account the Doppler frequency shift kv  for
moving particles. This should in turn manifest itself by
narrow (~γb wide) resonances in the rotation signal at

long interaction times /γb @ 1 (  is the mean flight
time of the interaction of the atoms with the field),
when usual sub-Doppler resonances experience consid-
erable broadening. The first attempts at performing
such experiments in rubidium vapor were reported in
[9].
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A new principle of the diode laser frequency tuning has been developed and implemented. According to this,
the laser frequency is tuned by alternating strain in the active region of an InGaAsP/InP laser heterostructure
emitting in a wavelength range of 1.3–1.8 µm. The strain is induced through the excitation of bulk ultrasonic
waves in these heterostructures by means of a specially developed technique. Data on the influence of the alter-
nating strain, induced by the bulk ultrasonic waves, on the spectral characteristics of laser radiation are
presented. Estimates based on these data show that the frequency tuning range amounts to ∆F ≈ 110 GHz for
an acoustic wave with the frequency f = 6.5 MHz and a power of about 1 W. © 2003 MAIK “Nauka/Interperi-
odica”.

PACS numbers: 42.60.Fc; 78.20.Hp
The processes determining the spectral characteris-
tics of heterolasers have been extensively studied. Of
most interest are the investigations devoted to studying
the possibilities to control the laser radiation frequency.
A simple and reliable method is offered by the wave-
length tuning through variation of the pumping current
in multistage lasers [1]. Frequency tuning in diode
lasers for high-resolution laser spectrometers is usually
achieved by using thermal effects [2] or by varying the
working current [3].

It is known that elastic strain modifies the deforma-
tion potential, thus affecting the electron subsystem (in
particular, the bandgap width [4]) and changing the
dielectric permittivity [5] of semiconductors. We may
expect that the strain-induced variation of the bandgap
width will modify the generation conditions in laser
heterostructures, which has to be manifested in a
change of the spectral characteristics of radiation, in
particular, the radiation frequency. A change in the
refractive index of the laser resonator in the presence of
strain will also modify the radiation spectrum.

This paper presents the first results of our investiga-
tion of the straining action of bulk ultrasonic waves on
the InGaAsP/InP laser heterostructures and the related
changes in the radiation characteristics.

EXPERIMENTAL

We have studied InGaAsP/InP laser heterostructures
of separate confinement with two strained quantum
wells (Fig. 1). The heterostructures were grown by met-
alorganic vapor phase epitaxy (MOVPE) on n-InP sub-
strates. Neither the active region nor the waveguide lay-
ers were intentionally doped. The doping profile of the
0021-3640/03/7802- $24.00 © 20067
wide-bandgap emitters and the contact layer is pre-
sented in Fig. 1. The MOVPE-grown heterostructures
were coated with insulating SiO2 layers, in which
100-µm-wide mesastrips were formed by photolithog-
raphy. Then, SiO2 mirrors (with a reflection coefficient
of R > 0.95) and antireflecting layers (R < 0.04) were
deposited onto the resonator edges. Finally, the laser
diodes were fixed on copper heat exchangers with the
aid of indium-based solder.

Fig. 1. A schematic energy band diagram of InGaAsP/InP
laser heterostructures of separate confinement (KR-1168
type emitting at λ = 1.58 µm (solid curve). Dash and dot–
dash curves show the calculated doping profile for silicon
(donor) and zinc (acceptor), respectively (z is the structure
growth coordinate).
003 MAIK “Nauka/Interperiodica”
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The experiments were performed with laser hetero-
structures operating at room temperature in the pulsed
regime with a pulse duration up to 3 µs at a wavelength
of 1.48 µm. The threshold current was ~35 mA; the
working current was varied from this threshold up to
three times this value. The radiation spectrum halfwidth
was 0.25–0.4 nm.

The investigation was conducted using a specially
designed experimental setup, schematically depicted in
Fig. 2. A collimated and focused beam of laser radiation
was detected by fast-response photodiodes with differ-
ent photocurrent buildup times τd (5 or 60 ns) using one

Fig. 2. A schematic diagram of the experimental setup:
(1) metal substrate; (2) laser heterostructure; (3, 4) focusing
lenses; (5) Fabry–Perot etalon; (6) photodiode; (7) ampli-
fier; (8) oscillograph; (9) microwave oscillator; (10) piezo-
electric ceramic transducer.

Fig. 3. Plots of the photodiode response signal intensity ver-
sus working current of a laser diode: (1) direct detection;
(2) dispersion curve at the FPE output; (3) FPE output sig-
nal in the presence of an ultrasonic wave (f = 6.5 MHz).
of the two schemes. In the first case, the focused radia-
tion beam was directly detected by a photodiode. In the
second case, the collimated beam was passed through a
Fabry–Perot etalon (FPE) and then focused and
detected by a photodiode in the focal plane. This
scheme employed an optical etalon with deposited
metal mirrors and an 0.6-mm-wide air gap. According
to calculations, the dynamic dispersion range of this
etalon at a wavelength of 1.48 µm was 18.25 Å. Mea-
surements using the FPE scheme allow changes in the
spectral characteristics of laser radiation to be ana-
lyzed.

The output signal of a photodiode was amplified by
an amplifier with a bandwidth of up to 5 MHz and was
displayed on a wideband (100 MHz) oscillograph. The
signal modulated with a frequency of the ultrasound
was measured using an amplifier with a bandwidth of
400 MHz.

In order to study the effect of elastic straining on the
laser generation regime and the radiation characteris-
tics, we have developed a method of exciting bulk
acoustic waves in laser heterostructures in a frequency
range from 6.5 to 200 MHz. The bulk longitudinal
ultrasonic waves with an intensity of up to 100 W/cm2

were excited using piezoelectric ceramic resonator
plates in a frequency interval of 6.5–10 MHz (Fig. 2).

RESULTS AND DISCUSSION

Investigation of the laser radiation intensity as a func-
tion of the working current gave the following results
(Fig. 3). Direct detection of the radiation (curve 1)
showed a normal threshold character of the process,
with a slower monotonic increase in the intensity at a
current above the threshold (the working current was
varied from this threshold up to a threefold value).
Measurements using the FPE scheme revealed oscillat-
ing variation of the signal level with the working cur-
rent (curve 2). Since the FPE transmission depends on
the signal frequency, this signal behavior is evidence
that variation of the working current is accompanied by
a change in the laser radiation frequency. Indeed, inde-
pendent spectroscopic measurements of the laser radia-
tion wavelength in the regime of variable working cur-
rent revealed a shift of the laser emission line (Fig. 4).
Thus, the position of the laser frequency on the disper-
sion curve of the FPE transmission can be controlled by
varying the working current.

The effect of the acoustic-wave-induced straining
was studied in two experimental configurations. The
first configuration, employing a photodiode detector
with a relatively slow response (τd ≈ 60 ns) and an
amplifier with a relatively narrow bandwidth
(~5 MHz), ensured increased dynamic range and was
used for “rough” measurements. The second configura-
tion with a fast-response photodiode (τd ≈ 5 ns) and a
wideband amplifier (~400 MHz) revealed a frequency-
JETP LETTERS      Vol. 78      No. 2      2003
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modulated component related to the ultrasound-
induced straining.

In the first configuration, ultrasonic excitation of the
laser heterostructure led to the following effects. In the
regime of minimum transmission, the ultrasonic wave
caused an increase in the FPE transmission, whereby
the photodiode response increased by a factor of 1.5–2
(Fig. 3, curve 3). At the maximum of the dispersion
curve, the ultrasound produced a reverse effect and
decreased the FPE transmission. Both these effects pos-
sessed an integral character: the signal increment was
virtually constant during the laser pulse (τL = 2.5–3 µs)
and the acoustic pulse.

Let us qualitatively analyze the obtained results. An
elastic wave is essentially an alternating strain. If
strains with opposite signs lead to corresponding shifts
of the light frequency (±∆F) or changes in the emission
direction, introduction of an acoustic wave in the
regime of minimum FPE transmission would drive the
system away from the minimum and, hence, increase
the transmission. By the same token, the system occur-
ring at the maximum of the dispersion curve will
exhibit the reverse effect, whereby a change in the
emission frequency or direction under the action of an
acoustic wave will cause a decrease in the FPE trans-
mission—in agreement with what was observed in
experiment.

Thus, the observed effects may result from changes
in both frequency and direction of the heterolaser emis-
sion. However, we have established that the latter factor
is insignificant. Taking into account that the acoustic
wavelength in our experiments was about 400 µm and
the optical resonator aperture in the wave propagation
direction was about 1 µm, it can be readily shown that
the laser beam deviations caused by the refractive index
gradient do not exceed 20″, which is beyond the sensi-
tivity limits of our experimental setup. This conclusion
is experimentally confirmed by the fact that the position
of the signal maximum in the focal plane of the lens
was the same for the acoustic generator switched on
and off. As for the first factor (frequency shift), the pos-
sible mechanisms can be related to changes in both
electron parameters of the heterostructure and the opti-
cal properties of the laser resonator. Determination of
the absolute and relative magnitudes of these contribu-
tions requires further experimental and theoretical
investigations.

Using the dispersion curve of the etalon transmis-
sion (Fig. 3, curve 2) and the experimental data on vari-
ations of the laser radiation intensity (Fig. 3, curve 3) in
response to the acoustic wave introduction (f =
6.5 MHz), we have estimated the change in the laser
wavelength ∆λ under the action of bulk ultrasonic
waves. For an acoustic power of ~1 W (at an intensity
of ~100 W/cm2), ∆λ/2 ≈ 3.5–4 Å per half period (or 7–
8 Å per period), which corresponds to a frequency shift
of ∆F ≈ 110 GHz.
JETP LETTERS      Vol. 78      No. 2      2003
As was noted above, the optical signal increment
was virtually constant during the laser pulse and the
acoustic pulse, although we might expect the FPE
transmission to be modulated by the ultrasound fre-
quency. We believe that the main possible factors which
could explain the observed behavior are (i) unsatisfac-
tory frequency characteristics of the detection channel
and (ii) too large a radiative recombination time (TL) of
the laser heterostructure as compared to the acoustic
wave period Ts. However, the latter reason is invalid,
since both published data and our measurements show
that τL ! Ts.

In order to visualize the anticipated modulation of
the laser radiation frequency by the ultrasonic wave, we
have performed fine measurements in the aforemen-
tioned configuration with reduced dynamic range and
improved frequency characteristics of the detection
channel. The results of these measurements are pre-
sented by oscillograms in Fig. 5. The upper sweep rep-
resents the working current pulse. The lower sweep
shows laser radiation pulses measured for a working
current amplitude slightly above the threshold (I1 ≈
1.4Ith). In the absence of the acoustic wave, the radia-
tion pulse has a nearly rectangular shape (Fig. 5a) to
within a pulse top ringing caused by thermal fluctua-
tions of the FPE tuning. Switching on the ultrasound
(Fig. 5b) leads to an almost 100% modulation of the
laser pulse amplitude with a frequency equal to that of
the acoustic wave. An increase in the ultrasound fre-
quency leads to a corresponding decrease in the modu-
lation period (Fig. 5c). Obviously, the observed output

Fig. 4. Heterolaser spectra measured for various working
currents.
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Fig. 5. Oscillograms showing the working current pulse (top, 33 mA/div) and the laser radiation pulses (bottom) measured with the
acoustic wave (a) switched off and (b–e) switched on, for the ultrasound frequency f = 6.5 (b, d, e) and 8 MHz (c).
signal modulation reflects changes in the FPE transmis-
sion in response to the frequency modulation of the
transmitted laser radiation. The ultrasound pulse coin-
cides with the working current pulse. On decreasing the
current pulse delay, which leads to a partial overlap of
these pulses, we observe the corresponding partial
modulation of the laser pulse (Fig. 5d).

As was noted above, an increase in the working cur-
rent is accompanied by a growth of the laser linewidth
(Fig. 4). In our opinion, this circumstance, together
with thermal fluctuations of the FPE tuning, accounts
for a decrease in the stability of modulation of the FPE
transmission observed upon an increase in the working
current (Fig. 5e). This implies that laser structures with
a narrower linewidth should be used in order to observe
the modulation effects in a wider range of working cur-
rents.

To summarize, we have developed and implemented
a new method for the investigation of laser radiation
characteristics, with which one can study optical pro-
cesses with a characteristic variation time as small as
5 ns. We have also developed a special technique for
JETP LETTERS      Vol. 78      No. 2      2003
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exciting bulk acoustic waves in laser heterostructures in
a frequency range from 6.5 to 200 MHz. Using this
technique, InGaAsP/InP laser heterostructures were
excited by ultrasound in a frequency range from 6.5 to
10 MHz.

We have studied changes in the laser radiation char-
acteristics under the action of alternating strain induced
by bulk ultrasonic waves with an intensity of up to
100 W/cm2. It is unambiguously established that an
ultrasonic wave introduced into a laser heterostructure
produces modulation of the laser frequency with a
period equal to that of the acoustic wave. Estimates
based on the experimental data show that the change in
the radiation wavelength amounts to ∆λ ≈ 7–8 Å, which
corresponds to a frequency tuning range of ∆F ≈
110 GHz.

