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In the framework of the Coleman–Glashow hypothesis of an extremely weak violation of Lorentz invariance,
neutral and charged pions can be stable for energies above 1019 eV and enter into the composition of primary
cosmic rays of ultrahigh energies. The kinematic exclusion of reactions of pions with relic photons is particu-
larly important, because it allows the Greisen–Zatsepin–Kuzmin paradox to be resolved. The parameters of
extensive air showers induced by primary pions calculated within the model of quark–gluon strings with allow-
ance for the Landau–Pomeranchuk–Migdal effect and interactions of neutral pions of ultrahigh energies are not
contradictory to the available data of observations. It has been shown that observations of production heights
of muons with energies above 10 GeV will make it possible to distinguish between primary nuclei, protons, and
pions; to verify Lorentz invariance for energies above 1020 eV; and to obtain a new limit on the difference
between the maximum possible velocities of muons and pions (cµ – cπ) < 4 × 10–26. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 13.85.Tp; 96.40.Pq
Based on the first observations of giant air showers
(GASs) at Volcano Ranch Array [1] and further investi-
gations at Haverah Park [2], Yakutsk [3], AGASA [4],
SUGAR [5], Fly’s Eye [6], and Hires [7] arrays, a very
important discovery was made, namely, GASs with
energies above 1020 eV were detected. This discovery is
difficult to reconcile with the famous Greisen–Zat-
sepin–Kuzmin (GZK) effect [8, 9]. The accuracies of
the estimates of both the energy E0 of the particles that
induce GASs and their arrival directions on the celestial
sphere are of primary importance. The energy of the
inclined GAS detected at the Yakutsk array was first
estimated at ~1.2 × 1020 eV [3]. A second analysis of
the parameters of this shower with allowance for the
deviations of muons in the Earth’s magnetic field pro-
vided an estimate of ~3 × 1020 eV [10]. The revision of
the Haverah Park data reduced the estimated energy by
about 30% [11]. As a result, none of the four showers
with energies above 1020 eV remained in these data. We
note that the magnetic field effect was disregarded. The
revision of Fly’s Eye and Hires data [12] reduced the
number of the detected showers with energies above
1020 eV from eight to one. However, this revision can-
not be considered final because of uncertainties both in
the atmospheric state and in the intensity of 391-nm flu-
orescence light and also because of the use of the data
in monomode rather than stereomode. Thorough analy-
sis of all factors that can lead to both an overestimation
and an underestimation of the energy showed that
eleven showers with energies above 1020 eV were
detected at the AGASA, where two showers have ener-
gies above (2–3) × 1020 eV [13]. Thus, more than 10
0021-3640/03/7803- $24.00 © 20101
(possibly about 20, according to all data) showers with
energies above 1020 eV were observed, which contra-
dicts the GZK effect, because close sources of particles
with such energies have not yet been found. The analy-
sis made in [14] showed that the arrival directions of
20 intense showers detected at the Yakutsk array are
uniformly distributed over the celestial sphere. A simi-
lar result was also obtained at the AGASA array [15].
The arrival directions of GASs detected at the Fly’s Eye
and Hires arrays also do not point to particular close
sources [16]. Moreover, Farrar and Biermann [17] and
Virmani et al. [18] found that the arrival directions of,
respectively, five and eleven showers with energies
above 1019 eV correlate with quasars at cosmological
distances from the Earth. In addition, a correlation with
BL Lacertae also located at enormous distances from
the Earth was found in [19]. We point in particular to
the observations of doublets and triplets (pairs and tri-
ples) of showers arriving at the Earth from the same
direction [20]. These observations can be treated as a
possible manifestation of pointlike sources [21]. The
identification of the arrival directions of showers with
remote objects and the observations of doublets and
triplets imply that the showers are induced by neutral
particles. Indeed, in stochastic intergalactic magnetic
fields with intensity B and length D, a relativistic
charged particle with energy E passing distance d is
deflected at the angle
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where the numerical factor is calculated for d0 = 1 Mpc,
D0 = 16 Mpc, B0 = 10–9 G, and E0 = 1019 eV. Simple esti-
mates show that δΘ ~ 15° for E = 3 × 1019 eV and D =
160 Mpc. Therefore, an additional analysis is likely
necessary for charged particles. The hypothesis of neu-
trinos with ultrahigh energies, which interact with relic
neutrinos near the Earth [22, 23] and induce “Z-boson”
showers, is the simplest assumption that involves neu-
tral primary particles and can resolve both the problems
of identification with remote objects and the GZK par-
adox. However, because of certain restrictions, the
sources of such neutrinos must have very specific prop-
erties [24]. Since the shower observed in [3] consists of
only muons and the showers detected in [4] also contain
muons, the hypothesis of primary gamma rays must be
analyzed with caution, even though it does not contra-
dict the Fly’s Eye, HiRes, and, in part, AGASA data [25].
At the same time, beginning with [26], the concept of
violation of Lorentz invariance was involved to explain
the GZK paradox (see review [27]). In the framework
of the hypothesis that Lorentz invariance is very weakly
violated, Coleman and Glashow [28] showed that neu-
tral pions and neutrons can be neutral particles of pri-
mary cosmic rays. The parameters of this hypothesis
for primary neutrons were refined in [29]. In [30], using
the data of observations [6], we obtained limits on the
parameters violating Lorentz invariance. In this work,
in the framework of the Coleman–Glashow hypothesis
of a very weak violation of Lorentz invariance, we ana-

Fig. 1. Cascade curves for pion-induced GASs with E = 3 ×
1020 eV. Experimental points with error bars are taken from
[6]. Lines 1 and 2 are calculated under assumptions (i) and
(ii), respectively [30].
lyze the observable consequences of the presence of
pions in primary cosmic rays of ultrahigh energies. Cal-
culations are carried out in the model of quark–gluon
strings (QGS) [31] and include the Landau–Pomeran-
chuk–Migdal effect [32] and interactions of neutral
pions of ultrahigh energies. As was shown in [28], neu-
tral pions are stable for energies above the threshold

(2)

where cγ and cπ° are the maximum possible velocities of
gamma rays and neutral pions, respectively. As in [30],
we analyze the assumptions that (i) E > 1019 eV and
cγ − cπ° = 10–22 and (ii) E > 1018 eV and cγ – cπ° = 10–20.
To propagate at cosmological distances, neutral pions
must obviously not interact with relic photons. The
reaction

(3)

whose threshold in the standard theory

(4)

where ωγ is the photon energy, differs from the thresh-
old for protons by 7%, can be kinematically forbidden
under the assumptions accepted in [28] if

(5)

where cω(782) is the maximum possible velocity of the
ω(782) meson and ω0 = 2.35 × 10–4 eV is the character-
istic thermal energy of photons. Similarly, under the
assumptions accepted in [28], charged pions can be sta-
ble for energies above the threshold (disregarding the
neutrino mass)

, (6)

where cπ and cµ are the maximum possible velocities of
pions and muons, respectively; Ep is measured in elec-
tron volts; and we take cµ = cν for simplicity. Charged
pions will be able to propagate at cosmological dis-
tances if the reaction

(7)

is kinematically forbidden. This is the case under the
condition

(8)

similar to condition (5).
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First, we note that the calculated parameters of pion-
induced GASs are consistent with the data of observa-
tions. Figure 1 shows cascade curves calculated for
pions under hypotheses (i) and (ii) and the data of
observations [6]. It is seen that the cascade curve for an
individual shower induced at a sufficiently high altitude
in the atmosphere agrees closely with the experimental
data for one event. The depths Xmax and X1 of the shower
maximum and the first interaction, respectively, are also
indicated in this figure. Figure 2 shows (lines 1 and 2) the
primary-pion energy dependence of the average depth
of the shower maximum and the data for the event
observed in [6]. As is seen, the parameters of the
shower induced by a primary pion are consistent with
the data of observations within the accuracy. The
dashed and dash–dotted lines in Fig. 2 are calculated
for primary protons and iron, respectively, in the QGS
model and standard variant. Since the data [6] agree
with the calculated depth of the shower maximum
induced by a primary proton within one standard devi-
ation, an important limit on the parameters violating
Lorentz invariance can be obtained. To exclude showers
induced by primary neutral pions from relatively close
sources, it is necessary to impose the limit (cγ – cπ°) <
10–22 [30]. To exclude showers induced by primary
charged pions, the new limit (cµ – cπ) < 4 × 10–26 is nec-
essary, because the shower energy is equal to E0 ≈ 3 ×
1020 eV. If sources are at cosmological distances, it is
necessary to impose additional limits (cω(782) – cπ°) <
2 × 10–23 and (cω(770) – cπ) < 10–23 for neutral and
charged pions, respectively.

Parameters that can distinguish between showers
induced by pions, protons, and nuclei are obviously of
interest. Since the mean free paths for a given energy
are different for different particles, it is reasonable to
compare the distributions of these mean free paths.
These distributions can be obtained as follows. First,
the distribution of the depth Xmax of shower maxima can
be obtained from both observations and calculations.
Figure 3 shows these distributions for (a) protons and
(b) pions under assumptions (1) (i) and (2) (ii). The dot-
ted histogram in Fig. 3a is the calculation for protons in
the standard variant of the model. If X1 is the depth at
which the first interaction occurs, we can determine the
quantity ∆X = Xmax – X1. This relation obviously
enables one to determine the depth X1 from the known
Xmax and ∆X as

(9)

As was mentioned above, the depth Xmax is determined
from observations for each shower. The quantity ∆X
can be taken from calculations. Figure 4 shows the cal-
culated distributions of ∆X for primary (a) protons and
(b) pions (notation is the same as in Fig. 3). As is seen,
the standard deviations are equal to 1–1.5 and 10 g/cm2

for pions and protons, respectively. Therefore, in the

X1 Xmax ∆X .–=
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Fig. 2. Energy dependence of the depth Xmax for (dashed
and dash–dotted lines for primary protons and iron, res-
pectively) standard variant and under the assumptions (1) (i)
and (2) (ii) for pions [30].

Fig. 3. Distributions of the depth Xmax for (a) protons and
(b) pions; the dotted histogram corresponds to the standard
variant for protons, and histograms 1 and 2 are for assump-
tions (i) and (ii), respectively [30].
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framework of the model under consideration, ∆X can be
taken a constant equal to, e.g., its average value .
Figure 5 shows calculated distributions of the depth X1

estimated by Eq. (9) and the e–x/λ distribution (a) for
primary protons in the standard variant and (b), (c) for
protons and pions under assumptions (i) and (ii). Since
the mean free paths of protons λp = 38 g/cm2 and pions
λπ = 40.4 g/cm2 for energy E0 ≈ 3 × 1020 eV are close to
each other, the distributions for pions and protons in
Figs. 5b and 5c virtually coincide with each other.
However, although this figure does not discriminate
between protons and pions, the proposed method can
be used to test the QGS model by estimating the inter-
action cross section for ultrahigh energies.

Finally, the distribution of the generation altitudes
of high-energy muons (E > 10 GeV) is particularly
interesting and distinguishes between different primary
particles. Figure 6 shows these distributions for the
standard model with primary (dotted line) iron and
(dashed line) protons and under assumptions (i) and
(ii) with (lines 1p and 2p, respectively) protons and
(lines 1π and 2π, respectively) pions. As is seen (the
calculation error is as small as 10 g/cm2), the peak in
the distribution for protons is located deeper in the
atmosphere than the peak for iron by about 60 g/cm2.
This circumstance makes it possible to distinguish

∆X

Fig. 4. Same as Fig. 3, but for the depth ∆X.
between the primary nuclei and protons and to treat
more reliably the decrease in the depth Xmax of proton-
induced showers as the manifestation of a violation of
Lorentz invariance [30]. In turn, the peak in the distri-
bution for protons is located higher in the atmosphere
than the peak for pions by about 90 g/cm2, which
enables pions to be identified in primary cosmic rays.
Methods for determining the distributions of the gener-
ation altitudes of high-energy muons become of special
importance [33].

In conclusion, we emphasize again that the assump-
tion of the presence of pions in primary cosmic rays is
consistent with the available experimental data. The
90-g/cm2 increase in the depth of the peak in the distri-
bution of the generation altitudes of high-energy muons
as compared to that in the standard variant for protons
is a characteristic marker of pions in primary cosmic
rays. At the same time, if the experimental data are
interpreted within the standard model the following
new limits on the parameters violating Lorentz invari-
ance can be obtained: (cγ – cπ°) < 10–22 and (cµ – cπ) <
4 × 10–26, as well as extra limits (cω(770) – cπ) < 10–23 and
(cω(778) – cπ°) < 2 × 10–23 for the case of remote sources.

Fig. 5. Distributions of the depth X1 for (thick histograms
and lines) protons and (thin histograms and lines) pions as
obtained with the (a) standard variant and under assump-
tions (b), (c) (i) and (ii) [30].
JETP LETTERS      Vol. 78      No. 3      2003
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The possibility of realizing an optical phase conjugation in an excited semiconductor medium is shown theo-
retically and experimentally. A phase conjugation is revealed for the photon energy equal to half the energy of
the radiative recombination of excitons in CuI films pumped by a nitrogen laser at room temperature. The
dependences of the phase-conjugation signal intensity on its spectral composition are investigated. The qua-
dratic interaction of light and exciton electromagnetic oscillations in the semiconductor medium is suggested
as an explanation of this effect. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Hw; 78.66.Jg
A wide-gap CuI semiconductor material has the
highest exciton binding energy (40 meV) for its class of
compounds [1], which allows exciton luminescence to
be observed at room temperature. Though different
crystalline modifications can occur in polycrystalline
CuI films (zinc blende, wurtzite, and hexagonal [2]), all
of them have almost the same band gap. An intense
exciton peak in the violet region with a maximum at
410 nm (its FWHM is ~10 nm) is almost always
observed in the photoluminescence (PL) spectra under
excitation by a nitrogen laser [3]. This makes CuI a
model material in studies of the physics of excitons and
a promising material for creating high-power semicon-
ductor laser sources in the violet spectral region. One of
the most important elements in a semiconductor laser is
the mirrors of the resonator. They determine its quality
factor, the lasing threshold, the laser-radiation directiv-
ity, and its spectral half-width.

The use of phase-conjugating mirrors (PCMs) in gas-
laser resonators was considered in several works [4–6].
An advantage of this type of mirrors is that the resona-
tor can be self-tuned and PCMs can correct distortions
caused by the amplifying medium or by the optical ele-
ments in the resonator. Since, in this case, the incident
wave is always reflected in the strictly opposite direc-
tion, it is unnecessary to observe a stringent parallelism
of the resonator mirrors. In these experiments [6] on
phase conjugation, the pump power was approximately
1.6 × 107 W/cm2 and the power of the reflected wave
was 2 × 10–3 of the signal-wave power (the mirror
reflectivity). In all of the aforementioned versions,
phase conjugation is achieved using a three-wave mix-
ing process in a nonlinear crystal or a gaseous medium.
Due to this fact, PCMs have a large volume, a low
reflectivity, and cannot be used in rather small semicon-
ductor lasers.
0021-3640/03/7803- $24.00 © 20106
In this work, an effect of electromagnetic-wave
phase conjugation on excitons in CuI films highly
excited by a UV laser was discovered and investigated.
In this case, only the process of two-wave mixing of
electromagnetic oscillations takes place, whose proba-
bility is rather high in noncentrosymmetric electrooptic
semiconductor materials with the wurtzite structure.

The expression for the polarization P of a semicon-
ductor medium exposed to electromagnetic oscillations
E1 and E2 with different frequencies Ω and ω can be
written in tensor form [7]:

(1)

where the terms on the right-hand side are summed
over all identical indices (j, k, l = 1, 2, 3) or over three
components of the total electric field; and χ1, χ2, and χ3

are the linear, quadratic, and cubic optical susceptibili-
ties of the medium, which, in the general case, are sec-
ond-, third-, and fourth-rank tensors, respectively. Let
us consider in more detail the term with the quadratic
susceptibility in Eq. (1). This term is characteristic of
crystals without a center of symmetry in the crystal lat-
tice and is responsible for the generation of the second
harmonic and an electrooptic effect in materials (the
latter has a significant magnitude in CuI with the hex-
agonal wurtzite lattice) [1]). To simplify our consider-
ation, we assume that the polarization vector P and both
the electric fields E1 and E2 are directed along the crys-
tal-growth axis coinciding with the spatial Z axis. The
light wave propagates along the X axis and has the form
E2 = {E20exp(–iωt + ikx) + exp(iωt + ikx)}. In this
case, the other electromagnetic oscillation in the semi-
conductor corresponds to the point of an exciton at rest
(K = 0) in the polariton dispersion curve and has the

Pi χ ij
1 E j χ ijk

2 E jEk χ ijkl
3 E jEkEl …,+ + +=

E20*
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form E1 = {E10exp(–iΩt) + exp(iΩt)}. The second
term in Eq. (1) then has the form

(2)

Let us examine in detail the first term on the right-hand
side of Eq. (2) and expand it assuming that the fre-
quency of the light wave is equal to half the exciton fre-
quency; i.e., ω = Ω/2:

(3)

where c.c. means the complex conjugate terms with
respect to the first two terms in Eq. (3). Expression (3)
for the semiconductor polarization yields two electro-
magnetic waves. The first wave does not conform to the
crystal dispersion curve, whereas the second one is the
phase-conjugated optical wave propagating in the
counter direction with respect to the incident wave E2
regardless of the angle of light incidence onto the semi-
conductor surface. Its intensity is proportional to the
incident-wave intensity, the exciton oscillation inten-
sity, and the quadratic nonlinear optical susceptibility
of the medium. If excitons are excited in CuI by UV
radiation of a pulsed nitrogen laser, whose absorption
depth is ~0.1–0.2 µm, it is easy to obtain the phase-con-
jugation conditions in a thin near-surface semiconduc-
tor layer.

In this work, we used CuI films deposited on quartz
substrates by a high-vacuum thermal evaporation tech-
nique. The film thickness was 1.5 µm. These CuI films
had a polycrystalline structure including the cubic,
wurtzite, and hexagonal phases. An exciton peak with a
maximum at 410 nm prevailed in their luminescence
spectrum at room temperature (see Fig. 2). The PL
spectra of films were investigated under excitation by
the pulsed radiation of an LGI-505 nitrogen laser with
a pulse duration of 10 ns, a peak power of 15 kW, and a
wavelength of 337.1 nm. Figure 1 shows a schematic of
the setup used in the experiments on optical phase con-
jugation in a CuI film. It is important to note here that
the light wave incident on the sample was produced by
a Narva-100 incandescent lamp powered by a dc cur-
rent source. The angle of incidence was > 45° in order
to prevent penetration of the geometrically reflected
light into the recording MDR-b monochromator. After
being transmitted through a high-luminosity MDR-12
monochromator, the light from the incandescent lamp
was continuous in time and had a spectral half-width
of <5 nm. The spectrum recording system was tuned to
the frequency of the exciting LGI-505 laser and con-
sisted of a Unipan-237 amplifier of alternating signals
that were fed to a computer. A CuI sample was kept at
room temperature and oriented so that electromagnetic
oscillations of laser and light waves had components
along the film-growth axis. The laser beam was focused
to the film surface into a spot with a diameter of
<100 µm, thus allowing us to achieve a pump-power

E10*

χ2
E1 E2+( ) E1 E2+( ) 2χ2E1E2 χ2E1

2 χ2E2
2.+ +=

2χ2
E1E2 2χ2 E10E20 –i3ωt ikx+( )exp{=

+ E10E20* iωt– ikx–( )exp c.c.+ } ,
JETP LETTERS      Vol. 78      No. 3      2003
density of ~108 W/cm2. The coincidence of the light
and laser spots on the sample was monitored using an
optical microscope. An ordinary glass plate was used as
a beamsplitter (Fig. 1). When the spectra of the phase-
conjugated signal and the film luminescence were
recorded, KS-15 and SZS-23 light filters were used,
respectively, for eliminating the second-order parasitic
signals of the MDR-b double monochromator in the
recorded spectra.

Figure 2 shows a PL spectrum (curve 1) of the CuI
films under study measured under the laser excitation
without additional illumination. The spectrum exhibits
an exciton line peaked at 410 nm and a peak at 680 nm
in the long-wavelength impurity region. This feature of
the spectrum can be associated with radiative recombi-
nation at complexes of intrinsic and impurity defects in
CuI [2, 3].

Fig. 1. Schematic of the setup used in experiments on opti-
cal phase conjugation on a cuprous iodide film: (1) Narva-
100 light source; (2) lenses; (3) MDR-12 monochromator;
(4) beamsplitter; (5) CuI sample; (6) LGI-505 laser;
(7) MDR-6 monochromator; (8) FEU-79 photomultiplier
tube; (9) spectrum-recording system; and (10) light filter.

Fig. 2. Photoluminescence spectrum of a CuI film on
quartz. The temperature of measurements is T = 300 K.



108 GRUZINTSEV
Let us now, simultaneously with pulsed excitation
by a nitrogen laser, illuminate the sample with a tempo-
rally continuous light flux from the blue–violet spectral
region with photon wavelengths varying between 370
and 470 nm (Fig. 3). Figure 3 shows that there is only a
film photoluminescence signal peaked at 410 nm in the
recorded signal in the blue–violet spectral region. Note
that a change in the spectral position of the continuous
illumination has no effect on the shape and intensity of
the spectral lines.

The pattern of the signal recorded in the red spectral
region with the energy of illuminating photons equal to
half the energy of the radiative recombination of exci-
ton in CuI (Figs. 4 and 5) is much more interesting. In
this case, a KS-15 infrared light filter, which cut off not
only the scattered 337.1-nm laser light but also the sig-
nal of exciton luminescence from the CuI film, was
installed in front of the recording MDR-6 monochro-
mator. This was done in order to cut off the probable
second order of the 410-nm luminescence line in the
monochromator. We see that, under illumination with
710-nm photons in the red spectral region (curve 1 in
Fig. 4), a dip with a minimum at 710 nm is observed
against the PL-signal background. The position of this
dip depends on the wavelength of the continuous illu-
mination (curves 2 and 3 in Fig. 4). However, as the
wavelength of the incident photon approaches the PL
band edge (curves 4 and 5), a narrow peak of the phase-
conjugated wave arises instead of the dip. The energy
position of this peak coincides with the energy of the
photons illuminating the sample. The method for signal
recording also shows that, in contrast to the incident
wave, this signal has a pulsed nature with the pulse rep-
etition rate of the exciting laser. The spectral half-width
of the phase-conjugated signal coincides with the half-
width of the incident light wave, and the intensity of the
phase-conjugated wave depends on its spectral posi-

Fig. 3. Spectra of the luminescence and phase-conjugation
signal for a CuI film on quartz in the blue–violet spectral
region for various wavelengths of illuminating photons. The
temperature of measurements is T = 300 K.
tion. The maximum intensity of the phase-conjugated
signal is observed at a 810-nm wavelength of the inci-
dent light (curve 1 in Fig. 5). This narrow peak virtually
vanishes for wavelengths exceeding 870 nm (curves 5
and 6).

Figures 4 and 5 show that the intensity of the phase-
conjugated signal reaches a maximum at wavelengths
of incident photons of 810–830 nm, which almost coin-
cides with the double wavelength of the PL exciton
peak (Fig. 2). Note that, according to the theoretical
calculations presented above, the phase-conjugation
effect can appear for media with a quadratic optical
nonlinearity for the energy of incident photons equal to
half the energy of exciton oscillations (see Eq. (3)). In
this case, the intensity of the phase-conjugated wave is
proportional to the intensity of the incident light and the

Fig. 4. Spectra of the luminescence and phase-conjugation
signal for a CuI film on quartz in the red spectral region for
various wavelengths of illuminating photons. The tempera-
ture of measurements is T = 300 K.

Fig. 5. Spectra of the luminescence and phase-conjugation
signal for a CuI film on quartz in the red spectral region for
various energies of illuminating photons. The temperature
of measurements is T = 300 K.
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intensity of the exciton wave. Since the radiative-
recombination time of excitons in CuI films at room
temperature is ~1 ps, exciton oscillations exist only at
the moment of the action of a laser pump pulse on the
sample. Consequently, the phase conjugation has a
pulsed character, which is confirmed by the alternating
signal recorded at the laser-pulse repetition rate in our
experiments. Because the peak intensity of the phase-
conjugated signal exhibits a clearly pronounced spec-
tral dependence (curve 2 in Fig. 2), the process
observed in our study cannot be the scattering of the
continuous light by polycrystalline grains of the CuI
film, whereas the signal of purely geometrical light
reflection from the sample surface did not fall within
the aperture of the recording system.

The dips in the curve of the red PL band (curves 1–3
in Fig. 4) for the wavelengths of the continuous illumi-
nation in the range 710–750 nm, which lie within this
band, have an interesting nature. In this case, a process
of stimulated luminescence takes place, and the greater
part of the energy of the excited states of complexes of
impurity and intrinsic defects is not radiated isotropi-
cally into a solid angle of 4π but propagates along the
illumination direction, avoiding our recording system.

Hence, a phase-conjugation process for an optical
wave, which is incident on the surface of a CuI film
highly excited by a nitrogen laser, has been theoreti-
cally predicted (see Eq. (3)) and experimentally inves-
tigated. It is shown that phase conjugation occurs at
energies of the incident photons equal to half the energy
of exciton radiative recombination. Thus, it can be
asserted in this case that phase conjugation occurs on
the exciton states of the semiconductor film. If we take
into account that laser radiation in the case of band-to-
band excitation is absorbed in the surface layer of a sub-
micron thickness (0.1 µm), it is easy to obtain a high
exciton density in the semiconductor pumped by a
pulsed nitrogen laser. In this case, it is precisely thin
CuI films (which contain the hexagonal phase and
JETP LETTERS      Vol. 78      No. 3      2003
exhibit high luminescent properties) that can be used
for optical phase conjugation.

The mechanism of phase conjugation in the semi-
conductor medium that we observed substantially dif-
fers from the process of four-wave mixing on counter-
propagating beams in an optically nonlinear medium,
in which the phase conjugation of the signal wave can
also occur, but the medium must be transparent for all
light beams and possess a cubic optical nonlinearity.
Since the value of the cubic optical nonlinearity is
small, the optical phase-conjugation efficiency is low
and a large volume of the nonlinear medium is neces-
sary. In our case, the semiconductor is nontransparent
for the pump wave and thin layers can be used. In order
to completely restore the phase in the phase-conjugated
wave, the phase-conjugating mirrors must be optically
thin, i.e., on the order of the light wavelength. This can
be accomplished only in our case.

The author is grateful to A.L. Despotuli for CuI
films put at our disposal.

This work was supported by INTAS, grant
no. 2002-0796.
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We investigate the double K-shell ionization of heliumlike ions by a single photon. A fast convergence of QED
perturbation theory with respect to the parameter 1/Z is demonstrated in the entire nonrelativistic domain for
moderate nuclear charge numbers Z ≥ 2. The ratio of double-to-single photoionization cross sections is calcu-
lated for light heliumlike ions, taking into account the leading orders of 1/Z and αZ expansions. A comparison
of our results with the available experimental data for a number of neutral atoms is presented. © 2003 MAIK
“Nauka/Interperiodica”.
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In studies of electron correlations in atoms, the most
attractive processes are those in which the electron–
electron interaction plays the crucial role. One of such
a fundamental phenomenon is the double photoioniza-
tion of an atom caused by the absorption of a single
photon, the so-called double photoeffect, which has
been investigated for more than 30 years [1–3]. Since a
photon interacts only with one electron, the simulta-
neous ejection of two electrons is exclusively caused by
the electron–electron interaction. Accordingly, electron
correlations show up here most clearly. So far, the
experiments have been mainly performed with helium,
the simplest many-electron atomic system. The major-
ity of investigations concern the energy dependence of
the ratio R of double-to-single photoionization cross
sections [4–6]. With increasing photon energy ω, the
ratio R grows rapidly beyond the ionization threshold.
Then, after having a maximum near the threshold, it
declines slowly, approaching the constant limit of
1.72(12)% [7] in the asymptotic domain of nonrelativ-
istic photon energies much larger than the threshold
energy I2K for double ionization from the K-shell, that
is, I2K ! ω ! m, where m is the electron mass (" = c = 1).
One of the most frequent problems in theoretical
descriptions of double photoionization is the gauge
dependence of numerical results.

Thanks to recent developments of novel synchrotron
radiation sources, experiments with intense collimated
beams of tunable monochromatic x-rays in the keV
regime have become feasible [7–9]. This represents a
challenge to theoretical investigations of double ioniza-
tion of atomic inner-shell electrons in the entire nonrel-
ativistic domain, both for photon energies ω ! m and
for targets with moderate values of nuclear charge num-
bers Z. In [10, 11], a Z-scaling law was suggested for
the ratio R of double-to-single photoionization cross

¶This article was submitted by the authors in English.
0021-3640/03/7803- $24.00 © 20110
sections in the asymptotic energy regime, I2K ! ω ! m.
For the energy domain near the threshold, ω . I2K,
ab initio calculations are presently not available. Nev-
ertheless, one can mention here a model estimate of the
two-electron photoejection cross section σ++ obtained
in [12], which, however, strongly disagrees with the
existing experimental data. Another numerical calcula-
tion of Z4σ++ has been performed within the framework
of the convergent close-coupling model for He, Li+, and
O6+ [13].

In this letter, we have investigated the double photo-
ionization of the ground state of heliumlike ions. The
perturbation theory is developed with respect to the
electron–electron interaction. As a zero approximation,
Coulomb wave functions and Coulomb Green’s func-
tions are utilized. The study is performed for photon
energies much smaller than the electron rest energy.
Accordingly, all electrons involved in the ionization
process are considered as being nonrelativistic. This
implies the smallness of the Coulomb parameter, that
is, αZ ! 1. However, the nuclear charge number Z is
supposed to be high enough to utilize 1/Z as an expan-
sion parameter. A similar approach has already been
used in the asymptotic part of the nonrelativistic
domain, I2K ! ω ! m, where all formulas can be signif-
icantly simplified [10]. In contrast to [10], we consider
the entire nonrelativistic domain of incident photon
energies with special emphasis on the threshold region.
We have analyzed the limits of applicability of the
approximations employed. Since K-shell electrons are
essentially separated from the other electrons in an
atom, it turns out that our formulas also describe fairly
well the double K-shell ionization in the case of light
neutral atoms.

In the leading order of nonrelativistic perturbation
theory, double photoionization is described by the
gauge-invariant set of Feynman diagrams shown in
003 MAIK “Nauka/Interperiodica”
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Fig. 1. To ensure gauge invariance, the energy conser-
vation law is defined to zeroth order as follows [14]:

(1)

Here,  and  are the one-electron energies in the

continuum final state, I2K = 2I with I = η2/2m being the
Coulomb potential for single ionization, and η = mαZ
is the average momentum of a K-shell electron. Since
the photon energy ω is distributed between two elec-
trons, an escaping electron can have any energy within
the range between 0 and ω – I2K.

