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1. Introduction. The TWIST experiment (TRIUMF
Weak Interaction Symmetry Test) [1, 2] is currently
running at Canada’s National Laboratory TRIUMF. It is
going to measure the muon decay spectrum [3, 4] with
an accuracy level of about 1 × 10–4. That will make a
serious test of the space-time structure of the weak
interaction. The experiment is able to put stringent lim-
its on many parameters in models beyond the Standard
Model (SM), e.g., on the mass and the mixing angle of
a possible right-handed W boson. To confront the
experimental results with the SM, sufficiently accurate
theoretical predictions should be provided. This
requires one to calculate radiative corrections within
perturbative quantum electrodynamics (QED). Here we
will present analytical results for two specific contribu-
tions, related to radiation of virtual and soft real elec-
tron–positron pairs. The corrections under consider-
ation are of the order 2(α2), where α is the fine struc-
ture constant.

The contributions of virtual µ+µ–, τ+τ–, and hadronic
pairs were found [5] to be small compared with the 1 ×
10–4 precision tag of the modern experiments. The con-
tribution of e+e– pairs is enhanced by powers of the

large logarithm L = ln( / ) ≈ 10.66. Analysis of the
leading and next-to-leading terms from this correction
in [6, 7] has shown that the numerical effect not as
small as for other leptonic flavors, and it should be
taken into account. Comparison of the leading and
next-to-leading contributions revealed a poor conver-
gence of the series in L. Calculation of the terms with-
out the large logarithm was found to be desirable.

Within the SM, the differential distribution of elec-
trons (summed over electron spin states) in the polar-
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ized muon decay can be represented as

(1)

where mµ and me are the muon and electron masses; GF

is the Fermi coupling constant; θ is the angle between
the muon polarization vector Pµ and the electron (or
positron) momentum; and Ee and x are the energy and
the energy fraction of e±. Here we adopt the definition
of the Fermi coupling constant following [8]. The func-
tions F(x) and G(x) describe the isotropic and anisotro-
pic parts of the spectrum, respectively. Within perturba-
tive QED, they can be expanded in series in α,

and in the same way for G(x). Among the different con-
tributions to the functions F(x) and G(x) (see [6] for
details and discussion), there are ones related to elec-
tron–positron pair production. In this letter we will con-
sider the effect of soft and virtual e+e– pairs.

2. Soft e+e– pairs. The process of real pair produc-
tion does not reveal any infrared singularity, contrary to
the case of photon radiation. Nevertheless, a separate
consideration of soft pair emission can be of interest. In
fact, e+e– pairs with energy below a certain threshold
cannot be observed in experiments with muons decay-
ing at rest. So, the corresponding contribution is a spe-
cific correction to the measured decay spectrum. More-
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over, the behavior of the real pair emission in the soft
limit is not smooth. An integration over the domain
between the threshold of real pair production and a cer-
tain cut-off on the maximal energy of the soft pair is
desirable.

The maximal energy of the soft pair is assumed to be
large compared with the electron mass:

(2)

Due to the smallness of the pair component ener-
gies, the matrix element M of the process

can be expressed as a product of the matrix element M0
of the hard subprocess (the nonradiative muon decay)
and the classic accompanying radiation factor:

where p+, – are the momenta of the positron and electron
from the created pair. The radiation factor reads

Performing the covariant integration of the
(summed over spin states) modulus of the matrix ele-
ment over the pair components momenta, we obtain

It is convenient to parameterize the phase volume of the
total pair momentum as

where a trivial integration over the azimuthal angle can

be performed:   2π. Now we integrate over the

total pair momentum with the condition (2) (k0 ≡ Epair).
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In this way, we get the following result for the soft pair
contribution:

(3)

So, we have calculated explicitly all the terms in δSP

except the ones suppressed by the small factors

(α/π)2 /  and (α/π)2∆.

3. Virtual e+e– pair. We will use here the substitu-
tion suggested by Schwinger for the photon propagator
(with 4-momentum k) corrected by a one-loop vacuum
polarization insertion:

(4)

where m2 is the mass of the fermion in the loop. Using
the substitution, we can reproduce the known [9, 10]
asymptotic expressions for the 2(α2) virtual pair contri-
butions into the Dirac form factor of the muon (see
Appendix B in preprint [11]).

The standard technique of integration over Feynman
parameters can be used here. We are interested in the
region of electron energy fractions x @ me/mµ . Analyt-
ical expressions for the relevant integrals in this region
can be found in preprint [11]. As concerns the region of
small electron energy fractions, it requires a more accu-
rate treatment. But the differential width there
decreases rapidly (see, e.g., the Born level functions in
Eq. (3)), and the contribution of this region to the total
width is also suppressed by the mass ratio.

Formally, we have an ultraviolet singularity in the
virtual pair correction. The Fermi theory is not renor-
malizable in the general case. But for the muon decay
everything is safe, since the standard renormalization of
the electron and muon wave functions removes the sin-
gularity [12]. Note that we need to use only the pair
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contribution into the renormalization constants. They
can be found easily from the calculation of the virtual
pair corrections to the Dirac form factors of the electron
and muon and used as described in [13].

We get the following result for the virtual e+e– pair
contribution:

(5)

where

It is worth noting that the subleading virtual corrections
don’t factorize before the Born functions f0(x) and
g0(x).
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By integrating over the energy fraction and the
angle, we receive the corresponding contribution to the
total muon width:

(6)

This quantity was calculated earlier in [14] by
numerical integration using dispersion relations:

(7)

which is close but different from my number (6). The
main reason for this deviation seems to be in the differ-
ent approaches to the renormalization of ultraviolet sin-
gularities. Subtraction at q2 = 0 (q is the momentum
transferred between the electron and muon) was used
in [14] in analogy to the case of the Dirac form factor
calculations. But in the case of muon decay, the sub-
traction of singularities should be done as described
here (see details in preprint [11]). And for nonequal
masses of the charged particles, the subtraction point
does not correspond to q2 = 0. A certain (small) part of
the numerical deviation can also be due to terms pro-

portional to (α/π)2( / )Ln, which were omitted in
my calculation.

The correction to the forward–backward asymmetry
of the decay can also be found:

(8)
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Fig. 1. The relative effect of soft pair corrections versus the
cutoff value.
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4. NumericaL results and conclusions. The rela-
tive effect of the soft pair correction depends only on
the cutoff value. It is shown in Fig. 1. The soft pair
approximation (2) is not valid for values of ∆ close to
the threshold of real pair production and for large ∆ ~ 1.
But it can be used there as a simple estimate. So, by tak-
ing ∆ = 1, we make an estimate of the order of magni-
tude of the total contribution due to real e+e– pairs (here
the estimate is about two times the true value). For very
small values of ∆, the correction should vanish in any
case, so the approximation is very safe there.

Let us define the relative contribution of the virtual
e+e– pair corrections in the form

(9)

The dependence of this function on the electron energy
fraction is shown in Fig. 2 in different approximations
for Pµ = 1, c = 1. The dependence on c is very weak,
because the main part of the correction is factorized
before the Born level functions. The leading logarith-
mic (LL) approximation takes into account only the
terms of the order 2(α2L3, 2), the next-to-leading loga-
rithmic (NLL) approximation also includes the 2(α2L1)
terms, and the next-to-next-to-leading approximation
(NNL) represents the complete result.

The third power of the large logarithm cancels out in
the sum of the virtual and soft pair contributions:

(10)
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Fig. 2. The relative effect of virtual pair corrections versus
electron energy fraction in different approximations. 
I checked that the leading and next-to-leading terms in
these sums agree with the corresponding contribution
obtained within the fragmentation function formalism
in [6, 7].

Summing up the virtual and soft pair contributions,
we simulate the experimental setup with a certain
energy threshold for registration of pairs, while events
with pair production above the threshold (with several
visible charged particles in the final state) are rejected.

If the radiation of real pairs is completely forbidden
by kinematics (or experimental conditions), only the
virtual corrections (5) contribute. That happens, for
instance, at large values of x * 0.99.

Thus, two contributions to the total set of radiative
corrections for the muon decay spectrum are presented.
They are required to reach the level of the theoretical
accuracy below 1 × 10–4. The formulas can be used for
semianalytical estimates and as a part of a Monte Carlo
code to describe the pair production contribution to the
decay spectrum. The formulas are also valid for pair
corrections to leptonic τ decays.
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An experimental search for the superheavy hydrogen isotope 6H was conducted through studying the absorption
of stopped π –-mesons by 9Be and 11B nuclei. A structure in the missing mass spectrum caused by the resonance
states of 6H was observed in three reaction channels, namely, 9Be(π –, pd)X, 11B(π –, d3He)X, and 11B(π –,
p4He)X. The parameters of the lowest state Er = 6.6 ± 0.7 MeV and Γ = 5.5 ± 2.0 MeV (Er is the resonance
energy with respect to the disintegration into the triton and three neutrons) are evidence that 6H is a more weakly
bound system than 4H and 5H. Three excited states of 6H were observed. Their resonance levels (E1r = 10.7 ±
0.7 MeV, Γ1r = 4 ± 2 MeV, E2r = 15.3 ± 0.7 MeV, Γ2r = 3 ± 2 MeV, and E3r = 21.3 ± 0.4 MeV, Γ3r = 3.5 ±
1.0 MeV) are energetically capable of disintegrating into six free nucleons. © 2003 MAIK “Nauka/Interperi-
odica”.

PACS numbers: 25.80.Hp; 21.10.-k
Studies of light nuclei close to the nucleon stability
boundary have been focused on the spectroscopy of
superheavy hydrogen isotopes nH (n ≥ 4), to a great
extent because of the expectation that stable nucleon
isotopes with a large number of neutrons can be
observed, for theory does not forbid the existence of
such nuclei. Note that the question of the applicability
of the existing theoretical models to isotopes heavier
than 5H remains open, because such nuclear states are
difficult to reduce to a three-particle system. Experi-
mental information about hydrogen isotopes heavier
than 4H is scarce and contradictory. For instance, the
recent data on the ground state of the 5H isotope [1–4]
are at variance with each other, and the question of the
reasons for the discrepancies remains open [3]. In this
situation, it is not clear whether or not the phenomeno-
logical rules obtained in studies of 2p-shell nuclei at the
nucleon stability boundary can be extended to super-
heavy hydrogen isotopes [5].

Up to now, indications of the existence of the 6H iso-
tope have only been obtained in reactions on heavy ions
[6]. The resonance state of 6H with Er = 2.7 ± 0.4 MeV
and Γ = 1.8 ± 0.5 MeV (Er is the resonance energy with
respect to the disintegration to the triton and three neu-
trons) was recorded for the 7Li(7Li, 8B)X reaction at a
E(7Li) = 82 MeV energy [7]. The resonance state of 6H
with Er = 2.6 ± 0.5 MeV and Γ = 1.3 ± 0.5 MeV was
observed in the reaction 9Be(11B, 14O)X at a E(11B) =
0021-3640/03/7804- $24.00 © 20183
88 MeV energy [8]. The parameter values given above
are in agreement with each other, but the measurement
statistics were very poor in both works. No 6H was
observed in the 6Li(π–, π+)X double recharging reaction
at  = 220 MeV [9]. Nor were we able to record the

formation of 6H in two reaction channels, namely,
9Be(π –, pd)X [10] and 7Li(π–, p)X [11], in our early
works. The measurement statistics and the energy reso-
lution were, however, insufficient for obtaining reliable
spectroscopic data on 6H.

The use of shell models to describe 6H can hardly be
considered justified. It can, nevertheless, be noted that
the existence of states with Er= 1.78, 2.8, and 4.79 MeV
has been predicted in [12]. The calculations performed
in [13] by the method of angular potential functions
gave Er = 6.3 MeV for the ground state of 6H.

In this work, the search for the 6H isotope was made
by recording missing mass spectra for the following
reaction channels of the absorption of stopped
π−-mesons by nuclei:

9Be(π–, pd)X, 11B(π–, d3He)X 11B(π–, p4He)X.

Experiments were performed using a multilayer
semiconductor spectrometer [13] with a beam of low-
energy pions at the Los Alamos Meson Physics Facility.
Secondary charged particles formed in the absorption

E
π–
003 MAIK “Nauka/Interperiodica”



184 GUROV et al.
of pions by nuclei were recorded with two silicon tele-
scopes oriented at a 180° angle with respect to each
other. Each telescope enabled charged particles to be
identified and their energy to be measured up to the
kinematic reaction boundaries. The energy resolution
for singly charged particles (p, d, t) and helium ions
(3, 4He) was 0.5 and 1.0 MeV, respectively.

The energy resolution of the missing mass spectra
was determined by correlation measurements for the
reactions 11B(π–, pd)8He [14], 12C(π–, p4He)7He, and
12C(π–, d3He)7He (measurements for the 12C target
were performed in the same experimental run). The
principal states and widths of the produced helium iso-
topes were reliably determined [6, 15]. An analysis of
the results showed that the missing mass energy resolu-
tion for the events with the pd-, p4He, and d3He pairs
was 1.0, 2.5, and 2.0 MeV. A decrease in resolution for

Fig. 1. Missing mass spectra for the reaction 9Be(π–, pd)X:
(a) experimental spectrum and (b) experimental spectrum
obtained under the PR ≤ 100 MeV/c limitation on the non-
recordable residue momentum. The solid lines are the com-
plete description and the Breit–Wigner distributions,
(1) total distribution over the phase volume and (2) back-
ground of fortuitous coincidences.

Resonance parameters of the 6H isotope

Reaction channel

9Be(π–, pd)6H 11B(π–, p4He)6H

Er (MeV) Γ (MeV) Er (MeV) Γ (MeV)

6.6 ± 0.7 5.5 ± 2.0 7.3 ± 1.0 5.8 ± 2.0

10.7 ± 0.7 4 ± 2 – –

15.3 ± 0.7 3 ± 2 14.5 ± 1.0 5.5 ± 2.0

21.3 ± 0.4 3.5 ± 1.0 22.0 ± 1.0 5.5 ± 2.0
the events with the 3, 4He ions was not caused by an
increase in their ionization-induced energy loss in the
target compared with the p and d ions. The error in
absolute scale referencing was ≤0.1 MeV. The 8He peak
parameters were also used to control the time stability
of the characteristics of the spectrometer in work with
the 11B target. Correlation measurements of tt pairs on
the 9Be target were performed for a similar purpose [3].

Quantitative determination of possible impurities in
the targets was performed by identifying the peaks that
corresponded to the known two-particle reactions on
impurity nuclei. The major impurity in the 11B target
was 12C (8%). The contribution of the other (uncon-
trolled) impurities in the 11B and 9Be targets did not
exceed 1%.

The spectrometer and the procedure for measure-
ments were described in more detail in [14, 16].

The missing mass (MM) spectrum for the reaction
9Be(π–, pd)X is shown in Fig. 1a. The sum of the
masses of the triton and three neutrons was used as the
origin. First note the absence of features corresponding
to 6H bound states in the region of negative missing
masses. A weak background in this region is caused by
fortuitous coincidences in correlation measurements.
At the same time, the spectrum in the region of positive
missing masses contains structures that can correspond
to the formation of resonance states. We used the
method of least squares to describe the experimental
spectra by the sum of n-particle distributions over the
phase volume (all possible final states with n ≥ 4,
including the reaction channels that yielded 2n, 4H, and
5H, were taken into account) and Breit–Wigner distri-
butions in order to identify these 6H states and deter-
mine their parameters. The calculations were per-
formed taking into account the angular and energy res-
olution of the spectrometer and the background of
fortuitous coincidences.

As follows from Fig. 1a, the distributions over phase
volumes cannot reproduce the structure observed at
missing masses below 25 MeV. Note that the major
contribution to the total distribution is made by the
5-particle phase volume with the dineutron in the final
state (d + p + 2n + t + n). A satisfactory description (with
a χ2 value of 0.95 per degree of freedom) of the exper-
imental spectrum can only be attained by introducing
four 6H resonance states, whose parameters are listed in
the table. The Γ values are the total widths at half-
heights of the peaks shown in the figures. The parame-
ter uncertainties listed in the table are caused by both
statistical and systematic measurement errors.

The use of only distributions over the phase volume
and the Breit–Wigner distributions to describe the
missing mass spectrum leaves open the question of the
significance of final state interactions, whose role is
noticeable in the absorption of π–-mesons by light
nuclei [17]. Final state interaction between nuclear res-
idue particles was taken into account by including reac-
JETP LETTERS      Vol. 78      No. 4      2003
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tion channels with the formation of 2n, 4H, and 5H. It is,
however, unclear what contribution is made by reaction
channels with final state interactions between one of the
recorded particles and the neutron, namely, π– +
9Be  p + (dn)FSI + R and π– + 9Be  (pn)FSI + d +
R, in which correlations of particle velocities arise in
the “quasitriton” (dn)FSI and “quasideuteron” (pn)FSI

unbound states. We can nevertheless suggest a method
that allows the contribution of these channels to be
strongly suppressed in the important case of quasifree
absorption of pions.

The quasifree processes in which residual nucleus
nucleons do not directly participate make a substan-
tial contribution to the absorption of pions by light
nuclei [17]. The residual nucleus momentum pR is
determined in these processes by intranuclear Fermi
motion. For instance, for the reaction with the quasitri-
ton, we have

where Q is the total kinetic energy of the particles that
are formed in the absorption of the pion and p and T are
the momentum and kinetic energy of the particles,
respectively.

The neutron momentum can be estimated in the
nonrelativistic approximation on the assumption that
the velocities of the neutron and deuteron are equal in
the quasitriton. This gives

Note that the neutron momentum in the reaction chan-
nel with the quasideuteron is much higher (pn ~
200 MeV/c).

In our experiments, the energy of such neutrons was
not recorded. The experimental data were therefore
analyzed with the momentum pn(pn) referred to the
nuclear residue. The contribution of reaction channels
with final state interactions can be substantially sup-
pressed by introducing a limitation on the residual
nucleus momentum.

The missing mass spectrum recorded with the pR <
100 MeV/c limitation is shown in Fig. 1b. This value
cannot exceed the expected value for the Fermi
momentum of the intranuclear cluster. Therefore, the
introduced limitation also allows us to increase the rel-
ative contribution of quasifree absorption to the
observed spectrum. The description of the spectrum
with the Breit–Wigner distribution parameters listed in
the table gives χ2 equal to 1.01 per degree of freedom,
which substantiates the hypothesis of the existence of
four resonance states of the 6H isotope.

With the 11B target, the formation of 6H can be
observed in the missing mass spectra for two reaction

p dn( )FSI
pp and T dn( )FSI

T p+≈ Q,=

pn

mn

mn md+
------------------- 2

mp mn md+( )
mp mn md+ +
--------------------------------Q 120 MeV/s.≈=
JETP LETTERS      Vol. 78      No. 4      2003
channels, namely, 11B(π–, p4He)X (Fig. 2) and
11B(π−, d3He)X (Fig. 3). The 11B target contained a 12C
impurity. For this reason, the contribution of the reac-
tions 12C(π –, p4He)X and 12C(π –, d3He)X was sub-
tracted from the experimental spectra (Figs. 2a, 3a).
The contribution of these reactions (Figs. 2b, 3b) was
determined by normalizing the spectra measured with
the 12C target in the same experimental session taking
into account the relative fraction of the impurity (8%).
The spectra obtained after the subtraction are shown in
Figs. 2c and 3c.

The spectra recorded with 11B were analyzed by two
methods. First, we described the spectra using the 6H
resonance state parameters obtained with 9Be. This
gave χ2 of 0.88 and 0.97 per degree of freedom for the
11B(π–, p4He)X and 11B(π–, d3He)X reactions, respec-
tively, which did not contradict the suggestion of the
existence of four 6H isotope levels. Next, the spectra
were processed using level positions and widths and the
number of levels as free parameters. The spectrum for
the reaction 11B(π–, p4He)X (Fig. 2c) can then be
described (χ2 of 0.87 per degree of freedom) by includ-
ing only three resonance states with the parameters
listed in the table. Note that these parameter values
coincide with the results obtained for the 9Be(π–, pd)X

Fig. 2. Missing mass spectra for the 11B(π–, p4He)X reac-
tion: (a) spectrum measured on the 11B target, (b) spectrum
measured for the 12C(π–, p4He)X reaction normalized tak-
ing into account the amount of the 12C impurity in the 11B
target, and (c) spectrum obtained by subtracting the impu-
rity contribution. The solid lines are the Breit–Wigner dis-
tributions; (1) complete description, (2) total distribution
over the phase volume, and (3) background of fortuitous
coincidences.
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reaction to within the uncertainties. The spectrum for
the 11B(π–, d3He)X reaction (Fig. 3c) can be described
ignoring the existence of 6H, but a satisfactory χ2 value
per degree of freedom (1.0) can only be attained by
including the phase volume of the p + d + n + 5H chan-
nel into the total spectrum.

The analysis given above shows that the data
obtained with two targets are not at variance with each
other. However, note that the energy resolution of the
spectra obtained with 11B was worse and the measure-
ment statistic poorer compared with 9Be experiments.
This impeded the observation of 6H in the reaction with
11B and led us to suggest that the data obtained for the
9Be(π–, pd)X reaction more correctly reproduced the
structure of the 6H isotope levels.

The resonance energy of the 6H isotope ground state
obtained in this work is substantially higher than those
reported in the earlier works [9, 10]. It must be stressed
that the measurement statistic in this work was more
than an order of magnitude larger. Our results closely
agree with the theoretical predictions made in [12].
Note that equally close agreement was obtained for the
ground state of the 5H isotope [3, 12]. At the same time,

Fig. 3. Missing mass spectra for the 11B(π–, d3He)X reac-
tion: (a) spectrum measured on the 11B target, (b) spectrum
measured for the 12C(π–, d3He)X reaction normalized tak-
ing into account the amount of the 12C impurity in the 11B
target, and (c) spectrum obtained by subtracting the impu-
rity contribution. The solid line is the Breit–Wigner distri-
butions; (1) complete description and (2) background of
fortuitous coincidences.
our data are at variance with the structure of 6H levels
predicted by the shell model [11].

Additional evidence for the existence of levels with
Er = 10.7 and 15.3 MeV can be obtained from the spec-
tra of the 6He isotope [6]. The missing mass spectrum
measured in the 7Li(3He, p3He)X reaction at E(3He) =
120 MeV contained two comparatively narrow (Γ ≤
2 MeV) 6H states with excitation energies Ex ≈ 32.0 and
35.7 MeV [18]. The recalculation of these values to the
binding energies of the corresponding states (the B
value is positive for bound systems) gives B(6H) =
−2.2 ± 0.7 and –6.8 ± 0.7 MeV and B(6He) ≈ –2.7 and
–6.4 MeV, respectively. The Coulomb energy does not
exceed 0.7 MeV in 6He [19], which leads us to suggest
that the observed levels are isobar analogue states.

To summarize, the following conclusions about
superheavy hydrogen isotopes can be drawn from our
study of pion absorption by light nuclei. The binding
energy of the ground state gradually decreases as the
number of neutrons increases; compare B(4Hg.s) = 6.5 ±
0.2 MeV [20], B(5Hg.s) = 3.0 ± 0.2 MeV [3], and
B(6Hg.s) = 1.9 ± 0.7 MeV. The 5H and 6H superheavy
hydrogen isotopes have several excited levels, which
are energetically capable of disintegrating into free
nucleons.

This work was financially supported by the Univer-
sities of Russia program (project no. UR.02.01.007)
and CRDF (grant no. MO-011-0).
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The possibility of creating a time lens, an analogue of the zone plate in X-ray optics, for ultracold neutrons is
experimentally demonstrated. The neutron energy was changed by means of a purely quantum effect: the phase
modulation of a neutron wave at a variable modulation frequency. The modulator was a phase grating with vari-
able spatial period moving across the neutron beam. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.75.Be
Quantum experiments in neutron optics and the
time focusing of neutrons. In recent years, a number
of experiments were devoted to nonstationary action on
slow neutrons [1–6] and cold atoms [7–9].1 As is
known, a distinctive feature of nonstationary action
consists in changing the energy of a state. In the
absence of fields, a change in the energy of a slow par-
ticle implies alteration of the classical velocity. The
possibility of using this circumstance to create a neu-
tron time lens and to focus neutrons in the time domain
was considered in [10]. Below we present the results of
our first experiments, demonstrating the possibility of
implementing this idea.

The principle of time focusing is shown in Fig. 1.
Let neutrons with velocities distributed within a certain
interval be emitted at a time t = 0 from point x = 0 in the
positive direction of the X axis. Accordingly, the time
of arrival at the observation point x = L is also distrib-
uted within a certain interval on the time scale. Time
focusing means satisfying the condition of simulta-
neous arrival of all neutrons at the observation point. In
order achieve this goal, it is necessary to act upon the
neutron velocity by means of a certain device, called a
time lens and situated at point x = a, so as to provide for
the validity of the relation

(1)

Here and below, v a and v b are the velocities of a neu-
tron before and after the time lens, respectively, and t0

is the total time of flight (TOF).

1 A brief review of theoretical works on the subject under consider-
ation can be found, e.g., in [6].

a
v a

------ b
v b

------+ t0, a b+ L.= =
0021-3640/03/7804- $24.00 © 20188
Focusing condition (1) will be fulfilled if the time
lens transfers to each neutron an energy

(2)

Obviously, a pulse from any real source has a finite
duration τ. The pulse duration Θ at the point of obser-
vation (or time imaging) is finite as well. By analogy
with geometric optics, we can introduce the notion of
time magnification M. Then, for a relatively small
energy transfer |∆E| ! E, we can use the well-known
formula of a thin lens [10]:

(3)

Similar results were obtained in [11] for the time
focusing of atomic beams. As for the focusing of neu-
trons on the time scale, this possibility would be very

∆E t( ) m
2
----

b
t0 t–
----------- 

  2 a
t
--- 

 
2

– , t
a
v a

------.= = =

M Θ/τ b/a.–= =

Fig. 1. Schematic diagram illustrating the idea of time
focusing.
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important in connection with the old problem of accu-
mulating ultracold neutrons (UCNs) generated by a
pulsed source [12, 13] (for more detail, see [10]).

A quantum modulator as a time lens. The func-
tion of a time lens can be performed by a quantum mod-
ulator. By this we imply a device capable of periodi-
cally (with a period of T) acting upon the amplitude or
phase of the initial plane wave. In a small vicinity of
this device, the wave function has the following form:

(4)

In the entire right-hand half-space, the wave state is
represented by a nonstationary superposition of waves
with the energies "ωn and the wave vectors kn [14]:

(5)

where

(6)

Ω = 2π/T, and the amplitudes cn are given by the coef-
ficients of expansion of the modulation function f(t)
into a Fourier series in frequencies nΩ . In a certain
sense, the action of the quantum modulator is analo-
gous to that of the usual grating. The difference is that
the usual diffraction is described by the Fourier trans-
form of variables x  k, while the quantum modula-
tor provides for a mutual transformation of the quanti-
ties t  ω.

In order to provide for the time focusing effect, fast
neutrons reaching the time lens within a time smaller
than tc = t0a/L should be slowed down, while slow neu-
trons should be accelerated (Fig. 1). Since all waves in
superposition (5) possess different energies and wave
vectors kn , only one of these waves can meet condition
(2) at any time. Thus, only a wave of one (nonzero)
order is involved in the formation of a time image at
each moment of time, the other waves forming a back-
ground. The same situation takes place in X-ray optics
[15], where a zone plate is widely used as the lens.

The maximum intensity is usually inherent in waves
of the lowest order. For first-order waves, the law of fre-
quency variation with time is determined by the expres-
sion Ω(t) = ∆E(t)/", where ∆E(t) is given by formula
(2). Within the first half of the time interval, waves of
the –1 order are employed, while the rest of the time is
devoted to waves of the +1 order. Preference should be
given to the phase modulation, whereby f(t) =
exp[iϕ(t)]. This modulator changes only the phase of a
transmitted wave, not decreasing the total wave inten-

Ψ x t,( ) f t( )e
i k0x ω0t–( )

, k0
1– x ! v T .<≅

Ψ x t,( ) cne
i knx ωnt–( )

, x 0,>
n ∞–=

∞

∑=

ωn ω0 nΩ,+=

kn k0 1 n γ/2( )+( ), γ≅ Ω /ω0 ! 1,=
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sity. In practice, it is convenient to modulate the phase
by π after each half period. In this case, the Fourier
coefficients in expansion (5) are

(7)

so that waves of all even orders (including zero order)
are missing from the resulting spectrum. The intensity
of the first-order waves is |c1|2 ≈ 0.4.

Since we are interested only in a change of the par-
ticle energy, the phases of modulation at various points
of the beam cross section can be different. For this rea-
son, the possibility of using a modulator in the form of
a phase grating moving across the beam can also be
taken into consideration [10]. The related physical phe-
nomena have been studied previously [14, 16]. It was
demonstrated that a phase grating possessing suffi-
ciently large velocity V at not too small a spatial grating
period α (αk @ 1) acts quite similarly to a modulator
with the modulation frequency V/α. The phenomenon
of energy quantization upon UCN diffraction on a
moving phase grating was recently observed in exper-
iment [6].

