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If heavy neutrinos with mass  ≥ 2me are emitted in the decays of 8B in the Sun, then νH  νL + e+ + e–

decays should be observed. In the present work, the results of background measurements with the Borexino
Counting Test Facility have been used to obtain bounds on the number of these decays. As a result, new limits

on the coupling  of a massive neutrino in the range of 1.1 MeV to 12 MeV have been derived (  ≤
10–3–10–5). The obtained limits on the mixing parameter are stronger than obtained in previous experiments
using nuclear reactors and accelerators. © 2003 MAIK “Nauka/Interperiodica”.
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262 BACK et al.
1. Introduction. If neutrinos have mass, then a
heavier one can decay to a lighter one [1, 2]. The sim-
plest detectable decay modes in the framework of an
extended standard model (SM) are radiative decay
νH  νL + γ and decay into an electron, a positron,
and a light neutrino:

(1)

The e+e– decay mode, which becomes possible if  ≥
2me, results from a W exchange diagram, as shown in
Fig. 1. Because atmospheric, solar, and reactor neutrino
oscillations have been discovered, this heavy neutrino
cannot be connected with one of the three mass eigen-
states forming the three known neutrino flavors.
Moreover, this fourth neutrino has to be coupled in the
(e – W) vertex with UeH and GF constants, but it cannot
be coupled (or coupled very weakly) to the Z boson.

Many extensions of the SM predict the existence of
a sterile neutrino: a singlet fermion can be a mirror neu-
trino, goldstino in SUSY, modulino of the superstring
theories, or a bulk fermion related to the existence of
extra dimensions [3]. In general, the sterile neutrino
may have an arbitrary mass and can mix with all three
active neutrinos.

The decay rate for this mode in the center of mass
system of the decaying neutrino is [1, 2]

(2)

where UeH is the mixing parameter of the heavy neu-

trino to the electron, /192π2 = 3.5 × 10–5 MeV–5 s–1,

 is the phase-space factor calculated in [2],

and one can  . 1. In the SM, the probability of the
e+e– mode is much higher than for radiative decay: e.g.,
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for  = 5 MeV (and  ~ 1) one obtains τ(νH 

νLe+e–) ≈ 10 s against τ(νH  νLγ) ≈ 1010 s.
The possible decay of massive antineutrinos from a

reactor νH  νL + e+ + e– has been studied in [4–8];
the latter gives the strongest restrictions on the mixing

parameter  < (0.3–5) × 10–3 in the mass region

 ~ 1.1–9.5 MeV). Accelerator experiments per-
formed in a beam of neutrinos from π and K decays
constrain the coupling of still heavier neutrinos (see [9]
and references therein). A heavy neutrino with mass up
to 15 MeV can be produced in the Sun in the reaction
8B  8Be + e+ + ν and can then decay in flight. An

upper limit  ~ 10–5 was obtained by considering
data on the positron flux in interplanetary space [10].

More restrictive bounds were obtained from
SN1987A data [11–14]. On the other hand, Big Bang
nucleosynthesis requires a fast decay branch ([11–14]
and references therein). This fast mode could be real-
ized by the decay of the heavy particle into a Goldstone
boson and a light neutrino. Obviously, this decay mode
should be as slow as about 500 s, which is the time
needed for the particle to reach the detector.

Borexino, a real-time liquid scintillator (LS) detec-
tor for low-energy neutrino spectroscopy, is near com-
pletion in the underground laboratory at Gran Sasso
(see [15, 16] and references therein). The main goal of
the detector is the direct measurement of the flux of 7Be
solar neutrinos of all flavors via neutrino–electron scat-
tering. In this paper, we present the results of the search
for the νH  νL + e+ + e– decay inside the active vol-
ume of the prototype of the Borexino detector.

2. Experimental setup and results of measure-
ments. 2.1. Brief description of the detector. The proto-
type of the Borexino detector, the Counting Test Facil-
ity (CTF), was constructed with the aim of testing the
key concept of Borexino, namely, the possibility to
purify a large mass of liquid scintillator at the level of
contamination for U and Th of a few units 10–16 g/g. In
this simplified scaled-down version of the Borexino
detector, a volume of LS is contained by a transparent
inner nylon vessel 2 m in diameter mounted at the cen-
ter of an open structure that supports 100 phototubes
(PMT) [17]. The whole system is located within a
cylindrical tank (11 m in diameter, 10 m in height) that
contains 1000 tons of ultra-pure water, which provides
a 4.5 m shielding against neutrons originating from the
rock and against external γ rays from PMTs and other
construction materials.

The upgrade of the CTF, called CTF-II, was
equipped with a carefully designed muon veto system.
It consists of 2 rings of 8 PMTs each, installed at the
bottom of the tank. The radii of the rings are 2.4 and
4.8 m. Muon veto PMTs look upward and have no light
concentrators. The muon veto system was optimized to
have a negligible probability of registering scintillation
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events in the so-called “neutrino energy window” from
250 to 800 keV. The behavior of the muon veto at
higher energies has been specially studied for the previ-
ous work [18]. The energy dependence of the probabil-
ity η(E) of identification of an event with energy E in
the LS by the muon veto was also calculated by a ray-
trace Monte Carlo (MC) method. The calculated func-
tion was adjusted to correctly reproduce the experimen-
tal measurements with the 226Ra source. Detailed
reports on the CTF have been published [19–22].

2.2. Detector calibration. The energy of an event in
the CTF detector is defined using the total collected
charge from all PMTs. The coefficient linking the event
energy and the total collected charge is called light
yield (or photoelectron yield). At low energies, the phe-
nomenon of “ionization quenching” violates the linear
dependence of the light yield versus energy [23]. The
deviations from the linear law can be taken into account
by the ionization deficit function f(kB, E), where kB is
Birks’ constant. For the calculations of the ionization
quenching effect for the PXE (phenylxylylethane,
C16H18) scintillator, we used the KB program from the
CPC library [24]. The ionization quenching effect leads
to a shift in the position of the peak of the energy
deposit of the gammas on the energy scale calibrated
using electrons. For example, the position of the two
1022-keV annihilation gamma quanta in CTF-II corre-
sponds to the 860-keV energy deposit of the electron. A
check of the MC-simulation code was performed by
modeling 40K data. The detector energy and spatial res-
olution were studied with radioactive sources placed at
different positions inside the active volume of the CTF.
Typical spatial 1σ resolution is 10 cm at 1 MeV. The
studies also showed that the total charge response of the
CTF detector can be approximated by a Gaussian
curve. For energies E ≥ 1 MeV (which are of interest
here), the relative resolution can be expressed as σE/E =

 (E is in MeV) [25] for
events uniformly distributed over the detector’s vol-
ume.

The energy dependence on the collected charge
becomes nonlinear for energies E . 5 MeV because of
the saturation of the ADCs used. In this region, we use

3.8 10 3– /E 2.3 10 3–×+×

Fig. 1. Feynman graphs describing the appearance (8B 
8Be + e+ + νH) and decay (νH  νL + e+ + e–) of a heavy
neutrino.

νH

νH

νL
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only the observation of nonobservation of candidate
events; hence, the mentioned nonlinearity does not
influence the result of the analysis.

2.3. Data selection. In this analysis, 29.1 days of the
August–September 200 data-taking period were used
(Fig. 2). In our analysis we used 29.1 days of data from
CTF-II (Fig. 2). The major part of the CTF background
at low energies is induced by the activity of 14C, 85Kr,
and 39Ar [26]. At higher energies, the background is
mainly induced by muons. The spectrum without any
cuts (spectrum 1) is presented on the top. The second
spectrum was obtained by applying the muon cut,
which suppressed the background rate by up to two
orders of magnitude, mainly at high energy.

The peak at 1.36 MeV, present in both spectra, is due
to 40K decays outside the scintillator, mainly in the
ropes supporting the nylon sphere. The peaklike struc-
ture at ~6.2 MeV is caused by saturation of the elec-
tronics by high-energy events. As one can see from
Fig. 2, muon identification cuts remove most of the
background induced by muons in such a way that there
are no events with energy higher than 4.5 MeV. In our
analysis, we used only this fact.

3. Neutrino flux and deduced limits. In order to

obtain bounds on the parameters  and mν, the
spectrum obtained by CTF has to be compared with the

UeH
2

Fig. 2. Background energy spectra of the 4.2 ton BOREX-
INO CTF-II detector measured during 29.1 days: (1) spec-
trum without any cuts; (2) with muon veto applied. In the
inset, the simulated response function for external 40K gam-
mas is shown together with the experimental data.
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energy spectrum expected for νH decay. To calculate
this, one has to know the flux of heavy neutrinos
through the detector Φ(Eν), the kinetic energy of the
created e+e– pairs, and the response function of CTF to
two-annihilation quanta.

The emission of a heavy neutrino, coupled to an
electron, in the reaction of β+ decay of 8B is suppressed

by the mixing parameter  and a phase-space fac-
tor:

, (3)

where Eν is the total energy of the heavy neutrino
(  = 0 for Eν < mν). For calculation, we used the

neutrino spectrum from 8B decay  given in

[27].
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2
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8 Eν( )=
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Fig. 3. The expected spectra of signals due to νH  νL +

e+ + e– decay for different neutrino masses  = 4, 8,

12 MeV. The corresponding mixing parameters (  =

1.8 × 10–4, 3.9 × 10–5, 1.3 × 10–4) lead to the CTF-II count
rate 2.44/29.1 d for Ed ≥ 4.5 MeV. The probability η(E) of
identification of an event in the LS by the muon veto is
shown by the point curve.
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A heavy neutrino emitted in the Sun can decay on its
flight to Earth. The energy spectrum of neutrinos reach-
ing the detector is given by

(4)

where 1/τc.m. = Γc.m. defined by (2). τf is the time of
flight in c.m.s.:

(5)

Here, L = 1.5 × 1013 cm is the average distance between

the Sun and the Earth and β = .

The double differential distribution for energy e and
emission angle θ of the light neutrino νL for the c.m.s.
was obtained in [2]:

(6)

where f1(e, ) and fs(e, ) are complex functions

defined in [2], ξ = +1(–1) for νH , and |P| = β is the
polarization of the νH.

The total laboratory energy of the e+e– pair, E = Eν –
, is connected with e as follows:

(7)

In c.m.s., the energy e of the emitted neutrino is

restricted by the value e ≤ emin = (  – 4 )/2 ,
which corresponds to the emission angle

(8)

The differential spectrum of the e+e– pair is obtained
by integration of (6) over cos(θ) (or e) and account of
Eq. (7):

(9)

For a given energy of heavy neutrino Eν, the energy E
of the e+e– pair is restricted to the interval

(10)

Integrating over neutrino energy up to the end-point
energy Q0, one can obtain the spectrum of total e+e–-
pair energy:

(11)
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The Monte Carlo method was used in order to sim-
ulate the CTF response S(E) to two-annihilation quanta.
The gamma–electron showers were followed using the
EGS-4 code [28], taking into account the ionization
quenching factor and the dependence of the registered
charge on the distance from the detector’s center. The
obtained response function looks like the sum of two
Gaussian peaks at energies 860 and 430 keV, with dis-
persion ~70 keV and relative intensities ~3 : 1. Peaks
have low energy tails containing ~10% of the total
intensity.

Taking into account the probability of suppression
of the high-energy events by the muon veto (1 – η(E))
[18] and the detector response function R(E, E') with σE

defined as in Section 2.2, the energy spectrum of sig-
nals in the detector is obtained by convolutions (11)
over S(E) and R(E, E'):

(12)

dN
dE
------- E( ) VT 1 η E( )–( )=

× Nd
E'd

------- E'( )S Ed E'–( ) E'd

Ed 2me–

Ed

∫ 
 
 

R Ed E,( ) Ed.d

E 3σ–

E 3σ+

∫

Fig. 4. Counting rates of CTFII as a function of the mixing

parameter  for different values of heavy neutrino mass.

The level 2.44 events /29.1 d is shown by the dotted line.

UeH
2
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Here, V is the volume of the detector and T is the time
of measurement. The obtained spectra for various val-
ues of mν are shown in Fig. 3. The shape of (12) differs
from (11): it is shifted by about 870 keV to higher
energy and it is suppressed at higher energies by muon
veto (e.g., η(5 MeV) = 0.2, Fig. 3).

As mentioned above, we used in analysis only the
fact that there are no events with E ≥ 4.5 MeV. In accor-
dance with the recommendation for Particle Data
Group [9], the statistical maximum number of events
for zero events observed is 2.44 (at 90% confidence
level).

The relation

(13)Sint mν UeH,( )
Nd
Edd

-------- Ed( )
4.5 MeV

Q0

∫ 2.44≤=

Fig. 5. Limits on the mixing parameter  as a function

of neutrino mass mν (90% c.l.). (1) present work excludes

values of  and mν inside dotted region; (2, 3) upper

limits from reactor experiments on the search for νH 

νL + e+ + e– decay [7, 8]; (4) upper limits from π  e + ν
decay [29].

UeH
2

UeH
2

mνH
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leads to bounds on parameters  and mν. The
dependence of the number of counts on the parameters

of  and mν is

(14)

Functions Sint(|UeH |) are shown on Fig. 4 for differ-
ent values of mν. The experiment is not as sensitive for

low  (due to the low probability of νH decay) as

for high values of , because in this case νH decays
during its flight from the Sun. The maximum

Sint( ) for fixed mν and Eν corresponds to  =

2( τc.m.)/τf, where τc.m. = 1/Γc.m. and τf are defined
by (2) and (5).

The region of restricted values of parameters 
and mν is shown in Fig. 5 in comparison with the results
of reactor experiments [7, 8] and the search for massive
neutrinos in the π+  e+νe decay in accelerators [29].
For the neutrino mass region 4–10 MeV, the obtained
limits on the mixing parameter are stronger than those
obtained in previous experiments using nuclear reac-
tors and accelerators.

4. Conclusion. Using the extremely low back-
ground and large mass of the Borexino Counting Test

Facility, new limits on the mixing parameter  of
a massive neutrino in the range of mass 1.1 MeV to
12 MeV have been set. These limits are more than one
order of magnitude stronger than these obtained in pre-
vious experiments using nuclear reactors.
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Correlation or Decoherence? Quantum Beats of Atomic 
Inversion in a Resonant Coherent Field
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It is shown that the standard reduction procedure (i.e., the calculation of the density matrix of the observable
subsystem from the density matrix of a closed quantum system) bringing about decoherence corresponds to the
limiting approximation, where the unobservable subsystem is assumed to be in the stationary state with mini-
mum information (infinite temperature). An approximate set of interrelation (correlation) equations for the den-
sity matrices of the subsystems is derived. It is shown that the correlation of atom and field can be manifested
as the inversion beats of a two-level atom in the known experimental scheme of resonator QED. Experimental
observation of such beats would indicate that the observable subsystem (atom) generally conserves information
about quantum coherence of the unobservable subsystem (field). © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.65.Ta; 42.50.Pq
An old problem of the reduction of a quantum
mechanical system with simultaneous decoherence of
its observable subsystem is being discussed now in
quantum optics and quantum informatics [1–8].

Decoherence is considered as the transition of the
observable quantum system from the superposition
state to the statistical-mixture state as a result of the
interaction with the macroscopic environment [3, 6–8].
In this formulation, the decoherence problem is equiv-
alent to the known problem of quantum relaxation the-
ory [9, 10] describing the dynamics of a quantum sys-
tem interacting with a thermostat and encounters no
fundamental difficulties. The general difference is that
the state of environment is not specified in the problem
of decoherence. For definiteness, this decoherence will
be called macroscopic decoherence.

We discuss decoherence (and its existence as a phys-
ical phenomenon [1, 3–5]) under reduction, i.e., separa-
tion of the observable subsystem from the closed
(Hamiltonian) quantum system with unitary dynamics.
Mathematical reduction, i.e., the algorithm of calculat-
ing the reduced density operator of the observable sub-
system from the density operator of the closed system,
was axiomatically introduced by von Neumann [11].
This reduction amounts to calculating the partial trace
of the density operator of the total system over the
unobservable subsystem (projection onto the observ-
able subsystem). Since this operation is nonunitary, a
portion of information is lost, so that the quantum
nature of irreversibility [3, 5, 12], as well as the com-
pleteness of information readout from a quantum com-
0021-3640/03/7805- $24.00 © 20267
puter in quantum informatics [8], is now under discus-
sion.

The experimental separation of the reduction or
intrinsic decoherence [13] from the macroscopic deco-
herence is expected in the observation of the dynamics
of a simple composite quantum system [3], which can
be considered as closed in the time intervals under con-
sideration. The resonant QED scheme [6] is considered
as one of the successful experimental schemes for
investigations of the dynamics of quantum coherence
and decoherence in a simple closed system. In this
work, the known theoretical analysis of this experimen-
tal scheme is revised with emphasis on the correlation
between the subsystems of the closed system. The
reduction decoherence under consideration is shown to
follow from the implicit use of the approximation of the
given “extremely incoherent” state of the unobservable
subsystem in calculations.

Let us analyze the physical content of the standard
(Neumann) reduction [9–11], which postulates that, if
the dynamics of a closed system (for definiteness, atom
+ field) is described by the density operator (t), the
dynamics of the observable subsystem (atom) is
described by the reduced density operator (t) =

Trf (t). 

First, the calculation of the trace of the observable

 of a quantum system in the basis of its energy eigen-
states is equivalent, except for a constant factor N equal
to the space dimension (the number of eigenstates), to
the calculation of the quantum mean value of this

ρ̂

ρ̂a

ρ̂

Â
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observable for the case where the quantum system is in
the state with minimum information:

(1)

where  = (1/N)  is the density operator of the
quantum system in the state with minimum information

(state with infinite temperature) and  is the unity oper-
ator [9, 11]. The state  physically corresponds both
to the equiprobable location (with probability 1/N) of
the quantum system in any eigenstate and to the
absence of quantum coherence (nonzero off-diagonal
elements of the density matrix [10]) in the system.

According to the definition [9], the density matrix
(t) is the information operator for a closed quantum

system. The calculation of the trace over the unobserv-
able subsystem is mathematically identical with the
partial average of this operator for the case where the
field is in the state with minimum information (except
for the normalization constant):

(2)

where  =  is the extended (to the
entire system space) density operator of a field in the

state with minimum information and  is the unity
operator in atomic space. Thus, according to Eq. (2),
the calculation of the reduced density operator of an
atom is equivalent to the assumption that a field is in a
stationary state with minimum information (infinite
temperature). This assumption is used only for the
reduction and not for calculating the dynamics of a
closed system [i.e., (t)].

Analysis of the correlation between the density
operators of the subsystems of a closed quantum sys-
tem leads to the same conclusion [14, 15]. The atom
and field are equivalent subsystems of a closed system.
Let us assume that the density operator of a closed sys-
tem can be approximately represented in terms of the
direct product of the correlated density operators
(labeled the subscript C) of the subsystems (t) ≈

 (the exact equality is generally valid
only for noninteracting subsystems [9, 10]). Multiply-
ing this expression on the right by  or  and
calculating the trace over the field or atomic sub-
systems, one easily arrives at the set of approximate
coupled equations [14, 15]

(3)

(4)

The right-hand sides of Eqs. (3) and (4) are the quantum
averaging (normalized to unity) of the density operator

Tr Â N Â〈 〉 min≡ NTrρ̂min Â,=

ρ̂min 1̂

1̂
ρ̂min

ρ̂

ρ̂a t( ) Trf ρ̂ t( ) N fTrf ρ̂ t( )ρ̂fmin' ,≡=

ρ̂fmin' 1̂a ρ̂fmin⊗( )

1̂a

ρ̂

ρ̂
ρ̂aC t( ) ρ̂fC t( )⊗( )

ρ̂fC t( ) ρ̂aC t( )

ρ̂aC t( )
Trf ρ̂ t( )ρ̂fC' t( )
Traf ρ̂ t( )ρ̂fC' t( )
----------------------------------,≈

ρ̂fC t( )
Traρ̂ t( )ρ̂aC' t( )
Traf ρ̂ t( )ρ̂aC' t( )
-----------------------------------.≈
(t) of the closed system over one of the subsystems.
If the state of the unobservable subsystem (e.g., field)

 is defined from the external physical conditions,
the state of the observable subsystem (atom), which is
correlated with the former state, is also defined accord-
ing to Eq. (3). Therefore, each of Eqs. (3) and (4) can
be treated as a generalized definition of reduction or the
approximation of a given state of an unobservable sub-
system under reduction. In particular, when a field is in
the  state, this definition coincides with the gener-
ally accepted Neumann definition of reduction (2).
When a field in the n-photon eigenstate at a measure-
ment time t (i.e., the field-density operator is the projec-

tor onto this state, so that  =  = |n〉〈 n|), Eq. (3)
coincides with the reduction definition used in the
quantum optics theory of nondemolition measurements
of photons [16, 17].

When the state of one of the subsystems is given, the
set of Eqs. (3) and (4) is generally inconsistent. This
inconsistency reflects the approximate character of sep-
aration of one of the interacting subsystems. Indeed,
according to Eqs. (3) and (4), any possible algorithm of
reduction is equivalent to the change (t)  (t) ⊗

(t) = (t), i.e., to an approximate representation of
the closed quantum system as two quasi-independent
subsystems with known dynamics, or to transition to a
new “reduced” closed system with the density operator

(t). Does the reduction algorithm (i.e., the corre-
sponding change) correspond to the initial assumption
that the quantum system is closed? Or in mathematical
terms: What error is introduced to the assumed exact
state (t) under the change (t)  (t)?

The Neumann reduction algorithm obviously
includes the following physical inconsistency. On the
one hand, the quantum system is considered closed. On
the other hand, the state of an unobservable subsystem
is implicitly considered stationary and is specified by
the infinite temperature. To closely approximate (t)

to (t), the reduction algorithm can be improved by the
following two methods:

(i) to physically justify the postulated state of the
unobservable subsystem in each particular case (ther-
mostat in the quantum relaxation theory [9, 10]; one of
the eigenstates in the theory of quantum nondemoli-
tion measurements of photons [16, 17]; or a certain
physically appropriate state) and to use one of Eqs. (3)
and (4);

(ii) to use the self-consistent successive approxima-
tion procedure to find the correlated density operators
of the subsystems from Eqs. (3) and (4) with the zero
approximation, e.g., in the form of the reduced Neu-
mann density operators of the subsystems [14, 15].

The second method is mathematically general but is
often physically excessive. However, in any case, the

ρ̂

ρ̂f' t( )

ρ̂fmin

ρ̂f t( ) P̂fn

ρ̂ ρ̂a

ρ̂f ρ̂R

ρ̂R

ρ̂ ρ̂ ρ̂R

ρ̂R

ρ̂
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state (density operator) of an observable subsystem cor-
relates with the state of an unobservable subsystem. In
the standard Neumann reduction, it implicitly corre-
lates with the maximally incoherent state (with zero
quantum coherence!) of an unobservable subsystem,
and, therefore, the reduction decoherence of an observ-
able subsystem is postulated. The Neumann reduction
algorithm is more justified if the properties of an unob-
servable subsystem are close to macroscopic and its
state can be specified by high (infinite) temperature.
However, in experiments, where both subsystems of a
closed system are substantially quantum, it is necessary
to take into account their correlation.

Let us discuss the possible manifestation of the cor-
relation between the subsystems in the known experi-
mental scheme of resonator QED. These experiments
(see review [6]) study the dynamics of individual Ryd-
berg atoms flying through the high-Q resonator whose
eigenfrequency (ω) is in resonance with the transition
between two neighboring Rydberg levels, excited and
ground. The probability of observation of an atom in a
certain state (excited or ground) is measured as a func-
tion of the properties of the electromagnetic field in the
resonator, the time τ of flight of an atom through a res-
onator, the initial state, and the atomic flux intensity. In
a high-Q resonator, the energy change between the
atom and the photon field occurs during time interval τ.

These experiments are described by the exactly
solvable Jaynes–Cummings model of a closed quantum
system of a two-level atom interacting with the reso-
nant single-mode quantized field in the rotating-wave
approximation [18–20]. The model corresponds to the
physical case where the source of the electromagnetic
field in the ideal resonator is turned off at the time
(taken as t = 0) when the atom enters the resonator and
the nonstationary energy exchange between the atom
and resonator field is considered. It is convenient to
present the qualitative model results for a case where
the atom entering the resonator is in the excited state. In
this case, the probabilities of observing the atom leav-
ing the resonator in the excited and ground states are
determined as [6, 21]

(5)

where p(n) is the probability that the resonator field
includes n photons at t = 0, Ω = Ω0 is the Rabi quantum
frequency corresponding to the frequency of atomic
inversion oscillations in the vacuum (n = 0) resonator

field, and Ωn = Ω  is the corresponding Rabi fre-
quency in the n-photon field. It is seen that, if p(n) is a
smooth function, n-photon contributions to Eq. (5) are
dephased with increasing τ. As a result, the probabili-
ties that the atom is in the excited and ground states are
equal to each other, Pe(τcol) . Pg(τcol) . 1/2; i.e., the
atomic inversion exhibits quantum collapse [22]. If p(n)

Pe τ( )
Pg τ( ) 


 1

2
--- p n( ) 1 Ωnτ( )cos±[ ] ,

n 0=

∞

∑=

n 1+
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has a sharp maximum for n = , which makes the basic

contribution of the form p( )[1 + cos(Ωτ )] to
Pe(τ), Pe(τ) can undergo periodic oscillations with the

period τrev = 2π/Ω  of the inversion revival [23].
Experiments on the observation of revival [21] are
described under the assumption that the initial number
of photons in the resonator obeys the Poisson distribu-

tion p(n) = exp(– )( /n!) with the mean number 

and standard deviation . This distribution corre-
sponds to two physically different states of photon
field: a coherent state with the density operator 
= |α〉〈α|  and the statistical mixture

where  = |α|2 in both cases [24]. According to Eq. (5),
the calculated dynamics of atomic inversion is indepen-
dent of the quantum coherence of field. It is this loss of
the dependence of atomic inversion on the coherence
properties of the field that represents the reduction
decoherence discussed in the model under consider-
ation. We emphasize that the complete decoherence of
the atom does not occur for the initial coherent field
state . The quantum coherence of the atom
(dipole transition moment) is not identical zero [6, 23],
but it is unobservable (immeasurable) in experiments
with individual atoms.

In the experimental scheme under consideration
with  @ 1, the interaction with a single atom in a rel-
atively short time cannot change considerably the ini-
tial state of the photon field in the resonator. Therefore,
the calculation of the reduced operator in the approxi-
mation of the stationary initial state of the field, rather
than in the standard approximation of the infinite field
temperature, is physically justified. Thus, the first
method of improving the reduction algorithm for the
atomic inversion dynamics will be used.

It is convenient to use the known solution of the
Jaynes–Cummings resonant model [18, 19] in the form

of the evolution operator  determining the dynam-

ics of the closed system [15, 25] as  = (t)( (0) ⊗

(0)) (t), where (0) and (0) are the initial den-
sity operators of the atom and field, respectively. Let
the atom initially be in the excited state and the field in
the state (0) or (0). In this case, calculating first

the density operator of the system (t) and then the
density operator of the atom (reduced by the standard
way) (t) = Trf (t) and writing the diagonal elements
of the latter, one obtains the known result (5).

In contrast, we perform reduction according to
Eq. (3) assuming that the field is either in the stationary

n

n n 1+

n 1+

n nn n

n

ρ̂fc 0( )

ρ̂fm 0( ) α 2–( ) α 2n/n!( ) n| 〉 n〈 | ,
n 0=

∞

∑exp=

n

ρ̂fc 0( )

n

Û t( )
ρ̂ t( ) Û ρ̂a

ρ̂f Û
t ρ̂a ρ̂f

ρ̂fc ρ̂fm

ρ̂

ρ̂a ρ̂
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coherent state (0) or in the statistical mixture state

(0). Then, the respective probabilities that the atom
is in the ground state are equal to

(6)

where

and the additional subscripts c and m indicate that
reduction is performed in the approximation of the
respective initial field states.

The figure shows the characteristic probabilities
Pg(τ), Pgc(τ), and Pgm(τ) demonstrating qualitative dif-
ferences in the calculated inversion dynamics that are

ρ̂fc

ρ̂fm

Pgc τ( )
pgm τ( ) 


 sc τ( )/ cc τ( ) sc τ( )+[ ]

sm τ( )/ cm τ( ) sm τ( )+[ ] ,



=

cc τ( ) α 2 m n+( )

m!n!
-------------------- ωτ m n–( )[ ]cos

m n, 0=

∞

∑=

× Ωτ m( ) Ωτ n( ),coscos

sc τ( ) α 2 m n 1+ +( )

m!n! m 1+ n 1+
----------------------------------------------- ωτ m n–( )[ ]cos

m n, 0=

∞

∑=

× Ωτ m 1+( ) Ωτ n 1+( ),sinsin

cm τ( ) α 4n

n!( )2
------------ Ωτ n( ),cos

2

n 0=

∞

∑=

sm τ( ) α 4n 2+

n! n 1+( )!
------------------------- Ωτ n 1+( ),sin

2

n 0=

∞

∑=

Probabilities of the observation of an atom in the ground
state vs. the duration τ of its interaction with a resonator
field: Pg for the standard reduction, Pgc in the approxima-
tion of a given coherent field in reduction, and Pgm in the
approximation of a given field in the state of incoherent sta-
tistical mixture. Parameters are |α|2 = 100, ω = 0.1, and Ω =
0.01.

P
g(

τ)
, P

gm
(τ

),
 P

gc
(τ

)
Pgm

Pg

Pgc
caused by the use of an approximation of a given field
in a reduction. It is seen that if a field is assumed to be
in the statistical mixture state (0), the computa-
tional result differs from the standard result (5) only by
a small weakening of the quantum collapse, i.e., by a
retarding of the decrease in the amplitude of Rabi oscil-
lations. This result is qualitatively clear: the implicit
assumption about the infinite field temperature in the
traditional reduction increases the relative weight of
components Ωn whose frequencies are far from the fre-
quency of the  component. Therefore, their dephas-
ing is accelerated and the population inversion collapse
proceeds rapidly.

The inclusion of field coherence in reduction leads
to a qualitatively new inversion dynamics. Beats appear
due to (as follows from Eqs. (6)) the superposition of
oscillations that are additional to Ωn, have frequencies
nω, and characterize n-quantum components of a
coherent field. These beats result from quantum inter-
ference between the amplitudes of atomic transition
probabilities under the action of coherent n-photon
field components. For the statistical incoherent mixture
of photons Pgm, the transition probabilities are summed
in Eq. (6). For the coherence field Pgc, the transition
probability amplitudes are summed.