The domain of photon energies near the threshold of
double photoionization corresponds to the dipole
regime characterized by ω ! η. Under the latter condi-
tion, the photon momentum k can be neglected, while
the recoil momentum q transferred to the nucleus and
the momenta p1 and p2 of both outgoing electrons are of
the order of a characteristic atomic momentum, q ~ p1 ~
p2 ~ η. Correspondingly, the process occurs at atomic
distances of the order of the K-shell radius. This implies
that the interaction with the Coulomb field of the
nucleus has to be included in the initial, intermediate,
and final electron states; that is, Coulomb wave and
Coulomb Green’s functions should be used already in
the zeroth approximation [15–17]. In addition, the elec-
tron–electron interaction has to be taken into account in
both initial and final states. All Feynman graphs
depicted in Fig. 1 are expected to give comparable con-
tributions to the total cross section for double photoion-
ization.

Except for the parameter αZ, there are further Cou-
lomb parameters involved in the problem, which char-
acterize the interaction of intermediate and both outgo-
ing electrons with the Coulomb field of the nucleus.
They are given by ξ = η/p, where p being the momen-
tum of the virtual electron, ξ1 = η/p1, and ξ2 = η/p2. For-
mally, these ξ parameters are values of the order of 1.
Accordingly, dependences upon them in Coulomb
Green’s and wave functions have been taken into
account exactly, but including terms of the order of αZ
only. Terms of the order of (αZ)2 have been omitted in
the present consideration. In the vicinity of the thresh-
old, it can happen that the momenta of the ejected elec-
trons, p1 and/or p2, become extremely small or, equiva-
lently, ξ1 and/or ξ2 can reach rather large values com-
pared to 1. This situation corresponds to the infrared
catastrophe or to the quasiclassical limit, known also as
the Wannier regime [18].

In the following, it is convenient to introduce dimen-
sionless quantities, such as energies and momenta. We
shall express all momenta in units of η = mαZ. For
example, the dimensionless momentum of a photon is
just k = k/η. The energies are calibrated in units of I =
η2/2m. Then, the dimensionless energy of the incoming
photon is given by εγ = ω/I, while εi = /I (i = 1, 2)
represent the dimensionless energies of the ejected

Ep1
Ep2

+ ω I2K .–=

Ep1
Ep2

Epi
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electrons. The energy conservation law is ε1 + ε2 =
εγ − 2. The double-photoionization threshold corre-

sponds to the photon energy  = 2. The amplitudes of
the process being expressed in terms of dimensionless
quantities become dependent on the nuclear charge
number Z via the photon momentum k = αZεγ/2.

The total cross section of the double photoionization
can be written in the following form:

(2)

where σ0 = απ  and a0 = 1/mα is the Bohr radius. Due
to a complicated dependence on the variables εγ and k,
the function Q(εγ; k) can be obtained only by numerical
integration. The dipole regime corresponds to the
approximation k = 0. The smallness of the photon
momentum is due to the mutual interplay between two
input quantities, εγ and Z. If one sets k = 0, the function
Q(εγ) becomes independent of the value of Z. The func-
tion holds the same for the entire helium isoelectronic
sequence. Accordingly, the ratio of double-to-single
ionization cross sections, which is usually measured
experimentally, is given by

(3)

The energy factor H(εγ), which enters in the expression
for the cross section of the single K-shell photoioniza-
tion in the leading order of perturbation theory, reads as
follows [19]:

(4)

where τ = 1/ .

εγ
th

σ++ εγ; k( ) σ0
210π
3Z4
----------Q εγ; k( ),=
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R εγ( )
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Fig. 1. Feynman diagrams for the double ionization of the
atomic K shell by a single photon. Solid lines denote elec-
trons in the Coulomb field of the nucleus, the dashed line
denotes the electron–electron Coulomb interaction, and the
wavy line denotes an incident photon. The line with a heavy
dot corresponds to the Coulomb Green’s function. For this
line, only the energy is conserved, while the momentum is
violated due to the interaction with a nucleus. Diagram (a)
takes into account the electron–electron interaction in the
initial state, while diagram (b) accounts for it in the final
state. In addition to these graphs, one also has to take into
account the corresponding exchange diagrams.

k k
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All our numerical calculations were performed
using the Coulomb gauge, since it easily allows one to
separate the leading contributions in the nonrelativistic
limit. Corrections due to spin-dependent terms turn out
to be suppressed by a factor of the order of (αZ)2 in
transition amplitudes of the process and, therefore,
have been neglected. We compared the universal quan-

Fig. 2. Different contributions to the universal ratio Z2R(εγ)
of double-to-single photoionization cross sections calcu-
lated in the Coulomb gauge for k = 0 according to Eq. (3).
Dashed line: contribution due to the electron–electron inter-
action in the initial state only; solid line: total contribution
of all diagrams.

Fig. 3. The ratio of double-to-single photoionization cross
sections of the ground state of helium is given as a function
of the excess energy E =  + . Experimental data

taken from Levin et al. [4], Dörner et al. [5], and Samson
et al. [6] account also for the contribution from the cross
section σ+* of single photoionization with excitation,
while the theoretical calculation is performed according to
Eq. (3).

Ep1
Ep2
tity Z4σ++ calculated in the dipole approximation
according to Eq. (2) with that obtained in [13]. The
curves lie quite close to each other, although they are
not identical. The contributions to σ++ due to two-pho-
ton exchange graphs are relatively small. In Fig. 2, the
universal ratio Z2R(εγ) is shown, which is valid for mod-
erate Z values. Accounting for the electron–electron
interaction to the final state results in significant correc-
tions to the total cross section of the double photoion-
ization. Note, however, that the individual contributions
of each diagram are gauge-dependent.

In Fig. 3, we compare our numerical results for the
ratio σ++/σ+ with the most recent measurements for
helium [4–6]. The comparison of theoretical and exper-
imental data is given in dependence on the excess

energy, since the experimental threshold energy  =
79.0 eV and the theoretical one I2K = 108.85 eV are dif-
ferent. However, this is an apparent problem. In fact,
the expansion with respect to 1/Z converges by an order
of magnitude in the entire nonrelativistic domain, start-
ing from helium. The contribution to the ionization
potential due to the electron–electron interaction
treated by the exact one-photon exchange leads to the

correction  = –34.02 eV; that is, the threshold
energy becomes equal to 74.83 eV. The correction due
to two-photon exchange diagrams, which is known to

be  = 4.29 eV [20], yields a threshold energy of
about 79.12 eV. The contribution, which results from
the three-photon exchange, has been calculated in the lad-

der approximation [21]. It yields  = –0.12 eV [22]
and brings the theoretical threshold energy into agree-
ment with the experimental value. Independent mea-
surements of the ratio of double-to-single photoioniza-
tion cross sections performed by Dörner et al. [5] and
by Samson et al. [6] seem to be more reliable than the
experimental data by Levin et al. [4] (see discussion
in [6]). The disagreement between our results and those
obtained in [5, 6] is due to next-to-leading order terms
of perturbation theory in 1/Z, which have been omitted
in the present evaluation of single photoionization cross
section.

The fast convergence of the expansion over 1/Z in
the entire nonrelativistic domain, including the thresh-
old area, can be understood by a careful distinction
between formal and real characteristic scales. The char-
acteristic spatial distances involved in the problem turn
out to be somewhat larger than the K-shell radius. This
is confirmed, for example, by calculations of the dou-
ble-electron ionization in Compton scattering, where
perturbation theory with respect to 1/Z is proven to be
satisfactory for helium in the asymptotic domain of
nonrelativistic photon energies [23, 24]. The distinction
between formal and real scales also explains the fact
that, for heliumlike ions with Z > 2, the double photo-
ionization from the excited 21S state turns out to be

I2K
exp

∆I2K
1( )

∆I2K
2( )

∆I2K
3( )
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For various neutral atoms, the nuclear charge numbers Z, the experimental energies ω of an incident photon, the experimental
potentials Iexp for single K-shell ionization, dimensionless photon energies εγ, effective values Zeff for the nuclear charge, and
the theoretical and experimental ratios R(εγ) of double-to-single K-shell ionization cross sections are tabulated. The photon
energies ω are calibrated in units of the experimental ionization potentials Iexp taken from [26]. The theoretical ratios R(εγ)
are calculated using the effective values Zeff according to Eq. (3)

Neutral 
atom Z ω

(keV)
Iexp

(keV) εγ Zeff

R(εγ)

this work experiment

Ne 10 3 0.87 3.45 8.0 0.29 × 10–2 0.3 × 10–2 [27]

Ti 22 17.4 4.97 3.50 19.11 0.51 × 10–3 0.53 × 10–3 [28]

Cr 24 17.4 5.99 2.90 20.98 0.37 × 10–3 0.38 × 10–3 [28]

Fe 26 17.4 7.12 2.44 22.88 0.23 × 10–3 0.24 × 10–3 [28]

Ni 28 17.4 8.34 2.09 24.76 0.51 × 10–4 1.1 × 10–4 [28]

Cu 29 20 8.99 2.22 25.70 1.1 × 10–4 1.3(3) × 10–4 [9]

Mo 42 50 20.01 2.50 38.35 0.87 × 10–4 3.4(6) × 10–4 [8]
more probable than from the K shell [11, 25]. It should
be noted that, in the next-to-leading order of perturba-
tion theory in 1/Z, there are vertex contributions due to
the crossed diagrams, which entangle correlation
effects in the initial and final electron states.

Considering double K-shell photoionization in neu-
tral atoms, the wave functions and Green’s functions
possess an essentially non-Coulomb behavior. Accord-
ingly, numerical calculations require the use of the Har-
tree–Fock method already in the zeroth approximation.
Formally, the screening effect can be simulated by
replacing the true nuclear charge number Z in Eq. (3)
with an effective value Zeff. The latter can be defined by
equating the experimental potential Iexp for single K-
shell ionization and the effective one, that is, Iexp =
m(αZeff)2/2. Apart from the nickel and molybdenum
systems, good overall agreement between our predic-
tions for neutral atoms with available experimental data
is achieved (see the table). The significant disagreement
for the nickel atom seems to be due to high uncertain-
ties of the results, both theoretical and experimental.
The ratio R(εγ) here is extremely sensitive to the photon
energy, because the latter is very close to the threshold
energy. In the case of molybdenum, a possible explana-
tion for the deviation may be connected with relativistic
effects, for example, with the spin–orbit interaction,
which were neglected in the present consideration.
Another reason might be higher error bars rather than
those quoted in [8].

In conclusion, we demonstrate a fast convergence of
QED perturbation theory with respect to the parameter
1/Z in the entire nonrelativistic domain for Z ≥ 2. Dou-
ble K-shell photoionization has been investigated for
heliumlike ions and neutral atoms with moderate Z val-
ues, taking into account the leading orders of 1/Z and
αZ expansions. Going beyond the leading-order con-
sideration requires rigorous QED description.
JETP LETTERS      Vol. 78      No. 3      2003
We thank E.P. Kanter and R.W. Dunford for provid-
ing experimental data to us prior to publication. A.M. is
grateful to the Dresden University of Technology for
the hospitality and for financial support from DFG.
G.S. and G.P. acknowledge financial support from
BMBF, DFG, and GSI. A.N. is supported by the
Alexander von Humboldt Foundation. A.M. and I.M.
acknowledge support from the Russian Foundation
for Basic Research (grant nos. 01-02-17246 and
00-15-96610).

REFERENCES

1. M. Y. Amusia, in Atomic Photoeffect, Ed. by K. T. Taylor
(Plenum, New York, 1990).

2. J. H. McGuire, N. Berrah, R. J. Bartlett, et al., J. Phys. B
28, 913 (1995).

3. J. S. Briggs and V. Schmidt, J. Phys. B 33, R1 (2000).
4. J. C. Levin, G. B. Armen, and I. A. Sellin, Phys. Rev.

Lett. 76, 1220 (1996).
5. R. Dörner, T. Vogt, V. Mergel, et al., Phys. Rev. Lett. 76,

2654 (1996).
6. J. A. R. Samson, W. C. Stolte, Z.-X. He, et al., Phys. Rev.

A 57, 1906 (1998).
7. L. Spielberger, O. Jagutzki, R. Dörner, et al., Phys. Rev.

Lett. 74, 4615 (1995).
8. E. P. Kanter, R. W. Dunford, B. Krässig, et al., Phys. Rev.

Lett. 83, 508 (1999).
9. R. Diamant, S. Huotari, K. Hämäläinen, et al., Phys.

Rev. A 62, 052519 (2000).
10. M. Y. Amusia, E. G. Drukarev, V. G. Gorshkov, et al., J.

Phys. B 8, 1248 (1975).
11. R. C. Forrey, H. R. Sadeghpour, J. D. Baker, et al., Phys.

Rev. A 51, 2112 (1995).
12. M. A. Kornberg and J. E. Miraglia, Phys. Rev. A 49,

5120 (1994).
13. A. S. Kheifets and I. Bray, Phys. Rev. A 58, 4501 (1998).



114 MIKHAILOV et al.
14. A. Y. Istomin, N. L. Manakov, and A. F. Starace, J. Phys.
B 35, L543 (2002).

15. V. G. Gorshkov, A. I. Mikhailov, and V. S. Polikanov,
Nucl. Phys. 55, 273 (1964).

16. V. G. Gorshkov, Zh. Éksp. Teor. Fiz. 47, 352 (1964)
[Sov. Phys. JETP 20, 234 (1965)].

17. V. G. Gorshkov and V. S. Polikanov, Pis’ma Zh. Éksp.
Teor. Fiz. 9, 464 (1969) [JETP Lett. 9, 279 (1969)].

18. G. H. Wannier, Phys. Rev. 90, 817 (1953).

19. A. I. Akhiezer and V. B. Berestetskiœ, Quantum Electro-
dynamics, 3rd ed. (Nauka, Moscow, 1969; Wiley, New
York, 1974).

20. I. Lindgren, H. Persson, S. Salomonson, et al., Phys.
Rev. A 51, 1167 (1995). 
21. O. Y. Andreev, L. N. Labzowsky, G. Plunien, et al., Phys.
Rev. A 67, 012503 (2003).

22. O. Y. Andreev, private communication.
23. M. Y. Amusia and A. I. Mikhailov, J. Phys. B 28, 1723

(1995).
24. T. Suri , K. Pisk, and R. H. Pratt, Phys. Lett. A 211, 289

(1996).
25. M. Y. Amusia, A. I. Mikhailov, and I. A. Mikhailov,

J. Phys. B 32, 4885 (1999).
26. A. A. Radtsig and B. M. Smirnov, Reference Data on

Atoms, Molecules, and Ions (Atomizdat, Moscow, 1980;
Springer, Berlin, 1985).

27. E. P. Kanter, private communication.
28. J. Ahopelto, E. Rantavuori, and O. Keski-Rahkonen,

Phys. Scr. 20, 71 (1979).

c′
JETP LETTERS      Vol. 78      No. 3      2003



  

JETP Letters, Vol. 78, No. 3, 2003, pp. 115–118. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 78, No. 3, 2003, pp. 146–149.
Original Russian Text Copyright © 2003 by Fukuda, Yamakawa, Akahane, Aoyama, Inoue, Ueda, Abdallah, Jr., Csanak, Faenov, Magunov, Pikuz, Skobelev, Boldarev, Gasilov.

                                                                                             
X-ray Study of Microdroplet Plasma Formation 
under the Action of Superintense Laser Radiation

Y. Fukuda1, K. Yamakawa1, Y. Akahane1, M. Aoyama1, N. Inoue1, H. Ueda1, 
J. Abdallah, Jr.2, G. Csanak2, A. Ya. Faenov3, *, A. I. Magunov3, *, T. A. Pikuz3, 

I. Yu. Skobelev3, A. S. Boldarev4, and V. A. Gasilov4

1Advanced Photon Research Center, Japan Atomic Energy Research Institute, 619-0215 Kyoto, Japan
2Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

3Center for Data on Multicharged Ion Spectra, All-Russia Research Institute of Physicotechnical and Radioelectronic 
Measurements, Mendeleevo, Moscow region, 141570 Russia

4Institute of Mathematical Modeling, Russian Academy of Sciences, Moscow, 125047 Russia
*e-mail: misdc@vniiftri.ru

Received June 10, 2003

We have measured the X-ray emission spectra of a plasma generated by laser radiation with an intensity above
1019 W/cm2 and a pulse duration of 30 fs acting upon an argon jet target with a large abundance of micron-sized
clusters. The time variation of the X-ray yield from ions of various multiplicities, calculated within the frame-
work of a nonstationary kinetic model, shows a good qualitative agreement with the experimental time-inte-
grated spectrum. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.38.Ph; 52.25.Os; 52.25.Dg; 52.50.Jm
1. In recent years, there has been rapid progress in
the spectroscopy of X-ray emission from microplasma
sources formed as a result of the interaction of
ultrashort multiterawatt laser pulses with cluster tar-
gets. One of the goals consists in elucidation of the
mechanisms of interaction between radiation and mat-
ter under such extreme conditions, which would pro-
vide for the creation and development of high-intensity
coherent and incoherent X-ray sources for various
applications. Experiments using high-intensity laser
radiation (1017–1018 W/cm2) were performed mostly
with small clusters 10–100 nm in diameter [1–7]. The
spectra of X-rays generated by plasma formed in the
case of large (~1 µm) clusters were studied previously
using femtosecond laser pulses of lower intensity [8].
Hard X-ray and hot electron production by microdrop-
lets of water under the action of femtosecond laser
pulses was studied in [9]. The results of these investiga-
tions showed that irradiation of a gas jet target enriched
with clusters of a medium size (100–200 nm) leads to
soft X-ray emission with a considerable yield.

The aim of this work was to study the high-resolu-
tion X-ray emission spectra of plasma formed from
large argon clusters (containing over 1010 atoms) under
the action of superintense laser radiation.

2. The experiments with argon clusters were per-
formed at JAERI (Kyoto, Japan) using a 100-TW
Ti:sapphire laser system based on the chirped pulse
amplification technique. The system generates 20-fs
pulses at a repetition rate of 10 Hz and is capable of col-
0021-3640/03/7803- $24.00 © 20115
limating output radiation with intensities after focusing
up to 1020 W/cm2 [10, 11]. The initial pulses (λlas =
800 nm; τlas = 10 fs; repetition rate, 82.7 MHz) were
generated by a Ti:sapphire oscillator. Stretched to 10 ns
and frequency modulated, the pulses were amplified by
a regenerative amplifier and two multipass amplifiers.
The amplified pulses were compressed to 20 fs by a
vacuum compressor providing a maximum output
energy of 1.9 J. The compressed pulses were directed to
a vacuum target chamber by two gold-coated plane mir-
rors and focused by an f/3 gold-coated off-axis para-
bolic mirror. The focal spot size was 11 µm at 1/e2,
which was only 10% greater than the diffraction limit.
A Gaussian spot accounts for 64% of the total laser out-
put energy. For a laser pulse duration of 30 fs and an
energy of 300 mJ used in our experiments, the peak
intensity amounted to 1.2 × 1019 W/cm2. A prepulse
arriving 1 ns before the main pulse was suppressed by
passing the output signal through two double Pockels
cells. The contrast ratio of the main pulse intensity to
that of the prepulse was greater than 105.

3. Argon clusters were produced by expanding a
high-pressure (up to p = 60 bar) gas jet into vacuum via
a specially designed pulsed supersonic conical nozzle
with the input and output diameters of 0.5 and 2.0 mm,
respectively, and a length of 75 mm. The nozzle shape
and dimensions were optimized by numerical simula-
tion of a two-phase jet with a maximum yield of clus-
ters of required size (dcl ~ 1 µm) [12, 13].
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Figure 1 presents some results of two-dimensional
hydrodynamic calculations of a two-phase argon jet for
various input pressures. At a maximum pressure of
60 bar, the average cluster size exhibits a sharp
increases (reaching about 1.5 µm) and is virtually con-
stant in the jet cross section. The total concentrations of
clusters and atomic species also remain almost constant
in the axial region with a radius of 1.5 mm. This homo-
geneity is important for a cluster target to be used for
obtaining an active radiating plasma medium.

4. In the experiment, the laser beam was focused on
a jet at a distance of 1.5 mm from the nozzle output.

Fig. 1. Calculated radial profiles of the parameters of a two-
phase argon jet target at a distance of 1.5 mm from the noz-
zle output: (a) total cluster concentration ncl; (b) concentra-
tion of atomic species nat; (c) average cluster radius Rcl〉;
(d) average distance between clusters 〈Scl〉 . The input gas
pressure p = 60 bar (solid curves), 40 bar (dashed curves),
and 20 bar (dotted curves).

Fig. 2. The experimentally measured time-integrated X-ray
emission spectra of a microdroplet plasma generated by
30-fs laser pulses of various intensities and contrasts: I =
1.2 × 1019 W/cm2, C = 2.2 × 105 (top curve); I = 3 ×
1018 W/cm2, C = 2 × 103 (middle curve); I = 3 ×
1018 W/cm2, C = 50 (bottom curve).

〈R
cl
〉 (

µ)

〈S
cl
〉 (

µ)

n c
l (

10
10

 c
m

–3
)

n a
t (

10
19

 c
m

–3
)

Spatially resolved X-ray spectra of the laser-generated
plasma were measured using a focusing spectrometer
with spatial resolution (FSSR-1D) [14–17]. The spec-
trometer is equipped with a spherically bent mica crys-
tal (R = 150 mm) and a vacuum-compatible X-ray CCD
camera (DF420-BN, ANDOR). The crystal was placed
at a distance of 381.2 mm from the plasma source and
oriented at the Bragg angle (θ = 54.3°) relative to the
center of a spherical surface (the fourth-order reflection
for a wavelength of λ = 0.405 nm). The reflection plane
of the spectrometer was oriented in the laser beam
propagation direction in order to provide for the one-
dimensional spatial resolution in the transverse direc-
tion. The size of the active plasma zone (emitting in the
spectral region of the He-like argon ion and the corre-
sponding dielectronic satellites) in this direction was
below 200 µm.

Figure 2 shows the typical densitometer traces of the
plasma X-ray emission spectra measured at an input
gas pressure of p = 60 bar and various values of the
intensity and contrast of a 30-fs laser pulse. The upper
spectrum corresponds to the maximum intensity of the
laser pulse (1.2 × 1019 W/cm2). In order to reduce the
prepulse effect on the clusters, the contrast of the main
pulse was set at a level of C = 2.2 × 105. In the fourth
order of reflection, the spectrum exhibits the resonant
(Heα1) and intercombination (Heα2) lines of the 1s2p–
1s2 transition in the He-like argon ion. In addition, there
is a clearly resolved structure of dielectric satellites in
the Li-like ion and the lines of radiative transitions from
autoionization states with the configurations 1s2sm2pn

in ions of lower charge (from Be- to F-like). The fifth
order of reflection displays the lines of 1snp–1s2 (n =
3−6) transitions in the He-like ion and the dielectric sat-
ellites of the 1s3p–1s2 (Heβ) line. The n = 4 line (Heγ)
falls between satellite lines of the Li-like ion. The mid-
dle curve in Fig. 2 shows the spectrum measured for the
main peak intensity of 3 × 1018 W/cm2 and a contrast of
C = 2 × 103. Here, the X-ray yield decreases almost in
proportion to the laser pulse intensity despite a signifi-
cantly reduced contrast. Further decrease in the contrast
(down to C = 50) leads to a dramatic change in the spec-
trum (see the bottom curve in Fig. 2), whereby the
X-ray yield in the lines of the He-like ion drops sharply
relative to the satellite emission intensity. This can be
explained by the dominating role of the prepulse, the
intensity of which at this contrast reaches about
1017 W/cm2. This power density is sufficient to ionize
even large clusters, which decay before the arrival of
the main pulse.

It should be noted that neither the lines of the
He-like ions nor their closest satellites were observed at
an input gas pressure of 40 bar. According to the results
of calculations presented in Fig. 1, the average size of
clusters formed under these conditions is almost ten
times smaller than that for p = 60 bar. Thus, at an input
gas pressure of p = 40 bar, the prepulse destroys clusters
at all values of the contrast used in these experiments.
JETP LETTERS      Vol. 78      No. 3      2003
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5. The experimental X-ray emission spectra are
time-integrated and spatially integrated in the Bragg
reflection plane. In order to elucidate the plasma radia-
tion dynamics in more detail, we have performed model
calculations of the line emission spectrum with allow-
ance for the time relaxation of the nonequilibrium elec-
tron energy distribution established in the plasma
immediately after the main femtosecond laser pulse.
For the sake of simplicity, the consideration was
restricted to a homogeneous nonstationary kinetic
model of a microdroplet plasma with frozen ions. The
model is described by the equation

(1)

where the collision integral on the right-hand side
accounts for the elastic collisions between electrons
and for the inelastic electron–ion collisions. The
assumption of spatial homogeneity is justified by a
comparison of the radiative lifetimes of the autoioniza-
tion states observed for argon ions (10–1–10–2 ps) to the
characteristic time of cluster destruction (size dou-
bling) estimated by the formula

(2)

where A is the atomic number, Ti is the effective ion
temperature (expressed in kiloelectronvolts), and D0 is
the initial cluster diameter (expressed in microns). The
ion temperature can be estimated from the observed
Doppler width of the resonance line of the He-like
argon ion, which yields Ti = 6.7 keV. Then, for 1-µm
argon clusters (A = 18), formula (2) gives τdec ≈ 2 ps,
which is much greater than the radiative lifetime of the
autoionization states in the satellite lines.

Equation (1) was numerically solved in the interval
of electron energies from 0 to 10 keV with a uniform
step of 100 eV. At the initial moment corresponding to
the laser pulse end, all argon atoms were considered as
ionized up to the state of Ne-like ions. The threshold
laser intensity for the tunneling ionization of the
Na-like argon atom (Ith = 3.6 × 1016 W/cm2 [18]) can be

∂f E t,( )
∂t

------------------- St f ,=

τdec 1.2 10 12– D0 A/Ti× ,=

Fig. 3. Time variation of the X-ray yield calculated for dif-
ferently charged argon ions.
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achieved even with allowance of the field weakening
inside a microdroplet. The ion density was taken equal
to 1021 cm–3 and the residual electron energy was dis-
tributed with a narrow interval at 5 keV. At each time
step (in interval from 0 to 2 ps), the populations of more
than 3000 levels of ions (from Ne- to He-like) were cal-
culated by solving a set of balance equations. The col-
lision rates were calculated using the corresponding
electron energy distribution function. The populations
of levels were used to calculate the spectral dependence
of the X-ray yield in the energy range studied.

The time dependence of the total radiation yield
from different ions obtained in these calculations are
shown in Fig. 3. It is seen that the emission from lower
charged ions reaches the saturation level earlier. This is
explained by a rapid shift of the ion composition
towards higher charge numbers as a result of ionization
by hot electrons. The radiation yield of the He-like ion
is still increasing after t > 1 ps, because electrons are
thermalized at the mean energy below 1 keV and the
ion composition goes to the stationary state. Of course,
this yield growth will be limited by the decay of
clusters.

Figure 4 presents the time-integrated spectra calcu-
lated for the time moments 0.6 and 1.4 ps after the end
of the laser pulse. As can be seen, the X-ray emission
spectrum of the ions from F- to C-like is completely
formed by 0.6 ps, whereas the emission from He- and
Li-like ions is accumulated during the subsequent
period of time. This feature of the radiation dynamics
can be verified by direct time-resolved spectral mea-
surements.

6. To summarize, we have studied for the first time
the X-ray emission spectra of a microdroplet argon
plasma formed under the action of 30-fs laser pulses
with a peak intensity above 1019 W/cm2. For this pur-
pose, a special nozzle was designed and manufactured
based on the results of numerical modeling of the pro-
cess of cluster formation in a gas jet target. The nozzle
allowed large argon clusters to be obtained without
additional cooling of the valve. A comparatively large

Fig. 4. Time-integrated X-ray emission spectra calculated
for the time moments of 0.6 ps (thin line) and 1.4 ps (thick
line) after the laser pulse end.
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decay time of such clusters makes it possible to
decrease the negative effect of a prepulse, which (under
conditions of ultrahigh laser intensity) produces
destruction of small clusters even at the main pulse con-
trast above 105. The calculated pattern of relaxation of
the electron energy distribution function and the corre-
sponding ion level populations after the laser action
qualitatively agree with the experimentally observed
time-integrated X-ray emission spectra of a microdrop-
let plasma. Predicted temporal features of the X-ray
yield can be verified by direct time-resolved spectral
measurements.
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An analytical solution is found to the vortex electron anisotropic hydrodynamic equations that describe the non-
linear evolution of the long-wavelength Weibel instability. The presented analytical approach shows that the
long-wavelength Weibel instability saturates without a decrease in the temperature anisotropy in the single-
mode regime due to the rotation of the anisotropy axes. The generated magnetic field is circular-polarized, and
its amplitude varies periodically in time. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.35.Hr
It is well known that a plasma with an electron
energy anisotropy is unstable [1]. The Weibel instabil-
ity is a pure electromagnetic mode that describes mag-
netic field excitation with a characteristic time scale
much longer than the electron plasma wave period.
Such an instability likely appears in the interaction of a
short-duration X-ray pulse with a gas media where
weak collisions are unable to rapidly remove the elec-
tron energy anisotropy arising from photoionization. In
the past, the only known artificial source of short
intense X-rays was a nuclear explosion. However,
recent developments in intense ultrashort X-ray laser
technology have opened a new regime of X-ray–matter
interaction, in which intense X-ray laser pulses pene-
trate deep into the targets and produce nonequilibrium
plasma of macroscopic size. An example is the XFEL
project [2], which is generating interest in the need to
understand extreme plasma states that can be encoun-
tered in the interaction of X-rays with matter.

The most advanced studies dealing with the nonlin-
ear stage of a plasma with an anisotropic temperature
have been performed with numerical simulations [3–8].
It is also known that the vortex electron anisotropic
hydrodynamics (VEAH) model [9] is well suited for
analytical study of this problem. However, the analyti-
cal results obtained to date mainly demonstrate the
existence of explosionlike or self-similar solutions to
the VEAH equations [9, 10], while the conditions of
their approach with an initial value problem remain
unclear. Recent three-dimensional (3D) particle-in-cell
simulations (PIC) have shown that the Weibel instabil-
ity for high temperature anisotropy (T⊥ /T|| @ 1) evolves
into a single-mode 1D regime with a finite saturated
averaged anisotropy (T⊥ /T|| ~ 1) and a circularly polar-

¶This article was submitted by the authors in English.
0021-3640/03/7803- $24.00 © 20119
ized long-scale-length magnetic field [8]. The initial
conditions for these simulations corresponded to a
small-amplitude stochastic initial magnetic field, which
is different from the 1D VEAH numerical model for a
one-component magnetic field [7], where the single-
mode regime was found to exist for a short-wavelength
Weibel instability growing from the initial harmonic
perturbations. The single-mode regime helical polar-
ization of the magnetic field, which saturates due to
periodic energy exchange with thermal electrons, was
predicted in [11].

For a plasma with anisotropic temperature, we
examine the nonlinear evolution of a long-wavelength
Weibel instability, ck < ωp, where k is the wave number,
ωp is the electron plasma frequency, and c is the speed
of light. We have found an exact single-mode solution
of the VEAH equations that can be applied to the initial
value problem for the Weibel instability itself and to
provide analytic confirmation of the existence of the 1D
saturation regime displayed in recent 3D PIC simula-
tions [8].

