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Nonperturbative QCD vacuum with two light quarks at finite temperature was studied in a hadron resonance-
gas model. Temperature dependences of the quark and gluon condensates in the confined phase were obtained.
It is shown that the quark condensate and one-half (chromoelectric component) of the gluon condensate are
evaporated at the same temperature corresponding to the quark–hadron phase transition. With allowance for the
temperature shift of hadron masses, the critical temperature was found to be Tc . 190 MeV. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 12.38.Mh; 12.38.Lg; 11.10.Wx
1. It is known that the phase transition from the had-
ron phase characterized by the confinement and sponta-
neous breaking of chiral symmetry to the phase of hot
quark–gluon matter occurs at a finite temperature in
QCD. The thermodynamic characteristics of the system
such as energy density ε, specific heat, “nonideality”
(ε – 3P)/T 4, etc. substantially change their behavior at
the critical point Tc of phase changing. Moreover, the
quark–gluon vacuum is strongly rearranged upon the
phase transition in QCD.

Lattice calculations in finite-temperature QCD
show that deconfinement and reconstruction of the
chiral symmetry occur at the same temperature, and the
critical temperature for two light quarks (Nf = 2) lies in
the interval Tc ~ 175–190 MeV [1, 2]. According to the
lattice analysis of QCD thermodynamics and experi-
mental data on high-energy collisions, the energy den-
sity of the system at the quark–hadron phase transition
is εc ~ 1–1.5 GeV/fm3.

Recent numerical simulations on lattice for the
SU(3) gauge theory without quarks and in QCD with
Nf = 2 revealed a strong suppression of the electric
component and a slight increase in the magnetic com-
ponent of the gluon condensate as the temperature
increases and passes through the critical temperature Tc
[3]. This behavior was theoretically predicted by vari-
ous methods ten years ago in [4, 5]. More recently, the
temperature dependence of the gauge-invariant bilocal
chromomagnetic field-strength correlator and spacelike
string tension σs(T) was analytically determined in [6].
It was found that the chromomagnetic condensate
increases only slightly with temperature at T < 2Tc,
〈H2〉T = 〈H2〉0coth(M/2T), where M = 1/ξm . 1.5 GeV is
the inverse magnetic correlation length that is indepen-
0021-3640/03/7810- $24.00 © 20607
dent of temperature at T < 2Tc. With an increase in tem-
perature in the region T > 2Tc, the amplitude of the mag-
netic correlator increases as 〈H2〉T ∝  g8(T)T4, and the
correlation length decreases as ξm(T) ∝  1/(g2(T)T). In
the framework of the stochastic-vacuum model, this
behavior of the magnetic correlator explains the mag-
netic confinement phenomenon. The temperature
dependence obtained for the spacelike string tension
fully agrees with the lattice data over the entire temper-
ature range [7].

Thus, taking into account the above circumstances,
it is necessary to show in a unified approach that, at the
critical point Tc ~ 175–190 MeV in QCD with Nf = 2,
the energy density is εc ~ 1–1.5 GeV/fm3, the quark
condensate  turns (or tends) to zero, and only
one-half (the chromoelectric component responsible
for the formation of string and confinement) of the
gluon condensate is evaporated, which is necessary for
magnetic confinement to be retained.

In this work, we study the properties of quark and
gluon condensates within the approach based on the
description of the confined phase as a hadron resonance
gas. We show that the phenomena described above can
be quantitatively explained in this approach with due
allowance for the temperature shift of hadron masses.

2. We consider QCD with two light quarks. In this
case, knowing the pressure in the hadron phase Ph(T)
and using the Gell-Mann–Oakes–Renner relation, one
can find the temperature dependence of quark conden-
sate
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where Fπ = 93 MeV is the axial π-meson decay con-
stant. The expression for the gluon condensate 〈C2〉T ≡

 was obtained in [8] on the basis of renor-
malization-group consideration of the anomalous con-
tribution to the trace of the energy–momentum tensor in
QCD with Nf = 2 at a finite temperature. The gluon con-
densate is related to the thermodynamic pressure in
QCD by [8]

(2)

where b = 11Nc/3 – 2Nf /3 = 29/3 and 〈G2〉0 = 0.87 GeV4

[9]. When deriving Eq. (2), the low-energy QCD theo-
rems [10] and the Gell-Mann–Oakes–Renner relation
between the mass of light quark and the mass of π
meson were used. Expressions for  and 〈G2〉T in
QCD with Nf = 3 were obtained in [11]. Thus, knowing
the pressure Ph as a function of temperature and
π-meson mass, one can find the temperature depen-
dence for the quark and gluon condensates in the had-
ron phase.

To describe QCD thermodynamics in the confined
phase, we use the hadron resonance-gas model. In this
approach, the thermodynamic properties of the system
are determined by the overall pressure of relativistic
Bose and Fermi gases that describe the thermal excita-
tions of massive hadrons. The use of this approach is
primarily motivated by the fact that all essential degrees
of freedom of a strongly interacting matter are included
in the consideration. Moreover, the use of the hadron
resonance spectrum effectively takes into account the
interaction between stable particles. In addition, the
application of the hadron resonance-gas model to the
multiparticle production in heavy-ion collisions [12]
gives good agreement with experimental data. Thus, the
pressure in the confined phase is written as

(3)

where gi is the spin–isospin degeneracy factor (e.g.,
gπ = 3, gN = 8, etc.). The energy density εh = T∂Ph/∂T – Ph
in the hadron phase is given by the formula

. (4)

3. For the quantitative investigation of condensates
in the confined phase, it is necessary to know the pres-
sure Ph as a function of the light-quark mass (for Nf = 2)
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or, equivalently, as a function of the π-meson mass. In
the hadron resonance-gas model, this is equivalent to
knowing the masses of all resonances as functions of
the light-quark mass. These functions were numerically
studied in the lattice calculations, and Karsch et al. [13]
proposed a five-parameter formula inspired by the bag
model. With the appropriately chosen parameters, this
formula well reproduces the masses of all particles con-
sidered in [13]:

(5)

Here, mh is the hadron physical mass, Nu is the number
of light quarks (Nu = 2 for mesons and Nu = 3 for had-
rons), and σ = (0.42 GeV)2 is the string tension.

It is necessary to take into account that the hadron
masses change with temperature. For the finite-temper-
ature conform-generalized nonlinear sigma model with
light and massive hadrons [14], it was shown that the
temperature shift of hadron masses can be taken into
account through the replacement

(6)

where χ is the dilaton field. The fact that the depen-
dence for the π-meson mass is different from the depen-
dences for other particles is a manifestation of its Gold-
stone origin. In the chiral limit mq  0, the above
relation for the hadron masses is a rigorous conclusion
of the low-energy QCD theorems [10].

4. Formulas (1)–(6) determine the thermodynamic
properties of the system in the hadron phase and allow
the quark and gluon condensates to be calculated over
the entire temperature range below the critical point Tc.

We take into account all hadron states with masses
below 2.5 GeV for mesons and below 3.0 GeV for bary-
ons. The number of these states (with allowance for the
degeneracy factors gi) is equal to 2078. It is clear that,
for the temperatures below the pion mass T < mπ =
140 MeV, the main contribution to the thermodynamic
quantities comes from the thermal excitations of π
mesons, because other states are much heavier and sup-
pressed exponentially by the Boltzmann factor
∝ exp(−mh/T). However, a large number of heavy states
have an appreciable effect on the thermodynamics of
the system at T > mπ. The pion contribution is shown by
the dash–dotted line in Fig. 1. It is seen that, indeed,
pions make the main contribution to Ph up to the tem-
perature T = 120 MeV. At higher temperatures, the main
contribution to pressure comes from the remaining had-
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ron states. The lattice data [15] for pressure Ph in QCD
with Nf = 2 are also shown in Fig. 1. It is seen that the
hadron resonance-gas model with the temperature-
induced mass shift correctly reproduces the increase in
pressure with temperature in the range T < Tc.

Figure 2 shows the energy density εh as a function of
temperature. A value of 1 GeV/fm3 corresponding to
estimates of the energy density at the quark–hadron
phase transition is achieved at T . 175 MeV, i.e., in the
phase-transition temperature range obtained in the lat-
tice calculations [16].

Figures 3 and 4 show the temperature dependences
of the quark and gluon condensates, respectively. It is
essential that the quark condensate vanishes at the same
temperature at which one-half of the gluon condensate
is evaporated. With allowance for the temperature shift
of hadron masses, this temperature is T . 190 MeV.

Strictly speaking, the temperature shift of gluon
condensate must be determined self-consistently (using
the effective dilaton Lagrangian at T ≠ 0) with allow-

Fig. 1. Temperature dependence of Ph/T4, where Ph is pres-
sure. Solid line is the zero-temperature hadron spectrum,
dashed line is the spectrum with the temperature shift for
χT/χ0 = 0.84, dash–dotted line is obtained including only
pion excitations, and dotted line is lattice calculation [15].

Fig. 3. Same as in Fig. 2, but for the quark condensate
/ .qq〈 〉 T qq〈 〉 0

P
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ance for the hadron-mass shifts (see [14]). However,
numerical calculations show that the gluon condensate
decreases only slightly up to temperatures ~mπ, and
∆〈G2〉T ≈ 0.02〈G2〉0 at T = mπ. With an increase in tem-
perature, T > mπ, the gluon condensate decreases dra-
matically and changes by ~50% mainly in a “rather nar-
row” temperature interval ∆T ~ 50 MeV. Correspond-
ingly, we present the results of numerical calculations
with a hadron-mass temperature shift of 16% (χT/χ0 =
0.84 . (0.5)1/4). We emphasize that the quark conden-
sate and one-half of the gluon condensate are evapo-
rated at the same temperature T ~ 215 MeV even if the
temperature decrease in mh is disregarded.

5. In this work, we have studied a nonperturbative
QCD vacuum with two light quarks at a finite tempera-
ture in the hadron resonance-gas model. The tempera-
ture dependences of the quark and gluon condensates in
the confined phase have been obtained. It was shown
that the quark condensate and one-half (chromoelectric
component) of the gluon condensate are evaporated at

Fig. 2. Temperature dependence of the energy density εh.
The solid line is the zero-temperature hadron spectrum and
the dashed line is the spectrum with the temperature shift;
χT/χ0 = 0.84.

Fig. 4. Same as in Fig. 2, but for the gluon condensate
〈G2〉T/〈G2〉0.

ε h
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the same temperature corresponding to the quark–had-
ron phase transition. This fact corroborates the pattern
of magnetic confinement; i.e., the chromoelectric con-
densate vanishes upon the phase transition, while the
chromomagnetic condensate remains virtually
unchanged [3–6]. The energy density of the hadron res-
onance gas at the phase transition temperature is
εh(Tc) ~ 1.5 GeV/fm3. With allowance for the tempera-
ture shift of hadron masses, the critical temperature is
Tc . 190 MeV.

This work was supported by the Council of the Pres-
ident of the Russian Federation for Support of Young
Russian Scientists and Leading Scientific Schools
(project no. NSh-1774.2003.2) and by the Ministry of
Industry, Science, and Technologies of the Russian
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Search for the Resonance Environmental Effect on the Decay 
Periods of Long-Lived Nuclear Isomers
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Experiments on a search for the resonance environmental effect on the decay periods T1/2 of long-lived nuclear
isomers are described. It is shown that a change in T1/2 obtained upon sample cooling in previous experiments
with the 180mHf isomer is likely due to the insufficient correctness of the procedure used for separating γ peaks
from the backgrounds in the measured γ spectra. The new approach to this problem reveals the absence of this
effect for T1/2 within an experimental accuracy of 1.2%. However, a difference of 2.25 ± 0.77% between the
103mRh decay periods T1/2 was found for the solid and liquid γ sources. A control experiment with the 80mBr
isomer showed that, as expected, the decay periods T1/2 for two temperatures coincide with each other within
an accuracy of 1%. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 21.10.Tg
Vysotskiœ et al. [1–3] discussed the mechanism of
controlling the decay periods of the excited nuclear
states by perturbing the spectrum of zero-energy elec-
tromagnetic modes, which, in the opinion of Vysotskiœ
et al. [1–3], are responsible for the spontaneous electro-
magnetic transitions in nuclei. This perturbation is
implemented by placing, near the γ sources, massive
screens containing the same atoms as in the sources but
with the nuclei in the ground states. In [4, 5], experi-
ments revealed effects that could be treated as the cor-
roboration of the predictions made in [1–3].

Recently, we carried out experiments [6] in order to
find the resonance environmental effects on the decay
periods T1/2 of the 180mHf and 87mSr long-lived isomers.
In our opinion, if a massive sample distorts the spec-
trum of zero-energy electromagnetic modes near its
location, this effect can be caused only by the virtual
photon exchange between the sample nuclei and the
field of zero-energy modes. In this case, some nuclei in
the sample would be in the virtual excited state, while
the intensity of zero-energy modes in the corresponding
energy range would decrease and, therefore, more
weakly affect the γ decay of the source nuclei, thereby
increasing T1/2.

However, we note that some authoritative physicists
consider spontaneous nuclear transitions independent
of zero-energy electromagnetic modes (see, e.g., [7]).

The idea of our experiments was to enhance the
assumed influence of the resonance sample on the zero-
mode spectrum by narrowing the emission and absorp-
tion γ lines of the nuclei under study. This can be
achieved, in particular, by cooling the sample and the
nearby γ source. If the isomeric transition energy is low,
cooling will create Mössbauer conditions for the corre-
0021-3640/03/7810- $24.00 © 20611
sponding γ rays, and very narrow lines with noticeable
(sometimes high) intensities will appear in the emission
and absorption spectra. For high-energy γ transitions,
narrow Mössbauer lines can hardly arise, but cooling of
the samples diminishes the Doppler widths of γ lines. If
the γ source and the resonance sample are cooled from
room temperature to 77 K, the Doppler widths are
approximately halved. Thus, the experiment reduces to
measuring T1/2 for two temperatures 293 and 77 K. The
experiments reported in [6] showed that T1/2 of the
180mHf and 87mSr isomers changes by 2.99 ± 0.87% and
0.77 ± 0.53%, respectively, upon cooling. Such behav-
ior was expected, because the γ spectrum of the 180mHf
isomer includes low-energy lines, for which the Möss-
bauer narrowing is possible, whereas the high-energy
(388 keV) γ ray, for which the Mössbauer effect is vir-
tually unobservable, is emitted in the isomeric transi-
tion of the 87mSr nucleus.

However, we cast some doubt on the data obtained
in that experiment with the 180mHf isomer. First, the iso-
meric transition of this nucleus proceeds between the
fifth and fourth excited states. Therefore, for the nuclei
of resonance environment to affect the zero-mode spec-
trum in the required way, some of these nuclei must be
in the fourth excited state. Thus, one has to adopt an
unconvincing hypothesis about the multistep virtual
excitation of nuclei of the resonance sample. Second,
the experiment in [6] was carried out with a powder
sample of hafnium oxide. Therefore, the possibility that
the observed decrease in T1/2 was caused by gradual
compression of the HfO2 powder under cooling and the
ensuing slow approach of the effective center of the γ
source to a detector was not excluded. However, exper-
iments with metallic hafnium samples showed that the
003 MAIK “Nauka/Interperiodica”
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sample cooling increases T1/2 by 3.6 ± 1.2%, which is
comparable with the effect for hafnium oxide. The pro-
cedure used to separate peaks of the total γ-ray absorp-
tion in the measured spectra from rather high back-
grounds is most doubtful. We determined the intensities
of 215.3-, 332.3-, and 443.2-keV γ lines for the 180mHf
isomer. In [6] (and in the experiments with metallic
hafnium mentioned above), γ peaks were separated
through the subtraction of backgrounds determined for
a small portion of counts in the analyzer channels
immediately above the corresponding peaks (higher in
energy). We note that the backgrounds under the 215.3-
and 332.3-keV γ lines are much higher than for the
443.2-keV line. All backgrounds grow with an increase
in the number of irradiation events for the same sample
because of a gradual accumulation of the comparatively
long-lived 181Hf nuclide (T1/2 = 42.4 d), whose spectrum
includes an intense 482-keV γ line in addition to the
345.8-keV γ line. It was found that the decay periods
determined from the time dependences of the 215.3-
and 332.3-keV γ lines systematically exceed those
determined for the 443.2-keV γ line. Moreover, the T1/2
values determined for different numbers of successive
measurements of the γ radiation intensity were differ-
ent. It seemed that decay is slightly retarded with an
increase in the total measurement duration. This behav-
ior could be associated with an incomplete subtraction
of the background when determining the γ-peak areas.
A small admixture of background counts, which
decreases with time slowly than the γ peak over the
background, should strongly distort the actual decay
law at the end of the measurement time interval, where
the γ-peak intensity is much lower than at its beginning.
Under these conditions, the increase in the measured
T1/2 value with cooling of the hafnium sample could be
assigned to a small background contribution of the
additional counts from long-lived-activity γ rays that
enter the detector as a result of the scattering by liquid
nitrogen. These facts all suggested that the procedure of
subtracting the background was insufficiently correct.
For this reason, experiments with metallic hafnium
were repeated and, in addition to the previous back-
ground subtraction procedure, the data were processed
by the procedure of background determination from the
spectral portion below the γ line (in the region close to
the γ peak, where counts can be treated as independent
of the analyzer channel number). This procedure obvi-
ously loses some counts corresponding to the γ peak,
but the remaining portion is sure to be free of the counts
related to the background.

Measurements were carried out on the same setup as
in [6]. Metallic hafnium samples were 2.5 × 2.5-cm
plates with a thickness of 1 mm. Two such plates with
slightly cut corners were placed in a cylindrical graph-
ite container, one over the other and turned by an angle
of 45° with respect to each other. The containers were
closed by graphite caps using a BT-200 cryostable glue
(boron nitride powder in the epoxy glue). Two such
containers were irradiated in turn by neutrons from the
236Pu–Be source for 12 h. Measurements lasted 11 h.
Each measurement of the γ spectrum lasted 1700 s with
an interval of 30 min between the beginnings of succes-
sive measurements. It was found that the previous back-
ground subtraction procedure still gave different T1/2
values for three γ lines. At the same time, the new pro-
cedure gave the same T1/2 value for all three γ lines
within the experimental accuracy and fully excluded
the dependence of the result on the total measurement
duration. These experiments show that the new proce-
dure of background subtraction gives well-correlated
results for all γ lines and both temperatures. Based on
the more correct new procedure of extracting γ peaks,
one can state that a decrease in temperature has no
effect on the T1/2 value of the 180mHf isomer within the
accuracy of our experiments; i.e., our previous result is
not confirmed. A change in T1/2 value with temperature
is

which comprises –0.54 ± 1.20% of T1/2(293 K). Clearly,
this result must be experimentally verified in the labo-
ratory, where the γ activity of 180mHf isomer is much
higher than in our experiments.

The second experiment was carried out with the
103mRh isomer using an absolutely different technique.
Since the Debye temperature of metallic rhodium is
high (480 K [8]), the probability of recoilless emission
(absorption) of the 39.75-keV γ ray is equal to ~0.46
even at room temperature. For this reason, we com-
pared the decay periods measured for the 103mRh isomer
in a metallic Rh sample and in an aqueous solution of
rhodium nitrate at room temperature. The zero-point
vibration spectrum in the range resonant to the γ transi-
tions in the former sample was expected to be distorted
more strongly than in the latter sample, because the γ
spectrum of a solid sample includes a narrow intense
Mössbauer component. Metallic rhodium samples were
0.1-mm-thick foil disks 35 mm in diameter. For liquid
samples, 18-mm-high closed cylindrical quartz
ampoules 44 mm in diameter with a flat thin bottom
were manufactured. Using a syringe, ampoules were
filled, through the capillaries at their tops, with a 10%
Rh nitrate solution. Then, the capillaries were sealed.
Both ampoules each contained 12.5 g of solution. The
samples were irradiated by fast neutrons from a 236Pu–
Be source, and the 103mRh isomer was produced due to
inelastic neutron scattering. Upon irradiation, a certain
amount of radioactive 104Rh nuclei could be produced
due to neutron capture. This nuclide has an isomeric
excited state with T1/2 = 4.41 min, whereas the decay
from the 104Rh ground state has T1/2 = 44 s. Since T1/2 of
the 103mRh isomer was measured by detecting the rhod-
ium x rays, a small admixture of x rays corresponding
to the 104mRh decay could be present, in addition to the

T1/2 77 K( ) T1/2 293 K( )– 5.366 0.049+( )=

– 5.395 0.045+( ) 0.029– 0.067 h,+=
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x rays associated with the 103mRh decay, at the initial
measurement stage. Note that the short-lived activity
fraction arising upon the irradiation of the samples of
rhodium nitrate solution by neutrons was much greater
than for the metallic samples. This is, clearly, due to the
softening of the neutron spectrum in liquid (the cross
section for the formation of the 104mRh isomer in the
capture of thermal neutrons by the 103mRh nuclei is
equal to 10 ± 1 nb [9]). The time interval between the
beginnings of successive measurements was equal to
45 min, and the first measurement was ignored when
calculating T1/2. Thereby, the x-ray contribution from
the 104Rh decay was excluded. Each measurement cycle
consisted of ten 45-min runs, and the T1/2 values were
determined from the results of 4, 5, 6, 7, 8, and 9 mea-
surements, beginning with the second measurement.
The figure shows that all six variants of T1/2 determina-
tion for metallic rhodium agree with each other within
the adopted accuracy, although a weak tendency to the
increase in T1/2 with the overall duration of measure-
ments is seen. The most probable cause of this tendency
is that the area of background under the x-ray peaks is
somewhat larger than for higher energies, from which
the subtracted background was derived. The measure-
ments with a liquid rhodium solution show a much
stronger increase in T1/2 with increasing the overall
duration of measurements. In particular, this effect
could arise due to a gradual lowering of the effective
center of radioactive rhodium distribution in the liquid
sample and the ensuing approach of this center and the
detector. It is conceivable that the radiolysis of the neu-
tron-irradiated solution gives rise to heavy rhodium-
containing conglomerates, which gradually increase
the rhodium concentration in the lower solution layers,
up to the precipitation. Indeed, a small amount of a dark
and very small sediment was found at the bottom of
ampoules after measurements with liquid samples. We
note that metal ions appearing in solution as a result of
the dissociation of salt molecules do not precipitate.

To determine the actual decay periods of the 103mRh
isomer in samples of both types, the dependences of
T1/2 on the overall duration of measurements should be
extrapolated to zero duration. This extrapolation was
carried out through the approximation of these depen-
dences by functions a + bN2, where N is the number of
successive x-ray intensity measurements for the deter-
mination of a given T1/2 value, including the first (disre-
garded) measurement. This procedure gave T1/2 =
55.79 ± 0.23 and 54 ± 0.61 min for metallic rhodium
and rhodium nitrate solution, respectively. The differ-
ence is equal to 1.46 ± 0.65 min or 2.7 ± 1.2%.

The second measurement cycle with the Rh isomer
was carried out in a different time regime. The time
interval between the beginnings of successive x-ray
intensity measurements was equal to 15 min, and
12 measurements were performed in each run. Thus,
the total duration of one run was equal to 3 h, which
JETP LETTERS      Vol. 78      No. 10      2003
corresponded to the duration of the first four measure-
ments in the runs of the preceding experimental cycle.
Under these conditions, the effective center of a liquid
γ source does not descend noticeably to the end of the
run, so that the T1/2 values obtained for the sources of
both types can be compared using the data of nine mea-
surements in each run, beginning with the fourth, i.e.,
with a 45-min delay to exclude the contribution from
the short-lived activity of the 104mRh isomer.

The second measurement cycle gave the following
decay periods:

Metallic samples: T1/2 = 55.84 ± 0.25 min
Liquid samples: T1/2 = 54.75 ± 0.49 min

It is seen that these values agree well with the results of
extrapolation of the data of the first measurement cycle.

Averaging of the data for both measurement cycles
gives the following results:

Metallic samples: T1/2 = 55.82 ± 0.19 min
Liquid samples: T1/2 = 54.59 ± 0.38 min

The difference in these values is equal to 2.25 ± 0.77%
of the 103mRh isomer half-life in liquid samples.

To verify that the short-lived components have no
noticeable effect on the T1/2 values derived from nine
successive measurements, beginning with the fourth,
the T1/2 values were determined from eight and seven
measurements, i.e., beginning with the fifth and sixth
measurements. The corresponding data are presented in
the table. No clear-cut tendencies to the increase in T1/2
with an increase in the time interval before the first
“allowed” measurement are seen within an experimen-
tal accuracy.

Results of the first measurement cycle for the 103mRh iso-
mer. The abscissa axis shows the number of successive mea-
surements of x-ray intensity from which the corresponding
half-life was determined (including the first (ignored) mea-
surement). Closed and open circles are measurements with
metallic rhodium samples and rhodium nitrate solution,
respectively. For clarity, open circles are slightly shifted to
the right from their real positions. The lines are the least
squares approximations of the experimental data by the
functions a + bN2.
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Our data can be compared with the results obtained
in [10, 11], where, as can be seen from those publica-
tions, liquid samples containing a rather pure 103mRh
isomer were used, and in [12], where electrolytically
prepared metallic samples of radioactive rhodium were
used. The average value obtained in [10, 11] was T1/2 =
56.115 ± 0.005 min. The value T1/2 = 56.6 ± 0.4 min
was reported in [12] for metallic rhodium samples.
Although the difference between these values does not
contradict our data within the adopted accuracies, but it
cannot be considered statistically significant because of
a low accuracy of the T1/2 value obtained in [12]. We
also emphasize that the T1/2 values for the sources of
both types used in [10–12] exceed our values.

The third experiment was carried out with the 80mBr
isomer. This isomer can be obtained in the neutron cap-
ture reaction by 79Br nuclei. The 85.9-keV isomer
decays through the successive emission of 48.9- and
37-keV γ rays. The first of these γ transitions is strongly
converted, whereas 37-keV γ rays are emitted with an
intensity of 0.39 per decay event of the 80mBr isomer.
The half-life of this isomer was measured by detecting
37-keV γ rays. Since the stable 80Br isotope is absent in
nature, it is impossible to create a resonance environ-
ment for γ-active 80mBr nuclei. From the very begin-
ning, this experiment was considered as a control
experiment. It was performed, similarly to the experi-
ments with 180mHf isomer, through comparing the mea-
surements at room temperature and at 77 K. Samples
were prepared from a potassium bromide powder,
which was closely packed into cylindrical graphite con-
tainers with caps hermetized by a BT-200 cryostable
glue. Each container has an inner diameter of 30 mm
and a height of 20 mm. Each T1/2 measurement cycle
consisted of 20 successive measurements of the 37-keV
γ-line intensity using a high-purity germanium detector
with a thin entrance window. The time interval between
the beginnings of successive measurements was equal
to 30 min. The T1/2 values determined from different
numbers of successive measurements in one run (from
all 20 to the first 15) coincide with each other within an

Table

Samples

T1/2 from 9
measurements 
beginning with 

the 4th, min

T1/2 from 8
measurements 
beginning with 

the 5th, min

T1/2 from 7
measurements 
beginning with 

the 6th, min

Metallic Rh 55.84 ± 0.25 55.93 ± 0.32 55.79 ± 0.38

Rh nitrate 
solution

54.75 ± 0.49 55.20 ± 0.68 54.72 ± 0.94
experimental accuracy. The half-life determined from
20 measurements in the run is equal to 4.754 ± 0.032 h
at room temperature and to 4.791 ± 0.034 h at 77 K. The
difference is equal to 0.037 ± 0.047 h or 0.78 ± 0.99%.
Thus, as was expected, a difference in the decay periods
of the 80mBr isomer was revealed within our experimen-
tal accuracy in this case. The 103mRh isomer is the only
isomer for which the difference between the decay peri-
ods was detected under the conditions where the spec-
trum of the zero-point electromagnetic mode should be,
at first glance, differently perturbed. However, the
accuracy of determination of this difference is low.
Therefore, the decay of this isomer should be further
investigated by a different method, e.g., by comparing
the decay periods at the normal and very high tempera-
tures for metallic rhodium.

This work was supported by the Russian Foundation
for Basic Research (project no. 01-02-16577) and par-
tially by INTAS (project no. 97-31566).
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A nonlinear threshold phenomenon at the interaction of atoms with two counter-propagating light beams of dif-
ferent frequencies is presented. The existence of a critical intensity of the interference field is shown, which is
the threshold of nonlinear resonance achieved in the field. This phenomenon leads to acceleration or decelera-
tion of the atom, depending on its initial velocity. Such acceleration/deceleration of shock character, because of
the impact with the potential barrier, occurs on ultrashort distances on the order of laser wavelengths, and
depends neither on the field magnitude nor on interaction length. © 2003 MAIK “Nauka/Interperiodica”.
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The problem of the acceleration of atoms has been
considered since the period of the appearance of laser
sources [1–5]. In recent decades the inverse problem of
atoms’ deceleration became more important, as it is
connected with the intensive experimental research
regarding the laser manipulation of atoms [6–9]. The
latter is of great interest and involves a large class of
atomic and laser spectroscopic issues, especially at
very low temperatures (it is worthwhile noting unique
experiments that include the trapping of separate
atoms or Bose condensation of supercooling atomic
gas in optical-dipole or magnetic traps [10–15]). We
shall not attempt to review the extensive literature
regarding the laser manipulation of atoms by counter-
propagating light beams, apart from mentioning the
works [16, 17] which consider the acceleration of
atoms in moving periodic potentials-traps. The latter
relies on the “conveyor belt” provided by a frequency-
chirped optical lattice formed by two counterpropagat-
ing laser beams.

In this paper we present a nonlinear mechanism of
atom acceleration by two counterpropagating light
beams of different frequencies, which differs from the
mentioned schemes of trapped-atom acceleration. It is
a process of the collision of the atom with the moving
potential barrier. Thus, it has appeared that in the field
of two counterpropagating light beams of different fre-
quencies a critical intensity of the net field exists, above
which the atom “reflection” from the slowed interfer-
ence wave takes place. This type of wave field becomes
a potential barrier with respect to the atom, resulting in
atom acceleration or deceleration (depending on the
initial conditions).

We will study the dynamics of interaction of a two-
level atom with the two quasi-monochromatic counter-

¶ This article was submitted by the authors in English.
0021-3640/03/7810- $24.00 © 20615
propagating plane waves of different frequencies in the
approximation of a given field (the magnitudes of the
wave fields will be assumed to be so strong that the
radiation/absorption processes can not change their
given values). As will be shown below for the actual
cases of strong laser pulses, the approximation of a
given field in this process is satisfied with great accu-
racy.

The Hamiltonian of a two-level atom in the field of
two quasi-monochromatic counterpropagating plane
waves in the rotating wave approximation is given by
the expression

(1)

where r and p are the classical position and momentum
of an atom center-of-mass (m), obeying the Hamilton
canonical equations of motion

(2)

Here, ω0 is the frequency of the atomic transition, being
driven by the linearly polarized counterpropagating
waves with carrier frequencies ω1, ω2 (let ω1 > ω2),
wavenumbers k1, k2, and amplitudes E1, E2. Then Ω1, 2

are the Rabi frequencies: Ω1, 2 = E1, 2d1, 2/", where d1, 2

are the projections of the atomic transition dipole
moment along the waves’ polarization directions, " is
the Plank constant, S1, 2(t) are the slowly varying enve-
lopes of quasi-monochromatic waves (S1, 2 max = 1). The
variables σ– and σz are the expectation values of the

H p r t, ,( ) p2

2m
-------

"ω0

2
---------σz i"Ω1S1 t( )e
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σ– c.c.,+
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Pauli pseudo-spin operators describing the atomic
internal state. They obey the optical Bloch equations

(3)

which include the center-of-mass motion of the atoms.
For the plane waves propagating along the Z axis

from Eqs. (6)–(3) one can obtain the velocity of the
atom in the field

(4)

where v 0 = (v 0x, v 0y, v 0z) is the initial velocity of the
atom. The quantity n > 1, which is the “effective refrac-
tive index” of a slowed interference wave propagating
with the phase velocity v ph = c/n < c, and the interaction
potentials Vsw(z, t) of the atom with such a wave field
are given by the expressions

(5a)

(5b)

(5c)

As may be seen from Eq. (4), if the maximal value
of the interaction potential Vsw(z, t)max = |V0| (5) is larger
than a certain value

(6)

which will be called critical, the expression (4) for the
atom velocity may become complex. This complexity
is bypassed in the complex plane by continuously pass-
ing from one Riemann sheet to another, at which the
root changes its sign. Hence, the atom velocity remains
real everywhere and the multivalence of the expression
(4) vanishes as well. Indeed, if |V0| < Vcr, one should
take the root in Eq. (4) with the sign (–) if v 0z ≤ c/n, and
with the sign (+) if v 0z ≥ c/n, to satisfy the initial condi-
tion v z = v 0z at the Vsw(z, t = –∞) = 0. Then, after the
interaction (Vsw(z, t = +∞) = 0) the energy of the atom
remains unchanged. However, when |V0| > Vcr the value
Vsw(z(t0), t0) = Vcr (where z(t0) is the atom coordinate at
the moment t = t0) steps out as a turn point, and for t > t0
one should change the sign of the root, in respect to the
moments t ≤ t0. At that, the slowed interference wave
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becomes a potential barrier for the atom and the “reflec-
tion” of the atom from such a moving barrier occurs. To
explain the physics of this phenomenon, it is necessary
to clarify the meaning of the critical field. This is an
essentially nonlinear phenomenon of a threshold
nature, and the critical intensity of the interference
wave is the threshold value for this process. Namely,
Eq. (4) shows that the critical value Vcr is the value of
the potential, at which the longitudinal velocity of the
atom in the field v z(t) becomes equal to the phase veloc-
ity of the slowed interference wave v z(t) = c/n, irrespec-
tive of the atom initial velocity v 0z. The latter is the con-
dition of resonance with the Doppler-shifted waves fre-
quencies, at which the coherent scattering, that is, the
induced “Compton” scattering of counterpropagating
waves on an atom occurs:

(7)

Since the resonant velocity of the atom, v z(t) = c/n, is
acquired in the field at the value Vsw = Vcr (due to the
wave intensity effect) this is a nonlinear resonance. For
this reason, the “reflection” of the atom from the mov-
ing barrier occurs. Note that this is actually a reflection
in a frame of reference moving with the velocity V =
c/n, which is the rest frame of the slowed interference
wave. In this frame, an atom with the velocity 
swoops on the motionless barrier and, as is seen from
Eq. (4), an elastic reflection of the atom occurs:  = –

.