Description of experiment and results. Our aim
was to demonstrate the possibility of implementing the
idea of a time lens based on the quantum modulation of
a neutron wave. The formation of a time image of the
point source is illustrated in Fig. 1. To demonstrate the
operation of such a lens, we can use parallel rays from
an infinitely remote source. In the spatiotemporal rep-
resentation, this experimental scheme corresponds to
monochromatic neutrons emitted from a stationary
source (Fig. 2). In this case, a distribution uniform in
time (but, naturally, statistical) of the initial neutrons is
transformed so that a temporal group of neutrons
appears at the detection point L. The lens can operate in
a cyclic regime, focusing the neutrons entering the
device within a certain period of time Tcycl . Figure 2
presents three such periods. This very scheme was
implemented in the experiment.

cn 2/iπn, n 2s 1,–= =

Fig. 2. A coordinate versus time scheme of the experiment
with the time lens.
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The action on the neutron energy was provided by
diffraction on a rotating phase grating. The grating,
manufactured by lithography on the surface of a silicon
disc with a diameter of 152 mm and a thickness of
0.6 mm, had the form of radial grooves. Owing to the
refraction in silicon, the phases of neutron waves pass-
ing through the adjacent elements (groove plus ridge)
of the grating acquired a difference 

 

∆ϕ

 

 determined by
the formula

(8)

where 

 

k

 

 is the wavenumber, 

 

n

 

 is the refractive index,
and 

 

d 

 

is the groove depth. In our experiments, the

∆ϕ k 1 n–( )d ,=

        

Fig. 3. A schematic diagram of the experimental setup:
(1) UCN entrance chamber; (2) vacuum chamber; (3) rotat-
ing phase grating; (4) interference filter-monochromator;
(5) neutron guide; (6) scintillator; (7) photomultiplier.

Fig. 4. Plots of (a) the angular distance between grooves of
the phase grating and (b) the inverse quantity (spatial fre-
quency) versus the azimuthal angle measured on the grating
surface.

(a) (b)
groove depth was chosen to be d = 0.14 µm, which cor-
responded to ∆ϕ = π

 

. During rotation of the grating, the
phase of a transmitted wave was modulated at each
point of the beam cross section with a frequency of 

 

Ω

 

 =
2

 

π

 

V

 

/

 

α

 

. As a result, the initial monochromatic spectrum
was transformed into a discrete spectrum according to
(5) and (6) with the partial wave amplitudes determined
by formula (7).

The experiment was performed using the source of
cold and ultracold neutrons at the Institute Laue–Lan-
gevin (Grenoble, France) [17]. A general schematic of
the experimental setup, representing a modified UCN
spectrometer [18, 19], is presented in Fig. 3. UCNs sup-
plied from the source were fed to the device through a
cylindrical channel with internal and external diameters
of 110 and 130 mm, respectively, and monochromated
by a neutron interference filter, a neutron analogue of
the Fabry–Perot interferometer [18–20]. The filter
transmitted neutrons with a narrow spectrum of vertical
velocities representing a peak centered at 4.52 m/s with
a width (FWHM) of 0.085 m/s.

Most of the output channel cross section was closed
by a diaphragm with a 30

 

°

 

 angular window. Past this
window, the beam of monochromated neutrons struck
the grating. Driven by an electric motor, the grating
could rotate about the vertical axis at a rate of
5820 rpm, so that the linear velocity at the site of neu-
tron beam passage was about 36 m/s.

The distance between grooves of the grating was
chosen so as to provide that the spatial frequency 

 

ν

 

(inverse to the grating period) would be a linear func-
tion of the azimuthal angle measured on the grating sur-
face (see Fig. 4), varying from ~2000 rad

 

–1

 

 to ~130 rad

 

–1

 

.
In the region where the calculated angular frequency
was smaller than 130 rad

 

–1

 

, the structure was absent.
When the grating was rotated, neutrons were trans-

mitted at each moment of time through a certain small
region of the grating characterized by its period and the
corresponding modulation frequency. At a constant
rotation rate, the modulation frequency varied so as to
ensure the focusing condition during a time equal to the
period of rotation (representing the cycle of measure-
ment). During the first half of this interval, the time lens
focused neutrons losing their energy (with 

 

∆

 

E

 

(

 

t

 

) =

 

−

 

"

 

Ω

 

(

 

t

 

)), and in the second half it focused the acceler-
ated neutrons (with 

 

∆

 

E

 

(

 

t

 

) = +

 

"

 

Ω

 

(

 

t

 

)). Neutrons corre-
sponding to the higher orders formed the background.
The maximum modulation frequency amounted to

 

Ω

 

max

 

 = 1.5 

 

×

 

 10

 

7

 

 rad/s, which corresponded to an
energy transfer of 

 

∆

 

E

 

max

 

 = 10 neV.
A mirror neutron guide situated under the grating

transported UCNs to a scintillation detector. The dis-
tance from the monochromator to the detector (TOF
base) was 70 cm and the TOF of monochromatic neu-
trons was about 140 ms.

 

2

 

 The measurements were per-

 

2

 

This time and the neutron energy spectrum past the monochroma-
tor were measured in a separate experiment not described here.
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formed in TOF mode. The motor driving the grating
was equipped with a transducer generating master
pulses at a certain phase of the rotation cycle. The TOF
was measured between the master pulse and the
moment of detection.

Figure 5 shows an experimental distribution of the
neutron arrival times measured at the detector, plotted
on a time scale equal to the grating rotation period. As
is clearly seen, the distribution is by no means uniform
and exhibits a pronounced peak, which is evidence of
the focusing effect. It should be recalled that the
moments when neutrons entered the instrument were
absolutely random.

The measurements were performed for several grat-
ing rotation rates. As the rotation rate was decreased,
the peak exhibited a shift. Simultaneously, the peak
increased in width and decreased in height, completely
vanishing at a grating rotation rate below 2000 rpm.
The efficiency of focusing was about 17% (against the
maximum possible value of 40% calculated for the
intensity of the first-order waves). The decrease in the
focusing efficiency is probably explained by insuffi-
ciently high quality of the grating, which was con-
firmed by special tests.

In forthcoming experiments, we hope to increase the
efficiency of the time lens operating on the principle of
π-phase modulation. Theoretically, it is possible to cre-
ate a lens with efficiency approaching 100%. This
would correspond to a modulation function of the type
f(t) = exp[iϕ(t)], where ϕ = 2πt/T, T is the period, and 0
< t < T.

Brief discussion of results. We have described a
new experiment in the field of quantum neutron optics.
Such experiments usually have a character of demon-
stration. However, it was already pointed out [6] that
the significance of demonstration experiments is not
restricted to solving purely pedagogical tasks. It is also
significant that such works can stimulated the develop-
ment of new methods and devices based on quantum
principles. We believe that the present work confirms
the validity of this statement.

Previously [14, 16], the operation of a quantum
modulator was theoretically studied and the effect of
energy quantization upon diffraction on a moving grat-
ing was predicted. Later, the idea of creating a time lens
for neutrons was formulated [10], while the possibility
of using nonstationary quantum effects for this purpose
was viewed upon rather as eccentric. Recently, how-
ever, the phenomenon of energy quantization upon dif-
fraction on a moving grating was experimentally dem-
onstrated in [6]. In conclusion to that paper, we sug-
gested that “this effect, which has been observed for the
first time, may be used for controlled changing of neu-
tron energy in other experiments. The idea of neutron
time-focusing … now looks more realistic.” In the
present paper, the possibility of realization of a quan-
tum time lens for neutrons has been experimentally
JETP LETTERS      Vol. 78      No. 4      2003
                            

demonstrated. Thus, we can move from prediction and
demonstration of this effect to its practical application.

Evidently, in continuing development of the meth-
ods of time focusing, we may suggest using a time lens
to create an intense source of ultracold neutrons [11, 12,
10].

The authors are grateful to V. G. Nosov and E. Kats
for very fruitful discussions and to V. Yu. Kireev for his
help in manufacturing gratings. This study was sup-
ported by the Russian Foundation for Basic Research
(project no. 00-02-17172) and the INTAS Foundation
(grant no. 00-00043).
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We experimentally study second-harmonic generation by femtosecond Cr: forsterite-laser radiation scattered
on the surface of porous gallium phosphide with characteristic pore sizes and distances between the pores com-
parable with the second-harmonic wavelength. The intensity of the second-harmonic signal from samples with
initial crystallographic surface orientations (110) and (111) is more than an order of magnitude higher than the
intensity of the second harmonic generated in reflection from single-crystal gallium phosphide. The efficiency
of second-harmonic generation by macroporous gallium phosphide substantially increases as the pump wave-
length becomes shorter. The influence of light localization and scattering effects on the enhancement of second-
harmonic generation and polarization properties of the second-harmonic is discussed. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 42.65.Ky; 42.70.Nq; 78.67.-n
Advances in the nonlinear optics of nanostructures
open the way for creation of new unique materials for
laser physics and nonlinear optics, as well as for the
development of highly efficient photonic devices with
the use of these materials [1, 2]. Modern nanotechnol-
ogies, as demonstrated by recent experiments with
mesoporous silicon [3–6], allow a radical modification
of optical properties of materials and creation of struc-
tures with a strong artificial birefringence, offering new
solutions for the phase matching of nonlinear-optical
interactions [7].

Applications of porous silicon in optics, including
photonics and nonlinear optics, are, however, limited,
first, by the absorption of silicon, which restricts the
efficient use of silicon to the infrared range; second, by
the low quantum yield in the case of mesoporous struc-
tures; and, third, by the fact that porous silicon remains
a centrosymmetric material, where some nonlinear-
optical processes, such as second-harmonic generation
(SHG), for example, are forbidden in the dipole
approximation. In this respect, porous gallium phos-
phide holds much promise for optical applications. Due
to a wider band gap, GaP can be employed in the yellow
and red visible spectral ranges (for wavelengths
exceeding 550 nm). The noncentrosymmetric crystal
lattice of this material gives rise to a high dipole qua-
dratic nonlinear susceptibility (~200 pm/V), which is
two orders of magnitude higher than this susceptibility
0021-3640/03/7804- $24.00 © 20193
for most of the crystals employed for frequency dou-
bling [8].

Porous gallium phosphide is of particular interest
also in the context of light localization [9–11]. This
effect, analogous to the Anderson localization of elec-
trons in a medium with defects, is due to the interfer-
ence of waves scattered by inhomogeneities [12]. The
time of radiation–matter interaction increases under
these conditions, leading to the enhancement of many
optical processes, including nonlinear-optical phenom-
ena. Nonlinear-optical interactions in disordered
dielectric media have been studied earlier both theoret-
ically [13–15] and experimentally. Experimental stud-
ies have been performed, in particular for layers of lith-
ium niobate powder [15] and a powder laser [16]. How-
ever, all the aspects of the role of disordering in
nonlinear-optical processes still have to be understood.
In particular, no comparison with crystal media has yet
been performed. Efficiencies of such processes have
not been estimated either.

Thus, porous GaP offers much promise for the cre-
ation of new nonlinear-optical components. Nevertheless,
many of the nonlinear-optical properties of this material
are still to be understood. In earlier work [17, 18], SHG
by Nd:YAG-laser radiation propagating through a
porous GaP film was investigated. These studies have
shown that the SHG efficiency in porous GaP with
(100) and (111) surface orientations increases and the
orientation dependence changes with respect to crystal
003 MAIK “Nauka/Interperiodica”
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GaP. Little has been known until now about the influ-
ence of light scattering in macroporous GaP layers on
the SHG efficiency.

In this paper, we study second-harmonic generation
in near-surface layers of macroporous GaP. These lay-
ers were produced by electrochemically etching n-GaP
doped with Te with a concentration of 3 × 1017 cm–3,
having initial surface orientations (110) and (111), in a
0.5-M water solution of H2SO4 and a 1 : 1 ethanol solu-
tion of HF, respectively. One of the films with the (110)
surface orientation was cleaved from a substrate. The
thicknesses of porous layers were 40 and 10 µm,
respectively. Macroporous GaP layers employed in our
experiments had a comparatively low optical quality of

Fig. 1. Atomic-force-microscopy surface images of
macroporous gallium phosphide produced on a substrate
with (a) the (110) and (b) (111) surface orientation. The
sizes of the images are 10 × 10 µm.

(‡)

(b)

2 µm

2 µm
both surfaces. No characteristic interference fringes
was observed in infrared and visible transmission spec-
tra. Surface images of macroporous GaP made with the
use of atomic-force microscopy are presented in Fig. 1.
As can be seen from these images, the size of inhomo-
geneities [pores for the (111) surface and nanocrystals
for the (110) surface] is on the order of 600 nm. Some
anisotropy of crystal remainders is observed for the
film with the (110) surface orientation.

The second harmonic was generated in our experi-
ments with 60-fs pump pulses of Cr: forsterite-laser
radiation with the wavelength λ = 1250 nm. The pulse
repetition rate was 25 MHz, and the pulse energy was
6 nJ. The advantage of Cr: forsterite-laser radiation for
our experiments is that neither fundamental radiation
nor its second harmonic is absorbed by gallium phos-
phide. Pump radiation was focused on the sample along
the normal to its surface with a lens having the focal
length F = 4 mm and the numerical aperture N.A. = 0.5.
With these parameters, the laser beam diameter on the
sample was about 1.5 µm, and the confocal parameter
λ/π(N.A.)2 was estimated as 2 µm. Thus, an area with a
length of 4 µm provided the main contribution to the
second-harmonic signal. Scattered radiation collected
with the same lens was directed to a detection system (a
Jobin Yvon Triax 320 spectrometer) with the use of a
dichroic mirror. To measure orientation dependences of
the second-harmonic signal, the polarization of the
pump field was rotated (with a half-wave plate) simul-
taneously with an analyzer (the Glan prism) for the sec-
ond harmonic. Polarization rotation angles for the
pump field and the second harmonic were equal to each
other, with the analyzer being either parallel or perpen-
dicular to the polarization of pump radiation.

Many important aspects related to the influence of
light scattering on SHG can be understood by varying
the ratio of the second-harmonic wavelength to the size
of nanocrystals. Such SHG experiments were per-
formed with the use of an optical parametric oscillator.
We employed a nanosecond Solar Laser Systems laser,
consisting of a Nd:YAG master oscillator, a frequency
tripler for 1.06-µm radiation, and an optical parametric
oscillator. An idler wave of the optical parametric oscil-
lator with a wavelength smoothly tunable within the
spectral range from 1 up to 1.5 µm was employed as a
pump in our experiments. The laser system generated
3-ns pulses with an energy up to 10 mJ at a pulse repe-
tition rate of 20 Hz. The p-polarized pump radiation
was focused with a 5-cm-focal-length lens on a sample
at an incidence angle of 45°. A porous GaP layer on a
crystal substrate with the (110) orientation was studied
in these experiments. Pump radiation was polarized
perpendicular to the [001] crystallographic axis. Sec-
ond-harmonic radiation generated through scattering
and reflection from the studied samples was collected
with a lens, analyzed with the use of an MDR-6 mono-
JETP LETTERS      Vol. 78      No. 4      2003
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chromator, and detected with a photoelectric multiplier
within the wavelength range of 0.5–0.75 µm.

The results of orientation measurements performed
on the second harmonic are presented in Fig. 2. Clearly
pronounced orientation dependences are observed for

crystal GaP. This crystal belongs to the  point
group, and its quadratic nonlinear susceptibility tensor

is characterized by a single independent element  =

 = . The following relations can be easily
derived in this case for the (110) and (111) surfaces in
the regime of normal incidence [19]:

(1)

(2)

(3)

(4)

where the angles φ and Φ are measured from the [001]

and  crystallographic directions, respectively. As
can be seen from Fig. 2, the orientation dependences of
the second-harmonic intensity for crystal GaP agree
well with Eqs. (1)–(4).

For macroporous GaP, the orientation dependence,
however, becomes isotropic: the second-harmonic
intensity is independent in this case of the relative ori-
entation of the polarizer and the sample. The second-
harmonic intensity is substantially higher under these
conditions than in the case of crystal GaP. This SHG
enhancement reaches an order of magnitude for
macroporous GaP produced on the (110) surface
(Fig. 1a) and nearly two orders of magnitude for
macroporous GaP produced on the (111) surface
(Fig. 1b). It should be noted that only some fraction of
scattered second-harmonic radiation was collected in
our experiments. Receiving the second harmonic
within a larger solid angle would increase the ratio of
second-harmonic intensities for macroporous and crys-
tal GaP.

Figure 3 displays the ratio of the intensities of the
second harmonic generated in macroporous and crystal
GaP samples as a function of the pump wavelength. As
can be seen from this dependence, the second-harmonic
signal from a macroporous sample is higher than the
second harmonic from crystal GaP for all the radiation
wavelengths employed in our experiments. Impor-
tantly, the ratio of these signals substantially depends
on the pump wavelength, decreasing by more than an
order of magnitude with the increase in the wavelength.

Since the surface of the films employed in our
experiments had a rather low optical quality, it is
unlikely that the effects described above are due to the
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reflection of pump or second-harmonic radiation from
the porous GaP–crystal GaP interface for the porous
layer on a substrate and from the porous GaP–air inter-
face in the case of a free-standing film. In addition, tight

Fig. 2. Orientation dependences of the second-harmonic
signal measured with parallel (open circles) and crossed
(filled circles) polarizers for (circles) crystal and (squares)
macroporous gallium phosphide with (a) the (110) and
(b) (111) surface orientation. The results of calculations
performed with (dotted line) Eqs. (1) and (3) and (solid line)
Eqs. (2) and (4) are also shown.

Fig. 3. The intensity of the second harmonic generated
through scattering from macroporous GaP normalized to
the intensity of the second harmonic generated in reflection
from crystal GaP as a function of the pump wavelength.
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focusing reduced the influence of phase matching on
SHG in experiments performed with a Cr : forsterite
laser.

The results of these experiments suggest an impor-
tant role of scattering in SHG. The isotropic character
of orientation dependences obtained in our experiments
may be mainly attributed to the regime of SHG where
both pump radiation and the second harmonic propa-
gate at different angles in a macroporous structure,
interacting with crystal GaP surfaces having different
orientations. Both of these factors change orientation
dependences. The signal detected in our experiments is
thus a sum of signals from different points in the entire
volume contributing to second-harmonic generation.
Since the signal from each point is characterized by its
own orientation dependence, distorted by subsequent
reflections, the total second-harmonic signal, collected
within a large solid angle, is nearly completely depolar-
ized. The increase in the interaction time of pump radi-
ation with a macroporous structure due to multiple scat-
tering is apparently responsible for the enhancement of
SHG observed in our experiments.

The ratio of the characteristic size of spatial inho-
mogeneities to the radiation wavelength λ is the key
parameter controlling the regime of linear and nonlin-
ear scattering of electromagnetic radiation in a disor-
dered medium. The characteristic size of inhomogene-
ities (the mean size of pores and crystal remainders in
the case of porous materials) determines the photon
free-path length l for a given radiation wavelength and
influences the regime of radiation focusing. The condi-
tion l/λ ~ 1 defines the criterion of Anderson localiza-
tion of light in disordered media [10]. The strong
dependence of the SHG efficiency in macroporous GaP
on the pump wavelength (Fig. 3) may, therefore, indi-
cate the tendency of localization enhancement toward
the Anderson localization regime. Analysis of surface
images of porous gallium phosphide samples investi-
gated in our experiments (Fig. 1) shows that the charac-
teristic distance between nanocrystals and the typical
pore size for these samples are close to the wavelength
of the second harmonic of both Cr : forsterite-laser radi-
ation and the idler wave of the optical parametric oscil-
lator.

The above hypothesis of radiation localization
enhancement in a macroporous material is consistent
with the findings of the earlier experiments devoted to
nonlinear-optical phenomena in mesoporous silicon [6].
These experiments have demonstrated, in particular,
that the enhancement of nonlinear-optical processes in
mesoporous silicon is sensitive to the parameters of the
initial silicon wafer and the regime of electrochemical
etching, which determine the sizes of the shape of pores
and nanocrystals, eventually controlling the regime of
radiation localization in the sample. These factors may
be responsible for the noticeable difference in SHG
enhancement observed for surfaces with the (110) and
(111) orientations.
Our experiments on second-harmonic generation in
scattering layers of porous gallium phosphide thus
show that nanostructures where the characteristic sizes
of inhomogeneities are comparable with the wave-
length of second-harmonic radiation enhance second-
harmonic generation by more than an order of magni-
tude relative to SHG in crystal gallium phosphide.
Radiation at the frequency of the second harmonic is
totally depolarized under these conditions. Enhance-
ment of second-harmonic generation in scattering
macroporous gallium phosphide substantially depends
on the wavelength of pump radiation, with a decrease in
the pump wavelength increasing the ratio of second-
harmonic intensities for macroporous and crystal GaP.
Enhancement of second-harmonic generation was
observed in the above-described experiments in a disor-
dered spatially nonuniform structure with parameters
meeting the light-localization criterion. The results of
our experiments indicate the possibility of creating effi-
cient frequency converters and visualizers of infrared
radiation based on porous gallium phosphide.
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The effect of birefringent disorder on the bit error rate (BER) in an optical fiber telecommunication system sub-
ject to amplifier noise may lead to extreme outages, related to anomalously large BER values. We analyze the
probability distribution function of BER for various strategies of polarization mode dispersion compensation.
A compensation method is proposed that is capable of more efficient extreme suppression of outages, which
leads to substantial improvement of the fiber system performance. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.79.Sz; 42.81.Gs; 05.40.Ca
Polarization mode dispersion (PMD) is an essential
impairment for modern optical fiber systems [1–3].
Therefore, dynamical PMD compensation has become
an important subject in modern communication tech-
nology [4–7]. Optical noise generated in optical ampli-
fiers represents another impairment that may not be
reduced or compensated and, therefore, should also be
considered in any evaluation of fiber system perfor-
mance [8]. The bit error rate (BER) calculated for a given
realization of birefringent disorder by means of averag-
ing over the amplifier noise statistics constitutes an
appropriate object for characterizing the joint effect of
the two impairments. In two preceding papers [9, 10], we
have demonstrated that the probability of extreme out-
ages (BER values much higher than typical) is substan-
tially larger than one could expect from naive Gaussian
estimates singling out effects of either of the two
impairments. The natural object of interest is the prob-
ability distribution function (PDF) of BER and, specif-
ically, the PDF tail corresponding to anomalously large
BER. In [9] we have developed a consistent theoretical
approach to calculating this tail. The case when no
compensation is applied and also the effect of the sim-
plest “setting of the clock” compensation on the PDF
tail suppression have been discussed in [9]. Our inves-
tigation was then extended to study effects of the stan-
dard first- and higher-order compensations on extreme
outages [10]. In the present letter we propose a com-
pensation scheme that appears to be more efficient in
reducing the extreme outages compared to the tradi-

¶ This article was submitted by the authors in English.
0021-3640/03/7804- $24.00 © 0198
tional high-order compensation scheme with the same
number of compensating degrees of freedom.

We consider the return-to-zero (RZ) modulation for-
mat, when optical pulses are well separated in time t
and thus can be analyzed as individual objects. We
represent the pulse intensity measured at the system
output as

(1)

where G(t) is a convolution of the electrical (current)
filter function with the sampling window function. The
two-component complex field Y(t) describes the out-
put optical signal (the components correspond to two
polarization states of the signal). The linear operator _
in Eq. (1) represents optical filtering; it may also
account for a compensating device. The compensating
part of the linear operator, _c , is applied first, i.e.,
before filtering described by _f , resulting in _ = _f_c .
Ideally, I takes two distinct values depending on
whether the information slot is vacant or filled. How-
ever, the impairments enforce deviations of I from
those fixed values. If the output signal intensity exceeds
the decision level Id , then “1” is associated with the slot,
otherwise the slot is labeled “0.” Sometimes the infor-
mation is lost; i.e., the initial “1” is detected as “0” at
the output or vice versa. The BER is the probability of
such events that naturally depends on a specific realiza-
tion of birefringent disorder in the fiber. BER must be
extremely small to guarantee successful system perfor-
mance. It has been demonstrated in [9] that anoma-
lously high BER originates solely from the “1  0”

I tG t( ) _Y t( )
2
,d∫=
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events. We denote the probability of such events by B
and study its sensitivity with respect to disorder.

In this letter we restrict ourselves to the linear prop-
agation regime, when the output signal Y(t) can be rep-
resented as a sum of two contributions: j, related to the
noiseless evolution of the initial pulse, and the noise-
induced part f. We consider the cases of distributed or,
alternatively, lumped amplification with the fiber length
Z substantially exceeding the interamplifier separation
(span length) within the same scope. f becomes a zero-
mean Gaussian variable, completely characterized by
its two-point correlation function

(2)

insensitive to particular realizations of birefringent dis-
order and chromatic dispersion in the fiber. The product
DξZ represents the amplified spontaneous emission
(ASE) spectral density accumulated along the fiber.
The coefficient Dξ is introduced into Eq. (2) to reveal
the linear growth of the ASE factor with Z [8]. The
noise-independent part of the signal is governed by

(3)

z and d being the coordinate along the fiber and chro-
matic dispersion. The birefringence matrix can be rep-
resented as  = hj , where hj is a real three-compo-

nent field and  are the Pauli matrices. Averaging over
many states of the birefringent disorder that any fiber
goes through over time, or (alternatively) over the states
of birefringence of different fibers, one finds that hj(z)
is a zero-mean Gaussian field described by

(4)

If birefringent disorder is weak, the integral H =

 coincides with the PMD vector. Thus, Dm =

k2/12, where k is the so-called PMD coefficient.
In an operable communication system, typical dam-

age caused by disorder and noise must be small, i.e.,
typically both impairments can cause only a small dis-
tortion to a pulse; thus, the optical signal-to-noise ratio
(OSNR) and the ratio of the squared pulse width to the
mean squared value of the PMD vector are both large.
OSNR can be estimated as I0/DξZ, where I0 =

 is the initial pulse intensity, the integration

being performed over a single slot populated by an
ideal pulse, encoding “1.” Typically, B fluctuates
around B0, the zero-disorder (hj = 0) value of B. A con-
venient auxiliary dimensionless object, Γ =
(DξZ)ln(B/B0)/I0, depends on the birefringent disorder
and the initial signal shape, as well as the details of the
compensation and detection procedures; it is, however,
insensitive to noise. Since the OSNR is large, even
weak disorder can generate a strong increase in the
value of B. This is why a perturbative (with respect to

φα t1( )φβ* t2( )〈 〉 DξZδαβδ t1 t2–( ),=

∂zj m̂ z( )∂tj id z( )∂t
2j–– 0,=

m̂ σ̂ j

σ̂ j

hi z1( )h j z2( )〈 〉 Dmδijδ z1 z2–( ).=

zh z( )d
0

Z∫

t Ψ0 t( ) 2d∫
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h) calculation of Γ gives the most essential part of the
PDF 6(B) of B. If no compensation is applied, one gets
Γ ~ H3/b, b being the pulse width, and the initial signal
is assumed to be linearly polarized. In the simplest case
of “setting of the clock” compensation, one arrives at

Γ ~ (  + )/b2. This yields the powerlike tail of the
PDF of B [9]. Higher order compensation leads to Γ ~
(H/b)p, where p is an integer exceeding by one the
degree of compensation, provided no additional cancel-
lations occur, and one gets the following asymptotic
expression (tail) for the PDF 6(B) of B [10]:

(5)

where µp is a dimensional coefficient. Therefore, as
anticipated, compensation suppresses the PDF tail.
However, applying high-order compensation is not
very efficient, since the decrease in 6 is mild as p
increases.

The main purpose of this letter is to introduce more
efficient compensation strategies with the same number
of compensating degrees of freedom. As a first example
consider the following “periodic” scheme. One divides
the optical line into N segments, each having a length
l = Z/N, and apply the first-order compensation at the
end of each segment (as schematically shown in the
upper panel of figure, with “c” denoting the compensat-
ing elements). The noise-independent part of the com-
pensated signal for the “periodic compensation” strat-
egy is determined by

(6)

(7)

(8)

H1
2 H2

2

6ln µpb2 DξZ B/B0( )/I0ln[ ] 2/ p/ DmZ[ ] ,–=

_cj iη∂ t
2( )_1NÛN…_11Û1Y0 t( ),exp=

Ûn T zh j z( )σ̂ j∂td

n 1–( )l

nl

∫ ,exp=

_1n zh j z( )σ̂ j∂td

n 1–( )l

nl

∫– ,exp=

Scheme of fiber-line-element installation corresponding to
the periodic and quasi-periodic compensation strategies.
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where Y0(t) is the input signal profile, η =  is

the integral chromatic dispersion, and the ordered prod-
uct on the right-hand side of Eq. (6) is taken over all the
N segments (T exp is the standard notation for the so-
called ordered exponential). The exponential factor _1n

represents the first-order compensation at the end of the
nth segment.

