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Abstract—A one-dimensional ensemble comprising a large number of interacting bistable elements was stud-
ied analytically. Formulas for a noiseless and a noise-driven response to a signal were derived for the steady-
state case. Contrasting them with each other testifies to the enhancement of the response if noise is present in
the ensemble. The response of the ensemble is found to exceed that of a single element by a quantity that expo-
nentially rises with the coupling constant. It was inferred that the interaction of bistable elements makes sto-
chastic resonance more pronounced. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

There is currently great interest in a phenomenon
known as stochastic resonance (SR). Predicted in [1],
SR was first observed in bistable optical systems [2, 3].
The bistability of a nonlinear dynamical system is
favorable to the amplification of a weak periodic signal
through its interaction with noise. SR has also become
a subject of studies in solid-state physics (in the context
of tunnel diodes [4] or Josephson junctions [5]), chem-
ical physics [6], and biology (models of stimulated neu-
rons [7]). Since SR has proven to be a widespread phe-
nomenon, it is likely to be discovered in other fields of
science.

In this connection, it should be pointed out that SR
has been adequately explored only in isolated bistable
systems [8–10]. It is therefore interesting to look at the
case of coupled bistable systems. Numerical analysis
suggests that interaction promotes SR [11]. SR mani-
fests itself in anomalous enhancement of either system
sensitivity, the signal-to-noise ratio, or the Fourier
image of the autocorrelation function as the noise
intensity increases in a certain frequency range. How-
ever, the essential feature of SR is an enhanced
response of a noisy system to a signal in comparison
with the response of its noiseless version.

This paper presents analytic formulas for a steady-
state response from a one-dimensional ensemble of
interacting bistable elements to a weak external field in
the presence and absence of noise action. The two
responses are contrasted with each other. The equations
concerned are identical to a one-dimensional finite-dif-
ference Ginzburg–Landau equation. It will be demon-
strated that the noise-driven response exceeds the
noiseless response by a term that exponentially grows
with the coupling constant. Thus, interaction between
bistable elements may significantly amplify the signal-
to-noise ratio.
1063-7842/00/4503- $20.00 © 0285
NOISELESS RESPONSE

Consider a one-dimensional ensemble (chain) of N
interacting bistable elements. The underlying system of
equations is

(1)

where

is the potential of an element; a is the height of the
potential barrier for the element; g is a factor represent-
ing the interaction between neighboring elements (cou-
pling constant); F and ω are the amplitude and the fre-
quency of an external field, respectively; t is time; and
n = 1, 2, …, N. 

We place cyclic conditions on the chain boundaries
as follows:

(2)

They mean that the first element interacts with the last
and also the second element. It is convenient to intro-

duce the dimensionless quantities xn = ηn . Then
(1) becomes
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where W is the potential function of the chain h =

F . The quantities zn will be called order parame-
ters.

The chain is stable in the vicinity of points zn, where
W is minimum. Such points can be found from

(4)

We will consider bistable systems with small cou-
pling constants: g ! a. In this case, it possible to solve
(4) via a power series in g. If g = 0, then zn = σn = ±1.
In a first approximation with respect to g,

(5)

where ∆σn = σn + 1 – 2σn + σn – 1.

It can be shown that the second differential d2W is
positive near the points zn and W does have local min-
ima there. Starting from its initial state, the chain relax-
ates to the points of stable equilibrium, zn. If an external
field with a strength h ! a is applied to the chain, the
motion is also confined to the neighborhood of zn. Con-
sequently, the chain response to the field is a solution of
(3) in the form

Small deviations yn can be found from the linearized
version of (3):

(6)

Any solution of (6) is the sum of the general solution
to the related homogeneous equation and a particular
solution to the inhomogeneous equation. The general
solution is

(7)

Here, Cα are constants determined by initial conditions,

and  and µα are the eigenvectors and the eigennum-
bers of the relaxation matrix Rnm, respectively:

(8)

We will show that µα < 0, so that solution (7) tends
to zero with time. Let en be normed to 1 (the index α
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will henceforth be omitted). Then (8) in view of (2)
yields
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 determines the characteristic
time of dynamic relaxation from an unstable to a stable
state of the chain.

Physical considerations clearly suggest that the
order parameters behave in the same fashion for each of
the chain elements under the steady-state action of the
external field. Consequently, a particular solution to (6)
is independent of 
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. It can easily be seen that

(9)
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 is determined by (5).
Formulas (7) and (9) describe the chain response to

a time-dependent external field without taking account
of noise action. A steady-state response is

(10)
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NOISE-DRIVEN RESPONSE

Now consider the response of the chain if both an
external field and noise are applied. The latter is mod-
eled by adding a random force 

 

ξ

 

(

 

t

 

) to the right-hand
side of (3). This force may represent, for example, the
action of a thermostat. Specifically, the moments are

where 
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 is the noise intensity.
The thus-obtained system of the Langevin equations

is equivalent to the kinetic equation

(11)
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Let us find the average value of the order parameter
for the nth element:

As in the noiseless case, the field amplitude is
assumed to be small (h ! d), which allows us to seek
the distribution function G as a first-order sum in terms
of h:

(13)

Insert (13) into (11) and equate the terms having the
same powers of h. Then,

The boundary conditions for G(0) and G(1) are similar to
(12).

Consider a steady state of the chain under the action
of the field. If t is larger than the characteristic relax-
ation time t > τ, G(0) is virtually an equilibrium function
and has the form

(14)

The response can be found by solving a steady-state
equation for G(1). Due to the boundary conditions, this
equation is

Let G(1) be expressed as

Then,
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Consequently,

(15)

Formula (15) describes a steady-state response to a
signal if ω ! τ –1 ! a.

The statistical integrals involved in (15) can be cal-
culated by the saddle-point method if (d ! a). First, let
us calculate the normalization constant C, appearing in
(14). Separate integrations over each xn yield

(16)

where

λ = , k = , σn = ±1.

The expression for Z is identical to that for the sta-
tistical sum in the one-dimensional Ising model for a
ferromagnet; therefore, Z can be calculated according
to well-known rules (see, e.g., [12]). Specifically,

Since the trace of a matrix is invariant under unitary
transformations, it is easy to find a transformation S
that diagonalizes P:

Hence
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rate integrations over each xn yield

(18)

The cyclic conditions imply that all of the chain ele-
ments are equivalent; therefore, In and Sn are indepen-
dent of n. That is why the subscript n is omitted in (18).
Also notice that the first term in the right-hand side of
(18) results from the integration over xn:

In order to calculate the sum S, consider separately
its terms with i = n, i = n ± 1, i = n ± 2, etc. The term
with i = n is identical to already found Z. The neighboring
chain elements are tackled with the obvious equality

Straightforward calculation proves the generaliza-
tion

(19)
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m = N. This is obvious, since N is the chain period,
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DISCUSSION

Let the number N of chain elements be very large.
Since α < 1, the value of αN is negligible as compared
with 1. We thus arrive at the formula for the average
noise-driven response to a periodic signal if ω ! τ–1:

(20)

At higher frequencies, a non-steady-state equation
for G(1) has to be dealt with.

Now, contrast noise-driven response (20) with
noiseless response (10). First, it should be pointed out
that (20) does not include the time-independent term,
which gives the minimum of the potential W. This
stems from the fact that noise induces transitions over
the potential barriers of the elements, the probability of
the transition to the left-hand potential well being
exactly equal to that for the right-hand well. With zero
noise, the motion is confined to a potential well, as indi-
cated by the time-independent term zn in (10). Second,
it is hardly surprising that both (20) and (10) include the
same time-varying (dynamic) term with the coefficient
h/2a. Third, (20) contains yet another time-varying
term: it results from noise–signal interaction. Note that
this noise-response term includes an exponential func-
tion of the coupling constant g. Although g and d are
assumed to be small as against a, the ratio k = g/d may
be considerably higher than 1, so that the noise-
response term may exceed the noiseless-response term
in (20) by an order of magnitude or more. If the ele-
ments are uncoupled (g = 0), they are statistically inde-
pendent of each other and formula (20) gives the
response of a single bistable element [9].

To sum up, this study has revealed that, under cer-
tain conditions, the interaction of bistable elements
materially amplifies (due to noise) the response of the
chain to a signal. It is therefore reasonable to expect
that SR will be more pronounced in an ensemble
than in a single element. The additional energy for the
response is supplied by the thermostat, which is
simulated by the random force ξ(t) in the right-hand
side of (3).

Also note that the chain studied is a continuous ana-
log of a one-dimensional Ising model for ferromagnets
[12]. This fact explains why the expression for the clas-
sical statistical integral turned out to be identical with
the quantum statistical sum with an accuracy to the fac-
tor. Consequently, it seems very likely that SR will also
be observed in ferromagnets.

The augmentation of SR by the interaction of
bistable elements occurs, e.g., in radiophysical devices.
Consider an element comprising a tunnel diode con-
nected in parallel to a capacitance C and in series to a
resistance R. The element has also a voltage source
generating a harmonic signal, a dc component, and
noise. Such element is known to be bistable [4]. Its
order parameter is U – U0, where U is the voltage

xn〈 〉 h
2a
------

h
d
--- 2k( )exp+ ωt( ).cos=
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across C and U0 is the middle point in the negative-
resistance portion of the diode characteristic. The mag-
nitude |RT | of the negative resistance is ~1 kΩ. For the
potential U of the element, it has been found that a =
106 s–1 and b = 3 × 106 s–1 V–2 if C ~ 1 nF. Interaction
between the elements is implemented by connecting
them in series. Then, the coupling constant g = (RC)–1.
It can be shown that a and b tend to certain limits as R
increases. Therefore, the necessary (theoretical) condi-
tion g ! a is met if R @ |RT |. Also, the frequency ω of
the harmonic signal must be much smaller than a.
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Induced Vortex Motion in an Analysis of Structure Formation 

on Melt Surfaces
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Abstract—A model of thermoelectrically induced formation of surface periodic structures allowing for vortex
motion of the melt is proposed. An analytical solution for surface profile dynamics involving two-dimensional
transport is obtained. It is shown that structure formation can occur only when the melt viscosity is sufficiently
low. © 2000 MAIK “Nauka/Interperiodica”.
Laser light incident on condensed media frequently
induces the formation of coherent surface profiles,
which are generally preserved after the exposure to
laser action. According to [1, 2], the formation of a sur-
face periodic structure (SPS) includes the following
stages.

The incident plane wave is diffracted by the nonuni-
formities of a real surface. When the wave vectors of
the diffracted light and the surface electromagnetic
wave (SEW) are equal, the latter is amplified through a
resonance mechanism. The interference of the incident
light with the SEW gives rise to a spatially periodic
heat source in the surface layer. The spatially nonuni-
form heating of the material leads to surface profile for-
mation involving various phenomena (oxidation, melt-
ing, evaporation, etc.), closing up a feedback loop.

Despite two decades of intensive studies of the con-
ditions that lead to SPS formation, current understand-
ing of profile formation scenarios is far from complete.
We continue the systematic analysis of the effect of
electric-field pressure on a melt started in [3, 4]. This
effect is associated, in particular, with the thermal emf
induced by nonuniform laser heating of a surface. The
action of a laser pulse on a material surface generally
changes the state of the surface layer. In this paper, we
analyze the formation of structure on the surface of a
thin film of a semiconductor melt that has transformed
into metal. Here, a key factor is the small thickness of
the conducting film. In the case of bulk metal, one
should take into account the shunting effect of deep-
lying layers, which substantially reduces the contribu-
tion of thermal emf to SPS formation.

Thermoelectrically induced structure formation was
previously analyzed only in the one-dimensional case
[4]. However, since the thermoelectrical pressure field
is essentially solenoidal, a self-consistent model must
include the Navier–Stokes equations supplemented
with appropriate boundary conditions.
1063-7842/00/4503- $20.00 © 20290
Consider a semiconductor that occupies the half-
space

and is exposed to laser light (see Fig. 1).

The metal melt layer formed by heating is bounded
by the surfaces

Assuming that the surface disturbance height ξ is
much smaller than the spatial period of the incident
light, we restrict our analysis to the surface harmonic
that is resonant with the surface electromagnetic wave
[1, 2]. Then,

The mathematical model is constructed so as to
allow for slower variation of the average temperature T1
as compared to the harmonic component T2, where

(1)

The total temperature is expressed as

(2)

(3)

where T0 is the ambient temperature (see Fig. 2).

The heat equations for T1 and T2 are written as fol-
lows:

(4)
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(5)

They should be supplemented by the initial and
boundary conditions

(6)

(7)

(8)

The thermoelectrically induced electric field E is
related to temperature as follows:

(9)

(10)

Here, Ω is a constant factor. Fluid dynamics are
described by the Navier–Stokes and continuity equa-
tions (for incompressible flows):

(11)

(12)

The Navier–Stokes equations are used in linearized
form in (11) because the amplitude of hydrodynamic
waves is small. The velocity v is expressed in terms of
scalar and vector potentials as
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Since we seek harmonic components, we can write

(20)

(21)

In equations (1)–(21), g is the spatial frequency, a is
the thermal diffusivity of the melt, q is the absorbed
radiant flux, α is the absorption coefficient, c is heat
capacity, ρ is density, µ is the efficiency of light conver-
sion into a SEW, ϕ is the phase shift of the heat source
with respect to the surface harmonic, * is the Heavi-
side step function, ~ denotes a harmonic component, γ
is the coefficient of thermal emf, E is the strength of the
thermally induced electric field, Ψ is the scalar velocity
potential, A is the vector velocity potential, ν is viscos-
ity, p is pressure, and σ is surface tension. Equations
(1)–(21) are solved as follows. First, the average tem-
perature T1(z, t) is found. The result is substituted into
the heat equation for T2(x, z, t) and the Navier–Stokes

Ψ Ψc z t,( ) gxcos Ψs z t,( ) gx,sin+=

A Ac z t,( ) gxcos As z t,( ) gx.sin+=

1

2

3

4

0

H0

x

z

Fig. 1. Schematic of the problem: (1) laser light; (2) air;
(3) metal (semiconductor melt); and (4) semiconductor.

T, °C

t

c a

c

a

b

Fig. 2. Typical curves of temperature and its components as
functions of heating time t: (a) average temperature T1,
(b) amplitude of the cosine component θc, and (c) total sur-
face temperature T1 + θc.
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equations (11) in the limit T1  ∞. In particular, the
following expression is used:

(22)

where λ is the heat conductivity.
The harmonic component of the product EdivE in

the Navier–Stokes equations is then determined. The
convective term in the heat equation is assumed to be
much smaller than the light-to-SEW conversion term
and is dropped. This assumption is validated in the
analysis below.

Next, the Laplace transform with respect to the time
variable (t  w) is performed in all equations. Then,
θc(z, w) and θs(z, w) are calculated as functions of hc(w)
and hs(w), and the results are substituted into the
Navier–Stokes equations. Let us consider the cases of
low and high viscosity.

Since we seek a solution describing an exponen-
tially growing surface disturbance, velocity must also
be an exponentially growing function. Therefore, we
can neglect the effect of friction on fluid dynamics and
consider the time-dependent problem, i.e.,

(23)

Applying the operator rot to both sides of the
Navier–Stokes equation, we eliminate the term

The resulting equation can be solved. Since we seek
hc(w) and hs(w) only, we use boundary conditions (15)
and (17). The desired result is

(24)

(25)

(26)

(27)

(28)

(29)

∂T1

∂z
--------- z ∞,( ) q

λ
--- e

α z–
1–( ),=

∂v
∂t
------  @ ν ∆v .

— — p
ρ

--------× 
  .

hc t( ) Rh t( ), hs t( ) Jh t( ),= =

β γ
4πρ
----------q

2

λ
-----α 2

cρ
------2µ

g
------,=

h t( ) h0 ag
2
t–( ) f 1 wk( ) f 2 wk( )⁄ ,

k 1=

7

∑exp=

f 1 wk( ) wk
2

wk
2 α 2

–( ) wk
2
t( )erfc wk t–( ),exp=

f 2 wk( ) ∂
∂w
------- 2w w

2
aα 2

–( ) w ag
2

–( )
2

---
=

– β aγ w

a
------- γ+ 

  2
4

∂γ
∂T
------q

λ
---w– γ aα+

---× iϕ–( )exp 


w wk=
,

w1–5
βγ
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---------- 

  1/5

e
i
ϕ 2πn+

5
--------------------–

, n 0 1 2 3 4,, , , ,= =
(30)

Here, the numerous increments and decrements
reflect the chosen form of the heat source and the fact
that the solution for surface profile dynamics in the
low-viscosity approximation is determined by a ther-
moelectrically induced solenoidal pressure source. It is
understood that the velocity field, which is not sought
here, would depend on the entire set of boundary con-
ditions.

An analysis of the expressions obtained shows that
at least one of the roots w1–7 ensures exponential growth
of a surface disturbance irrespective of the electrody-
namic delay ϕ, because the solution describes the case
of a strong inducing field.

To check the validity of the assumptions made
above, we set α = 105 cm–1, g = 104 cm–1, q =
1012 erg cm–2 s–1, λ = 107 erg(s cm2 K)–1, ρ = 5 g cm–3,
µ = 107 cm–1, H0 = 10–5 cm, a = 10–2 cm2 s–1, γ =
10−4 V K–1, ∂γ/∂t = 10–8 V K–2, and ν = 5 × 10–4 cm2 s–1.
In addition, we can assume that

(31)

(32)

(33)

Using these realistic numerical values of the param-
eters and estimates (31)–(33), one can show that the
low-viscosity approximation is valid and the convective
terms can be neglected. In the quasi-steady case of high
viscosity,

(34)

the solution is not expected to contain any exponen-
tially growing surface disturbance or velocity. This
conjecture is confirmed by straightforward calcula-
tions.

The solution obtained suggests that surface profile
dynamics are completely determined by the solenoidal
electric field in the bulk of the melt. Indeed, when an
additional electric field (say, generated by thermal elec-
tron emission) is considered on the melt surface, it is
taken into account only in boundary condition (16),
which is not used in calculating hc and hs. However, the
velocity field depends on surface charge as well.

w6 7, a
2
γ
--- ∂γ

∂T
------q

λ
--- α– 

 =

± 4
a

γ2
----- ∂γ

∂T
------ 

 
2q

2

λ 2
----- aα 2

– 2
aα
γ
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∂T
------q

λ
---– .

∆v g
2 v ,∼

v ∂ξ
∂t
------ ,∼

∂ξ
∂t
------ wk

2ξ .∼

ν ∆v  @ ∂v
∂t
------ ,
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ATOMS, SPECTRA, AND RADIATION
Ionization of Hydrogen Atom Induced 
by Relativistic Particles Collisions Accompanied 

by Low Momentum Transfer
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Abstract—Ionization of a hydrogen atom in soft collisions with a relativistic charged particle is considered for
the cases (a) Z ~ v, v0 ! v < c and (b) Z ! v, v0 ! v < c. Here, Z and v are, respectively, the charge and velocity
of the incident particle, v0 is the typical electron velocity in the ground state of the hydrogen atom, and c is the
velocity of light. Analytical expressions for the differential cross sections for the ionization of hydrogen atom
are analyzed. The asymmetry in the angular distribution of the emitted electrons is shown to result from the
following two effects: the atomic absorption of virtual quanta of the field related to relativistic particle and the
final-state interaction. © 2000 MAIK “Nauka/Interperiodica”.
Ionization of atoms in collisions with fast charged
particles (v @ v0, where v is the velocity of the incident
particle and v0 is the typical electron velocity in the
atom) is a fundamental physical problem. It is well
known that collisions accompanied by low momentum
transfer to atomic electrons (soft collisions) make domi-
nant contribution to the cross section for the single ion-
ization of an atom by a fast charged particle. In such col-
lisions, the electron velocity ve (in the rest frame of the
target atom) in the final state of the continuous spectrum
only slightly exceeds the typical velocity v0 of electrons
in the initial bound state, i.e., ve & v0. Simple estimations
demonstrate (see also below) that the relative contribu-
tion of soft collisions to the cross section must increase
considerably as an atom is being ionized by relativistic
and, especially, by ultrarelativistic charged particles.

The ionization of hydrogen atoms in collision with
nonrelativistic highly charged ions (HCIs) was studied
in [1], where analytical formulas for the cross section
for the ionization accompanied by the emission of slow
electrons were derived in the S-matrix formalism. In
this study, we extend the results obtained in [1] to the
case of relativistic collision velocities. Omitting the
details of calculation in this brief paper (the calculation
for nonrelativistic collisions was described in detail in
[1]), we represent the final expression for the double
differential (with respect to the emission angle and to
the electron energy E = k2/2) cross section for ioniza-
tion in the form1 

1 We use atomic units.

d2σ
dEdΩ
--------------- 28 Z2

v 2
------ 1

1 2E+( )5
-----------------------

4 2Earctan

2E
------------------------------– 

 exp

1 2π
2E

-----------– 
 exp–

------------------------------------------------=
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(1)

Here, γ = 1/ , Θ (0 ≤ Θ ≤ π) is the angle
between the electron momentum k and the particle
velocity v, dΩ = 2πsinΘdΘ, and

where bmin is the lower limit of the region of impact
parameters under consideration.

Expression (1) has a clear physical meaning. The
term proportional to Z2/v2 reflects the atom ionization
owing to electric dipole transitions in the first order of
the perturbation theory. This term of the cross section
can be obtained by using the Weizäcker–Williams
method, which treats the interaction of a relativistic
particle with an atom as the absorption of a virtual
quantum, which has some energy but does not transfer
any momentum, by an atomic electron (see, for exam-
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ple, [2]). The second term proportional to Z2/v3 appears
in the case when the momentum of the virtual photon is
taken into account. The third term proportional to
Z3/(v4γ2) corresponds to the final-state interaction.
Under the replacement Θ  π  Θ, the dipole part
does not change, whereas the second and the third
terms reverse their signs and, therefore, describe the
asymmetry in the angular distribution of slow elec-
trons. As follows from expression (1), ultrarelativistic
collisions lead to weak asymmetry that is primarily
related to the absorption of the momentum of a virtual
photon. In the approximation under consideration, both
terms in (1) providing the angular asymmetry do not
make a contribution to the energy differential cross sec-
tion and to the total cross section for the ionization.

Energy distribution of slow electrons is proportional
to the differential cross section for ionization as

(2)

As follows from expression (2), the probability of
ionization decreases rapidly with the energy of the
emitted electron and the majority of electrons have
energy that only slightly exceeds the value of E0 = 0.5.

To derive the angular distribution of slow electrons,
it is necessary to integrate cross section (1) over the
electron energies. Since the probability of electron
emission decreases rapidly with the energy E, the upper
integration limit can be taken to be infinity. We then
find

(3)
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where

(4)

As far as we know, there are no experimental data on
the ionization of hydrogen atoms in soft collisions with
fast high-charged ions. Figures 1 and 2 show, respec-
tively, the double differential and differential, with
respect to the angle of electron emission, cross sections
calculated in our approach as compared to those calcu-
lated in the first Born approximation. As seen from
these figures, there are two basic differences between
the results of calculations in these approximations.
First, the cross section values calculated in the first
Born approximation are, in general, considerably larger
than the results calculated by formulas (1) and (3). Sec-
ond, calculation by expressions (1) and (3) predicts
more pronounced angular asymmetry in the spectra of
slow electrons than follows from the calculation in the
first Born approximation. Both these differences tend to
increase with increasing charge of HCIs under fixed
collision velocity. These differences are caused by the
following reasons. First, it is well known that the prob-
ability of the ionization calculated in the first Born
approximation becomes large at small impact parame-
ters and can even exceed unity at large charge values of
the incident particle because this approximation is not
unitary. In our approach, this problem is solved by
properly choosing the parameter bmin [3]. Second, our
approach, in contrast to the first Born approximation,
takes into account the final-state interaction, which
results in an additional assymetry in the angular distri-
bution of emited electrons. With an increase of the inci-
dent particle energy per amu, the contribution from that
region of impact parameter increases, where the proba-
bility of the ionization is small and, therefore, the first
Born approximation is applicable [4]. In addition, the
contribution of the final-state interaction decreases in
this case. For this reason, the difference between results
calculated in our approach and in the first Born approx-
imation decreases with increasing energy of the inci-
dent particle under a fixed value of their charge.
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The angular asymmetry in the electron emission can
be specified by the asymmetry parameter

(5)

It follows from expressions (3)–(5) that

(6)

The angular asymmetry in the spectra of electrons
emitted in the collisions with fast charged particles was
discussed recently in depth (see, for example, [5, 6]).
This asymmetry is treated, as a rule, only as a result of
the final-state interaction when electrons emitted from
the atom are attracted by a fast charged particle. If the
final-state interaction were always the main reason for
angular asymmetry in the fast collisions, it would be
expected that the “sign” of this asymmetry must be
reversed in the case when the incident particle charge is
negative. Actually, according to the classical-trajectory
Monte Carlo calculations [5], it would be expected that
electrons must predominantly be emitted in directions
opposite to the velocity of the incident fast negative
HCIs. Unfortunately, these predictions cannot be veri-
fied experimentally. However, we note that such predic-
tions are in contradiction to experimental data on the
helium ionization by fast antiprotons, where weak
“positive” angular asymmetry is observed—that is, the
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Fig. 1. Doubly differential cross section for the ionization
calculated by formula (1) (solid lines) and in the first Born
approximation (dashed lines) as functions of the angle of
electron emission at the energy E = 0.18 (5 eV).
majority of electrons were emitted in the direction of
the fast particle motion [7].

Expression (4) yields the contribution ∆σi of soft
collisions to the total cross section for the ionization of
hydrogen atom in the form

(7)

Only the numerical factor in the logarithm argument
distinguishes this expression from the following
expression for the total cross section σi obtained in [4]
for collision parameters satisfying the conditions v ~
Z ! v2γ, 1 ! v < c:

(8)

The relation ∆σi ~ σi takes place for nonrelativistic
collisions, i.e., the collisions accompanied by the emis-
sion of slow electrons almost completely determine the
value of the total cross section for ionization.

It should be noted that the obtained energy distribu-
tion and total cross section coincide, under neglect of
nondipole corrections and the final-state interaction,
with the respective results obtained in the well-known
Weizäcker–Williams approximation of equivalent pho-
tons.

Expressions (1)–(3) and (7) describe three basic rel-
ativistic effects in an explicit form. In the limit γ @ 1,
with increasing γ, the number of emitted slow electrons
increases as lnγ, the effect of the final-state interaction
decreases as γ–2, and the emission of electrons increases
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Fig. 2. Angular differential cross section for ionization cal-
culated by formula (3) (solid lines) and in the first Born
approximation (dashed lines).
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along the direction Θ . π/2 transverse to the beam
velocity and decreases along the directions Θ = 0 and
Θ = π.

Expressions for the cross sections obtained above
can be employed also to the hypothetical case of colli-
sions with fast anti-HCIs, when the charge Z is negative
but large in magnitude, and to the case of collisions
with ions having comparatively small charge values
when |Z | ! v. To describe the collisions with fast anti-
HCIs, only the replacement Z  |Z | is needed in the
logarithm argument in expressions (1)–(3), (6)–(8). To
estimate the cross sections in the collisions at |Z | ! v,
it is necessary to put bmin = 1 in these expressions.

The qualitative effects discussed above for the ion-
ization of hydrogen atoms must obviously occur also
for the ionization in the soft collisions with other light
atomic targets, enabling us to predict some general
properties of the angular asymmetry in the single ion-
ization. According to the above analysis, the angular
asymmetry is described by two terms proportional to
Z2/v3 and Z2/(v4γ2) in the expressions for the cross sec-
tions. Therefore, in the relativistic (ultrarelativistic)
collisions when |Z |/vγ2 ! 1 and also in fast collisions
with particles having a relatively small charge value
(|Z | ! v), slow electrons must be predominantly emit-
ted in the direction of the motion of the fast particle
independently of its charge sign because the asymme-
try, in this case, is primarily related to the effect of the
absorption of a virtual photon whose value and direc-
tion are independent of the value and sign of the fast
particle charge. This fundamental conclusion agrees
with experimental data [7] on the ionization of helium
TECHNICAL PHYSICS      Vol. 45      No. 3      2000
by fast antiprotons (Z = –1, v = 6.35) for which
|Z |/v !1.

In conclusion, we note that the approach applied
here to the analysis of the ionization of hydrogen atoms
in soft collisions with relativistic charged particles is
actually asymptotic and provides logarithmic accuracy.
This accuracy increases with increasing dimensions of
the region of impact parameters |Z |/v < b < γv (for |Z | ~
v) and 1 < b < γv (for |Z | ! v). The approach proposed
allows one to obtain analytical expressions for the ion-
ization cross sections of hydrogen atoms and provides
qualitative interpretation of basic physical effects in the
single ionization of light atomic targets in soft colli-
sions with fast charged particles.
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Abstract—A model of interatomic potentials of interaction is suggested for static simulation of the processes
of elastic scattering of atomic particles by atoms of gas, plasma, and solid. In the developed model, the atomic
particle radii, whose magnitude depends on the energy of their relative motion, are internal parameters. The sug-
gested quasihard-sphere model enables one to simulate elastic processes of scattering of atomic particles, using
different interatomic potentials of interaction with relatively high rates of statistical simulation characteristic of
simulation within the hard-sphere model. The Born–Mayer potential is selected as the interatomic potential of
interaction and modified for a wide class of partners in atomic collisions. It is demonstrated that the suggested
mathematical model of quasihard spheres describes fairly correctly the processes of elastic scattering of atoms
in a gas medium and of displaced atoms in a solid with an almost constant rate of static simulation. © 2000
MAIK “Nauka/Interperiodica”.
INTRODUCTION

In order to perform numerical simulation of the pro-
cesses of interaction of atomic particles in a gas and in
a solid by the Monte Carlo method, one must determine
a number of basic stochastic variables which describe
adequately the processes of particle scattering. In
describing the processes of elastic interaction of atomic
particles, the main characteristic is provided by the
scattering angle which defines the energy loss and the
subsequent behavior of their motion. The scattering
angle relates to each other the impact parameter b, the
interatomic potential of interaction U(r), and the energy
of relative motion of particles Ec. Given a spherically
symmetric potential of interaction, the scattering angle
Θ in a center-of-mass-system is described by the
expression [1]

(1)

where r is the interatomic distance; Ec is the kinetic
energy of relative motion of atomic particles in the cen-
ter-of-mass system for r  ∞; and rmin is the shortest
distance within which the particles come closer
together, which is the root of the radicand in the denom-
inator.