Thus, if the maximal value of the interaction poten-
tial |V0| > Vcr, then after the interaction (“reflection”) for
the atom velocity we have

(8)

Equation (8) shows that, if v 0z < c/n, then v z f > v 0z

and the atom is accelerated. But if v 0z > c/n, then v z f <
v 0z and deceleration of the atom takes place. The
kinetic energy lost by the atom during deceleration is
transferred to the waves according to induced “Comp-
ton” scattering, during which conservation of the pho-
ton number takes place. In other words, the atom
absorbs photons of a small frequency ω2 and emits the
same number of photons with the large frequency ω1
(and vice versa upon acceleration). For the initially res-
onant velocity of the atom (v 0z = c/n), Vcr = 0 and, con-
sequently, the atom velocity does not change (v zf = v 0z).

For the kinetic energy change of the atom’s center-
of-mass we have

(9)
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As is seen from this formula, the acceleration of the
atom depends neither on the field magnitude (which
must only be an above-threshold field) nor the interac-
tion length. This is an impact acceleration/deceleration
over ultrashort distances (in the order of laser wave-
lengths), which may serve as a significant tool for the
laser manipulation of atoms. The threshold character of
such acceleration may be used for the separation of
atoms by the velocities.

To illustrate the entire picture of this nonlinear effect
we present the graphics of numerical solutions of
Eqs. (3)–(6) for the laser pulses with the Gaussian
envelopes. To accentuate this acceleration mechanism
due to nonlinear resonance created by the field we espe-
cially present the acceleration of an atom at rest—the
case when the initial atom velocity is very far from the
resonant one (7).

Figure 1a illustrates the temporal evolution of the
atom’s center-of-mass velocity (solid curve), when v0 = 0
and the intensity is below the critical point: V0 < Vcr.
Variation of the scaled potential Vsw/Vcr along the atom
trajectory is shown by the dotted curve. As we see, there
is no acceleration under the threshold of nonlinear res-
onance (the net gain is defined by the initial phase). In
Fig. 1b the atom dynamics is displayed, when the inten-
sity is above the critical point: V0 > Vcr. From these fig-
ures it is clearly seen that at the critical point Vsw = Vcr

the longitudinal velocity of the atom becomes equal to
the phase velocity of the interference wave (v z(t) =
v ph = c/n) and is a turning point for the solid curves. The
latter corresponds to Eqs. (4), where the root changes
its sign and the further evolution of the velocity pro-
ceeds along the second branch of the root with an
inverse sign. In the resonance range, the velocity of the
atom strictly increases due to the genuine nonlinear
character of the resonance in the field (see Eq. (7)).
Then, after leaving the resonance range the final veloc-
ity of the atom becomes v zf = 2v ph in accordance with
the analytical results (see Eqs. (4) and (8)). For the ini-
tial condition v 0 > v ph, a deceleration of the atom after
the “reflection” occurs. Maximal deceleration v zf = 0
occures at the initial velocity v 0 = 2v ph, for which we
have the inverse picture of Figure (b).

The estimates show that an atom at rest can be accel-
erated up to thermal velocities ~105 cm/s by laser
pulses with electric fields strengths E ~ 106 V/cm, at the
“refractive index” n ~ 105 (corresponding to temporal
coherency (ω1 ~ ω2)/ω1 ~ 10–5 of lasers) with detunings
∆1, 2/ω0 ~ 10–1. Note that the fields necessary for this
effect are much smaller than the atomic ones and the
model of a supposed two-level atom is well enough jus-
tified. The energy acquired by the atom at such interac-
tion, i.e., the energy of the wave field transferred to the
atom, is about ~10–2 eV, which is negligibly small in
respect to even weak laser pulses. So, the applied
approximation of a given field is satisfied with great
accuracy. In the inverse regime of deceleration with the
JETP LETTERS      Vol. 78      No. 10      2003
same fields one can stop such a thermal atomic beam at
a distance on the order of laser wavelengths.

This work was supported by the International Sci-
ence and Technology Center (ISTC) Project no. A-353.
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The self-focusing of laser radiation in plasma with ionized gaseous clusters is studied both analytically and
numerically. An electrodynamic model is proposed for cluster plasma in a field of ultrashort laser pulse. The
radiation self-action dynamics are studied using the equation for wave-field envelope with allowance for the
electronic nonlinearity of the expanded plasma bunches and the group-velocity dispersion in a nanodispersive
medium. It is shown that, for a laser power exceeding the self-focusing critical power, the wave-field self-com-
pression occurs in a medium with dispersion of any type (normal, anomalous, or combined). Due to the strong
dependence of the characteristic nonlinear field on the size of ionized cluster, the corresponding processes
develop faster than in a homogeneous medium and give rise to the ultrashort pulses. © 2003 MAIK
“Nauka/Interperiodica”.
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Gaseous cluster targets are finding increasing use in
experiments on the interaction of laser radiation with
substance. Due to the highly dispersed structure of such
targets, X-ray generation and generation of charged
particle fluxes [1–5] can be much more efficient than in
a homogeneous substance. Recent observations of laser
radiation self-focusing in cluster plasmas [5, 6] pose
the problem of theoretical investigation of this process
and its role in the amplification of nonlinear processes
accompanying the interaction of field and matter. This
paper is devoted to the study of this problem.

When developing the theory of laser interaction
with such a strongly inhomogeneous medium, we will
assume that the latter consists of a substance in the non-
condensed phase and clusters with the distance Lc

between them. The laser wavelength λ far exceeds the
intercluster spacing and cluster size a (λ @ Lc @ a).
Due to this assumptions, one can use the approximation
of effective refractive index for the medium. When
deriving the relation between the medium polarization
and the field, we will take into account (in accordance
with the experimental data [1–9]) that the medium is
ionized at the pulse leading edge, but electrons,
although leave their atoms, remain in the cluster (inter-
nal ionization). The resulting plasma bunch is expanded
so that the total number of charged particles in the
bunch does not change. The evolution of an ultrashort
laser pulse in a nonstationary cluster plasma will be
studied using the modified nonlinear Schrödinger equa-
tion on assumption that the field frequency is much
lower than the cluster plasma frequency.

1. We assume for simplicity that the cluster is
shaped like a sphere and atoms in the external uniform
field E(t) are ionized uniformly over the cluster volume.
We, thus, arrive at the model of an ionized cluster con-
0021-3640/03/7810- $24.00 © 20619
sisting of two uniformly charged spheres, namely, a
positively charged heavy sphere and a negatively
charged light sphere. The displacement x of the cen-
troid of electron subsystem along the field is described
by the equation

(1)

where n is the electron density in cluster, ωc =
(4πe2n/3m)1/2 is the eigenfrequency of the ionized
spherical cluster, m is the electron mass,  = dx/dt is the
velocity of centroid, and a is the cluster radius. The first
term on the left-hand side of Eq. (1) is a change in the
momentum of electron subsystem, the second term
describes the mutual attraction of the spherical electron
and ion bunches, and the right-hand side of Eq. (1) is
the force acting on electrons from the external field. We
also assume that the internal ionization of cluster atoms
has tunneling character and is described by the equation

(2)

where ωa is the atomic frequency, na is the atomic den-
sity in cluster, and Ea is the atomic field (Ea = e/ra,
where ra is the atomic size).

The set of Eqs. (1) and (2) can conveniently be writ-
ten in the dimensionless form

(3)

(4)

where the displacement x and the cluster size a are nor-
malized to the initial cluster size a0 (x/a0  x and

d
dt
----- a3n

dx
dt
------ 

  ωc
2 a6nx

x2 a2+( )3/2
--------------------------+

ena3

m
-----------E t( ),=

ẋ

∂n/∂t ωa na n–( ) Ea/ E–( ),exp=

d
dt
----- a3nẋ( ) a3n2x

x2/a2 1+( )3/2
--------------------------------+ δna3

q
--------E t( ),=

∂n/∂t β 1 n–( ) 1/ E–( ),exp=
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a/a0  a); the concentration n is normalized to the
maximal density of charged particles in cluster
(n/na  n); the field E is normalized to the atomic

field e/ ; the variable t is related to the dimensional
time as t  ωct; and the parameters β, δ, and q are
defined by the relationships β = ωa/ωc, δ = ra/a0, and q =

4πn0 /3 (q is the total number of ionized particles in
the atomic volume).

Below, Eqs. (3) and (4) are used to analyze the
behavior of a cluster in the field of laser pulse

As long as the amplitude E0 is small, the cluster remains
nonionized (n ≈ 0) and shows no reaction to the external
field. As the field amplitude increases, the ionization is
abruptly “switched on” at a certain moment t0. At large
values of parameter β (ωa @ ωc), the cluster is almost
completely ionized (n . 1) in a time much shorter than
the natural period of plasma bunch. Such an “instanta-
neous” ionization results in the excitation of eigen-
modes and a broad spectrum of induced modes. In the
linear approximation (x ! a = 1) and on assumption
that the clusters are ionized instantaneously, one can
easily estimate, after substituting a = 1, x(t0) = 0, and
n(t) = θ(t – t0) (θ(t) is the Heaviside unit step function)
in Eq. (3), the amplitudes of excited bunch eigenmodes
with frequency ωc = 1,

, (5)

ra
2

ra
3

E t( ) E0 t( ) ωt( ).cos=

xeigen . δ
E t0( )

q
------------

Fig. 1. Time dependence of the centroid of electron sub-
system in a cluster oscillating under the action of field
E(t) = 0.3cos(0.1t)(1 – exp(–0.1t)) and expanding accord-
ing to the law a = 1 + 0.003t. (a) Initial stage with small
oscillation amplitude and insignificant cluster expansion,
and (b) long-time behavior of the system.
and low-frequency induced modes with the frequency
ω ! ωc of external field,

(6)

One can see from the comparison of Eqs. (5) and (6)
that the dipole moments of cluster eigenmodes excited
upon ionization are of the same order as the dipole
moments at the field frequency. However, the situation
changes with cluster expansion. For a fixed total num-
ber of electrons in the cluster (na3 = const), the eigen-
frequency decreases proportionally to a–3/2 with
increasing radius a. In accordance with the adiabatic
invariant, the eigenmode amplitude increases slowly
(proportionally to a3/4), while the amplitude of induced
oscillations, as seen in Eq. (6), increases with cluster
size much faster (x ~ a3). For this reason, we will
restrict ourselves to the consideration of plasma polar-
ization at the frequency of external field.

The linear approximation x ! a can break upon
cluster expansion. In a sufficiently intense external field
(E ~ qn0 /δa2), the oscillation amplitude can become

comparable to the cluster size a even far from the linear
resonance. In this case, the cluster interacts with field
nonadiabatically, so that the electronic component
acquires a constant velocity component and separates
from the ionic component, rendering the motion aperi-
odic. In fact, this corresponds to the cluster destruc-
tion.1 In weak fields, a change to the nonlinear regime
x ~ a occurs upon achievement of the resonance condi-
tion ω . ωc. In this case, an increase in the cluster oscil-
lation amplitude can also result in the cluster destruc-
tion.

The results of the above qualitative consideration of
the cluster polarization dynamics are confirmed by the
numerical analysis of the set of Eqs. (3) and (4). The
function x(t) for a cluster expanding according to the
law a = 1 + 0.003t is shown in Fig. 1. For such a high
expansion rate, the electron plasma frequency in an ion-
ized cluster reduces to the frequency of external field
during the laser pulse in experiments [6–9]. One can
see (Fig. 1a) that the induced oscillations and the eigen-
modes with comparable amplitudes are excited at the
pulse leading edge and that the subsequent behavior is
in compliance with the qualitative considerations
(Fig. 1b). The amplitude of induced oscillations ceases
to increase (x ~ a3) at ω0t . 1300, at the instant the lin-
ear oscillation regime changes to the nonlinear regime
with the oscillation amplitude on the order of cluster
size.

Our molecular dynamics study of cluster polariza-
tion in an external field (through the direct solution of
the equation of motion for each electron arising upon

1 Estimates suggest that, for the nonresonant cluster destruction,
the characteristic laser intensity should be at least 20 times higher
than the intensity used in the experiment [6].

xind δ
E0

nq
------.≈

a0
3
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cluster internal ionization in a self-consistent electric
field) yields the same results. The kinetic model of clus-
ter is augmented by the external ionization effect (elec-
tron leakage from plasma bunch). This process is
enhanced with an increase in field amplitude and even-
tually results in the Coulomb explosion. In our further
study of the self-action dynamics, we restrict ourselves
to the initial stage of cluster expansion under weak non-
linearity conditions.

2. To describe the self-action dynamics of a radia-
tion with frequency ω much lower than the eigenfre-
quency ωc of an ionized cluster but higher than the fre-
quency ωbq of the background plasma, we use the wave
equation

(7)

which takes into account the influence of both the con-
densed phase (clusters) and the background plasma.

In the approximation of slow (on the field period
scale) cluster expansion, Eq. (1) gives for the polariza-
tion of the cluster subsystem

(8)

In deriving this expression, the nonlinearity and disper-
sion of the cluster subsystem were calculated perturba-
tively under the condition that the number of particles
is conserved, n(t)a3(t) = n0 . The characteristic elec-

tronic nonlinear field

(9)

is determined by the initial cluster size a0. It follows
from Eq. (8) that the nonlinearity in the cluster sub-
system increases with cluster size in proportion to a7.

The medium under consideration can be described
in terms of effective dielectric constant. In the linear
approximation, this brings about the dispersion relation

(10)

where the parameter

(11)

determines the dispersion of group velocity v gr. Here,

the notation α = 3nc  and b = a3/  is introduced,
where a0 is the initial size of ionized cluster. One can
see from Eq. (11) that, for a low density of the back-
ground plasma,

(12)

∂2E

∂t2
--------- c2∂2E

∂z2
---------– c2∆⊥ E– 4π

∂2Pc

∂t2
----------- ωbq

2 E+ + 0,=

Pc
3

4π
------nca

3E 1
a4

a0
4

----- E2

Ecr
2

-------+
 
 
 

=
3

4π
------nc

a3

ωc
2a0

3
----------- ∂2

∂t2
-------Ea3.–

a0
3

Ecr mωc
2a0/e=

kz ω2 1 αb+( ) ωbq
2– αb2ω4/ωc

2+( )1/2
= /c,

k2
∂2kz

∂ω2
---------

∂
∂ω
------- 1

v gr

--------  . 
ωbg

2– 3αb2ω0
2/ωc

2+

ω0
3c

-----------------------------------------------= =

a0
3 a0

3

ωbg
2 3αb2ω0

4/ωc
2<
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the group-velocity dispersion in cluster plasma is nor-
mal,  > 0. As the cluster expands, inequality (12)
is progressively better fulfilled; i.e., the dispersion
remains normal. If the background plasma density is
high enough, so that the inverse of inequality (12) is ful-
filled, then the plasma (anomalous) dispersion will pre-
dominate at the wavepacket leading edge. However, as
the cluster expands, the anomalous dispersion can
change to the normal dispersion during the pulse. This
case will be referred to as a regime with a combined
dispersion.

When deriving the equation of nonlinear optics, we
assume that the cluster size increases smoothly (on the
radiation wavelength scale) during the pulse. As a
result, we obtain the following equation for the com-
plex amplitude of wave-field envelope in the adiabatic
approximation:

In the dimensionless variables

,

it has the form

(13)

Without taking into account the dependence of group
velocity on the pulse amplitude (second term), Eq. (13)
reduces to the usual nonlinear Schrödinger equation
(NSE) in a nonstationary medium. For this case, the
dynamics of the system described by Eq. (13) are well
known (see [10–13] and references cited therein) and
depends on the sign of the dispersion of wavepacket
group velocity. A pulse propagating in a medium with
the normal dispersion (χ > 0) undergoes self-focusing
if the pulse power exceeds a certain critical value [10,
11]. In the stationary case with parameters (13), the
(local) self-focusing critical power is

(14)

The value P0 = 11.7 (dimensionless critical power of an
axisymmetric uniform wave beam) is well known in the
theory of self-focusing. The conditions for the develop-
ment of strongly nonlinear phenomena in a medium
with anomalous group-velocity dispersion (χ > 0,

v gr( )ω'

E z t r⊥, ,( ) = A z ξ  = z zc t( )– r⊥, ,( ) ikzz iφ z t,( )–( ).exp

Ψ A/Acr, Acr 5ωEcr/ωcamax
1/2 ,= =

znew 10αamax
6 ω3z/ωc

2c, τ 2ωξ/c,= =

rnew ω2amax
6 20α( )1/2r cωc( ), d a3/amax

3 ,= =

χ d2 ωbg
2 ωc

2/ 3αω4amax
6( )–=

i
∂Ψ
∂z
-------- id7/4 Ψ 2 ∂

∂τ
-----d7/12Ψ ∂

∂τ
-----χ∂Ψ

∂τ
--------–+

+ ∆⊥ Ψ d7/3 Ψ 2Ψ+ 0.=

Pcr τ( )
a0

a τ( )
---------- 

 
7 c2

4αω2
-------------Ecr

2 cP0.=
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/ω2 > / ), where the so-called distributed
collapse occurs, are less stringent (for details, see [12,
13]).

The specific features of the solutions to the modified
NSE (13) describing the propagation of a short high-
power pulse in cluster plasma are primarily caused by
the strong dependence of the nonlinear coefficients on
the cluster size a (the coefficient of cubic nonlinearity
is proportional to a7, and the nonlinear correction to the
group velocity increases toward the pulse end just as
rapidly). When normalized to the maximal value, the
nonlinear coefficients become negligible at the leading
edge. Accordingly, they are operative in the region
shifted to the pulse trailing edge.

ωbg
2 αamax

3 a0
3

Fig. 2. Ψ isofield curves for the initial distribution Ψ(z =
0) = 2exp(–0.5(r/2)2 – 0.5(τ/8)2) at different distances from
the entrance into cluster plasma.

Fig. 3. Dynamics of (a) distribution centroid and (b) maxi-
mal field for the same initial distribution as in Fig. 2.

z

z

z

z

z

τ c
(z

)
E

m
ax

(z
)

3. Numerical studies of the evolution of three-
dimensional axisymmetric Gaussian wavepackets

(15)

have shown that the dynamics are similar for all types
of group-velocity dispersion (normal, χ > 0; anoma-
lous, χ < 0; and combined). The nonlinear correction to
the group velocity (the second term in Eq. (13)) has a
noticeable effect in this case. As the pulse propagates in
the medium, its centroid shifts to the trailing edge, where
the cluster size increases and the medium is character-
ized by strong nonlinearity and normal dispersion.2 In
addition, a pulse of a sufficiently high intensity under-
goes strong transverse compression (self-focusing).

The meaning of critical power (14) in our problem
is as follows. If the power exceeds this value at a certain
point of the pulse, the wave field undergoes self-com-
pression in this region, followed by wavepacket modi-
fication. Evidently, the centroid shift to the pulse trail-
ing edge (ignored in Eq. (14)) reduces the self-focusing
threshold, so that the above value is overestimated.

The results of numerical solution of Eq. (13) are
illustrated in Fig. 2 for the case of normal dispersion
(χ > 0). A noticeable field strengthening in the pulse
trailing portion is caused by the increase in cluster size
and the attendant decrease in critical power (14). The
isoline structure in the peripheral wavepacket region
demonstrates the onset of a fragmentation process sim-
ilar to that observed for the usual self-action in a
medium with normal dispersion. The evolution of dis-
tribution is accompanied by field strengthening and a
decrease in the characteristic longitudinal scale, so that
the energy integral ceases to be conserved from a cer-
tain moment. At the end of calculation of this variant,
the maximum of field amplitude increased by 50 times
relative to its initial level at a distance z ~ 0.875
(Fig. 3b). In fields as strong as these, the effect of clus-
ter external ionization may become significant, result-
ing in nonlinearity saturation. The dynamics of wave-
packet centroid are shown in Fig. 3a: toward the pulse
end, the initially accelerated motion comes to rest and
even reverses after achieving large field amplitudes.

This self-action regime is noticeably different from
the corresponding process described by Eq. (13) with
constant coefficients and without inclusion of nonlinear
dispersion: the pulse halving is stabilized, the pulse
becomes noticeably shorter, and the maximum field
strength increases. In this case, the wavepacket evolu-
tion is, rather, similar to that in a medium with anoma-
lous group-velocity dispersion. The only difference is
that the pattern of isolevel curves is distinctly more
symmetric in the anomalous dispersion regime.

2 Such an accelerated motion of the pulse centroid can readily be
proved by the moments method.

Ψ z 0= r τ, ,( ) Ψ0
r2

2ar
2

--------– τ2

2τ0
2

--------–
 
 
 

exp=
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Therefore, the propagation of a high-intensity laser
radiation in cluster plasma should be accompanied by a
dramatic increase in the field maximum and a decrease
in the pulse duration. A shift of the field-distribution
centroid toward the trailing edge can manifest itself as
a pulse deceleration. These features of the radiation
self-action dynamics in a highly dispersed medium of
expanding plasma bunches deserve special experimen-
tal study. Certain suggestions regarding the optimiza-
tion of field and medium parameters (cluster density
and size, density of background plasma, etc.) with the
aim of better observation of self-focusing can be made
on the basis of expression (14) for the self-focusing
critical power. The latter can be represented as

(16)

One can see that the use of smaller clusters and higher-
frequency radiation is more preferential in the experi-
ment. This fact, probably, explains the observation of
self-focusing in experiments with short-wavelength
radiation [5]. In this respect, the parameters used in
more detailed experiments on self-focusing [6], where
the clusters were rather large (a0 . 300 Å) and the radi-
ation wavelength was four times greater than in [5],
seem to be not quite appropriate.

The dependence of Pcr on the phenomenological
parameter—cluster expansion rate—is more signifi-
cant. For the parameters used in [6] (λ = 800 nm, a0 .
300 Å, na . 1024 cm–3), one can easily estimate the self-
focusing critical power

(17)

In the experiments [6], the optimal self-focusing was
observed for pulses of a duration of 350 fs, while the
cluster size increased fivefold in 300 fs. At the same
time, for a/a0 = 4, the maximal pulse power (P ~ 1011 W)
suffices to exceed critical value (17). We, therefore,
conclude that the experiments on self-focusing [6] can
be interpreted in terms of the mechanism suggested in
this work.

Pcr . 
a0

a
----- 

 
7 ωc

2

ω2
------ω

c
----a0

 
 
 

2

1012 W[ ] .×

Pcr . 1015 a0/a( )7 W[ ] .
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The possibility of improving the resolution and angular dispersion in the X-ray wavelength region through the
use of asymmetric crystals in parallel beams is demonstrated. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 07.85.Fv; 41.50.+h; 61.10.-i
High spectral resolution in the X-ray region is of
interest for study of magnetic materials (Co, Fe, Mn,
Ge, …) near their absorption edges [1, 2], phonon spec-
tra of solids by inelastic X-ray scattering [3], photonu-
clear processes [4], etc. High resolution is achieved by
the use of spectrometers and monochromators based on
flat or bent crystals, which serve as selective reflectors
in accordance with the Bragg condition

(1)

where λ0 is the radiation wavelength, ϕ0 + α is the beam
glancing angle with respect to the crystal planes (fig-
ure), and d is the interplanar spacing; the index 0 will
be omitted for brevity, where this will not cause confu-
sion. The crystal may be symmetric (SC) if α = 0 or
asymmetric (AC) if α ≠ 0. In the first case, the crystal
surface is parallel to the atomic planes, and in the sec-
ond case, it makes the angle α (cut angle) with them. In
both cases, the spectral resolution is determined by the
reflection curve width and is ordinarily equal to 10–3–
10–6 rad [5]. However, there is a spectroscopically
important distinction between SCs and ACs as regards
the reflection of a parallel polychromatic beam.
Namely, a polychromatic beam is reflected from the SC
surface in a specular manner, i.e., without spectral
decomposition. At the same time, when reflected from
an AC, the beam undergoes spectral decomposition,
because AC, in contrast to SC, represents a diffraction
grating with period D = d/sinα. The resolution of such
a grating is, clearly, determined by the total number of
periods N = L/D and is limited only by the crystal size
L or by the technological potentialities (in this case, N
is the number of phase-matched atomic planes). The
reflection curve width (which determines the spectral
resolution for SC) for an AC used as a diffraction grat-
ing determines the dispersion region, i.e., the spectral
region where the diffraction efficiency is high.

2d ϕ0 α+( )sin lλ0, l 0 1 2 …,, , ,= =
0021-3640/03/7810- $24.00 © 20624
Therefore, an AC represents a diffraction grating
with (a) large dispersion (due to the small period D); (b)
high diffraction efficiency (due to the Bragg effect) in a
narrow spectral range determined by condition (1); and
(c) high spectral resolution corresponding to the num-
ber N of atomic planes cropped out at the surface. These
properties can be described quantitatively through solv-
ing the problem of diffraction from an AC. Consider a
crystal for which condition (1) is fulfilled for a certain
l. We first make sure that the Bragg condition for the AC
coincides with the grating equation. To this end, we
introduce in Eq. (1) the grating parameters D = d/sinα
and ϕn = ϕ + 2α instead of the parameters d and α of a
multilayer structure. Then, indeed, we obtain the grat-
ing equation

(2)

where n = –l. Hence, a beam specularly reflected from
the atomic planes corresponds to the lth-order diffrac-

D ϕncos ϕcos–( ) nλ0,=

Schematic of reflection from an asymmetric crystal. Solid
line is the crystal surface; dashed line is the beam trajectory;
horizontal lines are atomic planes; and ϕ0, ϕn, and α are the
glancing, diffraction, and cut angles, respectively.
003 MAIK “Nauka/Interperiodica”
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Widths of diffraction peaks for some asymmetric crystals (cut angle α = 10°)

Crystal Si Ge CaF2

Miller indices (422) (220) (111) (422) (220) (111) (220) (111)

2d‚ nm 0.222 0.384 0.627 0.231 0.400 0.653 0.386 0.631

λ, nm 0.194 0.166 0.275 0.179 0.131 0.607 0.166 0.275

Φ, nm 60.9 25.6 26.0 50.8 19.1 68.4 25.6 26.0

Ω , mrad 0.028 0.030 0.069 0.046 0.052 0.765 0.040 0.040

∆λ/λ × 105 1.64 8.62 19.46 4.10 24.64 30.68 11.65 11.52

δϕ, mrad 0.005 0.022 0.050 0.013 0.058 0.101 0.030 0.030
tion from the grating formed by the AC. Because of
this, a high diffraction efficiency should be expected
just for this order. Thus, let us consider a polychromatic
beam with glancing angle ϕ satisfying condition (1) for
all beam wavelengths approximately and for λ = λ0
exactly. By using the slow amplitude approximation,
one can obtain the following expression for the field
outside and inside the AC in the case of strong coupling
between the zeroth and nth diffraction orders:

(3)

(4)

where

(5)

k = 2π/λ, ϕn is defined by Eq. (2), and ε0 is the mean
dielectric constant of the crystal. According to Eqs. (3)–
(5), the amplitude Rn of the diffracted wave in the
absence of absorption depends at ε0 ≈ 1 on only a single
(not counting d) material constant Bn, which represents
the Fourier-expansion harmonic of the dielectric con-
stant. It can be expressed through the Bragg angle Φ =
ϕ + α and the halfwidth of the SC reflection curve (for
some crystals, the relevant data are tabulated in [5]):

(6)

z 0, E x z,( )< ikx ϕ ikz ϕsin+cos{ }exp=

+ Rn ikx ϕncos ikz ϕnsin–{ } ,exp

z 0, E x z,( )> i ω0 ωn–( ) z/2( ) νz–( )exp=

× ikx ϕ izζ0+cos{ }exp(
+ Rn ikx ϕncos izζn–{ }exp ),

ωm

k2 ε0 ϕmcos
2

–[ ] ζ m
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2ζm

--------------------------------------------------, m 0 n;,= =

ζ0

2πn α ϕ 0sincos
d ϕ0sin ϕnsin+( )
-----------------------------------------, ζn ζ0

ϕnsin
ϕ0sin

-------------,= =

ν
k4Bn

2

ζ0ζn

-----------
ω0 ωn+( )2

4
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k2Bn–
ζ0 ω0 ωn+( )/2 iν+[ ]
--------------------------------------------------;=

Bn
Ω

3 2
---------- 2Φ.sin=
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One can readily verify that, in the wavelength region
where the radicand in Eq. (5) is positive, the diffraction
efficiency defined as ηn = |Rn|2sinϕn/sinϕ0 equals 1. The
width of this region is given by

(7)

This is just the AC dispersion (operating) region. The
angular dispersion, according to grating equation (2), is
equal to

(8)

Contrary to Eq. (8), the angular dispersion of a ruled
or holographic X-ray grating involves a small multi-
plier ~(λ/a), where a is the grating period.

Using the table, one can determine the spectral
intervals (λ – ∆λ/2, λ + ∆λ/2) where various crystals
can be used as dispersive elements with an efficiency
close to 100%. The parameters d and Ω , the Bragg
angle Φ, the cut angle α, and the spectral ∆λ/λ and
angular δϕn widths of the operating region determined
according to Eqs. (7) and (8) are also given in the table
for some crystals.

A pyrographite crystal is characterized by the value
Ω ≈ 10 mrad, which is much greater than the data given
in the table. One can, hence, expect the broader operat-
ing region ∆λ/λ ~ Ω ≈ 10–2 for this crystal, despite the
fact that theory (2)–(8), strictly speaking, does not
apply in this case because of the well-known structural
features of pyrographite [6]. For the same reason, the
spectral resolution for this crystal is limited by the
domain size rather than by the sample size L.

Note in conclusion that, to obtain the spectral reso-
lution λ/δλ ~ 107 for perfect crystals, it suffices, in prin-
ciple, to use samples with size L ~ (λ/δλ)D ≈ 1 cm.
Thus, the spectral resolution and angular dispersion in
X-ray spectroscopy can be substantially enhanced if an
AC is used as a diffraction grating with a period corre-
sponding to the interplanar spacing and cut angle. This
approach can serve as an alternative to many-crystal
monochromators and spectrometers with diffraction

∆λ
λ

-------
2 2

3
---------- Ω

Φtan
------------ Φ α+( )sin

Φ α–( )sin
---------------------------.=

dϕn

dλ
---------

n αsin
d ϕnsin
----------------- or λ

dϕn

dλ
---------–
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gratings in which SCs or ACs are used as selective
reflectors [1, 7, 8].
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The interaction of iron layers through a chromium spacer in Fe/Cr/Fe trilayers with different roughnesses of
interfaces was studied by the Kerr magnetometry and Mandel’shtam–Brillouin light scattering techniques so as
to trace the interlayer exchange coupling of the Fe layers depending on the Cr spacer thickness and the sample
temperature. It is established that, in a broad range of these parameters, the interlayer exchange in Fe/Cr/Fe
structures with sufficiently smooth interfaces is adequately described using the proximity magnetism and half-
angle coupling models taking into account the antiferromagnetic properties of chromium. As the interface
roughness increases, the well-known biquadratic exchange model becomes valid. This is evidence for the deci-
sive role of the magnetic stiffness of a Cr spacer and the structure of interfaces on the noncollinear exchange
coupling in Fe/Cr/Fe trilayers. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Cn
1. INTRODUCTION

Multilayer structures comprising ultrathin ferro-
magnetic layers separated by nonferromagnetic metal
spacers have been extensively studied for more than a
decade. The phenomena of interlayer exchange cou-
pling and giant magnetoresistance observed in these
systems, together with the possibility of obtaining films
with preset saturation fields, led to the development of
new magnetic memory devices (MRAMs) and minia-
ture magnetic field sensors. At the same time, many
basic problems pertaining to the interlayer exchange
coupling mechanisms and spin-dependent electron
transport in these multilayer structures remain unre-
solved.

This paper is devoted to interlayer exchange cou-
pling in Fe/Cr/Fe trilayers. Owing to the nontrivial
magnetic properties of the chromium spacer, various
effects inherent in the interlayer exchange are espe-
cially clearly manifested in such structures. On the
other hand, it is the complexity of the magnetic struc-
ture of chromium that makes the mechanism of the
interlayer interaction in this system still unclear.

It has been known for a long time that the interlayer
interaction in multilayer magnetic structures exhibits
oscillations with the spacer thickness, leading to ferro-
magnetic or antiferromagnetic ordering of magnetic
moments in the neighboring ferromagnetic layers.
More recently, these structures were found to feature
noncollinear magnetic ordering, whereby the angle θ
between magnetic moments of the neighboring ferro-
magnetic layers is different from both 0 and 180°. Orig-
0021-3640/03/7810- $24.00 © 20627
inally, this noncollinear ordering was observed in this
very system, Fe/Cr/Fe, by Rührig et al. [1] and
explained using the so-called biquadratic exchange
model. According to this phenomenological model, the
interlayer exchange coupling energy depends on the
angle θ between magnetizations of the neighboring Fe
layers as

(1)

where J1 and J2 are the bilinear and biquadratic
exchange parameters, respectively. Several variants of
the microscopic justification of this model have been
proposed [2–5]. However, all these mechanisms,
including those taking into account the antiferromag-
netism of the chromium spacer [6], have proved to be
valid only when J2 is small as compared to J1. Actually,
the J2 values experimentally determined for Fe/Cr/Fe
trilayers are frequently comparable with J1 or even
exceed this value.