The authors are grateful to I.A. Andreev for kindly
providing a fast-response photodiode (λ = 1.15–
2.3 µm), to A.V. Lyutetskii for providing laser diodes
for the experiments, and to A.M. D’yakonov for useful
methodological discussions.
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Effect of Hydrostatic Pressure on the Superconductivity
in Fluorinated Hg0.8Ba2Ca2Cu3.2O8 + δ
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The effect of hydrostatic pressure on the superconducting transition temperature was measured for the Hg-1223
phase of a fluorinated mercury cuprate high-temperature superconductor with Tc(optim) = 138 K. The value of
the Tc derivative with respect to pressure was found to be rather high (11.0 K/GPa); at P = 1.5 GPa, Tc = 153.5 K.
The results obtained are discussed in connection with works on the synthesis of such samples. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 74.62.Fj
The members of the homologous series of layered
mercury cuprate high-temperature superconductors
(HTSCs) have the highest Tc due to the nonstoichiomet-
ric oxygen in the Hg–O layers, providing the necessary
concentration of charge carriers in the Cu–O layers.
The length of the Cu–O bond in the layer (parameter a)
is very sensitive to the nonstoichiometric oxygen con-
tent. Mercury HTSCs have layers with minor distor-
tions (Cu–O bond angle is close to 180°).

The temperature Tc (here and below, we take the
maximum value of Tc for a particular member of the
series for which the value of δ is an optimum) depends
on the number n of layers. The highest Tc = 135 K is
attained for n = 3.

Interest in fluorinated cuprates was aroused in con-
nection with the work [1], in which it was shown that
their Tc is 3–4 K higher than in oxide cuprates and their
lattice parameters were studied in detail. The valence of
fluorine is lower than that of oxygen, so that a greater
amount of fluorine should be introduced to attain the
same carrier concentration. In addition, there is a slight
difference in the radii. These factors lead to a change in
the length of the apical bond Cu–O upon fluorination of
the Hg-1201 phase but have no effect on Tc and on the
length of the Cu–O bond in the layer [2]. The fluorina-
tion of the 1223 phase, which has a high anion concen-
tration, reduces the Cu–O bond length without chang-
ing the bond angle and increases Tc by approximately
4 K [1], which shows that the increase in Tc is correlated
with the decrease in the Cu–O bond length in the layer.

The dependences Tc(a) for fluorinated and oxide
Hg-1223 samples were also studied in [1]. The differ-
ence between the dependences is clear: for the oxide
Hg-1223 sample there is a pronounced peak with
Tc(optim) = 134–135 K; for the fluorinated sample, the
peak is less pronounced, and the corresponding param-
eter a is smaller. Compression shortens the Cu–O bond:
0021-3640/03/7802- $24.00 © 0072
∆a = 0.0023 Å corresponds to an increase in Tc (∆T =
4 K). It is noted that the stresses occurring in the CuO2
layer are due to the chemical modification of the crystal
structure, i.e., to fluorination.

Pressure, as an additional way of changing the
parameter a, extends the capabilities for the investiga-
tion of mercury cuprates. In particular, Tc = 160 K was
attained for the Hg-1223 phase under quasi-hydrostatic
compression up to 30 GPa [3]. The members of the
homologous series with n from 1 to 5 were studied
under hydrostatic pressure. The optimal (i.e., providing
optimal a) Tc varied with the derivative dTc/dP from 2
to 4 K/GPa; for the 1223 phase dTc/dP = 4.0 K/GPa.
These works are reviewed in [4]. The effect of pressure
on Tc is smaller than the effect of doping because com-
pression is accompanied with a decrease in the Cu–O
bond angle.

The parameters of fluorinated Hg-1223 samples
should be sensitive to pressure, as is the case with oxide
cuprates.

We measured the effect of high hydrostatic pressure
(up to 1.5 GPa) on the critical temperature Tc for the flu-
orinated mercury cuprate Hg0.8Ba2Ca2Cu3.2O8 + δ. An
unexpectedly rapid increase in the temperature Tc was
observed (from Tc = 138 K at P = 0 to Tc = 153.5 K at
P = 1.5 GPa).

1. EXPERIMENT 

Ceramic samples were synthesized in the laboratory
of E.V. Antipov at the Chemical Faculty, Moscow State
University. The best fluorinated sample had the follow-
ing lattice parameters: a = 3.8501 Å, c = 15.773 Å (see
[1]). These parameters are smaller than in the initial
oxide structure Hg-1223 of the same crystal structure
with Tc = 134 K, a = 3.8524 Å, and c = 15.819 Å. The
processes of synthesis and measurement of the crystal
2003 MAIK “Nauka/Interperiodica”
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structure parameters and the superconducting transition
temperature are described in detail in [1].

The magnetic susceptibility was measured under
hydrostatic pressure using a pair of coils wound on the
same fluoroplastic form mounted on the obturator of a
low-temperature high hydrostatic pressure chamber
(HPC). The sample was placed in the receiving coil. A
modulation coil (modulation frequency, 2000 Hz) was
wound on the form with coils, and a manganin pressure
gage also used as a heater was placed above it.

A mixture of 40% pentane and 60% dry transformer
oil was used as a pressure transmission medium. The
pressure was determined from the resistance of the
manganin pressure gage.

Two methods were used for measuring Tc. The first
method used the manganin heater to increase the HPC
temperature. The manganin heater made it possible to
vary the heating rate. To reach a temperature below
100 K, the HPC was immersed in liquid nitrogen. Then,
the HPC was lifted above the level of liquid nitrogen,
and heating began. The temperature was measured with
a (Cu + 0.1% Fe)–Cu thermocouple with the junction
glued to the sample inside the receiving coil. The
dependence Tc(P) was measured at pressures up to
1.4 GPa. The pressure coefficient (PC) was found to be
very high. However, the corresponding values of Tc at
P = 0 were underestimated. In our opinion, this can be
explained by a possible temperature gradient in the
working cavity of the HPC filled with a dielectric
medium for pressure transmission.

Measurements by another method, which does not
use the manganin heater, were performed to avoid
errors. The HPC was cooled to liquid nitrogen temper-
ature and heated up to room temperature at a constant
rate through the walls of an inner soft helium Dewar
vessel placed in an outer rigid nitrogen Dewar vessel.
The temperature of the sample was measured with a
copper–constantan thermocouple with the hot junction
soft-soldered to the HPC to improve the thermal con-
tact. In the temperature range under consideration, the
HPC had good thermostatic properties, because it was
made of beryllium bronze including copper as its main
component. Measurements gave the correct value
Tc(0) = 138 K at P = 0; the obtained value of the PC was
virtually equal to that measured in the preceding exper-
iment.

The obtained experimental data are shown in Fig. 1.
To correct the values of Tc(optim) measured by the first
method (internal heating), they are increased by the dif-
ference in the values of Tc at P = 0 measured by the two
methods.

At P = 1.5 GPa, Tc = 153.5 + 1.2 K. Although the
superconducting transition was rather wide, ∆T could
be measured from the shift of the parallel segments of
the curves. Upon fluorination, the PC (dTc/dP) was
11.0 + 0.5 K/GPa, i.e., almost three times greater than
JETP LETTERS      Vol. 78      No. 2      2003
upon oxidation [4]. The dependence Tc(P) is shown in
Fig. 2.

2. DISCUSSION 

According to [1], upon fluorination, the compres-
sion of the CuO2 layer without its bending results in a
considerable increase in Tc due to chemical compres-
sion, although the compressibility proper is low (∆a =
0.0023 Å). The increase in Tc with decreasing a is found
to be linear for the series Hg-1201–Hg-1223 + F,
dTc/dP = –1.35 × 103 K/A. The layer bending angle
remains small and virtually invariant (177°–178°).
External pressure has a far greater effect on the bending
angle (175° at P = 2 GPa [1]). It is also noted in [1] that
a change in the anion composition leads to compression
of the Hg–O layer, as does external pressure. We

Fig. 1. Magnetic susceptibility of a fluorinated Hg-1223
sample under high hydrostatic pressure; the values of Tc for
calculating dTc/dP were determined from the maximal rate
of variation of the signal χ(P): j, 0.15; d, 0.42; m, 0.85; .,
0.91; and r, 1.5 GPa.

Fig. 2. Pressure dependence of the superconducting transi-
tion temperature Tc(max) for Hg-1223 + F.
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believe that this can result in an additional increase
in Tc. It is significant that fluorination does not lead to a
considerable change in the structural environment of
the CuO2 layer [1].

Using the data reported in [1, 4], the results of our
experiments, and the data on the relationship between a
and P [5], we found that dTc/da for the fluorinated 1223
phase is equal to –0.92 × 103 K/A. This result shows
that the chemical compression efficiency in fluorinated
Hg-1223 is slightly increased.

In our opinion, the effect of pressure on the CuO2
layer bending, the apical distance Cu–O, and the Hg–O
layer in the complex system under consideration can be
indicative of the existence of several mechanisms of the
pressure effect. Different mechanisms can be responsi-
ble for the sharp increase in Tc max(a) upon fluorination
and the decrease in Tc(a) upon super- and suboxidation
observed in all the members of the homologous series
of mercury cuprates, as well as for the sharp increase in
the derivative dTc/dP upon fluorination.

The conclusion made in [1] that the chemical modi-
fication of the structure upon fluorination of the
Hg-1223 phase is the major factor leading to the
increase in Tc(optim) seems to be convincing. However,
the questions concerning the considerable (almost
5-fold) difference in the relative changes in the lattice
parameters (anisotropy) of fluorinated and oxidized
samples remain open. There is also no quantitative
explanation for the increase in Tc of the Hg-1223 phase
from 134–135 to 138 K.
The main conclusion from the experimental data
obtained is that the anomalously high value of dTc/dP
for the maximum Tc of the Hg-1223 phase upon fluori-
nation and the increase in Tc are indicative of a consid-
erable effect of fluorine introduced into the phase
Hg0.8Ba2Ca2Cu3.2O8 + δ.

We are grateful to E.V. Antipov and N.M. Plakida
for stimulating discussion, E.V. Antipov for the sam-
ples, and L.M. Kashirskaya for assistance.
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Phonon autoecho is observed upon pumping Bi and Sb semimetals with ultrashort high-energy laser pulses. The
autoecho is manifested as a revival of reflection oscillations generated by an A1g coherent phonon after their
complete disappearance. The phenomenon of phonon autoecho offers decisive evidence of the nonclassical
character of the state of the crystal lattice that is accomplished in pumping–probing experiments by femtosec-
ond laser pulses. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 79.20.Ds; 63.20.-e; 78.47.+p
In the last decade, great interest has been shown in
studying the response of condensed media to the action
of an ultrashort laser pulse, in which energy is concen-
trated in a small time, space, and spectral range. This is
in many ways due to the success of laser technology,
which allowed the laser pulse duration to be reduced
down to the subpicosecond range and thus opened the
way of studying lattice dynamics in real time. The
access to ultrafast lattice dynamics was provided by the
observation of coherent phonons that appear as oscilla-
tions of light reflection (or transmission) after exposure
of the crystal to an ultrashort laser pulse [1]. The attain-
ment of a stable phase, which serves as the basis for
calling phonons coherent, is possible because the dura-
tion of the exciting pulse ∆t is shorter than the inverse
frequency of the phonon mode Ω–1, ∆t < Ω–1. The oscil-
lation period of coherent phonons, as a rule, coincides
with the inverse frequency of Raman active phonons of
the medium, which allows the mechanism of their gen-
eration to be associated with the phenomenon of stim-
ulated Raman scattering [1, 2]. The majority of experi-
ments of the pump–probe type were carried out with the
use of low-energy pulses, so that the variation of reflec-
tion did not exceed 10–4–10–5. However, in recent years,
the trend has been toward studying the photoinduced
response using high-energy pulses [3–5]. These exper-
iments revealed an interesting feature of oscillations: as
the energy density of the exciting pulse increases, the
oscillation amplitude increases nonlinearly, manifest-
ing a tendency toward saturation, whereas the decay
time sharply decreases. Attempts at explaining this fea-
ture within the framework of the model of energy relax-
ation in a classical oscillator have not been successful
[6]. In order to reveal the processes that are responsible
for the decay of oscillations and thus elucidate the
nature of the coherent phonon, we carried out time-
resolved investigations with the use of high-energy
0021-3640/03/7802- $24.00 © 20075
pulses, exciting coherent phonons at low (helium) tem-
peratures.