Expression (1) in the analytical form may be inte-
grated only for the hard-sphere potential and for a num-
ber of power potentials and their linear combinations.
In describing the processes of elastic scattering of
atomic particles for more real interatomic potentials of
interaction, one restricts oneself to the use of various
approximate methods within both classical and quan-
tum-mechanical description [2, 3].
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The complexity of the computational procedure
during numerical simulation of the processes of particle
scattering by the Monte Carlo method is largely defined
by the choice of the interatomic potential of interaction.
In so doing, one must make a sound compromise
between the real physical description of the interaction
processes and relative simplicity of the computational
procedure during their mathematical simulation. The
use of the interatomic potential of hard spheres results
in a significant simplification of the calculation proce-
dure, first of all, during statistical simulation of the pro-
cess of elastic scattering of atomic particles in a gas and
in a solid. However, an important disadvantage of this
interaction potential is the absence of correlation
between the interaction cross section and the energy of
relative motion of colliding particles.

In the case of particle interaction in a gas medium in
the range of low energy values which do not exceed the
respective ionization potentials, the elastic-scattering
cross section is of the order of gas-kinetic and little
depends on the energy of colliding particles. In this
case, the classical hard-sphere scattering is a good
approximation; in this energy range, the particle scat-
tering (except for the case of small values of scattering
angles) is assumed to be spherically symmetric, and the
interaction between colliding particles is defined by
their outer electron shells and must be determined for
each pair of colliding particles. When the energy of rel-
ative motion of colliding particles increases, significant
scattering occurs under conditions of considerable
overlapping of their electron shells, and the interaction
potential is largely defined by the inner electrons whose
velocities are much higher than the collision rates of
atomic particles. The excitation of outer electrons
occurring in the process causes little variation in the
000 MAIK “Nauka/Interperiodica”
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scattering potential the effective range of whose action
corresponds to smaller interatomic distances.

In describing the interaction of atomic particles in a
solid, an empirical rule exists according to which the
collisions leading to an appreciable scatter occur at dis-
tances of the order of half the equilibrium distance
between neighboring atoms. In the case of such small
distances, one can ignore the long-range attractive
forces which define the bonding forces in solids. By the
order of magnitude, this range of distances corresponds
to the sizes of colliding atomic particles. Based on the
same principle is the method of determining, to a first
approximation, ionic and atomic radii [4]. Therefore, in
a fairly wide range of energies of colliding atomic par-
ticles, the classical hard-sphere scattering is a good
approximation from the practical standpoint.

In the hard-sphere model, the shortest distance
within which two colliding particles come closer
together, rmin, for any values of the impact parameter b
is always equal to the sum of radii of atomic particles
and does not depend on the energy of their relative
motion. This results in a considerable limitation, within
the hard-sphere model, of the possibility of static sim-
ulation in a wide range of energy of colliding particles.
Attempts were made previously [5–7] at describing the
process of elastic scattering of atomic particles using
the procedure of fitting the approximate potential of
interaction to the real one for some distance between
the atomic particles which makes the most contribution
to the particle scattering. However, almost all of the
derived approximate potentials of interaction are little
valid for high impact parameters which lead to overes-
timated values of transmitted energy under conditions
of elastic collision of atomic particles. The procedure
of simulation of the processes of elastic scattering of
atomic particles, suggested by us, restricts the range of
high impact parameters at thermal energies of atomic
particles by their gas-kinetic sizes. For high values of
the energy of collision of atomic particles, the range of
high impact parameters corresponds only to very small
values of scattering angles and transmitted energy and
plays no important part.

APPROXIMATION OF INTERATOMIC 
INTERACTION POTENTIAL

A combination of the simplicity of computational
procedure in using the hard-sphere potential with the
correctness of physical description of the processes of
interaction of atomic particles may be accomplished by
using the interatomic potential of quasihard spheres
(QHS). We will treat in more detail the form and proce-
dure of using the interatomic potential of interaction of
QHS. A number of test potentials applicable to atoms
of various elements and containing fitting parameters
may be used as real interatomic potentials of interac-
tion. Most convenient from the standpoint of mathe-
TECHNICAL PHYSICS      Vol. 45      No. 3      2000
matical application is the Born–Mayer interatomic
potential [8]

(2)

where Z1 and Z2 are ordinal (atomic) numbers of collid-
ing atomic particles, and AB – M and bB – M are constants
determined for each pair of colliding atomic particles.
This purely exponential interatomic potential of inter-
action enables one to analytically express the shortest
distance rmin within which two colliding atomic parti-
cles come closer together from the equation

(3)

where Ec is the energy of relative motion in the center-
of-mass system of two colliding atomic particles; the
solution of this latter equation has the form

(4)

and, in the case of central collision (b = 0), defines the
minimum distance between two atomic particles at the
point of stopping during infinite motion of the incident
particle. The use of other, more complex real inter-
atomic potentials, whose solution relative to rmin does
not permit an analytical solution for different values of
the collision energy, is possible; however, it compli-
cates the computational procedure of simulation and
renders it less flexible as regards the adaptation to vari-
ations of conditions of real physical experiment.

If the value of the shortest distance rmin within which
the atomic particles come closer together is identified
with the sum of the radii of hard spheres at the point of
contact (Fig. 1), one can use the hard-sphere model to
determine the microscopic cross section for elastic
scattering and the free path. In so doing, the sum of the
hard-sphere radii is a variable quantity and varies as a
function of the energy of relative motion of colliding
atomic particles; from this standpoint, colliding atomic
particles may be regarded as quasihard spheres.

The interatomic potential of quasihard spheres may
be determined in the form

(5)

where rmin(Ec) is the solution of equation (3) and, for
the Born–Mayer interatomic potential (2), is defined by
expression (4).

The criterion of validity of interatomic potential of
interaction of quasihard spheres Uqhs(r) may be formu-
lated as follows:

(6)

where  is the coordinate of intersection of the tan-
gent (derivative of the real interatomic potential of
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interaction) drawn from the point Uqhs(r) = Ec with the
axis of interatomic distance r (Fig. 1).

The use of the interatomic potential of interaction of
quasihard spheres Uqhs(r) will be correct in case condi-
tions (6) is valid or the equivalent relation depending on
the collision energy Ec,

(7)

If this criterion is generalized to the region of off-
center (b ≠ 0) collisions, it will take the form

(8)

If this criterion of interatomic potential of interac-
tion of quasihard spheres (7) is applied to the real
Born–Mayer interaction potential (2), we will derive
the range of validity of the respective of quasihard-
sphere interaction potential,

(9)

One can see from condition (9) that the potential of
interaction of quasihard spheres with the Born–Mayer
interatomic potential is well valid in the range of great
interatomic distances to which correspond both low
values of the collision energy and high values of the
impact parameter in a wide range of the collision
energy of atomic particles. For the exponential Born–
Mayer interaction potential (2), this is associated with
the fact that, as the interatomic distance r increases

(Fig. 1), the quantity ∆r =  – rhs increases slower
than the quantity rhs = rmin(Ec), and their correlation
ever better satisfies the criterion of validity (6) of the
quasihard-sphere interaction potential.
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Fig. 1. Quasihard-sphere approximation for the potential
UB – M(r) (central collision, b = 0).
In order to use the Born–Mayer interatomic poten-
tial in the quasihard-sphere model, we modified it using
the results of Abrahamson [9] for a wide class of colli-
sion partners with the ordinal numbers Z1, 2 = 2…80. In
so doing, the constants AB – M and bB – M in the Born–
Mayer interatomic potential (2) were represented as the
functions AB – M(Z1, Z2) and bB – M(Z1, Z2) and approxi-
mated using the results of [9, 10] with the power func-
tions by the method of least squares. The approxima-
tion results are given in Fig. 2. The obtained coeffi-
cients of the modified Born–Mayer interatomic
potential (2) have the form

(10)

The maximum relative error of approximation of the

coefficients (Z1, Z2) and (Z1, Z2), corre-
sponding to the collision of the lightest atomic parti-
cles, does not exceed 8% and, in the case of heavy
atomic particles, decreases to 3%. In so doing, the mod-
ified Born–Mayer interatomic potential of interaction
of atomic particles with the ordinal numbers Z1 and Z2
assumes the form

(11)

where  and r are in eV and Å, respectively.

The solution of equation (3) for this modified Born–
Mayer interatomic potential (11) has the form

(12)

The criterion of validity (7) of the potential of inter-
action of quasihard spheres with the derived modified
Born–Mayer potential (11) takes the form

(13)

Within the obtained quasihard-sphere model, the
microscopic cross section for elastic interaction of
atomic particles depends on the energy EC of their rel-
ative motion,

(14)

and, accordingly, the free path λqhs of atomic particles
in a gas medium or in a solid is

(15)
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where N is the concentration of atomic particles in a
scattering medium.

If, in statistical simulation, the ratio between b2 and

the quantity (Ec) is equated to a random number ξ,
the expression for the scattering angle ϑ  in the labora-
tory coordinate system assumes the form

(16)

In determining the impact parameter b in the form

(17)

we take into account the increase in the probability of
high (in absolute magnitude) values of the impact
parameter b, which is due to the fact that an incident
atomic particle arrives by chance at different points of
the area of the microscopic cross section for scattering.

Given in Fig. 3 by way of example are the results of
calculations of free path (15) of Cu atoms under condi-
tions of elastic scattering from Ar atoms, obtained
within the quasihard-sphere model with the modified
Born–Mayer interatomic potential (11) and normalized
to the respective value of free path in the hard-sphere
model, as a function of the energy of their relative
motion.

The calculation results indicate that the microscopic
cross section of elastic scattering of atomic particles
σqhs ~ 1/λqhs increases, as the energy of their relative
motion decreases, to reach the value of gas-kinetic
cross section at thermal collision energies. As the colli-
sion energy increases, the elastic scattering cross sec-
tion decreases to a value restricted by the criterion of
validity (7) of the quasihard-sphere model. The maxi-
mum collision energy corresponding to the limit of the
criterion of validity of the quasihard-sphere model (13)
using the modified Born–Mayer interatomic potential
(11), under conditions of elastic scattering of Cu atoms
from Ar atoms is restricted to ~5 keV. This energy range
of interaction of atomic particles is of interest from the
standpoint of numerous applied problems of the phys-
ics of plasma, gas discharge, and solid.

DISCUSSION

Previous attempts have been made [11–14] to intro-
duce into the hard-sphere model the dependence of the
interaction cross section on the energy of colliding par-
ticles. However, as is seen in Fig. 3 (curve 3), the most
rigorous energy dependence of the elastic-scattering
cross section, proposed in [13], which includes the
Maxwellian velocity distribution of gas atoms, is little
valid in the entire range of energy of colliding particles
and reaches the value of gas-kinetic interaction cross
section at high energies of colliding particles, which is
incorrect.

rmin
2

ϑ 2 ξ 1 ξ–( )[ ] 1/2
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--------------------------------------.arctan=

b rmin Ec( )ξ1/2
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The application of more real interatomic potentials
of interaction results in the necessity of using mathe-
matical procedures which introduce some determinism
into the random process of scattering. For example, the
use in [14] of the scattering “6–12” Lennard–Jones
potential by the procedure of linearization of the scat-
tering angle Θ in the center-of-mass from the impact
parameter b enabled one to estimate the maximum
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interaction cross section from the condition Θ = 0 at
b = bmax. However, the linear approximation in this case
implies that the scattering angle Θ is estimated with
inadequate accuracy with the value of the impact
parameter b close to maximum. This results in a consid-
erable underestimation of the contribution of scattering
in the case of glancing collision and, accordingly, the
value of the interaction cross section.

In order to check the degree of the fit of the quasi-
hard-sphere model to the description of processes of
elastic scattering of atomic particles involving the use
of real interatomic potentials, the results of simulation
of processes of transport of atomic particles in a gas
were compared to those in a solid. The real interatomic
potential of interaction was provided by the modified
Firsov potential [15],

(18)

where af = 0.8853a0/(  + )2/3 is Firsov’s screen-
ing parameter (a0 is the Bohr radius) with Nikulin’s
screening function [16] obtained by approximate solu-
tion of the Thomas–Fermi equation using the variation
principle,

(19)

where a = 0.7111, b = 0.2889, α = 0.175, and β =
1.6625.

In order to perform numerical integration in expres-
sion (1) when determining the scattering angle Θ with
interaction potential (18), we developed a mathemati-
cal procedure according to which the integration inter-
val [rmin, ∞] in expression (1) is divided into three
regions.

In the first region rmin < r < (rmin + δ), the integrand
in the denominator of expression (1) f(r) = 1 – U(r)/Ec –
b2/r2 is expanded by its Taylor series expansion,

(20)

The relative error of these transformations is esti-
mated at

At δ = 0.01 (r = rmin + 0.01), the value of ∆ does not
exceed ~10-4.

The upper limit Q of the second region (rmin + δ) ≤
r ≤ Q. This is the value of r at which the second term
U(r)/Ec of the function f(r) becomes small and, in what
follows, may be ignored. We took U(r)/Ec < 10–6 as the
smallness criterion.
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, the integral in expres-
sion (1) has an analytical solution in the form

(21)

It is almost impossible to perform numerical inte-
gration in expression (1) directly in the process of sim-
ulation, because this extends considerably the time of
static simulation. Therefore, the values of scattering
angles 
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), calculated for concrete collision part-
ners, was used in static simulation to determine the
value of the scattering angle 
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 in each collision event.
In order to compare the results of statistical simula-

tions involving the interatomic quasihard-sphere poten-
tial (5), the modified Born–Mayer interaction potential
(11), and the real potential of interaction (18), the pro-
cesses of transport of Cu, Y, and Ba atoms in a medium
of Ar and O

 

2

 

 were calculated.

An analysis of results of statistical simulation
reveals that both models agree in the low-energy region
and differ slightly when the collision energy increases.
This may be due to the fact that modified Firsov’s
potential (18) with Nikulin’s screening function (19) in
the case of in the case of large internuclear distances
decreases slower than the true interaction potential.
Moreover, the modified Born–Mayer interaction poten-
tial (11), employed by us in the quasihard-sphere
model, is more valid in the case of large internuclear
distances which are characterized by interactions
between the outer electron shells of colliding atomic
particles. The quasihard-sphere model with modified
Born–Mayer interaction potential adapts itself better to
various combinations of collision partners, because it
contains parameters characteristic of concrete pairs of
colliding atomic particles.

It is almost impossible to derive the universal inter-
atomic potential of interaction in an analytical form,
which could be used in application to a wide class of
problems in statistical simulation: even in describing
the processes of scattering of particles in a gas medium
due to the differences in the electron structure of collid-
ing atoms the real interatomic potential of interaction is
not monotonic, and oscillations due to the shell struc-
ture of colliding atoms must show up in elastic-scatter-
ing cross sections. In addition, the assumptions made in

r/r
2

d

1 U r( )/Ec– b
2
/r

2
–[ ]

1/2
-------------------------------------------------------

Q

∞

∫ 1
b
--- b

Q
---- 

  .arcsin=
TECHNICAL PHYSICS      Vol. 45      No. 3      2000



QUASIHARD-SPHERE MODEL IN SIMULATION 303
deriving almost all of the known interatomic potentials
of interaction used to describe the processes of scatter-
ing of particles in a solid were obtained within the sta-
tistical theory of scattering and based on the principles
of binarity and independence of collisions characteris-
tic of a gas medium, which is incorrect.

Within the obtained quasihard-sphere model (5)
using the modified Born–Mayer interatomic potential
(11), calculations were performed of the transport coef-
ficients of atoms in a gas medium at different values of
gas pressure up to pressures at which the diffusion
motion of atoms being scattered is predominating. Also
calculated were the values of ion sputtering in describ-
ing the processes of displacement of atoms in a solid
and their motion toward the surface. The calculation
results obtained for a wide class of collision partners
have demonstrated that the suggested model of quasi-
hard-sphere model using the modified Born–Mayer
interatomic potential enables one to fairly correctly
simulate the processes of elastic scattering of atomic
particles at high rates of statistical simulation.
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Abstract—An investigation is performed on the electric strength of accelerating gaps of plasma sources of
electrons and ions in the presence of beam plasma behind the accelerating electrode. For the bipolar mode,
when the gas ionization in the accelerating gas may be ignored, the conditions of bridging the gap of plasma
discharge of a source with beam plasma and of disruption of emission current are found. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Electron and ion beams generated from plasma
sources are transported in a residual gas medium. The
leakage of gas into the accelerating gap and drift space
of the beam occurs from the source proper. In the case
of formation of high-current beams of charged particles
in focusing devices with magnetooptics and of trans-
port through long distances, use is made of forced
bleeding-in of gas for the purpose of reducing the effect
of space charge on the dynamics of fast particles. Under
these conditions, a plasma is formed behind the accel-
erating electrode as a result of ionization by a beam of
gas atoms, this plasma compensating for the space
charge of accelerated particles. The plasma density
may exceed considerably that of the beam particles.
Charged particles of the sign opposite to that of the
beam from the plasma source are extracted from the
beam plasma into the accelerating gap.

The electric breakdown of accelerating gap restricts
the extreme conditions of operation of plasma sources.
The breakdown conditions are defined by the properties
of plasma in the source and behind the accelerating
electrode, as well as by the characteristics of the gap
proper. In its turn, the gap length depends on the prop-
erties of the beam plasma and plasma of the source.

The ignition of a semi-self-maintained discharge in
the accelerating gap of an electron source with a glow-
ing cathode is treated in [1–3]. The conditions of break-
down of the gap have been found which take into
account the gas ionization by electron beam and partial
compensation of a space charge of the beam by ions
from the plasma behind the accelerating electrode.

The major difference in plasma emitters from ther-
mionic guns consists in that no restriction of current by
the space charge is possible during extraction of elec-
trons or ions from the plasma. The current flowing in
the accelerating gap is a saturation current and is
defined by the density and temperature of the source
plasma. A variation of these parameters under condi-
1063-7842/00/4503- $20.00 © 20304
tions of constant accelerating voltage leads to a dis-
placement of the emitting plasma surface resulting in
the recovery of zero intensity of electric field on this
surface. Kreœndel’ and Nikitinskiœ [4] investigated the
condition of electric breakdown of the accelerating gap
during extraction of electrons from the plasma surface,
when their space charge was partly compensated as a
result of gas ionization in the gap. However, the derived
equation describing the condition of discharge ignition
has no solution for the case of the emissivity of the
source plasma exceeding the transmissivity of the gap.
Note that no references to the results of this latter study
are made in the later monograph [5].

The inverse electron current coming from a beam
plasma exceeds considerably the current from an ion
source and causes an increases release of power on the
plasma electrode. Therefore, first the accelerating and
then the decelerating electrodes are used to shape an
ion beam; in so doing, the electrons from the beam
plasma cannot get into the source. The inverse electron
current from the beam plasma to the source may be
reduced with the aid of transverse magnetic field in the
accelerating gap. In an ion source [6] with closed elec-
tron drift, when the Larmor electron radius is equal to
the gap length, the compensation of space charge and a
considerable increase of the ion beam current are pro-
vided. However, the transverse magnetic field distorts
the trajectories of accelerated ions. In shaping precision
ion beams, the need arises for compensating their space
charge with the aid of inverse electron current in the
absence of external magnetic field. This helps reduce
the effect of space charge on the dynamics of the ion
beam and minimize the nonlinear distortions of its
phase characteristics.

This paper deals with the investigation of the elec-
tric strength of the accelerating gap of plasma sources
of electrons and ions with a high emissivity in the pres-
ence of beam plasma behind the accelerating electrode
and at a low gas pressure, when the motion of charged
000 MAIK “Nauka/Interperiodica”
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particles in the gap occurs under conditions of free
flight. We will demonstrate that, with this formulation
of the problem, it is the extent of the space charge layer
between the source plasma and beam plasma, which is
the determining criterion of strength rather than the
ionization process.

PLASMA SOURCE OF ELECTRONS

We will treat a junction-type plasma diode consist-
ing of an electron-emitting plasma surface, an acceler-
ating gap of length xA between the emitting surface and
electrode at potential ϕA, and a beam plasma surface
coinciding or not coinciding with the electrode surface.
An electron current of density je and an inverse electron
current of density ji flow in the space charge layer
between two plasma surfaces.

We will assume that the electrons and ions in the
layer move in the free flight mode, and the gas ioniza-
tion is performed by primary electrons alone. In this
case, Poisson’s equation has the form [3]

(1)

where y = ϕ/ϕA, ϕ is the electric field potential, z = x/xA,
x is the coordinate along the direction of electron emis-

sion, αe = (ji/je)(mi /me)1/2, ηe1 = ngCxAσ0(mi/me)1/2;  =
σ0(I/ϕAy)(1 – I/ϕAy), σ0 is the maximum cross section of
electronic ionization of gas, I is the ionization potential,
ngC is the gas density in the layer, ξ(z) = z at z ⊂  [z(I/ϕ),
1] and ξ(z) = z(I/ϕ) at z ⊂  [0, z(I/ϕ)], je0 =
ene0(kTeS/2πme)1/2 is the density of thermal current from
the plasma source, and ne0 and TeS respectively denote
the electron density and temperature.

The electron current flowing in the accelerating gap

is a saturation current, je0 = (2e/me)1/2( /9π ), and
the parameter xA defines the extent of the layer of space
charge between the steady-state plasma boundary of
the source with coordinate x = 0 and the accelerating
electrode in the absence of gas ionization and ion cur-
rent from the beam plasma.

We will find the distribution of the electric field in
the layer by integrating (1) in view of nonzero bound-
ary condition on the plasma emitter, (dy/dz)z = 0 = 0,

(2)
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Equation (2) is derived ignoring the electron-beam
ionization of gas,

(3)

Here, use is made of the estimation of integrals in equa-
tion (1), made in [1], maxΦ(y = ϕ/I) ≤ 1, and the
replacement of variable by y = ϕ/ϕA, as well as of the
first approximation for the field dy/dz ≈
(4/3)(je/je0)1/2y1/4 in the region of the main contribution
to the integral (y ! 1) at αe ! (ϕA/I)1/2.

The coefficient αe is defined by the conditions of the
generation of plasma by a beam behind the accelerating
electrode. In view of the fact that a thermal ion current
is delivered from this plasma into the layer, we have the
following expression for αe:

(4)

where neA is the density of beam electrons behind the
accelerating electrode, TeA is the electron temperature,
and niA is the density of beam plasma ions.

We assume that all ions of beam plasma moving
towards the boundary go into the layer, i.e., the current
is always a saturation current. In order to determine the
degree of excess of the density of plasma over that of
electron beam, we use the results of [7],

(5)

where (ϕA) is the absolute value of the cross section
of electronic ionization of gas at ϕ = ϕA, ngA is the den-
sity of gas behind the electrode, rb is the beam radius,
RA is the casing radius, vs = (kTeA/mi)1/2 is the ion sound
velocity with which the ions move from the plasma to
the chamber wall, TiA is the ion temperature, νi0 =
(32σex/31/2)ngA(kTiA/mi)1/2 is the collision frequency of
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plasma ions with gas atoms during resonance exchange
of charge [8], and σex is the cross section of resonance
exchange of charge.

In deriving expression (5), it was assumed that the
plasma formed by the beam moved in a radial direction
in the mode of ambipolar diffusion and was lost on the
casing walls. If the beam drift length L @ RA, the ambi-
polar electric field and the inhomogeneity of plasma
along the beam may be ignored.

An analysis of the electric field distribution (2) as a
function of the variable y reveals (see figure) that, at a
low gas pressure (αe < 1), the field at the boundary of
accelerating electrode is other than zero, and the beam
plasma boundary shifts behind the electrode. As the gas
pressure increases, at αe = 1, the plasma boundary coin-
cides with the electrode surface and, at αe > 1, the field
goes to zero inside the accelerating gap at the point y1e =

4 /(1 + ). In the latter case, a potential well
emerges for ions leaving the beam plasma. This well is
filled until it goes to zero accurate within the field in the
plasma. As a result, the region between y1e and y = 1 is
filled with plasma. The motion of the beam plasma
boundary deep into the accelerating gap with an
increase of the gas pressure was observed experimen-
tally [9].

The potential distribution over the charged layer
length is determined by integrating (2),

(6)

where z0 is the coordinate of the source plasma bound-
ary.

The integral F(y) appearing on (6) is reduced to an
elliptic integral [5] by change of variables, i.e., it is a
tabulated function, or is calculated numerically.

The position of the emitting surface in the source is
related to the emissivity of plasma proper. An increase
in the emissivity of the source plasma occurs owing to
the ion current coming to the plasma from the acceler-
ating gap. The ions entering the plasma cause a local
increase in the positive charge density; this leads, on
conditions of continued quasineutrality of the plasma,
to a respective increase in the electron density and, con-
sequently, to an increase of the electron emission cur-
rent. In the absence of inverse ion current, the source
plasma boundary takes the initial position (z0 = 0 at
y = 0). Under conditions of a high emission current, the
source plasma boundary shifts deeper into the acceler-
ating gap. This inference was verified experimentally in
[5, 10]. The charged layer length in this case, according
to (6), is defined by the expression
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where z1 is the coordinate of the beam plasma bound-
ary, y1e is the potential at this boundary, and the integral
F(y1e) is defined in (6).

We will determine the emissivity of the source
plasma analogously [5]. The charge exchange is the
main process of interaction between ions and the
source plasma at a high gas pressure. A significant part
of ions are subjected to resonance exchange of charge
on neutral gas atoms in the vicinity of the boundary of
current takeoff of electrons and, due to diffusion, leave
this region. The ion beam introduces substantial longi-
tudinal nonuniformity compared with radial nonunifor-
mity in the case of ambipolar diffusion of plasma
across the beam. The equation of one-dimensional dif-
fusion of ions after charge exchange in view of the bal-
ance equation for ion beam particles has the form

where z ≤ 0, DA(dni/dz) = 0 at z = 0, ni = ni0 at ji = 0,
DA = 2TeS/miνi0, the frequency of resonance exchange
of charge νi0 is defined in (5), and the cross section of
resonance exchange of charge σex may be assumed con-
stant and the same for primary and secondary ions until
the energy of 30 keV. Double integration of equation
(8) gives the increment of the electron density on the
plasma boundary (z = 0) at ni(z) = ne(z) and ni0 = ne0.

The electron density of emission current from the
source plasma may be represented as

(9)

where γe = (kTeS/2πme)1/2(DAngSσex)–1 =

(16k/ )(TiSmi/2TeSme)1/2 is the coefficient of ion-
electron emission of plasma; TiS is the ion temperature

in the source, TeS @ TiS; ji = αeje(me/mi)1/2;  is the
vacuum component of the current density in the accel-
erating gap of length z1 prior to variation of the position
of the source plasma boundary. The total current in the
charged layer is made up of the vacuum component and
the current associated with the compensation of the
space charge of the electron beam. Assuming that the
behavior of potential distribution in the layer in the
presence of inverse ion current does not vary [4], the
vacuum component of the current density may be rep-
resented as

(10)

where je0 is the vacuum density in a gap of length z = 1.

A simultaneous solution of equations (7), (9), and
(10) gives the condition
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at which the bridging of the gap of plasma discharge of
a source with beam plasma occurs (z1 = z0), as well as
the disruption of electron current in the accelerating
gap. Note that the condition of breakdown of the gap
(11) is associated both with the critical density of gas in
the gap and with the density of gas in the source and in
the channel of free drift of the electron beam behind the
accelerating gap. The gas pressure in the source may
differ from that in the accelerating gap by two or more
orders of magnitudes.

PLASMA SOURCE OF IONS

When the potential ϕA across the accelerating gap is
replaced by –ϕA, a plasma source of electrons becomes
an ion source. We will treat ion sources in which no
provision is made for the restriction of the inverse elec-
tron current of high density je/ji > (mi/me)1/2 delivered
from the beam plasma behind the accelerating elec-
trode.

Poisson’s equation for space charge in the accelerat-
ing gap of an ion source in view of electron emission
from the surface of beam plasma has a form analogous
to that of (1),

(12)

where αi = (je/ji)(me/mi)1/2; ηe2 = ngCxAσ0(me/mi)1/2; ji0 =

0.4eni0(2kTeS/mi)1/2 = (2e/mi)1/2( /9π );  =

σ0(I/ϕA)(y1i – y)–1[1 – I/ϕA(y1i – y)–1], and y1i = 4 /(1 +

)2.

The electric field distribution in the layer is defined
by an expression analogous to (2). The condition of
ignoring the electron-beam ionization of gas in this
case assumes the form

(13)

Here, use is made of the same approximation as in
deriving inequality (3); in so doing, in the region of
maximum ionization of gas at y = y1i – I/ϕA, the electric
field is of the order of dy/dz ≈ (2/3)α1/2(ji/ji0)1/2(y1i –
y)1/2.

