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Small-angle multiple neutron scattering by a disordered polydisperse system with various concentrations of
scattering centers is studied experimentally and theoretically. The experiments show that, for high concentra-
tions (specific volume of scatterers ≥30%), interparticle interference of neutron waves plays a significant role
and strongly affects the angular distribution of scattered neutrons. The experimental results are qualitatively
explained within the framework of the theory allowing for pair correlations in the spatial distribution of scat-
terers. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.12.-q; 61.43.-j
1. INTRODUCTION
The method of small-angle scattering of penetrating

radiation is used for studying superatomic objects such
as structural and magnetic inhomogeneities in solids,
colloid particles and suspensions, etc. [1, 2]. Large-
scale inhomogeneities are actively investigated by the
method of ultrasmall-angle neutron scattering [3–6],
which is based on the use of a double-crystal spectrom-
eter. The most reliable results are obtained for monodis-
perse systems. Unfortunately, such systems are found
only in some biological objects [7], while solid samples
are monodisperse only in exceptional cases.

One usually prefers to use single scattering in exper-
iments on small-angle scattering. However, in the prob-
lems of nondestructive testing of modern materials, one
has to use thick samples, where the multiple scattering
order is high. The first attempts to describe multiple
scattering were based on the diffusion approximation
[8]. Considerable progress was achieved in [9, 10] by
applying the well-known Moliére–Bethe theory [11,
12], which was initially developed for the scattering of
charged particles, to materials science problems of neu-
tron physics.

Analysis of results obtained in [13, 14] showed that
interference between waves scattered by different
grains (interparticle interference effect) must be taken
into account in small-angle multiple neutron scattering
(MSANS). This phenomenon is well known in single
photon scattering after the classical works of Zernike,
Prince, and Debye [1].

The grain correlation effect on MSANS has not
been studied experimentally as yet. This work aims to
fill this gap. In this work, the MSANS differential cross
section in polydisperse samples was directly investi-
gated as a function of the average distance between
0021-3640/03/7809- $24.00 © 20523
scattering centers. A double-crystal spectrometer was
used in conditions where the neutron scattering order
was Ns = l/lc & 10, where l is the sample thickness and
lc is the mean free path. The experiments were carried
out on aluminum powder calibrated against the grain
size (as in [13]). To change distances between Al
grains, the initial powder was mixed in various propor-
tions with a powder of TiZr alloy having zero coherent
neutron-scattering length.

Preliminary results of this work were reported in
[15, 16]. The main result presented in [15] was that the
measured angular distribution I(ϑ) of scattered neu-
trons narrows with an increase in the grain density n
(number of grains per unit volume) at a constant Ns.
This effect is not described by the standard theory [9–
12]. It was qualitatively explained in [16], where the
general positions of a MSANS theory were developed
for moderately dense media with correlated grain dis-
tribution and calculations were carried out for monodis-
perse media. In this work, these investigations are con-
tinued and, in particular, the MSANS theory is devel-
oped for the polydisperse media.

2. THEORY

As in [16], we use the eikonal approximation, where
the scattering amplitude of nonpolarized neutrons on a
nonpolarized sample has the form
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where, p0 = (0, 0, p0) is the initial neutron momentum,
v  is the neutron velocity, ρ is the impact parameter, and
q is the scattering momentum such that qp0 = 0 and
q ! p0. The neutron optical potential U(r) of the
medium is set equal to U0 and 0 inside and outside
grain, respectively.

It is convenient to represent the normalized distribu-
tion of scattered neutrons in the form [16]

(2)

where Σ0 = Σ(x = 0), As is the geometric cross section
of a sample, and averaging in Eq. (4) is carried out over
the ensemble of grain configurations. Hereafter, we use
the same symbol for function D(q) and its Fourier
transform D(x) and distinguish them by the argument.
When going from Eq. (3) to Eq. (4), we assumed that
D(q) is a self-averaged quantity and ignored boundary
effects (in particular, neutrons scattered by the mean
potential of the sample were identified with the non-
scattered neutrons; within the same accuracy, the distri-
bution D(q) is equivalent to the distribution |f(q)|2).

The angular distribution measured by a double-crys-
tal spectrometer under typical conditions is represented
as [3]

(5)

Here, it is assumed that D(q) = D(–q) = D(q), and
I0(k) = I0(–k) and I0(ξ) are the normalized instrumental
line and its Fourier transform, respectively. As usual,
we assume that D(q) and I0(k) are concentrated at small
q and k, respectively, so that the integration limits for q
and k are taken to be infinite.

The numerical experiment was divided in two steps:
development of a realistic model for the sample used in
the experiment and calculation of the angular distribu-
tion of MSANS intensity for this model.

At the first step, the distribution of grain parameters
was introduced. We restricted ourselves to the hypoth-
esis of spherical particles. Analysis of a histogram
determined from a microphotograph showed that the
distribution of grain radii in experimental samples can
be satisfactorily approximated by the function

(6)
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with R = 1.42(6). The grain density n is associated with
the experimental filling factor

(7)

which was equal to ηAl = 0.61(1) for the bulk density of
Al powder. Here, ms is the powder mass, m0 is the mass
of the solid sample of the same volume, and averaging
is over radius distribution (6).

In the experimentally important diffraction range
ν = U0r/v  ! 1, the mean free path lc is determined as

(8)

When modeling, one hundred values were taken for
rj (0.44 < rj < 5.0). They were obtained as averages on
the (0.01 (j – 0.5), 0.01 (j + 0.5)) intervals of the y vari-
able uniformly distributed on [0, 1] and defined by the
relation w(r)dr = dy. Calculation by formula (8) with
this set of radii yields the value Ns = l/lc = 9 for the Al
sample corresponding to Fig. 1. The volume of the
model sample was chosen so as to ensure the required
density of scatterers n and the realistic (for the accessi-
ble computational speed) number of grains Nt * 1000.
The grain centers xj were taken at random uniformly in
this volume. To calculate realistic configuration, the
formal pair potential

(9)

was ascribed to the system. Here, rj is the radius of the
jth grain, rij = |xi – xj| is the distance between the ith and
jth centers, and ϑ(s) is the Heaviside step function. The
periodic continuation was used at the sample bound-
aries. Then the known iteration method (see, e.g., [17])
was used. In this method, the configuration obtained
after random displacement of grains is treated as a new
configuration if its potential energy does not exceed the
energy of the initial configuration. Every configuration
obtained in this process was considered as realistic if
Φ(x1, r1; ···; , ) = 0 for it.

The main calculations were carried out for the dif-
fraction region with the Born parameter 〈ν〉  = 0.3 and

with D(ξ) = (Dm(ξ) . Here Dm(ξ) represents D(ξ)
for the model sample; it was calculated by formulas
(2)–(4), and averaging in Eq. (4) over ρ from Eq. (3)
was within one sample and over the samples with dif-
ferent grain configurations but with the same scattering
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multiplicity . In compliance with the experiment, a
Lorentzian line with the width ω0 = 3.1″ was used as the
instrumental line (see below). The width of the calcu-
lated MSANS spectrum is shown in Fig. 1 (dark cir-
cles) as a function of dilution s related to the filling fac-
tor η by Eq. (10).

3. MEASUREMENT PROCEDURE

Experiments were carried out on a universal neutron
diffractometer equipped with a double monochromator
block [18] based on Ge single crystals cut along the
(1, 1, 1) plane. The first crystal served as a mosaic neu-
tron-beam former and the second was a perfect mono-
chromator. The sample under study was placed on the
beam path behind the double monochromator block
and ahead of a Ge perfect crystal served as an analyzer
and arranged parallel to the monochromator. Neutrons
reflected from the analyzer were detected by the 3He
detector of total absorption.

In this variant, the diffractometer operates as a dou-
ble-crystal spectrometer with the parallel orientation of
perfect crystals. Such spectrometers allow measure-
ments for scattering angles ranging from 10–3 to
10−6 rad [19].

Neutrons of higher-order reflections were sup-
pressed to less than 1% of the main component by a
special 100-mm-thick single-crystal quartz filter. The
analyzer crystal was rotated with a step of 0.12″. The
FWHM of the instrumental line was ω0 = (3.1 ± 0.1)″.
Aluminum and TiZr powders obtained by sputtering
from a melt into an inert gas, as well as their mixtures,
were used as samples. The geometric parameters of the
Al and TiZr grain distribution were determined from
microphotographs as described in Section 2. The char-
acteristic sizes of TiZr and Al grains were close to each
other. The filling factor for TiZr was ηTiZr = 0.405(10),
and TiZr powder consisted of grains partially stuck
together.

The powder of TiZr solid solution had composition
corresponding to zero amplitude of coherent scattering
b(TiZr) = 0 (68 at. % of Ti and 32 at. % of Zr) and was
used as a diluent matrix for Al grains.

The powders were put into identical special univer-
sal cylindrical cassettes 12 mm in diameter. The thick-
ness of their input and output windows was equal to
0.2 mm, and neutron scattering by the empty cassette
was not observed. The axis of the sample was oriented
along the neutron beam. To estimate b(TiZr), a search
for the refraction contrast [20] at the edges of a cylin-
der-shaped TiZr sample was carried out. The sample of
a diameter 10 mm, was situated between the monochro-
mator and analyzer crystals and moved with 0.1-mm
steps in a direction perpendicular to the beam axis with
an aperture of 0.1 mm. The absence of jumps in count-
ing rate when a sample crossed the beam showed that
b(TiZr) = (0 ± 0.03)b(Ti). However, one more control

Ns
0
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experiment indicated that the spectrum I(ϑ) for pure
TiZr with a mass of about 1000 mg was different from
the instrumental line (Fig. 2, line 2). This was likely
caused by the chemical action on the grain surface, e.g.,
by oxidation, which was responsible for additional
small-angle scattering. In particular, our TiZr powder
samples were black, while the alloy from which they
were produced was a silver-colored metal with a den-

sity of  = 5.1 g/cm3 natural for this composition.
Moreover, with an increase in dilution s, the line wings
raised and the peak became narrower, in qualitative
agreement with scattering by the grain surfaces. The
more complete clarification of the cause for this addi-
tional scattering requires separate investigation. In this
work, to control the dilution effect, measurements were
carried out for Al and TiZr powders both in a mixture
and in their layered arrangement with the same mass
ratios.

The counting rate (scattering curve) I(ϑ) for neu-
trons reflected from the analyzer crystal was measured
as a function of the rotation angle ϑ  of this analyzer
about the axis perpendicular to the reflection plane.
Figure 2 shows typical angular distributions. The
dependence of line width ω on the bulk concentration
of scattering centers was analyzed.

Samples were prepared by careful mixing of TiZr
and Al powders in acetone followed by drying at room
temperature for a day. A set of samples with varying
mass ratio s = mTiZr/mAl = 1, 2, …, 7 was prepared and,
together with the sample of pure Al (s = 0) powder,
allowed measurements in a wide dilution range s = 0–7
for the same mass of Al powder. The filling factor for
diluted Al powder was determined by the expression

(10)

ρTiZr
0

η η Al/ 1 sρAl/ρTiZr+( ) ηAl/ 1 0.792s+( ),= =

Fig. 1. FWHM ω (in angular seconds) of the MSANS curve
vs. the ratio of Al and TiZr masses for mAl = 625 mg. Closed
and open circles are experimental data for the mixture of
powders and layered arrangement, respectively; the line
with triangles is calculated for the mixture.
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and the volume fraction varied in the range η = 0.093–
0.61.

4. RESULTS AND DISCUSSION

The possible interparticle interference effect on
MSANS by Al powders was reported in [13], where the
grain sizes obtained from the MSANS data were sys-
tematically larger than the sizes observed in micropho-
tographs. It is natural to assume that this discrepancy is
caused by the fact that the theoretical model, where
scattering events for different grains are considered
independent, is inconsistent with a real object, i.e., with
grains in the bulk state (without additional compres-
sion) with a rather large density ρAl = 1.65(3) g/cm3.

The density of metallic aluminum is  = 2.70 g/cm3.
Since these densities are close to each other, the grain
distribution in such a powder should be similar to the
distribution in close-packed systems (e.g., liquids and
their mixtures), so that neutron scattering by different
grains is not independent in this case. Therefore, the
interparticle interference can likely manifest itself in
the experiment.

For the s-fold dilution of Al powder with the TiZr
powder, the filling factor decreases according to
Eq. (10), and the width of the scattering spectrum
increases (Fig. 1). In particular, for s = 1, the relative
increase in the mixture volume is ≈0.8, the volume-fill-
ing factor for the Al grains decreases from η ≈ 0.61 to
η ≈ 0.34, and the average distance between Al grains
increases by only 22%. According to the theoretical
calculation, the line width ω in this case increases

ρAl
met

Fig. 2. Angular distributions I(ϑ) obtained using a double-
crystal spectrometer: (1) without sample (instrumental
line), (2) TiZr powder with mass mTiZr = 1250 mg, (3) Al
powder with mass mAl = 1250 mg, and (4) mixture of Al and
TiZr powders with masses mAl = mTiZr = 1250 mg. Lines are
normalized to unity at maximum.
almost threefold and becomes close to ω(s = ∞), in
agreement with the experiment.

Neutron distribution (5) over the scattering momen-
tum can conveniently be represented in the form

(11)

The weight Fs of singular partion (fraction of unscat-
tered neutrons) and the regular term Fr(q) both depend
on the degree of dilution s. In the general case, the func-
tion Fr(q) can have several maxima (as, e.g., in single
scattering). However, if the width of the instrumental
line is comparable with the characteristic size of this
structure, convolution (11) considerably smooths it. In
this case, the width of the function Ir(q) depends only
slightly on s, whereas Fs(s) = exp(–κ(s)l/lc), where lc is
the mean free path in the absence of correlations and
the function κ(s) changes by a factor of more than two
with respect to κ(s = ∞) = 1 [16], resulting in a strong
(exponential) dependence Fs(s) for large Ns = l/lc. As a
result, the spectral width ω depends strongly on s in the
region of parameters where Fs/ω0 ~ Ir(q = 0). A more
detailed investigation of this problem will be reported
elsewhere.

5. CONCLUSIONS

The theoretical and experimental investigation of
MSANS carried out in this work for filling factors η ≥
9% and scattering orders N ~ 5–10 has revealed the
interparticle interference effect. It was shown that the
interparticle interference has a sizable effect on the
MSANS line in the range η ~ 30–60% and changes its
width by a factor of two to three. Thus, the Moliére–
Bethe theory strongly overestimates scatterer sizes and,
strictly speaking, does not apply under our conditions.

Theoretical results of this work show that the
MSANS spectra for dense polydisperse samples can be
simulated numerically. This opens up a way for wide
application of microscopic calculations in solving the
corresponding problems of materials science.
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We suggest a new experimental method to explore the properties of slow strange mesons at normal nuclear mat-
ter density. We show that the K+ and K– mesons with extremely small momenta relative to the surrounding
medium rest frame can be produced in nucleus–nucleon collisions, and their production cross-sections are
experimentally measurable. Experiments on the study of the momentum dependence of meson–nuclear poten-
tials are discussed. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 21.65.+f; 14.40.Aq; 25.40.-h
The question about the properties of mesons in
baryon matter has attracted much attention during
recent years [1]. In particular, the investigation of
strange mesons is of special interest as it is related to a
partial restoration of chiral symmetry [2] and the possi-
ble existence of an antikaon condensed phase in the
dense interior of neutron stars [3]. According to theo-
retical studies based on various approaches such as
effective chiral Lagrangians [4] and mean-field models
[5], the in-medium antikaon mass should be substan-
tially reduced while the kaon mass is expected to be
slightly enhanced. This has triggered a considerable
interest in the study of K– meson production in heavy-
ion collisions. The dropping of the K– mass in nuclear
matter has a strong impact on the antikaon yield, espe-
cially in the subthreshold reactions due to the in-
medium shift of the elementary production threshold to
lower energies. An enhanced antikaon to kaon ratio in
Ni + Ni collisions in the subthreshold energy regime
has been observed at GSI [6, 7] and was attributed to
the attractive antikaon potential of –(100–120) MeV at
nuclear saturation density [8]. A strong attractive opti-
cal potential of about –(180–200) MeV at normal
nuclear density for the K– has been extracted from
experimental data on kaonic atoms [9]. The substantial
difference between the antikaon potentials mentioned
above, i.e., their change in the mass, can be understood
if the potential is momentum dependent. Indeed, the
experiments with kaonic atoms deal with the K– mesons
of zero momentum relative to the nuclear matter rest
frame while heavy-ion collisions at GSI probe the anti-
kaons at momenta of more than 300 MeV/c (c is the
velocity of light) with respect to the baryonic fireball
[6]. The results of the calculations performed in the
frame of different models [10–14] show that the influ-

¶ This article was submitted by the authors in English.
0021-3640/03/7809- $24.00 © 20528
ence of an antikaon potential on the subthreshold pro-
duction of K– mesons increases with a lowering of their
momenta relative to the surrounding medium. It is
therefore desirable to obtain information about the K–

and K+ potentials at a momentum less than 300 MeV/c.
In-medium modification effects are expected to be the
most pronounced in nucleus–nucleus interactions in
which high density and/or temperature are accessible.
However, due to a complex dynamic involved the inter-
pretation of heavy-ion experiments are, at present, far
from unambiguous. Therefore, it is certainly useful to
explore such effects under less extreme but much better
controlled conditions at the normal nuclear density in
proton–nucleus collisions. However, slow kaons and
especially antikaons are hard to investigate experimen-
tally in pA reactions mostly due to their strong decay
and small production cross sections vanishing at zero
meson momentum.

We discuss an alternative method of such research.
The properties of mesons with extremely small
momenta with respect to the nuclear matter rest frame
can be explored in the inverse kinematics, i.e., in
nucleus–nucleon collisions. As follows from the
Lorentz transformation, slow particles in a projectile
nucleus system appear to be fast in the laboratory, i.e.,
in the target-nucleon frame of reference. The meson,
which is at rest inside the incident nucleus, has the same
laboratory velocity as surrounding nucleons. Using
inverse kinematics makes it possible to investigate par-
ticle production in new kinematic range, including zero
momentum relative to the nuclear matter rest frame,
which is not accessible in pA reactions. In contrast to
heavy-ion collisions, the determination of the meson
momenta relative to the nuclear environment in Ap
reactions is model-independent.

The suggested method provides important advan-
tages for experimental measurements in the low-
003 MAIK “Nauka/Interperiodica”
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momentum range. Large Lorentz boost with respect to
the laboratory results in upward shifts of the K+ and K–

momenta. As a consequence, their decay losses signifi-
cantly decrease and the mesons become convenient for
detection. Since the invariant cross sections are the
same in both systems, experimentally observed differ-
ential cross sections in inverse and direct kinematics are
related as

(1)

where p and E stand for kaon (antikaon) momentum
and energy while upper indices denote the type of reac-
tion. For the production of mesons with low momentum
relative to the nuclear matter rest frame, the cross sec-
tion (d2σ/dpdΩ)Ap considerably exceeds (d2σ/dpdΩ)pA

because the factor (E/p2)pA grows rapidly with a lower-
ing of meson momentum, while the factor (p2/E)Ap

changes rather smoothly.
In the present letter, we shall consider several appli-

cations of the suggested method.
1. Study of the in-medium kaon potential. Let us

consider K+ meson production in the inverse kinematics
by an ion beam on a hydrogen target. Our estimate of
the cross section for kaon production in Ap collisions is
based on data from pA reactions as well as the calcula-
tions performed in the framework of the simple folding
model [15], disregarding any potentials. Within this
approach, inclusive K+ production in proton–nucleus
collisions at near-threshold and subthreshold energies
is analyzed with respect to the one-step (pN  K+YN,
Y = Λ, Σ) and two-step (pN1  πNN, πN2  K+Y)
incoherent processes. The invariant cross sections for
both forward and backward kaon production in pA col-
lisions at initial proton energies 2 GeV were found, tak-
ing into account both reaction channels, and then trans-
formed into noninvariant double differential form. In
Fig. 1, the calculated double differential cross section
for forward K+ meson production on a carbon target
(dashed curve) is compared to that measured in the
angular range 0°–10° at the same initial proton energy
[16]. Experimental data are seen to be reasonably well
reproduced. Simple kinematical calculation shows that,
at the beam energy 2 AGeV (A is the atomic mass num-
ber), the kaons produced inside a projectile nucleus
with momenta from zero to 0.3 GeV/c in the backward
hemisphere relative to the beam direction appear in the
laboratory within the longitudinal and transverse
momentum ranges 0.78 ≤ Pl ≤ 1.47 GeV/c and 0 ≤ Pt ≤
0.3 GeV/c, respectively. The K+ mesons emitted in the
forward hemisphere with momenta up to 0.3 GeV/c
will be observed in the laboratory momentum range
1.47 ≤ Pl ≤ 2.66 GeV/c and in the same interval of Pt.
Laboratory momenta (in GeV/c) of the K+ mesons from
carbon–proton collisions corresponding to the
momenta of kaons produced in forward and backward
directions in p12C reaction are plotted on the upper axis.
The solid curve in the figure depicts the double differ-

d2σ/dpdΩ( )
Ap

 = p2/E( )Ap
E/ p2( )pA

d2σ/dpdΩ( )pA
,
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ential cross section for K+ production in the inverse
kinematics obtained from the calculated cross section
(dashed curve) by using Eq. (1). The left-hand part of
the figure is related to an experimentally unexplored
range of backward kaon production in proton–nucleus
collisions. A comparison of the data [16] presented in
Fig. 1 with the predicted cross section shows that it is
definitely acceptable for measurements, and signifi-
cantly exceeds that of traditional kinematics in the most
interesting range of low K+ momenta relative to sur-
rounding nuclear matter. Furthermore, an upward shift
of a kaon momentum in Ap collisions results in a siz-
able decrease of K+ decay losses. In contrast to pA reac-
tions, large values of the cross section and its smooth
behavior provide favorable experimental conditions for
the investigation of in-medium effects in the inverse
kinematics, in spite of the fact that the intensity of the
ion beams is usually smaller than that of the proton
ones. The influence of kaon nuclear and Coulomb
potentials should lead to a deviation of the cross section
from the solid curve calculated without the above
potentials. The signature of the effect will be an A-
dependent dip in the cross sections at laboratory kaon
momentum around 1.47 GeV/c corresponding to zero
K+ meson momentum relative to the projectile nucleus
system.

The evidence for the action of Coulomb and nuclear
potentials on soft kaon production was obtained in [17],
where the ratio of forward K+ meson yield from copper,
silver and gold targets to that on carbon has been mea-

Fig. 1. Double differential K+ production cross sections.
Circles denote the cross sections measured in proton–car-
bon collisions at Tp = 1.0 GeV; squares, at Tp = 1.2 GeV;
stars, at Tp = 1.5 GeV; and triangles, at Tp = 2.0 GeV [16].
Dashed line is our calculation for Tp= 2.0 GeV in the direct
kinematics. Solid curve represents the corresponding cross
section for K+ production in carbon–proton collisions at the
ion beam energy 2 AGeV.
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sured at proton beam energies between 1.5 and
2.3 GeV. It was found that, in the momentum range
from 170 to 600 MeV/c, the ratios exhibit similar shape
rising with decreasing kaon momentum, passing a max-
imum and falling down at momenta less than
250 MeV/c. The magnitude of the K+–nucleus repul-
sive potential was found to be 20 MeV at normal
nuclear density. The authors plan to extend the mea-
surements of the ratios that are not trivial experimental
tasks down to a kaon momentum of about 100 MeV/c.
In the inverse kinematics, both forward and backward
production ranges in the nucleus rest frame can be stud-
ied simultaneously because all produced kaons are
peaked forward in the laboratory. As a result, the
momentum dependence of the ratio of K+ production
cross section measured with heavy projectile ions to
that measured with light ones should exhibit distinct
two peak structure.

2. Study of the in-medium antikaon potential. Let
us consider K– meson production by an ion beam of
energy 2.5 AGeV on a hydrogen target. The K– mesons
produced in the backward hemisphere (relative to the
beam direction) with momenta up to 0.3 GeV/c in the
projectile nucleus rest frame were observed in the lab-
oratory momentum ranges 0.94 ≤ Pl ≤ 1.74 GeV/c and
0 ≤ Pt ≤ 0.3 GeV/c. This process corresponds to low-
momentum K– production by protons on the nuclear
target in the forward hemisphere. The available experi-
mental information about subthreshold antikaons from
proton–nucleus collisions is very scarce [11, 18]. Data
on the production of K– mesons with small momenta
are currently completely nonexistent. Under these cir-

Fig. 2. Double differential K– production cross sections in
the direct (dashed histogram) and inverse (solid histogram)
kinematics.
cumstances, we have to rely upon the model calcula-
tions to evaluate the respective cross section. The for-
ward K– mesons production in the p + A  K– + X
reaction at the proton beam energy 2.5 GeV was studied
in [10] within a coupled channel transport approach.
The dashed histogram in Fig. 2 shows the K– momen-
tum spectrum for the 12C target calculated in [10] with
zero potentials but taking into account the antikaon
absorption in its way out through the nucleus. The solid
histogram in the figure depicts the double differential
cross section for the K– meson production in 12C + p
collisions obtained from the dashed histogram by using
Eq. (1). The upper scale represents the corresponding
laboratory momenta (in GeV/c) of the K– mesons from
carbon–proton collisions. Taking into account the val-
ues of the antikaon production cross sections and the
sizable decrease of their decay losses, we conclude that
the expected event rate in low K– momentum range is
acceptable for measurements in the Ap kinematics.

Impact of the surrounding medium on slow K– pro-
duction should differ from that on K+ due to an attrac-
tive nature of both Coulomb and nuclear potentials.
Action of the Coulomb potential will populate the low-
momentum range while the influence of the nuclear
potential depends sensitively on its strength. One can
expect that, in the case of weak potential, the yield of
the K– mesons will be suppressed due to their strong
absorption via the K– + N  Σ + π reaction which has
a very large cross section at small antikaon momentum.
On the contrary, in the case of strong potential exceed-
ing 100 MeV, the K– mesons absorption plays a minor
role because the above process is energetically almost
closed [19]. This will lead to an enhanced low-momen-
tum K– meson yield even from heavy nuclei. The calcu-
lations [10] with an attractive antikaon potential of
120 MeV give an enhancement by a factor of about 10
in the cross sections for low momentum K–. It is there-
fore necessary to explore this question experimentally
by measuring the K– spectra in the inverse kinematics as
a function of the projectile nucleus mass.

If an attractive antikaon–nucleus potential turns out
to be large, it will be a strong argument for the existence
of narrow discrete nuclear antikaon bound states (see
[19] and references therein). The use of inverse kine-
matics could be a promising way to produce such
states.

It should be noticed that slow pions inside nuclei can
also be explored in inverse kinematics. Such measure-
ments may help to disentangle the effects of the Cou-
lomb and nuclear potentials on kaon and antikaon pro-
duction.

3. Study of the subthreshold reaction mecha-
nism. As was mentioned above, the kaon and antikaon
production in proton–nucleus interactions below the
free NN threshold is reduced to one-step and two-step
processes due to the lack of collision energy. It is com-
monly believed that the reaction mechanism can be
JETP LETTERS      Vol. 78      No. 9      2003
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identified from the target atomic mass dependence of
the cross sections. The A-dependence for the one-step
process is determined by the total inelastic cross section
and scales, as ≈A2/3 provided weak final state absorption
of the produced mesons. The stronger dependence ≈A1

is expected for the two-step kaon creation process,
since the correlating cross section includes the addi-
tional probability of the second collision of an interme-
diate pion with another target nucleon which is propor-
tional to ≈A1/3. The total K+ production cross section on
different nuclei has been measured in [20] at the proton
energy 1 GeV, which is far below the free NN threshold
(TNN = 1.58 GeV). Note that low-momentum kaons give
the main contribution to the total cross section. By fit-
ting to the cross sections with an Aα function, the expo-
nent α was found to be 1.04 ± 0.03. The strong
A-dependence has been interpreted in [20, 21] as an evi-
dence for the dominance of the two-step reaction mech-
anism. Recently, the ANKE Collaboration obtained the
data on double differential cross sections for low-
momentum K+ production on nuclear targets from car-
bon to gold at the same proton energy 1 GeV [22]. The
extracted value of α = 0.74 ± 0.05 is in reasonable
agreement with the A-dependence expected for the one-
step mechanism. This discrepancy does not allow one
to draw an unambiguous conclusion about the underly-
ing reaction mechanism of slow K+ production in pA
collisions [23].

Investigation of low momentum kaon in the inverse
kinematics seems the most promising way to clarify the
situation. Use of different ion beams provides the pos-
sibility of exploring the atomic mass dependence. At
projectile energy 1 AGeV, the K+ meson emission in the
backward hemisphere (relative to the ion beam direc-
tion) within the momentum range 0–0.3 GeV/c in the
projectile nucleus rest frame looks like forward kaon
production in the laboratory momentum intervals
0.43 ≤ Pl ≤ 0.89 GeV/c and 0 ≤ Pt ≤ 0.3 GeV/c. This
makes the measurements in the inverse kinematics
more favorable than those in the direct kinematics. For
instance, since the K+ meson momentum 0.1 GeV/c rel-
ative to the projectile nucleus corresponds to the labo-
ratory momentum 0.7 GeV/c, the differential cross sec-
tion in Ap collisions is enhanced by a factor of 30
(Eq. (1)). Furthermore, at a distance between the pro-
duction target and the detectors of about 2.5 m (corre-
sponding to the actual experimental situation), the loss
of the kaons due to their decay in flight is decreased by
more than an order of magnitude. Therefore, the K+

event rate would exceed that in traditional kinematics
by about a factor of 400. The corresponding enhance-
ment in the event rate of the K– mesons with the same
momentum is equal to 800 at ion beam energy 2 AGeV
which is far enough below the free NN threshold (TNN =
2.50 GeV). Due to the Lorentz boost, all kaons and anti-
kaons produced in full solid angle with momenta
<300 MeV/c relative to the projectile nucleus rest
frame will be concentrated in the laboratory inside a
JETP LETTERS      Vol. 78      No. 9      2003
rather narrow cone of 10°–20° that corresponds to the
solid angle of 1–3% of 4π. Note that the multiple scat-
tering effect on the detected particles is significantly
decreased in the Ap kinematics due to upward shift of
both kaon momentum and velocity. Thus, the inverse
kinematics is well suited for the experimental study of
the mechanisms of deep subthreshold low-momentum
strange meson production.

The feasibility of the experiments discussed above
depends on backgrounds. Subthreshold K+ and K–

meson production is accompanied by the background
of secondary pions and protons which is much more
intense. Note that the modern magnetic spectrometers
provide reliable K/π and K/p separation up to values of
these ratios 10–6–10–7 [15, 22]. Another source of back-
ground is the particle production from an envelope of
the hydrogen target. Usually, “target full–target empty”
measurements have to be carried out to obtain cross
sections on hydrogen. However, this background can be
totally removed by using the windowless target consist-
ing of frozen hydrogen pellets [24].