The VEAH model [9] is formulated in terms of the
coupled equations for the temperature tensor T and the
quasistatic magnetic field B. In the long-wavelength
limit, these equations are

(1)

where W = eB/mec is the electron hyrofrequency, e and
me are the electron charge and mass, and {…} signifies
a symmetrization of the tensor, {Aij} = Aij + Aji. Equa-
tion (1) conserves the temperature anisotropy. For a sin-

∂W
∂t

--------
1

me

------ ∇– ∇ T, ∂T
∂t
------- T W×{ } ,=⋅×=
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gle-axis temperature anisotropy,

(2)

the longitudinal and transversal temperatures, T|| and
T⊥ , do not change in time. Here, I is the absolute unit
tensor and n(r, t) is the unit vector in the direction of
the anisotropy axis. We assume homogeneous T|| and T⊥
in space, which corresponds to the standard Weibel
instability [1].

The hypothesis that the nonlinear regime of the
long-wavelength Weibel instability can be described in
terms of W and n was put forward in [12]. However, the
corresponding equations,

(3)

have not been solved for the initial value problem. In
order to solve the initial value problem for the one-

T T ||nn T ⊥ I nn–( ),+=

∂W
∂t

--------
T || T ⊥–

me

-----------------∇ n ∇ n×× n∇– n⋅( ),×=

∂n
∂t
------ n W×{ } , n 1,= =

Fig. 1. Evolution of the magnetic field (solid lines) and the
anisotropy axis (dashed lines) for Φ0 = 0 and a0 = (a) 0.001,
(b) 0.02, and (c) 0.5.
dimensional case (∂/∂z), we take advantage of the fol-
lowing parameterization:

(4)

This corresponds to a circularly polarized single-mode
magnetic field. Here, for convenience, we have intro-
duced the growth rate of the long-wavelength Weibel

instability, γ0 = k .

One may confirm through the direct substitution of
Eqs. (4) into Eqs. (3) that the assumed structure satisfies
the VEAH model. The corresponding equations for the
dimensionless amplitude of the magnetic field a and the
angle Φ, which defines the evolution of the anisotropy
axis, are

(5)

The solutions to these equations are given in quadra-
tures as follows:

(6)

where the two constants of integration a(0) = a0 and
Φ(0) = Φ0 can be related to the initial amplitude of the
magnetic field and the initial direction of the anisotropy
axis. This nonlinear solution may be expressed in terms
of an elliptic integral of the first kind.

For the standard definition of the problem for Wei-
bel instability, one assumes Φ0 = 0 and a0 ! 1. Initially,
the amplitude of the magnetic field increases exponen-
tially with the growth rate γ0. After that, the growth of
the magnetic field slows, and the magnetic field reaches
a maximum and then decreases to the initial value. This
process is then repeated in a periodic fashion. During
one magnetic field cycle, the anisotropy direction
changes to the opposite direction but returns to the
starting direction during the next cycle. The period of
the magnetic field pulsations slowly decreases with a0.
Figure 1 shows the time dependences of the dimension-
less amplitude of the magnetic field and the z compo-
nent of the anisotropy vector, nz, for nz(0) = 1, where the

time scale is given in  units. The solutions for a(t)
and nz are the multi-instanton solution and multikink
solution, respectively. 

Considerable initial amplitudes a0 (e.g., Fig. 1c) are
also of interest for the evaluation of the nonlinear
behavior of the Weibel instability, which is initially
excited in the short-wave-length domain and then
evolves to long scale lengths with the temperature
anisotropy saturation and circular-polarized magnetic
field formation. Such behavior of the Weibel instability
evolving to the 1D case was recently observed in 3D

W γ0a t( ) kzsin γ0a t( ) kzcos– 0, ,{ } ,=

n Φ t( )sin kzcos Φ t( ) kzsinsin Φ t( )cos, ,{ } .=

T ⊥ T ||–( )/me

2Φ̇̇ 2Φ, asin Φ̇.= =

γ0t ϕ a0
2 ϕ Φ0+( ) ϕ Φ0–( )sinsin+[ ] 1/2–

,d

Φ0

Φ

∫=

a2 a0
2 Φ Φ0+( ) Φ Φ0–( ),sinsin+=

γ0
1–
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PIC simulations [8]. For these simulations, the analytic
approach may be of particular interest, because, for the
enlargement of the spacial scales, the computations
become very demanding. Corresponding comparison
with the theory also requires one to account for Φ(0) ≠ 0.
In accordance with this, two qualitatively different sit-
uations are possible: |a0 | + |sinΦ0 |. The VEAH solu-
tions for |a0 | > |sinΦ0 | are well represented by Fig. 1,
while the opposite case is illustrated by Fig. 2. The spe-
cific case where |a0 | = |sinΦ0 | is also presented
(Fig. 2c). The case where |a0 | < |sinΦ0 | is represented
by the bipolar multi-instanton solution for the magnetic
field amplitude. For the initial conditions |a0 | = |sinΦ0 |,
the solutions for a(t) and nz become the solitary instan-
ton and kink modes, respectively. However, as t  ∞,
the magnetic field and the inhomogeneity of the anisot-
ropy for this solution disappear, i.e., it is unstable, and
the Weibel instability must arise again.

The period t0 of the nonlinear solution (6) also

depends on the sign of the expression  – sin .

Denoting p2 ≡  – sin , one finds

(7)

for the time required for a complete cycle of anisotropy
rotation in the case |a0 | > |sinΦ0 |. Similarly, for –p2 ≡

 – sin  < 0 this period reads

(8)

where 0 < p < 1. In Eqs. (7) and (8), K(u) is the com-
plete elliptic integral of the first kind with the modulus
u. In accordance with Figs. 1 and 2, the period
decreases with p (with the magnetic field amplitude in
Φ0  0 case), as shown in Fig. 3, where the period is
in units of γ0. The soliton solution corresponds to p = 0.
As p  1, Eq. (8) gives the period t0 = 2π. For exam-
ple, in the case of the standard problem definition for
the Weibel instability, nz(0) = 1, the period of nonlin-
ear pulsations is t0 . 8π for a0 = 0.01 and t0 . 4π for
a0 = 0.25.

The averaged (over the period) magnetic energy is
small, 〈B2 〉/8πneT⊥  ! 1, because ck < ωp and the dura-
tion of nonlinear pulsations is shorter than t0 providing
〈a2 〉  < 1, i.e.,

(9)

where ne is the electron density. This is illustrated by
Fig. 4 for Φ0 = 0, where the dimensionless magnetic
energy 〈a2 〉  has a very weak dependence on a0. A small
saturated magnetic field energy 〈B2 〉/8πneT⊥  ~ 0.02 has
also been observed in PIC simulations [8], where in the
final state the single-mode regime was observed with

a0
2 Φ0

2

a0
2 Φ0

2

t0 4/γ0 1 p2+( )K 1/ 1 p2+( )=

a0
2 Φ0

2

t0 4/γ0( )K 1 p2–( ),=

B2〈 〉
8πneT ⊥
------------------

a2〈 〉
2

---------- 1
T ||

T ⊥
------– 

  c2k
2

ωp
2

----------,=
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ck/ωp . 0.5 and the saturated anisotropy T||/T⊥  . 1/3.
Assuming from Fig. 4 a rank value 〈a2 〉  ~ 1/4, one can
estimate from Eq. (9) that 〈B2 〉/8πneT⊥  is very close to
the PIC simulation results [8].

In summary, we have obtained an analytical solution
to the VEAH equations (3), which describe the relax-

Fig. 2. Evolution of the magnetic field (solid lines) and the
anisotropy axis (dashed lines) for a0 = 0.001, Φ0 = 0.002
(a), a0 = 0.05, Φ0 = 0.1 (b), and a0 = sinΦ0, Φ0 = 0.05 (c).

Fig. 3. Period of the nonlinear solutions of VEAH for

(a)  – sin  > 0 (logarithmic scale) and (b)  –

sin  < 0.

a0
2 Φ0

2
a0

2

Φ0
2
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ation of the long wavelength Weibel instability that
originates from the anisotropy of the electron tempera-
ture. The mechanism responsible for the saturation of
the instability is the rotation of the anisotropy axis
rather than the temperature becoming isotropic. Such a
rotation leads to dephasing of the generated magnetic
field with respect to the source of the anisotropy. The
solution that has been found corresponds to a single-
mode circular-polarized magnetic field. Our theoretical
model explains the formation of single-mode magnetic
structures that are observed in PIC simulations [8]. The
characteristics of the Weibel plasma have been derived,
and this can have a fundamental significance and poten-
tial application in the implementation of the forefront
XFEL project [13].

This work was partly supported by the Natural Sci-
ences and Engineering Research Council of Canada
and the Russian Foundation for Basic Research (grant
no. 03-02-16428), and the International Science and
Technology Center (grant no. 2104).

Fig. 4. Averaged dimensionless magnetic field energy. 
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The problem of the one-dimensional collisionless expansion of a multicomponent plasma into a vacuum is con-
sidered. In the hydrodynamic approximation, an approximate analytical solution for an arbitrary set of ion spe-
cies with masses M1, …, Mn and charge numbers Z1e, Z2e, …, Zne is found by using the technique of self-similar
variables employed by Gurevich, Pariœskaya, and Pitaevskiœ for the case of single-species ions. A numerical iter-
ative algorithm is developed in which the analytical solution is used as a first approximation. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 52.27.Cm; 52.30.-q
The problem of the one-dimensional expansion of
plasma into a vacuum in the hydrodynamic formulation
is a classical problem of the physics of plasma in which
the electron temperature greatly exceeds the ion tem-
perature. In the pioneering works of Gurevich,
Pariœskaya, and Pitaevskiœ, a self-consistent analytical
solution was obtained for single-species ions [1]. The
authors used the technique of introducing a self-similar
variable (developed in ideal fluid dynamics [2]), which
enabled them to reduce the total number of variables.
The problem was solved using the approximations of
plasma quasi-neutrality and isothermality of electrons.
In [3], the technique was generalized to the case of
more than one ion species. The acceleration of ions at
the expanding plasma front, where the quasi-neutrality
approximation is no longer valid, was studied both ana-
lytically and numerically by Crow et al. [4]. It was
shown that the ions accelerate infinitely fast and,
behind the front, the self-similar solution from [1] is
generally applicable. Mora and Pellat [5] obtained ana-
lytical corrections that take into account electron cool-
ing near the front caused by the transfer of energy for
the acceleration of ions. Chan et al. [6] (see also refer-
ences therein) verified experimentally that, behind the
ion front, the potential is well described by the self-sim-
ilar solution from [1] until the effects of confined geom-
etry come into play.

Ivanov et al. [7–9] showed that the propagation of a
spatially localized group of hot electrons into a plasma
was also self-similar. Based on the approach [10],
Ivanov et al. developed a self-consistent kinetic theory
of the relaxation of a low-pressure quasineutral nega-
tive-ion plasma [11, 12]. The solution was obtained for
0021-3640/03/7803- $24.00 © 0123
the case of two kinds of ions (negative and positive)
with comparable densities.

Kovalev et al. [13] used the group theoretical meth-
ods to obtain an analytical solution for the expansion of
a plasma bunch in the kinetic formulation. Note that
only the quasi-neutrality approximation was employed
by the authors.

At present, in connection with progress in the physics
and performance of multicharged-ion sources [14], the
problem of the expansion of a multicomponent plasma in
which each component is multiply ionized [15, 16] has
attracted considerable interest.

1. Model and basic equations. Let us consider the
problem of the one-dimensional expansion of a multi-
component plasma into a vacuum. The plasma consists
of electrons and ions with charge numbers Z1e, Z2e, …,
Zne and masses M1, …, Mn. The plasma is homoge-
neous and initially resides in the left half-space x < 0.
Such a situation is characteristic of, say, the plasma of
an electron cyclotron discharge in a magnetic mirror at
the instant of switching off the external microwave
field. Generally, the temperature of the electron compo-
nent Te is much higher than that of the ion component,
and, hence, one can use the approximation of cold
hydrodynamics for ions

(1)

(2)

Here, Nk and v k are the density and the mean velocity of
the kth ion species, respectively, and ϕ is the electro-

∂Nk

∂t
---------

∂
∂x
------ Nkv k( )+ 0,=

∂v k

∂t
--------- v k

∂v k

∂x
---------

Zke
Mk

--------∂ϕ
∂x
------+ + 0.=
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static potential induced by charge separation. Electrons
move much faster than ions and hence manage to attain
a quasisteady thermodynamic equilibrium. To obtain an
analytical solution, we assume that the distribution
function of electrons is Maxwellian at x  –∞. Then
their spatial distribution is described by the Boltzmann
distribution

(3)

With the exception of the rightmost region (the front),
in which the electron density is higher than the ion one,
the quasi-neutrality equation is true

(4)

As shown in [1, 17], the solution to the set of equations
of cold hydrodynamics can be sought in the self-similar
form, since the initial conditions do not contain any
space scale. In our case, there can be several different

ion-acoustic velocities Csk = ; however, the ini-
tial and the boundary conditions are identical for all the
ion species. Let us introduce a normalized self-similar

variable ξ =  and assume that all the variables

depend only on ξ. After introducing the dimensionless
variables

Eqs. (1)–(4) take the form

(5)

(6)

(7)

where Ak = ZkM1/Mk. The set of Eqs. (5)–(7) has a trivial
solution that satisfies the boundary conditions in the left
half-space (x < 0, t  0, ξ  –∞):

(8)

However, this solution does not satisfy the boundary
conditions in the right half-space (x > 0), in which, at
t = 0 or ξ  ∞, there must be no particles: nk = 0. In
the general case, the existence condition for the non-
trivial solution is obtained by zeroing the determinant
of the matrix composed of the coefficients of the deriv-
atives with respect to ξ in Eqs. (5) and (6). However,

Ne N0 eϕ /Te( ).exp=

Zk Nk

k 1=

n

∑ Ne.=

Te/Mk

x
t
--

M1

Te

-------

uk

v k

v s

------; v s

Te

M1
-------; ψ eϕ

Te

------; nk

Nk

N0
------,= = = =

uk ξ–( )
dnk

dξ
-------- nk

duk

dξ
--------+ 0,=

uk ξ–( )
duk

dξ
-------- Ak

dψ
dξ
-------+ 0,=

ψ Zknk∑( ),ln=

ψ 0, nk nk
0, uk 0, Zknk

0∑ 1.= = = =
this can be done in a simpler way. On substituting ψ(ξ)
from Eq. (7) into Eq. (6), we obtain

Substituting this in Eq. (5), we obtain

which, for the nontrivial case (dni/dξ) ≠ 0, finally
gives, after summing over k, the following matching
condition:

(9)

At t > 0, the trivial solution exists in the left half-space,
which has not yet been affected by the process of plasma
expansion. Both solutions are joined at certain ξ0 to meet
all the boundary conditions, and the solution obtained
has a derivative discontinuity at the joining point. The
set of Eqs. (5)–(7) with additional condition (9) is non-
linear, and finding an exact analytical solution seems to
be hardly possible. However, it was shown in [1] that,
for a certain simple case, it is easy to obtain an analytical
solution. For the single-species ions, when nk = n1δ1, k,
uk = u1δ1, k, and Ak = Z1δ1, k, condition (9) takes a simple
form which itself gives the solution

(10)

or

(11)

Substituting the result obtained into Eq. (5), as written
for k = 1, we readily have

Here, the constant, as well as the joining point ξ0, are to
be obtained from the matching condition. Namely, at

ξ = ξ0, u1(ξ) = 0 and n1(ξ) = 1/Z1, and hence ξ0 = –
and

(12)

At ξ < ξ0, there exists a trivial solution u1(ξ) = 0 and
n1(ξ) = 1/Z1 = const. Then, finally, from Eq. (7) we have
the normalized potential

(13)

Figure 1 shows the solution for the single-species
ions with Z1 = 1. It should be noted that, in fact, a jump
of the electric field moves left with the ion-acoustic
velocity. The attempt [3] to find a solution for the case

duk

dξ
--------

Ak

uk ξ–( )
------------------

Zi ni/ ξdd( )∑
Zini∑

---------------------------------.–=

dnk

dξ
--------

Aknk

uk ξ–( )2
--------------------

Zi ni/ ξdd( )∑
Zini∑

---------------------------------,–=

Zi∑

Zk Aknk

uk ξ–( )2
--------------------∑ Zknk.∑=

u1 ξ–( )2 Z1=

u1 ξ Z1.+=

n1 const ξ / Z1– 1–( ).exp⋅=
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1
Z1
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of two kinds of ions was restricted to the linear approx-
imation with the n2/n1 ratio being considered as a series
expansion parameter.

2. The linear potential approximation. By anal-
ogy with the case of single-species ions, we will seek an
approximate solution, assuming that the potential
depends linearly on ξ when ξ > ξ0 and equals zero when
ξ < ξ0. In the nontrivial-solution region, let us write

(14)

Here, parameter p may be dependent on the charges and
masses of all the ions. As the potential is zero to the left
of ξ0, the joining point is related to p through simple
relation p = –1/ξ0. Note that the joining point is obvi-
ously the same for all the ion species with different k.
Equations (5) and (6) take the form

(15)

(16)

The latter equation is a particular case of the Abel equa-
tion of the second kind and can be solved rigorously
[18]. Note first that the set of Eqs. (14)–(16) has an
exact integral solution. Indeed, consider the derivative

.

Rewriting the last term using Eq. (16), we obtain

Then, by using Eq. (15), rewrite the left-hand side and
integrate it to obtain

(17)

From the boundary conditions ξ = ξ0, uk = 0, and nk =
nk0, we find that the constant on the right-hand side of
Eq. (17) is const = ln(nk0) + ln(–ξ0).

Then, finally

(18)

Thus, under the assumption given by Eq. (14), we
obtained an exact solution that relates the density and the
velocity of the kth ion species. It is necessary now to find
the explicit dependence of uk on ξ. We will do this taking
into account that Eq. (16) (the Abel equation of the sec-
ond kind) admits a particular solution of the kind

(19)

If we considered here the case of single-species ions,
this solution would be the sought one [see Eq. (11)].

ψ ψ̃ – pξ 1.–= =

d nkln
dξ
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1
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-------------

duk
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--------;–=

uk ξ–( )
duk

dξ
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dξ
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1
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------------------

duk

dξ
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------------------–=

1
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duk

dξ
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d uk ξ–( )ln
dξ
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1

Ak p
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duk

dξ
--------.+=

uk ξ–( )ln
1

Ak p
---------uk nkln+ + const.=

nk nk0

ξ0–
uk ξ–
-------------
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Ak p
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  .exp=

gk ξ( ) ξ Ak p.+=
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However, it is not our case. Moreover, the ξ value for
which gk(ξ) = 0 depends on k. Hence, the solution dis-
cussed does not satisfy the boundary conditions. Let us
seek the solution in the form

(20)

Such a choice allows one to meet the boundary condi-
tions at the joining point. Substituting Eq. (20) into
Eq. (16), we have

Its solution is a transcendental algebraic equation

(21)

where  = (ξ0). Now, if we construct a function ξ =

ξ( ) by using Eq. (21) and swap the axes, we find the
sought solution for the velocity of the kth ion species:

. (22)

In Eq. (22), only the ξ0 quantity has not yet been
known. It can be easily obtained from Eq. (9) by substi-
tuting ξ = ξ0, uk(ξ0) = 0, and nk(ξ0) = nk0:

(23)

The solution given by Eq. (21) can also be represented
through the function G inverse to xex

uk ξ( ) gk ξ( ) ũk ξ( )+ ξ Ak p ũk ξ( );+ += =
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dũk

dξ
--------+ 

   = Ak p;
dũk
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--------------------------.
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ũk
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---------
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-------------– 
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Fig. 1. Functions u1(ξ), n1(ξ), and ψ(ξ) for Z1 = 1. The join-
ing point is ξ0 = –1.
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Let us consider the limiting cases. In the vicinity of the
point ξ0, where ξ – ξ0 ! |ξ0 |, we have, according to
Eq. (21),

or

(24)

(25)

Consider the case of large positive ξ. Let us first rewrite
Eq. (21) in a more appropriate form by using Eq. (22):

ũk ũk
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-----∆ũk– ξ ξ 0–( )–≈=
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ũk

ũk
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Fig. 2. Linear potential ψ, potential ψ1 refined by using den-
sities ψ1, and real potential χreal.
Suppose that, at ξ @ 1, uk = gk +  ≈ gk = ξ + Akp @

. Indeed, for large ξ, we then have

and our assumption that  can be neglected is thus jus-
tified:

(26)

Using (18), we obtain for the densities

(27)

It follows that, at large ξ, the largest contribution to the
density is made by the term with the highest Ak value
(i.e., with the highest charge-to-mass ratio). Let us
denote the corresponding k as k'.

3. On the accuracy of the linear potential approx-
imation. Remind that we expressed parameter p
through ξ0 (whose exact value is given by Eq. (23))
using Eq. (14) as follows:

(28)

If we derive, however, parameter p from the condition
given by Eq. (9) using asymptotic expressions (26)
and (27) and retaining only the terms with k = k', we
will have

(28')

which differs from Eq. (28). Of course, this is because
approximation (14) is generally speaking not valid for
the case of many kinds of ions. At large ξ, the devia-
tions of the potential from linearity come into play.
Note, however, that Eq. (28) adequately describes the
transition to the case of single-species ions described in
Section 1.

Let us illustrate the above by the example of three
ion species with equal masses and charges Z1, 2, 3 = 1, 2,
and 3. The slight deviation of the potential from linear-
ity is illustrated in Fig. 2, which shows the straight line
from Eq. (14) and the refined potential ψ1 calculated by

the equation ψ1 = ln , in which nk is taken
from Eq. (18). Figure 2 also shows the real potential
ψreal, which is to be calculated in the next section. The
velocities and densities of the ion components calcu-
lated by Eqs. (18), (21), and (22) are shown in Figs. 3
and 4.
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4. Iterative calculations of the real potential. To
numerically simulate the potential in the case of many
kinds of ions, it is suitable to use approximate expres-
sions (18), (21), and (22) as a zero approximation.
Then, as a first approximation for the potential, we have
from Eq. (7) 

(29)

where (ξ) stand for the functions obtained in Sec-
tion 2. Now we will follow the scheme described in
Section 2. To derive the refined ion velocities, we sub-
stitute the refined potential from Eq. (29) into the equa-
tion of motion (6) and have

(30)

This is the Abel equation of the second kind [18],
though with a complicated function ψ1(ξ) on the right-
hand side. It is not possible now to obtain an analytical
solution; however, the equation can be easily solved
numerically by employing net methods. To calculate
the densities, it is reasonable first to integrate Eq. (15)
from ξ0 to ξ to yield the formula

(31)

which is similar to Eq. (18). To further refine the poten-
tial, the densities obtained by Eq. (31) are to be entered

in ψ2 = ln , and so on. The iterations rap-
idly converge to the exact solution ψreal, which is shown
in Fig. 2 for the case of three kinds of ions. It is seen that
the linear potential provides a good approximation to

ψ1 Zknk
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Fig. 3. Normalized ion velocities in the linear potential
approximation.
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the calculated ψreal, whereas the first refinement of the
potential, ψ1, virtually coincides with ψreal.

Note that numerical simulations (not presented in
this paper) by the Vlasov kinetic equation for the case
when the initial electron distribution function is Max-
wellian so that the electron temperature is much higher
than the ion temperature give results very close to the
above hydrodynamic calculations.

We intend to continue studying the problem con-
cerned by using the kinetic approach for arbitrary ion
temperatures and a non-Maxwellian initial electron dis-
tribution.

We are grateful to A.A. Luk’yanov for helpful dis-
cussions. This work was supported by INTAS, grant
no. 01-0373.

REFERENCES
1. A. V. Gurevich, L. V. Pariœskaya, and L. P. Pitaevskiœ, Zh.

Éksp. Teor. Fiz. 49, 647 (1965) [Sov. Phys. JETP 22, 449
(1965)]; Zh. Éksp. Teor. Fiz. 54, 891 (1968) [Sov. Phys.
JETP 27, 476 (1968)]; A. V. Gurevich and L. P. Pitae-
vskiœ, Zh. Éksp. Teor. Fiz. 56, 1778 (1969) [Sov. Phys.
JETP 29, 954 (1969)].

2. L. D. Landau and E. M. Lifshitz, Mechanics of Continu-
ous Media (Gostekhizdat, Moscow, 1964).

3. A. V. Gurevich, L. V. Pariœskaya, and L. P. Pitaevskiœ, Zh.
Éksp. Teor. Fiz. 63, 516 (1972) [Sov. Phys. JETP 36, 274
(1972)].

4. J. E. Crow, P. L. Auer, and J. E. Allen, J. Plasma Phys.
14, 65 (1975).

5. P. Mora and R. Pellat, Phys. Fluids 22, 2300 (1979).

6. C. Chan, N. Hershkowitz, A. Ferreira, et al., Phys. Fluids
27, 266 (1984).

7. A. A. Ivanov, L. L. Kozorovitskiœ, and V. D. Rusanov,
Dokl. Akad. Nauk SSSR 184, 811 (1969) [Sov. Phys.
Dokl. 14, 126 (1969)].

8. A. A. Ivanov, Ya. N. Istomin, L. L. Kozorovitskiœ, and
V. D. Rusanov, Prikl. Mekh. Tekh. Fiz. 1, 51 (1971).

Fig. 4. Normalized ion densities in the linear potential
approximation.



128 IVANOV, SEREBRENNIKOV
9. A. A. Ivanov, V. D. Rusanov, and R. Z. Sagdeev, Pis’ma
Zh. Éksp. Teor. Fiz. 12, 29 (1970) [JETP Lett. 12, 20
(1970)].

10. C. E. Hill and K. Langbein, Rev. Sci. Instrum. 69, 643
(1998).

11. A. A. Ivanov, L. I. Elizarov, A. B. Sionov, and M. Bacal,
Phys. Rev. E 52, 6679 (1995).

12. A. A. Ivanov, A. B. Sionov, F. El. Balghiti-Sube, and
M. Bacal, Phys. Rev. E 55, 956 (1997).

13. V. F. Kovalev, V. Yu. Bychenkov, and V. T. Tikhonchuk,
Pis’ma Zh. Éksp. Teor. Fiz. 74, 12 (2001) [JETP Lett. 74,
10 (2001)].
14. R. Geler, Electron Cyclotron Resonance Ion Sources and
ECR Plasmas (Inst. of Physics, Bristol, 1996).

15. A. Girard and G. Melin, Nucl. Instrum. Methods Phys.
Res. A 382, 252 (1996).

16. M. Kidera, M. Lamoureux, V. Mironov, et al., Rev. Sci.
Instrum. 70, 4234 (1999).

17. A. V. Gurevich and L. P. Pitaevskiœ, Problems of the
Plasma Theory (Atomizdat, Moscow, 1980).

18. E. Kamke, Gewöhnliche Differentialgleichungen (Acad-
emie, Leipzig, 1959; Nauka, Moscow, 1976).

Translated by N. Ustinovskiœ
JETP LETTERS      Vol. 78      No. 3      2003



  

JETP Letters, Vol. 78, No. 3, 2003, pp. 129–133. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 78, No. 3, 2003, pp. 160–164.
Original Russian Text Copyright © 2003 by Murzina, Misyuryaev, Fokin, Palto, Yudin, Aktsipetrov.

                                                   
Surface Ferroelectric Phase Transition 
in Multilayer Polymer Langmuir Films

T. V. Murzina1, T. V. Misyuryaev1, Yu. G. Fokin1, S. P. Palto2, 
S. G. Yudin2, and O. A. Aktsipetrov1, *

1Department of Physics, Moscow State University, Moscow, 117234 Russia
2Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, 117333 Russia

*e-mail: aktsip@shg.ru
Received June 16, 2003

The ferroelectric phase transition on the free surface of a polymer ferroelectric Langmuir–Blodgett film was
studied by the optical second harmonic generation (SHG) technique. A hysteresis in the temperature depen-
dence of the SHG intensity observed for a multilayer film of a poly(vinylidene fluoride)–trifluoroethylene
copolymer in the vicinity of T ≈ 15°C is a manifestation of the first-order ferroelectric phase transition in the
topmost surface monolayer of the film. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Cn; 77.84.Jd; 75.30.Kz; 68.47.Pe; 426.5.Ky
The surface contributions to the ferroelectric and
magnetic phenomena, as well as the surface ferroelec-
tric and ferromagnetic phase transitions, are of special
interest in the physics of low-dimensional systems
because dimensionality is a factor of basic importance
in these phenomena. In recent decades, a considerable
progress was achieved in experimental investigations of
the surface magnetism and the two-dimensional (2D)
phenomena in magnetic monolayers. This progress was
related primarily to the development of molecular beam
epitaxy (MBE) techniques, which made possible the
obtaining of low-dimensional magnetic systems such as
epitaxial monolayers on the surface of single crystals [1],
epitaxial hetertostructures [2], and superlattices [3]. In
addition, the discovery of the magnetic-field-induced
optical second harmonic generation (SHG) [4] effect
characterized by a high selective sensitivity with
respect to the surface magnetic properties of cen-
trosymmetric magnetic materials provided a basis for
the development of a very effective optical method for
the investigation of surface magnetic phenomena [5].

A different situation takes place in the field of obser-
vation and investigation of the ferroelectric phenomena
on the surface and in 2D systems. On the one hand, thin
ferroelectric films with a thickness below 20–30 nm
cannot be synthesized even using the powerful MBE
method. On the other hand, attempts to observe struc-
tural phase transitions on the surface of single crystals,
not occurring in a high vacuum, by various methods
(including nonlinear optical techniques [6]) should be
rather referred to as studying the features of phase tran-
sitions in thick layers of micron thicknesses with the
crystal structure damaged by polishing.
0021-3640/03/7803- $24.00 © 20129
This situation changed in 1995, when thin ferroelec-
tric Langmuir–Blodgett (LB) films were obtained
based on poly(vinylidene fluoride) (PVDF) [7]. PVDF
is a teflonlike polymer with a structural formula of
(CHaF2 – aCHbF2 – b)n (a, b = 0, 1, 2), possessing ferro-
electric properties. Of special interest are the ferroelec-
tric copolymers of PVDF with trifluoroethylene,
denoted below as P(VDF–TrFE). These copolymers, in
contrast to the pure PVDF, exhibit the phase transition
from ferroelectric to paraelectric state at a temperature
below the melting point [8]. Using the LB method, it is
possible to obtain films of controlled thicknesses, even
representing a single monomolecular layer (0.5 nm).
The existence of 2D ferroelectric systems in the bulk of
multilayer P(VDF–TrFE) films synthesized by the LB
method was established by ferroelectric techniques
(capacitive measurements of the permittivity) [9] and
confirmed by the optical SHG method [10] possessing
a unique sensitivity with respect to the break of the
inverse symmetry of the sample structure upon the fer-
roelectric–paraelectric phase transition.

The results of dielectric measurements (requiring
metal electrodes deposited onto the sample surface)
showed that the LB-grown P(VDF–TrFE) films possess
ferroelectric properties even at a thickness of several
monolayers [11, 12]. The ferroelectric phase transition
in the bulk of a multilayer film takes place at a temper-
ature of ~80°C. Using dielectric techniques, the ferro-
electric phase transition was also observed at an inter-
face between the LB film and a metal electrode [13].
The temperature dependence of the permittivity of such
films exhibits a hysteresis at ≈20°C, which was not
observed previously in the bulk crystalline P(VDF–
TrFE) samples. It is believed that this very transition is
003 MAIK “Nauka/Interperiodica”
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related to a ferroelectric ordering in the topmost layer
of the LB film. However, we can hardly speak of
observing a surface ferroelectric phase transition in this
case, because the inavoidable metal electrode intro-
duces strong perturbation into the structure and elec-
tron properties of the surface layer of a P(VDF–TrFE)
film in such experimental systems. It is necessary to
use a nonperturbative method providing information
about a polar state of the free surface of a ferroelectric
material.