The main contribution to the integral entering (12)
is made by the region ρ = I/ϕA, where ρ = y1i – y is a new
variable. In inequality (3), expression (7) is used for the
gain of electron current density. A similar expression
for the gain of ion current density enters (13).
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For transporting an accelerated ion beam without
substantial loss of particles, one must select the opti-
mum drift length and gas density behind the accelerat-
ing electrode LσexngA ! 1, where L is the transporting
length. Under conditions of reduced gas pressure, the
plasma behind the accelerating electrode is generated
only as a result of fast-ion ionization of neutral atoms.
The coefficient αi is determined analogously to (4): αi =
(kTeA/4πeϕA)1/2βi, where βi is the ratio of the ion beam
density at the outlet from the accelerating gap to the
electron density in the beam plasma. The quantity βi is
defined by an expression similar to (5), in which the

electron ionization cross section (ϕA) must be
replaced by the respective cross section for ions

(ϕA), and me must be replaced by mi. The cross sec-
tion of ionization by singly charged ions in a first
approximation is the same as in the case of electrons
with the same velocity of particles. In electron and ion
plasma sources with the same accelerating potential,

ae ≈ ai, because /  = (me/mi)1/2.

A local increase of the plasma density in the vicinity
of the emitting surface of an ion source is due to the
ionization of gas in the source chamber by inverse elec-
tron current. The ion density of current from the plasma
source will be defined by the expression  = ji0 + γi je,
where γi is the coefficient of electron-ion emission of
plasma. We use the derivation of expression (5) to

derive γi = [ (ϕA)ngS νi0/4 ]ln(RS/rb), where RS is
the radius of the source chamber.

The conditions of bridging the gap of plasma dis-
charge in an ion source with beam plasma (z1 = z0) may
be written analogously to (11),

(14)

CONCLUSION

The ignition of a discharge as a result of ionization
of gas in the accelerating gap of a diode occurs if the
gas density exceeds the critical value [1, 3],

In case conditions (3) and (13) are valid, as well as
the condition of the mode of passing ions and of the
absence of their charge exchange in gas ngC ! (xAσex)–1,
the processes of formation of secondary particles in the
accelerating gap may be ignored. A comparison of (3)
and (13) demonstrates that the condition of ignoring
ionization in the gap in the case of a plasma source of
ions is less rigid than in the case of an electron source.

As the gas pressure decreases, the electric strength
of the gap must increase. However, in the bipolar mode
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as well, when the gas ionization may be ignored, the
electric strength of the accelerating gap remains low
because of the possibility of bridging the gap of plasma
discharge of a source with beam plasma behind the
accelerating gap. A comparison of formulas (11) and
(14) reveals that, as the pressure in the gas-discharge
chamber increases (at γi > γeme/mi), such a breakdown
in the case of an ion source occurs at a lower pressure
of gas in the accelerating gap than in the case of an elec-
tron source.

Note an important fact distinguishing the operation
of a plasma emitter from that of a thermal emitter. In
plasma sources of charged particles with an increased
emissivity, when the gas pressure in the accelerating
gap increases, the bridging of the gap of plasma dis-
charge of a source with beam plasma may occur before
the discharge ignition as a result of ionization of gas.
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Abstract—A 15–30% enhancement of steel resource upon low-cycle fatigue tests is achieved by steel treat-
ment with power electric current pulses at the instant when a sharp decrease in the ultrasound velocity occurs.
Possible mechanisms of the effect are discussed. © 2000 MAIK “Nauka/Interperiodica”.
The most common type of loading structures, mech-
anisms, and machines during their exploitation is cyclic
(alternating or more complex) loading in which fatigue
phenomena are developed. This type of loading is char-
acteristic of aviation and rocket engineering, various
types of engines, transport, and other engineering
branches. A sudden (in most cases) occurrence of the
final stage of fatigue failure may lead to hardly pre-
dicted severe (catastrophic) consequences.

The problem of the fatigue failure of metals and
alloys, in spite of its long history, remains topical.
A vast body of experimental material accumulated to
date emphasizes its complex nature rather than indi-
cates ways to solve it. Numerous unclarities exist in
both the explanation of the nature of damage upon
fatigue loading and the diagnostics of fatigue. Recent
works indicate the complex nature of the fatigue phe-
nomenon related to self-organization, accumulation,
and interaction of lattice defects during fatigue loading
[1, 2].

In this work, the following purposes were set: based
on a simple and reliable method (applicable for individ-
ual articles) of determining the stage at which low-
cycle fatigue fracture is developed [3, 4], to suggest a
technique of restoring article’s resource with the help
of a special-type treatment and apply it to a wide class
of important structural materials; for enhancing under-
standing of the results obtained, to perform a metallo-
graphic examination of the problem of fatigue loading
and reveal factors that ensure restoration of article’s
resource upon such treatment.

Low-cycle tests were performed by zero-to-bend-
stress cycling on samples made of structural steels 40
and 40Kh, rail steel M76 (70KhGSA), stainless steel
Kh18N10T, and a weld-joined composite consisting of
high-speed steel R6M5 and steel 40Kh. In parallel with
fatigue tests, the ultrasound velocity (USV) was mea-
sured using an ISP-12 structural transformation meter
to an accuracy of 10–4. The device works on a carrier
frequency of 2.5 MHz and generates surface (Raleigh)
elastic waves propagating at a velocity of VR.
1063-7842/00/4503- $20.00 © 20309
Experiments performed showed that the USV con-
tinuously decreases during fatigue tests and the depen-
dence of the USV on the number of loading cycles has
a three-stage nature.

Metallographic investigations of the material struc-
ture at various stages of the ∆V/VR(N) curve revealed
the following: (1) at the first and second stages of the
decrease in the USV upon fatigue tests, no marked
changes discernible in an optical microscope are
revealed in the material structure; (2) at the beginning
of the final stage, fatigue cracks are formed, which
reach 0.015 mm in length and later serve as fracture
sites; and (3) a one-to-one link exists between the crack
initiation and the beginning of the falloff of the USV.

Thus, we may think that the sharp falloff of the USV
during fatigue tests is related to the appearance of
fatigue cracks and indicates the approach of the final
stage of the process, i.e., the transition to brittle rupture
and the failure of the sample or the article. This sign is
informative for an individual sample and cautions
against the beginning of failure to a certain degree of
accuracy. The results obtained may be considered as the
suggestion and substantiation of a new informative sign
of fatigue failure of steels [5, 6].

Since measurements of the USV permit us to rather
accurately predict the approach of a critical stage of
failure, it is possible to prevent failure by timely using
some restoring action on the material loaded. As a suit-
able action of this kind, treatment with electric current
unipolar pulses of amplitude to 250 MA/m2 and dura-
tion 100 ms can be used. It is known from numerous
previous investigations (see, e.g., [7]) that such treat-
ment leads to a marked plasticization of steels and
alloys.

The experimental scheme was as follows. Samples
after the transition to the final stage of a fatigue test
were subjected to a series of electric pulses, after which
the fatigue testing and USV measurements were con-
tinued. As a result of such treatment, the USV increased
to the initial value and the number of cycles to failure
increased as the tests were continued.
000 MAIK “Nauka/Interperiodica”
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After reaching the critical state, the untreated sam-
ples withstood, as a rule, no more than 1000 cycles
before they failed; after treating with electric pulses,
they were able to withstand 2500–3000 cycles. Thus,
an essential increase in the resource of the samples is
observed (Table 1).

Microscopic investigations show that after treat-
ment with current pulses dramatic changes occur in the
structure of metal. Greatest changes are observed in the
state of fatigue microcracks that had arisen at the begin-
ning of the final stage of the process. A new structural
component appears in these cracks, whose microstruc-
ture cannot be resolved by optical or scanning electron
microscopy. As a rule, this component is located on that
side of the crack that faces the plus sign of the pulse
generator. However, cases were observed where the
entire volume of the crack was filled by this structural
component. This component represents a “white layer,”
whose appearance was repeatedly noted previously in
cases where the concentrated supply of external energy
was used, e.g., upon friction or laser or plasma treat-
ment. The development of the “white layer” was traced
on specially “labeled” (using microindentation) fatigue
cracks. In addition, a series of model experiments were
performed using surface quenching cracks that arose
upon water quenching of M76 rail steel samples. In this
case, the microcracks of the length to 0.15 mm also
were filled with “white layer” after treatment with elec-
tric current pulses [5]. Microhardness data (3000 MPa
for the grade 40 steel and 10000 MPa for the M76 steel)
suggest that the white layer consists of finely dispersed
products of martensite decomposition. Electron micro-
probe analysis of grade 40 steel samples performed on

Table 1.  Enhancement of steel resource by electrostimulation

Steel grade Resource 
enhancement, %

40 35.7

40Kh (heat-treated) 20.1–20.9

M76 (70KhGSA) 26.3–29.3

Kh18N10T 22.9–24.3

Weld-joined 40Kh + R6M5 composite 13.4–15.2

 
Table 2.  Variation of characteristics of the structural state of
grade 40 steel after electrical treatment

State prior to 
treatment

State after 
treatment

Cycles to failure N 2800 3800

(2000 + 800) (2000 + 1800)

σ1, MPa (body stresses) 296 235

σ11, MPa (body stresses) 506 253

D, nm 333 196

Note: D is the size of coherent domains. 
a scanning electron microscope with a JSM-T200
microanalyzer (JEOL) indicates an enhanced content
of some alloying elements (Mn, Si) in the white layer
as compared to the matrix. The development of the
white layer is thought to occur as follows. It is known
that electric field lines are concentrated near the crack
tips; this increases heat liberation, which can result in
local melting in those sites during each current pulse.
After the current is stopped, cooling of these regions
occurs because of the rapid heat exchange with the
solid material that surrounds the molten zone. The
solidification front moving toward the microcrack
rejects impurities that lower the melting temperature of
iron toward the crack; as a result, the volumes to be
solidified last, which lead to the formation of the white
layer, prove to be enriched in these impurities. Upon
further cooling, disperse products of austenite transfor-
mation with the above hardness appear. This effect
leads to the lowering of the level of stress concentration
near crack tips and, thus, retards the development of
failure. In general, there occurs a lowering in the level
of internal stresses of the first and second kinds (body
and textural stresses) in the steel matrix deformed in
fatigue tests, as well as in a decrease in the size of
coherent domain revealed by X-ray diffraction scatter-
ing (Table 2).

Note a very large decrease in the textural stresses
and the coherent domain size. Both these characteris-
tics are related to the properties of the dislocation struc-
ture, and their behavior after current pulse treatment
indicates the leveling off of the dislocation density over
the bulk of metal, which, naturally, decreases the prob-
ability for cracks to nucleate. All these data indicate the
facilitation of the course of relaxation processes during
treatment with electric pulses [5–7].

The above regularities permitted us to suggest a
method for restoring the fatigue resource applicable to
critical steel details of machines and mechanisms. Such
treatment can be performed, e.g., during technical ser-
vicing or repairing of equipment. To this end, data on
the initial USV should be introduced preliminarily into
the article certificate.

We traced the relation between the three-stage curve
of the dependence of the USV on the number of loading
cycles and the U-shaped curve of the intensity of break-
downs well-known in the theory of reliability [8]. We
revealed that the three stages of the falloff of the USV
correspond to the occurrence of three types of failure:
premature failure due to bedding-in (first stage), ran-
dom breakdowns (second stage), and wear-out failure
(third stage). This explains the fundamental difference
between the traditional methods of determining steel
resource, based on a statistical analysis of testing data
obtained on many samples, and the method suggested
above, which permits one to determine the approach of
a critical stage on individual samples or articles. This is
important for the case of costly details of critical facil-
ities, for which the accumulation of statistical data
TECHNICAL PHYSICS      Vol. 45      No. 3      2000
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obtained in special tests is difficult. The transition to
measuring and analyzing fatigue characteristics of indi-
vidual items can result in an essential cheapening of
control procedures and the enhancement of the reliabil-
ity of engineering and technology [8].
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Abstract—Some properties of the aqueous solutions of polymer–fullerene complexes were studied. The exper-
imental data suggest that fullerenes are capable of strong intermolecular interactions. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The properties and functionality of fullerenes have
been studied in sufficient detail, and now there is
increasing interest in the biological activity of fullerene
(C60) and its derivatives [1–5]. Unfortunately, the bio-
logical applications of fullerene are hindered by the fact
that this compound is insoluble in water. A possible
way to solving this problem is related to the formation
of complexes between hydrophilic polymers and
fullerene, which allows aqueous solutions of C60 to be
obtained where the structure of fullerene molecules
remains intact. However, C60 covalently bonded to a
water-soluble polymer (starlike configuration) exhibits
a significant decrease in biological activity [6–8].
Another necessary prerequisite for biological applica-
tions of fullerene–polymer complexes is the establish-
ing of criteria for monitoring the composition and sta-
bility of these complexes. This task is inseparable from
the general fundamental problem of determining the
structure of fullerene-containing polymers in aqueous
solutions. No clear notions of this structure has been
yet formulated.

Below we report on the results of investigation into
the properties of dilute aqueous solutions of poly(vinyl
pyrrolidone)-fullerene (PVP–C60) complexes and the
base polymer (PVP) by methods of Rayleigh light scat-
tering, translational diffusion, viscometry, and UV
spectroscopy.

EXPERIMENTAL

The PVP–C60 complexes were prepared from PVP
with M = 35000 ± 10% using a modification of the
method described in [9]. In particular, we used a ben-
zene solution of C60 (instead of the toluene solution)
which allowed the complex to be purified under com-
paratively mild conditions. We have synthesized the
PVP–C60 complexes with various relative contents of
fullerene (0.31–0.81%). The content of C60 in a com-
1063-7842/00/4503- $20.00 © 20312
plex was determined spectrophotometrically: the opti-
cal densities of fullerene- containing solutions with a
C60 concentration from 0.31 to 0.81% obey the Lam-
bert–Beer law. We failed to obtain the PVP–C60 com-
plexes with a C60 content exceeding 0.81%.

In order to elucidate the structure of the fullerene-
containing polymer in aqueous solution, we have com-
pared solutions of the base polymer (PVP with M =
104 ± 10%) and a PVP–C60 complex with the compo-
nent ratio 99.2:0.8. When the initial concentration
of this complex in solution is ~3 × 10–3 g/cm2, the con-
tent of C60 in the same solution does not exceed ~3 ×
10–5 g/cm3.

RESULTS AND DISCUSSION

Figure 1 (curve 1) shows the plot of (cH/I)90 versus
PVP concentration c (H is the optical constant and I is
the light scattering intensity increment). As seen, the
cH/I ratio monotonically increases with the PVP con-
centration. Extrapolated value of the molecular mass
Mw = 1.1 × 104 agrees with the value obtained from
analysis of the sedimentation-diffusion data (Msd =
1.0 × 104).

The concentration dependence of the inverse inten-
sity of scattering for solutions of the PVP–C60 complex
(Fig. 1, curve 2) exhibits an anomalous character com-
prising two different parts. In the region of c > c* =
1.4 × 10–3 g/cm3, the I value does not virtually change
with dilution. We may suggest that the light is scattered
from certain continuum (the extrapolation to c  0
yields M  ∞). The second region corresponds to c <
c*, where the extrapolation to c  0 yields a finite
value of Mw = 5 × 106 (nevertheless exceeding the Mw

of PVP by 2.5 orders of magnitude).
We may suggest that the complex concentrations

exceeding c* give rise to anomalously strong intermo-
lecular interactions hindering the fluctuational motions
000 MAIK “Nauka/Interperiodica”
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of molecules in solution. Apparently, the regions with
retarded fluctuational mobility may form already at a
concentration of the order of 10–4 g/cm3. The value of
Mw = 5 × 106 probably corresponds to these very frag-
ments of continuum, whereas the molecular mass
determined by an alternative absolute method, the sed-
imentation-diffusion data analysis, coincides, to within
the experimental error, with the molecular mass of
PVP.

It should be noted that a change in the degree of
solution structurization with dilution is thermodynami-
cally unfavorable: the second virial coefficient of the
solution in this range of A2 = 0.4 × 10–4 mol cm3/g2. We
believe that the probability of association in dilute solu-
tions of the PVP–C60 complexes is extremely small,
which is confirmed by the asymmetry of scattering
characterizing the size (radius of gyration) of the asso-
ciates coincides with the asymmetry of scattering
observed in pure PVP solutions.

The appearance of a long-range order in dilute poly-
mer solutions was reported [10] for the solutions of
polyamic acids and polyimides in amide solvents.
However, the ordering in these systems was fully
destroyed at a solution concentration of 4.0–5.0 ×
10−3 g/cm3, which corresponds to a distance of about
300 Å (i.e., a monolayer of solvent molecules) between
the centers of interacting macromolecules. In the solu-
tions of PVP–C60 complexes studied, the continuum
already appears at a concentration of 1.4 × 10–3 g/cm3.
This corresponds to a fullerene concentration of 1.4 ×
10–5 g/cm3 and a distance of about 2000 Å between the
C60 molecules. Moreover, the continuum is not fully
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Fig. 1. The plots of (cH/I)90 versus concentration c for aque-
ous solutions of (1) PVP and (2) a PVP–C60 complex.
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destroyed with decreasing concentration. We suggest
that the interaction of fullerene molecules is mediated
by structurized solvent.

The presence of the regions of hindered fluctua-
tional mobility in PVP–C60 complex solutions was con-
firmed by data on the temperature variation of the light
scattering intensity. The measurements were performed
at a complex concentration of 2.5 × 10–4 g/cm3. It was
found that the plot of scattering intensity I90 versus tem-
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Fig. 2. The plots of σ2 = 2Dt versus time for (1) the self-dif-
fusion in a PVP–C60 solution and for (2, 3) the diffusion of
PEO (M = 1000) in (2) PVP and (3) PVP–C60 complex solu-
tions.
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Fig. 3. The plot of reduced viscosity ηsp/c versus concentra-
tion for (o) PVP and (+) PVP–C60 complex solutions.
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perature is linear in the interval from 19 to 45°C, where
the I90 value drops from 25.0 × 10–3 to 20.4 × 10–3. This
change may be related to a partial disturbance of struc-
turization in the PVP–C60 complex solution as a result
of increasing kinetic energy of the Brownian motion of
both solvent and solute molecules. Note that the asym-
metry of scattering in the complex solutions is indepen-
dent of the temperature. This fact indicates that the
decrease in I90 on heating cannot be related to the decay
of molecular associates.

Strong intermolecular interactions in the system
studied were also revealed by experiments on the trans-
lational diffusion of PVP– C60 complexes at very small
values of the chemical potential gradient. The plot of
the diffusion curve dispersion versus time (Fig. 2, curve 1)
is linear in the initial stage and deviates from linearity
when the chemical potential gradient decreases. A
decrease in the diffusion coefficient with decreasing
chemical potential gradient can be related to the
appearance of domains with hindered fluctuational
mobility of molecules in solution, which diffuse as a
whole. The assumption concerning the presence of
solution domains featuring an ordered, rather than
polydisperse, structure of complexes, is confirmed by
data on the diffusion of poly(ethylene oxide) (PEO)
molecules with M = 1000 in the solutions of PVP–C60
complexes and pure PVP (Fig. 2, curves 2, 3). As seen
from these data, the diffusion of PEO molecules in the
complex solution (curve 3) is strongly retarded as com-
pared to the process in a PVP solution of the same con-
centration (curve 2). Indeed, the diffusion coefficient of
PEO in the former solution initially amounts to
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Fig. 4. The plots of (cH/I)90 versus concentration c for aqueous
solutions of PVP–C60 complexes with various fullerene con-
tent (%): (1) 0.31; (2) 0.48; (3) 0.64; (4) 0.67; and (5) 0.81.
1.85 × 10–6 cm2/s and drops with decreasing driving
force of the process, whereas the diffusion coefficient
in the PVP solution is retained on a constant level of
2.1 × 10–6 cm2/s.

Application of an additional gradient of the order of
700 s–1 led to complete breakage of the order in PVP–
C60 complex solutions. This is illustrated by compara-
tive viscometric data for the PVP–C60 complex and
pure PVP solutions presented in Fig. 3. As seen from
this plot, the complex and base polymer solutions with
equal concentrations exhibit exactly the same values of
reduced viscosity. The value of Mη = 1.0 × 104 calcu-
lated from the corresponding value of the intrinsic vis-
cosity using the Mark–Kuhn–Houwink formula [11]
coincides with Msd.

Study of the aqueous solutions of PVP–C60 com-
plexes with the polymer mass M = 3.5 × 104 and various
C60 contents by the method of Rayleigh light scattering
showed that the plots of inverse scattering intensity ver-
sus concentration are similar to that presented in Fig. 1
(curve 2). The molecular mass of continuum fragments
exhibited a monotonic increase with the content of
fullerene in the complex (Figs. 4, 5). The critical con-
centration c* somewhat decreased with increasing
fullerene content in the complex (Fig. 4). This implies
that the continuum is not fully destroyed even at rather
small complex concentrations and breaks into separate
coarse fragments with further dilution. Note that the
values of the apparent molecular mass Mapp coincide (to
within an experimental error of ~10%) for all pairs of
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Fig. 5. The plot of Mapp for the continuum fragments in
aqueous solutions versus fullerene content X of PVP–C60
complexes. 
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solutions of the same complex prepared by two differ-
ent methods (Fig. 5).

CONCLUSION

The solutions of fullerene-containing polymers pos-
sess an ordered concentration-dependent structure.
This is probably related to the ability of fullerene to
form strong intermolecular contacts due to the presence
of a large number of conjugated bonds in the C60 mole-
cules. The values of molecular mass obtained from the
light scattering data or the ordered domains in highly
dilute solutions of fullerene-containing polymers may
serve as a parameter for monitoring the content of
fullerene in various compositions.
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Abstract—The core size of complex structural units (CSUs) in paraffin crude oil was found by small-angle
X-ray scattering. A variation of the core size with the energy and the number of millisecond pulses from a ruby
laser was investigated. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Investigations into the effects of physical actions on
the structure and properties of crude oil are vital for
developing technologies of fine oil refining and viscos-
ity breaking, which makes easier oil production and
transportation. As of now, ultrasonic methods are
applied to prevent the deposition of salts and paraffins
in boreholes and pipelines [1]. Also, oil properties are
expected to change when oil is exposed to laser pulses,
widely used for the modifying the structure of different
materials [2–4]. Laser radiation stimulates chemical
reactions [5, 6] and, in view of severe conditions, inher-
ent in pulse irradiation, may result in a change in the
CSU size in disperse oil systems.

Oil represents a disperse colloidal system consisting
of CSUs. Each involves a core surrounded by a solva-
tion shell. The core is formed of high-molecular
alkanes, polyarene carbons, and resin asphaltens, while
the solvation shell includes compounds less susceptible
to intermolecular interaction [7].

Physical actions may change the CSU size [7],
which is estimated with small-angle X-ray scattering
by disperse systems [8]. The knowledge of the CSU
size is necessary for oil fractionation upon refining, vit-
rification, and so on.

To improve the accuracy of the small-angle mea-
surements, a triple-crystal X-ray diffractometer can be
used [9–12]. This setup provides highly monochro-
matic radiation (after three-fold reflection, Kα1 radia-
tion alone comes out of a slit monochromator). The
radiation is collimated in the horizontal plane (after
three-fold reflection, the angular divergence of the out-
put beam is below 9 seconds of arc).

The aim of this paper is to investigate a change in
the size of oil CSUs exposed to millisecond pulses of a
ruby laser. Measurements were performed by small-
angle X-ray scattering with the use of a triple-crystal
X-ray diffractometer.
1063-7842/00/4503- $20.00 © 20316
EXPERIMENTAL

High-paraffin crude oil (the paraffin content was
32.1 wt %) was studied. A 1-mm-thick oil film was
placed on a metal ring of inner diameter 3 cm. The film
was exposed to the radiation of a free-running ruby
laser. The pulse width was 0.5 ms; the energy density
W = 11, 14, and 18 J/cm2; the number of irradiations
was 1–3; and the diameter of the laser beam on the film
plane was 1 cm. The laser beam was incident on the
film surface at a right angle.

The CSU size was measured with a triple-crystal
X-ray diffractometer using CuKα1 radiation. An oil
film was placed behind the monochromator normally to
the X-ray beam. The angular distribution of scattered
intensity was recorded with a crystal analyzer, followed
by a wide-slit detector. A silicon single crystal with
three-fold (111) reflections was used as a slit mono-
chromator. Silicon served also as a crystal analyzer, but
here only one (111) reflection was used.

RESULTS AND DISCUSSION

The intensity of X-rays scattered from a disperse
system is given by the Guinier formula

where I0 is the scattered intensity at Θ = 0, s =
(4π/λ)sin(Θ/2), λ is the wavelength, Θ is a scattering
angle, and rg is the radius of gyration of a particle about
the center of mass of the disperse system.

The radius of gyration is related to the characteristic
size r of particles. For scattering by spherical particles,

this relation has the form  = 3r2/5 [9].

The dependence of lnI(s) on s2 (Guinier’s plot) is
presented in the figure. For nonirradiated oil, data
points fall on two straight lines with slopes of 176.24
and 13.51. After exposure to a radiation with an energy
density of 11 J/cm2, the logarithm of the intensity drops
to the background and level is represented by a straight

I s( ) I0 ( s2rg
2 3)⁄ ,–exp=

rg
2
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line with a slope of 246.38. The second irradiation with
the same energy results in a faster decline in the inten-
sity (with a slope of 416.77). After the third irradiation,
data points practically agree with those after the second
one.

In the case of the sample irradiated with the specific
energy of 14 J/cm2, the scattered intensity shows the same
behavior. When the energy density rises to 18 J/cm2, data
points even after the first irradiation coincide with those
after the second irradiation at W = 11 J/cm2.

The size of scattering particles can be found from
the slopes of the curves with an accuracy of 5%. From
the formulas above, r = (5 )1/2 for spherical parti-
cles. Small-angle X-ray scattering makes it possible to
determine the size of the ordered CSU region that is, its
core [7]. Hence, the CSU cores in as-produced oil are
30 and 8 Å across. The presence of the cores greatly
differing in sizes means that crude oil represents a poly-
disperse system consisting of primary CSUs of two
sizes. Polydispersity is characteristic of produced
oils [7].

During laser irradiation at W = 11 J/cm2, oil passes
to the monodisperse state, and secondary CSUs with
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Guinier plots for small-angle scattering of X-rays by the dis-
perse oil system: (1), (2) nonirradiated; (3) after a single
irradiation at W = 11 J/cm2; (4) after two-fold irradiation;
and (5) background level.
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the cores 35 Å across are formed. The cores grow
through coalescing primary CSUs. This conclusion is
supported by the investigation of thermal, mechanical,
electromagnetic, and other effects on the structure of
disperse oil systems [8]. 

Repeat irradiation with the same energy results in
further growth of the specific core size to 46 Å, suggest-
ing that secondary CSUs have merged together. Subse-
quent irradiations leave the size CSU cores unchanged.

A similar change in the core size was observed at
W = 14 J/cm2. After the first irradiation at W = 18 J/cm2,
the core size becomes equal to the one after two-fold
irradiation at W = 11 or 14 J/cm2. After the second irra-
diation at W = 18 J/cm2, the core size remains the same.
This means that this parameter is limited from above.

To conclude, small-angle X-ray scattering with the
use of a triple-crystal X-ray diffractometer makes it
possible to determine the size of CSU cores in disperse
oil systems. Millisecond pulses from a ruby laser con-
vert polydisperse high-paraffin systems into monodis-
perse, and the size of CSU cores grows. As the number
of irradiations and pulse energy increase, so does the
core size but to a certain limit.
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Abstract—The solution to the problem on limiting (thermodynamically permissible) efficiency ηm of direct
conversion of energy of quasi-monochromatic radiation into work known from the literature leads to physically
unacceptable results (ηm < 0) in the range of small frequencies ν and temperatures Tν of converted radiation. It
is shown that the noted feature is a consequence of the approximate character of the mentioned solution
obtained without taking into account background heat radiation: the exact solution obtained for ηm is valid for
all ν and Tν ≥ 0 and turns into the solution known earlier for Tν @ T and hν * kT (where T is the temperature
of the surroundings). © 2000 MAIK “Nauka/Interperiodica”.
In [1], the following result for the limiting efficiency
of “direct” conversion of energy of quasi-monochro-
matic radiation into work in the case of total absorption
of incident radiation by a “working medium” was
obtained:

(1)

Here, Nm is the maximum (thermodynamically permis-

sible) value of the converter output power,  is the
flux, ν is the frequency, Tν is the temperature of radia-
tion incident to a converter, T is the temperature of both
the surroundings and converter, and k and h are Boltz-
mann’s and Planck’s constants, respectively.1

In limiting cases of small and large frequencies, for-
mula (1) gives [1]

(2)

Obviously, the smaller the ratio hν/kTν, the more
accurate the latter formula of (2) (in comparison with
the initial formula (1)). However, the paradox lies in the
fact that this formula implies physically unacceptable

1 The factor α in the second addend of the given expression is miss-
ing in cited formula (12) in [1] due to an obvious misprint.

η def
m

Nm

Π rs
in

-------- 1 α T
Tν
-----– α 1–( ) α 1–( )kT

hν
------,ln+= =

α e
hν /kTν.=

Π rs
in

ηm

1 T
Tν
-----–

kT
hν
------, hν  @ kTν–

1
T
Tν
----- 1

kTν

hν
--------ln+ 

  , hν  ! kTν.–

=
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result ηm < 0 at sufficiently small values of the men-
tioned ratio, with ηm  –∞ as ν  0. If the temper-
ature of converted radiation is decreasing at a given
value of ν, the “high-frequency” (upper) formula of (2)
leads to the same result.