In connection with this, several models have been
developed using an alternative expression for the inter-
layer exchange coupling energy. For the case when the
spacer between the ferromagnetic layers possesses an
intrinsic antiferromagnetic order, Slonczewski [7] pro-
posed the so-called proximity magnetism model, pre-
dicting the following dependence of the exchange
energy on the angle θ:

(2)

E J1 θ J2 θ,cos
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This model proceeds from the assumption that the
spacer represents a laminar antiferromagnet. In this
case, oscillations of the spacer thickness lead to “frus-
trated” interlayer exchange coupling and distorted
magnetic order in the spacer. This model was success-
fully used [8, 9] to describe the properties of metal
trilayers with antiferromagnetic manganese spacers.
The possibility of applying the same model to the struc-
tures with chromium spacers is not obvious. Since the
Néel temperature of bulk chromium is 311 K, the room-
temperature order parameter in this metal is very small.
However, the available neutron diffraction data show
that chromium in thin layers adjacent to iron retains
antiferromagnetic properties up to significantly higher
temperatures [10]. This fact suggested that the proxim-
ity magnetism model may be valid for the Fe/Cr/Fe sys-
tem as well. Schreyer et al. [11] studied the possibility
to use model (2) for interpretation of the magnetization
curves and the neutron diffraction data obtained for
[Fe(52 Å)/Cr(17 Å)]9 superlattice. However, the vol-
ume of experimental data was insufficient for a reliable
quantitative comparison to the theory.

Later, the interlayer exchange through a spacer rep-
resenting a localized antiferromagnet was theoretically
investigated in more detail by Morozov and Sigov [12].
In the case of sufficiently smooth interfaces and strong
coupling at the boundary between ferromagnet and
antiferromagnet, this theory also led to expression (2).
In the other limiting case, when the exchange at the
boundaries is small as compared to that inside the chro-
mium spacer, the expression for the exchange energy
was different from those proposed previously:

(3)

A substantially different, self-consistent approach to
description of the properties of a chromium spacer as
an itinerant antiferromagnet was used in the theory
developed by Men’shov and Tugushev [13]. Despite the
different approach, expression (3) was also obtained for
certain relations between layer thicknesses, the scale of
interface roughness, and the exchange interactions
within the layers and at the boundaries. This expression
is referred to as the half-angle coupling model. To the
best of our knowledge, no attempts to use this model for
the description of experimental data have been reported
so far.

To summarize, the state of the art in this field can be
briefly characterized as follows. In most papers devoted
to Fe/Cr/Fe trilayers, the experimental data have been
interpreted within the framework of the biquadratic
exchange model, although the values of exchange con-
stants in many cases fall outside the region of applica-
bility of this model. At the same time, other theories
aimed at explaining the strong noncollinear exchange
coupling in the Fe/Cr/Fe system did not receive suffi-
cient experimental support. In order to elucidate this
situation, we have studied in detail the interlayer

E J+
θ
2
---cos J–

θ
2
---.sin+=
exchange in Fe/Cr/Fe trilayers with wedge-shaped
chromium spacers using Kerr magnetometry and Man-
del’shtam–Brillouin light scattering.

2. EXPERIMENTAL

Samples of Fe/Cr/Fe trilayers were grown by
molecular beam epitaxy (MBE) on single-crystal
MgO(100) substrates at a residual gas pressure of about
10–10 mbar and a substrate temperature of 473 K. The
substrate was preliminarily covered with a buffer layer
of silver approximately 1000 Å thick. The crystallo-
graphic axes [001] in both the iron and the chromium
layers coincided with the normal to the sample plane.
By changing the MBE conditions, it was possible to
control the degree of roughness of the interfaces. The
interface roughness was monitored by low-energy elec-
tron diffraction (LEED) and by measurements of the
short-wave oscillations of the interlayer exchange
interaction. Below we will demonstrate a qualitative
difference in the interlayer exchange coupling observed
in the Fe/Cr/Fe trilayer with a wedge-shaped chromium
spacer (with the thickness tCr = 0–20 Å) and a relatively
high roughness of interfaces studied in [6, 14] (sample 1)
and in the trilayer with tCr = 0–40 Å and relatively
smooth interfaces studied in this work (sample 2). The
wedge slope in both cases corresponded to approxi-
mately 2.5 Å/mm, and the iron layer thicknesses were
about 100 Å.

The magnitude and character of the interlayer
exchange coupling in both samples were studied by two
experimental methods: first, by measuring the magneti-
zation curves using the magneto-optic Kerr effect in the
temperature range from 77 to 473 K and, second, by
measuring room-temperature Mandel’shtam–Brillouin
light scattering. In both cases, an external magnetic
field H was oriented in the sample plane. The laser
beam was focused on the film surface, with a spot diam-
eter not exceeding 0.2 mm. The measurements were
performed for various values of the chromium spacer
thickness, by gradually shifting the laser beam along
the wedge (for more details, see [6, 14]).

3. RESULTS AND DISCUSSION

Figure 1 presents the typical room-temperature
magnetization curve of sample 1 (with rougher inter-
faces) plotted in the so-called Arrott coordinates of
HMS/M vs. (M/MS)2, where M is the average magneti-
zation and MS is the saturation magnetization of the
sample. The inset in Fig. 1 shows a field dependence of
the frequency of the Damon–Eshbach spin wave mode
with a wavevector of q = 1.57 × 105 cm–1. As can be
seen, both the magnetization curve and the field depen-
dence of the spin wave frequency are described well
within the framework of the biquadratic exchange
model (solid curves). This is clearly manifested by a
linear portion of the magnetization curve constructed in
JETP LETTERS      Vol. 78      No. 10      2003



        

NONCOLLINEAR INTERLAYER EXCHANGE IN FE/CR/FE MAGNETIC STRUCTURES 629

                                                              
the Arrott coordinates, with a kinklike transition to sat-
uration, and by a characteristic sharp minimum in the
frequency of the optical branch of spin waves in the sat-
uration field. A detailed analysis of the interlayer
exchange coupling as a function of the spacer thickness
and temperature was performed in [6, 14]. The value of
J1 determined from these data oscillates with the chro-
mium spacer thickness tCr. The value of J2 monotoni-

cally decays as J2(tCr) = /tCr, where the coefficient 
decreases with increasing temperature. A linear extrap-
olation of this dependence to the region of high temper-
atures gives a conditional point of disappearance of the
biquadratic exchange in the region of 700 K.

Figure 2 shows the typical room-temperature mag-
netization curve and a field dependence of the spin
wave frequency for sample 2, with smoother interfaces.
There are important qualitative differences of these
results from the data presented above for sample 1.
Indeed, the magnetization curve reaches saturation
asymptotically and exhibits no kinks. The field depen-
dence of the frequency of the optical branch of spin
waves is virtually deprived of a minimum. These results
cannot be satisfactorily interpreted within the frame-
work of the biquadratic exchange model. On the con-
trary, the proximity magnetism model (represented by
the solid curve in Fig. 2) perfectly describes the magne-
tization data for sample 2 at all thicknesses of the chro-
mium spacer and all temperatures in the range studied.

Figure 3 shows the plots of the exchange parameters
C+ and C– versus chromium spacer thickness con-
structed for sample 2 at room temperature. As can be
seen, C– exhibits pronounced oscillations with a period
of 2.8 Å. The curve also reveals a second, long period

J2
0 J2

0

Fig. 1. The typical room-temperature magnetization curve
in the Arrott coordinates and the spin wave frequency versus
magnetic field (inset) plotted for Fe/Cr/Fe sample 1 with a
Cr spacer thickness of 11 Å. Solid curves show the results
of numerical modeling based on the biquadratic exchange
model.
JETP LETTERS      Vol. 78      No. 10      2003
of exchange coupling oscillations amounting to ~18 Å.
This behavior agrees well with the published data and
predictions of the Slonczewski model [7]. In contrast,
the curve of C+(tCr) exhibits no oscillations and rapidly
decays with increasing spacer thickness. This result
contradicts the commonly accepted notion about coun-
teroscillating constants C+ and C– (see, e.g., [9]). How-
ever, the possibility to observe different behavior of C+

Fig. 2. The typical room-temperature magnetization curve
in the Arrott coordinates and the spin wave frequency versus
magnetic field (inset) plotted for Fe/Cr/Fe sample 2 with a
Cr spacer thickness of 8 Å. Solid curves show the results of
numerical modeling based on the proximity magnetism
model.

Fig. 3. The plots of the exchange coupling parameters C+,
C– (for model (2)) and J+, J– (for model (3)) versus the Cr
spacer thickness constructed for Fe/Cr/Fe sample 2 at room
temperature.
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and C– values was also considered by Slonczewski [7].
This possibility was explained by averaging of the
shortwave fluctuations in the interlayer exchange cou-
pling as a result of spacer thickness fluctuations, with
the average exchange coupling shifted toward the anti-
ferromagnetic region.

Figure 4 shows the plots of the oscillating exchange
parameter C– versus Cr spacer thickness constructed for
three temperatures (77, 300, and 473 K). As can be
seen, both the absolute exchange magnitude and the
amplitude of oscillations significantly decrease with
increasing temperature. It is also evident that the
exchange coupling more strongly depends on the tem-
perature at a greater spacer thickness tCr. A more
detailed description of the temperature dependence of
the exchange coupling will be presented in following
papers.

We have analyzed the data obtained for sample 2 in
terms of the half-angle coupling model (3). It was
found that this model also describes well the magneti-
zation curve in the entire range of variation of the
spacer thickness and the sample temperature. The mag-
netization curves obtained by approximating the exper-
imental data in terms of models (2) and (3) virtually
coincided. Moreover, parameters of the latter approxi-
mation, J+ and J–, numerically coincide with the coeffi-
cients C+ and C– (Fig. 3). This coincidence is by no
means accidental and is explained by the fact that,
despite significant differences in the initial assumptions
and in the expressions for exchange coupling energies
(2) and (3), the curves of E(θ) determined by these
equations are numerically very close.

In conclusion, we briefly summarize the most
important results of this investigation. It was found that

Fig. 4. The plots of the exchange coupling parameter C– (for
model (2)) versus the Cr spacer thickness constructed for
Fe/Cr/Fe sample 2 at three temperatures.

(Å)

C
–

the interlayer exchange coupling in the Fe/Cr/Fe
trilayer is adequately described in the entire range of Cr
spacer thicknesses and sample temperatures in terms of
the proximity magnetism (2) and half-angle coupling
(3) models based on the assumption that the Cr spacer
possesses intrinsic magnetic stiffness. This is evidence
for the strong noncollinear exchange coupling in the
Fe/Cr/Fe system being directly related to the antiferro-
magnetism of the Cr spacer rather than restricted to
mechanisms of the Ruderman–Kittel–Kasuya–Yoside
(RKKY) type. It was also demonstrated that trilayer
samples differing only in the degree of roughness of the
interfaces may exhibit different mechanisms of
exchange coupling, obeying either model (1) or models
(2) and (3). Therefore, the structure of interfaces plays
a decisive role in the interlayer exchange coupling and
determines its mechanism.

We are grateful to Prof. B. Hillebrands for the
opportunity to perform the experimental part of this
study in his laboratory (AG Magnetismus, Technische
Universität Kaiserslautern). Many thanks to V.V. Tugu-
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Resonant tunneling processes are studied in superconducting junctions of low transparency with the order
parameter of the electrodes of different symmetry. A general equation of the resonant current is derived within
the Green’s function formalism for the junctions of arbitrary dimensionality. The phase dependence of the
supercurrent averaged over the set of localized states is analyzed for superconducting junctions with an isotro-
pic order parameter. A numerical analysis of the resonant current transport in junctions with high-Tc supercon-
ducting electrodes with the d symmetry of the order parameter was carried out. © 2003 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 74.50.+r; 74.78.Fk
Experimental studies of Josephson junctions with
an interlayer of semiconducting oxides showed the
occurrence of the anomalous proximity effect [1–4]. It
lies in the existence of a noticeable critical current in
junctions with anomalously large interlayer widths d >
100 nm, which are considerably larger than the coher-
ence length of the interlayer materials. This effect in
Josephson structures with isotropic s pairing in the
electrodes was explained within a model that took into
account the possibility of resonant tunneling through
localized states (LS) [5]. The LS effect on the current
transport was also observed in Nb/AlOx/Nb junctions
with a high density of critical current [6].

Theoretical studies of the problem of resonant tun-
neling in normal metal–insulator–normal metal (NIN)
structures were previously carried out within the tun-
neling model [7] and within the three-dimensional
model of junctions [8, 9]. Resonant transport was also
considered for junctions in which one or both elec-
trodes had the s symmetry of the order parameter
[10−15]. Resonant current transport with d pairing in the
electrodes was previously investigated only within a one-
dimensional model of the resonant coupling between the
edges in [16]. At the same time a consistent theory of res-
onant supercurrent transport in d-type superconductor–
insulator–d-type superconductor (DID) structures has
not been developed to date.

An analysis of the experimental data [17] has shown
that the normal current component in a number of high-
Tc superconductors is transferred in a resonant way,
whereas supercurrent transport is determined by direct
tunneling without the participation of LSs. Up to now,
this effect has not been explained consistently. At the
same time, it has been shown in [18] that the processes
of resonant tunneling in normal metal–insulator–d-type
0021-3640/03/7810- $24.00 © 20631
superconductor (NID) structures lead to suppressing of
the features in the conductivity at low voltages across
the junction that arises from the occurrence of bound
zero-energy states (ZESs) in the superconducting elec-
trodes [19]. The like can also be expected for the reso-
nant supercurrent transport when one or both of the
electrodes have the d symmetry of the order parameter.
The goal of this work is to develop a theory of resonant
transport of the Josephson current in such high-Tc

superconducting junctions.
We will consider that the tunnel barrier V(r) in the

junction under study is a sum of potentials

(1)

in which the first term models a rectangular barrier of
height V and thickness d Vrect(x) = Vθ(x(d – x)) and the
second one describes the LS in the interlayer material

(2)

which is localized at a certain point r0 and has a radius
ρ ! |k|–1, where k is the Fermi momentum of quasipar-
ticles in the electrodes. We will restrict ourselves with
the weak binding limit and consider that vector k is
fixed at the Fermi surface (|k| = k ≅  kF). The potential
(2) disturbs the spatial uniformity of the junction and
leads to the nonconservation of the quasiparticle
momentum component parallel to the barrier in the pro-
cess of their tunneling. Let the density of LSs in the
interlayer be low, so that their mutual influence is insig-
nificant. The barrier thickness will be considered suffi-

ciently large λ0d @ 1, where λ0 =  is the quasi-
particle momentum in the interlayer (V0 = V – µ), m is

V r( ) V rect= V imp+ ,

V imp r r0–( )
α , if r r0– ρ≤
0, if r r0– ρ,>




–=

2mV0
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the electron mass, and µ is the Fermi energy. In addi-
tion, we will assume that the conditions λ0(d – x0), λ0x0
@ 1 are fulfilled. The fulfillment of the last condition is
necessary for the effective localization of the quasipar-
ticle wave function on the defect.

The transport properties of the junction will be cal-
culated using the general equation for the current

(3)

where ϕ = ϕL – ϕR is the difference between the macro-
scopic phases of the order parameters of the left-hand
and right-hand superconductors, respectively; e is the
electron charge; and T is the temperature. The follow-
ing matrix equation is true for Green’s function
Gω(r, r') [20]:

(4)

where operator  = –∇ 2/2m – µ + V(r); ω = (2n + 1)πT
are the Matsubara frequencies; and ∆(x, θ) is the aniso-
tropic order parameter, which depends on the angle θ of
the propagation of quasiparticles with respect to the

axis x. In this equation,  designates a second-order
unit matrix and σx, σy, and σz (σ± = σx ± iσy) are the
Pauli matrices. 

Differential equation (4) in our case is conveniently
rewritten in the integral form

(5)

Green’s function  of the “unperturbed” problem

is determined from Eq. (4) in which operator  is

replaced by the operator  = –∇ 2/2m – µ + Vrect, which
does not contain the LS potential. In this case, Green’s

function  is represented by a sum of plane waves
with coefficients determined by the continuity condi-
tion for the functions themselves and their derivatives at
the junction boundaries. Substituting the obtained func-

tion  into Eq. (5) and taking into account the locality
of the potential (2) leads to a dimensionally universal
equation for the resonant supercurrent (see Eq. (3))
with the trace of the matrix Gω(r, r')

I ϕ( ) eT
2im
--------- ∂

∂x'
------- ∂

∂x
------– 

  Tr Gω r r',( ){ }
ωn

∑
x 0=

,
x' x→
lim=

iωÎ σzĥ–
1
2
--- ∆ x θ,( )σ+ ∆* x θ,( )σ–+( )–

× Gω r r',( ) δ r r'–( ) Î ,=

ĥ

Î

Gω r r',( ) Gω
0 r r',( )=

+ r1Gω
0 r r1,( )σzV imp r1 r0–( )Gω r1 r',( ).∫

Gω
0

ĥ

ĥ0

Gω
0

Gω
0

Tr Gω r r',( ){ }

=  Λ r0( ) 1–( )l 1+ G jl
0 r r0,( )g jl r0 r',( ),

j l, 1=

2

∑

(6)

Here, Λ(r0) is the absolute value of the resonant scatter-
ing amplitude, and

Of most interest in high-Tc superconducting struc-
tures is 2D transport in the ab plane. In this case, Eq. (6)
results in the equation

(7)

where

Here, Γ0 is the width of the level of an electron state on
an LS, ER is the effective energy of the resonance level
in which the shift due to the finite width of the barrier
is taken into account, and |t | is the absolute value of the
transmission coefficient of the potential barrier. In the
2D junction model, the parameters of the problem are
selected in such a way that the potential well (2) con-
tains at least one energy level E0. In this case, the
energy parameters of the LS are expressed through the
model constants ρ and α similarly to [18].

g11 = G11
0 r0 r',( ) 1 V22 r0( )+( ) G21
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The other parameters in Eq. (7) are determined in
the following way:

(8)

where angle brackets 〈…〉  designate averaging over the
transverse momentum ky

The order parameters of the left-hand and right-hand
superconductors are designated by superscripts L and R
and, in the case of the d symmetry of the order param-
eter in both edges, are determined by the equation

(9)

Equation (7) describes the general case of resonant
current transport in 2D structures with an arbitrary
symmetry of the order parameter in the electrodes and
represents the main result of this paper. In the limiting
case of isotropic order parameters in the electrodes,
Eq. (7) describes the supercurrent in an SIS junction

(10)
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The dispersion equation derived from Eq. (7) upon ana-
lytic continuation ω  –iE

(11)

was obtained previously in one-dimensional models for
a short junction d ! ξ0 (ξ0 is the coherence length) [11]
and was generalized to arbitrary ratios between the bar-
rier width and the coherence length [12].

The form of relationships (10) and (11) is insensi-
tive to the dimensionality of the problem. Thus, the
Beenakker–van Houten dispersion equation (11),
which has been obtained in its time within a one-dimen-
sional model, has a more general sense and remains
true for junctions with a wide barrier and in problems
of high dimensionalities.

Equation (10) allows an analytic summation of the
spectrum of Matsubara frequencies in the cases of
“broad” (∆/Γ0 ! 1) and “narrow” (∆/Γ0 @ 1) reso-
nances. An investigation of the supercurrent in these
two limits allows the conclusions of [12] to be repeated
but now for junctions with 2D and 3D geometries. In
this case, we obtained that the resonant transparency is
close to unity and the phase dependence of the super-
current is not sinusoidal Ires(ϕ) ∝  sin(ϕ/2) only when
the energy of the resonance level is close to zero (ER ~ 0)
and the LS is located near the center of the barrier (x0 ~
d/2). A displacement of the resonance energy of the LS
from the zero level or a displacement of the localized
state from the center of the barrier decreases the reso-
nant transparency and leads both to a drop in the super-
current and to the restoration of the sinusoidal character
of the dependence Ires(ϕ). Upon averaging over the
energies and coordinates of the localized states, the
supercurrent in 2D and 3D SIS junctions becomes pro-
portional to sin(ϕ) in both limiting cases.

In the case of an extended (λ0d @ 1) junction with
low transparency, the limit of a “broad” resonance is
difficult to realize in practice. From the experimental
point of view, the opposite case when the junction has
two boundaries of low transparency is of greater inter-
est. Then, the parameters of the interfaces can be
selected in such a way that only the LSs are located at
the center of the barrier with x0 ≈ d/2. In this case, the
supercurrent can be averaged by means of the approach
used in [6]. Considering that the distribution of LSs is
uniform in energies ρ(ER) = const and, when Eq. (10) is
averaged, passing from integration over the energy to
integration over the resonant transparency D(ER) =

/(  + Γ2/4), one can readily prove that, as in [6],
averaging over the energy is equivalent to averaging
over the transparency of the conducting channels with
the Schep–Bauer distribution function [21] ρ(D) ∝
D−3/2(1 – D)–1/2. Such a distribution ρ(D) is universal for

Γ0
2∆2 ϕ

2
--- 

 sin
2 ∆2 E2–( ) E2 ER

2– Γ2

4
-----– 

 +

+ E2Γ ∆2 E2– 0=
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2
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junctions with disordered boundaries. The same distri-
bution can also be realized in double-barrier structures
[22]. Averaging the supercurrent over the transparency
ρ(D) ∝  D–3/2(1 – D)–1/2 in the limit of a “narrow” reso-

Fig. 1. Phase dependences of the supercurrent Ires(ϕ) in a
SID junction in the case of γ0/∆d(0) = 0.1 at λd = 6, k/λ = 2,
ER = 0, and x0 = d/2; (a) αR = 0; (b) αR = π/12; and a, T/Ts = 0;
b, T/Ts = 0.05; c, T/Ts = 0.3; and d, T/Ts = 0.6; and (c) the
phase dependences of the nonresonant supercurrent were
constructed in arbitrary units for the same parameters and
αR = 0.

Fig. 2. Temperature dependences of the supercurrent IC(T)
in a SID junction in the cases of (a) γ0/∆d(0) = 0.1;
(b) γ0/∆d(0) = 0.01; and (c) γ0/∆d(0) = 10; at λd = 6, k/λ = 2,
ER = 0, and x0 = d/2; a, αR = 0; b, αR = π/12; c, αR = π/12;
and (d) the temperature dependences of the nonresonant
supercurrent were constructed in arbitrary units for the
same parameters.
nance leads to the following dependence of the reso-
nant current on ϕ:

(12)

It is of interest that Eq. (12) in its structure is similar
to the equation for the supercurrent in double-barrier
SINIS junctions in the coherent conduction mode [23,
26] in the limit of a “broad” resonance. Also note that
even after averaging, the supercurrent as a function of
the phase difference ϕ differs from a conventional sinu-
soidal dependence and, at T = 0, Eq. (12) is reduced to
the form

This equation clearly demonstrates that the dependence
〈Ires(ϕ)〉  deviates from a sinusoidal behavior.

In the general case of anisotropic order parameters,
not all the integrals in Eq. (8) are taken in an analytical
form. For symmetric junctions with high-Tc supercon-
ducting edges, analytical expressions can be obtained
from Eq. (7) only in the case of a “narrow” resonance
at αL = αR = 0 and k/λ @ 1. The equations obtained in
this limit for the supercurrent and the energy spectrum
of resonance states are similar to Eqs. (10) and (11).

In studying resonant current transport in high-Tc

superconducting junctions, we will assume that the ab
plane of the high-Tc superconducting crystal is perpen-
dicular to the junction surface and the order parameter
is determined by Eq. (9). The electron and hole excita-
tions at the boundary of an anisotropic superconductor
at α ≠ 0 will experience different order parameters. In
the case when the sign of the order parameter before the
reflection of a quasiparticle from the high-Tc supercon-
ductor surface and after it is not conserved, bound
Andreev states arise with a zero energy with respect to
the Fermi level (zero energy states (ZESs) or midgap
states) [19]. The region of the appearance of ZESs
depends on the orientation angle of the high-Tc super-
conductor crystal lattice. For example, in the case of a
SID junction, Andreev states will appear in the direc-
tions of left-hand incident quasiparticles obeying the
condition θ ∈  (±π/4 – αR; ±π/4 + αR). The question is of
interest as to how the occurrence of ZESs at the high-Tc

superconductor surface affects the resonant current.
Plots of the phase and temperature dependences of

the supercurrent for a SID junction are presented in
Figs. 1 and 2. The plots were obtained at the ratio of
critical temperatures Ts/Td = 1/9 under the assumption

Ires〈 〉
x0 d /2=

eT ϕ( )sin=

×
π∆2Γ0

2ρ ER( )
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that the order parameters obey the relationships of the
BCS theory. Figures 1a and 1b demonstrate the devia-
tions of I(ϕ) from sin(ϕ) at low temperatures. An
increase in temperature or in orientation angle αR

brings the curves closer to a sinusoidal dependence. For
comparison, Fig. 1c gives the phase dependences of the
tunnel supercurrent at the same junction parameters
and the angle αR = 0 that follow from the theory [25].

The temperature dependences of the critical current
for a SID junction are shown in Fig. 2 for different val-
ues of the orientation angles of the high-Tc supercon-
ductor crystal. The plots in Figs. 2a–2c demonstrate
that Ic decreases with increasing temperature more
drastically as the resonance becomes narrower. At the
same time, the results of the theory [25] presented for
comparison in Fig. 2d give a smooth decay of the criti-
cal tunneling current with increasing temperature.

It is evident in Figs. 1 and 2 that an increase in the
orientation angle of the high-Tc superconductor crystal
leads to a drop in the supercurrent. This process is visu-
alized in Fig. 3, which demonstrates the dependences of
the critical current on the angle αR. The plots in
Figs. 3a–3c indicate that the “narrower” the resonance,
the sharper the decrease in the critical current with
increasing of the orientation angle of the high-Tc super-
conductor. At the same time, the Ic(αR) curve calculated
for the case of direct tunneling (see Fig. 3d) decays with
increasing αR more monotonically.

A similar situation is also observed in the case when
the order parameters of both the electrodes have the d
symmetry. The plots of the resonant critical current as

Fig. 3. Dependences of the supercurrent IC(αR) in a SID
junction in the cases of (a) γ0/∆d(0) = 0.1; (b) γ0/∆d(0) = 10;
(c) γ0/∆d(0) = 0.01; at λd = 6, k/λ = 2, ER = 0, and x0 = d/2;
a, T/Ts = 0; b, T/Ts = 0.01; c, T/Ts = 0.05; d, T/Ts = 0.3; and
e, T/Ts = 0.6; and (d) the temperature dependences of the
nonresonant supercurrent were constructed in arbitrary
units for the same parameters.
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functions of the orientation angles of the crystals in a
DID junction are shown in Fig. 4. Here, a practically
interesting case of the antisymmetric orientation of the
crystals αL = –αR is considered. It follows from [25]
that the direct supercurrent exhibits a pronounced non-
monotonic dependence on the orientation angle of the
left-hand superconductor (see Fig. 4d). On the other
hand, the plots of the resonant supercurrent of a DID
junction in Figs. 4a–4c exhibit quite a monotonic
behavior and corroborate the conclusions made when
we described the angular dependences of the critical
current of a SID junction. We have also shown that the
situation remains qualitatively unchanged in the case of
junctions with the ratio of angles αL = αR.

From the results of this work, it follows that, in the
case of a “narrow” resonance, which usually occurs in
experiments, the finiteness of the temperature and the
deviation of the misalignment angles from zero lead to
a significant decrease in resonance current. Thus, the
situation described in the review [17], when the reso-
nant supercurrent turns out to be suppressed as com-
pared to the supercurrent from direct tunneling through
the barrier, actually takes place in long high-Tc super-
conducting junctions with LSs in the interlayer.

The approach developed above disregards the sup-
pression of the order parameter at the boundaries of
high-Tc superconducting structures, and, hence, the
contribution of the supercurrent to transport due to res-
onant tunneling onto Andreev levels with a nonzero
energy localized at the boundary has not been investi-
gated. An accurate account of this contribution requires

Fig. 4. Dependences of the critical current IC(αL) in a DID
junction in the cases of (a) γ0/∆d(0) = 0.1; (b) γ0/∆d(0) = 10;
(c) γ0/∆d(0) = 0.01; at αL = –αR, k/λ = 2, λd = 6, ER = 0, and
x0 = d/2; a, T/Ts = 0; b, T/Ts = 0.01; c, T/Ts = 0.05; d, T/Ts =
0.3; and e, T/Ts = 0.6; and (d) the temperature dependences
of the nonresonant supercurrent were constructed in arbi-
trary units for the same parameters.
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numerical calculations. Nevertheless, based on the
analysis performed, it may be argued that the picture
will only slightly change qualitatively, that is, the inter-
action of the two resonances caused by the occurrence
of LSs in the interlayer with Andreev levels in the elec-
trodes will not lead to a noticeable increase in supercur-
rent.

This work was supported by the Ministry of Science
and Technology of the Russian Federation.
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The universal phase diagram of a 2D surface superconductor with generic Rashba interaction in a parallel mag-
netic field is found. In addition to the uniform BCS state, we find two inhomogeneous superconductive states,
the stripe phase with ∆(r) ∝  cos(Qr) at high magnetic fields, and a new “helical” phase with ∆(r) ∝  exp(iQr)
which intervenes between the BCS state and stripe phase at an intermediate magnetic field and temperature. We
prove that the ground state for helical phase carries no current. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Dw; 74.25.Ha
Many efforts, both theoretical and experimental,
have been made in search of exotic nonhomogeneous
superconducting states, beginning with the pioneering
papers by Larkin–Ovchinnikov and Fulde–Ferrel
(LOFF) [1, 2] which predicted the stripe state in super-
conductors with competing ferromagnet interaction.
Nevertheless, no convincing experimental evidence for
the existence of such a state was found until now, par-
tially due to the rather narrow existence range of the
LOFF state. Recently, Barzykin and Gor’kov [3] did
find a system where such an inhomogeneous supercon-
ducting phase could be prominent. It is a two-dimen-
sional surface superconductor with spin-orbital Rashba
interaction. One possible realization of such a system
probably was reported in very interesting experiments
[4], where various signatures of surface superconduc-
tivity with Tc ≈ 90 K were detected in the insulating
WO3 doped by a small amount of Na. Surface spin-orbit
superconductivity is unusual due to the absence of
inversion symmetry, which results in the presence of
the spin-orbital Rashba term [5] and the chiral subband
splitting of the free electron spectrum at the surface. In
such a superconductor condensate, wave function is a
mixture of both singlet and triplet states [6, 7], therefore
Pauli susceptibility is not vanishing [7] at T  0;
paramagnetic breakdown of superconductivity in a par-
allel magnetic field is shifted towards much higher field
values due to the formation of an LOFF state [3]. The
line of transition from normal to (any) superconductive
state Tc(h) was determined in [3]; however, the nature of
the phase intervening between the uniform BCS and
stripe LOFF states was not studied. This question is
important because phenomenological theory [8] pre-
dicts the possibility for a new helical state distinct from
both BCS and stripe LOFF states.

¶This article was submitted by the authors in English.
0021-3640/03/7810- $24.00 © 20637
In this letter we provide a detailed phase diagram of
a surface superconductor in a parallel magnetic field h.
The phase diagram turns out to be universal after nor-
malization of the temperature and the Zeeman energy
by the critical temperature in the zero magnetic field Tc0
for two models of high (I) and low (II) electron density.
The model I assumes a normal 2D metal with Fermi
energy being much greater than chiral splitting. The
model II is suited for an electron gas in field-effect het-
erostructures where electrons fill only the bottom of
one of the chiral bands. We demonstrate the existence
of a helical state with order parameter ∆ ∝  exp(iQr)
(where Q ⊥ h) and Q ~ µBh/vF in a considerable part of
the phase diagram, which is summarized in figure. The
line +7 is the second-order transition line separating
helical state from the homogeneous superconductor.
Below the 7 point, first-order transition between BCS
and inhomogeneous state takes place. The line 67' is
the line of soft instability of the helical state (see
below). The point 6 in the Tc(h) line is special in that
here the order parameter symmetry is U(2) instead of
the usual U(1). Full details of our theory will be pre-
sented in a separate publication [9].

Near the surface of a crystal, the translational sym-
metry is reduced and the inversion symmetry is broken
even if it is present in the bulk. As a result, a transverse
electric field appears at interface and gives rise to the
relativistic spin-orbit interaction known as the Rashba
term: Hso = α[s × ] · n, where α > 0 is the spin-orbit
coupling constant, n is a unit vector perpendicular to
the surface, and s = (σx, σy, σz) are spin Pauli matrices.
The spin operator does not commute with the Rashba
term, thus spin projection is not a good quantum num-
ber. On the other hand, the chirality operator σxsinϕp –
σycosϕp does commute with the Hamiltonian, where ϕp
is the angle between the momentum of the electron and

p̂
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the x-axis. Its eigenvalue λ = ±1 is the quantum number
of an electron state (p, λ). The Rashba term preserves
the Kramers degeneracy with states (p, λ) and (–p, λ)
belonging to the same energy.

In this letter we consider the simplest model of sur-
face superconductor: the Gor’kov model for a two-
dimensional metal with the Rashba term included [7],
in the limit αpF @ Tc. The Hamiltonian written in the
coordinate representation reads

(1)

where m is the electron mass and α, β are spin indices,

 = –i— + A(r) is the momentum operator in the

presence of infinitesimal in-plane vector-potential A =
A(r). Zeeman interaction with a uniform external mag-
netic field h parallel to the interface and in the x-direc-
tion is included. The vector potential of such a field can
be chosen to have only a z-component, therefore it
decouples from the 2D kinetic energy term. µB is the
Bohr magneton and g is the Lande factor. Hereafter we
use the notation H = gµBh/2.

Ĥ ψα
+ r( ) P̂

2

2m
-------δαβ α sαβ P̂×[ ]+

 n⋅∫=

---– gµBh sαβ/2⋅ 
 ψβ r( )d2r

U
2
---- ψα

+ψβ
+ψβψαd2r,∫–

P̂
e
c
--

Phase diagram that shows superconducting phase transition
line Tc(H) (bold solid) and two second order phase transi-
tion lines in the clean case: +7 line between the homoge-
neous (BCS) and helical (h.) states and 67' line of stability
of the helical state. The short-dashed line going downwards
from the point 7 marks the absolute limit of stability of the
BCS state. The dotted line shows the physical TBKT(H) line
for values Tc0/eF = 0.02 and α/vF = 0.34.