This periodic compensation is not very convenient
since it requires installation of compensating elements
at multiple places along the fiber. However, one can
naturally modify this scheme and have the same com-
pensating elements inserted subsequently, but all at
once, at the fiber output, as shown in the lower panel of
the figure. If the disorder profile hj is known (techni-
cally such end-point measurements are possible via the
anti-Stokes refraction technique [11]) one can have an
end-point, but multiple, compensation as _c = ,
leading to the following “quasi-periodic” modification
of Eq. (6):

(9)

The natural idea behind this quasi-periodic compensa-
tion is obvious: to construct (in the compensating part)
the best possible approximation (with a given number
of compensating degrees of freedom) for the inverse of

the ordered exponential … .
Note that the (quasi-)periodic compensation does

not influence the noise-dependent part of the signal;
i.e., _cf has the same correlation function (2) as f.
Therefore, one arrives at the same expression
ln(B/B0) = ΓI0/(DξZ), with a new h-dependent factor Γ.
Furthermore, in the main region of interest Γ can be
analyzed perturbatively, just as in [9, 10]. Expanding
the factors in Eq. (6) up to the second order and making
use of Eqs. (1), (2) one derives

(10)

where an = (n – 1)l. Here, the dimensionless coefficient

 is related to the output signal chirp produced by an
initial chirp and the nonzero integral chromatic disper-
sion η. As follows from Eq. (9), the same expression (10)
is obtained in the second order for the quasi-periodic
case. Substituting Eq. (10) into the expression for B and
evaluating the PDF of B, with the Gaussian statistics of
h described by Eq. (4), leads to the following expres-
sion for the tail of the PDF of B:

(11)

Equation (11) holds for ln(B/B0) @ DmI0/[Dξb2]. The
exponent α in Eq. (11) contains an additional factor N
compared to the expression for the first order end-point

z z( )dd
0

Z∫

_1n∏

_cj iη∂ t
2( )_11…_1NÛN…Û1Y0 t( ).exp=

ÛN Û1

Γ
µ2'

b2
----- z z' h1 z( )h1 z'( ) h2 z( )h1 z'( )–[ ] ,d

an

z

∫d

an

nl

∫
n 1=

N

∑≈

µ2'

6 B( ) B
B0

αdB

B1 α+
-------------, α∼d

NπDξb2

2 µ2' DmI0

------------------------.=

µ2'
compensation, i.e., the (quasi-)periodic compensation
makes the tail of 6(B) steeper. It is instructive to com-
pare the outage probability for the periodic case with
the case of higher order end-point compensation
described by Eq. (5). One finds that for higher order
compensation, i.e., when N ~ ln(B∗ /B0)I0/DξZ, the
(quasi-)periodic scheme becomes more efficient com-
pared to the straight Nth order compensation scheme. If
the output signal is not chirped,  = 0 and the leading
term in the expansion of Γ in h/b is of the third order.
Additional filtering efforts can be made to enforce the
output pulse symmetry under the t  –t transforma-
tion, thus removing the third-order term. Then the lead-
ing term in Γ will be of the fourth order in h/b. Finally,
even better compensation can be achieved if the stan-
dard high-order compensation approach and the (quasi-
)periodic ones are combined, i.e., if in the (quasi-)peri-
odic setting considered above, one uses higher order
compensation instead of the first order one. Formally,
this hybrid case means that the first-order compensa-
tion operators _1n in Eqs. (6), (9) should be substituted
by higher order compensation operators _cn . In the
hybrid periodic case, Γ can be written as the sum of

Γn ~ ( )p, and, since h is short-correlated,

Γn related to different segments are statistically inde-
pendent. This leads to the following expression for the
PDF tail:

(12)

which is valid at DξZ/I0ln(B/B0) @ N1 – p/2(DmZ/[µpb2])p/2.
Note that an important computational step, leading

to our major results in Eqs. (11), (12), was the evalua-
tion of Γ perturbatively in h. In addition, in the periodic
case, Γ is a direct sum of each segment contribution Γn ,
and the perturbative treatment applies separately to
each Γn , requiring the weakness of the PMD effect at
each segment only, i.e., DmZ/N ! b2. Therefore, one
concludes that even an optical line with practically
inoperable (without compensation) characteristics
(DmZ, which is on the order of or larger than b2) can still
be used for transmission if N is sufficiently large. More-
over, this observation on the applicability of Eqs. (11),
(12) also extends to the quasi-periodic case, in the sense
that Eqs. (11), (12) provide an upper bound for the PDF
of BER. This is due to an additional, oscillatory with h,
suppression of Γn in the quasi-periodic vs. periodic
case. This suppression is especially important for seg-
ments strongly separated from their compensating seg-
ments.

For illustration purposes, let us briefly discuss the
example of a fiber line with typical bit error probability,
B0 = 10–12, and  = 0.14. Assume also that the PMD

coefficient, k = , is 1.5 ps/ ; the pulse

µ2'

µ2'

zh/bd
an

ln∫

6 B( ) µpN2 p 1–( )/ p DξZ B/B0( )bp/I0ln[ ] 2/ p

DmZ
--------------------------------------------------------,–∼ln

µ2'

12Dm km
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width, b = 25 ps; and fiber length, Z = 2.500 km. Then
the dimensionless parameter DmZ/b2 measuring the rel-
evant strength of the PMD effect is O(1); i.e., without
compensation, the PMD effect is large, pulses are
destroyed, and no successful transmission is possible:
S(B) = 0(1) for any B > B0. If, however, the (quasi-)peri-
odic compensation with N = 10 compensation units is
utilized, the relevant strength of the PMD effect is sub-
stantially reduced, so that DmZ/[b2N] ≈ 0.1, and S(B)
begins to decay with B at B > B0. The system perfor-
mance can be evaluated in terms of the outage probabil-
ity 2, the probability of B being larger than B∗ : 2 =

. One derives from Eq. (11) that in the

(quasi-)periodic case, 2 ≈ 0.06 for B∗  = 10–8 and 2 ≈
0.02 for B∗  = 10–6; i.e., the system performance is sub-
stantially improved (to become not yet perfect, but
already satisfactory).

To conclude, in this letter we have proposed a
(quasi-)periodic compensation scheme which appears
to be a strong alternative to the standard higher order
compensations. The efficiency of the scheme has been
demonstrated. Even though technical implementation
of this procedure needs expensive equipment, we antic-
ipate that if this compensation technique is imple-
mented, the reduction in the probability of extreme out-
ages will guarantee an essential overall benefit.

B6 B( )d
B*

1∫
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The authors thank I. Gabitov for numerous valuable
discussions.
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The Lagrangian and Hamiltonian functions describing the average motion of a relativistic particle under the
action of a slightly inhomogeneous intense laser field are obtained. In weak low-frequency background fields,
such a particle on average drifts with an effective relativistically invariant mass, which depends on the laser
intensity. The essence of the proposed ponderomotive formulation is presented in a physically intuitive and
mathematically simple form yet represents a powerful tool for studying various nonlinear phenomena caused
by the interaction of currently available smooth ultraintense laser pulses with plasmas. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 52.38.Kd; 52.20.Dq; 52.27.Ny; 52.35.Mw
The latest advances in high-power laser technology
have resulted in the development of laser systems capa-
ble of delivering superstrong electromagnetic pulses,
which can be focused to intensities as high as
1021 W/cm2 [1], with even more powerful systems com-
ing up in the near future [2]. The currently obtainable
laser fields can accelerate electrons up to ultrarelativis-
tic oscillatory velocities previously unachievable in
experiments on laser-matter interaction. This revolu-
tionary progress is now giving new life to theoretical
studies on particle behavior under the action of intense
electromagnetic radiation. The conventional models
describing various nonlinear phenomena in plasmas
illuminated by high-frequency radiation nowadays
need to be revised, as new ultra-powerful laser systems
are becoming available for laboratory experiments. To
explain the already observed phenomena and predict
the new effects that have taken place under the action of
intense laser drive, an adequate description of single-
particle motion under relativistically strong radiation
must be developed first.

Currently, particle motion is well-understood when
the only forces present are those from a wave of uni-
form intensity [3]. However, to study the guiding center
dynamics in inhomogeneous laser radiation or drifts
determined by the presence of low-frequency back-
ground fields, additional analysis is needed. Expanding
the conventional understanding to this area would
result in substantial progress in studying a number of
plasma physics problems, such as, e.g., Coulomb colli-
sions and energetic particle production in strong laser
fields. Moreover, the hydrodynamics and the electrody-

¶ This article was submitted by the authors in English.
0021-3640/03/7804- $24.00 © 20202
namics of laser-illuminated plasmas would be readily
available for general revision.

Often, the dynamics of a particle moving in a high-
frequency field is described in terms of the ponderomo-
tive approach. In a nonrelativistic ponderomotive
description, the effect of high-frequency electromag-
netic forces on a particle is replaced by particle interac-
tion with an average potential, linear on the intensity of
laser radiation [4]. When ultraintense lasers are
employed, this conventional description needs to be
generalized to relativistic motion. Contrary to the
degenerate case of a circularly polarized field, in which
high-frequency variations of the relativistic mass can be
neglected [5], the problem of particle motion in the case
of a linear or elliptic polarization represents a certain
challenge but can still be studied analytically.

To describe the drift particle dynamics in such
fields, recently, multiple studies were performed.
Under various approximations, it was shown that the
oscillating particle guiding center drifts in a smooth
laser field with an effective mass, which depends on the
electromagnetic field intensity [6–9]. (In strongly non-
uniform laser fields though, the particle dynamics is
more complicated [6, 10].) The Hamiltonian treatment
of the relativistic drift under intense laser drive has been
proposed in [11], though the problem of interaction
with low-frequency background fields has not been
studied. The first steps towards developing the general
formalism with such interaction were made in [8].
However, only smooth (compared to the amplitude of
oscillations) low-frequency background fields were
taken into consideration, and the relativistic drift
motion equations were induced without proper justifi-
cation.
003 MAIK “Nauka/Interperiodica”
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These shortcomings are overcome in our paper, the
major emphasis of which is twofold. First, we propose
a general fully relativistic Lagrangian formulation of
ponderomotive description of particle motion under the
action of a quasi-monochromatic slightly inhomoge-
neous laser field. The proposed approach is physically
intuitive yet more systematic and simple in comparison
with those discussed previously. After natural generali-
zation, it allows including particle interaction with
weak background forces, additional to those from the
laser field. The discussion on that aspect of the guiding
center motion constitutes the second emphasis of our
work. We show the effective mass concept to be appli-
cable to a ponderomotive description of relativistic par-
ticle motion in low-frequency background fields,
including even ones of a small spatial scale compared
to the amplitude of oscillations. In the end, we discuss
the most promising applications of the proposed formu-
lation and summarize our main ideas. To start, consider
particle motion under the action of a plane laser wave
propagating in vacuum, with the vector potential given
by

(1)

where η = ωt – k · r stands for the phase of the wave, ω
is the wave frequency, and k = z0ω/c represents the
wave vector. The polarization of the wave will be
assumed fixed though arbitrary. The magnitude of a,
a = eE/mcω (where E is the laser electric field), can be
understood as the ratio of the momentum imparted by
the wave field in a single oscillation to mc, meaning that
relativistic effects become important at a * 1. (For the
wavelength λ = 2πc/ω = 1 µm, the intensity corre-
sponding to a ~ 1 for electrons is about 1018 W/cm2.) 
In a certain, unique, frame of reference, in such a field
the particle undergoes stationary oscillatory “figure-
eight” motion in a linearly polarized wave or circular
motion in a wave with circular polarization [3]. Averag-
ing over the oscillations, one comes to the concept of
the guiding center motion, which we study below. First,
let us consider the variational principle that states the
minimum value of the action

(2)

where L is the Lagrangian function of the particle
motion to be realized on the true trajectory. On time
scales t2 – t1, large compared to the oscillation period,
the major contribution to the action S (linear on t2 – t1)
is provided by the time-averaged part of the
Lagrangian, 〈L〉  while the contribution of the oscilla-
tory Lagrangian into the integral (2) remains small (for
precise analysis, see [9]). Thus, the action S is approxi-

mately given by S = , from where it follows

that 〈L〉  can be treated as the Lagrangian of the average,
guiding center motion.

A r t,( ) mc2/e( )a η( ),=

S L t,d

t1

t2

∫=

L〈 〉 td
t1

t2∫
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To obtain the form of the drift Lagrangian L0 ≡ 〈L〉 ,
let us consider the latter in the frame of reference where
the guiding center rests. In the new frame, the guiding
center Lagrangian +0 can be nothing but a constant,
which we put in the form

(3)

by analogy with the Lagrangian of a true particle with
zero velocity. The formally introduced quantity meff ,
playing the role of a new effective mass, is yet to be
defined. The action (2) is relativistically invariant and

can be written as S = , where the time τ repre-

sents the proper time of the guiding center. Since dτ is
invariant by definition (and thus, so is the Lagrangian
+0), the quantity meff must also be relativistically
invariant. Using

(4)

where v0 is the velocity of the guiding center in the
original frame of reference, one gets the Lagrangian of
the guiding center motion

(5)

which formally coincides with the Lagrangian of a rel-
ativistic particle with mass meff moving with velocity
v0. Since the original frame was chosen arbitrarily, the
above expression represents the general form of L0,
where meff is left to be expressed in terms of the param-
eters of the laser field.

Let us calculate L0 in a laboratory frame of reference
where the particle has a nonzero average velocity v0.
Instructive in itself, the derivation to follow will also
provide us with a number of useful relations connecting
the parameters of the particle drift and those related to
the actual motion. To proceed, consider the Lagrangian
of the true particle motion given by

(6)

which is a known periodic function of the phase η
rather than time t. Thus, in order to average L over time,
one needs to derive a relation connecting time-averaged
and phase-averaged quantities. For an arbitrary quan-
tity f, its time and phase averaged values given by

(7)

where the limits of integration over the phase corre-
spond to the limits of integration over the time (i.e., η =

+0 meffc
2,–=

+0 τdτ1

τ2∫

dτ dt 1 v 0
2/c2– , +0dτ L0dt,= =

L0 meffc
2 1 v 0

2
/c2– ,–=

L mc2 1 v 2

c2
------––

e
c
-- v A η( )⋅( ),+=

f〈 〉 1
∆
--- f t', fd

t

t ∆+

∫ 1
2π
------ f η',d

η

η 2π+

∫= =
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η(t)), and the time interval ∆ is defined as one on which
the total phase change equals 2π:

(8)

The time interval ∆ coincides with the wave period
2π/ω only if particle motion is nonrelativistic. How-
ever, generally, the phase time-derivative is given by

(9)

where γ = (1 – v 2/c2)–1/2 is the normalized relativistic
energy (% = mγc2) and p = mγv is the particle kinetic
momentum.

Since the original Lagrangian depends on η (that is,
on the combination z – ct, rather than z and t sepa-
rately), there exists an invariant of motion given by

(10)

Substituting the above expressions into Eq. (7), one
gets

(11)

Note that the formula obtained is valid only in the case
when the electromagnetic wave (1) is propagating in
vacuum. If the refraction index of the medium differs
from unit, Eqs. (9) and (10) need to be modified, and
the relation between the time- and phase-averaged
quantities becomes more complicated [11].

From Eqs. (10) and (11), it follows that

(12)

where γ0 = (1 – /c2)–1/2, and

(13)

is the drift velocity of the particle (compared with the
inexact expression given in [6]). Thus, L0 can be put in
the form (5) with meff given by

(14)

The guiding-center Lagrangian (5) with the expres-
sion (14) for the effective mass was also obtained in [9]
by a somewhat similar, yet complicated and not
straightforward, procedure. In the cited work, Eq. (14)
was supposed valid only in the frame of reference
where v0 = 0. In fact, as shown above, it remains appli-
cable for arbitrary v0, and, furthermore, the actual value
of meff must be relativistically invariant. To express the
effective mass in the invariant form, let us notice that,
in the laboratory frame where we chose the electric

potential φ = 0 (see Eq. (6)),  coincides with the

norm of the 4-vector potential , Aα = (φ, A). The

∆ td
ηd

------ η .d

η

η 2π+

∫=

dη
dt
------ ω 1

v z

c
-----– 

  ω
γ pz/mc–

γ
----------------------- 

  ,= =

u γ pz/mc–≡ const.=

f〈 〉 γ f /γ.=

γ 1 p/mc( )2 a2+ + , γ γ0 1 a2+ ,= =

v 0
2

v0 v〈 〉≡ p/mγ=

meff m 1 e2A2/m2c4+ .=

A2

Aα Aα
latter is Lorentz-invariant [3], and remains such after
being averaged over relativistically invariant phase η.
Thus, the expression for meff , invariant to relativistic
transformations, can be put in the following form:

(15)

Equation (15) was also given in [8], where the average
particle motion was studied in a different way.

Reverting to the formula for the drift Lagrangian (5)
with the effective mass given by (14), the canonical
momentum of the guiding center motion P0 equals the
phase-averaged kinetic momentum  = meffγ0v0, and
thus the Hamiltonian function of the guiding center
motion can be put in the form

(16)

Here meff may smoothly depend on the guiding center
location R0 and time t if the wave envelope is slightly
nonuniform or time-dependent. Precisely, that means
that the laser intensity “seen” by the particle changes
insignificantly on one period of particle oscillations, so
that the averaging (7) still makes sense, i.e.,

(17)

where l and T are the spatial and the temporal scales of
the wave envelope (for detailed analysis, see [6, 10,
12]).

An alternative derivation of Eq. (16) can be found
in [11], where a sequence of canonical transformations
of the original motion equations was shown to lead to a
similar result. In the present paper, we showed this
tedious procedure to be unnecessary for obtaining the
expression for the drift Hamiltonian. Compared to the
cited work, the distinguishing advantage of the formu-
lation proposed in the present paper is that, because of
its apparent mathematical simplicity, this formulation
allows easy generalization of the drift Lagrangian and
Hamiltonian formalism in the case when the oscillating
particles undergo weak acceleration by large-scale low-
frequency forces satisfying (17). Interaction with these
forces enters the expression for L0 additively and, what
is most important, can still be considered within the
framework of the effective mass concept.

To show this, consider an oscillating relativistic par-
ticle interacting with a field governed by the 4-vector

potential  = (φbg, Abg), where the subindex “bg”
stands for a background field additional to that of the
laser wave. Assume that the field is weak:

(18)

where Ebg and Bbg are the corresponding electric and
magnetic fields. In this case, the background fields do
not impact the oscillatory motion significantly. Thus,
averaging the kinetic term mc2/γ in the Lagrangian

meff m 1
e2

m2c4
----------- Aα Aα( )+ .=

p

H0 meff
2 c4 P0

2c2+ .=

l @ r~, T  @ ∆, l/v 0 @ ∆,

Abg
α

eEbg/γ0meffc ! ω, eBbg/γ0meffc ! ω,
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leads to the same expression as in Eq. (5) with meff
given by Eq. (15). In the zeroth-order approximation
with respect to the small parameters (18), the average
part of the Lagrangian corresponding to particle inter-
action with the background field can be expressed in

terms of the quantity  = (φ0, A0) given by

(19)

The time-averaging procedure is invariant with
respect to changing the drift frame of reference; i.e., it
does not alter the Lorentz transformation properties of

the quantity being averaged. Thus,  represents a true
4-vector and can be considered as a new effective elec-
tromagnetic field. In terms of this field’s potentials, the
drift Lagrangian can be put in the following form:

(20)

In certain applications, it is of interest to consider
particle interaction with background fields having spa-
tial scale lbg & r~. If the drift velocity is small, so that
the drift displacement on a single period v0∆ is small
compared to lbg, the ponderomotive description can still
be applied. However, in this case the difference

between the time-averaged potential  and the true

potential  taken at the location of the guiding center
R0, is crucial. For example, this situation is realized at
Coulomb scattering in intense laser fields when r~
exceeds the radius of effective interaction [13]. Note
that, as follows from the above analysis, the character-
istic amplitude of the effective potential remains
unchanged as one generalizes the expression for φ0 to
the case of relativistic particle motion. In this case, the
only difference in calculating φ0 is provided by the
change in the oscillatory trajectory r~(t) to be averaged
over.

In the context of the Coulomb scattering problem,
the considered Lagrangian approach represents a
unique tool for studying the ponderomotive and even
the stochastic behavior of the particles being scattered.
This problem deserves detailed consideration and will
be discussed in future studies, though, briefly, the
extension of the proposed formulation can be explained
as follows. The stochastic behavior of a dynamical sys-
tem with periodic coefficients is often convenient to
describe in terms of mapping of the dynamical trajec-
tory onto a subspace of the system phase space (for
review, see [14]). For the Hamiltonian mapping
(R0, P0)  ( ) connecting the particle locations
and momenta before and after the time interval equal to
the period of the laser field, the generating function is
given by the action (2) with t1 = t and t2 = t + 2π/ω [14].
Since the drift Lagrangian obtained is approximately

A0
α

A0
α Abg

0 R0 r~+( )〈 〉 .=

A0
α

L0 meffc
2 1

v 0
2

c2
------––

e
c
-- v0 A0⋅( ) eφ0.–+=

A0
α

Abg
α

R0 P0,
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proportional to S, it can readily be used for constructing
the actual form of this mapping. As will be shown in our
future publications, when studying the statistical prop-
erties of particle stochastic dynamics (rather than single
particle motion) by means of such a mapping, the con-
ditions (17) can be significantly relaxed, which sub-
stantially broadens the applicability of the proposed
Lagrangian approach. That also allows significant
progress in studying the problem of energetic particle
production in strong laser fields [15].

Since, in the case of relativistic drift, r~ depends on
v0, the expression for the canonical momentum P0 =
∂L0/∂v0, the drift motion equations become compli-
cated. However, in two special cases of interest, these
can be simplified. In a large-scale background field sat-

isfying the conditions (17), locally,  can be treated
as a linear function of r. Therefore, the velocity-depen-
dent part averages out when calculating the potential

, and one gets  ≈ . Thus, the drift canonical
momentum equals P0 = meffγ0v0 + (e/c)Abg, and the
Hamiltonian function is given by

(21)

where the potentials are assumed to be slow functions
of R0 and t. The guiding center motion equations can be
put in the covariant form

(22)

where  = (ct, R0) is the 4-coordinate of the guiding

center,  = (%0/c, meffγ0v0) is the drift kinetic
4-momentum, %0 = meffγ0c2 is the energy of the guiding

center motion,  is the electromagnetic field tensor

corresponding to the potential  [3], and Uα =
γ0(c, v0) is the guiding center 4-velocity. Covariant
Eqs. (22) were also given in [8], though no strict deri-
vation of these was proposed. Another expression for
the relativistic ponderomotive force is given in [9].

From Eq. (21), it follows that, in a low-frequency
large-scale background field, the guiding center of a
relativistic particle moving under the action of intense
laser radiation behaves as a particle with the effective
mass meff drifting in the same background field. This
conclusion is also supported by direct numerical com-
putations given in [8]. For example, in static magnetic
field Bbg, the guiding center undergoes Larmor motion
with the frequency ωB = eBbg/γ0meffc. The conventional
expression for the drift velocity in a nonuniform mag-
netic field [3] also applies to the average motion if the
particle mass is replaced with that given by Eq. (15).

Abg
α

A0
α A0

α Abg
α

H0 meff
2 c4 P0

e
c
--Abg– 

 
2

c2+ eφbg,+=

dR0
α

dτ
---------

p0
α

meff
--------,

d p0
α

dτ
--------- e

c
--Fbg

αβUβ c2∂meff

∂R0
α------------,–= =

R0
α

p0
α

Fbg
αβ

Abg
α
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In addition to the case of large-scale background
fields, the guiding center motion equations can also be
put in a simple physically intuitive form in the case of
nonrelativistic drift motion. Since the drift velocity

enters the expression for  only through relativistic
dependence of r~ on v0/c, then, in the case v0 ! c,

∂ /∂v0 can be neglected. In this case, the drift canon-
ical momentum is given by P0 = meffv0 + (e/c)A0, and
the Hamiltonian can be put in the form

(23)

where the effective mass meff and the potential energy
ψeff = meffc2 + eφ0 may slowly depend on the guiding
center location R0 and time t. Note that even in a uni-
form laser field, ∇ψ eff may differ significantly from e∇φ bg

when the amplitude of particle oscillations r~ exceeds
the spatial scale of the background field l [13]. The
regime of slow drift motion superimposed on relativis-
tic oscillations is the one that is actually realized in
many current experiments on intensive laser pulses
interaction with rare plasmas. (By rare plasmas we
mean those having a refraction index close to unity, as
assumed for all the results obtained in the present
paper.) This fact makes the above analysis especially
useful from the practical point of view, as it represents
a simple tool for studying actual experimental data.
Finally, the well-known nonrelativistic ponderomotive
potential [4] can be readily derived from Eq. (23) by
keeping the correction to the effective mass, linear with
respect to the wave intensity (see also [9]).

In summary, we showed that, in weak low-fre-
quency background fields, a relativistic particle moving
under the action of intense laser radiation drifts like a
quasiparticle with an effective mass, which depends on
the intensity of the laser field. The intuitive expectation
that, by the order of magnitude, the drift motion equa-
tions must coincide with those without the laser field if
the appropriate relativistic correction of particle mass is
introduced, can now be considered proven for various
types of background fields. The proposed formulation
can be useful for studying numerous phenomena result-
ing from intense laser-plasma interaction, such as, e.g.,
the energetic particle production and Coulomb scatter-
ing in strong laser fields. Moreover, the mathematical
simplicity of the proposed approach allows easy gener-
alization of the rare plasma hydrodynamics and electro-
dynamics to the case of plasmas illuminated by ultrain-

A0
α

A0
α

H0
1

2meff
------------ P0

e
c
--A0– 

 
2

meffc
2 eφ0,+ +=
tense laser radiation. Replacing the electron mass with
the effective mass (15), one can readily derive the gen-
eralized dispersion relations for various linear waves
in plasmas, as well as revise the nonlinear plasma
dynamics.
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The disorder effect on the interaction of quasiparticles between each other is discussed. The occurrence of a
soft mode is taken as the basic assumption. The interaction through the soft mode results in attraction between
Fermi quasiparticles (this is apart from the repulsion that has remained from the initial Coulomb interaction
between particles). This attraction (in the vicinity of the Fermi surface) is strengthened with increasing concen-
tration of the scattering centers. Therefore, even if the pure system exhibits no superconductivity, superconduc-
tivity could appear in the impurity system. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.27.+a; 74.10.+v
A low-density system of two-dimensional electrons
(holes) exhibits a number of unusual properties (see the
review [1]). One of the main of these properties is the
occurrence of a metal–insulator transition upon decreas-
ing the carrier density below a certain value of nc . The
resistivity in the metallic phase (at higher densities n >
nc) decreases with decreasing temperature. However, it
has been generally agreed that, in a disordered medium
in the two-dimensional case, all particles are localized
and the metallic state does not exist, and it has been
expected that the resistivity must increase with decreas-
ing temperature, as is the case at n < nc . The transition
mentioned above is observed at sufficiently low carrier
densities, when the Coulomb interaction of particles
becomes large as compared to the kinetic energy. Such
a system is strongly correlated with short-range order
as in a Wigner crystal (therefore, it is sometimes called
Wigner liquid).

Though the problem of the transition will not be dis-
cussed here, it is still reasonable to give some consider-
ation to the mechanism of this transition to clarify the
formulation of the problem to be considered. It might
be expected that the origin is in Coulomb centers,
which act as though they pin the liquid simply because
the liquid is adjusted to these centers to form short-
range order in a certain vicinity due to the Coulomb
interaction. In the subsequent discussion, the effect of
such centers will not be taken into account; that is, it
will be assumed that their density is sufficiently small.
In addition, a simplified (idealized) situation will be
considered in general, when the scattering centers are
assumed to be short-ranged and sufficiently weak so
that phenomena like the above-mentioned pinning can
be neglected. Then, quasiparticle scattering by a center
exists, whereas there is no significant rearrangement of
the liquid in the vicinity of such a center, as apparently
occurs at a charged center.
0021-3640/03/7804- $24.00 © 20207
In this work, the possibility that the superconducting
state forms in a Wigner liquid is discussed. The peculiar
feature of a low-density two-dimensional electron sys-
tem is strong correlations, which may result in the
appearance of a so-called soft mode, that is, low-energy
Bose excitations at finite momenta (like rotons in
superfluid helium). It is suggested that Bose excitations
arise apart from the usual Fermi excitations. This sug-
gestion was made in [2] to explain the temperature
dependence of the resistivity in the metallic phase. The
physical picture here is simple: a soft mode can appear
as a precursor of Wigner crystallization, the number of
Bose excitations increases, and their contribution to the
dissipation of the system momentum and to the resistiv-
ity increases as well.

The soft mode results in electron–electron interac-
tion through boson exchange, which, as is known from
the theory of superconductivity [3–5], leads to attrac-
tion between particles, and, if this attraction is larger
than the Coulomb repulsion, Cooper pairs and a super-
conducting state can form. Attraction at the Fermi sur-
face is most important for the formation of Cooper
pairs. In our problem, this is possible only through the
exchange of two bosons (because the boson momentum
is larger than two Fermi momenta). In the impurity sys-
tem, the momentum can be passed to an impurity;
therefore, the exchange of one boson is possible; this
additional interaction channel enhances attraction with
increasing disorder. As a result, even though supercon-
ductivity is absent in the pure system, it can appear in
an impurity system.