Such an opportunity is offered by the optical SHG
method not requiring electrodes on the sample surface.
Using this method, Choi et al. [8] studied the samples
of LB-grown films of a P(VDF–TrFE) copolymer with-
out an upper metal electrode and determined the tem-
perature-induced changes in the Brillouin zone struc-
ture in the vicinity of the “surface” phase transition.
Variation of the sample temperature in the vicinity of
this phase transition was accompanied by doubling of
the Brillouin zone (indicative of a modification of the
electron structure of the topmost surface layer) and by
reorientation of the surface dipoles. However, no direct
evidence of the ferroelectric nature of the observed
transition was available so far.

In this study, we employed the optical SHG method
to monitor the temperature-dependent variations in the
polar state of the free surface (not perturbed by a metal
electrode) of a multilayer ferroelectric LB-grown
P(VDF–TrFE) copolymer film. The temperature-
induced variations and hysteresis in the SHG response
observed in the vicinity of T ≈ 15°C are manifestations
of the first-order ferroelectric phase transition on the
free surface of a P(VDF–TrFE) film.

Fig. 1. SHG scattering indicatrix for a 20-ML Langmuir–
Blodgett film of P(VDF–TrFE) at 20°C. The inset shows the
experimental geometry (α is the polar scattering angle of
the SHG radiation).
The experiments were performed with a series of
multilayer ferroelectric LB films of a 70% PVDF–30%
TrFE copolymer. The films were prepared [12] using an
0.01% solution of the copolymer in aqueous DMSO.
The LB films were transferred onto fused quartz sub-
strates by the Langmuir–Schaefer technique (a horizon-
tal lift modification of the LB method). The given series
included films with thicknesses ranging from 2 to
60 polymer monolayers (MLs).

The quadratic response of the ferroelectric LB films
was excited by the radiation of a pulsed YAG:Nd3+ laser
generating 15-ns pulses at a wavelength of λω =
1064 nm. The incident beam intensity could be varied
within 10–50 MW/cm2. The SHG response from a film
studied was separated by an interference filter, detected
by a photoelectron multiplier, and measured by a gated
electronics. The samples were placed in an optical ther-
mostat capable of maintaining a preset sample temper-
ature in the interval from –10°C to 100°C at a pressure
of 10–2 Torr. The sample heating rate in our experiments
was 1–3 K/min. The temperature was measured to
within 1 K by a copper–constantan thermocouple fixed
on the sample surface. The diffuse (nonspecular) com-
ponent of the SHG radiation from an LB film could be
measured by rotating the detection system about the
vertical axis lying in the film plane.

In order to reveal peculiarities in the structure and
symmetry of the nonlinear optical properties of the LB
films at T = 20°C, we measured the azimuthal angular
dependences of the SHG intensity for various combina-
tions of polarizations of the fundamental radiation and
the second harmonic wave. We have also measured the
SHG intensity as a function of the polar scattering
angle, representing the SHG scattering indicatrix.

It was found that the azimuthal angular dependence
of the SHG response for the s–s combination of polar-
izations of the fundamental radiation and the second
harmonic wave is isotropic, which contradicts the basic
prohibition rule for the s-polarized SHG on a smooth
isotropic surface (the so-called s–s prohibition) [14].

The SHG intensity distribution with respect to the
polar angle does not contain a pronounced specular
peak and shows scattering within a broad angular range
(Fig. 1). A maximum in the SHG intensity is observed
along the normal to the sample surface. Thus, the SHG
is diffuse and depolarized (i.e., incoherent), represent-
ing the second-order hyper-Rayleigh scattering (HRS).
The diffuse and depolarized character of the quadratic
nonlinear optical response are indicative of the small-
scale spatial inhomogeneity of the LB films studied,
with a correlation length of this inhomogeneity much
smaller as compared to the fundamental wavelength
(1.06 µm) and the second harmonic wavelength
(0.53 µm). A correlation length determined from the
angular width of the HRS indicatrix [15] in the LB
films studied is approximately 100 nm.
JETP LETTERS      Vol. 78      No. 3      2003
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Figure 2 shows the temperature variation of the
SHG intensity in a 60-ML film of P(VDF–TrFE) mea-
sured in the temperature interval from 0 to 110°C. As
can be seen, the curve exhibits two regions of pro-
nounced hysteresis. In the first of these, heating the
sample above 60°C leads to an increase in the SHG
intensity, followed by saturation at temperatures about
~100°C. On cooling the sample, the SHG intensity
keeps increasing and drops at temperatures below
~60°C. The second region of hysteresis corresponds to
a peak in the SHG intensity at 10–20°C. Figure 3 pre-
sents the temperature dependence of the SHG intensity
for a 15-ML film, which also shows a pronounced hys-
teresis in the region of 15°C.

The SHG intensity variation with the temperature in
the LB-grown P(VDF–TrFE) films is qualitatively sim-
ilar to the pattern observed for the permittivity mea-
sured by the dielectric technique (see the inset in
Fig. 2). This analogy allows us to ascertain that pecu-
liarities observed in the behavior of the SHG intensity
are also related to phase transitions in the P(VDF–
TrFE) film and that the quadratic response reflects the
ferroelectric properties of the polymer film. As was
mentioned above, the temperature profile of the permit-
tivity is determined by two ferroelectric phase transi-
tions, occurring in the bulk and at the interface. The LB
film regions responsible for these phase transitions are
different. The phase transition in the region of 80°C is
related to the ferroelectric properties of the bulk of a
multilayer LB film and represents the ferroelectric
phase transition known in bulk crystalline P(VDF–
TrFE) samples. The phase transition at the interface,
previously observed in the region of 20–30°C [16], was
determined by the ferroelectric properties of the top-
most layer of the film occurring in contact with a metal
electrode. In our case of an LB film with the free sur-
face, this phase transition is a purely surface ferroelec-
tric phenomenon.

Note that our LB films with the free surface exhibit
hysteresis in the SHG intensity at a lower temperature
than that reported previously for the film–metal inter-
face: the hysteresis loop is shifted by 5–10°C toward
lower temperatures. This difference in the temperatures
at which the phase transition is observed on the free
surface and at the polymer film–metal electrode inter-
face is probably related to a strong influence of the
metal coating on the ferroelectric ordering in the top-
most layer of the LB film.

It should also be noted that the free surface of the LB
films of a P(VDF–TrFE) copolymer in our experiments
is covered by a layer of adsorbed molecules and, in this
sense, does not represent a clean surface. The role of
such adsorbed layers in establishing a long-range ferro-
electric order requires special investigations.

As was mentioned above, a special feature of SHG
in the LB-grown P(VDF–TrFE) films is the incoherent
and diffuse character of this phenomenon, which allows
JETP LETTERS      Vol. 78      No. 3      2003
the process to be described in terms of the second-order
hyper-Rayleigh scattering. In this case, the SHG inten-
sity is determined by fluctuations of the quadratic
polarization and, for ferroelectrics, of the spontaneous
polarization as well. The temperature dependence of
the HRS intensity may differ from that of the coherent
SHG observed for ferroelectric crystals with a regular
structure [17]. The incoherent and diffuse character of
the SHG response is related to the inhomogeneity of the

Fig. 2. The temperature variation of the SHG intensity for a
60-ML film of P(VDF–TrFE). The inset shows the analo-
gous dependence of the permittivity of a 30-ML film of
P(VDF–TrFE) measured by the dielectric method [11].

Fig. 3. The temperature variation of the SHG intensity for a
15-ML film of P(VDF–TrFE).
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film structure, primarily to the small-scale polydomain
structure of the ferroelectric phase of the LB films stud-
ied. The characteristic size of inhomogeneity in the LB-
grown P(VDF–TrFE) films is (according to the HRS
indicatrix) on the order of 100 nm, which is much
smaller than the fundamental wavelength and the sec-
ond harmonic wavelength [15, 18].

The SHG intensity scatter per unit solid angle in the
direction of the unit vector x is determined by averag-
ing correlations of the nonlinear polarization fluctua-
tions:

, (1)

where q = 2kω + k2ω; kω and k2ω are the wavevectors of
the fundamental and the second harmonic radiation,
respectively; Bij = σij + ξiξj; ∆i(r) = Pi(r) – 〈Pi(r)〉  is the
correlation function of the nonlinear polarization Pi;
and σij is the Kronecker symbol. The absence of a spec-
ular contribution in our experiments implies that the
ensemble-average of the nonlinear polarization is zero
and that the source of diffuse incoherent SHG is fluctu-
ations of the nonlinear polarization at the second har-
monic wavelength.

This approach, whereby the SHG process in the LB-
grown P(VDF–TrFE) films is described in terms of the
second-order HRS, can explain the small value of the
SHG response at temperatures below 10–20°C (where
the films represent a polar, microscopically noncen-
trosymmetric ferroelectric phase). If the size of
domains with oppositely oriented spontaneous polar-
ization vectors is smaller than the light wavelength, the
ferroelectric phase can be considered as a macroscopi-
cally centrosymmetric structure: the polar structure is
masked by the spatial averaging over an area with a
characteristic scale on the order of the light wave-
length. In this phase, the SHG signal is incoherent and,
hence, small and diffuse, being determined by spatial
fluctuations ∆(r) of the nonlinear polarization. The
small-scale character of the domain structure in our LB
films is related to the fact that molecules of a P(VDF–
TrFE) copolymer are not amphiphilic and, hence, they
exhibit no spontaneous orientation on the water sur-
face and are not oriented upon the transfer onto a solid
substrate.

The presence of a temperature hysteresis, observed
by both dielectric and nonlinear optical methods, is evi-
dence that the corresponding phase transitions are of
the first order and admit the coexistence of two phases
(ferroelectric and paraelectric) in certain temperature
intervals. This explains an increase in the intensity of
incoherent SHG with the temperature in the regions of
both phase transitions. As the temperature increases,
the regions of paraelectric phase appear and give rise to
spatial fluctuations of the spontaneous polarization.
These fluctuations are related to the fluctuations of

Id ∝ Bij ∆i r( )∆ j* 0( )〈 〉 iqr–( )exp d3r∫
dimensions and orientations of ferroelectric domains in
the temperature interval of the coexistence of two
phases. Therefore, the incoherent SHG intensity will
also increase in this temperature interval, because the
spatial fluctuations of the nonlinear polarization are
determined by increasing fluctuations of the spontane-
ous polarization.

Thus, we have observed the ferroelectric phase tran-
sition on the free surface of multilayer LB-grown
P(VDF–TrFE) films, which was related to a ferroelec-
tric ordering of the dipole moments of polymer mole-
cules in the topmost layer of the LB films. A decrease
in the temperature of the ferroelectric phase transition
on the free surface as compared to that at a film–metal
interface is explained by the strong influence of the
metal electrode on the ferroelectric order in the topmost
layer of a P(VDF–TrFE) film. The possible role of a
layer of adsorbed molecules (primarily of water)
present on the free surface of an LB film in establishing
a long-range ferroelectric order in the topmost layer of
the film requires special experimental investigations.

We have proposed a mechanism explaining the
incoherent (diffuse and depolarized) SHG process in
the regions of the surface and bulk phase transitions in
ferroelectric P(VDF–TrFE) films. The incoherent char-
acter of the SHG response of these polymer LB films is
related to fluctuations of the nonlinear polarization,
which, in turn, are determined by fluctuations of the
spontaneous polarization. The latter fluctuations
exhibit a significant growth due to the coexistence of
two phases in the vicinity of the first-order phase tran-
sition.
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The magnetoresistance of a 2D electron gas confined in narrow GaAs quantum wells with AlAs/GaAs super-
lattice barriers is studied in the classical range of magnetic fields. It is shown that the negative magnetoresis-
tance observed in this kind of structures with nonplanar heterointerfaces is semiclassical and qualitatively
agrees with the model of negative magnetoresistance due to the scattering of charge carriers by two types of
random potential, namely, the short-range and long-range ones. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.50.Jt; 73.63.Hs; 75.47.-m; 75.75.+a
The magnetoresistance (MR) of a 2D electron gas
has been much studied, both theoretically and experi-
mentally, in weak and quantizing magnetic fields. For
the region of classical magnetic fields B, which lies
between weak and quantizing magnetic fields, the the-
oretical analysis of MR in terms of the Boltzmann
kinetic equation leads to the field-independent Drude
expression: ρxx(B) = ρ0 = m/e2neτtr , where ne is the con-
centration of charge carriers, m is the effective mass,
and τtr is the transport relaxation time. However, as was
first shown in [1], by including memory effects in the
magnetotransport of two-dimensional charge carriers
beyond the framework of the kinetic equation, one
obtains purely classical reasons for the deviation of
ρxx(B) from constant. Depending on the character of the
random scattering potential, the semiclassical MR of a
2D electron gas may be negative [2, 3] or positive [4].
The predicted negative semiclassical MR caused by the
scattering of a 2D electron gas by a random inhomoge-
neous magnetic field [2] was recently observed experi-
mentally [5]. However, the semiclassical magnetotrans-
port properties of a 2D electron gas that are associated
with the scattering of charge carriers by a long-range
random electrostatic potential remain experimentally
little investigated.

This paper is concerned with studying the MR of 2D
electron gas in classical magnetic fields on narrow
GaAs quantum wells with self-organized nonplanar
heterointerfaces. The nonplanar configuration of het-
erointerfaces in such structures leads not only to a spa-
tial modulation of the 2D electron gas [6] but also to the
appearance of a long-range scattering potential corre-
lated with the relief of the growth surfaces [7]. The
character of the long-range potential is determined by
0021-3640/03/7803- $24.00 © 20134
the morphology of the growth surfaces and can be con-
trolled by changing the conditions of the growth pro-
cess. Thanks to the latter fact, narrow GaAs quantum
wells with self-organized corrugated heterointerfaces
are convenient model objects for an experimental study
of the effect of the long-range scattering potential on
the transport properties of a 2D electron gas.

The structures studied in our experiment were selec-
tively doped GaAs quantum wells, 10 nm in thickness,
with AlAs/GaAs superlattice barriers [8]. They were
grown by molecular beam epitaxy (MBE) on (100)
GaAs substrates with deviations from the (100) plane
no greater than 0.02°. The surface morphology of the
MBE structures was examined by atomic force micros-
copy (AFM). The transport properties of the 2D elec-
tron gas were studied for three types of MBE structures,
which differed in the rms height w of the growth surface
roughness: w ~ 0.3 (a smooth surface), 0.6 (an interme-
diate surface roughness), and 4 nm (a corrugated sur-
face). The height of the growth surface roughness
depended on the As4 flux used in the growth process.
The magnetotransport experiments were performed at a
temperature of 4.2 K in magnetic fields up to 2 T. The
Hall bars were fabricated by optical lithography and
liquid etching. They were 50 µm wide and 100 µm long
and were supplied with a planar Shottky gate, which
allowed one to vary the concentration of the 2D elec-
tron gas in wide limits. The Hall bars were oriented so
that the measuring current occurred along the [110]
direction. At T = 4.2 K, the 2D electron gas in these
structures was characterized by the following equilib-
rium parameters: the electron concentration ne =
(1.2−1.7) × 1012 cm–2 and the mobility µxx = (50–450) ×
103 cm2/(V s).
003 MAIK “Nauka/Interperiodica”
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Figure 1a shows the dependences ρxx(B) obtained
for the MBE structures with different heights of the
growth surface roughness. The curve corresponding to
the corrugated MBE structure (curve 1) exhibits a pro-
nounced negative MR in magnetic fields up to 1.2 T. In
magnetic fields higher than 1.2 T, the MR becomes pos-
itive and performs Shubnikov–de Haas oscillations
with increasing field. The curves obtained for the inter-
mediate and smooth MBE structures (curves 2 and 3)
exhibit minor variation of MR in magnetic fields below
0.7 T. The Shubnikov–de Haas oscillations are
observed in this case in smaller fields, as compared to
the corrugated structure, and have higher amplitudes
because of the higher mobility of 2D electrons in these
structures. Figure 1b shows the behavior of the relative
MR of 2D electron gas for the same MBE structures in
magnetic fields up to 0.4 T. The dependences ρxx(B)/ρ0
are different for different structures. For the corrugated
MBE structure, the dependence of the MR on magnetic
field is close to parabolic (in this field interval). For the
intermediate structure, the curve ρxx(B)/ρ0 has a maxi-
mum, which points to a quasi-one-dimensional peri-
odic potential modulation of the 2D electron gas in this
structure [7]. For the GaAs quantum well with smooth
heterointerfaces, the MR of the 2D electron gas exhibits
a linear behavior with a minor anomaly near zero mag-
netic field. A qualitatively similar behavior was theoret-
ically predicted in [9].

Figure 2a presents the dependences ρxx(B) for differ-
ent concentrations of the 2D electron gas in a corru-
gated MBE structure. The negative MR clearly mani-
fests itself for this structure in the whole concentration
range under study. For the 2D electron concentration
ne = 1.45 × 1012 cm–2 near zero magnetic field, ρxx(B)
exhibits a maximum whose nature is the same as that in
the dependences obtained for the MBE structures with
the intermediate height of the growth surface relief. For
ne = 1.21 × 1012 cm–2, the curve ρxx(B) has a minimum
at B = Bmin. The magnetic field Bmin is determined by the

condition 1/  ~ ns [10], where ns is the concentration
of short-range scatterers and Rc is the Larmor radius of
the charge carriers. This field corresponds to the begin-
ning of the classical localization of charge carriers by
the short-range scattering potential in increasing mag-
netic field, while the resistance at B = Bmin is deter-
mined by the scattering by the long-range potential.

Figure 2b shows the experimental and theoretical
dependences ∆ρxx(B)/ρ0 for the 2D electron concentra-
tion ne = 1.21 × 1012 cm–2. Theoretical dependence 2
corresponds to the model of scattering by the short-
range potential [11]: ∆ρxx/ρ0 ~ –exp(–2π/β), where β =
ωcτtr; theoretical dependence 3 corresponds to the scat-
tering by both short-range and long-range potentials [3]:

∆ρxx/ρ0 = –(ωc/ω0)2, where ω0 ~ 1.67νF (ls/lL)1/4,
νF is the Fermi velocity, ls = νFτs is the mean free path
associated with the scattering from the short-range

Rc
2

ns
1/2
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potential, and lL = νFτL is the mean free path associated
with the scattering from the long-range potential. In

estimating the quantity ω0, we assumed that  =

 + . The quantity τL was calculated from the
value of the MR at B = Bmin, τtr was calculated from
ρxx(B = 0), and ns was found from Rc(Bmin). From
Fig. 2b one can see that model 3 describes the behavior
of the negative MR much better than model 2.

The characteristic AFM image representing the sur-
face morphology of a corrugated MBE structure is
shown in Fig. 3a. The correlation analysis of the relief

τ tr
1–

τ s
1– τL

1–

Fig. 1. (a) Dependences ρxx(B) at T = 4.2 K for MBE struc-
tures with different rms height of the growth surface relief
and (b) the relative MR for the same MBE structures:
(1) corrugated, (2) intermediate, and (3) smooth structures.
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of this surface shows that the average period of the
relief in the [110] direction is approximately three
times smaller than the period in the perpendicular
direction. Since, in the structures under study, the long-
range scattering potential correlates with the relief of
the growth surfaces, this potential should have similar
average periods in mutually perpendicular directions.
The model image of the long-range potential is shown
in Fig. 3b.

Fig. 2. (a) Longitudinal MR of the 2D electron gas in a cor-
rugated epitaxial structure at T = 4.2 K for electron concen-
trations within ne = (1.21–1.45) × 1012 cm–2 and mobilities

within µxx = (57–87) × 103 cm2/(V s) (from bottom to top).
(b) Dependences ∆ρxx/ρ0 at T = 4.2 K for a corrugated

structure at ne = 1.21 × 1012 cm–2 and µxx = 57 ×
103 cm2/(V s): (1) experimental curve and theoretical
dependences from (2) [11] and (3) [3].
Figure 4a presents the behavior of the relative MR
for the curves shown in Fig. 2a. One can see that the rel-
ative magnitude of the negative MR increases with
increasing concentration, and the dependences on mag-
netic field intersect at a single point corresponding to a
particular critical field value B = Bc. We interpret the
magnetic field Bc as the point corresponding to the
beginning of the classical localization by the long-
range potential in increasing magnetic field [12]: Bc =
(mEF/e2a2)1/2(V0/EF)2/3, where a is the correlation length
of the long-range scattering potential. The estimate of
V0 by this formula yields a value of about 10–15 meV,
which agrees well with the value of V0 determined from
the position of Bmax [7].

We also performed a computer simulation of the
motion of a classical particle in the potential shown in
Fig. 3b. The initial conditions of the motion were
assumed to be arbitrary. The averaging was performed

6

4

2 X, µ

Y, µ

6

4

2

0 0

20

0

nm

(‡)

Fig. 3. (a) AFM image of the surface relief of a corrugated
MBE structure. (b) Model image of the long-range scatter-
ing potential.
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over 106 initial conditions. A relatively good agreement
of the calculated dependences with the experimental
data was achieved for the case when the amplitude of
the model long-range potential was comparable to the
Fermi energy of the 2D electron gas: V0 ~ EF = 50 meV.
This value is much greater than that obtained from
Bmax. We explain this difference by the fact that the
model potential only qualitatively describes the actual
long-range scattering potential. The results of simula-
tion, which are presented in Fig. 4b, suggest that the rel-
ative increase in the negative MR observed for the cor-

Fig. 4. (a) Relative MR of the 2D electron gas at T = 4.2 K
for concentrations within ne = (1.21–1.45) × 1012 cm–2 and

mobilities µxx = (57–87) × 103 cm2/(V s) (from bottom to
top). (b) Results of simulating the relative MR of the 2D
electron gas in the potential shown in Fig. 3b for V0 = EF =
50 meV and different mobilities.

150 × 103 cm2/(V s)

100 × 103

75 × 103

50 × 103
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rugated MBE structure is primarily caused by an
increase in the mobility of 2D electrons rather than by
a change in the concentration of the 2D electron gas.

From the experimental results presented above, it
follows that the negative MR that occurs in the classical
magnetic field range is most pronounced in MBE struc-
tures with corrugated growth surfaces, i.e., in the struc-
tures in which the scattering of charge carriers is mainly
caused by the short-range potential of the doping impu-
rity and the long-range potential associated with the
nonplanar configuration of heterointerfaces [7]. The
comparison with the theory [3, 11] shows that this
experimental observation agrees well with the theoreti-
cal prediction [3]: the scattering of a 2D electron gas by
both short-range and long-range potentials leads to a
semiclassical negative MR.

Thus, on the basis of the comparison of our experi-
mental data with the theory and with the results of the
numerical simulation, we showed that the negative MR
observed for narrow GaAs quantum wells with corru-
gated heterointerfaces is semiclassical and is caused by
the scattering from the short-range and long-range
potentials.

We are grateful to M.V. Éntin and A.G. Pogosov
for fruitful discussions. This work was supported by
the Russian Foundation for Basic Research, project
no. 01-02-16892.
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We elaborate an analytical theory of a cascade of magnetic field-induced charge-density-wave (FICDW)
phases. It is shown that the following features distinguish it from the well-known spin-density-wave cascade:
(1) the FICDW phases exist at temperatures much lower than the characteristic CDW transition temperature at
H = 0; (2) the cascade of the FICDW phases dramatically changes at certain directions of a magnetic field due
to an interplay of Zeeman spin-splitting and electron motion along open Fermi surfaces. Theoretical results are
compared with the recent experimental attempts to reveal FICDW phases in the organic conductors
α-(ET)2MHg(SCN)4 (M = K, Tl, Rb, etc.). © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.45.Lr; 72.15.Nj; 73.20.Mf
A cascade of magnetic field-induced spin-density-
wave (FISDW) phases has been intensively studied
since its experimental discovery in the (TMTSF)2X and
(DMETTSeF)2X organic compounds [1, 2] (for the first
theories of this phenomenon, see [1–4]; for the recent
theoretical analysis, see [5]; for the recent experiments,
see [6]). The possibility that a similar phenomenon, a
cascade of magnetic field-induced charge-density-wave
(FICDW) phases, may exist in some solids was dis-
cussed in [3] and was numerically proved in [7].
Indeed, if a charge-density-wave (CDW) state is
destroyed by pressure in a quasi-one-dimensional
(Q1D) conductor, it can be restored in a magnetic field,
which increases 1D Peierls instability for both SDW
and CDW phases due to the “one-dimensionalization”
of the electron’s motion, as shown in [3–5, 7]. Never-
theless, the existence of the FICDW phases in real
materials has not been firmly established, and an ana-
lytical theory of FICDW states has not been elaborated
so far. The major problem in observing the FICDW
phenomenon is sufficiently high CDW transition tem-
peratures, TCDW . 100 K, in traditional Q1D conduc-
tors. Due to high TCDW, the CDW states normally dem-
onstrate very low responses to the experimental mag-
netic fields, H . 10–30 T, and experimental pressures,
P ≤ 10 kbar.

Very recently, the first experimental indications [8–10]
that the FICDW phases perhaps exist in layered organic
conductors α-(ET)2MHg(SCN)4 (M = K, Tl, Rb, etc.)
with low enough DW transition temperatures at H = 0
and P = 1 bar, TCDW . 8–10 K, have appeared. To be
more specific, the unexpected changes in slope of the
low temperature magnetoresistance at T ! TCDW

¶ This article was submitted by the author in English.
0021-3640/03/7803- $24.00 © 20138
accompanied by hysteresis [8] (observed under pres-
sure P ≥ 3 kbar, which destroys the CDW state at H = 0)
were interpreted [8] in terms of the FICDW phase tran-
sitions. Moreover, the recent low-temperature measure-
ments in a tilted magnetic field [9, 10] in
α-(ET)2MHg(SCN)4 conductors were suggested [9] to
reflect an interplay of Zeeman spin-splitting and the
orbital effects of the electron’s motion along open
Fermi surfaces (FS). Note that the most popular
description of the ground states in α-(ET)2MHg(SCN)4

compounds at T . 8–10 K is based on an idea [11]
about a formation of some density-wave (DW) phase.
Although the physical nature of this DW phase is still
controversial (see, for example, discussions in [7–10,
12–14]), the experimental confirmation [8] of the the-
ory [7] at low enough magnetic fields and the interpre-
tation of the experiment [9] seem to be strong argu-
ments in favor of the CDW scenario.

Our goals are (1) to elaborate an analytical theory of
a cascade of FICDW phase transitions in a magnetic
field perpendicular to the conducting layers (i.e., [x(a),
z(c)]-plane) and (2) to suggest a theory of the above
mentioned cascade at some “commensurate directions”
of a magnetic field. (We note that the possibility that
some special directions of a magnetic field may exist
due to interplay of the Zeeman spin-splitting and the
orbital electron motion along open orbits was discussed
in [7, 15]. Nevertheless, no theoretical description of
this phenomenon in FICDW phases has yet been pro-
posed.) Below, we reveal some peculiar features of the
FICDW phase diagram that distinguish it from the
FISDW one [1–5] and present an additional argument
in favor of the CDW–FICDW scenario for the ground
states in α-(ET)2MHg(SCN)4 compounds.
003 MAIK “Nauka/Interperiodica”
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Let us consider the FICDW phases in a tilted mag-
netic field perpendicular to the conducting chains [i.e.,
x(a) axis],

(1)

in a layered conductor with a Q1D FS [1–4, 7, 8, 11, 16]:

(2)

where θ is the angle between the field direction and the
normal to the conducting plane, +(–) stands for the right
(left) sheet of the FS; vF and pF are the Fermi velocity

and Fermi momentum; tc @ tb ~  are the overlapping
integrals of the electron wave functions [1–5, 7, 11].

As in [1–5, 7, 8], we suppose that, under external
pressure, the “antinesting term”  is bigger than its

critical value,  > , which corresponds to destruc-
tion of the CDW phase [1–4, 7, 8]. Let us find the
metal–FICDW phase transition temperature,
TFICDW(H), where the FICDW phases exist at high
enough magnetic fields and low enough temperatures.
They correspond to the following order parameters:

(3)

Using the Green’s functions method [1, 3–5, 7, 17],
we find that the Green’s functions in the mixed repre-

sentation [3, 4], (iωm; py, pz; x, x1), where

(4)

obey the following equations:

(5)

Here, iωm is the so-called Matsubara frequency [17],
σ = +(–) stands for electron with spin up (down); µB is
the Bohr magneton, c is the speed of light; and Planck’s
constant h = 1.

H = 0 θcos θsin, ,( )H , A = 0 θsin θcos–, ,( )Hx,

e
± p( ) v F px pF+−( ) t⊥ py pz,( ),–±=

t⊥ py pz,( ) 2tc pzc*( )cos=

+ 2tc' 2 pzc*( )cos 2tb pyb*( ),cos+

tc'

tc'

tc' tc*

∆FICDW r( ) ∆ iQr( ),exp=

Q 2 pF K+ π/b* π/c*, ,( ).=

Gσ
±

Gσ
± iωm; py pz; x x1, ,( )

=  i pF x x1–( )±[ ] gσ
± iωm; py pz; x x1, ,( ),exp

iωm iv F
d
dx
------±

– t⊥ py
eH θxsin

c
---------------------– pz

eH θxcos
c

----------------------+, 
  µBHσ–

× gσ
± iωm; py pz; x x1, ,( ) δ x x1–( ).=
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Note that the main difference between Eqs. (4), (5)
and the equations determining the Green’s functions in
the FISDW case [1, 3–5] is the appearance of the Zee-
man spin-splitting term, µBH, in Eq. (5). Let us solve
Eqs. (4), (5) using the procedure described in [3, 4].
Then, let us use the Gor’kov-type equations [1, 3–5, 17]
to determine the metal–FICDW phase transition tem-
perature, TFICDW(H). As a result, we find that, in contrast
to the well-known case of the metal–FISDW phase
transitions [1, 3–5], the equation

(6)

determining the metal–FICDW phase transition tem-
perature, TFICDW(H), contains the Zeeman spin-splitting
term, 2µBH. (Here, g is a bare coupling constant for the
CDW instability, J0[…] is the Bessel function, ωc(H) =
eHc*vF/c is the frequency of electron motion along the
open sheets of the FS (2).)

To describe a cascade of the FICDW phases analyt-
ically, we suppose that the magnetic field is strong
enough to satisfy the condition of the so-called “quan-
tum limit,” πTFICDW(H) ! ωc(H) (for discussions,
see [5]). In this case, we find with a logarithmic accu-
racy the following expression for the metal–FICDW
phases transition temperature from Eq. (6):

(7)

(8)

where  is a critical value of the “antinesting term” ,
which destroys the CDW phase at H = 0; 〈…〉Z means
averaging over the coordinate Z, MAX(…)K stands for
the maximum value of a function with respect to the
variable K.