Thus, the presence (or absence) of inversion beats in
experiments conducted in the scheme of resonator QED
[6] for a coherent field would provide an answer to the
fundamental question of whether the decoherence
exists in reduction or the subsystems correlate with
each other, or, in other words, whether the Neumann
compuational rule for the reduced density matrix of an
observable subsystem is generally valid or the condi-
tion for correlation between subsystems (3) and (4)
must be used in reduction.
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The problem of simulating the energy state of a relativistic charge in the field of a circularly polarized plane
wave and longitudinal magnetic field in a medium with the refractive index k ≠ 1 is analyzed. The classical
description of the interaction reduces to the integration of the Maxwell–Lorentz equation. The presence of a
medium leads to qualitative changes in the charge dynamics. An exact analytic representation of the energy of
an ensemble of relativistic charges as a function of the average flight coordinate  is obtained for k = 1. More-
over, the asymptotic approximation for k ≠ 1 is constructed in the first approximation in µ = 1 – 1/k2 by the Van
der Pol method. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.50.De

z

Relativistic motion of charged particles in electro-
magnetic fields has long attracted interest from both
physical and mathematical viewpoints [1, 2]. The clas-
sical description of motion of a charge reduces to the
integration of the equation

(1)

In this work, we give a Fourier-series representation for
a solution of Eq. (1) for a circularly polarized plane
wave in a magnetic field in a medium with the refractive
index k that differs slightly from unity. Up to now, solu-
tions have been found for k = 1 [3] and for particular
resonant cases [4]. This work aims to find all possible
solutions to Eq. (1) as functions of laboratory time t and
flight coordinate z. The problem is considered in the
approximation of a given field, and the wave magnetic
field is taken into account.

Formulation of the problem. Equation (1) of
motion of a charge is solved in the region z > 0 for arbi-
trary initial conditions

(2)

where the dot over a symbol means the derivative with
respect to the proper time τ and β0 = (βx0, βy0, βz0) is the
initial velocity of the particle. The fields of the wave
and axial magnetic field are specified as

m0 ẋ̇µ
e
c
-- ẋνHµν.=

ẋ0 cβx0γ0, ẏ0 cβy0γ0,= =

ż0 cβz0γ0, γ0 1/ 1 β0
2

–( )
1/2

,= =

A
cE0

ω
-------- ωξ ψ0+( )isin g ωξ ψ0+( ) jcos–[ ] ,–=

E = 
1
c
---A' ξ( ), H–  = H0k

1
β f c
--------n E, ξ×–  = t

z
β f c
--------,–
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where H0 is the amplitude of the constant magnetic field
(of arbitrary sign), g = ±1 is the wave polarization, ω is
the frequency, E0 and ψ0 are the amplitude and initial
phase of the wave, and βf = 1/k is the phase velocity. In
what follows, we replace z, t, ε, cx, cy, , , , and τ
by the respective dimensionless variables

Solutions as functions of z and t with respect to an
observer at rest are of practical interest. We use the dif-
ferential transition formula

where α = γ(1 – βzβf) = const is the energy–momentum
integral.

Thus, the Cauchy problem for Eq. (1) reduces to the
integration of the oscillator equation

(3)

with initial conditions (2). Here,
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Energy m0c2g as a multivalued function of z.
Energy or relativistic factor γ is a multivalued function
of z; i.e., there are βx0, βy0, βz0, ε, ω0/ω, βf, and ψ0 values
such that several γ values correspond to certain points
on the z axis at different times. Therefore, the analytic
and numerical solution for γ as a function of z can be
obtained only in sections where this function is single-
valued. In other words, a charge in the field of a circu-
larly polarized wave and a constant magnetic field can
be stopped in the z direction. Moreover, the charge can
be trapped by the wave at βf = 1 and move on the toroi-
dal surface [5]. The manifold of the input parameters is

determined from the condition  = 0 and relation  +

 +  = c2(γ2 – 1):

(4)

The surface specified by manifold (4) in the space of
input data separates the regions of single-valued and
multivalued solutions.

Phase portrait of Eq. (1). To determine γ as a func-
tion of z, we reveal the effect of the medium or param-
eter µ on the phase portrait of Eq. (1). Volodin et al. [6]
showed that Eq. (1) is equivalent to the equation

(5)

where P4(γ, µ) is a fourth-order polynomial of γ. Figure 1
shows the three-dimensional phase portrait of Eq. (5)
for the given parameters βx0, βy0, βz0, ε, ω0/ω, ψ0, and
g = 1. As is seen, the amplitude of γ oscillations
increases sharply at µ ≈ 0. This means that one can
select a medium with properties such that the charged
particle interacting with the electromagnetic wave
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ż ẋ2
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γ̇2
P4 γ µ,( )+ 0,=

Fig. 1. Phase portrait of Eq. (5) with the parameters βx0 =
βy0 = 0.2, βz0 = 0.958, ε = 0.66, ω0/ω = 0.84, ψ0 = 1.5, and
g = 1.
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acquires energy. In contrast, it is difficult to practically
realize the cyclotron-resonance condition δ = 0 [7],
because any small perturbation of the input data gives
rise to a periodic solution.

The phase portrait shown in Fig. 2 for the wave
polarization g = –1 differs from the above case. There
is a region of positive µ values, where the particle inter-
acts weakly with the wave in spite of strong initial
swirling.

To determine phase surface, it is sufficient to solve
algebraic equation (5) with respect to , γ, and µ. The
phase portrait provides the amplitude and energy values
upon changing in the properties of the medium without
solving the differential equation.

Stable orbits and bifurcation values of the refrac-
tive index. Equation (5) describes oscillations of the
conservative system and can be analyzed within the
framework of bifurcation theory [8]. We aim to find the
set of the input parameters for which energy is, possi-
bly, maximal.

Stable orbits are determined from the cubic equation

It is convenient to find the roots in the trigonometric
form. The number of real roots is determined by the
signs of the discriminant

and quantity µs – δ2. Three real roots exist at D ≤ 0 and
µs – δ2 < 0, and one real root exists at D > 0 and
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Fig. 2. Phase portrait of Eq. (5) with the parameters βx0 =
βy0 = 0.1, βz0 = 0.9, ε = 0.8, ω0/ω = 1.9, ψ0 = 0.5, and
g = −1.
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µs − δ2 < 0. For µs – δ2 > 0, the single regular stable
real root is found from the relation

(6)

Some roots are obviously singular in the limit µ  0.

According to [8], the bifurcation points are deter-
mined from the general solution to the set of equations

(7)

Since δ and s depend on µ, the bifurcation refractive
index k = 1/βf is sought numerically. In particular,
Eq. (7) for βx0 = βy0 = 0.2, βz0 = 0.958, ε = 0.66, ω0/ω =
0.84, and ψ0 = 1.5 has two bifurcation points k1, 2 =
1.000017598 and 1.054951067. The amplitude of
energy oscillations at the point k1 is higher than the ini-
tial value γ0 = 21.14774672 by a factor of 150. Figure 3
shows energy γ as a function of proper time τ and βf.

Method of solution. Equation (3) describes oscilla-
tions of the conservative system. The exact analytic
solution is unknown. An approximate solution is con-
structed by the Van der Pol method of averaging [9]
under the assumption that the parameter µ is small. We
also assume that there is ε > 0 such that bifurcation
points are absent in the interval –ε < µ < ε. More
exactly, we expand γ into an asymptotic series near reg-
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Fig. 3. Particle energy as a function of time ωτ and param-
eter βf.
ular root (6). To a first approximation, the periodic solu-
tion to Eq. (3) has the form

(8)

where

α0, s0, and δ0 are the coefficients α, s, and δ at µ = 0, and
Jn are the integer-order Bessel functions. To the factor
µ, the oscillation period in z is given by the formula

Fourier-series solution (8) was constructed by using the
known relation

where ν = η – σsinη. Representation (8) is invalid at
the points of splash (bifurcation) and multivalence of γ.
The choice of µ is determined by the cylinder-like
phase surfaces of Eq. (5) (see Fig. 2).
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The solution as a function of the laboratory time t is
constructed similarly:

Ensemble of charges at m = 0. Solution (8)
describes the energy of one charge as a function of z. To
describe the energy of an ensemble of noninteracting
relativistic charges, we use the “electron-ring” model:

The problem reduces to the search for the quantity

as a function of . The necessary solutions are deter-
mined from Eq. (3) at µ = 0:

(9)

The period of ensemble oscillations is equal to  =

2(  – α0)π/δ0. The solution at µ ≠ 0 is derived similarly
to Eq. (9) but is not present in this short report.

The above analysis reveals a complex behavior of a
relativistic charge in the system consisting of the wave
and a magnetic field. The charge can acquire consider-
able energy in a medium whose properties are close to
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vacuum. The spike (bifurcation) in energy upon chang-
ing the refractive index of the medium is associated
with the presence of the parameter µ in higher powers
of the polynomial P3(γ, µ). Indeed, the effect disappears
at µ = 0.

Only several terms of the solution in the form of
Fourier series (8) and (9) can be taken into account due
to the exponential decrease in coefficients. In the sec-
ond approximation constructed by the averaging
method mentioned above, higher harmonics with
unwieldy coefficients appear. We emphasize that for-
mula (8) is exact at µ = 0.

Since energy γ is a multivalued function of z, the
applicability of numerical methods to Eq. (1) is
restricted. The method developed above can be gener-
alized to nonuniform periodic magnetic fields.

We are grateful to B.S. Luk’yanchik for discussions
and valuable remarks.
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A new class of solitary solutions for a wave field is found. This class describes soliton-like structures of a circularly
polarized radiation that propagate in a nonresonance medium and which involve an arbitrary number of field oscil-
lations. A feature peculiar to these solutions is that they undergo a smooth transformation from solitons of the
Schrödinger type, which correspond to long pulses involving many oscillations, to extremely short visible pulses,
which, in fact, do not extend beyond one period. Realizability of such soliton structures is considered for a field
of linear polarization, and their structural stability is shown numerically. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Tg
1. Soliton solutions to nonlinear wave equations are
of general interest since they belong to basic elemen-
tary structures playing a fundamental role in nonlinear
physics [1]. At present, advances made in the realm of
laser technologies make it possible to perform experi-
mental investigations into the processes of nonlinear
interaction between matter and electromagnetic pulses
of duration equal to a few periods of optical oscillations
[2–4]. The possibility of soliton modes of propagation
of such extremely short field pulses in various nonlinear
media [5, 6] is one of the most important and interesting
questions in this connection. A theoretical analysis of
physical phenomena arising in such interactions is
complicated by the fact that the well-developed nonlin-
ear-optics formalism employing the approximation of a
slowly varying wave-field amplitude is inapplicable
under the conditions of extremely short pulse durations.
In order to describe the evolution of a field in this case
correctly, it is necessary to use wave equations describ-
ing the dynamics of the field in a pulse as a discrete unit
without recourse to a scale separation into a slowly
varying envelope and a high-frequency filling. In the
present study, the propagation of electromagnetic
pulses in a nonresonance medium is considered in the
reflectionless approximation, this consideration being
performed for an arbitrary number of field oscillations
in a pulse. It is shown that there exists a new class of
exact solitary solutions describing a nonlinear propaga-
tion of wave pulses whose envelope has a soliton struc-
ture, which, however, includes a finite number of field
oscillations. An appealing feature of these solutions is
that there is an uninterrupted connection between them
and Schrödinger-type soliton solutions, which makes it
possible to trace a transition from Schrödinger solitons
to visible pulses involving less than one period of opti-
cal oscillations.
0021-3640/03/7805- $24.00 © 20276
2. As a starting point, we will employ a vector wave
equation in the reflectionless approximation, which is
extensively used in describing the nonlinear dynamics
of extremely short pulses containing a small number of
optical oscillations. In this approximation, where it is
assumed that variations in field distributions are small
over scales commensurate with characteristic wave-
lengths, the reduced wave equation for a nonresonance
medium can be represented in the form (see [6])

(1)
where z is the coordinate along the direction of pulse

propagation and τ = t – z /c is the time in the coor-
dinate frame comoving with the pulse, εo and c being,
respectively, the static dielectric permittivity of the
medium and the speed of light in a vacuum. Equation (1),
which is the simplest one in its class, includes both a
nonlinear low-frequency dispersion (n) and an inertia-
free nonlinearity of the Kerr type (g, h; see, for exam-
ple, [7]). In particular, it describes the propagation of
extremely short pulses in optical fibers in the region of
anomalous dispersion [8], as well as their self-interac-
tion in an ionized gas, where a plasma dispersion is
more pronounced than a gas dispersion, which is asso-
ciated with neutral particles [9]. It is worth noting that
the wave equation in the form (1) disregards the high-
frequency dispersion of the medium; this corresponds
to the assumption that the spectrum of the optical pulse
being considered lies rather far off the zero-dispersion
point, entirely falling within the region of anomalous
dispersion. It should also be noted that, for resonance
media, fundamental equations based on the model of a
two-level medium and an analysis of corresponding
wave fields are given in [10–12] (see also [5] and refer-
ences therein).
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It can easily be shown that by introducing a high-
frequency filling the original equation (1) is reduced to
a nonlinear Schrödinger equation for a slowly varying
field amplitude.

In the following, we consider the propagation of
laser radiation in a medium characterized by an elec-
tric-type nonlinearity, where h = 2g/3. Using the scale
invariance of Eq. (1), we then write it in terms of the
projections (E = exEx + eyEy) onto relevant axes in
dimensionless variables; that is,

(2)

Here, ex and ey are unit vectors along the x and y axes of
a system of Cartesian coordinates, while Ex and Ey are
the corresponding projections of the electric-field vec-
tor. From (2), it follows that, for localized field distribu-
tions, the following integral relation holds:

(3)

It expresses the absence of an average field and indi-
cates that solutions have an oscillating character. Con-
sidering that the group and phase velocities of waves
may be different, we represent solutions to Eq. (2) in
the form

which describes the evolution of a circularly polarized
field. For the amplitude a(z, τ) of the wave field being
considered and its phase ϕ(z, τ), we then obtain the set
of exact equations

(4)

(5)

where a subscript on a quantity denotes its partial deriv-
ative with respect to the corresponding argument.
Assuming that the envelope of the field propagates at a
constant velocity, we seek solutions in the form

(6)

(7)

where ξ = τ – γz. The local frequencies and wave vec-
tors are defined as ϕτ = ω + g(a) and ϕz = –k – γg(a),
respectively. Substituting the above relations into
Eq. (5) and defining ω as the carrying frequency of the
signal in the limit of small amplitudes—that is,
g(a)  0 for a  0—we find that g(a) = ωa2(3γ –
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2a2)/2(γ – a2)2, k = –γω, and for the phase of the field
we eventually obtain

(8)

Thus, we see that not only may a field pulse contain a
finite number of oscillations, but it must also be phase-
modulated—that is, contain a frequency chirp of a
rather complicated shape, in general, ϕτ ~ g(a). Equa-
tion (4) for the amplitude then takes the form

(9)

Here, we have introduced the variables η = ωξ and u =
a/γ1/2; as one can easily see, the family of soliton-like
solutions is one-parameter in this case—that is, it
depends on the parameter δ2 = 1/γω2 – 1 > 0. The first
integral of Eq. (9) has the form

(10)

where C is a constant of integration; it is equal to zero
for localized field distributions. In accordance with this,
solutions to this equation can generally be represented
only in quadratures. However, the possible types of
solutions can easily be analyzed in the phase plane,
where the phase trajectories of (10) are symmetric with
respect to the u = 0 axis. Restricting our consideration
to the half-plane u ≥ 0 we can see that Eq. (9) has four
equilibrium states—three centers and a saddle point at
the origin of coordinates—which are separated by the

singular straight lines u = 1/  and u = 1. The structure
of the phase plane depends greatly on the parameter δ.
A closed saddle separatrix (C = 0) existing only for δ2 ≤

 = 1/8 and including one or two equilibrium states of
the center type corresponds to soliton solutions in
which we are interested. For δ2 < 1/8, it includes the
closest equilibrium state, and a typical phase plane cor-
responding to this case is displayed in Fig. 1a. For these
parameters, the maximum amplitude of a soliton is

bounded from above,  < 1/3, and its dependence on
the root-mean-square duration defined as
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is presented in Fig. 1b. For  ! 1, one can integrate
Eq. (10) and represent its approximate solution in the
implicit form

(11)

This approximate solution describes field dynamics to
a rather high degree of precision everywhere up to δ ≈
δc, with the exception of the limiting value itself. Figure
1c shows characteristic oscillograms of the fields that
correspond to the exact and approximate soliton solu-
tions at δ = 0.32 that include about one period of optical
oscillations. As can be seen, these solutions are rather
close, their maximum deviation being less than 3%.

At δ2 = 1/8, the separatrix trajectory changes quali-
tatively and, in view of the removal of the singularity at
u2 = 1/3, includes two equilibrium states (see Fig. 2).
This separatrix solution can be referred to as a limiting
soliton corresponding to the minimum possible dura-
tion, including, as a matter of fact, less than one period
of oscillations (τs min = 1.84), and, accordingly, to the

maximum possible amplitude  = 2/3. The corre-
sponding exact solution has the same functional form
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as (11), but it describes a soliton of maximum possible
energy:

(12)

For δ2 > 1/8, the closed separatrix trajectory becomes
disconnected, which suggests the absence of localized
solutions.

Let us now establish connections between the solu-
tions obtained above and the well-known solitons of the
envelope that exist in the case of the nonlinear
Schrödinger equation (NSE) and its generalizations [1,
13]. The duration of the localized field distributions
found here (see Fig. 1b) is approximately in inverse
proportion to their amplitudes; therefore, a transition to
long quasimonochromatic pulses containing many
oscillations occurs at small amplitudes, u2 ! 1/3; as fol-
lows from Eq. (10), this takes place for δ2 ! 1/9. In this
case, Eq. (10) reduces to an equation for finding NSE

solitons,  = u2(δ2 – u2/2), which has the fundamental

Schrödinger soliton u(η) = δ/cosh(δη) among its
solutions. As the amplitude is increased, the duration of
the soliton decreases, with the result that processes
associated with the dispersion of group velocities of
various frequency components begin to play an ever
more important role, and this affects, first of all, the
phase-modulated structure of the pulse in Eq. (8). Its
amplitude dependence then transforms into solitons of
a generalized nonlinear Schrödinger equation [14],
which, as can easily be found from (10) by expanding
relevant polynomials and retaining next-order terms,
have the form

(13)

As the amplitude is increased further, the soliton dura-
tion becomes commensurate with the period of optical
oscillations; as a matter of fact, this imposes, in accor-
dance with the integral in (3), an upper bound on admis-
sible values of the field, which is reflected in the exist-
ence of a limiting soliton solution. Thus, we can con-
clude that there is an uninterrupted connection between
the soliton structures of the wave field that were found
in the present study and soliton solutions of the
Schrödinger type; owing to this, we can trace a transi-
tion from solitons of the envelope of quasimonochro-
matic radiation to optical visible solitons.

3. It is of interest to consider the question of whether
the soliton structures of a wave field that were found
above are implementable in the important particular
case of linearly polarized radiation. For a linearly polar-
ized field E = exE, Eq. (2) assumes the form
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As is well known, the main distinction between the
nonlinear dynamics of a linearly polarized field and that
of a circularly polarized field is that the spectral com-
position can be enriched faster for the former, this con-
cerning, above all, odd harmonics owing to a cubic
character of nonlinearity. In the dispersive medium
considered here and described by Eq. (14), however,
the conditions of wave synchronisms for a resonance
excitation (including a nonlinear excitation) of spectral
harmonics of field components are not satisfied, as can
easily be proven. This statement is supported, in partic-
ular, by the results of the numerical calculations per-
formed in [8, 9], where it was found that the corre-
sponding spectral components are small in the region of
anomalous dispersion. Representing solutions to

Eq. (14) in the form E(z, τ) = (2/ )a(z, τ)cosϕ(z, τ)
and assuming that the field components at the frequen-
cies of the third harmonic (3ϕ) are small, we obtain, for
a(z, τ) and ϕ(z, τ), a set of equations that is identical to
the set of Eqs. (4) and (5) and, for a determination of
soliton distributions of the field, the same equation (9).
It follows that the above analysis of soliton solutions for
a circularly polarized field can be extended to the case
of linearly polarized fields, whose nonlinear dynamics
are expected to experience a strong influence of the
wave solitons found above. A numerical simulation that
we performed for Eq. (14) revealed that its wave-field
solitons are structurally stable formations—particu-
larly with respect to collisions—and propagate without
variation in its envelope over distances considerably
exceeding characteristic path scales: the dispersion

length Ldis ~ /∆ω (where ω∗  and ∆ω are, for exam-
ple, the characteristic central frequency and the spectral
width of the wave pulse, respectively) and the nonlin-

ear-interaction range Lnl ~ ∆ω/  (where Em is the
pulse amplitude). This fact is reflected in Fig. 3, where
the length of the propagation of a pulse that was speci-
fied at the input as a wave soliton was 400Lnl (for this

3

ω*
2

ω*
2 Em

2

Fig. 3. 
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input field distribution, the characteristic lengths Ldis
and Lnl were approximately equal at about 3 to 4). As
can be seen from the figure, the soliton field pulse in
question is a stable formation and can propagate with-
out variations in its parameters over distances that con-
siderably exceed characteristic path scales. The internal
dynamics that are seen in this case are associated exclu-
sively with variations in the phase of the field (see
Eq. (8)). We also note that, if the spectrum of the input
pulse falls within the region of anomalous dispersion,
such localized distributions of the field undergo only
slight structural changes when taking into account
high-frequency dispersion that is described by a term of
the form ∂4E/∂τ4 in Eq. (14), and this is in accord with
the numerical results of Kozlov and Sazonov [8].

Figure 4 illustrates the dynamics of a collision
between two wave solitons having different amplitudes
and identical carrying frequencies (ω = 1) in the sense
of Eq. (8). As is well known, the possibility that the
structure of solitons remains unchanged upon collisions
is one of the important properties which causes solitons
to play a fundamental role in the nonlinear dynamics of
wave processes. From Fig. 4, one can see that the soli-
ton of greater amplitude catches up with the soliton of
smaller amplitude, whereupon they pass through each
other, recovering their former distributions upon the
interaction; that is, they travel without a noticeable
energy transfer and without losses by radiation. This
result gives sufficient grounds to refer to the wave struc-
tures found here as wave solitons.

In conclusion, we would like to note that the stabil-
ity of the wave solitons considered above with respect
to collisions and an uninterrupted connection between
them and Schrödinger solitons make it possible to treat
them as basic wave-field structures whose role in the
nonlinear dynamics of wave fields is not less funda-
mental than the role of Schrödinger solitons. In partic-
ular, numerical calculations show that they appear as
stable elementary components in the dynamic process

Fig. 4. 



280 KARTASHOV et al.
through which the time compression of an originally
broad pulse to rather low durations occurs, forming, at
some stage, an extremely short pulse of a few field
oscillations that is characterized by an amplitude
exceeding the amplitude of a limiting soliton.

We are grateful to V.A. Mironov and A.M. Sergeev
for interest in this study and discussion of its results.
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Evolution of a resistive wall mode (RWM)—a magnetic field perturbation produced by a plasma and partially
stabilized by a conducting wall—is considered. It is assumed that there is a small resonant harmonic in the spec-
trum of the static error field. It is shown that the effect of this harmonic on the dynamics of stable RWMs
increases as the plasma approaches the RWM stability boundary. The error field is “amplified” during the tran-
sition through this boundary. The smaller the rotation velocity of the perturbation and the longer the time during
which the plasma stays near the stability boundary, the stronger this amplification is. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 52.55.Fa; 52.35.Bj
The theory of magnetohydrodynamic (MHD)
plasma stability operates with a notion of small (to be
precise, infinitesimal) perturbation that is “switched
on” instantly in a “perfect” equilibrium configuration
prepared beforehand. However, in real configurations,
finite-amplitude perturbations are always present. In
magnetic confinement systems, these are the so-called
error fields—weak magnetic fields related, in particu-
lar, to inaccuracy in manufacturing and assembling the
magnetic coils. Formally, these are the fields that are
not included in the idealized theoretical description of
a system. For example, a tokamak is considered to be an
axially symmetric system, although weak magnetic
fields breaking this symmetry are always present. It is
these fields that will be discussed below.

It is known that sometimes such fields with an
amplitude on the order of 10–4–10–5 of the main toroidal
field can significantly influence the plasma behavior in
a tokamak [1]. This happens when certain factors pro-
duce an unfavorable combination. What is exactly
needed for that still remains unclear because a convinc-
ing predictive theory has not yet been developed and
the experimental data are incomplete and inconsistent
[1]. This can be partially explained by the fact that
studying the error field effects requires highly precise
diagnostics and the elimination of masking factors.

In recent years, interest in the error field problem
has greatly increased in connection with DIII-D exper-
iments aimed at studying operating regimes near the
MHD stability threshold, specifically, near the plasma
pressure limit, which is one of the most important char-
acteristics of tokamaks.

¶ This article was submitted by the author in English.
0021-3640/03/7805- $24.00 © 20281
Theory and experiment show that high β values
(where β ≡ 2 /B2 is the ratio of the averaged plasma
pressure  to the magnetic field pressure B2/2) could
be achieved in a stationary tokamak if large-scale kink
modes were stabilized [1, 2]. Such stabilization could
be ensured by a highly conducting (in the best case,
ideal) wall closely facing the plasma [3]. A real wall
with a finite conductivity can completely stabilize a
mode for a period on the order of the “wall time” τw,
during which the magnetic field penetrates through the
wall. This is certainly insufficient for discharges of
interest (with a duration of hundreds of τw or longer).
The conducting wall cannot prevent the development of
kink modes over a large time interval but decreases

their growth rates to values on the order of . That is
why these modes are called resistive wall modes
(RWMs).

Recent years’ experiments in the DIII-D tokamak
were devoted to studying the physics of RWMs and
methods for stabilizing these modes [2, 4–10]. RWMs
observed in DIII-D arise at β > βno wall, where βno wall is
the ideal MHD stability limit calculated in the absence
of a conducting wall. Great success of the DIII-D
experiments was demonstrated by sustained operation
at β twice as high as the RWM instability limit [8–10].
This outstanding result was achieved when the mea-
sures already used against RWMs were supplemented
by the suppression of the above-mentioned weak (just
several gauss) error fields, or, more precisely, by their
main lowest harmonics that can “resonate” with the
closed field lines of the idealized unperturbed configu-
ration. Until the role of the error fields as a strong desta-
bilizing factor was realized, experiments on the RWM
feedback stabilization in the DIII-D tokamak yielded

p
p

τw
1–
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much more modest results [2, 4–7], though theoretical
forecasts (without account of error fields) were rather
optimistic. These forecasts actually came true, but
under conditions of error field suppression—a require-
ment that had not been theoretically predicted before-
hand.

Convincing experimental evidence that a slowly
growing or saturated n = 1 perturbation (where n is the
toroidal wavenumber) measured outside the plasma in
DIII-D was the plasma response to the static resonant
error field was presented for the first time in [6]. It was
shown that the plasma response to such a field was
much stronger for β > βno wall. The discovered effect
became an interesting new object of research [6, 8–10]
and was called “resonant field amplification” (RFA) [8–
10]. Now, it is a definitely established experimental fact
that weak error fields play an important role in the
RWM dynamics. However, a theory that could explain
the observable effects has not yet been developed.
When discussing RFA, paper [11] is usually cited.
However, the model and results of [11] (which were
recently confirmed in [12]) must be revised for reasons
which are partially explained below. Here, we propose
a different model of RFA.

The aim of this work is to analyze the error field
amplification by a plasma. Actually, we discuss here the
transition through the RWM stability boundary, in
which case the effect is most pronounced.

In the cylindrical approximation, the amplitude of
the (m, n) harmonic of the radial magnetic field pertur-
bation at the wall, Bm, is described by the equation

(1)

where τw = µ0σrwd is the above-mentioned wall time; σ,
rw, and d are the conductivity, minor radius, and thick-

ness of the wall, respectively; µ = |m|; and  is the
part of Bm that is created by all the sources outside the

shell (in the region r > rw). In general, the field  can
be time-dependent. Here, we will consider the case of a

static error field:  =  = const. For definiteness,

we assume that  > 0.

Equation (1) is a direct consequence of Maxwell’s
equations and Ohm’s law for a conducting wall and
long-wavelength perturbations (see [13] for details).
Briefly, the derivation of Eq. (1) consists in integrating
the radial component of the equation

(2)

through the wall, which is considered as a thin shell,
and substituting the perturbation Br = bm(r, t)exp(imθ –
inζ) (where θ is the poloidal angle and ζ = z/R is an
equivalent of the toroidal angle) or the sum of such har-
monics into the right-hand side of the resulting equa-

τw

∂Bm

∂t
---------- ΓmBm 2µBm

ext,+=

Bm
ext

Bm
ext

Bm
ext Bm

er

Bm
er

∂B
∂t
------- ∇ 2 B

µ0σ
---------=
tion. When deriving Eq. (1), we use explicit expressions
for bm in the vacuum regions on both sides of the wall:

(3)

for x = r/rw < 1 and

(4)

for x > 1. Here, Bm = bm(rw) and the time-dependent

complex amplitudes  and  describe the contribu-
tions to Bm(t) from the plasma and wall, respectively. In
this notation, we have

(5)

In Eq. (1), all information about the plasma is con-
tained in the parameter Γm. According to Eq. (5), this

parameter is determined by the ratio /Bm, which can
be found, e.g., by calculating the perturbation in the
plasma. In the linear theory, the radial profile bm(r) in a
plasma depends only on the properties of the unper-
turbed equilibrium configuration, thus allowing one to
consider Γm independent of Bm. The invariance of the
mode structure in the plasma (mode rigidity) with
respect to variations in Bm that are typical of experi-
ments is confirmed by both the exact MHD calculations
and the results of DIII-D experiments [7]. Note that the
exact matching of Γm to the experimental conditions is
also possible without calculations because Γm has a
simple physical meaning. It follows from Eq. (1) that

(6)

where γ0 is the growth (or damping) rate of the mode
and Ω0 is the angular frequency of its toroidal rotation.
In experiments, γ0 increases with increasing β and
passes through the point γ0 = 0 at β = βno wall. The tran-
sition through the stability boundary γ0 = 0 can also be
attributed to variations in the profile and/or magnitude
of the plasma current.

Without a plasma, we have Γm =  = –2µ, so that,

at  =  = const, Eq. (1) has a stationary solution

Bm = . The plasma changes the value Γm; hence, the
magnitude of the stationary solution also changes. At
Γm = const and ReΓm < 0 (otherwise, a stable stationary
solution is absent), we have

(7)

This equality shows that the plasma response to the
static external resonant field is stronger for smaller |Γm|.
At |Γm| < 2µ, it gives | | > , which can be regarded
as the amplification of the resonant field. The most dan-
gerous point here is Γm = 0, which corresponds to a non-
rotating mode at its stability boundary. In the DIII-D
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experiments, such modes are observed even in the pres-
ence of fast plasma toroidal rotation [4].

Large perturbations are inadmissible in experi-
ments, which necessitates the struggle with MHD insta-
bilities, first of all, with low-n modes. In this context,
the most dangerous is the region γ0 > 0. However, it fol-
lows from Eq. (7) that, even in the stability range (γ0 =

ReΓm/τm < 0), the value of  can exceed an accept-
able level. The growth of Bm at γ0 < 0 is related to the

transition to a new equilibrium state with Bm = .
Within the model at hand, this state remains stable with
respect to the considered mode, which resonates with
the error field; however, the large values of Bm imply
undesirable deformations of the plasma column and a
danger of loss of equilibrium.

It was stated in [11] (and this viewpoint was con-
firmed once again in [12]) that the magnetic field per-
turbation near marginal stability can be accurately
approximated by a stationary solution similar to that
given by Eq. (7). Formally, the “amplification factor” in
Eq. (7) can become infinite at Γm  0. However, as
|γ0| decreases, the time (~ |γ0|–1), which is required to

achieve the stationary level  from any initial ,
increases. Therefore, however slow the evolution of the
tokamak discharge might be, steady-state level (7) will
never be achieved in the immediate vicinity of the point
Γm = 0. This directly follows from Eq. (1). In other
words, at Γm  0, we must retain the time derivative
in Eq. (1) and RFA cannot be regarded as a quasi-sta-
tionary phenomenon, as was done in [11, 12].