As a rule, a “paradox” similar to the noted ones
occurs when an approximate formula considered to be
exact is used beyond its validity region. In this paper, it
is shown that the example under consideration is not an
exception; consequently, expression (1) obtained with-
out taking account of background heat radiation is of
approximate character and valid when the two follow-
ing conditions are met simultaneously: Tν @ T and
hν * kT. It is easy to see that formula (1) leads to phys-
ically meaningless values of ηm when just these condi-
tions are violated.2

1. Thermodynamics requirements imply the follow-
ing upper bound on the output power N of an arbitrary
device performing work on external bodies under con-
ditions of stationary energy exchange with both ther-
mostat (“the surroundings”) and radiation field [2]:

(3)

Here Πr and Σr are the net fluxes of energy and entropy

2 It is appropriate to mention here that the appearance of this paper
was provoked to a certain extent by papers [3], whose author,
using formula (1) beyond its validity region, obtains a number of
interesting results, among which are “one more thermodynamic
method for deriving the law of thermal radiation” or, e.g., a con-
clusion (of fundamental importance) on the existence of “princi-
pal thermodynamic restriction on endoergic reactions” (radiation
energy with such a frequency and radiance that ηm < 0 “can in no
way be converted into the free energy of matter.”

N Π r TΣr–≤ Nm.=
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of radiation absorbed by the device (“converter”)
through its surface:

(4)

(5)

where Kν = (Kν(r, w)) is the spectral energy radiance of
radiation with frequency ν propagating in an element of
solid angle dΩw in the direction of a unit vector w and
crossing an element dσ of the converter surface (with
an external normal n) at a point r; Lν is the spectral
entropy radiance of radiation, which (if radiation is not
polarized) is uniquely defined by the quantities ν and
Kν [4]

(6)

where c is the speed of light, nν is the average number
of quanta at a field oscillator,

(7)

2. The spectral radiance of radiation on the con-
verter surface, which solely determines the limiting
converter power Nm, as is seen from the formulas cited
above, is represented as the sum

(8)

The radiance of incident radiation from an external

source is denoted here by ;  refers to nonequi-
librium radiation emitted from the converter surface;

and  denotes the radiance of background heat radi-
ation in which the considered system (together with the
surroundings) is necessarily immersed and which
should apparently be considered as the black light of
temperature T

(9)

Assume that the converter absorbs the incident radi-
ation completely and does not luminesce; i.e., we take

 = 0. In this case, taking into account (6)–(9),
expressions (4) and (5) take the form

(4')

Π r ν σ ΩwnwKν,d

nw  _ 0

∫d∫d∫–=

Σr ν σ ΩwnwLν,d

nw  _ 0

∫d∫d∫–=

Lν = Lν Kν( ) = 
2kν2

c
2

----------- 1 nν+( ) 1 nν+( )ln nν nνln–[ ] ,

nν c
2
Kν/2hν3

.=

Kν

Kν
in

Kν
T
, nw 0≤+

Kν
out

Kν
T
, nw 0.>+




=

Kν
in

Kν
out

Kν
T

Kν
T 2hν3

c
2

------------ 1
hν/kT( )exp 1–[ ]

-------------------------------------------.=

Kν
out

Π r ν σ ΩwnwKν
in

d

nw 0≤
∫d∫d∫– Π rs

in
,= =
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(5')

Furthermore, we assume that the incident radiation
is isotropic within the solid angle of its propagation (as
it generally occurs in practice).3 It is easy to verify that
integration with respect to dσ and dΩw in formulas (4'),
(5') is performed independently of integration with

3 Formally, this assumption means that (r, w) can be presented

in the form  = a(r, w)K(ν), where a(r, w) = 1 if (r, w) ∈  G

and a = 0 if r and w do not belong to a certain region G of a five-
dimensional space.

Σr = ν σ Ωwnw Lν Kν
in

Kν
T

+( ) Lν Kν
T

( )–[ ] .d

nw 0≤
∫d∫d∫–

Kν
in

Kν
in

–1.0

ηm
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(1)

(11)

Tν /T = 5

Dependences of the limiting efficiency on the temperature
and frequency of converted radiation determined by formu-
las (1) and (11), respectively.
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respect to dν, and, consequently,

(4'')

(5'')

where the factor Γ signifies the “geometric quotient.”
After substituting (4'') and (5'') into (3) and dividing

the obtained expression for Nm by the power  of the
incident radiation (formula (4'')), we find that the limit-
ing efficiency in the case of quasi-monochromatic radi-
ation is determined by the equation

(10)

or, taking into account (6), (7), and (9),

(11)

where

(12)

(13)

and the temperature Tν of converted radiation is intro-
duced in the ordinary way,

(14)

Expression (11) is the aim of preceding calculations
and the paper as a whole. A simple, but cumbersome,
analysis shows that formula (11), in contrast to (1),
does not contain any singularity and leads to values
ηm ≥ 0 (note that ηm ≤ 1) at arbitrary T, Tν, and ν ≥ 0.4 

The figure serves as an illustration of this statement.
Besides that, it is seen from the figure that, at suffi-
ciently large values of Tν and ν, results (1) and (11)
coincide. The validity conditions of approximation (1)
are discussed in more detail in the Appendix.

APPENDIX

Suppose Tν ! T. Then, as is seen from (13) and (14),

(15)

for any given frequency value (in particular,

/   Tν /T for ν  0). Note that the quantity

 itself is not necessarily small in comparison with

unity. On the contrary, depending on frequency, 
may essentially exceed unity attaining arbitrary large
values for ν  0. Nevertheless, we will show that,
due to the monotonically increasing and “smooth” type

4 In particular, ηm  1 – (T/Tν)ln(1 + Tν /T) for ν  0, and
ηm  0 when Tν  0, as it should be.

Π rs
in Γ νKν

in
,d∫=

Σr Γ ν Lν Kν
in

Kν
T

+( ) Lν Kν
T

( )–[ ] ,d∫=
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ηm 1 T Lν Kν
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T
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( )–[ ] /Kν
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ηm 1
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T
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2
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/2hν3

1/ hν/kTν( )exp 1–[ ] .= =

nν
in

 @ nν
T

nν
in

nν
T

nν
T

nν
T

of the function f(ξ) at arbitrary value , the following
approximation is valid:

(16)

The accuracy δ of the formula is of the order of / ;
i.e., δ ! 1 if assumption (15) is valid. Indeed, according
to the Lagrange theorem on finite increment, for arbi-

trary  and , we have

where 0 ≤ θ ≤ 1.
This implies the following estimate for the accuracy

of substitution (16):

Since df/dξ = ln(1 + 1/ξ), the estimation peaks at the

minimum possible value of ξ, i.e., at θ = 0 if ξ =  +

θ . Thus,

or

(17)

where β = / .

Elementary analysis of function (17) shows that

at any  ≥ 0, which was to be proved.

Thus,

(18)

for Tν @ T.

Further simplification of formula (18) is reduced to
substitution:

(19)

On the face of it, validity of this substitution under
condition (15) is obvious if one takes into account the
monotonically increasing type of the function f(ξ).

However, for sufficiently large  (and, hence, for 
also essentially exceeding unity according to (15)), the
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rate of increase of the function f(ξ) is small and, hence,
the error δ1 arising from substitution (19) may become

large for  @ 1.

Indeed, dependence δ1 on  is given by the expres-
sion

Taking into account the explicit form of f(ξ), it can

be easily shown that, at  & 1 (i.e., at hν * kT),

(20)

whereas, in the case of  @ 1, the error δ1 ~ 1 and,
hence, the substitution (19) is incorrect.

Equations (18)–(20) imply that, at Tν @ T and hν *

nν
T

nν
T

δ1
f nν

T( )

f nν
in( )

---------------
f nν

T( )

f nν
T
/β( )

--------------------.= =

nν
T

δ1 hν  * kT β Tν  @ T  ! 1,≤

nν
T
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kT, the following approximation is valid:

which agrees with formula (1) if evident algebraic
transformations are made.
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Abstract—Variations in the spectral composition of ion oscillations within several stability regions of a qua-
drupole mass filter were studied. The frequency spectrum was shown to consist of two line systems. Side lines
ωn = nω0 ± βω0/2 were observed in the oscillation spectrum near harmonics nω0 (n = 0, 1, 2,…), where ω0 is
the circular frequency of an RF field and β is the stability parameter. Near the boundaries of the stability regions,
the oscillations took the form of beatings. For even values of the stability parameter, β = 2k (k = 1, 2,…), the
beat frequency coincides with the fundamental frequency ω0 and, for β = 2k – 1, the main beat frequencies are
ω0/2 and 3ω0/2. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

An ion trap and a quadrupole mass filter are based
on dynamic trapping and confinement of charged parti-
cles in an alternating quadrupole electric field [1, 2].
These processes are described by the theory of para-
metric resonance. The theory is based on Mathieu and
Hill equations, which describe the motion of charged
particles in an alternating quadrupole field. The general
features of the ion oscillation spectrum and its fre-
quency composition are well known [3]. However, to
analyze nonlinear oscillations of ions in multipole
fields [4], investigate the process of resonance extrac-
tion of ions from the confinement region using a small
external harmonic signal [5], and compare the ion
motion characteristics in a number of stability regions
of the Mathieu equation [6], the oscillation spectrum
should be studied in more detail.

The goal of this work was to develop effective meth-
ods for calculating spectral characteristics of ion
motion in alternating quadrupole fields with allowance
for viscous friction, study the composition and struc-
ture of oscillations, and perform a comparative analysis
of oscillations in a number of stability regions.

GENERAL SOLUTION TO MOTION 
EQUATIONS

A quadrupole electric field is defined as an electric
field in which potential is a quadratic function of coor-
dinates. In a mass filter, this condition is satisfied only
for two coordinates, and, in an ion trap, for the three
coordinates. The law of motion of a charged particle
in an RF quadrupole field is described by the Hill
1063-7842/00/4503- $20.00 © 20322
equation [1]

(1)

where x is the particle coordinate, e/m is the specific
charge, r0 is the field radius, U(t) is the periodic source
voltage with the period T, and ε is the parameter
depending on coordinates and the type of a device (for
a mass filter, εx = 1 and εy = –1; for a three-dimensional
ion trap, εx – εy = 1 and εz = –2). The damping term with
the coefficient γ allows for the viscosity of a medium.
In some cases, oscillation damping is of fundamental
importance for the device operation. For example, the
use of a light buffer gas in the Finigan MAT ion trap
significantly improves the device characteristics [4].
Frequent collisions of massive charged particles with
light molecules of the buffer gas can be interpreted as
oscillation damping. Therefore, the motion of trapped
particles can be described by equation (1).

Since the coefficients of equation (1) are periodic
with the period T, it is sufficient to consider the solu-
tions to equation (1) over one period. Let us suppose
that two characteristic solutions, y1(t) and y2(t), satisfy-
ing the initial conditions y1(0) = 1, y2(0) = 0, (0) = 1,

and (0) = 0 are determined (usually, by numerical
integration) within the interval 0 < t < T. We introduce
the vector of generalized coordinates X(t) and the
matrix of characteristic solutions Y(t),

(2)

Since equation (1) is linear, its solution can be
expressed through the initial condition X(0) as X(t) =

d
2
x

dt
2

-------- 2γdx
dt
------ εeU t( )

mr0
2

--------------x+ + 0,=

ẏ1

ẏ2

X t( ) x t( )
ẋ t( )

, Y t( ) y1 t( ) y2 t( )
ẏ1 t( ) ẏ2 t( )

.= =
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Y(t)X(0). The periodicity of the coefficients of equation
(1) yields X(nT) = Y(T)X[(n – 1)T] = Yn(T)X(0). Hence,
for t = nT + τ (where 0 < τ < T), the general solution can
be written in the form

(3)

where L = Y(T) is the one-period transformation matrix.

Therefore, to find the coordinates, it is necessary to
calculate the powers of the matrix L. This can be easily
done if the eigenvectors and eigenvalues λk of the
matrix L are known:

(4)

where ck are the coefficients of the expansion of the
vector X(0) in terms of the eigenvectors of the one-
period transformation matrix. Equations (3) and (4)
allow us to determine the time dependences of the solu-
tions to an arbitrary equation with periodic coefficients.
Here, we use them to solve the Hill equation with the
damping term. In this case, the one-period transforma-
tion matrix is a 2 × 2 matrix. Its eigenvalues are deter-
mined from the quadratic characteristic equation

(5)

where Spur(L) is the trace of matrix L and Det(L) is the
matrix determinant. If the eigenvalues are complex
conjugate and do not exceed unity in magnitude, the
particle motion is limited and its trajectory is referred
to as stable. One or both eigenvalues exceed unity in
magnitude; therefore, the particle enters the region of
parametric resonance and the coordinate and velocity
of the particle increase without bound; such a trajectory
is referred to as unstable.

Further analysis of the solutions to equation (1) can
be carried out based on expressions (3) and (4). In order
to determine the motion of a charged particle in a peri-
odic quadrupole field, we should find the eigenvalues
and eigenvectors of the one-period transformation
matrix. By direct substitution, one can ascertain that, if
y1(t) and y2(t) are solutions to equation (1), then Det(Y)
satisfies the equation

(6)

Therefore, Det(L) = Det(Y(T)) = exp(–2γT). For
convenience, we introduce the matrix M defined by the
equation

(7)

X nT τ+( ) Y τ( )L
n
X 0( ),=

L
n
X 0( ) ckλ k

n
lk,

k

∑=

λ 2 λ Spur L( )– Det L( )+ 0,=

d
dt
-----Det Y( ) 2γDet Y( )+ 0=

or DetY t( ) DetY 0( ) 2γt–( ).exp=

L γT–( ) m11 m12

m21 m22

exp M γT–( )exp= =
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so that Det(M) = 1. The eigenvalues of the matrix L are
λ = µexp(–γT), where µ are the eigenvalues of the
matrix M, which can be found from the equation

(8)

An analysis of the solutions to equation (8) shows
that, if |Spur(M)| < 2, the eigenvalues are complex con-
jugate, µ1 =  = exp(iπβ). In this case, the ion motion,
described by (4), has the form of finite nonperiodic
oscillations that are characterized by number β, which
is the fundamental parameter of the Hill equation. In
the opposite case, when |Spur(M)| > 2, we have µ1 =
1/µ2 = exp(κ); i.e., in the absence of damping, the
motion is unstable. In the presence of damping, the
motion remains unstable if |λ| < 1 or ln(µ1) < γT. Thus,
the damping broadens the stability regions [7].

For stable oscillatory trajectories, the eigenvalues

are λ1 =  = exp(–γT + iπβ) and the eigenvectors of
the one-period transformation matrix are

(9)

where A and B are the parameters of the trapping
ellipses [1]

(10)

Note that the eigenvectors for matrices L and M
coincide.

To find the general solution to equation (1), we con-
sider its particular solution satisfying the initial condi-
tions u(0) = 1 and u'(0) = (i – A)/B. In this case, the vec-
tor of the initial coordinates X(0) = m1 coincides with
the eigenvector of the one-period transformation
matrix. According to equation (3), at the instant t =
nT + τ, this solution takes the form

(11)

where ∆ = πβT and φ(t) is the periodic function with the
period T,

(12)

The Floquet theorem [8] states that the Hill equation
(1) has the solution of the form (11) if γ = 0. Hence, we
will refer to the function φ(t) as the Floquet function. In
(12), the Floquet function is expressed via two charac-
teristic solutions to equation (1). Solution (11) can be

µ2
Spur M( )µ– 1+ 0.=

µ2*

λ2*

m1 m2*
1

i A–
B

----------- 
 
 
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,= =

A
m11 m22–

πβ( )sin
----------------------, B

m12

πβ( )sin
-------------------,= =

πβ( )cos
m11 m12+

2
-----------------------.=

u t( ) y1 τ( ) i A–
B

-----------y2 τ( )+ 
  γT– iπβ+( )n[ ]exp=

=  φ t( ) i∆ γ–( )t[ ]exp ,

φ t( ) y1 τ( ) i A–
B

-----------y2 τ( )+ 
  γ i∆–( )τ[ ] .exp=
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used for constructing the general solution to the Hill
equation. If the complex function u(t) is the solution to
a real equation, then the complex conjugate function
u*(t) is the second linearly independent solution to the
same equation. Thus, the general solution can be writ-
ten as

(13)

The constant C is determined from the initial condi-
tions x(0) = x0 and x(0) = v0. Using equation (13) and
the initial conditions for the Floquet solution (11), the
constant C is found to be

(14)

The general solution to the Hill equation (1) with
damping is given by equations (12)–(14). To determine
the general solution, two characteristic solutions y1(τ)
and y2(τ) should be calculated over one period, 0 < τ < T.

CALCULATION OF THE FOURIER 
SPECTRUM

The Fourier spectrum of oscillations of a charged
particle trapped in a periodic quadrupole field can be
calculated using the general solution (13). We expand
the periodic Floquet function φ(t) into the Fourier series

(15)

where ω0 = 2π/T and

Substituting this expansion into (13) yields the solu-
tion to equation (1), 

(16)

To find the final expression, we should eliminate the
factor exp(–γt). The spectrum of signal (16) can be cal-
culated by using the integral Fourier transformation,

(17)

x t( ) Cu t( ) C*u* t( )+ Cφ t( ) i∆t( )exp[= =

+ C*φ* t( ) i∆t–( )exp ] γt–( ).exp
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-------------------------------------------.=
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∞
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



k
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---× i kω0 ∆+( )t–[ ]exp


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γt–( ).exp

x ω( ) 1
2π
------ x t( )e

iωt–
t,d

∞–

∞

∫=

x t( ) x ω( )e
iωt ω.d

∞–

∞

∫=
When applying these formulas, we must define the
function x(t) at t < 0. In the context of our study, the spe-
cific form of this function is of no importance. There-
fore, for t < 0, the solution (16) can be redefined by
replacing the factor exp(–γt) with exp(–γ|t |) without
loss of generality. Thus, for the oscillation spectrum
x(ω), we obtain

(18)

Equation (18) reveals the structure of the spectrum
of parametric oscillations of a charged particle trapped
in an RF quadrupole field. The spectrum consists of
lines of the same width γ shifted by ∆ to the “red” and

“blue” sides from the harmonics nω0:  = nω0 + ∆,

 = (n + 1)ω0 – ∆, where n =0, 1, 2, …. For undamped
oscillations (γ  0), the spectrum becomes discrete

(19)

Expressions (18) and (19) resolve the problem of
analysis of the parametric oscillation spectrum. The
inverse (synthesis) problem can be solved using equa-
tion (17). For undamped oscillations, taking into
account the features of spectrum (19), we obtain

(20)

To calculate the spectrum, it is necessary to deter-
mine the complex amplitudes ϕk of the harmonics. For
this purpose, two characteristic solutions y1(t) and y2(t)
of the Hill equation should be determined for one
period T. From (12) and (15), we find the amplitudes of
the harmonics

(21)

where

According to (10), the ellipse parameters A and B
and the frequency shift ∆ = πβT are expressed through
the values of the same solutions at the end of the period,
m11 = y1(T), m12 = y2(T), and m22 = (T). The expres-
sions obtained are used below to calculate the ion oscil-
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ẏ2
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lation spectrum in the cases most important from the
practical standpoint.

STABILITY CONDITIONS 
AND THE SPECTRUM OF THE MATHIEU 

EQUATION

The obtained expressions for the spectrum of para-
metric oscillations of a charged particle in a quadrupole
field are valid for the periodic source voltage of any
shape. The amplitudes and phases of the harmonics
depend on the shape of the source voltage U(t). In case
of harmonic voltage, U(t) = U + Vcos(ω0t), which is
most frequently used in mass spectrometry, equation
(1) reduces to the Mathieu equation. In this case, the
motion of ions of given mass is determined by two
dimensionless Mathieu parameters related to the
amplitudes of the alternating and direct voltage compo-
nents by

(22)

In the plane of parameters (a, q), we can separate out
the stability regions, where the parameter β is real-val-
ued, and the instability regions, i.e., the regions of para-
metric resonance. The boundaries of the regions are
determined by the condition cos(πβ) = ±1. The param-
eter β of the Hill equation is determined accurate to
unity. Therefore, it is impossible to determine uniquely
from the value of the parameter β in which stability
region the motion occurs. That is why, for the higher
order stability regions, we take n – 1 < β < n, where n
is the stability region number [6]. Note that, although
the choice of one or another range of the parameter β
variation affects the particle motion only slightly, it can
change the meaning of the expressions. In the case
under consideration, the parameter β enters in the
expressions for the frequencies and amplitudes ϕk of
the harmonics through the frequency shift ∆. In the first
stability region, we have 0 < β < 1; therefore, the lowest
oscillation frequency (which corresponds to the ampli-
tude of ϕ0) is equal to βω0/2. In the second stability
region, we have 1 < β < 2; therefore, the lowest oscilla-
tion frequency in this region is (1 – β/2)ω0 (the corre-
sponding amplitude is ϕ–1).

An uncertainty in determining the parameter β does
not allow us to establish a qualitatively difference
between the stability regions. Such a difference can be
revealed through the analysis of the angular parameters
of the Hill equation (1) [9]. These parameters are
defined by analogy with the angular parameters of the

a ε 8eU

mR0
2ω0

2
-----------------, q ε 4eV

mR0
2ω0

2
-----------------.= =
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harmonic oscillator equation

(23)

The expression under the radical sign in (23) is the
instantaneous oscillation frequency squared. Thus, the
angular parameter κ1 has the meaning of the oscillation
phase incursion in the time interval during which the
voltage is positive. In the negative- voltage intervals,
the oscillation frequency is imaginary and, conse-
quently, the motion in these intervals is not oscillating
in character. As shown in [9], for harmonic and pulsed
voltages, the nth stability region lies within the range
(n – 1)π < κ1 < nπ. Thus, the stability regions differ by
the phase incursion during the period T. In the positive-
voltage intervals, an ion in the first region does not exe-
cute more than one-half oscillation, whereas an ion in
the second region executes almost complete oscillation,
etc. In turn, the numbers of zeros and maximum values
in the dependence of the trapping ellipse parameters A,
B, Γ on the field phase [6] vary according to the number
of ion oscillations during the positive-voltage interval.
That is why we defined the higher order stability
regions as n – 1 < β < n. In this case, the parameter β/2
has the meaning of the number of ion oscillations dur-
ing the period T.

Obviously, the change in the parameter β affects the
spectral characteristics of motion. In the expression
after formula (21), there is a pair of solutions to the Hill
equation under the radical sign. The greater the number
n of the stability region, the larger the number of oscil-
lations executed by the particle during the period T.
Thus, the width of the spectral function Φ(ω) is propor-
tional to the stability region number; i.e., the oscillation
spectrum broadens. As will be shown below, this con-
clusion is supported by the results of calculations of the
spectra in several important points in the stability
regions.

Real ions move in the three-dimensional space. In a
mass filter, the ions are separated along two directions,
provided that ay = –ax, and, in an ion trap, they are sep-
arated along the three directions, provided that ax = ay =
–az/2. Therefore, combined stability diagrams are con-
structed in the plane of the Mathieu parameters (a, q),
in which the regions where the ion motion is stable in
all directions are separated. As an example, such a dia-
gram for a mass filter is shown in Fig. 1. The parame-
ters (a, q) of ions of different masses lie on the same
straight (working) line passing through the origin of
coordinates. The inclination of the working line is

 = 2U/V. To provide separation of ions of different
masses, the source voltage parameters are selected so
as the working line to intersect the stability regions near

κ 1
e

mR0
2

----------U t( ) t,d

U t( ) 0>
∫=

κ2
e

mR0
2

----------U t( )– t.d

U t( ) 0<
∫=

αtan
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its vertex. Thus, the ions moving outside the stability
regions enter the region of parametric resonance along
one of the coordinates and deposit on the electrodes of
the system. That is why particular attention was given
to the study of the spectral characteristics of motion at
the vertices of the stability regions.
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Fig. 1. Diagram of the stability of a quadrupole mass filter.
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Fig. 2. Oscillations and their spectrum (see insert) at the ver-
tex of the first stability region: (a) oscillations along the y-
axis (βy = 0.015185) and (b) oscillations along the x-axis
(βx = 0.99046). The working point (a = 0.2368 and q =
0.706) lies on the straight line corresponding to the resolu-
tion R = 1000.
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1 –2
OSCILLATION SPECTRUM AT THE VERTICES 
OF THE STABILITY REGIONS

The dimensionless parameter ξ = ω0t/2 is used to
analyze the Mathieu equation. In dimensionless units,
the source voltage period T is equal to π and the fre-
quency ω0 is equal to 2. If the initial phase is taken to
be zero, the periodic voltage U(ξ) = a + 2qcos(2ξ)
involved in the Mathieu equation is symmetric. As a
result, the ellipse parameter A is zero, and the ampli-
tudes ϕk of the harmonics are purely real. In this case,
according to (20), the characteristic solution y1 can be
written as

(24)

This equation allows us to find the relation between
the amplitudes ϕk and the coefficients C2k convention-
ally used in the literature [3].

The upper vertex of the region 1 × 1 is formed by the
intersection of the lines βx = 1 and βx = 0. Oscillations
along the x-axis and y-axis are dissimilar. For the oscil-
lations along the y-axis, we obtain that βy ≈ 0, the har-
monic with the frequency ∆y = βyω0/2 has the maxi-
mum amplitude φ0, the harmonics with the frequencies
ω0 + ∆y and ω0 – ∆y have approximately equal ampli-
tudes ϕ1 and ϕ–1, and the amplitudes of the other har-
monics are small. In this case, the particle executes
oscillations at a low frequency ∆y accompanied by beat-
ings at the carrier frequency ω0 (Fig. 2a). The beat
period is T/βy; it is half as much as the low-frequency
oscillation period. For the oscillations along the x-axis,
we obtain that βx ≈ 1 and the harmonics with the fre-
quencies βxω0/2 and ω0 – βxω0/2 have the maximum
amplitudes approximately equal to each other. The
motion along the x-axis (Fig. 2b) has the form of beat-
ings at the frequency ω0/2 accompanied by beatings at
the frequency 3ω0/2 (they are formed by the harmonics
ω0 + βxω0/2 and 2ω0 – βxω0/2). Both beatings have the
same period T/(1 – βx).

The results of calculating the oscillation spectrum at
the vertex of the region 1 × 1 and other regions are
given in the table. The parameters (a, q) lie on the
working lines corresponding to the resolution R = 1000.
It is seen from the table how the spectrum varies with
increasing the region number. The upper boundary of
the region 2 × 1 is formed by the intersection of the
lines βx = 2 and βy = 0. In both cases, the low-frequency
oscillations βyω0/2 and (1 – βx/2)ω0 and the beatings at
the frequency ω0 are present. However, the beating

y1 t( ) 2 ϕk kω0 ∆+( )tcos
k ∞–=

∞

∑=

=  C2k kω0 ∆+( )t,cos
k ∞–=

∞

∑

ϕk
1
2
---C2k.=
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amplitude in the first stability region (oscillations along
the y-axis) is less than the low-frequency oscillation
amplitude, whereas in the second stability region
(oscillations along the x-axis), the low-frequency oscil-
lation amplitude is significantly less than the beating
amplitude. The lower boundary of the region 2 × 1 is
formed by the intersection of the boundaries β = 1 of
the first (oscillations along the y-axis) and second
(oscillations along the x-axis) regions. In both cases,
oscillations consist of beatings at the frequency ω0/2
(ϕ0 and ϕ–1 harmonics) accompanied by the beatings at
the frequency 3ω0/2 (ϕ1 and ϕ–2 harmonics). In the first
region (oscillations along the y-axis), the amplitude of
the beatings at the frequency ω0/2 is significantly
greater than the amplitude of the beatings at the fre-
quency 3ω0/2, whereas in the second region (oscilla-
tions along the x-axis), the two amplitudes are approx-
imately equal to each other. However, the amplitude of
the beatings at the frequency 3ω0/2 in the second region
(see table, the top of the region 2 × 2, oscillations along
the y-axis) can exceed the amplitude of the beatings at
the frequency ω0/2 in the same region.

Dependences of the amplitudes of spectral compo-
nents on the parameter q are shown in Figs. 3 and 4. The
dependence of the amplitudes of spectral components
on the parameter q at the vertex of the first stability
region (i.e., near the boundary βy = 0) for the motion
along the y-axis is shown in Fig. 3a. It is seen that the
amplitudes of spectral components varies only slightly
with varying the parameter q. The same dependence at
the vertex of the 2 × 1 region (i.e., also near the βy = 0
boundary, but at higher values of the parameter q) is
more pronounced and nonlinear (Fig. 4a). In both
cases, the amplitudes of spectral components attain cer-
TECHNICAL PHYSICS      Vol. 45      No. 3      2000
tain finite values at the boundary βy = 0. The amplitudes
of spectral components of oscillations along the x-axis
as functions of the parameter q show a similar behavior
near the boundary βx = 1 (Fig. 3b). However, the same
dependences in the second stability region near the
boundary βx = 2 are fundamentally different: at the
boundaries of the region, the amplitudes of spectral
components tend to infinity (Fig. 4b). An unbounded
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Fig. 3. Dependence of the amplitudes of spectral compo-
nents on the parameter q at the upper vertex of the region
1 × 1 along the line corresponding to the theoretically deter-
mined resolution R = 100: (a) oscillations along the y-axis
and (b) oscillations along the x-axis.
Spectral components in various stability regions

Parameter Top of the region 1 × 1 Top of the region 2 × 1 Bottom of the region 2 × 1 Top of the region 2 × 2

a 0.236813 3.16329 2.52194 0.026175

q 0.706000 3.23408 2.8153 7.54728

βx 0.988491 1.978873 1.025012 1.847750

ϕ0. x (C0/2) 0.467997 63.86192 59.89509 173.7649

ϕ–1, x (C–2/2) 0.455282 –1.867393 –58.16327 –22.37399

ϕ1, x (C2/2) 0.038039 16.72962 26.86175 100.3778

ϕ–2, x (C–4/2) 0.036524 –62.03566 –27.43166 –173.7560

ϕ2, x (C4/2) 0.001089 –1.669366 3.3522398 22.79408

βy 0.0151852 0.102606 0.9194426 1.1550037

ϕ0, y (C0/2) 1.4736736 5.749320 30.18155 3.308715

ϕ–1, y (C–2/2) –0.250983 –3.006374 –28.19290 2.628310

ϕ1, y (C2/2) –0.243811 –2.635821 –7.906595 –3.224624

ϕ–2, y (C–4/2) 0.0110046 0.537883 6.766214 –3.566485

ϕ2, y (C4/2) 0.0105312 0.431949 0.837913 0.9554039
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increase in the amplitudes of spectral components
when approaching the boundaries of the stability region
is characteristic of the second stability region. Varia-
tions in the amplitudes of spectral components in the
second stability region along the a = 0 line between the
boundaries βx = 1 and βx = 2 are shown in Fig. 5. It is
seen that, at the boundaries of the stability region, the
amplitudes of spectral components tend to infinity.