+

7

7

6

The electron operator can be expanded in the basis

of plane waves  = . The one-particle

part of the Hamiltonian (1) in the momentum represen-
tation:

(2)

can be diagonalized by the transformation  =

 with the two-component spinor ηλ(p) = (1,

iλ exp(iϕp))/ . Eigenvalues of the Hamiltonian (2)
corresponding to the chiralities λ = ±1 are

(3)

In the case of high electron density and respectively
chemical potential µ @ mα2 (model I), both chirality
branches are filled and the equal momentum electron
states are split by 2αpF. Fermi circles with different

chiralities are split with the radii pF =  ±
mα. Densities of states on the two Fermi circles are

almost the same, ν± = , and in this paper

we neglect the difference ν+ – ν–. In the case of the low
electron density (model II) –mα2/2 < µ < 0, the elec-
trons fill the bottom of only one chiral branch λ = 1, i.e.,
a ring. The two Fermi circles of the ring in the zero

magnetic field have radii pF = mα + l ,
where l = ±1 is the number specifying the inner and the
outer part of the ring and is analogous to chirality. Den-
sity of states on the outer and inner part of the Fermi
ring (l = ±1) is almost the same ν± = mα/2πvF in the
case of a narrow ring where vF ! α. If magnetic field is
applied, the two Fermi circles are displaced in opposite
y-directions by a momentum Q = ±H/vF, where vF =

 is the Fermi velocity in the I model, or
one half the width of the ring divided by m in the
II model. The pairing interaction (the last term in

Eq.(1)) can be factorized in the chiral basis:  =

− , where the pair annihilation opera-

tor  =  with p± = p ± q/2.

To calculate thermodynamic potential Ω = –TlnZ,
we employ an imaginary-time functional integration
technique with Grassmanian electron fields aλ, p, 
and introduce an auxiliary complex field ∆(r, τ) to

ψ̂α r( ) eiprĉαpλp∑

Ĥ0 ĉαp
+ p2

2m
------- α sαβ p×[ ] n H sαβ⋅–⋅+ 

  ĉβp

p

∑=

ĉαp

ηλα p( )âλp

2

eλ p( ) p2/2m λ α 2 p
2

2α pyH– H2+ .–=

2mµ m2α2+

m
2π
------ 1

α
v F

------± 
 

2mµ m2α2+

2µ/m α2+

Ĥint
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4
---- Â

+
q( ) Â q( )q∑

Â q( ) λe
iϕpâλ p–– âλp+pλ∑

aλ p,
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decouple pairing term Hint, cf. [10]. The resulting effec-
tive Lagrangian is of the form:

(4)

Below, we will work within the mean-field approxima-
tion which is controlled by the small Ginzburg number
Gi ~ Tc/EF. It is equivalent to the saddle-point approxi-
mation for the functional integral over ∆ and ∆*, thus
we will be studying minima of the functional Ω[∆, ∆*]
appearing after Gaussian integration over Grassmanian
fields.

Near the normal-superconducting phase transition,
the order parameter ∆(r) is small and Ω may be
expanded in powers of ∆(r) and its gradients. We con-
sider the order parameter as a superposition of the finite
number of harmonics, ∆(r) = exp(iQir),

where  are slowly varying in 2D space functions,
and derive the corresponding Ginzburg–Landau func-
tional:

(5)

The coefficient α(Q) includes a Cooper loop diagram
with transferred momentum Q:

, (6)

where in the I model the normal-state Green function in

the in-plane magnetic field H ! αpF is (ω, p) = (iω –
ξ – λHsinϕp)–1, and ξ = p2/2m – λαpF – µ is assumed to
be small compared to αpF, whereas in the II model H !
mα2 and ξl = vF(lπ – mvF) is assumed to be small com-
pared to mα2 (π is related to the center of the ring).
Hereafter, we present the results for high density
(model I), but results for low density are identical. The
condition minQα(Q) = 0 determines the second-order
transition line (if β > 0) between the normal metal and
the superconductor:

(7)
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hereafter Hλ = λH + vFQ/2. Depending on H, the max-
imum in Eq. (7) is attained either at Q = 0 or at nonzero
±|Q|. Tc(H) line is shown on figure, where both Tc and H
are normalized by the critical temperature at the zero
magnetic field Tc0 = 2ωDexp(–1/νU + C)/π, where C =
0.577 is the Euler constant. Near + point vFQ(H) ~

. In the limit H/Tc0  ∞ we recover the
asymptotics of the Tc(H) line [7], and find vFQ(H) =

2H – π4 /7ζ(3)e2CH3. Note that Q = 2H/vF is the
momentum splitting of two λ = ±1 Fermi surfaces in a
parallel magnetic field. The Lifshitz point + separates
Q = 0 and Q ≠ 0 solutions on the Tc(H) line; it is the end
point of the second order phase transition between the
two superconducting phases. At H > HL, an inhomoge-
neous superconductive phase is formed below the Tc(H)
line. No more than two harmonics contribute to ∆(r)
just below the Tc(H) line: ∆(y) = ∆+eiQy + ∆–e–iQy. Below
Tc(H), the density of the thermodynamic potential Ω is
lower in the superconductive state than in the normal
one by the amount:

(8)

where |∆|2 = |∆+|2 + |∆–|2. We find coefficients βs, a using
standard diagram expansion around the normal state. At
the symmetric point 6 where βa(Tc(H), H) = 0, the free
energy (8) is invariant under U(2) rotations of the order
parameter spinor (∆+, ∆–). At H < HS, we find βa < 0 and
the free energy at T < Tc(H) is minimized by the choice
of either ∆+ = 0 or ∆– = 0, both corresponding to a heli-
cal state. At H > HS, we find βa > 0 and, in the free
energy minimum, |∆+| = |∆–|, which corresponds to the
LOFF-like stripe phase with ∆(y) ∝  cos(Qy). At lower
temperatures in this phase ∆(y) contains higher har-
monics and is time-reversal symmetric.

In the helical state with only one harmonics ∆(y) =
∆eiQy, the thermodynamic potential reads:

(9)

In equilibrium, the stationary conditions ∂Ωhel/∂∆ = 0
and ∂Ωhel/∂Q = 0 are satisfied and can be found explic-
itly:

, (10)

where r(Hλ, ω) = , the Jacoby mod-

ulus k = 2 /r(Hλ, ω) and the function f(Hλ, ω) is
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defined through the Jacoby complete elliptic integrals
of the first and the second kind:

(11)

We prove by direct microscopic calculation that js =

∂Ω/∂Q, therefore the equilibrium state carries no

supercurrent.
The minimum of the thermodynamic potential (9)

over ∆ can be expanded in a series of small Q:

The condition  = 0, b > 0 determines the second
order Lifshitz transition line +7, which ends at the
point 7, where coefficient b = 0 changes sign. We com-
pute the coordinates of point 7 using Eqs. (9), (10). At
lower temperatures, b < 0 and first-order transition out
of the BCS state occurs.

The domain of helical-state local stability was deter-
mined via consideration of the thermodynamic poten-
tial variations due to weak static modulation of the form
δ∆(r) = v –qexp(–iqy) + v q + 2Qexp(i(q + 2Q)y) (the pres-
ence of two Fourier harmonics in the perturbation is
due to inhomogeneity of the background helical state):

δΩδv = v+ (q)v, where v = (δv –q, ) and

(12)

The matrix ! has two eigenvalues e1(q) < e2(q). We
define the helical state metastability line 67' as a col-
lection of points where one mode δv  becomes energet-
ically favorable: minqe1(q) = 0. We numerically solve
four equations simultaneously: two gap equations (10)
that determine equilibrium ∆ and Q, together with the
two equations ∂qe1(q) = 0 and e1(q) = 0. By means of
expansion of the Ginzburg–Landau functional up to the
terms on the order of |∆±|8, we checked that the next-
order “anisotropic” term in the expansion (8) is of the
form ε(|∆+|2 – |∆–|2)4, with ε > 0. This fact ensures that
the phase transition out of the helical state is of the sec-
ond order (at least, near the Tc(H) line).

We calculated electromagnetic the response func-

tion δjα/δAβ = –  for the helical state using stan-

f Hλ( )

=  
1

Hλ
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.
ω 0> λ p, ,
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-------ns

αβ
dard diagram methods and found that  = .

Thus, on the Lifshitz line +7 there is no linear super-
current in the direction perpendicular to the magnetic

field. The component  does not vanish anywhere in
the helical state region and is on the order of ns of the
BCS state. This is in contrast with the classical LOFF
problem, where ns was shown to vanish in the whole
helical state; the difference is probably due to the fact
that in our problem the direction of Q is fixed by an
applied field h, while for the case of the ferromagnetic
superconductor it is arbitrary. The obtained behaviour

of the  tensor indicates the strongly anisotropic
electromagnetic response of surface superconductor
near the Lifshitz line +7.

So far, we have discussed the clean case; below we
demonstrate that a sufficiently high concentration of
nonmagnetic impurities suppresses both helical and
stripe states. Consider impurities with weak short-
range potential, characterized by elastic scattering time
τ. By means of diagram technique [11], we calculate
the coefficient α(Q) in the Ginzburg–Landau expansion
(5), which is the electron–electron vertex in the Cooper
channel in the presence of nonmagnetic impurities. It is
given by a sum of ladder diagrams which are an alter-
nating sequence of blocks of two normal metal Green

functions Gλ = iω – ξ – λHsinϕp + sgnω  and an

impurity line. In every block, momenta on the upper
and lower lines are opposite, whereas the chiralities are
the same. The Tc(H) line is found from minQα(Q) = 0,
where α(Q) = 1/U – πνTmaxQ (ω, H, τ, Q),

with the Cooper kernel K given by

(13)

where  =  ±  (γ = 0, 1, 2) are functions of (T, H,
τ, Q):

At H = 0, time-reversal symmetry is recovered and
Eq. (13) simplifies to K = 2/ω independently of disor-
der, in agreement with the Anderson theorem. We
numerically evaluate α'' = ∂2α(Q)/∂Q2 along the transi-
tion line α(T, H, Q) = 0. At τTc0/" ≤ 0.11, we found
α'' > 0 at any H, i.e., both stripe and helical state disap-
pear from the phase diagram at τ ≤ "/9Tc0. A similar
condition for usual LOFF state is more stringent, cf.
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[12]. In the dirty limit τTc0 ! 1, the kernel K simplifies

to K = 2/(ω + 2H2τ + Q2τ/4). From this form of K,
one easily concludes that the paramagnetic critical field
grows with an increase of disorder as Hp =

, cf. similar result in [13].

The phase diagram figure was obtained neglecting
the small parity-breaking term of the order α/vF ! 1 in
the thermodynamic potential (9): δΩ = ηQ with η =
−ανT , where function f is defined for the
clean case in Eq. (11). Taking this term into account
while minimizing Ω , one finds that the uniform BCS
state transforms into a weakly helical state (predicted
phenomenologically in [8]) with the small wave vector

 ≈ 2αH/  and without supercurrent (a homoge-
neous state would carry supercurrent, as was found in
[14], but it is not the ground-state). The line of 2nd
order transition +7 then broadens into a sharp cross-
over region between two helical states with small and
large values of Q. Within this crossover region, the
superfluid density tensor is strongly anisotropic, with

/  ~ (α/vF)2/3. In the dirty limit long wavelength,
helical modulation is present everywhere in a supercon-
ducting state; near the transition line its wave-vector

 = 4αH/ .

We have calculated the Tc(H) line within mean-field
approximation, whose accuracy is usually on the order
of Tc/eF for a clean 2D superconductor. The actual tran-
sition is of the Berezinsky–Kosterlitz–Thouless vortex
depairing type, and is shifted downwards in tempera-

ture by about /eF. In our system, fluctuations are
enhanced strongly around points + and 6. Near the +

point, this is due to the smallness of , and the

enhancement factor is on the order of  ~
(α/vF)–1/3. In the vicinity of the point 6, fluctuations are
enhanced due to extended U(2) symmetry of the order
parameter; 2D renormalization group calculation
shows that U(2) fluctuation modes shift actual Tc by

v F
2

πTc0/4τeC

f H ω,( )ω∑

Q̃ v F
2

ns
yy ns

xx

Q̃ v F
2

Tc
2

ns
yy

ns
xx/ns
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∆Tc ~ 4( /eF)logβs/βa downwards at βa ! βs. As a
result, the phase transition line Tc(H) is deformed in the
vicinities of points + and 6, as shown on figure.

In conclusion, we have demonstrated the existence
of three different superconductive states (two helical
states and stripe state) in a clean surface superconduc-
tor in a parallel magnetic field, and have located transi-
tion lines between them. Strong disorder eliminates
short-wavelength helical and stripe states, whereas the
long-wavelength helical state survives. 
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Under the conditions corresponding to tunnel-coupled edge current states in an open ring interferometer, oscil-
lations of conductance as a function of gate voltage with two noticeably different periods are observed. The
large-period oscillations are attributed to the electron tunneling between the source and drain regions via a
closed edge state of the ring, when an integral number of magnetic flux quanta passes through its contour at the
Fermi level. The small-period oscillations are explained by the effect of single-electron variations of the ring
potential on the transparency of the barriers between the localized and delocalized edge states of the interfer-
ometer. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.23.-b; 73.63.Hs
This paper presents an experimental study of the
transport properties of submicron rings under the con-
ditions corresponding to the formation of tunnel-cou-
pled edge current states. Under these conditions in elec-
tron ring interferometers, double-frequency Aharonov–
Bohm oscillations [1, 2] are observed. The origin of this
frequency doubling remains unclear to this day. A sim-
ilar effect was observed for magnetoconductivity of
antidots [3, 4]. In [4], it is explained by a Coulomb
blockade of tunneling through closed compressible
edge states, which arise in a strong magnetic field along
the edges of 2D electron gas [5]. However, some of the
experimental results can be explained without using the
model of compressible edge states [6]. Hence, the pres-
ence of the Coulomb blockade and the origin of the fre-
quency doubling of Aharonov–Bohm oscillations in
rings in a strong magnetic field remain open to ques-
tion.

A schematic diagram of a ring interferometer is pre-
sented in Fig. 1a. The samples studied in our experi-
ments were fabricated on the basis of high-mobility and
high-concentration 2D electron gas in a GaAs quantum
well with AlAs/GaAs superlattice barriers [7]. The
X-electrons appearing in these barriers were character-
ized by low concentration and low mobility, and they
made almost no contribution to the conductivity of the
structure. However, owing to the screening of the scat-
tering potential of the doping impurity, they could con-
siderably increase the concentration of 2D electron gas
in the GaAs quantum well without loss in mobility. The
effective radius of the rings was determined from the
period of h/e oscillations and was equal to reff .
0.13 µm. A two-layer Au/Ti metal film served as the
gate. Experiments were carried out at temperatures
0021-3640/03/7810- $24.00 © 20642
from 50 mK to 1.5 K in magnetic fields up to 28 T. The
resistance was measured in the ac regime by the four-
terminal method using a phase-sensitive amplifier.

Figure 1b shows the longitudinal (RL) and transverse
(RH) resistances of an interferometer in the open regime
versus magnetic field B varying from 0 to 28 T. Near
zero magnetic field, the rings under study exhibit a neg-
ative magnetoresistance caused by the suppression of
the resonance backscattering in triangular regions at the
branch points of electron channels [2, 8, 9]. In this
regime of interferometers under study, the Aharonov–
Bohm oscillations manifest themselves in magnetic
fields up to 17–21 T, above which the edge states in the
ring channels are separated and the transport becomes
adiabatic. In magnetic fields above 20 T, RL takes on
quantized values (h/4e2 and h/6e2); in the fields above
28 T, RL tends to zero. Figure 2a shows the dependences
RL(B) in the tunneling regime and in the case of inter-
mediate conduction. In the latter case, the frequency
doubling of Aharonov–Bohm oscillations takes place,
which can be clearly seen from Fig. 2b.

Figure 3a shows the dependence RL(B) for an open
ring and its periodic component ∆RL(B) at a tempera-
ture of 50 mK. One can see that the amplitude of Aha-
ronov–Bohm oscillations increases as B grows from 0
to 10 T. We attribute this behavior to the suppression of
the geometric backscattering at the ring input (output).
Using formula G = 1/(RL + RH) given in [10], we calcu-
lated the conductance of a ring interferometer in a
strong magnetic field, and the results of this calculation
are shown in Fig. 3b. From the experimental curves, it
follows that, at T = 50 mK, the frequency doubling of
003 MAIK “Nauka/Interperiodica”
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Aharonov–Bohm oscillations begins to manifest itself
in magnetic fields higher than 14.5 T.

The dependences of the conductance of a ring inter-
ferometer on the voltage applied to the planar gate are
presented in Fig. 4a. One can see that the dependences
G(Vg) exhibit quasi-periodic oscillations of a complex
form with an amplitude approximately equal to that of
h/e oscillations in the dependences G(B) and with a
period of about 25–30 mV. However, unlike the corre-
sponding dependences for antidots [6], the peaks of
these oscillations are “incised.” Detailed experimental
studies showed that, when B changes, the oscillations
with a period of 25–30 mV become shifted while the
higher-frequency oscillations do not change their posi-
tions.

Now, let us discuss the experimental results. For the
interferometers under study in the integer quantum Hall
regime, the quantities RL and RH are determined by the
expressions [10] RL = (h/e2)(1/Nmin – 1/Nwide) and RH =
(h/e2)/Nwide, where Nmin and Nwide are the numbers of
occupied Landau levels in the ring and in the wide part
of the sample, respectively. Proceeding from the values
of RH and RL and using the aforementioned relations,
we can conclude that, in fields B > 21 T, the transport in
an open interferometer occurs in the adiabatic regime

Fig. 1. (a) Schematic diagram of a ring interferometer: S, D,
and G are the source, drain, and thin-film metal gate, respec-
tively. (b) Dependences (1) RL(B) and (2) RH(B) obtained
for a ring interferometer in the open regime at T = 1.5 K.
JETP LETTERS      Vol. 78      No. 10      2003
through two edge states (Fig. 1b). In the field B ~ 28 T,
the number of occupied levels in the region of potential
leads and in the ring is equal to two, i.e., Nwide = Nmin =
2. As B decreases, the number of occupied Landau lev-
els in the ring remains equal to two up to a field of 17 T.
In lower fields, quantization of RL is absent and the
open interferometer operates in the situation with tun-
nel-coupled edge current states. As seen from Fig. 3b,
when B is within 14.4 to 15 T, the Aharonov–Bohm
oscillations manifest themselves in the form of split
peaks on the background of a doubled conductance
quantum. This means that they are caused by tunneling
of charge carriers from the source (S) to drain (D)
regions via a closed state of the ring while the number
of delocalized edge states passing through the ring is
equal to two. In this field range, RH takes on a quantized
value and the number of levels in the source and drain
regions is equal to Nwide = (h/e2)/RH = 5. A schematic
diagram that represents the edge current states in the

Fig. 2. (a) Experimental dependences RL(B) at T = 1.5 K (1)
for a closed ring and (2) for an intermediate situation
between an open and closed ring. The circle indicates the
region of frequency doubling of Aharonov–Bohm oscilla-
tions. (b) Dependence ∆RL(B) representing the difference
between the experimental and smoothed curves in the encir-
cled region.
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interferometer in the aforementioned situation is shown
in Fig. 4b.

Figure 4a shows the dependences G(Vg) for two val-

ues of B that differ by approximately ∆B = Φ0/2π ,

where Φ0 is the magnetic flux quantum and π  is the
effective area of the ring. In this case, according to the
experiment, the curves are shifted by half the large
period in Vg. The curves G(Vg) obtained for two mag-

netic fields separated by ∆B = Φ0/  were practically
coincident. The curves G(B) obtained for two gate volt-
ages differing by 25–30 mV were also practically coin-
cident. However, similar curves obtained for two Vg

that differed by ~15 mV were shifted in magnetic field

by half the period of h/e oscillations, ∆B = Φ0/2π , as
shown in Fig. 3b. This behavior allows us to conclude
that the oscillations of the dependences G(Vg) with a
period of 25–30 mV are caused by tunneling from S to
D via a closed edge state of the ring, when an integral
number of magnetic flux quanta passes through its con-
tour at the Fermi level. The splitting of h/e states
observed in the dependences G(B) (Fig. 3b) can be

reff
2

reff
2

reff
2

reff
2

Fig. 3. (a) Experimental dependence (1) RL(B) at T = 50 mK
and (2) the difference ∆RL(B) between the experimental and
smoothed curves. (b) Dependences G(B) at T = 50 mK for
two different gate voltages: Vg = (1) 0 and (2) 15 mV.
qualitatively explained in terms of the schematic dia-
gram shown in Fig. 4b with the use of the single-parti-
cle model of edge current states [11]. However, this
simplified model does not allow us to explain the pres-
ence of the component with a period of about 3 mV in
the dependences G(Vg). The appearance of the compo-
nent with a period of ~3 mV also cannot be explained
by the transformation of the single-particle energy
spectrum of the ring due to the charging of closed com-
pressible states by analogy with the interpretation pro-
posed for the frequency doubling of Aharonov–Bohm
oscillations at antidots [3, 4].

We believe that the most consistent explanation of
the complex structure of transmission peaks in the
dependences G(Vg) lies in the single-electron variations
of the self-consistent potential of the ring, which lead to
periodic variations of the ballistic current through the
closed edge state that is tunnel-coupled with the S and
D regions. Qualitatively, a similar model was recently
proposed for explaining the Coulomb oscillations of the
ballistic conductance of an open quantum dot in zero
magnetic field [12]. The variation of the interferometer
transparency that is synchronous with single-electron
variations is most likely to occur in the regions indi-

Fig. 4. (a) Dependences G(Vg) for two values of B separated

by ∆B ~ Φ0/2π : B = (1) 15 and (2) 14.95 T. (b) Sche-

matic diagram of edge states in a ring interferometer at B ~
15 T in the interval of Vg from –0.05 to 0.1 V. The black
color shows the etch regions, the arrows indicate the direc-
tions of electron motion through the edge states, and the
gray color shows the regions of tunneling between them.

reff
2

JETP LETTERS      Vol. 78      No. 10      2003



COULOMB OSCILLATIONS OF CONDUCTANCE 645
cated by gray color in Fig. 4b, i.e., in the regions where
the outer closed edge state “contacts” the delocalized
states in the two-dimensional source and drain regions.
Presumably, single-electron variations of the ring
potential lead to periodic variations of the distance
between the edge states in these regions thus control-
ling the conductivity of the interferometer, as in the
case of a point contact located in the immediate vicinity
of a quantum dot [13]. However, this qualitative consid-
eration does not reveal the microscopic mechanism
responsible for the single-electron variations in the
ring. A Coulomb blockade of tunneling through closed
compressible edge states in an open system was
observed in [14]. If we assume that a similar mecha-
nism is realized in the rings under study, the depen-
dences G(B) and G(Vg) should be similar, which dis-
agrees with our experiment.

In our structure, we have two X-electron layers that
lie in the AlAs/GaAs superlattice barriers on both sides
of the GaAs quantum well with 2D Γ-electron gas.
Therefore, we assume that the origin of the single-elec-
tron variations in the interferometer is not the Coulomb
blockade of tunneling through closed compressible
edge states of the ballistic Γ-ring but it should be the
charging of diffusion X-rings (or one of them) lying in
the AlAs/GaAs barriers. The Γ-ring lies between two
X-rings, one of which, in its turn, lies between the gate
and the Γ-ring. Hence, this X-ring should switch to the
tunneling regime at lower gate voltages Vg, as com-
pared to the underlying Γ-ring. The mobility and con-
centration of X-electrons are much lower than those of
Γ-electrons, and, therefore, the contribution of X-rings
to the conductivity of the interferometer is negligibly
small even in the open regime and is even less signifi-
cant in the tunneling regime. However, the Coulomb
charging of these rings (or one of them) will lead to sin-
gle-electron variations of the self-consistent potential
of the Γ-ring and, hence, manifest itself in its conduc-
tivity. The aforementioned origin of short-period oscil-
lations in the dependences G(Vg) is confirmed by the
fact that their period coincides with the period of sin-
gle-electron oscillations in the conductivity of a ring of
the same dimensions when its triangular quantum dots,
into which the ring is separated in the tunneling regime,
are charged as a single whole [15]. Hence, the results
obtained from our experiments can be explained in the
framework of a single-particle model of tunnel-coupled
edge states without using the model of compressible
edge states, in accordance with [6, 11]. We believe that
the results reported in [3, 4, 14] can also be qualitatively
explained in terms of the single-particle model with
allowance for the effects of charging in the doped layers
of microstructures.

Thus, for the first time, in an open ring interferome-
ter with tunnel-coupled edge current states, we
JETP LETTERS      Vol. 78      No. 10      2003
observed oscillations of the conductance as a function
of the gate voltage with two periods that differed by an
order of magnitude. We have found that the large period
(~30 mV) is associated with the tunneling of charge
carriers between the source and drain regions via the
outer closed edge state of the ring. The small-period
oscillations (~3 mV) are qualitatively explained by the
effect of single-electron variations of the self-consistent
potential of the ring on the ballistic current through it.

We are grateful to V.A. Tkachenko and
O.A. Tkachenko for fruitful discussions. This work was
supported by the Russian Foundation for Basic
Research, project no. 01-02-16892, and by the program
“Physics of Solid-State Nanostructures.”
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We propose a theoretically justified experimental magnetometric technique for determining the size of stochas-
tic domains spontaneously formed in the spin system of nanostructured ferromagnets and for evaluating the
effective anisotropy in these magnetically correlated regions. The method is based on monitoring the ∆M ~ H–2

relationship in the low-field part of the integral magnetization curve. © 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Nanocrystalline and amorphous ferromagnets
belong to the class of nanostructured materials exten-
sively studied both in basic aspects and in view of pos-
sible applications. A currently important problem is the
establishing of relationships between macroscopic and
microscopic parameters of these materials. For nano-
structured ferromagnets, such a relationship has been
described within the framework of the so-called ran-
dom anisotropy model [1–4]. According to this
approach, the spin system of a ferromagnet is described
in terms of the following microscopic parameters:
exchange interaction A, magnetization Ms, local anisot-
ropy K, and the length 2Rc of its homogeneous orienta-
tion. It is assumed that the easy axes of local anisotropy
in the grains (clusters) of a ferromagnet are randomly
oriented. Some cases of spatially inhomogeneous
anisotropy, exchange, and magnetization have been
also considered (see, e.g., [2]).

A characteristic feature of the random anisotropy
model in systems of dimension d < 4 is instability of the
ferromagnetic state with respect to the appearance of an
arbitrarily small random anisotropy even at a zero tem-
perature, which is completely analogous to breakage of
the ferromagnetic order in the random field model [5].
In both cases, the ferromagnetic order is established
over a characteristic distance—the magnetic orienta-
tion coherence length 2RL (RL @ Rc). Both models pre-
dict an increase in the length of magnetic correlations
with decreasing correlation length of the random per-
turbations.

Thus, a magnetic structure of nanostructured ferro-
magnets can be represented by an ensemble of stochas-
tic domains (with a size of 2RL) obeying an approxima-
tion analogous to the model of exchange-independent
0021-3640/03/7810- $24.00 © 20646
grains in polycrystalline solids. This well-known
approximation has been widely used for calculating
macroscopic parameters such as coercive force, suscep-
tibility, and residual magnetization in the region of irre-
versibility of the magnetization curve (beginning with
the original paper of Stoner and Wohlfarth [6]). The
same approximation was used to describe the law of the
magnetization approach to saturation employed (begin-
ning with the works of Akulov [7, 8]) for determining
the microscopic anisotropy K from the reversible mag-
netization curve. Herzer [9] showed that this method
provides an adequate description of nanostructured fer-
romagnets: determination of the coercive force as a

function of the grain size, Hc ~ , was equivalent to
estimating the macroscopic anisotropy in a stochastic
domain as K ~ (Rc/RL)3/2 and the domain size as RL ~

A2/K2 .

It should be emphasized that RL is a very important
parameter. Unfortunately, the possibilities of experi-
mental determination of the magnetic correlation
length are rather restricted. It is commonly accepted
that the main experimental method is offered by small-
angle neutron scattering (SANS). Using this method,
Löffler et al. [10] recently measured the value of Lm =
2RL and studied the dependence of Lmon the grain size
D = 2Rc for nanostructured Fe. Ryne [11] used SANS
to measure Lm and studied the dependence of Lm on the
applied magnetic field H in a TbFe2 amorphous alloy.

This paper demonstrates the possibility to measure
the magnetic correlation length RL in nanostructured
ferromagnets and to evaluate the macroscopic anisot-
ropy in these magnetically correlated regions using a
magnetometer—a commonly available instrument.

Rc
6

Rc
3
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2. THEORETICAL JUSTIFICATION 
OF THE PROPOSED METHOD

For an inhomogeneous ferromagnet characterized
by a local magnetic anisotropy of arbitrary origin and
symmetry, the law of the magnetization approach to
saturation can be written as

(1)

where dm is the normalized mathematical dispersion
(variance) of the transverse magnetization components
[2]:

(2)

Here, Ha = 2K/Ms is the local anisotropy field, a is the
symmetry factor (for uniaxial anisotropy, a = 1/151/2)
and S(k) is the normalized spectral density of the corre-
lation function K(r) of orientation of the local anisot-
ropy axes.

For an exponential model correlation function of the

type , we obtain

(3)

where HR = 2A/Ms  is a correlation field (for the rea-
sons presented below, this parameter will be referred to
as the “upper” correlation field) and Rc is the correla-
tion radius of the anisotropy inhomogeneities. As can
be seen, the character of the behavior of magnetization
as a function of the field changes in the vicinity of HR,
so that

(4)

In the coordinates of  versus logH, this change is
manifested by a characteristic bending of the experi-
mental M(H) curve in the region of H ~ HR. Note that,
if any other monotonically decreasing function (rather
than exponent) is selected as the model correlation
function, the analytical expression for dm(H) will
change, but the asymptotic behavior (4) and the corre-
lation field HR remain the same.

Let us consider the physical reasons for the appear-
ance of a characteristic point HR in the dm(H) function.
Deviations of the magnetization vector M(x) from the
magnetic field direction in nanostructured ferromag-
nets are correlated within a region of size RH =
(2A/MsH)1/2, this value depends on the magnetic field
and exchange. For RH ! Rc (i.e., for H @ HR), the fluc-
tuations of magnetization orientation are uncorrelated.
On the contrary, for RH @ Rc, the magnetization vector
orientation is strongly correlated. Therefore, H ~ HR

Mz〈 〉 /Ms 1 dm H( ),–≈

dm

M ⊥
2〈 〉

Ms
2

------------- aHa( )2 S k( )d3k

2A/Ms( )k2 H+( )2
--------------------------------------------.∫= =

e
r/Rc–

dm

aHa( )2

H1/2 HR
1/2 H1/2+( )3

--------------------------------------------,=

Rc
2

dm aHa( )2 H 2– ,            H  @ HR

H 1/2– HR
3/2– , H  ! HR.




=

dmlog
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corresponds to a change in the character of the magne-
tization curve. For this reason, the value of HR and,
hence Rc, can be experimentally measured. A method
for processing the magnetization curve so as to extract
data on the correlation radius and the effective mag-
netic anisotropy is called the correlation magnetometry
[12].

The low-field effects related to the formation of sto-
chastic domains are not manifested in formulas (3) and
(4). This is explained by the fact that these expressions
were obtained in the linear approximation of the pertur-
bation theory that fails to be valid in the range of small
fields. However, the correlation properties of the inho-
mogeneous orientation of M(x) in this range can be
determined by numerical methods. In particular, the
correlation function Km(r) and the corresponding corre-
lation radius Rm(H) were calculated [13] for a chain of
exchange-coupled grains with random anisotropy. The
main result of such numerical calculations consists in
the appearance of another characteristic field HL =
2A/Ms , called the “lower” correlation field, where

2RL is the size of a stochastic domain. In the range of
H > HL, the behavior of Rm(H) is described by the linear
theory, while for H < HL, the Rm(H) function tends to
the constant value RL (instead of infinitely increasing as
predicted by the linear theory).

In order to take into account the formation of sto-
chastic domains, we suggest modifying expression (3)
as follows:

(5)

where d is the dimension of the system of exchange-
coupled ferromagnetic nanoparticles. This expression,
in contrast to the exact formula (3), represents an inter-
polation and has to be verified in experiment. Indeed, in
the range of H > HL, expression (5) describes the exper-
imental M(H) curves for d = 3 [14], d = 2 [15], and d = 1
[16]. Below we will demonstrate that this expression
also adequately describes the experimental data for
H < HL. To this end, we will need expressions for the
asymptotic behavior of dm(H):

(6)
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Here, the macroscopic anisotropy field in a stochastic
domain is given by the formula

(7)

where N is the number of nanoparticles in this domain.
Figure 1 schematically presents the function (5) and
shows the asymptotes (6) on the double logarithmic
scale. As can be seen, the experimental task reduces to
monitoring the low-field crossover (bending) in dm, the
presence of which proves the formation of stochastic
domains in the system.

3. RESULTS AND DISCUSSION

Figure 2 presents a double logarithmic plot of a
reversible part of the magnetization curve M(H) for a
2000-Å-thick Co90P10 amorphous alloy film. The films
of amorphous and nanocrystalline alloys were obtained
by chemical deposition onto cover glasses. The magne-
tization curves were obtained (with the substrate back-
ground subtraction) using a vibrating-sample magne-
tometer with a superconducting coil operating in a
range of fields up to 30 kOe.

As can be seen from Fig. 2, the experimental field
dependence M(H) is well described by expressions (5)
and (6) with d = 3. As the field H decreases, the magne-
tization sequentially obeys the high-field Akulov law
(∆M ~ H–2), the cooperative dependence (∆M ~ H–1/2),
and the low-field dependence (∆M ~ H–2). The theoret-
ical asymtotes described by expressions (6) are repre-
sented by straight lines. The points of intersection of
these lines determine the characteristic fields HL ≈ 80
Oe and HR ≈ 3 kOe corresponding to the low- and high-
field crossovers (bending points) in the magnetization
curve M(H). Upon substituting the values of exchange
A and magnetization Ms into the expressions for HL and
HR, we obtain the values of RL ≈ 500 Å and Rc ≈ 80 Å.
Using the portions described by the dependence ∆M ~

Ha〈 〉 L = Ha HL/HR( )d /4 = Ha Rc/RL( )d /2 = Ha/ N ,

Fig. 1. A schematic curve of the magnetization dispersion
dm(H) of a nanostructured ferromagnet.
H–2, we determine the macroscopic and microscopic
anisotropy fields: 〈Ha〉L ≈ 150 Oe and Ha ≈ 2 kOe. Sub-
stitution of the measured and calculated values into
expression (7) proves the validity of this relation.