Actually, solution (7) shows a danger of long stay in
the vicinity of Γm = 0, where the growth of Bm can pro-
ceed up to level (7) if there is enough time for that. At

Γm = 0 and  =  = const, Eq. (1) has a linearly
growing solution

(8)

Such a growth of Bm is not dangerous over small time
intervals; however, at t @ τw, it results in practically
unlimited values of Bm. For example, for the m = 2
mode at t = 25τw, which is much smaller than the dis-
charge duration in the DIII-D tokamak [8, 9], the ampli-

fication factor in Eq. (8) is 100. Let  be the maxi-
mum tolerable value of Bm. Then, the condition Bm <

 with account of Eq. (8) turns into a rather tough
restriction

(9)

At given , it sets the upper limit for ∆t (the time dur-
ing which the RWM stability boundary is crossed at
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Ω0 = 0), and, at given ∆t, it imposes a restriction on .

For example, if  = 40 , then, for the m = 2 mode,
we obtain ∆t < 10τw.

Solution (8) can be used when |ΓmBm| ! 2µ ,

which, at  = 0 in formula (8), is reduced to

(10)

If Γm evolves toward Γm = 0, condition (10) for t
becomes weaker, thus making the applicability range of
solution (8) wider. Formula (8) is valid for any Γm sat-
isfying inequality (10). This means that the amplifica-
tion of the resonant error field can be observed not only
at the stability threshold of a “conventional” RWM, but
also in the vicinity of all other zeros of Γm. An impor-
tant point in our task is the interaction of the plasma-
produced perturbation with the wall. Therefore, the
RWM should be regarded here as a generic name for all
such perturbations, including those destabilized not
only by the plasma pressure, but also by the current.

In any case, the RFA effect is the strongest when the
mode does not rotate (Ω0 = 0). The rotation of the mode
eliminates the singularity in Eq. (7) and reduces the
time t during which the linear growth of Bm is possible
(see Eqs. (8) and (10)). Note that we talk here about the
toroidal rotation frequency of the magnetic perturba-
tion, which can be measured by magnetic probes. In
DIII-D experiments, the observed RWM frequency was
substantially lower than the plasma rotation frequency
Ωp. According to [4], the experimentally observed tor-

oidal rotation is such that Ω0 ~  ! Ωp, starting from
the RWM onset.

Equation (1) is a consequence of Maxwell’s equa-
tions and Ohm’s law for the conducting wall; therefore,
it contains only the wall parameters (τw) and the char-
acteristics of the perturbed magnetic field. In [11], the
problem is formulated in other terms—certain parame-
ters s and α, which are related to γ0 and Ω0 in a rather
complicated fashion even in the cylindrical model.
Probably, it is for this reason that the following obvious
contradiction was not noticed in [11]: at s = 0, which,
by definition, is the stability boundary in [11], γ0 ≠ 0 if
Ω0 ≠ 0. As a consequence, in [11] the position of the
strongest RFA is displaced relative to the point γ0 = 0
along the γ0 axis. The coincidence takes place only at
s = α = 0; however, in this case, one must use equality (8)
instead of an absolutely unattainable solution (similar
to Eq. (7)) that was proposed in [11].

The Bm value given by formula (8) becomes a “seed”
amplitude of an unstable RWM after crossing the RWM
stability threshold. The smaller this value, the better.
Relationships (7)–(9) show three opportunities to
oppose the growth of the seed perturbation Bm as the
RWM instability region is approached: the sustainment
of the mode toroidal rotation (not the plasma rotation!),

Bm
er

Bm
tol Bm

er

Bm
er

Bm
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Γmt  ! τw.

τw
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the fast crossing of the subthreshold zone in the imme-
diate vicinity of the point γ0 = 0, and the reduction

of .

It is rather difficult to completely eliminate . Let
us assume that two other means allowed us to enter the
area β > βno wall (more precisely, γ0 > 0) keeping the
value Bm small. Further progress toward larger β
requires RWM stabilization. Let us consider the feed-
back system of RWM stabilization, which produces a
control signal

(11)

where Kd and Kp are constants. Substituting

(12)

into Eq. (1), we arrive at the equation

(13)

which differs from Eq. (1) in coefficients only (recall

that  = – 2µ). All the above said about the conse-

quences of Eq. (1) at  =  is also valid for the

solution of Eq. (13) if  ≡ (1 + 2µKd)τw ≠ 0. Instead of
Eq. (7), we obtain in this case

(14)

which still keeps a danger of RFA, but now near a new
threshold, where the mode becomes unstable at a given
operation algorithm of the stabilizing system, described
by Eq. (11). To suppress the unstable nonrotating mode,

it is sufficient to make zero the quantity Γm/  + Kp,
more precisely, to make it slightly positive. Then, the
“amplification factor” in Eq. (14) will obviously be

larger than unity, going to infinity at Γm/  = –Kp. The
growth of Bm at the RWM stability boundary under
active stabilization of the mode is described by formula
(8), where we must substitute  instead of τw.

Thus, the danger of RFA requires the fast crossing
of the RWM stability boundary (accordingly, the high
heating power) and large gain factors of the feedback
system for active stabilization of RWMs. The mode
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rotation eliminates the possibility of the unlimited
amplification of the resonant field. If the rotation could
be controlled and mode locking [1] could be avoided,
this rotation would be an effective means of RFA sup-
pression at |nΩ0τw| ≥ 2µ. However, in the DIII-D toka-
mak, the RWM appears as a stationary mode, which is
clearly seen from magnetic measurements [4]. Besides,
as it is believed now, the thresholds for mode locking
will be lower in larger tokamaks [1]. Therefore, the
only radical means of struggle with RFA is the reduc-
tion of the error field, which is the basic reason of RFA.

It follows from Eqs. (1) and (13) that, at  ≠ 0, it

is impossible to achieve a state with  = 0. Even at a

very small value of  and, accordingly, small growth
rate of Bm in Eq. (8), strong amplification of the error
field is possible if the discharge evolves slowly. There-
fore, the error field problem demands special attention
in projecting stationary tokamaks.

The author is grateful to Yu.V. Gribov and
V.S. Mukhovatov for bringing his attention to the prob-
lem and encouraging the study, N.V. Ivanov for the sup-
port, and V.D. Shafranov for the discussion of the
results obtained and useful recommendations.
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The mechanism of second harmonic generation in the presence of intense-radiation SBS in plasma is consid-
ered under the condition that the incident beam has no time for filamentation. The mechanism is based on the
formation of low-frequency plasma-density perturbations that are optimal for this effect in the field of scattered
waves. The theoretical calculations are compared with the experimental data. © 2003 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 52.38.-r; 42.65.Ky
From the very outset of inquiries into nonlinear phe-
nomena, much attention has been given to the harmonic
generation for an intense fundamental (pump) wave
Eω = exp[–i(ωt – kr)] (ω is fundamental frequency
and k is wave vector) propagating in nonlinear media.
This problem is of considerable interest both as a pos-
sible method of generating shorter-wavelength radia-
tion and for diagnostic purposes, because it aids in
gaining information both on the substance of interest
and on the processes occurring in it under the action of
strong electromagnetic fields. To date, many mecha-
nisms of this phenomenon have been proposed; various
theoretical models have been developed; and many
experimental results are now available. It has become
clear as early as in pioneering works [1] that, in the
electric dipole approximation, only odd harmonics can
be generated in homogeneous isotropic centrosymmet-
ric media. Simultaneously, the entire spectrum of odd
harmonics in a dense plasma with “collisional” (dissi-
pative) nonlinearity [2] was obtained (see also [3]).

Interest in harmonic generation has quickened in the
latter half of 1980s in connection with experiments
(see, e.g., [4]) on the action of intense subpicosecond
laser pulses on rarefied gases, in which a broad spec-
trum of odd harmonics was generated. These results
were interpreted both with the simplest classical atomic
model [5, 6] and using a more rigorous semiclassical
consideration of electron scattering by its own ion with
allowance for the electron optical tunneling in a strong
laser field [7]. The problem of such harmonics was also
studied in plasma with relativistic nonlinearity [8].

At the same time, in anisotropic or inhomogeneous
media, even harmonics can also be generated. For
instance, in plasma with a sharp and strong concentra-
tion change induced by the striction force of a high-
intensity laser wave in the critical (relative to pumping)
density region, an all-harmonic (even and odd) spec-
trum was calculated in [9]. In this case, the mechanism
of harmonic radiation can likely be interpreted as a cer-

Eω°
0021-3640/03/7805- $24.00 © 20285
tain analogue of the transient radiation of particles
moving with varying (oscillating) velocity. We finally
note that this effect can be significantly amplified in
nonlinear parametric harmonic generation if the transi-
tion frequency between the molecular energy levels in
the medium coincides with the harmonic frequency
[10].1 

As a rule, first harmonics are observed and analyzed
more easily, because they are induced by low-order
nonlinearities. This is also true, in full measure, for the
second harmonic of a radiation propagating in plasma,
which is considered in this work.

In the case of a homogeneous plasma with density
N0, the nonlinear current appearing at the frequency 2ω
can readily be determined from the hydrodynamical
equations using the well-known relations for the opera-
tor ∇ , j2ω = (–ieN0/8ω)∇ (VωVω) (Vω = ieEω/mω is the
electron oscillation velocity in the field Eω; cf. [11]); it
is a purely potential quantity (curlj2ω ≡ 0) and, thus,
cannot produce transverse waves. However, this is pos-
sible in an inhomogeneous plasma, in which, neverthe-
less, the detuning of the first and second-harmonic
wave vectors from the well-known phase-matching
condition should be taken into account (due to the dis-
persion of electromagnetic waves in plasma, k(2ω) ≠
2k(ω)). For this reason, the second harmonic can be
efficiently generated in those regions where the semi-
classical approximation (valid if the plasma density
varies slower than the wavelength) breaks and the
phase-matching conditions become less significant [12,
13]. In plasma, these are the regions of (pump) wave
reflection points and critical density. The decay mecha-
nism of second harmonic generation in the critical den-
sity region, where the pump wave first decays into the
plasma and ion-sound waves, whereupon the plasma
waves coalesce into a wave with frequency close to 2ω,
was considered in [14, 15]. The inhomogeneities in the

1 I am grateful to the referee for drawing attention to the cited
works.
003 MAIK “Nauka/Interperiodica”
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initially homogeneous plasma can be due to the nonlin-
ear effects, e.g., to the self-focusing instability (fila-
mentation) of intense radiation. This mechanism was
proposed in [16] and is likely confirmed by the experi-
ment [17, 18] (see also [19, 20], where the second har-
monic generation was attributed to the formation of a
region of reduced electron density (cavity) that appears
on the background of immobile ions under the action of
a ponderomotive force in the focal spot of a short and
very intense (Vω ~ c) laser pulse). Finally, second har-
monic generation caused by second-order stimulated
Raman scattering (SRS), in which the transverse and
plasma waves are produced through the decay of the
pump second harmonic (rather than the pump wave
itself) representing a stimulated longitudinal wave gen-
erated in a homogeneous plasma by the current j2ω, was
studied in [21] (see above; cf. [22], where the second
harmonic generation was studied in optically active
liquids with taking into account high-order non-
linearities).

In this work, interpretation is given to the second
harmonic generation in the experiments [23, 25] on the
stimulated microwave scattering in plasma. The plasma
concentration was virtually uniform over a large vol-
ume of (diameter) ~60 cm × (length) 300 cm, and
plasma was transparent with N0 ~ 6 × 1011 cm–3 ~ 0.5Ncr

(Ncr = mω2/4πe2 is the critical density); the microwave
(pump) pulse duration τ ~ 0.4 µs (ω ~ 6 × 1010 s–1) was
short, though not sufficient for self-focusing, and the
pulse power P0 ~ 30 MW (Vω ~ 0.01c) was far from rel-
ativistic. In those experiments, apart from the SBS, a
frequency-doubled radiation was observed, with the
maximum at the pump pulse end (see figure). The elec-

Radiation intensity transients for the (a) fundamental and
(b) doubled frequencies (intensity (b) is grossly enlarged).
tromagnetic radiation (weakly diverging beam) was
focused in plasma at a distance of ~130 cm from the
chamber entrance window. The radius of the resulting
pump caustic was a ≈ 16 cm, and its length was l0 =
ka2/2 ≈ 180 cm. The beam intensity distribution over
the caustic cross section was gaussian. In the longitudi-
nal direction, the intensity changed only slightly from
the focus (caustic center) up to the lengths ≈l0/2 in the
direction of the entrance window (it changed somewhat
more strongly in the opposite direction; cf. a similar
dependence for the self-focused gaussian beam in
[26]). Radiation at frequency 2ω was received by a horn
antenna that was placed behind the focus at a distance
of 30 cm from it and at 20 cm up from the chamber axis.
The horn was directed at 30° to this axis (denoted by the
z axis). Taking these facts into account, one can deter-
mine the attainable second harmonic intensity.

Considering that the process of second harmonic
generation is not one-dimensional and nonresonant, it
is more convenient and correct to use, especially in our

case of a moderate supercriticality (ω2/  = Ncr/N0 ~ 2,
where ωpe is the electron plasma frequency), directly
the solution to the wave equation for retarded potentials
(A; see, e.g., [27] and cf. [9, 16]), rather than the
method of reduced equations (see, e.g., [11]). Then the
magnetic field curlA2ω of the wave at frequency 2ω is
represented in the form

(1)

It can be used to determine the electric field outside the
sources

(2)

In Eq. (1), the well-known approximation to the exact
solution for the vector potential A is used for the case
that the source (I2ω) size d ! r (r is the distance to the
observation point; see below); γ is the angle between
the radius vector r and the z axis (see above); ρ, ϕ, and
z are the cylindrical coordinates (the angle ϕ is mea-
sured from the vertical direction with which the pump
electric vector Eω is aligned in the caustic region); ϕ0 is
the ϕ coordinate of the observation point; and I2ω is a
function of the nonlinear current density, for which one
can use any of the expressions

(3)

where k0 = ω/c. The first of them is evident from
Eq. (1), and the second is obtained through the transi-

ωpe
2

B2ω
e

i2k0r

cr
----------- ze

i2k0z γcos–
ρ ρ ϕd∫d∫d∫=

× I2ω z ρ ϕ t, , ,( )e
i2k0ρ γsin ϕ ϕ 0–( )cos–

.
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i

2k0
--------curlB2ω.=
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tion in the integrand of the exact solution for curlA2ω to
the operator ∇  acting on the integration variables, fol-
lowed by the use of a familiar curl integral theorem that
relates the volume and surface integrals to each other.2

By the way, Eq. (3) reflects the well-known fact in elec-
trodynamics that the curl-free current cannot produce a
curl field.

The nonlinear current density j2ω in Eq. (3) is the
sum of two terms

(4)

where nω stands for the high-frequency electron-den-
sity perturbations resulting from the continuity equa-
tion and the condition that the pump wave is transverse
(divVω = 0),3 

(5)

One can readily see that the second term in Eq. (4) for
the nonlinear current density transforms at nΩ = 0 into
the expression for j2ω in a homogeneous plasma.

It is worth noting that, in general, the rapidly oscil-
lating exponentials in the integrand in Eq. (1) greatly
suppress the contribution from the source to the fre-
quency-doubled radiation. For this reason, those cur-
rents whose structures compensate, to some extent,
these oscillations will radiate more efficiently. For
instance, at the left caustic portion closer to the bound-
ary, one has cosγ . 1 for a sufficiently long length
under the above-mentioned reception conditions,

whereas  ∝  ei2kz (k0 ≈ 1.5k for Ncr/N0 ≈ 2) under the
above-mentioned reception conditions. Because of this,
if nΩ∝  eikz(see Eqs. (4), (5)), the oscillations along z vir-
tually disappear over a considerable integration interval
in Eq. (1).4 At the same time, sinγ in the second expo-
nent in Eq. (1) is relatively small in this region. It is also
significant that the pump field in this region is more
intense and decreases noticeably along the z axis due to
a rather strong stimulated Brillouin backscattering in
the experiments [23–25]. It follows from the aforesaid
that, to estimate the radiation received at frequency 2ω
2 The integration surface is chosen so that the sources (currents) at

it can be taken to be zero.
3 In Eq. (4), the analogous terms involving electron velocity in the

field of a strong backscattered Stokes wave are omitted, because
their contribution to the frequency-doubled radiation is insignifi-
cant (see below). Note also that the relatively small difference
between the frequency of these terms and the pump frequency ω
is hereafter ignored in the notation of the corresponding high-fre-
quency quantities, because this difference is equal, by the order of
magnitude, to the reciprocal characteristic time of the low-fre-
quency plasma-density perturbations nΩ(z, ρ, ϕ, t) that are, in
fact, responsible for the SBS of the pump wave. The multipliers
1/2 in Eqs. (4) and (5) appear upon the transition to the complex
representation of physical quantities.

4 As the focus is approached, the analogous condition becomes
more restrictive, so that the length of this interval becomes
smaller.

j2ω
1
2
---enωVω

ie
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------- N0

1
2
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in the cited experiments, it, probably, suffices to con-
sider the currents only in the indicated portion of pump
caustic. The low-frequency plasma-density perturba-
tions nΩ with the wave vector k arise in the field of
pump beats and scattered waves. Therefore, when set-
ting κz = k, one must assume that the corresponding

scattered wave (denoted by ) has the wave vector k1
⊥ z ((k = k1 + k, k || z, |k1| . |k|) and, hence, propagates
transverse to the pump beam.5 Therefore, the gaussian
pump-beam field and the density perturbation nΩ in the
region of interest take the form

(6)

where (z, t) and (z, ρ, ϕ, t) are the slowly varying
(compared to the next exponentials in Eq. (6)) functions
of their arguments.6 

The contributions  and  to the radiation from,
respectively, the first and second terms in the expres-
sion for the nonlinear current density can conveniently
be determined using, respectively, the first and second
expressions for I2ω in Eq. (3). One can then readily see
that the function I2ω reaches its maximal values at not

small κx (κx ~ κy), with the contribution from 

exceeding the contribution from  by several times.

For this reason, only the first term will be taken
below into account for the nonlinear current density j2ω.

By substituting  into Eq. (1), one obtains, according
to Eqs. (3)–(6)

(7)

5 In the experiment of interest, the SBS process evolved starting
with some initial level that appeared as a result of the pump
reflection inside the chamber from the microwave absorbers cov-
ering its end wall and the adjacent surface portions of the side
walls, from the walls themselves, and from various structural
members inside the chamber. The angular spectrum of spurious
reflection in [23–25] was rather isotropic.

6 More specifically, it is precisely the beam central portion which is
“eaten out” along the path at the nonlinear SBS stage [25]. How-
ever, one can easily verify from further calculations that this fact
is immaterial for the analysis of various properties of the phe-
nomena under discussion. Note also that, for the sake of conve-
nience, the Cartesian coordinates with the vertical axis x are also
introduced in Eq. (6) and in what follows. They are related to the
cylindrical coordinates by the simple expressions x = ρcosϕ and
y = –ρsinϕ.
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(it is considered that, under the above-mentioned exper-
imental conditions, one has k0 ≈ 1.5k, ϕ0 = 0, and sinγ ≈
1/6). It must be kept in mind that the generation of low-
frequency plasma-density perturbations in the process
of interest has a local character because of a small

pump-pulse duration [25]; i.e., nΩ ∝ | Eω| × | | × cosα
(α ≡ ∠ (Eω, )). At the same time, the amplification of

the  field also reduces with decreasing |cosα|. How-
ever, the oscillations in the integrand in Eq. (7) become
slower in this case, because |κy| = |k1y| = |k1cosα| (see

above; it is assumed that  ⊥  z, as for Eω, and k1 ⊥
). As a result, it turns out that, excepting the regions

where κx ! k1 and k1 – κx ! k1, the perturbations nΩ
with κx > 0 (κx = –k1x, |κx| = k1|sinα|) give approxi-
mately the same value for B2ω in Eq. (7). For definite-
ness, we obtain it below for κx = k/2.

The integral with respect to ϕ in Eq. (7) can be
approximately evaluated using the following method.
After representing the exponential of a complex argu-
ment through the real and imaginary parts, we first eval-

uate , where ζ ≡ κyρ (κy . k /2,

κx = k/2). To this end, we divide the entire integration
domain [0, 2π] into four segments: [5π/3, π/3], [π/3,
2π/3], [2π/3, 4π/3], and [4π/3, 5π/3]. On the interval
[0, π/3], we expand the function sinϕ into the Taylor
series and retain only the two leading terms in it. In fur-
ther integration on this interval, the cos(ζϕ) and sin(ζϕ)
are assumed to be rapidly oscillating functions, as com-
pared to , cos(ζϕ3/6), and sin(ζϕ3/6). This allows the
approximate integration of the expression by parts (see,
e.g., [28]). On the interval [5π/3, 2π], one should pre-
liminarily replace sinϕ ≡ –sin(2π – ϕ), after which the
entire procedure is repeated. The integration on the
interval [2π/3, 4π/3] is carried out in a similar way.
After replacing sinϕ ≡ cos(π/2 – ϕ) on the interval
[π/3, 2π/3], the cosine is expanded into the Taylor
series, and it again suffices to retain only the two lead-
ing terms. When integrating on this interval, one should
take into account not only that  is a slowly varying
function but also that this interval is comparatively
small. The analogous situation occurs on the interval
[4π/3, 5π/3].

As a result, we obtain

(8)

Ẽω

Ẽω

Ẽω

Ẽω

Ẽω

ϕnΩ° ζ ϕsin( )cosd
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ζ
--- ζS ζ /8( )sin+

× nΩ° ρ νπ/3,( ),
ν 1 ν 3≠,=

5

∑

where C and S are, respectively, the Fresnel cosine and
sine integrals [29], and, for brevity, the z and t depen-

dences (6) are not indicated for .

Next, this expression should be integrated, accord-
ing to Eq. (7), over ρ. The functions sinζ and cosζ can
again be considered rapidly oscillating, as compared to

 and exp(–2ρ2/a2). Then, after the approximate inte-
gration analogous to the one performed above, one
obtains7 

(9)

Here and in the analogous integration of the remaining
two terms in the square brackets in Eq. (8), one should

keep in mind that, in our case, nΩ ∝ (Eω × ) (see
above), and the magnitude |Eω| is maximal in the beam
center (ρ = 0) (see Eq. (6)). At the same time, the ampli-

fication of the reflected-wave field  reduces on rows
with distance from the center (with increasing ρ).

Similar to Eq. (9), the integration of the third term in
the square brackets in Eq. (8) gives a value that is much
smaller than Eq. (9). The second term in these brackets
should be integrated more accurately, because the func-
tion C(ζ/8) increases rather rapidly at small ζ. Up to the

point ζ1/8 ~ 1, one can put C(ζ/8) ≈ (1/2)  and con-
sider ζ cosζ as a rapidly oscillating function in the
resulting integral; as before, only cosζ can be consid-
ered rapidly oscillating in the remaining domain (to
minimize error in the integration by parts, the integral
containing derivatives of slowly varying functions
should also be taken into account). One can then easily
find that the value of the corresponding integral is half
as large as in Eq. (9) and is opposite in sign.

The integral with the imaginary part of the exponen-

tial in Eq. (7), i.e., , is calculated

in a similar way. The resulting expression differs from
Eq. (8) by the replacement sinζ  cosζ of the rap-
idly oscillating functions in it and also by a change in

signs of some terms in . The subsequent

7  The upper limit in the integral in Eq. (9) is not too significant and
denoted, by convention, as ∞.
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integration with respect to ρ (see Eq. (7)) yields a value
that is much smaller than the value given by Eq. (9).

Thus, Eq. (7) takes the following form:

(10)

Therefore, the value  (ρ = 0) can be determined from
the solution describing the linear stage of a modified
wave decay in a layer [25]. Setting the wave interaction

length equal to a/  and assuming that the “average”
separation between the pump modes is on the order of

the pump spectrum width ∆ω ~ 2π × 2 MHz . 2 κv s

(v s is the ion sound velocity), one obtains at the pulse
length

(11)

where  = (2Te/m)1/2 is the electron thermal velocity

and  is the initial (before amplification) amplitude
of the scattered wave entering the pump caustic
region.8 Since, as is mentioned above, the initial level
of the scattered waves was nearly isotropic, the value of

 can be considered as corresponding to the experi-
mentally observed strong stimulated Brillouin back-
scattering. Then, by taking maximal amplification over
the entire caustic length l0, one gets, according to [25],

| / | ~ 1/60. The radiation intensity at a doubled
frequency reached its maximum value by the time t∗  ~
0.3 µs (see figure), when the SBS process was already
at the nonlinear stage. In this case, the strong-field
region ∆z can be estimated both on the basis of the
above-mentioned solutions and directly from the
reduced equations for high-frequency waves using the
experimentally measured relative plasma-density per-
turbations, which comprised ~5% at the pump pulse
end (t > t∗ ) [23–25]. The value ∆z ~ 30 cm seems to be
quite reasonable. Considering the aforesaid and that

 ≈  ≈ 2.5 × 108 cm/s, /ω2 . 0.5, k0 . 2 cm–1,

κx . 0.7 cm–1, κy . 1.2 cm–1, and r ≈ 120 cm, one finds,

8 Up to κv st ≈ 1, one can write the sign “≈” between the left- and

right-hand sides of Eq. (11), while, at larger t,  increases

somewhat faster than ∝ t2. Note that, at a constant amplitude

 =  and the same ∆ω, | | varies following the law

| (ρ = 0, t)| = 0.5 N0sin2(κv st).
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Ẽω° %̃ω° nΩ°

nΩ° Vω°
2
%̃ω

°( )/ VTe

2 Eω°( )

%̃ω
°

%̃ω
° Eω°

Vω° VTe
ωpe

2

JETP LETTERS      Vol. 78      No. 5      2003
                            

according to Eqs. (10) and (11), that | | ∼ 2 × 10–6 ×
| | at t = t∗ . From these data and Eq. (2), one can eas-
ily see that

(12)

This value coincides, by the order of magnitude, with
the experimentally observed | | ∼ 3 × 10–6| |.
The inclusion of the low-frequency perturbations nΩ
with different κx and κy (see above) would, likely,
increase the value given by Eq. (12). Note also that the
fact that the intensity of frequency-doubled radiation
decreases slightly slower than the pump intensity at the
pulse end (figure) is likely due to the growth of plasma-
density perturbations with time (see Eq. (11)).

As the plasma density N0 decreases, a structure res-
onant with the frequency-doubled wave can arise in the
nonlinear current density j2ω under the action of the
low-frequency perturbations with κz < k. They are pro-
duced by the scattered high-frequency waves propagat-
ing at acute angles to the z axis. From Eqs. (7) and (10)
and considering that, in this case,  ∝ κ 2N0, one can
readily find that B2ω ∝  N0. For an appreciable supercrit-

icality ω2 @  (κ ! k0), one has B2ω ∝  κ3N0; however,
the 2ω wave in this region is radiated owing to the res-
onance with nΩ generated with the participation of a
pump-counterrunning backscattered wave. They make
the greatest contribution to the radiation, and the corre-

sponding component is j2ω ∝  Vω (  × ∇ nΩ); in this
case, B2ω ∝  N0.

I am grateful to V.A. Isaev for interest in the work
and helpful discussions.
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A thermodynamic approach to the sputtering of materials by slow multicharged ions is developed based on the
cavitation mechanism of fracture of the surface layer of a target. It is shown that a strong electric field of a slow
multicharge ion approaching the surface of a dielectric target leads to the formation of an extended metastable
subsurface region. Cavities spontaneously appearing in this region form a percolation cluster leading to the frac-
ture (cavitational electroexplosive erosion) of the target material. Universal relationships established between
the volume of the region of fracture, on the one hand, and the ion charge and the target surface properties, on
the other hand, qualitatively agree with experimental data on the sputtering of LiF and SiO2 by slow argon and
xenon ions. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 79.20.Rf, 81.15.Cd
Sputtering of the surface of metals and dielectrics
plays an important role in the interaction of plasma with
such solids. In particular, this is an important factor
involved in the interaction of plasma with walls and
divertor plates in setups with magnetic confinement. A
traditional approach to the description of sputtering is
based on an analysis of the kinetics of interactions
between impinging ions and surface atoms leading to
escape of the latter from the target material exposed to
the beam of projectiles. In recent years, much attention
has been devoted to an analysis of the action of rela-
tively slow multicharge ions on the solid surface.

In the last decade, experiments with the beams of
slow multicharge ions acting upon the surface of some
dielectrics revealed a sharp increase in the amount of
sputtered material with increasing ion charge Z [1–3].
Figure 1 shows plots of the total yield of sputtered
atoms versus Z for polycrystalline LiF and SiO2 targets
under the action of slow Arq+ and Xeq+ ions. These
curves were constructed by extrapolating the data of
[1–3] to the region of ultimately low kinetic energies of
ions. As can be seen, the number of sputtered particles
weakly depends on the ion mass and increases with the
ion charge as Z2. The surface of LiF is sputtered more
effectively than that of SiO2. The number of sputtered
atoms per incident ion reaches up to about one hundred
for sufficiently high ion charges. This result indicates
that the potential energy stored in the form of a high
ionization potential of the multicharge ion is quite
effectively distributed between many atoms of the tar-
get, so that the region of fracture has macroscopic
0021-3640/03/7805- $24.00 © 20291
dimensions. This circumstance suggests that the phe-
nomenon under consideration can be described using a
thermodynamic approach.

The aforementioned experimental results were
interpreted in [1–3] using the models of “Coulomb
explosion” [4] and defect mediated sputtering [1]. Both
models are formulated in terms of ion recharge, Auger
effect, and other processes taking place at sufficiently
small distances from the sample surface that are more
applicable in the case of fast incident ions. However,

Fig. 1. Plots of the number of sputtered atoms for LiF and
SiO2 targets versus ion charge. Symbols represent the
experimental data [1–3] extrapolated to small kinetic ener-
gies for (1, 4) Arq+ and (2, 3) Xeq+ ions. Solid curves show
the results of calculations according to the proposed model.
003 MAIK “Nauka/Interperiodica”
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slow multicharge ions begin to act upon the target sur-
face already at large (on the scale of models [1–3]) dis-
tances, creating regions of tensile stressed state in a sur-
face layer of the material. Provided a sufficiently high
strength of the electric field, this stress can produce
local fracture of the surface layer by mechanism of cav-
itational electroerosion.

Below we will estimate the sputtering yields within
the framework of a thermofluctuational mechanism of
cavity formation in the surface layer of a target.
According to this model, the physical pattern of sputter-
ing consists in an extended subsurface region of the
material passing into a metastable state under the action
of a strong electric field of a multicharge ion approach-
ing the target. Thermal fluctuations lead to the appear-
ance of critical cavities, which form a percolation clus-
ter leading eventually to the material fracture within a
certain volume of the surface layer. The probability of
critical cavity formation can be determined by the gen-
eral expressions for the fluctuations of physical quanti-
ties, including the efficiency of the ion action upon the
surface as a function of the ion charge and the material
temperature. Estimates of the volume of the region of
fracture and the time required for the cavity formation
in the above pattern are consistent with the known
experimental data [1–3].