Presumably, this fact explains why higher order sta-
bility regions are preferable as compared to the first sta-
bility region. The amplitude of oscillations of stable
ions increases sharply near the boundary βx = 1 as the
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Fig. 4. Same as in Fig. 3 at the upper vertex of the region
2 × 1.

Fig. 5. Dependence of the amplitudes of spectral compo-
nents of oscillations on the parameter q within the region
2 × 2 along the line a = 0.
value of βx – 1 decreases. Therefore, the required selec-
tivity can be achieved at lower values of βx – 1, i.e., dur-
ing a smaller number of periods of ion oscillations in a
quadrupole field and at a smaller total length of the
rods.

CONCLUSION

The spectrum of parametric oscillation described by
the Hill equation (1) has been studied. In the general
case, the spectrum (18) consists of two systems of lines.
Each of the harmonics nω0 of the fundamental fre-
quency ω0 is accompanied by satellites shifted to the
“red” and “blue” sides by ∆ – βω0/2. In the presence of
linear damping, all the lines have the same half-width
γ, whereas in the absence of damping, the spectrum is
discrete. The dependence on the initial conditions
enters the expressions obtained through the factor C
(14), and the spectral composition is determined by the
time profile of the source voltage. The amplitudes of
the spectral components can be calculated using the
spectral function Φ(ω), which is determined by a pair
of characteristic solutions to the Hill equation over one
period (21). Equation (21) can be efficiently applied to
calculating the amplitudes of spectral components.

The character of oscillations depends substantially
on the fundamental parameter β. In the first stability
region, where 0 < β < 1, the low-frequency harmonic
βω0/2 has the maximum amplitude. Consequently,
oscillations near the boundary β = 0 are close to har-
monic. Near the boundary β = 1, the amplitudes and
frequencies of the harmonics βω0/2 and (2 – β)ω0/2 are
almost equal, which results in beatings at the frequency
ω0/2. In the higher order stability regions, the oscilla-
tion spectrum broadens, but oscillations always have
the form of beatings. For example, in the second region
near the boundary β = 1, the beatings at the frequency
ω0/2 are accompanied by the beatings at the frequency
3ω0/2 generated by the harmonics (4 – β)ω0/2 and (2 +
β)ω0/2. Both beatings have the same frequency (β –
1)ω0. Thus, the oscillations have the form of compli-
cated beatings at the frequency (β – 1)ω0. To avoid con-
fusion, it should be noted that the beat frequency, which
determines the shape of oscillations, is absent in the
oscillation spectrum. Oscillations near the boundary
β = 2 are the sum of beatings at the carrier frequencies
ω0, 3ω0, …. All of the beatings have the same fre-
quency (2 – β)ω0 equal to the frequency of the low-fre-
quency harmonic ϕ–2, which is present in the oscillation
spectrum. However, near the boundary β = 2, the ampli-
tude of the harmonic ϕ–2 is substantially smaller than
the amplitudes of harmonics generating the beatings.
Ion trajectories always have the form of beatings,
which is due to the periodicity of the solutions to the
Mathieu equation in cases when β = m/n is a proper
fraction [8].
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The amplitudes of spectral components do not
depend on the phase of the source voltage. Like the βx

and βy parameters, they are determined by the position
of the working point (a, q) on the stability diagram. The
study of variations of the amplitudes of spectral com-
ponent within the stability regions provides much
more information than the study of the trajectories of
motion in time and on the phase plane. It is shown
that, in the first stability region, the amplitudes of
spectral components tend to certain finite values when
approaching the boundary of the region. In the second
stability region, the amplitudes tend to infinity when
approaching the boundary of the region. In my opin-
ion, this explains the well-known fact [6] that, in the
devices operating in the higher order stability regions,
the required selectivity is attained at a smaller total
length of the rods of the field-generating system, i.e.,
during a smaller number of periods of ion oscillations
in a quadrupole field.
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Application of Donkin’s Formula in the Theory 
of Energy Analyzers: Part II.
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Abstract—Studies of conic-type electric-field structures are continued. The electric field is investigated, and
its potential is described by the following analytical expression.

(1)

Expression (1) is derived on the basis of Donkin’s formula. Properties of these electric fields are described in
Part I [1]. © 2000 MAIK “Nauka/Interperiodica”.

Φ x y z, ,( ) x

z x2 y2 z2+ ++
----------------------------------------.=
We consider thoroughly the dynamics of a charged-
particle flux in the electric field with potential (1). To
obtain such an electric field in a certain spatial region,
we make the limiting electrodes of a charged-particle
energy analyzer in the form of equipotential surfaces.
To do this, we ground the lower electrode and apply to
the other electrode a deflecting voltage. For the lower
electrode, we choose an equipotential surface with a
number Φ = 1. The upper electrode will be determined
later, because its choice depends on the maximum
height of particle trajectories in the electric field.

The actual motion of particles in the electric field is
determined by the particle electric charge and mass, the
electric-field distribution, the initial conditions, and the
system linear size. The system isomorphic mathemati-
cal model contains a lesser number of independent
parameters determining the structure of the particle
motion, because some of them, by choice of special
units of measurement are integrated into a single com-
plicated nondimensional parameter. This simplifies
mathematical expressions by excluding from them
insignificant coefficients but preserving the clear phys-
ical meaning of all the values. It is the nondimensional
mathematical model [2] that will be used in this paper.

The equations of particle motion (we imply elec-
trons in this case) in the electric field can be written out
in the form

(2)

ẋ̇
z2 y2 x2 y2 z2+ ++ +

z x2 y2 z2+ ++( )
2

x2 y2 z2+ +
------------------------------------------------------------------------------,–=

ẏ̇
xy

z x2 y2 z2+ ++( )
2

x2 y2 z2+ +
------------------------------------------------------------------------------,=
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Since analytically solving the set of simultaneous
equations (2) is impossible, we have used numerical
methods (for example, the fourth-order Runge–Kutta
method).

A comprehensive computer code was developed in
the framework of investigating all the electron-optical
properties of the electric field. This made it possible to
calculate and plot the entire set of trajectories by vary-
ing initial conditions including the energy of particles,
their coordinates, and the angle of entry. Thus, the lin-
ear dispersion and coefficients of squeezing as func-
tions of the initial particle energy were obtained. Since
the results preliminary here are previous and have an
evaluating character, we restrict ourselves by consider-
ing only the “boundary–boundary” focusing condi-
tions.

POINT SOURCE

A point source is assumed to be located at a point
with coordinates (x = 1, y = 0, z = 0) laying on the sur-
face Φ = 1. The initial nondimensional energy was var-
ied within the range from 0 up to 1.4, the of angle entry
into the field, i.e., the angle between the velocity parti-
cle vector and the x-axis, was chosen within the range
0° to 45°. A slightly divergent charged-particle beam
directed along the x-axis towards a singular point of the
field, which is located at the origin of coordinates, was
been studied. The central trajectory of this beam lies in
the plane y = 0. The beam is confined within a small
angle of 1° in both directions with respect to this plane.

Figure 1 shows the particle angles of entry and exit
as functions of the initial energy in the case of the first-

ż̇
x z x2 y2 z2+ ++( )

62 z x2 y2 z2+ ++( ) x2 y2 z2+ +
----------------------------------------------------------------------------------.=
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order focusing at the electric-field boundary. As is seen
from Fig. 1, the conditions of “boundary-boundary”
focusing correspond to low values of the energy virtu-
ally in the same manner as in the case of a plane mirror,
θ1Φ = θ2Φ = 45°. The angle of entry θ1 decreases and the
angle of exit θ2 increases with raising the particle
energy. In this case, the function θ2(W) increases more
rapidly compared to the decrease of the function θ1(W).
This is explained by the fact that the effect of the elec-
tric field is the most strong at the second part of a par-
ticle trajectory, because just in this region, the equipo-
tential surfaces are deformed more strongly compared
to the case of a plane capacitor. We note as a compari-
son that for a particle with the energy W = 0.5 the angles
of entry and exit are 38° and 62°, respectively, whereas
the corresponding values for a particle with the energy
W = 1 are θ1 =27° and θ2 =90°, respectively.

There exists a “telescopic” effect in conic-shape
electric fields: an arbitrary parallel beam of particles
with finite thickness and width, which propagates
toward a singular point located at the origin of coordi-
nates is subjected to squeezing. At the some time, the
beam of particles propagating in the opposite direction
diverges. The electric fields under study are not an
exclusion; therefore in the regime consideration, the
beam of charged particles with a finite initial size
becomes narrower.

Figure 2 illustrates the effect of squeezing. The
squeezing coefficients M and N represent the variation
of the beam width along the x- and y-axes, respectively:
M = ∆x1/∆x2, N = ∆y1/∆y2. For conic-shape electric
fields the coefficient of squeezing along an arbitrary
direction can be written out as a ratio of the initial and
final beam coordinates:

(3)

As is seen from Fig. 2, the particle beam experi-
ences the maximum squeezing along the direction of its
propagation, whereas, in the transverse direction, the
coefficient of squeezing does not exceed the value of 6
for a wide range of energies under study. For example,
the coefficients of squeezing for a beam of particles
with the energy W = 1 are M = 23 and N = 6 along the
x- and y-axes respectively, while the same coefficient
related to the beam area is M × N = 138.

The energy dispersion defined by the formula

(4)

is one of the principal electron-optical parameters for
an energy analyzer.

Linear energy dispersion in the plane of propagation
of the beam has a maximum within the energy range
0.45 and 0.55 (in conditional units), see Fig. 3.

Besides the aforesaid parameters, the quality of the
energy analyzer is also defined by its resolution R: R =

M
x1

x2
-----, N

y1

y2
----.= =

D
∆x
∆W
---------W=
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W0/∆W, because the error of the analysis is determined,
first of all, by the size of the non-resolved energy range
∆W. The value of R depends both on the linear energy
dispersion and on the dimensions of the output dia-
phragm. The latter is much smaller than the input one
owing to the “telescopic effect” in the conic electric
fields. The dimensions of the output diaphragm can be
estimated as a product of the width of the input one and
the coefficient of squeezing. Therefore, in devices of
this type, it is more reasonable to use, instead of the
usual dispersion D in the expression for the resolution
R, the value of effective dispersion D is reduced to the
input diaphragm: D*: D* = D × M.

Figure 4 shows the variation of D* asa function of
the initial particle energy. As is seen from Fig. 4, the
value of D* increases according to the exponential law
with increasing the particle energy. For comparison, the
dashed line represents the similar dependence calcu-
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Fig. 1. Angle of entry (θ1) and angle of exit (θ2) for particles
propagating in electric field (1) as a function of their initial
energy in the regime of “boundary-boundary” focusing. The
source coordinates are (1, 0, 0); slightly divergent beam of
particles propagating to the origin has the angular spread of
2° with respect to the central trajectory lying in the plane
y = 0.
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Fig. 2. Coefficients M and N of squeezing for a wide particle
beam in electric field (1) along the x- and y-axes respec-
tively. These coefficients are calculated for the regime of the
first-order “boundary-boundary” focusing.
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lated under the same initial conditions for a plane
capacitor. The effective dispersion D* = 5.5 and 1 in the
case of the electric field (1) and the plane capacitor,
respectively, for particles with the energy W = 1.

A CASE OF FINITE-SIZE SOURCE

We now consider the transformation by the field (1)
of the particle flux emitted from a certain area with a
finite size. We choose the following working condi-
tions: the initial energy of particles W = 1; the angle of
entry for the beam is θ1 = 27°. The particles are emitted
from an area of the lower electrode (Φ = 1), which has
the size x = 1 ± 0.05, y = 0 ± 0.05, the point with coor-
dinates (1, 0, 0) being the central point of this area.
Using the computer code developed, we have plotted
the set of trajectories passing through the area chosen,
each of them being lain in one of the planes y = const.
The results of the calculations have shown that the par-
ticles are collected in to a spot whose shape is distorted
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14

Fig. 3. Linear energy dispersion (D) in the electric-field
structure under study.

Fig. 4. Effective energy dispersion (D*) reduced to the input
as a function of the initial particle energy in the case of the
first-order “boundary-boundary” focusing. Dashed line rep-
resents the same curve for the electric field of a plane capac-
itor.
with respect to the prescribed quadratic one, the size of
the spot being decreased.

The following conclusion can be made on the basis
of the analysis performed. Let the basic dimensions of
the charged-particle energy analyzer be about 100 mm.
The area of 10 × 10 mm2 is used as a particle source.
The beam of particles is injected into the field region at
an angle of 27° through the lower electrode that has the
shape of an equipotential surface with the number Φ = 1.
In this case, the beam exits the electric field practically
at the right angle. The cross section of the beam in the
x–y plane will decrease more than by a factor of 130,
the beam being conserved the form of parallelepiped.
In this operating regime, the effective dispersion D*
attains 5.5, and the relative energy resolution r is
approximately equal to 0.08%. 

Such an energy-analyzing system can be used for
monochromatizing beams of charged particles with
their further transportation and application of the
monochromatized beams in the charged-particle
energy analyzers. The monochromators of such a kind
have a clear advantage compared to conventional ana-
lyzers used in electron spectroscopy. Exploiting the
telescopic effect, we can inject through a wide input
diaphragm in to the electric field, an electron beam with
the intensity by the order an magnitude higher with
respect to that in usual systems. For the narrow input
diaphragm, we can obtain the monochromatized elec-
tron beam with the absolute resolution comparable with
that of a conventional device but of much higher inten-
sity. Thus, as calculations show, we can increase the
intensity of a monochromatized electron beam at least
by the factor of three, the absolute resolution being the
same as that attained in the well-known modern mono-
chromators. (We imply systems with the following
parameters: maximum electric current is Im = 10–9 A
and energy resolution is ∆E = 10 meV. 

Another application could be formation of wide-
aperture weak particle beams, in experiments, e.g., with
cosmic rays. Such a system close to those described in
this paper and exhibiting high electron-optical proper-
ties could be used in the field of electron and ion spec-
troscopy as an efficient charged-particle energy ana-
lyzer.

IMPLEMENTATION OF THE SYSTEM

An advantage of implementing the system
described above is, without doubt, its technological
simplicity. An electrode corresponding to the equipo-
tential surface Φ = 1 can be manufactured by the fol-
lowing method. As was mentioned above, the equipo-
tential surfaces studied relate to the class of conic struc-
tures. Therefore, for any equipotential surface, there
exist its direct components, i.e., rays issued from the
origin of coordinates and the plane of symmetry y = 0.
The section of the equipotential surface by the planes
x = const are parabolas with their shapes being trans-
TECHNICAL PHYSICS      Vol. 45      No. 3      2000
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formed with the x-coordinate: the parabola branches
approach the plane y = 0 as the x-coordinate approaches
the point x = 0. Two metal mountings manufactured in
the form of parabolas can be fixed firmly with respect
to each other by threads pulled along the rays men-
tioned above. Such a structure is quite acceptable for
manufacturing the lower electrode, because it is usually
grounded or the voltage of a power source is applied to
it. For the upper electrode, an almost plane plate
mounted at the proper position can be used.

CONCLUSION

Thus, the simplest electric-field structures formed
by conic equipotential surfaces, which had been calcu-
lated on the basis of Donkin’s formula, were considered
in Part I of this paper. In spite of the simplicity of ana-
lytical expressions for potentials of electric fields, such
systems are promising from the should point of further
studies and results expected. The effect of “telescopic”
deformation of charged-particle fluxes attracts the
attention researchers. A concept has been suggested for
constructing conic electric fields including well-known
structures, and it opens wide horizons for finding new
configurations of electric fields for further studies and
use in charged-particle energy analyzers. The boundary
value problem has been solved for the “conic” electric
fields having a symmetry plane. This leads, in turn, to a
TECHNICAL PHYSICS      Vol. 45      No. 3      2000
possibility of solving a variety of inverse problems in
electron optics.

The results of calculations of electron-optical
parameters for one of the simplest representations for
the electric potential, which was derived on the basis of
Donkin’s formula are presented in Part II. These results
demonstrate a possible application in practice of
“conic”-type electric fields for monochromatizing or
squeezing broad fluxes of charged particles. The input
cross section of charged-particle source image is
reduced more than by a factor of 100 after particles
have passed through such a system. The energy disper-
sion in (reduced to the input) the plane of motion
exceeds by several times the similar value for a plane
capacitor. The conic nature of the field under consider-
ation makes it possible to apply a simple and an elegant
method of constructing equipotential surfaces and, cor-
respondingly, to develop charged-particle energy ana-
lyzers.
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Abstract—Inhomogeneous two-phase conducting films whose structure is intermediate between three- and
two-dimensional configurations are discussed. The longitudinal film size exceeds the correlation length, and its
thickness is less than the correlation length. In the case of weak nonlinearity, we found dependences of the film
resistivity on the concentration and size of conducting particles, as well as on the film thickness, in the frame-
work of a percolation approach. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Film structures are widely used in modern micro-
electronics. Thick-film resistors (TFRs) are an example
(see [1, 2] and references therein). Cubic nonlinearity
in metal-ceramic and polymer-based TFRs, which is
discussed below, was observed, for example, in [3, 4]
(Fig. 1).

Typical dimensions of TFRs are L = 1–5 mm
(length) and H = 20–25 µm (thickness). The particle
size is about 0.1–1 µm for the conducting phase and
~0.7–7 µm for the glass. The conducting particles are
spaced 1–2 nm apart (Fig. 2). If the general current
flows over the substrate, local currents will have a com-
ponent normal to the substrate, as follows from the
aforesaid. Therefore, a TFR is not a two-dimensional
(2D) structure with respect to the current flow. Neither
is it a 3D structure in general. In order for a TFR be 3D,
it should satisfy the condition H @ ξ, where ξ is the cor-
relation length. Thus, the problem of determining the
TFR conductivity can be classified as intermediate
between the 2D and 3D problems. For brevity, we shall
refer to this problem as 2.5D.

Analysis of experimental data for TFRs and other
composite systems is often based on the conventional
two-phase percolation model. This model implies a
universal dependence of the effective resistivity ρe on
the content p of the conducting phase with a resistivity
ρ1. For example, at p > pc (pc is the percolation thresh-
old), ρe ~ ρ1(p – pc)–t, where t is the unique critical con-
ductivity exponent (t3 ≈ 2 for a 3D system). In many
cases, such a percolation description agrees well with
experiment. For example, the values of t ranging from
1.7 ± 0.2 to 2.3 ± 0.4 were reported [5, 6]. In these
films, the resistance per square varied by a factor of 106.
At the same time, the critical exponents calculated from
data in [7] equal 2.65, 2.87, and even 2.99. Similar t
values (between 2.26 and 2.87) were obtained for poly-
1063-7842/00/4503- $20.00 © 20334
mer thick-film resistors containing high-structure car-
bon black [8]. However, t values reported in [9] are as
high as 20, which contradicts the hypothesis for the uni-
versatility of the critical exponents. In our opinion, the
percolation theory for two-phase systems is not appli-
cable to all TFRs (not to conditions, preparation tech-
niques, etc.). Nevertheless, the percolation approach is
in many cases adequate, not only giving an idea of the
critical behavior of the conductivity but also fitting
experimental data on 1/f noise and third harmonics
generation (see, for example, [10–13]).

Linear conductivity in 2.5D TFRs was discussed in
[14–18]. The basic concept in the theoretical descrip-
tion of the conductivity of an inhomogeneous film
(Fig. 2) with H < ξ3 and L @ ξ3 (ξ3 is the correlation
length of a 3D system) is that the film is represented as
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∆R/R1V

101100 102
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Fig. 1. Resistance of TU-10K-5 polymer thick-film resistors
versus voltage. The drying temperatures are (j) 150,
(d) 190, (m) 230, and (+) 270°C. R = R(U) – RU = 1V.
000 MAIK “Nauka/Interperiodica”
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a set of H × H × H cubes. In the simplest approxima-
tion, the film has a fractal configuration due to local
structure fluctuations. Some of the cubes include a con-
ducting cluster, while others do not; accordingly, these
cubes are of high and low conductivity, respectively.
A TFR appears as a 2D two-phase system consisting of
high- and low-conductivity H × H × H elements. Within
this approximation, we can apply the conventional 2D
description of TFRs. For example, the resistance of an
a0-thick film above the percolation threshold (p > pc)

can be written as R = r1((p – pc2)/pc2 , where r1 =

ρ1a0/ , ρ1 is the resistivity of the conductive phase
(ρ1 ! ρ2), and a0 is the characteristic minimum size (in
lattice problems, the link length).

CALCULATION OF NONLINEAR FILM 
RESISTANCE

When modeling a 2.5D system, we should replace
(as with the 2D case) r1 by r1(H), that is, by the resis-
tance of an H × H × H cube including the percolation
structure. Then, we have for the 2.5D film

(1)

where PH is the concentration of H × H × H cubes with
the resistance r1(H).

Thus, to calculate the film resistance under 2.5D
conditions, one should know an r1(H) dependence and
the probability of a conductive configuration. To find
them, we will take advantage of the approach formu-
lated in [19], which is easily extended to the nonlinear
case. According to [19], r(H) in the fractal range
(H < ξ) is determined from the percolation scheme in
the smear region [20, 13]. Here, the width of the smear

region is given by τH = (H/a0 , where ν3 is the crit-
ical exponent for the correlation length.

In the smear region, according to the percolation
scheme, we can find with a probability PH a structure
related to the percolation above the percolation thresh-
old (that is, a bridge with a length N1/a0) and, with a
probability 1 – PH, a spacer (N2 poorly conductive links
connected in parallel). The resistances of the bridge and
the spacer are R1 = r1N1 and R2 = r2/N2, respectively.

Here, Ni = |∆ ; ∆ is the smear width; α1 = t – ν(d – 2)
and α2 = q + ν(d – 2); and t and q are the critical expo-
nents above and below the percolation threshold,
respectively.

Replacing ∆ by, for example, τH in the expressions
for R1 and R2 yields

(2)

)
t2–

a0
2

R2.5 r1 H( )
PH pc2–

pc2
-------------------- 

 
t2–

,=

)
1/ν3–

|
α i–

r1 H( ) ρ1 H/a0( )
t3 ν3–( )/ν3/a0=
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for the highly conductive realization [21] and 

(3)

for the poorly conductive realization, 

In (2) and (3), we neglect shunting of the second
phase and the voltage drop across the first phase. The
probabilities of finding the realizations with r1(H) and
r2(H) are, respectively [19],

(4)

Thus, the closeness of the film to the percolation
threshold is characterized by the parameter

(5)

where we take into account that pc2 = 1/2 and the sub-
script 2.5 indicates that we are dealing with the concen-
tration of H × H × H cubes in the 2.5D system.

In what follows, we will consider a “highly fractal
regime,” where τH @ |τ3 | (for details, see [19]). From
(5), |τ2.5 | ! 1 in this case; that is, we can assume that a
2.5D system is close to the percolation threshold and
can be described in terms of the percolation theory.
Substituting (2) and (5) into (1), we find for the 2.5D
film

(6)

Let us now consider the case of weakly nonlinear
conductivity. With an accuracy to cubic terms,

(7)

r2 H( ) ρ2 H/a0( )
q3 ν3+( )/ν3–

/a0=

PH

τH τ3+
2τH

----------------, 1 PH–
τH τ3–

2τH

----------------.= =

τ2.5
PH pc2–

pc2
--------------------

τ3

τH

-----,= =

R2.5 ρ1 H/a0( )
t3 t2– ν3–

ν3
-------------------------

τ3

t2–
/a0.=

E ρi j( ) j ρi j µi j
2 j,+= =

j σiE χ iE
2E,+=

2

1 3

Fig. 2. Typical geometry of thick-film resistors: a0 ~ 0.1–1,
b0 ~ 0.7–7, and H ~ 20–25 µm; (1) thick-film resistor,
(2) highly conducting inclusions, and (3) nonconducting
substrate.
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where µi and χi are the nonlinear parts of the resistivity
and conductivity, respectively. It is assumed that µi j2 !
ρi and χiE2 ! σi. In terms of resistance, we can write

(8)

where ri(Ii , a0) is the nonlinear resistance of an a0 × a0 ×
a0 element in the ith phase and Ii is the total current
through this element.

In the nonlinear case [see (8)], the resistance of the
bridge is determined as above: R1 = r1(I1, a0)N1. The
resistance of the spacer is conveniently found from the
conductance g2(∆ϕ)N2 of the a0 × a0 × a0 element,
where ∆ϕ is the voltage difference across this element.
Then the conductance of the spacer is G2 = g2(∆ϕ)N2,
and its resistance R2 = 1/G2. With an accuracy to cubic
terms of the current, we find

(9)

where the total current I through the H × H × H cube,
as well as r1(H) and r2(H), have, of course, the same
form as in (2) and (3). The nonlinear parts can be writ-
ten as

(10)

Apply the well-known expressions [22] for a two-
dimensional film in the case of weak nonlinearity:

(11)

(12)

where k2 and  are the critical exponents for 1/f noise.

Note that, in [22], the nonlinear relationship
between the current density and the field was chosen in
the form j = σE + χE2E. However, it is easy to see that
µ = –χσ4 with an accuracy to cubic terms. If k2 and 
are expressed through t, q, and ν [23], i.e., k2 = 2ν2 – t2,

 = 2ν2 – q2, then we can write R2.5(I) in the following
form instead of (1):

(13)

.(14)

Consider now the case of very strong inhomogene-
ity. We neglect the current through the poorly conduc-
tive phase above the percolation threshold and the volt-
age across the highly conductive phase under the
threshold. Substituting (10) and (5) into (13) and (14),

ri Ii a0,( ) ri a0( ) mi a0( )Ii
2
,+=

ri a0( ) ρi/a0, mi a0( ) µi/a0
5
,= =

Ri I H,( ) ri H( ) Mi H( )I
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,+=
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a0

5–
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M2 H( ) µ2τH
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a0
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.=

σe p( ) σ1τ
t2, χe χ1τ

k2–
, p pc,>= =

σe p( ) σ2 r
q2, χe χ2 τ

k2
0

–
, p pc,<= =

k2'

k2'

k2'

R2.5 I( ) r1 H( )τ2.5

t2–
M1 H( )τ2.5

t2–
I

2
, p pc2,>+=

R2.5 I( ) r2 H( ) τ2.5

q2 M2 H( ) τ2.5

3q2I
2
, p pc2<+=
one finds

(15)

where

(16)

above the percolation threshold and

(17)

below the threshold.
If we neglect the threshold shift then the linear film

resistance found in [17] will coincide with our expres-

sions. Note that, in [17],  was found with quite a dif-
ferent approach, the so-called “percolative renormal-
ization group” technique.

CALCULATIONS OF RESISTANCE 
FOR NONLINEAR FILMS TAKING 

INTO ACCOUNT THE SHIFT OF PERCOLATION 
THRESHOLD

Up till now, we have not taken into account the shift
of the percolation threshold for cubes with a size
H ! ξ. According to [23, 24], the percolation threshold
averaged over possible realizations 〈pcH〉  is shifted with
respect to pc3 by a value proportional to τH:

(18)

where A is a constant.
With such a definition of the shift 〈peH〉 , it is neces-

sary to take into account the numerical factor (denoted
B in [24, 25]) in the root-mean-squared fluctuation of
the percolation threshold; instead of (4), we thus have

(19)

Relationship (19) coincides with (4) at A = 0 and
pc3/B = 1. The closeness to the film percolation thresh-
old with regard for refined concentration (19) can be
written as

(20)

At τ3  0, the closeness to the percolation thresh-
old becomes equal to A/B and not zero, in contrast to
(5). Depending on τ3, τ2.5 takes the following values:

(21)

(22)
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(23)

(24)

In cases I and III, the film resistance coincides with
(16) and (17), respectively, with an accuracy to the con-
stant B. In case II, the film resistance is given by

(25)

where the factors Ci are the product of A and B to cer-
tain powers.

In case IV, the film is in the smear region with a

width ∆2.5 = (ρ1/ρ2 (H/a0 . For
|τ2.5 | ≤ ∆2.5 , its resistance is given by (13) or (14). At
τ2.5 = ∆2.5 , we have 

(26)

Here, we took into account that t2 = q2.