It is worth noting that the method discussed opens a
way to explore the properties of low-momentum η, η',
ω, ρ, and φ mesons in nuclear matter, which is a topic
extensively discussed over recent years [25]. Experi-
ments in the inverse kinematics may be carried out at
GSI-SIS using ion beams in the region of 1–2 AGeV
and at an ITEP where ion beams of energy up to
4.3 AGeV are expected to be available in the near
future.

We are grateful to E.Ya. Paryev for useful discus-
sions.
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We argue that turbulence in superfluids is governed by two dimensionless parameters. One of them is the intrin-
sic parameter q which characterizes the friction forces acting on a vortex moving with respect to the heat bath,
with q–1 playing the same role as the Reynolds number Re = UR/ν in classical hydrodynamics. It marks the
transition between the “laminar” and turbulent regimes of vortex dynamics. The developed turbulence
described by Kolmogorov cascade occurs when Re @ 1 in classical hydrodynamics, and q ! 1 in superfluid
hydrodynamics. Another parameter of superfluid turbulence is the superfluid Reynolds number Res = UR/κ,
which contains the circulation quantum κ characterizing quantized vorticity in superfluids. This parameter may
regulate the crossover or transition between two classes of superfluid turbulence: (i) the classical regime of Kol-
mogorov cascade where vortices are locally polarized and the quantization of vorticity is not important; (ii) the
quantum Vinen turbulence whose properties are determined by the quantization of vorticity. A phase diagram
of the dynamical vortex states is suggested. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 47.37.+q; 47.32.Cc; 67.40.Vs; 67.57.Fg
1. INTRODUCTION

The hydrodynamics of superfluid liquid exhibits
new features with respect to conventional classical
hydrodynamics, which are important when the turbu-
lence in superfluids is considered [1].

(i) The superfluid liquid consists of two mutually
penetrating components: the frictionless superfluid
component and the viscous normal component. That is
why different types of turbulent motion are possible,
depending on whether the normal and superfluid com-
ponents move together or separately. Here, we are inter-
ested in the simplest case, when the dynamics of the
normal component can be neglected. This occurs, for
example, in superfluid phases of 3He where the normal
component is so viscous that it is practically clamped
by the container walls. Its role is to provide the pre-
ferred reference frame, where the normal component
and, thus, the heat bath are at rest. The turbulence in the
superfluid component with the normal component at
rest is referred to as the superfluid turbulence.

(ii) An important feature of the superfluid turbu-
lence is that the vorticity of the superfluid component is
quantized in terms of the elementary circulation quan-
tum κ. So, the superfluid turbulence is the chaotic
motion of well-determined and well-separated vortex
filaments [1]. Using this, we can simulate the main
ingredient of the classical turbulence, the chaotic
dynamics of the vortex degrees of freedom of the liq-
uid.

¶ This article was submitted by the author in English.
0021-3640/03/7809- $24.00 © 20533
(iii) Further simplification comes from the fact that
the dissipation of the vortex motion is not due to the
viscosity term in the Navier–Stokes equation which is
proportional to the velocity gradients ∇ 2v in classical
liquid, but due to the friction force acting on the vortex
when it moves with respect to the heat bath (the normal
component). This force is proportional to velocity of
the vortex, and thus the complications that result from
the ∇ 2v term are avoided.

Here, we discuss how these new features could
influence the superfluid turbulence.

2. COARSE-GRAINED HYDRODYNAMIC 
EQUATION

The coarse-grained hydrodynamic equation for the
superfluid vorticity is obtained from the Euler equation
for the superfluid velocity v ≡ vs after averaging over
the vortex lines (see the review paper [2]). Instead of
the Navier–Stokes equation with ∇ 2v term, one has

Here, vn is the velocity of the normal component; w =

∇  × v is the superfluid vorticity;  = w/ω; and dimen-
sionless parameters α' and α come from the reactive
and dissipative forces acting on a vortex when it moves
with respect to the normal component. These parame-
ters are very similar to the Hall resistivity ρxy and ρxx in

∂v
∂t
------ ∇µ+ v w×=

– α' v vn–( ) w αŵ w v vn–( )×( ).×+×

1( )

2( )

ŵ
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the Hall effect. For vortices in fermionic systems
(superfluid 3He and superconductors), they were calcu-
lated by Kopnin [3] and measured in 3He–B in the
broad temperature range by Bevan et al. [4] (see also
[5], where these parameters are discussed in terms of
the chiral anomaly).

The terms in Eq. (1) are invariant with respect to the
transformation v  v(r – ut) + u, as in classical
hydrodynamics. However, the terms in Eq. (2) are not
invariant under this transformation since there is a pre-
ferred reference frame in which the normal component
is at rest. They are invariant under the full Galilean
transformation when the normal component is also
involved: v  v(r – ut) + u and vn  vn + u.

Further, we shall work in the frame where vn = 0, but
we must remember that this frame is unique. In this
frame, the equation for superfluid hydrodynamics is
simplified:

(3)

After rescaling the time such that  = (1 – α')t, one
obtains an equation which depends on a single parame-
ter q = α/(1 – α'):

(4)

Now, the first three terms together are the same as iner-
tial terms in classical hydrodynamics. They satisfy the
modified Galilean invariance (in fact, the transforma-
tion below changes the chemical potential, but this does
not influence the vortex degrees of freedom which are
important for the phenomenon of turbulence):

(5)

On the contrary, the dissipative last term with the factor
q in Eq. (4) is not invariant under this transformation.
This is in contrast to conventional liquid, where the
whole Navier–Stokes equation which contains viscos-
ity

(6)

is Galilean invariant, and where there is no preferred
reference frame.

Such a difference between the dissipative last terms
in Eqs. (6) and (4) is very important:

(1) The role of the Reynolds number, which charac-
terizes the ratio of inertial and dissipative terms in
hydrodynamic equations, in superfluid turbulence is
played by the intrinsic parameter 1/q. This parameter
does not depend on the characteristic velocity U and
size R of the large-scale flow as it is distinct from the
conventional Reynolds number Re = RU/ν in classical
viscous hydrodynamics. That is why the turbulent
regime occurs only at 1/q > 1 even if vortices are
injected to the superfluid which moves with large

∂v
∂t
------ ∇µ+ 1 α'–( )v w αŵ w v×( ).×+×=

t̃

∂v
∂ t̃
------ ∇µ˜+ v w× qŵ w v+( ).×+=

v t̃ r,( ) v t̃ r, u t̃–( ) u.+

∂v
∂t
------ ∇µ+ v w ν∇ 2v,+×=
velocity U. This rather unexpected result was obtained
in recent experiments with the superfluid 3He–B [6].

(2) In conventional turbulence, the large-scale
velocity U is always understood as the largest charac-
teristic velocity difference in the inhomogeneous flow
of classical liquid [7]. In the two-fluid system, the
velocity U is the large-scale velocity of the superfluid
component with respect to the normal component, and
this velocity (the so-called counterflow velocity) can be
completely homogeneous.

(3) As a result, as distinct from classical hydrody-
namics, the energy dissipation, which is produced by
the last term in Eq. (4), depends explicitly on U:

(7)

(4) The onset of the superfluid turbulence was stud-
ied in [8], where a model was developed which demon-
strated that the initial avalanche-like multiplication of
vortices leading to turbulence occurs when q & 1 is in
agreement with experiment [6]. The existence of two
regimes in the initial development of vorticity is also
supported by earlier simulations by Schwarz who noted
that, when α (or q) is decreased, the crossover from a
regime of isolated phase slips to a phase-slip cascade
and then to fully developed vortex turbulence occurs
[9]. One can expect that well-developed turbulence
occurs when q ! 1, and here we shall discuss this
extreme limit. In 3He–B, the condition q ! 1 can be
realized at temperatures well below 0.6Tc [6]. However,
we do not consider a very low T where, instead of the
mutual friction, the other mechanisms of dissipation
take place such as excitation of Kelvin waves [10] and
vortex reconnection [11]. The latter leads to the forma-
tion of cusps and kinks on the vortex filaments whose
fast dynamics creates a burst of different types of exci-
tations in quantum liquids: phonons, rotons, Kelvin
waves, and fermionic quasiparticles. The burst of grav-
itational waves from cusps and kinks of cosmic strings
was theoretically investigated by the cosmological
community (see, e.g., [12]), and the obtained results are
very important for superfluid turbulence at a very low
temperature.

(5) We expect that, even at q ! 1, two different
states of turbulence are possible, with the crossover (or
transition) between them being determined by q and by
another dimensionless parameter Res = UR/κ, where κ
is the circulation around the quantum vortex. The
coarse-grained hydrodynamic equation (4) is, in fact,
valid only in the limit Res @ 1, since the latter means
that the characteristic circulation of velocity Γ = UR of
the large-scale flow substantially exceeds the circula-
tion quantum κ, and thus there are many vortices in the
turbulent flow. When Res decreases, the quantum nature
of vortices becomes more pronounced, and we proceed
from the type of the classical turbulence, which is prob-

e Ė– v
∂v
∂ t̃
------⋅–= =

=  q v ŵ w v×( )×( )⋅〈 〉– qωU2.∼
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ably described by the Kolmogorov cascade, to the
quantum regime, which is probably described by the
Vinen equations for the average vortex dynamics [13].

Let us consider the possibility of the Kolmogorov
state of the superfluid turbulence.

3. KOLMOGOROV CASCADE

In classical turbulence, the large Reynolds number
Re = UR/ν @ 1 leads to well-separated length scales or
wave numbers. As a result, a Kolmogorov–Richardson
cascade takes place, in which the energy flows from
small wave numbers kmin ~ 1/R (large rings of size R of
the container) to high wave number k0 = 1/r0 where the
dissipation occurs. In the same manner, in our case of
superfluid turbulence, the necessary condition for the
Kolmogorov cascade is the big ratio of the inertial and
dissipative terms in Eq. (4), i.e., 1/q @ 1.

In the Kolmogorov–Richardson cascade, at arbi-
trary length scale r, the energy transfer rate to the

smaller scale, say r/2, is e = Er/tr, where Er =  is the
kinetic energy at this scale, and tr = r/v r is the charac-
teristic time. The energy transfer from scale to scale
must be the same for all scales; as a result, one has

(8)

From this equation, it follows that

(9)

This must be valid both in classical and superfluid liq-
uids [14]. What is different is the parameter e: it is
determined by the dissipation mechanism, which is dif-
ferent in two liquids.

From Eq. (7) with ωr = v r/r, it follows that, as in the
classical turbulence, major dissipation occurs at the
smallest possible scales, but the structure of e is now

different. Instead of e = νv r0/  in classical liquids, we
now have

(10)

Since e = U3/R, from Eq. (10) one obtains that the scale
r0 at which the main dissipation occurs and the charac-
teristic velocity  at this scale are

(11)

This consideration is valid when r0 ! R and v r0 ! U,
which means that 1/q @ 1 is the condition for the Kol-
mogorov cascade. In classical liquids, the correspond-
ing condition for well-developed turbulence is Re @ 1.
In both cases, these conditions ensure that the kinetic
terms in the hydrodynamic equations are much larger
than the dissipative terms. In the same manner, as in

v r
2

e
Er

tr

-----
v r

3

r
------ constant

U3

R
------.= = = =

v r e
1/3r1/3.=

r0
2

e qωr0U2 qU2v r0

r0
--------∼ ∼ qU2

e
1/3r0

2/3– .=

v r0

r0 q3/2R, v r0 q1/2U .∼ ∼
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classical liquids, the condition for the stability of the
turbulent flow is Re > 1, such that one may suggest that
the condition for the stability of the discussed turbulent
flow is 1/q > 1. This is supported by observations in
3He–B where it was demonstrated that, at high velocity
U but at q > 1, the turbulence does not develop even
after vortices were introduced into the flow [6].

As in the Kolmogorov cascade for the classical liq-
uid, in the Kolmogorov cascade of superfluid turbu-
lence the dissipation is concentrated at small scales,

(12)

while the kinetic energy is concentrated at large scale of
container size:

(13)

The dispersion of the turbulent energy in the
momentum space is the same as in classical liquid

(14)

As distinct from the classical liquid, where k0 is deter-
mined by viscosity, in the superfluid turbulence the cut-
off k0 is determined by mutual friction parameter q: k0 =
1/r0 = R–1q–3/2.

4. CROSSOVER TO VINEN QUANTUM 
TURBULENCE

At a very small q, the quantization of circulation
becomes important. The condition of the above consid-
eration is that the relevant circulation can be considered
continuous, i.e., the circulation at the scale r0 is larger
than the circulation quantum: v r0r0 > κ. This gives

(15)

i.e., the constraint for the application of the Kolmog-
orov cascade is

(16)

Another requirement is that the characteristic scale r0
must be much larger than the intervortex distance l. The
latter is obtained from the vortex density in the Kol-
mogorov state nK = l–2 = ωr0/κ = v r0/(r0κ). The condi-
tion l ! r0 again leads to the equation v r0r0 > κ and,
thus, to the criterion (16).

e qU2 rd
r
-----

v r

r
-----

r0

R

∫ qU2v r0

r0
--------,∼ ∼

E
rd
r
-----v r

2

r0

R

∫ rd
r
----- er( )2/3

r0

R

∫ eR( )2/3 U2.= = = =

E
rd
r
----- er( )2/3

r0

R

∫ kd
k
-----e

2/3

k2/3
-------

k0

1/R

∫ kE k( ),d

k0

1/R

∫= = =

E k( ) e
2/3k 5/3– .=

v r0r0 q2UR q2κRes κ , Res> UR
κ

--------,= = =

Res
1

q2
-----  @ 1.>



536 VOLOVIK
Note that here, for the first time, the “superfluid
Reynolds number” Res appears, which contains the cir-
culation quantum. Thus, the superfluid Reynolds num-
ber is responsible for the crossover or transition from
the classical superfluid turbulence, where the quantized
vortices are locally aligned (polarized), and thus the
quantization is not important, to the quantum turbu-
lence developed by Vinen.

We can now consider the approach to the crossover
from the quantum regime—the Vinen state which prob-
ably occurs when Resq2 < 1. According to Vinen [13],
the characteristic microscopic length scale, the distance
between the vortices or the size of the characteristic
vortex loops, is determined by the circulation quantum
and the counterflow velocity, l = λκ /U, where λ is the
dimensionless intrinsic parameter, which probably con-
tains α' and α. The vortex density in the Vinen state is

(17)

It differs from the vortex density in the Kolmogorov
state

(18)

which depends not only on the counterflow velocity U
but also on the container size R.

If the crossover between the classical and quantum
regimes of the turbulent states occurs at Resq2 = 1, the
two equations (17) and (18) must match each other in

nV l 2– λ2U2

κ2
------∼ λ2

R2
-----Res

2.= =

nK

v r0

κr0
-------- U

qκR
----------∼ 1

R2
-----

Res

q
--------,= =

Possible phase diagram of dynamical vortex states in Res, q
plane. At large flow velocity Res @ 1, the boundary
between the turbulent and “laminar” vortex flow approaches
the vertical axis at q = q0 ~ 1 as suggested by experiment
[6]. The thick line separates the developed turbulence of the
classical type, which is characterized by the Kolmogorov
cascade at small q, and the quantum turbulence of the Vinen
type.

“Laminar”
the crossover region. But this occurs only if λ2 = q. If
λ2 ≠ q, there is a mismatch, and one may expect that
either the two states are separated by a first-order phase
transition, or there is an intermediate region where the
superfluid turbulence is described by two different
microscopic scales such as r0 and l. Based on the above
consideration, one may suggest the following phase
diagram of different regimes of collective vortex
dynamics in the figure.

5. DISCUSSION

Superfluid turbulence is the collective many-vortex
phenomenon which can exist in different states. Each of
the vortex states can be characterized by its own corre-
lation functions. For example, the states can be charac-
terized by the loop function

(19)

In the limit when the length L of the loop C is much
larger than the intervortex distance l, one may expect
the general behavior g(L) ~ exp(–(L/l)γ) where the
exponent γ is different for different vortex states.

One can expect the phase transitions between differ-
ent states of collective vortex dynamics. One of such
transitions, which appeared to be rather sharp, has been
observed between the “laminar” and “turbulent”
dynamics of vortices in superfluid 3He–B [6]. It was
found this type of transition was regulated by intrinsic
velocity-independent dimensionless parameter q =
α/(1 – α'). However, it is not excluded that both dimen-
sionless parameters α and α' are important, and also it
is possible that only the initial stage of the formation of
the turbulent state is governed by these parameters [8].
Another transition (or possibly crossover) is suggested
here between the quantum and classical regimes of the
developed superfluid turbulence, though there are argu-
ments that the classical regime can never be reached
because the vortex stretching is missing in the super-
fluid turbulence [15].

In principle, the parameters α and α' may depend on
the type of the dynamical state, since they are obtained
by averaging the forces acting on individual vortices.
The renormalization of these parameters α(L) and α'(L)
when the length scale L is increasing may also play an
important role in the identification of the turbulent
states, as in the case of the renormalization-group flow
of similar parameters in the quantum Hall effect (see,
e.g., [16]).

I thank V.B. Eltsov, D. Kivotides, N.B. Kopnin, and
M. Krusius for discussions. This work was supported
by the ESF COSLAB Programme and the Russian
Foundation for Basic Research.
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The results of experiments studying the propagation of a high-frequency whistler wave in a magnetized plasma
duct in the presence of an intense low-frequency wave also related to the whistler frequency range are reported.
Amplitude–frequency modulation of the high-frequency whistler wave trapped in the duct was observed. A
deep amplitude modulation of the signal that can lead to its splitting into separate wave packets is observed. It
is shown that an increase in the wave propagation path leads to a broadening of the wave frequency spectrum
and to a shift of the signal spectrum predominantly toward the red side. The transformation of the frequency of
the high-frequency wave is related with the time-dependent perturbation of the external magnetic field by the
field of the low-frequency whistler wave (the relative perturbation of the magnetic field δB/B ≤ 5 × 10–2). ©
2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.25.Xz; 52.35.Hr; 52.72.+v
1. The modulation of waves of the ultralow-fre-
quency range in the Earth’s ionosphere and magneto-
sphere is a phenomenon that has long been known from
satellite and ground-based observations [1]. The ampli-
tude and frequency of signals propagating in the cir-
cumterrestrial plasma as electron whistlers are trans-
formed both at their resonance interaction with elec-
trons of radiation belts [2] and when the wave passes
through regions with a hydrodynamic perturbation of
plasma parameters and the geomagnetic field [3]. Vari-
ations of these parameters lead to modulation of the fre-
quency and the signal envelope, broadening of their fre-
quency spectrum, and generation of satellites [3–5]. In
spite of the fact that parametric and nonlinear effects
have long been observed in natural experiments, labo-
ratory modeling of such phenomena has not been per-
formed previously. This paper presents the results of
laboratory experiments in which the amplitude–fre-
quency characteristics of a whistler wave propagating
in a magnetoactive plasma were studied upon intense
time-dependent perturbation of the external field. The
experiments were carried out on a unique Krot plasma
test bench specially designed for modeling phenomena
in the space and circumterrestrial plasmas.

2. The setup represents a vacuum chamber 10 m in
length and 3 m in diameter. The magnetic field of a mir-
ror configuration (the mirror ratio R . 2.4, Fig. 1b) is
created with the use of a solenoid installed inside the
vacuum volume. A cylindrical plasma column (1.5 m in
diameter and 4 m in length) is formed as a result of a
pulsed induction high-frequency (HF) discharge (f =
5 MHz, Pgen = 250 kW, tpulse = 1 ms) in argon at a pres-
sure of 7 × 10–4 Torr. The highest plasma density at the
0021-3640/03/7809- $24.00 © 20538
discharge moment reaches ~1013 cm–3, the temperature
of electrons Te = 10 eV, and the temperature of ions Ti ~
0.5 eV. The experiments were performed in the decay-
ing plasma mode once the plasma-creating generators
were turned off at a moment when the plasma concen-
tration reached N . 1.2 × 1012 cm–3. The decay of
plasma was determined by the process of ambipolar
diffusion along the magnetic field; the characteristic
time of plasma decay was on the order of 10 ms. Under

Fig. 1. (a) Schematic diagram of the Krot experimental
setup and (b) the distribution of the external magnetic field
along the axis of the vacuum chamber.
003 MAIK “Nauka/Interperiodica”
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the conditions of this experiment, the external magnetic
field at a minimum was B0 = 100 G. Single-turn,
screened magnetic antennas 2–3 cm in diameter
installed at various sections of the plasma column were
used for the radiation and reception of high-frequency
whistler waves. The antennas were covered with a thin
dielectric layer to decrease the plasma effect on their
impedance characteristics. The plasma concentration
was measured with the use of a miniature probe with a
microwave oscillator made on a section of a twin-wire
line.

The excitation of an HF whistler wave was per-
formed by one of the antennas 2 cm in diameter to
which a pulse was supplied at a frequency f2 = 160 MHz
with the duration τ = 1–3 µs. A duct with a lowered
plasma density extended along the external magnetic
field was created in order to channel the radiated wave
[6]. The duct was formed with the use of a two-turn
loop antenna 20 cm in diameter located at the center of

Fig. 2. (a) Radial distributions of the plasma concentration,
(b) amplitudes of the Bz and Bϕ components of the low-fre-
quency magnetic field (frequency f1 = 3 MHz), and (c) snap-
shots of the Bz component of the alternating magnetic field
(frequency f1 = 3 MHz) at different instants of time.

λ
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the chamber. A HF voltage pulse was applied across the
antenna (f1 = 3 MHz, UHF = 300 V, P = 9 kW, and ∆t =
1 ms). As a result of local heating of electrons, ther-
modiffusion plasma redistribution occurred in the near
field with the formation of a channel with a decreased
concentration extended along the system axis in a time
on the order of t = 500 µs [6, 7], Fig. 2a. Intense low-
frequency (LF) whistler waves (f1 ! fH = 260 MHz)
were excited in the duct simultaneously with the heat-
ing of electrons. Interferometric measurements showed
that the perturbation of the plasma by the LF field is of
the wave character; it represents a whistler wave with
the wave vector directed almost perpendicular to the
direction of the external magnetic field, a so-called con-
ical refraction wave [6] with the transverse wave num-
ber k⊥  ~ ωp/c, Fig. 2c. The amplitude of the alternating
magnetic field (the Bz and Bϕ components, f1 = 3 MHz)
near the loop antenna was δB ≤ 5 G (Figs. 2b, 2c).

Fig. 3. Oscillograms of a high-frequency pulse (a) radiated
into the plasma (f2 = 160 MHz) and (b), (c), and (d) received
from the plasma at different radial positions of the receiving
antenna (during a low-frequency perturbation of the plasma
at the frequency f1 = 3 MHz).
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Typical HF oscillograms (f2 = 160 MHz) of signals
from the receiving antenna are presented in Fig. 3. It is
seen that the pulse received from the plasma in the pres-
ence of a LF perturbation of the magnetic field is
strongly modulated (Fig. 3). The signal may have the
form of individual wave packets (Figs. 3c, 3d) whose
duration equals half the period of LF field variation
(frequency f1 = 3 MHz). In this case, modulation of the
wave carrier frequency (f2 = 160 MHz) was observed
inside the modulation periods of the envelope. The
effect of amplitude–frequency modulation of the signal
increased as the wave propagation path in the perturbed
plasma increased (Fig. 4). At the edge of the plasma
channel the antenna detected a low-amplitude signal,

Fig. 4. Typical oscillograms of an HF pulse received from
the plasma and spectra of the signals obtained with the use
of the Fourier transform (receiving and radiating loops are
located at the channel axis): (a) the pulse duration is 2 µs,
the receiving and radiating antennas are separated by the
distance ∆z = 40 cm; and (b) the pulse duration is 3 µs, the
receiving and radiating antennas are separated by the dis-
tance ∆z = 260 cm.

1.0

2.01.0

2.0
but its frequency and envelope were strongly modu-
lated (Fig. 3d).

Spectral measurements showed that, as the wave
propagation path increased, the deepening of modula-
tion was accompanied by an increase in the width of the
signal frequency spectrum (an increase in the number
of satellites of the fundamental frequency) and a shift of
the spectrum toward low frequencies (Fig. 4). As the
distance between the receiving and radiating antennas
increased, the amplitude of the fundamental spectral
component (f2 = 160 MHz) decreased and became
lower than the amplitude of the low-frequency satellites
(Fig. 4b).

The efficiency of the parametric transformation of
the spectrum was investigated as a function of the
amplitude of the alternating field (f1 = 3 MHz) localized
in the duct (Fig. 5). As the parameter A increases, the
amplitude of the main spectral maximum f = f2 =

Fig. 5. Transformation of the frequency spectrum of a whis-
tler wave as a function of the relative perturbation of the
external magnetic field by an alternating field at the fre-
quency f1 = 3 MHz (A ∝  δB/B0, A = 1 corresponds to
δB/B0 . 5%).
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160 MHz decreases: the oscillation energy is trans-
ferred to the LF spectral components.

3. It is known that the refractive index for electro-
magnetic waves of the whistler frequency range

 < ω < ωH ! ωp can be written in the following
form:

(1)

(c is the velocity of light in free space; ω and k are the
frequency and the wave number of the whistler wave,
respectively; ωp and ωH are the plasma and cyclotron
frequencies of electrons, ΩH is the ion cyclotron fre-
quency, and Θ is the angle between the direction of the
external magnetic field B0 and the wave vector k). From
Eq. (1), it is seen that a perturbation of the refractive
index can be associated with both variations of the
magnetic field (ωH) and a perturbation of the concentra-

tion of plasma electrons ( ). It is not difficult to show
that the relative perturbation of the external magnetic
field in the field of a wave with k⊥  ~ ωp/c is considerably
larger than the relative perturbation of the plasma con-
centration

(2)

where δN and δB are the perturbations of the density
and the magnetic field in the LF whistler wave. Under
experimental conditions, ωH/ωp . 0.1. The perturbation
of the external magnetic field reaches δB/B ~ 5%, and
it is the periodic modulation of the magnetic field that
makes the main contribution to the parametric effect
under study. The shift of the spectrum can be explained
by both the interaction of the HF signal with the travel-
ing wave of the parameter (magnetic field) and the
strong frequency dependence of the attenuation coeffi-
cient of the collisional damping of HF whistler waves.
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We would like to call attention to the oscillograms
of modulated signals (Figs. 3, 4) unusually shaped as
individual, periodically repeated wave packets. This
shape of the modulated signal reminds us of oscillo-
grams of ion whistlers received from the circumterres-
trial plasma in the ultralow frequency range. These are
Pc-1 (so-called pearl) micropulsations [8]. The similar-
ity of the signals suggests that the mechanism responsi-
ble for the generation of the quasi-periodic sequences
of “pearls” is similar to the mechanism presented in this
paper. It is likely that the Pc-1 generation is associated
with the amplitude–frequency modulation of ion whis-
tlers in the region near the equator by intense LF pertur-
bations of the geomagnetic field.

This work was supported by the Russian Foundation
for Basic Research (project no. 01-02-16578), and the
Russian Department of Science (financing of unique
installations, reg. no. 01-18).
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The reasons for the existence of various scenarios for structural transformations in disordered condensed media,
such as liquids and amorphous substances, where both smeared transformations and sharp first-order transitions
may occur, were analyzed. The ratio between the spatial scale of structural correlations and the size of the small-
est possible region occupied by a new phase in the matrix of initial modification is the key parameter determin-
ing the scenario for equilibrium phase transformations in liquids. In amorphous substances, the experimentally
observed transformations occur far from equilibrium, and the possible size of the region occupied by the new
phase corresponds to the minimal nucleus size. For some amorphous solids, quantitative analysis of the trans-
formation width was carried out and the main classes of covalent substances, in which the smeared or sharp
transitions occur, were revealed. Specific features of the interparticle interactions determining various transfor-
mation scenarios are discussed. © 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

To date, first-order phase transitions induced in
crystals by external parameters have been studied
rather well both theoretically and experimentally. By
contrast, investigation of the pressure- and tempera-
ture-induced phase transformations in disordered con-
densed media—liquids and amorphous solids—is only
at the early stage [1].

Experimental data on the phase (structural) transfor-
mations under pressure in liquids and amorphous solids
are few in number [1]. For the majority of studied liq-
uids (Cs, Rb, Te, Sn, Si, As2Te3, and Ge–Te) and many
amorphous substances (a-SiO2, a-GeO2, a-C), the
transformations are smeared in pressure and tempera-
ture and identified by a significant short-range struc-
tural rearrangement [1]. At the same time, sharp transi-
tions formally close to the first-order phase transition
are observed in liquid phosphorus [1, 2] and in amor-
phous a-H2O or a-D2O ice [1, 3]. Moreover, in the
course of these transformations, the states of a macro-
scopic mixture of two phases with a well-defined inter-
faces were observed [4, 5]. Sharp transitions probably
also occur in the Y2O3–Al2O3 melt, supercooled water,
and supercooled Si and Ge melts [1] and, possibly, in
some amorphous phases, e.g., in a-Zn41Sb59 [6].

The theoretical consideration of phase transforma-
tions in liquids and glasses mainly amounts to using
empirical approaches based on the models of “regular
solution” type [7–9]. In these models, all transforma-
tions are first-order phase transitions terminated at the
critical points upon rise in temperature. The interrela-
tion between the phase transitions in liquids and a cer-
tain microscopic type of interparticle interaction can be
0021-3640/03/7809- $24.00 © 20542
found in only a few of approaches [10]. Analysis of
the equilibrium between two different metastable
modifications in amorphous solids has conditional
character, whereas real transformation is a kinetic
phenomenon that is observed near the stability bound-
ary (spinodal) of the initial amorphous phase and
accompanied by various relaxational phenomena of
an unusual nature [1].

The reasons for the existence of various transforma-
tion types (smeared and sharp) in disordered media
have almost not been considered so far. With liquids, it
is believed that the smeared transitions should become
sharp upon lowering temperature [7–9]. In [11], various
scenarios for transitions in melts were related to the
amorphous or crystalline type of local ordering in liq-
uid. Although the transition types in amorphous sub-
stances were reproduced by computer simulation using
various interparticle potentials [12], the relevance of
these potentials to real amorphous solids remains to be
clarified.

In this work, the scenarios for the transformations
accompanied by the sharp and smeared changes in the
short-range order in liquids and amorphous solids are
analyzed. It will be shown that the transition type is
determined by the ratio of the size of the smallest pos-
sible region with the new short order to the correlation
length of the medium-range order in a disordered
medium. For liquids, the smallest region is given by the
smallest fluctuation cluster that reduces energy of the
system in the stability region of the initial modification,
whereas, for the amorphous state, this region is deter-
mined by the critical nucleus of new modification in the
metastable region of the initial phase.
003 MAIK “Nauka/Interperiodica”
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2. PHASE TRANSFORMATIONS
IN DISORDERED CONDENSED MEDIA. 