The time of interaction of a multicharge ion with the
target surface is sufficiently short, which leads to cer-
tain features previously observed in investigations of
the shock wave fracture [5, 6]. In particular, the results
of investigations of the breakage of a rear surface of Al
and Cu foils under the action of nanosecond high-
power laser radiation pulses showed that, for these very
short times of action, the buildup of tensile stresses at
the rear surface of the target is so rapid that the cleavage
is determined by the appearance and coalescence of
newly formed cavities, rather than by the growth and
merge of the flaws initially existing in the material.
Such cavities appear in a tensile stressed metastable
solid as a result of thermal fluctuations, by analogy with
the cavities formed in a liquid during cavitation. The
merge of cavities leads to the formation of a cleavage
surface and, eventually, to the fracture of a certain
region of the surface layer. An analogous cavitation
mechanism was proposed for the explosion of micro-
scopic cusps on a cathode surface under the action of a
strong electric field (explosion-like emission) [7].

A multicharge ion approaching the target surface
also induces the formation of an extended metastable
subsurface region where similar effects can take place.
The general and simple thermodynamic approach
developed below allows certain laws of the sputtering
process under these conditions to be established.

Consider a slowly moving ion possessing a mass M
and bearing a charge Z, occurring at a distance x from
the surface of a dielectric target (to the first approxima-
tion, the surface is assumed to be flat). In the general
case, the ion charge exhibits a change near the surface
as a result of recharge and, hence, depends on the dis-
tance to the surface. Calculations show that this change
is rather significant for metals and much less pro-
nounced for dielectrics. In the case of LiF and SiO2 tar-
gets, the charge variations at a distance significant from
the standpoint of sputtering are close to unity for the ion
charges exceeding ten. Therefore, these changes can be
ignored. As for metals, the estimates obtained below
can be extended to such targets by substituting data on
the dependence of charge on the distance [3] into the
formulas presented below.

According to [8, 9], the permittivity of LiF is ε = 9
and that of SiO2 varies within 3.8–5.4. Let the ion to
possess an initial kinetic energy of K be determined by
the ion source. Beginning with a certain distance, the
kinetic energy K will be small as compared to a poten-
tial energy determined by the interaction between the
ion and the image. As can be readily shown, this takes
place at a distance x0 meeting the condition

(1)

If the initial kinetic energy of an ion is large, the x0
value is so small that the potential energy of this ion is
insignificant. On the contrary, when K is small, the ion
motion beginning with distances on the order of x0
acquires a potential character. For an ion with Z = 10
and a kinetic energy of ~10 eV, this distance from a LiF
surface is x0 ≤ 2 × 10–7 cm.

The image force acting upon an ion occurring at a
distance x from a flat surface is

(2)

The ion, acquiring an instantaneous velocity of

(3)

travels the distance x for a time of

(4)

For the numerical estimates, this formula is conve-

niently rewritten as t = 5.7 × 10–14 , where µ is
the molecular weight and all distances are expressed in
units of 10–7 cm. For an argon ion with Z = 10 and µ ≈
40 at x0 = 10–6 cm, we obtain t ~ 10–12 s.

As is known, the strength characteristics (in particu-
lar, the cleavage stress) of solids significantly increase
even in a nanosecond range of the interaction times [5,
6]. In the case under consideration, these times are
much shorter. This gives ground to suggest that the
elastic limit (for LiF, pe = 112 bar [8]) for such short
interaction times also exhibits a considerable increase.
This implies that the surface layer of a solid cannot turn

x0 2 eZ( )2/K 1 ε+( ).≤

F
eZ( )2 1 ε–( )
4x2 1 ε+( )

------------------------------.=

V x( ) eZ( )2 ε 1–( )
2Mx 1 ε+( )
------------------------------,=

t x( ) 2x3/2

3eZ
----------- 2M

ε 1+
ε 1–
-----------.=

µx3/Z2
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to a yield state and occurs during this interaction in an
extended metastable state.

Now it will be demonstrated that, even within short
times under consideration, the electrostatic equilibrium
is established in the dielectric and the electric field pen-
etrates into the material to a sufficiently large depth. A
characteristic time of the charge relaxation is τQ =
ε/4πζ, where ζ is the electric conductivity. For metals,
this time is rather short (~10–18 s [10]). The thermal
conductivity of LiF is about 4 W/mK [9]. Estimating
the corresponding electric conductivity by the Wiede-
mann–Franz formula, we obtain τQ ~ 10–16 s. At the
same time, the conductivity of NaCl (a substance pos-
sessing otherwise close properties) is ~10–9 Ω–1 cm–1

[9], which yields a consistently close estimate of
τQ ≤ 10–16 s.

The field penetration depth can be estimated as δ ~
c0 , where c0 is the velocity of light. Substituting

t ~ 10–12 s and ζ ~ 1016 s–1, we obtain δ ~ 3 × 10–4 cm.
This value is significantly greater than the characteristic
distances at which the ion motion acquires a potential
character. Therefore, the distribution of the electric
field is the same as in the stationary case.

In the electrostatic equilibrium, the force acting
upon a dielectric surface is directed toward a medium
possessing lower permittivity. At a point of the flat sur-
face occurring at a distance of r = (x2 + y2)0.5 from the
ion, this force produces a tensile stress (negative pres-
sure) [11]

(5)

where z = y/x and y is the coordinate measured along the
surface from the ion projection point. For the sake of
simplicity, let us replace the nonuniformly distributed
pressure by the effective uniform pressure acting upon
a certain effective area determined from the relation

(6)

For ε @ 1, this yields ze = x/  and the effective area is
πx2/2.

Experiencing a negative pressure, a certain subsur-
face layer of the dielectric occurs in an extended meta-
stable state. At a certain electric field strength and the
depth of penetration into the metastable region (and the
corresponding tensile stresses), cavities of a critical
size can form in this region. In other words, cavitation
can take place in a small region of the dielectric sub-
jected to a strong action of the field of a multicharge ion
approaching the target.

t/ζ

∆p x z,( ) eZ( )2

2πx4
------------- 1 ε–

1 ε+( )2
------------------ ε z2+( )

1 z2+( )3
--------------------,=

2π ∆p x z,( )z zd

0

∞

∫ ∆p x 0,( )πze
2.=

2
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The size of a critical cavity and the work required
for its formation are determined by the formulas

(7)

where σ is the surface tension of the target material.
Substituting the expression for ∆p (5) with y = 0 into
formulas (7), we obtain

(8)

where f(ε) = (ε – 1)ε/(1 + ε)2 is a parameter depending
on the material properties.

It should be noted that particular values of the per-
mittivity in formulas (8) may differ from the above
static estimates. In the case of alternating electric fields,
including the fields generated by moving ions, the per-
mittivity can vary from the static value up to a limit
determined by the optical properties of the medium. In
practice, the permittivity is assigned a certain fre-
quency-averaged value lying between the aforemen-
tioned limits. Taking into account that the thermody-
namic characteristics are rather rapidly varying func-
tions, the particular choice of permittivity rather
weakly influences the results. For this reason, the sim-
ple estimates below are obtained for the static values of
the permittivity.

The fracture of a material usually depends on the
rate of growth of the existing and newly formed cavities
in the extended material, as determined by the diffusion
of dislocations. In the case under consideration, the
characteristic times of such growth are significantly
greater as compared to the time of the ion–surface inter-
action. Therefore, the surface layer fracture is deter-
mined by breakage of the solid phase connectivity in
the subsurface layer upon reaching the percolation
threshold for the newly formed critical cavities, rather
than by the merge of growing cavities: the fracture has
an explosion character [12].

The explosion takes place when the expanded
region volume per cavity reaches a level of

(9)

where β is the percolation threshold (β ~ 0.2 for a crys-
tal with the simple cubic lattice). Assuming that, during
the ion–surface interaction time, the negative pressure
wave propagates to a depth on the order of 2ac ~ ct,
where c is the velocity of sound (the validity of this
assumption will be assessed below), we obtain an esti-
mate for the volume of the fractured region: W ~ πx2ac.
The ratio W/W* gives the number of critical cavities
necessary for the fracture. This ratio strongly varies
with x: W/W* ~ 1/x4. For this reason, the values of x cor-
responding to the appearance of a single critical cavity
are virtually the same as those providing for the fracture
of a subsurface region. Substituting expression (7) for

ac
2σ
∆p
-------, Ac

16πσ3

3 ∆p( )2
-----------------,= =

ac
4πσx4

eZ( )2 f ε( )
-------------------------; Ac

64π3σ3x8

3 eZ( )4 f ε( )2
------------------------------,= =

W* 4πac
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ac into formula (9) and equating this to 2πx2ac, we
determine a characteristic distance xc from the ion to
the surface at which the cavitational fracture of the sur-
face region will take place:

(10)

The volume of the fractured material is

(11)

Formula (11), multiplied by the number density of
atoms, determines the number of sputtered atoms. This
number depends only on the ion charge eZ and the
prosperities of a target material (ε, σ). According to
formula (11) the volume of sputtered material is a func-
tion of the combination of these quantities. Including
the ion mass M, we can find the combinations of param-
eters corresponding to the energy of formation of a crit-
ical cavity, the ion velocity, and the interaction time.
These combinations (to within the numerical factors
and the functions of ε that are on the order of unity) are,
respectively, as follows:

(12)

An important condition for realization of the cavita-
tional fracture is that the volume W must occur within
the expanded metastable subsurface region. To provide
for this, a perturbation produced by the tensile stress on
the surface has to penetrate inside the material to a
depth of ~2ac during the interaction time. This implies
the condition V ≤ c, where c is the sound velocity in the
dielectric (for LiF, c ~ 5 × 105 cm/s [9]). Under the
experimental conditions [1–3], the maximum velocity
for argon ions with a maximum charge of Z = 14 and for

xc
3 1 β–( )

2
-------------------- 

 
1/6 eZ( )2 f

4πσ
-----------------

1/3

.=

W 3 1 β–( ) eZ( )2 f
4σ

-----------------.=

Ac eZ( )4/3σ1/3,∼

Vc
eZ( )4/3σ1/3

M
--------------------------, tc

M
σ
-----.∼∼

Fig. 2. Plots of the characteristic distances for (1) microvol-
ume fracture and (2) critical cavity formation versus ion
charge for argon ions interacting with a LiF surface.
xenon ions with Z = 37 was V ~ 8 × 105 cm/s, which is
close to the velocity of sound. For lower values of the
ion charge, the velocity according to formula (12)
decreases. Thus, we may conclude that, in the experi-
ments described in [1–3], the condition V ≤ c was satis-
fied (in the order of magnitude).

The second, but not less important condition is that
a cavity of the critical size has to be formed in the vol-
ume W* during the ion–surface interaction time t. A
necessary condition for this is that

(13)

where J is the cavity nucleation rate. The latter quantity
can be written for a nondissipative system as [12]

(14)

where h is the Planck constant and T is the absolute
temperature. Substituting t and ac according to Eqs. (4)
and (8) into formulas (13) and (14), we arrive at an
equation determining the values of x for which the for-
mation of a critical cavity is possible. Figure 2 shows
the solutions x (curve 2) of this equation as a function
of Z for argon ions and a LiF surface. In the same figure,
curve 1 shows the values of xc determining the region of
fracture according to formula (10). As can be seen,
curves 1 and 2 are situated close to each other, which
implies that a critical cavity will form by the moment
when the ion will approach the surface to a distance of
xc. This situation also takes place for the other combi-
nations of ions and target materials.

Figure 1 (solid curves) shows the plots of fracture
volumes (or the numbers of sputtered atoms) versus Z
for LiF and SiO2. For this calculation, the values of the
surface tension of LiF and SiO2 were taken to be equal
to σ ≈ 250 and 500 erg/cm2, respectively [10]. In accor-
dance with formula (11), the character of sputtering is
determined by the properties of a target material and the
ion charge, while being independent of the ion mass. In
our model calculations, the volume of fracture was
determined to within a constant factor. In order to pro-
vide for a better agreement with the experiment, we
introduced a fitting parameter on the order of unity into
formula (11), which was the same for both materials. It
is interesting to note that the value of this parameter for
the best fit to experiment was on the order of unity
(~1.4) even for the static values of permittivity used in
formula (11). As can be seen, this provides for a good
agreement with the experimental data for both LiF and
SiO2.

This study was supported by the Russian Founda-
tion for Basic Research, project nos. 99-02-16596, 99-
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An analytic model of a one-dimensional self-consistent anisotropic thin current sheet is proposed. This model
describes the sheet with a split (or bifurcated) structure, where the current density is minimal at the center and
maximal at the edges. The model is specified by the set of Vlasov–Maxwell equations that reduces to the Grad–
Shafranov equation. Under the assumption that particles move quasi-adiabatically, i.e., that the approximate
integral of motion Iz is conserved, the slow evolution of the system in the course of diffusion of the distribution
function in Iz is analyzed. Scattering processes can give rise to the partial capture of flying ions near the current
sheet. Since the current of such quasi-trapped particles is directed oppositely to the current of flying particles,
the local current at the center of the sheet is fully or partially compensated. As a result, the ordinary single-peak
shape of the current density profile changes to the bifurcated shape. Such a structure is characteristic of the thin
current sheet before the total destruction, when the tension of the magnetic field is unbalanced. Numerical cal-
culations are corroborated by the observations of split current sheets in the magnetotail by the Cluster and Geo-
tail satellites. The obtained results indicate that a possible mechanism of the destruction of the thin current sheet
is not necessarily associated with the development of plasma instabilities but can be evolutionary. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 94.30.Fk
Very thin current sheets with a thickness in the area
of the ion gyroradius are quite often observed by satel-
lites in a hot collisionless plasma in the Earth’s mag-
netosphere [1–3]. In terms of the MHD theory, they are
discontinuities serving as energy “reservoirs” for the
transformation of the electromagnetic energy of solar
wind to the kinetic energy of plasma fluxes. It is inter-
esting that, as early as the 1970s, Syrovatskiœ [4, 5] pre-
dicted the formation of such singular structures for cer-
tain plasma motions.

Satellite observations show that thin current sheets
have a number of properties that are different from the
properties of ordinary Harris-type sheets [6]. In partic-
ular, it was shown that thin current sheets could be
embedded into a thicker plasma sheet [3]. Ions are usu-
ally primary current carriers in thin current sheets
because of a significant temperature difference Ti/Te ≥ 5
[7]. Recent measurements by Cluster satellites [8, 9] in
the near magnetotail (~15–20 RE) show that the current
density profile during substorms can have a split current
structure (Runov et al. [8] called it bifurcated structure)
such that current is concentrated at the sheet edges,
whereas the local dip of the current density is observed
at the center.

It is necessary to develop models of the formation
and internal structure of split current sheets. Since thin
current sheets can accumulate a considerable energy
(~1014–1015 J), calculations of their evolution regimes
0021-3640/03/7805- $24.00 © 20296
are necessary for a deep insight into the global dynam-
ics of the magnetosphere.

In this paper, we present a self-consistent one-
dimensional model of an anisotropic thin current sheet.
In this model, the development of the split current sheet
structure is caused by the evolution of a current density
profile as a result of the nonadiabatic scattering of par-
ticles in a strongly curved magnetic field of the thin cur-
rent sheet.

This model of self-consistent anisotropic thin cur-
rent sheet shows how the sheet evolves naturally from
the ordinary Harris-type configuration [6] to the bifur-
cated configuration. This evolution is caused by the
nonadiabatic scattering typical for the interaction of a
particle with strong magnetic inhomogeneities. In this
case, the maximal Larmor radius ρL of ions (basic cur-
rent carriers) is much larger than the radius of curvature
Rc of the magnetic field lines, so that the so-called adi-

abaticity parameter κ =  lies in the range 0.1–
0.3. In this regime, called quasi-adiabatic regime [10],
the action invariant for fast motion of particles across
the sheet is approximately conserved; i.e.,

(1)

However, when the particle crosses the plane of the thin
current sheet, ∆Iz jumps depend only linearly on the

Rc/ρL

Iz
1

2π
------ mv zdz∫° const.≈=
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small parameter κ; i.e., ∆Iz/Iz ~ κ [10]. For this reason,
this regime is called quasi-adiabatic. Figure 1 shows the
characteristic ion orbits in the projection onto the cur-
rent sheet.

The basic current forming the sheet is supported by
flying particles on the open, so-called Speiser, orbits
[11] (Fig. 1a) characterized by small Iz values. Orbits
with large Iz are closed and called “cucumber” orbits
due to their oval shape [10]. Jumps in the Iz invariant
lead to the transition of particles from open trajectories
to closed ones and vise versa (see Fig. 1b). As will be
shown below, this process is quite slow, as compared to
the characteristic time of motion of particles through
the sheet, and can be described by the diffusion equa-
tion (see below). Since the diffusion process is slow,
one can assume that the sheet is in a quasi-equilibrium
state at each stage of the process. Therefore, the evolu-
tion of the sheet can be considered as a sequence of
quasi-static equilibria.

Figure 2 shows the scheme of the proposed model.
Impinging anisotropic ion fluxes arrive at the sheet
from the distant plasma sources located on both sides of
the sheet. The ratio ε = vT/vD of the thermal velocity vT

of these fluxes to their average flux velocity vD is an
important anisotropy parameter. Near the neutral plane,
ions are “demagnetized” and move along the nonlinear
loop orbits near the XY plane in the thin current sheet
(Fig. 3). Some flying particles drift from open orbits to
quasi-trapped (cucumber) orbits as a result of nonadia-
batic scattering (see Figs. 1b, 2).

Under the above assumptions, the set of Vlasov–
Maxwell equations curlB = (4π/c)J, df/dt = 0 reduces to
the one-dimensional scalar equation

(2)

for the tangential component of the magnetic field. The
quasi-adiabatic condition makes it possible to solve the
problem with the use of two integrals of motion: total

energy W = m /2 of particles and quasi-adiabatic
invariant Iz of the fast z motion. We introduce the
dimensionless variables ζ = ze–4/3ω0/vD, w ≡ ε–2/3v/vD,
I = ε2/3Izω0/mvT, b = B/B0, and ω0 = eB0/mc. After inte-
gration with respect to ζ, Eq. (2) reduces to the Grad–
Shafranov-type equation [12]

(3)

where η = ε2/3 dζ' is the vector potential, vA is

the Alfvén velocity, and

(4)
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are the partial densities of positive and negative cur-
rents. The detailed derivation of Eq. (3) was given in
[13, 14]. The function f ≡ f (W(wx, wy, wζ), I(wx, wy, wζ,
η')) describing the ion distribution over the invariants of

Fig. 1. Two types of quasi-adiabatic trajectories of particles
in a curved magnetic field B = {Bx, 0, Bz}: (a) characteristic
transient (Speiser) orbit and (b) quasi-trapped (cucumber)
orbit.

Fig. 2. Model scheme: particles fly from sources, and one
particle is trapped by the sheet.

Fig. 3. (Left panel) Solid and dashed lines are elements of a
quasi-adiabatic cucumber orbit and Speiser orbit, respec-
tively, at the center of the current sheet; (right panel) the plot
of the corresponding local current densities Jy(z).

Quasi-trapped
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Fig. 4. Profiles of the plasma distribution function ψ in the
thin current sheet at different times τ vs. the adiabatic
invariant I.

Fig. 5. (a) Profile of the dimensionless current density jy =

Jy(z)/en0vDε2/3 calculated as a function of the dimension-
less coordinate ζ for τ = ωnt = (solid line) 0, (long dashes)
40, and (short dashes) 104 min, and (b) the statistically aver-
aged current profile measured in [16].
motion depends implicitly on the velocities of particles
and the z coordinate. Thus, the distribution function of
plasma particles in the thin current sheet can be defined
as follows (see Fig. 4). For small invariant values in

interval 1 (0, I1], where I1 = ,  =  +  + 
[15], current carriers move along Speiser orbits, and the
initial distribution function can be specified in the form

(5)

of the Maxwell distribution shifted by vD and having
thermal spread vT.

Quasi-trapped particles correspond to interval 2
(I1, I2] (I2 = σI1, σ = (L/ρ0)1/2 > 1). The distribution func-
tion ψ ≡ ψ(I, τ) (τ = ωnt, ωn = eBn/mc) of scattered
particles can be determined by solving the diffusion
equation

. (6)

Here, the variable coefficient [10]

(7)

where Tab is the dimensionless period of motion of par-
ticles in closed orbits, corresponds to the linear jumps
∆Iz in the small parameter κ. The distribution function
of the scattered plasma depends on time. However, the
condition of fast relaxation of the system makes it pos-
sible to use distribution function profiles at different
times as instantaneous quasi-equilibrium configura-
tions. Thus, an “instantaneous pattern” of the distribu-
tion function of the quasi-trapped plasma is always
used on the right-hand side of Eq. (3). Figure 4 shows
profiles of the function ψ for different times τ. It is seen
that the initially empty region of quasi-trapped cucum-
ber orbits is gradually filled. Region 3, where I > I2, cor-
responds to the trapped plasma on completely integra-
ble orbits. These orbits are ignored in this problem,
because they are dynamically inaccessible from regions 1
and 2; i.e., one can set f = 0.

Figure 5a shows the evolution of the current density
profile as a result of the accumulation of the quasi-
trapped plasma inside the thin current sheet at different
times τ. Calculations were performed with the source
anisotropy parameter ε = 1, which is in a good agree-
ment with the actual ε value for the magnetotail plasma.
These results are compared with the measurements in
the magnetotail that are averaged over a large data sam-
ple [16].

Since the thin current sheet contains the trapped
population during the main period of its life, the Jy(z)
profile must have a “statistical dip” at the center of the
sheet. The theoretical and experimental results are in
good qualitative agreement with each other (Fig. 5).
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Although there is back diffusion from region 2 to region 1,
the accumulation of the quasi-trapped population in the
thin current sheet continues up to the complete splitting
of the sheet (Jy|z = 0 = 0). In this case, the equilibrium
self-consistent solutions are absent in the model. We
treat this fact as the loss of equilibrium of the real thin
current sheet with its further decomposition that occurs
immediately after τ* = 104 min. The characteristic reg-
ular time t* of such a destruction under the magnetotail
conditions (Bn ~ 0.5–1.5 nT) can be estimated at 30–
90 min in agreement with the characteristic time of the
so-called phase of energy accumulation (growth phase)
in the magnetotail.

The model results both agree well with the Geotail
measurements [16] in the magnetotail at a distance of
about 100 RE (which is traditionally considered as the
site of localization of the distant neutral line) and with
certain measurements of split sheets in the near magne-
totail [8, 9]. The model describes the natural internal
evolution of the current sheet until its destruction with-
out inclusion of various current instabilities. The prob-
lem of instabilities in the thin current sheet has not yet
been solved. All models, both analytic and numerical,
indicate that one instability (e.g., tearing, kink, or bot-
tle) cannot be responsible for the sheet destruction [17–
19]. However, to understand the adequacy of the pro-
posed model for the description of the processes
responsible for the formation of split sheets, additional
magnetospheric experiments are necessary.

The model can explain the characteristic properties
of the thin current sheet such as small thickness (L ~
ρL), “overshoot” in the magnetic field structure, charac-
teristic anisotropic pressure tensor, dominance of ions
in the current, and some specific forms of the plasma
velocity distribution functions f(v x, v y, v z) [15] inside
the thin current sheet. These distribution functions
describe how the quasi-trapped plasma fills with time a
certain phase-space region adjoining the phase-space
region of flying particles.
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The influence of negative ions on the state of an rf gas-discharge dusty (complex) plasma containing electrone-
gative gaseous impurities was investigated. A simple one-dimensional argon-discharge model allowing for the
impurity-induced plasmachemical reactions was taken as an example to show that the addition of even a minor
amount of molecular oxygen changes appreciably the plasma composition and plasma transport properties, as
well as the microparticle charges. In turn, these changes have a strong effect on the microparticle force balance
and on the formation of various dusty structures in the discharge. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.27.Lw; 52.80.-s
In recent years, the processes occurring in weakly
ionized plasmas containing microparticles (so-called
“dusty particles”) have been intensively studied. Such
media are customarily referred to as dusty or complex
plasmas [1–7]. Plasma recombination at the surface of
dusty particles results in their fast charging. As a rule, a
microparticle charge is negative1 and is on the order of
103–104 electron charges. The presence of charged
microparticles renders plasma behavior much more
complicated, because new spatial and time scales
appear, leading, in particular, to new types of waves and
instabilities [8]. The dusty component of a complex
plasma can occur in various phase states, from gaseous
to crystalline [1–3].2 The observation of the behavior of
individual microparticles allows their behavior to be
described at the kinetic level. This property is exceed-
ingly important in the detailed study of the processes
occurring in the phase transformations in complex plas-
mas, in the initiation of hydrodynamic instabilities, etc.
The understanding of these processes at the kinetic
level can be helpful in the construction of the general
theory of phase transitions and can clarify many ques-
tions associated with the turbulence initiation.

A low-pressure rf inert-gas (as a rule, argon and,
more rarely, helium, neon, and krypton are used) dis-
charge, into which microparticles with the diameter
2a . 1–10 µm are injected, is traditional in studying the
properties of a laboratory complex plasma. The con-
centration of dusty particles in the discharge is ordi-
narily varied within nd ~ 103–106 cm–3. In this work, we

1 A positive microparticle charge can arise under rather exotic con-
ditions, when the photoelectric effect, thermionic emission, or
secondary electron emission play the decisive role in the particle
charging. These processes are not considered in this work.

2 Sometimes, complex plasmas also mean nonideal plasmas with
strong Coulomb interaction (strong coupling) between micropar-
ticles, where the dusty component is in a liquid or crystalline
state.
0021-3640/03/7805- $24.00 © 20300
consider the argon discharge. The typical parameters of
this discharge are as follows: the interelectrode distance
is L . 3–5 cm, the concentration of neutral atoms
(argon) is nn ~ 1015–1016 cm–3, the electron and ion con-
centrations (in the absence of microparticles) are ne .
ni ~ 108–1010 cm–3, and the electron temperature is Te .
1–3 eV. The ion temperature is close to the temperature
of neutrals: Ti . Tn ≈ 300 K. Note that plasma is weakly
ionized with a very low degree of ionization, ne/nn .
10–6–10–7.

A dusty particle in plasma rapidly acquires negative
charge Zd, which can be estimated by equating the elec-
tron and ion flows onto a microparticle. To determine
these flows, one ordinarily uses the probe approxima-
tion of the orbital motion limited (OML) theory (see,
e.g., [4]), in which the cross-sections for electron and
ion interactions with an isolated charged microparticle
are determined from the energy and momentum conser-
vation laws. According to the OML theory, the charge
increases proportionally to the microparticle size and
electron temperature: Zd ∝  aTe. For example, for a par-
ticle with a radius of 1 µm in an argon-discharge
plasma with the above-mentioned parameters one has
Zd ~ 3 × 103e (see, e.g., [9]).

Due to the fast electron diffusion onto the walls of a
discharge chamber, the central zone of the discharge is
charged positively and represents a potential well for
the negatively charged microparticles. Under these con-
ditions, the formation of dusty structures is governed by
the balance of forces acting on the microparticles; these
are the gravity force Fg, the electrostatic force FE

(directed to the discharge center), the ion-drag force
Fid

3 associated with the momentum transfer from the

3 This force is often called ion-entrainment force. The latter term
seems to be not perfectly correct, because this force can be
directed opposite to the ion flow [10].
003 MAIK “Nauka/Interperiodica”
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ion flow to the microparticles (this force is directed to
the walls of a gas-discharge chamber), the neutral gas
friction Fn caused by the interaction of a dusty particle
with neutral gas, and the thermophoretic force FT

caused by the inhomogeneous heating of a neutral gas
in the discharge (the direction of this force is deter-
mined by the temperature gradient of the neutral gas
and, in general, can be arbitrary). In the ground-based
experiments, the gravity force dominates; it is compen-
sated by the electrostatic force only in the electrode
sheath, leading, in particular, to microparticle levita-
tion. Under microgravitation conditions, the ion-drag
and electrostatic forces (though much weaker than the
gravity force) play the main roles and often have the
same order of magnitude. The balance of these forces
determines the equilibrium configurations of the dusty
component in the space experiments.4 Although the
contribution of the thermophoretic force is, as a rule,
insignificant, it can play a key role in certain situations.
It is worthwhile to present the power-law dependences
of the indicated forces on the microparticle size: Fg ∝
a3, Fid ∝  a2 (for sufficiently small particles [11]), FE ∝
a, and FT ∝  a2.

The addition of an electronegative gas leads to the
appearance of negative ions in the discharge. This can
strongly affect the plasma parameters and microparticle
charges and, hence, the phase state of the dusty compo-
nent [12].5 The presence of negative ions also affects
the microparticle force balance, which, in turn, can
affect the configuration of dusty structures. Therefore,
the influence of negative ions on the state of complex
plasma can be quite substantial. Nevertheless, these
problems have practically not been studied experimen-
tally so far.

In this work, we study a change in the state of com-
plex plasma upon the addition of molecular oxygen O2
to the rf argon discharge. To begin with, we estimate the
influence of molecular oxygen on the plasma composi-
tion. For this purpose, we will use the plasmachemical
model of discharge in the Ar/O2 mixture (all plasma
parameters are averaged over the discharge volume).
For a quasineutral complex plasma, the corresponding
set of equations has the form

(1)

(2)

4 In the absence of gravitation, it is possible to increase materially
the sizes of dusty structures and make them more homogeneous.
This stipulates the exceeding importance of space experiments.

5 Negative ions can appear in the discharge in a natural way, e.g.,
as a result of the erosion of polymeric microparticles that are
often used in laboratory experiments and incorporate electronega-
tive compounds in their composition. The electronegative com-
pounds (such as water vapor, molecular oxygen, and carbon diox-
ide) can penetrate into the discharge from the ambient air if the
air tightness of the gas-discharge chamber is broken.

∂n j t( )
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-------------- R j
prod R j

loss– R j
d– n j/τ j,–=

∂Zd

∂t
--------- ν

i
+ ν

i
–– νe,–=
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(3)

Here, nj stands for the concentrations of electrons and
all sorts of ions (positive and negative) in the discharge
and also the concentrations of metastable argon and
oxygen atoms and molecules which influence the

charged component;6  and  account for the
photochemical sources and sinks of the jth component

(given, e.g., in [13]);  describes the jth-component
decay at the surface of dusty particles; and τj . L2/Dj is
the characteristic diffusional lifetime of the jth compo-
nent in the discharge, where Dj is the corresponding dif-
fusion coefficient. Note that the diffusion coefficient
strongly depends on the plasma composition; e.g., for
the positive ions Dj ranges from the ambipolar (at low
concentrations of negative ions) to unipolar (for ion–
ion plasma) type. In Eq. (2) for microparticle charging,
the terms νe, , and  describe, in the OML approx-

imation, the electron, negative-ion, and positive-ion
flows onto a microparticle, respectively (see, e.g., [14]):

Since  ≈  ! Te, the contribution from the negative

ions to the microparticle charging can be ignored (note

that  = νjnd). The set of Eqs. (1)–(3) describes the
processes having substantially different characteristic
times. Such sets of equations are ordinarily solved by
the Gear method [15]. The equilibrium concentrations
of the charged component and the charge of a micron-
sized particle in the indicated discharge are presented in
Fig. 1 as functions of the partial concentration
([O2]/[Ar]) of molecular oxygen in the mixture. One
can see that, starting with even negligible concentra-
tions of molecular oxygen (O2/Ar ≥ 10–6), the plasma
composition changes materially to transform from the
electron–ion plasma (e and Ar+) to the ion–ion plasma,
in which  and O– are the major ions while the elec-
tronic component is strongly suppressed. Such a drastic
transformation of the plasma composition is caused by
the fast charge-exchange reaction Ar+ + O2  Ar + 
of argon ions on oxygen molecules (the back reaction is
almost fully inhibited at room temperature because of a
large difference in the ionization potentials of argon
(15.75 eV) and molecular oxygen (12.2 eV)) and by the
electron dissociative attachment to the oxygen mole-
cule: O2 + e  O– + O + e. The latter reaction gives

6 One can show that only the following metastable argon and oxy-
gen atoms and molecules make a contribution to the photochemi-
cal properties of the Ar/O2 mixture: Ar(3P0), Ar(3P2), O2(a1∆g),

and O(1D).
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negative ions, which are accumulated in the discharge
owing to the above-mentioned electric field configura-
tion. This results in a noticeable decrease in the abso-
lute value of microparticle charge, as compared with
plasma in pure argon.