CONCLUSION

To qualitatively illustrate the behavior of the film
resistance, it is convenient to substitute the numerical
values of the critical exponents into the expressions
derived above. From [26], t3 = 2.0, t2 = q2 = 1.3, q3 =
0.73, and ν3 = 0.88. Using these values without taking
into account the shift of the percolation threshold [see
(16)], we find

(27)

above the percolation threshold and 

(28)

below it [see (17)].
If the shift of the percolation threshold is taken into

account, we obtain [see (25)]

(29)

for case II (22) and

(30)

in case IV [see (26)].
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Note that (H) and (H) depend on H and a0

in a different way. Therefore, a simultaneous change in

H and a0 by the same factor does not leave (H) and

(H) unchanged. As a result, a change in the
“coarseness” (size) of highly conductive particles gives
rise to a nontrivial variation of the TFR resistance.

A large number of influencing parameters (τ, ∆,
r1/r2, µ1/µ2, H, etc.) give rise to a great variety of resis-
tance curves for 2.5D films. In experiments, however,
additional “degrees of freedom” may be needed. For
example, a large difference in particle sizes may require
the application of the so-called Swiss Cheese model
[26] or the inclusion of tunneling processes. This would
necessitate solving problems with an exponentially
broad spectrum of resistances [25, 26], etc. The role of
these factors calls for separate discussion.
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Abstract—Electron emission induced by X-ray radiation in secondary-emission porous materials was investi-
gated. © 2000 MAIK “Nauka/Interperiodica”.
Secondary-emission porous materials are widely
used as a working substance in electromagnetic and
corpuscular radiation detectors [1–5]. The detection
process in this case is governed by the interaction
between primary radiation and a porous material, fast-
primary-electron and slow-secondary-electron emis-
sions, as well as by avalanche generation and transfer
of secondary electrons.

The use of secondary-emission materials in detect-
ing X-ray radiation poses certain difficulties. First, the
possibility of the X-quantum–porous medium interac-
tion may be low; and second, X-ray-induced emission
is ambiguously related to structure parameters (pore
size, pore wall thickness, and pore shape), the chemical
composition of the material, and the quantum energy
[5–8]. Optimization of the detector performance (in
particular, sensitivity improvement) implies the elabo-
ration of a model for X-ray-induced electron emission
in porous materials.

In [6–8], electron emission in porous materials was
considered for the case of a microchannel plate (MCP)
to determine its sensitivity to X-ray radiation. However,
the authors used simplified models and failed to dis-
cover the effect of the material structure and composi-
tion, as well as radiation energy, on the emission.

In this work, we suggest a model of X-rays-induced
secondary emission in porous materials with both chan-
nel-like and closed pores. The study of closed-pore
materials seems to be topical in the context of the
development of porous insulator technology [2] and a
new type of secondary-emission material—micro-
spherical plates [9]. Our model takes into account all
structure and composition parameters of the material
and possible quantum energies.

The probability P of photon-induced electron emis-
sion in a porous body is given by

(1)

where P1 is the probability of quantum–body interac-
tion and P2 is the probability that a photogenerated or

P P1P2,=
1063-7842/00/4503- $20.00 © 20339
Compton electron will escape from the wall of a pore
into the free space.

The probability P1 is found from the exponential
expression [10]

(2)

where L is the sample thickness and  is the mean
attenuation coefficient of X-rays in the sample. With
regard for porosity,

(3)

Here,  = ρ(1 – V0 /V) is the mean density of the mate-
rial, ρ is the density of the material, µ is the attenuation
coefficient of X-rays in the material, V0 is the pore vol-
ume, and V is the total volume of the sample.

It can be shown [11] that

(4)

where n = 2 or 3 for channel-like and closed pores,
respectively; α is a pore-shape-dependent parameter;
and w and d are the mean thickness of the pore wall and
the mean pore size.

In view of (3) and (4), we find from (2):

(5)

The probability P2 that a fast electron will escape
from the wall of a pore into the free space depends on
the mean distance from the point of electron generation
to the pore surface, electron energy, and chemical com-
position of the body. Let the mean path of electrons in
the wall be x0. To find the escape probability, consider
a layer of thickness x0 where N0 uniformly generated
monoenergetic primary electrons move isotropically.

P 1 µL–( ),exp–=

µ

µ µρ
ρ
---.=

ρ

V0

V
------

α
1 w d⁄+( )n

---------------------------,=

P 1 –µL 1 α
1 w d⁄+( )n

---------------------------– 
  .exp–=
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One can show that the number of electrons leaving this
layer is [11]

(6)

Here, R is the extrapolated range of electrons in the
material (it can be found from Tabata’s semiempirical
equation [12]) and the probability that electrons will
pass through an r-thick layer is linearly approximated
as 1 – r/R [10]. From (6), we obtain the probability P21
that a primary electron will leave the wall:

If all primary electrons move normally to the sur-
face,

Primary photogenerated and Compton electrons
have known emission-angle distributions, and the true
probability P2(x0) of their emission lies between P21(x0)
and P22(x0). It follows from this condition that the
dependence P2(x0) can be approximated by the expo-
nential function

more convenient for analysis. Here, k has the meaning
of absorption coefficient of electrons and obeys the
condition ln2 < kR < ln4.

The value of k can be found from the well-known
empirical expression [10]

(7)

which was derived for the absorption coefficient of uni-
directional β-electrons with a continuous energy spec-
trum and a mean energy equal to the mean energy of
primary electrons.

The mean path of electrons in the wall depends on
the pore size, pore shape, and pore wall thickness. It
can be given by [11]

(8)

where β and γ are parameters dependent on pore shape
and arrangement.

N N0
x
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----- x 1 r2 1 rR⁄+⁄( ) r.d

x
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R
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R
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2R
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R
2x0
-------- at R x0.<

=

P2 x0( ) kx0–( )exp=

k 17E 1.42– ,=

x0 βd 1 w d⁄+( )n γ–[ ] ,=
Thus, the probability P2 that primary electrons will
escape from the wall into the free space is

(9)

Note that µ and k in (5) and (9) depend on the
X-quantum energy and the composition of the porous
body according to known laws. Hence, the derived
expression for the probability P1P2 of radiation-
induced emission of fast electrons in a porous body
takes into account all structure and composition param-
eters of the material and the X-quantum energy. From
(5) and (9), it is easy to see that P1P2 plotted against w
and d exhibit maxima. The dependence of P1P2 on
quantum energy also peaks if the empirical expression
for µ

is included in (5).
When fast primary electrons traverse the pores,

transmission and reflection secondary electron emis-
sions arise. The number of generated slow secondary
electrons is related to the secondary emission coeffi-
cient of the material [13] and the number of pores tra-
versed by a primary electron. The latter is expressed as
N = R/x0, where R and x0 are, as previously, the extrap-
olated range and the mean path of primary electrons in
the wall.

Among currently available porous materials, MCPs,
including those with channel-like pores, are of most
interest for applications. First, MCP parameters can be
optimized to obtain the maximum X-rays-induced elec-
tron emission and the maximum sensitivity of MCP
detectors. Second, the MCP measured sensitivity can
be compared with calculated values. In Figs. 1a and 1b,
calculated relative emissions in the MCP are plotted
against the structure parameters.

It is known that the efficiency of X-quantum detec-
tion by an MCP detector depends on the probability
that fast primary electrons will be generated and emit-
ted into MCP channels. Calculated (within the sug-
gested model) and experimental [6] efficiencies of the
MCP detector vs. X-quantum energy are depicted in
Fig. 2.

The MCP material (lead glass) consists of Si, Pb,
and O to the extent of 95%. Their relative content may
vary within wide limits. These elements, however, enter
into the composition as compounds (SiO2 and PbO)
rather than as individual components. Therefore, the
weight fraction of one of them (say, lead) specifies
those of the other two. This makes it possible to set a
correlation between the photo-induced emission in an
MCP and the content of one constituent [14]. Figure 3
shows the fast electron emission vs. lead percentage in
the MCP material.

With expressions derived for photon-induced elec-
tron emission in porous materials, we estimated the
efficiency of MCP detectors studied in our previous

P2 β– kd 1 w d⁄+( )n γ–( )[ ] .exp=

µ E( ) C 3.5E–( ) 10[ ]exp=
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work [3] and elsewhere [7, 8, 15]. Analytic values were
compared with experimental data (Fig. 4).

It was found that today’s MCP parameters used in
detecting X-rays are not optimum. Their optimization
with the suggested model may greatly improve MCP
sensitivity to X-ray radiation.

It should be noted that our procedure for photon-
induced electron emission characterization is also
applicable to other porous materials, such as porous
insulators and microspherical plates. The latter are a
new secondary-emission substance [9], namely, a
~1-mm-thick plate with closely packed glass micro-
spheres of diameter ~40 µm inside. The spheres are
covered by a special film with a high secondary emis-
sion coefficient. Microspherical plates differ from
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Fig. 1. (a) Relative photon-induced emission of fast (solid
lines) and slow (dotted lines) electrons in the MCP vs. chan-
nel wall thickness w; channel diameter d = 15 µm: (1) 25,
(2) 40, (3) 60, (4) 122, (5) 150, (6) 250, and (7) 662 keV. (b)
Relative photon-induced emission in the MCP vs. channel
diameter d: w = (1) 0.1, (2) 0.5, (3) 1.5, and (4) 5.0 µm; solid
line, 25 keV; dashed line, 40 keV. L = 1 mm, MCP thickness;
Ne and Nq, the number of electrons and quanta, respectively.
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Fig. 3. Relative photon-induced emission of fast electrons
against the lead percentage n in the MCP materials; d =
15 µm. Solid lines: L = 1 mm, w = 3 µm; dashed line: L =
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MCPs in that avalanche generation of secondary elec-
trons takes place between the spheres.
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Abstract—Complex study of surface and bulk defects was performed by field ion and scanning tunnel micros-
copy. Specimens were irradiated by 20- to 50-keV He+, Ar+, and Bi+ ions at room temperature. The irradiation
fluences were between 1018 and 1020 ion m–2. Calculated parameters of depletion zones and atomic displace-
ment cascades were compared with theoretical estimates. It was shown that controlled ion bombardment of
material surface is an effective tool for fabricating field-emission cathodes for vacuum microelectronics. ©
2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Although two advanced, extremely sensitive and
powerful methods for solid surface analysis—field ion
microscopy (FIM) [1] and scanning tunnel microscopy
(STM) [2]—differ essentially in several facets, they are
often thought of as related techniques naturally com-
plementing each other. STM issues were included in
the agenda of the annual International Field Emission
Symposium (its 45th meeting was held in 1998),
together with FIM, field-emission microscopy, and
quantum mechanical processes under high electric
fields, immediately after STM discovery (see, for
example, [3, 4]). Moreover, several combined instru-
ments that implement both techniques have been pro-
duced to date [5].

FIM and STM have the following features in com-
mon: atomic resolution, the use of the field emission
phenomenon, and the application of tips to generate
fields of an appropriate strength. The fundamental dif-
ference is that, in FIM, a tip is essentially a specimen,
while in STM, it is a probe that scans the surface of a
flat specimen. Both techniques provide an atomic reso-
lution of surface images from conducting materials; in
the case of FIM, however, the use of field evaporation
makes it possible to take images from many (tens or
hundreds of) surface atomic layers, visualizing the bulk
of a material. This is impossible with STM. Finally,
modern field-ion microscopes are equipped with an
attachment for probe mass-spectrometric chemical
analysis of surface particles [6]. In this respect, an
atomic-probe ion-field microscope is a true cluster that
integrates two complementary techniques to study dif-
ferent properties of the same specimen. In the case of
an STM–FIM cluster, an ion-field microscope plays an
essential yet secondary role of a probe-quality analyzer.
1063-7842/00/4503- $20.00 © 20343
The list of similarities and differences between FIM
and STM can be extended. Considering the potentiali-
ties of both, we have come to the conclusion that they
do complement each other and, when used in tandem,
are appropriate in investigating radiation-induced
defects both on the surface and in the bulk of conduct-
ing materials. Note that such studies are routine for the
FIM technique [7, 8]; as to STM, relevant data are very
scarce (see, for example, [9, 10]).

This article opens a series of related publications
concerned with FIM and STM investigations that were
performed from December 1, 1997, to November 30,
1999.

SPECIMENS

Specimens were made of carbon (graphite) and sili-
con. Note that FIM and STM substantially differ by
specimen preparation and analytical procedures
involved. With this in mind, we selected materials more
appropriate for STM analysis, since invoking this tech-
nique for the study of radiation-induced defects was
among the primary goals of this work.

FIM specimens were tips with a mean radius of cur-
vature of about 100.0 nm. Silicon specimens and spec-
imens of MPG-6 high-strength reactor graphite [11]
were prepared by conventional electrochemical etching
of small bars with a cross section of 0.3 × 0.3 mm. The
bars were precut by an electric spark method.

STM specimens were thin plane-parallel one-side-
polished platelets measuring 10.0 × 10.0 × ~0.5 mm.
Silicon specimens were prepared from KDB-12
(boron-doped, resistivity 12 Ω cm) Si(100) wafers.
Since the instrument operated in air, the specimens
were passivated in an HBF4 solution [12] to prevent
000 MAIK “Nauka/Interperiodica”
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their oxidation. After such a treatment, the silicon sur-
face remained clean for 30 h.

SPECIMEN IRRDIATION

Specimens preexamined in the microscope were
irradiated by 20- to 50-keV He+, Ar+, and Bi+ ions out-
side the instruments. The fluences varied between 1018

and 1020 m–2. In the case of the tips, the bombarding
beam was perpendicular to their axis of symmetry. The
plates for STM investigation were bombarded normally
to their surface.

FIM RESULTS

We noted above that carbon and silicon are difficult
to study with FIM. The major challenge here is that the

(a)

(b)

Fig. 1. FIM images from the (a) reference and (b) Ar+-irra-
diated (50 keV) specimens of MPG-6 high-strength reactor
graphite. The irradiation fluence is 1018 m–2.
evaporating fields are relatively low and that evapora-
tion is an irregular process. Hence, the poor quality of
FIM images and the impossibility of identifying indi-
vidual point defects and their clusters of a low multi-
plicity. Yet, FIM images from these materials allow the
identification of small pores and sometimes depleted
zones (as a result of atomic displacement cascades
[13]), as well as the determination of their parameters,
such as size, volume, geometry, and approximate
vacancy concentration in them. Under favorable condi-
tions, defects like dislocations can be identified and
characterized.

In this work, experiments were preformed with a
vacuum ion-field microscope at the Institute of Theo-
retical and Experimental Physics. During examina-
tions, specimens were kept at 78 K, and helium was
used as an imaging gas. In the experiments, we took

(a)

(b)

Fig. 2. FIM images from the silicon specimens irradiated by
(a) 40-keV Ar+ ions and (b) 30-keV Bi+ ions. The fluence is
≥1020 m–2 in both cases.
TECHNICAL PHYSICS      Vol. 45      No. 3      2000
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(a)

(b)

Fig. 3. STM images from the (a) reference and (b) Ar+-irradiated (50 keV) specimens of MPG-6 reactor graphite. The irradiation
fluence ~ 1020 m–2.
advantage of methodological expedients used in our
previous work [14].

Typical FIM images from the surfaces of (a) refer-
ence and (b) Ar+-ion (50 keV) irradiated MPG-6 graph-
ite are depicted in Fig. 1. The irradiation fluence was
1018 m–2. The arrow in Fig. 1b indicates a depleted
zone. Presumably, it arises when a single atomic-dis-
placement cascade is developed in the crystal lattice.
FIM images of the silicon surfaces irradiated by Ar+

(40 keV) and Bi+ (30 keV) ions are shown in Figs. 2a
and 2b, respectively. The relatively high fluences in
both cases (≥1020 ion/m2) imply that the observed
defect regions correlate to an overlap of many atomic
displacement cascades.

Note that, for individual cascades, the parameters of
depleted zones could be found only if the defect region
TECHNICAL PHYSICS      Vol. 45      No. 3      2000
could be “opened” and totally traversed during the suc-
cessive field evaporation of the irradiated specimens.

Tables 1 and 2 list parameters of the depleted zones
and cascade functions ν for MPG-6 graphite and sili-
con, respectively. They were estimated from FIM
images. It should be realized that, while the depleted-
zone volume was determined fairly accurately (the
error is no more than 15%), the vacancy concentration
in them, which was estimated according to concepts put
forward in [15], is accurate to 50–60%. Accordingly,
the tabulated cascade functions ν involve the same
error.

Comparing values given in Tables 1 and 2 with those
obtained from the simple Khinchin–Pees formula or
within the Sneider–Noifeld modified theory [13], one
can draw the following conclusion. For carbon (graph-
ite), the experimentally found parameters of atomic dis-
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(a)

(b)

Fig. 4. STM images from the (a) reference and (b) Ar+-irradiated (50 keV) silicon specimens. The irradiation fluence ~ 1020 m–2.
placement cascades are close to theoretical estimates.
For silicon, however, the discrepancy may be as high as
80 and even 120%. This can be explained by an error in
determining the vacancy concentration in the depleted
zones, but only to an extent, since FIM images for car-
bon and graphite are qualitatively similar. The ultimate
answer will be provided once much more experimental
data are obtained.

STM RESULTS

Surface roughness of the reference and irradiated
specimens was examined in an SMM-2000-T scanning
tunnel microscope (KPD, Russia) operating in air.
Flat graphite and silicon specimens were irradiated in
an ion injector under a high vacuum (at a pressure of
10–4 torr). The ions used and their energies are listed in
Tables 1 and 2. Since our work was also aimed at devel-
oping radiation technology for flat, large-area field-
emission cathodes [16], current–voltage characteristics
of field emission were taken from several specimens.

Figures 3b (MPG-6 graphite) and 4b (silicon) show
rather illustrative, if not quite typical, STM images of
the irradiated specimens (Figs. 3a and 4a demonstrate
the images of the references). In both cases, the speci-
mens were irradiated by Ar+ ions (50 keV) at a fluence
of ~1020 m–2. Under these conditions, the cathode area
was the most developed and the current–voltage char-
acteristics (in the Fowler–Nordheim coordinates) were
close to those in our previous work [17]. The emission
current per cm2 of the cathode was up to 100 A for
graphite and 10 A for silicon at an operating voltage of
about 5.0 kV and a flat anode–cathode distance of
1.0 cm (in a diode configuration).
TECHNICAL PHYSICS      Vol. 45      No. 3      2000
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Qualitatively, the surface roughness of the irradiated
specimens essentially depends on the sputtering coeffi-
cient and parameters of atomic displacement cascades.
It was found that, the greater the sputtering coefficient
and the larger the cascade regions, the more developed
the surface (i.e., the higher its roughness). On the other
hand, the roughness linearly depends on the fluence
within certain intervals. It was shown that there exists a
threshold fluence above which the surface roughness of
the materials is reduced or at least remains constant.

Using known values of the sputtering coefficients
for silicon and carbon exposed to 50-keV Ar+ ions [18],
we made an attempt to locate the initial surface of the
irradiated specimens from their STM images.

It was of interest whether the material is merely
removed (sputtered) from the surface upon irradiation
or some sputtered (more precisely, displaced in atomic
collision cascades) surface atoms complete microsteps
being formed. It was found that sputtered (removed)
atoms amounted up to ~60 and 80–90% in the case of
carbon and silicon, respectively.

CONCLUSIONS

(1) A combination of two ultramicroscopic meth-
ods, FIM and STM, proves to be reasonable in investi-
gating the effect of radiation on the surface and bulk
structures of materials, since it provides additional
information.

(2) Scanning tunnel microscopy is an efficient tool
for studying radiation-induced surface defects and con-
trolling surface modifications.

(3) The parameters of atomic displacement cascades
occurring in MPG-6 high-strength reactor graphite irra-
diated by moderate-energy ions are close to the existing
theoretical estimates.

(4) The parameters of atomic displacement cascades
occurring in silicon irradiated by moderate-energy ions
greatly differ from the existing theoretical estimates;
the experimentally found efficiency of stable atomic
displacement in cascades was found to be 80–120%

Table 1

Ions Energy, 
keV

Atomic 
volume 

Ωe

Approximate 
vacancy con-
centration, %

Cascade 
function ν

He+ 20.0 150 30 45

30.0 180 30 54

50.0 540 20 108

Ar+ 30.0 150 30 45

40.0 350 30 105

50.0 350 30 105

Bi+ 20.0 15 100 15

30.0 15 100 15
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less than the theoretical value. This cannot be explained
by the specifics of the used method alone.

(5) At relatively small energies of atomic displace-
ment cascades in graphite and silicon (the energies of
primary knocked-out atoms at a level of 1.0–1.5 keV),
defect regions of single cascades are pores (depleted
zones with a vacancy concentration of 100%).

(6) Upon ion irradiation, the surface roughness
essentially depends on the sputtering coefficient and
also on the parameters of atomic displacement cas-
cades: the greater the coefficient and the larger the size
(the space of development) of the cascades, the higher
the roughness. An increase in the irradiation fluence
increases the roughness (the degree of surface develop-
ment) to a certain limit only.

(7) Radiation-induced surface modification of con-
ducting materials is a promising way for producing flat,
large-area field-emission cathodes needed in vacuum
microelectronics. Conditions for radiation treatment
can be optimized by varying the type of bombarding
ions and their energy; angle of incidence; radiation den-
sity and fluence; and, possibly, the initial stress state
and the spectrum of preformed (e.g., by heat treatment)
crystal defects.
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Abstract—A way of simultaneously focusing a circular uniform beam of fine uncharged diamagnetic particles
in the longitudinal and transverse directions is explored. Focusing is performed by a short magnetic lens and a
diaphragm providing a time-dependent electric field. The size of the particles is within the range of
10−4−10−1 cm. © 2000 MAIK “Nauka/Interperiodica”.
As is known, transverse (normal) focusing of fine
uncharged particles in a vacuum can be performed by a
constant axially symmetric magnetic [1] or electric [2]
field. The size of the particles varies between 10–4 and
10−1 cm. It has also been demonstrated [3] that a uni-
form beam of uncharged particles can be transformed
into a stream of clusters that are compressed in the lon-
gitudinal direction under the action of an axially sym-
metric periodic electric field. The clusters are com-
pressed to a maximum degree after they have traveled a
certain distance, which can be regarded as the focal dis-
tance for longitudinal focusing.

This study addresses combined focusing of an
uncharged particle beam, i.e., focusing that is per-
formed in both directions. The approach is hampered
by the fact that a time-dependent electric field
employed for longitudinal focusing performs time-
varying transverse focusing as well. The additional
focusing in the transverse direction adversely affects
that provided by a constant axially symmetric magnetic
or electric field. Although this drawback is inherent in
the technique, it is reduced to a large extent if focusing
parameters are set appropriately.

Consider combined focusing of a uniform circular
beam of fine (10–4–10–1 cm) uncharged diamagnetic
particles in a vacuum. The focusing system comprises
a short magnetic lens ML for transverse focusing and a
planar diaphragm D having a fine circular aperture of a
given radius R (see figure). The diaphragm generates a
time-dependent electric field, thus providing longitudi-
nal focusing. Let the particles move along the axis of
symmetry z and have the same initial velocity v0. The
magnetic field H = H(z) is confined to an interval z1 ≤
z ≤ z2, and the electric field of the diaphragm next to
ML lies within an interval z3 ≤ z ≤ z4 in the vicinity of
the diaphragm. The latter interval is comparable in size to
the diaphragm aperture. Outside the interval z3 ≤ z ≤ z4,
and the electric field is uniform: E3 = 0 and E4 = E =
1063-7842/00/4503- $20.00 © 20349
const ≠ 0 (in a static mode). The electric-field potential
is distributed as [4]

where Φ0 is the potential at the diaphragm center
(z = 0).

Following [3], the electric field along the axis is
given by ϕ = ϕ(z, t), i.e.,

where η = η(t) is a periodic function with a period T.
The diaphragm field forms clusters, which experi-

ence maximum longitudinal compression (at the longi-
tudinal focus) at a distance l (l @ Tv0) if

where

ρ is the particle density, and ε is the relative permittivity
of the particles.

Let the effect of the diaphragm on the transverse
focusing be negligible (it is provided by ML alone).
Then the focal points F are the same for the magnetic
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lens and the diaphragm if f = l + h, where f is the focal
distance of the magnetic lens and h is the distance
between the two elements. At this point, the clusters are
most compressed in both directions, so that combined
focusing is realized. According to [1],

where H' = ∂H/∂z and µ is the relative permeability of
the particles. The condition for combined focusing
therefore becomes

Thus, combined focusing can be achieved regardless of
the particle size.

Since we have |z1 – z2 | ! f and |z3 – z4 | ! l, the mag-
netic lens and the diaphragm can be placed so close to
each other that h ! f, l, which allows one to assume
h ≈ 0. Then combined focusing is feasible regardless of
the particle density as well. However, it should be borne
in mind that the focal distance depends on the density
[l = l(ρ)] rising with the latter.

The assumption that the effect of the diaphragm on
the transverse focusing is negligible is tantamount to

where f0 is the focal distance for transverse focusing
performed by the diaphragm.

Since [2]

f
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and

we have

This means that this inequality can be met by
decreasing the period T (since 0 ≤ t ≤ T) and the veloc-
ity v0.1 The effect of combined focusing is also
enhanced if E and R are selected optimally, since f0 and
l are variously governed by the electric field distribu-
tion.

Finally, note that combined focusing of fine
uncharged particles by axially symmetric magnetic and
electric fields in a vacuum is possible in a first approx-
imation.
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Abstract—Slow variation (for 10–40 min) of the electrical conductivity of a water cell in weak permanent
magnetic fields was studied. Relaxation characteristics and the dependence of the resistivity on a magnetic field
ranging between 0.02 and 0.11 G were obtained. It was found that the cell response lags behind magnetic field
switching-on and switching-off. © 2000 MAIK “Nauka/Interperiodica”.
Extralow (comparable to geomagnetic) ac (0.01–
200 Hz) magnetic fields are known to influence physi-
cochemical properties of aqueous solutions, water, and
ice [1–3]. The electrical conductivity, dielectric loss
tangent, refractivity index, and other properties vary
within several hours after magnetic treatment.

In this work, we show that below-geomagnetic per-
manent magnetic fields may reversibly alter the electri-
cal properties of a water-filled cell through which a
direct current passes.

Experiments were performed against the magnetic
field of the Earth. The mean field strength, its vertical
and horizontal components, and the component normal
to the electric field of the cell were 0.59, 0.56, 0.17, and
0.58 G, respectively. Geomagnetic fluctuations were
not taken into account.

An additional magnetic field was generated by a
permanent magnet, a solenoid, or a straight conductor
4.5 cm distant from the center of the cell. In the last
case, the field generated at the center of the cell was
directed vertically and normally to the electric field of
the cell. Hereafter, magnetic field values in the text and
in the figures are those at the center of the cell.

The cell was a Teflon cylinder 20 mm in diameter
with planar electrodes spaced 5 mm apart. Stainless-
steel, titanium, and carbon electrodes were tested. The
electrodes were arranged vertically.

The cell was filled with distilled or twice-distilled
water (with a conductivity of 4 × 10–6 Ω–1 cm–1). The
liquid was exposed to air. Prior to experiments, the
water-filled cell settled for a day. Then, the current was
passed through the cell for 1 or 2 h until the liquid was
completely polarized. The cell was placed in a thermo-
stat made of foamed plastic. A magnetic field source
was outside the thermostat. The experiments were per-
formed at temperatures of 21–23°C and 1.3°C.
Figures 1 and 2 refer to the cell with stainless-steel
electrodes at 21°C.
1063-7842/00/4503- $20.00 © 20351
We used a dc measuring bridge where the cell was
one of the branches. The supply voltage of the bridge
was constant, 1.5 V. The resulting signal was amplified
by a U5-10 differential amplifier and then recorded
with an S9-27 digital oscilloscope. The time resolution
of the bridge was 0.15 s. The desired effect was
observed against a monotone current drift. The drift
was taken into account upon processing oscillograms.

Figure 1 shows a current oscillogram for the cell
with distilled water when a magnetic field B = 0.11 G
was generated by the straight conductor. The resistance
of the cell increases to a maximum value for a time lag
τL = τ1 + τ2 (τ1 and τ2 are the delay time and the time of
response to field switching-on) and then relaxes to its
initial value for a time τR = τ3 + τ4 (τ3 and τ4 are the
delay time and time of response to field switching-off).
For a current through the cell of 0.83 µA/cm2, the resis-
tance increased by about 1% for τL ≈ 20 min. The delay
between field switching-on and the beginning of resis-
tance change was τ1 ≈ 5 min. Once the magnetic field

2

0 60

∆I/I, %

t, min

4

120

τ1τ2

τ3τ4

Fig. 1. Time variation of the relative change in the current
through the cell in the presence of the additional magnetic
field B = 0.11 G of the conductor (switching-on and switch-
ing-off instants are indicated by arrows).
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Fig. 2. (a) Relative change in the cell resistance and (b) time τL vs. additional magnetic field of the conductor at 21°C.
was switched off, the cell passed into its initial state
(with a delay τ3 ≈ 5 min) for a time τR ≈ 20 min. When
the cell was filled with twice-distilled water, the relative
current change was the same for the same magnetic
field.

Similar effects are observed in the fields of the sole-
noid and the permanent magnet. When the field of the
solenoid, B = 0.15 G, was switched on, the current
change was 2.5% with τL ≈ 30 min for a cell current of
1.5 µA/cm2. An increase in the resistance does not
depend on the field polarity. At 1.3°C, the current
behaved in a similar way.

In Fig. 2a, the relative change in the resistance of the
cell with distilled water is plotted against the applied
magnetic field for a cell current of 0.78 µA/cm2.
Figure 2b shows the dependence of the transition time
τL on the applied magnetic field. The effect also takes
place if the magnetic field is aligned with the electric
field of the cell and is again independent of the mag-
netic field direction.