GENERAL

In the first-order phase transition, the chemical
potential of a mixture of phases exceeds the corre-
sponding value for the stable phase at all pressures and
temperatures, except in the equilibrium curve. How-
ever, if the sizes of phase regions are small, one should
include the interphase surface energy (conditional mix-
ing energy) and the mixing entropy (provided that the
different states can arise during the experimental
times). The surface energy increases the chemical
potential of the mixture, while the mixing entropy
reduces it. It is then conceived that, if there is a struc-
tural transformation between different phases, the tran-
sition at sufficiently low temperatures should be sharp
(of the first kind); as the temperature increases, the tran-
sition curve may terminate at the critical, triple, or tric-
ritical point, or at the point of stability loss for one of
the phases [1, 7, 13].

It is generally agreed that the aforementioned refers
equally to the disordered condensed media. However,
one of the main properties of the disordered state that
distinguishes it from crystal, namely, the structural
inhomogeneity on the nanometer scale that is smaller
than the characteristic correlation length dcor of the
medium order in disordered systems, is not taken into
account in the above approach. This inhomogeneity
(Fig. 1a) in a disordered medium leads to the dispersion
of geometric, dynamic, and energy characteristics of its
characteristic structural units (in what follows, clusters)
under the condition that the cluster size rcl is smaller
than dcor (Fig. 1b).

It follows that, contrary to crystals, the main proper-
ties (energy, Gibbs energy, volume, etc., taken per one
atom) of small clusters constituting the disordered sys-
tem coincide with the macroscopic properties of the
phase only if rcl > dcor (Fig. 1b). If the size of the region
with new short order is smaller than the correlation
length dcor in the initial disordered phase, then, due to
the energy dispersion of individual clusters, the chemi-
cal potential of the initial modification can be reduced
because of the appearance of clusters of a new Phase
(Fig. 2a), and a cluster mixture with different short
orders becomes the most favorable state in a certain
transition region at any temperature (Fig. 2). In fact,
this corresponds to the effective negative surface
energy of the new phase, although the surface energy of
an individual cluster, clearly, remains positive. For the
existing empirical models, this situation means that the
mixing energy in the Aptecar and Rapoport models [7,
8] or the frustration energy in the Tanaka model [9] is
negative.

In this work, we do not consider the intrinsic trans-
formation mechanism, which, evidently, is associated
with the appearance of soft modes in the initial disor-
dered phase. But it should be emphasized that the min-
imal size of the region with new short order is precisely
JETP LETTERS      Vol. 78      No. 9      2003
that which corresponds to the characteristic localiza-
tion radius of soft modes.

Therefore, the nanometer-scale dispersion of char-
acteristics and the ratio between rcl and dcor are crucial
in determining the possible scenario for phase transfor-
mation. If rcl < dcor, the phase transformation is smeared
at any temperature. Conversely, the condition rcl > dcor
corresponds to a change from the smeared transforma-
tion scenario to the first-order phase transition, for
which the transition curve will terminate at the critical
point, in accordance with [7–9].

3. LIQUIDS

All the above refers in full measure to liquids as
ergodic systems in which, by definition, various cluster
states are accessible theoretically. In this case, the min-
imal cluster size rcl in the region of structural transfor-
mation can be estimated from the comparison of a

Fig. 1. (a) Model two-dimensional atomic amorphous net-
work, where regions 1 and 2 illustrate the case of small clus-
ters (rcl < dcor) with a wide scatter of cluster characteristics,
and region 3 corresponds to a large cluster (rcl > dcor). (b)
As the ratio between rcl and dcor changes, the distribution of
cluster Gibbs energies (per atom) changes from broad in the
case of rcl < dcor to narrow, typical of crystals, in the case of
rcl > dcor.



 

544

        

BRAZHKIN, LYAPIN

                                                                   
decrease in chemical potential as a result of cluster
energy spectrum rearrangement with an increase by vir-
tue of the local surface energy at the boundary of the
regions with different short orders:

(1)

where ∆G(rcl) is the Gibbs energy distribution width for
the clusters of a given size (Fig. 1b), σ(rcl) is the surface
energy of a typical cluster, a is the interatomic distance,
and C1 is a dimensionless numerical constant. The
quantity σ can be estimated as [14]

(2)

rcl
3 ∆G rcl( )

a3
------------------------ C1σ rcl( )rcl

2 ,=

σ C2
ε
a2
-----∆V

V
-------,=

Fig. 2. (a) Diagram of Gibbs free energies in the region of
transition from phase I to phase II for clusters in two amor-
phous phases with a broad distribution (rcl < dcor). On the
whole, phase I is more stable, but its clusters with high-
lying levels transform into the low-lying clusters of phase II
(dashed lines correspond to the unfilled states), with the dis-
tribution center-of-gravity in the mixture of phases Gs lying
lower than the characteristic Gibbs free energies of both
phases I and II (G1 and G2). (b) The pressure dependence of
Gibbs free energy of the system in the course of transforma-
tion (solid line) is smoothed and the corresponding curve
lies lower than for the pure phases (dashed lines).
where C2 is the numerical constant, ε is the binding
energy per atom, and ∆V/V is the relative jump in vol-
ume upon changing short-range order. The quantity ∆G
is associated with the fluctuation of angles and bond
lengths in cluster [15]:

(3)

where C3 is the numerical constant and δϕ/ϕ is the char-
acteristic mean fluctuation of geometric parameters in
the amorphous network. From Eqs. (1)–(3) one has

(4)

where C4 is the combination of numerical constants. At
the same time, the correlation length dcor at which the
structural order is lost due to static fluctuations can be
estimated as

(5)

where C5 is the numerical constant (on the order of
unity) determined by the network geometry. From
Eqs. (4) and (5), one gets, instead of rcl > dcor, the fol-
lowing condition for the first-order phase transition

(6)

With such a simplified approach, phase transition in
liquid is of the first kind if the relative jump in volume
upon the transformation exceeds a certain critical value.
In reality, the volume jumps achieve 10–60% in liquids
where the first-order transitions are observed (P, super-
cooled H2O, Si, Ge, and, possibly, C) [1]. Volume
jumps as large as these are associated with a radical
change in the structure of short-range order. Melts with
crystal-like structure in the Patashinskii model [11] are
characterized by the narrow ∆G distribution and,
respectively, large C4 constant. As a result, these melts
can undergo first-order phase transitions with a small
jump in volume. Such a situation occurs, for example,
in liquid crystals and ionic melts of organic salts [1, 14].

4. AMORPHOUS SUBSTANCES

In amorphous substances, the transformations dur-
ing experimental times occur far from the conditions of
equilibrium curve. The new amorphous phase is formed
through the appearance of its nuclei, but without their
noticeable growth, so that the transition kinetics is
determined by the nucleation scenario. The dispersion
of structural and energy characteristics of clusters in the
amorphous phase should cause a broad distribution of
nucleation energy, but only if the size rmin of critical
nucleus is smaller than the region of structural correla-
tions in the amorphous substance [16], i.e., if rmin < dcor
(Fig. 1). At rmin > dcor, the amorphous phase can be con-
sidered as a homogeneous continuous medium, and the

∆G C3ε
δϕ
ϕ

------,=

rcl C4
a ∆V /V( )

δϕ/ϕ
----------------------,=

dcor

C5a
δϕ/ϕ
------------,=

∆V /V C5/C4.≥
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nucleation of the new phase proceeds homogeneously
and simultaneously at the same external parameters. In
this case, the transformation kinetics between amor-
phous modifications will be the same as in the case of
conditional first-order phase transitions. In other words,
when analyzing the transformations in amorphous
state, one should consider the smallest nuclei of the
new phase in a deep metastability region of the primary
modification, rather than the smallest clusters of new
phase in the stability region of the initial phase. There-
fore, for the transformations far from equilibrium in
amorphous materials, the transition scenario is gov-
erned by the ratio between rmin and dcor.

The size of critical nucleus can be estimated analo-
gously to Eq. (1):

(7)

where the transformation occurs far from equilibrium,
so that the distribution width ∆G is replaced by the
supersaturation of metastable phase with respect to the
Gibbs energy, ∆P∆V, where ∆P is the difference
between the transformation pressure and the pressure
of conditional equilibrium transition, and it is also
taken into account that a3 ~ V. Then,

(8)

The surface tension at the interface can be estimated as
σ ~ Beffa(∆V/V), where the effective modulus Beff is a
combination of the bulk and shear moduli [14]. By
inserting this estimate into Eq. (8), one obtains

(9)

The structural correlation length in amorphous state,
as a rule, varies only slightly from substance to sub-
stance and extends over five to eight coordination
spheres, i.e., equals 15–25 Å [15]. At the same time, the
critical size of the nucleus of new amorphous modifica-
tion can strongly differ for different substances. The
estimates of the minimal nucleus size for the transfor-
mations in the amorphous states of three most typical
substances are given in the table. The estimates of rmin

for a-SiO2 are in good agreement with the results of
molecular dynamics simulations [19, 20] and are evi-
dence of a wide transition. For amorphous ice, the size
of critical nucleus is comparable with the region of
structural correlation in the initial amorphous phase, as
a result of which the lda–hda transformation is sharp
and corresponds to the first-order phase transition. The
case of GeO2 is intermediate. A comparison of the data
for a-SiO2, a-GeO2, and a-H2O (Fig. 3) shows that there
is inverse correlation between the size of critical
nucleus (table) and the relative transition width.

∆p∆Vrmin
3 /V C6σrmin

2 ,=

rmin

C6σ
∆P ∆V( )/V
---------------------------.=

rmin aBeff/∆P.∼
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5. ROLE OF INTERPARTICLE 
INTERACTION

For the model pair potential of collapsing hard
spheres [10] (Fig. 4), the existence of critical parame-
ters for the first-order phase transition can be under-
stood from simple considerations. The potential energy
of the system is the sum over all particles E(V) =

(r)g(r)r2dr, where U(r) is the effective pair potential

and g(r) is the structural correlation function depending
implicitly on volume. In the ordered system of parti-
cles, the volume dependences of energy and potential
are analogous; i.e., the corresponding curve for energy
has an anomalous shoulder, indicating that first-order
phase transition with a jump in volume can occur in the
system. In the disordered system, the feature in the
energy curve is retained only if the width of anomalous
region in the potential exceeds the smearing of correla-
tion function in the disordered system (Figs. 4a–4c),
otherwise (Figs. 4d–4f) the first-order phase transition
does not occur. Note that there is a pictorial interrela-
tion between the condition rcl > dcor and the relation

U∫

Estimates of the radii of minimal-sized nuclei for some transfor-
mations between amorphous phases (Eq. (9)) using experimen-
tal data for ∆P, and estimates of Beff using formula Beff = (B +
G)/2, where B is the bulk modulus and G is the shear modulus

Substance ∆P (Gpa) B (Gpa) G (Gpa) rmin (Å)

H2O [1, 3] 0.5–1 8–12 4–6 20–40

GeO2 [17] ~10 40–150 20–50 10–20

SiO2 [1, 18] ~20 50–150 30–60 5–10

Fig. 3. Dependences of the relative volume on the dimen-
sionless effective pressure P* for the direct and reverse
transformations between the amorphous phases of (solid
line) H2O [21], (thin line) GeO2 [17], and (dot-and-dash
line) SiO2 [18, 19]. Curves taken from [19] and [21] are
smoothed off. P* was recalculated from usual pressure by
the renormalization to the current bulk modulus B(P) of the
system.
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between the smearing of correlation function and the
step magnitude in the interparticle potential. The step
width in g(r) is inversely proportional to the correlation
length dcor, while a decrease in the anomaly magnitude
in the pair potential corresponds to a decrease in the
surface tension and, hence, to lower rcl values. The
presence of critical values for the features in the inter-
particle potential, which is necessary for a sharp transi-
tion, radically differentiates the disordered systems
from crystals, where even small features in the potential
can lead to a first-order phase transition.

The above analysis clarifies the results of the com-
puter simulation carried out in [12]. The sharp phase
transition in a disordered system with strong interparti-
cle attraction [12] corresponds to a large critical
nucleus of new phase. Conversely, a weak attractive
potential [12] corresponds to the low effective surface
energy and small (one or two coordination spheres)
critical nucleus.

Fig. 4. (a) Interparticle potential, (b) pair correlation func-
tion, and (c) volume dependence of energy for the system of
collapsing hard spheres with a broad step in the potential;
first-order phase transition takes place. The solid and
dashed lines in (b) correspond, respectively, to the states
before and after the phase transition. Panels (d), (e), and (f)
illustrate analogous dependences for the system of collaps-
ing hard spheres with a narrow step in the potential, for
which the transformation is smeared. The correlation func-
tion (e) corresponds to the state with intermediate ordering.
The reason why the transformation scenarios in
a-SiO2 and a-GeO2, on the one hand, and in a-H2O, on
the other, are different is due to the fact that the inter-
particle interactions in these systems have different
character. In a-SiO2 and a-GeO2 glasses, the main
structure-forming elements (Si(Ge)O4 tetrahedra) are
bonded to each other via weaker bending covalent
forces and weak van der Waals forces, whereas amor-
phous ice can be considered as an oxygen-based atomic
network without a hierarchy of strong and weak inter-
actions [1, 3, 20]. The differences in the character of
interaction and in the degree of connectivity in amor-
phous networks of a-SiO2 and a-H2O can be analyzed
in terms of rigidity percolation [20, 22]. The effective
coordination number for the covalent bonds in a-SiO2
is smaller than the rigidity percolation threshold Z =
2.4, whereas, for the structure-forming oxygen network
in a-H2O, Z = 4 [3], evidencing the topological rigidity
of amorphous ice.

Based on the above analysis, one can predict the
character of hypothetical phase transitions in various
covalent amorphous substances. For example, the low-
temperature transformations in chalcogenide glasses,
such as Se and S (Z = 2), are expected to be strongly
smeared in pressure, whereas the transitions in tetrahe-
dral amorphous semiconductors, such as a-Si and A-Ge
(Z = 4), should be sharp at temperatures below the crys-
tallization temperature of amorphous phases. Recent
results of computer simulation of a-Si, a-Ge, and
a-GeSe2 [23, 24] indirectly confirm this prediction.

We are grateful to S.M. Stishov, V.N. Ryzhov,
S.V. Popova, E.G. Ponyatovskiœ, P. Keliris, and
Y. Katayama for discussion of the problem. This work
was supported by the Russian Foundation for Basic
Research (project nos. 01-02-16557 and 02-02-16298),
INTAS (grant no. 00-807), and JSPS.
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It is shown that a minimum in the electron density of states near the Fermi surface of one of the electrodes shifts
the peaks in inelastic tunneling spectrum toward higher voltages. The shift depends on the correlation parameter
and increases with temperature. It is argued that the observation of the shift in the local singularities of inelastic
tunneling, in conjunction with the presence of large-scale zero-point anomaly in the differential conductivity,
can serve as a firm evidence of the presence of the corresponding singularity in the electron density of metal
oxides and magnetoresistive materials. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.40.Gk
The possible manifestation of zero-point root singu-
larity in the differential conductivity σ(V) of tunneling
contacts metal–disordered material was predicted by
Altshuler and Aronov in [1]. The detailed experimental
studies carried out for amorphous Ge1 – xAux alloys [2],
bismuth films [3], and disordered aluminum films [4]
provide strong evidence for the fact that a minimum in
the electron density of states of a disordered electrode
situated in close vicinity of the metal–insulator junction
manifests itself as a zero-point root anomaly in the dif-
ferential tunneling conductivity

(1)

Because of this, when the authors of [5] found that the
tunneling conductivity of metal oxides, which had lost
their superconducting properties for technological rea-
sons, increased proportionally to the root of V, they
invoked electron–electron interaction to explain this
fact.

However, the situation for metal oxides is compli-
cated by the fact that the root singularity is not the only
zero-point anomaly in the tunneling conductivity. The
linear dependence of conductivity σ(V) on the V mag-
nitude is observed in experiments with metal oxides
much more frequently (see, e.g., [6, 7] and references
therein):

(2)

In [8], it was suggested that both these effects have the
common nature. The authors of that work are of the
opinion that the power of bias applied to the junction
can take any value in the interval from 0.5 to 1.0,
depending on the degree of disorder. The same
approach to the interpretation of such phenomena in
tunneling conductivity of magnetoresistive materials
was used in [9].

σ V( ) σ0 1 α V+( ).=

σ V( ) σ0 1 β V+( ).=
0021-3640/03/7809- $24.00 © 20548
As a result of this, it should be noted that the pres-
ence of a zero-point singularity in the experimental
curve by no means gives evidence for the presence of
the corresponding anomaly in the density of states N(E)
of the substance of interest. Contrary to what is stated
in [9], the differential conductivity is not a direct mea-
sure of the density of states in electrodes, because other
factors can also have an appreciable effect on it. At
present, there are a number of mechanisms that can
explain both root and linear dependences for σ(V)
under rather trustworthy assumptions [6, 7].

At first glance, the nature of zero-point anomalies in
the tunneling characteristics of metal oxides and mag-
netoresistive materials cannot be understood without
invoking the results of additional nontunneling experi-
ments. It is hoped that the effect predicted in this work
can give an unambiguous answer to the question of
interest within the framework of only the tunneling
experiment.

We now show that the minimum centered at the
Fermi level in the density of states of one of the elec-
trodes shifts the positions of local singularities caused
by the inelastic interaction of tunneling electrons with
local impurities in the barrier. According to [10], the
contribution to the tunneling current from the inelastic
tunneling channel is

(3)

where V0 is the bias on the tunnel junction, "ω = eV0 is
the corresponding excitation energy in the barrier, and
f(E, T) is the Fermi–Dirac distribution function (energy
E in Eq. (3) and in all subsequent formulas is measured

Ji V( ) N1 E( )N2 E e V V0–( )+( ) f E( )
∞

∞

∫∝

× 1 f E e V V0–( )+( )–[ ] dE,
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from the Fermi level of the initial electrode). In com-
mon materials, the density of states N1(E) and N2(E) are
smooth functions that can be taken to be constant,

(4)

where C is a constant allowing for various E- and T-
independent tunneling parameters. Expression (4) can
readily be integrated and, after double differentiation, it
gives a sharp peak centered at the bias voltage V = V0

for the second derivative d2Ii/dV2 [10].
If the density of states of one of the electrodes is

modified by the electron–electron interaction, then,
according to [1], the density of states in the integrand in
Eq. (4) is a function of E:

(5)

In this case, the analytic expression for d2Ii/dV2 can
hardly be obtained at T ≠ 0. Nevertheless, it can be cal-
culated numerically:

(6)

At T = 0, the inelastic channel opens only at voltages
V higher than V0. Because all electrons in a layer of
thickness e(V – V0) can be involved in the inelastic tun-
neling, the inelastic current is

(7)

where C1 = CN(0). Thus, the second derivative of
inelastic current at T = 0 and V > V0 is equal to

(8)

The results of our calculations with ν = 1/2, ∆ =
0.01 meV, and V0 = 100 meV are presented in Fig. 1. At
zero temperature and biases lower than V0, the inelastic
current is zero; at V = V0 it undergoes infinite jump; and
at V > V0 it decreases following the law d2Ii/dV2 =

C1e3/2/2  (curve 1 in Fig. 1). Curves 2, 3,

Ji V( )

=  C N E( ) f E T,( ) 1 f E e V V0– T,( )+( )–[ ] E,d

∞

∞

∫

N E( ) N 0( ) 1 E
∆
--- 

  ν
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dV2
--------- = C N E( ) f E T,( )

∂2
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and 4 were calculated by formula (6) for temperatures
of 20, 40, and 77 K, respectively. The main feature dis-
tinguishing the behavior of these curves from the
inelastic curves studied by Lambe and Jaklevic [10] is
that, in our case, the position of the maximum in the
curve for the V dependence of the second derivative of
inelastic current with respect to voltage d2Ii/dV2 coin-
cides with the threshold voltage only at T = 0. Whereas
in [10] the temperature only smeared out the peak while
the peak position did not change, in our case the peak
not only broadens and decreases in amplitude but also
shifts its maximum Vmax to higher voltages. At a high
(e.g., nitrogen) temperature, the peak shift Vsh = Vmax –
V0 can be large enough. For instance, the maximal shift
of the curves calculated for ∆ = 10 meV, is Vsh = 8 meV
(curve 4 in Fig. 1). Note also that, as expected, the
behavior of all curves at high voltages eV @ kT coin-
cides with the behavior of the zero-temperature curve.

For ν = 1, the zero-temperature behavior of the V
dependence of d2Ii/dV2 is different from the case ν =
1/2 in that, at V > V0, the derivative is a constant value
d2Ii/dV2 = C1e2/∆ (horizontal line 1 in Fig. 2). The
curves calculated for ∆ = 0.02 meV and temperatures of
30, 50, and 77 K (curves 2, 3, 4 in Fig. 2) show that the
shifts Vsh in this case are larger than in Fig. 1.

It is well known that the gap ∆S in the single-particle
density of states of superconducting electrodes shifts
the spectroscopic features to higher voltages by a value

equal to half of the bandgap:  = ∆S/2e. Because of
this, the assumption that a minimum in the density of
states can also have a sizable effect on the positions of
singularities in the inelastic tunneling spectra seems to
be quite natural. We emphasize, however, that, contrary
to the superconducting electrodes, for which the shift

Vsh
S

Fig. 1. Second derivatives d2Ii/dV2 of the inelastic tunneling
current in the presence of root singularity ν = 1/2 in the elec-
tron density of states of one of the electrodes. The parameter
∆ = 10 meV and the threshold voltage V0 = 100 meV.
Curves were calculated for temperatures indicated in the
figure.
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 can also be observed at zero temperatures, the
effect predicted in this work is observed only at non-
zero temperatures. There must be a certain relationship
between the correlation parameter ∆, which can be esti-
mated from the overall shape of the experimental σ(V)
curve, the temperature T, and the shift Vsh. The observa-
tion of this relation in the experiment would provide
strong evidence that the presence of zero-point anoma-
lies in the differential conductivity of tunneling con-
tacts based on metal oxides and magnetoresistive mate-

Vsh
S

Fig. 2. Second derivatives d2Ii/dV2 of the inelastic tunneling
current in the presence of linear singularity ν = 1 in the elec-
tron density of states of one of the electrodes. The parameter
∆ = 20 meV and the threshold voltage V0 = 100 meV.
rials is, indeed, indicative of the presence of corre-
sponding singularity in the electron density of states.

I am grateful to V.M. Svistunov and M.A. Belo-
golovskiœ for useful remarks.
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Long-Range Magnetic Order in Quasi-One-Dimensional 
NaCrSi2O6 and NaCrGe2O6 Metal Oxides
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Formation of a long-range magnetic order is observed at low temperatures in NaCrSi2O6 and NaCrGe2O6 quasi-
one-dimensional metal oxide compounds with a pyroxene structure. The first of these compounds, NaCrSi2O6,
is an antiferromagnet with the Néel temperature TN = 3 K, while the second, NaCrGe2O6, is a ferromagnet with
the Curie temperature TC = 6 K. From the measurements of magnetization and specific heat of these com-
pounds, the main parameters of their magnetic subsystems are determined. In NaCrSi2O6, a spin-flip transition
is observed. A change in the type of magnetic order that accompanies the replacement of Si by Ge can be attrib-
uted to a change in the parameters of the competing direct antiferromagnetic Cr–Cr and indirect ferromagnetic
Cr–O–Cr interactions in isolated chains of CrO6 octahedra. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.10.Pq; 75.50.Ee; 75.50.Cc; 65.40.Ba; 75.60.Ej
Quasi-one-dimensional transition-metal-based
metal oxides are of interest, because these materials can
at low temperatures exhibit exotic ground states whose
properties are determined by the magnetic interaction
in a single preferred direction. In such systems, a long-
range magnetic order is absent even at absolute zero,
while a decrease in temperature is only accompanied by
the enhancement of correlations in the arrangement of
magnetic moments in a chain.

Magnetic properties of spin chains with integer and
half-integer spins are basically different. The spectrum
of magnetic excitations of a half-integer spin chain is
gapless [1], while the spectrum of magnetic excitations
of an integer spin chain contains such a gap [2]. Corre-
spondingly, the magnetic susceptibility of a half-integer
spin chain is finite at low temperatures while the mag-
netic susceptibility of an integer spin chain is zero.

A quasi-one-dimensional system is capable of form-
ing a long-range magnetic order if the interchain inter-
actions are taken into account. The type of magnetic
order, i.e., ferromagnetic or antiferromagnetic, is deter-
mined by the signs of all magnetic interactions. As a
rule, quasi-one-dimensional metal oxide magnets
exhibit an antiferromagnetic ground state at low tem-
peratures [3, 4].

In LiVGe2O6, which is a quasi-one-dimensional
metal oxide with a pyroxene structure, the antiferro-
magnetic state is achieved at TN = 22 K [5–9]. In tita-
nium-based pyroxenes, LiTiSi2O6 and NaTiSi2O6, a
singlet ground state is realized at TS = 230 and 210 K,
respectively, owing to the dimerization of the chains of
TiO6 octahedra [10]. The magnetic subsystems of all
0021-3640/03/7809- $24.00 © 20551
V3+- and Ti3+-based compounds studied exhibit pro-
nounced quasi-one-dimensionality. 

In this paper, we report the synthesis of NaCrSi2O6
and NaCrGe2O6 metal oxides with pyroxene structure
and their study at low temperatures, which revealed dif-
ferent types of long-range magnetic order in these
materials. Moreover, the magnetic quasi-one-dimen-
sionality of these compounds was found to be strongly
suppressed.

The aforementioned compounds were prepared by a
solid-state synthesis from stiochiometric mixtures of
Na2CO3, Cr2O3, and SiO2 (or GeO2) at a temperature of
~900°C for 24 h, and their single-phase composition
was verified by X-ray studies. NaCrSi2O6 and
NaCrGe2O6 pyroxenes crystallize in the P21/c mono-
clinic structure. At room temperature, the lattice param-
eters of NaCrSi2O6 are a = 0.951(7) nm, b = 0.867(6) nm,
c = 0.524(0) nm, and β = 107.3(3)°; the lattice parame-
ters of NaCrGe2O6 are a = 0.988(2) nm, b = 0.882(4) nm,
c = 0.544(1) nm, and β = 107.5(9)°. The pyroxene
structure contains helical chains of edge-shared CrO6
octahedra, with the common edge passing through the
basis and apical O2– oxygen ions. In the pyroxene crys-
tal structure, chromium ions are trivalent and their spin
moment is S = 3/2. The magnetization of powder sam-
ples was measured by a SQUID magnetometer, and the
specific heat, by quasi-adiabatic Quantum Design
(in the range 0.4–25 K), and Termis (6–250 K) calo-
rimeters.

In NaCrSi2O6, the signal exhibits a peak at TM =
3.6 K (Fig. 1a), whose behavior resembles the behavior
of magnetic susceptibility of a three-dimensional anti-
ferromagnet. However, this peak corresponds only to
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establishing the short-range magnetic order regime,
while the three-dimensional ordering occurs at a lower
temperature, TN = 3 K, where a peak is observed in the
temperature curve for d(M/H)/dT. In the curve obtained
for NaCrGe2O6, one can see a sharp increase in magne-
tization at TC = 6K, which is typical of ferromagnets
(Fig. 1b).

From the analysis of high-temperature curves, it fol-
lows that, for NaCrSi2O6, the Weiss constant is Θ =
−0.3 K, and, for NaCrGe2O6, Θ = 13 K. The effective
magnetic moment of both compounds is µeff = 3.7µB,
which is close to the purely spin moment of trivalent
chromium Cr3+ (S = 3/2).

The temperature TM corresponding to the maximum
of magnetic susceptibility for a chain with S = 3/2 is
related to the intrachain exchange-interaction parame-
ter J||, by the formula TM = 0.211J|| [11]. For NaCrSi2O6,
this yields J|| ≈ 1 K. To determine the interchain
exchange-interaction parameter J⊥ , the following rela-
tion is used [12]:

where n = 4 is the coordination number for the inter-
chain interaction. Calculations show that the inter-
chain-interaction parameter J⊥  ≈ 1 K in NaCrSi2O6 is
virtually equal to the exchange-interaction parameter in
a chain. From the data available, it is impossible to
determine the sign of exchange interaction between
chains. However, by analogy with LiVGe2O6, which is
isostructural with NaCrSi2O6 [6], one can assume that
this exchange has a ferromagnetic character. From the

J ⊥ T N/1.28n 5.8J ||/T N( )ln[ ] 1/2,=

Fig. 1. Temperature dependences of reduced magnetization
for (a) NaCrSi2O6 in a magnetic field of 1000 Oe and
(b) NaCrGe2O6 in a magnetic field of 50 Oe.
comparison between the Weiss Θ and Néel TN temper-
atures in NaCrSi2O6, it follows that the intrachain and
interchain exchange in this compound are close in mag-
nitude and opposite in sign; i.e., the intrachain
exchange parameters are antiferromagnetic. In
NaCrGe2O6, the exchange interaction in a chain
changes sign as compared to other pyroxenes, i.e.,
becomes ferromagnetic.

The field dependences of the magnetizations of
NaCrSi2O6 and NaCrGe2O6 are shown in Fig. 2. They
clearly demonstrate the distinction in the behavior of
the antiferromagnetically and ferromagnetically
ordered pyroxenes. In the antiferromagnetic
NaCrSi2O6, a spin-flip transition is observed at low
temperatures, while NaCrGe2O6 exhibits a behavior
typical of ferromagnets. The saturation magnetizations
of NaCrSi2O6 and NaCrGe2O6 virtually coincide and
correspond to the estimate for a purely spin effective
magnetic moment.

The temperature dependences of the specific heat of
NaCrSi2O6 and NaCrGe2O6 are shown in Fig. 3. For
these compounds, the specific-heat peaks occur at the
antiferromagnetic- and ferromagnetic-transition tem-
peratures, respectively. To separate the magnetic contri-

Fig. 2. Field dependences of magnetization for NaCrSi2O6
and NaCrGe2O6.

)
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bution to specific heat, we used the temperature depen-
dences of specific heat of nonmagnetic isostructural
scandium-based pyroxenes NaScSi2O6 and
NaScGe2O6. The procedure of separating the contribu-
tions of the elastic and magnetic subsystems to the spe-
cific heat of a solid with the use of data obtained for an
isostructural nonmagnetic compound was described in
[13]. It includes scaling of the temperature depen-
dences obtained for the entropy of an isostructural com-
pound at T @ TN, C, where the magnetic entropy
Rln(2S + 1) is completely separated. The magnetic
entropy calculated in this manner for NaCrSi2O6 and
NaCrGe2O6 is shown in Fig. 4. One can see that, for the
most part, it is separated near the phase-transition tem-
peratures. In this respect, pyroxenes noticeably differ
from the isostructural vanadium-based compounds,
where the entropy is distributed over a much broader
temperature interval.

The antiferromagnetic exchange in the chains of
edge-shared CrO6 octahedra occurs owing to the direct
overlap of chromium t2g orbitals. This exchange rapidly
weakens as the Cr–Cr distance increases. At the same
time, a Cr–O–Cr ferromagnetic superexchange is likely
to be also realized in the chains owing to a weak overlap
between the chromium t2g orbitals and oxygen p orbit-
als. If the interchain interaction is ferromagnetic, the
competition between the direct exchange and the super-
exchange determines the type of three-dimensional
magnetic ordering. The replacement of Si4+ (atomic

Fig. 3. Temperature dependences of specific heat for
NaCrSi2O6 and NaCrGe2O6.