It should be emphasized that such a change in
plasma composition can have an appreciable effect on
the processes of ion transport in the discharge, because
the resonance charge-exchange cross section (scatter-
ing of Ar+ ion by argon atoms) exceeds, by approxi-
mately one order of magnitude, the polarization scatter-

ing cross section of the  ion in argon. This effect can
also be of great importance in estimating the momen-
tum transfer from ions to a microparticle for the deter-
mination of the ion-drag force. The dimensionless
charge (potential) e2|Zd|/aTe of a dusty particle is pre-
sented in Fig. 2 as a function of microparticle concen-
tration nd and partial concentration [O2]/[Ar] of molec-
ular oxygen. One can see that, for nd ~ 103–105 cm–3,
i.e., for the experimental conditions typical of dusty
plasmas, a sizable decrease in the microparticle charge
can be caused by the O2 impurity. Note that the effects
considered, likely, show little dependence on the type
of electronegative gas M. This is so because the main
processes inducing these effects—the formation and
accumulation of negative ions in plasma and the fast
charge exchange of an argon ions on impurity species
(Ar+ + M  Ar + M+; the back reaction is inhibited
because the ionization potential of argon atom is
greater than the ionization potential of M)—are effi-
cient for any electronegative gas.

These results qualitatively describe a change in the
charge composition of complex plasma in the presence
of the O2 admixture. However, to determine the forces

O2
+

Fig. 1. The composition of an rf discharge plasma in O2/Ar
mixture and the charge Zd of an individual microparticle as
functions of the partial concentration [O2]/[Ar] of molecu-
lar oxygen.

Ar*

n0
acting on microparticles, it is necessary to know the
spatial distribution of complex plasma in the discharge.
To this end, we consider a one-dimensional discharge
geometry (the coordinate x =  corresponds to
electrodes, and x = 0 corresponds to the discharge cen-
ter). The ion and electron spatiotemporal distributions
can be determined from the set of balance equations
after adding to Eq. (1) the term describing the jth-com-
ponent transport in the diffusional approximation:

(4)

(5)

(6)

Here, Jj is the jth charged-component flow, µj is the
mobility coefficient, and E is the electric field. Inas-
much as the mean free path of ions (both positive and
negative) is much smaller than L, the diffusional
approximation is quite justified for ions. To determine
the electron spatial distribution, the Boltzmann distri-
bution is used, De∇ ne(x, t) + µeneE(x, t) ≈ 0. For the
metastable species, only the diffusional term is taken
into account in the transport equation. The boundary
conditions for the set of Eqs. (3)–(5) are the following:
from the symmetry considerations, Jj = 0 and E = 0 in
the discharge center, and nj = 0 in the electrode sheath.

The ion-concentration, electron-concentration, and
electric-field profiles in the discharge are shown in
Fig. 3 for various partial concentrations of O2. As in the
case described by the set of Eqs. (1)–(3), the plasma
composition strongly changes and the  and O– ions
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+

Fig. 2. The charge of a microparticle of size 1 µm in an rf
discharge in Ar/O2 mixture vs. the partial concentration
([O2]/[Ar]) of molecular oxygen and the microparticle con-

centration in units of cm–3.
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become dominant. One can see that the presence of
negative ions can markedly reduce the electric field.
This brings about the breaking of the force balance for
a dusty particle. Let us ignore the gravity and thermo-
phoretic forces and consider how the addition of O2

changes the ratio  ≡ Fid/FE of ion-drag and electro-
static forces, which act in opposite directions and deter-
mine the equilibrium configurations of dusty structures.
To estimate the ion-drag forces at low (u ! ) ion-
drift velocities, we use the expression [11]

Here, ρC = Zde2/Ti is the Coulomb radius; Λ =

 is the modified coulombic loga-

rithm (β = ρC/λD, where λD is the Debye ionic radius);
and  and u are the ion thermal and drift velocities,
respectively. Figure 4 shows the spatial dependence of

 for the discharges in pure argon and in argon with an
admixture of molecular oxygen ([O2]/[Ar]) = 0.01).

The coordinate xv corresponding to  = 1 divides the
plasma into two parts: the region |x | ≤ xv , from which
the microparticles are driven out (so-called void),7 and
the region |x | ≥ xv filled with dusty particles. One can
see that even a small addition of an electronegative gas
to the discharge considerably increases the void size.
This is caused by the strong suppression of electrostatic
field in the discharge in the presence of negative ions.
This result is in excellent agreement with the experi-
mental observations [16].

The thermophoretic force can also make a contribu-
tion to the microparticle force balance [17]. One can
easily show that the pure argon discharge does not
induce any noticeable thermophoretic force, because
the temperature inhomogeneity of neutrals is very small
for the typical discharge parameters.8 Indeed, in pure
argon, the quenching Ar + Ar*  2Ar of metastable

argon atoms with the rate constant  is the main
source of heating neutrals. In this case, the neutral gas

is heated to ∆Tn . n*e*τ* ≤ 0.01 K, where e* ~
10 eV is the energy released in quenching and τ* is the
diffusional lifetime of a metastable atom in the dis-
charge. Due to the resonance character of this reaction,

its rate constant is exceedingly small,  ≤ 10–14 cm3 s–1,
so that this process cannot lead to a noticeable heating.
One can easily show that the charge exchange of the Ar+

7 Void is a cavity in the discharge central zone, where the dusty
particles are absent. Void is often observed in gas-discharge dusty
plasmas.

8 It can easily be shown that the thermophoretic force comparable
to the ion-drag and electrostatic forces requires the temperature
gradients on the order of 10 K/cm for a microparticle of size
1 µm.
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ions accelerated by the near-electrode electric field also
makes no contribution to the heating of neutral gas in
the discharge. For this reason, the thermophoretic force
induced in a pure argon discharge is considerably
smaller than the ion-drag and electrostatic forces.

As for the discharge in the Ar/O2 mixture, the situa-
tion with heating the neutral gas becomes cardinally
different, because the metastable argon atoms can be
efficiently quenched in the reaction O2 + Ar*  2O +

Ar with rate constant  ~ 10–10 cm3 s–1, resulting inkq
O2

Fig. 3. Spatial dependences of the electric field and the ion
and electron densities in an rf discharge in Ar/O2 mixture.
(a) Pure argon discharge and (b) [O2]/[Ar] = 0.01.

Fig. 4. Spatial dependence of the ratio of forces acting on a
microparticle with a diameter of 1 µm in an rf discharge; the
ratio of the ion-drag force Fid to the electrostatic force FE as
a function of the coordinate x (x = 0 corresponds to the cen-
ter of the discharge zone). The solid line is for the pure
argon discharge and the dashed line is for [O2]/[Ar] = 0.01.

Ar*
E
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heating of the neutral gases by ∆Tn . 1 K. Even more
efficient heating is induced by the metastable oxygen
ion O(1D). This effect is caused by a high concentration
of O(1D) in the discharge (because of the low excitation
energy) and controlled by the rate of the quenching
reaction Ar + O(1D)  Ar + O. In the general case, a
change ∆Tn in the temperature of neutrals in their reac-
tions of quenching metastable oxygen species is esti-
mated by the formula

(7)

where  is the constant for the formation of the ith
metastable species (state) by electron impact and ei is
the corresponding transition energy. For [O2]/[Ar] =
0.01, the heating is mainly due to O(1D) and is equal to
a few degrees, giving rise to the thermophoretic force
FT . –a2/ kT∇ T (kT is the thermal conductivity coef-
ficient) that can be comparable to the ion-drag forces
for particles with size a ≥ 3 µm. Note that the central
zone of the discharge is heated stronger than its periph-
ery, so that the thermophoretic force expels particles
from the discharge. It is worth noting that the neutrals
in argon plasma are heated by practically any impurity
gas M. This heating is caused by the quenching reaction
Ar* + M  Ar + M of metastable argon atoms in their
collisions with the impurity gas (as a rule, the rate con-

stant  for this reaction markedly exceeds ). The
efficiency of this process depends on the impurity con-

centration in the discharge, on the rate constant , and
on the fraction of the excited metastable-state energy
expanded for heating the neutrals (a portion of this
energy is expanded for the inelastic processes: ioniza-
tion, dissociation, and excitation of the radiating M lev-
els).

The heating of neutrals by dusty particles can also
play a certain role if the concentration of the latter in the
discharge is high enough. This is due to the fact that the
plasma recombination at the particle surface releases
energy that is comparable with the ionization energy.
This heats the microparticle surface [18], which is
cooled in collisions with neutrals. Assuming that this
energy is fully transferred to the neutrals, one can esti-
mate their heating as

. (8)

This heating is proportional to nd and, hence, gives rise
to the thermophoretic force that pushes apart the micro-
particle segregates.

Thus, the addition of molecular oxygen to argon
plasma induces a number of important effects. The
composition and transport properties of plasma change
substantially: electron–ion plasma transforms to the

∆Tn . ke
i ne
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Ar[ ]

-----------τDei, τD
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v Tn

kq
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Ar
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d πaρCniv Ti

eionτD nd/nn( ) 10 2– –3( )K∼≈
ion–ion plasma. The appreciable decrease in the micro-
particle charge can also change the phase state (e.g.,
melt plasma crystal) and the configuration of dusty
structures. The electric field also decreases in the dis-
charge, thereby changing the force balance for the
dusty particle; in particular, the void size markedly
increases. In addition, the metastable argon and oxygen
states initiate heating of the neutral gas, and the corre-
sponding induced thermophoretic force makes a con-
siderable contribution to the force balance for dusty
particles.
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The temperature dependences of the amplitude and velocity of ultrasonic waves at a frequency of 770 MHz
were measured in a La1 – xSrxMnO3 (x = 0.175) manganite single crystal. Magnetoelastic wave generation was
observed near the magnetic phase transition. The temperature dependences of the magnetization and magneto-
striction correlated with the temperature behavior of the amplitude and velocity of the magnetoelastic wave,
which suggests that the coherent magnetoelastic oscillations were generated on microscopic inhomogeneities
(magnetoelastic domains) typical for a manganite of the given composition. © 2003 MAIK “Nauka/Interperi-
odica”.

PACS numbers: 75.80.+q
Unusual physical characteristics of lanthanum–
strontium manganites with a Sr content of 0.15–0.18
have long attracted considerable attention of research-
ers. In this range of x, structural transition from a rhom-
bohedral to an orthorhombic structure occurs. In addi-
tion, one or possibly several structural transitions occur
with changing temperature at a constant concentration
of Sr ions. The magnetic structure also changes; there is
a considerable jump in the curve for paramagnetic–fer-
romagnetic phase-transition temperature Tc (from Tc =
240 K at x = 0.155 to Tc = 291 K at x = 0.185) [1, 2].
The type of electrical conduction also changes from
dielectric (x ≤ 0.17) to metal conduction (x ≥ 0.175).
The transition parameters can be changed considerably
by exposure to a magnetic field; for example, colossal
magnetoresistance (CMR) is observed. Thus, it can be
concluded from the data presented above that mangan-
ites of the given compositions have a soft crystal lattice
susceptible to structural changes under the action of
temperature, magnetic field, and the cooperative Yahn–
Teller effect for Mn3+ ions.

In recent years, considerable attention has been
given to various types of nano- and microsized inhomo-
geneous states caused by the spin, charge, or orbital
ordering. Presumably, the maximal diversity of such
inhomogeneities (especially of microscopic size) can
be observed in the manganites of the above-mentioned
composition because of the competition between dif-
ferent magnetic and structural states. The possibility of
microstructures existing within the indicated range of
Sr concentration was pointed out by Darling et al. [3],
0021-3640/03/7805- $24.00 © 20305
who assumed that the microstructures appear in the
rhombohedral phase, where small regions with identi-
cal rhombohedral distortions, different from the origi-
nal cubic structure, were formed. Elastic stresses occur-
ring at the boundaries of the structural inhomogeneities
indicate that these inhomogeneities can be classified as
structural elastic domains. According to the calcula-
tions made in [3], the energy difference between the
rhombohedral and more distorted orthorhombic lattices
is small, so that exposure to a magnetic field of several
Tesla can cause the transition from one structure to the
other.

The possibility of microscopic structural inhomoge-
neities appearing due to the coexistence of the orthor-
hombic and rhombohedral phases was also pointed out
in [4]. Inhomogeneous states were experimentally
detected in manganites using 55Mn NMR spectroscopy
[5], ferromagnetic resonance [6], and neutron diffrac-
tion [7]. At present, the majority of scientists accept a
model explaining the inhomogeneity by the phase lay-
ering caused by the appearance of a region of coexist-
ence of different magnetic or structural phases in cer-
tain concentration or temperature ranges.

Ultrasonic studies provide certain additional possi-
bilities for the examination of the specific features of
structural and magnetic phase transitions and various
inhomogeneities in the spin and charge ordering. First,
the ultrasound velocity depends on the type of elastic
and magnetoelastic interactions, which change consid-
erably upon phase transition. Second, the interaction
with ultrasound is especially strong if the inhomogene-
003 MAIK “Nauka/Interperiodica”
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ity size corresponds to the ultrasound wavelength, so
that the use of such high-frequency oscillations makes
it possible to study inhomogeneous or multiphase for-
mations in manganites. Third, the high frequency of
ultrasound makes it possible to overcome the gap in the
spin-wave spectrum and thus use the dynamic interac-
tion between the spin and elastic waves occurring in
magnetically ordered manganites [8]. It was not sur-
prising that the conclusions about the structural inho-
mogeneities made in [3, 4] were based on the results of
experiments with ultrasound in a frequency range from
1 to 3 MHz. However, the ultrasound wavelength corre-
sponding to this megahertz range (~5–10 mm) was
many orders of magnitude greater than the size of the
assumed inhomogeneities.

Taking into account the aforesaid, we used ultra-
sound at a frequency of 700 MHz for studying the spe-
cific features of phase transitions and possible micro-
scopic inhomogeneities [9]. A La1 – xSrxMnO3 (x =
0.175) single-crystal sample was chosen for the study,
because at this concentration of Sr ions, the tempera-
tures of structural and magnetic phase transitions were
most close to each other and the maximal value of CMR
was observed. The sample had the shape of a rectangu-
lar 4.85 × 8.2 × 7.9-mm parallelepiped with faces par-
allel to an accuracy of several seconds. The sample
faces were perpendicular to the cubic axes [100], [010],

Fig. 1. Temperature dependences of the amplitude of
(a) longitudinal and (b) transverse ultrasound modes: (j)
zero-field results and (h) results obtained in H = 1 T. The
insert in Fig. 1b shows the temperature dependence of mag-
netostriction in a La0.83Sr0.17MnO3 sample in (d) zero
magnetic field and (s) in the field H = 1 T (data taken from
[8]).
and [001]. Ultrasound pulses (τ ≅  0.5–0.8 µs) were
excited and received using piezoelectric rod transduc-
ers. The pulses propagated along the [100] axis. The
temperature dependences of the velocity and attenua-
tion of ultrasound were measured in the range from 260
to 340 K in a magnetic field H = 1 T using the trans-
ducer–sample–transducer scheme. The pulse duration
was comparable to the time of its propagation through
the sample. As a consequence, several oscillation
modes could be simultaneously generated in the sample
because of elastic or magnetic nonlinearity. These
oscillations became coherent due to a high acoustic Q
factor (≥103).

Long piezoelectric transducers used in the experi-
ment made it possible to separate in time the ultrasound
pulses corresponding to different oscillation modes
and, therefore, propagating with different velocities. A
broad-band receiver detected the pulses at the output of
the receiving piezoelectric transducer. The single crys-
tal used in the experiment was grown in the laboratory
of A.M. Balbashov (Moscow Power Institute). X-ray
spectral analysis showed that the crystal was phase- and
chemically homogeneous.

Study of the propagation of a quasi-longitudinal
wave gave the most interesting results. The wave veloc-
ity and attenuation changed little in the temperature
range from 310 to 340 K (Figs. 1, 2a). The constancy of
the ultrasound velocity also indicated that it continued
to propagate in the quasi-longitudinal mode. The mag-
netic field applied to the sample had virtually no effect
on the parameters of the acoustic wave.

The first anomaly in the velocity and attenuation of
the quasi-longitudinal wave was observed at T = 305 K.
Taking into account the temperature hysteresis, this
anomaly was explained by a first-order transition (par-
tial transition from the rhombohedral to the orthorhom-
bic phase). This conclusion was based on the fact that
the second hysteretic change in the parameters of ultra-
sonic wave was observed at T = 220 K [10] and indi-
cated the complete transition to the orthorhombic
structure.

The second anomaly was observed at T = 283 K. It
was caused by the magnetic phase transition to the fer-
romagnetic phase (this conclusion was substantiated by
magnetic measurements [10]). Considerable changes in
the amplitude and the velocity of the quasi-longitudinal
mode were observed below T = 300 K, excluding the
temperature intervals where the changes in the ultra-
sound parameters were caused by the structural and
magnetic phase transitions. Within this temperature
range, the application of the magnetic field led to an
even sharper decrease in the amplitude and an increase
in the velocity of the wave.

Beginning at T = 305 K and below, a new ultrasonic
pulse was detected simultaneously with the quasi-lon-
gitudinal wave pulse. The phase velocity Vt of the new
pulse was determined from the time of its propagation
through the sample. It varied in a range (2.5–2.9) ×
JETP LETTERS      Vol. 78      No. 5      2003
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105 cm/s and depended on the temperature of the sam-
ple (Fig. 2b). The amplitude of the new pulse increased
as the temperature decreased to T = 270 K; further
decrease in temperature had almost no effect on the
pulse amplitude. The character of an increase in ampli-
tude coincided with the temperature behavior of the
sample magnetization. Exposure to the magnetic field
led to an increase in the amplitude of the oscillation
mode under consideration; thus, the effect of the mag-
netic field on this mode was opposite to the field effect
on the quasi-longitudinal mode and also terminated at
T ≤ 270 K. The velocity of the mode under consider-
ation decreased near the magnetic phase transition and
increased as the sample was exposed to the magnetic
field (Fig. 2b). Thus, taking into account the phase
velocity and the effects of the magnetic field and tem-
perature on the amplitude and Vt, the mode under con-
sideration can be classified as a magnetoelastic mode.

The problem of transformation of the quasi-longitu-
dinal wave to the quasi-transverse magnetoelastic wave
is of particular importance. It is well known that a
purely longitudinal wave and two degenerate transverse
waves propagate in crystals only in high-symmetry
directions. Therefore, in the absence of magnetoelastic
coupling, the dispersion relations for the velocities of
elastic waves with an arbitrary direction of wave vec-
tors are rather complicated. The pattern of propagation
of elastic waves becomes even more complicated if the
magnetoelastic interaction is taken into account. In the
case of wave propagation along high-symmetry direc-
tions, only transverse waves are coupled to magnons;
but if the wave propagates in an arbitrary direction, the
longitudinal elastic mode is also coupled to the magnon
spectrum. This is precisely the case that occurs for a
quasi-longitudinal ultrasonic wave propagating in a
rhombohedral manganite sample of given composition
(Figs. 1a and 2a). As follows from [11], the mode trans-
formation observed in the experiment could be most
effectively induced by the displacement of the bound-
aries of magnetoelastic domains or by changes in their
size (magnetostriction). The coupled magnetoelastic
waves are amplified under conditions of dimensional
acoustic resonance, i.e., when the size of the sample or
the magnetoelastic inhomogeneities (L) is a multiple of
the acoustic wavelength. The acoustic nonlinearity
induced in a sample with strong magnetoelastic interac-
tion gives rise to a spectrum of higher harmonics:

.

Although the harmonic amplitudes decrease with
increasing n, effective oscillations can be expected for
the first harmonics. At a frequency f = 7 × 108 Hz, the
acoustic wavelength falls within the range of several
micrometers. Therefore, in principle, the acoustic
waves with different polarization propagating along
different directions of the crystal can be effectively
transformed into magnetoelastic waves on the nano-
structures of hundreds or thousands of angstroms in

f n V 2n 1+( )/2L; n 0 1 2 …, , ,= =
JETP LETTERS      Vol. 78      No. 5      2003
size. Assuming that, under certain concentration and
temperature conditions, the size of the microscopic
inhomogeneities generated in the sample corresponds
to the spectrum of magnetoacoustic oscillations, we can
expect to observe two types of output acoustic waves
transformed due to magnetoelastic interaction. It
should be noted that the magnetoelastic oscillations are
induced on virtually all magnetic inhomogeneities, but
the coherent mode is generated only by the multiple
reflection of oscillations from the plane-parallel faces
of a sample with a high Q factor (principle of coherence
generation in an acoustical resonator). Theoretical cal-
culations and experimental results show that the gener-
ation efficiency for the magnetoelastic oscillations in a
homogeneous sample is an order of magnitude lower
than in a sample containing microscopic inhomogene-
ities, which act as microscopic magnetoelastic
domains. The temperature behavior of magnetostric-
tion provides an additional corroboration of the model
suggested, because the magnetoelastic interaction is
proportional to magnetostriction, whose temperature
behavior was studied in [8]. Thus, there are reasons to
believe that an increase in magnetostriction from zero
at T ≥ 300 K to 5 × 10–4 at T ≤ 260 K observed in a sam-
ple with similar composition (x = 0.17) and caused by
an increase in the ferromagnetic phase volume can lead
to effective magnetoelastic wave generation on the
inhomogeneities. Such an increase in magnetostriction
correlates with a change in the ultrasound velocity,

Fig. 2. Temperature dependences of the velocity of (a) lon-
gitudinal and (b) transverse ultrasound modes: (j) zero-
field results and (h) H = 1 T.
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which is also proportional to the magnetoelastic inter-
action.

The temperature dependence of the amplitude of
magnetoelastic oscillations in magnetic field correlates
with the temperature behavior of the sample magnetiza-
tion and magnetostriction (Fig. 1b). The intensity of
magnetoelastic oscillations in the applied magnetic
field (H = 1 T) increases at Tc, which correlates with a
similar jump in magnetostriction and a sharp decrease
in the longitudinal wave intensity at the same tempera-
ture. The latter can be caused only by a decrease in the
nonmagnetic phase volume. As the temperature
decreases to 260 K and the magnetization and striction
cease to increase, the amplitude of magnetoelastic
oscillations in the magnetic field slightly decreases.
This decrease corresponds to a field-induced decrease
in magnetostriction with magnetic field in the same
temperature range. The maximal change in magneto-
striction occurs at 0.8 ≤ H ≤ 1.5 T. Thus, the nature of
the detected microscopic inhomogeneities remains
open for discussion. In our opinion, their formation is
originally caused by a two-phase structural state (rhom-
bohedral and orthorhombic phases) over a broad tem-
perature range. It is the onset of the revealed structural
phase transition that correlates with the second ultra-
sonic mode generation. The internal energy of the
orthorhombic phase is somewhat greater than that of
the rhombohedral phase, so that the magnetization pro-
cesses are different for the two phases. Magnetization
of the orthorhombic phase competes with the structural
scatter of the unit-cell axes. Therefore, it is safe to
assume that the compound under consideration con-
tains randomly distributed magnetoelastic domains
formed by structural inhomogeneities.

Thus, this work has demonstrated the possibility of
generating magnetoelastic domains with elastic
stresses at their boundaries. Oscillations of these
domains in the ultrasonic wave field lead to magne-
toelastic wave generation. If the duration of a quasi-
longitudinal ultrasound pulse is comparable to the time
of its propagation through a sample with a high acoustic
Q factor, a quasi-coherent magnetoelastic wave is gen-
erated in the sample.

This work was supported by the Russian Foundation
for Basic Research, project no. 02-04-16440.
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Local electron–phonon interaction in deep-level states of defects in semiconductors was studied by induced
absorption spectroscopy. Using ZnS:Cu single crystals as an example, it was shown that the laser modulation
of two-step impurity absorption is an efficient technique for direct investigations of phonon relaxation effects
in deep-level states. It was shown that the localized states in ZnS are prone to extremely strong electron–phonon
coupling. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.38.-k; 71.55.Gs
The relaxation of carriers in semiconductors is pri-
marily determined by the electron–phonon interaction
(EPI). With an increasing degree of carrier localization,
the electron–phonon coupling strength sharply
increases, because the area of the overlap between the
carrier and phonon states in the k space of wave vectors
increases. It is known that the spectra and efficiency of
radiative recombination essentially depend on the pres-
ence and properties of deep local centers (DCs). Corre-
spondingly, the phenomenon of local EPI in the states
of DCs are of special interest in the formation of radia-
tionless recombination processes.

In this paper, we report a direct investigation of local
EPI by the nonlinear spectroscopy of DCs in wide-
band-gap ZnS:Cu single crystals. It was shown experi-
mentally that laser modulation of two-step absorption
(LM TSA) is an exceptionally efficient technique for
directly studying phonon relaxation processes in the
localized states of deep defects. The basic parameters
were obtained, and a model of configuration coordi-
nates was constructed for DCs in ZnS:Cu.

The full spectrum of the DCs observed was theoret-
ically reconstructed using the minimum set of their
parameters. As a result, it has become possible to cor-
rectly describe not only the energies of the edge of opti-
cal transitions, which are affected by the Stokes losses
due to the Franck–Condon shift, but also the shape of
their long-wavelength absorption broadened by elec-
tron–phonon interaction.

Earlier, the effect of the local EPI was usually inves-
tigated indirectly from the temperature dependence of
the broadening of the long-wavelength edge of absorp-
tion spectra [1, 2]. A different method of directly study-
ing the scattering of free electrons by phonons is based
on the use of subpicosecond Raman spectroscopy [3].
0021-3640/03/7805- $24.00 © 20309
As to the selection of ZnS:Cu as the subject of inves-
tigations, these are the crystals that gave rise to study-
ing the phenomena of impurity luminescence (1866,
[4]). Two-step processes of anti-Stokes excitation of PL
were first observed in these systems. The newest nano-
technologies have also not disregarded this material [5,
6]. This classical phosphor turns out to be in demand
for newly designed field-emission displays [7] and opti-
cal fiber sensors [8].

DCs are manifested in absorption spectroscopy by
transitions to only one of the bands, which is character-
istic of DCs. This is either the valence or the conduction
band (Fig. 1). The type of the transitions (ionization or
neutralization) is determined by the steady-state occu-
pation of DCs or by the degree of compensation of the
crystal, that is, the position of the Fermi level with
respect to the energy levels of the defects (Fig. 1). Con-
sequently, the same centers can differently manifest
themselves in different samples of crystals, never
revealing their full spectra. As is evident in Fig. 1, the
spectral response will be formed by the photoionization
of DCs in uncompensated samples (a) and, on the con-
trary, by the photoneutralization of DCs in compen-
sated samples (b).

Thus, it is hardly possible to investigate the full
absorption spectrum by traditional methods of steady-
state spectroscopy. By the word “full” is meant the pos-
sibility of simultaneously detecting both neutralization
“v   D” (Fig. 1b) and ionization “D  c” (Fig. 1a)
transitions, because they both participate in the
response of centers to their optical charge exchange.

During the optical charge exchange of local centers,
lattice relaxation in the vicinity of the defect proceeds
simultaneously. In other words, localized carriers gen-
erate phonons. This is described by the Franck–Condon
rule of Stokes losses, which is illustrated by the model
003 MAIK “Nauka/Interperiodica”
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of diagrams of configuration coordinates (Fig. 2b). The
energy losses ∆ES (expenditures for the formation of
phonons) at an interband transition through a localized
state are ∆ES = 2∆FC, because phonons are generated at
both the stage of carrier localization and the stage of
carrier liberation (Fig. 2b).

Thus, I wanted to show that the shape of the full
absorption spectrum of DCs is modified by electron–
phonon interaction not only as the broadening of the
long-wavelength absorption edge but also as a short-
wavelength shift of thresholds. In this case, the sum of
the threshold energies EvD + EDc will be larger than the
band gap width Eg by the value of the Stokes losses
∆ES = 2∆FC.

Fig. 1. Schematic diagram of the formation of spectra of
steady-state absorption by deep centers (DCs) with differ-
ing degrees of occupation, that is, for crystals with differing
positions of the Fermi level with respect to the DC states.
(a), (b) The formation of the photoionization spectra σDc(ω)
of an uncompensated sample; (c), (d) the formation of the
photoneutralization spectra σvD(ω) of a compensated crys-
tal.

h

Determination of the Stokes losses from measure-
ments of the full absorption spectrum of deep centers is
a direct method of studying the local EPI.

The full spectrum of DCs should be measured by
transient spectroscopy techniques, using additional
pulsed illumination. This creates nonequilibrium par-
tial occupation of the states of the defect. Figure 3 illus-
trates the formation of the photoinduced spectrum
∆α(ω) in the presence of compensated DCs. Here,
Figs. 3a and 3b demonstrate the appearance of two-step
transitions, and Fig. 3c, their laser modulation. The ini-
tial part of the photoneutralization spectrum (Fig. 3d)
and the full TSA spectrum (Fig. 3e) are given here. The
reaction of two-step transitions (Fig. 3b) and their spec-
trum (Fig. 3e) to additional modulation by a laser pulse
"ωL is shown (Fig. 3f) as the change of the absorption
spectrum α(ω) and (Fig. 3g) as the induced absorption
spectrum ∆α(ω).

The experiments were carried out with the use of the
so-called two-beam method of two-photon spectros-
copy [9]. A xenon lamp (∆t ≈ 200 µs) with a continuous
spectrum, which was monochromatized after passing
through the sample, was used as a probe source. The
absorption of the probe light was modulated by pulses
of a ruby laser ("ωL = 1.78 eV, ∆tL = 40 ns). The exper-
imental results are displayed in Figs. 4 and 5. The idea
of the method is defined as LM TSA [9, 10] though
deep levels. This method provides a possibility of sep-
arating out spectral contributions from different DCs
using the difference in their effects of saturation with
increasing modulation even in the case of the full
energy overlap of their spectra [9, 10]. The basic set of
phenomenological parameters and the composition of
DCs can also be evaluated.

This method was used previously in studying and
determining the properties of DCs in ZnTe [11], ZnSe
[12], CdS [13], and ZnO [14] crystals. However, the
studies [11–14] (modulation by a Nd3+ laser with "ωL =
1.17 eV) were restricted by the fact that there were no
possibility of detecting the induced signals with "ω <
"ωL, that is, in the spectral region in which the photo-
Fig. 2. Two-step optical transitions through deep centers subjected to local lattice relaxation presented within the models of (a) real
space, (b) coordination coordinates, and (c) dispersion curves or “reciprocal space.” ∆FC designates the Franck–Condon losses due
to the emission of S phonons of energy "Ω .

h

'' ''

' '

' ' '' ''
JETP LETTERS      Vol. 78      No. 5      2003



        

ON THE POSSIBILITY OF THE DIRECT STUDY OF LOCAL ELECTRON–PHONON 311

                                                                                                   
ionization thresholds of DCs can be observed. When
the ruby laser was used, two-photon excitation of the
crystal and, correspondingly, the modulation of DC
occupation by the capture of free carriers [11, 13] dom-
inated in these materials. As a result, it was not possible
to study directly the EPI effect in practice.