Previously, arguments were advanced in favor of the
possibility of a superconducting state in the systems
under consideration [6]. In this work, a mechanism that
is peculiar to a Wigner liquid (and that can apparently
lead to superconductivity in a system with disorder) is
discussed.
003 MAIK “Nauka/Interperiodica”
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Model. The model uses the spectra of fermions and
bosons and their interaction with each other and with
impurities. The Hamiltonian of the system has the form

(1)

Here, Ωq is the boson energy, the operator Bq coincides
(within a factor) with the coordinate of the correspond-
ing oscillator and is expressed through the boson cre-
ation and annihilation operators

Here, it is taken into account that an additional term due
to the external field (the field of impurities) exists in the
system energy for spinless bosons. This term is linear in
the oscillator coordinate. The other designations pertain
to fermions (the spin and valley indices are omitted): ξp
is the fermion energy reckoned from the Fermi surface,
the quantity Wa(k) is the Fourier component of the
interaction of the fermions with each other (the interac-
tion of fermions with impurities will be unnecessary).

We emphasize that the interaction (attraction) of fer-
mions at the Fermi surface is important for the super-
conducting state [3–5]. In the model Hamiltonian (1),
the part that describes the interaction of fermions with
bosons and leads to the attraction of fermions at the
Fermi surface is written as the operator Hab . Instead of
this operator, it would appear reasonable to use another
operator as follows:

However, if q0 > 2pF (pF is the Fermi momentum),
which is suggested below (the validity of this sugges-
tion is confirmed by the estimates [2]), this operator
makes no direct contribution to fermion scattering at
the Fermi surface; the contribution can arise in higher
orders of perturbation theory. Because perturbation the-
ory is inapplicable in our problem, it is appropriate to
write the interaction with bosons directly, as is done
in (1), using the phenomenological interaction parame-
ter λ.

H Ha Hab Hb,+ +=

Ha ξpap
+ap

p

∑ 1
2V
------- Wa k( )ap

+ap'
+ ap' k+ ap k– ,

p p' k, ,
∑+=

Hab
λ
V
--- ap

+B q– Bq k+ ap k– ,
p q k, ,
∑=

Hb Ωqbq
+bq

q

∑ 1

V
-------- U q–( )Bq.

q

∑+=

Ωq
2 Ω0

2 v 0
2 q q0–( )2, Bq+

bq b q–
++

2Ωq

-------------------.= =

Hab'
λ'

V
-------- ap

+ap q– Bq.
p q,
∑=
Consider first the interaction of bosons with impuri-
ties. The operator Hb is diagonalized by the transfor-
mation

(2)

This transformation corresponds to a displacement of
the equilibrium point of the oscillator with the boson
spectrum remained unchanged.

Thus, the interaction of fermions with bosons
changes in the field of impurities; therefore, instead of
the term Hab , one obtains

(3)

where, by definition,

(4)

The last term in expression (3) is the additional con-
tribution to the interaction of fermions with impurities.
It is instructive to elucidate the character of the interac-
tion with an impurity resulting from this equation. The
Fourier components entering into (2) depend on the
coordinates of impurities

(5)

where u(q) is the Fourier component of the interaction
with a single impurity (for a short-range potential, it is
real and constant, which is assumed hereafter), and the
summation is performed over the coordinates of impu-
rities. For a single impurity located at point R, one
obtains

so that the last term in (3) for a single impurity (HS)
takes the form

where the Fourier component of the interaction with an

bq bq Cq, Cq+
1–

2V
-----------U q( )

Ωq
3/2

-----------.=

Hab
λ
V
--- ap

+B q– Bq k+ ap k–

p q k, ,
∑

+
2λ
V
------ ap

+B q– Bq k+ ap k–

p q k, ,
∑

+
λ
V
--- ap

+B q– Bq k+ ap k– ,
p q k, ,
∑

Bq
Cq C q–*+

2Ωq

---------------------
2Cq

2Ωq

--------------.=

U q( ) u q( ) iqRl–( ),exp
l

∑=

Bq
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VΩq
2

--------------- iqR–( ),exp–
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V
--- WS k( )ap

+ap k– ,
k p,
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impurity through the soft mode WS(k) has the form

(6)

Calculating the sum in (6) gives

(7)

(8)

Here, the special designation J(k) has been introduced
for the function that will also be used later (the value of
J(k) at k  0 will be considered below). The calcula-
tion was carried out by passing from integration over
the angle to integration over the quantity q' = |q + k|,
namely,

dϕ  2J(k)dq'

(two regions, ϕ is the angle between vectors q and k),
and then passing to integration over the energy

(two regions as well). An analogous transformation was
also made for q'. Because of a singularity in (8) at small
values of k, the domain of applicability should be deter-
mined. For this purpose, it is necessary to calculate the
sum in (7) at k = 0, which gives

(9)

From here it is evident that expression (8) is true up to
k ~ Ω0/v 0; that is, J(0) ~ v 0/Ω0.

Note that, because of the presence of a soft mode,
the interaction of Fermi quasiparticles with a short-
range impurity appears at long distances (at small trans-
ferred momenta) as an interaction with a repulsive
charged center (with the screening radius of the order of
v 0/Ω0), that is, becomes long-ranged.

Further, the zero-temperature diagram technique
will be used (see, for example, [4]). The boson propa-
gator will be defined as follows:

where the symbol T means time ordering. The Fourier
component has the form

(10)

where, as usual, going around the poles for the causal
Green’s function is indicated.
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λu2
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--------------------------------------.=
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JETP LETTERS      Vol. 78      No. 4      2003
Now, the interaction of fermions through bosons can
be obtained from (3). In the second order of perturba-
tion theory, the first term gives

(this interaction is additional to the direct interaction
Wa(k), see (1)). After calculating the integral over the
frequency,

(11)

Here, e and k are the transferred frequency and momen-
tum, respectively (going around the poles as in (10)),
the quantities Ω and Ω' correspond to momenta q
and q'.

For the scattering of quasiparticles at the Fermi sur-
face, one may assume that e = 0 in (11), so that the
resulting fermion interaction appears as

(12)

After calculating the sum in (12), one obtains

(13)

Estimates. The constants that determine the interac-
tion can be estimated with the use of the following con-
siderations. The initial (Coulomb) interaction gave rise
to short-range order in the arrangement of electrons in
the system (which, by hypothesis, is revealed in the
existence of a soft mode). It appears reasonable that the
system, as a Fermi liquid, contains Fermi quasiparticles
(though, sometimes, doubt is cast on this suggestion).
The fermion–fermion interaction has nothing to do
with the initial Coulomb interaction, because the
energy scales are different: for example, the Fermi

energy eF ~ /m* is considerably smaller than the ini-
tial Coulomb energy; however, this interaction is not
weak on these new scales. Therefore, it might be
thought that the interaction of fermions has a character-
istic value eF and a characteristic range equal to the
interparticle distance; that is, the Fourier component of
this interaction Wa (see (1)) can be estimated as follows:

This is allegedly the direct fermion interaction (repul-
sion). If a soft mode exists with the corresponding
bosons, the interaction of fermions through the bosonic
field appears additionally. This interaction corresponds
to attraction at the Fermi surface and is represented by
the contribution W1 in expression (13). This part of

W' 2i
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pF
2
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interaction can be described in much the same way; that
is, at the characteristic momentum of order pF , it should
be expected that |W1 | ~ Wa (these are different parts of
the fermion–fermion interaction, and it is beyond rea-
son to consider that these parts are strongly different).
This leads to the following estimate for λ:

(14)

As a result (on the average, that is, for the zero har-
monic), this apparently gives repulsion.

Additional interaction. The second term in (3) is of
interest. This term leads to an additional interaction of
fermions at the Fermi surface due to the exchange of
one boson accompanied by the transfer of part of the
momentum to an impurity (this contribution is absent in
the pure system).

Consider the process in which two fermions with
momenta p and p' change their momenta in the follow-
ing way:

For this process, the contribution of the second term
in (3) takes the form

(15)

The momentum k – k' is passed to the impurity.
To compare (11) and (15), the latter expression

should be averaged over the arrangement of impurities,
which makes sense for a sufficiently high concentration
of the impurity centers. This can be made in the regular
way [4]. After averaging the product U(q)U(–q') (see
definition (5)), one obtains

(16)

where Ni is the number of impurities. For (15), one
obtains

(17)

where ni = Ni/V. Here, the symbol 〈…〉  means averaging
over the arrangement of impurities. As previously for
quantity W1(k) (see (12) and (13)), expression (17) at
e  0 will be of interest. The corresponding addi-
tional term in the interaction W2(k) appears as follows:

(18)

After calculating the sum, the following equation is
obtained instead of (18):

(19)
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q

∑–=

W2 k( )
λu( )2niq0
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4v 0

2
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Now, different contributions can be compared:

(20)

Little can be said about the quantity u, if only
because this value depends on the type of impurities.
However, it turns out that u2ni can be related to some
observable quantities (see below). Let there be short-
ranged neutral centers. A fermion feels such centers at
distances of order v 0/Ω0 because of the interaction
through the soft mode (this was shown for a single
impurity; see (7)–(9)). At sufficiently high concentra-
tions of such centers, that is, at

the action regions of different centers overlap, and the
averaging procedure seems natural. In this limit, the
quantity u2ni can be related to the transport time τtr ,
which determines the conductivity σ by the conven-
tional equation

(m is the band mass, as distinct from the effective mass
m* renormalized because of interaction). If it is consid-
ered that relaxation is determined by the interaction
with impurities according to the last term in (3), two
contributions to 1/τtr should be taken into account: lin-
ear and quadratic ones in ni . The second one dominates
in the limit indicated above, so that the following esti-
mate is obtained:

(λ is estimated according to (14)). This gives just the
sought relation. Apparently, v 0 ~ vF; then, instead
of (20), one obtains

This result gives an estimate of the wanted ratio.
Superconducting state. In the discussion of this

subject, a number of simplifications are made. The
main one is the consideration of the averaged (over the
arrangement of impurities) interaction between fermi-
ons, which is valid only at a sufficiently high concentra-
tion of scattering centers (see the comment after (20)).

From the theory of superconductivity, it is known
that the scattering from impurities substantially affects
the Cooper pairs with nonzero angular momenta, which
eventually leads to the breakdown of superconductivity.
This does not take place for pairing with zero angular
momentum. In our problem, it is apparently impossible
to do without scattering from impurities, because it can
be of decisive importance for the appearance of result-
ing attraction between fermions; hence, it is pairing
with zero angular momentum that should be analyzed.

W2/W1 u2ni/Ω0
3.∼

ni Ω0
2
/v 0

2,>

σ ne2τ tr/m=

1
τ tr
----- u2ni( )2 eF

mv 0
2Ω0

5
------------------∼

W2

W1
------- m/m∗

Ω0τ tr
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Therefore, the interaction of particles with different
spins or different valleys, for which this kind of pairing
is possible, will be considered. Denote the correspond-
ing annihilation (creation) operators by symbols a, A
and (a+, A+). The interaction between these particles
HaA can be written as (21)

(21)

Here, Wa is the direct interaction of particles (the value
that remained from the initial Coulomb interaction, that
is, repulsion, see (1)), and W1 + W2 is attraction due to
the exchange of bosons (see (13) and (19)). This is a
simplified equation, because bosons do not appear
explicitly and their role is manifested in the attraction
W1 + W2 induced by bosons. By analogy with the
phonon model, the attraction of fermions here should

be restricted to a certain vicinity ±  at the Fermi sur-

face, where  ~ Ω0. As for Wa , according to the afore-
said, it is repulsion and it is substantial in the vicinity

, where  ~ eF . Presumably,  ! .
Further, as usual, the problem can be simplified even

more by retaining only opposite momenta:

(22)

where W(ξ, ξ') = Wa(ξ, ξ') + Wb(ξ, ξ'). According to the
aforesaid, it is implied that function Wa(ξ, ξ') is a posi-
tive constant in a wide range of variables |ξ|, |ξ'| < ,
whereas Wb(ξ, ξ')  W1 + W2 is a negative constant

in the range |ξ|, |ξ'| <  (zero harmonics, that is, har-
monics without angular dependence are implied for
pairing with zero angular momentum). Such a model
for taking into account Coulomb repulsion (apart from
attraction through phonons) in the theory of supercon-
ductivity was considered previously (see the book [5],
section 6.3). Therefore, the solution of the problem will
be considered only briefly.

In the self-consistent field approximation, which
works well for the model with interaction (22), one
obtains

(an insignificant constant is omitted), where, by defini-
tion,

(23)

(the symbol 〈〈 …〉〉  means averaging over the ground
state at zero temperature). In this case, the order param-

HaA
1
V
--- W k( )ap k–

+ Ap' k+
+ Ap'ap,∑=

W k( ) Wa k( ) W1 k( ) W2 k( ).+ +=

Ω̃
Ω̃

ẽ± ẽ Ω̃ ẽ

HaA
1
V
--- W ξ ξ ',( )ap

+A p–
+ A p'– ap' ,

p p',
∑

ẽ

Ω̃

HaA ∆ ξ( ) A–pap ap
+A p–

++{ }
p

∑

∆ ξ( )
1
V
--- W ξ ξ ',( ) A p'– ap'〈 〉〈 〉

p'

∑=
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eter ∆ can be considered real. After adding the first term
from (1) to HaA , consider the part hp containing
momenta ±p

(24)

(indices are omitted here). This operator is diagonal-
ized by the Bogolyubov (u, v ) transformation

(25)

with the coefficients

(26)

After that, instead of (24), one obtains

(27)

(the constant part is omitted). Here, ep

 

 is the quasiparti-
cle energy in the superconducting phase. The equation
for the order parameter (23) can be written now as

(28)

With the properties of function 

 

W

 

(

 

ξ

 

, 

 

ξ

 

') in mind, one
can express the solution of Eq. (28) through two con-
stants

and, for the gap in the spectrum 

 
∆

 

 = 

 
|∆

 

1

 
|

 

, the following

expression is obtained in the limit 

 

∆

 

 

 

!

 

 :

Here, the following designations are introduced:

(

 

γ

 

 is the density of states at the Fermi surface, and 2

 

π

 

γ

 

 =

 

m

 

*). The ordered phase corresponds to 

 

g 

 

> 0. The role
of repulsion is decreased because of the contribution
with the logarithm [5].

According to my estimates, both interaction con-
stants 

 

g

 

a

 

, 

 

b

 

 in the pure system are of order unity. With
increasing disorder, the resistivity increases but the
attraction of quasiparticles through the soft mode (that
is the value of 

 

g

 

b

 

) also increases; hence, there comes a
point where the resistivity abruptly vanishes because of
a transition to the superconducting state.

Thus, within the assumed soft-mode model, it is
shown that a Wigner liquid can pass to a superconduct-

hp ξ a+a A+A+( ) ∆ Aa a+A++( )+=

ap upαp v pβ p–
+ , A p–+ upβ p– v pαp

+–= =

u2 v 2,( ) 1
2
--- 1

ξ

ξ2 ∆2+
---------------------± 

  ,=

uv
∆–

2 ξ2 ∆2+
------------------------.=

hp ep αp
+αp β p–

+ β p–+( ), ep ξp
2 ∆2+=

∆ ξ( )
1
V
--- W ξ ξ ',( )

∆ ξ'( )–

2 ξ'2 ∆2 ξ'( )+
---------------------------------.

ξ'

∑=

∆ ξ( ) ∆1 0 ξ Ω̃< <( ),=

∆ ξ( ) ∆2, Ω̃ ξ ẽ< <( ),=

Ω̃

∆ 2Ω̃ 1/g–( ), gexp gb ga ga
ẽ

Ω̃
----ln 1+ 

 
1–

.–= =

gb γ Wb , ga γWa= =
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ing state at a sufficient amount of not very strongly scat-
tering centers.

The author is grateful to M.V. Éntin and Z.D. Kvon
for discussions.
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The appearance of a steady current in a helical quantum wire under circularly polarized light is predicted. The
effect is associated with the appearance of a travelling electromagnetic wave in the coordinate system related
to the wire, the wavelength being determined by the period of the helix. The gyrotropy of a medium consisting
of parallel quantum wires is considered. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.67.Lt; 73.63.Nm 
In this paper, we consider helical quantum wires of
the type shown in the figure and a homogeneous
medium consisting of parallel quantum wires of this
type. The symmetry of the helix allows the existence of
an antisymmetric third-rank tensor. Physically, this ten-
sor corresponds to the transformation of rotation to
translational motion. If the rotation is understood as a
circular polarization of an electromagnetic wave
absorbed in the medium and the translational motion is
interpreted as an electron current, one can expect the
appearance of a steady current in a helical quantum
wire under the effect of light, i.e., a circular photogal-
vanic effect [1]. A similar tensor determines the gyrot-
ropy of a medium consisting of such wires.

In the optical and infrared frequency ranges, a pho-
ton’s momentum is, as a rule, small compared to the
electron momentum. Therefore, in the theory of the
photogalvanic effect, this momentum is usually
ignored. Exceptions are the effects directly related to
the photon momentum, such as the electron–photon
drag, including the resonance drag for which the pho-
ton momentum plays the role of a trigger while the
electron receives its momentum from a third body.

The helical geometry of the quantum wire leads to
an artificial increase in the wave vector of the wave.
When the quantum wire is illuminated along its axis by
circularly polarized light, for an electron moving
through the wire the electromagnetic field represents a
travelling wave with the wavelength equal to the period
of the helix. The momentum transferred from light to
an electron leads to allowed transitions between free
electron states, which results in a collisionless absorp-
tion of electromagnetic field. As a result of the change
in the electron momentum, a steady current appears in
the system. In the classical limit, the steady current is
explained by the acceleration of electrons moving with
the phase velocity of the wave.

Below, we consider the circular photogalvanic effect
in a single helical quantum wire and the geometrically
0021-3640/03/7804- $24.00 © 20213
induced gyrotropy of a homogeneous medium consist-
ing of parallel quantum wires.

The gyrotropy of molecular systems, i.e., media
consisting of chiral organic molecules, had been stud-
ied for more than hundred years. Examples of such
media are protein and DNA solutions (see, e.g., [2]).
Another well-known example of media with a geomet-
rically induced gyrotropy are cholesteric liquid crystals
(see, e.g., [3]).

However, it is only recently that the fabrication of
nanohelices on the basis of ordinary semiconductors
has become possible [4, 5]. The compatibility of these
systems with elements of semiconductor electronics
makes their study important for future practical appli-
cations.

Absorption of light in a helical quantum wire.
Consider a thin helical quantum wire with a constant
cross section. This wire can be described by the equa-
tion

(1)

Here, R is the radius of the helix, q is the coordinate
along the wire, the sign of k determines the helix direc-
tion ξ = ±1 (the plus sign corresponds to a left-hand
helix), the length of the helix turn is equal to 2π/|k |, η is
the ratio of the pitch of the helix to the length of its turn,
and the axis of the helix is directed along the z axis.

r a q( ) R kqcos R kqsin ηq, ,( ).≡ ≡

Helical quantum wire.
003 MAIK “Nauka/Interperiodica”
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The Hamiltonian of a curved quantum wire of con-
stant cross section in the absence of external field was
derived in the general form in [6, 7]. For the helical
geometry determined by Eq. (1), when the spin and the
band bottom displacement due to curvature and torsion
are ignored, electrons are described by an ordinary one-
dimensional quadratic Hamiltonian H = p2/2m, where
p = –i∂/∂q is the operator of the electron momentum
along the wire. In the presence of an external electro-
magnetic field A, the gradient transformation of the
Hamiltonian leads to the replacement of the momentum
by p + e/cAt , where At is the projection of the vector
potential on the tangent to a quantum wire with the unit
vector t(q) = (–kRsinkq, kRcoskq, η). We stress that, in
our study, we neglect the transitions between transverse
electron states in the wire. In the following calcula-
tions, we set " = 1.

We consider a helical quantum wire in a homoge-
neous alternating external electric field E(t) =
Re(E0e−iωt) and neglect the wave vector K of the wave.
Only the tangential field component acts on the elec-
trons in the wire:

Thus, with reference to the one-dimensional Hamilto-
nian, the fields Ex and Ey are waves acting on an elec-
tron and characterized by the wave vector k while the
field Ez is a homogeneous field along the helix axis. For
a free electromagnetic field of optical or lower frequen-
cies, the initial wave vector of the wave is small. At the
same time, the wave vector of the helix k can be made
sufficiently large, in particular, comparable to the Fermi
momentum of electrons. As a result, optical absorption
is allowed even for free electrons.

The dynamic current caused by the field can be
divided into contributions from corresponding spatial
harmonics:

(2)

Here, σ(ω, k) = σ(ω, –k) is the dynamic conductivity of
a one-dimensional system with allowance for the spa-
tial dispersion, which is described by the Kubo for-
mula:

(3)

Et Ȧt/c–=

=  Re kR –E0 x, kqsin E0 y, kqcos+( ) ηE0 z,+( )e iωt– .

J q t,( ) Re kRσ ω k,( ) –E0 x, kqsin E0 y, kqcos+( )(=

+ ησ ω 0,( )E0 z, e iωt– ).

σ ω k,( )
2e2

m2L
----------=

× f ε( ) f ε'( )–
ε' ε–

--------------------------- 8( )p p',
2 1
δ i ε ε'– ω–( )+
--------------------------------------,

p p',
∑

where ε = p2/2m is the electron energy, f(ε) is the Fermi
function, 8 = {p, eikq} (the braces denote the symme-
trization operation), L is the total length of the helix,
and δ is the rate at which the field is turned on. Neglect-
ing the scattering of electrons, for the real part of con-
ductivity we obtain

(4)

The time average power absorbed from a wave of
amplitude E0 propagating along the axis of the helix is

equal to Re(σ)k2R2  in the case of linear polariza-
tion and to twice this value in the case of circular polar-
ization. At a low temperature, the absorption in a
degenerate electron gas differs from zero in the fre-
quency band |pF|k| – k2/2| < mω < (pF|k| + k2/2), which
is determined by the energy and momentum conserva-
tion laws. For small k, the absorption band narrows to a
single frequency ω = |k|vF .

Photogalvanic effect in a helical wire. Let us con-
sider the formation of a steady current in the external
field of a circularly polarized wave propagating along
the helix axis (the z axis). In this section, as above, we
neglect the wave vector of the wave. A steady current
appears in a weak electromagnetic field as a second-
order response to the external electric field.

The complex amplitude of the electric field can be
represented as E0 = (1, iζ, 0)E0, where ζ = ±1, and

(5)

To calculate the current, we use the Kubo formula,
which is quadratic in the external field. The problem is
solved by analogy with the determination of the circu-
lar current in a quantum ring in an alternating external
field [8]. Neglecting the electron scattering and retain-
ing a small but finite rate δ of turning on the field, we
obtain the steady current along the wire:

(6)

The electron scattering can be simulated by the rate
of turning on the field through the introduction of the

Reσ ω k,( )
4e2mω

k 3
-----------------=

× f
k2 2mω–( )2

8mk2
-----------------------------

 
 
 

f
k2 2mω+( )2

8mk2
------------------------------

 
 
 

– .

E0
2/4

At
cE0Rζk

ω
------------------- ζkq ωt–( ).cos=

J0

e3k2R2E0
2

2m3ω2L
----------------------Re p p'–( ) f ε( ) f ε'( )–

2δ
---------------------------

p p',
∑=

× 8( )p p',
2 1
δ i ε ε'– ω–( )+
--------------------------------------.
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electron momentum relaxation time τ: δ  1/2τ.
Then, from Eq. (6), we obtain

(7)

Using Eq. (4), for a constant τ, we derive

(8)

In the low-temperature limit, the frequency depen-
dence of the current has the form of a rectangular peak
|pF|k| – k2/2| < mω < (pF|k| + k2/2). The sign of the cur-
rent is determined by the product ζξ ; i.e., a change in
the direction of polarization or helix changes the sign of
the current. With k  0, the width of the peak tends
to zero faster than its position; i.e., the peak becomes
infinitely narrow.

In the classical limit when k ! pF and ω ! εF , a
more accurate approximation taking into account, in
particular, the energy dependence of the relaxation time
can be obtained in terms of the kinetic equation. On the
assumption that the electron scattering is elastic, the
kinetic equation for the distribution function f(p, q, t)
has the form

(9)

Here, v  = p/m. Equation (9) represents a pair of coupled
differential equations. The steady current is determined
by the stationary distribution function component that
is odd in the momentum and of the second order in the
wave field. Solving Eq. (9) in the quadratic approxima-
tion in Et , we obtain the following expression for the
stationary part of the distribution function:

(10)

From this expression, for the steady current along the
wire we obtain

(11)

With τ  ∞, the current exhibits a resonance in fre-
quency when the Fermi velocity of electrons vF coin-

J0
e3ζk

m3ω2
------------- 1 η2–( )E0

2 p p k/2+( )2d

∞–

∞

∫=

× τ f ε ω+( ) f ε( )–( )δ kp/m k2/2m ω–+( ).

J0
e

4mω
------------ζτ kRe σ ω k,( )[ ] 1 η2–( )E0

2.–=

∂f
∂t
----- v

∂f
∂q
------ eEt

∂f
∂p
------–+ –

f –

τ
-----, f –

f p( ) f – p( )–
2

------------------------------.= =

f –
1
2
---τe2 kRE0( )2ζkv

p∂
∂

=

× ωτ
ω2 τ2 ω2 ζkv( )2–( )2

+
------------------------------------------------------v

∂ f 0

∂ε
-------- 

  .

J0
e
π
--- pv f – p( )d∫–

2e3ζk

πm2
-------------- 1 η2–( )E0

2= =

× p
ωτ

ω2 k2v 2–( )2τ2 ω2+
------------------------------------------------ε∂ τε( )

∂ε
-------------

∂ f 0

∂ε
--------.d∫
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cides with the phase velocity of the wave s = ξζω/|k|.
The resonance is related to the fact that the uniform
acceleration on the crest of the wave accelerates the
electrons. This contribution, being combined with the
contribution from the elastically scattered electrons,
gives rise to a direct current along the phase velocity of
the wave.

In this limit, at a constant relaxation time, Eq. (11)
coincides with Eq. (8). Outside the resonance, we have

J0 ~ k/ω3 for ω @ |k|vF , ωτ @ 1;

J0 ~ kτ2/ω for ω @ |k|vF , ωτ ! 1 or for ω ! |k|vF ,

τ ! ω; and

J0 ~ ω/  for ω ! |k|vF , τ @ ω.

When ω  0 or k  0, the current tends to zero.
We stress that our consideration of the photogal-

vanic effect was limited to the kinetic approach and
neglected the localization of states in the one-dimen-
sional system. This approach is valid when the localiza-
tion is destroyed by a phase failure, in particular, when
the phase failure time is comparable to τ (e.g., in a
bounded system) or smaller than τ.

Strong field limit. Formulas presented above refer
to a response quadratic in the field. Let us consider the
case of a strong external field, when the potential pro-
duced by the field exceeds the Fermi energy while the
phase velocity of the wave is smaller than the Fermi
velocity or close to it in order of magnitude. In this
limit, we can assume that the field forces the electrons
to concentrate near the potential minima. Then, all elec-
trons will move with the wave velocity. As a result, the
direct current can be expressed as

(12)

where ne is the mean linear density of electrons.
Expression (12) depends on neither electric field nor
electron relaxation.

This result also holds when the wave potential
ceases being classical for electrons. Performing a gra-
dient transformation, we find that the electron wave
function satisfies the equation

(13)

In the moving coordinate system, an electron is
described by the Bloch function φp(q) = up(q)eipq (with
the quasi-momentum p and the energy εp corresponding
to a certain energy band), which is a solution to the
Mathieu equation

(14)

k2v F
2

k3v F
4 k2v F

2

J0 enes,–=

–i
t∂

∂ p̂2

2m
------- eE0R ζkq ωt–( )cos+ + ψ 0.=

1
2m
-------

d2φp

dq2
-----------– eE0R kq( )φpcos+ εpφp.=
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The functions ψ and up are related by the formula

(15)

In the laboratory coordinate system, the electron
energy is equal to εp + sp + ms2/2 and the electron
velocity is ∂εp/∂p + s. When the wave amplitude is
large, equilibrium is established in the coordinate sys-
tem related to the wave, or, at least, the distribution
function becomes a function of only the energy εp .
Then, for the steady current we again obtain Eq. (12).

Expression (12) corresponds to the quantization of
the electron transport in an adiabatic electron pump [9],
if each turn of the helix is considered as an individual
electron pump. Indeed, according to Eq. (12), each
occupied state in a helix turn should pump exactly one
electron within the field variation period.

Gyrotropy of a medium consisting of helical
quantum wires. In this section, we consider the gyrot-
ropy of a three-dimensional medium consisting of iden-
tical parallel helical quantum wires. In formal terms,
the symmetry of a homogeneous medium formed of
helices allows the existence of an antisymmetric third-
rank tensor γijk = –γjik , which appears as a result of
expanding the spatially dispersive dielectric constant
εij(K) in the wave vector of the electromagnetic field K:

.

A homogeneous medium consisting of helices pos-
sesses a symmetry D∞, for which the tensor γijk has only
two independent components: γxyz and γyzx = –γxzy . To
determine these components, it is sufficient to consider
linearly polarized waves with the wave vectors directed
along the helix axis and normally to it.