The measurements of relaxation lattice dynamics
were carried out with the use of high-energy laser
pulses. To do this, the radiation of a Ti : sapphire laser
(λ = 800 nm) was converted by a regenerative solid-
state amplifier, at whose output the energy of pulses
was equal to 5 nJ, their duration was 150 fs, and their
repetition frequency was 100 kHz. The polarizations of
the exciting and probing pulses were orthogonal, and
the optical response was studied for the plane perpen-
dicular to the trigonal axis of Bi and Sb single crystals.
The crystals were placed in an optical helium cryostat,
which allowed measurements to be performed at a tem-
perature of 10 K. The ratio between the intensities of
the exciting and probing laser pulses was maintained
equal to 10 : 1. The exciting and probing laser beams
were focused on the sample surface with a lens with a
focal length of 10 cm. The excitation channel was mod-
ulated with an optical chopper with a frequency of
2 kHz, and detection was performed using synchronous
detection of signals measured by photodiodes. In the
experiment, the normalized differential reflection of the
excited and nonexcited crystal

(1)

was measured as a function of the time interval t
between pumping and probing.

A typical optical response observed upon excitation
followed by probing of the bismuth single crystal with
femtosecond pulses of different energies is shown in
Fig. 1. The difference in the energy density at which the
oscillations shown in the upper and lower panels of
Fig. 1 were obtained comprises three orders of magni-
tude. In both cases, the excited electronic state of the
system relaxes to an equilibrium state for times of the

∆R
R0
-------

R t( ) R0 t 0<( )–
R0 t 0<( )

------------------------------------=
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order of picoseconds and fast oscillations induced by a
coherent phonon are imposed on this electronic relax-
ation [1–4]. The distinctions are the magnitude of the
photoinduced signal and the ratio between the oscillat-
ing and nonoscillating components of the signal. More-
over, the oscillation frequency, which does not depend
on the pumping pulse energy in the case of low-energy
pulses and coincides with the frequency of thermal
phonons observed by spontaneous Raman light scatter-
ing, depends on the pulse energy density in the case of
intense pumping [4, 5]. The oscillation frequency shift
toward the red spectral region with increasing excita-
tion energy was connected with the anharmonicity of
the potential, which increases with increasing oscilla-
tion amplitude [5].

An attempt at fitting the relaxation response with the
function

(2)

leads to a satisfactory result only in the case of low-
energy pulses. For high-energy pulses, this function
works well only for short delay times, whereas the fit-
ting function and experimental data do not coincide for

∆R/R0 Ae t/τe–( )exp=

+ Ap t/τ p–( ) Ωt ϕ–( )sinexp

Fig. 1. Time-resolved normalized differential reflection
∆R/R0 of a Bi single crystal obtained at room temperature

and a laser-pulse energy density of (a) 0.5 µJ/cm2 and
(b) 5 mJ/cm2. The inset displays magnified oscillations at
longer time delays and the results of fitting with the use of
Eq. (2).
longer times (see the inset in Fig. 1b). This indicates
that the frequency varies with time, which can be
approximated in the first approximation by a linear
chirp Ω = Ω0 + αt. The phonons whose instant fre-
quency is a function of time can be appropriately called
chirped. The asymmetry of the phonon line in the Fou-
rier transformed signal, see Fig. 2, can be considered a
manifestation of the chirp. An analysis of the Fourier
transformed signals performed for short and long delay
times indicates that the decay of oscillations is nonex-
ponential (the half-width of the phonon peak is a func-
tion of the delay time). This is evidence of the non-
Markovian character of the process, in which the phase
“memory” plays an important part.

Whereas a decrease in temperature in the case of
low-intensity pulses leads to an insignificant change in
the oscillation frequency, which approximately coin-
cides with the frequency shift of thermal phonons mea-
sured with the use of spontaneous Raman light scatter-
ing [7], the character of the relaxation response changes
radically in the case of high-intensity pulses. Because
we are interested only in crystal lattice dynamics, it is
appropriate to eliminate the nonoscillating electronic
response, for which it is sufficient to differentiate the
signal. It is evident in Fig. 3 that oscillations at low tem-
peratures initially die out, reaching a certain minimum
magnitude, which we will subsequently call oscillation
collapse. However, after the collapse, whose occur-
rence time depends on the energy density of the excit-
ing pulse, the oscillations demonstrate a revival. The
phenomenon of oscillation collapse and revival is man-
ifested as phonon autoecho [8]. This name is justified
by the fact that a comparison of the oscillation phases
before and after the collapse points to their shift by π.
In the terminology of Averbukh and Perel’man [9], the
observed revival is a fractional revival of the order of
1/2 and represents the oscillation decay process
reversed in time up to the instant of collapse. The dif-
ference of the phonon autoecho from the photon or spin
echo should be specially emphasized [10]. In the latter
phenomena, echo is induced by the second pulse,
whose role is reduced to the excitation of oscillations in
an anharmonic potential whose phases are developed in
time in the opposite direction.

A comparison of the Fourier transformed signals for
times before and after the collapse indicates that the
totally symmetric phonon makes the major contribution
to oscillations. Nevertheless, the frequency of this
phonon is shifted toward the red spectral region for
short delay times, and its chirp is proportional to the
phonon line asymmetry and is larger for short delay
times than for longer times. It should also be noted that
the collapse occurrence time is a sufficiently strong
function of the laser pulse intensity; that is, for pulses
of the same power differing in their duration, collapse
occurs earlier at a shorter duration of the laser pulse. In
order to obtain more comprehensive information on the
phonon autoecho in semimetals, experiments similar to
those described above were performed for an antimony
JETP LETTERS      Vol. 78      No. 2      2003
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single crystal. Because the condition of the effective
excitation of coherent phonons (2Ω ≥ ∆t–1) is hardly
fulfilled for the totally symmetric mode of Sb at the
laser pulse duration used in this work (∆t = 150 fs), the
amplitude of coherent oscillations turns out to be
smaller than that for the case of Bi and the nonoscillat-
ing contribution dominates in the relaxation signal.
Nevertheless, it follows from the data presented in
Fig. 3 that oscillations are reliably detected at least for
short times of the delay between pumping and probing.
This is demonstrated by the fact that the Fourier trans-
form shown in Fig. 4 contains a spectral peak at the fre-
quency of the totally symmetric phonon. From the char-
acter of the signal at different delay times, it follows
that phonon autoecho also occurs in the case of totally
symmetric phonons of antimony.

The phenomenon of collapse and revival of oscilla-
tions is a purely quantum-mechanical effect, which has
no classical analogue [8–11]. In fact, a classical oscilla-
tor described by the equations of Newtonian mechanics
is unable to restore oscillations after attaining an equi-

Fig. 2. (a) Normalized Fourier transforms of oscillations of
a Bi single crystal for pulses with high (black symbols) and
low (light symbols) energy densities. (b) Fourier transforms
of oscillations of a Bi single crystal for pulses with high
energy densities demonstrating the presence of higher har-
monics.
JETP LETTERS      Vol. 78      No. 2      2003
librium position. To date, the effect of collapse and
revival has been observed for high-lying atomic elec-
tronic states, molecular vibrations, and atoms in a laser
resonator, that is, for excitations of single-particle char-
acter [9]. Recently, the phenomenon of collapse and
revival was observed for a Bose condensed gas of rear-
earth atoms [12]. An attempt at explaining the phenom-
enon of the collapse and revival of coherent phonons as
beatings of two coupled classical oscillators cannot
lead to success, because the major contribution in oscil-
lations in our case is made by the single totally symmet-
ric mode at the Γ point of the Brillouin zone [2].

The mechanism of the occurrence of phonon auto-
echo in semimetals can be described as follows. A
pumping pulse by stimulated Raman light scattering
excites phonons whose frequencies fall in the range
limited by the spectral width of the laser pulse. Because
the frequencies of phonons are different in the case of
an anharmonic potential, their phases, being coincident
(synchronized) at the instant of exposure to the pump-
ing pulse, are randomized with time, which leads to the
disappearance of the signal. However, because the sys-
tem retains coherence (lattice oscillations continue),
the phases become again coincident at a certain time
interval, which is manifested as a revival of the signal
or the appearance of phonon autoecho. Thus, it is evi-

Fig. 3. Reflection oscillations of a Bi single crystal at the
temperature T = 10 K and a laser-pulse energy density of
9 mJ/cm2.
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Fig. 4. Reflection oscillations of a Sb single crystal at the
temperature T = 10 K and a laser-pulse energy density of
12 mJ/cm2.

Fig. 5. Fourier transforms of the oscillations of a Sb single
crystal shown in Fig. 4.

–0.10
dent that oscillations occur because of light-induced
lattice coherence (maintaining of certain phase ratios
between various phonon states) rather than as a result of
a change in the population of phonon modes. Corre-
spondingly, the decay time of oscillations observed in a
conventional experiment must be determined by the
dephasing time of components of the wave packet
formed by a superposition of stationary states rather
than energy relaxation, which is irreversible. It is the
absence of true irreversibility in the system with a dis-
crete spectrum [9, 10] that leads to the restoration of the
initial state after a lapse of time.

The generation of coherent phonons is determined
by the nonlinear susceptibility of the crystal induced by
the power pumping pulse. Under exposure to ultrashort
light pulses, not only single-phonon states are excited,
which leads to the fact that the lattice excitation by its
nature represents a wave packet formed by a set of sta-
tionary states. Actually, the Fourier transformed
response of the bismuth single crystal presented in
Fig. 2 contains higher harmonics along with the classi-
cal (fundamental) frequency [13]. The wave packets (as
well as coherent states) are at the boundary between the
classical and quantum-mechanical description of the
objects. Localization, the distinctive feature of a wave
packet, is accomplished through a coherent superposi-
tion of many stationary states with large quantum num-
bers. In this case, a great number of states are required
in order to select one maximum of the wave function by
means of quantum interference, whereas large quantum
numbers are required in order that the selected maxi-
mum have a small extension in space. Even though a
wave packet demonstrates dynamic evolution similar to
the evolution of a classical object, it nevertheless is a
quantum object and, correspondingly, its behavior is
much more complex. As was shown above, a wave
packet in the case of an anharmonic potential can again
become localized once it has been delocalized. More-
over, the extension of a wave packet in space and time
can periodically depend on its location in the phase
space, which occurs for so-called squeezed states,
which are detected for semimetals [2, 14, 15]. All these
features of the wave packet are conditioned by the dis-
crete character of the spectrum and have no analogues
in classical physics. The fact of phonon autoecho found
in this work gives conclusive evidence that the state cre-
ated by high-intensity femtosecond pulses cannot be
described within the framework of Newtonian mechan-
ics. Leaving for the future the elucidation of the partic-
ular class of nonclassical states to which the state
obtained in semimetals by ultrashort laser pulses
belongs, we note that this state likely obeys the criteria
of Bose–Einstein condensation [16, 17]. Among these
criteria are the coherence and the degenerate character
of the ground state, the dependence of the collective
mode frequency on the amplitude [11], the occurrence
of the collapse and revival of oscillations of the conden-
sate [11, 12], and off-diagonal long-range order.
JETP LETTERS      Vol. 78      No. 2      2003
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It should specially be noted that the observation of
phonon autoecho not only gives conclusive evidence of
the quantum nature of the state created by ultrashort
pulses but also allows us to understand why it was suf-
ficient in the majority of cases to use a classical model
for the description of coherent phonons. Actually, by
virtue of the fact that the collapse of oscillations at low-
energy laser pulses comes at times considerably longer
than τc ≈ 20 ps, the “post-classical” evolution of the
excitation of the lattice system occurs only for t > τc [9],
that is, in the range of times in which the signal-to-noise
ratio is too small to be measured. This is due to the fact
that “post-classical” evolution is controlled by the

oscillator anharmonicity τr =  (E is the

oscillator energy, and h is the Planck constant), which
is too small in the case of low-energy pulses. According
to the correspondence principle, the evolution of exci-
tation at shorter times t < τr is identical for the quantum-
mechanical and classical descriptions, because a wave
packet composed of stationary states performs motion
by the laws of geometrical optics [9]. The latter
becomes possible by virtue of the fact that the spatial
size of the wave packet is considerably smaller than the
size of the classical trajectory.

In conclusion, we may say that the phenomenon of
phonon autoecho was observed in semimetals with the
use of the pump–probe method with high-energy laser
pulses. Phonon autoecho, which is manifested as the
collapse and revival of coherent phonons, conclusively
points to the nonclassical nature of the crystal lattice
state obtained under exposure to ultrashort laser pulses.