Note that, when the magnetic field is switched off
within the time τ2, an increase in the resistance grows
during the time of inertia τi ≤ τ2 and, after attaining a
maximum, it returns to its initial value in both cases
(the magnetic field is parallel or normal to the electric
field of the cell).

Thus, by measuring the relative change in water
conductivity, we discovered the effect of initiating slow
physicochemical processes in an electrolytic cell when
extralow magnetic fields are applied. It was found that
the cell response lags behind magnetic field switching-
on and switching-off.

The effect can be attributed to a change in the degree
of impurity-ion (primarily dissolved carbon dioxide)
hydration in the bulk of water, probably because of the
modified water structure [4]. As a result, the adsorption
of ions hydrated on the electrode surfaces changes,
causing the reconstruction of the double electrical
layer.
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Abstract—A compact multichannel mass analyzer is described, which enables one to analyze the composition
of multicomponent ion beams. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Beam technologies presently find increased usage in
mechanical engineering. New ion sources for these pur-
poses are under development, including sources with a
multicomponent (mixed) ion beam. These include ion
sputtering sources, whose beams contain ions of work-
ing gas in addition to metal ions. In order to determine
the composition of ion beams produced by such
sources, we have developed and employed a compact
multichannel mass analyzer. Small dimensions and
mass of the instrument make it possible to employ it
even in small vacuum chambers. Thanks to multichan-
neling, the instrument enables one to determine the
mass of ions of all elements of the periodic table and
their ratios in the beam.

PRINCIPLE OF OPERATION 
OF THE INSTRUMENT

As in the case of most mass analyzers, the operation
of the instrument is based on the dependence of the
radius of turning of charged particles in a transverse
uniform magnetic field on their mass and energy
according to the equation

where R is the Larmor radius (cm), W is the particle
energy (eV), M is the particle mass (amu), z is the
atomic number, and B is the magnetic induction (G) [1].

The distinguishing feature of the instrument con-
sists in the fact that its magnetic field is constant; and
ten magnetic tracks are selected in this field with preas-
signed radii, each track with its own collector. There-
fore, only two quantities are variable, namely, the mass
of particles and their energy. By varying the particle
energy, one can receive the beam jet and measure its
current in different collectors, thereby determining the

R
144 WM–

zB
-----------------------------,=

† Deceased.
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particle mass in the beam or, with fixed energy of the
beam, search for its components of different masses in
different collectors, which makes it possible to analyze
the composition of the beam without varying the oper-
ating mode of the ion source being investigated.

INSTRUMENT DESIGN

The uniform magnetic field in the instrument is pro-
duced with the aid of magnet poles (see figure). The
magnetic gap between the poles is taken to be 5 mm
from the considerations that the magnetic field must be
as maximum as possible with acceptable resolution of
low values of current by the measuring instrument. The
magnetic field is realized with the aid of permanent
samarium–cobalt exciters 40 × 40 × 12 mm in size with
induction on the surface of ≈2 kG. Five piles of two
exciters each are installed between the magnet pole and
the magnet system yoke closing the external magnetic
flux. Therefore, 20 exciters in all are used in the instru-
ment. The magnetic induction in the working magnetic
gap is 3500G ± 1.5%. Both magnet poles, each 7 mm
thick, are made of magnetically soft iron.

It was decided to use ten magnetic tracks, i.e., radii,
in the following sequence: R1 = 5.2 cm, R2 = 5.9 cm,
R3 = 9 cm, R4 = 12 cm, R5 = 19 cm, R6 = 29 cm, R7 =
38 cm, R8 = 58 cm, R9 = 86 cm, and R10 = 650 cm.
Owing to this choice of radii, one could use two or three
tracks in the energy range from 5 to 70 keV to deter-
mine the mass of some element. The radius R10 =
650 cm was selected for recording charged clusters.

All collectors of each track are identical. A collector
is a plate bent to form a bracket with parallel walls. The
gap between the walls is 3 mm, with a thickness of each
wall of 0.3 mm. The collectors are secured on insula-
tors, which make it possible to arrange them on a tan-
gent to a preassigned radius. Each collector is located
at a distance of 1 mm from the magnet poles, the scat-
tered field from which (of .200 G) extends to cover the
collectors. This is sufficient to suppress the secondary
electron emission.
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Signals from the collectors are measured by an M95
microammeter with a multiple shunt, which permits us
to measure currents of up to 10–8 A.

Two slits arranged horizontally to the ion beam axis
are used to cut from the beam a jet entering the mag-
netic field of the analyzer. The size of the jet is defined
by the gap between the slits and the gap between the
magnet poles of the mass analyzer (equal to 5 mm). The
gap between the slits may vary. It was experimentally
selected to be 0.4 mm. The distance between the first
and second slits is 10 mm.

Located on the face of the mass analyzer is a square
collector plate insulated from the housing, sized 100 ×
100 mm, covering the entire front surface of the instru-
ment and receiving the entire beam. The secondary
electron emission from this plate is suppressed by the
scattered field of the mass analyzer and by magnetic
strips of barium ferrite specially installed for the pur-
pose. The error of measurement of the beam current
using this collector does not exceed 15%. The second
slit is arranged on this plate at a horizontal distance of
10 mm from the first slit of the mass analyzer and per-
pendicular to the latter, with a size of 2 × 1 mm and with

650 cm
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58 cm
38 cm

29 cm

19 cm

12 cm

9 cm

5.9 cm

5.2 cm

R1 = 5.2 cm

40
19

0

10

50
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3
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1

R2 = 5.9 cm

Magnetic pole of the mass analyzer: (1) collectors, (2) slits
for cutting out the beam jet, (3) paths of magnetic tracks,
(4) magnet pole. 
a collector behind it for measuring the density of the
beam current.

The entire instrument is installed in four vertical
guides with two adjusting screws for aligning the
instrument axis with the beam axis.

ADJUSTMENT OF THE INSTRUMENT

(1) The exactly measured radii of the first and sec-
ond magnetic tracks (R1 = 5.2 cm and R2 = 5.9 cm) were
used to determine the real magnetic field of the mass
analyzer.

(2) The inert gases He, Ne, Ar, Kr, and Xe were used
as reference masses to exactly determine all of the
remaining radii except for the last radius R10.

(3) The resolving power of the mass analyzer was
estimated for nitrogen and oxygen by the equation
∆m/m = 1/r, where ∆m is the difference between the
masses being measured, m is the maximum mass, and r
is the resolving power [2] when atmospheric air was
used as the working gas in the source. The resolving
power proved to be equal to 8.

(4) In some cases in measuring beam components,
usually with heavy masses, when the beam jet currents
were very low, the current-measuring instrument regis-
tered a negative current of the order of 10–6–10–7 A.
This reading may be attributed to the departure of pos-
itive ions from the collector or to the penetration of neg-
ative ions into the collector. The latter possibility is
ruled out, because negative particles cannot enter the
collector in passing through the magnetic field of the
mass analyzer. The departure of positive ions from the
collector may occur in the case of ion–ion emission and
repulsion of bombarding ions. Both these processes are
insignificant in magnitude and, in balance with ions
migrating to the collector, cannot produce a negative
current through the microammeter. Most likely, when a
wall plasma is formed in the collector as a result of the
processes of gas release, dispersion, neutralization,
recombination, secondary electron emission, and oth-
ers, low-energy positive ions are emitted from this
plasma and get onto the housing of the mass analyzer to
form a negative current through the current-measuring
instrument. In so doing, it becomes impossible to accu-
rately measure the beam jet with the microammeter.

This obstacle may be overcome in two ways,
namely, by increasing the width of the mass analyzer
slits to increase the beam jet current or by performing
calorimetric measurements. The main contribution to
the collector heating is made by much higher energy
ions arriving at the collector in the beam jet. Their
energy is several orders of magnitude higher than that
of ions leaving the collector, which provides for an
almost exact measurement of energy and, conse-
TECHNICAL PHYSICS      Vol. 45      No. 3      2000
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quently, of the beam jet current, according to the equa-
tion

where c is the heat capacity of the collector material, m
is the mass of the collector, ∆T is the temperature dif-
ference, I is the beam current, U is the particle energy,
and t is the time during which the beam affects the col-
lector.

Therefore, with a fixed energy and time during
which the beam affects the collector (microcalorime-
ter), it is only the temperature difference that is mea-
sured. Experience suggests that the most acceptable
sensor for measuring the temperature difference is pro-
vided by a base-emitter transistor p–n junction, which
retains the linearity of the temperature characteristic in
a wide range and a high sensitivity, as distinct from
thermocouples and thermal resistors.

CONCLUSIONS

(1) An instrument installed on a moving carriage
across the beam axis enables one to measure the total
beam current, the distribution of the beam current den-
sity, the mass composition of the beam, the ratios of the
beam components, and their distribution over the beam
cross section.

I
cm∆T

Ut
---------------,=
TECHNICAL PHYSICS      Vol. 45      No. 3      2000
(2) The small size (20 × 18 × 12 cm) and mass
(17 kg) of the instrument make possible its use under
simple laboratory conditions.

(3) The recording of currents by a microammeter
enables one to perform a rapid analysis of the beam and
affect the source operation during the experiment. The
calorimetric method of measurement is also prompt,
because the temperature difference in the bridge com-
parison circuit is likewise measured by a microamme-
ter.

(4) The operating experience of the instrument indi-
cates that its resolving power may be increased both by
increasing the magnetic field and by increasing the
magnetic track length.

The mass analyzer described above proved to be a
convenient instrument for the investigation of sources
producing multicomponent beams in facilities that are
not provided with special separation magnets.
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Abstract—Radiation of relativistic particles in a plane magnetic field (for example, in an undulator) is studied.
The magnetic system is assumed to be plane and composed of permanent magnets. It is shown that there is a
class of special continuous rotations of the magnetization vector for magnetic substances providing changes in
the magnetic field of the system without changing the spectrum of spontaneous radiation of relativistic particles.
This property of electromagnetic radiation can be used in developing new models for undulators. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Undulators currently used as sources of magnetic
field are usually based on permanent magnets. Two
types of undulators are the most widely used: purely
rare-earth undulators [1] and undulators of the hybrid
type [2, 3]. In some cases, however, undulators of non-
conventional design (especially microundulators) are
used [4–7]. The purely rare-earth undulator used in the
free electron laser described in [8, 9] also has a noncon-
ventional scheme. The alignment of the magnetization
vectors of all magnets along the undulator axis causes
a significant increase in the amplification coefficient of
this undulator. Thus, the problem of studying the gen-
eral properties of plane undulators based on permanent
magnets and the properties of electromagnetic radia-
tion of relativistic electrons in such undulators assumes
great importance. In particular, the so-called Rotation
Theorem is well known [10]. The theorem states that, if
the magnetic moment of a magnetic substance at each
point of a plane magnetic system is rotated through an
angle θ without changing the system configuration, the
vector of the magnetic field of the system is rotated
through the angle –θ. The goal of this work was to
prove another general property of plane magnetic sys-
tems consisting of permanent magnets. It is shown that
if the magnetic moment of a magnetic substance at each
point of the upper part of a plane magnetic system is
rotated through an angle θ, whereas each magnetic
moment at the lower part of the system is rotated
through the angle –θ, the modulus of the Fourier trans-
form of the magnetic field produced by the system
remains unchanged, although the form of the magnetic
field is changed.
1063-7842/00/4503- $20.00 © 20356
1. UNIVERSALITY OF FOURIER 
TRANSFORMATION OF A PLANE MAGNETIC 

FIELD

Consider an infinite magnetic system uniform along
the horizontal X-axis. The magnetic field produced by
the system is [11]

(1)

where M(y, z) is the magnetization vector of the system
and R = r – r', R = |R |.

Substituting (1) into the equation for Fourier trans-
formation of a magnetic field along the y-axis in the
median plane (z = 0) gives on rearrangement [12]

(2)

Consider rotation of the magnetic moment at each
point of the upper part of the system through an angle
θ (z' > 0). From the analytical geometry equations for
vector rotation, it follows that, if z' > 0 and p > 0, then

(3)

The rotation of the magnetic moment at each point
of the lower part of the system (z' < 0) through the angle
–θ can be considered similarly. It was found that the
same phase factor appears in integral (2) taken over the
lower part of the system. Thus, for p > 0,

(4)

H y z,( ) r'3
3R M y' z',( )R( ) M y' z',( )R2–

R5
------------------------------------------------------------------------,d

V

∫=

H̃z p( ) 2π y'd z' ipy'( ) pz'–( )expexpd

∞–

∞

∫=

× p Mz y' z',( ) ipMy y' z',( ) z'sgn( )–{ } .

Mz' y' z',( ) iMy' y' z',( )–

=  Mz y' z',( ) iMy y' z',( )–[ ] iθ–( ).exp

H̃z' p( ) H̃z p( ) iθ–( ).exp=
000 MAIK “Nauka/Interperiodica”



        

INVARIANCE OF ELECTROMAGNETIC RADIATION SPECTRA 357

                      
In the same manner, we obtain for p < 0

(5)

Equations (4) and (5) show that the modulus of the
Fourier transform of the magnetic field does not change
if the magnetic moment at each point of the upper part
of the magnetic system is rotated through an angle θ
and each magnetic moment in the lower part of the sys-
tem is rotated through the angle –θ (see figure). How-
ever, the Fourier transforms for p > 0 and p < 0 have dif-
ferent phase factors. Therefore, the shape of the mag-
netic field is changed. The difference between the
magnetic fields of two undulators of various design is
considered briefly in [8]. The second undulator is
obtained by rotating the permanent magnets in the
upper part of the first undulator by the angle –π/2; and
in the lower part, by the angle +π/2. The results of brief
comparison of the magnetic fields produced by these
undulators are in complete agreement with the results
discussed above.

2. INVARIANCE OF ELECTROMAGNETIC 
RADIATION SPECTRA

Consider spontaneous electromagnetic radiation
generated by relativistic particles in a plane magnetic
field. First, we consider the case of dipole radiation.
The spectral characteristics of the dipole radiation are
determined by the modulus of the Fourier transform of
the vertical component of the magnetic field [13]. Let
the magnetic system be rearranged as described in Sec-
tion 1. It follows from the results obtained in Section 1
and the above-mentioned property of the dipole radia-
tion that the spectral characteristics of the electromag-
netic radiation of a relativistic particle remain unaf-
fected by such a rearrangement of the magnetic system.

Consider an infinitely long plane undulator with the
period l. The integral of the magnetic field over the
undulator period is zero. The wavelength λ of the nth
harmonic of the undulator radiation at an angle θ to the
undulator axis is

(6)

The undulation parameter K in the case of a nonsi-
nusoidal magnetic field is

(7)

where βx(y) is the horizontal component of the reduced
velocity of the particle.

As follows from the equations of motion,

(8)

H̃z' p( ) H̃z p( ) iθ( ).exp=

λ l

2nγ2
----------- 1 γ2θ2 0.5K2+ +( ).=

K2 2
l
---γ2 βx

2 y( ) y,d

0

l

∫=

βx y( ) e

mc2γ
------------ Hz y'( ) y' βx 0( ),+d

0

y

∫=
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where e is the particle charge, m is the particle mass,
and c is the velocity of light.

The Fourier coefficients of the function βx(y) are

(9)

The lateral displacement of the particle on travers-
ing one undulator period is zero. Therefore, the Fourier
coefficient at k = 0 is also zero; i.e., βx0 = 0. According
to the Parseval theorem,

(10)

It can be easily obtained from (8) that at k ≠ 0 the
Fourier coefficients of the reduced velocity of the par-
ticle are proportional to that of the undulator magnetic
field 

(11)

(12)

The Fourier coefficient of the undulator magnetic
field (12) can be written in a manner similar to (2).
The following statement can be proven using equations
(7)–(12).

Let the magnetic moments in the upper part of the
system be rotated through an angle θ and in the lower
part, through the angle –θ (see figure). In this case, only
the phase factors in the Fourier coefficients of the undu-
lator magnetic field (12) and in the reduced velocity of
the particle (9) are changed, whereas the undulation
parameter remains unaltered, as follows from (7) and
(10). Therefore, the position of spectral lines of the

βxk
1
l
--- i

2π
l

------ky 
  βx y( )exp y.d

0

l

∫=

1
l
--- βx

2 y( ) yd

0

l

∫ βxk
2.

k ∞–=

∞

∑=

βxk
i

2π
------ el

kmc2γ
---------------Hzk,=

Hzk
1
l
--- i

2π
l

------ky 
  Hz y( )exp y.d

0

l

∫=

2
1

z

2

2
2

1

1

1

Y

Magnetic moment rotation in a plane magnetic system
based on permanent magnets: (1) initial position of the mag-
netic moments; (2) final position of the magnetic moments.
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undulator radiation also remains unchanged. However,
the intensity of a particular harmonic of the undulator
radiation can be changed because of variations in the
undulator magnetic field. This problem should be stud-
ied in more detail.
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Abstract—The optimum parameters of a dielectric layer near the substrate in the interference multilayer struc-
ture are calculated. The calculations showed that this layer should have the index of refraction n ~ 3. The results
are presented of measuring the Kerr angle of magnetooptical rotation in the multilayer structure, in which GeO
films were used as dielectric layers for the first time. The maximum Kerr angle of rotation and magnetooptical
quality observed in this system were 0.75° and 0.34°, respectively. These values exceed those inherent in the
known information carriers, which demonstrates the advantage of this structure for use in magnetooptical discs.
© 2000 MAIK “Nauka/Interperiodica”.
At present, rare earth–transition metal amorphous
films are extensively used for manufacturing magne-
tooptical (MO) discs [1]. For this reason, the search for
methods of increasing the Kerr polar effect, which
determines the magnitude of the detected signal, is
urgent. One of the methods is the deposition of a dielec-
tric layer (DL) [2], which, according to the theory [3],
allows one to increase the Kerr rotation by a factor of n2

due to interference effects, where n is its index of
refraction. According to the ISO International Stan-
dard, information should be read from the substrate
side of the MO disc. In this case, the DL is placed
between the substrate and the magnetic layer and the
MO rotation substantially depends on the difference
between the indices of refraction of the substrate and
the DL, which means that the latter should have large n
[4]. As a storage medium in the MO discs, a multilayer
interference structure is used, which consists of a mag-
netoactive layer embedded between the dielectric lay-
ers and of a reflection layer. The systems with SiO [4],
ZnS [5], and AlN [4, 6] used as DLs were studied. They
demonstrated an increase in the Kerr rotation angle by
factors of 1.6, 1.75, and 1.9 compared to a single-layer
film. Theoretical calculations showed that the Kerr
effect can be enhanced up to 90° by selecting optimum
parameters of the DL [7]. 

In this paper, we present the calculation and the
experimental study of a multilayer structure in which
GeO films were used as DLs for the first time and amor-
phous DyFeCo films were used as the magnetoactive
and reflecting layers. 

Samples were prepared by thermal evaporation in
vacuum (3 × 10–4 Pa). The interfering dielectric GeO
layer, the magnetoactive DyFeCo layer (10 nm thick),
the dielectric GeO layer (34 nm thick), and the reflect-
ing DyFeCo layer were successively deposited on glass
1063-7842/00/4503- $20.00 © 20359
substrates whose temperature was 20–30°C. The struc-
ture thus obtained was covered with a protective GeO
layer 150 nm thick. The thickness of the dielectric GeO
layer near the substrate was varied from 60 to 102 nm.
The reflecting layer was selected to be larger than the
skin layer for the wavelength range from 780 to 820 nm
used in the MO storage and was 70 nm thick. The sche-
matic of this system is presented in Fig. 1.

The DyFeCo magnetic layers contained 20 at.% of
Dy and 80 at.% of FeCo, the ratio of Fe to Co being 2 : 1.
This provided perpendicular anisotropy in the films, the
optimum value of the coercive force (Hc ≈ 3 kOe), and
the maximum Kerr angle of rotation per layer θk ≈
0.17°. 

The MO parameters were measured on an MO setup
with zero compensation in fields up to 16 kOe. The
coercive force was measured from the MO hysteresis
loops. The reflection coefficient R was measured with a
Specord UV-VIS modernized spectrophotometer. To
find optimum parameters of the DL near the substrate
at which the Kerr angle of rotation should resonantly

Air 0 N0 = n0 = 1

Glass substrate 1 N1 = n1 = 1.52

Dielectric layer 2 N2 = n2 = ?

Magnetoactive DyFeCo layer 3 N3 = 2.4 – i2.6

Dielectric GeO interlayer 4 N4 = n4 ~ 2.8

Reflecting DyFeCo layer 5 N5 = 2.4 – i2.6

Protective GeO layer 6 N6 = n6 ~ 2.8

Q3 = Q5 = 0.0149 + i0.006

Fig. 1. 
000 MAIK “Nauka/Interperiodica”
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increase due to interference effects, we calculated the
index of refraction and thickness of this layer from the
expressions [7]

(1)

(2)

where δ2 = 2πn2h2/λ is the phase incursion in a layer of
thickness h2; Nj = nj – ikj is the complex index of refrac-
tion of the jth layer, where nj is the real index of refrac-
tion and kj is the absorption coefficient; and the sub-
scripts correspond to the situation when the dielectric
layer (j = 2) is adjacent, on one side, to the external
medium (j = 1) and to the magnetic layer (j = 3) on the
other side. 

The calculations were performed for the structure
presented in Fig. 1. Here, the media on both sides of the
DL providing the interference themselves consist of a
set of layers; n1, k1, n3, k3 correspond to the effective
values, which in turn were determined from coeffi-
cients of reflection from corresponding interfaces. 

Taking into account that the glass substrate is trans-
parent (N2 = n2), we can write the amplitude reflectance
from the substrate side in the form [8]

(3)

and the reflection coefficient of the system will be
described by the expression

(4)

where rij = (Ni – Nj)/(Ni + Nj) and ∆01 and ∆12 are the
changes in the phase at the interfaces, which are equal
to 0 or π, depending on whether r01 and r12 positive or

n2
2 n1n3 n3k1

2 n1k3
2–( ) n1 n3–( ),⁄+=

δ2tan n2 n1 n3–( ) n1k3 n3k1+( ),⁄–=

r02 r01 r12 4πn1h1 λ⁄cos+( )=

× 1 r01r12 4πn1h1 λ⁄cos+( ) 1–

R02

=  
r01

2 r12
2 2r01r12 ∆01– ∆12 4πn1h1 λ⁄–+( )cos+ +

1 r01
2 r12

2 2r01r12 ∆01 ∆12 4πn1h1 λ⁄–+( )cos+ +
----------------------------------------------------------------------------------------------------------------,
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Fig. 2. Dependence of the Kerr angle of rotation on the
thickness of the dielectric layer near the substrate. 
negative; i.e., in this case, ∆01 = ∆12 = π. Thus, the cal-
culation of R02 results in the replacement of the two
interfaces on the substrate side relative to the DL by one
effective surface. The effective value n1 eff of the real
index of refraction of the medium on the substrate side
was obtained from the expression [8] 

(5)

(6)

The effective value of the index of refraction n3 eff
and the absorption coefficient k3 eff on the side of the
magnetoactive layer were obtained from the measured
amplitude reflection coefficient of the effective surface,
which replaced two neighboring interfaces, starting
with the protecting GeO layer. To simplify the calcula-
tions, we neglected complex magnetooptical parame-
ters in the index of refraction of the DyFeCo films
because of their smallness. Based on the general
expression for the amplitude reflection coefficient [7],
we can write the following expressions:

(7)

(8)

(9)

(10)

(11)

(12)

Our calculations showed that the DL should have
the index of refraction n = 3. The GeO films are the best
candidates for such layers, because the measurement
showed that their index of refraction is n ~ 2.8. Calcu-
lated from (2), the optimum thickness h2 of the GeO
film in the structure considered was ~95 nm. 

The Kerr angle of rotation in the dielectric GeO film
with optimum thickness can be evaluated from the
polarization of light reflected from the external surface
of this multilayer structure. In the approximation linear
in magnetization, this angle is [9]

(13)

R02 n1  eff n 2 – ( ) 
2

 n 1   eff n 2 + ( ) 
2–

 ,=

n1  eff n 2 1 R 02 2 R 02 ± + ( ) 1 R 02 – ( ) 
1–

 .=

r46 r45 r56 i4πn5h5 λ⁄–( )exp+[ ]=

× 1 r45r56 i4πn5h5 λ⁄–( )exp+[ ] 1– ,

r45 N4 N5–( ) N4 N5+( ),⁄=

r56 N5 N6–( ) N5 N6+( );⁄=

r36 r34 r46 i4πn4h4 λ⁄–( )exp+[ ]=

× 1 r34r46 i4πn4h4 λ⁄–( )exp+[ ] 1– ,

r34 N3 N4–( ) N3 N4+( );⁄=

r26 r23 r36 i4πn3h3 λ⁄–( )exp+[ ]=

× 1 r23r36 i4πn3h3 λ⁄–( )exp+[ ] 1– ,

r23 N2 N3–( ) N2 N3+( );⁄=

R26 r26
2 ,=

N3  eff n 2 1 R 26 2 R 26 ± + ( ) 1 R 26 – ( ) 
1–

 ,=

N3  eff n 3   eff ik 3  eff .–=

θk Im χ r⁄( ), if χ  ! r ,=
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where r± = r ± χ is the amplitude reflection coefficients
for circularly polarized components with right (+) and
left (–) directions of rotation, respectively. 

These coefficients were determined using the
scheme described above, but using the index of refrac-
tion for circularly polarized waves in the magnetoactive
medium, which is described by the expression [9]

(14)

where Nj is the complex index of refraction, which is
determined by the diagonal component of the dielectric
constant tensor, and Qj is the complex MO parameter
related to the gyrotropy of the magnetic medium. 

In contrast to the above calculations, we should con-
sider the entire system, so that expressions (7)–(9)
should be supplemented by the expressions

(15)

(16)

Having thus obtained  and , we can determine
θk from (13). The necessary values of MO and optical
parameters of the DyFeCo films (Fig. 1) were taken
from the data for amorphous TbFe films [10, 11]. The
Kerr angle of rotation was measured to be ~0.7°. 

The experimental dependence of the Kerr angle of
rotation on the DL thickness for the multilayer struc-
ture is shown in Fig. 2. This dependence exhibits a res-
onance, which suggests that the interference effect
increases the MO rotation. One can see from Fig. 2 that
the maximum angle of rotation 2θk = 1.5° corresponds
to the structure with the DL thickness ~81 nm, in good
agreement with calculations. Such an angle of rotation

N j
± N j 1 Q j± ,=

r16 r12 r26 i4πn2h2 λ⁄–( )exp+[ ]=

× 1 r12r26 i4πn2h2 λ⁄–( )exp+[ ] 1– ,

r12 N1 N2–( ) N1 N2+( );⁄=

r06 r01 r16 i4πn1h1 λ⁄–( )exp+[ ]=

× 1 r01r16 i4πn1h1 λ⁄–( )exp+[ ] 1– ,

r01 N0 N1–( ) N0 N1+( ).⁄=

r06
+ r06

–

TECHNICAL PHYSICS      Vol. 45      No. 3      2000
is 4.5 times larger than that for a single-layer magnetic

film, and the corresponding MO quality θk is 0.34°.
These values exceed the corresponding parameters for
known information carriers, made of rare earth–transi-
tion metal films. Thus, GeO films of optimum thickness
used as the DL in multilayer film structures increase the
Kerr angle of rotation by several times compared to a
single-layer film. These are promising media structures
for use in MO discs. The calculations based on the
interference effects are in good agreement with the
experimental data and can be used for the evaluation of
optimum parameters of the dielectric layer.
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Abstract—The current-carrying capacity of a wide high-temperature superconducting film under conditions of
rapid injection of current is investigated theoretically. An analytic expression is derived for the rate of current
injection into the film at which a marked degradation of the current-carrying capacity of the film occurs. The
obtained results may be important from the standpoint of analyzing the stability of superconducting ac devices.
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The close relationship between thermal and electro-
magnetic phenomena in superconductors may lead to
the emergence of thermomagnetic instability in them
[1]. The conditions of emergence and development of
thermomagnetic instability have been studied in detail
for low-temperature superconductors. It is known that
this effect defines the value of the current-carrying
capacity Iq of composite superconductors [2, 3] and
superconducting films [4] and leads to anomalies of
inception and propagation of the normal phase [5, 6].
Upon transition to nitrogen temperatures, the above-
mentioned phenomena are extended to high-tempera-
ture superconductors (HTSC) to only a small degree.
We have investigated the scale of the rate of variation of
current I at which degradation of the current-carrying
capacity of a wide high-temperature superconducting
film becomes pronounced.

We will consider an HTSC film of thickness Df and
width W @ Df placed on a dielectric substrate of thick-
ness Ds @ Df, whose reverse side is stabilized with
respect to temperature T = T0. A transport current I is

injected into the film at a high rate . As the current
increases, saturated regions Wc〈Y〉W/2 are formed at the
film edges (Fig. 1), in which current density j is equal
to the critical density jc [7, 8]. The quantity Wc is
defined by the expression [7]

(1)

Here, i = I/Ic, and Ic = jcWDf is the critical current of the
HTSC film. Because jc depends on temperature, a
minor fluctuation of temperature δT > 0 causes a
decrease in Jc, and the magnetic flux penetrates into the
greater part of the film. As a result of the flux motion,
an additional electric field δE is induced in the film,
which causes additional heat release. Under certain
conditions, this process assumes an avalanche behavior

İ

Wc W 1 i2–( )1/2
2.⁄=
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[1] and the film makes a transition to the normal state at
a current Iq that is less than the critical current Ic.

In a linear (with respect to minor perturbations)
approximation, the heat and Maxwell equations in the
saturated region of the film have the form

(2)

(3)

where X and Y are coordinates (Fig. 1), t is the time, Cf

and kf respectively denote the specific heat and thermal
conductivity of the film, and σ(E) = ∂j/∂E is the differ-
ential conductance of the film.