Figure 3 shows a reversible part of the magnetiza-
tion curve for a 100-Å-thick Co93P7 nanocrystalline
alloy film. This curve reveals the low-field dependence
∆M ~ H–2, followed by a clearly identified dependence
of the type ∆M ~ H–3/4 (for H from 0.2 to 2 kOe), a sta-
tistically reliable dependence of the type ∆M ~ H–1 (for
H from 2 to 6 kOe), and a noisy signal in the fields
above 10 kOe (reflecting the fact that the dispersion of
magnetization becomes comparable with the accuracy
of magnetization measurements).

The grain size in the Co93P7 nanocrystalline alloy is
on the order of the film thickness. Therefore, this film
features a two-dimensional system of ferromagneti-
cally coupled grains (d = 2). According to expressions
(5) and (6), this system has to exhibit a low-field cross-
over in M(H) (reflecting the transition from ∆M ~ H–2

to ∆M ~ H–1). However, our experimental curve initially
exhibits an intermediate transition from ∆M ~ H–2 to
∆M ~ H–3/4 and only then changes to ∆M ~ H–1. This
behavior is not an artifact. Indeed, the rms deviation

 of magnetization has to be determined from the
condition of minimum for the total energy including a
magnetic dipole interaction (which is significant in the
case of thin films). The most exhaustive theoretical
analysis of this situation has been performed in [17–
19]. In our notations, the final expression for dm is as
follows [19]:

(8)

To our great surprise, an analysis of the available lit-
erature showed that the region of ∆M ~ H–3/4 in the

dm
1/2

dm
1
2
---

aHa( )2

Ms
1/2HR

3/4
--------------------- 1

H3/4
----------=

1
2
---

a Ha〈 〉 L( )2

Ms
1/2HLHR

1/4–
------------------------------- 1

H3/4
----------.≡

Fig. 2. A plot of the magnetization dispersion ∆M/Ms versus
magnetic field strength for a 2000-Å-thick Co90P10 amor-
phous alloy film at T = 4 K (HL = 80 Oe, HR = 3 kOe).
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experimental curve of Fig. 3 is the first observation of
the well-known theoretical dependence (8). The inter-
sections of asymptotes H–3/4 and H–1 with the line H–2

give two values of the characteristic field: HL1 ≈ 140 Oe
and HL2 ≈ 70 Oe. This is indirect evidence of a modifi-
cation of the shape of a stochastic domain in the thin
film under consideration related to the magnetostatic
effects, whereby a disk with a circular base existing at
H < HL2 transforms into a disk with an ellipsoidal base
in higher fields.

Figure 4 presents the reversible parts of the magne-
tization curves M(H) for two multilayer
[Co93P7(x)/Pd(14 Å)]20 structures with individual nano-
crystalline Co layer thicknesses x = 80 and 55 Å. Note
that the total ferromagnetic layer thickness was 1600 or
1100 Å, respectively; hence, the useful signal magni-
tude was more than ten times greater as compared to
that from a single ultrathin film. In the range of mag-
netic fields from 1–1.5 to 20 kOe, these samples obeyed
the law ∆M ~ H–1 that confirmed the two-dimensional
character of the system of ferromagnetically coupled
grains. In the region of low fields, the magnetization
follows the dependence ∆M ~ H–2, but the portion of the
M(H) curve in greater fields cannot be described by a
power function. In our opinion, this is explained by
more complicated magnetostatic phenomena (related to
the magnetic dipole interactions between the magneti-
zations of individual ferromagnetic layers) as com-
pared to those in a thin single-layer film.

Assuming that the characteristic fields HL corre-
spond to the H values at which the experimental data
deviate from the low-field dependence ∆M ~ H–2, we
conclude that a decrease in the ferromagnetic layer
thickness (and, hence, in the Rc value) leads to a
decrease in HL (and to a corresponding increase in RL),
in agreement with the main stipulations of models [1–
5]. Another physically reasonable observation is a

Fig. 3. A plot of the magnetization dispersion ∆M/Ms versus
magnetic field strength for a 100-Å-thick Co93P7 film (T =
90 K).
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decrease in the macroscopic anisotropy field 〈Ha〉L with
increasing size of stochastic domains. Therefore, sto-
chastic domains are also formed in individual ferro-
magnetic layers of multilayer structures, but the shape
of these domains (like that in an ultrathin nanocrystal-
line ferromagnetic film) is significantly modified by
magnetostatic interactions.

Thus, the proposed interpolation formula (5) and
asymptotic expressions (6) qualitatively explain the
effects observed on the magnetization curves measured
in the entire range of magnetic fields. In the high-field
range, H @ HL, formula (5) coincides with the exact
theoretical expression (3), and in the low-field region,
this formula describes the behavior of M(H) related to
the formation of stochastic domains in nanostructured
ferromagnets. This approach allows effective quantita-
tive characteristics (HL, 〈Ha〉L, RL) to be introduced for
description of the low-field magnetic correlations.

We are grateful to L.A. Chekanova for kindly pro-
viding the films for investigation.
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It is shown that the subband population inversion in an asymmetric double quantum well can result in the ampli-
fication of optical plasma oscillations. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.Fg; 71.45.Gm
The structures with double quantum wells have been
drawing attention of researchers over several last years.
Most of the work has been devoted to the quantum Hall
effect and the resonance tunneling phenomena in such
systems. In both cases, one deals with the zero-fre-
quency effects, i.e., effects caused by the passage of a
dc (longitudinal or transverse) current. In this letter, we
call attention to some intriguing high-frequency prop-
erties of a double quantum well, namely, to the specific
damping mechanism of two-dimensional plasmons and
to the possibility of plasma-wave amplification through
the creation of an inverse level population in the sys-
tem.

The key idea can conveniently be demonstrated by
the following simple example: let only the lowest
energy level be occupied in each well, so that, in the
presence of tunneling, one deals with a two-level sys-
tem (as regards the single-particle spectrum) and with a
two-component plasma (as regards the collective
degrees of freedom). The plasma-wave spectrum in
such a system was studied in our work [1]. In that work,
in line with the terminology of the day, we spoke about
a quantum film with two occupied transverse-quantiza-
tion subbands. There are three plasma oscillation
branches: two gapless branches corresponding to opti-
cal and acoustic plasmons with the root and linear
small-momentum dispersion laws, respectively, and an
intersubband plasmon with the finite zero-momentum
frequency ωint:

(1)

Here, Ω is the separation between the first and second
transverse-quantization levels (" = 1), e is the electron
charge, L is the characteristic wave-function size (on
the order of film thickness) in the normal direction to
the structure, ε is the dielectric constant, N1, 2 are the
electron surface concentrations in the first and second
subbands, and const is on the order of unity and

ωint
2 Ω2 const

e2L
ε

--------Ω N1 N2–( ).+=
0021-3640/03/7810- $24.00 © 20651
depends on the wave function of transverse motion

(e.g., const = 2  in the oscillator model). The sec-
ond term on the right-hand side of Eq. (1) accounts for
the depolarization shift and is equal to the difference
between the resonance IR frequency and the separation
Ω between the single-particle levels (i.e., difference
between the actual and incident IR fields) because of
the dynamic screening effect.

Simultaneously, a system of two spatially separated
plasma layers was considered in [2] without allowance
for the tunneling between them (squared wave func-
tions for the transverse motion were approximated by δ
functions). Clearly, the authors of [2] obtained one less
branch, because intersubband plasmons were absent in
this model. Later on, the problem of plasma oscillations
in two-dimensional multicomponent systems became
the subject of many publications (cf., e.g., Chaplik’s
review [3] and recent works [4–7]). Despite certain dis-
tinctions in the computational schemes, the common
conclusion of these publications is that the gapless
plasma-spectrum branches correspond to the intrasub-
band excitations, while the branch with a zero-momen-
tum gap appears in the presence of intersubband transi-
tions, e.g., tunneling splitting in a double well; plas-
mons undergo Landau damping in the wave-vector and
frequency regions corresponding to the single-particle
continuum (each subband’s own).

A film symmetric about its middle plane, i.e., with a
certain parity of the function ϕn(z) describing the trans-
verse motion, was considered in [1] and many subse-
quent publications. For such a film, the characteristic
determinant of the dielectric function χijkl, whose zeros
determine the plasma-wave spectrum, is factored into
two multipliers. One of them includes only the intra-
subband elements χijkl and determines the dispersion of
the optical ωopt(k) and acoustic ωac(k) branches, while
the second involves only the intersubband elements and
corresponds to the intersubband plasmon ωint(k), where
k is the wave vector. Therefore, the branches do not

2π
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interact, and, if ωopt(kc) = ωint(kc) at a certain k = kc, the
branches intersect without distorting their dispersion
laws in the vicinity of the intersection point. These fre-
quencies may well be equal to each other, because Ω,
N1, and N2 are the free parameters of the problem. The
graphs of plasmon dispersion curves with intersecting
branches are presented in [7].

If the structure has no symmetry plane, ϕn(z) cannot
be assigned a certain parity, and the intersection of the
optical and acoustic branches transforms to anticross-
ing. This fact was pointed out in [8, 9]. We demonstrate
below that the asymmetric structure has another inter-
esting feature, namely, the specific damping mecha-
nism of optical plasmons in a certain wave-vector and
frequency “window” k1 < k < k2, ω1 < ω < ω2 and the
ensuing possibility of instability development (amplifi-
cation of plasma oscillations).

The mechanism under discussion is quite analogous
to Landau damping (inverse Cherenkov effect) and dif-
fers from the well-known effect in that only one of the
electron momentum components is quantized. There-
fore, the wave energy expends on the excitation of
“skewed” intersubband transitions:

(2)

where En(k) is the electron energy for the momentum p
in the subband n. It is this process that is responsible for
the collisionless plasma-wave damping. One can see
from the figure that Eq. (2), when applied to the optical
branch, is valid for small k in a finite interval of wave
vectors and frequencies (damping window).

The damping is calculated as follows. Let us con-
sider a system with one-electron spectrum of the quan-

ω k( ) E2 p k+( ) E1 p( )– Ω pk
m
-------

k2

2m
-------,+ += =

Plasma spectrum for m = 0.07m0, d = 2.5 × 10–6 cm, and

N1 + N2 = 6.4 × 1010 cm–2. The parameters V1 and V2 are
chosen so that E1 = –1.8 meV and E2 = –0.7 meV. The
dashed line indicates the damping region of the optical
branch. Curves 1, 2, and 3 are the boundaries of the elec-
tron–hole continuum.

(m
eV

)

tum-well type; its nth transverse-motion subband is
described by the wave functions ϕn(z). We will seek for
the linear response to the perturbation U(z, k)exp{i(kr –
ωt)} with allowance for the self-consistent field effects;
z and r are the coordinates in the transverse and longi-
tudinal directions, respectively. By performing the stan-
dard perturbative calculations, one can find the correc-
tions to the wave functions of the system and, next, the
perturbation-induced charge-density increment. If the
retardation effects are neglected (they are irrelevant to
the problem of interest, except for the narrow region of
anomalously small k), the equation of the self-consis-
tent field becomes merely a Poisson equation for the
Fourier component of the induced potential Uind:

(3)

Here, Unm are the matrix elements of U(z) between the
transverse-motion (real) wave functions; fn are the
Fermi occupation numbers; and ε(z) is the dielectric
constant, which may be different for different z. By
writing the solution to Eq. (3) in terms of the Green’s
function and taking the matrix elements of this solution
in the ϕn(z) basis, one arrives at the closed set of equa-
tions for the quantities Unm(k). Its particular form
depends on the function ε(z). Here, we present the
results for the simplest case ε = const, which corre-
sponds to a quantum well embedded in a homogeneous
dielectric medium. A multilayer GaAs–GaxAl1 – xAs
structure is the structure of this type. For ε = const, the
Green’s function of Eq. (3) is

and we obtain the system of equations for the matrix

elements of the renormalized potential  = U + Uind:

(4)

where

(5)

Next one should calculate the work Q executed by the
external field U(z, k) upon the system; it is determined

d2U ind

dz2
--------------- k

2
U ind–

4πe2

ε z( )
----------- Umn k( )ϕn z( )ϕm z( )

n m,
∑–=

×
f n q( ) f m k q+( )–

En q( ) Em k q+( )– ω iδ+ +
------------------------------------------------------------------.

q

∑

G z z0,( ) 1
2k
------ k z z0––( ),exp=

Ũ

Ũij
2πe2

εk
----------- Ii j nm, k( )Πnm k ω,( )Ũnm

nm

∑+ Uij,=

Iij nm, k( )

=  ϕ i z( )ϕ j z( ) k z z0––( )ϕn z0( )ϕm z0( ) z z0,ddexp

∞–

+∞

∫

Πnm k ω,( )
f n q( ) f m k q+( )–

En q( ) Em k q+( )– ω iδ+ +
------------------------------------------------------------------,

q

∑–=

δ +0.
JETP LETTERS      Vol. 78      No. 10      2003



AMPLIFICATION OF PLASMA OSCILLATIONS 653
by a current induced by the renormalized (acting) field

. This quantity is given by the Kubo formula,
which should be modified with allowance for the quan-
tization of one of the momentum components. Leaving
aside the details of calculation, we present the result

(6)

where S is the area of the system.
To pass from the general relationships to a two-level

(and two-component) system, we use the following
exactly soluble model. The electron potential energy in
an asymmetric double quantum well can be written as

(7)

where V1, 2 > 0 and 2d is the separation between the well
centers. The wave functions corresponding to two cou-
pled states in potential (7) can easily be found:

(8)

Two negative energy levels are given by the roots κ1, 2
of the equation

(9)

where a1, 2 =  and A1, 2 are the normal-

ization coefficients. The second bound level exists only
if the inequality 4V1V2dm > (V1 + V2) is fulfilled.

Now, all indices in Eqs. (4)–(6) take the values 1 and
2. We now calculate the quantities Iijnm with functions
(8) and the polarization operators Πnm. We also take
into account that the electromagnetic wavelength at
plasma frequency is much larger than the thickness d,
so that the bare perturbation U can be considered uni-
form; i.e., one can put Uij = U0(k)δij on the right-hand
side of Eq. (5). Thereafter we solve the system of
Eqs. (4), which, in our case, consists of three equations

because  = , to find Q(k, ω).
It is clear from physical considerations that, in the

absence of electron scattering, Q(k, ω) is nonzero only
in the interval marked by the dashed line in the figure.
Below, we consider in more detail the case where this
interval (k1 < k < k2) falls within the region of root dis-

persion ωopt =  of optical plasmon,
where v 1, 2 are the Fermi velocities in the subbands 1
and 2 and a* is the Bohr effective radius. The inequality
k2a* ! 1 is the corresponding sufficient condition

which is fulfilled if Ω ! a*. Rather cumber-

Ũ z k,( )

Q
1

2mS
-----------Im

ŨnkUknq q 2p+( ) f np f k p, q+–( )
Ek p, q+ Enp– ω– iδ–

-----------------------------------------------------------------------------,
nkp

∑=

V z( ) V1δ z d+( )– V2δ z d–( ),–=

ϕ1 z( ) A1 e
κ1 z d+–

a1e
κ1 z d––

+( ),=

ϕ2 z( ) A2 e
κ2 z d+–

a2e
κ2 z d––

–( ).=

κ mV1–( ) κ mV2–( ) m
2
V1V2e 4κd– ,=

E1 2, κ1 2,
2 /2m,–=

V2

V1
------

κ1 2, V1–
κ1 2, V2–
---------------------

Ũ12 Ũ21

k v 1
2

v 2
2

+( )/a*

v 1
2 v 2

2
+
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some calculations yield the formula (for |ω – Ω| ! ω
and k = kc = Ω2a*/(  + ))

(10)

Here, ∆ is the resonance frequency shift that is much
smaller than Ω if kca* ! 1 (as it was assumed above). We
do not present the corresponding formula because of its
unwieldy form. The linewidth Γ is given by the formula

(11)

In formulas (10) and (11), the subband boundary
momenta p1, 2 =  are introduced together with
the coefficient α specifying the law according to which
the form factor I12, 22 turns to zero (see Eq. (5)) at k 
0: I12, 12 ~ αk. One can see from Eq. (10) that Q becomes
negative upon the subband population inversion (N1 <
N2), and, then, the plasma oscillations can, in principle,
be amplified (clearly, if |Q| exceeds the losses). It is sig-
nificant that this effect disappears if the skew form fac-
tors I11, 12 and I12, 22 are zero, i.e., in the symmetric
structures. The subband population inversion can, prob-
ably, be created upon the vertical (tunneling) transport
through the asymmetric structure.
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A new class of single-particle excitations in tunnel-coupled electron bilayers is investigated by inelastic light
scattering. The dispersion law and the dependence of the energies of these excitations on the degree of unbal-
ance between the layers have been measured. A new spectroscopic method is proposed for determining the
degree of unbalance between bilayers. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.20.Mf; 73.21.Fg
The development of the growth technology of semi-
conductor nanostructures offers scope for studying
physical phenomena associated with electron–electron
interaction in systems with reduced dimensionality. It is
known that electron–electron interaction in two-dimen-
sional (2D) systems leads to such fundamental physical
phenomena as the fractional quantum Hall effect and
Wigner crystallization [1]. The creation of 2D electron
systems with spatial charge separation allows an addi-
tional degree of freedom (pseudospin) associated with
electron motion in the direction perpendicular to the 2D
layers to be introduced in a controlled way. Such sys-
tems can be obtained in GaAs/AlGaAs heterostructures
with double quantum wells (DQWs), in which high car-
rier mobility is combined with the possibility of con-
trolling the electron density in each well independently.
Recent experimental and theoretical studies of the
ground state in DQWs have demonstrated that the coex-
istence of the spin and pseudospin degrees of freedom
in a strongly correlated electron system can lead to the
formation of radically new ferro- and antiferromagnetic
phases [2], high-Tc superconductivity [3], and a two-
component Wigner crystal [4]. New branches of charge
and spin density excitations associated with the pseu-
dospin degree of freedom can be observed in the exci-
tation spectrum in the DQW electron system. It was
shown that the degree of system asymmetry or unbal-
ance is an essential parameter determining the ground
and excited states of an electron system with a pseu-
dospin. By increasing the unbalance of the system, one
can smoothly vary the magnitude of the tunnel coupling
between electron layers, which is accompanied by a
qualitative modification of the electron spectrum in the
DQW. Ideas have been advanced of using tunnel-cou-
pled DQWs for creating the basic elements of a quan-
0021-3640/03/7810- $24.00 © 20654
tum computer, so-called cubites, and the dependence of
the tunnel coupling on the DQW unbalance for creating
quantum switches [5, 6].

The electron excitation spectrum in a DQW has
been studied theoretically [7, 8] and experimentally [9,
10] in symmetric and asymmetric bilayers with weak
tunnel coupling, in which the pseudospin degree of
freedom can be disregarded. Two collective plasma
modes—the acoustic and optical plasmons correspond-
ing to the out-of-phase and in-phase oscillations of the
charge density in the electron layers—were observed in
inelastic light scattering spectra. The acoustic plasmon
exhibits a linear dispersion at small quasi-momenta
(kaB ! 1, where k is the quasi-momentum and aB is the
electron Bohr radius), and the optical plasmon exhibits
a root behavior. It has been shown that a change of the
symmetry of the bilayers only slightly affects the
energy of the acoustic and optical phonons, which are
principally determined by the magnitude of the quasi-
momentum and the total electron density. In this work,
excitations in tunnel-coupled electron bilayers are con-
sidered. Excitation branches associated with interlayer
tunneling have been identified, and the dependence of
their energies on the degree of DQW skewness has been
investigated. The dispersion of these excitations has
been measured. Based on the experimental results, a
new spectroscopic method has been proposed for deter-
mining the Fermi energy of electrons and the degree of
DQW skewness.

The investigations were carried out with a high-
quality DQW structure grown by molecular-beam epit-
axy. Two symmetrically doped GaAs quantum wells
200 Å thick were separated with a narrow Al0.3Ga0.7As
barrier 25 Å thick (Fig. 1). The electron mobility and den-
sity in each well were 106 cm2 V–1 s–1 and 3.6 × 1011 cm–2,
003 MAIK “Nauka/Interperiodica”



        

ELEMENTARY EXCITATIONS IN TUNNEL-COUPLED ELECTRON BILAYERS 655

                                             
respectively. The tunnel gap in the DQW (∆SAS) found
from a self-consistent solution of the one-dimensional
Schrödinger and Poisson equations was found to be
0.28 meV. The photodepletion effect was used for
changing the electron density and balancing the DQW:
under continuous photoexcitation with the photon
energy exceeding the band-gap energy of the barrier,
the ionized donors in the barrier were neutralized and
the electron density in the DQW decreased [11, 12].
The mechanism of this phenomenon was considered in
detail in [13]. Because the barrier absorption coefficient
in the region of photodepleting radiation is high and
quantum-well dopants are located in the barrier on dif-
ferent sides of the DQW, the well located closer to the
heterostructure surface was depleted significantly
stronger than the well located farther from the surface.
Thus, it was possible to smoothly vary the degree of
DQW skewness by selecting the power density of pho-
todepleting radiation.

The energy difference between the two lowest sub-
bands of dimensional quantization in the DQW (E10,
E20) was determined from luminescence spectra in an
external transverse magnetic field. For this purpose, the
dependences of the energies of optical transitions from
Landau levels of electrons in the conduction band to the
valence band of the DQW on the magnitude of the mag-
netic field were measured. Then, these dependences
were extrapolated to a zero magnetic field. The differ-
ence in the approximations for the optical transitions
from E10 and E20 gives an approximate skewness
parameter (∆), which characterizes the unbalance of the
DQW [12]. Though such a procedure is an effective
method for extracting approximate DQW parameters,
it, nevertheless, involves uncontrolled errors because of
the complex structure of the valence band in the DQW
and unknown Coulomb corrections in the energy of
optical transitions. The Fermi energy of electrons in the
DQW (EF) was also determined from magnetolumines-
cence spectra by jumps in the chemical potential at inte-
ger occupation numbers [13].

The measurement of inelastic light scattering (ILS)
spectra was performed using a tunable Ti/Sp laser with
a photon energy of 1.545–1.570 eV and a characteristic
value of the power density W = 0.1–1 W/cm2. The mea-
surements were carried out in an optical cryostat at a
temperature of 4.2 K in the back-scattering geometry. A
triple monochromator served as the spectral instru-
ment, which, combined with a semiconductor detector
with charge coupling, provided a spectral resolution of
0.02 meV. In order to determine the nature of spectral
lines, the ILS spectra were recorded in two different
polarization configurations of the pumping and scat-
tered radiation. The polarization planes were parallel in
one configuration and perpendicular in the other. The
ILS signals from electron excitations of the charge and
spin densities were detected in the parallel and perpen-
dicular configurations, respectively [14]. The quasi-
momentum of excitations was determined by the differ-
JETP LETTERS      Vol. 78      No. 10      2003
ence in the momenta of the pumping and scattered pho-
tons, which were specified by the mutual configuration
of the directions of the exciting radiation and the scat-
tered ILS signal with respect to the normal to the sam-
ple surface. By varying the experimental configuration,
the quasi-momentum of excitations can be varied in the
range from 0.2 to 1.5 × 105 cm–1. In order to separate
the inelastic light scattering and hot luminescence lines,
the experimental spectra were recorded at various ener-
gies of Ti/Sp laser radiation. The hot luminescence
lines did not change their spectral positions under vari-
ation of the pumping photon energy, whereas the spec-
tral positions of the inelastic light scattering lines fol-
lowed the laser position. Thus, the Raman shift of the
ILS lines remained constant.

Examples of ILS spectra in various polarization
configurations and at various degrees of DQW skew-
ness are shown in Fig. 2. The spectra exhibit one line,
observed in the parallel configuration (AP). The AP
energy is characterized by a linear dispersion. Based on
the dispersion dependence and polarization measure-
ments, the conclusion can be made that the AP line is
associated with the acoustic plasmon. The dependence
of the acoustic-plasmon energy on the carrier concen-

Fig. 1. Schematic diagram of (a) the DQW under study and
(b) the electron spectrum in the two lowest size-quantized
DQW subbands. Arrows show single-particle tunnel excita-
tions for two values of the parameter of DQW skewness, ∆1
and ∆2.
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tration in the DQW and the quasi-momentum is
described by the following equation [8]:

(1)

where e is the electron charge, k is the quasi-momen-
tum, m* = 0.067m0 is the effective electron mass in
GaAs, e is the dielectric constant of the medium (12.5
for GaAs), n1 and n2 are the electron densities in the two
wells, and d is the effective distance between the wells.
The phenomenological parameter d includes the nonlo-
cality of the electron wave functions in the heterostruc-
ture growth direction. For the structures with suffi-
ciently narrow quantum wells, the distance between the
well centers (225 Å in our case) is a good approxima-
tion for d. The experimental and calculated behavior of
the acoustic-plasmon energy as a function of the degree
of DQW skewness is shown in Fig. 3 for two quasi-
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Fig. 2. Nonpolarized inelastic light scattering spectra at a
fixed value of the transferred momentum k = 8.6 × 104 cm–1

and two values of the parameter of skewness, ∆ = 1.9 meV
and ∆ = 4.1 meV. The inset displays the ILS spectrum at k =
8.6 × 104 cm–1 and ∆ = 1 meV in two polarization configu-
rations, parallel (thin line) and perpendicular (thick line).
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momentum values. The observed decrease in energy is
in good agreement with theory.

In addition to the acoustic-plasmon line, two new
spectral features are revealed in the ILS spectra. These
features (SPE1 and SPE2 lines) have not been observed
previously in the spectra of double quantum wells with
weak tunnel coupling. Both lines have the same inten-
sity in the crossed and parallel polarization configura-
tions; therefore, these lines can be associated with sin-
gle-particle excitations (the energies of single-particle
excitations with and without spin flip are equal to each
other). The dependences of the SPE1 and SPE2 energies
on the degree of DQW skewness are qualitatively dif-
ferent from the similar dependence for the acoustic-
plasmon line. Whereas the acoustic-plasmon energy
decreases with decreasing total electron density, the
energies of the SPE1 and SPE2 lines exhibit similar lin-
ear growth. The linear slope is almost independent of
the electron density in the DQW and the transferred
momentum, and the absolute energy splitting between
SPE1 and SPE2 grows with increasing momentum
(Fig. 3).

Fig. 3. Dependence of the energies of the AP and SPE1, 2
lines on the degree of DQW skewness for two values of the
transferred momentum, (a) k = 11.7 × 104 cm–1 and (b) k =
3.5 × 104 cm–1. Black points indicate the AP line detected
only in the parallel polarization configuration, and white
points indicate lines detected in both configurations [16].
JETP LETTERS      Vol. 78      No. 10      2003
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It may be concluded that the SPE1 and SPE2 lines
are associated with single-particle tunnel excitations
from the Fermi surface in the DQW. Such excitations
result from the additional electron degree of freedom
due to interwell tunneling. Consider the electron energy
spectrum in the effective mass approximation in the
two lower size-quantized subbands (Fig. 1b). The spec-
trum represents two parabolas separated by the value of
the intersubband splitting, which coincides with the
tunnel gap for a symmetric DQW. For each fixed value
of the quasi-momentum, there exists a continuum of
single-particle excitations from the Fermi surface of
electrons of the lower size-quantized subband to the
empty states above the Fermi surface of the upper sub-
band. In the case of an asymmetric DQW, these excita-
tions can be considered as interwell transitions. The
excitation energies of the continuum coincide at a zero
quasi-momentum (0  1 transitions) but differ at
nonzero quasi-momenta. The boundary energies of the
continuum are reached for excitations whose quasi-
momentum is either parallel or antiparallel to the
momentum of the Fermi electrons in the lower size-
quantized subband (0  2 and 0  3 transitions).
As the quasi-momentum increases, the boundary ener-
gies vary in opposite directions. In turn, an increase in
the degree of DQW skewness leads to an equal increase
in the boundary energies of the continuum, which is
observed experimentally for the SPE1 and SPE2 lines
(Fig. 3). It is necessary to emphasize that, even though
the excitations form a continuum, the density of initial
and final states for the ILS resonances with boundary
energies is higher than that for the other part of the con-
tinuum. Therefore, the ILS spectrum of the continuum
consists of two lines with boundary energies and a
spectral footing between them. This shape of the spec-
trum of tunnel single-particle excitations is in agree-
ment with theoretical calculations [15].

The experimental dependence of the energies of the
SPE1 and SPE2 lines on the quasi-momentum is shown
in Fig. 4a for a fixed degree of skewness ∆ = 4.1 meV.
The line energies vary linearly in opposite directions.
The approximation at k = 0 gives the intersubband split-
ting ∆E12 = 5.4 meV, and the slope of the linear depen-
dences gives the Fermi velocity of electrons in the first
size-quantized subband (~2.2 × 107 cm/s in this case).
The accuracy of the determination of the Fermi velocity
is improved if one takes the slope of the difference in
the energies of the SPE1 and SPE2 lines rather than the
slope of their energies (Fig. 4a). Correspondingly, the
electron densities in the two lowest size-quantized sub-
bands n1 and n2 are equal to

(2)

(3)

The differences in the electron densities measured
by two experimental techniques (ILS and magnetolu-
minescence) are within the limits of experimental error.

n1 m*v F( )2/2π"
2,=

n2 n1 m*∆E12/π"
2.–=
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However, the error in the main characteristic of tunnel-
coupled DQWs—the parameter of DQW skewness or
unbalance—obtained from magnetoluminescence
spectra can be large. At the same time, the absolute
error weakly depends on the degree of DQW skewness;
that is, the error of determining ∆ at small degrees of
skewness becomes of the order of ∆ itself (Fig. 4b). The
error in the parameter of skewness obtained from ILS
spectra (∆E12) is determined in essence by only the
magnitude of the smallest quasi-momentum reachable
in the experiment. Thus, ∆E12 can be measured signifi-
cantly more accurately than ∆. The ILS technique can
be effectively used both for complete characterization

Fig. 4. (a) Dependence of the energy of the SPE1, 2 lines on
the transferred momentum at ∆ = 4.1 meV (light points).
Black triangles indicate the dependence of the difference in
the SPE1 and SPE2 energies. Solid lines correspond to the
extrapolation of the dependences to the region of small
momenta. (b) Dependence of the parameter of skewness
measured with the use of the ILS technique on the value of
∆ obtained from magnetoluminescence spectra (points).
Lines are drawn for convenience.
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of the DQW unbalance (for the determination of the
electron Fermi energy and the degree of skewness) and
in combination with the experimentally simpler magne-
toluminescence technique. In strongly asymmetric
DQWs, when ∆ becomes much higher than the Cou-
lomb corrections in the optical transition energies, it is
sufficient to use the magnetoluminescence technique
alone.

This work was supported by the Russian Foundation
for Basic Research, the Spintronics program, and Volk-
swagen Foundation.
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A new scheme of experimental quantum cryptography on the nonorthogonal states is described. Nonorthogo-
nality is achieved by the time shift of states in different messages. For this scheme to be efficient, it is sufficient
to balance the arms of an interferometer at the receiver and transmitter ends to an accuracy of 1–2 cm. This is
a fundamental advantage of this scheme over, e.g., the most developed cryptosystem based on phase coding,
where the maximum transmission distance has been achieved. In the latter system, the arms of the interferom-
eter need to be balanced with an accuracy of fractions of a micron for a distance of several tens of kilometers.
© 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.67.Dd; 03.67.Hk
Quantum cryptography, or, more precisely, quantum
key distribution, allows the implementation of the abso-
lute stable coding system with disposable keys [1, 2].
Secure key distribution between remote legitimate
users is unconditionally ensured by the fundamental
laws of nature rather than by the limited computational
or technical capabilities of an eavesdropper. The uncon-
ditional security of quantum cryptography in the non-
relativistic domain1 is essentially based on the Heisen-
berg uncertainty principle or, more formally, on the
impossibility of simultaneous measurements of the
observables described by noncommuting operators. In
terms of a pair of state vectors of a quantum system in
which classical information about the key is encoded,
this means that it is impossible to gain any information
about the transmitted quantum states without their dis-
tortion if they are nonorthogonal [3]. Another funda-
mental quantum-mechanical exclusion closely con-
nected with the exclusion mentioned above is the
impossibility of copying an a priori unknown quantum
state [4].

Several different prototypes of quantum cryptosys-
tems based on optical fiber communication lines have
been already created [5]. The maximum distances of
secure key distribution over a quantum cryptosystem
with so-called self-compensation by means of the Fara-

1 Hereinafter, nonrelativistic quantum cryptography is treated as
cryptography that is based only on the geometric properties of
vectors in the Hilbert state space and does not involve additional
Special-Relativity properties, such as the existence of maximum
velocity and massless information carriers (photons). For relativ-
istic quantum cryptography, see, e.g., [17].
0021-3640/03/7810- $24.00 © 20659
day optical fiber reflectors were achieved by Japanese
(100 km) [6] and Swiss (67 km) [7] groups. The avail-
able prototypes of quantum cryptosystems are gener-
ally based on the following principles: (i) information
about the key is encoded in the polarization degrees of
freedom [8]; (ii) phase coding, where a Mach–Zehnder
interferometer is used and information is encoded in the
phase shift accumulated at the receiver and transmitter
arms of the interferometer [9, 10]; (iii) quantum cryp-
tosystems with frequency modulation of the carrier fre-
quency [11]; and (iv) quantum cryptography on the
coherent states with homodyne detection at the receiver
end [12]. The most progress has been achieved in cryp-
tosystems with phase coding and self-compensation by
the Faraday reflectors [6, 7, 13]. It is rather difficult to
implement the above cryptosystems. In this work, a
new quantum cryptosystem is suggested which is, in
my opinion, much simpler than the available systems
and includes a minimum number of fiber optic compo-
nents. The other parameters of this cryptosystem are no
worse than the respective parameters of the most devel-
oped systems based on phase coding. The proposed
variant can be conventionally called time shift quantum
cryptography.