TC
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radius in tetrahedral environment is 40 nm) by Ge4+

(atomic radius in tetrahedral environment is 53 nm)
leads to a decrease in the direct overlap between the
chromium t2g orbitals as a result of the increase in the
lattice parameters of NaCrGe2O6, as compared to
NaCrSi2O6. In this situation, the indirect exchange pre-
dominates and, in NaCrGe2O6, unlike all other
pyroxenes studied [5–10], a ferromagnetic ground state
is realized.

Thus, magnetic and thermal studies of NaCrSi2O6
and NaCrGe2O6 point to such a strong decrease in the
parameters of magnetic interaction in the chains that
the interchain exchange starts to play the decisive role
in the formation of a long-range magnetic order. This
kind of relationship between the intrachain and inter-
chain exchange-interaction parameters in the
pyroxenes under study, in fact, places them beyond the
class of low-dimensional compounds, which is another
unexpected result of this study.

We are grateful to E.A. Popova, R.Z. Levitin, and
D.I. Khomskiœ for useful discussions. The work of the
Russian group was supported by the Russian Founda-
tion for Basic Research (project no. 03-02-16108).
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The superconducting transition temperature Tc of a “clean ferromagnet–dirty superconductor” bilayer is calcu-
lated using boundary conditions derived for the quasiclassical Green’s function. This combination corresponds
to the majority of experiments, in which Fe, Ni, Co, or Gd are used as a material for the ferromagnetic layer. It
is shown that Tc oscillates upon changing thickness of the ferromagnetic layer, in accordance with the experi-
mental observations. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.78.Fk; 74.50.+r; 74.62.-c
The superconductor–ferromagnet contacts and lay-
ered systems are of interest both from the viewpoint of
implementing inhomogeneous pairing of the Larkin–
Ovchinnikov–Fulde–Ferrel (LOFF) type [1, 2] and as a
main combination of materials in constructing π junc-
tions [3] and superconducting logical networks on their
base [4, 5]. The inhomogeneous pairing in a ferromag-
net manifests itself by the oscillations of superconduct-
ing transition temperature [6–9], tunneling density of
states [10], and Josephson current [11–13] in the ferro-
magnet–superconductor (F/S) bi- and multilayers.
Although the LOFF scenario for the superconductor
contacts with weak ferromagnets (ferromagnetic alloys
with a low (100 K and lower) magnetic ordering tem-
perature [5, 10–13]) can be considered proved, the
question remains open for the contacts of superconduc-
tors and strong ferromagnets (Fe, Co, Ni, Gd). The
presently available calculations of the tunneling density
of states [14, 15] and superconducting transition tem-
perature for the F/S bilayers [15] do not predict oscilla-
tions of the above-mentioned quantities as functions of
ferromagnetic layer thickness in the case of a clean fer-
romagnet. By the clean ferromagnet we mean a mate-
rial in which the oscillation wavelength of the pair wave
function is small compared to the bulk mean free path
of conduction electrons. Therefore, an important ques-
tion arises of how the information about the character
of pair correlations can be gained for a strong ferromag-
net if the LOFF-type correlations do not show them-
selves in the oscillatory phenomena, while the Joseph-
son π junction can hardly be obtained because one is
forced to deal with the thicknesses of two to five mono-
layers of ferromagnetic metal. In this work, we will
show that the superconducting transition temperature in
a “clean ferromagnet–superconductor” bilayer system
0021-3640/03/7809- $24.00 © 20555
oscillates with changing the thickness of the ferromag-
netic layer.

1. Boundary conditions for a “clean ferromag-
net–dirty superconductor” bilayer. In our preceding
work [16], we have derived quasiclassical equations of
superconductivity for metals with the spin-split con-
duction band:

(1)

Here, εn = (2n + 1)πT is the Matsubara frequency; α =
(↓ , ↑ ) is the spin index;  are the Pauli matrices; and

the quasiclassical Green’s functions (GFs)  and  of,
respectively, superconductor (S) and ferromagnet (F)
have the following structure:

(2)

The index j = 1, 2 denotes metals situated to the left and
right of the F/S interface; the latter coincides with the
x = 0 plane. We will assume that the ferromagnetic film
of thickness dF is on the left and the superconducting
film of thickness dS > lS (lS is the mean free path in the

superconductor) is on the right.  and  are the
matrices of order parameter and of the conduction elec-
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tron momentum component perpendicular to the con-
tact plane,

and  is the impurity self-energy part [16, 17]

Here, p|| is the projection of electron momentum onto
the contact plane; pS is the Fermi momentum in super-
conductor; u is the interaction potential of electron and
impurity atom; c is the impurity concentration; τS is the
mean free time of electron in superconductor; and the
angular brackets stand for the integration over the entire

solid angle: 〈…〉  = /4π.

In the case of specular electron reflection, the
boundary conditions (BCs) to Eqs. (1) at the F/S inter-
face have the following form [16]:

(3)

The matrices  are

(4)

In Eqs. (3) and (4),  = 1/2[  ± ], where

the matrices  and  are symmetric (s) and anti-
symmetric (a) with respect to the variable pxj:

(5)

where  and  are the phases of scattering ampli-
tudes at the F/S interface.

The explicit form of matrices  is given in [16]. To
obtain BCs for the quasiclassical GFs at the interface
between a strong ferromagnet and dirty superconduc-
tor, it is necessary to obtain solutions to Eqs. (1) for
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+
+ + + b̂1 b̂2.–=

b̂i

b̂1 ϒ̂̃s

+
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ĝ̃s

+
ϒ̂̃s

–
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ĝ̃s a( ) ϒ̂̃s a( )
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each of the metals. Near Tc, the matrices  in the lin-
ear approximation in order parameter can be written as

then Eq. (1) for a superconductor homogeneous in the
contact plane takes the following form:

(6)

Here,  = | |τS is the electron mean free path in the
direction perpendicular to the contact plane. Passing

over to symmetric  and antisymmetric  GFs by
formulas (5), one obtains the following equations for

 and :

(7)

The equations for the ferromagnetic quasiclassical GFs

 and  are obtained in a similar manner:

(8)

Here, lxα = | |  and  is the electron mean free
time in the corresponding conduction spin subband of
the ferromagnet. In Eq. (8) and in what follows, the
physical quantities with index α = (↑ , ↓ ) refer to the
ferromagnet. The angular integration in Eq. (8) should
be made taking into account the specular electron
reflection from the interface:
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In Eq. (9), p↑ and p↓ are the Fermi momenta in the spin
subbands of the ferromagnet.

The solution to Eq. (6) for a semi-infinite sample

with boundary condition (x  ∞) = 0 is

(10)

In Eq. (10), the integrand changes at a distance on the

order of  = (DS/2πT)1/2 @ lS, where DS = v SlS/3 is the
electron diffusivity in the superconductor. By expand-
ing and factoring it outside the integral sign at the point
ξ = x, one finds

(11)

For definiteness, we assume below that p↑ > p↓ and seek
for the ferromagnet solution to Eq. (8) in the form

(12)

where

(13)

In Eq. (13), the quantities η1 and η2 are independent of
the angles θ↑ and θ↓. By substituting solution (12) into
Eq. (8), one obtains the integral equation for the con-
stants η1 and η2:

For a ferromagnet with large splitting of spin subbands,
the solution to this equation, accurate to the terms on
the order of (p↑l↑)–1 ! 1, has the form

(14)
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and construct the  combinations of (x) (11) and

(x) (15) at x = 0. By substituting them into the BC

system (3), one finds (0) and (0):

(16)

Here, Dα = 1 – Rα is the quantum-mechanical transmis-
sion coefficient through the F/S interface for an electron
with spin projection α. When solving the system of BC
Eqs. (3), the spin dependence of the phases of scattering
amplitudes was ignored.

It was pointed out in [18] that, at distances on the
order of the momentum mean free path lS from the

interface, the terms proportional to εn and  can be
ignored, and the quantity

(17)

is constant. The  constant can be found, as in [18],

by substituting the quantity [– sgn(εn) (d/dx)〈 〉 ],
corresponding to a solution to the Usadel equations

[19] in the bulk of a dirty superconductor, for the GF 
in Eq. (17). The result is

(18)

Now, by evaluating the  constant once more using

the GF (0) from Eq. (16), one obtains the BC for the

f̂ s
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f̂ s
F

f̂ a
S

f̂ a
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GF (x) = 〈 〉  at the interface of a strong ferromag-
net and a dirty superconductor:

(19)

The upper limit in the integral in Eq. (19) depends on
the ratio between the Fermi momenta of the contacting
metals and is determined from the specular reflection
condition (9). For instance, ϕ = π/2 at pS < p↓. The
quantity B in Eq. (16) is a function of the angles θ↓ and
θS related to each other by formulas (9). The obtained
boundary condition is valid for the arbitrary interface
transmittance.

2. Evaluation of the critical temperature for a F/S
bilayer. To evaluate Tc of a bilayer, one has to solve the
Usadel equation in the vicinity of superconducting crit-
ical temperature,

(20)

with BCs (19). The problem can easily be solved using
a single-mode approximation suggested in [20]:

(21)

where κS is determined from BCs (19):

(22)

F̂s
S

f̂ s
S

lS d
dx
------ F̂s

S
x( ) γF̂s

S
x( ), γ1

3
2
--- θS 2θS( )B,sind

0

ϕ

∫= =

γ
γ1

1 γ2–
-------------, γ2

3
2
--- θS 2θS( ) θS

B.cossind

0

ϕ

∫= =

D
d2

dx2
-------- F̂s

S
2 εn F̂s

S
– 2i∆̂=

F̂s
S 2i∆̂

εn D κS( )2
+

-------------------------------, ∆̂– ∆̂0 κS x dS–( )[ ] ,cos= =

lSκS κSdS( )tan γ.=

Fig. 1. Superconducting transition temperature of the S/F
bilayer vs. the thickness of ferromagnetic layer with δ =
0.65. For the values of other physical parameters, see text.

dS/ξS
By substituting Eq. (21) into the self-consistency equa-
tion

one arrives at the equation for the critical temperature
of a clean ferromagnet–dirty superconductor bilayer:

(23)

3. Results and discussion. As in the preceding work
[16], we determine the Fermi momentum of supercon-
ductor by the relation (pS)2 = [(p↑)2 + (p↓)2]/2 and eval-
uate the transmission coefficients Dα using model
expressions for a direct contact of two metals (Eqs. (22)
in [16]).

The results of calculation with parameters δ =

p↓/p↑ = 0.65, p↑l↑ = 40.0, l↓/l↑ = 2.5, and ξS/  = 0.25

(ξS equals  at temperature T = Tc0) are presented in
Fig. 1. These parameters are close to those for the
nickel contact with niobium or vanadium. One can see
in Fig. 1 that, with an increase in the thickness of the
ferromagnetic layer, the critical temperature of the
bilayer undergoes damped oscillations, as was
observed experimentally in [6–9]. If the superconduc-
tor becomes thin enough, Tc can display re-entrant
behavior (the lower solid curve in Fig. 1), which was
also observed in the experiment [21]. The results of
another calculation with the conduction-band spin-
splitting parameter δ = 0.55 (close to cobalt) are shown
in Fig. 2. One can see from the comparison with Fig. 1
that the degree of suppression of the superconducting Tc

∆̂ tc( )ln πT iF̂s
S ∆̂

εn

-------– 
  ; tc

n ∞–=

∞

∑ Tc

Tc0
-------,= =

tc( )ln Ψ 1
2
--- 

  ReΨ 1
2
--- DS κS( )2

4πTc0tc

-------------------+ 
  .–=

ξBCS
S

ξT
S

Fig. 2. Superconducting transition temperature of the S/F
bilayer vs. the thickness of ferromagnetic layer with δ =
0.55. The values of other physical parameters are as in Fig. 1.

dS/ξS
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in contact with stronger ferromagnet (i.e., having
smaller δ value) is lower, which seems at first glance to
be illogical. What actually happens is that the transmit-
tance of the S/F interface decreases with an increase in
the polarization of conduction band because of the
increasing mismatch between the Fermi momenta of
superconductor and spin subbands in ferromagnet. The
attendant isolation between the F and S layers predom-
inates over the enhanced depairing effect of exchange
field. This scenario was implemented experimentally in
the FexV1 − x/V bilayers [22]. As the iron concentration
x in the ferromagnetic FexV1 – x alloy increased, the crit-
ical thickness of the superconducting vanadium layer
displayed nonmonotonic behavior at a fixed thickness
of the ferromagnetic layer. The pure iron layer sup-
pressed Tc weaker than did the alloy with x ~ 0.6. This
work provides a theoretical basis for the discussion of
the effect of conduction-band spin splitting on the
transmittance of the S/F interface [9, 21–23]. Our
results are not contradictory to the conclusions of work
[15]: Figs. 1 and 2 show that, in the case of weak Tc sup-
pression (Tc0 – Tc ! Tc0 and dF > l↑), the Tc oscillation
amplitude is substantially smaller than the asymptotic
value Tc0 – Tc(dF  ∞). Therefore, the oscillations fall
beyond the approximation adopted in [15]. Interest-
ingly, the oscillation damping constant does not
increase with a decrease in the electron mean free path
in the ferromagnet, as it could be expected, but
decreases, at least for small thicknesses dF. Such para-
doxical behavior is explained by the fact that the exclu-
sion effect for inclined electron trajectories longer than
the electron mean free path in ferromagnetic film dom-
inates. As the mean free path approaches the film thick-
ness, the cone of trajectories, whose interference gives
rise to the geometric oscillations of Tc, narrows around
the normal to the interface, and the solution gradually
becomes single-mode [23]. In a certain range of thick-
nesses, the effect of cone “collapse” and a decrease in
the scatter of path lengths for interfering waves domi-
nates over the increase in their damping.

In summary, a consistent theory of the proximity
effect has been developed in this work for a “strong fer-
romagnet–dirty superconductor” system, and an
answer is given to the fundamental question of whether
the superconducting temperature oscillates as a func-
tion of thickness of the ferromagnetic film or not. The
answer is positive: yes, it oscillates and the re-entrant
behavior of superconducting Tc is possible upon chang-
ing thickness of the ferromagnetic layer. The effect of
spin splitting on the transmittance of the F/S interface
and, hence, on the oscillations of critical temperature
has been included in the calculation explicitly and is
consistent with the experiment. For a particular com-
parison with the experiment, the knowledge of many
physical parameters is necessary for the theory. Some
of them should be determined from the additional mea-
surements with bilayers or pilot films prepared simulta-
JETP LETTERS      Vol. 78      No. 9      2003
neously with bilayers under the identical conditions.
Complete experiments of this type are unknown to us.

We are grateful to G.B. Teœtel’baum for discussion
of results. This work was supported by the Russian
Foundation for Basic Research (project no. 03-02-
17432) and the program “Russian Universities—Basic
Research” (project no. UR.01.01.061).
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Magnetotransport properties of submicron rings fabricated on the basis of 2D electron gas in a GaAs double
quantum well are studied. It is shown that, in such interferometers, the Aharonov–Bohm effect is caused by
coherent processes in two weakly coupled rings, which have different widths of electron channels. In these
interferometers, a phase inversion of h/e oscillations is observed under the action of the parallel component of
a tilted magnetic field. This phenomenon is qualitatively explained by a redistribution of charge carriers in the
two rings. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.Fg; 73.23.-b
Studies of the charge carrier transport in ring inter-
ferometers and quantum dots fabricated on the basis of
2D electron gas in selectively doped semiconductor
structures were initiated more than 15 years ago [1, 2]
and remain topical to this day [3]. In the last few years,
interest in studying the properties of these microstruc-
tures has been primarily associated with the fact that
they serve as a basis for designing qubits [4] and for
realizing fundamentally new information technologies
that use quantum computations. This paper reports the
study of coherent properties of ring interferometers fab-
ricated on the basis of 2D electron gas in a GaAs double
quantum well with AlAs/GaAs superlattice barriers. It
is found that the quantum transport in such rings is
influenced not only by the perpendicular component of
magnetic field but also by its parallel component.

The initial selectively doped structures were grown
by molecular beam epitaxy (MBE). The cross section
of a double quantum well is schematically shown in
Fig. 1a. The central barrier was a 5-nm-thick AlGaAs
layer, and the external barriers were AlAs/GaAs super-
lattices of the second kind [5]. The δ-Si doping layers
were located in the superlattice external barriers on
both sides of the quantum wells, each being 10 nm
wide. The MBE structures were processed by optical
lithography and liquid etching to obtain bridges 50 µm
in width. Each bridge had one pair of current terminals
and three pairs of Hall terminals separated by 100 µm.
The concentrations and mobilities of 2D electron gas
were determined from the transverse and longitudinal
magnetoresistance at a temperature of T = 4.2 K, and
their values before and after illumination by a red light-
emitting diode were as follows: ns = 1.7 × 1012 cm–2,
0021-3640/03/7809- $24.00 © 20560
µ = 95 × 103 cm2/(V s) and ns = 2.0 × 1012 cm–2, and
µ = 130 × 103 cm2/(V s).

The ring was fabricated by electron beam lithogra-
phy and dry etching and positioned between two pairs
of Hall terminals. The resulting sample is schematically
shown in Fig. 1b. The mean ring radius, which was
equal to half the sum of the outer and inner radii pro-
vided by lithography, was r0 = 0.3 µm. Experiments
were carried out at temperatures from 4.2 to 1.6 K in
magnetic fields B up to 15 T. The ring resistance was
measured by the four-probe method. The parallel com-
ponent of the magnetic field was perpendicular to the
bridge longitudinal axis. The tilt of the magnetic field
was controlled by the value of the transverse (Hall) resis-
tance.

Figure 2a shows the dependences R34(1/B) before
and after illumination of the sample by a red light-emit-
ting diode (curves 1 and 2, respectively). The results of
Fourier analysis of these dependences are presented in
Fig. 2b. One can see that the Fourier transform of Shub-
nikov–de Haas oscillations shows two maxima in both
cases. The concentration of 2D electron gas, when
determined from the transverse magnetoresistance, was
equal to the sum of concentrations calculated from the
positions of these maxima. This means that, in the MBE
structure under study, two energy levels, E0 and E1, are
filled. The distance between these levels before illumi-
nation was ∆E = E1 – E0 . 14 meV. After illumination,
it became smaller and was equal to 11 meV. From the
calculation of energy positions of the E0 and E1 levels
in the structure shown in Fig. 1a, it was found that the
tunnelling coupling of wells must result in the splitting
∆E . 1 meV. Thus, the value of ∆E observed for the
003 MAIK “Nauka/Interperiodica”
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given MBE structure is mainly caused by the shift of
the wells in the energy axis as a result of the bending of
energy bands under the effect of internal electrostatic
field, rather than by the tunneling coupling of the wells.

Figure 3a shows the field dependence of the resis-
tance R23(B) in a perpendicular magnetic field before
the illumination of the interferometer. The curve repre-
senting ∆R23(B) exhibits periodic resistance oscillations
symmetric with respect to the sign of magnetic field.
The dependences R23(B) and ∆R23(B) obtained after the
illumination of the sample are shown in Fig. 3b in a
broader range of B. One can see that periodic oscilla-
tions in the rings under study disappear in magnetic
fields higher than 3 T. The Fourier transform of these
oscillations (Fig. 4a) show two clearly distinguishable
groups of frequencies. The maximal amplitudes in
these groups differ by approximately a factor of four,
and the mean frequencies, by a factor of two. The mean
frequency in the group with higher amplitude corre-
sponds to the quantization of magnetic flux through the
area of a circle with the effective radius reff . 0.30 µm,
which is equal (within experimental error) to the mean
radius of the ring r0 provided by the electron beam
lithography. This means that the periodic resistance
oscillations observed in the rings under study are the
h/e oscillations. Then, the group of frequencies with the

Fig. 1. (a) Schematical section and energy diagram of a
GaAs double quantum well with AlAs/GaAs superlattice
barriers. (b) Schematic representation of a ring interferom-
eter with (1, 5) current and (2–4, 6–8) potential terminals.
JETP LETTERS      Vol. 78      No. 9      2003
smaller amplitude is caused by the h/2e oscillations.
The phase coherence length determined from the
amplitude ratio of the h/e and h/2e oscillations [6] is
about 0.7 µm at T = 1.6 K.

Let us discuss the experimental results. As is known,
the half-width of the spectral peak of h/e oscillations in
submicron rings allows one to estimate the width we of
electron channels [7]. In our case, this estimate pro-
vided a value of about 60 nm. At the same time, the
channel width can be estimated from the characteristic
magnetic field Bm at which the Aharonov–Bohm oscil-
lations disappear [1]. This field Bm is determined from
the condition ("/eBm)1/2 = we/2. From Fig. 3b, one can
see that the Aharonov–Bohm oscillations are observed
up to Bm = (2.5–3) T, which gives we ~ 30 nm for the
channel width. Thus, for the effective channel width of
our interferometer based on a GaAs double quantum
well, the estimate obtained from the halfwidth of the
peak of h/e oscillations proved to be noticeably greater
than the estimate obtained from Bm (in contrast to the
case of rings based on a single quantum well in a
GaAs/AlGaAs heterojunction [1]). We explain this dis-
crepancy by the fact that the interferometers under

Fig. 2. (a) Dependences R34(1/B) at T = 4.2 K (1) before and
(2) after illumination. (b) Results of a fast Fourier transform
of the R34(1/B) functions (1) before and (2) after illumina-
tion.



562 BYKOV et al.
study actually consist of two weakly coupled rings with
different widths of electron channels. Since, in the nar-
rower ring, the Aharonov–Bohm oscillations are sup-
pressed in a stronger field, the estimate of the channel
width by Bm may provide the value of we only for the
“narrow” ring. At the same time, the estimate of we

from the halfwidth of the h/e oscillation peak may
allow one to determine the width of only the wider ring,
because the broader peak superimposed on the nar-
rower peak masks the latter. Thus, in the situation with
two rings of the same radius but different width, the
value of Bm is determined by the “narrow” ring while
the halfwidth of the peak of h/e oscillations is deter-
mined by the “wide” ring.

It is well known that we of the submicron rings fab-
ricated on the basis of selectively doped semiconduc-
tors is determined not only by lithography but, to a con-
siderable extent, by the lateral depletion regions

Fig. 3. (a) Dependences R23(B) and ∆R23(B) before illumi-
nation at T = 1.6 K: (1) experimental (thick line) and
smoothed (thin line) curves obtained for R23(B), and (2) the
difference between the experimental and smoothed curves
∆R23(B). (b) Dependences R23(B) and ∆R23(B) after illumi-
nation at T = 1.6 K: (1) experimental curve obtained for
R23(B) and (2) ∆R23(B).

0.1

∆

appearing along the etch boundaries. The width of these
regions is the smaller the greater the concentration of
2D electron gas in the initial structure [8, 9]. A Fourier
transform of Shubnikov–de Haas oscillations observed
in the interferometer (Fig. 4b) revealed two peaks (as in
the case of 2D electron gas in the initial structure). The
2D electron gas concentrations corresponding to these
peaks proved to be slightly lower than in the wide
regions of the sample: 0.4 × 1012 and 0.9 × 1012 cm–2.
From the above-mentioned dependence of the size of
depletion regions (and, hence, the channel widths) on
the initial concentrations of charge carriers in the wells,
one can assume that the ring lying in the well with
lower concentration has a smaller width of electron
channels, as compared to the ring lying in the well with
higher concentration. In the interferometer under study,
the rings are separated by a 5-nm-thick barrier, while
the width of the lateral depletion regions along the elec-
tron channels is about 120 nm. Taking into account the
ratio of these geometric dimensions, we can assume

Fig. 4. (a) Result of fast Fourier transform of the ∆R23(B)
functions in the field range from 0 to 3 T. (b) Result of a fast
Fourier transform of the R23(1/B) function.
JETP LETTERS      Vol. 78      No. 9      2003



RING INTERFEROMETER ON THE BASIS OF 2D ELECTRON GAS 563
that both rings are in practically identical conditions
with respect to the lateral confining potential. Since the
rings have noticeably different widths, we can conclude
that the lateral confining potential strongly differs in
shape from the rectangular potential.

In [10], it was shown that the spectrum of energy
states in an asymmetric double quantum well placed in
a parallel magnetic field can be considerably modified,
leading to the charge-carrier redistribution between the
wells. We assume that, for our interferometers consist-
ing of two vertically coupled rings, a parallel magnetic
field should also modify the energy spectrum of the
rings and lead to the electron redistribution between
them, as in the case of a double quantum well. This
assumption qualitatively agrees with the fact that, in
our experiments, the dependences of the interferometer
resistances on the normal component BN of magnetic
field are different in perpendicular and tilted fields.

From Fig. 5a, one can see that, in the case where the
parallel component of the tilted field is small, the differ-
ence in the interference components of ring resistance
is virtually absent. As the parallel component of B
increases (Fig. 5b), the oscillations observed in the

Fig. 5. (a, b) Dependences of ∆R23 at T = 1.6 K on the per-
pendicular component of magnetic field BN: (1) in a perpen-
dicular magnetic field with BN = B and (2) in a tilted mag-
netic field with BN = B/15.
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tilted field tend to be in antiphase with the oscillations
observed in the perpendicular magnetic field. Qualita-
tively, this can be explained by the above-mentioned
redistribution of charge carriers in the two rings under
the action of the parallel magnetic field. However, it
should be noted that, in the interferometers under study,
the rings are weakly coupled, and the phase inversion
observed for the h/e oscillations may be caused not only
by the modification of the ring spectra but also by a syn-
chronous (common) shift of the ring energy levels in
the parallel magnetic field. Our estimates of the shifts
of the E0 and E1 levels for the structure under study in
the parallel magnetic field B = 15 T did not allow us to
determine which of the two mechanisms dominates the
phase inversion of h/e oscillations. For a more definite
answer to this question, it is necessary to develop a the-
ory of charge-carrier transport in a ring interferometer
in a tilted magnetic field and to compare this theory
with the experimental data.

Thus, we have fabricated submicron rings on the
basis of 2D electron gas in a double quantum well and
studied their coherent properties. In such interferome-
ters, we observed a phase inversion of Aharonov–Bohm
oscillations under the action of the parallel component
of a tilted magnetic field. In other words, we experi-
mentally demonstrated the principal possibility of con-
trolling the coherent processes in ring interferometers
by a parallel magnetic field.

We are grateful to A. Vedernikov and V. Tkachenko
for fruitful discussions. The work was supported by the
Russian Foundation for Basic Research (project no. 01-
02-16892).
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It is shown that the exchange coupling in a “ferromagnet/semiconductor quantum well” heterostructure allows
the electric control of the orientation of magnetic moment in the ferromagnet. A highly anisotropic exchange
interaction between holes in the quantum well and magnetic atoms in the ferromagnet causes the orientational
transition: magnetic moment leaves the plane and becomes oriented along the normal. The normal component
of magnetization can be inverted by applying voltage pulses to the structure gate. © 2003 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 85.35.Be; 85.75.-d
Ferromagnet/semiconductor hybrid systems are
promising from the point of view of integration of mag-
netic systems with semiconductor electronics [1, 2]. On
the one hand, the nonequilibrium electron spin of a
semiconductor can be used as a detector reading infor-
mation about the state of a magnetic film. For example,
the authors of [3, 4] reported the detection of stray
fields of a ferromagnet (FM) using the optical orienta-
tion [5] of semiconductor electrons. With the injection
from FM into a semiconductor, electrons of the semi-
conductor acquire a nonequilibrium spin proportional
to the electron spin in the ferromagnet [6]. On the other
hand, to achieve full integration of magnetism with
electronics, it is necessary to use a semiconductor for
controlling the magnetic properties of ferromagnetic
films. Then, it will be possible to perform electronic
readout and recording of data on magnetic materials
without using magnetic heads. The effect of a semicon-
ductor on an FM was revealed in [3, 4], where it was
shown that illumination of a Ni/n-GaAs structure
caused a twofold change in the coercive force of the
NiGaAs ferromagnetic interface. This phenomenon
was explained in [7] by the exchange interaction
between electrons positioned at deep centers near the
ferromagnet/semiconductor heterointerface and mag-
netic atoms of the ferromagnet (proximity effect).
Under conditions of optical orientation, the proximity
effect can lead to a magnetization of the film by circu-
larly polarized light [8, 9]. In almost all the cited publi-
cations, the nonequilibrium spin of semiconductor
electrons is used either for detecting the FM [2–4, 6] or
for controlling the ferromagnetism [8, 9]. For a suc-
cessful operation of such devices, an electron of the
semiconductor must possess a long spin memory time
and a macroscopic spin diffusion length, which is pos-
sible only at low temperatures [3, 4, 10]. At the same
0021-3640/03/7809- $24.00 © 20564
time, for an optical control of ferromagnetism, the
aforementioned nonequilibrium spin is not necessary
[7, 11], which offers promise for high-temperature
applications of spintronics.

This paper shows that, in the absence of an external
magnetic field, the exchange coupling of the spin sys-
tems of an FM and a semiconductor quantum well
(QW) provides the possibility to electrically control the
orientation of magnetization of the FM. In this case, the
average spin of charge carriers (holes in the example
under consideration) in the semiconductor is in the state
of thermodynamic equilibrium. The strongly anisotro-
pic exchange interaction between holes in the QW and
magnetic atoms of the FM gives rise to an orientational
transition: magnetization M is rotated from the plane of
the structure toward the normal direction. In their turn,
holes in the QW become spin polarized, thereby pro-
viding the stability of such a configuration. The orien-
tation of the vector M is controlled by the variation of
the hole concentration (and, hence, their spin density)
in the QW, which is accomplished by applying a bias
voltage to the gate of the structure. The normal compo-
nent of the vector M can be inverted by applying the
gate voltage VG in the form of π pulses (analogue of the
π pulse in magnetic resonance). This creates a funda-
mentally different approach to the design of spintronic
devices: the direction of the magnetic moment of an
FM is controlled via the electric (rather than optical [8,
9]) modulation of the exchange coupling of the FM
with a semiconductor.