In the first case, for a wave linearly polarized along
the x axis (this can be any chosen axis perpendicular to
the helix axis), the tangential component of the electric
field has the form

(16)

The current J in a helix is determined by the superposi-
tion of the responses to two waves:

(17)

The volume current density j is determined by the cur-
rent vector tJ averaged over a helix turn and multiplied

ψ q t,( ) up q st–( )eimsqe
it εp sp ms

2/2+ +( )–
.=

εij K( ) εij 0( ) iγijkKk …+ +=

Et kRE0Re eiKηq iωt– kq( )sin[ ] .–=

J Re i
kR
2

------E0ei ωt– ηKq+( )=

--× σ ω k ηK+,( )eikq σ ω –k ηK+,( )e ikq––( ) .
by the helix density n:

(18)

For our purpose, it is sufficient to determine the y
component of the current density

(19)

From Eq. (19), we obtain

. (20)

In the second case, for a wave with K = (K, 0, 0),
with a linear polarization along the z axis, the quantity
Et is determined by the expression (for a helix whose
axis passes through the point rl = (xl, yl))

(21)

Formula (21) is expanded with allowance for the small-
ness of the parameter KR. The volume current density
in a medium consisting of helices has the form

(22)

where

(23)

By averaging over the positions of the helices, we
obtain

(24)

Formulas (20) and (24) together with expression (3)
determine the gyrotropy of the system. Evidently, the
circular dichroism and the rotation of the polarization
plane are enhanced in the vicinity of the resonance.
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Nonperturbative methods were used to construct a single-integral equation for the photon polarization operator
in a semiconductor in strong electric and magnetic fields of arbitrary orientations. Spatial dispersion was taken
into account. The external field configurations at which its influence could be ignored were found. Asymptotic
equations for the field dependences of the absorption coefficient and refractive index were obtained. The neglect
of the spin of particles was shown to lead to a fundamentally false idea of magnetic field effects on the optical
properties of nonconducting crystals. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.20.Bh; 78.20.Ci; 78.20.Jq; 78.20.Ls
Studies of photon propagation in the vacuum in
strong electromagnetic fields initiated more than
30 years ago [1, 2] still remain a topical research area
[3, 4]. At the same time, optical fiber technologies and
many related developments stimulate investigation of
the influence of strong electromagnetic fields on the
optical properties of nonconducting crystals. These
problems are discussed, for instance, in monograph [5]
(also see [6]). The most general and consistent
approach to solving them is through studying the pho-
ton polarization operator in a semiconductor that expe-
riences the action of external electric and magnetic
fields of arbitrary orientations. We assume that the
intensity of the fields is only limited by the character of
the nonrelativistic approximation accepted in solid-
state physics, and the only photoabsorption mechanism
is direct allowed interband transitions. A scheme for
one-loop approximation calculations of the photon
polarization operator in an isotropic semiconductor
with a simple band in given in monograph [7] for an
external magnetic field without taking into account the
spin of particles. In our problem, the virtual electron
and hole wave functions are given by solutions to the
Schrödinger equation with the Hamiltonian

where ", e, and c are the Planck constant, the charge of
the electron, and the velocity of light, respectively; mc

(mv) is the effective mass of the electron (hole); ∆ is the
Laplace operator; magnetic field H is directed along the

z axis; E is the electric field vector; and  is the parti-
cle spin operator. These wave functions are easy to

Ĥ
"

2

2mc v,
--------------∆– i

"eHx
mc v, c
--------------

y∂
∂

eE r
"eH
mc v, c
-------------Ŝz,+⋅+–=

Ŝz
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obtain using relativistic solutions to the equations of
motion of charged particles in electromagnetic fields of
a complex configuration; such solutions were studied in
detail in monograph [8] (also see [9]). In this approach,
the influence of external fields is taken into account
exactly, and perturbation theory is only used to describe
interparticle interactions.

An equation in the form of a double series in the
squares of Laguerre polynomials, similar to the equa-
tion for the polarization operator in a purely magnetic
field, can be obtained following the procedure
described in [7]. Such an equation is, however, difficult
to deal with and use for drawing qualitative conclusions
from it. In particular, because this representation is
cumbersome, its regularization is impeded.

At the same time, using the method for summing the
contributions of all Landau levels developed in [10]
allows the photon polarization operator in superim-
posed electric and magnetic fields to be described by
the single-integral equation

(1)

Here, Π0 is the modulus of the photon polarization
operator in the absence of external fields, which con-
tains the convolution of the polarization vector over the
Bloch functions for electron and hole band edges [7],

Π Π 0
iπ/4–( )exp

8π( )1/2
---------------------------
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× xd

x3/2
-------

hx f σ hx( )
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----------------------- iS( )exp 1– 2Θ I–( )+
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.
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and I is the energy released in the decay of the photon
to the electron–hole pair,

(2)

where "ω is the photon energy, % is the forbidden band
width, M = mc + mv , and k is the modulus of the photon
wave vector.

The fσ functions depend on the spin of charged par-
ticles σ = 0; 1/2 and are f0 = 1 for scalar particles and
f1/2 = cos(m*hx/mc)cos(m*hx/mv) for the real electron
and hole, m* = mcmv/M is the reduced mass of the pair,1

and Θ(x) in (1) is the unit Heaviside step function.
Lastly, the S value has the form

(3)

where ε and h are

In turn,

If I > 0, interband transitions can also occur in the
absence of external fields; we then have Π = iΠ0. If
I < 0, pairs cannot be created if no external field is
applied, and the polarization operator is real, Π = Π0.2

The last term in (1) describes spatial dispersion mani-
festations [5, 7] without taking temperature effects into
account.

Note that the contribution of the kz component ori-
ented along the magnetic field is only characteristic of
certain separate polarization operator terms and is
related to the representation of the operator by the sum
over Landau levels [6, 7]. After the summation over all
levels, the dependence of the polarization operator also
on the k⊥  transverse component [see (1) and (3)] is
restored. The h parameter is the relative magnetic field
strength in the natural critical field Hk units. The Hk

field is determined from the condition of the equality of
the cyclotron quantum value and the energy release in
the reaction. The numerator ε is simply the modulus of

1 “Spinless” charged particles are included because the electron
and hole spins are usually ignored in such calculations. It will be
shown below that this is a fundamentally incorrect approach if a
magnetic field is present.

2 Note that, in a purely electric external field, different energy
release signs correspond to the oscillation and tunneling modes
thoroughly studied for the well-known Keldysh–Frants effect [11].
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the classical Lorentz force divided by the charge of the
electron. Its second term is responsible for the depen-
dence of the polarization operator on the direction of
the motion of the photon and, therefore, magnetic-field-
induced anisotropy of the optical properties of semi-
conductors. Such problems are as a rule solved in the
approximation ignoring the contribution determined by
the photon momentum (e.g., see [9, 12]). This corre-
sponds to the absence of the second term in ε and the
last term in I, which results in the neglect of spatial dis-
persion in the polarization operator.

For optical photons, κ ~ 10–6 at mc ~ mv ~ m (where
m is the mass of the vacuum electron); that is, such an
approximation is seemingly justified. It has, however,
been shown in [7] for a purely magnetic external field
that this approximation is inapplicable to real semicon-
ductors, especially in near-threshold regions. In our
problem, spatial dispersion and induced anisotropy can
only be ignored if E ≥ H.3 

Consider the asymptotic estimates of the photon
polarization operator [Eq. (1)] and the equations for the
refractive index and extinction ratio that follow
from (1).4

1. E ! Ek , H ! Hk , and H ≤ E; or h ! ε ! 1. This
corresponds to weak fields with the predominance of
the electric field. Spatial dispersion and anisotropy can
be ignored on the assumption ε = E/Ek . If the energy
release is positive, I > 0, the polarization operator is
estimated as

(4)

where

and the spin-dependent rσ constant coefficients are

Following [18], let us use (1) to determine the
observed differences of the refractive index and extinc-
tion ratio from their values when the fields are
“switched off,” ∆n = n – n0 and ∆q = q – q0. The usual

3 The ε value then becomes the relative electric field strength in
critical field Ek units; the critical field is determined from the con-
dition of the equality of the work done by the field at the de Bro-
glie wavelength "/(2m*|I |)1/2 and the energy release in the reac-
tion. Note that ε and h only differ in the scale of energy parame-
ters from the similar values that arise in the theory of the field
ionization of atoms [13].

4 The methods for obtaining these estimates were described in
detail in [10–17].
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equation that relates the optical characteristics to the
polarization operator (see [7, 9]),

yields

(5)

(6)

Clearly, these equations contain both terms that mono-
tonically grow as the electric field increases and terms
that oscillate at a frequency determined by the ε param-
eter. The magnetic field gives a correction to the ampli-
tude of these oscillations.

If the energy release is negative, I < 0, that is, under
tunneling conditions, (1) gives

(7)

where

and external field-induced changes in the optical prop-
erties of a semiconductor are5 

(8)

(9)

It follows from (8) that the refractive index mono-
tonically grows as the electric field increases, whereas
absorption coefficient (9) is exponentially suppressed.
The magnetic field gives a preexponential correction.

5 It is here taken into account that there can be no photoabsorption
in the absence of an external field under these conditions and
therefore q0 = 0.

n iq+( )2 1
4πc2

ω2
-----------Π ,+=

∆n
εn0 n0

2 1–( )1/2

4 2n0
2 1–( )

-------------------------------- ε
8
--- n0

2 1–( )1/2 φσ
+ h ε,( )+





=

× n0
4
3ε
----- 

 sin n0
2 1–( )1/2 4

3ε
----- 

 cos–




,

∆q
εq0 q0

2 1+( )1/2

4 2q0
2 1+( )

-------------------------------- ε
8
--- q0

2
1+( )

1/2





=

– φσ
+ h ε,( ) q0

4
3ε
----- 

  q0
2 1+( )1/2 4

3ε
----- 

 cos+sin




.

Π Π 0 1 ε3

32
------ i

ε
8
---φσ

– h ε,( )+ + ,≈

φσ
–

h ε,( ) 1 rσ
h2

ε2
-----– 

  4
3ε
-----– 

  ,exp=

∆n
ε2

64
------ n0

1
n0
-----– 

  ,=

∆q q
ε

16
------ n0

1
n0
-----– 

  φσ
– h ε,( ).= =
Note that the signs of rσ are different for scalar and
spinor particles even in the limit of comparatively weak
fields. Indeed, the magnetic field decreases and slightly
increases photoabsorption for scalar and spinor parti-
cles, respectively. While this is not very important
under oscillation conditions, the neglect of particle
spins in the situation under consideration leads to an
incorrect idea of the role played by the magnetic field
in the processes under consideration. The situation in
the theory of atomic field ionization is fully analogues,
as it was established recently in [15, 19]. Therefore, the
particle spins should be taken into account, despite the
relativistic character of calculation and rather weak
magnetic fields.

2. E ! Ek , H ! Hk , and E ! H; or ε ! h ! 1. The
fields are again weak, but the magnetic field now pre-
dominates. If I > 0, the photon polarization operator can
be written in the form

(10)

where

and external field-induced corrections to the optical
characteristics are given by the equations

(11)

(12)

It follows from (10) that the polarization operator is
purely imaginary and oscillating terms are absent. Con-
versely, if I < 0, the polarization operator becomes real,

(13)

where

In the situation that we are considering, field correc-
tions to the refractive index can be written as

(14)

and the absorption coefficient q is negligibly small. The
magnetic and electric Lorentz force components of ε
are commensurate, and semiconductors can therefore
become optically anisotropic. Indeed, the optical char-
acteristics [Eqs. (11), (12), and (14)] depend on both

Π Π 0i 1 χσ
+/16+( ),≈

χσ
+ rσh2 ε2/2,+=

∆n
n0

2 1–( )2

64n0 2n0
2 1–( )

----------------------------------χσ
+,=

∆q
q0 q0

2 1+( )
16 2q0

2 1+( )
----------------------------χσ

+.=

Π Π 0 1 χσ
– /16–( ),≈

χσ
– rσh2 ε2/2.–=

∆n
n0

2 1–
32n0
--------------χσ

– ,–=
JETP LETTERS      Vol. 78      No. 4      2003



ON THE INFLUENCE OF STRONG ELECTRIC AND MAGNETIC FIELDS 221
the direction of photon motion and the mutual orienta-
tion of the E and H vectors.

Consider the simplest mutual orientations of E, H,
and k. If the E and H vectors are parallel, a certain
direction in space becomes distinguished. The largest
difference in the optical properties is then observed for
photons that move along this direction and normally to
it. For crossed fields, that is, for E ⊥  H, the smallest ∆n
and ∆q values are observed for photons that move in the
direction of the E × H vector product, and the maxi-
mum differences, for photons that move in the opposite
direction. Roughly, this resembles the interaction of a
photon with a running electromagnetic wave [8].

Formally, the situation that we are considering
admits the passage to the limit of a purely magnetic
field. It is, however, well known (e.g., see [10, 20]) that,
in such a field in the h  0 limit, oscillations with an
unlimited amplitude appear in the equations for the
probabilities of pair photogeneration. Note that pre-
cisely these divergences were used in [7] to prove the
importance of taking spatial dispersion into account.
Indeed, for a photon that moves along the magnetic
field (H × k = 0) in the absence of an electric field, ε
vanishes. It follows from the representation of sin–1(h)
by the exponential series

that the exponent for S in (3) for spinless particles is
representable in the form of a linear function that van-
ishes at h = 2/(1 + 2n). If the spin is taken into account,
the equation becomes more cumbersome, but the situa-
tion does not change radically.

If we leave a weak electric field in (3), then the
amplitude of polarization operator (1) oscillations at
the specified h values is limited by Π ~ hε–1/3. It follows
that, generally speaking, the electric field plays the role
of a regularizing factor. This in essence follows from
the pioneer result due to Keldysh [11], namely, the
introduction of an external electric field removes the
root singularity at the threshold of the photoabsorption
cross section of nonconducting crystals, which is
present in the absence of a field. The same property was
mentioned by Ritus [21] for the relativistic reaction of
the photocreation of electron–positron pairs in crossed
external fields (E ⊥  H, E = H). In addition, the method
for removing the abovementioned divergences in a
magnetic field was related in [20] to including Cou-
lomb interaction of charged particles.

It follows that the regularizing role played by an
electric field manifests itself in a fairly wide range of
photoprocesses and persists at various coordinate
dependences of E. Also note that, if a magnetic field is
switched off while an electric field is retained, no non-
physical singularities arise [14].

hx( )sin
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2i ihx 1 2n+( )–[ ]exp
n 0=

∞
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3. E @ Ek and H ≤ Hk , or ε @ 1 and h ≤ 1. We here
have a strong electric and a moderate magnetic field.
Importantly, the field can turn strong not only because
of its large amplitude, but also because the energy
release in the reaction is small [see the explanatory
notes to (3)]. In other words, an arbitrary field is
“strong” in the vicinity of the threshold [10]. In this
limit, it follows from (1) irrespective of the spin and the
energy release sign (cf. [15, 16]) that

(15)

The absorption in this limit is strong,

(16)

and the determination of the refractive index becomes
meaningless.

Note in conclusion that, according to monograph
[9], photoabsorption in crossed fields becomes expo-
nentially suppressed as electric field E increases. This
conclusion is drawn from the representation of the
absorption coefficient in the form of a double series in
Laguerre polynomials, see above. Our results give evi-
dence to the contrary. In addition, the author himself
notes (see [9], p. 452) that this conclusion is at variance
with the Keldysh–Frants equations, verified many
times experimentally. In the approach developed in this
work, switching a magnetic field on and the passage to
the Keldysh–Frants equations do not require additional
transformations (also see [14]). If the magnetic field is
strong (h @ 1), the dependence of the polarization oper-
ator on the spin of particles is most significant and
requires a separate consideration.

The authors thank the participants of the seminar
headed by I.M. Ternov for useful discussions. This
work was financially supported by the Russian Founda-
tion for Basic Research (project no. 02-02-16784).
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We have studied the mechanism of structure formation and the local chemical composition of the Ti–C system
deposits formed at the interface between a carbon–argon–titanium plasma and a titanium substrate under con-
ditions of the titanium content in the plasma decreasing with time. The deposits were studied in a scanning elec-
tron microscope (SEM) equipped with an energy-dispersive X-ray (EDX) analyzer. The spatially distributed
growth of various structural modifications of carbon in the deposit is related to the mass transfer redistribution
at the substrate surface and to the selective deposition of adatoms forming sufficiently stable chemical bonds to
the growth surface in the thermal accommodation stage. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 81.15.Kk; 68.37.Hk; 68.55.Jk; 68.55.Nq
As is well known [1, 2], a necessary condition for
the formation of α-C layers is that the process should be
conducted at a high level of supersaturation. This pro-
vides for increased probability of the formation of sp3-
hybridized bonds, thus determining the growth of
homogeneous diamondlike structures on the substrate
surface. For this reason, processes taking place at low
supersaturations did not attract much attention and
remained almost unstudied.

However, our first experiments on the condensation
of a weakly supersaturated vapor of a separate metal, or
carbon, or a carbon–titanium mixture in a high-purity
inert medium revealed a number of interesting features.
The first to mention is the absence of growth coalescence
and secondary nucleation, which accounts for the forma-
tion of a deposit in the form of relatively large (up to
500 nm in size) crystals weakly bound to each other [3].
Under the conditions of low supersaturation, an
increase in the energy of deposited metal atoms reveals
their tendency to form layers with coexisting amor-
phous and crystalline phases [3–5]. These peculiarities
of structure formation can be explained by selective
conditions favoring the deposition of adatoms forming
sufficiently stable chemical bonds to the growth surface
in the thermal accommodation stage, without taking
into account the metastability of the growing phase.
Therefore, while the structure formation in the deposit
under high supersaturation conditions is determined to
a significant extent by the collective processes in the
vapor–deposit thermodynamic system, the regime of
highly selective condensation at low supersaturations
makes the formation of sufficiently strong bonds
0021-3640/03/7804- $24.00 © 20223
between individual adatoms and the growth surface the
major factor.

Another important preliminary result was the syn-
thesis of a new compound with the composition TiC2
and, probably, of a diamondlike phase under low super-
saturation conditions [6]. Of special interest is the
metastability of the TiC2 phase relative to the diamond
phase, which was manifested in the experiment by the
evident transformation of TiC2 into diamond immedi-
ately under the action of a low-power electron beam in
the electron diffraction setup. In view of the low inten-
sity of the electron beam, such a conversion could take
place only provided that the carbon sublattice of TiC2
was susceptible to the transformation into diamond. We
believe that the transition from TiC to the diamond
phase under the conditions studied proceeds as follows.
In the first stage, deposited carbon atoms with the ener-
gies of several tens of electronvolts penetrate into a sub-
surface layer of TiC and occupy interstitial sites, thus
forming a TiC2 phase. Under the action of an external
perturbation (in our case, electron beam), Ti atoms also
pass into interstitial sites and diffuse to the grain bound-
aries, while vacancies in the lattice sites exhibit col-
lapse and the carbon sublattice contracts to form a dia-
mond configuration.

Therefore, upon creating a Ti–C layer with the car-
bon concentration increasing in depth up to 66 at. %
and providing the necessary technological conditions,
we may expect the appearance of diamond nuclei.
Should even local TiC2  diamond transitions take
place, it would be of interest to continue the growth of
carbon under the aforementioned highly selective con-
ditions, since a higher energy of the sp3-hybridized
003 MAIK “Nauka/Interperiodica”
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bonds as compared to that of the π bonds in graphite
can provide for the advancing layer-by-layer growth of
diamond crystals. Evidently, such a process requires
additional kinematic conditions to be provided favoring
sp3 hybridization, for example, by acting upon the
growth surface with ion or inert gas atomic beams.

Although the possibility of such layer growth of dia-
mond in the absence of hydrogen was absolutely
rejected by some researchers [7], there are promising
experimental results. In particular, investigation of the
state of carbon atoms on the surface of a growth surface
of α-C layer [8] showed that the surface atoms are
linked primarily by the sp3-hybridized bonds. From this
we infer that the diamondlike state is formed due to the
sp3 hybridization, rather than as a result of implantation
into a subsurface layer with sp2-hybridized bonds [9];
at least, the aforementioned result does not exclude the
possibility of a hydrogenless diamond growth process.
However, this process must apparently take place at
temperatures significantly higher than the temperature
of formation of a diamondlike α-C deposit.

In this context, our study was aimed at elucidating
the mechanism of structure formation in Ti–C deposits
under the action of a carbon–argon–titanium plasma in
which the metal content decreases with time. The pro-
cess was conducted so as to provide that the carbon
deposit would form under highly selective conditions
mentioned above.

EXPERIMENTAL

An analysis of the conventional deposition tech-
niques showed that no one of these meet the condition
of high selectivity. For this reason, we have developed
a principally new device based on a hollow cathode
(Fig. 1). In this device, a Ti–C system deposit is formed
immediately inside the hollow cathode. The process is
conducted at a pressure of 20 Pa in the atmosphere of

Fig. 1. Schematic diagram of the sputtering device:
(1) water-cooled anode; (2) magnet; (3) magnetic circuit;
(4) graphite hollow cathode; (5) titanium substrate.
argon purified according to a special procedure [10]. In
our experimental setup, the discharge current is ampli-
fied and additionally stabilized both due to the hollow
cathode effect [11] and by an applied magnetic field
(Fig. 1).

The internal surface of cylindrical hollow cathodes
is usually subject to ion sputtering, which excludes the
deposition process. However, if a hollow cathode has
the shape of a truncated cone (Fig. 1), a significant sput-
tering of the material at the input hole and drawing of
the sputtered particles into the cathode volume provide
conditions for the deposition. At a discharge current of
1–3 A, a high-density plasma is generated inside the
cathode, uniformly covering the entire cathode surface
[11]. Under these conditions, the deposit structure for-
mation is determined by the mass transfer in the region
of interaction between the plasma and the growth sur-
face.

The conditions of deposition inside the cathode are
characterized by a number of peculiarities. At the initial
moment, the internal cathode surface and the substrate
bombarded by ions and atoms are heated to a tempera-
ture within Tc = 1050–1140°C and are subject to sput-
tering and sublimation. A part of the resulting vapor
phase leaves the cathode space, while another part is
converted into plasma and redeposited (atoms can be
involved into multiply repeated sublimation–deposition
cycles) [12]. Thus, adatoms weakly bound to the
growth surface will be resputtered and revaporized with
a greater probability. A combination of these conditions
is just what ensures the required selectivity, accounting
for the deposition of adatoms characterized by a suffi-
ciently strong binding to the growth surface. The mass
transfer processes at the substrate surface and in the
adjacent plasma layer being closely related, the plasma
and growing deposit should be considered as a unified
system [12].

Since the area of the titanium substrate surface
exposed to the plasma is significantly smaller than the
graphite cathode surface (Fig. 1), the carbon compo-
nent of the plasma layer inside the cathode will pre-
dominate over the titanium component. For this reason,
the surface of titanium is gradually saturated with car-
bon and a TiC layer is formed. As the carbon concentra-
tion on the growth surface increases, the titanium
plasma component drops, thus still more favoring the
deposition of carbon and creating the required concen-
tration profile. Evidently, by changing the system
geometry, it is possible to control the carbon content in
the plasma. The TiC2  diamond transition is possi-
ble only at a certain stage of the concentration profile
formation, provided that some perturbative factor (e.g.,
a local microdischarge) is acting upon the TiC2 phase.
Apparently, the probability of such events is rather
small and, hence, the local TiC2  diamond transi-
tions are most probable.

In order to determine the deposition temperature, we
placed the plates made of metals possessing various
JETP LETTERS      Vol. 78      No. 4      2003
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Fig. 2. X-ray diffractograms of deposits containing (a) dielectric inclusions and (b) β-carbyne.

β-

β-

β- β-

β-

β-
melting temperatures inside the hollow cathode and
gradually increased the discharge power. At the instant
of melting of the metal surface, the intensity of its
vaporization sharply increased, which was manifested
by a change in the character of glow. At this moment,
the discharge power was measured and the sputtering
setup was switched off. A correlation between the dis-
charge power and the temperature was considered as
reliably determined only for the samples exhibiting par-
tial fusion. The discharge power–deposition tempera-
ture relationship was determined using the known melt-
ing temperatures of the metal samples. During the Ti−C
system deposition, a power supplied to the sputtering
setup amounted to 430–470 W.

The microstructure and chemical composition of
deposits were studied using a scanning electron micro-
scope (SEM) equipped with an energy-dispersive X-ray
(EDX) analyzer (X-ray microprobe) capable of probing
a local sample region with a diameter of 1 µm and
determining the composition to within a 4% accuracy.
The chemical composition was calculated using data on
the characteristic X-ray emission intensities of the sam-
ples and the Ti–C standards. In addition, the phase
compositions of the deposit and the substrate were
studied by X-ray diffraction.
JETP LETTERS      Vol. 78      No. 4      2003
RESULTS AND DISCUSSION

In the first series of experiments, we varied the
geometry of the sputtering system and the discharge
power in order to determine conditions under which the
substrate was heated to ~1070°C and the deposition of
carbon during an initial period of t ~ 30 min took place
only in the form of implantation followed by thermal
diffusion inward the titanium substrate. In this stage,
according to the X-ray diffraction data (Fig. 2a), a TiC
layer is formed. This layer had a maximum microhard-
ness of ~1400 kgf/mm2 and a thickness of about 1 µm.
The substrate surface was partly sputtered, as con-
firmed by the formation of a characteristic microrelief
with protruding crystal grains (Fig. 3a). As the deposi-
tion continued, nucleation took place only on some
local areas and resulted in the growth of pyramids
(Figs. 3b and 3c) containing 60 at. % C. Growing in the
lateral directions, pyramids gradually covered the
whole surface of the substrate (see Fig. 3d).

In the course of subsequent deposition, dielectric
inclusions appear on the surface of the deposit (Fig. 3e).
These inclusions consist of 99.8 at. % C and 0.2 at. %
Ti. During the SEM measurements, these dielectric
inclusions accumulate electrons and exhibit negative
charging (thus being readily revealed by a dark back-
ground on the SEM micrographs). We believe that the
dielectric properties and the chemical composition of
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Fig. 3. SEM micrographs illustrating the nucleation and
growth of deposit from a plasma with relatively low carbon
content: t = 2 h (a–c), 4 h (d), and 8 h (e).
inclusions, together with the fact that weak (111) dia-
mond reflections are observed on the X-ray diffracto-
grams (Fig. 2a), provide sufficient ground to identify
these inclusions as belonging to the diamond phase.
However, attempts to obtain the deposit with dielectric
inclusions of greater size in the first series of experi-
ments were unsuccessful.

In the second series of experiments, we gradually
decreased the size of titanium substrates. Under other-
wise equal conditions, this increased the relative carbon
component in the plasma. In this way, we have estab-
lished conditions under which the growth rate of the
dielectric inclusions exceeded that of the remaining
deposit representing an amorphous carbon phase with a
characteristic black color and the macroscopic proper-
ties typical of graphite. The dielectric inclusions
appeared in the early stage of deposition, in the range
of carbon concentrations within C ~ 60–80 at. %
(Fig. 4a). When the carbon content on the growth sur-
face of the graphitelike deposit approached 100 at. %,
the dielectric inclusions in the form of polycrystals
appeared only on separate carbide fibers protruding out
of the growth surface (Figs. 4b and 4c). These observa-
tions confirm the important role of carbides in the pos-
sible process of diamond formation.

The dielectric inclusions formed from the nuclei
appearing in the earlier stage of deposition frequently
possess a single crystal structure (Fig. 4d). The forma-
tion of somewhat rounded edges is explained by sput-
tering, most probably, with neutrals. The content of car-
bon in these inclusions reaches almost 100 at. %, while
the dark background around such crystals observed at
small magnifications (Fig. 4e) is convincing evidence
of their dielectric properties. Therefore, despite the
absence of diamond reflections on the diffractograms
(evidently, the amount of this substance is below the
sensitivity threshold of X-ray diffraction), the crystal
presented in Fig. 4d can be identified with a large prob-
ability as the diamond phase. The growth of relatively
large dielectric crystals is apparently hindered by the
accumulation of a critical positive charge, which leads
to microdischarge, rapid heating, and detachment of the
crystal from the substrate surface. It was experimen-
tally established that only about 1/8 fraction of the
nuclei grow to a size of several dozens of microns, and
no more than a dozen of such crystals can be observed
on a sample area of 1 cm2.

It should be noted that, in addition to dielectric crys-
tals, the deposit frequently contains the clusters of
β-carbide (carbin). Being a semiconductor, β-carbyne
more effectively reflects the electron beam during the
SEM measurements, thus being revealed on the back-
ground of a graphitelike deposit. As can be seen from
the SEM micrographs (Figs. 5a and 5b), β-carbyne
grows more intensively on the areas of artificial rough-
ness. This is probably explained by closure of the
“mass-transfer cycles” on protruding parts of the sub-
strate, where the electric field strength is increased. The
JETP LETTERS      Vol. 78      No. 4      2003
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Fig. 4. SEM micrographs illustrating the formation of dielectric inclusions: t = 0.5 h (a), 1.5 h (b), 2.5 h (c), and 3.5 h (d, e).
presence of β-carbyne with a certain growth texture
was confirmed by X-ray diffraction (Fig. 2b). There-
fore, the transition from graphitelike structure to β-car-
byne requires localization of the ion flows. Apparently,
such a localization favors accelerated growth of β-car-
byne inclusions, in the vicinity of which the electric
JETP LETTERS      Vol. 78      No. 4      2003
field strength exhibits additional increase. Therefore,
localization of the mass transfer has a self-sustained
character. However, attaining a certain critical value of
the local ion flow most probably results in strong heat-
ing of the β-carbyne inclusion, leading to its breakage
or detachment from the growth surface.
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50 µm(‡)

(b) 100 µm

Fig. 5. SEM micrographs illustrating the formation of
β-carbide inclusions: (a) on polished substrate (t = 2.5 h);
(b) on a substrate with artificial roughness (t = 2.5 h).