The idea of a cryptosystem is exceedingly simple. A
pair of nonorthogonal single-photon states are used as
information carriers. Each message with a duration of
about 3T consists of one of the states 0 or 1 randomly
sent through a communication channel (see Fig. 1). The
states are certainly indistinguishable because they over-
lap (are nonorthogonal; Fig. 1). Therefore, an eaves-
dropper cannot distinguish between the states propagat-
003 MAIK “Nauka/Interperiodica”
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Fig. 1.
ing through the channel. Owing to the indistinguish-
ability, any intrusion into the communication channel
increases the flow of errors at the receiver end of the
legitimate user [3]. The legitimate user makes measure-
ments at the receiver end. The states are also certainly
indistinguishable (with unit probability) for him. If a
measurement outcome is obtained from the “back” part
of state 1, the state is uniquely identified. However, the
probability of this overcome is less than unity. The case
of state 0 sent to the channel is similar. If a photodetec-
tor changes state in a time window where the states
overlap certain distinction is impossible (a so-called
inconclusive outcome). After a sufficiently long mea-
surement run, the receiver retains only the outcomes in
time windows where states do not overlap. Then, the
users randomly open half of the outcomes through a
public channel and check the correspondence at the
receiver and transmitter ends. As can be shown, the
probability of errors in unopened messages coincides
with that in opened messages for a sufficiently long
measurement run. Intrusion into the communication
channel changes the statistics of measurement out-
comes. If the probability of errors in the open part does
not exceed a certain critical value, the use of correcting
classical codes can correct errors in the unopen part
with the guarantee that the resulting bit sequence (key)
is the same for the legitimate users and is unknown for
the eavesdropper [14–16].

Figure 1 shows the prototype of the quantum cryp-
tosystem.

Input states are a pair of single-photon states shifted
in time in each message (the insignificant polarization
index is omitted):

(1)

ϕ0| 〉 k̂ϕ̃ k̂( )δ k̂
2( )θ k0( )a+ k̂( ) 0| 〉d∫=

=  
kd

k
------

ϕ̃ k k0 k=,( )
k

-------------------------------- k| 〉 ,∫
(2)

where  = (k, k0). The phase factor e–ikT describes the
relative shift in the state preparation time for different
messages corresponding to 0 and 1 (see Fig. 1). We
consider states propagating in the same direction.
These states carry information between remote users.

Denote ϕ(k) ≡ (k, k0 = |k |)/ . It is convenient to rep-
resent the states in the following coordinate–time rep-
resentation, where the time shift reduces to the shift of
the argument in the state amplitude:

(3)

(4)

where τ = x – t. The amplitude of these states depends
only on τ; i.e., if a measurement outcome is obtained at
time t in the vicinity of the point (x, x + dx), the same
outcome can be obtained at time t ' in the vicinity of the
point (x ' – x + t, x ' – x + t + dx).

The states have form (3) at the source exit before the
interferometer arm at the transmitter end (see Fig. 1).
The states are taken so that they have a characteristic
time localization scale cl (below, the speed of light is
taken to be c = 1); i.e., the normalization integral is
almost completely saturated (i.e., is arbitrarily close to
unity) in the region of size l:

(5)

The spacetime localization scale must be much smaller
than the time shift between states; i.e., cl ! T.

ϕ1| 〉 k̂e ik̂ T̂– ϕ̃ k̂( )δ k̂
2( )θ k0( )a+ k̂( ) 0| 〉d∫=

=  
kd

k
------e ikT– ϕ̃ k k0 k=,( )

k
-------------------------------- k| 〉 ,∫

k̂

ϕ̃ k

ϕ0| 〉 τϕ τ( ) τ| 〉 , ϕ1| 〉d

∞–

∞

∫ τϕ τ T–( ) τ| 〉 ,d

∞–

∞

∫= =

ϕ τ( ) 1
2π
------ ke ikτ– ϕ k( ), τ| 〉d

0

∞

∫ kd

k
------eikτ k| 〉 ,

0

∞

∫= =

τ ϕ τ( ) 2d

l

∫ 1.≈
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Immediately after the source and before the
entrance into the transmitting interferometer, short
states do not overlap and are orthogonal. The interfer-
ometer arm at the transmitter end is represented by two
optical fiber beam splitters, each heaving the working
entry and “dummy” (vacuum) entry and exit, as well as
the delay lines in one of the arms (Fig. 1). The long arm
of the interferometer at the transmitter end is necessary
for the extension of short input states with a length of
about l to longer states consisting of two “halves”
spaced by L @ l. A time shift between two halves in
each state should be equal to the time shift of states in
different messages (see Fig. 1) in order to ensure the
overlap of the front half of state 1 with the back half of
state 0. At the exit of the interferometer arm and, corre-
spondingly, the entry of the communication line, the
states become nonorthogonal and certainly indistin-
guishable. At the working exit of the communication
channel, state 0 has the form (except for the normaliza-
tion factor and the common translation by the arm
length)

(6)

where a half of the state is delayed by L. Correspond-
ingly, state 1 has the form

(7)

Recall that the time shift (T) of states in different mes-
sages for 0 and 1 is equal to the path difference between
the long and short arms of the interferometer at the
transmitter end (T = L = Ll – Ls), so that the halves over-
lap. The overlap integral is equal to 〈ϕ 0|ϕ1〉  = 1/2 for
L @ l.

At the receiver end, two halves for each extended
state are joined together by a unitary transformation,
similarly to the input transformation. Except for the
normalization factor and translation by the communica-
tion channel length, state 0 at the operating exit of the
interferometer at the receiver end has the form

(8)

ϕ0| 〉 ϕ 0 T( )| 〉+

=  τϕ τ( ) τ| 〉d

∞–

∞

∫ τϕ τ T–( ) τ| 〉 ,d

∞–

∞

∫+

ϕ1 T( )| 〉 ϕ 1 2T( )| 〉+

=  τϕ τ T–( ) τ| 〉d

∞–

∞

∫ τϕ τ 2T–( ) τ| 〉 .d

∞–

∞

∫+

ϕ0| 〉 2 ϕ0 T( )| 〉 ϕ 0 2L( )| 〉+ + τϕ τ( ) τ| 〉d

∞–

∞

∫=

+ 2 τϕ τ T–( ) τ| 〉d

∞–

∞

∫ τϕ τ 2T–( ) τ| 〉 .d

∞–

∞

∫+
JETP LETTERS      Vol. 78      No. 10      2003
Correspondingly, state 1 has the form

(9)

Roughly speaking, the three terms in Eqs. (8) and (9)
have the following origin. The first term, e.g., in Eq. (8)
corresponds to the case where both halves cover a long
path Ll at both transmitter and receiver ends. The sec-
ond term arises because the first half covers the long
path Ll at the transmitter end and the short path Ls at the
receiver end, while the second half covers the short path
at the transmitter end and the long path at the receiver
end. The third term corresponds to the case where both
halves cover the short path at the receiver and transmit-
ter ends.

We now discuss measurements at the receiver end.
Any measurement of a single-photon quantum state is
described by a certain unity decomposition in the sin-
gle-particle state subspace:

(10)

Here, the operator-valued measure

(11)

describes the probability of observation of a photon in
the interval (τ, τ + dτ). Therefore, the probability of
observation of a photon in the finite spacetime domain
Ω (recall that the amplitude depends only on the differ-
ence τ = x – t) is 

(12)

The space of outcomes at the receiver end consists
of three time domains. The first domain covering the
back front of state 1 (Fig. 1) is denoted by Ω1 ~ l. The
time window covering only the head front of state 0 is
denoted by Ω0 ~ l. The time window covering the time
domain where states 0 and 1 overlap corresponds to the
domain of inconclusive outcomes and is denoted as
Ω? ~ 2T. The complement to the entire time axis is

ϕ1 T( )| 〉 2 ϕ1 2T( )| 〉 ϕ 1 3T( )| 〉+ +

=  τϕ τ T–( )d

∞–

∞

∫ τ| 〉 2 τϕ τ 2T–( ) τ| 〉d

∞–

∞

∫+

+ τϕ τ 3T–( ) τ| 〉 .d

∞–

∞

∫

I
kd
k
----- k| 〉 k〈 |

0

∞

∫ } τd( ).

∞–

∞

∫= =

} τd( ) τd
2π
------ kd

k
------e ikτ– k| 〉

0

∞

∫ 
 
  k'd

k'
--------eik'τ k'〈 |

0

∞

∫ 
 
 

=

Pr τ Ω∈( ) Tr } Ω( ) ϕ| 〉 ϕ〈 |{ } τ ϕ τ( ) 2,d

Ω
∫= =

} Ω( ) } τd( ).

Ω
∫=
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denoted by  = (–∞, ∞)/(Ω0 ∪  Ω1 ∪  Ω?). The unit
decomposition has the form

(13)

For the key distribution protocol, only the outcomes in
the time windows Ω0, 1 and Ω? are important. The key
generation protocol is a variant of the so-called BB92
protocol [3]. The legitimate user Bob at the receiver end
retains only the conclusive outcomes in the time win-
dows Ω0 and Ω1. The probabilities of such outcomes
are determined by the operator-valued measures }(Ω0)
and }(Ω1). These measures are similar to projectors
(30, 1) in the BB92 protocol, which are orthogonal to
states |ϕ0, 1〉  at the receiver end. However, measures (11)
and (13) are not projectors, because the basis vectors |τ〉
are nonorthogonal.

The protocol with the use of measurements
described by decomposition (13) is similar to the orig-
inal B92 protocol [3], where a measurement is
described by the projectors 30 = 1 – |ϕ1〉〈ϕ 1| and 31 =
1 – |ϕ0〉〈ϕ 0|. If the state |ϕ0〉  is sent, the nonzero outcome
occurs in the channel 30 with the probability 1 –
|〈ϕ1|ϕ0〉|2, and the outcome is always zero on the state
|ϕ1〉  (the probability of such outcome is zero). Similarly,
if the state |ϕ1〉  is sent, the nonzero outcome occurs in
the channel 31 with the probability 1 – |〈ϕ1|ϕ0〉|2, and
the outcome is always zero on the state |ϕ0〉 . Only such
nonzero outcomes are retained in the original B92 pro-
tocol. In our protocol, the operator-valued measures
}(Ω0) ~ 31 and }(Ω1) ~ 30 are analogues of projec-
tors (this indexing order seems to be more natural).
Similarly to the B92 protocol, outcomes in the window
}(Ω0) are nonzero only on the state |ϕ0〉  and always
zero on the state |ϕ1〉 . Conversely, if the state |ϕ1〉  is sent,
the nonzero outcome occurs only in the channel }(Ω1)
and never occurs in the channel }(Ω0). Similarly to the
B92 protocol, only outcomes in the channels }(Ω0, 1)
are retained.

In addition to the above outcomes, the B92 protocol
also includes zero outcomes in the channels 30 and 31
if the states |ϕ0〉  and |ϕ1〉  are sent, respectively. In our

Ω

I } ∞ ∞,–( )=

=  } Ω0( ) } Ω1( ) } Ω?( ) } Ω( ).+ + +

Fig. 2.
protocol, such inconclusive outcomes correspond to the
outcomes described by the projector-valued measure
}(Ω?). We emphasize that the interferometer arm at the
receiver end is fundamentally important for security.

Further, the protocol has the standard form. After a
long measurement run, legitimate users retain only the
conclusive outcomes. Then, part of the outcomes is ran-
domly opened and the probability of errors is esti-
mated. If this probability does not exceed a certain crit-
ical value (in nonrelativistic schemes, the limit is likely
equal to ≈11% [14–16]),2 errors in the unopened part
can be corrected by means of classical codes and the
key can be further compressed (privacy amplification)
to obtain the resulting secure key.

We present some numerical estimates for the param-
eters of the system and a brief comparison of this
scheme with the most developed scheme based on
phase coding. The main advantages of this scheme over
other schemes are the simplicity of implementation and
stability. This scheme does not require very accurate
balance of the interferometer arms at the receiver and
transmitter ends. Since l ! L from the very beginning,
ideally accurate balance of arms between the receiver
and transmitter ends of the interferometer is not
required. In other words, the halves of a state at the
receiver end need not be exactly joined into a state
localized in the time window l. It is only necessary that
the shift due to the difference in the arm lengths at the
receiver and transmitter ends not exceed L in order to
distinguish between 0 and 1 in the corresponding time
windows. In particular, such is the case if the duration
of an input pulse is l ≈ 1 × 10–9 s = 1 ns and the shift of
the halves is T ≈ 10 ns. This shift arises due to the dif-
ference between the long and short paths in the interfer-
ometer arm at the transmitter end. This shift, when
recalculated to the difference between the paths in opti-
cal fiber, is L = T(c/n) ≈ 200 cm (n is the index of refrac-
tion of optical fiber). The junction of two halves at the
receiver end requires the same difference in the arm
lengths, with an accuracy of about the duration of an
individual half. This difference, when recalculated to
the length, is l ≈ 20 cm. This is the principal advantage
of this scheme over the phase-coding scheme, where
the information is encoded in the phase difference, i.e.,
in the difference between the arm lengths of the inter-
ferometers at the transmitter and receiver ends. The
accuracy of this difference must be equal to fractions of
the wavelength; i.e., the difference between the arm
lengths of the interferometer at a distance of several
tens of kilometers must be equal to fractions of a
micron. Otherwise, the scheme does not operate. Cen-
timeter accuracy is sufficient for this scheme.

At the entry to this system, the overlap of two halves
of states 0 and 1 in different messages must be ensured
(see Fig. 1) for the states to be nonorthogonal. The nec-
essary overlap of the halves of states 0 and 1 in different

2 Note that the limiting error threshold in relativistic quantum cryp-
tosystems is equal to 43.75% [17].
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messages can be achieved if the original single-peak
states are shifted by time T at the interferometer entry
with an accuracy of ≈1–2 cm. Such a shift can be real-
ized with an additional interferometer at the input
(Fig. 2). In this case, a laser is turned on by a clock
pulse generator with a constant relative pulse duration
>3T (≈3T is the overall duration of one message). Then,
a laser pulse is sent through a randomly chosen, long or
short path of an additional beam splitter. The choice of
the path is controlled by means of a computer cutoff,
which blocks one of the arms of the additional interfer-
ometer. The path difference for different paths is equal
to T. In this case, the required T-shifted single-peak
states are obtained at the exit in different messages.
Then, they are extended as was described above. The
accuracy of the path lengths that ensures the overlap
between the halves of states 0 and 1 is also sufficient
and is on the order of 1 cm. When the additional inter-
ferometer is used, it is not necessary to adjust the dis-
tance between the laser pulses in different messages. It
suffices to use an ordinary pulsed laser with a fixed
pulse repetition rate.
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Russian Foundation for Basic Research (project no. 02-
02-16289) and project nos. 40.020.1.1.1170,
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Simple majority code correcting k dephasing errors by encoding a qubit of information into 2k + 1 physical
qubits is studied quantitatively. We derive an equation for quasicontinuous evolution of the density matrix of
encoded quantum information under the error correction procedure in the presence of correlated dephasing
noise. A specific design of a Josephson-junction nanocircuit implementing this scheme is suggested. © 2003
MAIK “Nauka/Interperiodica”.

PACS numbers: 03.67.Lx; 03.67.Pp; 85.25.Cp
Josephson qubits are among the most promising
devices to implement solid-state quantum computation
[1, 2]. Quantum manipulations of individual [3–9] and
coupled [10] qubits has been demonstrated experimen-
tally. At present, an important task is to develop strate-
gies to minimize the effects of decoherence on the
dynamics of the qubit systems. Error-avoiding schemes
suggested for reduction of decoherence either employ
symmetries of the qubit–environment interaction to
create areas of the Hilbert space not affected by deco-
herence [11, 12] or use rapid random dynamic pertur-
bations of the system to average out the effects of exter-
nal noise [13, 14]. Both approaches appear to be prob-
lematic for the solid-state qubits where noise typically
does not have any particular symmetry and its correla-
tion time is short. This leaves error-correction as the
main strategy for suppression of decoherence in solid-
state qubits. In this work, we suggest an implementa-
tion of one of the basic error-correction algorithms for
the suppression of dephasing errors (which can be
expected to be the dominant type of errors in solid-state
circuits—see, e.g., [9]), and develop its quantitative
description. Our implementation employs Josephson-
junction qubits that combine charge and flux dynamics
[6, 15, 16], and requires only a small number of qubit
transformations to operate.

An interesting feature of the scheme considered in
this work is the possibility of developing its detailed
quantitative description within the realistic model of
the qubit-environment interaction. Most importantly,
we have analyzed the effect of the correlations in the
noise acting on different qubits. While discussions of
the error-correction rely typically in an essential way on
independent noise models, environments of the solid-
state qubits can be to a large degree correlated because
of the finite distance between qubits in a circuit. A clear

¶ This article was submitted by the authors in English.
0021-3640/03/7810- $24.00 © 20664
illustration of this is provided by the background
charge fluctuations that are the main source of dephas-
ing in charge qubits [3, 6, 10, 17]. Long-range nature of
the Coulomb interaction creates noise correlations by
coupling the qubits to the same charge fluctuators.

We specifically consider the problem of a “quantum
memory.” The task here is to preserve the stationary
state of the qubit in the presence of dephasing noise.
The Hamiltonian of the qubit register then contains
only the coupling to the environment. Within the stan-
dard oscillator model of the reservoir [18–21] this cou-
pling is:

(1)

Here we assumed several independent ensembles of
environmental oscillators (numbered by m) as required
to model different profiles of spatial correlations of ran-
dom forces ξj. The index j = 1,…, N in (6) labels the
qubits, and coefficients λm, j(ω) are coupling constants
of the qubit j to the oscillators of reservoir m in the

mode ω and creation/annihilation operators am, ω, .
Time evolution of the “qubits + environment” system is
described conveniently in the interaction representa-
tion, and the evolution operator U(t) is:

(2)

H σz
j( )ξ j,

j

∑=

ξ j λm j, ω( )am ω, λm j,* ω( )am ω,
†+[ ] .

m ω,
∑=

am ω,
†

U t( ) i ϕ j t( )σz
j( )

j

∑–
 
 
 

Ur t( ),exp=

Ur t( ) i
ωt ωtsin–

ω2
-------------------------- λm j, σz

j( )

j

∑
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m ω,
∑

 
 
 

.exp=
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The first term in U(t) represents fluctuating phases ϕj(t)
of the qubit basis states induced by the environmental

forces ξj(t): ϕj(t) = . The second term, Ur(t),

results from the renormalization of the qubit parame-
ters by the qubit–environment interaction. To see this
more explicitly, we note that the sum over frequencies
ω in this exponent has a natural cut-off at large frequen-

cies ω . , where τc is the time scale at which envi-
ronment forces acting on different qubits are correlated.
For weak decoherence, we are interested in time scales
much larger that τc. In this regime, the phase repre-
sented by Ur(t) is dominated by the term that grows lin-
early with t, and can be viewed as arising from the
renormalization of the qubit energy. Equation (7) shows
that such a renormalization includes a shift of the total
energy of the register and a term which induces an
effective qubit–qubit interaction. The total energy shift
is irrelevant as long as we consider an individual regis-
ter. Neglecting it, we see that Ur(t) results from the
Hamiltonian evolution with the Hamiltonian

(3)

In dropping the oscillatory term, one should be careful
for the convergence of the sum over frequencies. In the
case of an Ohmic bath, for example, this can be done
and leads to an effective interaction which scales with
the dissipation strength and with the cut-off of the envi-
ronmental modes. The qubit–qubit interaction strength
Vjj ' is non-vanishing only if the same reservoir m cou-
ples to more than one qubit, so that the reservoir forces
ξj at different qubits are correlated. The time evolution
with the Hamiltonian Hr, and, more generally, the evo-
lution operator Ur in Eq. (7), represent the deterministic
part of the qubit evolution induced by the qubit–reser-
voir interaction. Nevertheless, it is more appropriate to
still treat it as dephasing, because Vjj ' are unknown and,
in general, incommesurate quantities.

The time evolution of the density matrix ρ(t) of the
qubit register is obtained from Eq. (7) through the rela-
tion ρ(t) = Trenv{U†(t)σ(0)U(t)}, where σ is the total
density matrix of the “qubits + environment” system.
The environment will dephase the qubits if they are pre-
pared initially in a state ρ(0) that is uncorrelated with
the state of the environment, σ(0) = ρenvρ(0). Assuming
that the environment is in thermal equilibrium at tem-
perature Θ, and no error correction procedure is

ξ j t'( ) t'd
0

t∫

τc
1–

Hr = V j j'σz
j( )σz

j'( ),
j j',
∑–

V j j' 2Re λm j,
ω( ) λm j',

ω( )*/ω( ).
m ω,
∑=
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applied, using the standard property of the Gaussian
noise we get:

(4)

Here, we introduced the convention that the bar over σz

operators means that they act on ρ from the right. Qual-
itatively, Eq. (4) shows that the matrix elements of ρ
that are farther away from the diagonal in the σz basis
decay faster. The diagonal elements (on which σz –

 = 0) remain constant. In the case of one physical

qubit, Eq. (4) gives ρ(t) = ρ(0), i.e., the
off-diagonal elements of ρ are suppressed with time as

 ≡ e–P(t). If the environment density of states is

ohmic, i.e., … = …,

direct evaluation for Θ ! 1/τ0 gives: P(t) =
2gln[ /πτ0Θ]. At large t, when the random
force ξ appears δ-correlated, P(t) reduces to P(t) = Γt,
where Γ = 2πgΘ is the dephasing rate.

One can reduce the effective dephasing rate by the
encoding that corrects the phase errors [22, 23]. Gener-
alized to k errors, this encoding is:

(5)

In Eq. (5), a bit of quantum information is encoded in
the state of the 2k + 1 physical qubits, and the |±〉 states
of each of these qubits are obtained through the Had-

amard transform  (the π/2-rotation around the y axis)
from the |0, 1〉  states. All of the σz operators in the time

evolution, Eq. (7), are changed by : σz  = σx, so
that for the states on the right-hand-side of Eq. (5), the
dephasing looks like transitions between the |±〉 states
of each qubit, and can be directly detected by measure-
ments in this basis and corrected by applying simple
pulses returning the qubit to the initial state. The error-
detecting measurements, however, should not destroy
the quantum information encoded in the state (5), i.e., it
should not distinguish the α and β parts of this state.
This condition is not satisfied by measurements on indi-
vidual qubits but can be satisfied by measurements on
pairs of the nearest-neighbor qubits comparing their
states. Despite the apparent complexity of this scheme,
it has quite natural implementation in the Josephson-
junction qubits—see figure.

To describe this process quantitatively, we assume
that its measurement/correction part can be done on a
time scale that is much shorter than the one set by char-
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acteristic dephasing rate Γ. Different terms in the envi-
ronment-induced evolution of the encoded state,
Eq. (5), during the time interval T between the succes-
sive application of the “measurement + correction”
operations can be conveniently classified by the num-
ber of qubits flipped during this time interval. In the rel-
evant regime of sufficiently short T: P(T) ! 1, the prob-
ability amplitude of these terms decreases rapidly when
this number increases. If we keep only the terms that
flip up to k qubits, we see directly from Eq. (7) that the
time evolution at this level of accuracy (denoted by
Uk(T)) preserves the superposition of the α and β parts
of the encoded state:

(6)

Here, index q runs over 22k different register states
obtained from the state |⊕〉 ≡ | +…+〉  by flipping up to k
qubits, uq are the probability amplitudes of these states,

 denotes the state |ψq〉  with all 2k + 1 qubits
inverted, and |*〉 ≡ |–…–〉 .

The measurements that compare the qubit states in
all pairs of the nearest-neighbor qubits do not distin-

guish states |ψq〉  and , and therefore also preserve
the superposition of the α and β terms in Eq. (6). The
22k different outcomes (“equal” or “different”) of the
2k-type measurements distinguish all terms with differ-
ent q in Eq. (6) and enable one to decide what qubits
were flipped during the time interval T. Application of
the correcting pulses should then bring the state of the
qubit register back to its initial form, Eq. (5), so that the
encoded quantum state does not change in this approx-

Uk T( ) α ⊕| 〉 β *| 〉+[ ] α ψ q| 〉 βR̂ ψq| 〉+[ ]
q

∑ uq.=

R̂ ψq| 〉

R̂ ψq| 〉

Schematics of the Josephson-junction circuits implement-
ing suppression of dephasing. Crosses denote tunnel junc-
tions, the electrodes between them act as charge qubits.
Monitored currents in the nearest-neighbor loops enclosing
qubits allow one to detect dephasing errors.
imation. The residual evolution of the encoded state is
associated with the possibility that the environment
flips more that k different qubits; for P(T) ! 1—pre-
cisely k + 1 qubits. Following the same steps as above,
we see that when k + 1 qubits are flipped, the measure-
ment/correction cycle interchanges the α and β weights
in the encoded state (5), with probability p. Since p is
small, p ! 1, the encoded state changes substantially
only on a time scale larger than the period T of one
error-correction cycle, and its evolution on this scale
can be conveniently described by the continuous equa-
tion for the density matrix ρ(c) in the basis of |⊕〉  and |*〉
states:

(7)

Here γk ≡ 2p/T is the effective dephasing rate of the
encoded quantum information, the superscript (c) indi-
cates that ρ(c) is the reduced density matrix in the pres-
ence of error correction. Thus, our error-correcting pro-
cedure replaces the dephasing in the individual physical
qubit with the dephasing of encoded quantum informa-
tion at a smaller rate. Indeed, if one writes Eqs. (7) in
the rotated basis |⊕〉 ± | *〉 , they explicitly acquire the
form characteristic for pure dephasing: constant diago-
nal elements of the density matrix and decay of the off-
diagonal elements with the rate γk. The dephasing rate
γk can be calculated from the evolution operator (7).

For k = 1, when the relevant errors flip 2 out of 3
qubits, we get:

The first two terms in this expression represent the con-
tribution to dephasing from noise correlations at differ-
ent qubits, while the last term exists also for uncorre-
lated noise. If the noise is δ-correlated in tune, γ1

reduces to γ1 = (  +  + ΓjΓj '/2), where
Γj is the dephasing rate in the jth qubit, and Γjj ' is intro-
duced through 2〈ϕ j(t)ϕj'(t)〉  = Γjj 't.

If the dephasing forces at different qubits are uncor-
related, the encoded dephasing rate can be easily calcu-
lated for arbitrary k:

(8)

and one sees that γk decreases exponentially with the
“degree of encoding” k. When the probabilities P(T) of
dephasing errors in individual qubits can be expressed
through the dephasing rate Γ, Eq. (8) reduces to γk =
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Γ(ΓT)k(2k + 1)!/(2kk!(k + 1)!), if Γ is the same for all
qubits.

Exponential suppression of γk with k is limited in the
scheme considered above by possible imperfections of
the measurement/correction operations. The most
important is direct dephasing of the encoded states by
measurements, which, in contrast to correction steps,
need to be performed each period T. For example, one
of the specific nonidealities of measurement detectors
that leads to direct dephasing of the state is the residual
linear response coefficient of the quadratic detectors
needed to perform pair-wise comparison of the qubit
states—see Eq. (10) below. Linear terms couple the
detector directly to the |±〉 states of individual qubits
and introduce finite phase shifts between them. Since
the number of required measurements is proportional to
k, the rate of introduced dephasing should also be pro-
portional to k, and can be denoted as . The effect of
this dephasing on the evolution of encoded quantum
information is then described by adding the usual
dephasing term to the equation for the off-diagonal ele-
ment of the density matrix ρ(c)(7):

(9)

Qualitatively, the two types of dephasing processes in
Eq. (9) have a similar effect of suppressing the fidel-
ity of the encoded state, but depend differently on k.
The optimum degree of encoding is estimated crudely
by minimizing the total dephasing rate: kopt ~
ln /ln(TΓ). One obvious result of this optimiza-
tion is that for the considered scheme of the dephasing
suppression to make sense, the dephasing introduced
by imperfections of the correcting procedure should be
much weaker than the original qubit dephasing Γ.

This condition can be satisfied in Josephson-junc-
tion qubits, where the dynamics of magnetic flux char-
acterized by longer coherence times (at least tens of
nanoseconds—see, e.g., [9]) can be used to suppress
dephasing in charge-based qubits. Charge qubits have
quite short decoherence times, ~1 ns [3, 10], limited by
the background charge fluctuations, but offer some
advantages, e.g., demonstrated simplicity of qubit–
qubit coupling [10]. Therefore, it would be of interest
to use the approach discussed in this work to suppress
the dephasing of charge degrees of freedom with the
help of controlled flux dynamics. A sketch of the possi-
ble setup achieving this is shown in figure. Its main ele-
ments are the charge qubits, formed by two small tunnel
junctions in series, enclosed in small superconducting
loops threaded by magnetic flux Φ equal to half of the
magnetic flux quantum Φ0. It can be shown [16] that the
current in each loop represents the σx component of the
qubit dynamics, and its monitoring therefore measures
the qubit in the σx basis as needed for detection of the
dephasing errors. Comparison of the states of the near-
est-neighbor qubits can be achieved not by directly

γk

ρ̇+–
c( ) γk

2
---- ρ–+

c( ) ρ+–
c( )–( ) γkρ+–

c( ).–=

γ/Γ( )
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measuring the currents in the loops, but the square of
the difference (or of the sum) between the currents.
Such a quadratic detection measures the product oper-

ator :

(10)

and provides information on whether the states of the
two qubits are the same or not without measuring them.
Quadratic measurements can be realized by the usual
magnetometers but operated at a point where the linear
response coefficient vanishes. These measurements,
subsequent classical calculations, and the application
of correction pulses, can be done with sufficient fre-
quency by existing “SFQ” superconductor electronics
compatible with the qubits [24].

In summary, we suggested a simple scheme of per-
forming basic error-correction in Josephson-junction
qubits. The scheme suppresses dephasing errors and
can be analyzed quantitatively within the realistic
model of the environment, including the possibility of
noise correlations at different qubits. If the errors intro-
duced by the correction procedure are negligible, the
residual dephasing rate for the encoded quantum infor-
mation decreases exponentially with the degree of
encoding.

This work was supported in part by the NSF under
grant no. 0121428, the NSA and ARDA under the ARO
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(R.F.)

REFERENCES

1. D. V. Averin, Fortschr. Phys. 48, 1055 (2000).

2. Yu. Makhlin, G. Schön, and A. Shnirman, Rev. Mod.
Phys. 73, 357 (2001).

3. Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature 398,
786 (1999).

4. J. R. Friedman, V. Patel, W. Chen, et al., Nature 406, 43
(2000).

5. C. H. van der Wal, A. C. J. ter Haar, and F. K. Wilhelm,
Science 290, 773 (2000).

6. D. Vion, A. Aassime, A. Cottet, et al., Science 296, 886
(2002).

7. Y. Yu, S. Y. Han, X. Chu, et al., Science 296, 889 (2002).

8. J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina,
Phys. Rev. Lett. 89, 117901 (2002).

9. I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and
J. E. Mooij, Science 299, 1869 (2003).

10. Yu. A. Pashkin, T. Yamamoto, O. Astafiev, et al., Nature
421, 823 (2003).

11. P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306
(1997).

12. L. Viola, E. M. Fortunato, M. A. Ptavia, et al., Science
293, 2059 (2001).

σx
j( ) σx

j 1+( )

σx
j( ) σx

j 1+( )±( )2
2 1 σx

j( )σx
j 1+( )±( ),=



668 AVERIN, FAZIO
13. L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82,
2417 (1999).

14. L.-A. Wu and D. A. Lidar, Phys. Rev. Lett. 88, 207902
(2002).

15. J. R. Friedman and D. V. Averin, Phys. Rev. Lett. 88,
050403 (2002).

16. D. V. Averin, Phys. Rev. Lett. 88, 207901 (2002).
17. E. Paladino, L. Faoro, G. Falci, and R. Fazio, Phys. Rev.

Lett. 88, 228304 (2002).
18. U. Weiss, Quantum Dissipative Systems, 2nd ed. (World

Sci., Singapore, 1999).
19. W. G. Unruh, Phys. Rev. A 51, 992 (1995).
20. G. M. Palma, K.-A. Suominen, and A. K. Ekert, Proc. R.

Soc. London, Ser. A 452, 567 (1996).
21. J. H. Reina, L. Quiroga, and N. F. Johnson, Phys. Rev. A

65, 032326 (2002).
22. S. L. Braunstein, quant-ph/9603024.
23. M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge Univ. Press,
Cambridge, 2000), Chap. 10.

24. V. K. Semenov and D. V. Averin, IEEE Trans. Appl.
Supercond. 13, 960 (2003).
JETP LETTERS      Vol. 78      No. 10      2003



  

JETP Letters, Vol. 78, No. 10, 2003, pp. 669–679. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 78, No. 10, 2003, pp. 1167–1176.
Original English Text Copyright © 2003 by Kaminski

 

œ

 

.

                                                       
Nonlinear-Laser Effects in c(3)- and c(2)-Active
Organic Single Crystals¶

A. A. Kaminskiœ
Institute of Crystallography, Russian Academy of Sciences, Moscow, 119333 Russia

e-mail: kaminalex@mail.ru
Received October 9, 2003

The process of stimulated Raman scattering (SRS) allows one to convert laser emission wavelength of crystals,
providing suitable molecular or lattice modes which contribute to third-order nonlinear optical susceptibility.
Renewed interest in this field emerged because of the discovery of SRS in crystals that contain molecular units
exhibiting Raman active modes. Particularly, organic nonlinear optical crystals used so far for frequency dou-
bling and third harmonic generation seem to have a great potential for SRS application. This review paper
reported same results on efficient SRS lasing effects that were discovered recently in organic crystals. © 2003
MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Stimulated Raman scattering (SRS) in optical crys-
talline materials is of topical interest in modern solid-
state laser physics. The SRS process allows one to shift
laser emission wavelength and compress laser pulses,
and can improve the spatial quality of laser beams as
well as the contrast between peak and background
intensities of ultrashort laser pulses, etc. In the last two
decades, solid-state SRS science and technology have
become more widespread (see, e.g. [1–3]). Growth in
the activity has been made possible by the discovery of
several new SRS-active inorganic crystals, including a
successful application given by nano- and picosecond
Raman lasers generating specific and otherwise hard-
to-reach wavelengths in a wide spectral range [3–5].
Among other current applications of new Raman lasers,
remote sensing of the atmosphere is of great interest
[6]. Furthermore, crystalline lasers using SRS conver-
sion process are very attractive for medical treatments
and for laser guide stars in precise astronomical exper-
iments (see, e.g. [7]).