The physical meaning of the effect of orientational
transition can be understood from Fig. 1. A ferromag-
netic film with a magnetization M covers a semicon-
ductor heterostructure consisting of a quantum well,
which is separated from the ferromagnetic film and
from the underlying nonmagnetic metal by barriers.
003 MAIK “Nauka/Interperiodica”
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The nonmagnetic metal gate capping the structure is
designed for the control of hole concentration (density
of hole gas, DHG) in the QW. In the absence of
exchange interaction between holes in the QW and
magnetic atoms in the FM, the easy magnetization
direction in the FM coincides with the x axis. In addi-
tion, it is assumed that the spin–orbit splitting of heavy
and light holes is large and, hence, the spin of the QW
holes is rigidly bound to the normal direction [12]. If
the barrier between FM and QW is impermeable, the
spin systems of FM and QW are uncoupled. In this
case, the FM magnetization lies in the plane of the
structure and is parallel to the x axis, while the hole gas
in the QW is not spin polarized (the external magnetic
field is zero). However, if the barrier is semitransparent,
the wave functions of heavy holes and magnetic atoms
of the FM overlap and an exchange interaction arises
between holes and magnetic atoms. Since the hole spin
is rigidly bound to the normal, this interaction is pro-
portional to the product of the hole-spin and vector M z
components. As the exchange interaction increases, a
spontaneous spin polarization of holes becomes favor-
able (Fig. 1). In turn, the polarized holes rotate the vec-
tor M from the plane toward the normal direction [13].
The energy of the configuration shown in Fig. 1 does
not change if the polarization directions of holes and
vector M are simultaneously inverted. Therefore, one
can say that the new axis, along which vector M
becomes oriented is a bi-directional axis; i.e., it is anal-
ogous to the easy magnetization axis. This is an equilib-
rium configuration, which can be calculated from the
condition for free-energy minimum in the system. At
low temperature, this energy is close to that of the
FM/QW system [14]. The energy density, i.e., energy
per unit surface area of the system, includes: (i) the

magnetic anisotropy energy [15] EA = –β /2 of the
ferromagnet [16], where β > 0 is the magnetic anisot-
ropy constant and mx is the projection of the unit vector
m along M onto the x axis of easy magnetization;
(ii) the energy Eexc = –Jnmzp/2 of exchange coupling of
the FM magnetic atoms with the QW holes [8, 13],
where J is the exchange interaction constant between
holes with concentration n and polarization p = (n+3/2 –
n−3/2)/(n+3/2 + n–3/2) and magnetic atoms whose mag-
netic moment has a component mz along the normal
(n±3/2 is the concentrations of holes whose moments
have projections ±3/2 on the z axis). The value of the
constant J depends on the properties of the FM contact-
ing the QW, as well as on the transmittance of the bar-
rier between the FM and the QW, and is a phenomeno-
logical parameter of the problem. The exchange inter-
action will be strongly anisotropic if the splitting
energy ∆ of heavy and light holes in the QW is greater
than the exchange J and kinetic energy µ of the hole
motion in the QW plane (only the heavy hole subband
is filled); and (iii) the additional energy Ef = n2p2/2g of
a Fermi gas of heavy holes associated with their spin
polarization. The density of states g may differ from the

mx
2
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two-dimensional density mh/π"2 (mh is the mass of a
heavy hole in the QW plane) because of the effect of
interaction between holes and the effect of particle
exchange between FM and QW. In the framework of
the simplest model, we assume that g is independent of
hole concentration and is equal to the two-dimensional
density. Then, the total energy per unit surface area is

(1)

If the components of m are represented as mx = cos(ϕ)
and mz = sin(ϕ) (the angle ϕ is measured from the plane
of the structure), the necessary conditions of an extre-
mum, i.e., ∂ε/∂ϕ = 0 and ∂ε/∂p = 0, are satisfied for

(2)

An analysis of the characteristic equation of quadratic
form shows that the first pair (mz, p) from Eqs. (2) real-
izes a minimum at the point mz = p = 0 for the values of
the FM–QW coupling parameter K ≡ J2h/4β < 1. For
K > 1 the minimum disappears. However, in this case,
a minimum is realized for the second and third pairs of
solutions (2) corresponding to the same energy. Since
the magnitude of hole polarization cannot exceed unity,
the second and third pairs of solutions is meaningful at

ε βmx
2/2( )– Jnmz p/2( )– n2 p2/2g( ).+=

mz ϕ( )sin
Jnp
2β
---------, p

Jp
2n
------ ϕ( );sin= = =

mz +1, p
Jp
2n
------; mz 1, p–

Jp
2n
------.–= = = =

Fig. 1. Schematic diagram of the structure operating on the
basis of the proximity effect. A semitransparent barrier sep-
arates the FM from the QW which, in turn, is separated by
a barrier from the nonmagnetic metal contact. The metal
gate on top of the structure serves for controlling the hole
concentration in the QW. The arrows in the QW indicate the
orientation of the hole spin.
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high hole concentrations n > Jg/2. As the concentration
decreases, the hole polarization becomes equal to its
limiting value. Therefore, in the low-concentration
region, one should seek for the minimal value of energy
(1) as a function of angle ϕ with the additional condi-
tion of p = 1 [17]. Substituting it into Eq. (1), we arrive
at the necessary condition for an extremum in the con-
centration region n < Jg/2:

(3)

Since |mz| < 1, the minimum is realized for n < Jg/2K <
Jg/2. In this region, the z component of magnetization
grows linearly with concentration and reaches unity at
n = Jg/2K; in the region Jg/2 > n > Jg/2K, it is equal to
unity. The results obtained above allow a simple inter-
pretation. If the exchange interaction between holes in
the QW and magnetic atoms of the FM is small (K < 1),
the magnetization lies in the plane of the structure along
the easy axis while the hole gas is nonpolarized at any
concentration (the upper part of Fig. 2). The situation
changes when the coupling between the FM and the
semiconductor is strong (K > 1, the lower part of
Fig. 2). In the region n < Jg/2K, the number of holes is
insufficient for magnetizing the FM across the plane
while the z component of magnetization linearly
increases with concentration and is equal to unity when
n ≥ Jg/2K. Holes are completely spin polarized up to
n = Jg/2K (this concentration corresponds to the equal-
ity of the exchange splitting of holes to twice their
Fermi energy, i.e., J = 2µ). At high concentrations, the
hole polarization decreases, because the energy differ-

mz ϕ( )sin Jn
2β
------ K

2n
Jg
------.= = =

Fig. 2. Diagram of different configurations in the FM/QW
system depending on the hole concentration (the abscissa
axis) and the reciprocal coupling parameter (the ordinate
axis).
ence between spin subbands of heavy holes is smaller
than 2µ. At the same time, the energy of the exchange
coupling of the FM with the QW is determined by the
hole polarization density Σ ≡ np = Jg/2, which is con-
stant in this region.

The orientation of M can be controlled by varying
the hole concentration in the QW by way of applying a
bias voltage to the gate of the structure (Fig. 1). A sim-
ilar situation was realized [18] in an InMnAs ferromag-
net whose hysteresis loop was varied by applying a gate
voltage VG. The phenomenon was attributed by the
authors to the small change in Tc that accompanied the
change in the hole concentration inside the InMnAs
structure. However, this structure had a thin (5 nm)
nonmagnetic InAs layer near the ferromagnet [18], the
existence of this layer being very important for control-
ling the FM [19]. If we assume that the voltage VG

changes the number of holes in the InAs layer, the
results reported in [18, 19] can be explained in the
framework of the model considered above. When VG < 0,
the holes fill InAs and the easy axis is oriented along the
normal, which leads to a hysteresis in a magnetic field
parallel to the normal. If the holes leave InAs (VG > 0),
the easy axis lies in the plane of the structure and the
magnetization across the easy axis exhibits a nonhys-
teretic behavior. To verify this hypothesis, it is neces-
sary to measure the orientation of M (rather than its
z component [18, 19]).

Let us estimate the coupling parameter K ≡ J2g/4β
for a Zn1 – xCrxTe high-temperature ferromagnetic
semiconductor (x = 0.2, Tc = 300 K [20]). The magnetic
anisotropy constant can be estimated by the formula
β = 4πM2d [16] on the assumption that it originates
from magnetostatic energy (easy-plane anisotropy).
The concentration of magnetic atoms is N = xN0 ≈ 3.5 ×
1021 cm–3 (the anion concentration N0 is determined by
the ZnTe lattice constant a0 = 6.1 Å [21]). The magnetic
moment per one Cr ion is equal to ≈2 Bohr magnetons
at T ≈ 200 K [20]. Then, the magnetization is M ≈ 65 G
and the anisotropy constant is β = 0.027 Erg/cm2 for a
5 nm thick film [22]. If the QW is grown on the basis of
CdTe, the coupling parameter is greater than unity
when J > 25 meV (mh = 0.25m0 [23]). Under these con-
ditions, the hole concentration at which the magnetiza-
tion is oriented across the plane of the structure is n =
Jg/2K = 2β/J < 1012 cm–2. The p–d exchange constant
in ZnCrTe is approximately equal to 4 eV [21]. There-
fore, the maximal splitting (≈0.8 eV at x = 0.2) is more
than 30 times greater than the required value of J. The
value of J can be fitted by varying the overlapping of
the wave functions of holes in the QW and magnetic
atoms in the FM via the variation of the QW parame-
ters.

As noted above, in the low-concentration region n <
Jg/2K, the magnetization does not lie in the plane and
makes an angle ϕ with the x axis. In equilibrium, the
magnetic moment is oriented along the effective mag-
JETP LETTERS      Vol. 78      No. 9      2003
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netic field Heff = –∂ε/∂Ms [24], where the energy (in the
case under consideration, per unit surface area) is given
by Eq. (1) and Ms = Md is the magnetic moment per

unit surface area. The x component of the field,  ≡
|HA| = βmx/Md, represents the anisotropy field HA while

the z component,  ≡ |Hexch| = Jn/2Md = βmz/Md, is
the anisotropic exchange field Hexch acting on the FM
from the side of the holes of the QW. The latter expres-
sion was derived with allowance for Eq. (3) and for the
fact that the hole polarization is p = 1. The equilibrium
situation is illustrated in Fig. 3a. Assume that the field
|Hexch| jumps to zero. Then, the magnetic moment per-
forms a coherent rotation about the anisotropy field
according to the equation dm/dt = γHeff × m [24] with
a precession period of T = 2π/γ|HA| = 2πMd/γβmz (γ is
the gyromagnetic ratio). Within a time of τ = T/2, the z
component of magnetization is inverted (Fig. 3b). If, at
this instant, the exchange coupling between FM and
QW is reestablished, the equilibrium state will be the
state with the inverted mz component. Indeed, if the spin
relaxation time of holes is small, the polarization of
holes and the exchange field Hexch change their sign at
the end of the pulse, and the magnetization becomes
again oriented along the total effective magnetic field.
Hence, the FM/QW spin system is in the second stable
state with inverted mz and p. The requirement that the
spin relaxation be fast is easily satisfied for holes at
high temperatures [5]. The field Hexch can be switched
off by supplying pulsed voltage VG to the gate (Fig. 1).
When a pulse of VG > 0 is applied in the interval from 0
to τ = T/2, the QW is depleted of holes, and the field is
|Hexch| = 0. The precession period can be controlled by
tuning the x component of magnetization through the
variation of the hole concentration in the QW before
supplying the pulse. For example, if mx = 1/4, then, at
β = 4πM2d, we have τ = 1/γM ≈ 1 ns. For a coherent
rotation of magnetization, it is necessary that the damp-
ing parameter λ in the Landau–Lifshits dynamic equa-
tion [24] be smaller than the reciprocal period of Lar-
mor precession in the effective magnetic field, 1/T =
5 × 105 Hz. For a Zn1 – xCrxTe semiconductor, the
parameter λ is unknown but one can expect that it is
fairly small (e.g., in a nickel ferrite, λ ≈ 107–108 Hz [25]
and the characteristic relaxation time of magnetization
is 10–100 ns). For the inversion of mz, it is not neces-
sary to use rectangular pulses with sharp edges. It is
sufficient to apply a smooth pulse with a duration of t ≈
T/2 [26].

Thus, in an FM/QW hybrid system, the exchange
interaction between holes in the QW and magnetic
atoms of the adjacent FM causes an orientational tran-
sition, which consists in the rotation of magnetization
from the plane of the structure toward the normal direc-
tion. This effect makes it possible to electrically control
the orientation of magnetization in the FM.

Heff
x

Heff
z
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The static and resonance properties of copper metaborate CuB2O4 were experimentally studied in a magnetic
field applied in the crystal tetragonal plane. The field-induced second-order phase transition to a weakly ferro-
magnetic state was observed in the temperature range 10–20 K. The low-field state is characterized by the
absence of spontaneous moment, and it represents, presumably, a long-period helicoid. At temperatures below
2 K, two sequential first-order phase transitions were observed. They were accompanied by jumps in resonance
absorption with a hysteresis upon changing field-scan direction. These transitions can be caused by the trans-
formation of the incommensurate spin structure into the helicoidal states with periods commensurate with the
lattice translation period. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.50.Cc; 75.30.Kz; 75.60.Ej; 76.50.+g
1. INTRODUCTION

The tetragonal copper metaborate crystal CuB2O4

belongs to the family of copper oxides whose intense
research was stimulated by the discovery of high-tem-
perature superconductivity. In the early works devoted
to the magnetic properties of a CuB2O4 single crystal
[1], it was found that, in the temperature range from 10
K to the Néel temperature TN = 20 K, this compound is
a weak ferromagnet, in which the magnetic moments of
sublattices and the spontaneous magnetic moment lie in
the tetragonal crystal plane. Upon a decrease in temper-
ature, an abrupt decrease in magnetization was
observed near T = 10 K, indicating the transition to a
new magnetic phase. The resonance studies [2] showed
that, although the magnetic moments of copper ions
remain in the basal crystal plane, the spontaneous
moment disappears. It was conjectured in the cited
work that the low-temperature magnetic state of
CuB2O4 can be helicoidal. Neutron inelastic scattering
studies [3] showed that, in the absence of a magnetic
field, an incommensurate magnetic state of the type of
magnetic soliton lattice with the structure wave vector
oriented along the tetragonal axis is established below
10 K. The magnetic resonance [2] and magnetostatic
[4] studies in a magnetic field applied in the crystal tet-
ragonal plane showed that, in the temperature range T <
10 K, the modulated magnetic structure transforms into
a weakly ferromagnetic state with a magnetic moment
lying in the same plane. The temperature dependence of
the interface separating these two states was obtained
and subsequently confirmed by neutron diffraction
0021-3640/03/7809- $24.00 © 0569
measurements [5]. Analysis of the field dependences of
magnetization [4] allowed the assumption to be made
[6] that the weakly ferromagnetic state is induced in
the temperature range 10–20 K by the magnetic field
and transforms into a new magnetic state with zero
spontaneous magnetic moment upon lowering the
field. The purpose of this work was to study the
assumed phase transition by the magnetic resonance
method, which is one of the most sensitive to the mag-
netic state of a substance, and by the magnetostatic
measurements. It was also of interest to carry out mag-
netic resonance studies at temperatures T < 2 K, where
the anomalies were observed in the neutron elastic
scattering and µSR data [7].

2. SAMPLES AND EXPERIMENTAL METHOD

Single-crystal samples of copper metaborate
CuB2O4 were grown by the spontaneous crystallization
method [8]. Since the critical magnetic fields of the
assumed phase transition are rather low (less than
800 Oe), the resonance measurements should be per-
formed in the frequency range 3–6 GHz. For this pur-
pose, a spectrometer of the transmission type with a
quasi-toroidal cavity was used (for details, see [9]). The
cavity operating frequency was tuned using accessory
quartz plates of different size, which were placed in a
node of electric field. The static magnetic field was cre-
ated by a superconducting solenoid. Single crystal
CuB2O4 of size 1.2 × 1.8 × 2.8 mm was placed in a node
of magnetic field so that the static field was oriented in
the [110] direction of the basal plane, while the perpen-
2003 MAIK “Nauka/Interperiodica”
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dicular microwave magnetic field was directed along
the tetragonal axis C4. Magnetostatic measurements
were performed on an MPMS-5 SQUID magnetometer.

3. EXPERIMENTAL RESULTS

The examples of resonance absorption spectra
recorded with a magnetic field scan at frequency ν =
3.48 GHz are presented in Fig. 1 for various tempera-
tures above 9 K. At T = 9.4 K, a single high-intensity
resonance line with a width of about 300 Oe is observed
at a resonance field of 600 Oe. As the temperature
increases, an additional low-intensity line appears at
low fields starting with T . 9.5 K. With an increase in
temperature, this line rapidly shifts to higher fields, and

Fig. 1. Resonance absorption spectra of CuB2O4 at T >
10 K and a frequency of 3.48 GHz. Dots are the experimen-
tal data and solid lines are the Lorentzian fits.

Fig. 2. Magnetization as a function of magnetic field applied
in the [110] direction at temperatures of 10, 11, and 14 K.
its amplitude and width increase. The solid lines in the
figure are fits of the Lorentzian curves to the experi-
mental points. Similar transformation of the resonance
spectrum is observed at frequency ν = 5.15 GHz, but
the additional line now appears at temperatures above
12.6 K. In all spectra, kink points can be set off in the
field H = , where one absorption line changes to the
other. Magnetic hysteresis upon changing the scan
direction was not observed.

The curves for the field dependence of magnetiza-
tion at temperatures 10, 11, and 14 K in a magnetic field
applied in the [110] direction of the tetragonal plane are
shown in Fig. 2. These curves were recorded in the
interval from 0 to ±1000 Oe with the back and forth
field scans. They are symmetric about the origin of
coordinates and do not show magnetic hysteresis. At all
temperatures, the curves for magnetization field depen-
dence have a kink point coinciding with the kink points
in the resonance absorption spectra. The kink points

 separate these curves into two parts. The initial
portions of the curves emanate from the origin of coor-
dinates and are nonlinear, with the degree of nonlinear-
ity decreasing upon elevation of temperature. At H >

, the dependences become nonlinear and can be
represented as m(H) = m0 + χH, where m0 is the spon-
taneous magnetic moment and χ is magnetic suscepti-
bility. The curves measured in a field directed along
[100] is qualitatively analogous to the curves measured
for a [110]-directed field.

Magnetic resonance at temperatures below 4.2 K
was studied at a frequency of 5.15 GHz. As the temper-
ature decreased down to T . 2 K, a single smooth
absorption line with a width of about 900 Oe was
observed. Upon further decrease in temperature, weak

Hc⊥

Hc⊥

Hc⊥

Fig. 3. Resonance absorption spectra of CuB2O4 in a low-
temperature range at a frequency of 5.15 GHz.
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features appeared in the absorption spectrum (Fig. 3).
At T = 1.89 K, a step appears at the left wing of reso-
nance line in the field , and it demonstrates a hys-
teresis upon the back and forth field scans. With lower-
ing the temperature of the sample, this step shifts to
higher fields, while another step of the same form
appears at low fields at . As the temperature further
decreases, both steps undergo upfield shift with a
decrease in the distance between them, and they virtu-
ally merge into a single continuous transition at T =
1.3 K.

4. DISCUSSION

An analysis of the experimental data presented in
Fig. 1 and a comparison with the results of Lorentzian
curve fitting allow one to assert that the absorption
spectrum in the temperature range 10–20 K is not a sum
of two lines but consists of two single lines that change
each other in the field H = . Therefore,  is the
phase-transition field, and the fragments of resonance
lines observed at H <  and H >  belong to the
different states. The conclusion about the phase transi-
tion is confirmed by the analysis of the magnetization
field dependences measured in the [100] and [110]
directions. The magnetostatic properties will be dis-
cussed in detail elsewhere; in this work, we will focus
only on the results concerning the phase diagram. As
was pointed out above, for all temperature in the range
10–20 K, the field  separates the curve for the mag-
netization field dependence into two parts, with its ini-
tial portion emanating from the origin of coordinates.
Consequently, this field corresponds to the phase tran-
sition from the state with zero spontaneous moment to
a weakly ferromagnetic state. The temperature depen-
dence of the critical field was reproduced from the data
of resonance and static experiments (boundary between
states 2 and 3 in the phase diagram in Fig. 4). With an
increase in temperature,  first increases and then
decreases as TN is approached. The resonance and static
data for the [110] direction well correlate with each
other. The (T) curve for the [100] direction goes
slightly lower, but the anisotropy in the tetragonal plane
is small. The absence of magnetic hysteresis in the tran-
sition region for both static and resonance data and the
continuous (without jumps in absorption) transforma-
tion of one resonance line to the other are evidence of
the second-order phase transition.

To elucidate the nature of low-field state, it is neces-
sary to analyze the field-and-frequency dependence of
magnetic resonance in both phases at T . 13.1 K
(Fig. 5). The curve for the high-field phase was con-
structed using our data and the data of [2], which are

Hc1

Hc2

Hc⊥
Hc⊥

Hc⊥
Hc⊥

Hc⊥

Hc⊥

Hc⊥
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well described by the corresponding dependence for a
weak ferromagnet:

(1)

where HD and ∆ are the Dzyaloshinski field and the
energy gap, respectively. The solid line in Fig. 5 corre-
sponds to dependence (1) with the parameters HD =
(1.6 ± 0.4) kOe and ∆ = (1.5 ± 1) GHz. The relatively
low accuracy of determining these parameters is caused
by the poor temperature stability in these measure-
ments. At H < , this dependence can be analyzed
only qualitatively, because measurements were made

ν2 γ2H H HD+( ) ∆2,+=

Hc⊥

Fig. 4. Phase diagram of CuB2O4 in a magnetic field per-
pendicular to the tetragonal axis; circles are for the results
of resonance and magnetostatic measurements, n are the
data from [2, 4], m are the neutron diffraction results [7],
solid lines are drawn for clarity, and the dotted line is the
line of transition to the paramagnetic state.

Fig. 5. Field-and-frequency dependences for the high- and
low-field states at T . 13.1 K; solid line is drawn according
to Eq. (1).

Hc⊥
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only for two frequencies. Nevertheless, one can firmly
state that the resonance frequency in this phase
decreases with an increasing magnetic field. An analo-
gous dependence can occur in the presence of tetrago-
nal anisotropy in an easy plane or if C4 is the easy mag-
netic axis. In the first case, the critical field  can be
interpreted as a turnover field in the basal plane and, in
the second, as a field at which the smooth reorientation
of antiferromagnetic vector from the L || C4 to the L ⊥
C4 position is completed, as a result of which a weak
ferromagnetic moment increases linearly with field.
However, these variants are inconsistent with the mag-
netostatic measurements of this work and of [4], and,
hence, the observed phase transition is caused by differ-
ent reasons. It is conceivable that the observed mag-
netic resonance spectrum is caused by the existence of
a modulated (commensurate or incommensurate) state
in the low-field phase. With an increase in magnetic
field, the translation period λ of this structure increases
[10] and the dispersion curve ω(k) splits into the phason
and acoustic branches at the boundary q0 = π/λ of the
“first Brillouin zone” [11]. Inasmuch as a uniform
microwave field can excite magnons with k = 2q0 corre-
sponding to zero-quasimomentum transfer in a spin
structure with long-wave modulation, the magnetic res-
onance spectrum should display a branch which has
zero-field gap ω(2q0)/(2π) and smoothly changes to the
corresponding branch of the commensurate phase in
the vicinity of critical field .

This assumption also enables one to explain why the
spontaneous magnetic moment is zero and the field-
dependence curve for magnetization has a kink at H =

. The helicoidal spatial distribution averages out the
local weak ferromagnetic moments at H = 0. Due to the
distortion of ideal helicoid by a magnetic field, the
moments are reoriented along the field and, simulta-
neously, the antiferromagnetic susceptibility increases,
and both processes are completed upon the transition to
the commensurate weakly ferromagnetic state. The
absence of zero-field splitting (typical of modulated
structures) of magnetic peaks in the neutron diffraction
patterns at T > 10 K [3] may be caused by the fact that
the modulation has a long period and its wave vector is,
likely, much smaller than the experimental resolution.

Let us now consider the resonance properties in the
low-temperature region. The absorption step observed
in the resonance spectrum at 1.89 K correlates with the
jump in intensity of magnetic satellites in the neutron
diffraction pattern at T . 1.8 K [7] and allows one to
assume that it is caused by the magnetic phase transi-
tion. At even lower temperatures, one more jump in
absorption appears in the resonance lines at  < .
The presence of hysteresis for both jumps upon the
back and forth field scans allows the conclusion to be
drawn that the phase transitions at  and  are
first-order transitions. The temperature dependences

Hc⊥

Hc⊥

Hc⊥

Hc1
Hc2

Hc1
Hc2
for both critical fields are shown in the phase diagram
(Fig. 4). As compared to the published phase diagrams
[2, 4, 5] containing incommensurate 1 and weakly fer-
romagnetic 2 states, new states 3, 4, and 5 are added in
the diagram in Fig. 4. State 3 appears in the temperature
range 10–20 K and, most probably, is a long-period
modulated state [12]. When analyzing states 4 and 5,
one should take into account that, according to the neu-
tron diffraction data [7, 13], the magnetic structure
remains modulated down to a temperature of 200 mK.
One can assume that the transition observed in the neu-
tron diffraction experiment at T . 1.8 K is a lock-in
transition from the incommensurate phase to the mod-
ulated state with a wave vector commensurate with the
lattice translation period [14]. In the phase diagram,
this corresponds to the transition from state 1 to state 5.
In this case, the wave vector in the commensurate state
can take values kmn = (2π/c)(m/n), where c is the lattice
constant and m and n are mutually prime numbers.
Since the resonance lines for states 4 and 5 differ only
slightly, one can assume that they (as well as the new
states observed upon further decrease in temperature in
the range T . 1 K [13]) differ only in the numbers m
and n. This signifies that the cascade of transitions at
T < 2 K represents a so-called “devil staircase” of tran-
sitions between the commensurate states.

5. CONCLUSIONS

The magnetic phase diagram of copper metaborate
CuB2O4 in a magnetic field lying in the tetragonal crys-
tal plane has been studied in detail in this work. Analy-
sis of the obtained static and resonance data enables one
to assume that the magnetic state in the temperature
range 10–20 K forms a helicoidal long-period structure.
It has been established that, in magnetic fields below
1 kOe, this state transforms into a weakly ferromag-
netic state that is not spontaneous at all temperatures
below TN, but is induced by a magnetic field. At low
temperatures T < 2 K, two sequential close-spaced first-
order phase transitions have been observed. These are
presumably transitions to the modulated states with dif-
ferent magnetic wave vectors that are commensurate
with the lattice translation period.

We are grateful to V.I. Marchenko and M.E. Zhito-
mirskiœ for helpful discussions. This work was sup-
ported by the Russian Foundation for Basic Research
(project no. 03-02-16701) and the Ministry of Educa-
tion of the Russian Federation (grant no. E02-3.4-227).
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General conditions for thermodynamic stability of a superfluid are studied in the full space of thermodynamic
variables, including (along with the conventional thermodynamic coordinates such as pressure and tempera-
ture) superfluid motion velocity and momentum density. The stability conditions lead to the thermodynamic
inequalities that replace the Landau superfluidity criterion at nonzero temperatures. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 67.40.Kh; 67.57.Bc
1. INTRODUCTION

The experimentally observed superfluidity break-
down is ordinarily associated with the vortex formation
and occurs at velocities much lower than the Landau
critical velocity. For this reason, one can restrict oneself
only to the leading terms in the expansion of equations
of superfluid dynamics in powers of low velocity.

However, there are experiments [1] that are devoted
to studying the superfluid motion through narrow ori-
fices. Under these conditions, the maximal velocity is a
decreasing function of the orifice width and can achieve
values on the order of Landau critical velocity for a suf-
ficiently small orifice cross section. Therefore, all ther-
modynamic quantities become nontrivial functions of
not-too-low velocities (i.e., they depend not only on the
conventional thermodynamic variables such as pressure
and temperature). With this general formulation, we
make no assumptions about the smallness of velocity
(but use only the fact that fluid at rest is isotropic) and
determine the full set of thermodynamic inequalities,
i.e., conditions imposed on the thermodynamic func-
tions by the requirement for the stability of the super-
fluid state.

Using the phonon–roton model, we calculate the
maximal velocity that is compatible with the obtained
thermodynamic inequalities and demonstrate that it can
be interpreted as the generalization of the Landau critical
velocity to nonzero temperatures. This thermodynamic
scenario for superfluidity breakdown probably occurs in
experiments on critical velocities in narrow orifices.

2. STABILITY

When deriving general equations of superfluid
dynamics, it is assumed [2] that every small element of
fluid is in the local equilibrium, and this equilibrium is
0021-3640/03/7809- $24.00 © 20574
stable. For the state to be stable, it is necessary that it
realize entropy maximum (at least, local) for a closed
system. Instead of studying the conditions for entropy
maximum, it is more suitable [3] to use the equivalent
condition for energy minimum at a constant entropy
and constant additive integrals of motion.

The total energy Etot of the fluid can be represented

as the integral Etot = dr of energy density E over the

entire volume. The energy density is obtained using the
Galilean transformations

(1)

Here, vs is the superfluid velocity, ρ is the mass density,
and the index 0 denotes the quantities measured in the
superfluid-component reference frame (i.e., frame
where the superfluid velocity is zero). Therefore, E0 and
j0 are, respectively, the energy density and the momen-
tum density relative to the superfluid component. The
former is a function of ρ, j0, and entropy density S. The
differential of E0 can be written as

(2)

where the Lagrange multipliers T, µ, and w have the
meaning of, respectively, temperature, chemical poten-
tial, and so-called relative velocity of the normal and
superfluid components.

For the isotropic fluid, the following useful relations
can be obtained for the partial derivatives of j0 with
respect to w:

(3)

E∫

E
ρv s

2

2
--------- vs j0 E0.+ +=

dE0 TdS µdρ wd j0,+ +=

∂ j0
k

∂wl
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T ρ,

wkwl
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∂ j0
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------- 

 
T ρ,
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w
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w3
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  j0.+=
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Indeed, the velocity w and momentum density j0 are
parallel to each other:

By differentiating this identity, one obtains Eq. (3).
Next, transforming Eq. (1) and using Eq. (2), one

can write dE as

(4)

where j = ρvs + j0 is the total momentum density and
vn = vs + w is the normal velocity.

The stability implies that any “allowed” fluctuation
raises the total energy Etot of the system. The allowed
fluctuations are those which do not change conserved
quantities. This signifies that the minimum of Etot
should be sought for at constant entropy and all additive
integrals of motion: mass, momentum, and superfluid
velocity. Whereas the mass and momentum conserva-
tion phenomena are well-known, the conservation of
the superfluid velocity deserves special remarks.
Indeed, superfluid motion has the potential character;
i.e., the velocity vs is the gradient of a certain scalar,
vs = ∇φ . The same relation can be written for the time

derivative,  = ∇ . The latter expression, clearly, is
the conservation law for all three components of vector

Vs = dr, which, hence, is the additional integral of

motion specific to a superfluid.
Consider a macroscopic fluctuation δS, δρ, δvs, and

δj of all variables. Since these quantities are conserved,
the first variation of the total energy of a homogeneous
system is identical to zero:

The 8 × 8 matrix of the quadratic form for the second
variation of the total energy is the Jacobian

Q = 

It is positively definite if all principal minors M1, M2,
…, M8 in the upper left corner are positive. Below, we
consider, by turns, the requirements on these minors.