This work was supported by the Russian Foundation
for Basic Research, project nos. 01-02-16480 and
02-02-17074.
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Increase in the Superconducting Transition Temperature
in Zr–Hf Alloys Due To s–d Electron Transfer 
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The superconducting transition temperatures Tc of Zr–Hf alloys are measured as a function of pressure up to
47.4 GPa. It is found that the value of Tc experiences jumps due to the transition of the hexagonal ω phase to
the bcc β phase: Tc of the Zr80Hf20 alloy increases from 3.2 to 11 K at P = 35.0 GPa, and a jump in Tc from 3.4
to 10 K is observed for the Zr67Hf33 alloy at P = 40.9 GPa. The isobars of the concentration dependence Tc(c)
of the bcc Zr–Hf alloys are qualitatively similar to the Tc(c) curves for the bcc phases in the systems of Vb–IVb
subgroup elements at P = 1 atm. The data obtained indicate that, because of the s–d electron transition, the IVb
subgroup metals become similar in their crystal structure and superconducting properties to the Vb subgroup
metals. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.62.Fj; 64.70.Kb
1. INTRODUCTION 

The development of methods for band-structure cal-
culations of metals in the last three decades has opened
the way for the estimation of the stability of crystal
structures as a function of their electronic configuration
and volume (see, for example, [1–3]). For the metals
located early in the periods of the periodic table, it was
shown [2] that s electrons must be transferred to the d
band upon compression, because the narrow d band is
displaced with respect to the bottom of the sp band.
Hexagonal ω to bcc β phase transitions in Zr and Hf at
high pressures due to an increase in the stability of the
bcc structure with increasing d-band occupancy were
predicted theoretically virtually simultaneously with
their experimental discovery [5–9]. The agreement
between calculation and experiment stimulated interest
in the problem of s–d electron transitions under pres-
sure. The pressure of the ω β transformation at
20°C equals ~30 GPa for Zr and ~71 GPa for Hf. Tita-
nium at room temperature transforms to phases with the
orthorhombic structure only under pressures of 116–
140 GPa, and the β phase does not form up to 220 GPa
[10–12]. As the accuracy of calculations increased, it
became possible to theoretically describe the entire
sequence of α ω β phase transformations in Zr
and Hf under pressure, starting from the hcp α phase
stable at P = 1 atm [13–15]. Thus, Zr and Hf at high
pressures become analogous in the occupancy of the d
band and in their crystal structures to the Vb group met-
als (Nb and Ta).
0021-3640/03/7802- $24.00 © 0080
Akahama et al. [7, 8] extended this analogy to
superconducting properties as well, finding that bcc Zr
at P = 30 GPa has approximately the same Tc as bcc Nb
at atmospheric pressure, whereas the starting hcp Zr
and Hf phases have low superconducting transition
temperatures Tc equal to 0.7 and 0.35 K, respectively.
On the other hand, bcc Ta and Nb are characterized by
significantly higher values of Tc (5.4 and 9.25 K,
respectively).

The change in the electronic configuration and the
resemblance of the Ti subgroup metals to the Vb group
metals must lead to bright effects under pressure and in
their alloys, because doping itself is a factor that affects
the mutual arrangement of the Fermi level and the
d-band features [1]. Upon doping vanadium, niobium,
and tantalum with IVb group metals, the values of Tc

appreciably increase. It should be expected that the
concentration dependence of Tc in IVb–Zr alloys will
also be similar in shape after transition to the β phase
under pressure. However, the studies of phase transi-
tions and superconductivity in binary IVb–IVb alloys
under pressure are restricted to the Ti–Zr system. For
Ti–Zr alloys, it was shown that the parameters of the tri-
ple α ω β equilibrium point in the T–P diagram
strongly decrease as compared to the pure metals [16]
and, after the transition of the alloys to the β phase,
the superconducting transition temperature increases
with increasing concentration of titanium, reaching
15 K in the TiZr alloy of equiatomic composition at
47 GPa [17].
2003 MAIK “Nauka/Interperiodica”
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The behavior of the structure and superconducting
properties of Zr–Hf alloys under pressure is of special
interest. Because both elements are prone to a change
in their electronic configuration, it might be expected
from the phenomenological point of view that, as the
pressure grows, a transition from the IVb–IVb system
to an analogue of the IVb–Vb system will take place
after the electronic and structural rearrangement in zir-
conium and further to an analogue of the Vb–Vb sys-
tem after the rearrangement in hafnium. This work is
devoted to an experimental investigation into the super-
conductivity of Zr–Hf alloys containing up to 33 at %
Hf at pressures of up to 47 GPa to the point of their tran-
sition to the β phase.

2. PROCEDURE 

The alloys to be studied were prepared from rods of
iodide Zr and Hf remelted in a vacuum by zone melting.
The purity of the starting metals was higher than
99.95 at %, including interstitial impurities. Chips cut
from the starting metals were mechanically mixed in
the required proportions and were pressed in the form
of cylinders. Rods composed of ten separate cylinders
were subjected to repeated remeltings in a vacuum. The
final composition of the alloys was determined with the
use of a JXA-5 local x-ray microanalyzer and com-
prised 20.6 ± 0.5 and 33.6 ± 0.2 at % Hf.

Superconducting transitions were detected as anom-
alies in the temperature dependence of the magnetic
susceptibility χ(T) measured by an alternate current.
The press was made of nonmagnetic materials and was
equipped with diamond anvils. As well as other details
of measurements, it was described previously [17]. In
order to exclude the effects of the mechanical relax-

Fig. 1. Curves of the magnetic susceptibility χ(T) of the
Zr80Hf20 alloy measured in the process of heating at the
indicated values of pressure. The graphical determination of
Tc is explained using the isobar at 35 GPa as an example.
JETP LETTERS      Vol. 78      No. 2      2003
ation of the press upon cooling, the pressure was deter-
mined by the shift of the ruby luminescence line after
heating the press up to room temperature at the end of
a cycle of cooling and heating.

3. RESULTS

The isobaric curves χ(T) for the Zr80Hf20 alloy mea-
sured on heating the samples are shown in Fig. 1. The
χ(T) curves for pure Zr and the Zr67Hf33 alloy are of the
same shape. Jumps in the χ(T) curves are due to super-
conducting transitions in the ω phase (2.5 < Tc < 3.5 K)
and in the β phase (Tc > 9 K). The jumps in the isobars
at 19.0, 24.6, and 29.4 GPa for the single-phase states
of the alloy with the ω structure are steep. The jumps
corresponding to the two-phase ω + β states of the
alloy at pressures of 35.0, 39.1, and 43.0 GPa are more
diffuse because of microstresses and the proximity
effect. The values of Tc were determined as the points
of intersection between the tangent to the segment of
the steep drop in the χ(T) curve and the extension of its
high-temperature horizontal portion, as shown by
arrows in Fig. 1.

The pressure dependences of Tc for the ω and β
phases of pure Zr and the Zr80Hf20 and Zr67Hf33 alloys
are shown in Fig. 2. As for zirconium, the lower seg-
ment of the Tc(P) curve before the jump corresponds to
the ω phase and the upper part corresponds to the β
phase. This was determined by structural measure-
ments in situ, whose results will be published later. It is
evident in Fig. 2 that the superconducting transition
temperatures of the ω and β phases of both the alloys
studied in this work coincide within the limits of the
experimental error. The Tc(P) lines are straight with the

Fig. 2. Pressure effect on the superconducting transition
temperature in Zr [17], Zr80Hf20, and Zr67Hf33.
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slopes to the pressure axis dTc/dP equal to
+0.042 K/GPa for the ω phase and –0.122 K/GPa for
the β phase. The pressures at the beginning of the
ω β phase transition, which were assigned to the
appearance of the jumps in χ(T) corresponding to the β
phase, comprise 29 GPa for pure Zr, 35 GPa for the
Zr80Hf20 alloy, and 40.9 GPa for the Zr67Hf33 alloy.
Assuming that the pressure of the ω β transition in
the Zr–Hf system is a linear function of concentration
and extrapolating this function to pure Hf, we obtain a
value of ~65 GPa, which is close to the published value
of 71 GPa [9].

Figure 3 displays the isobaric concentration depen-
dences of Tc at two pressures for the β phase of the Zr–
Hf alloys studied in this work. Analogous dependences
of Tc for two solid β solutions of Vb and IVb group ele-
ments, namely, Nb–Hf and V–Ti alloys [18], are plotted
in the figure for comparison. The isobaric curve for P =
43 GPa is constructed by the experimental dependence
Tc(P) shown in Fig. 2 and is depicted by a solid line.
The isobaric curve for P = 29 GPa is constructed by the
experimental value of Tc for pure zirconium and the
points obtained by a linear extrapolation of the experi-
mental lines Tc(P) for the Zr80Hf20 and Zr67Hf33 alloys.
It is shown by a dashed line. Note that Tc for β-Zr at
P = 29 GPa virtually coincides with Tc for pure niobium
at atmospheric pressure.

Figure 3 demonstrates that all four curves of the iso-
baric dependence of Tc on the concentration of the IVb
group metal (Hf or Ti, respectively) are qualitatively
similar. Both in bcc solid solutions of IVb–Vb systems
at atmospheric pressure and in solid β solutions of the
Zr–Hf system (that is, IVb–IVb) at high pressures, Tc

first increases and then passes through a shallow maxi-

Fig. 3. Dependence of the values of Tc on the Hf or Ti con-
tent for the β phases of Zr–Hf alloys at pressures of 29 and
43 GPa and Nb–Hf and V–Ti alloys [18] at atmospheric
pressure.

Nb–Hf

V–Ti

Zr–Hf
Zr–Hf
mum as the concentration of the IVb group element (Hf
for the Zr–Hf system) increases. At the chosen values of
pressure (29 and 43 GPa), all the four curves are similar
not only in shape but also in the position of the maxi-
mum located in the concentration range 25–30 at % Hf
or Ti.

Because no direct methods are available for deter-
mining the degree of band occupancy under pressure,
the occupancy can be judged only in an indirect way by
experimental data. The experimental data obtained for
alloys clearly confirm the ideas of s–d electron transi-
tion in Zr and Hf under the action of pressure. The iso-
baric curves Tc(c) for the bcc phase at high pressure in
the system in hand are close in shape to the analogous
curves for the IVb–Vb system (for example, Ti–V or
Zr–Nb) at atmospheric pressure. That is, Zr–Hf alloys
under pressures above the formation of the bcc phase,
with which s–d electron transition is associated,
behave as though they transform from IVb–IVb alloys
to IVb–Vb alloys. It is essential that the total number
of s + d valence electrons remains unchanged and only
their redistribution among subbands takes place. This
fact clearly indicates that it is the degree of d-band
occupancy rather than the total number of valence
electrons that plays a determining role in the formation
of the crystal structure and superconducting properties
of metals of the IVb and Vb subgroups of the periodic
system of elements.

The authors are grateful to V.G. Glebovskiœ and his
collaborators for preparing the alloy and S.A. Zver’kov
for the x-ray spectrum analysis of alloys.
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The velocity of quasi-longitudinal acoustic (QLA) phonons in (NH4)3H(SO4)2 (TAHS) crystals was studied by
Brillouin scattering in the temperature range from 295 to 430 K. It was found that the QLA phonon velocity in
the vicinity of a superionic ferroelastic phase transition (Tc = 413 K) exhibits anomalous temperature depen-
dence. At T < Tc, an additional contribution is separated from the temperature dependence of the hypersound
velocity, the behavior of which is correlated with variations of the conductivity of a TAHS crystal. Based on an
analysis of the experimental data, a thermoactivation mechanism explaining the anomalous behavior of the
QLA phonon velocity is proposed and the corresponding activation energy is estimated. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 63.20.–e; 64.70.Kb; 78.35.+c
The crystal lattice dynamics related to disordering
in one of the sublattices is a subject of extensive inves-
tigation in the physics of condensed media [1]. Model
objects for such investigations are offered by crystals
possessing superionic conductivity, in which the disor-
der is introduced by melting the conducting subsystem
[2]. The most promising compounds for investigations
of the effect of a partial disorder on the acoustical prop-
erties are crystals with the general formula
MezHy(AO4)(z + y)/2 · xH2O (Me = Cs, Rb, NH4; A = S,
Se; 0 ≤ x ≤ 1), known to possess proton conductivity.
All crystals of this class are characterized by a common
superionic conductivity mechanism involving a dynam-
ically disordered network of hydrogen bonds [3], for
which reason these crystals are referred to as superpro-
tonic.

A characteristic feature of most compounds of the
class under consideration is a structural phase transition
from a paraelastic superionic state to a low-conducting
ferroelastic state. The appearance of a spontaneous
deformation with a simultaneous change in the conduc-
tivity give hopes for a direct observation of the effects
related to the interaction of acoustic phonons with the
conducting subsystem of a crystal in the course of ultra-
sonic and hypersonic measurements. Indeed, the ultra-
sonic experiments showed evidence of an anomalous
behavior of the velocity and damping of acoustic
phonons in some compounds of the aforementioned
class of superprotonic crystals [4, 5], which was
explained in terms of the acoustoionic interaction.

A principally different pattern was observed in the
experiments involving measurements of the Brillouin
0021-3640/03/7802- $24.00 © 20084
scattering in these crystals [6, 7]. Here, the behavior of
the hypersonic acoustic phonons was determined, at
first glance, only by interaction between the order
parameter and the deformation, which is typical of the
ferroelastic structural phase transitions in the vicinity
of Tc. This behavior agrees with the model notions
about a frequency-dependent acoustic response in
superionic crystals [8].