For ZnS crystals with a wider band gap, two-photon
excitation is absent because 2"ωL < Eg. Therefore, this
material is suitable for measurements of the full LM
TSA spectra and, correspondingly, for studies of local
lattice relaxation upon optical charge exchange of DCs.

The experimental results shown in Figs. 4 and 5 con-
firm that the induced bleaching on the long-wavelength
side of the absorption spectra (Fig. 4) along with the
extended kinetics of the signals and the saturated inten-
sity dependences (Fig. 5) are typical manifestations of
LM TSA [9, 10].

As usual, the spectra (Fig. 4) are complex, being
formed by the overlap of the signals of induced bleach-
ing and absorption from each kind of center [6–9]. The
spectral dependences correspond to a combination of
the spectra of photoionization and photoneutralization

Fig. 3. Schematic diagram of the formation of the photoin-
duced absorption spectrum ∆α(ω) for compensated DCs.
(a), (b) Manifestation of two-step transitions and (c) their
laser modulation. (d) Photoneutralization spectrum and
(e) full TSA spectrum. The reaction of two-step transitions
(b) and their spectra (e) to additional modulation by a laser
pulse "ωL is shown (f) as the change of absorption spectra
α(ω) and (g) as the induced absorption spectrum ∆α(ω).

h
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cross-sections in the form [σcA(ω) – σvA(ω)] (see
Fig. 3g). The modulation of TSA occurs as a result of
the change of the occupation of DCs due to the direct
absorption of laser radiation with "ωL > Ei by the impu-
rity center, as is shown in Fig. 3c.

Fig. 4. Comparison of the experimental photoinduced
absorption spectrum in ZnS:Cu at 300 K (points) formed by
LM TSA processes with the calculated spectra in the form
of a combination σAc(ω) – σvA(ω) of photoionization spec-
tra σvA(ω) and photoneutralization spectra σAc(ω) for two
deep acceptors with EcA = 2.67 eV and 2.83 eV. The spectra
are presented for (a) transitions subjected to phonon relax-
ation according to Eqs. (1)–(3), (b), (c) the same DCs in a
hard lattice within the Lucowsky model according to Eq. (4)
for the states with the Stokes shift (b), when EvA + EAc +
∆FC = Eg, and for the case of unrelaxed states (c) with EvA +
EAc = Eg. The components forming the spectrum by optical
transitions (1 and 3) v   A and (2 and 4) A  c are
shown separately and also in the form of their natural com-
bination. Curve 5 corresponds to the calculated spectra of
the resulting LM TSA.
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An analysis of the saturating dependences ∆α(IL) of
the induced signals on the intensity of the modulating
laser radiation allows one to determine the absolute val-
ues of the photoionization cross-section due to the
absorption of laser quanta σvA (see table). Figure 5
demonstrates experimental dependences ∆α(IL) for two
spectral regions of photoinduced absorption and the
corresponding theoretical curves calculated according
to [6–9]. It is evident that the signals with the quantum
energies above 2.1 eV are formed by both centers and
those below 2 eV by only the deeper DC, which allows

Fig. 5. Dependences of the amplitude of the signals of
induced impurity absorption in ZnS:Cu on the optical mod-
ulation intensity measured at "ω = 2.1 and 2.5 eV. Curves 1
and 2 are the calculated dependences. Curve 2 was obtained
under the assumption that the dependence at 2.5 eV is due
to the overlap of the signals from both DCs (1 + 2).

Table

Parameters of centers 1 2

Photoionization cross-section 
σvA(ωL), cm2

0.63 × 10–17 0.475 × 10–18

Lifetimes of localized holes τ, 
µs

1.2 0.5

Hole binding energy, EvA, eV 1.415 1.65

Photoneutralization edge,
EcA, eV

2.83 2.67

Stokes losses due to the 
Franck–Condon shift, ∆FC, eV

0.515 0.59

Electron–phonon coupling 
constant aA

6.55 7.0
their contributions to the full spectrum to be separated
with certainty.

The figure shows that both spectra as well as their
intensity dependences are formed mainly under the
effect of two DC levels. The energy levels of these cen-
ters lie in the lower part of the band gap and act as com-
pensated deep acceptors. This follows from special
measurements of excitation spectra (are not presented
here), which describe the dependence of the bleaching
effects on the spectral composition of the probe source
maintaining the initial occupation of DCs [12–14].

In our case, the spectrum edge is substantially
smeared; hence, it is possible that phonons make an
effect on the formation of the spectra [2, 15]. The LM
TSA spectra can be described reasonably in the frame-
work of the δ-potential model with regard to electron–
phonon interaction [2]. The theoretical spectrum of the
photoneutralization cross-section and its temperature
variations can be obtained in the following way [2]:

(1)

Here, ΘA has the meaning of the spectrum smoothing
parameter due to EPI

(2)

aA is the dimensionless electron–phonon coupling con-
stant, "Ω is the energy of local lattice oscillations, and
"ω is the photon energy;

(3)

An expression similar to expression (1) but with dif-

ferent ℵ  = EvA and ℜ  = "ω  can be obtained for
photoionization spectra. Expression (1) can be com-
pared with the spectrum in the simple δ-potential
approximation by Lucowsky [16] for deep centers in a
“hard” lattice

(4)

Here, N = 1 for the allowed transitions and N = 3 for the
forbidden transitions. EI is the ionization energy of the
DCs.

A comparison of the experimental spectrum (points)
and theoretical calculations is given in Fig. 4. Curve 5
in Fig. 4a is the spectrum with the complete consider-
ation of electron–phonon interaction (1) for two centers
with EcA = 2.67 and 2.83 eV. On the other hand, curves
in Figs. 4b and 4c are shown for comparison and corre-
spond to the case of the same centers for the hypotheti-
cal “hard” lattice by Lucowsky (4). The components
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that form the spectrum by means of optical transitions
v   A (1 and 3) and A  c (2 and 4) are shown sep-
arately and also in the form of their natural combina-
tions 1 + 2 and 3 + 4. Curves 5 are the resulting LM
TSA spectra according to expressions (1)–(3).

The spectra of the Lucowsky type (4) presented in
Figs. 4b and 4c are characterized by the inclusion of the
effect of Stokes losses (b), when EvA + EAc + ∆FC = Eg.
The curves in Fig. 4c correspond to simple unrelaxed
states with EvA + EAc = Eg. The differences in the calcu-
lated spectra in Fig. 4 demonstrate how strong the EPI
effect can be on the formation of the DC spectra in
wide-band-gap semiconductors. Thus, without regard
for EPI, the error in the estimate of the center binding
energy is about ∆FC ≈ 0.5–0.6 eV, and the error for the
description by the Lucowsky equation (4) is up to 1 eV
and more.

In studying deep centers by this method, one can
obtain the same parameter of the electron–phonon cou-
pling strength aA twice: (1) in describing the broadening
of the long-wavelength absorption edge and (2) in
describing the Stokes losses due to EPI. The coincidence
of these parameters in both cases confirms that the iden-
tification of the spectra justifies the approximations used.

These calculations form the basis for the model of
DC configuration coordinates (Fig. 6), which can be
used for determining the energy of the unperturbed
states Em and the corresponding Stokes losses ∆FC due
to lattice relaxation upon optical charge exchange.
These parameters and the electron–phonon coupling con-
stant aA were obtained (see table) under the assumption
that the energy of local oscillations "ΩLO equals 33 meV.

Fig. 6. Model of configuration coordinates for the deep cen-
ters studied in the linear approximation.
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Thus, the advantages of nonlinear spectroscopy
allows one to observe the full spectra of deep local cen-
ters in crystals, that is, to detect simultaneously the
interrelated spectra of both photoionization and photo-
neutralization.

The most important result is that the local electron–
phonon interaction in crystals has been studied directly.
The data obtained allowed the full experimental spec-
trum to be theoretically reconstructed with the use of
only a minimum set of parameters. Furthermore, with
the use of the same parameters of DC binding energies
and electron–phonon coupling strengths, it was possi-
ble to describe not only the edges of optical transitions
shifted by Stokes losses but also the shape of the long-
wavelength absorption edge broadened by electron–
phonon interaction. The results show that deep local-
ized states in wide-band-gap crystals of the ZnS type
are characterized by extremely strong effects of elec-
tron–phonon coupling.
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Recent measurements of photoconductivity for 2D electrons at the helium surface in the presence of a magnetic
field orthogonal to the 2D plane require a qualitative explanation, because of the very fact of its existence. Var-
ious scenarios of the effect are discussed, and arguments in favor of one of these—that which is associated with
the emergence of thermoelectric power along a 2D charged system in a magnetic field under the effect of a spa-
tially nonuniform external pumping—are presented. The corresponding nonuniform electron distribution δns
(against the background of the uniform distribution) leads to the effect that is observed with the aid of Corbino
disks and which consists in a change in the conductivity of the 2D system. © 2003 MAIK “Nauka/Interperiod-
ica”.

PACS numbers: 73.20.-r; 73.50.Pz
Information about the high-frequency-pumping-
induced photoconductivity δ  of 2D electron systems in
an orthogonal magnetic field appeared in the literature as
far back as the 1970s (see the experiments reported in [1,
2] and performed with inversion layers in silicon). These
experiments did not reveal anything remarkable, with the
exception of the expected photopeak δ  in the reso-
nance region around ω . ωc, where ω and ωc are, respec-
tively, the external and the cyclotron frequency. In treat-
ing data from these experiments, the sensitivity of the
current-carrier mobility to the electron temperature Te

was assumed to be obvious, although the fact of this
dependence itself was not verified.

Later on, there appeared new photosensitive experi-
ments for low-dimensional systems in a magnetic field.
First of all, the experiments performed by Penning et al.
[3, 4] with 2D electrons on helium are worthy of note.
Among other things, these experiments revealed that
the sign of the photoconductivity δ  may be different,
depending on experimental conditions, and that, on the
magnetic axis, the positions of the peaks of cyclotron
absorption and of the photoconductivity induced by this
absorption do not coincide.

The studies reported in [5–11] and devoted to the
details of the photoconductivity in well-conducting
degenerate 2D electron systems based on GaAs are no
less interesting. In the region of weak magnetic fields
where ω ≥ ωc, these experiments reveal oscillations of
the photoconductivity δ (H) whose period is prima-
rily dependent on a parameter γ that has nothing in
common with the combination of quantities responsible
for Shubnikov–de Haas oscillations, γ = ω/ωc. The
number of such resonances, corresponding to integral
values of γ, depends greatly on the quality of the sam-
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ples used, reaching two-digit numbers for the best of
them [8] (which are characterized by an effective
mobility in excess of 106 cm2 (V s).

The results obtained in [3–11] suggest that there are
a few reasons for the photoexcitation of 2D electron
systems. Of primary importance is the behavior of the
cross section in the scattering of 2D electrons by
medium defects (impurities, phonons, etc.). If this cross
section is energy-dependent, an increase in the electron
temperature would inevitably affect the mobility of
electrons and, hence, the 2D conductivity. An indepen-
dent source of photosensitivity is associated with the
discreteness of the electron spectrum in a magnetic
field. Finally, the spatial nonuniformity of the problem
due to a nonuniformity of irradiation is also operative.
This channel of photosensitivity is less obvious than the
preceding two and does not look very fundamental.
However, there are some cases (including the case dis-
cussed below) in which only upon taking into account
the nonuniformity of the problem does there arise the
possibility of explaining the existence of photoconduc-
tivity and its sign.

Returning to electrons on helium, we note that the
authors of [3, 4], as well as the authors of [1, 2],
assumed the mobility of electrons on helium to be sen-
sitive to the electron temperature and attributed the
deviation of  from the reference level σ0 predomi-
nantly to this. However, the calculation presented
below reveals that the 2D gas-limited mobility µG of
electrons, which is of greatest importance for the exper-
iments reported in [3, 4], is independent of Te in the
range explored experimentally:

(1)
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Here, b is the electron-localization length in the vertical
direction; a0 is the amplitude for zero-angle electron
scattering by an individual gas atom; and NG(I) is the
volume density of gas atoms, which is dependent on the
heat-bath temperature T. According to (1), the effective
heating of the electrons, which is inevitably caused by
the irradiation of the 2D system, does not affect their
mobility.

Thus, even the original reasons that could be respon-
sible for the effect of cyclotron-resonance-induced con-
ductivity (CRIC) for electrons on helium remain uncer-
tain.

The CRIC scenario proposed in the present study
explains, at a qualitative level, the existence of the
effect and a correct sign for the experiments reported in
[3], which were performed under “unsaturated” condi-
tions (in the case of saturation, the proper field of the
electrons compensates the electric field confining the
electrons near the surface of helium). It is shown that
spatially nonuniform high-frequency radiation heats
the 2D electron system selectively. The thermoelectric
power that arises in this case, as usual (see [12]),
between the middle and the periphery of the 2D system,
is accompanied by a nonuniform (against the back-
ground of the mean uniform density ns) rearrangement
of the electron density, δns. It is this perturbation that
leads to the effect that was observed in [3] with the aid
of a system of Corbino disks (a, b, c in the figure) and
which consists in a change in the conductivity of the 2D
system:

(2)

Here, σo is the conductivity of the 2D system in the
absence of a high-frequency perturbation.

The thermal scenario of the CRIC effect in the gas
region and in the absence of saturation is reasonably
matched with more complicated manifestations of the
effect [4] under the conditions of saturation.

1. Proceeding to implement the program outlined
above, we will first specify, with the aid of the figure,
various fields present in the problem. A lower electrode
that is formed by a cylindrically symmetric system of
Corbino disks a, b, and c is statically grounded. A static
potential V, which confines 2D electrons to the surface
of helium, is applied between an upper electrode (1)
partly filled with a mesh, a protecting ring (2), and the
Corbino disks. The equipotential lines of the static field
in a resonator are represented by solid lines in the fig-
ure. The static features used in the main body of the
present article are the radius S of the electron mirror at
the surface of helium and the mean electron density ns

in it.

A weak measuring potential difference  oscillat-
ing with a frequency Ω is applied between the Corbino
electrodes a, b, and c.

An exciting waveguide of radius L < S is connected
to the resonator through the permeable mesh. The orig-

δσ̃ . σoδns/ns.

Ũ
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inal high-frequency field of frequency ω has an ampli-
tude Eo. The field E|| actually experienced by the 2D
electron system must be determined self-consistently
from a calculation of the coefficient R of reflection of a
high-frequency signal from a flat resonator having a
semitransparent upper electrode and an ideal lower
electrode and containing a 2D charged system at the
surface of helium.

2. Let us now show that the gas-limited mobility µG

of the electrons and their ripplon-limited mobility µ⊥  do
not possess properties that are required for explaining
the photoeffect observed in [3]. With an eye to the case
of low electron densities, where single-electron approx-
imation is valid in electron kinetics, we first present,
following the traditional line of reasoning [13], the
hierarchy of kinetic equations for an electron in an
orthogonal magnetic field in the presence of a linearly
polarized high-frequency electric field E|| directed
along the 2D system. We have

(3)

(4)

(5)
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Scheme of the cell in [3] for implementing CRIC experi-
ments: (1) upper electrode of the resonator with a “window”
of radius L closed by a metallic mesh for the penetration of
a high-frequency signal to the volume of the resonator,
(2) protecting ring, and (a, b, c) electrodes in the base of the
resonator that form a system of Corbino disks for measuring
the effective conductivity of the electron layer at the surface
of helium. The geometric parameters indicated in the figure
are the following: S is the approximate radius of the electron
disk; d is the thickness of the helium film; and h is the height
of the resonator. The solid lines within the resonator give an
idea of the shape of static equipotential lines between the
upper and the lower plate of the resonator; R indicates the
direction of the reflected high-frequency signal.
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The kinetic coefficients A and ν for various types of col-
lisions are defined below. In analyzing the properties of
the mobilities µG and µ⊥ , the field E|| is assumed to be
uniform.

Equations (4) and (5) enter into an infinite hierarchy
of coupled relations between distribution functions fi.
According to [13], the possibility of truncating this
hierarchy at the level of Eqs. (4) and (5) is determined
by the requirement

(6)

where δ(Te) is the mean energy fraction lost per colli-
sion with a gas atom or a ripplon. Under the condition
δ(Te) ! 1, which is well satisfied in the case being con-
sidered, the inequality in (6) and, hence, formulas (7),
(9), and (10) below remain meaningful even at sizable
deviations of Te from T.

Solving Eq. (5) for the case where the field E|| oscil-
lates with a frequency ω, we obtain

, (7)

(8)

(8a)

(8b)

(8c)

where τG is the relaxation time for electron collisions
with gas atoms. 

Taking into consideration formulas (7) and (8), we
can easily write a time-independent solution to Eq. (4)
[14, 15]

(9)
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According to (8c) and (9a), the properties of τG and
AG for electron collisions with helium atoms are inde-
pendent of p (for AG, this statement is valid as long as
the inequality eb @ T is satisfied). As a result, the distri-
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bution fo(p) (9) has a Maxwellian form, with the elec-
tron temperature Te being

(10)

where uG is given by (8).
The quasistatic mobility µg of electrons for the

CRIC effect arises from a calculation of the impedance
of the Corbino disks (a, b, and c in the figure) upon

applying, between them, a small potential difference 
oscillating with a frequency Ω , this impedance being
sensitive to the state of the 2D electron system in ques-
tion. An analytic solution to this problem has not yet
been obtained. In performing absolute measurements
of the mobility, one has to employ, for the impedance,
the numerical results obtained in [16]. As to the relative
measurements reported in [3], it is sufficient in that case
to calculate the ohmic quasi-static electron mobility by
using the Maxwellian symmetric part of the distribution
function in (9) and (10). This mobility is given by for-
mula (1), which is independent of Te.

In the case of the electron–ripplon interaction
(which can also affect CRIC)

(11)

with ξ(r) having the meaning of the ripplon amplitude,
the required solution to the kinetic equation is given by
(3), (7), and (9), with the functions involved being

(12)

(13)

Here, T is the temperature of helium; α and ρ are its sur-
face tension and density, respectively; ψ(z) is the z com-
ponent of the electron wave function; and ωq is the rip-
plon spectrum.

Obviously, the function fo(p) (9), with τ⊥  and A⊥ (p)
being given by (12) and (13), respectively, is not Max-
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wellian; therefore, it is impossible here to introduce an
effective electron temperature. If one nevertheless
adopts this qualitative simplification, the quasi-static
electron mobility corresponding to the interaction in
(11) in the region Te > T proves to be [15]

(14)

The magnetomobility of electrons characterized by
µ⊥  from (14) decreases with increasing Te; that is, its
behavior is inverse to that which was observed experi-
mentally in [3].

3. Having exhausted the possibilities for explaining
the photosensitivity of a 2D electron system on helium
in terms of relaxation mechanisms (we mean here the
electron-temperature dependence of the electron
mobility), we now consider alternative scenarios. As
was indicated above, one of these may be associated
with a nonuniformity of the distribution of the exciting
high-frequency field along the 2D system being consid-
ered. In the scheme of the cell, the high-frequency field
of amplitude E|| penetrates to the charged surface of
helium in a region of radius L < S and heats it to the
temperature Te (10) (for the sake of simplicity, the heat
flux along the surface of helium is disregarded, in
which case the electron temperature (10) becomes a
local function of E||). Under steady-state conditions, a
nonuniform heating of a conductor is accompanied by
the emergence of a thermoelectric power and, hence, by
a redistribution of the electron density, δns, between the
central part of the 2D system with a radius L and its
periphery (up to a radius of S > R). It only remains to
note that the measuring part of the cell (electrodes a, b,
and c in the figure) is localized in the central region and
is therefore sensitive to local changes in the electron
density.

A formal estimate of δns follows from the require-
ment that the nonuniform excited state of the 2D system
be stationary. For the problem where the electron den-
sity ns is low and where the electron temperature Te has
the value given by (10), this condition reduces to the
requirement that the quasi-electrochemical potential be
constant along the conductor (see [12, 17]). In the case
being considered, this is the condition

(15)

where lH is the magnetic length.
The growth of the electron temperature reduces the

potential ζ (15); therefore, the general requirement that
the electrochemical potential remain constant along the
charged surface of helium will be accompanied by a
growth of the electron density in the region of an ele-
vated electron temperature, and this is what was neces-
sary to prove from the point of view of the sign of the
effect observed in [3] (see comments to formula (2)).
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8α"

meE⊥
2
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ν πlH
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Assuming that the electrostatic problem of the per-
turbation δn(x) is time-independent and one-dimen-
sional (rather than cylindrically symmetric, as is the
case in the figure), we can easily find the explicit form
of δn(x). The result is

(16)

where d is the helium-film thickness, L  2w, and
S  ∞.

For d/w @ 1, expression (16) reduces to

(16a)

In the opposite limiting case of d ! w, the contribu-
tion of the second term on the right-hand side of (16) far
off the points x = ±w is exponentially small against the
first term, and we have the distribution δn(x) typical of
the flat-capacitor problem.

It is instructive to note that, in the case of a Max-
wellian structure of the symmetric part fo(p) of the
distribution function, the requirements ∂f0/∂t = 0 and
∂f0/∂r = 0 on the nonhomogeneous equation (4) are
equivalent to the condition in (15) (see, for example,
[17]). In this sense, the kinetic formalism described
above makes it possible to validate the introduction of
the nonequilibrium quasi-electrochemical potential
(15). But if there is no separate electron temperature, as
is the case when Eqs. (12) and (13) are valid, the
requirement that Eq. (4) be time-independent takes the
place of the condition in (15).

Yet another interesting comment concerns the
amplitude dependence of the CRIC effect. According to

(16), we have δn(x) ∝  (Te – T) ∝  . It follows that,
within the scenario specified by Eq. (2), the photocon-

ductivity must be a linear function of . At the same
time, experimental data reported in [3] are indicative of
a nonlinear relationship between δ  and the power of

pumping, the latter being proportional to the square 
of the exciting field (according to Fig. 2b from [3],

δ  ∝  ln ). The last two statements are compatible if

the quantities  and  are not identical, and this is
indeed so. Since the main objective here is to draw only
qualitative conclusions, the geometric details of the
problem are simplified, at this stage, to the maximum
possible degree. Omitting intermediate calculations
aimed at determining the coefficient R of reflection of a
high-frequency signal from the resonator in the figure
in the presence of 2D electrons, we only quote the even-
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tual result for the field E|| in terms of R and Eo. Its spe-
cific form is

(17)

(18)

where σm is the effective conductivity of the mesh cov-
ering the inlet of the waveguide in the figure and the
function f(kh, kd, σ) determines the resonance proper-
ties of the cell in the figure for the case where this cell
contains electrons. The vanishing of this function,

(19)

determines the eigenfrequencies of the resonator con-
taining electrons. It is obvious that, for σm  ∞, the
reflection factor in (18) tends to unity. At finite values
of σm, the quantity R begins to feel the properties of the
resonator. In particular, we have

(20)

for an empty resonator, in which case σxx  0. If, in
addition, the external frequency satisfies the require-
ment

(21)

then

(22)

even in the case of a limited conductivity of the mesh
(the total reflection of the external signal occurs at the
lower plate of the resonator).

Returning to the relationship in (17), we recall the
conditions prevalent in the experiment reported in [3].
Fixing the frequency ω and varying the magnetic-field
strength, one can find an extremum of R at a minimum
level of pumping (the function f(kh, kd, σ) is resonantly
small here). After that, this tuning is preserved, with
only the level of pumping being changed. It is clear
that, as Te is increased, which is naturally accompanied
by an increase in the scale of the thermoelectric power
between the center and the periphery of the electron
disk, the conductivity of the central part of the disk
grows. This entails a sharp change in the function f(kh,
kd, σ) toward greater values (shift to an off-resonance

E|| Eo 1 R–( ) kd( )/ f kh kd σ, ,( ),sin=

R
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----------,=
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γo i–
γo i+
-------------, γo σm kh( )cot+= =

koh( ) 0,sin

Ro 1
region). It follows that, with an increased level of
pumping, the amplitude E|| from (17) grows more
slowly than Eo, and this is what one observes experi-
mentally.

In summary, various scenarios of the emergence of
the classical CRIC effect have been discussed in the
present study for electrons on helium. A CRIC mecha-
nism has been proposed that takes into account the
presence of a thermoelectric power in a nonuniformly
heated 2D electron disk. This thermal scenario provides
a qualitatively correct explanation of the sign and scale
of the photoconductivity observed experimentally in
[3].
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A comparison of the theoretical calculations with the results of experiments on high-resolution laser spectros-
copy made it possible to reveal the fine structure that arises in the supersensitive 4I9/2  4G5/2 transition as a
result of a strong coherent interaction in the Nd3+ ion pair in the CaF2 crystal and construct the level splitting
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It is well known that some electronic transitions of
trivalent rare-earth (RE) ions are supersensitive to the
surrounding ligand field [1]. Two mechanisms were
proposed to explain the supersensitivity of these transi-
tions. (1) The inhomogeneity of dielectric environment
of the RE ions can sizably increase the transition inten-
sity (“inhomogeneous” dielectric mechanism) [2]; (2)
the dynamic interaction of 4f electrons with ligands [1–
5] polarizes the latter, which then interact with the radi-
ation field. Later on, it was shown [6, 7] that both these
mechanisms are identical.

In this work, we examine the supersensitive Nd3+

4I9/2  4G5/2 transition. We first consider the theoret-
ical aspects of the problem and estimate the most
important parameters of the transition in CaF2, where
the Nd3+ ions are clustering into two- and four-particle
aggregates with subnanometer distances between the
trivalent impurity ions [8]. Due to the strong coherent
interaction between the Nd3+ ions, the ground and
excited states of the indicated transition are split into
sublevels with gaps between them ranging from hun-
dredths to several cm–1 [9–11]. We will compare the
theoretical estimates with the results of high-resolution
laser spectroscopy to reveal the fine-splitting structure
and construct the level-splitting diagram for the ground
and excited states of the Nd–Nd dimer. These studies
are of importance from both fundamental and applied
points of view and, in particular, for the discussion of
the prospects of using inorganic crystals containing
impurity RE ions as optical memory cells and elements
of quantum computational devices.

Theoretical. Following the model [6], we consider
the contribution of dynamic interaction to the intensity
of the supersensitive Nd3+ 4I9/2  4G5/2 transition. The
electric vector E of the radiation field induces dipole

     

                                           
0021-3640/03/7805- $24.00 © 0319
moment αE in a ligand situated at the distance R from
the RE nucleus (α is assumed to be the polarizability of
a spherically symmetric ligand). The dipole moment
αE produces the potential

(1)

at the position ξ of the 4f electron. It follows from [6]
that the potential V increases the electronic dipole
moment by

(2)

Following Judd, we write the Judd–Ofelt parameter Ω2
for the dipolar interaction as

(3)

Here, 〈ξ 2〉  is the mean square 4f-electron radius aver-
aged over the 4f wave function, Rs is the equilibrium
distance between the RE ion and the sth ligand, ns =
Rs
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) is the Legendre polynomial.
Let us estimate the parameter 
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 for a CaF
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ter composed of a pair of Nd

 

3+

 

 ions that substitute for a
pair of Ca

 

2+

 

 ions situated in two neighboring sites of the
cationic sublattice and arranged in the crystallographic
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 direction. The separation 
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) between
the ions in the pair is 0.385 nm. The excess positive
charges arising upon substituting Nd
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 for Ca
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 are
compensated by a pair of negatively charged fluorine
ions situated in the neighboring interstitial sites. The
crystal field of the resulting M cluster has orthorhombic
symmetry [8]. Assume that the polarizability  α  of the
interstitial F
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 ions coincides with the polarizability of
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the ions in the lattice sites. Due to the inversion symme-
try, eight lattice F– ions make no contribution to Ω2,
while the contribution from the two neighboring inter-
stitial F– ions is

(4)

Here, a is the lattice constant and αF is the polarizabil-
ity of the F– ion. Note that Eq. (4) has the same form for
any MeF2 (Me = Ca, Sr, etc.) crystal. Using the values
〈ξ 2〉  = 1.001 a.u. [12], a = 0.546 nm [13], and αF =
0.87 Å3 = 0.87 × 10–30 m3 [14], one gets Ω2 = 2.19 ×
10−20 cm2.

Let us now use the matrix element |(4I9/2||U(2)||4G5/2)|2 =
0.8779 [15] to calculate the transition line strength
caused by the dynamic interaction mechanism:

Using the expression

(5)

where e is the electron charge, c is the velocity of light
in vacuum, n = 1.43 is the refractive index, E =
17255 cm–1 is the energy of the excited 4G5/2 state, and
J = 9/2, the above theoretical estimate of the line
strength can be compared with the value obtained from
the experimentally measured integrated cross section
for the 4I9/2  4G5/2 transition. This cross section was
determined from the absorption spectrum of the
CaF2:Nd3+ (0.3 wt %) crystal obtained at 9 K [9] for the
transition between the lowest sublevels of the ground
(4I9/2) and excited (4G5/2) Stark manifolds. With allow-
ance for the EPR-based concentration of M centers N =
1.44 × 1018 cm–3 [16], we find that σabs(J – J') = 1.32 ×
10–18 cm. As a result, the value obtained from Eq. (5)
coincides, to a good accuracy, with the experimentally
measured line strength Sexp(4I9/2, 4G5/2) = 1.87 ×
10−20 cm2. However, it was pointed out in [6] that one
should, generally, introduce the factor (1 – σ2)2 into
Eq. (3) to correct for a quadrupole field that is screened
by the outer electronic shells. At present, the corre-
sponding data are not available. Moreover, it follows
from the discussion in [6, 7] that it is even unclear how
this parameter changes upon the transition from the
static to the dynamic field.

To construct the level-splitting diagram, one should
take into account the character of splitting and the
selection rules for the dynamic interaction model of
intraconfiguration transitions of the M center. The low-
est sublevel of the 4I9/2 × 4I9/2 Stark manifold of a non-
interacting pair of Kramers’ Nd ions is fourfold degen-
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erate. Due to the spin–spin magnetic dipole–dipole and
exchange interactions, this level splits into the triplet
(χ(T+), χ(T–), and χ(T0)) and singlet (χ(S)) states [10].
The electrostatic (mainly quadrupole–quadrupole)
interaction of the supersensitive optical transition in the
ion pair generally removes the eightfold degeneracy of
the excited 4I9/2 × 4G5/2 level, resulting in the splitting of
this transition into the maximum possible number of
lines 4 × 8 = 32 [10]. The expressions for the zero-order
wave functions Ψi (i = 1, 2, …, 8) and the correspond-
ing eigenvalues Ei = E0 + ∆i of the excited 4I9/2 × 4G5/2
level are given in [10]. This level splits in such a way
that the energy distances ∆i from the center-of-gravity
of the resulting manifold are related by ∆5 = –∆1, ∆6 =
–∆2, ∆7 = –∆
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, and 

 

∆
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4

 

. In the dynamical coupling
model, the interaction of 

 

f

 

 electrons with the radiation
field can be written for the M center as

(6)
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between the antisymmetric singlet and the antisymmet-
ric 

 

Ψ

 

5

 

, 

 

Ψ

 

6

 

, 

 

Ψ

 

7

 

, and 

 

Ψ

 

8

 

 states are also forbidden. These
selection rules are analogous to the rules considered in
our work [10] for the induced electric dipole transitions
in the model of Nd
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–Nd
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-pair interaction in CaF

 

2

 

.
Note that the selection rules for the magnetic dipole and
electric quadrupole transitions are quite the reverse.
The transitions between the symmetric states, as also
the transitions between the antisymmetric states, are
allowed, whereas the transitions between the symmet-
ric and antisymmetric states are forbidden.