The first requirement for the positiveness

j0 j0 T ρ w, ,( )w
w
----.=

dE TdS=

+ µ
v s

2

2
------ vsvn–+ 

  dρ j ρvn–( )dvs vndj,+ +
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dr 0.≡
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-------------------------------------------------------------------------------- .
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is the generalization of the usual requirement for the
positive heat capacity. Below, it will be shown (Eq. (8))
that (∂j0/∂w)T, ρ > 0, so that the last inequality, in fact,
can be written as

(5)

The positiveness of the following group of minors
can easily be verified using the transformations

(6)

It follows that the minors M2, M3, and M4 will be posi-
tive if all minors of the second term in Eq. (6) are posi-
tive:

We used identity (3) and chose the direction of vector
w as the first coordinate axis. Thus, our set is aug-
mented by the following inequalities:

(7)

(8)

The same transformation, when applied to the larg-
est minor, yields

Similarly, the minors M5, M6, M7, and M8 are positive if
the nonzero principal minors of the Q" matrix are posi-
tive. Using the thermodynamic identity
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one gets

Below, the explicit expression is given for the subma-

trix corresponding to the ρ, , ,  subspace of
matrix Q". The x axis is directed along the vector w.
Using Eq. (3), one obtains

The corresponding inequalities have the form

(9)

which is the generalized requirement (in the case of
nonzero relative velocity w) for the positive compress-
ibility,

(10)

and

(11)

Inequalities (5), (7)–(11) comprise a full set of condi-
tions for thermodynamic stability.

3. DISCUSSION

In the situation with a “stopped normal component,”
the mass flow f relative to the normal component may
prove to be a more suitable variable than the flow j0 rel-
ative to the superfluid component. Using the obvious
relation f = ρw – j0, one can reformulate the obtained
inequalities as

(12)
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As a simple example of using the derived inequali-
ties, we consider the case w = 0. From Eqs. (12)–(15),
one has

(16)

(17)

In usual notation, the last inequality has a clear physical
meaning:

(18)

4. PHONON–ROTON MODEL

Let us apply the obtained stability criteria to a real
4He superfluid. To evaluate the derivatives entering the
inequalities, a microscopic model is necessary. The role
of the latter can successfully be played by the Landau
phonon–roton theory, which is valid over a wide range
of temperatures and velocities. We will use it for calcu-
lating the quasiparticle contribution to the “modified”
free energy in the coordinate system where the super-
fluid component is at rest:

This potential can be obtained from the spectrum of ele-
mentary excitations using the well-known expression

Here, the excitation energy e(p) for two branches is
given by

The indices ph and r are used for the quantities relating
to phonons and rotons, respectively; c is the sound
velocity; ∆ is the roton gap; and m and p0 are the roton
effective mass and momentum, respectively (the used
numerical data can be found in [4, 5]: ρ = 0.145 g/cm3,
∆ = 8.7 K, m = 0.16mHe, p0/"ρ1/3 = 3.673 × 108 g–1/3,
c = 238 m/s, ∂∆/∂ρ = –0.47 × 10−14 cm5 s–2, ∂m/∂ρ =
−0.45 × 10–23 cm3, and ∂c/∂ρ = 467 × 103 cm4 s–1 g–1).

For a small dimensionless parameter m∆/  ~ 0.03 ! 1,
the Landau critical velocity is determined by the
expression vL = ∆/p0.
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After integration, the above relationships bring
about the following expression for the contribution to
the free energy:

By differentiating this potential, one can obtain all the
desired thermodynamic quantities. Namely,

The quasiparticle contribution to the pressure deriva-
tives are ignored.

Inequality (11) breaks first. The point set satisfying
this inequality in the T–w plane is shown in the figure.
Fluid loses stability in the region above the solid line
drawn in the figure.

At zero temperature, the critical velocity tends to the
Landau critical velocity vL. Note that, for the systems
where all excitations allow fluid-dynamic description
(in other words, in the systems without roton branch),
inequality (11) at zero temperature implies that the con-
dition (∂p/∂ρ)T, w – w2 > 0 is fulfilled; i.e., w < c.

5. CONCLUSIONS

It is assumed that the superfluidity breakdown in
narrow orifices has the following nature [1]. As long as
the cross section is not too small, the critical velocity is
independent of temperature and increases as the orifice
narrows. This is precisely the behavior that is typical of
the Feynman critical velocity associated with the vortex
formation.
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Critical velocity wc as a function of temperature T at nor-
mal pressure. The dashed line corresponds to the equality
T = ∆ – p0w; one can see that the condition T < ∆ – p0w is
fulfilled over the entire stability region. At zero temperature,
the “instability” critical velocity wc coincides with the Lan-
dau critical velocity vL, and it turns to zero at the critical
temperature Tc (λ point) (see Eq. (18)). In the phonon–roton
model, the critical temperature is Tc ≈ 2.8 K.
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In very narrow orifices, the vortex critical velocity
becomes so high that the superfluidity breakdown
mechanism and its properties change: the critical veloc-
ity no longer depends on the orifice cross section, but
decreases with a rise in temperature. Such a behavior is
ordinarily related [1] to the Iordanskii–Langer–Fisher
mechanism [6]. However, because of the lack of reli-
able information about orifice profiles, this theory was
not compared numerically with the experiment.

At the same time, the experimentally observed
behavior of critical velocity can be associated with the
stability criterion described above. In other words, we
suggest an alternative explanation of the experimental
results on the assumption that the thermodynamic limit
wc is achieved in narrow orifices.

When comparing our predictions with the experi-
mental data, one should bear in mind the following. The
assumption that the critical velocity is determined by
the stability limit implies that the equations of fluid
dynamics inside the channel are essentially nonlinear.
In particular, this means that the superfluid component
cannot be considered as an incompressible fluid fraction.
In other words, the phase difference between the channel
ends is not proportional to the maximal attained velocity.

It is worth noting that the approach used in this work
for the critical velocity as a stability limit is similar to
the approach used in the Kramer work [7]. Although the
inequalities proposed in that work are not thermody-
namic, the numerical values of critical velocity
obtained by Kramer on the basis of the phonon–roton
model are close to the values shown in the figure.

We are grateful to I.A. Fomin for helpful discus-
sions. This work was supported by the INTAS (grant
no. 01-686), CRDF (grant no. RP1-2411-MO-02), Rus-
sian Foundation for Basic Research (project no. 03-02-
16401), and the Presidential Program for the Support of
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Tunneling Conductivity Features of the New Reconstructed 
Phases on the GaN(0001) Surface¶ 
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Two new Au-induced reconstructed phases on the GaN(0001) surface have been identified and investigated by
STM/STS method. Ringlike and c(2 × 12) surface nanostructures were observed on STM images. The commen-
surate c(2 × 12) structure (α-phase), according to our spectroscopic measurements, demonstrates properties of
a 1D system, whereas the incommensurate β-phase looks similar to a disordered 2D system. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 68.35.Bs; 68.35.Rh; 68.37.Ec
GaN and its related alloys have become a very
attractive subject in the past several years for several
reasons. On the one hand, GaN is of interest for practi-
cal application in a short-wave optical range for the cre-
ation of optoelectronic devices and, on the other hand,
the unique incommensurate fluidlike structure of the
surface stimulates interest such as the transition from
incommensurate to commensurate phases by the
adsorption of metals, and the influence of the fluid
structure on the growth of metals on the GaN surface.
During the last several years, we have been able to
observe great developments in both high quality mate-
rial growth [1] and device fabrications [2–4]. At the
same time, some fundamental questions, i.e., on
adsorption mechanism, growth mode, possible metal-
induced reconstructions, and their properties are still
not clear. Wurtzite GaN is a polar semiconductor with
two basal planes, i.e., the Ga-polar (0001) and N-polar

(000 ). While the intrinsic bulk-terminated GaN(0001)
surface is disordered, a series of surface reconstructions
can be prepared by moving additional Ga from the
N-rich 2 × 2 [5, 6] to the Ga-rich 4 × 4, 2 × 2, 5 × 5 [7, 8],
4 × 6 [5], and the most Ga-rich pseudo-1 × 1 surfaces
[5–9]. Typical MOCVD and MBE growth of GaN are
performed under Ga-rich conditions, and it has been
shown that the pseudo-1 × 1 surface plays the role of
surfactant layer, promoting the two-dimensional step-
flow growth [9, 10]. Thus, from a practical point of
view, the pseudo-1 × 1 surface is the first candidate for
studying metal adsorption and growth. Smith et al. [5,
6] have determined that the surface has about 2–3 ML
(1 ML refers to the atomic density in the GaN(0001)
plane, i.e., 1.1 × 1015 cm–2) additional Ga, and it is char-
acterized by a δ-1 × 1 reflection high-energy electron

¶This article was submitted by the authors in English.
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diffraction (RHEED) pattern. The STM image is usu-
ally smooth and featureless, and 1 × 1 corrugation can
be observed only under specific tunneling conditions. A
“Ga fluid” model has been proposed by Smith et al. [5,
6] and Northrup et al. [11]. According to this model,
two additional Ga adlayers above GaN surface are
present. The first layer of Ga is fixed in 1 × 1 configu-
ration, and the second layer (top layer) has a contracted
structure with the Ga density of 1.3 ML (similar to
some metal surfaces at high temperature, e.g., Ir [12],
Pt [13], and Au [14]). It is very interesting to note that
the top layer of Ga is intrinsically mobile at room tem-
perature, resulting in the 1 × 1 corrugation observed by
the STM. Mula et al. [9] have reported that the pseudo-
1 × 1 surface is very stable, and further deposition of
several hundred ML Ga does not change the structure,
indicating a zero sticking coefficient of Ga on this Ga-
saturated surface.

We chose the GaN(0001)-pseudo-1 × 1-Ga (hereaf-
ter “Ga-fluid”) surface as the substrate and then studied
the adsorption of the Au submonolayer at RT. We found
two new reconstructions induced by Au at RT, i.e., the
commensurate c(2 × 12) reconstruction (α-phase) and
incommensurate β-phase. Results of spectra measure-
ments clearly demonstrate a possibility of formation of
1D and 2D systems on the basis of a mixed Au–Ga ada-
tom structure. All the experiments were performed in
ultrahigh vacuum conditions. The quality of tunneling
tips was controlled by a field ion microscope (FIM)
attached to the STM chamber [15]. We used commer-
cial PtIr tips as successfully as tips prepared from the
〈111〉-oriented W-crystal wire by electrochemical etch-
ing. Before scanning, the tips were degas at 500°C dur-
ing 8 h, then field evaporation was used to remove the
oxide layers and to shape the scanning tips. The sub-
strate was a commercial 1.5-mm-thick GaN(0001) film
003 MAIK “Nauka/Interperiodica”
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grown on a SiC(0001) wafer by MOCVD. RHEED was
employed to monitor the surface structure during
growth. Au was evaporated from a tungsten coil heater,
and the Au flux was controlled by the heater current.
The typical flux used in the present study was
0.2 ML/min.

Both filled and empty state images were acquired at
a constant current mode with a tunnel bias voltage
applied to the sample and a tunneling current of 20 pA.
The GaN(0001)-pseudo-1 × 1 was formed by terminat-
ing MBE growth on the GaN(0001) surface under Ga-
rich conditions. Figure 1 shows an STM image of Ga-
rich surface (pseudo-1 × 1), prepared by deposition of
about 2 ML of Ga above the last GaN bilayer. This
STM image shows large and smooth terraces with the
typical terrace width of several hundred Å, with no spe-
cific features in either filled or empty state STM
images. The 1 × 1 atomic corrugation can be observed
only with a very sharp tip at very low bias voltage, as
shown in the inset in Fig. 1a. The RHEED pattern of
this surface shows a “1 × 1” pattern consistent with
STM observation. The presence of the satellite peaks
indicates the contraction of the Ga adatom layer, and
the 1 × 1 structure observed by STM is due to the
mobility of the top Ga adlayer. These observations are
consistent with the report by Smith and Northrup [6,
11]. After deposition of the Au submonolayer on the
pseudo-1 × 1 surface at room temperature, we were
able to observe two new phases on the surface. There
are two reconstructions: commensurate c(2 × 12)
(α-phase) and incommensurate β-phase. The area of
the two new phases increases with increasing Au cover-
age until they fully cover the whole surface. Figure 1b
shows the simultaneous formation of α- and β-phases
at Au coverage of about 0.02 ML. As can be seen from
this image, two patches of α- and β-phases are formed
on the same terrace (double-step height) initially cov-
ered by “Ga fluid.” The size of the terrace is about
1000 Å. The corrugation height of α-phase is appar-
ently bigger than that for the β-phase (the height profile
measurement gives a height difference of 2.0 and 0.5 Å,
respectively, with respect to the Ga fluid surface). The
c(2 × 12) reconstruction (α-phase) (Fig. 2a) contains

parallel atomic rows running along the [ ] direc-
tion, in which each pair of bright rows is separated by a
dark row. The unit cell is rectangular, and the periodic-

ity in the [ ] and [ ] directions is 2a and

6( /2)a, respectively, which is denoted as c(2 × 12)
reconstruction. The periodicity can be further con-
firmed by the RHEED measurement as shown in

Fig. 2b. The “6×” in the [ ] azimuth and a “4×” in

the [ ] azimuth are clearly identified, correspond-
ing to a c(2 × 12) periodicity in the real space. Another
common Au-induced phase is the incommensurate
β-phase. Figure 3 shows two STM images of the same
place of the β-phase at different bias voltage polarities.

1120

1120 1100

3

1120

1100
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The corrugation height is smaller for a filled-states
STM image (Fig. 3a) compare to an empty-states one
(Fig. 3b). This will be discussed in more detail later.
The structure consists of hexagonally packed protru-
sions with a distance of the nearest neighbor of ~8.6 Å.

The closed-packing direction is along the [ ]
direction, 30° rotated from the closed-packing direction

of substrate, [ ]. Ringlike modulation patterns can
be observed randomly distributed on the surface. We
suggest that the incommensurate β-phase is comprised
of two-dimensionally grown Au islands, with the
underlying Ga bilayer structure still remaining. First,
the height difference between the β-phase and the “Ga
fluid” substrate is about 2 Å, consistent to the interlayer
distance of the Au(111) plane (this is much higher than
the c(2 × 12)-Au phase where the height difference is
only about 0.5 Å). Second, the nearest maxima spacing
is 8.6 Å, being incommensurate with the substrate lat-

1100

1120

(‡)

(b)

b-phase

a-phase-
c(2 ¥ 12)

Ga fluid

Fig. 1. Filled-state STM images of (a) as-prepared “Ga
fluid” (2500 × 2200 Å). At normal tunneling conditions, the
surface is smooth and without corrugation. The inset image
shows a 40 × 40 Å area with 1 × 1 corrugation obtained at a
sample bias of –0.1 V. (b) After adsorption of Au at coverage
of ~0.02 ML, two patches of c(2 × 12) (α-phase) and
β-phase form on the same isolated double step-height ter-
race (about 1200 Å in size).
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Fig. 2. (a) Zoom in image of the c(2 × 12) reconstruction. The tunneling current is 20 pA at sample bias voltage of 0.4 V, the image

scale is 90 × 70 Å. (b) RHEED pattern of the c(2 × 12) surface, where 6× in the [ ] and 4× in the [ ] directions are iden-
tified. This corresponds to a c(2 × 12) periodicity in the real space.

1120 1100
tice constant of 3.19 Å. But it is approximately three
times the lattice constant on the Au(111) plane, 2.88 Å.
So, this structure can be explained by pure Au(111)
islands formed on top of the Ga fluid surface. The 3×
corrugation is possible in strain-induced modulation
patterns due to a 4% lattice mismatch between Au
(2.88 Å) and the Ga-fluid (2.76 Å), that is much smaller
than the mismatch between Au and the bulk GaN sub-
strate (10%). This is the reason why we can prepare flat
Au film on the Ga-fluid surface, while the growth of Au
on bulk-terminated GaN surface results in 3D agglom-
erations (the result will be published elsewhere). It
should be noted that, upon formation of the β-phase, the
originally mobile Ga atoms on the underneath of the
“Ga fluid” substrate have to cease moving. This may
result in the segregation of some of the Ga atoms into
the Au surface, which is a likely origin of the ringlike
patterns observed in the STM images. The discovered
ringlike structure can be of interest for nanotechnology
because of good reproduction and a small scattering
parameter.

The I–V characteristics measured above the surface
area of β- and α-phases are present in Fig. 4. Prior to
taking these measurements, the tip was fixed at a certain
surface site (ringlike or c(2 × 12) structure) with fixed
tunneling parameters: Vs = –2.0 V, It = 50 pA. The best
STM images of the ringlike structure were obtained in
the range of Vs = ±0.5 V. This is in the good agreement
with our STS spectra. As one would expect from
Fig. 4a, the contrast of the STM image at Vs = +0.5 V
should be higher than this one at Vs = –0.5 V. This dif-
ference is clearly seen from Fig. 3. It is obvious that the
spectra have a metallic-like character. Tunneling con-
ductivity measured above the c(2 × 12) structure reveal
a peak at zero bias voltage. Moreover, two dips at 0.25
and −0.15 V are clearly seen on normalized tunneling
conductivity (dI/dV)/(I/V) curves. Two peaks also
appear on tunneling conductivity curves at 0.5 and –0.5 V.
We connect this behavior of tunneling conductivity
with a quasi-one-dimensional character of the elec-
tronic density of states along the double-chain structure
(c(2 × 12)). The electron states of the double-chain
structure (c(2 × 12)) can be described by the simple
model Hamiltonian:

(1)

where ε1k = ε2k = tcos(ka) is the 1D energy spectrum of
electrons along each noninteracting chain; t is the hop-
ping matrix element between the nearest neighboring

Ĥ ε1ka1kσ
+ a1kσ

k σ,
∑ ε2ka2kσ

+ a2kσ+=

+ Ta1kσ
+ a2kσ h.c.,+
JETP LETTERS      Vol. 78      No. 9      2003



TUNNELING CONDUCTIVITY FEATURES 581
sites along each chain of c(2 × 12) structure; and

(aikσ) is the creation (annihilation) operator of elec-
trons in the state of momentum k and spin σ in the ith
chain (i = 1, 2). The last term in the Hamiltonian corre-
sponds to the interaction between nearest neighbors in
different chains with hopping matrix element T. In
k-space, the exact retarded electron Green function
along each chain can be easily obtained. For example,

(2)

The poles of Green functions determine the electronic
spectrum of double-chain structure:

(3)

The density of states along each of the interacting
chains can be obtained as

(4)

So, we have two splitted quasi-1D bands, which are
centered at ±T and have the width 2t. In the symmetric

aikσ
+

Gkk
1 ω ε2k–

ω ε1k–( ) ω ε2k–( ) T2–
-------------------------------------------------------.=

ω± t ka( )cos T .±=

1
π
---SpkIm Gkk

1 2( ) ω( )( )– ν1 2( ) ω( ).=

(b)

(‡)

Fig. 3. STM image of the same site of β-phase structure
(175 × 175 Å). The tunneling current is 50 pA. (a) Filled-
state STM image of ringlike structure (V = –0.5 V).
(b) Empty-state STM image of ringlike structure (V = 0.5 V).
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case, one can obtain splitted bands and a 1D character
of density of states:

(5)

It is reasonable to assume that T and t are compara-
ble because the distance between the chains is just the
same as the interatomic distance along the chain. So,
one can expect the appearance of two dips in the tunnel-
ing conductivity spectra when the value of applied bias
approaches the energy center of each splitted 1D band:
eV = ±T. When applied voltage eV is close to the energy
values of band edges: eV = –T ± t or eV = T ± t, one
should obtain strongly increased tunneling conductiv-
ity, because the 1D density of states has power law sin-
gularity at band edges with power law exponent –1/2.
Similar dependence of local tunneling conductivity
versus applied bias voltage observed near double-chain
structure during STS measurements is shown in Fig. 4b.
Singularities in tunneling conductivity are smoothed by
interaction with a substrate, but peaks in (dI/dV)/(I/V)
curves corresponding to the edges of each 1D splitted
band are clearly seen at zero applied bias and at V =

ν1 2( ) ω( ) 1
2ta
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Fig. 4. Normalized tunneling conductivity measured above:
(a) ringlike structure, (b) c(2 × 12) structure.
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0.5 V and V = –0.5 V. Two dips are also present at
(dI/dV)/(I/V) curves at applied bias V = 0.25 V and V =
–0.15 V. In contrast to the c(2 × 12) structure, the tun-
neling conductivity above ringlike surface structure has
no features of the quasi-1D density of states. The tun-
neling conductivity peak at zero applied bias voltage is
absent: a dip is clearly seen at eV = 0 on (dI/dV)/(I/V)
curves. Two peaks for ringlike structure instead of dips
for c(2 × 12) structure have been found when the
applied bias voltage is 0.2 or –0.2 V. Such behavior of
local tunneling conductivity, especially the dip at small
bias voltage, should be connected with disordered two-
dimensional surface structure in β-phase.

In conclusion, two new reconstructions on the
GaN(0001)-pseudo-1 × 1-Ga surface induced by Au at
RT (i.e., the commensurate c(2 × 12) reconstruction
(α-phase) and incommensurate β-phase) have been
found. Scanning tunneling spectroscopy measurements
revealed the existence of ordered one-dimensional
structure with specific features in tunneling conductiv-
ity spectra, as well as disordered two-dimensional ring-
like structure on the basis of GaN(0001)-pseudo-1 × 1-
Ga surface.

This work was partially supported by SAS
no. 30/03-MC, project no. 1604.2003.2, the Russian
Foundation for Basic Research (project no. 03-02-
16807), and “Nanostructures”-7. We gratefully ack-
nowledge T. Sakurai for valuable discussions.
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p-Junction Realization Due to Tunneling
through a Thin Ferromagnetic Layer¶
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It is demonstrated that in superconductor–ferromagnet–superconductor (S/F/S) systems in the case of low inter-
face transparency the transition into π-phase is not related with the oscillations of the superconducting order
parameter in F-layer. Consequently, the π-phase may exist at very thin F-layer thickness. The crossover from
π- to 0-phase results in the nonmonotonous temperature dependence of the critical current. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 74.78.Fk; 74.50.+r
1. INTRODUCTION

The strong exchange field acting on the electrons in
a ferromagnet provokes damping oscillatory behavior
of the superconducting order parameter. This effect is at
the origin of the π-junction realization in superconduc-
tor–ferromagnet–superconductor (S/F/S) systems [1,
2]. Recently, such π-junctions have been successfully
fabricated and experimentally studied [3–5]. It has been
demonstrated [6] that in a system composed of alternat-
ing superconducting and ferromagnetic atomic thick-
ness layers the so-called π-phase may exist, wherein the
superconducting order parameter changes its sign as we
go from one superconducting layer to another. The
π-phase shift in this case appears due to tunneling
through the atomic ferromagnetic layer. Tunneling
through a barrier with paramagnetic impurities also
may provoke the π-phase shift in Josephson junctions
[7, 8]. The possibility of the π-state realization in com-
plex SFIFS Josephson junctions has recently been pre-
dicted [9, 10].

The particularity of the three latter cases is the spe-
cial scenario of the 0–π transition, where the oscilla-
tions of the superconducting order parameter in the
F-layer are absent.

Here we demonstrate that, astonishingly, this sce-
nario also works in a simple S/F/S Josephson junction
with the thin F-layer, when the transition into π-phase
becomes possible in the case of very small transparency
of the S/F boundary. Such situation becomes physically
similar to tunneling through the atomic thickness of the
F-layer [6], and the studies of corresponding Josephson
junctions could provide an experimental test of this
mechanism of the π-phase shift.

¶ This article was submitted by the author in English.
0021-3640/03/7809- $24.00 © 200583
2. GENERAL FORMALISM

Let us consider the case of an S/F/S junction with a
thin F-layer of thickness d and large superconducting
electrodes. We suppose the dirty limit conditions hold
with the thickness of F-layer being smaller than the

characteristic length ξf =  of superconducting
correlations decay (with oscillations) in the F-layer,
where h is the ferromagnetic exchange field acting on
the electron spins in the F-layer and Df is the electron
diffusion constant in the F-layer. As will be demon-
strated, the crossover from 0- to π-phase occurs for
small S/F interface transparency, i.e. when the induced
superconductivity in F-layer is weak and may be
described by the linearized Usadel equation for the
anomalous function Ff (see for example [2]):

(1)

where ω = 2πT(n + 1/2) are the Matsubara frequencies
and F-layer corresponds to the region –d/2 < x < d/2.
Moreover, the weak S/F interface transparency permits
one to neglect the proximity effect in S electrodes and
consider the superconductivity there to be practically
unperturbed by the F-layer. The interface transparen-
cies enter through the general boundaries conditions at
the S/F interfaces to Usadel equation [11]. Near Tc they
can be written in the following form:

(2)

D f /h
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where the notation Fs(Ff) is used for the anomalous
Green function in a superconductor (ferromagnet) and
σn(σs) is the conductivity of the F-layer (S-layer above

Tc), and ξs =  is the superconducting coher-

ence length of the S-layer, while ξn = . The

parameter γB is related to the S/F boundary resistance
per unit area Rb via the simple relation γB = Rbσf/ξn [11]
(note also the relation between γB and the transparency
of the S/F interface T = 1/(1 + γB) [11]). Further on, for
simplicity we suppose that both interfaces are identical
(so γB1 = γB2 = γB), and we will use the notation F = Ff.
Also for small interface transparency (if σnξs/σsξn ! γB)
we may use the rigid boundary conditions (see for

example [12, 13]) Fs(–d/2) = ∆e–iϕ/2/  and

Fs(d/2) = ∆eiϕ/2/ . This means that to find the
anomalous Green function Ff it is in fact enough to use
only the two first conditions in (2).

The solution of (1), satisfying the boundary condi-
tions is readily written as:

(3)

where the complex wave vector

Note that in principle, at arbitrary temperature the
boundary conditions are different from those in (2) (see
for example [12]). However, in the limit of low S/F
interface transparency (γB @ 1), when the amplitude of
the F function in F-layer is small, we may use the lin-
earized Usadel equation (1) at all temperatures. The
only modification in the boundary conditions (2) is that
Fs must be substituted by Fs/|Gs| and γB by γB/|Gs|, where
the normal Green function in a superconducting elec-

trode Gs = ω/ . Taking this renormalization
into account in the explicit form (3), we may put it in
the formula for the supercurrent

Ds/2πTc

D f /2πTc

ω2 ∆2
+

ω2 ∆2
+

F x( )

= 
∆ ϕ /2( )cos

ω2 ∆2+ kd/2( )cosh kγBξn kd/2( )sinh+( )
------------------------------------------------------------------------------------------------------ kx( )cosh

+
∆i ϕ /2( )sin

ω2 ∆2+ kd/2( ) kγBξn kd/2( )cosh+sinh( )
----------------------------------------------------------------------------------------------------- kx( ),sinh

k 2 ω i ω( )hsgn+( )/D f .=

ω2 ∆2+

Js ϕ( ) ieN 0( )D f πT F
d
dx
------ F̃ F̃

d
dx
------F– 

  ,
∞–

∞

∑=
where (x, h) = F*(x, –h), and obtain the usual sinuso-
idal current-phase dependence with the critical current

In the limit kd ! 1 (i.e., d < ξf) the oscillations of
anomalous function F are absent, but, nevertheless, if
the boundary transparency is very low such that 1/γB !

ξnd/ , the critical current can change its sign. Indeed,
in this limit the expression for the critical current reads

(4)

Usually, at experiment the Curie temperature Θ of
ferromagnet is higher than the superconducting critical
temperature Tc. For RKKY mechanism of ferromag-
netic transition Θ ~ h2/EF, so the exchange field h is
much larger than the superconducting critical tempera-
ture Tc. Taking into account the condition h @ Tc and
performing a summation over the Matsubara frequen-
cies of the first two terms in the brackets (4), we finally
obtain

(5)

Let us start the analysis of Ic over d dependence in
the limit of very large γB (more precisely, when γB @
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(h/Tc)). In such a case, we may neglect the term propor-
tional to 1/γB in the bracket of (5), and then obtain that
at T  0 the transition into the π-phase occurs
(Ic changes its sign) at

and indeed the condition d < ξf is satisfied. Note that in
the case of very low boundary transparencies the rele-
vant formula obtained in [14] near the critical tempera-
ture in the limit Tc/h  0 also reveals the crossover
between 0- and π-phase. On the other hand, no transi-
tion into π-phase has been obtained in the analysis of
S/F/S system [13], which is apparently related with the
gradient expansion of the F-function in the ferromagnet
when only the first term has been retained.

It is interesting to note that the critical F-layer thick-
ness dc, when the transition from 0- to π-phase occurs,
depends on the temperature. The corresponding tem-
perature dependences are presented in Fig. 1 for differ-
ent value of Tc/h ratios. We see that dc(T) decreases
when the temperature decreases. So for some range of
F-layer thickness the transition from 0- to π-phase is
possible when the temperature lowers. This resembles
the situation with atomic thickness S/F multilayers [15]
and we may therefore expect the nonmonotonous Ic(T)
dependences to reveal the crossover between 0- and
π-phases for dc (T = 0) < d < dc(Tc).

For the case of moderately large γB, i.e. when 1 !
γB ! h/Tc, the terms with Ψ functions in (5) can be
neglected and at T = Tc the critical thickness dc is

dc ξ f
2∆ 0( )

h
--------------- h

∆ 0( )
----------- 

 ln ,≈

dc T Tc=( ) ξ f 3ξ f /γBξn( )1/3,=

Fig. 1. Temperature dependences of the critical thickness dc
of the F-layer, corresponding to the crossover from 0- to
π-phase in the limit of very small boundary transparency for
different values of the exchange field.
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while at T  0 the critical thickness is somewhat
smaller dc (T = 0) = ξf(6ξf/πγBξn)1/3. The examples of
different nonmonotonous Ic(T) dependences for low
barrier transparency limit γB @ (h/Tc) are presented in
Fig. 2. We may see that the transition into π-phase state
occurs starts roughly with the thickness ξf/2, and that
rather unusual Ic(T) dependencies may be expected.

The interface S/F transparency plays an important
role in π-phase realization, and finite transparencies
soften the conditions of the transition into π-state. An
important particularity of the discussed mechanism is
the existence of the temperature crossover in the limit
h @ Tc, which is relevant to the experimental situation.
In the paper [3], the observed temperature crosssover
has been explained by a model with a small exchange
field h ~ Tc ~ 8 K. It is difficult to believe that the
exchange field in the CuxNi1 – x alloy used in [3] was so
small, as its Curie temperature was Θ ~ 20–30 K. Such
values of Curie temperatures imply an exchange field
higher 100 K.

Note that the discussed mechanism of the π-phase
appearance in the limit of large γB is quite robust toward
the F-layer thickness fluctuations, as the π-phase must
exist in the quite large interval dc < d & ξf.

The condition of applicability of the Usadel equa-
tion is l ! d, but qualitatively our analysis should be
valid up to d ~ l and it may provide an alternative expla-
nation of the results of experiments [3].