At the same time, a thorough analysis of the Bril-
louin scattering data suggests that there is an additional
contribution from the conducting subsystem at hyper-
sonic frequencies. For example, it was found that the
jumps of elastic constants at T = Tc in Rb3H(SeO4)2
(TRHSe) crystals, as revealed by the experiments, con-
tradict a phenomenological model of the ferroelastic
phase transition based on the Landau theory (the
observed anomalies in elastic constants could not be
described using expansions of the thermodynamic
potential retaining terms up to the sixth order) [9].
Another characteristic feature is a nontrivial dispersion
of the sound velocity revealed by the temperature
dependence of the QLA phonon velocity in the vicinity
of Tc of a TRHSe [10]. All these data suggested that the
acoustoionic interaction modifies the acoustic response
of a crystal even in the region of hypersonic frequen-
cies.

Here we report the results of investigations of the
temperature dependence of the QLA phonon velocity
by Brillouin scattering spectroscopy and present evi-
dence for the existence of the acoustoionic contribution
to this dependence at hypersonic frequencies in a super-
protonic (NH4)3H(SO4)2 TAHS crystal.
003 MAIK “Nauka/Interperiodica”
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The single crystals of (NH4)3H(SO4)2 were grown at
the Institute of Crystallography (Moscow) by evapora-
tion from an aqueous solution. At room temperature,

TAHS crystals possess a monoclinic symmetry ( )
with the unit cell parameters a am = 10.153(3) Å, bm =
5.854(2) Å, cm = 15.410(6) Å, βm = 101.76(2)° [11].
The improper ferroelastic phase transition at Tc = 413 K
is accompanied by a jump in the conductivity, after
which it acquires the value σ ≈ 10–2 Ω–1 cm–1 [12]. The
measurements were performed using crystal plates with
dimensions 5 × 5.8 × 2.8 mm cut from a TAHS single
crystal. The sample orientation was determined by
X-ray crystal diffraction.

The incident beam was produced by an argon laser
operating at λ = 488 or 514 nm. The scattered light was
analyzed by piezoscanning, three- and five-pass Fabry–
Perot interferometers in a 180° scattering geometry.
The free spectral range (FSR) of the interferometer was
varied from 45 to 22 GHz. The finesse of the interfer-
ometer tuning was not less than 60.

Figure 1 shows examples of the experimental scat-
tering spectra of a TAHS crystal measured at various
temperatures. The spectra display well-pronounced
peaks of the elastic (Rayleigh) scattering (at a zero fre-
quency shift) and three doublets, corresponding to the
Stokes and anti-Stokes components of scattering on the
acoustic phonons (one quasi-longitudinal and two
quasi-transverse). An increase in the temperature mod-
ifies the spectra, which is manifested by changes in the
frequency position, width, and intensity of the inelastic
scattering components. These changes are clearly
revealed by comparison of the spectra recorded at vari-
ous temperatures (Fig. 1).

In this paper, the consideration is restricted to the
shift ∆ν in the QLA phonon frequency, which is
directly proportional to the velocity of propagation of
this phonon: V = ∆νλ/2n, where n is the refractive
index. Thus, considering the frequency shift, we in fact
study the behavior of the QLA phonon velocity (pro-
vided that the temperature dependence of the refractive
index can be ignored). It should be noted that the QLA
phonon velocity in crystals possessing the monoclinic
symmetry is determined by a linear combination of sev-
eral elastic constants, except for the case when the
phonon wavevector is parallel to the second-order axis
(qph || C2) [13].

The experimental scattering spectra were processed
by least squares, using Lorentz functions for fitting to
the inelastic scattering doublets. An example of such
treatment is given in Fig. 1.

Figure 2 shows plots of the frequency shift versus
temperature for the QLA phonons propagating in the
(ambm) plane. As can be seen, the curves can be divided
into three characteristic regions. The first region,
extending from room temperature up to about 340 K, is
well described by a linear temperature dependence.
This linear decrease in the QLA phonon velocity is

C2h
6
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explained by the anharmonicity of the crystal lattice.
The second region shows “softening” of the frequency
shift, which declines from the linear behavior in the
vicinity of 340 K. This behavior is observed up to a
temperature of 413 K (Fig. 2), where the ∆ν value
exhibits a jump. The observed anomaly in the QLA
phonon velocity at the point of the improper ferroelas-
tic phase transition does not correspond to the η2u
invariant (η is the order parameter and u is the strain) in
the expansion of the thermodynamic potential [14]. A
more thorough and correct analysis of the anomalous
behavior of the QLA phonon velocity in the vicinity of
Tc within the framework of a phenomenological model
developed in [15] is hardly possible, since data
appeared about the existence of a high-temperature
intermediate phase in TAHS crystals [16].

Let us return to the analysis of the frequency shift
“softening” observed for the hypersonic phonons in the
temperature interval from 340 to 413 K. For an ade-
quate description of the behavior of the phonon veloc-
ity, we have to take into account two processes mani-
fested in the temperature dependences of ∆ν: (i) a linear

Fig. 1. The Brillouin scattering spectra of a TAHS crystal
measured at various temperatures, showing the Rayleigh
scattering component (R) and three doublets corresponding
to the quasi-longitudinal (QLA) and quasi-transverse
(QTA) acoustic phonons. The FSR of the Fabry–Perot inter-
ferometer was 21 GHz. Dashed curve shows the results of
deconvolution of the phonon peaks in the room-temperature
spectrum using a procedure described in the text.
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contribution to the phonon velocity determined by the
anharmonicity (∆νanh) and (ii) an additional nonlinear
contribution (∆νadd) of unknown nature. In the subse-
quent analysis of the temperature dependence of the
QLA phonon velocity, we use the following procedure
for separating the latter additional contribution. The
linear portion of the temperature dependence of ∆ν was
approximated by least squares in the 300–340 K inter-
val and then extrapolated to the 340–413 K range. The
nonlinear contribution, determined by subtracting
experimental values from this calculated linear depen-
dence, is plotted in Fig. 3.

There are two most probable reasons for the
observed “softening” of the hypersonic phonon veloc-
ity in the temperature interval under consideration:

Fig. 2. Temperature variation of the frequency shift of the
QLA phonon propagating in a TAHS crystal in a plane per-

pendicular to the pseudohexagonal axis , at an angle of (a)

61° or (b) 154.33° relative to the C2 || Ym ||  axis. Insets
show the experimental geometry. Dashed line shows the
contribution to ∆ν(T) related to anharmonicity of the crystal
lattice; solid curve is calculated by formula (2) with allow-
ance for the crystal anharmonicity.

Z̃

Ỹ

(a)  the proximity of the improper ferroelastic phase
transition to the tricritical point and (b) manifestations
of the acoustoionic interaction. In the former case, the
temperature variation of the QLA phonon frequency
shift is determined by the square of the order parameter,
which (taking into account that (η ~ (T – Tc)1/4) does not
agree with the observed behavior. Therefore, the above
assumption that the QLA phonon velocity “softening”
is related to the proximity of the improper ferroelastic
phase transition to the tricritical point is not justified.

Let us consider the possibility that the acoustoionic
interaction contributes to the velocity of hypersonic
acoustic phonons. The temperature dependence of the
conductivity of a TAHS crystal presented in Fig. 3 is
well correlated with the behavior of the additional con-
tribution ∆νadd to the hypersonic phonon velocity on
approaching Tc. This agreement between the tempera-
ture variation of the conductivity and the QLA phonon
velocity suggests that these changes are determined by
the same process.

As is known, the conductivity of TAHS obeys the
Arrhenius relation [12]

(1)

where A is a preexponential factor, Ha is the enthalpy of
activation, and k is the Boltzmann. We may suggest that
∆νadd(T) in the temperature interval under consideration
is also described by a law of this type. In order to verify
this hypothesis, we approximated the obtained ∆νadd(T)
curve by the empirical function

(2)

where C* is a proportionality coefficient with a dimen-
sionality of reciprocal time. As can be seen from Fig. 3,
the experimental temperature dependence of the

σT A/T Ha/kT–( ),exp=

∆νadd T( ) C∗ Ha/kT–( ),exp=

Fig. 3. Temperature variation of the additional contribution
(separated as described in the text) to the QLA phonon
velocity in a TAHS crystal for the experimental geometry
indicated in Figs. 2a (d) and 2b (s). Symbols (h) present the
temperature dependence of the conductivity plotted in a
comparable scale (data from [12]); solid curve is calculated
by formula (2).
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phonon frequency shift is well described by the pro-
posed function. Apparently, the change of the ∆νadd
with the temperature is also related to a thermoactivated
process and can be described by the Arrhenius law. The
value of the enthalpy of activation obtained for this law
(Ha = 0.51 eV) agrees well with the experimental data
on the conductivity of TAHS crystals [12]. It should be
noted that an analysis of the temperature dependences
of the velocity of hypersonic phonons propagating in
various directions of the (ambm) plane yielded (as well
as the conductivity measurements) close values of the
activation energy, which corresponds to the isotropy of
conductivity in this plane.

A more complicated situation takes place in the
vicinity of Tc. As can be seen from the data in Fig. 3, the
temperature variation of the conductivity changes
above 400 K, which is probably related to the appear-
ance of a critical contribution to the conductivity. No
such critical contribution in the vicinity of Tc is
observed in the behavior of the hypersonic acoustic
phonons.

Thus, we may conclude that the behavior of the
hypersonic acoustic phonons in the vicinity of the
phase transition in TAHS is determined by disordering
of the proton subsystem. The interaction of hypersonic
waves with the dynamic network of hydrogen bonds
significantly modifies the behavior of acoustic phonons
in the experiments with the Brillouin scattering. The
results of our investigation provide direct evidence for
the existence of the acoustoionic interaction in crystals
featuring no piezoelectric effect at hypersonic frequen-
cies.

The authors are grateful to V.V. Dolbinina for kindly
providing the crystals and to N.V. Zaœtseva for her help
in orienting samples.
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The dynamics of magnetoelectric RMn2O5 crystals (R = Eu and Gd) was studied in the frequency and temper-
ature ranges 20–300 GHz and 5–50 K, respectively. The crystals possessed magnetic and ferroelectric long-
range order and had close transition temperatures, TN, C . 36 and 30 K for R= Eu and Gd, respectively. Mixed
magneto-lattice excitations were observed in GdMn2O5; the excitations were most intense near the transition
temperature T . 30 K at frequencies close to the antiferromagnetic resonance frequencies of the Mn subsystem.
Along with the antiferromagnetic resonance of the Mn subsystem, the ferromagnetic resonance of the Gd sub-
system was observed in GdMn2O5 in an external magnetic field. No such dynamics was characteristic of
EuMn2O5. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 76.50.+g; 75.47.Lx; 77.80.-e
RMn2O5 crystals, where R stands for rare-earth
metal ions from Pr to Lu, Y, or Bi, are magnetoelectric
substances that simultaneously possess antiferromag-
netic and ferroelectric long-range order with close Neel
and Curie temperatures TN, C . 30–40 K (space group
Pbam at room temperature). The magnetic, dielectric,
and magnetoelectric properties of several crystals with
different R ions were studied in [1–6]; the neutron dif-
fraction data can be found in [7, 8]. An incommensurate
magnetic structure with the propagation vector k = (1/2,
0, z) is usually formed in RMn2O5 at T ≤ TN; the z .
0.3–0.38 value depends on the type of the R ion. One
more phase transition with changes in magnetic and
structural properties occurs in these crystals close to
15–20 K.

This work presents the results of a study of the
dynamic properties of RMn2O5 with the Eu3+ ion,
which is nonmagnetic in the ground state 7F0, and the
Gd3+ ion (8S7/2), whose spin moment is maximum
among the R ions. The dynamics of crystals with R =
Eu and Gd is substantially different. We also report the
results of magnetic and dielectric studies of GdMn2O5.

EuMn2O5 forms an incommensurate antiferromag-
netic structure with ferroelectric ordering and has close
Neel and Curie temperatures TN, C . 36 K [3, 8]. Anti-
ferromagnetic ordering in GdMn2O5 arises in the Mn
subsystem at a temperature close to the TN temperature
for EuMn2O5. An additional phase transition, however,
occurs close to T . 30 K [6]. As follows from the results
of this work, the low-temperature (T ≤ 30 K) GdMn2O5
phase is characterized by uniform magnetic (antiferro-
magnetic and ferromagnetic in the Mn and Gd sub-
systems, respectively) and ferroelectric orderings.
0021-3640/03/7802- $24.00 © 20088
The dynamic studies were performed on a quasi-
optical spectrometer using the transmission scheme.
The source of radiation was backward-wave tubes, and
the receivers were InSb-based detectors cooled with
liquid helium. The single crystals were grown by the
method of spontaneous crystallization described in [2]
in the form of well-faceted parallelepipeds of dimen-
sions 5 × 4 × 4 mm. Plates ~0.5 mm thick were cut nor-
mally to crystal axes a, b, and c. The plates were ori-
ented normally to the direction of electromagnetic
wave propagation by their developed surfaces. Variable
electric and magnetic (e and h, respectively) fields were
oriented in the plane of the sample. A constant mag-
netic field H0 of up to 2 T was also applied in the plane
of the sample. The magnetic field dependences of the
relative absorption coefficient ΓF, T = 1 – P(H)Pmax were
studied at fixed frequencies and temperatures. Here,
P(H) and Pmax are the microwave signal powers trans-
mitted through the sample at the current field value and
the field value corresponding to maximum transmis-
sion, respectively. In addition, we studied the tempera-
ture dependences of the relative absorption coefficient
ΓF = 1 – P(T)Pmax in the absence of a magnetic field at
fixed frequencies. The ΓF, T(H0) and ΓF(T) dependences
were used to construct the frequency and field depen-
dences of the absorption coefficient at fixed tempera-
tures (magnetic resonance spectra).