As follows from Eq. (8), the FICDW effective inter-
action constant geff(H) is nonzero only for the FICDW

1
g
---

2πTFICDW Zd

v F

2πTFICDWZ
v F
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d

∞
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×J0
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ωc H( ) ev FHc*/c,=

geff H( ) 1
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phases (3) with the “quantized” longitudinal compo-
nent of the wave vector,

(9)

(10)

where L1 and L2 are integers. It is possible to rewrite
Eq. (8) as follows:

(11)

where the effective FICDW coupling constant (11)
defines the metal–FICDW phase transition line for the
FICDW order parameters (3) with

(12)

where N and L are integers. Note that the order param-
eters (3) with four possible wave-vectors (12) corre-
spond to the same value of the metal–FISDW transition
temperature (see Eqs. (7), (11)). In other words, the lay-
ered Q1D metal (2) is unstable in a magnetic field (1)
with respect to the formation of four FICDW phases
with the “quantized” wave vectors (12). Our theoretical
results (7)–(12) are summarized in Fig. 1, where the
cascade of the FICDW phase transitions (calculated for

K1 H L1,( ) +
2µBH

v F

-------------- 2L1

ωc H( ) θcos
v F

----------------------------,+=

K2 H L2,( ) –
2µBH

v F

-------------- 2L2

ωc H( ) θcos
v F

----------------------------,+=

geff H( ) 1
2 tc' /tc*( )ln
------------------------JN

2 2tc'

ωc H( ) θcos
---------------------------- ,=

JN
2 2tc'

ωc H( ) θcos
---------------------------- MAX JL

2 2tc'

ωc H( ) θcos
---------------------------- 

 
L
,=

K1 2 3 4, , , H( )
2µBH

v F

--------------± 2N
ωc H( ) θcos

v F

----------------------------,±=

Fig. 1. Upper curve: phase transitions between the FISDW
phases [3–5] with K = 2Nωc(H)/vF; lower curve: the phase
transitions between the FICDW phases with K = 2µBH/vF +
2Nωc(H)/vF [see Eqs. (3), (12)] calculated in the paper for
θ = 0 [see Eqs. (7), (11)], where N is an integer. The follow-
ing notations and values of the parameters are used: λ' =
2 /ωc(H) ~ 1/H; ln( ) = 1.4. Note that the FICDW

phase transition temperatures are much lower than the
FISDW phase ones.

tc' tc' /tc*
θ = 0) is compared with the FISDW cascade [1, 2, 4, 5,
18–20].

In contrast to the FISDW case [1–5, 18–20], the
quantization rules (12) for the FICDW wave vector (3)
contain the Zeeman spin-splitting term. This leads to
significant differences between physical properties of
the FICDW and FISDW phases. Indeed, as follows
from Eq. (11), the effective interaction constant for the
formation of the FICDW phases is two times smaller
than the corresponding constant for the formation of the
FISDW phases [1–4, 18–20] (see Fig. 1). Therefore,
unlike the FISDW phases, the FICDW ones can appear
only at temperatures much lower than the CDW charac-
teristic temperature at H = 0 and P = 1 bar:

(13)

Note that this result is in agreement with the experiment
[8] and, thus, supports the hypothesis [7–12] about the
CDW ground states in α-(ET)2MHg(SCN)4 compound
at H = 0 and P = 1 bar.

As follows from Eqs. (7)–(10), the second distinc-
tive feature of the FICDW phases is that the effective
FICDW coupling constant changes at “commensurate
directions” of a magnetic field,

(14)

where M ≠ 0 is an integer.
Starting from Eq. (8), it is possible to show that the

effective coupling constant for the “commensurate
directions” of a magnetic field (14) is equal to

(15)

where L and N are integers. Thus, the cascades of the
FICDW phase transitions at the “commensurate direc-
tions” of a magnetic field (14) are qualitatively different
from the cascade at θ = 0 (see Fig. 2). As can be seen
from Eq. (15) and Fig. 2, the FICDW transition temper-
atures at “commensurate directions” of a magnetic field
can be significantly higher than the FICDW transition
temperatures for the standard experimental geometry,
where magnetic field is perpendicular to the conducting
layers (i.e., at θ = 0). This provides a method to detect
the FICDW phases in other Q1D compounds. We spec-
ulate that the experimental results [9], where some
novel phases were observed only at angles higher than
θ ≥ π/4, may be related to the main “commensurate
angles” (14) (see Fig. 2).

TFICDW H( ) ! TCDW H 0= P, 1 bar=( ).
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Below, we discuss the applicability of the analytical
theory of the cascades of FICDW phase transitions sug-
gested in the paper to real experiments. We stress that,
in the paper, we have extended the so-called “quantized
nesting” (QN) model [1–4, 18–20] to describe the cas-
cade of the FICDW phase transitions. As shown in [5],
the analytical QN model in the case of FISDW phase
transitions is an approximation that is qualitatively cor-
rect in the quantum limit where ωc(H) ≥ πTFICDW(H).
Therefore, we expect that the analytical theory sug-
gested by us is qualitatively correct at least if ωc(H) ≥
πTFICDW(H). In contrast to the FISDW case, application
of the present theory is restricted by the second condi-
tion, ωc(H) ≤ 2 , since Eqs. (7)–(15) are valid only
with logarithmic accuracy. Using the typical values of
the parameters [8], ωc(H) . 1 K/T, TFICDW(H) . 1 K,
and tc . 10 K, we can conclude that the analytical the-
ory suggested in the paper is an appropriate description
of the FICDW phases in a broad region of magnetic
fields, 3 T ≤ H ≤ 20 T.

To summarize, an analytical theory of a cascade of
the FICDW phase transitions in a magnetic field per-
pendicular to the conducting chains in layered Q1D
metals (predicted by L.P. Gor’kov and the author in [3]
and numerically proved in [7]) is elaborated. As a
result, we come to the conclusion that, in contrast to the
FISDW phases, the FICDW ones can exist only at suf-
ficiently low temperatures (13). This is in agreement
with the experimental data [8] and is an extra argument
in favor of the CDW/FICDW nature of the ground
states existing at low temperatures in organic conductor
α-(ET)2MHg(SCN)4. We have suggested a theory of
the FICDW phases in an inclined magnetic field and
calculated the FICDW phase diagram for some “com-

tc'

Fig. 2. Phase transitions between the metallic and the
FICDW phases are calculated for θ = 0 (solid line) [see
Eqs. (3), (7), (11), (12)] and for two “commensurate direc-
tions” of a magnetic field [see Eq. (14)]. Upper dashed line
corresponds to θ = π/4 (i.e., M = 1), whereas the lower
dashed line corresponds to M = 2 [see Eqs. (14), (15)];

ln( ) = 1.4, 2µBH/ωc(H) = 1/ ; λ' = 2 /ωc(H) ~

1/H. Note that TFICDW(H, θ = π/4) is higher than
TFICDW(H, θ = 0).

tc' /tc* 2 tc'
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mensurate directions” [7, 15] of a magnetic field (see
Eqs. (14), (15) and Fig. 2). It is shown that the FICDW
transition temperatures can be higher for some “com-
mensurate directions” of a magnetic field than for the
field perpendicular to the conducting plane (see
Eqs. (11), (14), (15) and Fig. 2). This provides an
experimental method to detect the FICDW phases in
other Q1D compounds and may be related to the exper-
iment [9], where some novel phases were observed
only in inclined magnetic fields.
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Manganites RMnO3

A. M. Kalashnikova and R. V. Pisarev*
Ioffe Physicotechnical Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia

* e-mail: pisarev@mail.ioffe.ru
Received June 30, 2003

The optical spectra of single crystals of hexagonal rare-earth manganites RMnO3 (R = Sc, Y, Er) are studied in
the range from 0.7 to 5.4 eV. It is found that the spectra substantially differ from the spectra of orthorhombic
manganites in both the positions of spectral features and their polarization anisotropy. It is shown that the opti-
cal absorption edge is determined by an abnormally strong (k . 1) and narrow electric dipole transition with
the center at approximately 1.6 eV with light polarization in the basal plane of the crystal. This transition can
be treated with confidence as charge transfer from oxygen to manganese. The experimental results are in many
instances substantially different from the first-principles calculations of the electronic structure of YMnO3 pub-
lished recently and, hence, may serve as a reliable basis for the further improvement of computational methods.
© 2003 MAIK “Nauka/Interperiodica”.
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The character of electronic states and the nature of
the fundamental absorption edge in strongly correlated
compounds of 3d transition metals have been the sub-
ject of intensive studies for several decades. Despite
this, many principal questions in this field remain open
and experimental studies in some cases lead to ambig-
uous results and often become the subject of contradic-
tory explanations. This is primarily due to strong elec-
tron correlation and an intimate connection between
spin, charge, and orbital degrees of freedom in the com-
pounds of 3d metals. This complicates the construction
of rigorous theoretical models, whereas the same
experimental result can be explained within the frame-
work of different models. The most striking examples
of strong correlations are the high-temperature conduc-
tivity in copper oxide compounds [1], colossal magne-
toresistance, and a number of other phenomena in
orthorhombic manganites with the perovskite struc-
ture [2]. Neither the former nor the latter phenomenon
has received a strict and unambiguous explanation
so far, and studies in these fields are being actively con-
tinued.

In this work, we report investigations into optical
properties of hexagonal dielectric manganites RMnO3
(R = Sc, Y, and Er), which can be regarded as an anti-
pode of orthorhombic manganites. In terms of their
chemical composition, undoped hexagonal and orthor-
hombic manganites are identical. However, differences
in crystal structures and in the symmetry of the local
environment of magnetic manganese and rare-earth ions
lead to radical differences between the physical proper-
ties of these two groups of materials. Using the ellipsom-
etry technique in the spectral range of 0.7–5.4 eV, we
0021-3640/03/7803- $24.00 © 20143
found that the electronic structures of hexagonal and
orthorhombic manganites are substantially different
from each other. We will show that the results of first-
principles calculations of the electronic structure of
YMnO3 published recently by two groups [3, 4] are in
many instances substantially different from our experi-
mental results.

Hexagonal manganites RMnO3 (R = Sc, Y, In, Er, …
Lu) form a group of compounds with an unusual com-
bination of electrical, magnetic, and optical properties.
The results of earlier studies of these materials can be
found in the reference literature [5], and many new pub-
lications have appeared in recent years (see, for exam-
ple, [6] and references therein). Hexagonal manganites
at room temperature are crystallized in the noncen-
trosymmetric 6mm point group and represent ferroelec-
trics, whereas orthorhombic manganites with the per-
ovskite structure possess the mmm symmetry, that is,
are centrosymmetric. It can be expected that the elec-
tronic structures of these two groups must be substan-
tially different, because Mn3+ ions in hexagonal manga-
nites reside in a bipyramidal environment of five O2–

oxygen ions, whereas those in orthorhombic mangan-
ites are located in a distorted octahedral environment of
six O2– ions. In particular, the difference in the local
symmetry of Mn3+ ions results in the fact that the Jahn–
Teller effect is exhibited in orthorhombic manganites,
whereas this effect is absent in hexagonal manganites.

Only fragmentary reports of investigations into the
optical properties of hexagonal manganites are avail-
able in the literature. The optical absorption spectra of
thin polycrystalline YMnO3 films of hexagonal and
003 MAIK “Nauka/Interperiodica”
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orthorhombic modifications were investigated in [7]. It
was inferred that the fundamental absorption edge of
both materials lies at about 4.2–4.3 eV. The lumines-
cence spectra of a hexagonal YMnO3 single crystal and
the unpolarized optical absorption spectra of a solution
of YMnO3 and KBr powders were published recently
in [8]. The results of studies of second-harmonic gener-
ation in hexagonal manganites in the region of local 3d
transitions were published in several works [9, 10]. The
third-order nonlinear optical response in the energy
range 1.45–1.62 eV was investigated in [11].

The measurements of the ellipsometric parameters
ψ and ∆ were carried out at temperature T = 295 K in
the spectral range 0.7–5.4 eV. We calculated the optical
parameters of the materials using the relationship [12]

(1)

where eps is the pseudodielectric function and rpp/rss =

.

The samples of ScMnO3 and ErMnO3 represented
polished plane-parallel plates with the normal along the
[0001] hexagonal optical axis. In this case, the
pseudodielectric function eps determines the element
exx = eyy of the dielectric tensor along the direction of
intersection of the incidence plane and the sample sur-

e
ps θ 1 θ

1 rpp/rss–
1 rpp/rss+
------------------------ 
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Fig. 1. Spectral dependences of the real and imaginary parts
(dotted and solid lines, respectively) of the dielectric func-
tion exx (a) for ScMnO3 and (b) for ErMnO3. The inset
shows the result of a decomposition of the absorption peak
in the region of 1.6 eV (solid line) with the use of Gaussian
functions (dotted lines) for ErMnO3.
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face [13]. The measurements were performed for inci-
dence angles θ = 65°, 70°, and 75°, and calculations
gave coincident results. The YMnO3 sample was a plate
with the normal along the y axis, that is, with the optical
axis in the [0001] plane of the plate. In this case, the
investigations were carried out for two orientations of
the sample with the optical axis parallel and perpendic-
ular to the incidence plane. These investigations
allowed the values of exx and ezz to be calculated with
the use of the ellipsometric relationships and the itera-
tion method proposed for anisotropic crystals in [14].
The accuracy of measurements was mainly limited by
the small sizes of the samples, which were of about
2−4 mm2.

The spectra of the real  and the imaginary 
components of the dielectric tensor for scandium and
erbium manganites are presented in Fig. 1. Below 1.2–
1.3 eV, the absorption drops to zero, which is in agree-
ment with the direct transmission measurements of the
absorption spectrum. An abnormally intense and nar-
row absorption peak in the region of 1.57–1.59 eV is
the most pronounced feature of the spectra. This peak
exhibits asymmetry, and its decomposition into compo-
nents with the use of Gaussian functions demonstrates
the occurrence of at least two components, as is shown
in the inset in Fig. 1. An analogous decomposition pro-
cedure with the use of Lorentzian functions gives a sig-
nificantly poorer description of the spectra. The absorp-
tion in the region above 2.2–2.4 eV increases with
increasing photon energy, and a broad absorption peak
is observed in the energy region of 4.6–4.8 eV.

The spectral dependences of  and  for the

YMnO3 crystal are shown in Fig. 2. The spectra of 

and  are similar to the analogous spectra in ScMnO3

and ErMnO3. The agreement between the spectra dem-
onstrates the reliability of the results obtained, because
different crystallographic planes were used in the ellip-
sometric measurements and different analytical rela-
tionships were used for dielectric functions in the cal-
culations for YMnO3 on the one hand and for ScMnO3

and ErMnO3 on the other. The spectra of  and 
in YMnO3 strongly differ from each other; that is, the
crystal is characterized by strong optical anisotropy in
the entire studied region. The change in the spectrum in
the region of the narrow absorption band at 1.6 eV and
also the appearance of a wide absorption band at 3.5 eV
should be specially noted. The spectral dependences of
linear birefringence ∆n = nx – nz and linear dichroism
∆k = kx – kz, which characterize the optical anisotropy
of YMnO3, are displayed in Fig. 3.

Let us compare the results obtained for the dielectric
functions of hexagonal manganites with the available
experimental data. Our results showed that manganites
in the visible spectral region (1.8–3.4 eV) are character-
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ized by high values of the absorption coefficient and are
actually opaque. At the maximum of the band at 1.6 eV,
α = 1.6 × 105 cm–1 in ScMnO3 and 2 × 105 cm–1 in
ErMnO3. In one of the first works on hexagonal manga-
nites [15], thin single-crystal LuMnO3 plates were stud-
ied in a polarization microscope. The plate thickness
was not indicated in this work; however, based on our
data, we believe that the plates were several microme-
ters thick. This study showed that LuMnO3 possesses
strong linear dichroism in the visible spectral region. In
particular, the plates turned dark red in the light polar-
ized along the optical axis and light green in the case of
polarization perpendicular to the optical axis. This
qualitative observation is in agreement with the spectral
dependence of linear dichroism (Fig. 3), which exhibits
a change in the dichroism sign between the red and
green spectral regions.

Our results demonstrate a significant quantitative
and even qualitative disagreement with the absorption
spectrum of a thin polycrystalline YMnO3 film [7]. We
reason that these discrepancies are associated with the
unreliability of the measurement of absorption in thin
polycrystalline films over a wide spectral range, when
both the quality of the material itself and the difficulties
of adequately taking into account the factors of light
reflection, scattering, and interference may result in a
strong divergence between the true and the measured
spectra. As an additional argument, we indicate that the
most intense absorption band at 1.6 eV went virtually
unnoticed in [7] and significant differences between the
YMnO3 films with the hexagonal and orthorhombic
structures were also not detected. The absorption curve
of a solution of YMnO3 and KBr powders given in the
work [8] is also rather far from our results.

The results of first-principles electronic structure
calculations for the hexagonal modification of YMnO3
were published recently [3, 4].The LSDA+U approxi-
mation was used in [3], and it was shown that YMnO3
must be a semiconductor with a band gap of about
1.5 eV. The top of the valence band is mainly deter-
mined by the 2p states of the oxygen ions in the basal
plane, and the lowest unoccupied band is formed by the
(3z2–r2) states of the Mn3+ ions. These calculations
showed that the electronic spectrum of YMnO3 must
contain a higher unoccupied band with the lower edge
at about 4.3 eV; that is, there is a second forbidden band
between the two manganese subbands. This conclusion
qualitatively agrees with our results, and the narrow
absorption band at about 1.6 eV can be assigned to tran-
sitions with charge transfer from the planar oxygen ions
to manganese with the formation of a hole in the
valence band and with the occupation of the vacant
(3z2–r2) orbital with an electron. The unusual narrow-
ness of the band can be associated with polaron effects
[16], which lead to band narrowing for small-radius
polarons. Another first-principles approach based on
the LDA+U model was used in the work [4]. The results
JETP LETTERS      Vol. 78      No. 3      2003
of calculations by the two groups [3, 4] markedly differ,
though some details of the spectra of electron density of
states are in qualitative agreement. In particular, the
band-gap width at point Γ of the Brillouin zone was
determined in [4] at 0.48 eV, which is significantly

Fig. 2. Spectral dependences of the real and imaginary parts
(dotted and solid lines, respectively) of the dielectric func-
tions (a) exx and (b) ezz for YMnO3.

Fig. 3. Spectral dependences of linear dispersion (dotted
line) and linear dichroism (solid line) for YMnO3.
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smaller than the value found in the work [3]. We see
that the results of the works [3, 4] can only qualitatively
be compared with the experimental data, but, neverthe-
less, these results allow the conclusion that the strong
absorption band that we observed at about 1.6 eV can
be assigned to a transition with charge transfer from
oxygen to manganese.

The spectra of dielectric functions e1 and e2 were
calculated in the work [4]. In this case, we also may
speak of only some qualitative agreement between the
calculated and experimental results. The calculations

show that the optical absorption edge for  is located

at about 0.5 eV and that for  is located at 1.6 eV; that
is, very strong anisotropy is observed in optical suscep-
tibility. The results presented in Fig. 2 actually indicate
that the optical susceptibility of YMnO3 is character-
ized by strong anisotropy; however, the numerical val-
ues of e1 and e2 and their spectral dependences strongly

differ from the calculated results. The  susceptibility
predominates in the region of the band at 1.6 eV; how-

ever, the contribution of  becomes stronger above
2.4 eV (see Fig. 3) with a wide band at about 3.5 eV.

Let us dwell on another interesting feature of the
electronic structure of hexagonal manganites that stems
from the comparison of the results for the spectra of e1
and e2 and the studies of second-harmonic generation
[9, 10]. The spectra of e1 and e2 in Figs. 1 and 2 are
undoubtedly determined by intense electric dipole tran-
sitions between the oxygen valence band and the man-
ganese subbands. Clearly defined features are observed
in the second-harmonic spectra in the energy regions of
1.4–1.8 eV and 2.4–2.8 eV. These features with respect
to their selection rules can be explained adequately
within the model of local transitions between the 3d
states of Mn3+ ions in the crystal field of the five oxygen
ions that form the nearest environment of manganese
ions [10, 17]. The transitions between the 3d states are
forbidden within the electric dipole approximation, and
their intensity in the oxides of 3d transition metals is
two or three orders of magnitude weaker than the inten-
sity of allowed electric dipole transitions [18]. No pro-
nounced feature is observed in the spectra of e2 in the
region of 2.4–2.8 eV, where the features of the second-
harmonic spectra are observed. This can be readily
understood taking into account the differences by two
or three orders of magnitude in the intensities of
allowed and forbidden transitions.

Thus, as a result of the optical study of three hexag-
onal manganites RMnO3, we obtained spectral depen-
dences for the dielectric functions e1 and e2 in the spec-
tral range from 0.7 to 5.4 eV. The reliability of the
results obtained is corroborated by the close similarity
of the spectra of e1 and e2 in crystals of different com-
positions, the perfect identity of spectra calculated from
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zz
measurements at different incident angles, and the sim-
ilarity of the spectra of exx in ScMnO3 and ErMnO3 to
the spectra of exx in YMnO3. These latter were obtained
with samples differing in their orientation and with the
use of another procedure for the calculation of spectra
based on the ellipsometric values ∆ and ψ. All this tes-
tifies that the published data on absorption in thin
YMnO3 films and in solutions of YMnO3 [7] and KBr
powders [8] give no way of deducing correct conclu-
sions on the electronic structure of hexagonal mangan-
ites. The detection of an intense electric dipole absorp-
tion band with the center at about 1.6 eV, which can be
interpreted as a band due to charge transfer from the
oxygen band to the lower manganese subband, is an
important result of our work. The upper manganese
subband is located at a higher energy with the center at
about 4.6–4.8 eV. Thus, the electronic structure of hex-
agonal manganites substantially differs in its character
from the structure of orthorhombic manganites, in
which charge-transfer transitions start in the region at
about 4 eV [19]. It should also be noted that our results
in many important instances substantially differ from the
calculations published by two theoretical groups [3, 4].

The authors are grateful to K. Kohn for presenting
some samples for investigations and to Th. Rasing
for  the possibility of performing ellipsometric mea-
surements.
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The density of states of a two-dimensional electron gas in a magnetic field has been studied taking into account
the scattering on point impurities. It is demonstrated that allowance for the electron–impurity interaction com-
pletely removes degeneracy of the Landau levels even for a small volume density of these point defects. The
density of states is calculated in a self-consistent approximation taking into account all diagrams without inter-
sections of the impurity lines. The electron density of states ρ is determined by the contribution from a cut of
the one-particle Green’s function rather than from a pole. In a wide range of the electron energies ω (measured
from each Landau level), the value of ρ(ω) is inversely proportional to the energy |ω| and proportional to the
impurity concentration. The obtained results are applicable to various two-dimensional electron systems such
as inversion layers, heterostructures, and electrons on the surface of liquid helium. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 73.20.At; 71.70.Di; 73.20.Hb
1. Two-dimensional (2D) electron systems exist at
the interfaces between two condensed media, typical
examples being electrons on the surface of liquid
helium [1] and in inversion layers and heterostruc-
tures [2]. In a magnetic field, the spectrum of electron
energies in such a 2D system is discrete and infinitely
degenerate. It is of interest to consider the removal of
degeneracy as a result of the interaction between elec-
trons and point defects.

It was established [3] that the infinite degeneracy of
the Landau levels is only partly removed in the pres-
ence of a small surface density ns of point impurities.

For N < S /2π  (where N = nsS is the total number of
impurities, S is the area accessible for electrons, and lH

is the magnetic length), the degree of degeneracy of the

Landau level is  – N. In this case, N electron states

are split from each level to form an impurity band. An
elegant proof of this statement [3] was based on the
possibility to determine the electron wave function on
the Landau level in such a way that this function is zero
at the impurity location sites. Note that the point impu-

rities do not modify the spectrum of S/2π  – N elec-
tron states.

However, this approach requires a proper definition
of the surface density of impurities ns. Indeed, the 2D
electron systems are usually open. The motion of elec-

lH
2

S

2πlH
2

-----------

lH
2
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trons along the z axis perpendicular to the conducting
plane is characterized by the wave function ϕ(z) limited
by a very large macroscopic scale z∞ depending on the
geometry of a measuring instrument. The typical form
of ϕ as a function of z is as follows [1, 2]:

(1)

Since the entire region of z > 0 (rather than only z ≤ z0)
is accessible for an electron, the surface density of
impurities ns = nimpz∞ is very large even for a small vol-
ume density nimp of these impurities. Therefore, we can
assume that ns = ∞ and, hence, the infinite degeneracy
of the Landau levels is completely, rather than partly,
removed as a result of the interaction of electrons with
point impurities. 

Below, the electron density of states ρ is determined for

a small concentration of impurities C0 ≡ nimp2π z0 ! 1.
In other words, it is assumed that the number of impu-
rities is small in a surface layer (z ≤ z0) but large in the
entire region of z < z∞, where C∞ = C0(z∞/z0) @ 1. This
assumption is usually valid in experiment [1, 2]. For
electrons on the surface of liquid helium, the roles of
point impurities are played by the heavy atoms of
helium vapor.

ϕ2 z( ) 1
2z0
-------z*

2
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2. The density of states ρ(E)is related to the imagi-
nary part of the Green’s function of electrons G(r, r', E)
by the equation [4]

.

Since the electron system is homogeneous in the con-
ducting plane (x, y), the Green’s function G(r, r, E) is
independent of the coordinates in this plane: G(r, r, E) =
G(z, E). The gap between electron levels in the z axis is
usually large and all electrons occur on the lowest
energy level and have the same wave function ϕ(z), so
that G(z, E) = G(E)ϕ2(z). The magnetic field H is
assumed to be strong, so that the interaction V(r)
between electrons and impurities does not mix their
wave functions on various Landau levels. Therefore,
the electron density of states ρ(E) depends only on the
variable ω ≡ E – ε0 – (n + 1/2)ωc, where ε0 is the energy
of the lowest level in the z axis and ωc is the cyclotron
energy.

The consideration below is restricted to point impu-
rities. The potential of interaction between an electron
and such impurities is given by the expression

(2)

where x, y, z are the electron coordinates and xi, yi, zi are
the coordinates of point impurities. The electron scat-
tering length is

(3)

The Green’s function G(ω) is related to the seeding
function G0(ω) of the pure electron system by the well-
known relation [4]

(4)

where the function Σ(ω) can be determined using the
well developed cross technique [4–6]:

(5)

This expression is obtained by summing over all the
cross diagrams without intersections of the impurity
lines [6], followed by averaging over the positions of
impurities. Relations (4) and (5) are valid only for the
point impurities interacting with electrons as described
by the potential (2).

It is convenient to define a reduced wave function
ϕ∗  for the transverse electron motion by the following
relation

(6)
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where z0 is a characteristic scale of the function ϕ0(z).
Then, using Eqs. (3), (5), and (6), we obtain

(7)

where C0 ≡ 2π z0nimp and ω0 ≡ –(a/z0)ωc.

3. Let us consider the problem to within the first-
order approximation in the impurity concentration. To
this end, the exact Green’s function G in formulas (5)
and (7) has to be replaced by the seeding function G0 =
1/ω. This approximation corresponds to the summation
of all cross diagrams corresponding to the electron scat-
tering on a single impurity. Expressions (4) and (7)
indicate that the Green’s function G formally has a pole
at ω = 0:

(8)

However, it follows from (7) that the integral with
respect to z∗  diverges as ω  0. This makes the pole
residue small, which is related to a large value of the
truncation parameter z∞:

(9)

Taking z∞ = ∞, we arrive at a conclusion that the infinite
degeneracy of the Landau levels is completely removed
already in the first-order approximation with respect to
the impurity concentration. The density of states ρ(ω)
is determined only by features of the J(ω) function
given by formula (7):

(10)

Consider a model system with the reduced wave
function ϕ∗  defined by the relations

(11)

This function corresponds to a boundary condition at
z = 0 for a narrow and deep potential well [17]. Here,
the function J(ω) (7) acquires the following form:

(12)

Assuming that there is only one type of point impurities
with a negative scattering length a (which corresponds
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to repulsion of electrons from the impurity) and using
formulas (10) and (12), we obtain

(13)

In this case, the density of states ρ(ω) is determined by
a cut of the one-particle Green’s function G(ω), rather
than by the pole. Taking into account the definition
of ω0 in formula (7), we obtain a criterion of weak elec-
tron–impurity interaction V(r) in terms of the parame-
ter a given by formula (3): a ! z0. Thus, if the length of
electron scattering from impurities is smaller than the
characteristic scale of the transverse quantization in the
z axis, the approximation of a single Landau level is
valid and the densities of states for various levels
exhibit no intersections.

According to formula (13), the density of states
ρ(ω) in a wide range of the electron energies is
inversely proportional to the ω value:

(14)

The density of states ρ(ω) described by formula (13)
is integrable and, to within the terms proportional to the
square impurity concentration C0, obeys the relation

(15)

Therefore, the number of electron states remains
unchanged in the presence of the electron–impurity
interaction, although the δ-like peak of the seeding den-
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Reduced density of states ωρ(ω)/C0 plotted in a logarithmic
scale for three values of the impurity concentration C0 = 0.2
(1), 0.1 (2), and 0.05 (3). The values of ωN correspond to
energies near which (ω/C0)ρ(ω) is a universal function of
ω/ωN.

3 2 1
sity of states ρ0(ω) is absent in the ρ(ω) function. This
implies that, for an arbitrarily small value of the param-
eter ω, we can find a point impurity with the coordinate
zi = z0ln(ω0/ω) @ z0 for which the degeneracy of the
Landau level will be removed. This conclusion is inde-
pendent of the form of the wave function ϕ(z). For a
physical function ϕ(z) determined by relations (1),
the density of states ρ(ω) is given by the same expres-
sion (13) for ω ! ω0 to within the terms on the order of
ln(ω0/ω). The only important condition is that ϕ(z) ~

 for z @ z0.

Moreover, we can always find a broad range of ω
where ρ(ω) is inversely proportional to the energy ω.
For example, in the case of an oscillator wave function

ϕ∗ (z∗ ) ~ , expression (10) yields for ω ! ω0

(16)

In the presence of a strong electric field forcing elec-
trons to move at the interface of two condensed media,

(z∗ ) ~ , expression (10) yields for ω ! ω0

(17)

Thus, allowance for the electron–impurity interac-
tion in open 2D electron systems completely removes
degeneracy of the Landau levels. The density of states
ρ(ω) is described by expressions (13)–(17). Generali-
zation to the case of impurities of several types is triv-
ial. For example, in the case of repulsing and attracting
impurities, an analogue of relation (14) is

(18)

where C– and C+ are the total concentrations of the
repulsive and attractive impurities, respectively.