New generation of Raman lasers requires crystal-
line materials providing large frequency shifts up to
3000 cm–1 or more. Unfortunately, with inorganic crys-
tals such shifts are difficult if not impossible to realize
due to their ionic structure. As can be seen from Table 1,
among known SRS-active inorganic crystals, the larg-
est Raman frequency shift has been measured for cal-
cite (CaCO3) [8] and lithium formate monohydrate
(LiHCOO · H2O) [9]. During the last three years we
have been discovered efficient SRS effects in several
organic crystals, many of them (as indicated in Table 2)
possessing frequency shifts as large as 3000 cm–1 and

¶ This article was submitted by the author in English.
0021-3640/03/7810- $24.00 © 20669
relatively high steady-state Raman gain coefficients for
the first Stokes generation. A number of them also offer
both nonlinear χ(3) + χ(2) susceptibilities, which may
give rise to diverse parametric generation acts. It is of
interest that in the field of nonlinear optical organic
crystals attention has mainly been directed towards sec-
ond and third harmonic generation (see, e.g., [25, 26]),
but not towards SRS. This is rather astonishing,
because the bright optical χ(3) effect, such as the SRS,
was discovered in organic liquid (nitrobenzene) in the
60s—at just the beginning of the laser era [27].

The present short review represents some main
results on SRS spectroscopy of organic crystals—the
newer family of nonlinear laser solid-state materials,
and on new self-frequency conversion parametric
effects observed in them under ultrashort laser excita-
tion.

2. THE STEADY-STATE SRS

The nonlinear frequency conversion effects (SHG,
SRS, etc.) are possible in any optically transparent
crystals in which the electron cloud of atoms tend to be
polarized, i.e., the refractive index n is a function of the
electric-field strength E of the propagating laser emis-
sion through these crystals (see, e.g. [28–30])

. (1)

Here, n0 is the “linear” refractive index, and n1, n2 and
so on are the higher-order coefficients of n(E). A dielec-
tric polarization vector P, defined as the electric dipole
moment of the optical crystal, can be described phe-
nomenologically in terms of the nonlinear susceptibil-

n E( ) n0 n1E n2E2 …++ +=
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Table 1.  Selected easily accessible inorganic SRS-active crystals with laser frequency shift (ωSRS) more than 900 cm–1 [2, 3,
5, 8–11]*

Crystal
Space group

Nonlinearity (class)
SRS-active vibration 
mode with the largest 
frequency shift (cm–1)notation number

LiHCOO · H2O –Pna21 (No. 33) χ(2) + χ(3) (polar) ≈1372

NaClO3 T4–P213 (No. 198) χ(2) + χ(3) ≈936

NaY(WO4)2 –I42/a (No. 88) χ(3) ≈914

KH2PO4(KDP) (No. 122) χ(2) + χ(3) ≈915

KAl(SO4)2 · 12H2O –Pa3 (No. 205) χ(3) ≈989

α-KY(WO4)2 –C2/c (No. 15) χ(3) 905

α-KGd(WO4)2 –C2/c (No. 15) χ(3) 901

α-KYb(WO4)2 –C2/c (No. 15) χ(3) ≈907

α-KLu(WO4)2 –C2/c (No. 15) χ(3) 907

CaCO3 –R3c (No. 167) χ(3) ≈1085

Ca4Gd(BO3)3O –Cm (No. 8) χ(2) + χ(3) (polar) 933

CaWO4 –I42/a (No. 88) χ(3) ≈908

ZnWO4 –P2/c (No. 13) χ(3) 907

Sr5(PO4)3F –P63/m (No. 176) χ(3) 950

SrWO4 –I42/a (No. 88) χ(3) 922

Ba(NO3)2 –Pa3 (No. 205) χ(3) ≈1047

BaWO4 –I42/a (No. 88) χ(3) 924

β'-Gd2(MoO4)3 –Pba2 (No. 32) χ(2) + χ(3) (polar) 960

PbWO4 –I42/a (No. 88) χ(3) 901

*Most of these crystals are already commercial materials as laser host crystals (indicated by bold letters) and crystals for second harmonic
generation (SHG), and some of them are well-known birefringent and scintillator crystals (see, e.g., [12–15]). Diamond is also an
χ(3)-active crystal with ωSRS  ≈ 1333 cm–1 [16], but it is not easily accessible.
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ity tensor of a crystal by expressing its polarization as a
power series in electric-field strength E as

(2)

where χ(0) is the linear susceptibility tensor responsible
for linear optical phenomena such as refraction and
reflection of light; and χ(2), χ(3), etc., are the nonlinear
optical susceptibilities of a crystal. These tensors are
related to the linear and nonlinear refractive index as
follows:

P E( ) χ 0( )E χ 2( )E2 χ 3( )E3 …+ + +=

(3)

and are responsible for a large variety of nonlinear opti-
cal phenomena. The most important nonlinear fre-
quency conversion effects arise from the second and
third terms in Eq. (2), which are connected to electrical
polarization, as they are quadratic and cubic functions
of the electrical field strength. The second term in

χ 0( ) 1
4π
------ n0

2 1–( ), χ 2( ) 1
2π
------n0n1,≅≅

χ 3( ) 1
2π
------n0n2,≅
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Table 2.  SRS-active organic and organometallic crystals [17–21]

Crystal
Space group Nonlinearity 

(class)
SRS-active vibration 

mode (cm–1)
Observed nonlinear 

laser effect1notation number

Organic

2 (sucrose, sugar) –P21 (No. 4) χ(2) + χ(3) 
(polar) ≈2960 SHG, SRS, self-FD, 

self-SFM

C13H10O (benzophenone) –P212121 (No. 19) χ(2) + χ(3) 3070, 1650, 998, 
≈103 SHG, SRS

C13H10O3 (salol) –Pbca (No. 61) χ(3) ≈3150 SRS

α-C14H12O3 (4-methylbenzophe-
none) –P21/c (No. 14) χ(3) 3065 SRS

4 (benzil, dibenzoyl) –P3121 (No. 152) χ(2) + χ(3) ≈1000 SHG, SRS

C15H19N3O2 (AANP)5 –Pna21 (No. 33) χ(2) + χ(3) 
(polar) ≈1280 SHG, SRS, self-SFM

C16H15N3O4 (MNBA)6 –Cc (No. 9) χ(2) + χ(3) 
(polar) ≈1587 SHG, SRS, self-FD, 

self-SFM

Organometallic

C14H26N8O13Zr (CuZN-III)7 –C2221 (No. 20) χ(2) + χ(3) ≈1008, ≈2940 SHG, SRS

C13H22N5TlZr (TlGuZN)8 –P21 (No. 4) χ(2) + χ(3) 
(polar) ≈1005, ≈2950 SHG, SRS

1 Used abbreviations self-FD and self-SFM are the self-frequency doubling and the self-sum-frequency mixing, correspondingly.
2 Strongly shifted Stokes and anti-Stokes picosecond generation (ωSRS ≈ 2915 cm–1) was also observed in glassy sugar caramel. Both

sugar materials (single crystals and glassy caramel) are easily accessible and very cheap. They were bought in pastry shops.

3 It is also known as the metastable β-C14H12O phase which has trigonal space group –P31 (No. 144) or –P32 (No. 145) [22].

4 In accordance with [23] space group, this could also be –P3221 (No. 154).

5 Full chemical name is the 2-adamantylamino-5-nitropyridine.
6 Full chemical name is the 4'-nitrobenzylidene-3-acetamino-4-methoxyaniline.
7 Full chemical name is the bis(guanidinium) zirconium bis(nitrilotriacetate) hydrate.
8 Full chemical name is the thallium quanidinium zirconium bis(nitrilotriacetate) dihydrate [24]. Refined data on SRS and SHG will be

published soon with Dr. E. Haussühl, who grew and characterized of this crystal.
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6

Eq. (2) gives rise to frequency mixing, particularly
SHG in acentric crystals, whereas the tensor χ(3) of the
third term is not subsided to symmetry restrictions.
Therefore, in χ(3)-active crystals, several nonlinear pro-
cesses, such as SRS, third harmonic generation and so
on are available in optically isotropic and anisotropic
crystals (Table 3).

The Raman lasers based on χ(3)-crystals (as men-
tioned above) are extensively an area of growth in
modern laser material science and solid-state laser
physics. It is not feasible to present an examination of
the main theoretical aspects of SRS laser frequency
conversion in solids used so far. A few such compre-
hensive reviews are already present in the literature
(see [1, 3, 28, 29, 31–34]). Depending on the pump
pulse duration τp, two temporal SRS regimes, steady-
JETP LETTERS      Vol. 78      No. 10      2003
state and transient, can be considered. The main condi-
tion for the steady-state pumping condition, which is
of more interested for many practical cases and which
was realized in most known nano- and picosecond
crystalline Raman lasers, is

(4)

Here T2 is the dephasing (phonon relaxation) time of
the SRS-active vibration mode and ∆νR is the linewidth
(FWHM) of the corresponding Raman-shifted line with
a frequency ωSRS in the spontaneous Raman scattering
spectrum. The condition for the first Stokes steady-state
generation regime in Raman lasers based on χ(3)-active
crystals [35]

(5)

τ p @ T2 π∆νR( ) 1– .=

Rm 2 gssR
St1 I plSRS α lcr–( )[ ] λSt1

exp 1=
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Table 3.  Some possible χ(2)- and χ(3)-effects in undoped nonlinear-laser crystals (see, e.g., [31])

Nonlinear effect1
Frequency Nonlinear

Susceptibility Note
incident created

Second harmonic generation2 ω, ω 2ω χ(2) UV and visible generation

Sum frequency mixing2 ω1, ω1 ω3 = ω1 + ω2 χ(2) Up-conversion

Difference frequency mixing2 ω1, ω2 ω3 = ω1 – ω2 χ(2) IR generation

Third harmonic generation2 ω, ω, ω 3ω χ(2) VUV generation

Sum frequency mixing2 ω1, ω2, ω3 ω4 = ω1 + ω2 + ω3 VUV and UV generation

Stimulated Raman scattering3 ω1 ω2 χ(3) ω2 = ω1 ± ωSRS

Two-photon absorption3 ω, ω – χ(3) ωc = 2ω
1 It is also available as a self-frequency conversion effect, namely self-FD, self-SRS, etc.
2 Phase matching required.
3 ωSRS and ωc are the crystal frequencies.
is very nearly the same as the condition for stimulated-
emission (SE) generation in the usual lasers on the base
of activated crystals [36]

(6)

In Eqs. (5) and (6):  is the Raman gain factor

(here:  is the steady-state Raman gain coefficient,
Ip is the laser pumping intensity, and lSRS is the SRS-
active crystal length), α is the loss coefficient at the first
Stokes wavelength , lcr is the total crystal length,
Rm = Rm1Rm2 is the reflectivity of resonator mirrors,
∆NσSE is the gain coefficient (here ∆N is the inversion
population of the Stark laser levels and σSE is the cross
section of inter-Stark laser transition of an activator
ions), and ρ is the loss coefficient at the SE wave-
length λSE.

If the intensity of plane-wave fundamental pump-
laser radiation is much higher than the intensity of the
first Stokes generation (Ip @ ), i.e., when the level of
pump depletion is very small, the SRS amplification at
the first Stokes emission can be written [37] as

(7)

where (lSRS = 0) is the intensity of the spontaneous

Raman scattering at the wavelength  of the first
Stokes generation (in the beginning lSRS = 0 of the

Rm 2 ∆NσSElSE ρlcr–( )[ ] λSE
exp 1.=

gssR
St1 I plSRS

gssR
St1

λSt1

ISt1

dISt1

dSRS

---------- gssR
St1 I p lSRS( )ISt1

lSRS( )=

+ I p lSRS( ) dσ
dΩ
-------NSRS∆Ω

=  gssR
St1 I p lSRS( ) ISt1

lSRS( ) ISt1
lSRS 0=( )+[ ] ,

ISt1

λSt1
amplified crystal, i.e., from zero-point fluctuation of
spontaneous scattering)

(8)

Clearly, in the first Stokes lasing process, very weak
spontaneous Stokes Raman scattering provides the
major contribution, because its frequency-shifted emis-
sion at ωSRS of the intensive line (s) acts as a “seed” for
SRS amplification. This situation is analogous to the
luminescence (spontaneous emission) in the laser
action in activated crystals. In Eqs. (7) and (8): dσ/dΩ
is the Raman scattering cross section of the vibration
transition of the crystal, NSRS is the number (concentra-
tion) of SRS-active scattering centers,  is the refrac-

tive index of the crystal at wavelength , and ∆Ω is
the small solid angle of SRS lasing. As seen from

Eq. (8), the  coefficient is linearly proportional to
the Raman scattering cross section and inversely pro-
portional to the linewidth of the spontaneous Raman

scattering transition. The product  may be con-

sidered as the spectroscopic parameter providing a
measure for peak intensity of a spontaneous Raman
transition. This figure of merit, as shown in [38, 39],
can be used in a comparative selection for suitable
SRS-active crystals. Therefore, high-gain Raman crys-
tals for steady-state SRS laser converters should have a
small ∆νR value and strong spontaneous Raman scatter-
ing transition. Solving Eq. (7) yields (see, e.g., [29])

(9)

In many known experimental cases (see, e.g., [3, 30, 32,
33, 40]), SRS lasing at the first Stokes wavelength

gssR
St1

2λSt1

2 NSRS

πnSt1

2 hν p

----------------------- dσ
dΩ
------- 1

∆νR

---------.=

nSt1

λSt1

gssR
St1

dσ
dΩ
------- 1

∆νR

---------

ISt1
lSRS( ) ISt1

lSRS 0=( ) gssR
St1 I plSRS( ).exp=
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(  = ωp – ωSRS) becomes with any assurance measur-
able when the increment in Eq. (9) reaches a value of

IplSRS = 25–30, which corresponds to an energy
conversion efficiency of approximately 1%. The laser
pumping intensity (Ip = Ithr) providing such an effi-
ciency value is conditionally considered to be the first
Stokes steady-state threshold pumping intensity
( /Ithr ≈ 0.01). Thus approach makes possible a ten-

tative estimate of the  value for χ(3)-active crystals
in rather simple pumping geometries, as in the single-
pass SRS experiments (see [11, 41]).

Due to very strong χ(3)- and χ(2)-nonlinearities of the
most used organic crystals (see Table 2), the pumping
condition in conducted SRS experiments were slightly
different from the model mentioned above. To avoid a
manifestation of other possible nonlinear effects (SHG,
two-photon absorption and so on) in them, we can only

make a comparative estimate of their  coefficients
applying several reference χ(3)-active crystals (PbWO4,
α-KY(WO4)2, α-KGd(WO4)2, and NaClO3 [14, 42,
43]) and a relatively “soft” excitation condition.

As a threshold intensity in these comparative exper-
iments, we assumed the pumping energy at which the
steady-state first Stokes lasing becomes confidently
perceptible (usually with signal/noise ratio ≈2). Con-
ducted measurements with our organic crystals showed
that in most cases their first-Stokes pumping “soft”
threshold is significantly less than the “1%-threshold.”

3. SRS SPECTROSCOPY 
OF ORGANIC SINGLE CRYSTALS

The spectroscopic single-pass SRS experiments in
[17–21] were done using oriented samples of organic
single crystals with different active length (from lSRS ≈
0.5 mm for AANP to lSRS ≈ 25 mm for benzophenone
and GuZN-III). The reference and measured crystals
were equal in length and their optical faces were pol-
ished plane-parallel but not antireflection coated. For
the excitation steady-state Stokes and anti-Stokes gen-
eration in organic crystals, we used a homemade pico-
second Nd3+ : Y3Al5O12 laser with ≈30% efficient fre-
quency doubler that generates ≈110 ps pulses (FWHM)
at λf1 = 1.06415 µm and an energy of 3 mJ, and ≈80 ps
SHG at λf2 = 0.53207 µm wavelength [44]. Pump radi-
ation with Gaussian beam profile, as needed, was
focused onto the investigated crystal by a lens with a
focal distance adjusted (F = 25 cm) such that the SRS
lasing was maximum without a surface and volume
optical damage sample, resulting in a beam waist diam-
eter of about 160 µm (see used setup in the frame of
Fig. 1). The spectral composition of the Stokes and
anti-Stokes, as well as the self-FD and self-SFM gener-
ation emission, was measured with a CCD-spectro-

ωSt1

gssR
St1

ISt1

gssR
St1

gssR
St1
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scopic multichannel analyzer (CSMA) consisting of a
scanning grating monochromator (with a Czerny-
Turner arrangement), an analyzer, and a Si-CCD array-
sensor (Hamamatsu S3923–1024Q) as a detector. The
sensitivity dispersion of this CSMA system is given in
the inset of Fig. 2. Below are shown several selected
SRS spectra of investigated organic crystals.

3.1. C14H22N8O13Zr (GuZN-III) crystal [20]. Two
SRS-spectra (see Fig. 1 and 2) are shown an identifica-
tion of observed Stokes and anti-Stokes lines related to
two SRS-active optical vibration modes of the crystal
ωSRS1 ≈ 1008 cm–1 and ωSRS2 ≈ 2940 cm–1. The analysis
is shown that for the 62-atom molecule C14H26N8O13Zr
of a GuZN-III structure with orthorhombic space group

 and Z = 4 (2 for a primitive unit cell), overall
degrees of freedom (3N × 2) = 372 are distributed into
(at k = 0, center of Brillouin zone)

irreducible representations. In accordance with [45],
the A modes of a GuZN-III crystal are Raman active
only, and those of B1, B2, and B3 are both Raman and IR
active. Among them the (B1 + B2 + B3) species are acous-

D2
5

Γ N 92A 94B1 93B2 93B3+ + +=

Fig. 1. The orientational SRS and SHG spectrum of an
orthorhombic C14H26N8O13Zr (GuZN-III) crystal obtained
in pumping geometry c(aa)c under picosecond excitation
λf1 = 1.06415 µm wavelength (fundamental pump line is
asterisked), as well as a scheme of the experimental single-
pass set-up (above) [20]. Wavelengths of all lines are given
in µm and their intensity are shown without correction of
spectral sensitivity of used analyzing CSMA system (see
Fig. 2). Anti-Stokes line related to SRS-active vibration
mode of the crystal ωSRS2 ≈ 2940 cm–1 is indicated by the
horizontal arrow.
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tic modes. As an illustration, Fig. 3 shows the Raman
spectrum of the fully symmetric A species, which was
practically recorded under excitation geometry
≈a(cc) ≈ a as in the case of the SRS spectrum exhibited
in Fig. 2. The assignment of its strongest Raman shifted
lines to the respective vibration modes of a GuZN-III
crystal yields that the A-symmetry lines at ≈1008 and
≈2940 cm–1 are promoting modes of observed SRS las-
ing components. They correspond to the stretching
vibrations of the CH2 and N–C–O bond systems,
respectively.

3.2. C13H10O (benzophenone), a-C14H12O (4-me-
thyl-benzophenone), and C14H10O2 (benzil) crystals
[18]. Their Stokes and anti-Stokes spectra are given in
Figs. 4 and 5. The analysis conducted in [18] shows that
most of their SRS-active modes (with the frequencies

Fig. 2. The orientational SRS and RFWM spectrum of an
orthorhombic C14H26N8O13Zr (GuZN-III) crystal obtained
in pumping geometry a(cc)a under picosecond excitation at
λf2 = 0.53207 µm wavelength, as well as wavelength depen-
dence the spectral sensitivity of used analyzing CSMA sys-
tem (above) [20]. Stokes and anti-Stokes lines related to
SRS-active vibration modes of the crystal ωSRS1 ≈
1008 cm–1 and ωSRS2 ≈ 2940 cm–1 are indicated by horizon-

tal brackets. Other notations are as in Fig. 1.
of ≈3070, 1650, and ≈1000 cm–1) correspond to the
ν(CH) vibrations of the benzene ring, ν(C = O) vibra-
tions of the carbonyl unit, and symmetric ν(CC) vibra-
tions of the benzene ring, respectively. The ≈103 cm–1

SRS mode is lattice vibration.

4. NONLINEAR LASER
χ(3)- AND χ(2)-EFFECTS

In addition to very large Raman shift and efficient
first Stokes generation in discovered SRS-active
organic crystals in some an acentric of them, more polar
crystals were observed combining nonlinear lasing
effects, namely self-FD and self-SFM [19–21]. This
potential allows to classify these materials as a promis-
ing (χ(3) + χ(2))-medium for a new type of laser-fre-
quency converters.

4.1. C12H22O11 (sucrose or sugar) crystal [21]. Due
to its low symmetry and, hence, the large number of
vibrational modes (3NZ = 270; ΓN = 133A + 137B, here
(A + 2B) are acoustic modes), it is quite difficult at this
initial stage of the research to establish the relation of
observed SRS-mode ωSRS = 2960 cm–1 (Fig. 6a) to the
specific C–H vibrational bond (ν[CH] or ν[CH2]). It is
interesting to note here that food-sugar glassy caramel
also offers very efficient SRS lasing (Fig. 6b). Besides
intensive Stokes and anti-Stokes lasing components,
under picosecond pumping in a sugar which is suffi-
ciently good UV crystal, rather efficient (χ(3) + χ(2))-
nonlinear self-frequency conversion effects were also
observed, namely self-FD (λself-FD = 0.3158 µm, i.e.,

Fig. 3. The room-temperature polarized spontaneous
Raman scattering spectrum of an orthorhombic
C14H26N8O13Zr (GuZN-III) crystal registered under exper-
imental geometry ≈a(cc) ≈ a [20]. Raman shift of several
intensive lines are given in cm–1. The arrow at zero corre-
sponds to excitation by CW Nd3+:Y3Al5O12 laser at
1.06415 µm wavelength.
JETP LETTERS      Vol. 78      No. 10      2003
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1/2 , or ωSHG = ) and self-SFM (λself-SFM =

0.2887 µm, i.e., Σλf 2,  or ωSFM = ωf 2 + ). The

SHG- and SRS-potential, availability, very low cost,
and various structural modifications of a C12H22O11

make this crystal quite attractive for application in
modern laser physics and nonlinear optics.

4.2. C15H19N3O3 (AANP) [19] and C16H15N3O4

(MNBA) [20] crystals. In these papers, a great potential

λSt1
2ωSt1

λSt1
ωSt1

Fig. 4. The orientational SRS and RFWM spectra of an
orthorhombic C13H10O (benzophenone) crystal obtained in
pumping geometry ≈b(≈c≈c)≈b under picosecond excita-
tion at (a) λf1 = 1.06415 µm and (b) λf2 = 0.53207 µm wave-
lengths [18]. Stokes and anti-Stokes lasing lines related to
SRS-active vibration modes of the crystals ωSRS1 = 998 cm–1,

ωSRS2 = 1650 cm–1, ωSRS3 = 3070 cm–1, and ωSRS4 ≈
103 cm–1 are indicated by horizontal brackets. Other nota-
tions are as in Fig. 1.
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for very efficient SRS acting of these two polar organic
crystals has been discovered. To the best of our knowl-
edge, among all known χ(3)-active crystals they offer
the greatest value of the steady-state Raman gain coef-
ficient in near IR. These crystals are a promising candi-
date for a new generation of Raman laser converters,
where their relatively short SRS-interaction lengths
(less then 1 mm) allow for miniaturization. In AANP
and MNBA several new parametric lasing effects were
also observed, which are illustrated in Table 4 and
Fig. 7. According to [19], for the 39-atom C15H19N3O3
molecule of a AANP structure, overall degrees of free-
dom 3NZ = 468 are distributed into

irreducible representations. The vibration modes can be
divided into acoustic ΓT = A1 + B1 + B2, internal Γi =

Γ N 117A1 117A2 117B1 117B2+ + +=

Fig. 5. Stokes and anti-Stokes lasing spectra of (a) a trigonal
C14H10O2 (benzil) and (b) a α-C14H12O (4-methylben-
zophenone) crystals obtained under picosecond excitation
at λf1 = 1.06415 µm wavelength [18]. Pumping geometry
for C14H10O2 crystal was ⊥ b(≈b≈b) ⊥ b and the α-C14H12O
crystal was oriented randomly. The SRS-active vibration
modes of these crystals are indicated by horizontal brackets.
Other notations are as in Fig. 1.
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111A1 + 111A2 + 111B1 + 111B2, and translatory and
rotatory ΓT ' = 2A1 + 3A2 + 2B1 + 2B2 and ΓR = 3A1 +
3A2 + 3B1 + 3B2, respectively. All optical modes are
Raman active. The observed SRS spectrum shows
(Fig. 7a) Stokes and anti-Stokes lines which relate to
the ωSRS ≈ 1280 cm–1 vibration mode. It is connected
with the strongest vibration of the bond C–N–C, which
links the pyridine ring and adamantylamino system of
the AANP crystal. Unfortunately, vibration mode anal-
ysis for a MNBA crystal is embarrassing at present due
to an absence of precise x-ray data. It should be done in
the future. The large nonlinearities and hence a very
efficient Stokes and anti-Stokes generation related to
the ωSRS ≈ 1587 cm–1 vibration mode and other manifes-
tations of frequency conversion lasing of MNBA with
aromalic rings, donor –OCH3 and acceptor group—
NHCOCH3, are due to extended π-electron conjugation
[25, 46].

Fig. 6. Random-oriented Stokes and anti-Stokes lasing
spectra of (a) a monoclinic C12H22O11 (sugar) crystal and
(b) glassy sugar caramel obtained under picosecond excita-
tion at λf2 = 0.53207 µm wavelength [21]. The SRS-active
vibration modes of these organic materials are indicated by
horizontal brackets. Other notations are as in Fig. 1.
5. CONCLUSION

We have demonstrated a great potential for efficient
SRS laser action in several organic and organometallic
crystals. These first observation of their large frequency
shifts, high steady-state first Stokes Raman gain coeffi-
cients, as well as self-FD and self-SFM parametric
effects let us hope that these novel materials may be
used for a new generation of Raman laser converters,
where their relatively short nonlinear χ(3)-interaction
lengths allow for very attractive miniaturization. Our
paper to illustrate the results of our experimental esti-

mations of corresponding value of the gain  coeffi-
cients for several investigated crystals is near comple-
tion. These data are given in Table 5.

First of all, the author is obliged to note that the idea
to start the SRS experiments with organic crystals was
actively discussed during the 3rd International Sympo-
sium on “Modern Problems of Laser Physics” in
Novosibirsk and was encouraged by Academician

gssR
St1

Fig. 7. Parametric Raman lasing spectra of (a) orthorhom-
bic C15H19N3O2 (AANP) and (b) monoclinic C16H15N3O4
(MNBA) crystals obtained in pumping geometry b(aa)b for
AANP and b(≈a ≈ a)b for MNBA under picosecond excita-
tion at λf1 = 1.06415 µm wavelength [17, 19]. The arrows
indicate the spectral positions of the first and second Stokes
lines which are nondetectable by the Si-CGD sensor used
(see Fig. 2). The fragments of nonpolarized transmission
spectra of 0.4- and ≈1-mm thick samples for AANP and
MNBA, respectively, are shown by dashed lines. The SRS-
active vibration modes of these strongly nonlinear crystal
are indicated by horizontal brackets. Other notations are as
in Fig. 1.
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Table 4.  Parametric lasing effects of (χ(3) + χ(2))-interaction in organic polar crystals C15H19N3O2 and C16H15N3O4 under
picosecond Nd3+ : Y3Al5O12-laser excitation at λf1 = 1.06415 µm wavelength [17, 19]

χ(3) and χ(2) generation component SRS-active crystal vibration 
mode (cm–1)wavelength (µm)1 line attribution

C15H19N3O2 crystal, lSRS ≈ 0.4 mm2 (Fig. 7a)

0.53207 SHG (1/2λf1) 2ωf1 –

0.5710 Σf1, λSt1 (λself-SFM)3 ωf1 + (ωf1 – ωSRS) ≈1280

0.6160 Σλf1, λSt2 (λself-SFM)3 ωf1 + (ωf1 – 2ωSRS) ≈1280

0.8363 ωf1 + 2ωSRS ≈1280

0.9366 ωf1 + ωSRS ≈1280

1.06415 λf1 ωf1 –

1.23204 ωf1 – ωSRS ≈1280

1.46264 ωf1 – 2ωSRS ≈1280

C16H15N3O2 crystal, lSRS ≈ 1 mm2 (Fig. 7b)

0.53207 SHG (1/2λf1) 2ωf1 –

0.5811 Σλf1,  (λself-SFM)3 ωf1 + (ωf1 – ωSRS) ≈1587

0.6402 SHG (1/2 ) 2ωSt1 = 2(ωf1 – ωSRS) ≈1587

0.7126 ,  (λself-SFM)5 (ωf1 – ωSRS) + (ωf1 – 2ωSRS) ≈1587

Σλf1,  (λself-SFM)6 ωf1 + (ωf1 – 3ωSRS) ≈1587

0.7955 ωf1 + 2ωSRS ≈1587

0.8334 SHG (1/2 )  = 2(ωf1 – 2ωSRS) ≈1587

0.9104 ASt1 ωf1 + ωSRS ≈1587

1.06415 λf1 ωf1 –

1.28044 St1 ωf1 – ωSRS ≈1587

1.60694 St2 ωf1 – 2ωSRS ≈1587

1 Measurement accuracy is ±0.0003 µm.
2 ωSRS is the SRS-lasing length of crystalline element.
3 λself-SFM is the wavelength of the self-sum-frequency mixing generation with which pumping with the fundamental ωf1 frequency and

arising in the crystal first or second Stokes lasing with  = ωf1 – ωSRS or  = ωf1 – 2ωSRS frequency were associated.

4 Due to zero sensitivity of the used Si-CCD sensor (see Fig. 2), the Stokes lasing at this wavelength is not detectable.
5 λself-SPM is the wavelength of the self-sum-frequency mixing generation with which pumping with the first and second Stokes lasing

emissions with  = ωf1 – ωSRS and  = ωf1 – 2ωSRS frequency was associated.

6 Due to strong absorption (optical transparent of this crystal covers the spectral range of ≈ 0.51 – ≈2.2 µm, see also Fig. 7b), weak third
Stokes lasing at the wavelength  = 2.1570 µm are in general possible, but this self-sum-frequency mixing generation process is

unreal.

ASt2 λASt2
( )

ASt1 λASt1
( )

St1 λSt1
( )

St2 λSt2
( )

λSt1

λSt1

ΣλSt1
λSt2

λSt3

ASt2 πλASt2
( )

λSt2
2ωSt2

λASt1
( )

λSt1

λSt2

ωSt1
ωSt2

ωSt1
ωSt2

ωSt3
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Table 5.  The steady-state Raman gain coefficients of Raman spectroscopic properties of organic and organometallic crystals1

Crystal

First Stokes lasing characteristics Raman spectroscopic property

λf1 = 1.06415 µm λf2 = 0.53207 µm
ωSRS (cm–1) ∆νR (cm–1) T2 (ps)

λSt1 (µm)  (cm/GW) λSt1 (µm)  (cm/GW)

Organic

C12H22O11 – – 0.6315 >6.5 ≈2960 ≈7 ≈2

C13H10O 1.1906 ≈2.8 0.5619 >10 998 ≈3.5 ≈3

0.6360 >10 3070 ≈6.5 ≈1.6

C15H19N3O2 1.2320 >152 – – ≈1280 ≈243 ≈0.44

C16H15N3O4 1.2804 >142 – – ≈1587 1.5 ≈7

Organometallic

C14H26N8O13Zr 1.1920 ≈3.8 0.5622 >10 ≈1008 ≈5 ≈2

1.5487 3.22 0.6307 >9 ≈2940 ≈143 ≈0.8
1 Some listed data are unpublished.
2 For this case, using nanosecond Nd3+ : Y3Al5O12 laser (τp ≈ 20 ns) and an avalanche Ge detector we can estimated only the lower limiting

value of the  coefficient.
3 Inhomogeneously broadened line.

gssR
St1 gssR

St1

gssR
St1
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Quantum states and Hall conductances of electrons in n-type heterojunctions and holes in p-type heterojunc-
tions in a field of a lateral superlattice and a perpendicular magnetic field were studied. It is shown that the
energy spectrum of magnetic subbands in a periodic potential without inversion center is not symmetric about
the reversal of the quasi-momentum sign. The properties of wave functions and the related topological invari-
ants determining the Hall conductance were examined. The method of calculating the magnetic Bloch states of
holes was developed on the basis of the Luttinger Hamiltonian, allowing the spin and spin–orbit interactions to
be taken into account in this problem. The Hall conductance quantization law was determined for 2D holes in
a periodic superlattice potential. © 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The problem of quantum states of an electron mov-
ing in a periodic potential and simultaneously exposed
to a static magnetic field has been topical for several
last decades. The nontrivial character of the energy
spectrum in this problem is caused by the interaction of
the lattice periodic potential, which forms energy
bands, with a magnetic field, which tends to form dis-
crete Landau levels. The fundamental results in this
field were obtained in the early works of Harper [1],
Azbel [2], and Wannier [3] and in the work of Hofs-
tadter [4], who used computer visualization of the spec-
trum (which came to be known as the Hofstadter butter-
fly) of a magnetic Bloch electron. The key parameter
determining the structure of the spectrum is the mag-
netic flux Φ passing through the crystal unit cell. If this
flux, measured in magnetic flux quanta Φ0 = 2π"c/|e|, is
equal to a rational function p/q, with p and q being
mutually prime numbers, one can introduce new prim-
itive translation vectors determining the magnetic unit
cell and, correspondingly, the new Brillouin magnetic
zone [5, 6]. Here, c is the velocity of light and e is the
absolute value of electron charge. For instance, if the
vector potential corresponding to the magnetic field H
directed along the z axis is taken in the Landau gauge
A = (0, Hx, 0), then the magnetic translations in a sim-
ple square lattice with lattice parameter a will be deter-
mined as x  x + qna and y  y + ma, where n and
m are integer numbers. In the two-dimensional prob-
lem, the shape of the magnetic Brillouin zone will be
determined by the inequalities

(1)π/qa– kx π/qa, π/a ky π/a.≤ ≤–≤ ≤
0021-3640/03/7810- $24.00 © 20680
If the quasi-momentum vector sweeps all values in the
magnetic Brillouin zone (1), the energy varies within a
single magnetic subband. The number of subbands also
depends on the magnetic flux through the crystal unit
cell. If this flux (measured in flux quanta) is equal to
p/q, then an individual Landau level splits into p energy
subbands. The wave functions of magnetic Bloch elec-
trons also possess unusual properties. For instance, the
transformation law for these functions upon magnetic
translations, or the Bloch–Peierls law, has the form [7]

(2)

This is the cause of the unusual topological properties
of magnetic Bloch functions. The topological aspects
of the problem considered were discussed by Novikov
in [8]. He showed that the formation of p magnetic sub-
bands near a single Landau level can be treated as a vec-
tor bundle of magnetic Bloch functions on a T2 torus,
i.e., in the magnetic Brillouin zone. The same problem
was discussed by Avron, Seiler, and Simon within the
framework of homotopy theory [9]. Simon [10] found
the relation between the topological invariants and the
Berry geometric phase [11]. Kohmoto showed that the
Hall conductance of magnetic subbands is determined
by the type of wave-function singularities and that this
value is proportional to the first Chern number [12].
Later on, it was established that, similar to the Kubo
formula, the Hall conductance can be represented as a
two-dimensional integral over the magnetic Brillouin
zone. This integral came to be known as “Berry curva-
ture” [13–15]. The universal role of topological invari-
ants in the quantum Hall effect was also demonstrated

ψkx ky, x y,( ) ψkx ky, x qa+ y a+,( )=

× ikxqa–( ) ikya–( ) 2πipy/a–( ).expexpexp
003 MAIK “Nauka/Interperiodica”
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for substrate-supported disordered systems [16] and for
the problem with multiparticle interactions [17].