Sweeping the magnetic field caused the appearance
of resonance absorption only for GdMn2O5 and only at
the H0 || a orientation (see Fig. 1). Two characteristic
signals with gaps of 150 (I) and 100 GHz (II), which
depended linearly on the field, were observed. It fol-
lows from the inset in Fig. 1 that the gap in spectrum I
decreased to 130 GHz as temperature increased to T .
003 MAIK “Nauka/Interperiodica”
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30 K. Note that the temperature dependences of the
intensities of signals I and II were different. The inten-
sity of signal I changed with the temperature as the
order parameter with a critical temperature of ~40 K.
That of signal II decreased much more sharply as tem-
perature increased and tended to zero at T . 30 K.

Unlike the magnetic resonances, whose intensities
decreased as the temperature approached ~30 K,
absorption lines observed in the absence of a magnetic
field had temperature dependences with maxima at T .
30 K. The shape of the Γ(T) dependences was deter-
mined by the orientation of the variable electric field
with respect to crystal axes a, b, and c (see Fig. 2).
These lines were likely caused by the dynamics of the
lattice near the phase transition at T . 30 K and were
excited largely by the alternating electric field. A tem-
perature hysteresis was observed for the absorption
lines near T . 30 K. The intensity of the lines depended
on the frequency and was maximum near 130 GHz (see
the inset in Fig. 2). It is noteworthy that this frequency
is close to the gap value for the magnetic resonances
(signals I) at T . 30 K (see the inset in Fig. 1). The
external magnetic field also influenced the lines of an
electric nature with absorption maxima at T . 30 K (see

Fig. 1. Dependences of the frequencies of magnetic reso-
nances on external magnetic field H0 oriented along the a
axis of a GdMn2O5 plate with the developed plane ac (sam-
ple 2 according to the classification of Fig. 2); h || c, T = 5 K.
Shown in the inset is the temperature dependence of the gap
in spectrum I.
JETP LETTERS      Vol. 78      No. 2      2003
Fig. 3). This influence was most pronounced for the
H0 || a orientation. The absorption maximum then
shifted to the frequency corresponding to the frequency
of signal I at the given magnetic field value.

The closeness of the magnetic resonance I frequen-
cies and the frequencies of the absorption lines of an
electric nature and the influence of magnetic field H0 on
them are evidence that these lines have a mixed mag-
neto-lattice character. It follows from Fig. 2 that, at low
temperatures too, the lines with maximum absorption
near 30 K are not completely resolved from the mag-
netic resonance lines. This leads us to conclude that
low-temperature excitations also have a mixed charac-
ter to a certain degree.

Low-intensity absorption signals were observed in
EuMn2O5 in a wide frequency range of 30 to 300 GHz.
The absorption was maximum at temperatures close to
36–40 K, which corresponded to the phase transition to
the incommensurate magnetic and ferroelectric states.
These absorption lines were virtually independent of
the magnetic field and frequency.

Fig. 2. Temperature dependences of the relative absorption
coefficient Γ at H0 = 0 for GdMn2O5 samples: (1) the devel-
oped plane ab, e || a, frequency F = 137 GHz; (2) the devel-
oped plane ac, e || a, frequency F = 129.9 GHz; (3) the
developed plane ab, e || b, frequency F = 135.1 GHz; and
(4) the developed plane bc, e || c, frequency F = 132.1 GHz.
Shown in the inset are the frequency dependences of Γ at the
maximum of the absorption line near the T = 30 K temper-
ature for samples 1, 2, and 3.



90 GOLOVENCHITS, SANINA
Fig. 3. The same dependences as in Fig. 2 for samples (a) 4
and (b) 1 recorded at H0 = 0 under the conditions of slow
heating to T = 5 K (ZFH) after preliminary slow cooling to
T . 5 K and under slow heating in a nonzero magnetic field
H0 ≠ 0 (FH). The magnetic field was applied at T = 5 K. For
sample 4: H0 = 1.6 T, H0 || c, frequency F = 132.1 GHz; for
sample 1: H0 = 1.86 T, H0 || a, frequency F = 168.5 GHz.

Fig. 4. Temperature dependences of the real permittivity
part for GdMn2O5 at a 10 kHz frequency at the e || b orien-
tation. The solid and open symbols were recorded in heating
and cooling the sample, respectively. Shown in the inset are
the temperature dependences of magnetic susceptibility (in
arbitrary units) for GdMn2O5; frequency 10 kHz, h || a, h .
4 Oe. The curves were recorded under sample cooling in the
absence of an external magnetic field (ZFC) and in an H0 .
40 Oe field, H0 || a (FC).

e

The results obtained in the magnetic and dielectric

studies of GdMn2O5 (Fig. 4) show that, near 30 K, the
real part of permittivity (Real e) has a maximum similar
to that recorded for EuMn2O5 near 36 K [2, 3]. This,
together with the data on magnetoelectric susceptibility
and pyrocurrent [4], leads us to conclude that the
observed dielectric susceptibility anomaly character-
izes the transition to the ferroelectric state with polar-
ization along the b axis. The maximum of Real e at T .
30 K was observed for GdMn2O5 when e was oriented
along all crystal principal axes; the jump value was,
however, two times larger at e || b. The magnetic sus-
ceptibility of GdMn2O5 recorded by the induction
method is shown in Fig. 4, according to which the tem-
perature dependence of susceptibility is ferromagnetic
in character for the h || a orientation. The susceptibility
is saturated in a weak magnetic field and decreases
starting with ~30 K, but its tail extends to the higher
temperatures. We believe this susceptibility to charac-
terize the Gd subsystem in the magnetizing field of the
Mn subsystem.

Next, consider the data on the dynamics of the sys-
tems. Note that the shape of magnetic resonance spec-
tra I in Fig. 1 is characteristic of the antiferromagnetic
resonance of antiferromagnets with anisotropy of the
easy axis type when the magnetic field is parallel to this
axis (here, a axis of the crystal). The magnetic field
dependence of antiferromagnetic resonance frequen-

cies then has the form ω1, 2 =  ± γH0, where HE

and HA are the exchange and anisotropy fields, respec-
tively, and γ is the gyromagnetic ratio. For spectrum I,
γ . 2.75 ± 0.15 and corresponds to a g-factor close to 2.
These signals can naturally be assigned to the antiferro-
magnetic subsystem of Mn ions. For signals II, the
ω(H0) dependence has the form ω = ∆ω + γH0. Its linear
slope is the same as for spectrum I corresponding to a
g . 2 spin value. We assign this spectrum to the sub-
system of Gd ions. The ∆ω gap is likely to be induced
by the effective exchange field of Mn–Gd interactions.
Taking into account the magnetic susceptibility data
and the high intensity of signals II, we assign them to
the ferromagnetic resonance of the Gd subsystem. The
character of the observed antiferromagnetic and ferro-
magnetic resonances is evidence that the magnetic state
of GdMn2O5 crystals at T ≤ 30 K is homogeneous.
Recall that incommensurate magnetic structures are
usually formed in RMn2O5 crystals with other R ions.

The neutron study of EuMn2O5 [8] shows that an
additional phase transition occurs in this compound at
T . 30 K. This is the transition from the incommensu-
rate to the commensurate spatially modulated magnetic
structure with the vector k = (1/2, 0, 1/3). The phase
transition from the spatially modulated to the homoge-
neous antiferromagnetic structure was observed in
EuMn2O5 near T . 30 K in a strong magnetic field
H0 . 20 T oriented along the c axis. This transition was

2HEHA
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accompanied by a polarization jump and the appear-
ance of the linear magnetoelectric effect [9].

We believe homogeneous magnetic ordering to arise
in GdMn2O5 near 28–30 K as a result of Gd–Mn–Gd
polarization exchange [10]. The Mn subsystem is then
under the action of the effective homogeneous field cre-
ated by the Gd subsystem. The maximum contribution
to polarization exchange is isotropic [10], and the com-
ponent of this field along the c axis of the crystal may
be responsible for the homogeneous antiferromagnetic
state of the Mn subsystem (this is similar to the transi-
tion in EuMn2O5 in a strong external field [9]). Note
that the structural phase transition (the arising of ferro-
electric ordering) in GdMn2O5 is displaced along the
temperature axis toward lower temperatures compared
with RMn2O5 crystals containing other R ions. The
transition occurs simultaneously with the formation of
the homogeneous magnetic states of the Mn and Gd
subsystems. Because of the homogeneous magnetic
state of GdMn2O5, the compound is characterized by a
strong linear magnetoelectric effect [6] and a strong
coupling between magnetic and structural states result-
ing in the mixed dynamics observed and studied in this
work.

To summarize, the presence of magnetic R ions with
fairly strong R–Mn–R exchange interactions in
RMn2O5 manganite crystals substantially influences
the magnetic, magnetoelectric, and structural proper-
ties of these systems.
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The interaction between two quantum systems is formulated using a stochastic representation that allows one
of them to be replaced by equivalent commutative random sources. The proposed method is applied to two-level
systems in contact with a thermal bath. Strong-coupling effects and long-lived fluctuations of the total response
of two systems in a common thermal bath are discussed. © 2003 MAIK “Nauka/Interperiodica”.
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1. The problems on the interaction between a certain
microscopic dynamical system (DS) and its macro-
scopic environment (thermal bath) are typical for pure
and applied quantum statistical physics. The interaction
Hamiltonian is usually described by a bilinear form (or
reduces to it), i.e.,

(1)

where the operators Dj and Bj act in different linear
(Hilbert) spaces D and B (DS and bath, respectively).
In the Heisenberg representation, Bj(t) ≡
exp(iHbt)Bjexp(−iHbt) (Hb is the Hamiltonian of the
autonomous bath) serve as sources of random perturba-
tions of the DS. However, as distinct from classical
Langevin sources, these quantities are operator-valued
and noncommutative and describe the evolution of the
DS in the direct product D ⊗  B of the spaces.

The problem can be simplified by replacing Bj(t)
with equivalent (from the viewpoint of the results)
commutative random sources, so that the evolution of
the DS formally remains in D. Equivalence means the
exact reproduction of the role of the thermostat temper-
ature and the effects of the DS self-action through the
thermostat, including dissipation.

A variant of such a replacement was proposed in [1].
Let Hd(t) be the Hamiltonian of the autonomous DS

(2)

and certain observables Jk of the DS be measured.
Then, the statistical operator R(t) of the total system
“DS (observed from the outside) plus bath” satisfies the
equation

(3)

H int B j * D j,
j

∑=

H B t,( ) Hd t( ) B j t( )D j

j

∑+=

Ṙ v t( )J  ° R i RH B t,( ) H B t,( )R–{ } ,+=
0021-3640/03/7802- $24.00 © 20092
where v(t)J ≡ , v k(t) are test functions of

measurement, and ° means symmetrized product. For
v k(t) = 0, it is the usual Neumann equation for the total
density matrix. Otherwise, the trace of R(t) in D ⊗  B
yields [1] the characteristic functional Ξ(t, v) of
observables:

(4)

Here, Jk(t) are operators in the Heisenberg representa-
tion, left (right) arrow means chronological (antichro-
nological) ordering, integrals are calculated with
respect to t' < t (t is the current time), and Rin = R(–∞).
Let us replace the operators B(t) in Hamiltonian (2)
with commutative (similar to C numbers) variables
ξ(t) = x(t) + iy(t)/2 or η(t) = x(t) – iy(t)/2 and consider
the equation

(5)

where

(6)

instead of Eq. (3), treating η(t), ξ(t), x(t), and y(t) as
random processes reflecting the bath effect. Let Rin be
factorized as Rin = ρ(–∞)ρb, where ρb = TrDR(–∞) is the
statistical operator of the bath. We specify the charac-

v k t( )Jk∑

TrDTrBR TrDTrB
1
2
--- v t'( )J t'( ) t'd∫exp=

× 1
2
--- v t'( )J t'( ) t'd∫ Rinexp Ξ t v,( ).=

→

←

ρ̇ t( ) v t( )J  ° ρ t( ) L t( )ρ t( ),+=

L t( )ρ i ρH η t,( ) H ξ t,( )ρ–{ }≡

=  y j t( )D j ° ρ
j

∑ i ρ H x t,( ),[ ] ,+
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teristic functional of random sources x(t) and y(t) by
the relation

(7)

where indices are omitted for brevity and the operators
Bj(t, f ) are defined as

(8)

i.e., these operators characterize the nonautonomous
behavior of the bath. On the left-hand side of Eq. (7),
g(t) and f(t) are test functions for the sources x(t) and
y(t), respectively. According to Eqs. (7) and (8), g(t) on
the right-hand side of Eq. (7) are test functions for the
bath observables B(t), while fj(t) are Bj(t)-conjugate
classical forces perturbing the thermostat.