The considered situation is analogous, in some
sense, to the mechanism of π-phase realization due to
tunneling through the ferromagnetic layer in the atomic
S/F multilayer structure. There are very few layered
systems with alternating superconducting and ferro-
magnetic layers and, up until now, there has been no

Fig. 2. Nonmonotonous temperature dependencies of the
normalized critical current for low boundary transparency
limit: curve 1: h/Tc = 10 and d/ξf = 0.84; curve 2: h/Tc = 40
and d/ξf = 0.5; curve 3: h/Tc = 100 and d/ξ = 0.41.
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experimental evidence of π-phase existence in such
systems. On the other hand, the Josephson S/F/S junc-
tions with low interface transparency could be promis-
ing candidates for the observation of the discussed
effect.

In conclusion, we propose a new mechanism of
π-phase state formation in S/F/S junctions with a large
interface barrier.

The author is grateful to M. Kuprianov for useful
comments and recommendations and to C. Meyers for
a critical reading of the manuscript.
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Hopping Photoconduction and Its Long-Time Kinetics 
in a Heterosystem with Ge Quantum Dots in Si
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The effect of interband-transition-inducing illumination on the hole hopping conduction along a two-dimen-
sional array of Ge quantum dots in Si was studied. It is found that the photoconductance has either positive or
negative sign depending on the initial filling of quantum dots with holes. In the course of illumination and after
switching off the light, long-time photoconduction kinetics was observed (102–104 s at T = 4.2 K). The results
are discussed in terms of a model based on the spatial separation of nonequilibrium electrons and holes in a
potential relief formed by positively charged dots. The effect of equalization of potential barrier heights as a
result of photohole capture by the charged quantum dots during the process of illumination and relaxation is
suggested as an additional factor for explaining the phenomenon of persistent conduction. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 73.63.Kv; 72.20.Ee; 73.50.Pz
INTRODUCTION

The specific feature of type-II quantum dots (QDs)
in the Ge/Si system is that, because of a large gap
(~0.7 eV) between the Ge and Si valence bands, Ge
forms a potential well for holes and a potential barrier
for electrons. If the QD density is sufficiently high (~2–
4 × 1011 cm–2), the hole conduction has hopping char-
acter at low (<20 K) temperatures [1], while, at ~10 K,
the phonon-assisted hopping conduction changes to the
phononless charge transfer dominated by the Coulomb
interaction. The authors of [2] argued that the hopping
conductivity always increases upon disturbing the equi-
librium of a disordered system and that the character of
relaxation to equilibrium is determined by a large-scale
Coulomb interaction [3]. The QD ensemble is distin-
guished from other disordered structures in that the
hopping conductivity displays oscillatory dependence
on the degree of filling dots with charge carriers [1], as
a result of which the behavior of the system under non-
equilibrium conditions can change dramatically. In par-
ticular, one can expect that the signs of interband pho-
toconductance are different for different filling factors
of holes in Ge QDs. Moreover, the positively charged
QDs create Coulomb potential that is attractive for elec-
trons and repulsive for holes. It is known [4] that the
collective macroscopic potential barriers produced by
various inhomogeneities in the system cause, in the
majority of cases, the nonexponential kinetics of photo-
electric excitations and, hence, anomalously long pho-
toresponse relaxation times upon switching on and off
the light. In the presence of Coulomb potential, the cap-
ture rates of nonequilibrium electrons and holes in the
0021-3640/03/7809- $24.00 © 20587
Ge/Si heterostructures with QDs are different at tem-
peratures at which the hopping transport dominates,
and this gives grounds to expect that the dynamics of
transport processes in such systems are anomalous.

In [5] it is reasoned that the long-time relaxation of
hopping conduction is evidence that the system is non-
ergodic and, hence, the time-averaged physical quanti-
ties characterizing the system differ from their statisti-
cal means. Although the nonergodic character of hop-
ping-conduction relaxation is actively studied in
electron glasses [2, 3, 6, 7] and the experimental data
are rather numerous, the microscopic mechanism still
remains to be understood. We assume that the carrier
mobility changes upon excitation and the return to the
initial state proceeds very slowly. The decisive role of
interaction in the slow conduction kinetics was con-
firmed for Anderson’s insulators by the calculations in
[8]. To explain the long-time relaxation (LTR) of pho-
toconduction in the semiconductor structures of the
AlGaAs and AlGaN types, one often invokes the model
of so-called DX and AX centers [9, 10]. The position of
energy levels in the energy gaps of these centers change
upon illumination, and this is accompanied by a consid-
erable lattice relaxation that prevents the reverse transi-
tion. The persistent photoconduction (PPC), which
practically always accompanies LTR, is also observed
in magnetic materials, where it is caused by an increase
in the size of ferromagnetic inclusions in a diamagnetic
matrix. A change in the size of inclusions increases the
degree of their overlap and, correspondingly, the con-
ductance of the system. Finally, attempts are made to
explain many experimental data using the so-called
barrier model [4], which assumes that the electric fields
003 MAIK “Nauka/Interperiodica”
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of the barriers produced, as a rule, by inhomogeneities
in the sample bring about spatial separation of nonequi-
librium carriers, thereby hampering their recombina-
tion.

In spite of the ample experimental data, the physical
nature of LTR remains to be clarified. Moreover, the
inhomogeneities governing the long-time processes in
the known semiconductor structures have a random
character, so that the experimental characteristics
change from sample to sample. In the heterostructures
with the Ge QDs in Si, the potential barrier can be con-
trolled by varying the QD charge state, allowing the
development of a model system with reproducible
dynamics.

In this work, to elucidate the LTR mechanism for
photoconduction in a two-dimensional array of Ge/Si
QDs, the photoconduction kinetics upon the illumina-
tion of the system by an interband light will be studied
as a function of the degree of filling dots with holes,
illumination intensity, and temperature.

EXPERIMENTAL

Structures were grown by molecular beam epitaxy
on high-ohmic Si(001) substrates doped with boron to
a concentration of ~1013 cm–3. A germanium layer eight
monolayers thick was introduced into the middle of a
400-nm epitaxial p-Si film (boron concentration was on
the order of ~1016 cm–3). The controlled filling of Ge
islands with holes in the structures was accomplished
by introducing a boron-δ-doped Si layer at a distance of
5 nm below the QD layer. Since the ionization energy
of boron impurities in silicon is only 45 meV, while the
energies of the first ten hole levels (measured from the
Si valence bond top) in germanium pyramids of this
size are 200–400 meV [11], holes at low temperatures
leave impurities and occupy the QD levels. The boron
concentration in different samples varied from 2 × 1011

to 2.25 × 1012 cm–2, allowing the average number p of

Fig. 1. Conductance at T = 4 K (in e2/h units) as a function
of the Si-δ-layer doping level.
holes per one Ge QD to be varied from p = 0.5 to p =
6.5. To prevent the influence of surface effects, ohmic
contacts were formed by sputtering Al into preliminar-
ily etched grooves followed by heating at a temperature
of 400°C in a nitrogen atmosphere. The etching depth
was chosen so that electrical contacts with the con-
cealed Ge layer were formed after heating. To separate
effects associated with QDs, test samples without ger-
manium layer were grown in parallel. According to the
TEM and STM data, the formed Ge nanoclusters had
the average base size of 10 nm in the growth plane, their
height was ~1 nm, and their areal density was ~4 ×
1011 cm–2 (details of the sample preparation can be
found in [1]). Current was measured at a voltage of
100 mV, which corresponded to the ohmic region of
current–voltage characteristics over the entire tempera-
ture range studied. A GaAs light emitting diode with
emission maximum at a wavelength of ~0.9 µm was
used as a source of interband illumination. All measure-
ments of photoconduction kinetics were performed
after the samples had been kept at the measurement
temperature for several hours without applying voltage.

EXPERIMENTAL RESULTS

The dependence of conductance (in e2/h units) on
the boron concentration in the δ layer is shown in
Fig. 1. One can see that the conductance oscillates upon
changing the δ-doping level and, hence, the degree of
filling QDs with holes. Since the QD ground state is
filled when the number p of holes in the dot is two and
the excited state is filled if this number is six [12], the
minima in conductance should be observed just for
these values. Then the first minimum at the boron con-
centration NB ~ 1.2 × 1012 cm–2 should correspond to
two holes in a dot. However, for the real dot density
~4 × 1011 cm–2, this doping should give p = 3. This dis-
crepancy may be caused by the errors in determining
the doping level in the Si δ layer, because it was calcu-
lated indirectly, and in determining the QD density.

After exposure to the interband light, the transient
photoconductance of the structures displays an intricate
behavior in the course of relaxation to the stationary
state upon illumination and after switching off the light.
Typical time dependences of photoconductance are
shown in Fig. 2a for two samples with different levels
of δ doping. Contrary to the test structures without
QDs, where the photoconductance is always positive,
the photoconductance in the samples with germanium
can change sign, depending on the initial number of
holes in the dots. For instance, the sample with an inte-
ger number of holes in QD has positive photoconduc-
tance, whereas the latter becomes negative in the case
of fractional level filling with holes. In our opinion, a
change in the photoconductance sign upon illumination
is a proof of the hopping rather than the band nature of
photoconduction. The photoconduction kinetics is
anomalously slow both upon switching on and switch-
JETP LETTERS      Vol. 78      No. 9      2003
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ing off the light, and the conductance does not regain its
equilibrium value and differs by ~10% from it even
~5000 s after switching off the light. Such a behavior is
typical of the persistent photoconduction effect
observed in Coulomb glasses, magnetic materials, and
various semiconductor systems [13–15]. It should be
noted that long-time photoconduction kinetics was not
observed in the test samples without QDs (Fig. 2b). In
Fig. 3, the curves for the time dependence of positive
photoconductance correspond to three different light
intensities and to the case where the light initially
switches on in the thermodynamically equilibrium state
of the sample. Inasmuch as the character of the negative
photoconductance dynamics, except for a sign, is simi-
lar to the dynamics of positive photoconductance, all
further experimental data are presented only for the
samples with positive photoconductance. One can see
that the conductance G(t) rapidly increases immedi-
ately after switching on the irradiation, but thereafter
the rise is strongly decelerated. It is worth noting that if
the light again switches on after relaxation for approxi-
mately two hours in the dark, then, for the same initial
G values (points A and B in Fig. 2a), the conductance
increases much faster than after the initial switching on.
The temperature-dependent relaxation of the post-illu-
mination photoconductance GPPC is demonstrated in
Fig. 4. All curves are normalized according to GPPC(t) =
(G(t) – Gd)/(G(0) – Gd), where G(0) is the photocon-
ductance immediately after switching off the light and
Gd is the initial dark conductance. One can see that the
persistent photoconduction is noticeably suppressed at
elevated temperatures.

DISCUSSION

Illumination by the interband light generates elec-
tron–hole pairs in the sample. Electron can easily be
captured by the positively charged QDs, whereas hole
capture in the repulsive potential is hampered. The
recombination of an electron with equilibrium hole in
QD reduces the barrier to the capture of nonequilibrium
holes. Therefore, hole capture in the course of illumina-
tion reduces progressively the potential barrier height.
The stationary state is established when the electron
and hole flows into dots are equalized. A change in the
hole concentration in the dots can be described by the
following equation:

(1)

where Je is the electron flow into dots; V is the barrier
height; and Cem and Ccap are the emission and capture
rates, respectively. Inasmuch as the equilibrium state
with identical capture and emission rates cannot be
achieved in the experimental time, the emission term in
Eq. (1) can be ignored. At a small concentration ∆p of
nonequilibrium holes, the barrier height and the con-

dp
dt
------ Je– Cem Ccap

V–
kT
------- 

  ,exp+–=
JETP LETTERS      Vol. 78      No. 9      2003
Fig. 2. (a) Photoconduction kinetic curves normalized to the
initial dark G values for the samples with different hole con-
centrations in QDs. The solid line is the approximation of
experimental data by the logarithmic function. (b) Photo-
conductance of the sample without QDs.

Fig. 3. Plots of photoconduction kinetic curves vs. the
intensity of exciting light. Solid lines are the results of fit-
ting experimental data to the numerical solution to Eq. (2).
The light intensities for curves 2 and 3 are, respectively, 3I0
and 7I0, where I0 is the light intensity for curve 1.
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ductance can be set proportional to ∆p. Then the equa-
tion for conductance takes the form

(2)

where I is the light intensity and A, B, and γ are con-
stants. Since the conductance is the oscillating function
of the degree of filling dots with holes, a change in the
hole concentration upon illumination can both increase
and decrease the conductance. The positive photocon-
ductance should be observed upon a decrease in the
number of holes in the dots in the samples with com-
plete filling, whereas the negative photoconductance
should be observed for the fractional filling of the quan-
tum level with holes. This situation is observed in our
experiment. The solid lines in Fig. 3 are the approxima-
tion of experimental data by the numerical solution to

dG/dt AI B γC–( ),exp+=

Fig. 5. Derivative of the experimental curve for photocon-
duction kinetics as a function of photoconductance: (1) light
switches on for the first time; (2) light is switched off;
(3) light switches on for the second time; (4) the same, but
the curve is extended toward lower barriers. The solid and
dashed lines are for the dependences calculated by Eqs. (2)
and (3), respectively.

Fig. 4. Photoconduction relaxation curves normalized
according to GPPC(t) = (G(t) – Gd)/(G(0) – Gd) at various
temperatures.

3

Eq. (2). The short-time portions of the curves for the
time dependence of photoconductance are rather well
described by the calculations, but the further increase in
conductance is much slower than is predicted by calcu-
lations. Figure 5 shows the derivative of the experimen-
tally measured photoconductance with respect to time
as a function of conductance. One can see (solid line)
that the exponential character of conductance derivative
(Eq. (2)) breaks when the conductance achieves the
value G ≈ 0.93Gmax. In our opinion, the observed dis-
crepancy between the experimental data and the calcu-
lations is caused by the equalization of the potential
barrier heights as a result of hole capture by the charged
QDs in the course of illumination. Because of the initial
scatter in nanocluster sizes and, hence, in the number of
holes in them, the barrier heights around the germa-
nium islands are also inhomogeneously spread. The
effective barrier height V characterizing hole capture
(Eq. (1)) is equal to its minimal value in the inhomoge-
neous system. Upon illumination, holes are captured by
the dots having the smallest positive charge, as a result
of which the number of holes is equalized throughout
the whole QD array. As a result, the effective barrier
becomes higher than in the equilibrium case with the
same average degree of filling dots with holes. The rise
in the potential barrier height decelerates the increase in
conductance with time, which is observed in the exper-
iment. After switching off the light, hole capture by the
QDs is continued, so that the barrier height progres-
sively increases. In this case, a change in conductivity
obeys the following equation:

(3)

which has the analytic solution G(t) = G0 – Cln(t0 – t),
where G0, C, and t0 are constants. It is seen in Fig. 2a
(solid line) that the experimental decrease in conduc-
tance is well described by the logarithmic law, while the
corresponding dependence of dG/dt on G is well
approximated by the exponent (dashed line in Fig. 5).
Since the state to which the system relaxes after switch-
ing off the light is formed at low temperatures, at which
the hole capture by dots is strongly hampered, the con-
ductance in this state differs substantially from its value
in the initial equilibrium state. Apart from the differ-
ence in the absolute number of holes in dots, the state
with PPC is characterized by a more homogeneous hole
distribution. For this reason, if the values of conduc-
tance at the instants the light switches on for the first
and second times are equal (points A and B in Fig. 2a),
the effective barrier height in the second case will be
lower. If so, the conductance derivatives should coin-
cide for the first and second curves after the second one
is extended toward lower barriers. We see that, after this
transformation (dark triangles in Fig. 5), the curves
indeed coincide with each other. If the model suggested
is valid, the hole capture efficiency should increase with
temperature and, hence, the PPC effect should be sup-
pressed. We see that, at a temperature of ~13 K, the PPC

dG
dt
------- B γG–( ),exp=
JETP LETTERS      Vol. 78      No. 9      2003



HOPPING PHOTOCONDUCTION AND ITS LONG-TIME KINETICS 591
differs no more than by 15% from the initial equilib-
rium value of conductance.

In summary, the long-time nonexponential photo-
conduction kinetics and the persistent photoconduction
effect have been observed in the Ge/Si heterostructures
with a two-dimensional QD layer. Two main assump-
tions underlie the model describing the experimental
results: the hole-capture cross section by QDs depends
on the degree of QD filling, and the number of holes in
the QD ensemble is equalized upon the photoconduc-
tion excitation and relaxation. A change in the photo-
conductance sign with changing the initial number of
holes in the QD ensemble was explained by the oscilla-
tory character of hopping conduction.

This work was supported by the Russian Foundation
for Basic Research (project no. 01-02-17329), the State
program “Surface Atomic Structures” (project
no. 40.012.1.1.1153), and the Lavrent’ev Foundation
for Youth Projects (grant no. 27).

REFERENCES
1. A. I. Yakimov, A. V. Dvurechenskiœ, A. I. Nikiforov, and

A. A. Bloshkin, Pis’ma Zh. Éksp. Teor. Fiz. 77, 445
(2003) [JETP Lett. 77, 376 (2003)].

2. M. Ben-Chorin, Z. Ovadyahu, and M. Pollak, Phys. Rev.
B 48, 15025 (1993).
JETP LETTERS      Vol. 78      No. 9      2003
3. A. Vaknin, Z. Ovadyahu, and M. Pollak, Phys. Rev. Lett.
81, 669 (1998).

4. M. K. Sheœnkman and A. Ya. Shik, Fiz. Tekh. Polupro-
vodn. (Leningrad) 10, 209 (1976) [Sov. Phys. Semicond.
10, 128 (1976)].

5. M. Pollak, Philos. Mag. B 50, 265 (1984).
6. A. Vaknin, Z. Ovadyahu, and M. Pollak, Phys. Status

Solidi B 205, 395 (1998).
7. Z. Ovadyahu and M. Pollak, Phys. Rev. Lett. 79, 459

(1997).
8. C. C. Yu, Phys. Rev. Lett. 82, 4074 (1999).
9. T. N. Theis and P. M. Mooney, Mater. Res. Soc. Symp.

Proc. 163, 729 (1990).
10. H. J. Queisser, Phys. Rev. Lett. 54, 234 (1985).
11. A. V. Dvurechenskii, A. V. Nenashev, and A. I. Yakimov,

Nanotechnology 13, 75 (2002).
12. A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and

O. P. Pchelyakov, Thin Solid Films 336, 332 (1998).
13. J. Z. Li, J. Y. Lin, H. X. Jiang, et al., Appl. Phys. Lett. 75,

1899 (1999).
14. J. C. Fan, J. C. Wang, and Y. F. Chen, Appl. Phys. Lett.

75, 2978 (1999).
15. Hirotaka Oshima, Masao Nakamura, and Kenjiro

Myano, Phys. Rev. B 63, 075111 (2001).

Translated by V. Sakun



  

JETP Letters, Vol. 78, No. 9, 2003, pp. 592–596. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 78, No. 9, 2003, pp. 1082–1086.
Original English Text Copyright © 2003 by Ignatchenko, Maradudin, Poszdnyakov.

                                                                                                                                  
Waves in a Superlattice with Anisotropic Inhomogeneities¶ 
V. A. Ignatchenko1, *, A. A. Maradudin2, and A. V. Poszdnyakov1

1 Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036 Russia
2 Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA

*e-mail: vignatch@iph.krasn.ru
Received October 8, 2003

Dependences of the dispersion laws and damping of waves in an initially sinusoidal superlattice on inhomoge-
neities with anisotropic correlation properties are studied for the first time. The period of the superlattice is
modulated by the random function described by the anisotropic correlation function Kφ(r) that has different cor-

relation radii,  and , along the axis of the superlattice z and in the plane xy, respectively. The anisotropy
of the correlation is characterized by the parameter λ = 1 – k⊥ /k|| that can change from λ = 0 to λ = 1 when the
correlation wave number k⊥  changes from k⊥  = k|| (isotropic 3D inhomogeneities) to k⊥  = 0 (1D inhomogene-
ities). The correlation function of the superlattice K(r) is developed. Its decreasing part goes to the asymptote
L that divides the correlation volume into two parts, characterized by finite and infinite correlation radii. The
dependences of the width of the gap in the spectrum at the boundary of the Brillouin zone ∆ν and the damping
of waves ξ on the value of λ are studied. It is shown that decreasing L leads to the decrease of ∆ν, and increase
of ξ, with the increase of λ. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 68.65.Cd; 63.50.+x

k||
1– k ⊥

1–
1. Theoretical studies of the wave spectrum in disor-
dered superlattices (SLs) have been carried out very
intensively in recent years. This is due to the wide use
of these materials in various high-tech devices, as well
as to the fact that they are convenient models for devel-
oping new methods of theoretical physics for studying
media without translation symmetry. Several methods
exist now for developing a theory of such SLs: the mod-
eling the randomization by altering the order of succes-
sive layers of two different materials [1–7]; the numer-
ical modeling the random deviations of the interfaces
between layers from their initial periodic arrangement
[8–10]; the postulating of the form of the correlation
function of an SL with inhomogeneities [11, 12]; the
application of the geometrical optics approximation
[13]; and the development of the dynamic composite
elastic medium theory [14].

One more method for investigating the influence of
inhomogeneities on the wave spectrum of an SL was
suggested in [15], the method of the random spatial
modulation (RSM) of the period of the SL. This method
is an extension of the well-known theory of the random
frequency (phase) modulation of a radio signal [16, 17]
to the case of spatial inhomogeneities in an SL. The
advantage of this method is that the form of the corre-
lation function (CF) of the SL is not postulated but is
developed from the most general assumptions about the
nature of a random spatial modulation of the SL period.
The knowledge of the CF corresponding to a particular

¶ This article was submitted by the authors in English.
0021-3640/03/7809- $24.00 © 200592
type and dimensionality of inhomogeneities permitted
applying the methods of investigations of averaged
Green functions to find the energy spectrum and other
characteristics of the waves [15, 18–25]. In all these
papers, only isotropic 3D inhomogeneities were con-
sidered side by side with 1D inhomogeneities.

In the present paper, effects of 3D inhomogeneities
with anisotropic correlation properties on the wave
spectrum of SLs are studied for the first time. The con-
tinuous transition between isotropic 3D inhomogene-
ities and 1D inhomogeneities as the anisotropy of the
correlations is changed considered.

2. Correlation function. An SL is characterized by
the dependence of some material parameter A on the
coordinates x = {x, y, z}. The physical nature of the
parameter A(x) can be different. This parameter can be
a density of matter or a force constant for the elastic
system of a medium, the magnetization, anisotropy, or
exchange for a magnetic system, and so on. We repre-
sent A(x) in the form

(1)

where A is the average value of the parameter, γ is its rel-
ative rms variation, and ρ(x) is a centered (〈ρ(x)〉 = 0) and
normalized (〈ρ(x)2〉  = 1) function. The function ρ(x)
describes the periodic dependence of the parameter
along the SL axis z, as well as the random spatial mod-
ulation of this parameter which, in the general case, can
be a function of all three coordinates x = {x, y, z}.

A x( ) A 1 γρ x( )+[ ] ,=
03 MAIK “Nauka/Interperiodica”
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In this paper we will consider an SL that has a sinu-
soidal dependence of the material parameter on the
coordinate z in the initial state when inhomogeneities
are absent. According to the RSM method, we represent
the function ρ(x) in the form

(2)

where q = 2π/l is the SL wave number, l is its period,
and u(x) is the random spatial modulation. The SL is
characterized by the CF K(r) = 〈ρ(x)ρ(x + r)〉 , the gen-
eral form of which was obtained in [15]:

(3)

Here,

(4)

where Kj = 〈j(x)j(x + r)〉  is the CF of the function j =
gradu(x).

Upon integrating Eq. (4) with respect to k, we obtain
Q(r) in the form

(5)

On the assumption that the correlation properties of
the function u(x) are isotropic in the xy plane and aniso-
tropic in the directions between the z axis and the xy
plane, we model the CF in the form:

(6)

where k⊥  and k|| are the correlation wave numbers in the
xy plane and along the z axis, respectively. This func-
tion in the 1D (k⊥  = 0), 2D (k|| = 0), or isotropic 3D
(k⊥  = k||) limit transforms into the Gaussian function. It
was shown in [21] that the coefficient σ in Eq. (6) has
the form

(7)

Substituting Eq. (6) into Eq. (5), we obtain a com-
plicated expression where only one integration can be
performed in the threefold integral. For overcoming
this difficulty, we obtain one more representation of the
function Q(r). Using the following integral representa-
tion [27],

(8)

ρ x( ) 2 q z u x( )–( ) ψ+[ ] ,cos=

K r( ) qrz
1
2
---Q r( )– .expcos=

Q r( ) 2q2

2π( )3
------------- Kj r1( )e

ikr1–

∫∫=

× 1 krcos–( )dk

k2
------dr1,

Q r( ) q2

4π
------ Kϕ r1( ) 2

r1
------- 1

r1 r–
---------------- 1

r1 r+
----------------– 

 – r1.d∫=

Kj r( ) σ2 1
2
--- k ⊥

2 rx
2 ry

2+( ) k ||
2rz

2+[ ]–
 
 
 

exp ,=

σ γu k ||
2 2k ⊥

2+( )1/2
/q.=

1
r
--- 2

π
--- r2t2/2–( )exp t,d

0

∞

∫=
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where the integration variable t has the dimensionality
of [r]–1, we obtain Q(r) in the form

(9)

The integral with respect to r1 can be performed exactly
in this fourfold integral after substituting Kj in the form
of Eq. (6) into it. As a result, we obtain Q(r) in the form
of a one-dimensional integral with respect to τ:

(10)

where τ = t/k|| is a dimensionless variable, and cosθ =
rz/r, κ = k⊥ /k||.

For the limiting cases of 1D (κ = 0), 2D (κ  ∞),
and isotropic 3D (κ = 1) inhomogeneities, this integral
can be calculated exactly, and we obtain known formu-
las [15]. In the general case of an arbitrary value of κ,
the approximation of Eq. (10) by a simpler expression
must be done for analytical calculations. For the selec-
tion of this expression, we calculate Q(r) at r = 0 and
r  ∞. The integral in Eq. (10) is calculated exactly
at both of these limits, and we obtain, respectively,

(11)

where

(12)

Using these expressions and extending the idea that has
been suggested in [23] for the approximation of the CF
of isotropic 3D inhomogeneities, we suggest the

Q r( ) q2

2π( )3/2
---------------- r1 tKj r1( )d

0

∞

∫d

∞–

∞

∫=

× 2e
t
2
r1

2/2–
e

t
2 r1 r–( )2/2–

– e
t
2 r1 r+( )

2
/2–

–( ).

Q r( ) 2γu
2 1 2κ2+( ) 1

κ2 τ2+( ) 1 τ2+
---------------------------------------

---

---
---
---









0

∞

∫=

–

k ||rτ( )2

2
----------------- κ2 θsin

2

κ2 τ2+
------------------ θcos

2

1 τ2+
--------------+–

 
 
 

exp

κ2 τ2+( ) 1 τ2+
----------------------------------------------------------------------------------









dτ ,

Q0 r( ) γu
21 2κ2+

1 κ2–
------------------ F κ( ) κ2–{=

+ 2 κ2 3F κ( )–+[ ] θ }cos
2

k ||r( )2,

Q∞ 2γu
21 2κ2+

κ2
------------------F κ( ),=

F κ( ) κ

1 κ2–
------------------ 1 κ2–

κ
------------------.arctan=
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approximation formula for the CF of the anisotropic
inhomogeneities in the form

(13)

where L is the asymptote of the decreasing part of K(r)
determined by the equation

(14)

In the present work, we restrict ourselves to the con-
sideration of uniaxial anisotropic inhomogeneities for
which the values of κ are between 0 and 1. It is conve-
nient to introduce the parameter of the uniaxial anisot-
ropy λ = 1 – κ, whose values are also between 0 and 1.
In this case, λ = 0 corresponds to the isotropic 3D inho-
mogeneities and λ = 1 corresponds to the inhomogene-
ities with the maximum value of the anisotropy, namely
1D inhomogeneities.

For the isotropic 3D inhomogeneities considered in
[23], the value of the asymptote L depended only on the
rms fluctuation γu. For the anisotropic inhomogeneities,
the asymptote L according to Eq. (14) depends on γu, as
well as on the parameter anisotropy λ (Fig. 1). One can
see that L decreases with the increase of γu or λ; the
value of L goes to zero at the point of the transition of
the system from 3D to 1D dimensionality.

3. Dispersion law and damping of waves. We con-
sider the equation for waves in the superlattice in the
form

(15)

where the expressions for the parameters e and ν and
the variable µ are different for waves of different
natures. For spin waves, when the parameter of the

K r( ) qrz L 1 L–( )e Pr–+{ } ,cos=

L
1
2
---Q∞– 

  ; Pexp Q0 r( )/k ||r
2.= =

∇ 2µ ν eρ x( )–( )µ+ 0,=

Fig. 1. Dependence of the asymptote L of the CF on the rms
fluctuation γu and the anisotropy parameter of the correla-
tions λ.
superlattice A(x) in Eq. (1) is the value of the magnetic
anisotropy β(x), we have [15] ν = (ω – ω0)/αgM, e =
γβ/α, where ω is the frequency, ω0 = g(H + βM), g is the
gyromagnetic ratio, α is the exchange parameter, H is
the magnetic field strength, M is the value of the mag-
netization, β is the average value of the anisotropy, and
γ is its relative rms variation. For elastic waves in the
scalar approximation, we have ν = (ω/v )2, e = γν, where
γ is the rms fluctuation of the density of the material and
v  is the wave velocity. For electromagnetic waves in the
same approximation, we have ν = ee(ω/c)2, e = γν,
where ee is the average value of the dielectric perme-
ability, γ is its rms deviation, and c is the speed of light.

Laws of the dispersion and damping of the averaged
waves are determined by the equation for the complex
frequency ν = ν' + iξ, which follows from the vanishing
of the denominator of the Green function of Eq. (15). In
the Bourret approximation [28], this equation can be
represented in the form [21]

(16)

Substituting Eq. (13) in Eq. (16), we calculate this inte-
gral exactly. As a result, we obtain a complicated equa-
tion that we do not give here. When the conditions

(17)

are satisfied, this equation can be reduced to a cubic
equation,

(18)

where

(19)

In the limiting cases λ = 1 and λ = 0, Eq. (18) trans-
forms into equations for 1D and isotropic 3D inhomo-
geneities obtained earlier in [15] and [23], respectively.

Equation (18) has been investigated by numerical
methods. The results of these investigations are shown
in Fig. 2. Figure 2a shows the behavior of the width of
the gap at the Brillouin zone boundary ∆ν =  – 
with the increase of the anisotropy parameter λ for sev-

eral values of  which are depicted at the correspond-

ν k2–
e

2

4π
------ K r( ) i kr νr+( )–[ ] rd

r
-----.exp∫–=
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2k || ! ν , Λ  ! ν

ν k2–
Λ2

4
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ν k q–( )2–
---------------------------





=

+ 1 L–( )
1 iγu
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2
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ing curves. One can see that the maximum values of the

width of the gap (which are different for different )
correspond to isotropic 3D inhomogeneities (λ = 0).
With the increase of the anisotropy parameter λ, the
width of the gap decreases, with this decrease becom-
ing nonmonotonic in the region λ * 0.8. Even some
increase of ∆ν takes place in this region, which changes

again to a decrease when λ goes to unity. For  > 0.25,
the closing of the gap occurs at some critical value of
the anisotropy λc.