For the transitions caused by the dynamic coupling
mechanism (DCM), additional selection rules appear
(the 
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 and 
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 transitions are forbidden).
However, these rules are strict if one takes into account
only the contribution from the compensating interstitial
F
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 ions. If the F
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 ions in the nearest surrounding of the
Nd

 

3+

 

 ions of M center are shifted from their equilibrium
positions, the selection rules become the same as for the
electric dipole transitions (see [10]).

 

Energy level diagram.
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sition) by a laser spectrometer based on a tunable nano-

second  laser is shown in the figure. The laser
cavity with a diffraction grating set at the grazing inci-
dence regime allowed tunable oscillation in the ranges
1090–1230 and 545–615 nm with a spectral width of
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tation spectrum correspond to the inhomogeneous
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broadening, while the homogeneous width of these
lines, as obtained by the method of picosecond accu-
mulated photon echo (APE) [9], was much smaller at
10 K (0.0017 cm–1). The analysis of the spectrum and
the above considerations made it possible to construct
an energy level diagram for the Nd-ion pair with strong
coherent interaction (figure). When constructing the
diagram, the APE results [9] were taken into account. In
the APE experiments, the interference of the transitions
between the split ground-state singlet–triplet sublevels
and the excited-state Ψ sublevels brings about temporal
echo-signal beats with a period of tens and hundreds of
picoseconds. The splittings of the excited Ψi (1–2.3 cm–1)
and singlet–triplet (0.05–0.2 cm–1) levels are shown in
the figure and correlate well with the experimentally
observed APE beats.

Note that the ground-level splitting into triplet sub-
levels with energies E(T–) = 0, E(T+) = 0.05 cm–1, and
E(T0) = 0.2 cm–1 (figure) is in agreement with the EPR
data [17]. The EPR technique is incapable of determin-
ing the position of singlet level because of the forbid-
denness of the singlet–triplet spin–spin transitions,

Luminescence excitation spectrum of the CaF2:NaF3
(0.04 wt %) crystal at 10 K and the energy level scheme of
Nd3+ ion pairs for the supersensitive 4I9/2  4G5/2 tran-
sition. Arrows indicate the spectral lines corresponding to
the allowed transitions between the singlet (S) and triplet
(T) ground- and excited-state (Ψ) levels split due to the
strong coherent interaction in the ion pair.
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whereas the same transitions are observed in the APE
temporal beats [9, 10]. The position of the singlet level
Ε(S) (figure) was determined by using the excitation
spectrum and the APE data. We failed to determine the
splitting of the excited Ψ1, Ψ2, Ψ5, and Ψ6 levels with
accuracy better than the spectrometer resolution
(0.03 cm–1), probably, because of spectrum inhomoge-
neous broadening or level degeneracy.

Note in conclusion that the theoretical analysis pre-
sented above and high-resolution laser spectroscopy, in
conjunction with photon echo and EPR spectroscopies,
allowed us to construct a splitting diagram for the
supersensitive transition of the Nd3+–Nd3+ pair in CaF2
crystal.
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The spectrum of spin waves propagating in layered conductors with a quasi-bidimensional law of charge carrier
dispersion was determined for the case of an arbitrary correlation function and an external magnetic field per-
pendicular to the conducting layers. © 2003 MAIK “Nauka/Interperiodica”.
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A wide class of layered structures with metallic con-
duction and strong anisotropy of the kinetic coefficients
are currently known. This class includes organic con-
ductors belonging to the family of tetrathiafulvalene
salts, transition-metal dichalcogenides, graphite inter-
calated with various elements, etc. Experimental stud-
ies of the galvanomagnetic properties of such sub-
stances (in particular, observation of the Shubnikov–de
Haas oscillations [1, 2]) showed that their kinetic and
electrodynamic properties at low temperatures could be
described using the concept of a system of quasiparti-
cles similar to the conduction electrons in normal met-
als, but having a strongly anisotropic energy spectrum.
In layered conductors, the charge carrier-energy
depends only slightly on the momentum projection pz =
pn onto the normal n to the layers. The carrier energy
can be described with a rapidly converging power series
in the quasi-bidimensionality parameter η:

(1)

where εn(px, py, η) ~ O(ηεF), εn + 1(px, py, η) ! εn(px, py,
η), εF is the Fermi energy, p0 = "/a, " is the Planck’s
constant, and a is the interlayer distance. The parameter
η is a measure of the energy spectrum anisotropy. Its
square is equal to the ratio of the electrical conductions
along and across the layers to a factor of the order of
unity. The numerical value of the parameter η squared
ranges from 103 to 105.

Different underdamped collective Bose modes, such
as magnetohydrodynamic and cyclotron waves, can be
generated in normal metals exposed to a strong mag-
netic field and a low temperature. The majority of these
modes have their analogues in gas plasma. However,
spin waves, which were predicted by Silin [3] and
experimentally discovered by Schultz and Dunifer [4],
are typical only for the conduction-electron plasma.
There is a considerable literature on the subject of spin

ε p( ) ε0 px py,( ) εn px py η, ,( )
n pz

p0
-------- 

  ,cos
n 1=

∞

∑+=
0021-3640/03/7805- $24.00 © 20322
waves in quasi-isotropic metals without any magnetic
order (see, for example, [5] and references therein for a
review). In this work, we measured the spin wave spec-
trum in layered conductors exposed to a constant mag-
netic field perpendicular to the conducting layers (xy
plane). The interaction between the charge carriers in a
conducting layer is considerably stronger than the
interaction between the quasiparticles belonging to dif-
ferent layers. Therefore, not only the energy in the sin-
gle-electron approximation (1), but also the Landau
correlation function can be expanded in an asymptotic
power series of η, with the first asymptotic term inde-
pendent of pz. This assumption considerably simplifies
the equations involved in the problem and makes it pos-
sible to solve them for a quite general form of correla-
tion function.

The kinetic properties of a fermion system exposed
to an electromagnetic field are described by an equation
for the density matrix and a set of Maxwell equations.
Let us consider the case of "ωB & T! ηεF (ωB is the
cyclotron frequency of the conduction electrons and T
is the temperature), when the quantization of the
charge-carrier energy levels has only slight effect on the
magnetization M. Under these conditions, the density
matrix can be considered as an operator in the space of
spin variables and as a quasi-classical coordinate- and
momentum-dependent function. The additional energy
of a quasiparticle caused by the electron–electron inter-
action effects

(2)

is determined, in the framework of the Landau–Silin
theory of Fermi liquid [6, 7], by the correlation function

δε̂ p r t, ,( )

=  Spσ'
d3 p'

2π"( )3
-----------------L p ŝ p' s'ˆ, , ,( )δρ̂ p' r s'ˆ t, , ,( )∫

L p ŝ p' s'ˆ, , ,( ) N p p',( ) S p p',( )ŝs'ˆ ,+=
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where δ  is the non-equilibrium addition to the density

matrix and  are the Pauli matrices. To a zero approx-
imation in the small parameter η, the functions N(p, p')
and S(p, p') do not depend on pz and can be represented
as the series

(3)

The integrals ε and pz of the charge-carrier motion in a
magnetic field and the electron velocity phase ϕ = ωBt1
(t1 is the time of motion along the trajectory ε = εF, pz =
const) were selected as the variables in the p space.

Because  is symmetric with respect to
the permutation of its argument, the coefficients in
Eqs. (3) are related to one another as N–n = Nn and S–n =
Sn. Only minor corrections to the kinetic coefficients
can be obtained by taking into account the next terms of
expansion of the correlation function in terms of η.

The distribution function f(r, p, t) = Spσ  and the

spin density g(r, p, t) = Spσ  can conveniently be
used instead of the density matrix . For small devia-
tions from the equilibrium state, the function g can be
represented as the sum of the equilibrium component
g0(ε) = –µB0(∂f0/∂ε) and a minor non-equilibrium addi-
tion –x(r, p, t)(∂f0/∂ε), where f0(ε) is the Fermi func-
tion, µ = µ0/(1 + ), µ0 is the magnetic moment of a

conduction electron,  = ν(εF)S0, and ν(εF) is the den-
sity of states at the Fermi level. The integral of µ0g0(ε)
over a unit cell of the p space is equal to the magnetiza-
tion M0 = χ0B0 in a uniform magnetic field with induc-
tion B0 = (0, 0, B0); χ0 = µ0µν(εF) is the static paramag-
netic susceptibility.

According to [3], if the spin density disturbance x is
perpendicular to B0, the linearized kinetic equation
takes the form

(4)

where

ρ̂

ŝ

N p p',( ) Nn εF( )ein ϕ ϕ '–( ),
n ∞–=

∞

∑=
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Sx〈 〉 2d3 p'

2π"( )3
-----------------

∂ f 0 ε'( )
∂ε'

-----------------– 
  S p p',( )x r p' t, ,( ),∫=
JETP LETTERS      Vol. 78      No. 5      2003
e is the electron charge, v = ∂ε(p)/∂p is the electron
velocity, c is the velocity of light, and B = B0 + B~(r, t),
where B~(r, t) is the high-frequency field. The collision

integral  determines two characteristic relaxation
times: momentum randomization time τ1 and spin-den-
sity relaxation time τ2. In the subsequent discussion, we
consider the processes in a frequency range

where the asymptotic behavior of the spectrum of col-
lective modes is independent of the specific form of
collision integral; k = (kx, 0, kz) is the wave vector.
Under these conditions, the Fourier component of the
variable magnetic field produced by the spin oscilla-
tions is determined by the equation

(5)

where M~(ω, k) = µ0〈x(p, ω, k)〉  is the Fourier compo-
nent of the high-frequency magnetization.

Expanding the functions F = x + 〈Sx〉  and x into
Fourier series in terms of the variable ϕ and using
Eqs. (3), we obtain:

(6)

Substituting Eq. (6) into Eq. (4) we find that the com-
ponents of the renormalized spin density Φ(±) = Φx ±
iΦy ~ exp(–iωt + ikr) of conduction electrons satisfy
the integral equations

(7)

where  = ω + i0,  = Bx ± iBy, Ω = ωs/(1 + ), and
ωs = –2µ0B0/" is the spin paramagnetic resonance fre-
quency. Multiplying this equation by e–inϕ and integrat-
ing with respect to dθ and dϕ, we obtain an infinite set
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of linear equations for the coefficients  in the Fou-Φn
±( )
 rier series expansion of the function :Φ± εF pz ϕ, ,( )〈 〉 θ
(8)

where

(9)
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and δnp is the Kronecker delta. This equation makes it
possible to determine the magnetic susceptibility

which takes into account the spatial and time disper-
sion:

(10)

The set of equations (5) and (10) describes the natu-
ral oscillations of the electromagnetic field caused by
the spin-density oscillations in layered conductors with
an arbitrary energy spectrum and correlation function.
The Fourier coefficients of the smooth function
ν(εF)S(p, p') decrease rapidly as their number
increases. Therefore, the series in Eq. (8) can be trun-
cated to a finite number of terms.

Let us omit the small inhomogeneous term propor-
tional to µ0  in Eq. (8) and designate the solution of

the obtained homogeneous equation as φ. The disper-
sion equation for the free oscillations of spin density φ
is written as 

χ± ω k,( )
∂M±

~ ω k,( )
∂B±

~
--------------------------≡ µν εF( )F0

±( )
ω k,( )

B±
~

-------------------------,=

χ± ω k,( )

=  χ0

det δ0 pFn δnp λ p
ω
ωB

------ f np θ( )〈 〉 θ– 
  1 δ0 p–( )+

det δnp λ p
ω
ωB

------ f np θ( )〈 〉 θ–
--------------------------------------------------------------------------------------------------------------.

B±
~

(11)

The frequency ω of the natural oscillations of magneti-
zation coincides to the terms proportional to χ0 ~

ν(εF), with the frequency ω(0) of spin-density free
oscillations. At this frequency, the magnetic suscepti-
bility has a sharp maximum D(ω, k) = O(χ0).

The condition for the absence of collisionless damp-
ing of spin waves, as well as other Bose excitations, is
reduced to the following inequality:

(12)

Outside the region of ω and k values meeting the con-
dition (12), the functions fn, p(θ) have a pole. Upon inte-
gration with respect to pz, the dispersion equation
acquires an imaginary part responsible for strong wave
absorption.

Equations (8) describe spin waves of different polar-
izations. These equations are symmetric in frequency
Ω , so that we can restrict our consideration to the first
of them. The second equation can be obtained by the
following substitutions: Ω  –Ω, Φ(+)  Φ(–), and
B+  B–.

In the case of strong spatial dispersion, Eqs. (9) can
be simplified. If kvm @ ωB and ω – Ω > kvm (where vm
is the maximal electron velocity in the k direction), the
phase of the rapidly oscillating component does not
have stationary points, and the asymptotic behavior of

D ω 0( ) k,( ) det δnp λ p
ω 0( )

ωB

--------- f np θ( )〈 〉 θ–≡ 0.=

µ0
2

ω nωB– Ω+− max kzv z .>
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(9) is calculated by the integration by parts. Let us con-
sider the scalar product kv as kv(θ, ϕ) = kvmu(θ, ϕ),
where u(θ, ϕ) is a dimensionless function smaller than
unity in absolute value. In this case, the spin-density
oscillation frequencies are

(13)

where the constants γi are the roots of the equation

Real constants γi greater than unity in absolute value
correspond to the wave processes. The asymptotic for-
mula (13) describes spin oscillations in the absence of
an external magnetic field.

In the region of ω and k values meeting the inequal-
ities kvm @ ωB and ω – Ω > kvm, the asymptotic expres-
sions for the integral in the numerator of Eq. (9) can be
obtained by the stationary phase method. If the addi-
tional conditions kzv z ! ωB and ω ! kxv x are met, the
spin-wave frequencies are determined by the following
expressions:

(14)

Taking into account only the first two terms of the dis-
persion law in Eq. (1) and neglecting the in-plane
anisotropy of the layers, we can write the components
of the conduction-electron velocity along the axes x and
z as follows:

(15)

where the constants v 1 and v 0 are on the order of the
minimal electron velocity along the layers and β is a
dimensionless factor on the order of unity depending on
the specific form of functions ε0 and ε1. Using
Eqs. (15), we find for not-too-high values of n and p
that

(16)
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where e = 2βη(v 0 p0/εF), J0(x) is the Bessel function and
r0 = v 0/ωB. Substituting expressions (16) and (14) into
the dispersion equation (11), we obtain:

(17)

where γi satisfies the equation

(18)

In the model determining the correlation function by
the zero and first Fourier harmonics

for ekxr0 ! 1, the asymptotic form of Eq. (18) has a sin-
gle root

(19)

As is seen from Eqs. (17) and (19), in the vicinity of the
resonance (14) the frequency is a rapidly oscillating
function of kx. It should be noted that even if the mag-
netic field is not strong, the inequality kzv z ~ ηkzv 1 ! Ω
is met over a wide range of values of kz because of the
smallness of the parameter η.

If the condition kxv 0 ! ωB is met, the dispersion
equation is considerably simplified, and simple analytic
expressions for the frequencies at arbitrary values of
ηkzv 1 can be obtained. Expanding the exponential func-
tion in Eq. (9) in powers of kxv 0/ωB, we obtain, after

simple manipulations, that the matrix  is diagonal:

(20)

where

and the set of Eqs. (8) splits into a set of independent
equations. The homogeneous integral equation for the
free spin-density oscillations has solutions of the form
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φn(θ, ϕ) = (θ)einϕ. The frequencies φn corresponding
to ωn are determined by the following relationship:

(21)

If the wave propagates in a longitudinal direction, it
is more convenient to proceed directly from Eq. (7),
which takes the following form for k = (0, 0, kz):

(22)

Using this equation to determine 〈F(+)〉θ, ϕ, we obtain
the high-frequency magnetic susceptibility:

(23)

The spectrum of the transverse electromagnetic waves
propagating along the magnetic field and due to the
spin-density oscillations is determined from Eqs. (5)
and (23):

(24)

It can easily be seen that the frequency of natural oscil-
lations of the electromagnetic field coincides, to terms
proportional to χ0, with the frequency φ0 of the free
spin-density oscillations.

If ηkzv1 @ Ω (i.e., spin waves propagate in the
absence of an external magnetic field), it follows from
Eq. (24) that

(25)

According to Eq. (25), the frequency at B0 = 0 is real if
 > –1/2, whereas the phase velocity should exceed
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the maximal velocity ηv 1 of electron drift in the k
direction. In the long-wavelength limit ηkzv1 ! Ω , the
frequency (24) coincides with the spin-resonance fre-
quency ωs for free quasiparticles.

Under the conditions of weak spatial dispersion in
the x direction, the shift in the frequency (24), propor-
tional to (kxv0/ωB)2, can easily be found from Eq. (21):

(26)

where ω is determined by Eq. (24) and ∆f(ω, k) =
f0(ω, kx, kz) – f0(ω, 0, kz).

Spin waves can be detected experimentally by mon-
itoring the selective transparency of thin films in the
vicinity of the frequencies of magnetic susceptibility
resonance. Comparison of the values of ω(k) for differ-
ent k would make it possible to determine the constant

 which characterizes the exchange interaction
between the charge carriers.
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The coalescence of branches in the Y junctions of single-wall carbon nanotubes (10 nm long) is predicted to
occur when the branches approach each other under the action of a load (~10 nN) applied to their ends. A tran-
sition to the new state with parallel branches bound by molecular interactions was simulated and the energy
characteristics were calculated by the molecular dynamics method. The Y junctions with parallel branches are
stable at temperatures up to 2000 K. It is established that there is a threshold distance between the branch ends,
below which the branches exhibit spontaneous sticking under the action of molecular attraction forces. If the
branches are unloaded before this threshold distance is reached, they oscillate (acting as a nanodimensional
“tuning fork”) at a frequency of ~100 GHz. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.46.+w; 81.07.De
The Y junctions of carbon nanotubes have drawn the
interest of researchers due to the unusual geometry and
unique electronic properties [1–3]. In these junctions,
three nanotubes are matched at the expense of topolog-
ical defects (pentagons, heptagons and/or octagons)
introduced into the perfect hexagonal lattice of carbon
atoms, so that the sp2 electron configuration of each
atom is retained [4–7]. The interest in these structures
was stimulated primarily by the possibility of macro-
scopic synthesis of carbon nanotubes with Y junctions
and by observations of the nonlinear current–voltage
characteristics of such junctions [7–9]. However,
mechanical characteristics of the Y junctions of carbon
nanotubes were studied neither theoretically nor exper-
imentally.

We have simulated by the molecular dynamics
method the Y junctions of single-wall carbon nanotubes
(SWCNs) with a length of up to a few tens of nanome-
ters and an acute angle between the branches and their
behavior under the action of an external load. When a
load is applied to the Y junction branch ends, the dis-
tance between the branches decreases to 3.4 Å. It was
found that weak van der Waals forces between the
branches are sufficient to keep them parallel upon
unloading. This effect indirectly confirms the predic-
tion made by R. Feynman in 1960 [10], according to
which nanomaterials will encounter the problem of
coalescence as a result of intermolecular interactions,
which may lead to effects that are impossible on a mac-
roscopic scale.

Formulation of the problem. Molecular dynamics
(MD) simulation was carried out using the Brenner
potential [11] for covalent bonds between carbon atoms
and the Lennard-Jones potential for long-range interac-
tions. It should be noted that the Brenner potential was
used for the description of dynamics [12] and mechan-
0021-3640/03/7805- $24.00 © 20327
ical properties [13, 14] of carbon nanotubes, because
this potential allows simulation a systems with large
numbers of atoms (~104) and gives reliable results
when compared to those obtained by more precise
quantum-mechanical calculations [15–18].

We have considered two types of Y junctions of the
armchair SWCNs [19], both comprising (20,20)
SWCN stems branched into (13,13) branches. Both
structures possessed the same configuration of topolog-
ical defects, representing six heptagons situated in the

Fig. 1. (a) Mutual arrangement of the graphite planes and
the long-branch Y junction at the beginning of simulation;
(b) defect structure of the branching region of the Y junction
(arrows indicate the positions of heptagons).

(a)

(b)
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branching region (see Fig. 1b), but had different branch
lengths of 100 and 210 Å. The former structure will be
referred to as the short-branch junction (SBJ) and the
latter as the long-branch junction (LBJ). Optimization
of the system geometry by MD simulation showed that
this topology corresponds to an angle of 23° between
the branches, in good agreement with the experimen-
tally observed geometry of Y junctions [7, 8].

Prior to MD simulation, each Y junction was placed
between two graphite planes (GPs) parallel to the stem
axis (Fig. 1a) so that the initial distance from each plane
to the nearest carbon atom of the nanotube branch was
8 Å. The applied load was simulated by moving the
GPs toward each other with a preset velocity. In each
MD simulation step (5 × 10–4 ps), the coordinates of the
GPs were fixed, so as to model the interaction of the Y
junction with large planes. The motion of GPs with a
preset velocity was modeled by changing their coordi-
nates prior to each MD simulation step.

In order to determine the optimum GP velocity, we
carried out a series of preliminary simulations using
various velocities. It was found that moving GPs with a
velocity above 2 Å/ps leads to the fracture of nanotube
structure, while velocities too small allow the Y junc-
tion to rotate and slip off the GPs. Note that, in experi-
ments, Y junctions usually lie on a substrate surface and
no such slippage takes place. However, simulation of a
system with substrate would significantly increase the
number of atoms in the system and, hence, the compu-
tational time, but not lead to any qualitative changes in
the simulated process. Therefore, the above value
should be considered as a GP velocity effective for a
numerical experiment.

Fig. 2. Time variation of the main characteristics deter-
mined in the course of MD simulation: (a) the force with
which a GPs acts upon the SBJ branch (arrows indicate the
peaks used for averaging); (b) the distance between SBJ
branches; (c) total energy of the system.

h 
(Å

)

As a result of loading in the chosen regime, the
Y-junction branches approach each other without any
significant shape deformation. The velocity of mutual
approach is close to the relative velocity of GP motion.
It was found that the prolonged action of load gave rise
to a new geometric configuration of the Y junction,
namely, to a junction with parallel branches. This con-
figuration is stable at temperatures up to 2000 K.

Short-branch Y junctions. At the beginning of
simulation, the distance between GPs was 92 Å. The
total simulation time was 27.5 ps. Time variation of the
force acting upon one branch of a SBJ under load is
shown in Fig. 2a. Here, a negative value of the force
corresponds to the branch attraction to the GP. As can
be seen from this graph, the force initially exhibits
(within 3 ps) a smooth decrease from 0 to –1.7 nN.
Then, the character of the force shows a sharp change,
as manifested by the appearance of numerous “repul-
sion” peaks. In order to explain these features, let us
consider the interaction between the SBJ branches and
GPs in the course of simulation.

Note that the minimal force (–1.7 nN) is observed
when the branch–GP distance corresponds to an inter-
layer spacing in the graphite structure (3.4 Å). At the
same time, the distance h between the SBJ branches
(Fig. 2b) somewhat increases (indicated by the arrow),
which is evidence of the attraction between the GP and
the branch. Here, by the distance h between branches
we imply the minimum distance between the atoms
belonging to different branches and situated near the
branching region. Figure 2b shows a projection of this
distance onto the direction of GP motion. At a time of
3.4 ps after the beginning of simulation, the force
changes sign (to become repulsive) and, after 0.4 ps
(800 simulation steps), the branches start to approach
each other and the force starts to oscillate. The distance
between branches decreases almost linearly (Fig. 2b),
and the rate of mutual approach (2.08 Å/ps) is close to
the relative velocity of GP motion (2.00 Å/ps). Starting
from this moment, the distance between SBJ branches
and GPs exhibits oscillations within the graphite inter-
layer spacing (3.3–3.5 Å), thus providing the van der
Waals interaction. A decrease in the branch–GP dis-
tance below 3.4 Å leads to the appearance of a repulsive
force, while an increase above this value gives rise to
attraction.

Thus, the van der Waals interaction serves as a medi-
ator of the motion transfer from the GPs to the branches
of the Y junction. This mutual motion of the junction
branches and GPs will be called the stable interaction
regime. The two main assumptions about the behavior
of the interaction force in this regime are as follows: (i)
the force oscillations in the stable interaction regime
are caused by simulation: discrete GP motions lead to a
discrete change in the distance between the GP and the
Y junction branches and, hence, to a discrete variation
in the interaction force; (ii) under real conditions, the
force with which the GP acts upon the junction
JETP LETTERS      Vol. 78      No. 5      2003
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branches must be constant and directed along the GP
motion direction. In order to check for the validity of
both assumptions, the total energy of the system was
plotted against the simulation time, as depicted in
Fig. 2c. As can be seen from this plot, the energy of the
system also oscillates, confirming the artificial nature
of these oscillations (the first assumption). Behavior of
the average energy (thick solid curve in Fig. 2c) shows
that the process is barrierless and, hence, the force act-
ing on the Y junction must be constant (the second
assumption).

Based on the second assumption, we averaged over
the main repulsion peaks (indicated by arrows in
Fig. 2a) to estimate the force required for changing the
Y junction shape. Note that the repulsion peaks are
responsible for the resistance of the Y junctions to
deformation. Averaging gives an upper estimate of
10 nN for the force, which corresponds to a pressure of
1 GPa acting on the interaction area of 10 nm2.

After 27.5 ps, the distance between SBJ branches
decreases to 3.4 Å, which corresponds to a Y junction
with parallel branches. Then, the GPs were removed
and the MD simulation of this system was continued for
25 ps at 300 K. Figure 3a shows the SBJ shape after this
procedure. The energy of this parallel configuration is
5.5 eV lower than that of the initial configuration with
an angle of 23° between branches. In order to charac-
terize the transition between these states, we (i) con-
structed the potential energy curve of the Y junction
versus the distance between branches (see inset in
Fig. 4) and (ii) studied the behavior of the Y junction in
the states corresponding to the vicinity of the expected
extremum on this curve. For this purpose, the entire
SBJ loading process (0 to 27.5 ps) was divided into four
sequential intervals. At the end of each interval, the GP
was removed (to exclude the GP–SBJ interaction) and
the potential energy of the Y junction was calculated.
As can be seen from the inset in Fig. 4, the transition is
likely barrierless. A plateau on the potential energy
curve indicates that the transition requires applying a
constant external force (in our case, this action was pro-
vided by GPs). As the distance between SBJ branches
further decreases, the energy plateau changes to a
monotonic decrease in energy, which implies a transi-
tion to the local energy minimum in the absence of an
external force. Thus, the energy extremum point lies in
the interval from 14.5 to 23 Å.

In order to check for this assumption, we performed
additional simulation. At the time moment when the
distance between branches reached 23 Å (right bound-
ary of the above interval), the GP motion direction
changed to the opposite (i.e., the GPs began to move
apart), thus gradually decreasing to zero the force act-
ing on the Y junction. After a 20-ps simulation, the dis-
tance between SBJ branches increased to 50 Å. In the
course of the subsequent 60 ps, the SBJ branches
exhibit oscillations about an equilibrium distance of
42 Å (estimated from the average distance between the
JETP LETTERS      Vol. 78      No. 5      2003
first maximum and first minimum). This value is very
close to the distance between branches at the beginning
of simulation (see inset in Fig. 4), suggesting that the
system will return to the initial state (with an acute
angle between branches) after termination of oscilla-
tions. However, investigation of the entire oscillation
process would be computationally exhaustive.

In the next run of the simulation, we reversed the GP
motion direction at the moment when the distance
between the SBJ branches reached 14.5 Å (left bound-
ary of the interval containing the expected point of
extremum). Within the subsequent 5 ps, the Y junction
passed to the state with parallel branches, irrespective
of the direction of GP motion.

Thus, the results of these simulations confirmed that
there exists a critical distance between SBJ branches
(14.5–23 Å), below which the branches spontaneously
approach each other even in the absence of the external
force. The possibility of such process is caused by a
decrease in the potential energy of the deformed junc-
tion (see inset in Fig. 4).

Fig. 3. The Y junctions with (a) short and (b) long branches
spaced by 3.4 Å upon unloading.

Fig. 4. A plot of the potential energy of LBJ versus distance
between branches. The inset shows an analogous curve for
SBJ.

h (Å)

h (Å)
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In order to check for the stability of the Y junction
with parallel branches, we performed MD simulations
at temperatures of 600, 800, 1000, and 2000 K. It was
established that the SBJ branches did not move apart
under these conditions.

Long-branch Y junctions. All calculations
described above were repeated for the Y junction with
long branches (Fig. 1) confined between GPs moving
with a velocity of 2 Å/ps. The total simulation time was
45 ps. Similar to the case of SBJ, the force with which
the GP acted on the LBJ exhibited an irregular oscilla-
tion character. After 5.05 ps, the distance between the
LBJ branches began to decrease linearly with time and
reached 3.4 Å (as in SBJ) at the end of simulation.
Here, the Y junction with parallel branches (Fig. 3b)
provides a 12.2 eV energy gain, as compared to the ini-
tial configuration with an acute angle between
branches.

A potential energy curve for the LBJ is depicted in
Fig. 4, where the extreme right point corresponds to the
initial junction with an angle of 23° between branches
and the extreme left point, to the Y junction with coa-
lesced branches. As can be seen in this curve, the
energy plateau changes to an 0.5-eV barrier, which is
followed by a gradual decrease in energy. Because of
the presence of a barrier, the simulations with GPs
moving apart were performed for three initial configu-
rations corresponding to h = 38, 25, and 14 Å.

For h = 38 and 25 Å (Fig. 5a), the LBJ branches
diverge when the direction of GP motion changes to
opposite. Since the system comprising the LBJ and the
GPs contains 13274 atoms, the continuation of the sim-
ulation for studying the stage of oscillations would be
an extremely cumbersome procedure. For this reason,
the possible equilibrium distance between the LBJ
branches was not estimated after the termination of
oscillations, as it was done in the case of SBJ. The main
conclusion drawn from the results of this MD simula-
tion is that the distance between the Y-junction

Fig. 5. LBJ configurations at various steps of simulation
(arrows indicate the direction of GP motion): (a) the dis-
tance between branches is 25.3 Å and only about quarter of
the branch length is involved in the van der Waals interac-
tion; (b) the distance between branches is 14 Å and more
than half of the branch length is involved in the van der
Waals interaction (the junction behaves as a zipper, the
branches approach each other irrespective of the direction
of GP motion).
branches increases upon unloading. This implies that
the spontaneous attraction of branches is impossible
and they approach each other only in the presence of a
constant external force.