100 µm

Fig. 6. A SEM micrograph showing the crater deposit
structure.
A still greater proportion of carbon in the plasma
was accompanied by the formation of a characteristic
crater structure (Fig. 6). The results of the local chemi-
cal analysis showed that the carbon concentration
amounts to several at. % on the bottom of a crater and
approaches the maximum possible value on the top
ridge. As can be seen from Fig. 6, some regions of the
concentration profiles reflect transitions to a dielectric
state. It is interesting to note that such transitions were
observed in the regions where the carbon concentration
is about 70 at. %. However, we failed to detect TiC2 by
X-ray diffraction measurements. This is probably
explained by metastability of this phase and by its
decomposition at the large deposition temperatures
employed. On the other hand, the fact that the suppos-
edly diamond phase is predominantly nucleated on the
TiC fibers indicates that TiC2 may participate in this
process in an amount of several atomic monolayers.
Note that, in the case under consideration, the preferen-
tial growth of the supposedly diamond phase is rather
weakly pronounced. Further increase in the proportion
of carbon in the plasma leads to rapid formation of a
black carbon deposit free of diamondlike inclusions.

If the temperature falls out of the aforementioned Tc

interval, the sputtering process is accompanied by the
formation of morphologically homogeneous carbide or
graphitelike deposits without dielectric carbon inclu-
sions. Therefore, the spatially distributed selective
growth of the desired carbon modifications takes place
only within a rather narrow interval of the process
parameters. It is experimentally established that the
most important technological conditions determining
the formation of inclusions supposedly identified as
microdiamonds must (i) ensure the absolute stability
and continuity of the selective deposition process and
(ii) maintain the process temperature within the interval
of Tc ~ 1050–1140°C. Reproducibility of the process
depends on all geometric parameters of the sputtering
system, including the substrate geometry, surface mor-
phology, and arrangement in the working chamber.
With all the aforementioned factors taken into account,
the reproducibility of experiments reaches 60%.

It should be emphasized that the mechanisms
responsible for the preferential growth of dielectric
inclusions and β-carbyne are principally different. In
the former case, the equipotential character of the
growth surface is violated and the accumulation of pos-
itive charge by dielectric inclusions can both reduce the
local electric field strength and change the local field
direction. Therefore, there is ground to believe that the
growth of possible diamond inclusions is related prima-
rily to the weak flow of neutrals formed in a sufficient
amount due to the resonance recharge [13] or due to the
secondary electron–ion interactions.

In order to check for the role of titanium in the for-
mation of dielectric carbon inclusions, we performed a
series of control experiments with graphite and tanta-
lum substrates. The results were negative. Using a mix-
JETP LETTERS      Vol. 78      No. 4      2003
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ture of 10 at. % CH4 + 90 at. % Ar as the working gas
or increasing the partial pressures of chemically active
gases (O2 and N2) violated stable operation of the sput-
tering device and impeded carbidization (by binding
titanium in oxides, hydrides, and nitrides). These fac-
tors significantly alter the process of the deposit struc-
ture formation, whereby the cases of dielectric carbon
crystal formation are seldom and the number of such
inclusions is very small.

To summarize, we have found a new, extremely non-
equilibrium mechanism of the transition of a substance
from vapor into a condensed state. This mechanism
accounts for the spatially distributed, selective growth
of carbon deposits with various structures and morphol-
ogies at different rates.
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Consider two normal leads coupled to a superconductor; the first lead is biased while the second one and the
superconductor are grounded. In general, a finite current I2(V1, 0) is induced in grounded lead 2; its magnitude
depends on the competition between processes of Andreev and normal quasiparticle transmission from lead 1
to lead 2. It is known that, in the tunneling limit, when normal leads are weakly coupled to the superconductor,
I2(V1, 0) = 0 if |V1 | < ∆, and the system is in the clean limit. In other words, Andreev and normal tunneling pro-
cesses compensate each other. We consider the general case: the voltages are below the gap, the system is either
dirty or clean. It is shown that I2(V1, 0) = 0 for general configuration of the normal leads; if the first lead injects
spin-polarized current then I2 = 0, but spin current in lead 2 is finite. A XISIN structure, where X is a source of
the spin-polarized current, could be applied as a filter separating spin current from charge current. We do an
analytical progress calculating I1(V1, V2), I2(V1, V2). © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.50.+r
Hybrid systems consisting of a superconductor (S)
and two or more normal metal (N) or ferromagnetic (F)
probes have recently started to attract great attention
[1–5]. Among the most striking new results is the pre-
diction that NSN (FSF) devices can play the role of an
entangler, producing Einstein–Podosky–Rosen (EPR)
pairs [4] having potential applications, for example, in
quantum cryptography [6]. Not long ago, a rather
unusual effect was described in a normal metal–tunnel
barrier (I)–superconductor–tunnel barrier–normal
metal (NISIN) junction (see, e.g., Fig. 1b) [2, 3]. It was
shown that when N1 is biased and N2 and S are
grounded, there is no current injection from N1 to N2 at
subgap biases. The main assumptions were that 1) the
superconductor is clean and 2) a large number of con-
ducting channels are involved in electron tunneling
through NS interfaces [2, 3]. In other words, the subgap
cross conductance G12 ≡ I2(V1, 0  = 0, where

the current I1 flows in N1 and V1 is the bias between N1

and S and V2, that between N2 and S. The suppression
of G12 was attributed to the compensation of the contri-
butions to the current from Andreev and normal quasi-
particle tunneling processes between N1 and N2 [2]. It
was also noted that G12 ≠ 0 in FISIF junctions: G12

decays exponentially as exp(–r/ξ) with the characteris-
tic distance r between the normal terminals (see, e.g.,
Fig. 1b), where ξ is the superconductor coherence
length; at small r/ξ, G12 also decays rather quickly (at
atomic scales): as 1/(kFr)2 (kF in the superconductor)

¶ This article was submitted by the author in English.

∂V1
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[2]. Thus, with clean superconductors, measurement of
G12 may become difficult. 

In this letter, we first of all generalize the results
of [2, 3] and get rid of assumption 1 (i.e., S is not
restricted to be clean). We show that when the super-
conductor is dirty (the mean free path is smaller than ξ)
Andreev and normal transmission rates [as well as G12

in FISIF junctions] slowly decay with the characteristic
distance r between the normal (ferromagnetic) termi-
nals (at r < ξ), in contrast to the clean regime
(see [2, 3]). For example, in FISIF with a supercon-
ducting layer thinner than ξ, see Fig. 1b, G12 ~ ln(r/ξ);
when the superconductor is bulk, then G12 ~ ξ/r (r > λF

is supposed). Measurements of effects related to elec-
tron tunneling through a superconductor (e.g., G12) in
the dirty superconductor case can be more easily real-
ized experimentally than in the clean case, because then
r is restricted not to atomic scales but by ξ @ λF . We

Fig. 1. The outline of the setup. N1, 2 are normal metals or
ferromagnets.
003 MAIK “Nauka/Interperiodica”
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show that contributions to the current from Andreev
and normal quasiparticle tunneling processes always
compensate each other in NISIN junctions (so, e.g.,
I2(V1, V2 = 0) = 0 for |V1 | < ∆ in the first nonvanishing
order over the transparencies of the layers I) for any
amount of disorder in the S-layer. If one prepares a
NISIN junction with layers I having large transparency,
then normal tunneling starts dominating Andreev tun-
neling (and I2(V1, V2 = 0) ≠ 0). We also considered a
FISIN junction, in particular with VF ≠ 0 and VN = 0.
Then the ferromagnet F plays the role of the spin-polar-
ized current injector. In this case, I2(V1, V2 = 0) = 0 also,
but spin current in N is finite: the charge component of
the current converts into the supercurrent, spin accumu-
lates in N. So the XISIN structure, where X is a source
of the spin-polarized current, could be applied in spin-
tronics [7] as a filter separating spin current from
charge current. We find Andreev The and normal trans-
mission probabilities Tee of a NISIN sandwich for sub-
gap energies |E | < ∆ and different angles θ between
incident quasiparticle trajectory and the normal to NS
interface. It is shown that the probabilities have reso-
nances where The ~ Tee; the averages of The and Tee over
incident channels (over θ) are equal. This is the reason
why I2(V1, V2 = 0) is suppressed and the spin current

(V1, V2 = 0) is finite.

We start investigation of NISIN structures from the
sandwich sketched in Fig. 1a: barriers at NS boundaries
provide spectacular reflection; electrons in N and S
move ballistically; the number of channels at both NS
boundaries is much larger than unity. The transmission
probabilities The(E, θ) and Tee(E, θ) (see Fig. 2) describe
Andreev and normal tunneling of an electron incident
on the NS boundary with the angle θ and the energy E,
respectively, into a hole and an electron in lead 2. Fol-
lowing the Landauer–Büttiker approach [8–10],

(1)

where the sum is taken over channels (spin degrees of
freedom are included into channel definition); f (1, 2) are
distribution functions in the leads 1, 2; e.g., f (2) =
nF(E) = 1/[1 + exp(βE)], f (1) is not necessary a Fermi
function. We calculate the transmission and reflection
probabilities using Boguliubov–de Gennes (BdG)
equations. The layers I are approximated by δ barriers.
Quasiparticle motion parallel and perpendicular to the
NS interfaces can be decoupled [11, 12]. Matching
appropriate wave functions in the normal region and the
superconductor, we get an 8 × 8 linear system of equa-
tions for the transmission amplitudes. Analytical
progress can be made. It follows that, if there is no bar-
rier at NS boundaries (except ∆), The/Tee & (∆/EF)2 for

I2
s( )

I2 V1 V2 0=,( )

=  
e
"
--- E Tee The–( ) f 1( ) f 2( )–( )

channels

∑d∫ ,
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any thickness d of the superconducting layer. This
result is intuitively quite clear, because ∆ ! EF can
hardly reverse the direction of the quasiparticle
momentum, being about kF [11, 13]. However if there
are barriers at NS boundaries in addition to ∆ (e.g.,
insulating layers I), then the situation changes: at cer-
tain θ the transmission probabilities have resonances
where The ~ Tee . When the transmission probabilities of

the layers I,  ! 1, the areas under the resonance
peaks of The(θ) and Tee(θ) are nearly the same and

(2)

where 〈…〉  = /Nchannel ≈ dcos2θ.

Equation (2) is exact in the first nonvanishing order
over TNS . The resonances appear at kFdcos(θn) = πn,
n = 1, 2 …, give the leading contributions to 〈The〉 , 〈Tee〉
and are responsible for Eq. (2). The resonance width
Γ ~ min{1, TNS, d/ξ}. Typical dependences of The(θ)
and Tee(θ) from θ and TNS are illustrated in Fig. 3.

In fact, θ is a discrete variable; its particular value is
determined by the channel of the incident particle.
Equation (2) is applicable when 1) TNS(θ) slightly
change when θ changes from one channel to an adja-
cent one and 2) the change of θ from one channel to
another is smaller than the resonance width. Condition 1
is fulfilled typically when TNS(θ) ! 1; condition 2

requires λF/  ! min{1, TNS(0), d/ξ}, where A is the
junction surface area.

It follows from Eqs. (1), (2) that subgap charge
injection from lead 1 into lead 2 in the weak coupling
regime (TNS ! 1) is suppressed: I2(V1, V2 = 0) = 0,
because charge currents of transmitted hole and elec-
tron quasiparticles compensate each other in lead 2; all
the electron current converts into Cooper pair supercur-
rent in S. However, if spin-polarized current is injected
from lead 1, finite spin current appears in lead 2; trans-
mitted electron and hole quasiparticles contribute the

spin current. An XISIN structure with  !  ! 1
(this condition allows one to neglect the contribution to
the charge current going in S from Andreev reflection at

T NS
1 2,( )

The〈 〉 Tee〈 〉 ,≈

…( )
channels∑ …( )

0

1∫

A

T NS
1( ) T NS

2( )

Fig. 2. Electron scattering from a NSN junction.

Tee

The
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N1S surface), where X is the current “injector,” can play
the role of the filter of spin and charge currents; see
Fig. 4. The equation for the spin current follows from
Eq. (1):

(3)

where σ1 = ±1 labels spin degrees of freedom in X. The

I2
s( ) V1 V2 0=,( )

=  
e

2"
------ E σ1 Tee The+( ) f 1( ) f 2( )–( ),

channels

∑d∫

Fig. 3. Resonances of Andreev and normal transmission
probabilities Tee(θ), The(θ) of a NISIN junction Fig. 1a at
different transparencies TNS(θ) of the layers I. Parameters:
d/ξ = 0.1, EF/∆ = 1000, the energy E = 0. Resonances cor-
respond to kFdcos(θ)/π = n, n = 1, 2, …. If 0 < E < ∆ then
the shape of the graphs slightly change: the resonance peaks
become slightly asymmetric [the same applies to the case
when TNS are different but small]. It can be checked (even
analytically) that the areas under the corresponding reso-
nance peaks of Tee and The become equal at small TNS .

Fig. 4. Isolator–superconductor–isolator–normal metal
structure can help to spatially separate spin and charge com-
ponents of the current.

kFdcos(θ)/π

TNS

TNS

TNS
general feature of transmission probabilities T and the
current is their exponential suppression with d/ξ when
d @ ξ (ξ is the superconductor coherence length).

We show below that all the results discussed above
remain true in the general NISIN structure with a shape
more complicated than in Fig. 1a (e.g., as in Fig. 1b), no
matter dirty or clean.

In general, a system of weakly coupled normal (fer-
romagnetic) and superconducting layers can be

described by the Hamiltonian  =  +  +  + ,

where  refer to the electrodes N1 and N2, and 
refers to the superconductor. The tunnel Hamiltonian

, which we consider as a perturbation, is given by

two terms,  =  + , corresponding to one-
particle tunneling through each tunnel junction:

(4)

where the indices i = 1, 2 refer to normal (ferro) elec-

trodes and  is the matrix element for tunneling from
the state k = (k, σ) in normal lead Ni to the state p =

(p, σ') in the superconductor. The operators  and 
correspond to quasiparticles in the leads and in the
superconductor, respectively.

The current can be expressed through the quasipar-
ticle scattering probabilities within the Landauer–Büt-
tiker approach. It is possible to calculate the scattering
probabilities within the tight-binding model (4), but it
is more convenient to describe the current in the lan-
guage of electrons only: Andreev transmission proba-
bility The (1) is closely related to the crossed Andreev

(CA) tunneling rate , which shows how
many electron pairs tunnel per second from leads 1
and 2 into the condensate of the superconductor (each
lead gives one electron into a pair) and vice versa; see

Fig. 5b and [2]. Elastic cotunneling e rate  corre-
sponds to Tee . The direct Andreev (DA) tunneling rates

 and  describe Andreev reflection in the
leads 1 and 2 (see, e.g., Fig. 5a). The current in lead 2

consists of two contributions: one, , comes from the
electron injection from lead 1 due to crossed Andreev

and cotunneling processes, the other, , from the
direct electron tunneling between the lead and the

Ĥ Ĥ1 Ĥ2 ĤS ĤT

Ĥ1 2, ĤS

ĤT

ĤT ĤT
1( )

ĤT
2( )

ĤT
i( )

âk
i( )†tkp

i( )b̂p h.c.+{ } ,
k p,
∑=

tkp
i( )

âk
i( ) b̂p

ΓCA
S ← V1 V2,( )

ΓEC
2 1←

Γ DA
S 1 2( )→ Γ DA

S 1 2( )←
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superconductor. The same applies for lead 1.

 =  + , where

(5a)

(5b)

(5c)

(5d)

Using the Fermi golden rule, the rates can be found in
the second order in the tunneling amplitude tk, p . Fol-
lowing the approach described in [2, 14, 15], we finally
obtain

(6)

where n(i) is the distribution function in the lead i = 1, 2.
Hereafter, we take " = 1, e = 1 [we do not assume n(i) to

be only equilibrium Fermi function]. The rate 

can be obtained from the expression for  by sub-
stitution of (1 – n) for n.

The kernel  ≡  is the Laplace

transform of . It can be expressed through the

classical probability, P(X1, ; X2, , t) meaning that

an electron with the momentum directed along  ini-
tially located at the point X1 near the NS boundary
arrives at time t at some point X2 near the NS boundary
with the momentum directed along  spreading in the
superconducting region as 

Here, the spatial integration is performed over the N1S
and N2S surfaces. We choose the spin quantization axis
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in the direction of the local magnetization in the termi-
nal N1(2). The quasiclassical probabilities G(i)(X, , σ),
i = 1, 2 for the electron with spin polarization σ tunnel-
ing from the terminal Ni to the superconductor are nor-
malized such that the junction normal conductance per

unit area  and the total normal conductance 
are determined as [14, 16]

Then the normal conductance per unit area, discussed

above, is defined as  = /!, where ! is the sur-
face area of the junction. Symbol θ(X1, X2) is the angle
between the magnetizations of the terminals N1 and N2

at points X1 and X2 near the junction surface. If elec-

p̂

gσ
i( ) X( ) GN

i( )

gσ
i( ) X( ) p̂G i( ) X p̂ σ, ,( ), GN

i( )d∫ X gσ
i( ) X( ).

σ
∑d∫= =

gN
i( ) GN

i( )

Fig. 5. (a) Direct Andreev tunneling (Andreev reflection),
(b) Crossed Andreev tunneling (Andreev transmission), and
(c) Elastic cotunneling (normal transmission). 
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trons in N1 and N2 are not polarized, then θ = 0. In a
similar way:

where

(7)

The rate  can be obtained from the expression for

 by substitution of (1 – n) for n. DA rates are writ-
ten in [14]. Equations (5a)–(7) derived here allow one
to describe the transport properties of many types of
junctions.

Consider a FISIN junction with biased ferromagnet
with the respect to the superconductor; the normal
metal N has same voltage as S. The ferromagnet plays
the role of a current “injector”; electrons coming from
F are distributed with some distribution function n(1).
Electrons in the deep of the terminal N are Fermi-dis-
tributed. It follows from Eqs. (5a)–(7) that contribu-
tions to the current from EC and CA processes compen-
sate each other for subgap voltages, so IN(VF ≠ 0, 0) =
0. However, spin current is finite:

(8)

Finally, we consider a FISIF junction. It was shown
in [2] that in this junction I2(V1, 0) ≠ 0 and I2(V1, 0)
changes its sign when the ferromagnetic terminals
change their orientation from parallel to antiparallel.
Naively it can be supposed that, in a FISIN junction
where F is a jafrrent injector, S, N are grounded spin
accumulation at the interface of the normal metal
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would lead to spin splitting of the density of states in N
and a charge current. However, this is not so; these cor-
rections are of a higher order over tunneling amplitudes
than the processes in Fig. 5 and can be neglected,
because we assume that tunneling amplitudes are small.

It was also noted in [2, 3] that the cross conductance
G12 ≡ I2(V1, 0  is suppressed in a FISIF struc-

ture as 1/(kFr)2 when the characteristic distance
between the ferromagnets r < ξ. In the dirty regime
there is no conductance suppression at atomic scales.
Consider, for instance, the layout sketched in Fig. 1b;
the width d of the superconducting film is supposed to
be smaller than ξ. According to Eqs. (5a)–(7), the cross-
conductance dependence from the distance r is deter-

mined by the Laplace transform  of the
probability P(r, t) = exp(–r2/4D|t |)/4πd|t |, where D is
the diffusion constant in the superconductor, d < ξ.

When λF ! r < ξ, G12 ~  ~ ln(r/ξ) and if r @ ξ, G12 ~

 ~ exp(–r/ξ). When the superconductor is bulk (d > ξ),
similarly we find G12 ~ ξ/r, λF ! r < ξ. All consider-
ations above apply also for CA and EC rates. Thus, it is
practically more convenient to measure finite effects
related to electron subgap tunneling through a super-
conductor when it is dirty rather than clean. In the dirty
case, the terminals are not restricted to being as close as
λF , as in the clean case, but closer than ξ @ λF .
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The cooperative phenomena revealed in the field and temperature dependences of the magnetization in a system
of iron nanoparticles in carbon nanotubes were studied experimentally. The character of the temperature depen-
dences of the magnetization indicates that the ferromagnetic Fe particles in carbon nanotubes are exchange-
coupled. In the region where the magnetization approaches saturation, the magnetization curves reveal the
power dependence ∆M ~ H–3/2 typical for a one-dimensional system of exchange-coupled ferromagnetic nano-
particles. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.75.+a; 75.60.Ej; 75.50.Bb
At present, many researchers are interested in the
magnetic properties of ferromagnetic nanowires from
the viewpoints of both possible applications and funda-
mental research [1–22]. Such effects as giant (70% [1],
20% [15]) and colossal (up to 10000% [2]) magnetore-
sistance and giant (as compared to bulk ferromagnets)
coercive force (1–5 kOe) [1, 3–7, 17–19] have already
been observed in magnetic nanowires.

Two methods are currently used for producing
nanowire ensembles based on Fe, Co, Ni, and their
alloys. The first method is the electrochemical deposi-
tion of a metal into cylindrical pores of such porous
matrices as aluminum oxide [3–11], silicon [12], and
polycarbonate membranes [13–16]. The second
method is based on the arrangement of metal nanopar-
ticles inside carbon nanotubes produced by the decom-
position of compounds containing a magnetic 3D
metal. This method uses chemical vapor deposition
(CVD) [17–21] and carbon electric arc decomposition
[2, 22].

Unusual magnetic properties of ferromagnetic
nanoparticles are caused to a considerable extent by the
cooperative effects in the magnetic system of strongly
coupled nanoparticles. The cooperative effects in a sys-
tem of exchange-coupled nanoparticles depend mainly
on the strength of exchange coupling and the spatial
arrangement of nanoparticles. In nanomaterials with a
0021-3640/03/7804- $24.00 © 20236
random distribution of the anisotropy axes of small par-
ticles, the main structural characteristics are the size of
the nanoparticles and the dimensionality of their
arrangement. As shown in [23], the average magnetic
anisotropy (and, therefore, the coercive force Hc and
the magnetic permeability) of such ferromagnetic
nanomaterials is described by the power function 〈K〉  ~
K(Rc/δ)2d/(4 – d), where K is the energy of the local mag-
netic anisotropy, Rc is the correlation radius of the ran-
dom magnetic anisotropy (in nanocrystals Rc is usually
taken to be half the grain size), δ = (A/K)1/2 is the
exchange correlation length, A is the exchange interac-
tion constant, and d is the dimensionality of the grain
arrangement. It was shown in [23, 24] that the approach
of the magnetization to saturation in ferromagnetic
nanomaterials with Rc < δ (such materials can be con-
sidered as systems of exchange-coupled nanoparticles)
is determined by the dimensionality d of the arrange-
ment of nanoparticles. According to [23, 24], the
reversible part of the magnetization curve of such ferro-

magnetic nanomaterials in fields H < Hex = 2A/M
(so-called exchange field) is described by the following
formula:

(1)

Rc
2

M H( ) Ms–
Ms
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where Ha = 2K/Ms is the local anisotropy field. There-
fore, studies of the magnetization curves in the region
where the magnetization approaches saturation com-
bined with the study of the low-temperature depen-
dence of the magnetization make it possible to obtain
information about the parameters A, K, Rc , and d. In
principle, these parameters could also be determined by
studying the dependence of Hc on Rc , but this method is
very laborious and methodologically difficult.

The goal of this work was to study experimentally
the cooperative effects that are revealed in the field and
temperature dependences of the magnetization of a sys-
tem of iron nanoparticles in carbon nanotubes.

Experiment. Samples of two types were studied:
samples s1 synthesized by the electric arc decomposi-
tion of Fe(CO)5 [22] and samples s2 synthesized by the
thermolysis of a mixture of C60 fullerene with ferrocene
[21]. The samples were obtained in the form of powder
consisting of carbon nanotubes filled with iron. Micro-
photographs of the nanotubes obtained by transmission
electron microscopy (TEM) are shown in Fig. 1. It can
be seen that the inner cavities of the nanotubes are par-
tially filled with iron (dark regions in the microphoto-
graphs of the nanotubes correspond to Fe particles;
semitransparent regions, to the carbon walls). The
weight fraction of Fe in the nanocomposites under con-
sideration was estimated from the magnetization mea-
surement results: in s1 it was ~50–60%; in s2, ~15–
25%. It can also be seen in Fig. 1 that the nanotubes
constituting powder samples s1 and s2 differ in their
morphology: s1 consists of distorted nanotubes
(Fig. 1a), whereas s2 is composed of straight-wall nan-
otubes (Fig. 1b). The nanotubes of both s1 and s2 types
have a characteristic inner diameter of ~100 Å. Scan-
ning electron microscopy showed that the average
length of the nanotubes of both types was ~10 µm [21,
22]. X-ray diffraction studies and Mössbauer spectros-
copy showed that the nanowires inside the nanotubes
consisted of α-Fe and Fe3C magnetic particles [21, 22].

Magnetic measurements were performed using a
vibrating-sample magnetometer with a superconduct-
ing solenoid in fields of up to 60 kOe and in the temper-
ature range 4.2 to 200 K. The contribution of the insert
with an empty powder container was measured sepa-
rately (it was ~1%) and subtracted from the results of
measurement.

Results and discussion. The low-temperature mag-
netization curves for samples s1 and s2 are shown in
Fig. 2. These curves M(T) were measured in the exter-
nal field H = 20 kOe within the temperature range 4.2
to 200 K. It can be seen that the curves do not exhibit
singularities typical for superparamagnetic particles,
which means that the small Fe particles inside the car-
bon nanotubes are exchange-coupled.
JETP LETTERS      Vol. 78      No. 4      2003
The experimental dependences M(T)/M(0) are well
described by the theoretical expression known as the
Bloch law (solid lines in Fig. 2):

(2)

The relation of the coefficients B and C in Eq. (2)
with the main magnetic constants of the material
(exchange interaction constant A and the mean length

 of the atomic exchange coupling) is described

Ms T( ) Ms0 1 BT3/2 CT5/2––( ).=

r2〈 〉 1/2

(‡)

(b)

200 nm

50 nm

Fig. 1. (a) TEM image of iron-filled carbon nanotubes syn-
thesized by electric arc decomposition of Fe(CO)5 [22];
(b) TEM image of iron-filled carbon nanotubes synthe-
sized by thermolysis of a mixture of C60 fullerene with
ferrocene [21].
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by the well-known formulas

(3)

(4)

where Jij is the exchange integral for a pair of neighbor-
ing spins in the atomic lattice rij .

The calculated constants B, C, A, and  for the
Fe nanowires under consideration are given in the table
together with the well-known values of the same con-
stants for an α-Fe crystal and a cementite (Fe3C)
crystal.

The measured magnetization curves of the Fe
nanowires under consideration are shown in Fig. 3 both
as standard isotherms M(H) and as ∆M/Ms vs. H–3/2

curves. The high-field curves of magnetization of the
Fe nanowires plotted in coordinates ∆M/Ms vs. H3/2

include rectilinear segments both at liquid helium tem-
perature and at T = 200 K. These segments indicate that
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Fig. 2. Normalized magnetization M(T)/M(0) as a function
of temperature in an external field H = 20 kOe for Fe
nanowires in carbon nanotubes.

Table

(s1) (s2) α-Fe Fe3C

B, 10–5 K–3/2 0.35 1.7 0.34 2.9

C, 10–8 K–5/2 1.7 1.1 0.1 –

〈r2〉1/2, Å 7 1.5 2 –

A, 10–6 erg/cm 2.0 0.75 2.1 0.49
∆M/Ms is proportional to H–3/2 in a field range up to
60 kOe. The curves shown in Fig. 3 comply with
Eq. (1). They indicate that the exponent of the power
dependence describing the approach of the magnetiza-
tion to saturation is independent of the temperature and
the process of the synthesis of the ferromagnetic mate-
rial under consideration, but depends only on the
dimensionality d of the arrangement of the exchange-
coupled grains. In the case under consideration, the
dimensionality is 1.

The dependence ∆M/Ms ~ H–1/2 (d = 3) describing
the approach of the magnetization to saturation in
amorphous and nanocrystalline magnetic materials was
predicted in [25] and experimentally obtained in [26].
It is well known to magnetologists and widely used for
interpreting the experimental data on the approach of
the magnetization to saturation in amorphous and
nanocrystalline magnetic materials [27–32]. The
dependence ∆M/Ms ~ H–1 (d = 2) has been recently
observed in experiments with ultrathin nanocrystalline
and amorphous Co layers [23]. The experimental
curves of the Fe nanowire magnetization obtained in
this work reveal the power dependence ∆M/Ms ~ H–3/2

typical for a one-dimensional chain of exchange-cou-
pled ferromagnetic grains. It should be noted that the
magnetic properties of such ferromagnetic nanowires
are determined mainly by the specific structure of the
spin system, which can be described as an ensemble of
one-dimensional magnetic units [23, 27] or Imry–Ma
domains [33]. Therefore, an increase in the coercive
force Hc in nanowires in comparison with ferromag-
netic films and bulk materials can be explained using
the equation 〈K〉  = K/N1/2 = K(Rc/Rf)d/2 [23], where 2Rf

is the magnetic unit size and N is the number of nano-
particles constituting a single magnetic unit. In nano-
structured magnetic materials, the following relation is
usually observed: x = Rc/Rf < 1 [23, 27]. Raising both
sides of the relation to a power d/2, we find that, all
other factors being the same, the result is the largest for
d = 1 than for d = 3 or d = 2. This means that the effec-
tive anisotropy (and, therefore, the coercive force) is
greater in one-dimensional exchange-coupled systems
of ferromagnetic nanoparticles than in similar 2D and
3D systems.