4. The density of states ρ(ω) described by formula (13)
exists for

(19)

Outside this region, it is necessary to take into account
terms of the higher orders in the impurity concentration
C0, since these terms are multiplied by a large quantity
ln[(ω0 – ω/ω)]. In order to study the Green’s function in
a wider interval of energies ω, let us consider the self-
consistent approximation determined by formulas (4),
(5), and (7). Substituting wave function (11) into
Eqs. (4) and (7), we obtain an equation for the func-
tion G:

(20)
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For ω ! ω0 and ω0G @ 1, Eq. (20) can be simplified to

(21)

where ωN ≡ ω0exp(–1/C0)C0/e is the new energy scale.
Introducing the new function y ≡ –ωG/C0, we can write
Eq. (21) as

(22)

from which it follows that y is the function of a single
real variable y = y(ω/ωN). Separating the real and imag-
inary pats of this function, y = A + iB, and using rela-
tion (22), we obtain a system of two equations for the
real quantities A and B. This system can be presented in
the following form:

(23)

This equation determines the density of states ρ(ω) =
C0B/πω. We are interested in a solution such that
B(ω/ωN) ≥ 0. The function B(ω/ωN) monotonically
increases from zero at ω = ωN to B = π for ω/ωN  ∞.
In the vicinity of ω = ωN, this function can be approxi-

mated as B ≈ . For ωN ! ω ! ω0, we
have B = π[1 – 1/ln(ω/ωN)] to within the double loga-
rithmic terms in ω/ωN. Thus, for ω ! ω0, the density of
states is given by a universal function of ω/ωN, the
asymptotic form of which for C0 ! 1 is as follows:

(24)

Now consider the region of |ω – ω0| ! ω0 in which
ImG0(ω) exhibits a singularity in the first-order approx-
imation with respect to the concentration C0. The solu-
tion G(ω) of the self-consistent Eqs. (4) and (5) is not
singular in this region and monotonically decays to
zero at ω = ωx ≡ ω0(1 + x0), where x0 is a solution to the
algebraic equation x0 = C0[ln(1/C0) + 1 + ln(1 + x0)]. For
C0 ! 1, we obtain x0 ≈ C0[ln(1/C0) + 1 + C0ln(1/C0)]. In
the vicinity of ω = ωx, Eq. (20) yields (after transforma-
tions analogous to those used to derive (24))

The reduced density of states ωρ(ω)/C0 = B/π for
three concentrations of the point impurity is plotted in
the figure. For ω ! ω0, all profiles fit a universal curve
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that shifts along the abscissa axis together with ωN. This
solution correctly describes the behavior of the density
of states ρ(ω) until this function goes to zero (i.e., in the
interval of ωN < ω < ωx). Outside this interval, the den-
sity of states exhibits tails, which are exponentially
small and can be determined only using diagrams with
intersections of the impurity lines.

In conclusion, it should be emphasized that the pro-
posed physical pattern is at variance with the notions
formulated in the literature. Some rigorous results of
the theory of electron–impurity interactions in 2D elec-
tron systems are reported in [8–10]. However, these
works consider the 2D systems with point impurities
whose potential V(r) in Eq. (2) has the form of

(25)

Since the impurity coordinate in the z axis is undeter-
mined, the potential V(r) described by expression (25)
corresponds to a δ-like filament, rather than a point
impurity. In contrast, the results presented above were
obtained for three-dimensional impurities. Should the
averaging over the coordinate zi be “forgot,” we pass to
the nonphysical limit of δ-like filaments.

This study was supported by the Russian Foundation
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Current–voltage characteristics and spectral dependences of photovoltage are investigated at T = 4.2 and 300 K
in stress-free structures with germanium quantum dots (QDs) in the GaAs/ZnSe/QD–Ge/ZnSe/Al system. The
“Coulomb staircase” type features in the current–voltage characteristic observed at room temperature without
illumination are due to the Coulomb interaction of electrons in resonant tunneling through intrinsic levels in
QDs. The features in the photovoltage spectra are related to the absorption of radiation in the system of discrete
levels of QDs. An energy band diagram of the structure is constructed based on the experimental data. © 2003
MAIK “Nauka/Interperiodica”.

PACS numbers: 73.63.Kv
Interest in studying the spectra of electronic states of
semiconducting quantum dots (QDs) is associated with
new properties that are not observed in the systems of
higher dimensionality and also with the prospects of
using these properties for the development of new
devices on their basis [1, 2]. Semiconducting QDs are
obtained using molecular-beam epitaxy (MBE) in vari-
ous systems such as Ge/Si, InAs/GaAs, and others [3–5]
in which QDs are strongly stressed because of the dif-
ference in the lattice constants of the QD and matrix
materials. Elastic stresses and their nonuniform distri-
bution complicate the analysis of the spectrum of elec-
tronic states [6]. This paper reports the results of study-
ing current–voltage characteristics and spectral depen-
dences of photovoltage in new stress-free structures
with germanium quantum dots in the GaAs/ZnSe/QD–
Ge/ZnSe/Al system. With the difference in the band
gap of ZnSe and Ge equal to approximately 2 eV, the
misfit of lattice parameters for the ZnSe–Ge heterosys-
tem comprises about 0.2%. Thus, this system is free of
elastic stresses; nevertheless, it is possible to obtain an
array of germanium QDs on the epitaxial layer of zinc
selenide in certain MBE modes [7, 8].

As was shown in [7], the sizes of islands in the
growth plane can be varied in the range 5–20 nm with
their height equal to 1–5 nm. According to the images
obtained by a scanning tunneling microscope (STM),
the distinctive feature of the QD array is that the spatial
ordering of islands is slightly pronounced and their
density is high, namely, (2–8) × 1011 cm–2. Larger val-
ues were observed for the (001) and (110) orientations
of the substrate. The high density of islands and the low
degree of ordering are apparently determined by the
absence of elastic fields in the heterostructure under
consideration.
0021-3640/03/7803- $24.00 © 20152
The structures were obtained by the MBE tech-
nique. GaAs plates with the (001) orientation and
n-type conduction doped up to a level of 1018 cm–3 were
used as the substrate. First, an epitaxial ZnSe layer 6–
10 nm thick was grown on the substrate, then the depo-
sition of germanium QDs was carried out, and the
deposited QDs were covered by a ZnSe overlayer of the
same thickness. With the aim of forming an active
region of small sizes, an electron-beam resist was
deposited on the structure obtained, in which windows
100–150 nm in diameter were opened. The size of the
window was controlled by an atomic force microscope.
In the closing stage, aluminum was deposited and con-
tact regions were formed. The scheme of the structure
is shown in the inset in Fig. 1.

With the structures obtained in this way, current–
voltage characteristics and spectral dependences of the
photovoltage were measured at temperatures of 300
and 4.2 K. Because of small currents and the occur-
rence of strong spurious signals, it was not possible to
measure current–voltage characteristics for the struc-
tures with a contact diameter of 150 nm at a low tem-
perature in the cryostat. Measurements of current–volt-
age characteristics of test structures of a large area
showed that, as the temperature varies from 300 to
4.2 K, the current decreases only by a factor of 30–40,
which points to the predominance of tunneling pro-
cesses.

The current–voltage characteristics measured for
the structure with a contact diameter of 150 nm at room
temperature exhibited features that were more pro-
nounced after processing the curves by subtracting the
ohmic component of the shunt current. The transverse
current through the structure is determined by not only
tunneling through QDs but also the current through the
003 MAIK “Nauka/Interperiodica”
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ZnSe film. The ZnSe film is not a dielectric and can
conduct a current. In addition, in injection from con-
tacts, a current limited by the space charge can be
observed. In this case, a linear voltage dependence of
current must be observed in weak fields and a quadratic
dependence must be observed in sufficiently strong
electric fields. This averaged voltage dependence of
current (given features of the “staircase” type) is actu-
ally observed; however, because an analysis of the pas-
sage of current in ZnSe is beyond the scope of this
paper, Fig. 1 demonstrates a current–voltage character-
istic in relatively weak fields.

It is evident in the figure that variations of current of
the Coulomb staircase type are observed, but the fact
that these variations start at a voltage of less than 50 mV
and are not strictly periodic in voltage is the main fea-
ture of the current–voltage characteristic.

Spectral characteristics were measured by an alter-
nating signal with a frequency of ~102 Hz with illumi-
nation on the substrate side. The photoresponse spectra
of the structure at the temperatures T = 300 K and T =
4.2 K without an external bias are given in Fig. 2. The
occurrence of photovoltage indicates that a built-in
filed exists in the structure, which is due to the contact
potential difference. In saturation, the open-circuit pho-
tovoltage reached 0.12 V.

It is of interest that the long-wavelength edge of the
spectrum starts approximately with 1.3 µm at room
temperature and with 1.15 µm at liquid-helium temper-
ature. This position of the edge does not correspond to
the absorption edge in bulk germanium; at the same
time, its shift correlates well with the change in the
band gap in Ge upon the change in temperature from
300 to 4.2 K. The characteristic measured at a temper-
ature of 4.2 K exhibits features that can be associated
with the discrete character of the spectrum. In the high-
energy region, the spectrum edge sharply terminates,
being cut off by the substrate absorption.

The features of the “Coulomb staircase” type
observed in the current–voltage characteristic are not
strictly periodic. Irregularity in the period of Coulomb
oscillations (and in the repeatability of the stairs of the
Coulomb staircase) is a typical phenomenon for verti-
cal QDs with a small number of electrons in them
because of strong effects of electron–electron interac-
tion [9]. In our case, however, because tunneling can
proceed through QDs with somewhat differing sizes,
the irregularity can also be associated with this circum-
stance. Moreover, the shape of the current–voltage
characteristic will be determined by not only Coulomb
interaction but also the density of the intrinsic energy
levels of QDs and their width.

It can be suggested that the appearance of current
and the occurrence of features in the current–voltage
characteristic at low voltages, that is, in the case when
the difference of the Fermi levels in aluminum and gal-
lium arsenide is small indicate that at least the first
JETP LETTERS      Vol. 78      No. 3      2003
quantum level of an electron in QDs lies below the Fermi
level of the metal in the equilibrium state (at V = 0).

Consider the region of the structure in which photo-
active absorption arises, leading to the appearance of
photovoltage. Photovoltage can form only through
excitation of electrons and holes (electron–hole pairs)
followed by their spatial separation caused by the built-
in electric field. It is evident that neither GaAs nor ZnSe
can be regions of electron–hole pair generation,
because the band-gap width in these compounds at T =
4.2 K is larger than 1.5 eV and impurity absorption can-
not give rise to photovoltage. Absorption in the QD
array can lead to the formation of localized electrons
and holes, but a mechanism of their spatial separation
must exist.

In the structure under study, a built-in electric field
exists, which is generated by the contact potential dif-

Fig. 1. Current–voltage characteristic of a structure with a
contact 150 nm in diameter at T = 300 K. Points correspond
to experimental data, and solid line corresponds to an
approximation of the current–voltage characteristic.

Fig. 2. Spectral dependence of a photosignal without a shift.
Illumination on the GaAs side. Curve 1 was measured at T =
300 K, and curve 2 was measured at T = 4.2 K. Arrows indi-
cate the edge of the GaAs band gap and the onset of direct
transitions in bulk Ge at 4.2 K.
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ference between Al and GaAs, and its value is approxi-
mately equal to (3–5) × 105 V/cm. As the measured cur-
rent–voltage characteristics show, the ZnSe layers are
tunnel-transparent for electrons. Hence, upon illumina-
tion, the photoexcited electron of a generated electron–
hole pair can tunnel in this field from a QD to GaAs.
Further, two possibilities can be in principle accom-
plished: a nonequilibrium hole from a QD can tunnel to
Al, or an electron from Al can pass to a QD. In any case,
a photocurrent will flow in the external circuit and a
photovoltage will arise in the system in the open-circuit
mode.

Experimental data (the known sizes of QDs, cur-
rent–voltage characteristics, and the spectral depen-
dence of the photovoltage) along with the data on the
magnitude of band discontinuities for the heterojunc-
tions entering into the structure allow a band diagram to
be constructed for the GaAs/ZnSe/QD–Ge/ZnSe/Al
structure.

The band diagram was calculated from the values of
the valence band discontinuity between GaAs and ZnSe
equal to 1.3 eV and that between ZnSe and Ge equal to
1.0 eV. The values of the band discontinuity between
the materials entering into the structure that are avail-
able in the literature vary in a wide range. This is con-
nected with differences in technological conditions
(substrate preparation and growth temperature), sub-

Fig. 3. Low-energy levels (three digits, the first one corre-
sponds to the QD height) of the subband of heavy (subscript
hh) and light (hl) holes and electrons for the L valley and the
Γ valley (primed).
strate stoichiometry, the presence of foreign atoms, the
plane of substrate orientation, and a number of other
factors. In the work by G. Kremer [10], an analysis of
experimental data was carried out, and the conclusion
was made that, in the case of growth on the nonpolar
(110) plane in the system of GaAs, ZnSe, and Ge mate-
rials with regard to the layer deposition sequence, the
values of the band discontinuity equal

∆Ev  ZnSe/GaAs = 0.96 eV, ∆Ec ZnSe/GaAs = 0.35 eV,

∆Ev  Ge/ZnSe = 1.52 eV, ∆Ec Ge/ZnSe = 0.5 eV,

∆Ev  ZnSe/Ge = 1.29 eV, ∆Ec ZnSe/Ge = 0.73 eV.

At the same time, the valence band discontinuity
∆Ev  Ge/ZnSe found in [11] comprises 0.44 eV for the
(001) plane, which substantially differs from the value
of 0.93 eV for the (110) plane given in the same work
and disagrees with the data published in [10]. With this
scatter in the data, the values of the band discontinuity
were adjusted from the following conditions:

(1) the position of the first quantum electron level in
the L valley must be lower than the position of the
Fermi level of the system in equilibrium, which was
determined from the difference in the work function of
Al and GaAs equal to 0.8 eV;

(2) the optical transition with the lowest energy
measured in the experiment must correspond to the
transition of an electron from a quantum level in the QD
valence band to the unoccupied electronic level closest
to the Fermi level. Note that the observed optical tran-
sition energy corresponds to a transition in the vicinity
of the Γ25' maximum of the valence band to the Γ2' min-
imum of the conduction band.

The lowest radiation energy at the absorption of
which photovoltage is observed can be written as

where E111hh is the first quantum level of heavy holes,
Eg Ge is the germanium band-gap width at T = 4.2 K and
Ef – Ec Ge is the difference between the Fermi level and
the bottom of the germanium conduction band, which
(rather than quantum levels occupied by electrons)
determines the optical transition with the lowest photon
energy. For T = 4.2 K, the lowest experimental quantum
energy at which a photosignal is observed comprises
approximately 1.1 eV. 

STM studies of QDs provide their shape and distri-
butions by height and diameter as functions of the aver-
age thickness of the deposited germanium layer [7, 8].
Based on these data, the pattern of the energy spectrum
of electron and hole levels in QDs 3 × 15 × 15 nm in
size was qualitatively evaluated. Here, the shape of
QDs was approximated by a parallelepiped with regard
to the effective mass of the corresponding subband of
holes but without regard to Coulomb interactions and
with the use of Bastard’s boundary conditions. The val-
ues of the effective mass of carriers in ZnSe and various
valleys of Ge and also the values of the band-gap width

Emin : E111hh Eg  Ge E f E c   Ge –  ( ) ,+ +           
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in Ge and ZnSe at a temperature close to 0 K were used
in the calculations.

The energy band diagram of the structure con-
structed with the use of these calculations, published
data, and the experimental conditions indicated above
is presented in Fig. 3.

From the band diagram presented here, it can be
seen that QDs in an equilibrium state contain levels
positioned below the Fermi level of the system. There-
fore, the tunneling of electrons from the aluminum con-
tact must proceed upon applying a potential correspond-
ing to the self-capacitance, that is, at V ≈ 40–50 mV.
Here, the occurrence of a small potential in GaAs must
not substantially limit tunneling, because the concen-
tration of electrons in GaAs is high (n = 1018 cm–3), and
the thickness of the space-charge region near the
GaAs–ZnSe heteroboundary does not exceed several
tens of angstroms. As the voltage increases, the current
is limited by only the charging of QDs, because the dif-
ference in energy between the neighboring electron
levels

Here, the first subscript of the energy corresponds to the
height, and the second and the third subscripts corre-
spond to the base of the QD.

Because absorption in QDs is limited on the short-
wavelength side by absorption in GaAs, it is evident
that transitions to the  level cannot be observed.
The occurrence of features in the spectral characteristic
of the photosignal can be associated with the difference
in the absorption coefficient for different transitions.
The absence of a pronounced discrete spectrum is
explained by the fact that the experimental spectrum of
the photovoltage contains optical transitions in QDs of
different sizes. The occurrence of dots with a scatter in
sizes follows from the histogram of the distribution by
height obtained in the work [6].

Thus, the current–voltage characteristic and photo-
electric properties of a stress-free n+GaAs/ZnSe/Ge–
QD/ZnSe/Al structure with QDs were studied. Features
associated with Coulomb effects were detected in the
current–voltage characteristic at room temperature.
Photovoltage arising upon light absorption in QDs was

∆E = E1i 1 j 1+ + E1i 1 j+–  = E1i 1 j 1+ + E1ij 1+– 2 meV.<

E211'
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detected. A band diagram of the system was con-
structed based on experimental data. This diagram does
not contradict the data on the values of band disconti-
nuities available in the literature for the corresponding
heterojunctions. It adequately describes the observed
current–voltage characteristic and the spectral depen-
dence of the photovoltage.

The authors are grateful to A.E. Plotnikov for help
in manufacturing the structures.
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The effect of impurities situated at different distances from a two-dimensional electron gas on the density of
states in a strong magnetic field is analyzed. Based on the entire result of Brezin, Gross, and Itzykson, we cal-
culate the density of states in the entire energy range, assuming the Poisson distribution of impurities in the
bulk. It is shown that, in the case of small impurity concentration, the density of states is qualitatively different
from the model case when all impurities are located in the plane of the two-dimensional electron gas. © 2003
MAIK “Nauka/Interperiodica”.

PACS numbers: 73.20.At; 73.20.Hb
1. INTRODUCTION
Two-dimensional electrons in a quantizing mag-

netic field H have been attracting much attention [1],
especially since the discovery of the quantum Hall
effect [2]. The properties of two-dimensional electrons
in the magnetic field are affected by the presence of
electron–electron interactions, as well as by impurities.
Investigation of the density of states as a function of the
magnetic field and filling fraction allows us to estimate
the inhomogeneities caused by impurities in experi-
mental samples [3]. Although the electron–electron
interaction should usually be taken into account, the
question of the density of states in the simplest model
of noninteracting electrons is also rather interesting.

In the absence of interaction, impurities near a two-
dimensional electron gas (2DEG) provide the only
mechanism for broadening of Landau levels. In a weak
magnetic field, a large number of Landau levels, N @ 1,
are filled. One can therefore use the self-consistent
Born approximation that is justified by the small
parameter lnN/N ! 1. This results in the well-known
semicircle shape for the density of states [4]. Beyond
the self-consistent Born approximation, one can find
exponentially small tails in the density of states [5].

In the opposite limit of a strong magnetic field, only
the lowest Landau level is partially occupied. In this
case, one can neglect the influence of the other empty
Landau levels assuming ωH @ T, τ–1. Here, ωH = eH/m
denotes the cyclotron frequency, where e and m are the
electron charge and mass, respectively, T stands for the
temperature, and τ is the elastic collision time. The den-
sity of states on the lowest Landau level strongly
depends on the statistical properties of the random

¶ This article was submitted by the authors in English.
0021-3640/03/7803- $24.00 © 20156
potential created by impurities and on the value of the

dimensionless parameter nS/nL, where nL = 1/(2π )

with the magnetic field length lH = 1/  and nS

stands for the two-dimensional impurity density. For
the white-noise distribution of the random potential, the
density of states was found exactly by Wegner [6]. For
arbitrary statistics of the random potential, the density
of states was obtained exactly in a beautiful paper by
Brezin, Gross, and Itzykson [7]. If the number of impu-
rities is less than the number of states on the Landau
level, nS  < nL, the Landau level remains partially degen-
erate. In the opposite case, nS  ≥ nL, the presence of
impurities leads to complete lifting of the degeneracy
of the Landau level [7, 8].

In experimental samples, impurities can be found
rather far from the 2DEG [1, 2]. In such a situation, the
two-dimensional electron system is subject to the three-
dimensional random potential. This means that an elec-
tron localized at the heterojunction feels impurities sit-
uated at distances much larger than the width z0 of the
2DEG. This situation was considered recently by Dyu-
gaev, Grigor’ev, and Ovchinnikov [9]. In the lowest
order of the perturbation theory in the concentration
nimp of three-dimensional scatterers, they calculated the
density of states D(E) in the limit when the multiple
scattering on the same impurity provides the main con-
tribution. Assuming exponential decay of the wave
function in the transverse direction, ϕ2(z) ∝  exp(–z/z0),
they obtained a universal regime where D(E) =
nimpz0/E, and energy E is measured from the unper-
turbed Landau level. Being bounded from the sides of
both small and large energies by many-impurity effects,
this interval contains most of the states of the unper-

lH
2

mωH
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turbed Landau level. Though the analysis of [9] holds
for an arbitrary Landau level, it cannot be generalized
to the limits of small and large energies, where a non-
perturbative treatment of impurity scattering is
required.

The main objective of the present letter is to present
the full analysis of the effect of far impurities on the
density of states of a two-dimensional electron gas in a
strong magnetic field. Employing the remarkable result
of Brezin, Gross, and Itzykson [7], we calculate the
broadening of the lowest Landau level by the three-
dimensional short-range impurities with the Poisson
distribution in the bulk.

2. RESULTS

Usually, impurities occupy a rather large volume
near a two-dimensional electron gas and, consequently,
their number exceeds the number of states at the Lan-
dau level, Nimp @ nLS, with S being the area of the two-
dimensional electron system. Therefore, the degener-
acy of the Landau level is removed completely by
impurities [7, 9]. The behavior of the density of states
is determined by the new dimensionless parameter

(1)

which will be referred to as impurity concentration.
Here, nimp is the three-dimensional impurity density
and z0 stands for the spatial extent of the electron wave
function in the direction perpendicular to the 2DEG,
explicitly defined in Eq. (4).

In experiments, there is usually a small amount of
impurities in a layer of width z0 near the two-dimen-
sional electron gas [1, 2]; i.e., impurity concentration is
small, f ! 1. In this case, we obtain the following den-
sity of states at the lowest Landau level as a function of
the deviation E from the unperturbed level ωH/2:

(2)

where

(3)

f
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In deriving Eq. (2), we assumed that the wave function
ϕ(z) decays in the transverse direction as

(4)

where z0 defines the width of the 2DEG and A is a con-
stant of order 1. The form (4) corresponds to a rectan-
gular well confining potential [1]. The energy scale

(5)

is introduced by impurities, where u0 > 0 is the strength
of the repulsive disorder potential [cf. Eq. (14) below]
and γ ≈ 0.577 denotes Euler’s constant. The result of
E @ E0 is governed by the parameters

(6)

where z1 ~ z0 is the width of the wave function as deter-
mined via its fourth moment:

(7)

The fact that the density of states vanishes for E < 0
is expected, since the random potential is purely repul-
sive. Since  = 0, the density of states also

vanishes at the position of the unperturbed Landau
level, D(0) = 0.

In the interval 0 ≤ E ! E0e–1/f, the density of states
exhibits the maximum

(8)

at the exponentially small energy

(9)

In the region E0e–1/f ! E ! E0, the density of states
D(E) = fnL/E is linear in impurity concentration coin-
ciding with the perturbative result obtained by Dyu-
gaev, Grigor’ev, and Ovchinnikov [9]. This indicates
that the multiple scattering on the same impurity pro-
vides the main contribution to the density of states for
energies E0e–1/f ! E ! E0. This energy interval con-
tains the major part of the states formed from the lowest
Landau level.

The result found in Eq. (2) in the limit 0 ≤ E ! E0e–1/f

is applicable for f ln(E0/E) – 1 @  (cf. Eq. (31)). At
the border of applicability, Eq. (3) gives Sf[ f ln(E0/E)] ~
fE0/E, and, thus, D(E) merges with the universal result
at E @ E0e–1/f.
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In the region of rather large energies E @ E0, the tail
of the density of states is described by the same expres-
sion, as if all impurities were situated in the plane of the
2DEG, with the effective two-dimensional parameters

(10)

We mention that the tail of the density of states corre-
sponds to some optimal fluctuation of the random
potential, as happens for the purely two-dimensional
problem [10, 11].

For large impurity concentration, f @ 1, the Poisson
distribution can be replaced by the white-noise distribu-
tion of impurities on the plane with the effective param-
eters (10). The density of states is therefore given by the
well-known formula [6, 7]

(11)

where we introduce the function

(12)

The shift of the maximum of D(E) to positive energies
is related to the repulsive character of the impurities’
potential. Equation (11) describes the density of states
for the Poisson distribution only approximately, since
the exact density of states should vanish E ≤ 0. How-
ever, the deviation of Eq. (11) from the exact answer is
exponentially small (e– f ! 1) for positive E.

3. MODEL
The spin-polarized two-dimensional electron gas in

the presence of the random potential V(r, z) and the
strong perpendicular magnetic field H is described by
the following one-particle Hamiltonian:

(13)

Here, A stands for the vector potential, H = rot A, and
Uconf(r, z) denotes the confining potential that creates
the two-dimensional electron gas. We use units such
that " = 1 and c = 1.

We assume that impurities situated near the two-
dimensional electron gas are zero-range repulsive (u0 > 0)
scatterers producing the random potential

(14)

Assuming that the confining potential Uconf depends
only on the z coordinate, we can represent the electron
wave function as follows:

(15)
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where ϕ(z) is the ground-state wave function for the
electron motion in the direction perpendicular to the
2DEG in the absence of disorder and ψ(r) describes the
electron motion in the plane of 2DEG. The decomposi-
tion (15) is equivalent to the projection onto the lowest
level of dimensional quantization and is analogous to
the projection onto the lowest Landau level states ψ(r).
Since, in experiment, the energy separation between the
lowest and the first excited level of dimensional quanti-
zation is usually larger than the cyclotron gap, the accu-
racy of projection onto ϕ(z) is higher than the accuracy
of projection onto the lowest Landau level. With the
help of the ansatz (15), the original three-dimensional
problem (13) reduces to the two-dimensional one with
the effective two-dimensional random potential

(16)

Thus, the distribution of impurities along the z direction
leads to an additional random distribution of the poten-
tial strengths u0ϕ2(zj) effectively felt by two-dimen-
sional electrons.

By using the general result of Brezin, Gross, and
Itzykson [7] for the random potential (16), we obtain
for the density of states at the lowest Landau level

(17)

where

(18)

The properties of the random potential are encoded in
the function g(β), which is defined as

(19)

where the average 〈…〉  is with respect to the distribu-
tion of the random potential Veff(r).

We assume that the three-dimensional scatterers
(14) with equal strengths u0 obey the Poisson statistics,
being uniformly distributed along the z direction. Then,
averaging over Veff(r) in Eq. (16) reduces to integration
over the z coordinate:

(20)

On writing Eq. (20), we employed the fact that the wave
function ϕ(z) vanishes for z < 0.
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4. EVALUATION OF THE DENSITY 
OF STATES

The density of states is generally given by the inte-
gral representation (17), (18), and (20). However,
Eq. (18) cannot be calculated in a closed form valid for
arbitrary values of impurity concentration and energies.
Below, we analyze the most interesting asymptotic
cases.

First of all, we note that D(E) vanishes for energies
E < 0 regardless of the form of ϕ(z). This follows from
the fact that, for E < 0, the function F(E) is purely imag-
inary, which can be obtained by performing the Wick
rotation t  –iτ of the integration contour in Eq. (18).

The density of states can also be easily calculated in
the limit of either large impurity concentration (f @ 1)
and arbitrary energies or small impurity concentration
(f ! 1) but large energies E @ E0. In both cases, inte-
gral (18) is determined by small values of t, which
allows one to expand the function g(β) given by
Eq. (20):

(21)

where z1 is defined in Eq. (7). The quadratic term in
Eq. (21) describes the Gaussian (white-noise) distribu-
tion of impurities [7], whereas the linear term accounts
for the energy shift due to the nonzero average potential
of impurities. Employing the result of [7], we arrive at
Eq. (11). Using the asymptotic expression W(x) .

2  valid at x @ 1, we obtain the result (2) for
f ! 1 in the regime E ! E0.

The most interesting is the behavior of D(E) in the
limit of small impurity concentrations, f ! 1, and suffi-
ciently small energies, E ! E0. In this limit, assumed
hereafter, the function F(E) given by Eq. (18) is deter-
mined by large values of t, which makes it possible to
use asymptotic formula (4) for calculation of g(β) in
Eq. (20). Introducing the dimensionless energy ε =
E/E0, where the energy scale E0 is defined in Eq. (5),
and rescaling t accordingly, we rewrite the expression
for the density of states as

(22)

where
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The function h(t) is positive at the negative part of
the imaginary axis, t = –iτ, having the following
asymptotic behavior at τ @ 1:

(25)

where c0 is a constant of the order 1 and (τ) decays
exponentially at large τ:

(26)

The ln2t asymptotics of h(t) is specific to the problem
with distributed strengths u0ϕ2(zj) of impurities and
asymptotic behavior (4) of the wave function ϕ(z) far
from the 2DEG and should be contrasted with the lnt
dependence for the case of the Poisson distribution with
constant impurity strengths. For another decay law of
the wave function, ϕ2(z) ~ exp[–(z/z0)α], the leading
asymptotics would be h(t) ~ ln1 + 1/αt.

The function F(ε) in Eq. (23) is given by an oscillat-
ing integral. Therefore, it is desirable to deform the
integration contour to get rid of oscillations. However,
for ε > 0, such a deformation in Eq. (23) is impossible:
the first factor prohibits deformation into the lower
half-plane, whereas the second factor leads to a diver-
gent integral if deformed into the upper half-plane. This
complication can be overcome by splitting the inte-
grand into two parts, singling out the leading log-square
asymptotics:

(27)

where we have omitted the irrelevant factor . In the

limit ε < 1, the integral with the second term (  – 1)
in the square brackets allows deformation of the con-
tour to the negative part of the imaginary axis, where
the integrand is purely real. It can be shown that the
resulting contribution can be neglected compared to the
integral with the first term in the square brackets. The
latter can be calculated by deforming the integration
contour to the upper part of the imaginary axis. After a
proper rescaling of variables, one finds

(28)

where we have again omitted the irrelevant factor
ie−γ/ε.
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Equations (22) and (28) give the integral representa-
tion for the density of states at E ! E0. Its behavior
depends on the value of the parameter

(29)

For small ξ < 1, i.e., not too close to the unperturbed
Landau level (e–1/ f ! e ! 1), one can calculate F(ε) per-
turbatively. Expanding Eq. (28) in f, one can easily
recover the perturbative result of [9], as well as the
leading correction to it:

(30)

Retaining only the leading term, we obtain result (2) in
the regime E0e–1/ f ! E ! E0.

For large ξ > 1, corresponding to energies close to
the unperturbed Landau level, evaluation of Eq. (28) is
subtler. In this case, the ratio ImF(ε)/ReF(ε) is expo-
nentially small, and special care must be taken in order
to extract ImF(ε). On the other hand, ReF(ε) can easily

be calculated for ξ – 1 @ . Making the substitution
τ = εep and calculating the resulting Gaussian integral
over p, one finds

(31)

To extract ImF(ε), we find it convenient to pass to
another representation for the function F(ε). To this
end, we decouple the square term in the exponential of
Eq. (28) by the Hubbard–Stratonovich transformation,
and, integrating over τ, we obtain

(32)
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The density of states D(E) in units of nL/πE0 as a function
of lnE/E0 for different values of impurity concentration f. 
This representation in terms of the Γ function is suitable
for numerical simulation due to rather fast convergence
of the integral, contrary to the initial representation (23).