As was shown in [1], if the statistics of random
sources in Eqs. (5) and (6) are determined by Eqs. (7)
and (8), they exactly simulate the quantum bath; i.e.,

(9)

(10)

where angular brackets mean averaging over x(t) and
y(t) [or η(t) and ξ(t)] according to Eqs. (7) and (8). The
desired replacement is achieved at the cost of the dou-
bling of the number of sources: one real observable
(Hermitian operator) Bj(t) is replaced with a pair of for-
mally real variables xj(t) and yj(t) or a pair of complex

conjugate variables ηj and ξj = .

According to Eqs. (5) and (6), xj(t) serve as random
forces (potentials), whereas yj(t) present the test func-
tions of observation (measurement) of the DS by the
bath [similar to v k(t) in Eq. (3)]. Under the action of
only random pumping xj(t) [in the absence of yj(t)], the
entropy and energy of the DS would increase as far as
possible. However, as in any measurement process, the
terms with yj(t) in the stochastic Liouville operator (6)
violate the unitarity of the evolution of the operator ρ(t)
and thereby decrease the phase-space volume (entropy)
of the DS. Simultaneously, yj(t) are responsible for the
energy outflow back to the bath, i.e., for dissipation
and, therefore, for the nonuniform (thermal) probabilis-
tic distribution of the DS energy. We emphasize that
unitarity in the average is fulfilled according to Eqs. (9)
and (10).

g t( )x t( ) f t( )y t( )+[ ] td∫exp

=  TrB
1
2
--- g t( )B t f,( ) td∫ 

 
  1

2
--- g∫ t( )B t f,( )dt

 
 
 

ρb,expexp
→ ←

B j t f,( ) U+ t f,( )B jU t f,( ),=

U̇ t f,( ) i Hb f j t( )B j

j

∑+
 
 
 

U t f,( ),–=

ρ t( )〈 〉 TrBR t( ),=

TrD ρ t( )〈 〉 Ξ t v,( ),=

η j*
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In view of Eqs. (7) and (8),

(11)

Therefore, 〈y(t)〉  = 0, 〈y(t)y(t')〉  = 0, and all the higher
autocorrelation functions of y(t) are also equal to zero.
However, the correlation functions between y(t) and
x(t) are nonzero and present the response of the bath to
the perturbation. Thus, y(t) are, strictly speaking, not C
numbers. Fortunately, their unusual properties only
facilitate calculations. It is important that y(t) can cor-
relate only with later values x(t ' > t) according to the
principle of causality.

For the case of the Gaussian equilibrium bath, all
functions (11) are expressed in terms of pair correlation
functions:

(12)

Here, T is temperature, ϑ(τ) is the Heaviside step func-
tion, and Sjm(ω) is the nonnegative spectral matrix.
Equations (12) show that neglect of the y(t) component
of the random sources in Eqs. (5) and (6) would mean
in essence that the temperature of the thermostat is infi-
nite.

Equations (9) and (10) contain only the average
value of the stochastic density matrix ρ(t) of the DS. Its
higher statistical moments

(13)

describe several copies of the DS interacting with one
common bath. The indistinguishability of the copies
requires specifying their quantum statistics. According
to [1], the case of Fermi statistics reduces to the analy-
sis of moments (13). In this case, an additional (e.g.,
Coulomb) interaction between the copies of the DS can
be included as an interaction through a second (Gauss-
ian) bath [additional pairs of sources x(t) and y(t)].

2. We apply this formalism to a two-level DS
(TLDS) interacting with a Gaussian bath. We can set

(14)

and Hd(t) = u(t)J/2. Here, u(t) is the energy difference
between the states, which possibly depends on time as
a result of an external action on the TLDS. The operator
D is responsible for contact with the bath, which
induces random switches of the TLDS between its
states. The operator J corresponds to the observation of

x t j( )y tm'( )
j m,
∏ δ

δ f tm'( )
---------------

m

∏ B t j f,( )
j

∏
f 0=

.=

x j τ( )xm 0( )〈 〉 ωτ( )cos S jm ω( )
ωd
π

-------,

0

∞

∫=

x j τ( )ym 0( )〈 〉 2ϑ τ( )=

× ωτ( )sin
ω
2T
------ 

  S jm ω( )
ωd
π

-------.tanh

0

∞

∫

ρ t( ) … ρ t( )⊗ ⊗〈 〉

J 1 0

0 1– 
 
 

, D 0 1

1 0 
 
 

,= =
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the state such as the spin orientation or the velocity of a
quantum particle in the simplest model of one-dimen-
sional Brownian motion. This model illustrates the role
of the y(t) component of a random source, i.e., the dis-
sipative term y(t)D ° ρ(t) in Eqs. (5) and (6).

Let the initial states of the free TLDS have the same
energy; i.e., u(t) ≡ 0. Differential stochastic equation (5),
(6) is explicitly integrable. In particular, the trace

satisfies the recurrence relation

(15)

where

In this case, Ξ(t, v) = 〈θ(t, v)〉 .
We analyze the correlation function of fluctuations

of spin (or Brownian-particle velocity, etc.) K(τ) =

〈J(τ)J(0)〉  and the diffusion coefficient ∆ = .

The most interesting case is the case of white noise of
the bath in the sense that S(ω) = const in Eq. (12) (we
emphasize, however, that both correlation functions (12)
cannot simultaneously be δ functions, and quantum
noise is never white in this sense). From Eq. (15), aver-

θ t v,( ) TrDρ t( )≡ ρ11 ρ22+=

θ t v,( ) Y t ∞–,( )=

+ Y t t1,( )v t1( )X t1 t2,( )v t2( )θ t2 v,( ) t1d t2,d

t t1 t2> >
∫

X t1 t2,( ) 2 x t'( ) t'd

t2

t1

∫ ,cos≡

Y t1 t2,( ) y t'( ) t'd

t2

t1

∫ .cosh≡

K τ( ) τd
0

∞∫

Fig. 1. Correlation function of the two-level dynamic sys-
tem for the relative intensity of white noise of the bath S/T =
(from top to bottom) 1, 10, 100, 1000, and 10 000.
aging in view of Eq. (12) and differentiating with
respect to the test function, we obtain

(16)

Figure 1 shows that monotonic relaxation becomes
oscillatory when the dimensionless noise intensity S/T
increases. Formally, this is the effect of the y(t) compo-
nent, i.e., the feedback effect of the TLDS on the bath
[in the absence of y(t), correlation would be purely
exponential for any S/T value].

However, the opposite approximation

(17)

where the sufficiently long time of noise correlation
(bath reaction) τ0 excludes high frequencies, can be
more correct in practice. In this case, it is convenient to
introduce the binding energy e as S(0) =2e2τ0. Calculat-
ing the correlation function under assumptions (17), we
find that monotonic relaxation (close to exponential)
proceeds for weak coupling (e/T < 1), and

(18)

for e/T > 1 (strong coupling); i.e., oscillations appear
and are multiplied again.

It is clear that the relaxation oscillations mean an
additional decrease in the coefficient of diffusion ∆
[spectral density J(t) for zero frequency] compared to
its value ∆0 in the absence of y(t). Figure 2 shows this
effect as a function of S/T ≡ S(0)/T for (1) white noise
and (2) Lorentzian noise at Tτ0 = 10. In the latter case,
the coefficient of diffusion can become anomalously
small, leading to the localization of a Brownian
particle.

K τ( ) e 2Sτ– 2S
π

------ πTτ'
2

----------- 
 tanhln τ'd

0

τ

∫ 
 
 

.cos=

S ω( ) S/ 1 τ0ω( )2+[ ] , τ0T  @ 1,=

K τ( ) 2e
2τ2–( ) e

2τ /T( ),cosexp≈

Fig. 2. Ratio ∆/∆0 of the coefficients of diffusion calculated
including and neglecting the dissipative reaction of the bath
vs. the relative intensity of (1) white and (2) low-frequency
Lorentzian bath noise with τ0T = 10.
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Oscillatory relaxation means that the response of the
TLDS to a periodic external action can become reso-
nant, being a maximum for a nonzero frequency of the
action (if the frequency is fixed, it is a maximum for
nonzero bath noise). Such phenomena are known as
stochastic resonance (see, e.g., review [2]).

We also note that oscillatory relaxation belongs to
the type of non-Markovian processes that could not be
adequately analyzed in the theory of Markovian quan-
tum dynamical semigroups, i.e., time-local master
equations (for this theory, which dates back to Lind-
blad’s work [3], see, e.g., [4]). In terms of this theory,
we consider the stochastic “expansion” of the semi-
group that is non-Markovian so far as the correlation
function x(τ)y(0) determining oscillations in Eq. (16)
differs from the δ function.

3. Since the states are symmetric (degenerate), trace
(15) contains only even powers of v (t). If u(t) ≠ 0, sym-

metry is violated. We define the integral operators ,

, and  as

For u(t) ≠ 0, the equation

(19)

can be derived instead of Eq. (15). In this case, the
expression of θ in terms of v(t)

contains the first (as well as other odd) powers. For sim-
plicity, we consider this contribution in the limit of a
hot bath, S/T ! 1 and Tτ0 @ 1, when an extra y(t) power
introduces an additional order of smallness according
to Eq. (12). Moreover, we assume that the perturbation
u(t) is infinitely weak. Retaining only the lowest pow-
ers of y(t) and u(t), we obtain

(20)

Î

Ĉ Ŝ

Î f t( ) f t'( ) t',d

∞–

t

∫=

Ĉ Ŝ f t( ), , u t''( ) t''d

t'

t

∫ 
 
 

f t'( )sincos t'.d

∞–

t

∫=

θ 1 Î yĈyθ+=

+ Î v 2yŜx+( ) 1 4 Î xĈx+[ ] 1–
Î v 2xŜy+( )θ

θ t v,( ) θ0 t( ) J̃ t0( )v t0( ) t0d

∞–

t

∫+=

+
1
2
--- K̃ t1 t2,( )v t1( )v t2( ) t1d t2 …,+d

∞–

t

∫
∞–

t

∫

J̃ to( ) J+ t0( ) J– t0( ),+=
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where

The actual observation instant of time t0 obviously lies
in the time axis earlier than the formal argument t.
Under this condition, t is eliminated from the averaged
results. For this reason, it is convenient to take t = ∞.

The function  obviously vanishes if the y(t)
component of the random source is neglected. There-
fore, this component, along with x(t), is responsible for
the response of the DS to an external action. The inte-
gral operators acting on u(t) in expressions for J+ and J–
serve as random functions of linear response (random
susceptibility, mobility, etc.), i.e., as multiplicative
noise. This noise is a manifestation of the randomness
(dependence on thermostat noise) of the quantum tran-
sition probabilities between states [5]. Equations (20)
clearly show that the unaveraged response functions do
not relax and can connect events arbitrarily distant in
time.

4. In conclusion, we consider two identical TLDSs
in contact with the same bath. Let these be formally dis-
tinguishable and contribute additively to an observable.
Then, the characteristic functional of the total observ-
able takes the form

(21)

rather than Eq. (10). In the hot-bath limit, it follows
from Eq. (21) that the correlation function of this
observable has the form

(22)

where t1 > t2.
All the terms except the first in the right-hand side

of Eq. (22) describe “extra” noise of the observable,
which is proportional to the square of perturbation u(t)
and originates from (identical for both TLDSs) fluctua-
tions of the random functions of linear response
[Eq. (20)]. If t1 – t2 @ τc, where τc is the correlation time
of fast noise of the observable [relaxation time of K(τ)
in the absence of perturbation], only the second term
remains and does not relax altogether. The formal
order-of-magnitude estimation of this long-lived corre-
lation gives

J+ 2 x t'( ) t'd

t1

t0

∫
 
 
 
 
 

u t1( ) y t2( ) t2d t1,d

∞–

t1

∫sin

∞–

t0

∫=

J– 2 x t'( ) t'd

t0

t1

∫
 
 
 
 
 

u t1( ) y t2( ) t2d t1.d

t1

t

∫sin

t0

t

∫=

J̃ t0( )

Ξ t v,( ) θ2 t v,( )〈 〉=

K2 t1 t2,( ) 2 K̃ t1 t2,( )〈 〉 J+ t1( )J– t2( )〈 〉+{=

+ J+ t1( )J+ t2( )〈 〉 2 J+ t1( )〈 〉 J+ t2( )〈 〉– } ,

J+ ∞( )J– ∞( )〈 〉 τ c
2/τ0

2( ) J̃〈 〉 2
.∼
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The ratio τc/τ0 is a function of the parameter eτ0 and can
be either much larger than unity (for eτ0 ! 1) or much
less than unity (for eτ0 @ 1).