It should be noted in conclusion that a number of
papers have been published recently on the theoretical
estimation and numerical simulation of the magnetiza-
tion distribution and the magnetic properties of one-
dimensional exchange-coupled nanosystems [34–38].
The results obtained in these papers can be applied to
new magnetic systems, such as ferromagnetic nanow-
ires (though with some reservations about the magneto-
dipole interaction, which is disregarded in these
works). In particular, they can be used to interpret the
JETP LETTERS      Vol. 78      No. 4      2003
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changes in some magnetic properties of nanowires
through the changes in the main magnetic constants and
structural parameters measured in the experiment.

This work was partially supported by INTAS,
project no. 01-254. A.G. Kudashov is grateful to the
Haldor Topsoe Company for financial support.

Fig. 3. (a) Curves of magnetization of Fe nanowires in car-
bon nanotubes; (b) high-field regions of the magnetization
curves plotted in coordinates ∆M/Ms vs. H–3/2 for sample s1;
(c) the same for sample s2.
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Experimental data are analyzed on the hopping transport of holes in two-dimensional layers of Ge/Si(001)
quantum dots (QDs) under conditions of the long-range Coulomb interaction of charge carriers localized in
QDs, when the temperature dependence of the conductivity obeys the Efros–Shklovskii law. It is found that the
parameters of hopping conduction significantly deviate from the predictions of the model of one-electron exci-
tations in “Coulomb glasses.” Many-particle Coulomb correlations associated with the motion of holes local-
ized in QDs play a decisive role in the processes of hopping charge transfer between QDs. These correlations
lead to a substantial decrease in the Coulomb barriers for the tunneling of charge carriers. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 73.63.Kv; 72.20.Ee
Introduction. The problem of the effect of elec-
tron–electron interaction on the conductivity of disor-
dered systems has always been actual and has become
especially acute after the recent stormy discussion of
the existence of a metal–insulator transition (MIT) in
two dimensions. The role of Coulomb correlations
must be especially significant on the insulator side of
the MIT, because localized electronic states are ineffec-
tive in screening processes as compared to extended
states. The systems in which charge carriers are ran-
domly localized in space with long-range Coulomb
interactions existing between them received the name
“Coulomb glasses.” In the regime of strong electron
localization, when the localization length ξ is much
smaller than the distance between the localized states,
charge transfer is carried out by means of tunnel hops
of electrons from one center to another, and the hop
length increases with decreasing temperature [1]. Under
these conditions, the dependence of conductivity G on
temperature T has the form

(1)

where parameter T0 is determined by the properties of
the material, and exponent x < 1 is determined by the
energy dependence of the density of states at the Fermi
level g(Ef). If the electron–electron interaction in the
system is insignificant and g(Ef) = const, x = 1/3 (Mott’s
law for two dimensions), T0 = 13.8/kBg(Ef)ξ2, where kB

is the Boltzmann constant [2]. Efros and Shklovskii [3]
showed that the interaction of localized electrons in
Coulomb glasses lead to the expression

(2)

G T( ) G0 T0/T( )x–[ ] ,exp=

G T( ) G0 T0/T( )1/2–[ ] ,exp=
0021-3640/03/7804- $24.00 © 20241
subsequently called the Efros–Shklovskii law. Here,

(3)

C2 is a numerical parameter, and κ is the relative per-
mittivity. The quantity kBT0 serves as a measure of the
characteristic scale of the Coulomb interaction in the
system.

It is important to note that Eq. (2) with the numerical
constant C2 = 6.2 for a two-dimensional system [4] was
obtained upon the consideration of only one-electron
excitations, which represent the transfer of an electron
from one center to another under the condition that all
the other electrons are frozen at their positions. The
one-electron model did not take into account possible
many-particle correlations of electron hops, when, for
example, hops of some electrons to small distances,
either parallel or sequential in time, facilitate the
motion of other electrons to long distances, decreasing
the corresponding energy barriers on the way of the
current flow by their Coulomb potential. Because the
formation of such a many-electron polaron leads to the
screening of the Coulomb potential at long hop lengths,
the characteristic energy scale of Coulomb correlations
for such quasiparticles must be significantly reduced as
compared to the case of one-electron excitations.

A number of experiments showed that actually
many-particle effects can notably decrease the Cou-
lomb gap width in the spectrum of electronic states in
the impurity band of doped semiconductors under con-
ditions of moderate compensation [5, 6].

T0 C2e2/kBκξ ,=
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A numerical simulation of hopping conduction in a
two-dimensional Coulomb glass was performed in [7, 8].
The authors of [7] extended the percolation approach to
the space of many-particle configurations of site occu-
pation numbers on a network of Miller–Abrahams
resistances and showed that law (2) is also obeyed in
the case of many-electron correlations. However, in this
case C2 = 0.6 ± 0.2; that is, the characteristic interaction
parameter T0 is an order of magnitude smaller than the
value obtained in the one-electron approximation. Tsi-
gankov and Efros [8] applied the kinetic Monte Carlo
method to modeling the hopping charge transfer in a
two-dimensional system of interacting electrons in
which all the sequential transitions and the simulta-
neous (in the quantum-mechanical sense) transitions of
two electrons were taken into account. The conclusion
was made that many-particle correlations are insignifi-
cant and C2 = 5.8. Even though the majority of experi-
mental data obtained with doped semiconductors are in
agreement with this conclusion, such a strong differ-
ence between the conclusions of the theoretical studies
cannot help but stimulate experimental studies with
objects in which the dominating role of long-range
Coulomb interaction in charge transport is well estab-
lished.

Layers of self-assembled quantum dots (QDs) of Ge
in Si that are formed in the heteroepitaxy of elastically
strained systems are among such objects. In experi-
ments with an artificial screen introduced into Ge/Si
heterostructures parallel to the array of Ge QDs, it was
demonstrated that electron–electron interaction is fully
responsible for the temperature dependence of the hop-
ping conductance along the QD layer [9]. In [10], the
preexponential factor of the hopping conductance G0
(see expression (2)) was found to be independent of
temperature, and its value was found to be a multiple of
the conductance quantum e2/h. This result provided evi-
dence for the phononless character of hopping conduc-
tion in the systems with low disorder [11]. The goal of
this work was to analyze experimental data related to
the hopping transport of holes in two-dimensional lay-
ers of Ge/Si(001) QDs from the viewpoint of various
models of electron excitations in a two-dimensional
disordered system.

Formation of Ge/Si heterostructures with QDs.
Ge/Si heterostructures containing Ge QD arrays were
grown by molecular beam epitaxy. An ensemble of
pyramidal Ge nanoclusters was grown on the Si(001)
surface using the effect of spontaneous morphological
transformation of an elastically strained Ge layer in the
process of Stranskii–Krastanov growth [12]. The con-
ductance was measured in the planar geometry (along
the layers of Ge/Si QDs) with samples of four types.

Samples of series #A were grown on Si substrates
with a resistivity of 1000 Ω cm doped with boron up to
a concentration of ~1013 cm–3. A Ge layer eight mono-
layers thick (≈10 Å) was embedded into the middle of
a 90-nm Si layer grown on the substrate. The mean
sizes of the base of the forming Ge nanoclusters in the
growth plane were 10 nm, the height was ~1 nm, and
the layer density of nanoclusters was ~4 × 1011 cm–2

(the details of sample preparation can be found in [10]).

In the samples of the subsequent series #B, #C, and
#D, the effective thickness of a Ge layer was ten mono-
layers. The lateral sizes of Ge QDs amounted to 15 nm,
the mean height was 1.5 nm, and the layer density was
~3 × 1011 cm–2 [9, 13].

The sequence and structure of the first layers in the
samples of series #B and #C were the same as in #A. In
#B, the layer of Ge QDs was placed inside the Si layer
at a distance of 40 nm from its surface. In samples #C,
the array of Ge islands was covered by a 10-nm Si layer
and then by a 25-nm surface layer of SiO2. The pres-
ence of the oxide layer changed the relative permittivity
of the medium and, hence, the potential of the long-
range electron–electron interaction in the sample.

The controlled filling of Ge islands with holes in
structures #A, #B, and #C was carried out by embed-
ding a Si layer δ-doped with boron at a distance of 5 nm
below the QD layer. Because the ionization energy of
boron impurities in silicon is only 45 meV and the
depth of the first ten energy levels of holes in germa-
nium pyramids of such sizes measured from the top of
the Si valence band is 200–400 meV [14], holes at low
temperatures leave the impurities and occupy levels in
QDs. The concentration of boron in different samples
varied from 2 × 1011 cm–2 to 2.25 × 1012 cm–2, which
allowed the mean number of holes Nh per one Ge QD
to be varied in the range from Nh = 0.5 to Nh = 6.5. A
numerical simulation of the energy spectrum of holes
and their wave functions in pyramidal nanoclusters was
performed in [14]. The ground state of a hole has an
s-type symmetry and is doubly degenerate with respect
to the spin orientation. The first excited state has a
p-type symmetry with a degeneracy factor of 4 [14].
Therefore, for example, at Nh = 6.5, the first two elec-
tron shells turn out to be occupied, and the third one is
occupied partially.

The samples of series #D represented silicon metal–
oxide–semiconductor (MOS) field-effect transistors
(MOSFETs) formed on silicon-on-insulator wafers
with an array of Ge QDs embedded at a distance of
40 nm from the Si surface [13]. The filling of QDs with
holes was controlled by applying a corresponding volt-
age across the aluminum gate. The corresponding
degree of filling was determined by oscillations of the
dependence of the source–drain current on the voltage
across the gate.

The ohmic contacts were formed by sputtering Al
plates onto the sample surface and subsequently heat-
ing the structure at a temperature of 400°C in a nitrogen
atmosphere. In all cases, the measurements of the cur-
rent at various temperatures were performed in the
ohmic section of the current–voltage and drain charac-
teristics.
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MANY-ELECTRON COULOMB CORRELATIONS IN HOPPING TRANSPORT 243

                               
Temperature dependence of the hopping conduc-
tance. Previously in [9, 10, 13], we showed that the
Efros–Shklovskii law (2) with the preexponential factor
G0 . e2/h is obeyed to a good accuracy in all four series
of samples. To find the hopping conductance parame-
ters G0, T0, and x in the analysis of experimental data,
we used methods of the differential analysis of the
dimensionless activation energy of the conductance
w(T) = ∂lnG(T)/∂lnT [15] and nonlinear regression
methods [10], which give most accurate results as com-
pared to the method of the rectification of the depen-
dence G(T) constructed in different coordinates.

As an example, Fig. 1 demonstrates the experimen-
tal temperature dependences of the conductance in the
units of e2/h constructed on the logG – T–1/2 coordinates
for the samples of series #A. The symbols correspond
to experimental points, and the solid lines are the
results of fitting the experimental data by the equation
G(T) = γTmexp[–(T0/T)1/2], where T0, γ, and m are vari-
able parameters.1 It was shown that m ≈ 0, and the val-
ues of T0 were found [9, 10]. The experimental data for
samples #C and #D are displayed in Fig. 2.

In order to determine the character of Coulomb cor-
relations experimentally, it is necessary to compare the
experimental values of T0 with the values predicted by
different models. However, because, according to
expression (3), T0 depends on the permittivity and the
localization length and, hence, on the sizes of the QDs,
their density, etc., it is more convenient to compare the
values of the universal parameter C2, which describes
the hopping transport observed experimentally, with
the values that give various models of Coulomb corre-
lations in Coulomb glasses. Parameter C2 can be found
from expression (3) if the localization length ξ and T0
are known. Usually, ξ is determined from measure-
ments of the positive magnetoresistance in the hopping
conduction mode caused by the contraction of the wave
functions of localized carriers in the plane perpendicu-
lar to the magnetic field [5]. However, it can turn out
that this procedure does not give the correct result,
because the expressions for the magnetic-field depen-
dence of the hopping conductance themselves were
already obtained within the framework of a priori
assumptions of the occurrence of correlation effects. In
the next section, we will present the results of modeling
the wave functions of holes in arrays of Ge/Si QDs,
which allowed us to determine the localization lengths
and, then, parameter C2.

Calculation of the localization radius of holes in
arrays of Ge/Si QDs. In modeling the localization
length of the wave functions of holes in the ground and
first excited states, we considered an array of Ge/Si
QDs located at sites of a square lattice 15 × 15 in size.

1 In [10], the dependences G(T) are also given for Nh = 1.5, 2, 2.5,
5.5, and 6. However, because, at these occupation numbers, T0 ~ T
these data cannot be used for correctly revealing the hopping con-
ductance parameters.
JETP LETTERS      Vol. 78      No. 4      2003
Only the overlaps of the states that belong to neighbor-
ing QDs were taken into account, because the overlap
integrals rapidly drop with increasing distance. The dis-

Fig. 1. Temperature dependences of the conductance for the
samples of series #A constructed on the logG – T–1/2 coor-
dinates. Symbols are experimental points, and solid lines
are the results of fitting the experimental data by the equa-
tion G(T) = γTmexp[–(T0/T)1/2]. T0, γ, and m are variable
parameters.

Fig. 2. Temperature dependences of the conductance for the
samples of series #C and #D.



244 YAKIMOV et al.
tances between the centers of neighboring points were

taken equal to 1/ , where nQD is the two-dimen-
sional density of QDs plus a random component that
has a Gaussian distribution. The Hamiltonian of the
system was written in the form

(4)

where index i numbers the QDs, index α ranges over
the hole bound states in the QDs (only the first nine

states were taken into account);  and  are oper-
ators of hole creation and annihilation in the αth state
of the ith QD, Ei, α is the hole energy in this state, and
Ji, j, α, β is the overlap integral between the αth state in
the ith QD and the βth state in the jth QD. Because Ge
nanoclusters in real structures have a dispersion of sizes
(~20% [16]), a random energy Ei, α was assigned to
each site. This energy was determined as the size-quan-
tization energy in QDs with the particular sizes and was
calculated in the tight-binding approximation with the
sp3 basis set with regard to the spin–orbit interaction
and deformation effects [14].

The overlap integrals were found by the following
procedure. The energies of the hole states were calcu-
lated for model structures containing Ge QDs inside the
silicon region shaped as a parallelepiped. At the paral-
lelepiped boundaries, the following periodic boundary
conditions were introduced: ψ(–d/2, y, z) = ψ(d/2, y, z)
or ψ(–d/2, y, z) = –ψ(d/2, y, z), where d is the parallel-
epiped size in the direction x, and ψ(x, y, z) is the wave
function. Analogous boundary conditions were written

nQD

Ĥ Ei α, âi α,
+ â1 α,

i α,
∑ Ji j α β, , , â j β,

+ âi α, ,
i j α β, , ,
∑+=

âi α,
+ â1 α,

Fig. 3. The values of parameter C2 in the samples of various
series and with various occupations of quantum dots with
holes (symbols). The value C2 = 6.2 obtained within the
one-electron model [4] is shown with a dashed line. The
hatched area corresponds to the range of values C2 = 0.6 ±
0.2, which describe many-particle excitations in Coulomb
glasses [8]. The experimental value of C2 averaged over all
samples equals 0.98 ± 0.47.

C2 = 6

C2

C2
for the directions y and z. Such structures are similar to
an infinite crystal at whose sites QDs are located with
period d. The value of the overlap integral for the dis-
tance d between the centers of QDs was found in the
direction of the x axis lying in the growth plane and was
determined as J(d) = |E+ – E–|/4, where E+ and E– are the
values of the hole energy corresponding to the above
boundary conditions. The obtained dependence J(d)
can be presented in the form

(5)

where coefficients Aα and Bα depend on the energy level
number α. Coefficient Bα represents the inverse of the
localization radius of the αth hole state in the isolated
QD. The overlap integrals Ji, j, α, β between states with
different numbers α,β were determined as the geomet-
ric mean of the integrals between the states with num-
ber α and number β

(6)

where dij is the distance between the ith and jth QDs.

The Schrödinger equation  =  was solved
numerically using the ARPACK program package in
the MatLab system. The calculations were performed
with 5000 random realizations of the QD array. For
each realization, a state was determined whose energy
was most close to the hole energy in the ground and
excited states averaged over the array. Next, the proba-
bilities pi that a hole can be found in each QD were cal-
culated. After that, the section of the QD array passing
in the direction parallel to the sides of the lattice
squares through the point with the maximum probabil-
ity of hole finding was considered. In this section, the
values of the probabilities pi were fitted using a function
of the form pi = aexp(–2bdi), where di is the distance
between the ith QD and the point with the maximum
probability of hole finding. The localization radius ξ
was found as the inverse of the parameter b averaged
over all the realizations of the QD array. The following
results were obtained: for the samples of series #A, ξ =
2.41 nm for the hole ground state and 2.78 nm for the
first excited state; for samples of series #B, #C, and #D,
ξ = 2.06 nm for the hole ground state, 2.23 nm for the
first excited state, and 2.30 nm for the second excited
state.

Finding parameter C2. The numerical value of
parameter C2 was determined from expression (3). We
took the experimental values of T0 and the calculated
values of ξ. Because, in the samples of series #A, #B,
and #D, the layer of Ge QD is embedded into Si, the
permittivity κ for these samples was taken as κ ≡ κSi =
12. For sample #C, κSi = 9 [9], because a layer of SiO2
is located near the QD, which decreases the effective
permittivity. The results are given in Fig. 3.

J d( ) Aα Bαd–( ),exp=

Ji j α β, , , Aα Aβ
Bα Bβ+

2
------------------dij– 

  ,exp=

Ĥ ϕ| 〉 E ϕ| 〉
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The value of C2 obtained in experiments with vari-
ous samples (averaging over the samples gives C2 =
0.98 ± 0.47) was found to be much less than the “one-
electron” value. This means that the processes of hop-
ping charge transfer in two-dimensional Ge/Si QD
arrays are determined to a large extent by many-elec-
tron Coulomb correlations.

This work was supported by the Russian Foun-
dation for Basic Research, project no. 03-02-16526;
the program of the President of Russian Federation for
the support of young Doctors of science, project
no. MD-28-2003-02; and the program “Universities of
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Phase and polarization control of photochromism in the solid phase is experimentally demonstrated.
Photochromism initiated by a two-photon absorption of femtosecond laser pulses in a three-dimensional solid-
phase polymer sample of spiropyran is controlled by varying the polarization state and the chirp of laser pulses.
© 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 82.50.Nd; 42.70.Gi

c′
Photochromism—a light-induced reversible trans-
formation in chemical species between two forms hav-
ing different absorption spectra—has been known since
the 19th century. In 1867, Fritzsche [1] published the
first observation of this phenomenon in tetracene
exposed to the daylight. The term photochromism,
combining the Greek words phos (light) and chroma
(color), was introduced in the middle of the 20th cen-
tury [2], when the photochromism of spiropyrans, one
of the most widespread photochromic compounds, was
also discovered [3, 4]. Traditional applications of pho-
tochromic materials include [5–7] sunglasses, optical
filters, switches, and photography. Materials of this
class are currently intensely studied in the context of
three-dimensional optical memory [8, 9], creation of
components for integrated optics and photonics [10,
11], reversible micromachining of polymers [12], and
development of optically switchable biomaterials and
biophotonic devices [13, 14].

The photochromic reaction in spiropyran com-
pounds proceeds [5–7] through C–O bond cleavage in
an initially nonexcited molecule (form A, see the inset
in Fig. 1) and relaxation from a transient state X to a
metastable merocyanine-form state (form B). Time-
resolved studies of the photochromic reaction per-
formed with the use of femtosecond pulses [15–17]
have revealed the existence of the initial, subpicosec-
ond-scale phase of the photochromic process. The key
idea of this work is to use femtosecond pulses not only
to probe, but also to control the ultrafast dynamics
involved in photochromism. Quantum-control strategies
are now widely used to direct ultrafast physical and
chemical processes in the gas and liquid phases [18, 19].
Recent experiments [20] on the quantum control of
wave-packet dynamics in polymers extend the tech-
0021-3640/03/7804- $24.00 © 20246
nique of quantum control to the solid phase. The main
goal of this work is to explore the possibility of apply-
ing this technique to photochromism in the solid phase.
We have studied the photochromic reaction initiated by
a two-photon absorption of femtosecond laser pulses in
a three-dimensional polymer sample of spiropyran. The
results of our experiments suggest the possibility of
controlling photochromic transformations in the solid
phase by varying the polarization state and the chirp of
laser pulses.

The femtosecond laser system employed in our
experiments (Fig. 2) consisted of a Ti: sapphire master
oscillator, a stretcher, an amplifier, and a pulse com-
pressor. The Ti: sapphire master oscillator was pumped
by 4-W cw radiation of a diode-laser-pumped Nd:
YVO4 Verdi laser. The master oscillator generated laser

Fig. 1. Absorption spectra of spiropyran molecules in
form A (1) and form B (2). The inset shows the structure
formula of spiropyran molecules.
003 MAIK “Nauka/Interperiodica”
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Fig. 2. Diagram of the experimental setup based on a femtosecond Ti: sapphire laser with an amplification stage.
pulses with a duration of 50–100 fs, a typical average
output power on the order of 250 mW, and a pulse rep-
etition rate of 100 MHz. Femtosecond pulses produced
by the master oscillator were stretched up to 800 ps and
launched into a multipass Ti: sapphire amplifier
pumped with a nanosecond Nd: YAG laser with intra-
cavity second-harmonic generation. Amplified 1-kHz
picosecond pulses with an energy up to 300 µJ were
then compressed to a duration of 100–130 fs in a single-
grating pulse compressor. Approximately 50% of laser
energy was lost at this pulse-compression stage.

Our experiments were performed with PMMA sam-
ples doped with spiropyran molecules (shown in the
inset to Fig. 1). The concentration of spiropyran in a 9 ×
10 × 10 mm3 sample was 1.6 × 10–2 mol/l [21, 22].
Absorption spectra of the uncolored and colored forms
(forms A and B) of spiropyran molecules in the PMMA
host are shown by lines 1 and 2 in Fig. 1, respectively.

Second-harmonic radiation (with a wavelength of
532 nm), produced by a diode-pumped continuous-
wave Nd: YAG laser, was employed to excite the photo-
luminescence signal in the area where the photochro-
mic reaction was initiated through the two-photon
absorption of Ti: sapphire-laser radiation (Fig. 3). The
photoluminescence signal served in our experiments
for a quantitative characterization of the efficiency of
the photochromic transformation. Continuous-wave
532-nm radiation also stimulated the reverse photo-
chromic transformation, partially recovering form-A
spiropyran in the sample. With Ti: sapphire laser pulses
in two arms of the optical scheme being mismatched in
time or space, the photoluminescence signal remained
constant in time, indicating a dynamic equilibrium of
the forward and backward photochromic reactions, thus
showing no systematic pulse-to-pulse accumulation of
form-B spiropyran generated by each of the femtosec-
ond pulses in the laser-irradiated area of the photochro-
mic sample.

When Ti: sapphire-laser pulses coming from differ-
ent arms of the optical scheme were matched in time
and space in the photochromic sample, the photolumi-
JETP LETTERS      Vol. 78      No. 4      2003
nescence signal increased (Fig. 4), indicating the
growth in the concentration of form-B spiropyran, i.e.,
the enhancement of the photochromic reaction. The
results of photoluminescence measurements are pre-
sented by the solid line in Fig. 4 against the cross-cor-
relation trace of the same pair of pulses measured in a
1-mm-thick BBO crystal (the dashed line), showing the
negligibility of dispersion and pulse propagation
effects in our experiments.

Fig. 3. The spectrum of the photoluminescence (PL) signal
from form-B spiropyran molecules excited by 532-nm sec-
ond-harmonic radiation of the continuous-wave Nd: YAG
laser in the area of a photochromic reaction induced by two-
photon absorption of Ti: sapphire-laser radiation. Spectral
lines at 532 and 800 nm are related to second-harmonic
radiation, employed to excite photoluminescence (532 nm),
and radiation initiating the photochromic reaction (800 nm).
The dots in the inset show the dependence of the photolumi-
nescence signal on the angle ϕ between the polarization
vectors of linearly polarized Ti: sapphire laser pulses initi-
ating the photochromic reaction. The polar coordinates rep-
resent the photoluminescence yield and the angle ϕ. The
solid line in the inset displays the approximation function
I(ϕ) ∝  ηsin2ϕ + cos2ϕ with η = 1.6.
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Ti: sapphire laser pulses initiate the photochromic
reaction in our experiments through two-photon
absorption. The cross section of two-photon absorption
is thus the key parameter, which controls the efficiency
of photochromic processes. The cross section of two-
photon absorption can be controlled, in turn, by varying
the polarization state of the fields initiating the photo-
chromic reaction [23]. The polarization dependence of
the two-photon absorption cross section, determined by
the tensor properties of this cross section, suggests the
way to control two-photon photochromism by chang-
ing polarizations of the electromagnetic fields in laser
pulses initiating the photochromic reaction.

Fig. 4. The solid line displays the yield of photolumines-
cence excited in the spiropyran/PMMA sample by 532-nm
second-harmonic radiation of a diode-pumped continuous-
wave Nd: YAG laser as a function of the delay time τ
between Ti: sapphire-laser pulses initiating the photochro-
mic reaction. The dashed line shows the cross-correlation
trace of the same pair of pulses measured with a 1-mm-thick
BBO crystal.

Fig. 5. The yield of the photoluminescence signal excited
with continuous-wave 532-nm laser radiation in the Ti: sap-
phire-laser-irradiated area of a spiropyran/PMMA sample
as a function of the initial chirp α of Ti: sapphire-laser
pulses initiating the photochromic reaction.
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To investigate the influence of the polarization of Ti:
sapphire laser radiation on the efficiency of photochro-
mic processes, we measured the yield of photolumines-
cence excited by second-harmonic radiation of the con-
tinuous-wave Nd: YAG laser as a function of the angle
ϕ between the polarization vectors of linearly polarized
fields in 130-fs Ti: sapphire-laser pulses initiating the
photochromic reaction. This experimental polarization
dependence (shown by dots in the inset to Fig. 3) was
approximated with the function I(ϕ) ∝  ηsin2ϕ + cos2ϕ.
The physical meaning of the parameter η in this
approximation of the function I(ϕ) can be understood
by considering the relation between the two-photon
absorption cross section and the imaginary part of the

cubic nonlinear-optical susceptibility tensor ,

which gives η = [ ]2/[ ]2. The results
of experiments presented in the inset to Fig. 3 show that
linearly polarized femtosecond pulses with parallel
polarization vectors produce form-B spiropyran in a
spiropyran/PMMA sample approximately six times
more efficiently than linearly polarized pulses with per-
pendicular polarization vectors. In the presence of a
low-power 532-nm second-harmonic radiation, stimu-
lating the reverse photochromic process, we were able
to shift the dynamic equilibrium between the forward
and backward photochromic reactions toward either
form-A or form-B spiropyran generation by changing
the angle between the polarization vectors of the fields
in Ti: sapphire-laser pulses.

Figure 5 displays the yield of photoluminescence
excited with second-harmonic radiation of the continu-
ous-wave Nd: YAG laser as a function of the initial
chirp of Ti: sapphire-laser pulses, initiating the photo-
chromic reaction. As can be seen from these results, the
efficiency of the photochromic process is highly sensi-
tive to the initial chirp of femtosecond pulses. Nega-
tively chirped laser pulses produce form-B spiropyran
much more efficiently than transform-limited or posi-
tively chirped laser pulses do. This finding can be inter-
preted in terms of the dynamics of vibrational wave
packets produced by femtosecond laser pulses in spiro-
pyran molecules. The C–O bond cleavage is then repre-
sented as an evolution of a wave packet consisting of
vibrations of an electronically excited spiropyran mol-
ecule [16]. Femtosecond pulses are considered as wave
packets in the frequency domain. Being absorbed by a
ground-state photochromic molecule through a two-
photon process, such pulses excite a group of vibra-
tional levels, leading to the formation of a vibrational
wave packet in the electronically excited state. This
two-photon-absorption-excited vibrational wave
packet then evolves, as indicated by extensive experi-
mental data [16, 17], toward the transient state X on the
femtosecond time scale, eventually resulting in the for-
mation of the metastable colored form (form B) of
spiropyran molecules. Since the vibrational potential
sensed by the wave packet in the electronically excited

χ ijkl
3( )

Im χ1122
3( )( ) Im χ1111

3( )( )
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state is generally anharmonic, individual vibrations
forming the excited-state wave packet reach the target
transient state X at different moments of time. Initially
chirped laser pulses, according to the general idea of
quantum control with chirped pulses [24, 25], help to
synchronize individual oscillations in the target state.
The lack of the information on the potential surface for
spiropyran molecules in a solid-phase host does not
allow us to quantify the details of this wave-packet sce-
nario at the present stage of research.