To proceed, we shift the integration contour to the
upper part of the complex plane: z = iξ + x, with x being
the new real integration variable. As soon as ξ ≥ 1, in
doing the contour transformation, we have to cross the
poles of the Γ function at z = ik with integer k > 0. As a
result, we obtain

(33)

where [ξ] is an integer part of ξ, and the function
Φ(ξ, f ) is defined as

(34)

An advantage of this representation is that the pole
contribution in Eq. (33) is purely real and, hence,
ImF(ε) is determined solely by ImΦ(ξ, f ). Employing
the identity Γ(1 – η)Γ(η) = π/sin(πη) with η = ξ – ix,
we obtain for the imaginary part of Φ(ξ, f )

(35)

In the limit ξ @ 1, the term ix in the argument of the Γ
function can be taken into account as Γ(ξ – ix) .
Γ(ξ)e−ixlnξ. Thereby, we find the following estimate:

(36)

Though Eq. (36) is formally derived for ξ @ 1, it can
also be applied at ξ ≥ 1 as well, with the error being
small by virtue of the inequality f ! 1.

Now, with the help of Eqs. (31), (33), and (36), we

obtain, for ξ – 1 @ ,

(37)

Finally, using Eq. (22), we find

(38)

where Sf(ξ) is defined in Eq. (3). Equation (38) gives
result (2) in the region 0 ≤ E ! E0e–1/ f.
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k 1=

ξ[ ]

∑




=
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------– 

  Φ ξ f,( )




,exp

Φ ξ f,( ) = e iπξ– dxΓ 1 ξ– ix+( )e πx– x2

2 f
------– .exp

∞–

∞

∫

Im Φ ξ f,( ) 2πRe dx

x2

2 f
------–exp

Γ ξ ix–( )
-------------------------.

0

∞

∫–=

ImΦ ξ f,( ) π 2πf
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2
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2
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Re F ε( )
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2
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JETP LETTERS      Vol. 78      No. 3      2003



ON THE EFFECT OF FAR IMPURITIES ON THE DENSITY OF STATES 161
The whole profile of D(E) for ε ! 1 can be obtained
by numerical evaluation of Eqs. (22) and (32). The den-
sity of states numerically calculated for several values
of the impurity concentration f is presented in the
figure.

5. CONCLUSION

In conclusion, we evaluated the density of states of
a two-dimensional electron gas in the presence of a
strong magnetic field and impurities. The fact that
impurities are situated at different distances from the
two-dimensional electron gas leads to a dramatic
change of the density of states in the case of small
impurity concentration compared to the case when all
impurities are situated at the same distance from the
2DEG.

Using the exact result of [7], we obtained the density
of states in the entire energy range for the case of the
wave function with the asymptotic behavior (4). The
density of states vanishes at the position of the unper-
turbed Landau level and has a maximum at an exponen-
tially small energy (9). The major part of the states is
localized by single impurities in accordance with the
findings of [9].

The functional form of the result will be different for
asymptotic behavior of ϕ(z) differing from the simple
exponential decay (4). However, the qualitative struc-
ture of the density of states is supposed to be preserved.
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A simple experimental scheme is proposed for a relativistic quantum cryptosystem based on a Mach–Zehnder
optic fiber interferometer. In this scheme, quantum mechanical laws, along with the restrictions imposed by the
Special Relativity, ensure the detection of any eavesdropping attempt. © 2003 MAIK “Nauka/Interperiodica”.
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* Many schemes for quantum cryptography have
already been proposed and experimentally imple-
mented [1]. Almost all schemes of secret key distribu-
tion use two quantum mechanical exclusions: exclusion
of the copying of an unknown quantum state (no-clon-
ing theorem [2]) and exclusion of perturbation-free dis-
tinguishing between nonorthogonal quantum states [3].
These two closely connected exclusions make it possi-
ble to detect any eavesdropping attempt and ensure
unconditional security. Nonrelativistic quantum
mechanics does not forbid the perturbation-free cloning
and distinguishing of orthogonal states [2, 3]. As was
previously shown in [4–6], the security of the key can
be guaranteed up to a theoretical limit of (e.g., for the
BB84 protocol) 11% for the admissible errors at the
receiver end [4, 6]. This limit arises in fact because it is
impossible to distinguish between errors due to noise in
the channel and eavesdropper-induced errors. There-
fore, to guarantee key security, one must consider that
all errors are induced by the eavesdropper.

The above schemes in no way explicitly use the fact
that information can be transmitted at long distances
only by photons (states of a massless quantized electro-
magnetic field). Since the quantized massless photon
field propagates in a vacuum with the highest possible
velocity, Special Relativity exclusions can be used to
ensure secrete key distribution in quantum cryptogra-
phy. In this case, the security of the key is achieved even
with the use of orthogonal states. Relativistic schemes
of quantum cryptography on orthogonal states of the
photon field were previously proposed in [7, 8], where
orthogonal states with an extent longer than the length
of the communication channel were used in communi-
cation protocols. This property can be in principle

* Basic affiliation.
0021-3640/03/7803- $24.00 © 20162
achieved, but its experimental implementation is diffi-
cult. It has been shown recently that single-photon
states of any length, including those shorter than the
length of the communication channel, can be used for
secret key distribution under exclusions imposed by
both the quantum nature of the states and Special Rela-
tivity [9]. Moreover, the security of the key can be guar-
anteed up to a theoretical limit of 43.75% (7/16) for the
errors at the receiver end. This limit is noticeably higher
than the admissible error limit for nonrelativistic
schemes, because eavesdropper-induced errors can be
partially distinguished from the errors due to noise in
the channel.

In this paper, a simple realization of a quantum cryp-
tosystem based on a Mach–Zehnder optic fiber interfer-
ometer is proposed. Contrary to the previous schemes,
it does not require polarization control and ideal bal-
ance of the arms of the interferometer at the transmitter
and receiver ends. Moreover, the admissible error prob-
ability at the receiver end is equal to about 25%.
Although this value is lower than the theoretical limit
for relativistic schemes [9], it is twice as high as that for
the nonrelativistic schemes based on similar interfer-
ometers. This circumstance is due to the fact that exclu-
sions imposed by quantum mechanics and Special Rel-
ativity are more stringent than purely quantum-
mechanical exclusions.

The impossibility of copying arbitrary quantum
states |ϕ0 〉  and |ϕ1 〉  means the impossibility of the pro-
cess [2]

(1)

This exclusion for orthogonal states is absent in quan-
tum mechanics [2]. The impossibility of acquiring
information about one of the quantum states |ϕ0 〉  and

ϕ0| 〉  ° ϕ0| 〉 ϕ 0| 〉 , ϕ1| 〉  ° ϕ1| 〉 ϕ 1| 〉 .
003 MAIK “Nauka/Interperiodica”
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|ϕ1 〉  without their perturbation means the impossibility
of the process [3]

(2)

if the states are nonorthogonal; i.e., 〈ϕ 0 |ϕ1 〉  ≠ 0. The
reliable perturbation-free distinguishing between
orthogonal states is not forbidden [3]. More precisely,
the theorem proved in [3] does not apply to this case.
This theorem is often interpreted as follows: an orthog-
onal state “passes” through the auxiliary system |A 〉 ,
interacts with it, and changes its state. However, the
theorem does not imply this interpretation. The theo-
rem is purely geometric and states that the state vector
of the auxiliary system |A 〉  can be unitarily transformed
to the new state |A0 〉  or |A1 〉  for the input vector |ϕ0, 1 〉 ,
respectively, without a change in the input vector. In
this case, it is implicitly assumed that the input vector
|ϕ0, 1 〉  is available as a holistic object; i.e., the unitary
transformation U requires access to the entire state
space  in which the state support is nonzero. Oth-
erwise, the transformation is not unitary. The fact that
the state vector is treated in the proof only as a holistic
object |ϕ0, 1 〉  without internal coordinates just implies
that the unitary transformation involves the state vector
as a whole.

The Hilbert space  for any real physical system
is inevitably referred to the Minkowski spacetime,
where a state has the amplitude (smoothing wave func-
tion). Access to the Hilbert space inevitably implies the
access to the spacetime region where the amplitude
(wave function) of the state is nonzero. If only the
spacetime region where the amplitude of the states is
nonzero is accessible, even orthogonal states cannot be
reliably copied or distinguished. The last statement is
more or less evident, because the outcome probability
of any process including copying or distinguishing can-
not be higher than the state-normalization fraction in
the accessible spacetime region, i.e., in the accessible
region of the Hilbert space. Roughly speaking, to reli-
ably copy or distinguish orthogonal states, they must be
simultaneously and entirely accessible.

Thus, if the state amplitude is nonzero in a certain
finite spacetime region, the accessibility of the entire
state means that this region is accessible. In nonrelativ-
istic quantum mechanics, where the maximum velocity
is absent, access to any finite region is instantaneous. In
quantum field theory, where the maximum possible
velocity exists, access to the entire state is possible only
if the extended state is previously unitarily transformed
to a state whose amplitude is nonzero only in an infi-
nitely small space region. After that, one can use the
theorem proved in [2, 3]. This unitary transformation of
the state specified in a finite spacetime region to the
state localized in an infinitely small space region can be
made only in a finite time by virtue of the relativistic

U ϕ0| 〉A〉( ) ° ϕ0| 〉 A0| 〉 ,
U ϕ1| 〉A〉( ) ° ϕ1| 〉 A1| 〉 , A0| 〉 A1| 〉 ,≠

*ϕ0 1,

*ϕ0 1,
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causality principle [10]. The minimum necessary time
is determined by the condition that the initial space
region where the state amplitude is nonzero is covered
by the past light cone (see Fig. 1). The vertex of this
cone is in the infinitely strongly localized region (point)
to which the initial state amplitude is transformed. Each
of the pair of orthogonal states unitarily transformed
(contracted) to the localized region can be then reliably
copied or distinguished. Since we consider massless
states of a quantized field (photons), which propagate
with the maximum possible velocity, this unitary trans-
formation and further copying will lead to a shift
(delay) of the states in spacetime as compared to the
original free evolution (propagation) of the states. This
circumstance makes it possible to detect any eaves-
dropping attempt. We note that exclusions imposed on
measurements in the relativistic region were analyzed
in [11, 12].

In other words, the exclusion theorem for orthogo-
nal states of a massless quantized field is formulated as
follows. Orthogonal states can be copied with a proba-

Fig. 1. 
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bility arbitrarily close to unity. However, copying pro-
vides states that have amplitudes of the same shape but
shifted (translated in spacetime); i.e., a weaker process
is allowed as compared to the process given by Eq. (1)
for the nonrelativistic case:

(3)

Here, UL is the operator of spacetime translation along
the light cone branch for L = ∆(x – t), i.e., the size of the
region where the state amplitude is nonzero (for brev-
ity, we consider that both states are nonzero in the same
spacetime region, but they are distinguished by the
amplitude shape ϕ0, 1(x – t)).

The theorem proved in [3] about distinguishing
between orthogonal states is modified similarly; i.e.,
only a weaker process is allowed as compared to the
nonrelativistic case (2)

(4)

It is convenient to illustrate the above conclusions
by Figs. 1a and 1b. Since the amplitude of states of a
massless quantized field that propagate in one direction
of the x axis depends only on the difference x – t, the
time can be fixed and the coordinate can be considered
as variable or vice versa. We will do this for both cases.
These two cases represent all possible situations. Let
one of the orthogonal states that have the amplitude
ϕ(x – t) and propagate with the speed of light (c = 1,
and state subscript 0 or 1 is omitted for brevity) be spec-
ified. Let the state be localized in the region L; i.e.,

 ≈ 1, where ϕ0, 1(x – t0) is the amplitude

at time t0.
To determine the state amplitude at t0 for all x values

at time t0 in the region where it is nonzero, it is neces-
sary to carry out the unitary transformation of the entire
state. After the unitary transformation of the state
amplitude Uϕ0, 1(x – t0) = (x ' – t), the amplitude of

the new state (x ' – t) can be nonzero in a smaller spa-
tial region. The minimum size of the region in x ' at time
t is determined by the relativistic causality principle [10].
The matrix elements of the unitary operator are nonzero
only if the points (x, t0) and (x ', t) lie within the past
light cone that has the vertex at the point Γ and covers
the region where the state amplitude at time t0 is non-
zero. To the time no earlier than L, the initial state can
be unitarily transformed to the state with the amplitude
localized in an arbitrarily small vicinity of the point Γ.
It is fundamentally important that this state differs from
the initial state ϕ(x – t0). To the time Γ, the values of the
state amplitude for all x values are immediately (instan-
taneously) accessible. Then, the measurement outcome
can be acquired instantaneously, which provides com-
plete (with unit probability) information about the state.

ϕ0| 〉  ° UL ϕ0| 〉( ) UL ϕ0| 〉( ),

ϕ1| 〉  ° UL ϕ1| 〉( ) UL ϕ1| 〉( ).

ϕ0| 〉 A| 〉  ° UL ϕ0| 〉( ) A0| 〉 ,
ϕ1| 〉 A| 〉  ° UL ϕ1| 〉( ) A1| 〉 , A0| 〉 A1| 〉 .≠

ϕ x t0–( ) 2 xd
L∫

ϕ̃0 1,

ϕ̃

If a pair of the initial states is orthogonal, a pair of
orthogonal states can be obtained to the time Γ by the
unitary transformation and, therefore, they can be dis-
tinguished (in this case, the theorem about reliable dis-
tinguishability of orthogonal states [2] can be used). We
emphasize again that these states differ from the initial
states. A state can also be “reconstructed” or copied by
the inverse unitary transformation “directed” to the
future. The state with the initial amplitude shape can be
acquired no earlier than the time determined by relativ-
istic causality. The state amplitude with the initial shape
lies in the future light cone with the vertex at the
point Γ. This state also differs from the initial state: it is
delayed in time with respect to the initial state, which
would propagate in x to time L by the L value if any
attempt of copying or acquiring information about it
were absent (Fig. 1a). We discuss acquiring informa-
tion about states in the channel with unit probability.
The same consideration is applicable to acquiring
information with a probability of less than unity. In this
case, the delay is less than L (Figs. 1a, 1b).

The consideration is also applicable to the nonrela-
tivistic case. In this case, argumentation concerning the
light cone must be omitted in the above consideration
and unitary transformations can be formally instanta-
neous. Moreover, the explicit presence of coordinates
can be excluded from the consideration taking into
account only that states are entirely accessible under
the unitary transformation (the entire spatial region is
instantaneously accessible).

A similar consideration is applicable when the state
is unitarily transformed to the state of an auxiliary
localized system. Such a unitary transformation is real-
ized when “trapping” light [13]. This unitary transfor-
mation transforms the photon-field state to the vacuum
state because it is massless and the propagation velocity
cannot be equal to zero. This unitary transformation
simultaneously transforms the state of the atomic sys-
tem to a certain new state. Being unitary, the transfor-
mation requires access to all the values of the photon-
packet amplitude at the point of the localization of the
atomic system. This access is naturally achieved as the
packet propagates with the speed of light and reaches
the localized atomic system (the packet entirely
“enters” the atomic system). To acquire the result with
unit probability in this process, it also takes time L (sin-
gle-photon packet must entirely enter into the atomic
system). In this case, the photon field is in another (vac-
uum) state, and the auxiliary system is in a new state
depending on the initial photon state. To the time L, it
is possible to determine the initial state with unit prob-
ability and to prepare the same state but with inevitable
delay by L with respect to the free propagation of the
initial packet (Fig. 1b).

For further analysis, it is also important that any
evolution of a massless quantized field interacting with
the environment (other quantum or classic degrees of
freedom in the channel) cannot lead to the contraction
JETP LETTERS      Vol. 78      No. 3      2003
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of the state in the sense that the normalization of the
state is gained in a smaller spatial region falling outside
the light cone as compared to free propagation (see
Fig. 1c). As a rule, this interaction leads to a mixed
state, but the support of the density matrix in spacetime
cannot be contracted and removed outside the light
cone (Fig. 1c). Otherwise, quantum states would trans-
mit information faster than the speed of light. Indeed,
let one of a pair of orthogonal quantum states be known
(Fig. 1c). Alice can acquire classical information from
the quantum state not earlier than the time determined
by the condition that the state amplitude is covered by
the past light cone. After that, she can transmit classical
information to Bob. Such a transmission cannot be
accomplished faster than the speed of light (users are
connected by the branch of the light cone, Fig. 1c). Let
the quantum state in the channel can be compressed so
that the vertex of the past light cone covering the state
is in the spacelike region of the light cone whose vertex
is located at Alice and one of whose branches passes
through Bob. In this case, Bob could extract classical
information from the quantum state earlier than it could
be transmitted at the speed of light by Alice, because
the vertex of the light cone covering the contracted
quantum state falls within the spacelike region.

The above analysis for cryptography means that
noise in the channel prevents both copying and acquir-
ing information by the eavesdropper earlier than it is
determined by the diagrams shown in Figs. 1a and 1b
[eavesdropper error under the passage of the time delay
test is no less than Eq. (12), see below].

We now describe a cryptosystem based on an optic
fiber interferometer (Fig. 2). A pair of orthogonal sin-
gle-photon states of the form

(5)

where the polarization index immaterial for further dis-

cussion is omitted and  = (k, k0), serves as the input
states. States are specified in nonoverlapping frequency
bands ∆k0, 1, which will be considered as coinciding for
brevity. We consider the states propagating in the same
direction. These states carry information between

remote users. We denote ϕ0, 1(k) ≡ (k, k0 = |k |)/ . It
is convenient to represent the states in the coordinate–
time representation as

(6)

(7)

ϕ0 1,| 〉 k̂ϕ̃0 1, δ k̂
2( )θ k0( )a+ k̂( ) 0| 〉d

∆k0 1,

∫=

=  
kd

k
------

ϕ̃ k k0, k=( )
k

-------------------------------- k| 〉 ,
∆k0 1,

∫

k̂

ϕ̃ k

ϕ0 1,| 〉 τϕ 0 1, τ( ) τ| 〉 ,d

∞–

∞

∫=

ϕ0 1, τ( ) ke ikτ– ϕ k( ), τ| 〉d

∆k

∫ kd

k
------eikτ k| 〉 ,

∆k

∫= =
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where τ = x – t. The amplitude of these states depends
only on τ = x – t; i.e., if a measurement outcome takes
place at time t in the range (x, x + dx), the same outcome
can be acquired at time t' in the range (x', x' – x + t + dx).
For brevity, we will say that the amplitudes ϕ0, 1(τ) are
specified on a branch of the light cone.

We take states sufficiently localized so that almost
complete normalization (arbitrarily close to unity) is
gained in the region of size l:

(8)

The degree of spacetime localization is determined by
∆k and l ≈ 1/∆k (more precise relations see in [9]).

Now, we describe the protocol. Alice randomly
chooses one of the states |ϕ0 〉  and |ϕ1 〉  in each pulse at
a priori known times. It is assumed that the length of the
communication channel is known and clocks at both
ends are synchronized. The accuracy of synchroniza-
tion δt must be such that L @ δt (L = Ll – Ls is the dif-
ference between long Ll and short Ls arms of the inter-
ferometer, Fig. 2). The accuracy of instants of the trans-
mission of states to the communication channel is
approximately equal to ≈l ~ 1/∆k.

The interferometer arm at the transmitter end is in
essence necessary for the extension of the short input
state with the size ~l to a longer state consisting of two
“halves” at the distance L @ l. This is technically much
easier than the preparation of an initially extended state
with the “length” L and the correspondingly narrower
frequency spectrum. The communication channel after
the interferometer arm at the transmitter end has two
fiber-optic beam splitters each with one working and
blank (vacuum) entry and exit, as well as delay lines in
one of the arms (Fig. 2). The state at the working exit in
the communication channel has the form (up to the nor-
malization constant and common translation by the arm
length)

(9)

where the half of the state is delayed by L:

(10)

At the receiver end, two halves of the extended state are
united together by the inverse unitary transformation
realized similarly to the input unitary transformation.

Since the onset time for each pulse, as well as the
state length L and communication channel length Lch, is

τ ϕ 0 1, τ( ) 2d

l

∫ 1.≈

ϕ0 1,| 〉 ϕ 0 1, L( )| 〉 ,+

ϕ0 1, L( )| 〉 τϕ 0 1, τ L–( ) τ| 〉 .d∫=

Fig. 2. 
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known, the time of arrival at detectors after uniting two
halves at the receiver end is also known. At the receiver
end, Bob carries out measurements by a detector with
the time constant τd ! L to detect possible delays with
an accuracy better than L. Thus, the detector may not
distinguish the arrival times with accuracy l. In other
words, times ≈l are considered as indistinguishable
(zero).

A prism (or diffraction pattern) at the receiver end is
necessary for the separation of the states with different
frequency bands for 0 and 1. Moreover, since l ! L,
exact balance of the arms between transmitter and
receiver ends of the interferometer is not required. In
other words, halves of the state at the receiver end may
not be exactly united to the state localized in the time
window l. It is only necessary that the delay due to the
difference between arm lengths at the receiver and
transmitter ends is much shorter than !L.

Further, only measurements in pulses that pass the
time delay test retain in the key. In other words, these
measurements provide outcomes in the time window
τ ∈ (Ls + Ll + Lch) ± δl (where the time window δl cov-
ers several state lengths l). In fact, only undelayed mea-
surement outcomes such that the first and second halves
pass through the long and short arms at the transmitter
end, respectively, are retained. At the receiver end, the
first and second halves pass through the short and long
arms, respectively. For these outcomes, the probability
that the eavesdropper knows the bit transmitted by
Alice and passes the time delay test is equal to

(11)

The first factor in the first term is the probability of the
detection of the front half of one of the states. Although
this detection leads to the delay ~l, this delay is not
detected. This probability is no more than 1/2 due to the
localization of the halves of the state at the scale l. If the
detection occurs, the states are uniquely identified (sec-
ond factor), because their frequency bands do not over-
lap. The third factor is the probability of passing the
time delay test at the receiver end and is equal to unity,
because the detector time constant is τd ≈> δl. The first
factor in the second term is the probability of the
absence of the detection in the time window δl. In this
case, the probability of the state identification is equal
to 1/2. The third factor is the probability of passing the
time delay test and is equal to unity, because the state
passes “through” the eavesdropper.

The eavesdropper can increase the probability of
identification only by waiting for the second half of the
state, i.e., by unitary transformations for the assembly

PtE bitE(

=  bitA test τ τ L Lch δl+ +∈ ∈( )∧ OK )=

=  PrE τ δl∈( ) 1 1 PrE τ δl( ) 1
2
--- 1⋅ ⋅+⋅ ⋅ ∈–

≤ 
1
2
--- 1 1

1
2
--- 1

2
--- 1⋅ ⋅+⋅ ⋅ 3

4
--- 1.<=
of the state (see the above discussion), which results in
a delay of about L detected with probability ~1. Since
Bob retains only outcomes passing the time delay test,
outcomes with delay ~L are removed.

Thus, the error probability for the eavesdropper is
equal to

(12)

for measurements passed the time delay test. We note
that, since states are orthogonal and all events in the
protocol occur in real time, it is not necessary to con-
sider collective measurements, because they do not
increase the probability given by Eq. (12). It is impos-
sible to determine what is transmitted when the test is
passed at the receiver end, because states are quantum
and exclusions of Special Relativity exist. Moreover,
noise in the channel cannot increase probability (12)
due to relativistic exclusions (see the above discussion).

Let the number of pulses passing the test be equal
to 2n @ 1. Legal users randomly select n positions,
open them, compare the bit values (0 or 1) in each posi-
tion, and estimate the error probabilities. These errors
can be induced by noise in the communication channel
rather than by the eavesdropper. It is important that the
probability given by Eq. (12) cannot be exceeded due to
noise. Let δAB be the error probability estimated from
the disclosed part of the sequence. For a sufficiently
long sequence, the error probability in the closed part
coincides with δAB.

If δAB < δE, a random binary code [n, k] with the
rate [14, 15]

(13)

can be taken so that its error probability is arbitrarily
small. However, this code does not correct the error
whose probability δE > δAB. For a sufficiently long
sequence (n @ 1), the number of the identical bits
enclosed by Alice and Bob is approximately equal to
≈nC(δAB) after correction, where the transmission capa-
bility of the classical symmetric binary communication
channel [14, 15] is determined as

(14)

In essence, when δE > δAB, the transmission rate
exceeds the transmission capability C(δE) of the chan-
nel between Alice and the eavesdropper. The eaves-
dropper recognizes the correction of errors by codes
that are bad for him (i.e., when δAB < δE) as the trans-
mission of pulses with the rate exceeding the transmis-
sion capability of the communication channel between
Alice and him.

δE 1 PtE bitE bitA test τ τ Ls∈ ∈(∧=(–≥

+ Ll Lch δl )±+ OK ) 1
4
---= =

k/n R C δAB( ) ε, ε∀– 0,><≤

C δAB( ) 1 H δAB( ),–=

H x( ) x x 1 x–( ) 1 x–( ).log–log–=
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In this case, when the transmission rate is higher
than the transmission capability, we can use the esti-
mate [16]

(15)

of the symbol-error probability for the eavesdropper.
This means that the maximum allowable probability of
errors in the communication channel is estimated as
δAB < 1/4 = 25%.

After the correction of errors, the remaining bit
sequence of length ≈nC(δAB) is identical for legal users.
The eavesdropper can know no more than ≈nC(δE) bits
with an arbitrarily low error probability. The number of
secret bits that can be extracted by the legal users from
their sequence of the length ≈nC(δAB) does not exceed
≈nC(δAB) – C(δE)). Further, using contraction (caching)
through the open channel, Alice and Bob can enhance
the key security by decreasing the sequence length.
When contracting the key, the users can use estimate (15)
of the error probability for the eavesdropper in the ini-
tial sequence. As a result, the key identical for the legal
users arises with the unit probability. The probability
that the eavesdropper knows this key is arbitrarily small
(after contraction).

The characteristic proper time constant τd of the
detector must satisfy the inequalities l < c ≥ τd ! L. This
requirement arises because records for the delay test
must be accumulated in the time interval L. Detectors
with the time constant τd ≈ 10–8–10–9 s are standard
instruments. Therefore, the inequality l/c < τd can be
satisfied with a reserve of two orders of magnitude for
the input state with the duration (length) l/c ≈ 10–
100 ps (l = 0.3–3 cm). The value L ≈ 10cτd ≈ 3–30 m is
sufficient for the separation of the halves of the state. In
this case, it is sufficient to balance the arms at the
receiver and transmitter ends with an accuracy of 3 cm.
A real fiber-optic communication channel is not a
straight line connecting Alice and Bob. This circum-
stance imposes a certain extra limit on the separation of
the halves of the state. This separation cannot be shorter
than Lcurve – Lch, where Lcurve is the real length of the
optic fiber and Lch is the length of the straight line con-
necting Alice and Bob. Moreover, since the speed of

pE 1 4
const

n C δAB( ) C δE( )–( )2
------------------------------------------------–>

–
n C δAB( ) C δE( )–( )

2
----------------------------------------------–

 
 
 

exp
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light c' in the optic fiber is somewhat lower than the
speed of light in vacuum (c' < c), the effective length of
the state cannot be shorter than c(Lcurve – Lch)/c'. We also
note that the cryptosystem based on the frequency
states must be more stable than systems based on polar-
ization states.

I am grateful to S.S. Nazin for stimulating discus-
sions and critical remarks. This work was supported by
the Russian Foundation for Basic Research (project
no. 02-02-16289 and project nos. 40.020.1.1.1170 and
37.029.1.1.0031).
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A review is given of the current concepts of microstructure evolution in L12-type and L10-type ordering phase
transitions in fcc alloys. Theoretical methods developed for the description of this evolution and the main results
obtained with the use of these methods are presented. Theoretical results are compared with the available exper-
imental observations. © 2003 MAIK “Nauka/Interperiodica”.
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1. Introduction. Studies of microstructural evolu-
tion under phase transformations (PT) associated with
alloy ordering or decomposition (called “diffusive”
transformations) are of both fundamental and applied
interest. From the fundamental side, the creation and
evolution of ordered antiphase domains (APDs) or of
precipitates of a new phase is a classical example of the
dynamics of nonequilibrium systems and self-organi-
zation phenomena, which are intensively studied in
many areas of physics and chemistry. From the applied
side, the macroscopic properties of alloys, such as
strength, ductility, and magnetic properties, generally
substantially depend on their microstructure, in partic-
ular, on the structure and distribution of antiphase or
interphase boundaries (APB or IPB) separating differ-
ent APDs or different phases, and this microstructure in
turn strongly depends on the thermal and mechanical
history of the sample, in particular, on the kinetic path
of PTs. In this connection, studying the kinetics of
phase transformations in alloys is one of the most rele-
vant problems of physical materials science.

The simplest ordered structure corresponds to the
B2-type (CuZn-type) ordering. In this case, two cubic
sublattices are formed in the AcB1 – c bcc alloy. These
two sublattices are enriched respectively in atoms A
and B and are displaced with respect to each other by
the vector [111]a/2, where a is the bcc lattice constant.
This ordering is described by one order parameter η
proportional to the difference of the occupation proba-
bilities of a particular sublattice with atoms A and
atoms B. In this case, there are only two types of APDs
differing in the sign of η and only one type of APBs
between such domains. Just this simplest case has been
considered in most studies of ordering kinetics; see, for
example, [1–3]. At the same time, orderings in real
alloys are usually much more complicated and involve
many types of APDs and APBs. In particular, in the
case of L12- or L10-type orderings characteristic of fcc
alloys, which will be discussed below, there are, respec-
tively, four or six different APDs and several types of
0021-3640/03/7803- $24.00 © 20168
APBs. This “multivariant” character of ordering leads
to a number of essential differences of their kinetics
from simple B2 ordering, including a wide diversity of
various evolution scenarios and types of intermediate
structures. Many of these structures exhibit peculiar
properties that are important for applications and
strongly depend on both the alloy composition and the
evolution conditions.

Previously, the kinetics of L12 and L10 orderings
was described theoretically using both direct Monte
Carlo simulations (see, for example, [4]) and phenom-
enological kinetic equations [5–7]. However, direct
simulations here are complicated, and until now they
have provided little information on the details of evolu-
tion. Phenomenological equations are simpler for
applications, and Khachaturyan et al. [5–7] used them
for the description of a number of effects of elastic
deformations on PTs. However, phenomenological
approaches involve many arbitrary assumptions,
which may result in significant distortions of real evo-
lution [8], and the relation of such approaches to a
microscopic description is usually not clear. Recently,
consistent statistical methods have been developed for
the description of nonequilibrium alloys [9–12] and
have been applied to studying the kinetics of L12 and
L10 orderings in the papers [12–15]. The main results
of these papers are described below.