The unusual character of the quantum states of
Bloch electrons in a strong magnetic field causes a
number of intriguing physical effects. In particular,
unusual quantization rules were revealed in a series of
theoretical and experimental works for the Hall con-
ductance of a 2D electron gas in an additional periodic
potential. As was shown by Thouless et al. [18], the
Hall conductance of a 2D electron gas, in which the
Fermi level falls within the rth energy gap of the Nth
Landau level, is equal to

(3)

where the integer number tr is a solution to the
Diophantus equation

(4)

which has integer-valued solutions at sr satisfying the
inequality |sr| ≤ p/2.

Another method of calculating the Hall conductance
of a 2D electron gas in the presence of a periodic poten-
tial was developed by Streda [19]. He showed that, if
the Fermi level falls within the energy gap between two
filled subbands, this conductance is given by the
expression

(5)

where N(E) is the number of quantum states per area
unit with energy lower than the bandgap. Both the
Diophantus equation and the Streda formula have been
repeatedly used to calculate the electron-gas conduc-
tance in the presence of an additional periodic potential
(see, e.g., [20, 21]). These approaches have also been
used in studying 3D systems [22–24], where the gener-
alized Streda formula is known as the Kohmoto–Halp-
erin–Wu formula [23].

Regarding usual 3D crystals, the effects caused by
the specific Bloch quantum states can be observed
experimentally in magnetic fields on the order of 104 T.
Fields as high as those are presently unattainable. How-
ever, if the lattice parameter is equal to 5–6 Å, then the
flux through the unit cell will be equal to p/q = 0.2–0.3
of the magnetic flux quantum in a field of 2800 T that
was achieved in the Federal Nuclear Center (Sarov)
[25]. In such fields, the broadening of Landau levels
can be observed. Nevertheless, the main hopes for the
observation of magnetic quantum states, in particular,
of the Hofstadter butterfly, are associated with the use
of artificial 2D crystals—quantum dot crystals.

In recent years, the structures with a 2D electron gas
modulated by a surface potential have drawn attention
of many experimenters. The periodic potential in such
structures is produced using a metallic gate to form
quantum dot chains (antidots). Both classical effects

σH
e2

h
---- tr N 1–+( ),=

tr p srq+ r,=

σH ec
∂N E( )

∂B
----------------,=
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(commensurability of the lattice parameter with the
cyclotron radius [26, 27], transition to the chaotic
regime, etc.) and spectra consisting of magnetic sub-
bands were observed in these systems. In the latter case,
the superlattice parameters were 100 nm or smaller and
the electron mobility in these subbands was high
enough. In the cited experiments, the magnetic fields
were on the order of 1 T. The splitting of magnetic lev-
els into subbands in an n-type heterojunction with a sur-
face superlattice was likely observed for the first time in
[28]. A spectrum consisting of magnetic subbands was
observed in [21], where the magnetoresistance of a het-
erojunction with a surface superlattice was also studied.
A recent work [29] is also noteworthy. In [29] the struc-
ture of magnetic subbands was studied under condi-
tions where the interactions between the neighboring
Landau levels were essential.

This work is devoted to studying the quantum states
of electrons and holes in heterojunctions with the sur-
face superlattice exposed to an external static magnetic
field. For the electron problem, periodic potentials
without inversion center are considered and it is shown
that, in this situation, the energy spectrum of magnetic
subbands is asymmetric about the reversal of the quasi-
momentum sign. A method for calculating the hole
valence-band magnetic quantum states described by the
Luttinger Hamiltonian is developed, allowing the spin
and spin–orbit interactions to be taken into account.
The topological invariants determining the quantization
laws for the Hall conductance of 2D electrons and holes
are investigated.

2. MAGNETIC BLOCH STATES
AND HALL CONDUCTANCE OF A 2D 

ELECTRON GAS IN A PERIODIC POTENTIAL 
WITHOUT AN INVERSION CENTER

In the absence of a magnetic field, the energy spec-
trum of an electron moving in a periodic potential is
invariant about the reversal of the quasi-momentum
sign; i.e., E(k) = E(–k). This symmetry holds even if the
periodic potential has no inversion center. The symme-
try in the quasi-momentum space is due to the invari-
ance of the stationary Schrödinger equation about the
time reversion. In a magnetic field, the t  –t symme-
try is violated. As a result, the energy of a Bloch elec-
tron in a crystal without an inversion center in the pres-
ence of magnetic field will not be an even function of
quasi-momentum within the magnetic Brillouin zone.
One can expect that the crystal in which the energy
spectrum is not symmetric in the k space would display
unusual physical properties [30].

It is worth noting that the breaking of symmetry
about the spatial inversion of the periodic potential
affects the transport characteristics of electron gas in
the classical case as well. This was demonstrated, e.g.,
in [31], where high- and low-frequency electron trans-
port was studied for a square 2D lattice consisting of
triangular dots. The system was exposed to an external
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magnetic field. The classical electron dynamics for
such a lattice was examined in [32]. The irradiation of
the system by an electromagnetic field in the far-IR
region induced a dc voltage because of the absence of
an inversion center in the potential.

Note that the symmetry of the energy spectrum of
3D crystals without a spatial inversion center can be
violated in the k space by the spin–orbit interaction as
well. This also occurs in a zero magnetic field, for
which the t  –t symmetry is not violated. In this
case, only the Kramers degeneracy E(k, 1/2) = E(–k, –
1/2) holds. In semiconductors, such spectra are
described, e.g., by the Luttinger Hamiltonian, which

Fig. 1. (a) Equipotential lines for the crystal lattice potential
V(x, y) given by Eq. (8) with V2/V1 = 0.1. The signs “+” and
“–” mark the potential maxima and minima. (b) Isoener-

getic lines  = const for the lower magnetic subband

of the first Landau level N = 1; V2/V1 = 0.1 and p/q = 3/1.
The signs “+” and “–” mark the energy maxima and minima
in the subband.

E1
1 k( )
includes Dresselhaus’ terms linear and cubic in the
wavevector projections. However, the spin–orbit mech-
anism violates symmetry only in a small region of the
k space. Below, we will see that the spectrum of mag-
netic subbands in a periodic potential without an inver-
sion center loses its symmetry over the entire magnetic
Brillouin zone.

Choice of the model. Below, we calculate the quan-
tum states of an electron gas and consider the quantiza-
tion law for its Hall conductance in a periodic potential
without an inversion center [30]. The electron Hamilto-
nian in a uniform magnetic field and in a field of a two-
dimensional periodic potential can be written in the
form

(6)

where

(7)

is the Hamiltonian in a magnetic field. Here, c is the
velocity of light, e is the electron charge, and m* is the
electron effective mass. The vector potential is chosen
in the Landau gauge A = (0, Hx, 0), so that the magnetic
field H is directed along the z axis. The model potential
of a square lattice without an inversion center is written
as

(8)

where a is the lattice parameter. The equipotential lines
are shown in Fig. 1a. The second term on the right-hand
side of this expression is proportional to V2 and deter-
mines the degree of breaking the lattice symmetry
about the spatial inversion. At V2 = 0, this symmetry is
regained. In what follows, the amplitude V1 will be
fixed.

As was mentioned above, the structure of the eigen-
states of Hamiltonian (6) and the spectrum of its eigen-
values depend on the magnetic flux through the crystal
unit cell. We will assume that the magnetic flux p/q is a
rational number. Otherwise the spectrum would consist
of an infinite number of magnetic subbands and have
the fractal structure [4]. If the inequalities

(9)

are fulfilled, where lH and ωc are the magnetic length
and the cyclotron frequency, respectively, then the
quantum states can be calculated perturbatively, i.e.,
without taking into account the interaction between dif-
ferent Landau levels. A simple estimate suggests that
the condition p/q = 3 for a lattice with parameter a =
80 nm is fulfilled in the magnetic field H . 2 T and ine-
qualities (9) are fulfilled for V1, V2 ≈ 1 meV. The elec-
tron wave function satisfying the Bloch–Peierls condi-
tions for the µth magnetic subband is sought as the

Ĥ Ĥ0 V x y,( ),+–

Ĥ0
1

2m*
----------- p̂ eA

c
-------– 

  2

=

V x y,( ) V1 πx/a( )cos
2 πy/a( )cos

2
=

+ V2 2πx/a( )sin 2πy/a( )sin+[ ] ,

"ωc @ V1 V2; lH ! a,,
JETP LETTERS      Vol. 78      No. 10      2003



BLOCH ELECTRONS IN A MAGNETIC FIELD 683
expansion in the Landau functions corresponding to the
Nth level [18]:

(10)

where ϕN is the eigenfunctions of the harmonic oscilla-
tor and x0 = c"ky/ |e|H = ky . Note that condition (2) is

fulfilled if the coefficients of expansion (10) satisfy the
relationship

(11)

In the representation of functions (10), the stationary

Schrödinger equation  = EΨ is written as

(12)

where  = "ωc(N + 1/2).

Due to the periodicity of Eq. (11) in n and m with

period p, the tridiagonal matrix  in Eq. (12) has the
size (p × p) [30], whence it follows that, for the rational
values p/q of flux, each discrete magnetic level splits
into p magnetic subbands. We now calculate the wave
functions and the spectra.

Quantum states. For the prime rational values of

flux, the energy spectrum and wave functions 
can easily be found analytically. Large Hamiltonian
matrices can be diagonalized numerically. In the work
of Demikhovskii and Perov [30], the quantum states of
magnetic Bloch electrons in a lattice without an inver-
sion center were calculated analytically for the flux
p/q = 3/1. Figure 1b shows the isoenergetic lines for the
calculated spectrum, which, as seen, does not possess
an inversion center in the k space. This figure demon-
strates the energy distribution in the lowest of the three
magnetic subbands corresponding to the Landau level
with N = 1. It can readily be verified that, upon reversal
of the magnetic-field direction (H  –H), the spec-
trum transforms as

Despite the spectrum asymmetry, the energies

are equal at the opposite boundaries of the magnetic
Brillouin zone, as also are the corresponding partial

Ψk µ,
N x y,( )

=  Cnµ
N k( ) ϕN

x x0 lqa– nqa/ p––
lH

-------------------------------------------------
l ∞–=

+∞

∑
n 1=

p

∑
× e

ikyy
e

ikx lqa nqa/ p+( )
e2πiy lp n+( )/a,

lH
2

Cn p+ µ,
N k( ) Cnµ

N k( ).=

ĤΨ

Hnm
N k( )Cmµ

N k( )

=  EN
0 p/q( )δnm Vnm

N p/q k,( )+[ ] Cmµ
N

=  Eµ
N k( )Cnµ

N k( ),

EN
0

Vnm
N

Cnµ
N k( )

Eµ k H,( ) Eµ k H–,–( ).=

Eµ kx π/a,( ) Eµ kx π/a–,( ),=

Eµ π/qa ky,( ) Eµ π/qa– ky,( )=
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derivatives ∂E/∂kα (α = x, y). However, because of the
absence of central symmetry at the center and bound-
aries of the magnetic zone, the derivatives ∂E/∂kα are
nonzero. The structure of the energy spectrum depends
explicitly on the parameter V2. It was shown in [30]

that, for certain critical values , the energy gap
between the neighboring subbands disappears and the

surfaces  touch at a certain point k0 lying on the
diagonal of the magnetic Brillouin zone. For instance,
at (V2/V1)cr = 0.051706 and p/q = 3/1, the energy in the
lower subband of the zeroth Landau level becomes
equal to the energy of the middle subband. This touch
occurs at the point k0 where the energy of the lower
subband is maximal. With a further increase in the
parameter V2, this degeneracy is removed and the
neighboring subbands become again separated by the
energy gap. We will show below that, as V2 reaches its
critical value, the singularities of the eigenvector

 of system (12) undergo jumpwise change in the
k space at the point of gap collapse. The topological
invariants (Chern classes determining the Hall conduc-
tance) change simultaneously.

The eigenvectors  can be chosen propor-
tional to the cofactors Djn(k) of any (e.g., jth) row of the
determinant corresponding to the set of Eqs. (12) at E =
Eµ(k). N.A. Usov [33] showed that, in these terms, the
components of the normalized eigenvector are

(13)

In the last formula, the quantity Dnn(k) is a cofactor of

the matrix element [  – ] and the phase 
is defined by the relationship

(14)

One can readily verify that  is a purely real
component and turns to zero at the points km of the so-
called expanded magnetic Brillouin zone defined by the
inequalities –π/qa ≤ kx ≤ π/qa and –πp/qa ≤ ky ≤ πp/qa

[33]. The other  components with n ≠ j do not
tend to any definite limit at k  km, so one can say
that the corresponding point km is the phase branch
point. Hereafter, the index in the brackets will stand for
the representation, i.e., for the row number, and we will
omit the magnetic subband index µ and the Landau
level number N.

Quantization of Hall conductance. The Hall con-
ductance of 2D electrons in a periodic potential with
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several completely filled magnetic subbands, so that the
Fermi level lies within the energy gap, is quantized in
e2/h units. Although one could assume that the Hall
conductance of each subband would be equal to e2/ph,
where p is the number of magnetic subbands and e2/h is
the conductance of the unsplit Landau level, this is,
nevertheless, not the case. According to the well-known
Laughlin arguments, the Hall-current transfer for each
magnetic subband should be a multiple of the current
corresponding to the entire filled Landau level. The
nature of such a Hall conductance quantization in the
presence of an additional periodic potential can be clar-
ified by a simple model introduced by Thouless et al. in
[18]. To this end, we assume that the rectangular lattice
is strongly anisotropic, so that the overlap integrals in
the x direction are much smaller than the ones in y. Let
now the electric field be directed along the y axis. Then
the wavevector component ky will monotonically vary
with time and, in compliance with the definition of x0,
the coordinate specifying the center of gravity of the
harmonic oscillator eigenfunction ϕN(x – x0) will also
change monotonically. The resulting electric current is
directed along x. However, the position of ϕN(x)
depends not only on x0 but, as seen from Eq. (10), can
also change with changing the number n. If, for a given
ky, the eigenvector component Cn dominates some mag-
netic subband, then, with a further change in ky, the sep-
aration between the neighboring subbands reaches its
minimum and the role of the dominant component will
go from Cn to the other component Cn + s, where s is an
integer number. At this point, the corresponding oscil-
lator function in Eq. (10) will move jumpwise at a dis-
tance of sqa/p in the x direction. It is shown in [18] that,
for the simple case of a parabolic one-dimensional
spectrum, the value of s can be found as a solution to
the Diophantus equation (4). Then, to calculate the
overall Hall conductance, it suffices to sweep ky within
the entire one-dimensional Brillouin zone and make
allowance for both monotonic and all jumplike shifts of
the wave-function center of gravity along the z axis.
Unfortunately, it is unclear how these simple consider-
ations can be extended to more realistic potentials. For
this reason, we will consider below different
approaches that are based on the use of the Kubo for-
mula.

In the absence of disorder, the zero-temperature
contribution from the subband α to the Hall conduc-
tance is given by the following formula, which is a
direct consequence of the Kubo formula [12, 18, 33]:

(15)

where uk = (r)e–ikr is the periodic part of the total
wave function of the subband. This formula can be used
to obtain a comparatively simple and explicit expres-

σxy
α e2

π2
"

--------- Im
∂uk

∂ky

--------
∂uk

∂kx

-------- d2k,∫=

Ψkxky
sion for the conductance of a filled magnetic subband
corresponding to the Nth Landau level [33]:

(16)

Here, the integer number S(km) is the phase incursion

(in units of 2π)  for the functions  from
Eq. (13) upon going clockwise around the singular
point km.

As an example, we calculated in [30] the Hall con-
ductance of a 2D electron gas in a magnetic subband
with p/q = 3/1. The periodic potential was chosen in the
form of (8). The eigenstates of Hamiltonian (6) were
calculated in the representation of the first row of the
determinant for the system of Eqs. (12). The sections

and singularities of the function  in the
expanded magnetic Brillouin zone are shown in
Figs. 2a and 2b. The ratio V2/V1 in these two figures is,
respectively, smaller and larger than the critical value.
The remaining parameters of the system are given in
the subscript to the figure. Two singularities correspond

to the phase branch points where the function 
turns to zero; they are denoted by A and B (Fig. 2a).
Direct calculation showed that, upon going around each
of these points along the contour shown in the figure,

the phases of the  and  components
change by +2π. Hence it follows that S(kA) = S(kB) = 1
and, according to Eq. (16), the conductance in the lower
band is σxy = –e2/h. The contributions to the conduc-
tance from other magnetic subbands can be calculated
in a similar manner. This proved that the conductance
of the filled middle and upper subbands of the zeroth
Landau level is zero. The Hall conductances for differ-
ent positions of the Fermi level in magnetic subbands
are shown for this case in Fig. 3 and marked by the
number 1. As the parameter V2 varies, the singular
points A and B move in the expanded Brillouin zone,
with small changes in V2 bringing about small shifts in
singularities. In accordance with the topological nature
of the invariants, the conductance σxy changes jump-
wise only at the instant the branches of the neighboring
subbands touch each other (become degenerate) at the
point k0 (in the case at hand, we deal with the degener-
acy of the lower and middle subbands). At the critical
value of parameter V2, the A and B singularities simul-

taneously disappear, so that the function  does
not turn to zero. At this moment, new singularity arises,
and they are denoted by C in Fig. 2b. The scenario for
the singularity rearrangement is as follows. The two
initial points do not annihilate and do not leave the
expanded Brillouin zone. At this moment, the compo-

nent  merely turns to zero at the point C, while
the two other components at points A and B are no

σxy
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longer zero. At V2 < , the position of the local min-

imum of the function , which is a nucleus of the
future singularity C, is indicated by an arrow in Fig. 2a.

After going around the point C along the contour

shown in Fig. 2b, the phase of each of the  and

 components changes by –2π, so that, accord-
ing to Eq. (16), the contribution from the lower mag-
netic subband of the zeroth Landau level to the conduc-
tance becomes zero. The position of Hall plateaus cor-

V2
cr

C1
1( ) k( )

C2
1( ) k( )

C3
1( ) k( )

Fig. 2. Equivalue lines of the real function  and its

singularities in the expanded Brillouin zone for the N = 0
Landau level and p/q = 3/1; V2/V1 = (a) 0.02 and (b) 0.06.

C1
1 k( )
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responding to the three magnetic subbands is denoted
for this case by the number 2 in Fig. 3. In this case, the
contribution to the conductance equals –e2/h and comes
from the middle magnetic subband E2(k), which
touches the lower energy subband upon reaching the

critical value . At the same time, it is clear that, at
V2 = 0, the variation of V1 cannot affect the Hall con-
ductance quantization law, because only the ratio of
these coefficients is significant. Thus, in the crystals
without an inversion center, Hall conductance obeys a
new quantization law which, together with the topolog-
ical parameters, can change abruptly upon reaching
critical values of the parameter characterizing the
degree of breaking the central symmetry.

Photovoltaic effect. In the absence of inversion
symmetry in the k space, the so-called photovoltaic
effect should be observed; i.e., an electromagnetic
wave propagating along the normal to the heterostruc-
ture surface should induce a surface dc electric current.
This effect was predicted and experimentally studied in
semiconductor crystals without an inversion center,
where the symmetry in the k space is broken due to the
spin– orbit interaction. The nature of the quantum pho-
tovoltaic effect that should be observed for a 2D elec-
tron gas in a periodic potential without an inversion
center is illustrated in Fig. 4. In this figure, the energies

 are plotted against the projection of quasi-
momentum k onto the diagonal of the magnetic Bril-
louin zone. It is assumed that the direct electron transi-
tions proceed between the magnetic subbands of the
zeroth and first Landau levels. The upper subband

 of the zeroth level is partially filled. If the pho-
ton energy is such that the transitions occur to the lower

subband  of the first Landau level, then the radi-
ation-induced dc current will flow in the direction of the

V2
cr

Eµ
0 1, k( )

E3
0 k( )

E1
1 k( )

Fig. 3. Hall conductances of the filled magnetic subbands
for different positions of the Fermi level and (1) below-crit-
ical and (2) above-critical value of V2/V1 ; N = 0 and µ = 1,
2, 3.
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group velocity vector V1 = /∂k. For the other reso-
nance photon energies, e.g., for the case where the elec-

tron transitions occur to the  subband, the photo-
current direction will be opposite. It is worth noting that
the dipole transitions in the potential V(r) without an
inversion center are allowed between the magnetic sub-
bands belonging to any Landau level. This effect should
be observed for both linear and circular polarizations of
an electromagnetic field. To estimate the magnitude of
the photovoltaic current for a given photon flux, one

∂E1
1

E2
1 k( )

Fig. 4. Quantum transitions between the magnetic subbands
in a two-dimensional crystal without an inversion center.
Arrows indicate the velocity directions in the final state.
must calculate the transition probabilities and velocities
in the final states of magnetic subbands.

3. QUANTUM STATES AND HALL EFFECT
IN p-TYPE HETEROJUNCTIONS 

WITH A SURFACE SUPERLATTICE

In recent years, considerable progress has been
achieved in the fabrication of low-dimensional p-type
structures based on GaAs/AlGaAs heterojunctions
[34–36]. As a result, 2D hole channels have come to
display practically the same effects as are observed for
the n-type structures. The first experiments on studying
transport in a surface-modulated hole gas were carried
out in [37]. In this connection, the hole quantum states
in a heterojunction with a surface potential in a perpen-
dicular magnetic field were studied in [38, 39], where
the quantum Hall effect and magneto-optics were also
examined. The calculation of the hole magnetic Bloch
states in the Luttinger model was also of interest in that
the spin and spin–orbit interactions of charged particles
were taken into account in this problem for the first
time.

Spectrum and wave functions: computational
schemes. In the presence of an external magnetic field
H || z with the vector potential A, light and heavy holes
near the Γ points are described by the Luttinger Hamil-
tonian. In this Hamiltonian, the wavevector compo-
nents k± = kx ± iky are replaced by the operators

(17)

In addition, the terms describing the interaction of spin
κ with the external magnetic field should be added to all
elements of the main diagonal. After passing to the cre-
ation and annihilation operators defined as

(18)

where Rc = [c/eH]1/2, one arrives at the following
matrix:

kα k̂α i
∂

∂xα
--------–

e
c
--Aα .+=

â+ Rc

2
------- k̂+, â+
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2
------- k̂–,=
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where
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Ĥ11 γ 3 eH/c( )â
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1
2
---+ 

  3
2
---κ+ Vh z( ) V x y,( ),++–=

H22 γ1/2 γ2+( )kz
2 – eH/c( ) γ1 γ2–( ) â+â
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The lower triangular part of matrix (19) is related to its
upper triangular part by Hermitian conjugation. Here, e
is the absolute value of an elementary charge; the Lut-
tinger parameters are chosen as [34] γ1 = 6.85, γ2 = 2.1,
γ3 = 2.9, and κ = 1.2; Vh(z) is the heterojunction poten-
tial; and V(x, y) is the periodic potential. The solutions
to the Schrödinger equation with Luttinger Hamilto-
nian (19) have the form of envelopes of wave functions
constructed from the p-type atomic functions that trans-
form as eigenfunctions of the angular momentum oper-
ator for J = 3/2. We assume that holes in a heterojunc-
tion grown in the z direction are confined in a smoothly
varying potential Vh(z). We also assume that Vh(z) has a
triangular profile, while the heterojunction boundary is
impermeable, so that the boundary condition is ψ(0) =
0. Since the triangular profile has no inversion center,
i.e., Vh(z) ≠ Vh(–z), the twofold spin degeneracy will be
removed. The eigenvectors of operator (19) have four
components and are written in the basis set of functions
J; |J; mJ〉  [34]. The translational properties in the (x, y)
plane for each of the components of the envelope func-
tion are the same as for the one-component electronic
states; i.e., each component satisfies the Bloch–Peierls
condition (2). For this reason, the components of enve-

lope  can be written as a superposition of the Lan-
dau quantum states [18]:

(20)

We now discuss the structure of hole functions (20).
In the calculations, one usually takes into account the
limited number of size-quantization subbands in the
sum over ν, e.g., two heavy hole subbands and one light
hole subband. In addition, the number N of Landau lev-
els in each subband is taken to be finite. In our calcula-
tions, it varied from 7 to 11. As in the expression for the
electron wave function, the summation over n goes
from 1 to p.
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After substituting total hole function (20) into the
Schrödinger equation with Hamiltonian (19), one
arrives at a eigenvalue problem with a matrix of size Np
× Np for the Np components djνNn(kx, ky) in each of the
Np hole magnetic subbands ενNn(kx, ky):

(21)

Here, we introduce the notation  for the matrix
elements of Hamiltonian (19) between the expansion

functions in Eq. (20) and  for the
corresponding matrix elements of periodic potential (8)
with V2 = 0. The system of Eqs. (21) was diagonalized
in [38, 39] for various magnetic-field strengths and
amplitudes of the periodic potential. The maximum
size of matrix (21) corresponded to p/q = 20 and was
220 × 220. The results of these calculations are used
below for determining the Hall conductance (see next
section).

In closing this section, mention should be made of
one more intriguing feature of the eigenfunctions: each
magnetic Bloch function satisfying the Bloch–Peierls
conditions (2) has at least p zeros within one magnetic
cell (if the flux through it is equal to p/q). This rule can
be extended to multicomponent wave functions [39].

Namely, let  denote the phase for the periodic part

 = exp(–ikr)  of the jth hole-function com-

ponent  given by Eq. (20). Then, similar to the
electronic problem [12], one can introduce for each
phase the circulation Γj defined as

(22)

where the integration contour goes in the positive direc-
tion along the magnetic cell boundary. Since the Peierls
conditions (2) are fulfilled simultaneously for each of
the hole wave-function components, it seems natural
that circulations (22) are identical for all components:

(23)

The calculations show that the positions of zeros for
different components do not coincide and that the total
number of zeros can be both larger and smaller than p,
with the overall circulation being always fixed. These
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conclusions are illustrated in Fig. 5, where the probabil-
ity density is plotted in the (x, y) plane for different
wave-function components of one of the Landau-level
subbands with the number N = 2+ and flux p/q = 5. The

a/2

0

–a/2

a/20–a/2 x

y

(a) (b)

(c) (d)

Simple zero Twofold zero Threefold zero

Fig. 5. (a)–(d) Probability density at the point kx = ky = 0 for
the four wave-function components of the state with index
N = 2+ and p/q = 5. Dark regions correspond to the higher
probability densities. The positions of the wave-function
zeros are marked by black circles of different diameter cor-
responding to the multiplicity of zero.

0

π/a2

kx

d1

0–π/a2

3π/a2

ky

–3π/a2

Re d2 Im d2

L1 L1
L1L1L1L1

L2 L2 L2

Fig. 6. Typical distribution of the singularities of eigenvec-
tor components d1 and d2 in the d1 representation for p/q =
3/2. The distribution for the third component is not shown.
The dark regions correspond to the larger absolute values of
d1, 2, and the regions of negative values are cross-hatched.
black circles in Fig. 5 indicate the positions of zeros and
their multiplicities. Without going into detail, we note
that the above-mentioned wave-function singularities
in the coordinate space, as well as the singularities in
the momentum space σH, have a topological nature,
because they are independent of the particular form of
the Hamiltonian.

Quantization of Hall conductance. As in the case
of electron gas, the Hall conductance for holes is quan-
tized in units e2/h if the Fermi level lies in the energy
gap. The value of σH is equal to the sum of contribu-
tions from all subbands lying below the Fermi level.
For this reason, we first determine the Hall conductance
of a single completely filled subband α. For the four-
component function (20), Eq. (15) is replaced by the
sum of four terms:

(24)

where  = (r)e–ikr is given by Eq. (20). In [39],
we restricted ourselves to the magnetic subbands of
only the lower size-quantization band, which is the only
one that is filled at typical carrier concentrations. The
upper size-quantization bands were disregarded. Next,

the hole function  was substituted into Eq. (24). Con-
sidering that the basis-set functions in Eq. (20) are
mutually orthogonal and normalized, one can express
Eq. (24) through the partial derivatives of the eigenvec-
tor components djνNn(kx, ky). This part of the calculation
is similar to the computational procedure in the prob-
lem with a one-component electronic function. For the
sake of brevity, the set of indices (jνNn) of the vector
djνNn(kx, ky) are replaced by a single index n = 1, …, Np,
which sweeps sequentially over all required values. As
a result, the following expression for σH is obtained
from Eq. (24):

(25)

which reduces to expression (16) in the same manner as
in the electronic problem. A typical picture of the d1,
Red2, and Imd2 distributions in one of the magnetic
subbands is shown in Fig. 6 for the magnetic flux p/q =
3/2, lattice parameter a = 80 nm, and amplitudes of
periodic potential (8) V1 = 0.7 meV and V2 = 0, which
corresponds to the nonoverlapping hole magnetic sub-
bands. The contours L1, 2 of going around the singulari-
ties are shown schematically.

The conductance σH as a function of the number of
filled magnetic subbands (or the position of Fermi
level) is shown in Figs. 7 and 8 for the nonoverlapping
and overlapping magnetic subbands, respectively. If the
amplitude V1 of the periodic potential does not exceed
the gap between the neighboring Landau levels, the
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magnetic subbands do not overlap (Fig. 7) and the pos-
sible distinctions from the σH quantization in the elec-
tronic problem are caused by the interaction between
the hole Landau levels through the off-diagonal matrix
elements of the Luttinger Hamiltonian [39]. It should
be noted that, upon a smooth increase in the hole con-
centration accompanied by moving the Fermi level
through the magnetic subband (or through a group of
overlapped subbands), the Hall conductance smoothly
varies between the neighboring quantum values indi-
cated in Figs. 7 and 8 by heavy lines. A smooth change
in σH is shown by the dashed lines. In this region, the
exact behavior of conductance is unknown to us.

As the amplitude V1 of the periodic potential
increases, the magnetic subbands corresponding to dif-
ferent Landau levels overlap. Moreover, the subbands
may also touch each other at a certain point in the mag-
netic Brillouin zone. At this point, the spectrum is
degenerate and formula (16) cannot be used to calculate
the Hall conductance. However, our numerical calcula-
tions have shown that, with a further increase in V1, the
subbands push themselves apart and the degeneracy in
the spectrum is removed. For this reason, the use of for-
mula (16) at large V1 becomes again valid even if |V1| >
|∆E12|, i.e., in the system with overlapped subbands. An
example of such a spectrum for V1 = 3 meV is shown at
the bottom of Fig. 8. One can see that, as the amplitude
of the potential increases, the total number of gaps and
their maximal width decrease, as compared to the spec-
trum shown in Fig. 7. For convenience, the retained
gaps and the corresponding Hall plateaus are numbered

Fig. 7. Hall conductance σH (solid lines) for different posi-
tions of the Fermi level. The values En indicate schemati-
cally positions of the subband centers. The dashed lines
denote the transition regions, and arrow points to the region
where the conductance differs from the corresponding value
for electrons. The spectrum of magnetic subbands and the
Landau level indices are shown in the inset.
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in succession in Fig. 8. The transition regions are indi-
cated by dashed lines. A comparison of Figs. 7 and 8
shows that the distinction in the quantization law for the
nonoverlapping and overlapping subbands is observed
only for subbands 4 and 8. The calculations showed
that, at a certain intermediate amplitude of the periodic
potential, larger than in Fig. 7 but smaller than in Fig. 8,
degeneracy enters these subbands. At the instant the
neighboring subbands touch each other, they
“exchange” Chern classes, bringing about a change in
the quantization law. The abnormally large and abnor-
mally small (negative) values of σH are indicated by
arrows. For negative σH, the Hall current is in opposi-
tion to its standard direction. Note that the appearance
of the negative σH in some gaps was earlier predicted
for a 2D electron gas in a periodic potential as well [20,
21].
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