Experimental studies of photochromic processes
induced by a two-photon absorption of femtosecond
laser pulses in a three-dimensional polymer sample of
spiropyran demonstrate the possibility to control photo-
chromism in the solid phase by changing the polariza-
tion state and the chirp of laser pulses. Linearly polar-
ized femtosecond pulses with parallel polarization vec-
tors have been shown to enhance the two-photon-
absorption-induced photochromic reaction by a factor
of about 6 as compared with linearly polarized femto-
second pulses having perpendicular polarization vec-
tors. Negatively chirped laser pulses have been demon-
strated to initiate the photochromic process much more
efficiently than transform-limited or positively chirped
laser pulses. Quantum-controlled photochromism,
demonstrated in this work, offers new strategies for the
creation of coherence- and polarization-controlled
components for photonics and optical telecommunica-
tions, three-dimensional optical data storage, reversible
microfabrication, and the development of photoswitch-
able biomaterials and biophotonic devices.
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16929 and 02-02-17098), and the Volkswagen Founda-
tion (project no. I/76 869).
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Induced vs. Spontaneous Breakdown of S-Matrix Unitarity:
Probability of No Return in Quantum Chaotic 
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We investigate systematically sample-to-sample fluctuations of the probability τ of no return into a given
entrance channel for wave scattering from disordered systems. For zero-dimensional (“quantum chaotic”) and
quasi-one-dimensional systems with broken time-reversal invariance, we derive explicit formulas for the distri-
bution of τ and investigate particular cases. Finally, relating τ to violation of S-matrix unitarity induced by inter-
nal dissipation, we use the same quantity to identify the Anderson delocalization transition as the phenomenon
of spontaneous breakdown of S-matrix unitarity. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.65.Nk; 05.45.Mt; 11.55.-m
Various aspects of chaotic wave scattering in the
presence of absorption or internal losses have attracted
considerable attention in recent years [1–10]. In the
general case, a convenient framework for extracting the
universal properties of the corresponding S-matrix is
provided by the method of effective non-Hermitian
Hamiltonian

in terms of which the energy-dependent element Sab of

the M × M scattering matrix  is expressed as

(1)

see [11, 12] and references therein. Here, H stands for
a self-adjoint Hamiltonian describing the closed coun-
terpart of the disordered or chaotic system under con-
sideration, % stands for the energy of incoming waves
and the energy-independent vectors Wa , a = 1, 2, …, M,
contain matrix elements coupling the internal motion to
one of open M channels. As is easy to verify, such a
construction ensures the unitarity of the scattering
matrix S†S = 1M provided the energy % takes only real
values. When one allows the energy parameter to have
a nonzero imaginary part e = Im% > 0, the S-matrix uni-
tarity is immediately lost: S†S < 1M. Physically, the
parameter e stands for uniform damping inside the sys-
tem and is responsible for the losses of the outgoing
flux of the particles as compared to the incoming flux.

¶ This article was submitted by the author in English.

* H iπ Wa Wa
†,⊗

a 1=

M

∑–=

Ŝ

Sab δab 2iπWa
† 1
% *–
---------------Wb,–=
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The balance between the two fluxes is precisely the
physical mechanism behind the S-matrix unitarity.

In the present paper, we concentrate on the “proba-
bility of no return” (PNR), which is defined as the quan-
tum-mechanical probability for a particle entering the
system via a given channel a to never exit through the
same channel. This quantity is well-defined for a given
realization of disorder and will show sample-to-sample
fluctuations, whose statistics we are going to study. In
the case of no internal dissipation, PNR is the same as
the probability to exit via any of the remaining chan-
nels, known as the transmission probability

 ≡ 1 – . For a system with absorption,

the last equality is violated, and we keep the notation

τa = 1 –  for the PNR related to the reflection
probability Ra in the same channel as τa = 1 – Ra . In par-
ticular, if only a single open channel is attached to our
disordered system and the boundaries are purely
reflecting, then neglecting dissipation trivially results in
τ ≡ 0. The nontrivial statistics of τ then arise solely due
to absorption, and for small absorption the PNR value
τ . 2eτW [2, 3, 7], where τW is the so-called Wigner
delay time intensively studied in recent years; see [3, 4,
11, 13–15] and references therein.

It is convenient to write explicitly the normalization

of the channel vectors as  = γa/π and to assume

that different channel vectors are orthogonal:  = 0
for a ≠ b. In fact, one should remember that the effective
strength of every open channel is more appropriately
characterized by the so-called “transmission coeffi-

Sab
2

b a≠∑ Saa
2

Saa
2

Wa
†Wa

Wa
†Wb
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cients” [12] (also known as the “sticking probabilities”)

Ta = 1 – , related to bare couplings γa by

(2)

where ν is the mean spectral density. Here and below, the
angular brackets mean the disorder-averaged value of the
quantities. The two limiting cases Ta = 1 and Ta = 0 cor-
respond to situations of perfectly coupled and decou-
pled (closed) channel a, respectively. 

The starting point of our analysis is based on the fol-
lowing convenient representation for the diagonal ele-
ments of the scattering matrix:

(3)

where

In this way, we reduce our problem to investigating the
statistics of the diagonal entries of the resolvent Ga of
the “reduced-rank” non-Hermitian operator *a inde-
pendent of the vector Wa . In particular, for the single-
channel case M = 1, the operator *a will not contain the
channel vector W at all and will therefore be self-
adjoint: * = H.

The statistics of the diagonal entries of the resolvent
of a random self-adjoint Hamiltonian H describing the
motion of a quantum particle in a static disorder were
discussed in much detail by Mirlin and Fyodorov [16]
in the framework of the supermatrix nonlinear σ model
[17]. In particular, for the case of systems with broken
time reversal invariance, they were able to find a very
compact representation for the joint probability density
3(u, v) of the real u = ReGa and imaginary v  = ImGa

parts of the quantity Ga , assuming normalization

 = 1/π. Physically, the variable v  is the most
important and, as it is the local density of states, has
enjoyed thorough investigations; see [18, 19] and refer-
ences therein.

In fact, it is quite straightforward to incorporate the
non-Hermitian part of the Hamiltonian *a into the
method, as was already partly done in [20], where the
statistics of ImGa were addressed as describing fluctu-
ations of the photodissociation cross-section.

According to [16], the function 3(u, v ) is given, for
the center of the spectrum Re% = 0, by

where x is the combination x = (u2 + v 2 + 1)/2v  and the

Saa〈 〉 2

1
Ta

-----
1
2
--- 1 ga+( ), ga

1
2πν
---------- γa γa

1–+( ),= =

Saa

1 iGa–
1 iGa+
-----------------, Ga πWa

† 1
% *–
---------------Wa,= =

*a H iπ Wb Wb
†.⊗

b a≠

M

∑–=

Wa
†Wa

3 u v,( )
1

4πv 2
-------------P x( ),=
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function P(x) is given by

(4)

where we have introduced the (Legendre) operator

The particular form of the function ^(x, λ) depends
crucially on the effective spatial dimension of the
underlying disordered system and is, for example, quite
different for zero-dimensional systems (“quantum
chaos”) and for “diffusive” extended quasi-one-dimen-
sional or higher dimensional systems. We will give an
explicit analysis of several physical possibilities later
on in the paper.

Having at our disposal the expression for 3(u, v ),
we can relate the PNR distribution 3(τa) to the function
P(x). After a set of algebraic transformations, we find
the following attractively simple formula:

(5)

Now we proceed with a separate analysis of a few phys-
ical situations possible in disordered systems. In all
cases, we assume time reversal symmetry to be broken.

1. “Zero-dimensional” quantum chaotic system.
We assume that the disordered region is coupled to M
scattering channels characterized by effective coupling
constants g1, …, gM (see Eq. (2)), with g1 corresponding
to the chosen entrance channel. The strength of uniform
damping will be characterized by the parameter η =
2πe/∆, where ∆ the mean level spacing generated by the
Hermitian Hamiltonian H. According to the standard
argumentation, H can be effectively replaced by a large
N × N random Hermitian matrix taken from the Gauss-
ian Unitary Ensemble; see, e.g., [11, 12]. Then, in the
limit of large enough N @ M, the function ^(x, λ)
depends on the remaining M – 1 coupling constants, as
well as on the effective damping η, as [20] 

(6)

The function F(x) in Eq. (4) can be found in closed
form for any M, since one gets, in fact, a simple recur-
sion relating FM(x) to FM – 1(x). Here we restrict our-

P x( ) L̂F x( ), F x( )
λd

x λ–
------------^ x λ,( ),

1–

1

∫= =

L̂
xd

d
x2 1–( )

xd
d
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3 τa( )
1

πτa
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selves mainly to the cases of one and two open channels
M = 1, 2:

(7)

The distribution 3(τ) for M = 1 is then equal to (cf. [4])

(8)

where I0(z), I1(z) are the modified Bessel functions of
the respective order. For particular case of perfectly
coupled channel T1 = 1, Eq. (8) reduces to the formula

(9)

derived earlier [2] with a very different method.
The function 3(τ) for M = 2 can be obtained

straightforwardly, but the general formula is too long,
and we restrict our discussion to a few particular cases.
First of all, when dissipation is absent (η = 0), we
recover the exact distribution of the transmission prob-
ability found earlier in [21, 22] by rather different meth-
ods. The next case to be considered is that of a lossy
system coupled to two perfectly open channels g1 =
g2 = 1:

(10)

where 31(τ) is given in Eq. (9). In fact, it is not difficult
to find a similar recursive formula relating 3(τ) for M
perfectly coupled channels to the same function for
M − 1 perfect channels. We do not give that formula,
apart from the simplest case of no dissipation:

which immediately yields 3M(τ) = (M – 1)τM – 2, M ≥ 1.

This formula (as well as its counterpart 3(τ) ∝  
for preserved time reversal invariance) in fact follows
from the known distribution of 1 × 1 subunitary block
of random unitary scattering matrices; see [23].

2. Quasi-1D systems. Consider a single channel
attached to one edge of a piece of quasi-one-dimen-

F1 x( )
ud
u
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τ
M 3–

2
--------------
sional disordered metal of length L, with the opposite
edge being in contact with a perfectly conducting lead
of very many channels. When the internal dissipation is
absent, the function F(x) was found by Mirlin [24]:

(11)

where the dimensionless parameter t = L/ξ is the sample
length L measured in units of the localization lengths ξ.
The (real) functions Pν(x), ν = –1/2 + ik/2 are known as
conical functions and represent a special case of Leg-

endre functions. As such they satisfy Pν(x) = ν(ν +
1)Pν(x). This observation immediately yields the fol-
lowing expression for the PNR distribution:

(12)

(13)

where we assumed, for simplicity, that the selected sin-
gle channel is perfectly coupled to the scattering
medium. Surprisingly, this distribution is practically
the same as the distribution of the reflection coefficient
from a piece of strictly one-dimensional medium
obtained long ago in the framework of the Berezinskii
technique [25]. In particular, for any value of the
parameter t, the distribution displays a log-normal far
tail corresponding to very small PNR values τ  0.
To find it for t ! 1, one needs an asymptotic of the con-
ical functions for large arguments x @ 1, which we bor-
row from Eq. (50) of [24]. A calculation very similar to
that presented in [24] yields

(14)

This log-normal tail is related to the presence of the
anomalously localized states [26]. In the opposite case
of very long samples t @ 1, the PNR values are expo-
nentially small due to the localization phenomenon,
and the distribution is purely log-normal:

(15)

Let us turn our attention now to the case of a quasi-
1D disordered sample with a nonvanishing internal dis-
sipation e > 0, assuming the second edge of the sample
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to be impenetrable for waves. The scaling physical
parameter controlling the role of dissipation is then
given by [18] δ = πρeξ, with ρ standing for the mean
spectral density. This is just the dissipation ε measured
in units of the mean level spacing for a sample whose
length is ξ. The most interesting regime is that of small
δ ! 1. In that limit, the function ^(x, λ) turned out to
be independent of λ, whereas the x dependence persists
in a form of the scaling combination y = 2δx, i.e.,

^(x, λ)  . This implies that the relevant val-
ues of parameters are 2/τ . x ~ δ–1 @ 1. The latter con-
dition immediately results in the formula F(x) 

4δ /y and also converts the Legendre operator  to

Let us note that the emerging PNR distribution yields,
in fact, the distribution of the Wigner delay time via the
relation τW = 2πρξ/y.

The expression for the function  is known

explicitly [27]: =  + , where

(16)

and  = , with Kν(u) standing for the

Macdonald function.
For the case of a very short (t ! 1) sample, the func-

tion  is known to be approximated by exp–(ty)
[27]. A simple calculation then yields the distribution
3(τ) = [(4tδ)2/τ3]exp{–4tδ/τ}. Realizing that 2tδ ≡ η,
we see that the distribution coincides with the weak
absorption limit of Eq. (9). As expected, the same distri-
bution follows from that of the Wigner delay time [11].

In the opposite limit of very long samples, t  ∞,
only the first term survives, and by noticing that

[ /y] =  we find the corresponding PNR
distribution:

(17)

Although the typical value of τ is on the order of δ, the

moments ( ) do not exist for m ≥ 1 because of the
power law tail 3(τ @ δ) ∝ τ –2. A similar tail was found
in the distribution of the total reflection coefficient from
a multichannel long disordered 1D sample in [9] and is
also typical for the Wigner delay time distribution in
purely 1D system [15]. Negative moments of τ are

equal to  = (4δ)–kk!(k + 1)!. Note that they differ
from the corresponding moments in a purely 1D system
[15] by an extra factorial factor (k + 1)!, reminiscent of
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similar relations between other quantities in 1D and
quasi-1D [18].

Finally, in the case of strong absorption δ @ 1 in a
long wire t  ∞, the function ^(x, λ) =

exp{− } [17] and the resulting distribution
3(τ) coincide with that given by Eq. (9), with η
replaced by .

3. Behavior at the Anderson transition. Let us
briefly discuss the possible qualitative behavior of the
PNR τ in a scattering system formed by a single perfect
channel attached to a d-dimensional disordered sample
in the vicinity of the point of the Anderson delocaliza-
tion transition αc (the mobility edge). Here, we denote
by α an effective parameter that controls the transition
in the infinite sample, with states being localized
(extended) for α > αc (respectively, α < αc).

Our arguments are based on a picture of the transi-
tion as described in terms of a functional order param-
eter developed in detail in [16]; see also earlier results
in [17] and [28]. For a sample of finite size L, the PNR
is a function of three parameters: e, L, α. According to
the suggested scenario, the behavior of the function
^(x, λ) in the insulating phase in the weak absorption
limit δ ∝  eξd  0 is expected to be reminiscent of that
described above for the one-dimensional case, i.e.,

^(x, λ)  , and the function  decays to
zero for y @ 1. Then it is natural to expect that all nega-
tive PNR moments in the infinite volume limit L  ∞
are to scale as  ~ e–kξ–dk, where ξ is the localiza-
tion length diverging in the vicinity of the mobility
edge.

In contrast, in the delocalized phase, the function
^(x, λ) is expected to remain a nontrivial function of
both x and λ even when e  0, provided the latter
limit is taken after the infinite volume limit L  ∞.
This should immediately result in a finite-width distri-
bution 3(τ) of the PNR. From this point of view, the
Anderson transition acquires a natural interpretation as
the phenomenon of spontaneous breakdown of
S-matrix unitarity. As long as α  αc , the widths of
the distribution and properly defined (negative) PNR
moments should vanish, with some set of critical expo-
nents.

If, however, we take the limit e  0 first, then for
α < αc PNR in a large but finite sample should scale

with the system size L as  ~ C(α)e–kL–dk, where
C(α) is expected to diverge when α  αc . In some
sense, the behavior of the negative moments of the
Wigner delay time defined as τW = /2e is

reminiscent of that for the inverse participation ratio
[26]. This analogy suggests a possibility for anomalous

scaling  ~  with rk ≠ k at the mobility edge
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α = αc , which would then reflect the underlying multi-
fractality of the wavefunctions.

It will be very interesting to perform a detailed
numerical analysis of PNR and Wigner delay times for
realistic and well-controlled models of scattering from
disordered systems, e.g., quantum graphs [29] or mod-
els used in [13], and to verify the suggested picture
qualitatively and quantitatively in various regimes. The
statistics of PNR should be also of experimental acces-
sibility in microwave resonator experiments; see,
e.g., [6, 7] and references therein.
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It is suggested to generate cold ion beams by laser collimation and subsequent laser ionization of a primary
atomic beam. The primary beam, formed by a standard method, is collimated through transverse cooling by
resonance laser radiation. Laser radiation is also used for the multistep ionization of atoms in the collimated
beam. Advantages of the proposed method are a low scatter of the initial ion energy (below 10–1 eV) and a high
emittance in the region of the virtual source (~10–6 cm rad at a beam current on the level of microamperes). The
high monochromaticity of the obtained ion beam allows the chromatic aberration effect to be significantly sup-
pressed, which implies good prospects for using such sources in ion beam lithography. The proposed method
also allows the spectrum of elements used in ion beam sources to be expanded, which is an independent tech-
nological advantage. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 32.80.Fb; 41.75.Ak; 39.10.+j; 07.77.Gx
One of the main directions in the development of
rapidly expanding nanotechnologies is related to the
need for increasing the resolution of lithographic pro-
cesses to a characteristic scale below 100 nm [1]. For
the ion beam lithography the progress in this direction
is limited primarily by the chromatic aberration effect
related to the scatter of initial ion energies (within
~5 eV for liquid metal sources and ~2 eV for micro-
wave discharge sources) [2].

In connection with recent developments in the field
of laser collimated and focused atomic beams (see,
e.g., [3–5]), there is a growing interest in the commer-
cial use of such beams. In this case, principal limita-
tions of the spatial resolution are related only to purely
quantum effects: the resolution threshold as determined
by the de Broglie wavelength is on the order of 0.1 nm.
However, in practical applications, the possibilities of
atomic beam lithography are still limited by relatively
low energies of atomic beams, which is insufficient for
conducting the processes of resist exposure, implanta-
tion, etching, etc., on the required resolution level.

The natural way of solving this problem would be to
form an ion beam from a laser collimated atomic beam
through laser ionization, as is done in the laser ioniza-
tion spectroscopy and laser isotope separation technol-
ogy [6–10]. Using this approach, it is possible to pro-
vide for a significant increase in the ion beam energy,
while retaining a high degree of collimation, by using
electrostatic collimating lenses. This study is aimed at
an analysis of the possibility of practical implementa-
tion of such a combined method for obtaining ion
beams for nanotechnologies.

Atomic beam formation. We suggest using a stan-
dard source for creating a beam of neutral atoms, an
0021-3640/03/7804- $24.00 © 20255
example being offered by an oven producing a satu-
rated vapor of a substance. The flux of neutrals in the
beam is determined by the saturated vapor pressure at a
given oven temperature and by the transmission of the
output channel [11]. By using metals possessing suffi-
ciently high volatility, it is easy to obtain output atomic
fluxes in the beams on the order of 1013–1015 cm–2 s–1.
For example, a liquid metal source with gallium pro-
vides for this atomic flux density at a temperature of
about 1100–1200 K. 

By using a diaphragm, the angular divergence of a
beam can be reduced to a sufficiently small level at the
expense of some loss in the beam intensity. However,
even in the case of incomplete ionization, the atomic
beam intensity can still provide for an ion beam current
of 10–8–10–6 A, which significantly exceeds the output
current of a liquid-metal ion source (~10–9 A). An
example of successful solution is offered by [5], where
a beam of Cs atoms with a diameter of da ~ 1.4 mm, an
intensity of ja ~ 1012 cm–2 s–1, and an angular divergence
of  ~ 0.4 mrad was obtained using a metal vapor at T
~ 410 K.

Laser collimation of atomic beams. The laser col-
limation of atomic beams is based on the resonance
interaction of such a beam with an orthogonal laser
beam [3–6]. In the classical description, the force act-
ing upon a two-level atom absorbing a resonance laser
radiation is proportional to the differential momentum
transfer as a result of the laser photon absorption and
the spontaneous and stimulated photon emission.
Owing to the coherence of laser radiation, the momen-
tum transfer during the absorption is equal in magni-
tude and opposite in direction to that during the stimu-
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lated emission, while the direction of spontaneous
emission is arbitrary. Therefore, the average force act-
ing upon an atom is directed along the laser beam and
proportional to the difference between the photon and
atomic momenta and to the probability of spontaneous
emission from the upper excited level. The momentum
transfer depends on the laser frequency detuning rela-
tive to the center of the atomic absorption line with
allowance of the Doppler effect, which is determined
by the thermal motion of atoms.

The general expression for the radiative friction
force with which a resonance laser radiation acts upon
an atom is as follows [12]:

(1)

where ω and k are the frequency and the wave vector of
the laser radiation; ω0 and γ are the frequency and the
radiative lifetime of the atomic transition, respectively;
v is the atomic velocity; and V0 is the Rabi frequency

(  is the dipole potential of the atomic transition,
proportional to the laser radiation intensity).

For collimating an atomic beam, it is necessary to
use at least two opposite laser beams orthogonal to the
longitudinal velocity of the atomic beam. By selecting
a proper laser radiation frequency, it is possible to pro-
vide for the effective interaction of atoms only with the
laser beam opposite to the transverse atomic velocity.
In this case, an expression for the radiative friction
force with an arbitrary V0 is as follows [12]:

(2)
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Fig. 1. A plot of the radiative friction force versus atomic
velocity according to formula (2).
In a sufficiently weak field, the main role (irrespective
of the atomic velocity) is played by the first two terms.
For ω – ω0 < 0, this force slows down the atoms, and for
ω – ω0 > 0, it accelerates the atoms with the transverse
velocity components opposite to the laser beam direc-

tion. When the field is not too weak (  > (ω – ω0)γ),
the last term begins to predominate in the region of
moderate velocities (v  ≤ γ/k). The radiative friction

force is zero when |v | = 
and exhibits two extrema in the region of large veloci-
ties, at kv  – ±(ω – ω0), and two others in the region of
small velocities, at kv  ~ ±γ/2. The plot of this force as a
function of the atomic velocity is depicted in Fig. 1.

Using expressions (1) and (2), it is possible to eval-
uate the possibilities of radiative collimation of atomic
beams with respect to the resonance value of the fric-
tion force and the resonance width. For the visible radi-
ation (γ ~ 107 Hz) and thermal atomic velocities (v  ~
104–105 cm/s), a change in the velocity in the region of
effective deceleration (cooling) amounts to ∆v  ~
102−103 cm/s during a time of τ ~ 10–5–10–4 s (for a
laser radiation intensity below 0.1 W/cm2), which cor-
responds to a longitudinal size of the irradiated region
about 0.1–1 cm. Thus, in order to ensure effective radi-
ative collimation of thermal atomic beams, it is neces-
sary to reduce the initial beam divergence to within
10−1–10–2 rad.

It should be noted that even relatively low laser radi-
ation intensity (@1 W/cm2) provides for saturation of
the resonance excited state in the course of collimation.
This circumstance considerably simplifies the problem
of subsequent multistep laser ionization of atoms in the
collimated beam.

Laser ionization of atomic beams. The choice of a
particular scheme for the laser ionization of an atomic
beam is determined by the atom type and the beam
intensity. In selecting the scheme, it would be expedient
using the experience gained from the development of
atomic vapor laser isotope separation (AVLIS) technol-
ogy [7–10, 13, 14]. The spectrum of elements for which
the isotope selective laser ionization was successfully
implemented is sufficiently broad, including elements
such as Pt [7], U [8, 9], Ti [10], Li [13], Ca [14], etc.

The ionization of atoms in a collimated beam is per-
formed according to a multistep scheme employing fre-
quency tunable lasers. In the first step, it is possible to
use the resonance radiation of the same laser that was
used for the laser beam collimation. Under the condi-
tions of saturation, the populations of the ground (N0)
and resonancely excited (N1) states are related as

(3)

where g0 and g1 are the statistical weights of the corre-
sponding states.

V0
2

γ/2k( ) V0/ ω ω0–( )γ[ ] 4 1–

N0/g0 N1/g1,=
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Subsequent ionization of the resonancely excited
atoms can be performed in one or two steps, the limit-
ing stage being determined by the process of photoion-
ization of an excited atom. For estimating the required
laser radiation intensity, let us assume that ionization
has to take place within a sufficiently narrow spatial
region, where variation of the electric field potential
would be relatively small. Let the size l of this region be
such that

(4)

where I is the laser radiation intensity, "ωpi is the laser
quantum energy, v  is the transverse atomic velocity in
the beam, and σpi is the photoionizaton cross section of
the excited atom. The latter parameter can be estimated
using the Kramers formula [15] describing the photo-
ionizaton cross section of a highly excited hydrogen
atom with an effective principal quantum number n @ 1:

(5)

Substituting this estimate and characteristic values of
"ω ≈ 2 eV, l ~ 0.01 cm, and v  ~ 105 cm/s into condition
(4), we conclude that the effective photoionizaton of the
excited atoms in the region of preset size l is ensured
provided that I @ 100n5 W/cm2. This condition is
readily satisfied for not too large quantum numbers (n ~
3–5) by using focused laser beams.

Estimating the main parameters of the ion
source. Figure 2 shows a schematic diagram of the
setup implementing the proposed method of laser colli-
mation and ionization of atomic beams. Let us estimate
the main parameters of this system, proceeding from
the atomic beam parameters achieved in [5]. Using the
laser ionization of an atomic beam, followed by focus-
ing the ion beam with an immersion lens of spherical
capacitor type, it is possible to obtain a virtual ion
source with a current of ~107 A in the focal plane of this
lens. Taking into the parameters of this lens [16], we
obtain

(6)

where M is the linear magnification scale, Rc is the
radius of the external sphere, Ra is the radius of the
inner sphere, and Ri is the radius of the image surface.
According to the Helmholtz–Lagrange relation [17],

(7)

(where G is the angular magnification scale and U0, Ui

are the potentials in the space of object and image,
respectively), the source radius is given by the formula

(8)
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and the source emittance can be determined as

(9)

For M = 0.1, Rc = 50 mm, U0 = 0.1 eV, and Ui = 1 kV,
these formulas yield ri ~ 1.2 × 10–5 cm and riG ~ 7 ×
10−7 cm rad. The ion energy scatter, determined only by
the oven temperature, amounts to ~0.035 eV.

As a particular example, let us consider the forma-
tion of a beam of gallium ions (frequently employed in
the ion beam etching technology). Gallium atom is
characterized by an ionization potential of 6 eV and has
a strong resonance absorption line corresponding to the
transition 4p2P1/2  5s2S1/2 with λ = 403 nm. The
probability of spontaneous emission for this transition
is 5 × 107 s–1 [18]. This yields the following estimate of
the laser intensity required for saturation under the con-
dition of dominating Doppler broadening of the reso-
nance transition: Is = 8π〈v 〉"ω/λ3 ~ 15 W/cm2 (here, 〈v 〉
is the average thermal velocity of atoms). As can be
seen, the existing dye lasers readily provide for satura-
tion of the transition under consideration. For example,
an effective source of coherent radiation (with an effi-
ciency of up to 11%) tunable in a wavelength range
from 299 to 416 nm is provided by a laser using a solu-
tion of 4,4-diphenylstilbene in dioxane, pumped by a
pulsed XeCl excimer laser with λ = 308 nm [19].

The length Lc of the atomic beam collimation zone
is determined by the requirement that the transverse
momentum of atoms related to their thermal velocity
scatter has to be suppressed by the resonance laser radi-
ation employed. Under the condition of saturation of
the resonance transition, this requirement is indepen-
dent of the laser radiation intensity and is expressed by
the relation

(10)

where M is the atomic mass and α is the initial angular
divergence of the atomic beam collimated by a dia-

riG ra'
Rc

M
-----

U0

Ui

------.=

Lc M v〈 〉α /"kτ ,∼

Fig. 2. A schematic diagram of the proposed laser ion beam
source.

Virtual ion
source

Ion
beam
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phragm. For α = 0.01, relation (10) yields an estimate
of Lc ~ 1.5 cm.

Ionization of the resonance-excited Ga atoms can be
also performed by the laser used in the collimation
stage. However, in this case the laser intensity must be
not lower than ~106 W/cm2. This level can be provided
by focusing the laser beam in the ionization zone. Since
the intensity of excitation is much lower as compared to
that required for the ionization, no ionization takes
place in the excitation zone.

Thus, the proposed ion beam source is comparable
with liquid metal sources and microwave discharge
sources [2] with respect to the ion beam current and
emittance, while exceeding both alternative sources
with respect to the initial ion energy scatter parameter.
The proposed method virtually completely suppresses
chromatic aberration of the ion-optical system, which is
one the main factors determining limiting resolution of
the ion beam lithography process. Another important
advantage of the new source is the possibility of virtu-
ally inertialess control of the ion beam current achieved
by varying the intensity of the ionizing laser radiation,
although this factor cannot be changed arbitrarily.
However, in the case of metal atomic beams, the exist-
ing frequency tunable lasers can ensure the effective
multistep ionization for atoms of any type. We believe
that the above features make the proposed approach to
the ion beam formation a promising solution for nano-
technologies.
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