2. Basic equations. In this section, we discuss the
basic equations of the statistical theory of nonequilib-
rium alloys [9–12] that are employed for the descrip-
tion of diffusive PTs. For definiteness, we consider a
binary alloy AcB1 – c with c ≤ 0.5. Various distributions
of atoms over lattice sites i are described by the sets of
occupation numbers {ni}, where ni = nAi equals 1 or 0
if site i is occupied, respectively, by atom A or atom B.
The Hamiltonian H has the form

(1)H v ijnin j v ijknin jnk …,+
i j k> >
∑+

i j>
∑=
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where v i…j are effective interactions. It is convenient to
write the general expression for the probability P of
finding distribution {ni} as the “generalized Gibbs dis-
tribution”

(2)

Here, β = 1/T is the inverse temperature, λi and ai…j are
parameters of the distribution, and the “generalized
thermodynamic potential” Ω is determined from the
normalizing condition. As was discussed in [17],
“quasi-interactions” ai…j in Eq. (2) for conventional
conditions of phase transformations can be considered
equal to interactions v i…j in Eq. (1), whereas “chemical
potentials of lattice sites” λi in the absence of equilib-
rium are generally not equal to each other. Then, using
the master equation for the evolution of probability P in
Eq. (2) and the conventional thermal activation model
for the probability of atom exchange between lattice
sites, we can obtain the following master equation
describing the evolution of mean site occupations 〈ni 〉  =
ci averaged over the distribution (2) [9–12]:

(3)

Here, the chemical potentials of lattice sites λi(cj) are
found from the self-consistency conditions

(4)

where Tr(…) means the summation over all sets {ni}. In
writing the equation for the “generalized mobility” Mij

in Eq. (3), we use for simplicity the pair interaction
model, when Hamiltonian H in Eq. (1) includes only
the first sum, and the model of direct exchange by
atoms A and B between neighboring sites i and j (a gen-
eralization to a more realistic model of vacancy-medi-
ated exchange is given in [10]). Then Mij is given by the
equation [12]

(5)

where  = nBi = (1 – ni), uij =  –  is the “asym-
metric potential” introduced in [16], and the factor γij is
proportional to the probability of exchanging atoms A
and B between sites i and j per unit time.

Explicit expressions for λi(cj) and Mij(ck) can be
found from Eqs. (4) and (5) with the use of one or
another approximate method of statistical physics. The
simplest method is the kinetic mean-field approxima-

P ni{ } β Ω λ ini Q–
i

∑+
 
 
 

;exp=

Q aijnin j aijknin jnk …+
i j k> >
∑+

i j>
∑=

dci/dt Mij2 β λ j λ i–( )/2[ ] .sinh
j

∑=

ci ni〈 〉 Tr niP λ j{ }( ),= =

Mij γij ni'n j' βAij nk( )/2[ ]exp〈 〉 ;=

Aij λ i λ j v ik uik v jk u jk+ + +( )nk,
k

∑–+=

ni' Vij
AA Vij

BB
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tion (MFA), in which each operator ni on the right-hand
side of Eqs. (4) and (5) is replaced by its mean value
ci = ci(t). Then, λi and Mij take the form

(6)

(7)

where  = 1 – ci.

In addition to the simple MFA, more accurate meth-
ods can also be used to solve Eqs. (4) and (5). In partic-
ular, an essential refinement of the description of B2-
and D03-type orderings in the bcc lattice is reached if
the pair cluster approximation (PCA) is used, in which
the dependences λi(cj) and Mij(ck) can also be written
analytically [17]. However, both the MFA and PCA are
inadequate to describe the fcc alloys with the L12- and
L10-type orderings, because strong many-particle cor-
relations are typical of these alloys and these correla-
tions tend to impede these orderings. These correlations
can be adequately described by the cluster-variation
method (CVM) with the use of 4-particle (tetrahedral)
or larger clusters (see [12] and references therein).
However, the CVM is rather cumbersome, and it can
hardly be used for the essentially nonuniform systems
of our interest. In this connection, a simplified version
of the CVM was proposed in [12], namely, the tetrahe-
dron cluster-field method (TCFM), which describes the
thermodynamics of L12 and L10 orderings for realistic
interaction models as accurately as the CVM. This is
illustrated by Fig. 1, which presents the concentration–
temperature phase diagrams calculated within the
TCFM and the CVM for models 2 and 4 discussed
below. At the same time, the calculations in the TCFM
are much simpler than in the CVM, which makes it pos-
sible to apply this method to nonequilibrium systems as
well [11–14]. Just as in the MFA and the PCA, the
dependence λi(cj) in the TCFM can be written explic-
itly, though, instead of the analytical formulas like
Eq. (6), this dependence for each lattice site i is found

λ i
MFA T ci/ci'( )ln v ijc j;

j

∑+=

Mij
MFA γij cic jci'c j' β uik u jk+( )ck

k

∑exp
 
 
 

1/2

,=

ci'

Fig. 1. Equilibrium concentration–temperature (c–T) phase
diagrams for models 2 and 4. Solid and dashed lines corre-
spond to calculations within the TCFM and the CVM; dot-
ted line corresponds to the stability limit for the disordered
phase in the TCFM [12].
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from a system of four algebraic equations, which is
simply solved by numerical methods. At the same time,
the above correlations are insignificant for mobility Mij

(Eq. (5)) [12], and the simple expression (7) can be
used for this quantity.

Equations (3) can be solved by the methods
described above without significant difficulties for sys-
tems that contain up to 105–106 atoms and for times t *

(103–104) , which is generally sufficient for studying
the main features of microstructural evolution [11–14].

3. Methods and models used. Phase transforma-
tion (PT) kinetics after a quench of an alloy from the
disordered fcc phase A1 to the phase L12, to the two-
phase region A1+L12, or to the phase L10 was studied
by computer simulation methods based on Eq. (3) and
the TCFM described above [11–14]. A number of mod-
els were employed with different interaction radii rv .

(1) Models 1, 2, and 3 with short-range interaction
in which the “reduced interaction”  = v n/v 1 (where
v n corresponds to the interaction of the nth neighbors)
is nonzero only for the second neighbors, v 1 = 1000 K,

and the values of  are, respectively, 0.125, 0.25,
and 0.5.

(2) Model 4 with the values of v n estimated in [18]
from the experimental data for Ni–Al alloys: v 1 = 1680,
v 2 = –210, v 3 = 35, and v 4 = –207 K. These values cor-
respond to an “intermediate” value of rv .

(3) Model (5) with an “extended” interaction: v 1 =

1000 K,  = –0.5,  = 0.25, and  = –0.125.

In studying A1  A1+L12 and A1  A1+L10
PTs, models 1'–5' and 1''–5'' were also considered. In
these models, the “deformational” or “elastic” interac-
tions related to the local lattice distortions around vari-
ous atoms are added to the “chemical” interactions v n

in models 1–5 discussed above. These interactions
were estimated from the data for Ni–Al and Co–Pt
alloys, respectively, as was described in the papers [12]
and [14].

The structures of the L12 and L10 phases are shown
in Fig. 2. The occupations ci of fcc lattice sites Ri in

γij
1–

v n'

v 2'

v 2' v 3' v 4'

Fig. 2. Phase structures: (a) L12 and (b) L10.
these phases are described by three order parameters ηα
corresponding to three superlattice vectors kα:

(8)

where a is the fcc lattice constant. In the homogeneous
L12 phase, the parameters ηα obey the equations |η1 | =
|η2 | = |η3 | = η0, where η0 is the equilibrium value of |ηα |
and η1η2η3 > 0, and so four types of ordered domains
are possible. One of them is displayed in Fig. 2a, and
three others are obtained from it by displacing the sub-
lattice of minority atoms (dark) by vector (011)a/2,
(101)a/2, or (110)a/2. In the L10 phase with the tetrag-
onal axis α, only one parameter ηα = ±η0 is nonzero;
thus, six types of ordered domains are possible, two
domains for each of the three directions α.

The partially ordered states under consideration can
be conveniently described with the use of the “local”
order parameters ηαi and the concentrations  that cor-
respond to spatial averaging over a certain region.

Below, we use the parameters  and  averaged over
the nearest neighbors jnn(i) of each lattice site i and the

quantities  that characterize the total degree of the
local order:

(9)

where Rji is Rj – Ri . It was shown in [12] that the dis-

tribution of  values is close to the intensity distribu-
tion observed in transmission electron microscopy
(TEM) experiments [19, 20]. Therefore, the results of
simulations in the figures below are usually presented
in the “η2 representation” in which the gray level varies
linearly with η2 between its minimum and maximum
values from completely dark to completely bright.

Our simulations were performed in fcc simulation
boxes with the volume Vb = L2 × H (where L and H
below are given in units of the lattice constants a) with
periodic boundary conditions. Both three-dimensional
(3D) simulation with H = L and quasi-2D simulation
with H = 1 were used. Below, we mainly present the
results of quasi-2D simulations, in which more sizable
structures can be studied. However, these results were
verified and supplemented with 3D simulations in the
original papers [12–14].
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4. Kinetics of L12-type ordering. In the consider-
ation of the L12-type orderings, the following problems
will be discussed.

(1) The dependence of microstructural evolution
under the A1  L12 PT on the type of interactions v ij

as well as on the concentration c and temperature T of
an alloy.

(2) The effect of elastic interactions on the kinetics
of decomposition with ordering of the A1  A1+L12
type.

In studying these problems in the papers [11–13], it
was found that the character of the microstructural evo-
lution strongly depends on the type of interaction v ij

(especially, on its effective radius rv) as well as on the
degree of nonstoichiometry δc = (c – 0.25) and temper-
ature T. An increase in the radius rv , nonstoichiometry
δc, and temperature T makes the microstructures more
isotropic and makes the APBs more diffuse and mobile.
At the same time, for the short-range-interaction alloys
at small δc and not high T, the microstructures are
highly anisotropic and the APBs are thin and low-
mobile.

These structural features are illustrated by Figs. 3–8.
Figure 3 demonstrates the evolution of the domain
structure under the A1  L12 PT for model 4 with an
“intermediate” interaction range and a nonstoichiomet-
ric composition c = 0.22. It is evident that the distribu-
tion of APBs is entirely isotropic. The main evolution
mechanism is the growth of larger domains at the
expense of smaller ones by the motion of APBs, which
is also typical of the simple B2 ordering, and only this
mechanism was discussed previously [1–3]. At the
same time, Fig. 3 shows that another mechanism, the
fusion of in-phase domains, which is absent for the sim-
ple B2 orderings with only two types of domains, is
important for the multivariant orderings under consid-
eration. It is seen that there are two types of such pro-
cesses: (a) the splitting of APBs between two APDs that
separate the in-phase domains to be fused and (b) the
disappearance of an intermediate domain. Examples of
processes of type (a) are seen in the lower half of
frames 3b–3e, and two processes of type (b) are seen on
the left-hand upper part of frames 3b–3d.

Another characteristic feature of L12 orderings with
isotropic APBs is that approximately equiangular triple
junctions with angles .120° between the adjacent
APBs occur at later stages of evolution. A comparison
with the TEM observations shown in Fig. 4 (and
explained below in the discussion of Fig. 10) shows that
this conclusion agrees with the experiments.

Figure 5 shows the evolution of the same model as
in Fig. 3 but with c = 0.25. It is evident that the micro-
structures notably change when one passes to the sto-
ichiometric composition even though the change in
concentration is quite small. The distribution of APBs
reveals some anisotropy and a tendency to the forma-
tion of (100)-oriented APBs (which are called “conser-
JETP LETTERS      Vol. 78      No. 3      2003
(‡) (b)

(c) (d)

(e) (f)

Fig. 3. Temporal evolution of model 4 under the A1
L12 PT shown in the η2-representation for simulations in

the volume Vb = 1282 × 1 at c = 0.22, T = 1150 (from here
on in K) and the following values of the reduced time t ' =
γij t: (a) 5, (b) 50, (c) 120, (d) 125, (e) 140, and (f) 250. Sym-
bols A, B, C, and D indicate the type of ordered domains,
and thick arrows indicate the processes of their fusion.

100 nm

Fig. 4. TEM image of APBs observed in the Cu0.83Pd0.17
alloy under the A1  A1+L12 PT at the stage of congru-
ent ordering and then wetted by the disordered phase [19].
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vative” APBs and are discussed below). The nonconser-
vative APBs have a tendency to “faceting” and to the
formation of steplike structures, in which the energy

(‡) (b)

(c) (d)

Fig. 5. As Fig. 3, but at c = 0.25 and t' = (a) 5, (b) 10, (c) 50,
and (d) 250.

(‡) (b)

(c) (d)

(e) (f)

Fig. 6. As Fig. 5, but for model 1 with  = –0.125 at Vb =

642 × 1, T = 350, and t' = (a) 2, (b) 3, (c) 20, (d) 100, (e) 177,
and (f) 350.

v 2'
gain for the (100)-oriented segments exceeds the
energy loss due to an increase in the total length of such
an APB.

The kinetics of L12 ordering in alloys with short-
range interaction is illustrated in Fig. 6. It is evident that
here the microstructures are strongly anisotropic and
the conservative APBs mentioned above predominate.
In the case of nonzero interaction between only the
nearest neighbors (v n > 1 = 0), the energy of such APBs
equals zero [21]. Therefore, at small |v 2/v 1 | . 0.1 con-
sidered here, the energy of such APBs is small too and
their predominance in the structure is natural. The
width of these APBs (which at v n > 1 is just one atomic
layer [21]) is notably smaller than the width of the non-
conservative APBs.

Figure 6 also illustrates other structural features of
the L12 ordered alloys with short-range interaction: the
“steplike” APBs with the conservative segments men-
tioned above; the triple junctions of APDs with one
nonconservative APB and two conservative APBs nor-
mal to each other; the “quadruple” junctions of APDs
(for example, on the left-hand side and in the lower part
of frames 6b–6f), in which the nonconservative part of
two triple junctions has the atomic-order length; and so
on. All these features have been observed in the TEM

3 nm

010

100

(‡) (b)

Fig. 7. (a) High-resolution electron microscopy (HREM)
image of an APB in the Cu3Au alloy; (b) schematic view of
the atomic structure of this APB.
JETP LETTERS      Vol. 78      No. 3      2003
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and HREM studies of a Cu3Au alloy [19, 20] (see
Figs. 7 and 8).

The smallness of the energy of conservative APBs
makes them extremely low-mobile. Therefore, the evo-
lution and growth of domains is realized by the motion
of the nonconservative APBs. Figure 6 illustrates the
peculiarity of the processes that take place in this case.
Thus, the processes of “sweeping” of a pair of vertical
conservative APBs by a moving nonconservative APB
are seen in the left-hand lower part of frame 6b and in
the left-hand upper part of frame 6d. The process of
“wetting” of a conservative APB with the adjacent non-
conservative APBs is seen in the left-hand upper corner
of frames 6b and 6c. After that, the domain bounded by
the nonconservative APBs rapidly “collapses.” An
unusual process of “splitting” of a nonconservative
APB into two conservative and one nonconservative
APBs with the formation of a new APD is seen to the
left of and higher than the center of frames 6d–6f, and

100 nm

010

(‡)

(b)

100

R3

R2

2

2 2

2

2

23
33
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Fig. 8. (a) TEM image of the Cu3Au alloy showing an APB
with the displacement vectors R2 = [101]a/2 and R3 =
[011]a/2; (b) HREM image of some APBs in the Cu3Au
alloy [19].
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so on. All these peculiar kinetic effects, being pre-
dicted by the theory, are due to the smallness of the
energy of the conservative APBs in the alloys under
consideration.

Consider now the ordering PTs under alloy decom-
position of the A1  A1+L12 type. In the two-phase
region forming in this case, each L12-ordered domain is
surrounded with the disordered A1 phase and the possi-
ble anisotropy of the structure is determined by the
anisotropy of the IPBs. It was shown in the papers [21,
12] that, in the absence of long-range elastic forces, that
is, with only “chemical” interactions, the IPB energies
are virtually isotropic for all the models, including the
models with short-range interaction (as distinct from
the APB energies discussed above). However, when the
misfit ε = |aA1 – |/aA1 between the lattice constants
of the A1 and L12 phases is notable, elastic forces arise
in the vicinity of the IPB and tend to orient the IPB
along the “elastically soft” (100) directions. The mag-
nitude of these elastic forces grows with increasing size
l of the precipitates. Therefore, the elastic forces grow
with increasing l in the course of the evolution, and the
anisotropy of the IPBs becomes high even at relatively
small values of ε & 0.01. This leads to the formation of
peculiar structures with specific properties, in particu-

aL12

Fig. 9. Metallographic image of a two-phase A1+L12 struc-
ture formed by cuboids of the L12 phase with a size of about
0.2 µm in the disordered A1 phase of a Ni–Al type superal-
loy [22].
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lar, “superalloys,” whose structure is illustrated in
Fig. 9. These alloys exhibit outstanding strength and
refractory properties and are widely used in the aero-
space industry [22].

A phenomenological theory of the formation of
structures of this type was developed by Khachaturyan
et al. [6, 7]. The microscopic approach proposed
in [11, 12] enables one to specify this theory and to

(‡) (b)

(c) (d)

(e) (f)

Fig. 10. Temporal evolution of model 2' under the A1 
A1+L12 PT for Vb = 642 × 1, c = 0.17, T = 400, and t' =
(a) 10, (b) 100, (c) 500, (d) 1000, (e) 2000, and (f) 4200.
The gray level varies linearly with ci between its minimum
and maximum values from completely dark to completely
bright.

(‡)

50 nm 200 nm

101
101

(b)

Fig. 11. TEM image of the FePd alloy under the A1 
L10 PT and an anneal at T < Tc for (a) 3 h and (b) 61 h [5].
Light areas correspond to domains with one of the direc-

tions of the c axis (type A and  or B and ); dark areas,
to all other areas.

A B
explain a number of observed effects. As an illustration,
Fig. 10 presents the results of simulation of the A1 
A1+L12 PT for model 2'. Frame 10a shows the initial
stage of the “congruent” (that is, proceeding without
changing the initial concentration) ordering as well as
the beginning of wetting of the as-formed APBs, which
gradually transforms these APBs into IPBs. Frame 10b
shows the next stage, in the course of which the starting
APDs transform into the ordered precipitates, and the
excess majority atoms (dark) diffuse toward the sur-
rounding IPBs. Later on, the large precipitates start to
grow at the expense of the “evaporation” of smaller
ones (frames 10c–10f), and the above effects of the
alignment of the IPBs along the (100) directions
become pronounced. At the same time, in spite of an
extreme simplicity and the small size of the model, the
simulation reproduces and explains a number of struc-
tural features typical of real superalloys. Thus, “fun-
nels” like those shown in the left-hand upper corner of
frames 10c and 10d are seen in Fig. 9 at its left-hand
edge. Γ-shaped ledges like those shown at the left-hand
upper corner of frame 10f are seen in Fig. 9 at its upper
edge and to the left of its center. “Chains” of precipi-
tates like those shown in the lower third of frames 10e
and 10f are seen at many places in Fig. 9, and so on.

5. Kinetics of L10-type ordering. The L10 struc-
ture, as distinct from the L12 structure, has a distinct
axis normal to the alternating planes of different atoms
in Fig. 2b, which is called below the axis c. As the sizes
and interactions of different atoms are different, a tet-
ragonal distortion ε exists along axis c. In addition, the
tetragonal structure of APDs in the L10 phase leads to
the occurrence of two different types of APBs: shift-
APBs separating APDs with the same c axis and flip-
APBs separating APDs with the perpendicular c axes.

Depending on the importance of the distortion ε for
the kinetics of ordering, the evolution in the course of
the A1  L10 PT can be divided into three stages.

I. The initial stage of the formation of the finest L10-
ordered domains, when their tetragonal distortion only
slightly affects the evolution and all six types of
domains are approximately equally present in each
microstructure.

II. The next, intermediate, stage, which corresponds
to the TEM images of the tweed type illustrated in
Fig. 11a. The tetragonal distortion of APDs here leads
to the predominant orientation of flip-APBs along the
(110)-type directions. The number of APDs with the
unfavorable (001) orientation of the c axis in each of
these locally oriented regions is decreased but is still
comparable with the number of APDs with the “favor-
able” (100) and (010) orientations.

III. The final, “twin,” stage, when the tetragonal dis-
tortion of APDs becomes the main factor of the evolu-
tion and leads to the formation of “twin” bands along
the (110)-type directions (see Fig. 11b). Each band
includes only two types of APBs with the same c axis,
JETP LETTERS      Vol. 78      No. 3      2003
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and the (100) and (010) orientations of this axis alter-
nate in the adjacent bands.

The physical reason for the (110) orientation of flip-
APBs is the gain in elastic energy for the adjacent
domains: at other orientations of APBs, this energy
increases with the growth of an APD proportionally to
its volume [5, 15]. For an APD with the characteristic
size l, the surface Sd , and the shear modulus cs , the elas-
tic energy Eel ~ csε2lSd begins to affect the evolution
only when it becomes comparable with the surface
energy Es ~ σSd , where σ is the APB surface tension.
The tweed stage II corresponds to the relation Eel ~ Es

or to the characteristic size of the APD

(10)

which sharply increases with increasing distortion ε.
Some results of simulations of the A1  L10 PT

are displayed in Figs. 12–17 [14]. The symbols A or ,

B or , and C or  in these figures indicate APDs with

l0 σ/csε
2,∼

A

B C

(‡) (b)

(c) (d)

(e) (f)

Fig. 12. Evolution of model 5'' under the A1  L10 PT

for Vb = 1282 × 1, c = 0.5, reduced temperature T ' = T/Tc =
0.7, maximum distortion |εm | = 0.1, and t' = (a) 10, (b) 20,
(c) 50, (d) 100, (e) 250, and (f) 280. The inset shows the

gray level upon varying  from zero up to  . 0.20.

The symbol A, , B, , C, or  designates the type of
ordered domain, and a thick, thin, or ordinary arrow indi-
cates, respectively, the process of domain fusion, a junction
of four APDs, or the process of APB splitting.

η i
2 ηmax

2

A B C
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the c axis directed along the principal (100), (010), and
(001) crystal axis and with a positive or negative value,
respectively, of the relevant order parameter ηα . Tem-
perature T is given in terms of the reduced values T ' =
T/Tc , where Tc is the critical (maximum) temperature of
the L10 ordering. For models 1'', 2'', 3'', 4'', and 5'', this
Tc equals, respectively, 614, 840, 1290, 1950, and
2280 K. The local distortion ε is proportional to the
local order parameter squared [14], and the scale of ε is
characterized by its maximum equilibrium value |εm |,
which corresponds to T = 0 and c = 0.5.

Figures 12–17 illustrate quasi-2D simulations for
which microstructures include only edge-on APBs nor-
mal to the (001) plane in the figures. In this geometry,
the bulk elastic energy can vanish only for the (100)- or

(010)-oriented domains A and  or B and , separated
by a flip-APB with the (110) orientation (or the (1, –1,
0) one, which is not mentioned below for brevity). On

the other hand, in the (001)-oriented domains C and ,
this elastic energy is always present. Therefore, the
tweed and twin stages in our simulations correspond to

A B

C

(‡) (b)

(c) (d)

(e) (f)

Fig. 13. As Fig. 12, but at |εm | = 0.15,  . 0.21, and

t' = (a) 10, (b) 20, (c) 50, (d) 150, (e) 172, and (f) 350. In

frame (d), the gray level varies linearly with  when it is

varied from zero to  . 0.21 from completely dark to

completely bright.

ηmax
2

η2i
2

η2max
2
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(‡) (b)

(c) (d)

(e) (f)

Fig. 14. As Fig. 12 but for model 4'' at |εm | = 0.15, T ' = 0.67,

 . 0.24, and t' = (a) 10, (b) 20, (c) 50, (d) 170, (e) 200,

and (f) 700.

ηmax
2

(‡) (b)

(c) (d)

(e) (f)

Fig. 15. As Fig. 14, but at c = 0.44,  . 0.20, and t' =

(a) 10, (b) 20, (c) 50, (d) 400, (e) 750, and (f) 1100.

ηmax
2

both the predominance of (110)-oriented APBs and the

decrease in the portion of C and  domains.

First we discuss the evolution for the systems in which
the interaction range is not small (see Figs. 12–15). Here,
frames 12a–12b, 13a, 14a, and 15a correspond to the
initial stage; frames 12c–12d, 13b–13c, 14b–14c,
and 15b correspond to the tweed stage; and the others
correspond to the twin stage. It is evident that the fol-
lowing features are characteristic of both the initial and
the tweed stages.

(a) The presence of abundant processes of fusion of
in-phase domains, which are among the main mecha-
nisms of evolution at this stage.

(b) The presence of peculiar long-living configura-
tions, the junctions of four different APDs (4-junctions)

of the type A1A2 A3, where A2 and A3 can corre-
spond to any two of four types of APDs differing from

A1 and .

(c) The presence of many processes of “splitting” of
a shift-APB which lead to either the fusion of in-phase
domains (s  f process) or the formation of a 4-junc-
tion (s  4j process).

Thus, for example, the s  f processes can be fol-
lowed in frames 12a–12b, 12c–12d, 12d–12e, 13c–13d,
etc. A fusion with the disappearance of an intermediate
domain is seen in the right-hand lower part of frames
12a–12b. Several long-lived 4-junctions are seen in
frames 12a–12d and 13c–13d, whereas the s  4j
process can be followed in the right-hand lower part of
frames 12a–12c. Note that the microstructural fea-
tures (b) and (c) are naturally explained by the fact that
in this case the surface tension σ for the shift-APBs
substantially exceeds σ for the flip-APBs [14].

Frames 12c–12d, 13b–13c, 14b–14c, and 15b (as
well as 16a–16b) illustrate the processes of the
(110)-type alignment of flip-APBs and the “dying out”

of APDs of the C and  types, which are characteristic
of the tweed stage. Frames 12c–12d also indicate that
the characteristic size of APDs in the tweed stage is
about l0 ~ (20–40)a in the simulations with a realistic
value of the distortion |εm | = 0.1 (estimated from the
data on the deformation of the CoPt alloy). This agrees
with the order of magnitude of l0 observed in the FePd
and FePt alloys, which are structural analogues of CoPt
(see Fig. 11a).

In the discussion of the final, twin, stage of evolu-
tion, note that, as is evident in Figs. 11–16, this stage
can also be divided into two stages: the initial stage
III(a), during which the twin bands still include many
curved shift-APBs and small twin bands (“micro-
twins”), and the final, “quasi-equilibrium,” stage III(b),
when the APBs are mainly linear and microtwins are no
longer present. In comparison with the experiment, it
must be taken into account that, because of the relative
smallness of the simulation volume, the width of the

C

A1

A1

C
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twin bands d in the simulations has the same order of
magnitude as the size of domains at the tweed stage l0.
However, in the experiments, usually d @ l0 (see, for
example, Fig. 11). Therefore, the distribution of APBs
in the simulations of stage III(a) is considerably closer
to an equilibrium one than in standard TEM experi-
ments. In spite of that, the simulation reproduces and
explains some features of this stage observed in
Fig. 11b. Thus, characteristic semiloop-like and
S-shaped configurations in Fig. 11b correspond to the
shift-APBs that originated from approximately equi-
axed domains, which are typical of the beginning of the
twin stage, because of the disappearance of the adjacent
APDs “wrongly” oriented with respect to the particular
twin band. This is seen, for example, in frames 12d–12f,
13e–13f, 14c–14e, and others. The formation of narrow
and short microtwins, whose ends are usually adjoined
with shift-APBs, is illustrated by frame 14d and, espe-

cially, by frame 13d. This frame is given in the “  rep-
resentation” similar to that used in the TEM observa-
tions [19]. The microtwin displayed in this frame is
very similar to those presented at the center of Fig. 11b.

The final, quasi-equilibrium, stage of evolution is
illustrated by the last frames in Figs. 13–16 and Fig. 17.
In particular, these frames demonstrate the peculiar
phenomenon of the alignment of shift-APBs: within
each twin band oriented along the (110) direction and
containing the (100)-oriented domains, the APBs tend
to align normally to a certain direction na = (cosα,
sinα, 0) with a certain angle α, so that these directions
alternate in the neighboring twin bands. The tilting
angle α strongly depends on the type of chemical inter-
action, especially on its radius rv , as well as on the con-
centration and temperature. Thus, for model 5'' with a
large rv , the angle α is close to π/4; for the “realistic”
model 4'' with an intermediate rv , the angle α < π/4;
that is, the plane of the APBs is tilted to the tetragonal
axis; and α . 0 for models with short-range interaction;
that is, the APBs are oriented along the tetragonal axis.
This effect is naturally explained [15] by the competi-
tion between the anisotropy of the surface energy
(which tends to orient APBs along the tetragonal axis,
that is, to decrease α in the systems with small and
intermediate rv) and the tendency to minimize the total
area of the APBs in the given twin band, which corre-
sponds to α = π/4. The phenomenon of the alignment of
APBs within twin bands indicated in [15] was observed
in the CuAu alloys, where interactions are short-ranged
and α . 0 [23], and in the Co–Pt alloys, where the
angles α are close to those shown in frames 14f and 15f
[15, 24]. Let us also note that the phenomenon of wet-
ting and splitting of shift-APBs by the adjacent twin
bands predicted in [14] and illustrated by frames 15d–
15f is also confirmed by recent TEM observations for
the Co0.4Pt0.6 alloy [24].

Figure 16 illustrates the evolution for the model
with short-range interaction as in Cu–Au alloys. It is

η2
2
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evident that the general character of the evolution is
similar to that considered above. However, the micro-
structures contain many conservative APBs, which can
be of two types in the L10 phase: the flip-type and the
shift-type [13]. Their presence leads to features similar
to those discussed in connection with Figs. 6–8. Thus,
all the shift-APBs in the final frame 16d are steplike,

(‡) b)

(d)(Ò)

Fig. 17. As Fig. 12, but for model 2'' at the following sets of

values (c, T ', , t '): (a) (0.5, 0.77, 0.24, 350), (b) (0.5,

0.95, 0.21, 300), (c) (0.46, 0.77, 0.20, 350), and (d) (0.44,
0.77, 0.19, 300).

ηmax
2

(‡) (b)

(c) (d)

Fig. 16. As Fig. 14, but for model 1'' at T' = 0.9 and t' =
(a) 30, (b) 40, (c) 60, (d) 120.
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and these APBs can be considered as “faceted” versions
of tilted APBs in frames 14f, 15f, 17c, and 17d. With
increasing temperature T or nonstoichiometry δc =
(0.5 – c), the anisotropy of the APBs rapidly drops. This
leads to a sharp change in the morphology of the
aligned APBs that can be described as the “faceting–
tilting” phase transformation, as illustrated by frames
16d and 17a–17d. These morphological changes are
realized via the local bends of faceted APBs, which are
seen, in particular, in frames 17a and 17b. Therefore,
this “morphological phase transition” is actually
smeared over a certain interval of temperature or con-
centration. However, frames 17a–17d show that these
“intervals of PT smearing” can be rather narrow.

6. Conclusions. In this review, I tried to show that
the kinetics of phase transformations in alloys is a field
of solid-state physics that is not only important practi-
cally but also rather interesting and rich in phenomena.
Because of the limitations of the review volume, I could
discuss only certain structural aspects of the kinetics of
L12 and L10 orderings. At the same time, there are many
other important problems here such as the structure and
energy of antiphase and interphase boundaries at vari-
ous temperatures and concentrations, nucleation of new
phases in metastable states, fluctuation phenomena in
the kinetics of transformations, and others. At present,
all these problems are being intensively studied, and
many new interesting results can be expected here.
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