In Fig. 2b, the dependences of the damping ξ± at the
Brillouin zone boundary on the parameter of the anisot-

ropy λ are shown for the same values of . The mini-
mum values of the damping correspond to the isotropic
3D inhomogeneities. The damping increases with the
increase of the anisotropy and reaches the largest value

for 1D inhomogeneities (λ = 1). For a curve with  =
0.3 at the critical point λ = λc, corresponding to the
closing of the gap, the degeneracy of the real parts of
the eigenfrequencies takes place (  = ) and, corre-
spondingly, the removal of the degeneracy of the damp-
ing occurs [15]: ξ+ ≠ ξ– at λ > λc.

4. Conclusions. The limiting cases of our general
model are the isotropic 3D inhomogeneities (λ = 0) and
1D inhomogeneities (λ = 1) that have been investigated
in the framework of the RSM method earlier [15, 23].
It was shown in [25] that the main difference between
the CFs for isotropic 3D and 1D inhomogeneities was
that the decreasing function went to zero when r  ∞
in the 1D case while the decreasing function in the iso-
tropic 3D case went to the nonzero asymptote L =

exp(−3 ). Because of this, the 1D inhomogeneities
had a finite correlation radius in the entire volume of the
superlattice, while for the isotropic 3D case, volumes
with a finite correlation radius existed side by side to
volumes with an infinite correlation radius. In [25],
attention was also given to the important role of the
value of the asymptote L in the transition from the dis-
ordered SL to an ideal periodic one with the decrease of
γu. In the 1D case, this transition was carried out by
increasing the correlation radius. For the 3D case,
another kind of transition took place: the changing of
the relationship between the volumes with finite and
infinite correlation radii went on in parallel with the
increase of the correlation radius.

For the general case of anisotropic inhomogeneities,
the asymptote L depends not only on γu but also on λ.
The changing of λ from 0 to 1 at γu = const leads to the

changing of L from L = exp(–3 ) to L = 0. Hence, the
changing of the anisotropy parameter λ leads to two
contributions to the changing of the form of the CF,
exerting opposite influences on the characteristics of
the wave spectrum. The increase of the correlation
radius in the xy plane at the unchangeable correlation

γu
2

γu
2

γu
2

γu
2

ν+' ν–'

γu
2

γu
2
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radius along z axis means the increase of the mean cor-
relation radius of the system, that is, the decrease of the
disorder. This factor in itself could lead to the increase
of the width of the gap ∆ν at the Brillouin zone bound-
ary and to the decrease of the damping ξ with the
increase of λ. However, the increase of λ leads simulta-
neously to the decrease of L and, consequently, to the
decrease of the correlation volume with an infinite cor-
relation radius and to the increase of the volume with
finite correlation radii. This factor must lead to the
increase of the mean disorder in the system and, conse-
quently, to the decrease of ∆ν and increase of ξ. Simul-
taneous actions of both these factors lead to the depen-
dences of ∆ν and ξ on λ depicted in Figs. 2a and 2b. It
is seen that the effects of the increase of the disorder
prevail, and the decrease of ∆ν and increase of ξ occur
with the increase of λ. However, the struggle between

Fig. 2. Dependence of the width of the gap (a) and damping
of the waves (b) at the Brillouin zone boundary on the value

of the anisotropy of correlations λ for different values of 

depicted at the corresponding curves. All graphs correspond
to the same normalized correlation number η = k||q/Λ = 4.

γu
2
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the opposite factors leads to the appearance of a non-
monotonic dependence of ∆ν on λ: even some increase
of ∆ν takes place in the region λ > 0.8 that changes
again to a decrease when λ goes to the unit.

This work was supported by the NATO Science Pro-
gram and Collaborative Linkage grant no. 978090.
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An example of coding a source of quantum states with a finite frequency band W and finite exit power not
exceeding ~("W)W is given. The number of classical information bits that can be coded in the quantum states
generated by such a source per unit time is C = W. Such a source is minimal in the sense that the filling factor
for each of the orthogonal single-particle modes constituting N = WT-photon vector in time window 2T is equal
to 1. This result can be treated as a quantum analogue of the Kotel’nikov theorem on sampling for classical sig-
nals [8], when the signal intensity is reduced to the single-photon level. In this case, quantum states at the source
exit are fundamentally entangled due to identity of photons. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.67.Hk; 89.70.+c; 42.50.-p
The transmission capacity of a communication
channel is an important characteristic and determines
the upper limiting rate of errorless information trans-
mission in the asymptotic limit of long sequences. For
classical communication channels, where information
carriers are classical objects (signals), capacities are
determined by Shannon coding theorems [1]. In quan-
tum communication channels, carriers are quantum
objects, and classical information is coded in the states
of quantum systems, which are generally described by
density matrix operators. Mathematical investigations
of quantum communication channels were pioneered
by Holevo as early as in the 1970s [2]. Nowadays, cod-
ing in quantum communication channels is a rapidly
developing direction of quantum information theory,
where fundamental results on transmission capacities
were already obtained [2–7]. Transmission capacity per
unit time is often the most interesting quantity. If a
physical communication channel is perfect, i.e., if the
states generated by a source are transmitted without
distortion, then capacity is determined by the source
entropy. We are interested in the situation where a
source of quantum states with finite frequency band W
generates quantum states in time and lead them to the
entry of a perfect physical communication channel with
the same pass band.

We first present intuitive consideration, then briefly
describe the classical case, and, finally, turn to the
quantum case. The generation of both classical and
quantum states proceeds in time. We divide the entire
time axis (–∞, ∞) into individual working windows
having size 2T and separated by protective time win-
0021-3640/03/7809- $24.00 © 20597
dows with size ~T1 – δ (0 < δ < 1). A source with a finite
frequency band W generates states in the working time
windows 2T. The source is switched off in the protec-
tive time windows. This separation is formally neces-
sary in order to exclude the overlap of states (both clas-
sical and quantum) in different working time windows.
Since we consider the case where the size 2T of the
working time window is sufficiently large, the effect of
protective time windows vanishes as T  ∞
(T1 − δ/T  0). After that, the problem reduces to the
determination of the entropy properties of the source
with finite frequency band W in an individual working
time window. With this formulation, the problem
reduces to a source with discrete time, for which the
duration of each package is independent of other state
packages in the physical communication channel is
equal to 2T. If the communication channel is perfect,
i.e., if all states entering the exit are transmitted without
distortion, then the limiting attainable rate of errorless
transmission of classical information per unit time
(channel capacity) is determined either by the Shannon
entropy for the source of classical signals or by the von
Neumann entropy for the source of quantum states.1 

We briefly discuss coding of a source of classical
signals with finite frequency band k ≤ |W|. This is nec-
essary for further comparison with the quantum case. A
classical signal with a finite frequency band is
described by the time function x(t). As was shown by
Kotel’nikov [8], the signal x(t) on a finite time interval

1 More precisely, this rate is given by the Holevo function χ, which
transforms in our case to the von Neumann entropy at T  ∞.
003 MAIK “Nauka/Interperiodica”
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(–T, T) is determined by 2WT degrees of freedom. This
means that, in the expansion

(1)

in a system of orthogonal functions, it suffices to retain
2WT terms satisfying the condition

(2)

In [8], so-called sampling functions (θn(t) = sinW[t –
nπ/W]/W[t – nπ/W]) were used as basis functions θn(t).
A pictorial property of the basis of sampling functions
is that the expansion coefficients xn are equal to the val-
ues of signal x(t) at sampling times. Below, it will be
more convenient to use other basis functions, whose
localization properties in the finite time window (–T, T)
are better than those of the sampling functions. In this
case, the number of functions most strongly localized
in the window (–T, T) remains unchanged. Moreover,
these functions also arise in the quantum case, where
they serve as single-particle amplitudes (wave func-
tions) for photons that are most strongly localized in the
time window (–T, T).

The orthogonality of basis functions with a carrier in
the finite frequency band W provides the condition

(3)

The basis functions are orthogonal if they satisfy the
integral equation

(4)

The eigenvalues depend only on the product WT and
form an infinite sequence 1 > λ1(WT) > λ2(WT) > … > 0.
The degree of localization of the squared nth function
in the time window (–T, T) is determined by the corre-
sponding eigenvalue

(5)

The integral equation determines so-called prolate
spheroidal functions [9]. The remarkable property of
eigenvalues is that, for large WT @ 1, the are divided

x t( ) xnθn t( )
n

∑=

θn t( )θm t( ) td

T–

T

∫ δnmλn WT( ) 1.≈=

θn t( )θm t( ) td

T–

T

∫

=  
1
π
--- θn k( ) k k'–( )Tsin

k k'–
-----------------------------θm k'( ) kd k',d

k' W≤
∫

k W≤
∫

θn k( ) 1
2π
------ θn t( )e ikt– t.d

∞–

∞

∫=

λn WT( )θn k( ) 1
π
--- k k'–( )Tsin

k k'–
-----------------------------θn k'( ) k'.d

k W≤
∫=

θn
2 t( ) td

T–

T

∫ λn WT( ).=
into two groups: λn(WT) ≈ 1 at n < 2WT and λn(WT) ≈ 0
at n > 2WT. The size of the transition region of numbers
from one behavior to the other is equal to ≈ln(4πWT).
More formally, for any ε > 0,

(6)

This means that, for large WT values, there are no more
than 2WT(1 – ε) orthogonal (distinguishable) functions
whose contribution in the time window (–T, T) tends to
unity. If more than 2WT(1 + ε) degrees of freedom are
used, some of these states will make negligible contri-
bution in this time window (–T, T). For large WT values,
the signal x(t) in a finite frequency band and in a finite
time interval is described by no more than 2WT inde-
pendent (orthogonal and distinguishable) degrees of
freedom and can be specified by 2WT independent
expansion coefficients xn.

If a classical source with finite frequency band W
generates signals localized in the time window (–T, T)
so that the expansion coefficients are specified accord-
ing to a given probability distribution p(xn) on the set of
these coefficients xn (signal amplitudes), the source
entropy will be determined by the quantity

(7)

Further, if these signals are transmitted through a per-
fect (noiseless) physical communication channel, e.g.,
with the same pass band W, the entropy of the source
given by Eq. (7) will coincide with the mutual informa-
tion between the entry and exit of such a physical com-
munication channel. Then, the capacity per unit time
(source + physical communication channel + receiver)
is defined as

(8)

To compare the classical and quantum cases, the fol-
lowing qualitative considerations are instructive. In
classical physics, no formal restrictions occur for
changing the expansion coefficients xn [amplitudes of
orthogonal basis functions θn(t)] with an arbitrarily
small discreteness (continuously). Since the intensity

 of classical signal, e.g., of an electromagnetic field,
in each separate mode θn(t) is equal, to a factor of ≈"W,
to the photon number in this mode, the signal intensity
can change with a finite discreteness. To code informa-
tion in xn values, at least two values are necessary

(  ∝  Nmax, where Nmax is the maximum number of

λ2WT 1 ε–( ) WT( )
WT ∞→
lim 1,=

λ2WT 1 ε+( ) WT( )
WT ∞→
lim 0.=

I WT p xn( ),( ) 2WTH p xn( )( ),=

H p xn( )( ) p xn( ) p xn( ).log
n

∑–=

C
1

2T
------ I WT p xn( ),( )

p xn( ){ }
max

T ∞→
lim=

=  W H p xn( )( ).
p xn( ){ }
max

xn
2

xn
2
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possible  values). The total number of different val-

ues for all modes is ( )2WT. If each value is taken
with the same probability, source entropy (7) is equal to

(9)

Capacity (8) per unit time for the minimum signal level
(Nmax = 2) is 

(10)

Strictly speaking, formulas for the classical case cannot
be used if the mode filling factor is low.

Next we are interested in the capacity in a single-
photon regime. These considerations will be used for
the qualitative comparison between the classical and
quantum cases. Our problem reduces, in fact, to count-
ing the number of possible orthogonal multiphoton
states that are generated by a source with a finite fre-
quency band W and localized in the time window
(−T, T). We first consider single-photon states at the
source exit, which then propagate in one direction
(k > 0) with a carrier in a finite frequency band W (k ∈
[0, W]). For closer analogue with the classical case, we
will consider coding in various shapes of state ampli-
tudes and ignore polarization degrees of freedom. For
brevity, we take c = " = 1. Thus,

(11)

where ϕ(k, k) (k > 0) and ϕ(τ) are the amplitudes of a
single-photon package in the momentum and spacetime
representations, respectively,

(12)

For a massless field, τ = x – t depends only on the dif-
ference between the coordinate and time. Therefore, if
an outcome is obtained near the point x at time t, the
same outcome will be obtained at the point x' at time t' =
t + (x' – x). For brevity, we will refer to a time window,
implying that (–T, T) means (–(x – t), (x – t)).

It is necessary to choose the amplitude (wavefunc-
tion) of a single-photon package with a carrier in a
finite frequency band in such a way that it provides
maximum normalization in the spacetime region
((−T, T) window). The degree of localization is for-
mally described by a measurement in this window. Any

xn
2

Nmax

I WT p xn( ),( ) 2WT Nmax( ).log=

C W .=

ϕe| 〉 kd
k
-----ϕ k k0, k=( )a+ k( ) 0| 〉

0

W

∫ τϕ τ( ) τ| 〉 ,d

∞–

∞

∫= =

ϕ τ( ) 1
2π
------ kd

k
------e ikτ– ϕ k k,( ),

0

W

∫=

τ| 〉 kd

k
------eikτ k| 〉 , k| 〉

0

W

∫ a+ k( ) 0| 〉 .= =
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measurement on the single-photon package in the time
window is described by the following decomposition of
unity in the single-particle space:

(13)

Taking Eqs. (12) and (13) into account, we represent
the operator associated with the time window (–T, T) in
the form

(14)

The functions θn(k) are eigenfunctions of integral equa-
tion (4), the only difference being that integration is
performed over the segment [0, W]. The number of
functions localized in the time window (–T, T) is equal
to WT. The vectors |θn〉  are, in essence, eigenvectors of
the operator I(1)(T), so that it is diagonal in the basis of
these vectors. If the outcomes are available only in the
time window, any measurement on the initial state is
equivalent to measurements on the following effective
density matrix

(15)

Here, the formal state |?〉  is orthogonal to all states and
describes outcomes outside the time window. Such out-
comes correspond to the case where a measuring instru-
ment is not triggered inside the window. The effective
density matrix has unit trace with allowance for the out-
comes that must be assigned inconclusive results. For
large WT, we can take one of the WT orthogonal (distin-
guishable) single-photon states that is localized in the
window (–T, T) with a probability as close to unity
(λn(WT) ≈ 1) as is wished and has the effective density
matrix

(16)

in this window.

I 1( ) kd
k
----- k| 〉 k〈 |

0

W

∫ I 1( ) T( ) I 1( ) T( )+= =

=  
τd

2π
------ τ| 〉 τ〈 |

T–

T

∫ τd
2π
------ τ| 〉 τ〈 | .

∞ ∞,( )/ T– T,( )–

∫+

I 1( ) T( ) λn WT( ) θn| 〉 θn〈 | ,
n 1=

∞

∑=

θn| 〉 kd
k
-----θn k( ) k| 〉 .

0

W

∫=

ρ T( ) λn WT( )λn' WT( ) θn| 〉 θn ϕ〈 〉 ϕ θ n'〈 〉
n n',
∑=

× θn' Tr I 1( ) T( ) ϕ ϕ〈 |{ }+〈 〉 ?| 〉 ?〈 | .

ρn T( ) λn WT( ) θn| 〉 θn〈 | 1 λn WT( )–( ) ?| 〉 ?〈 | ,+=

1 n WT≤ ≤
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Let the source generate N = WT-photon states

(17)

in the working time window. The generalized basis vec-
tors

(18)

are totally symmetric about particle permutations,
where the symbol {j} means summation over all per-
mutations. We now construct N = WT-photon density
matrices. The filling factor for each single-particle
mode is equal to 1. The vectors in Eqs. (17) with vari-
ous subscripts are eigenvectors of the operator I(N)(T) in
the N = WT-photon subspace, similarly to the single-
photon case. We have

(19)

(20)

Let us tally up the number of orthogonal N = WT-photon
states.2 If N = WT photons were distinguishable, the
number of orthogonal N = WT photon vectors localized
in the window (–T, T) with a near-unity probability
would be equal to NN (without regard for the polariza-
tion degrees of freedom). Owing to the identity of
bosons (photons), the number of such vectors, which is
denoted as 2M(WT) for convenience, is equal to the num-
ber of ways of distributing N = WT identical particles
over N = WT states; we have [10]

(21)

2 I am grateful to the referee who pointed to the error at this point
here in the original version of the paper.

θn1
; …θnN

| 〉
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τNd
2π
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WT( )

n1 … nN, , 1=
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× λnN
WT( ) θn1

; …θnN
| 〉 θn1

; …θnN
〈 | .

2M WT( ) N N 1–+( )!
N 1–( )!N!

------------------------------, N WT .= =
Taking the Stirling formula (N! ≈ (N/e)N ) into
account, we obtain for large N values 

(22)

Let the source in each working time window gener-
ate one of the 2M(WT) orthogonal N = WT-photon states
with the same probability. If the source works for a suf-
ficiently long time, the statistical ensemble, in which
classical information can be coded, is described by the
density matrix

(23)

The von Neumann entropy of the ensemble is maximal
for the equiprobable choice of vectors. The information
in the finite time window (–T, T) is extracted from the
effective density matrix

(24)

For large WT values, one cannot construct statistical
ensemble consisting of more than 2M(WT) orthogonal
N = WT-photon states. Classical information coded in
the ensemble ρ(M(WT)) and extracted from density
matrix ρ(T) (24) is given by the quantity χ(ρ(T)) that
follows from the Holevo inequality [2]. Since the states
| ; … 〉  and |?〉  are pure, χ(ρ(T)) coincides with
von Neumann entropy for ρ(T); one has

(25)

The capacity per unit time is determined by a limit that
is analogous to Eq. (8) for the classical case. Taking

2πN
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into account that the second sum in Eq. (25) tends to
zero, we obtain

(26)

The source generates N = WT-photon states in the time
window so that the number of photons at the source exit
per unit time is ~W and the energy per one photon is
~"W. Therefore, the number of photons (rather than
their mean number, because the states | ; … 〉  in
Eq. (23) are eigenvectors of the photon-number opera-
tor corresponding to the particle-number eigenvalues
N = WT) in the time window (–T, T) is equal to WT.3

The power at the source exit is constant and equal to
~("W)W. The condition for the minimum quantum
source means that the number of orthogonal single-par-
ticle amplitudes θn(t) constituting N = WT-photon
amplitude symmetric about particle permutations is
equal to WT. The number of photons is also equal to
WT; i.e., the filling factor per one single-particle ampli-
tude is equal to 1. If the signal level is brought to the
single-photon level, classical capacity (10) symboli-
cally coincides with quantum capacity (26). However, a
weak signal cannot be described classically. Coding
methods in the classical and quantum cases are also dif-
ferent. In the classical case, information is coded in
amplitudes (roughly speaking, in the number of pho-
tons) of orthogonal modes. As to the quantum case,
information is coded in various orthogonal multiphoton
states. Due to the identity of photons, these states are
necessarily entangled within each time window 2T.
Such coding of the quantum source can be treated as a

3 Strictly speaking, WT should be throughout treated as the integer
part [WT].

C CT ,
T ∞→
lim=

CT
2M WT( )( )log
2T

----------------------------- M WT( )
2T

------------------- W .= = =

θn1
θnN
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quantum analogue of the Kotel’nikov theorem on sam-
pling, if the filling factors of single-particle modes are
brought to the single-photon level.
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The influences of the absorption µa, the scattering µs, and the anisotropy coefficient g on the optical properties
of ultrashort pulse in turbid media has been simulated based on the diffusive approximation theory. The laser
pulse intensity will be attenuated and the diffusive scattering pulse shape will be widened in the turbid media.
Various medium parameters have different influences on the reflection of the laser pulse. The intensity loss of
the diffusive reflection light is obtained when µa and µs are increased in turbid media. The pulse width of the
diffusive reflection pulse is rapidly increased far away from the incident point and at the same time the pulse
times that are delayed have been numerical simulated in the boundary conditions of semi-infinite homogenous
media. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.35.+c; 42.25.Fx
1. INTRODUCTION

In a turbid medium, the picosecond (ps) laser is scat-
tered and absorbed due to the nonhomogenous and
absorption characteristics of the medium. The diffusive
scattering mainly exists when the red and infrared radi-
ation are incident to the turbid material [1]. The statis-
tics reaction of the interaction between the ps laser and
absorption medium are the parameters of a scattering
intensity and pulsewidth by the properties of a tissue
optics and scattering of the pulse laser in diffusive
reflectance and transmittance [2]. The widely increas-
ing application of ultrashort pulse lasers in diagnostic
and therapeutic medicine has determined the need to
obtain noninvasive optical parameters of turbid media
by interaction of the medium and radiation light [3, 4].
These properties have been devoted to the measurement
of the optical properties of turbid tissue specimens, and
the detection of diffusion-reflected and transmitted
light have been studied by the authors [5]. Recently, the
relationship has been researched between the absorp-
tion and scattering coefficient of tissue and the spatial
dependence of diffusive reflecting near a finite light
resource [6, 7]. Theoretical studies of light pulse prop-
agation in multiple scattering media based on the diffu-
sion approximation theory have been researched by
Shimmer [8] and Furutsu [9]. The time resolved reflec-
tance of a plane wave has been measured by Shimizu
et al. [10] from the suspension of microspheres, leading
to the suggestion that this technique might be used to
determine the optical properties of the tissue. The stud-
ies of time resolved reflectance and transmittance for

¶ This article was submitted by the authors in English.
0021-3640/03/7809- $24.00 © 20602
the noninvasive measurement of tissue optical proper-
ties have produced by Patterson et al. [4]. The in vivo
technique is for a small source. In this paper, the laser
pulse energy will be attenuated in the turbid media and
the pulse shape will be changed by scattering and
absorption. In addition, the diffusive scattering widens
the ultrashort pulse. The various medium parameters
have different influence on the reflection of the laser
pulse. Based on the diffusion approximation theory, the
boundary condition of semi-infinite homogeneous
media by small narrow linewidth laser beams, the influ-
ence of the absorption µa, the scattering µs, and the
anisotropy coefficient g on the ultrashort pulse in the
condition have been obtained.

Fig. 1. Diagram of ultrashort pulse incident on semi-infinite
and infinite homogeneous tissue (a) and (b).
003 MAIK “Nauka/Interperiodica”
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2. THEORETICAL ANALYSIS 
AND NUMERICAL SIMULATION

The biological tissue is made of cells of different
size and composition that is called turbid media [3].
The spectral ranges from about 600 to 1300 nm are par-
ticularly interesting wavelengths, since at these wave-
lengths the absorption of light by most soft tissues is at
a minimum [11]. Relatively low absorption occurs in
this so-called “therapeutic window.” The optical prop-
erties information of the turbid medium is shown in the
diffusive reflection and transmittance light. The geom-
etry of narrow linewidth ultrashort pulse beams is nor-
mally incident on the surface of a semi-infinite homo-
geneous tissue slab, as is shown in Fig. 1a. We simu-
lated a practical Monte Carlo method in which a ps was
produced on turbid tissue surface of semi-infinite
medium by a small narrow linewidth pulse beams. The
diffusion equation of the diffusive photon fluency
intensity φ(r, t) can be written [4]

, (1)

where D = [3(µa + (1 – g)µs]–1 is the diffusion coeffi-
cient, µa is the linear absorption coefficient, µs is the
linear scattering coefficient, g is the mean cosine of
scattering angle, v  is the speed of the light in the tissue,
and δ(0, 0) is an isotropic point photon source. It can be
shown that in a semi-infinite turbid medium the solu-
tion of Eq. (1) is

(2)

All the incident photons are initially scatted at a depth
z0 = [(1 – g)µs]–1 so that the actual source becomes the

1
ν
--- ∂

∂t
-----φ r t,( ) D∇ 2φ r t,( ) µαφ r t,( )+– δ 0 0,( )=

Φ r t,( ) ν 4πDνt( ) 3/2– r2

4Dνt
-------------– µaνt– 

  .exp=

Fig. 2. Intensity of backscattered light versus position of
incident photon medium.
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simple delta function described above. Patterson [4]
et al. have shown that a useful assumption is that
φ(r, t) = 0 on the physical boundary z = 0. The fluency
rate per incident photon can then be written in cylindri-
cal coordinates as the sum of contributions as follow

(3)

The number of photons reaching the surface per unit
area per unit time is |J(ρ, 0, t)|2, which can be calculated
from Fick’s law [12]: J(ρ, 0, t) = –D∇Φ (ρ, z, t)|z = 0,
which leads to a final expression for the reflectance
(ρ, t) that is ultrashort pulse incident to the semi-infinite
homogeneous tissue medium

(4)

Where ρ2 @ , it is noted that the observation

(5)

is known. From Eq. (5), the absorption coefficient of
the tissue can be determined from the asymptotic slope
of the curve of the (ρ, t) versus time t. The speed
of light depends on the index of refraction n = 1.4 of the
tissue which is known to a few percent, v  =
0.214 mm/per second [13].

Φ ρ z t, ,( ) ν 4πDνt( ) 3/2– µaνt–( )exp=

×
z z0–( )2 ρ2+

4Dνt
-------------------------------–exp

z z0+( )2 ρ2+
4Dνt

-------------------------------–exp–
 
 
 

.

R ρ t,( ) J ρ 0 t, ,( )=

=  4πDν( ) 3/2– z0t 5/2– µaνt–( )
ρ2 z0

2–
4Dνt
---------------– 

  .expexp

z0
2

lim
d
dt
----- R ρ t,( )elog µaν–=

Relog

Fig. 3. Curves of diffusion reflection intensity.
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The propagation-scattering coefficient µs can also
be calculated using the (ρ, t) versus t if the slope
is zero and the tmax. After solving Eq. (4), we can write
the expression

(6)

The optical properties of a semi-infinite slab of tissue
from Eq. (5) and Eq. (6) could in principle be obtained
by simulated the diffusive reflected light some distance

Relog

1 g–( )µs
1

3ρ2
-------- 4µaν

2tmax
2 10νtmax+( ) µa.–=

Fig. 4. Curves of backscattered light intensity versus µs.

Fig. 6. Curves of pulse shaping with incident position into
medium.
from the source as a function of time. The total diffu-
sive reflection rate R(ρ, t) can be obtained from the spa-
tial integral of R(ρ, t)

(7)

R t( ) R2πρ ρ t,( ) ρd

0

∞

∫=

=  4πDν( ) 1/2– z0t 3/2– µaνt–( )
z0

2

4Dνt
-------------– 

  .expexp

Fig. 5. Curves of intensity and scattering g.

Fig. 7. Diffusion scattering pulse shaping and intensity ver-
sus µa.
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This expression agrees with the results of Patterson
et al. [4], such that for a nonabsorption medium the
total diffusive reflectance depends on t–3/2.

An important question is how simulations of the dif-
fusive reflection are affected by µa, µs and g in a semi-
infinite tissue material. According to the theoretical
analysis and computer simulation from Eq. (4), we have
obtained the theoretical curves of the backscattering
intensity of diffusive reflectance light caused at the dif-
ferent transport simulation P, µa, µs and g, as shown in
Fig. 2, Fig. 3, Fig. 4, and Fig. 5. The effect of the
absorption coefficient versus the intensity loss of the
diffusive reflection light, which is decreased when the
µa, µs, can clearly be seen from Fig. 2 and Fig. 3. The

Fig. 8. Curves of pulse shaping versus µs.

Fig. 9. Curves of pulse shaping versus g.
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backscattered intensity is increased when g is increased
and µa is small, as is shown in Fig. 4 and Fig. 5. From
Fig. 2 to Fig. 5, it is shown that the intensity of diffusive
reflection is very useful to obtain the physical parame-
ters of the optical properties in the internal turbid
medium. The pulse width of the diffusive reflection
pulse is affected by the optical parameters of the turbid
medium, such that it rapidly increases from the diffu-
sion reflection pulse laser far away from the incident
point and, at the same time, the pulse time is delayed as
shown in Fig. 6. The pulse width of the reflected light
is narrowed in Fig. 7. The time delay of the diffusive
reflection light caused by µs is increased as shown in
Fig. 8. The pulse width of the diffusion reflection light
rapidly narrows and the time delay of the reflection
pulse at g increases as is shown in Fig. 9. From Fig. 2
to Fig. 9, it is shown that the interaction of the ultrashort
pulse and the turbid tissue is very useful when research-
ing the optical parameters of the turbid medium.

3. CONCLUSIONS

The purpose of this work was to research the rela-
tions of the diffusive reflection rate R(ρ, t) and optical
properties in turbid media. The results of the principle
simulation were made coherent with experiments [14]
by computer numerical analysis. It was calculated that
the parameters µa, µs, and g in the tissues use an indirect
and lossless method according to the foundation theory.
This is useful for the development of laser biology and
medicine measurement.

REFERENCES

1. V. G. Peters, D. R. Wyman, M. S. Patters, et al., Phys.
Med. Biol. 35, 1317 (1990).

2. A. Ishimaru, Appl. Opt. 28, 2210 (1989).

3. B. C. Wilson and S. L. Jacques, IEEE J. Quantum Elec-
tron. 26, 2186 (1990).

4. M. S. Patterson, B. Chance, and B. C. Wilson, Appl. Opt.
28, 2331 (1989).

5. Y. Kuga, A. Ishimaru, and A. P. Bruckner, J. Opt. Soc.
Am. 73, 1812 (1983).

6. R. Hemenger, Appl. Opt. 16, 2007 (1977).

7. S. L. Jacques, Appl. Opt. 28, 2223 (1989).

8. A. Ishimaru, J. Opt. Soc. Am. 68, 1045 (1978).

9. K. Furutsu, J. Opt. Soc. Am. 70, 360 (1980).

10. K. Shimizu, A. Ishimaru, L. Reynolds, et al., Appl. Opt.
18, 3484 (1979).

11. J. L. Bulnois, Lasers Med. Sci. 1, 47 (1986).

12. J. J. Duderstadt and L. J. Hamiton, Nuclear Reactor
Analysis (Wiley, New York, 1976), p. 140.

13. D. T. Delpy, M. Cope, P. Vanderzee, et al., Phys. Med.
Biol. 33, 1433 (1988).

14. X. L. Wang, B. H. Li, and S. S. Xie, J. Optoelectron.
Laser 12, 418 (2001) (in Chinese).


	523_1.pdf
	528_1.pdf
	533_1.pdf
	538_1.pdf
	542_1.pdf
	548_1.pdf
	551_1.pdf
	555_1.pdf
	560_1.pdf
	564_1.pdf
	569_1.pdf
	574_1.pdf
	578_1.pdf
	583_1.pdf
	587_1.pdf
	592_1.pdf
	597_1.pdf
	602_1.pdf