The subsequent MD simulation showed that the ini-
tial LBJ configuration with h = 14 Å (Fig. 5b) ensured
spontaneous mutual approach irrespective of the direc-
tion of GP motion. Thus, this junction, as also with the
SBJ, is characterized by a certain critical distance
between the branches (14–25 Å), below which the
branches may spontaneously approach each other even
without applying an external force. Energetically, this
process is driven by lowering of the potential energy
after traversing the energy plateau (Fig. 4). In order to
explain the existence of this critical distance, let us con-
sider Figs. 5a and 5b. As can be seen, the region
between branches involved in the van der Waals inter-
action accounts for only about quarter of the branch
length in Fig. 5a and for more than half of the branch
length in Fig. 5b.

Based on the above analysis, we may conclude that
the van der Waals forces play a key role in the process
of spontaneous attraction of the LBJ branches: as soon
as more than half of the branch length is covered by this
interaction, the branches coalesce (like a zipper),
whereby the intermolecular forces acting between nan-
otubes drive them to spontaneously approach each
other. The stabilizing role of the van der Waals forces is
confirmed by the fact that the energy difference
between the state with an acute angle between branches
and the state with parallel branches increases with the
branch length (5.5 and 12.2 eV for SBJ and LBJ,
respectively).

It was established that the Y junctions unloaded
before the distance between their branches (~10 nm
long) approach the threshold value execute oscillations
(like a tuning fork) at a frequency of ~100 GHz.

Thus, in contrast to the macroscopic systems where
the Y-shaped configuration can behave as a spring with
the ends always diverging upon unloading, whereby the
system returns to the initial state, the molecular interac-
tion between closely spaced nanotubes is an important
factor in the analogous nanosystem. The examples con-
sidered above show that the intermolecular attraction
between the branches of a Y junction can prevail over
the restoring elastic force caused by the deformation of
the system. This accounts for the effect of coalescence
that is impossible on the macroscopic level. The new
state with parallel branches bonded by a weak intermo-
lecular interaction is stable up to a temperature of 2000
K and is energetically more favorable than the state of
Y junction with diverging branches. These results show
that the van der Waals interaction plays a key role in
nanotube Y junctions with closely spaced branches.
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We propose an explanation for the experimentally observed [1] giant temperature hysteresis of the ultrasound
velocity and internal friction in single crystals of lanthanum manganite (La0.8Sr0.2MnO3). The effect is inter-
preted within the framework of a phenomenological model based on the notion of two coexisting sublattices of
the oxygen octahedra performing cooperative tilting-rotational oscillations in bistable potential fields. © 2003
MAIK “Nauka/Interperiodica”.

PACS numbers: 43.35.Cg; 62.65.+k
Manganese perovskites R1 – xAxMnO3 (R = La or
another rare earth element; A = Ca, Sr, Ba, …) have
recently drawn much attention due to the phenomenon
of colossal magnetoresistance (CMR) that makes these
compounds promising materials for magnetic sensors
and data-reading devices. Now it is commonly accepted
that an important role in the formation of a CMR
response in manganites is played by the interaction of a
crystalline lattice with the electron and spin degrees of
freedom. However, despite a very large body of exper-
imental data, there are still many open questions related
to the quantitative description of the metal–dielectric
transition, phase coexistence, and some features in the
elastic properties of these compounds.

Recently [1], temperature hysteresis of a giant width
(extending over a temperature interval from 80 to
350 K) of the longitudinal ultrasonic wave velocity and
the internal friction was observed in a single crystal of
lanthanum manganite La0.8Sr0.2MnO3 possessing CMR
properties. According to this, the sound velocity in a
sample on heating from 80 to 105 K is significantly
lower than that on cooling in the same temperature
interval, while in the 105–350 K range, a difference in
sound velocities is several times smaller. The curve of
the internal friction exhibits a sharp peak at 105 K (on
heating) and less pronounced peaks at 350 K (on heat-
ing) and 80 K (on cooling).

The presence of a giant temperature hysteresis in the
elastic properties of lanthanum manganite can be
explained within the framework of the phenomenolog-
ical model of a correlated bistable sublattice [2].

Consider a crystal lattice with a polyatomic basis, in
which atoms (ar atomic groups) of one sort perform
optical oscillations in an asymmetric double-well
potential formed in the core (matrix lattice) field. If the
0021-3640/03/7805- $24.00 © 20332
motion of such atoms is strongly correlated and pos-
sesses a cooperative character (e.g., due to a long-range
order), this will suppress the fluctuational over-barrier
transitions between the potential wells. For this reason,
and because of the potential asymmetry, the atomic
ensemble under consideration may occur in metastable
states forming a bistable sublattice. On heating, the
sublattice exhibits evolution from oscillations in the
global minimum to overbarrier oscillations with almost
excluded slower movement (transitions from the global
minimum of the seeding potential to the local minimum
and vice versa).

It is suggested that octahedra of the perovskite struc-
ture of lanthanum manganite, with oxygen ions at the
vertices and manganese ions at the center, perform tilt-
ing-rotational motions in the double-well asymmetric
potential. These oscillations of the octahedra are
strongly correlated because of the strong interaction
between the charge, spin, and lattice degrees of free-
dom characteristic of this compound. A transition from
the global to metastable minimum of the free energy on
heating corresponds to the appearance of rhombohedral
distortions in the initially orthorhombic low-tempera-
ture structure. There are two types of bistable sublat-
tices of the oxygen octahedra with different positions of
metastable minima of the seeding potentials (Fig. 2),
which is evidenced by (i) the appearance of experimen-
tally observed rhombohedral component in the orthor-
hombic phase in a sample heated from zero temperature
and (ii) the absence of orthorhombic inclusions on
cooling from T > 350 K down to 105 K (the two types
of bistable sublattices can be related to the presence of
two kinds of positive ions, La3+ and Sr2+). Bistable
oscillations of the oxygen octahedra modulate frequen-
cies of the vibrational spectrum of the matrix lattice,
003 MAIK “Nauka/Interperiodica”
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which is manifested by anomalies in the elastic proper-
ties.

The theory of a temperature hysteresis of the elastic
properties of lanthanum manganite can be constructed
based on the following phenomenological model using
a spin Hamiltonian (reduced to a single octahedron) of
the type

(1)

Here, the first term, Hh, represents the matrix lattice
Hamiltonian and is selected in the form of a Hamilto-
nian of the set of harmonic oscillators with the param-
eters normalized to the empirical values of lattice con-
stants of the compound under consideration. The sec-
ond term, Hanh, is an effective Hamiltonian of the
oxygen octahedra performing tilting-rotational oscilla-
tions in the asymmetric double-well potentials of the
two types (Fig. 1):

(2)

where q(i) are the generalized coordinates describing
the vibrational motion of the octahedra in a potential
with the higher (lower) barrier and the deep (shallow)
metastable minimum, i = 1 (i = 2); α(i), β(i), and γ(i) (>0)
are the parameters.

Interaction between the lattice oscillators and the
nonlinear oscillations of the oxygen octahedra is

H Hh Hanh H int.+ +=

V i( ) α i( )

2
-------- q i( )( )2 β i( )

3
------- q i( )( )3

–
γ i( )

4
------- q i( )( )4

,+=

Fig. 1. Double-well seeding potentials for the two sublat-
tices of oxygen octahedra: u(1) = 0.045 eV (potential barrier

height);  = 0.073 Å and  = 0.144 Å (coordinates of

the maximum and metastable minimum of the seeding
potential for the first sublattice); the corresponding values

for the second sublattice are u(2) = 0.014 eV,  = 0.073 Å,

 = 0.132 Å.
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described by the third term in Eq. (1), which is selected
in the following form:

(3)

where xk is the displacement of the kth oscillator

(mode) and  are the force constants of the bonds. An
analysis shows that the effective frequency εk of the
longwave phonons (or the sound velocity) in this model
significantly depends on the temperature and exhibits
temperature hysteresis. This is related to a temperature-
dependent distortion of the asymmetric potentials (2)
and the occupation of metastable states of the oxygen
octahedra.

H int q i( )( )2 λ kk'
i( )( )2

xkxk' ,
k k',
∑

i

∑=

λ kk'
i( )

Fig. 2. Temperature dependence of the ultrasonic wave
velocity: (a) calculated using formula (4) for a crystal with
two bistable sublattices coupled by a quartet interaction (5);
formula (4) was corrected by adding a contribution from the
matrix sublattice, A–BT, where A = 2996 ms–1, B =
1.58 ms−1 K–1, and (determined from experimental data

[1]) /µk  = 2 Å–2 and /µk  = 30 Å–2; u(1) =

0.045 eV,  = 0.073 Å,  = 0.144 Å, u(2) = 0.014 eV,

 = 0.073 Å,  = 0.132 Å; (b) experimental velocity

of ultrasound measured for La0.8Sr0.2MnO3 [1].
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The velocity v  of an ultrasonic wave is determined
from the temperature-dependent frequency εk renor-
malized by the interaction Hint:

(4)

where k is the wavevector of the mode for which the
ultrasonic measurements are performed; ωk and µk are
the seeding frequency and the mass of the kth oscillator
in the matrix lattice, respectively; 〈q(i)〉  and σ(i) = 〈(q(i) –
〈q(i)〉)2〉  are the statistical mean values of the generalized
coordinates and the corresponding dispersions, deter-
mined from a system of self-consistent equations,

(5)

v T( ) εk T( )∼ ω k 1
λ kk

i( )

µkωk
2

------------ σ i( ) q i( )〈 〉 2
+( )

i
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β i( ) 3γ i( ) q i( )〈 〉–( )σ i( )

=  α i( ) q i( )〈 〉 β i( ) q i( )〈 〉 2
– γ i( ) q i( )〈 〉 3
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Fig. 3. Temperature dependence of the internal friction:
(a) calculated for a crystal with two bistable sublattices

using formula (7) with u(1) = 0.045 eV,  = 0.073 Å,

 = 0.144 Å, u(2) = 0.014 eV,  = 0.073 Å,  =
0.132 Å (the contribution of the matrix sublattice is sub-
tracted as background); (b) experimental internal friction
curve measured for La0.8Sr0.2MnO3 [1].
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where

are the frequencies of oscillations of the octahedra (the
temperature dependences of these frequencies and the
〈q(i)〉  and σ(i) values exhibit hysteresis) and θ = kBT. The
quantum-statistical expressions for σ(i) (5) in the regime
of strong correlations can be replaced by the corre-
sponding classical limits, σ(i) = θ/m(Ω(i))2, since the
cooperative behavior of the oxygen octahedra extends
over several unit cells and, hence, the quantum fluctua-
tions can be ignored in the calculation of means.

Apparently, the temperature hysteresis of the elastic
constants of the matrix lattice in the temperature inter-
val from 105 to 350 K will be provided by the cooper-
ative oscillations of octahedra in the anharmonic poten-
tial with a higher barrier, while the behavior in the 80–
105 K interval will be determined by the cooperative
oscillations of octahedra in the potential with a lower
barrier. The relative number of octahedra performing
oscillations in the anharmonic potential of the first type
can be estimated from the experimental data as a frac-
tion of the orthorhombic phase in the rhombohedral
phase at T > 105 K (this fraction amounts to about 6%
[1]). Some other experimental data, such as the relative
difference between the elastic characteristics observed
on heating and cooling in the temperature interval of
bistability and the temperature range of hysteresis,
allow the obtaining of realistic estimates for the param-
eters of bistable potentials modeling the correlated
motions of the oxygen octahedra: u(1) = 0.045 eV

(potential barrier height);  = 0.073 Å and  =
0.144 Å (coordinates of the maximum and metastable
minimum of the seeding potential for the first sublat-
tice); the corresponding values for the second sublattice

are u(2) = 0.014 eV,  = 0.073 Å, and  = 0.132 Å;

/µk  = 2 Å–2 and /µk  = 30 Å–2 (normalized
constants of coupling of the first and second sublattices
to the matrix lattice).

Figure 2a shows a plot of the ultrasonic wave veloc-
ity calculated using formula (4). As can be seen, the
theoretical temperature dependence well describes the
experimental behavior depicted in Fig. 2b. Indeed, in
the region of hysteresis, the higher velocities are
observed on cooling and the lower, on heating. In the
heating mode, there is a sharp increase in v  in the
region of 105 K, which is related to the appearance of
rhombohedral distortions during the tilting-rotational
oscillations of correlated octahedra in the bistable
potential with a lower barrier u(2). A lower magnitude of
the hysteresis in the interval from 105 to 350 K is
related to a smaller contribution to the renormalized
phonon frequencies from the oxygen octahedra moving
in the bistable potential with a higher barrier u(1) (see
the legend to Fig. 2). Thus, for reasonable values of the

Ω i( )( )2 1
m
---- α i( ) 2β i( ) q i( )〈 〉– 3γ i( ) σ i( ) q i( )〈 〉 2

+( )+[ ]=

q1
1( ) q2

1( )

q1
2( ) q2

2( )

λ kk
1( ) ωk

2 λ kk
2( ) ωk

2
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model parameters, both the magnitude and the charac-
teristic temperature intervals (80–105 K and 105–
350 K) of the hysteresis, and the direction of traversing
this loop in the heating–cooling cycle agree with the
experiment.

For an ultrasonic wave with a frequency of ωk =
80 kHz, we have ωkτph ! 1 (τph is the lifetime of ther-
mal phonons). For this reason, a comparison of the the-
oretical temperature dependence of the viscous friction
(ultrasound damping) Q–1 with the experimental curve
(Fig. 3) was performed using a relation [3]

(6)

Here, Canh is the heat capacity related to the excitation
of anharmonic oscillations in the oxygen octahedra (in
Fig. 3a, the Debye contribution of the matrix sublattice
is subtracted as background), which is calculated using
the average energy of these oscillations:

Q 1– TCanh.∼

Fig. 4. Temperature dependence of the total heat capacity
calculated for two bistable sublattices with the parameters

(1) u(1) = 0.045 eV,  = 0.073 Å,  = 0.144 Å and

(2) u(2) = 0.014 eV,  = 0.073 Å,  = 0.132 Å. The

weight contribution of the first sublattice is 10% relative
total of the second sublattice.

q1
1( )

q2
1( )

q1
2( )

q2
2( )

C
an

h
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Figure 4 shows the heat capacity Canh calculated (in the
classical limit) for the two sublattices of oxygen octa-
hedra. The peaks on the Q–1(T) curve are obviously cor-
related with the behavior of Canh(T) (cf. Figs. 3 and 4).
A more pronounced increase in the internal friction
with the temperature in the interval from 105 to 350 K
on the calculated dependence as compared to the exper-
imental curve can be related to the temperature-depen-
dent coefficients [3] entering into the formula for Q–1,
which are difficult to calculate exactly.

Thus, the temperature hysteresis of a giant width in
the ultrasound velocity and the internal friction
observed in a single crystal of lanthanum manganite
La0.8Sr0.2MnO3 can be explained by the cooperative tilt-
ing-rotational motions of oxygen octahedra in the
bistable potentials of two types (differing by the barrier
heights). Interaction of the metastable states of the
octahedra with the longwave phonons leads to a tem-
perature-dependent bistable renormalization of the
phonon frequencies and, hence, of the ultrasonic wave
velocity. The anharmonic contribution from the two
oxygen sublattices to the heat capacity, which has a
hysteresis character with peaks at the boundaries of the
temperature intervals of bistability, accounts for the
corresponding temperature behavior of the viscous fric-
tion. The calculated and experimental dependences
show a good semiquantitative agreement for realistic
values of the model parameters.
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The conductivity of molecular DNA-based conductors has been calculated. Charge motion is described by
quantum-mechanical equations, and macromolecular vibrations are described by classical equations of motion
with dissipation and a source of temperature fluctuations. In a homogeneous sequence of G–C nucleotide pairs,
the calculated hole mobility at T = 300 K equals ≈2 cm2 V–1 s–1. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 87.14.Gg; 81.07.Nb; 36.20.-r
In a number of experiments carried out in recent
years, it has been found that the DNA molecule can
conduct a charge [1–4]. Hence, this opens the possibil-
ity of using DNA as a molecular wire in nanoelectron-
ics [5]. In this connection, it seems important to under-
stand the magnitude of the mobility of charge carriers
in the “DNA conductor” and to estimate the molecular
chain length at which charge transport is efficient.

At present, no experimental data is available on the
magnitude of electron and hole mobility in DNA. The
reported experiments on charge transfer in DNA pro-
vide information on the relative transfer reaction rates
rather than mobilities [2–4].

In this paper, we report the results of calculations of
hole mobilities at room temperature in a synthetic DNA
molecule composed of only guanine (G)–cytosine (C)
nucleotide pairs. In such chains, a hole moves over gua-
nine bases, which possess a lower oxidation potential
than cytosine bases [6]. The regular arrangement of
similar nucleotides in the chain under consideration
allows us to estimate the maximum mobility value,
which is a limiting one for irregular sequences. In mod-
eling the transfer process, we consider nucleotide
sequences as a system of sites in which each site corre-
sponds to a pair of bases. The Hamiltonian H of charge
transfer along a chain of sites has the form [7–9]

(1)

where He is the Hamiltonian of a hole,  and ai are the
operators of hole creation and annihilation at the ith

H He TK UP,+ +=

He α iai
+ai ν i j, ai

+a j a j
+ai+( ),

i j,
∑+

i

∑=

α i α i
0 α i'ui,+=

TK Miu̇i
2/2, UP

i

∑ Kiui
2/2,

i

∑= =

ai
+
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site, αi is the energy of a hole at the ith site, νi, j are the
matrix elements of the transition from the ith to the jth
site, TK is the kinetic energy of the sites, Mi is the mass
of the ith site, ui is the displacement of the ith site from
its equilibrium position, UP is the potential energy of
the sites, Ki are elastic constants. We assume that the
energy of a hole at the sites is a linear function of dis-
placements of the sites ui from their equilibrium posi-
tions, and  is the hole–site displacement coupling
constant; i = 1, …, N; and N is the number of sites in the
chain.

Choosing the hole wave function |Ψ〉 in the form

(2)

where bn is the probability amplitude of finding a hole
at the nth site, from Hamiltonian (1) in the nearest
neighbor approximation, we obtain the following equa-
tions of motion [8, 9]:

(3)

(4)

Equations (3) are the Schrödinger equations for the
probability amplitudes. To take into account dissipation
processes in the classical equations of motion for site
displacements (4), we added the term –γn , where γn

is the friction coefficient, and the random force An(t)
with the following statistical properties:

(5)

α i'

Ψ| 〉 bn n| 〉 ,
n 1=

N
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i"
dbn

dt
-------- αn αn' un+( )bn νn n 1+, bn 1+ νn 1– n, bn 1– ,+ +=

Mn

d2un

dt2
---------- –Knun γn

dun

dt
--------– αn' bn

2– An t( ).+=

u̇n

An t( )〈 〉 0,=

An t( )Am t t'+( )〈 〉 2kBTγnδnmδ t'( ),=
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where T [K] is temperature; that is the motion of the
sites described by the Langevin equation.

When modeling the motion of holes in a GG…G
sequence, we assumed the same values of the parame-

ters as in [9]:  = 0,  = 0.0001, where  =

Kn/Mn,  = 0.02  (for Mn = 10–21 g, respec-

tively,  ≈ 1.3 × 10–4 eV/Å), τ = 10–1 s. The matrix ele-
ments were taken from [10], νn, n ± 1 = 0.084 eV.

The scheme from [11] was used for the numerical
integration of the Cauchy system reduced to a dimen-
sionless form. In the calculations, the normalization
condition was accurate to three significant figures:

 < 0.001. The initial conditions for the site
displacements and velocities were taken according to
the equilibrium distribution for the specified tempera-
ture; at the initial instant of time, the charge was con-
sidered to be localized at the middle of the chain con-
sisting of 99 sites (at the 50th site). Various values of the
friction coefficient  = τγn/Mn were considered. The

results given below were obtained for  = 0.03,  =

0.006 (as in [9]), and  = 0.001.

For each value, the calculation was performed for
1000 realizations at the specified temperature T =
300 K for a time of 2 ps.

The coefficients bn(t) found in this way were used
for the calculation of the mean-square hole displace-
ment X2(t)

(6)

where a is the distance between neighboring sites (a ≈
3.4 Å).

The time dependence of the mean-square hole dis-
placement (averaged over 1000 realizations) is shown
in Fig. 1 for the case of  = 0.006 on the interval of
2 ps. In the initial part of this interval (<0.02 ps), the
ballistic regime of hole motion is observed, at which
X2(t) ≈ t2 (Fig. 2). After ~ 0.2 ps, the time dependence
of the mean-square displacement can be considered lin-
ear. At t ≥ 2 ps, the effects associated with the finiteness
of the chain under consideration become notable.

For the homogeneous chain considered in this work,
the hole mobility can be found by the Kubo equation
[12]

(7)

where e is the electron charge, Ω is the angular fre-
quency of the alternating electric field, T is temperature
(K). 〈X2〉  designates ensemble averaging (in our case,
over 1000 realizations). In the steady-state case, the fol-
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lowing expression follows for the mobility from
Eq. (7): µ = eD/kBT, where D = 〈X2(t)〉/2t is the diffusion
coefficient determined by the slope of the straight line
approximating the dependence 〈X2(t)〉  in the interval
[0.2, 2] ps (Fig. 1). At the selected values of parameters,
the hole mobility equals µ ≅  2.4 cm2 V–1 s–1 for  =

0.001, µ ≅  2.3 cm2 V–1 s–1 for  = 0.006, and µ ≅
2 cm2 V–1 s–1 for  = 0.03. Note that the hole mobility
in a homogeneous G–C chain was found to be equal to
µ ≅  10 cm2 V–1 s–1 in [13] (on the time interval of the
same order). The higher mobility value is apparently
associated with the fact that dissipation was not
included in the model system considered in [13].

Despite the not-too-high mobility value, the holes in
DNA can be transferred for long distances, because the
main mechanism of their capture in the process of
transfer along the nucleotide sequence is the chemical
reaction of a hole with water, whose rate is Kreac ≈ 106 s–1

[14]. This leads to the following estimate for the dis-
tance at which a hole can be transferred before it is cap-

ωn'

ωn'

ωn'

Fig. 1. Plot of the time dependence of the mean-square hole
displacement on the interval of 2 ps.

Fig. 2. Plot of the time dependence of 〈X2〉/a2 at small val-
ues of t.
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tured by water: l = . With the use of the
results obtained, we find l ≈ 5 × 104 Å.

This work was supported by the Russian Foundation
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A qualitative model describing the surface of rare earth metals with an uncompleted 4f electron shell (Ce–Yb)
and the process of thermal evaporation from this surface is proposed. The model is based on a correlation estab-
lished between the energies of the lowest-lying levels of the 4f N – 15d6s2 configuration and the temperatures of
equal saturated-vapor pressures of these metals. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.20.-r; 64.70.Hz; 71.20.Eh
Investigation of the surface properties of metals,
including the electronic structure of the surface layer, is
an important field in solid state physics. A number of
methods used for the investigation of solid surfaces are
based on probing the surface with a particle beam or
radiation. One of these techniques is associated with
the photoevaporation effect that was originally reported
in [1], where exposure of a sodium film to optical radi-
ation led to an emission of neutral metal atoms that was
not related to thermal evaporation. The photoevapora-
tion phenomenon was further studied (including other
metals) in [2, 3], where a similar effect was observed
for a cesium film.

The photoevaporation phenomenon was character-
ized by the following experimental facts:

(i) The photodetachment process is associated with
the presence of certain structural defects on the metal
surface. These defects represent separate atoms (ada-
toms) that are less strongly bound to the metal surface
than the surface atoms are with each other. The number
n of such defects, determining the photoevaporation
process, depends exponentially on the temperature: n =
Nexp(–E/kT), where N is the total number of surface
atoms and E is the energy of formation of such defects
with allowance for the entropy factor (200 cm–1).

(ii) The photoevaporation rate (w), defined as the
reciprocal time it takes for reducing the Na film thick-
ness by half, grows with decreasing radiation wave-
length (i.e., with increasing excitation energy) under
isothermal conditions, linearly increases with the radi-
ation power, and exponentially depends on the temper-
ature as w ~ α exp(–∆E/kT), where ∆E = 1000 ±
200 cm–1.

Based on these results, Bonch-Bruevich et al. [3]
developed a qualitative model of the surface layer and
proposed a mechanism explaining the photodetach-
ment of intrinsic sodium atoms.
0021-3640/03/7805- $24.00 © 20339
Matthew et al. [4] showed that electron emission
from the surface of metallic calcium bombarded by
inert gas ions is caused by the decay of neutral excited
atoms occurring in the 3p53d4s2 state. This result sug-
gests that neutral calcium atoms in this excited state are
present on the sample surface.

As is known, the subgroup of rare earth metals
(REMs), which represent chemically identical ele-
ments, exhibits a significant scatter in the energy
required for atom detachment from the surface, even
for the neighbors in the Periodic Table (e.g., gadolin-
ium vs. europium). Taking into account the results
described above, we suggested that the REM surface,
similar to calcium, contains neutral atoms in the excited
state and that these atoms account for the evaporation
process. The detachment energy of an REM atom from
the surface is related to the excitation energy of these
atoms [2, 3]. 

In order to check for this hypothesis, we attempted
to establish correlation between the temperatures of
equal saturated-vapor pressures of REMs (i.e., the ener-
gies of atom detachment from the surface) and the level
excitation energies of various electronic configurations.
There are many papers devoted to the search for corre-
lations between various properties of metals and their
atomic numbers (see, e.g., [5]). In REMs, such correla-
tions were established between thermodynamic and
spectroscopic properties [6, 7]. These data facilitated
the search for the aforementioned correlation.

We have analyzed the data for a large number of lev-
els belonging to various electronic configurations for
both atoms and ions. The analysis was based on the data
presented in [8–11]. As a result, we established that the
only configuration correlated to the characteristic
behavior of the temperatures of equal saturated-vapor
pressures of REMs is 4f N – 15d6s2.

A plot of the temperature of equal saturated-vapor
pressures (Psat = 1.0 Torr) of REMs is given in Fig. 1.
003 MAIK “Nauka/Interperiodica”
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Figure 2 gives the energies of the lowest-lying levels of
the 4f N – 15d6s2 electronic configuration relative to the
energies (taken as zero) of the 4fN6s2 configuration.
Figure 3 presents the inverted and normalized graph of
the corresponding energies, E norm = 1 – (E – Emin)/(Emax –
Emin), in comparison with the curves for the normalized

Fig. 1. Plot of the temperature of equal saturated-vapor
pressures versus atomic number in the REM subgroup
(Psat = 1.0 Torr).

Fig. 2. The energies of the lowest-lying levels of the
4f N − 15d6s2 configuration relative to the energies (taken as
zero) of the 4f N6s2 configuration.

Fig. 3. The inverted and normalized graph of energies pre-
sented in Fig. 2, in comparison to the normalized tempera-
tures of equal saturated-vapor pressures versus element
number for four values of the saturated-vapor pressure.
temperature of equal saturated-vapor pressures,  =

(Tp – )/(  – ), versus element number for

four values of the saturated-vapor pressure. The curves
in Fig. 3 were normalized using the values of E, Emax,
and Emin representing the level energies of an arbitrary
element and the highest and lowest energies in the sub-
group under consideration, respectively. The values of
Tp, , and  are the temperatures of equal satu-

rated-vapor pressures of an arbitrary element and the
maximum and minimum temperatures among all ele-
ments of the subgroup, respectively.

The observed correlation implies that the Tp value
for any element of the REM subgroup is determined by

, the energy of the lowest-lying level of the
4f N − 15d6s2 configuration of this element:

The higher the level energy, the lower the Tp (and the
energy of atom detachment from the surface). Note that
Ce and Gd, for which this configuration corresponds to
the ground state, are characterized by the maximum
values of Tp.

Summarizing the above results, we have drawn the
following conclusions:

(i) The intrinsic neutral REM atoms in the indicated
states occur on the ionic surface and determine the ther-
mal evaporation process, similar to the structural
defects (adatoms) determining photoevaporation from
the sodium surface [2, 3].

(ii) The mechanisms of the formation of structural
defects in sodium and neutral atoms in the 4f N – 15d6s2

electronic state on the REM surface are identical and
show thermal character.

(iii) Evaporation from the REM surface is a two-
stage process, involving the formation of a neutral atom
in the 4f N – 15d6s2 state on the surface followed by the
thermal detachment.

It should be noted that, at a saturated-vapor pressure
of Psat = 0.001 Torr, most REMs (except for Gd, Nd, Pr,
Tb, and Ce) occur in the solid state, while at Psat =
1.0 torr only three elements (Yb, Sm, and Tm) remain
solids. However, this circumstance does not influence
the correlation presented in Fig. 3. This fact is indica-
tive of the identical character of processes involved in
the formation of atoms in the states determining evapo-
ration from both liquid and solid phases.

An experimental verification of the model may con-
sist in the observation that in thullium, for example, of
the atomic transition line at a wavelength of 762.0 nm
on the background of the continuous spectrum of the
vacuum-heated sample. This line corresponds to the
transition from the lowest level of the Psat configuration
with an energy of 13119 cm–1 to the ground state. Note
that this transition is allowed by the selection rules.

T p
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min

T
p

max T
p

min

Emin
k

T p f Emin
k 4N 1– 5d6s2( )[ ] .=
JETP LETTERS      Vol. 78      No. 5      2003



ELECTRONIC STRUCTURE OF THE SURFACE OF RARE EARTH METALS 341
We are grateful to Prof. G.F. Karavaev and
Prof. V.G. Bagrov for fruitful discussions and critical
remarks.

REFERENCES

1. I. N. Abramova, E. B. Aleksandrov, A. M. Bonch-
Bruevich, et al., Pis’ma Zh. Éksp. Teor. Fiz. 39, 172
(1984) [JETP Lett. 39, 203 (1984)].

2. A. M. Bonch-Bruevich, Yu. N. Maksimov, S. G. Przhi-
bel’skiœ, et al., Zh. Éksp. Teor. Fiz. 92, 285 (1987) [Sov.
Phys. JETP 65, 161 (1987)].

3. A. M. Bonch-Bruevich, T. A. Vartanyan, Yu. N. Maksi-
mov, et al., Zh. Éksp. Teor. Fiz. 97, 1761 (1990) [Sov.
Phys. JETP 70, 993 (1990)].
JETP LETTERS      Vol. 78      No. 5      2003
4. J. A. D. Matthew, M. A. Gallon, and T. E. Gallon, Phys.
Rev. B 55, 2697 (1997).

5. V. S. Arakelyan, Dokl. Akad. Nauk 364, 67 (1999).
6. L. Brewer, J. Opt. Soc. Am. 61, 1101 (1971).
7. V. I. Spitsyn and G. V. Ionova, Dokl. Akad. Nauk SSSR

285, 945 (1985).
8. A. I. Efimov, L. P. Belorukova, I. V. Vasil’kova, et al.,

Properties of Inorganic Compounds: Handbook (Khi-
miya, Leningrad, 1983).

9. J. F. Wyart, J. Opt. Soc. Am. 68, 197 (1978).
10. W. C. Martin, R. Zalubas, and L. Hagan, Natl. Stand.

Ref. Data Ser. (U.S. Natl. Bur. Stand.) 60 (1978).
11. L. Brewer, J. Opt. Soc. Am. 61, 1666 (1971).

Translated by P. Pozdeev


	261_1.pdf
	267_1.pdf
	272_1.pdf
	276_1.pdf
	281_1.pdf
	285_1.pdf
	291_1.pdf
	296_1.pdf
	300_1.pdf
	305_1.pdf
	309_1.pdf
	314_1.pdf
	319_1.pdf
	322_1.pdf
	327_1.pdf
	332_1.pdf
	336_1.pdf
	339_1.pdf