We note that the term J–(t0) in Eq. (20) corresponds
to the “reaction of past to future,” because it contains
only future values of all variables with respect to the
observation instant of time. Any correlation function in
which the time argument of J– is later is obviously equal
to zero; otherwise, it is physically meaningless. How-
ever, correlations between J– and later J+ values do not
contradict the principle of causality. The property of
these correlations to be long-lived is completely similar
to the properties of quantum-probability fluctuations
considered in [5]. They are also caused by the coher-
ence (unitarity) between the joint evolution of the DS
and the bath. This coherence is violated by the acts of
observation of the DS but conserves always between
them. Contrary to [5], the consideration of unrelaxing
correlations is not restricted by any time interval.
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Recently, Mamun, Shukla, and Bingham [2] claimed that Havnes and his collaborators [1] mistakenly neglected
magnetic fields in their work on Mach cones as potentially powerful diagnostics of properties in Saturn’s rings.
We show that the magnetic force on a charged particle is entirely negligible in comparison with the electric
force on the particle in a wave with a wavenumber relevant to the Saturnian Mach cone problem. Havnes et al.
[1] were not in error. © 2003 MAIK “Nauka/Interperiodica”.
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Havnes and his collaborators [1] pointed out that the
detection and observation of Mach cones around larger
solid bodies in Saturn’s ring system would provide a
valuable means of diagnosing properties of the dusty
ring plasma. They based their analysis on a consider-
ation of the properties of dust acoustic waves in an
unmagnetized plasma. Recently, Mamun et al. [2]
argued that the analysis must be based on the study of
hydromagnetic waves in a dusty plasma, e.g., [3]. Here
we show that Havnes et al. [1] were justified in the
neglect of the magnetic field in their studies of Mach
cones in Saturn’s rings.

We consider a dust–ion plasma as in [2] and take ρd,

ρi, , , , Zde, e, md, mi, and E  to be the mass
density of dust, the mass density of ions, the dust veloc-
ity, the ion velocity, the thermal pressure of the ions, the
charge carried by a dust grain, the charge of a proton,
the mass of a dust grain, the mass of an ion, and the
electric field, where  is the unit vector in the z direc-
tion. ci is taken to be a constant. Waves are assumed to
propagate in the z direction in a uniform static back-
ground medium. Background quantities are signified
by subscript 0, and perturbation quantities are signified
by subscript 1. Perturbation quantities are assumed to
vary with time, t, and z as exp(iωt – ikz).

The linearized equations governing the propagation
of a dust acoustic wave in the two fluid medium are

, (1)

, (2)

, (3)

¶ This article was submitted by the authors in English.

v dẑ v i ẑ ρici
2 ẑ

ẑ

iωρd1 ikρd0v d1– 0=

iωρd0v d1

ρd0

md

-------ZdeE=

iωρi1 ikρi0v i1– 0=
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, (4)

. (5)

We have taken the pressure of the dust fluid to be zero.
The dust fluid is assumed to have a much greater den-
sity than the ion fluid, leading to the neglect of the ion
fluid’s inertia in equation (4). We note that ρi0/mi =
−(ρd0/md)Zd. As pointed out by Mamun et al. [2], for
low-frequency dust waves unaffected by the magnetic

field, ω/k = ( ρd0kBTi0mi/ρi0 )1/2, where kB and Ti0

are Boltzmann’s constant and the ion temperature. ci =
(kBTi0/mi)1/2.

We take B0 to be the strength of the background
magnetic field. The maximum magnitude of the com-
ponent of the ion velocity perpendicular to the direction
of propagation is given by

, (6)

where c is the speed of light and ωgi ≡ eB0/mic is the ion
gyrofrequency.

The magnetic force per unit volume in the z direc-
tion on ions has a maximum magnitude of

. (7)

The ratio of FBZ to the magnitude of the pressure force
per unit volume on the ions is

. (8)
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The magnetic force is negligible if

. (9)

For a magnetic field strength of 0.03 Gauss, at the
corotation distance, and an ion mass of 16 amu, ωgi ≈
18 s–1. We assume that each grain is spherical with a
radius of 0.25 µm and is composed of material with a
density of 1 g/cm3. Thus, ρi0/ρd0 = 5 × 10–10|Zd|. For a
medium in which Ti0 = 10 eV, the frequency of a wave
unaffected by the magnetic field is given by ω =
2|Zd|1/2/λ, where λ is the wavelength in meters.

Condition (9) shows that the neglect of the magnetic
field in the work by Havnes et al. [1] on Mach cones in
Saturn’s rings is entirely justified and that R ≈ 0.01 for
λ . 500 m. An examination of the results of Mamun
et al. [2] also shows that, for wavelengths below several
hundred meters, which will be generated by boulders,
the effect of the magnetic field is negligible, and their

R ! 1
dispersion relation reduces to that of the dust acoustic
wave. For wavelengths of more than about 1 km, the
magnetic field becomes progressively more important
and should be included. Li and Havnes [3] have per-
formed a study of such waves in Saturn’s rings based on
kinetic theory with magnetized ions and electrons but
unmagnetized dust. However, such large wavelengths
should not be important for Mach cones generated by
large boulders.
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We clarify the underlying physics of long-wavelength dust magnetoacoustic waves and short-wavelength (in
comparison with the ion gyroradius ρi) dust acoustic waves that are involved in the formation of Mach cones in
the magnetized dusty plasma of Saturn’s rings.© 2003 MAIK “Nauka/Interperiodica”.
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About eight years ago, Havnes et al. [1] employed
the dispersion relation of Rao, Shukla, and Yu’s [2] dust
acoustic waves (DAWs) for an unmagnetized dusty
plasma to predict the formation of dust acoustic Mach
cones in Saturn’s rings. The DAWs are low-frequency
(in comparison with the dust plasma frequency), long-
wavelength (in comparison with the dusty plasma
Debye radius [3]) electrostatic waves in which the
restoring force comes from the pressures of inertialess
electrons and ions, while the dust mass provides the
inertia to maintain the waves. Thus, Havnes et al. [1]
used the phase speed Vp(=ω/k) of unmagnetized DAWs
to obtain the Mach cone opening angle θ = sin–1(Vp/Vb),
where Vb (>Vp) is the speed of a dust boulder that lies in
the equatorial plane of Saturn’s rings, which shall pro-
vide valuable information regarding the plasma and
dust parameters once the Cassini spacecraft starts gath-
ering data in July 2004. Since the dusty plasma in Sat-
urn’s rings is magnetized, it is very important to under-
stand the properties of waves in a dusty magnetoplasma
[3].

In a recent letter, Mamun, Shukla, and Bingham [4]
predicted the formation of Mach cones involving low-
frequency (in comparison with the dust gyrofrequency
ωcd), long-wavelength (in comparison with the ion
gyroradius ρi) slow dust magnetoacoustic waves in an
ion–dust plasma. Mamun et al. [4] found that, for the
plasma parameters of Saturn’s rings (viz. Saturn’s
magnetic field B0 ~ 0.1 G, the dust number density nd =
10 cm–3, the dust charge number Zd ~ 103, the dust
material mass density 1 g/cm3, the dust radius 0.5 µm,
the ion number density ni ~ 104 cm–3, the ion tempera-
ture Ti ~ 10 eV, the ion Debye radius λDi . 23 cm, and
ion gyroradius ρi ~ 45 m), the dust Alfvén speed

VAd(=B0/ ) is much larger than the DAW
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4πndmd
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speed CD[=( ndTi/nimd)1/2], since Saturn’s plasma

parameter β(=8πniTi/ ) is fairly low (~10–4), where
md is the mass of the dust particle. Accordingly, they
suggested that long-wavelength slow dust magnetoa-
coustic waves propagating almost perpendicular to the
external magnetic field direction are a viable candidate
for Mach cone formation in the equatorial region of
Saturn’s rings, where a dust boulder moves in a Keple-
rian orbit. Hartquist and Havnes [5] refute this scenario,
since they failed to derive dispersion relations (8) and
(9) in [4], which have been obtained from our exact
equations (4) and (5). It should be stressed that the
forms of the low-frequency (!ωcd = ZdeB0/mdc, where
e is the magnitude of the electron charge and c is the
speed of light in vacuum) dust shear Alfvén and dust
magnetoacoustic wave dispersion relations in an ion–
dust plasma are identical to those of hydromagnetic
waves in an electron–ion plasma [6], except that the
role of electrons and ions is replaced by ions and dust,
respectively. It turns out that, in the phase speed of the
dust magnetoacoustic waves, we have the dust Alfvén

speed (B0/ ) and the ion skin depth (c/ωpi), in

contrast to the usual Alfvén speed (B0/ ) and
the electron skin depth (c/ωpe) in an electron–ion
plasma, where ωpi (ωpe) is the ion (electron) plasma fre-
quency and mi is the ion mass. Thus, in slow dust mag-
netoacoustic waves, the restoring force comes from the
magnetic pressure and the dust mass provides the iner-
tia. The wave dispersion is due to the ion inertial force.
For Saturn’s plasma parameters, the wavelengths of
slow dust magnetoacoustic waves, which could be
involved in the formation of Mach cones, are in the
range of several hundred meters to a few kilometers,
depending on the values of B0, which vary between
0.025–0.2 G in Saturn’s rings, where c/ωpi . 3.5 km. As
an illustration, we mention that, for 2-km scale size

Zd
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2
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slow dust magnetoacoustic waves, we have Vb/Vp . 1.1,
3.8, and 3.8 for B0 = 0.01, 0.05, and 0.1 G, respectively.

Furthermore, we have critically examined the argu-
ments of Hartquist and Havnes [5] regarding the
neglect of the Lorentz force in the ion dynamics
involved in short-wavelength, electrostatic DAWs in a
magnetized dusty plasma that we discussed in [4,
p. 645]. We note that a fluid ion response, given by Eq.

(4) in [5], is incorrect for short-wavelength (bi = 
@ 1, where k⊥  is the component of the wavevector k
perpendicular to Saturn’s magnetic field  and  is
the unit vector along the z axis) DAWs. For low-fre-
quency (ω ! ωci = eB0/mic) arbitrary-wavelength elec-
trostatic modes, we must use, instead of Eq. (4) in [5],
the ion density perturbation [7]

(1)

for two-dimensional ions in equatorial plane of Sat-
urn’s rings. Here, Γ0, 1(bi) = I0, 1(bi)exp(–bi), I0(I1) is the
modified Bessel function of zero (first) order and φ is
the DAW potential. For bi @ 1, we can approximate
Eq. (1) as

(2)

which is a Boltzmann distribution associated with an

ion susceptibility χi ≈ 1/k2 , where λDi =
(Ti/4πnie2)1/2 is the ion Debye radius. Equation (2)
physically dictates that, in the potential of short-wave-
length DAWs, unmagnetized ions execute a straight-
line orbit across  and they charge neutralize negatively
charged dust, which has very slow motion. The dust

number density perturbation nd1 for ω2 @  is [3]

(3)

For ω ! kzVTe, ωcekz/k⊥ , where kz is the component of
the wavevector along , VTe is the electron thermal
speed, and ωce is the electron gyrofrequency, the elec-
trons rapidly thermalize along  and establish a Boltz-
mann distribution. The corresponding electron number
density perturbation is

(4)

where Te is the electron temperature and ne = ni – Zdnd.
Substituting (2), (3), and (4) into the Fourier-trans-
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formed Poisson equation, we have the frequency of
short-wavelength dispersive DAWs

(5)

which coincides with Rao, Shukla, and Yu’s unmagne-
tized DAW frequency that Havnes et al. [1] employed
to predict the DAW Mach cone in Saturn’s rings. Here,

ωpd = (4π e2nd/md)1/2 is the dust plasma frequency
and σ = neTi/niTe ! 1. It turns out that, for Saturn’s
plasma parameters, the wavelengths of the DAWs
should be ~30 m for ω . 1 s–1, Ti = 10 eV, Te = 10Ti, ni =
104 cm–3, ne = 0.1ni, ωpd . 21 s–1, and λDi . 23 cm.

In conclusion, we have discussed the drawbacks of
the research carried out in [5] and have clarified the
underlying physics of low-frequency (!ωcd), long-

wavelength (  ! 1) slow dust magnetoacoustic

waves and short-wavelength (  @ 1) intermediate-
frequency (ωcd ! ω ! ωci) DAWs that may participate
in the formation of Mach cones in Saturn’s rings. These
transverse and longitudinal waves in magnetized dusty
plasmas can be generated by ion temperature anisot-
ropy and electron/ion beams. The resonance interaction
between a dust boulder and short- and long-wavelength
modes, as discussed here, can give rise to Mach cones
in the equatorial plane of Saturn’s rings, which should
be detectable by the onboard instruments of the Cassini
spacecraft.
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