C f
∂ δT( )

∂t
--------------- k f

∂2 δT( )
∂X2

----------------- jcδE,+= =

∂2 δE( )
δY2

----------------- µ0 σ E( )∂ δE( )
δt

---------------
∂ jc

∂T
-------∂ δT( )

∂t
---------------+

 
 
 

,=

jc jc

Z

Wc W/2

Y

X T = T0

Df

Ds

Fig. 1. Schematic of an HTSC film on a substrate. The
reverse side of the substrate is stabilized with respect to tem-
perature T0.
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In equation (2), we disregarded the variation of tem-
perature over the film width, because W @ Df, and in
equation (3), we ignored the nonuniformity of the elec-
tric field distribution over the film thickness. The distri-
bution of j, E, δT, and δE over the film width is shown
schematically in Fig. 2.

The temperature variation δT in the substrate is
described by the equation

(4)

with the boundary condition δT = 0 at X = Ds. Here, Cs

and ks are the specific heat and thermal conductivity of
the substrate, respectively. For a linear analysis of sta-
bility, we will seek δT and δE in the form

(5)

where Tc is the critical temperature and λ is the incre-
ment of the rise of perturbation.

We will substitute (5) into equations (2)–(4) and
integrate (2) and (3) with respect to the film thickness
(ignoring the dependence of δT and E on X) and (4)
with respect to the substrate thickness. We use the con-
dition of continuity of the heat flux on the film–sub-
strate boundary, with due regard for the effect of ther-
mal resistance of the interface Rbd, to derive for the
dimensionless perturbation ε the equation

(6)

with the boundary conditions ε = 0 at y = 2Wc/W and
∂ε/∂y = 0 at y = 1 [4]. Here,

(7)

It follows from equation (6) that the film stability
increases with τ(E). In the region of low electric fields,
the film conduction σ increases with the decrease in the
electric field E proportional to the rate of current injec-

tion  [1]. For small values of , the value of σ(E) is
high and the current-carrying capacity is equal to the

critical current Ic. As  decreases, the value of σ(E)
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decreases and the current Iq becomes less than Ic. In
order to derive the analytical solution of equation (6),
we will represent the dependence σ(E) in the form
σ(E) = j1/〈E〉 , where j1 ! jc and 〈E〉  is the electric field
averaged over the film width [7],

(8)

The condition of existence of a nontrivial solution of
equation (6), in view of (1), yields the equation for the
increment λ,

(9)

Assuming that the thermal conductivity of the sub-

strate and its thickness are sufficiently great (a @ | |,
b| | @ 1) and the effect of the thermal resistance of

the boundary is small (r| | ! 1), we derive the con-
dition of emergence of thermomagnetic instability
(Reλ = 0)

(10)

where iq = Iq /Ic.

We use (7)–(9) to derive from this condition the fol-
lowing equation for the current-carrying capacity:

(11)

The characteristic scale of the rate of injection of
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Fig. 2. The distribution of j, E, δT, and δE over the film
width. 
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current

(12)

defines the degree of degradation of the current-carry-

ing capacity. If  ≤ , then Iq ≅  Ic and a marked degra-
dation of the current-carrying capacity will be observed

at  ≥ . We will estimate the value of  for a Y–Ba–
Cu–O film located on a LaAlO3 substrate.
For estimation, we assume that jc ≅  1010 A m–2, j1 ≅
108 A m–2, ∂jc/∂T ≅  109 A m–2 K–1, Df ≅  10–6 m, ks ≅
20 W m–1 K–1, and Cs ≅  105 J m–3 K–1 to derive  ≈ 3 ×
108 A s–1 at W ≅  10–3 m and  ≈ 3 × 104 A s–1 at W ≅
10–1 m.

Therefore, in view of the model assumptions made
above, one can assume that no marked degradation
of the current-carrying capacity upon rapid injection
of current, which is associated with thermomagnetic
instability, will be observed in film bridges (W ≅
10−3 m). At the same time, recent progress in the tech-
nology of manufacturing high-quality wide (W ≅  10–1 m)
films and new applications associated with high rates of

variation of current ((  ≅  105–106 A s–1) make it neces-
sary to include the degradation of the current-carrying
capacity.

In so doing, a decrease of Iq with a rise in the rate of
current variation may lead to an anomalously rapid
propagation of the normal phase [5], its multiple incep-
tion on the defects [6], a redistribution of gas on the
film surface with normal regions [9], and an abrupt
decrease in the energy of critical perturbations destroy-
ing the superconducting state [5, 9, 10]. The criterion of
the emergence of such singularities is provided by the
condition [11]

(13)

where th = Cs /ks is the characteristic relaxation time
of temperature of the film–substrate system.

For wide HTSC films (W ≅  10–1 m) at th ≅  5 × 10−3 s

and Ic ≅  102 A, equation (13) yields th/Ic ≈ 10−2.

İ0
8π3 j1ksCs
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Therefore, the above-identified anomalies of destruc-
tion of superconductivity may be observed in wide
films. In conclusion, note that in low-temperature
superconducting films a marked degradation of the cur-
rent-carrying capacity occurs at relatively low rates of

injection of current  ≈ 103 A s–1 [4], which is associ-
ated with a substantial decrease in the heat capacity of
the substrate upon transition from nitrogen to helium
temperatures.
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of CuO Films by Magnetron Sputtering

É. M. Sher, V. M. Mikushkin, S. E. Sysoev, and B. T. Melekh
Ioffe Physicotechnical Institute, Russian Academy of Sciences, 

Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia
Received April 4, 1996; in final form, February 5, 1999

Abstract—The chemical composition of thin copper oxide films was studied by X-ray photoelectron spectros-
copy (XPS). The films were obtained by magnetron sputtering of copper metal, which was simultaneously oxi-
dized by atomic oxygen. It was demonstrated that a high rate of oxidation in molecular oxygen is achieved only
under relatively low rates of film growth (v < 100 Å/min). However, the growth rate of cupric oxide can be dras-
tically increased to v > 750 Å/min in a flow of accelerated oxygen atoms. High growth rates are necessary to
substantially cut the thermal budget and reduce the diffuseness of heterofunctions in fabricating layered struc-
tures containing copper oxide. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In this work, we solve the problem of drastic (more
than two orders of magnitude) increase in the rate of
copper oxidation upon forming thin oxide films. The
fabrication of oxide, and especially high-temperature
superconducting (HTSC) heterostructures with sharp
heterojunctions, is still a challenge. Low rates of copper
oxidation and final oxidation of cuprite (Cu2O) result in
a great thermal budget being needed for the growth of
cuprate materials and in an additional interface diffuse-
ness by hundreds of angstroms [1]. This problem is
inherent not only in MBE and magnetron sputtering of
metal copper but also in magnetron and laser sputtering
of completely oxidized copper. The fact is that, under
thermal decomposition, a partial transformation of
cupric oxide into cuprous oxide takes place and oxi-
dized copper can be reduced to the metal state under ion
bombardment. The problem was solved by using a flow
of atomic, instead of molecular, oxygen. It was demon-
strated earlier that the application of a plasma source
generating a beam of oxygen atoms and ions makes it
possible to completely oxidize copper at substantially
lower temperatures and to grow good HTSC films with-
out postgrowth annealing [2, 3]. However, the growth
rate of films with completely oxidized copper remained
very low (v < 6 Å/min). The increased rate of CuO
growth reported in this work (v > 750 Å/min) is
explained in simple thermodynamic terms. However,
the applicability of the thermodynamic approach was
not immediately evident, because the oxidation process
takes place in a nonequilibrium system consisting of a
limited number of copper atoms (in one or two mono-
layers of the material) and a still lesser number of oxy-
gen atoms in the flow. That oxygen atoms coming from
the existing sources are accelerated and thus can break
1063-7842/00/4503- $20.00 © 20365
already formed chemical bonds aggravates the situa-
tion.

EXPERIMENTAL

Copper oxide films were grown with a magnetron
sputterer (Ion Tech, England). Two FAB-110 sources of
atomic particles were placed into the vacuum chamber.
The sources are constructed in such a way that the mol-
ecules of a working gas, when subjected to internal
fields, dissociate and ionize. The ionized particles are
then accelerated towards the grid where they are neu-
tralized by a beam of secondary electrons. The outcom-
ing beam consists of only accelerated atoms, which
prevents static charging of the samples. One of the
FAB-110 sources was used for cleaning the substrate
(SrTiO3) by means of argon atom bombardment imme-
diately before copper deposition. The second source
was used for the oxidation of deposited metal with oxy-
gen atoms. The temperature of the substrate during
growth was T = 700°C.

The elemental and chemical compositions of the
films were studied by XPS with an LHS-11 electron
spectrometer (Leybold-AG, Germany). An aluminum
anode tube (AlKα line, hν = 1486.6 eV) was used as an
X-ray source. The energy spectra of primary photoelec-
trons were recorded at a constant incident energy E =
100 eV and an energy resolution ∆E = 1.0 eV. The
energy scale of the spectrometer was calibrated from
the metallic copper and gold lines. The spectra of cop-
per and oxygen photoelectrons were obtained by sum-
ming data of several successive measurements. This
substantially diminishes errors due to variations of the
X-ray intensity and the detector efficiency.

Samples were transported from the load lock to the
spectrometer in an atmosphere of dry nitrogen. This,
000 MAIK “Nauka/Interperiodica”
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however, could not completely prevent the surface from
being contaminated by carbon-containing molecules or
water. XPS is a surface-sensitive technique; that is why
it was important to get rid of the contaminations or to
take them into account in the results of analysis. Con-
ventional (for XPS) cleaning of the surface by ion etch-
ing was inapplicable, since the chemical composition
of the copper oxide was severely affected by the ion
beam: the cupric oxide lost oxygen and became
cuprous. Therefore, we used a computer “cleaning”
procedure to analyze the chemical composition. The
procedure lies in determining the contribution of
adsorbed molecules [2]. The binding energies of CO
and H2O, necessary for this procedure, were deter-
mined by examining a gold surface exposed to air. The
same lines, along with the copper satellite, were used
for the determination of static charges on dielectric
samples [2].

RESULTS AND DISCUSSION

Figure 1 shows photoelectron spectra of Cu2p3/2 for
three samples of copper oxide: (1) a bulk reference
sample and two films grown in the sputterer in the
atmosphere of molecular oxygen with (2) low and
(3) high growth rates. The reference was obtained by
thermally oxidazing bulk copper metal in molecular
oxygen to the formation of black CuO oxide scale. The
spectra contain the principal line A and the satellite B.
Their energy scale—the scale of binding energies of a
primary electron—was corrected for the value of the
static charge. The observed lines involve unresolved

B
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Fig. 1. (A) Principal and (B) satellite Cu2p3/2 lines in the
X-ray photoelectron spectra of (1) the bulk reference CuO
sample and copper oxide films grown in the atmosphere of
molecular oxygen with (2) low and (3) high rates.
elementary components that correspond to different
chemical states of copper. The analysis of the chemical
composition of the samples is presented in Fig. 2 as a
decomposition of the lines Cu2p3/2 and O1s. The con-
tribution from the adsorbed water and carbon oxide
molecules to the photoelectron lines of oxygen (Fig. 2,
curves 1b–3b) is no higher than several percent. The
decomposition of the photoelectron lines of copper and
oxygen allows one to determine the relative contents of
copper oxides and copper hydroxide. The latter is
formed by interaction of the surface with atmospheric
water or due to insufficient purification of molecular
oxygen used for film growth.

The decomposition of the photoelectron lines into
the components corresponding to different chemical
phases was performed according to the method
described in [4] and used earlier for the analysis of the
chemical composition of InP native oxides. In our case,
the problem is unambiguously solved by setting a
“comb,” i.e., differences between the binding energies
of the ground level of an atom in different chemical
states. The uniqueness of the decomposition was
proved by coincidence of the chemical compositions
determined with the copper and oxygen lines. Note that
this approach does not require accurate predetermina-
tion of the static charge on the samples. The charge is
found from joint analysis of both lines [5]. A compari-
son of the spectra presented in Fig. 2 suggests that sam-
ple 2, obtained at the low growth rate (v = 10 Å/min),
contains a greater fraction of CuO than sample 3,
grown with the high growth rate (v = 750 Å/min).

Decomposing photoelectron lines is a rather tedious
procedure, and further analysis of ten samples used the
ratio between the intensities of the satellite line B and
the principal line A. A satellite is absent in the spectrum
of monovalent copper; hence, its relative intensity may
characterize the fraction of bivalent copper or cupric
oxide in the mixture of the oxides. In this case, calibra-
tion was performed with regard for Fig. 2 for the refer-
ence sample, containing no more than 5% of monova-
lent copper. Degree of copper oxidation vs. the oxide
growth rate curves constructed from the relative satel-
lite intensities for two groups of samples are shown in
Fig. 3. Samples from the first group (curve 2) were
grown in the atmosphere of molecular oxygen; and
those from the second group (curve 1), in the flow of
atomic oxygen produced by the FAB-110 source.
The filled circle corresponds to the film subjected to
two-hour postgrowth annealing in the atmosphere of
molecular oxygen. As seen from Fig. 3, such an anneal-
ing does not increase the degree of oxidation in com-
parison with the best samples grown in situ. It also fol-
lows from this figure that a high degree of oxidation in
molecular oxygen is achieved only at low growth rates
(v < 10 Å/min), whereas the use of atomic oxygen
makes it possible to achieve the same result even at very
high rates (v > 750 Å/min) that exceed those reported
in [1–3] by two orders of magnitude.
TECHNICAL PHYSICS      Vol. 45      No. 3      2000
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Consider a mechanism of oxidation. Note, first of
all, that the densities of the oxygen and copper atom
flows are too low for the near-surface reaction in the gas
phase to proceed. According to our estimates, copper
islands, one or two monolayers covering cupric oxide,
or the mixture of cuprous and cupric oxides are oxi-
dized. Such a situation is observed under dynamic equi-
librium, when unoxidized copper is continuously
deposited onto a layer being oxidized. This process is
basically different from the oxidation of bulk metal by
gaseous oxygen, where the rate of the reaction is
defined not only by its free energy but also by diffusion
through the oxide layer. If the molar volumes of the
oxide layer and the metal are the same, the oxide may
completely inhibit oxidation, as, for example, with alu-
minum. That is why, in our case, the oxidation process
can be treated in thermodynamic terms. Under atmo-
spheric pressure and a substrate temperature T = 1000 K,
molecular oxygen can oxidize copper completely, par-
tially, or in two stages, because each of the following
reactions is characterized by a negative free energy
∆G° [6]:

Cu + 0.5O2  CuO, ∆G° = –16.05 kcal, (1)

2Cu + 0.5O2  Cu2O, ∆G° = –23.7 kcal, (2)

Cu2O + 0.5O2  2CuO, ∆G° = –8.35 kcal. (3)

In actual growth processes, oxidation, and espe-
cially final oxidation (3) of copper, are hindered
because of both an insufficiently high partial density of
oxygen and a high energy barrier of the reactions,
which is related to the necessity of breaking at least one
bond in an O2 molecule. Complete oxidation of copper
by molecular oxygen observed in our experiments indi-
cates that the energy barrier can be overcome at T =
1000 K. However, an insufficient partial pressure of
oxygen lowers the magnitude of the free energy ∆G° of
reactions (1)–(3) and, hence, the reaction rates. There-
fore, complete oxidation is achieved only at low growth
rates v < 10 Å/min.

The use of atomic, instead of molecular, oxygen
(0.5O2  O) increases the absolute values of the free
energy of reactions (1)–(3) by 28 kcal and virtually
eliminates the problem of energy barrtier. Therefore, a
sharp increase in the copper oxidation rate could be
expected for the case of classical atomic ensembles
described in terms of thermodynamics. Our system is
not classical. Here, a limited number of oxygen atoms
or molecules interact with copper atoms within a one-
or two-atom-thick surface layer. In addition, the oxy-
gen atoms are energetic (in practice, a beam of atoms is
difficult to thermalize). Nevertheless, as follows from
our experimental results, such a substitution has a great
beneficial effect. In this case, oxygen–copper interac-
tion can be considered as follows. Some atoms of an
oxygen flow are scattered by the surface and lost. The
rest enter the near-surface growth area of the film and
lose an excess of kinetic energy in collisions, some-
times destroying already formed chemical bonds and
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corresponds to two-hour postgrowth annealing in molecular
oxygen.
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causing the cupric-to-cuprous oxide transformation.
Multiple collisions thermalize oxygen atoms, and even-
tually they form chemical bonds.

Thus, we demonstrated that the use of a beam of
energetic oxygen atoms allows one to drastically
increase the degree of copper oxidation and the growth
rate of cupric oxide. This cuts the thermal budget and
reduces the diffuseness of heterojunctions in layered
structures.
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Abstract—Numerical simulation was used to analyze the quasi-periodic process induced against the steady
flow pattern around a blunt forebody by a pulse from an external source located in the incoming stream. © 2000
MAIK “Nauka/Interperiodica”.
Analysis of new methods of vehicle motion control
through external energy input into the incoming gas
stream is a current topic of substantial interest. Experi-
mental [1–6], analytical [7, 8], and computational
[9−17] studies of the effects of parameters of steady or
pulsed periodic sources (such as their location, geome-
try, intensity, and frequency spectra) on the flow struc-
ture and aerodynamic characteristics of vehicles have
been performed. Interesting phenomena discovered and
analyzed in these studies include the formation of cir-
culation flow regions at the nose of the body and con-
siderable reduction of wave drag (for certain combina-
tions of flow parameters). The most realistic and feasi-
ble method of energy deposition in the incoming stream
can be executed by means of focused high-frequency
laser light pulses [4, 5].

In this paper, we present some results of a numerical
study of the passage of the first pulse, which substan-
tially modifies and restructures the steady supersonic
flow pattern around a blunt forebody. We performed
numerous computational experiments with the follow-
ing statement of the problem. We analyzed the flow of
a spherical nose of a cylindrical or conical forebody
placed in a supersonic stream of a viscous heat-con-
ducting gas. In the region bounded by the surface of a
thermally insulated body, the bow wave (whose loca-
tion and geometry were computed in the course of the
solution), the symmetry axis, and the downstream
boundary, we numerically integrated the Navier–
Stokes equations, written in the conventional dimen-
sionless form with the parameters M∞, Re∞, Pr, and γ,
by the first-order accurate in time and second-order
accurate in space method described in [18, 19]. Here,
M∞ and Re∞ are the free-stream Mach and Reynolds
numbers, respectively; Pr is the Prandtl number; and γ
is the ratio of specific heats. The system was closed by
the equation of state for a perfect gas with a variable γ
and nondimensionalized by using the nose radius R,
density ρ∞, velocity U∞, and their combinations as ref-
erence parameters. This unambiguously defines the
1063-7842/00/4503- $20.00 © 20369
dimensional form of the dimensionless quantities con-
sidered below.

The steady flow pattern was perturbed by energy
release pulses with intensity I and repetition period T,
E(x, t) = Iδ(ωt – kx), carried by the incoming stream and
characterized by a steep leading and trailing edges.
Here, δ is the unit pulsed function (Durac’s delta func-
tion),

and the frequency ω, wavenumber k, and wavelength L
are related to T and U∞ as ω = 2π/T, k = 2π/L, and
L = U∞T.

Time was measured from the moment when the first
pulse reached the bow wave. The analysis below
mainly concerns the transient process of flow restruc-
turing in the interval 0 ≤ t < T between the first and sec-
ond pulse incidences. This model was used in a compu-
tational experiment to facilitate analysis of the physical
mechanisms of the onset and development of an
unsteady (probably quasi-periodic) regime involving
essentially different stages. It provides a complemen-
tary alternative to the statement of the problem ana-
lyzed in [9–14], where a high-energy distributed hot
spot located ahead of the body protected it from the
incoming stream.

Figures 1a–1h show the typical result of a numerical
experiment performed to simulate the principal stages
of the quasi-periodic process induced by the passage of
the first pulse and the corresponding spatiotemporal
evolution of the flow pattern. An external pulse inter-
acting with the bow wave gives rise to the two-wave
pattern of “shock disintegration” (here, contact discon-
tinuities are not considered and their evolution is not
monitored). The new bow wave moves upstream and
rapidly reaches a steady state. Inside the perturbed
region, an inner shock wave is generated (a), which
then moves toward the body (b). Its angle of inclination

δ z( )
1; z 0 1 2 …, , ,±=

0; z 0 1 2 …,, , ,±≠

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to the streamwise axis of the flow changes (c), which
leads to flow reversal behind the front. Then, the inner
shock wave reaches the curved body surface (d), is
reflected from it (e), and returns to the bow wave (f). At
the same time, a region of elevated pressure develops
behind the inner-shock front, exceeding its steady-flow
counterpart in amplitude and dimensions (the corre-
sponding drag coefficient being higher than the steady-
flow value by 40%). This leads to an increase in the
velocity component tangential to the surface and a “pis-
ton” effect that drives the gas outwards (g). After that,
the flow in the neighborhood of the nose is drastically
restructured (h): the peak pressure is shifted down-
stream of the body nose (as marked by the thick isobar
in Fig. 3), while an extensive pressure plateau appears
in the neighborhood of the nose, where a circulation
flow region with a steady-flow pattern similar to those
shown in [9, 14, 17] develops. Note that the drag coef-
ficient at this moment is lower than its steady-flow
value by 30%. The inner shock that has reached the
bow wave is reflected by it and moves back toward the

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Fig. 1. Fragments of flow field (isobars) for M∞ = 10, Re∞ =

0.83 × 105, and I = 1.7. The length scale is increased by a
factor of 2 along the normal to the body; t = 0.003 (a),
0.1 (b), 0.15 (c), 0.2 (d), 0.3 (e), 0.4 (f), 0.5 (g), and 0.75 (h).
body. This process is repeated, substantially decaying,
over several cycles, depending on the input parameters;
and the flow tends to its steady regime with low-ampli-
tude “long-lived” pulsations.

Figure 2 shows a detailed illustration of the inner
shock returning from the body to the bow wave. Here,
pressure distributions along the symmetry axis of the
problem are presented. Curve 1 corresponds to the ini-
tial moment of departure of the reflected inner shock
from the body, curve 4 represents the inner shock
approaching the bow wave, and curves 2 and 3 illustrate
intermediate stages. In brief, the basic features of the
process are as follows. First, the shock-front steepness
and velocity remain approximately constant, signifying
that the background flow ahead of the front is rather
uniform. Second, the flow field behind the front is uni-
form, with an amplitude almost independent of time (in
the interval shown here); that is, the flow is dominated
by dynamics that are normal, rather than tangential, to
the body.
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Fig. 2. Pressure distribution along the symmetry axis from
the bow wave (x = 0) to the body (x = 1) at t = 0.25 (1),
0.3 (2), 0.35 (3), and 0.4 (4).

Fig. 3. Pressure distribution over the body surface at t =
0.003 (1), 0.2 (2), 0.4 (3), and 0.75 (4).
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It should be noted that a rather high pressure is
observed in the vicinity of the axis immediately after
the inner shock is reflected and starts moving away
from the body. As the peripheral portion of the curved
inner-shock front advances along the body surface, the
flow rapidly expands and the pressure (as well as den-
sity) noticeably drops in the region bounded by the
stagnation point and the symmetry axis (the “piston”
effect of a shock drives the gas outwards).

Figure 3 shows the pressure distribution over the
body surface as a function of the polar angle ϕ at vari-
ous times during the first cycle. Curve 1 represents the
steady distribution at the initial moment (which corre-
sponds to Fig. 1a); curve 2, the initial moment of reflec-
tion of the shock incident on the body surface (see
Fig. 1d); curve 3, the inner shock moving from the
body toward the bow wave (see Fig. 1f); and curve 4
corresponds to the moment of return of the inner shock
from the bow wave to the body (Fig. 1h), illustrating the
shift of the pressure peak downstream of the body nose.
Later on, the development of a reverse-flow region
originates at a location lying between these points.

Figures 4a–4h show lines of constant flow pressure
illustrating the basic stages of the second temporal
cycle of the inner-shock movement and the spatiotem-
poral evolution of the flow pattern by analogy with that
illustrated by Fig. 1. Here, the inner-shock intensity is
obviously lower than that observed in the first cycle.
Accordingly, it is less easily visualized and is high-
lighted in each panel as a thick isobar lying in the
domain of peak pressure gradient within a somewhat
“diffuse” front of the inner shock.

Figure 4a is completely analogous to Fig. 1h: having
reached the bow wave in the first cycle, the inner shock
is reflected by it, moves back toward the body across a
region that is more uniform than in the first cycle
(Figs. 4b, 4c), and again hits the body surface (Fig. 4d).
Between the bow wave and the inner shock, an exten-
sive region of constant pressure appears, which is easy
to see in Fig. 4d, as it contains no isobars. Then, the
curved inner shock is reflected by the body (Fig. 4e)
and moves toward the bow wave and downstream along
the body surface (Fig. 4f). Here, as in the first cycle, we
again observe the “piston” effect driving the gas out of
the neighborhood of the body nose (Fig. 4g) and a
rather extensive region of uniform pressure develops
here, initiating the formation of a circulation flow
region in the vicinity of the stagnation point (note the
isobars closing up at the symmetry axis). Then, the
inner shock hits the bow wave (Fig. 4h) and this com-
pletes the second cycle.

Subsequent cycles basically repeat the first two, dif-
fering in some details. The decrement of the inner
shock is determined by the dissipative properties of the
fluid (mainly by the Reynolds number) and, to a lesser
extent (in the range of parameters explored), by the
temperature condition on the body surface. The respec-
tive cycle durations are 0.7 and 0.66. Thus, when the
TECHNICAL PHYSICS      Vol. 45      No. 3      2000
flow is perturbed by pulses with period T = 0.68 (for the
given parameters of the problem), one may be able to
produce interesting resonance phenomena by pumping
energy into a decaying quasi-periodic process.

Figure 5 shows pressure distributions along the
symmetry axis at various moments illustrating the pat-
tern of oscillatory motion of the inner shock from the
bow wave to the body and back during the first two
cycles of the quasi-periodic process. Curves 1 and 3
correspond to the motion of the inner shock toward the
body, while curves 2 and 4 represent its motion away
from the body during the first two cycles. In particular,
for these values of parameters, the average intensities
of the shocks that move toward the body are 1.56 and
1.13 in the first and second cycles, respectively, while
the corresponding intensities of reflected shocks are
1.76 and 1.19.

Figure 6 shows local and integral aerodynamic char-
acteristics of the body, namely, the stagnation pressure
p0 (at the body nose) and the total (wave plus viscous)

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Fig. 4. Fragments of flow field (isobars) for M∞ = 10, Re∞ =
0.83 × 105, and I = 1.7. The length scale is increased by a
factor of 2 along the normal to the body; t = 0.75 (a), 0.8 (b),
0.85 (c), 0.9 (d), 0.95 (e), 1.0 (f), 1.05 (g), and 1.1 (h).
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drag coefficient Cx, including their quasi-periodic tem-
poral dynamics. One can single out several characteristic
stages in the cyclic process that are specific to p0 and Cx.

Let us consider the principal stages of p0 evolution.
A sharp rise in p0 occurs at the moment of incidence of
the inner shock on the body surface and during the ini-
tial stage of its reflection from the body. The value of p0

increases by almost 70% over its previous background
value. This is followed by a rather extensive temporal
plateau of high p0. This stage of the cycle corresponds
to an interval when the inner shock moves from the
body to the bow wave. Then, the “piston” effect associ-
ated with the advancement of the peripheral portion of
the shock along the body surface begins to affect p0,
leading to its subsequent substantial decrease. This cor-
responds to the time interval when the inner shock
returns from the bow wave to the body. It hits the body
surface and is reflected by it, and the cyclic process is
repeated for a somewhat different p0.

Similar stages of a cyclic process are characteristic
of Cx as well, but with two essential distinctions. First,
since the drag coefficient Cx is an integral characteris-
tic, its evolution (as compared to that of the local char-
acteristic p0) proceeds in a smoother manner and the
sharp jumps in p0 are damped. Second, the entire
dynamics of Cx is slightly phase-shifted relative to that
of p0. In particular, the peak of p0 at the moment of
reflection of the inner shock by the body does not pro-
duce any peak in the drag coefficient Cx, because pres-
sure is lowered over the entire body surface by the “pis-
ton” effect of the preceding cycle and the value of Cx is
primarily determined by the integral of pressure over
the body contour (with the orientation of the normal
relative to the x-axis taken into account). Note that the
contribution of the “viscous” component (which has an
even greater damping effect on the peaks of flow char-
acteristics) to the total Cx is no higher than 5% for a
given M∞ and Re∞.
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Fig. 5. Pressure distribution over the body surface at t = 0.1
(1), 0.4 (2), 0.8 (3), and 1.0 (4).
A quasi-periodic flow pattern of the type described
here suggests that some resonance phenomena should
be expected to occur when the external pulse recur-
rence frequency is adjusted in a special manner [20],
and a moderate power input can lead to a substantial
flow instability and development of significant pitching
moments.

These phenomena can be used to design new meth-
ods for flow control around a body (see also some the-
oretical sketches in [4–7, 10, 13–17]). Even though the
thermodynamic efficiency of sustaining a permanent
“aerodynamic needle” for improving aerodynamic
characteristics and reducing thermal loads in steady
flight regimes seems questionable at the present time,
this approach may prove to be effective in executing
some vehicle maneuvers in a pulse-boosted regime.
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Abstract—a-C : H films deposited from pure acetylene vapor in a glow-discharge plasma were investigated.
Current density vs. applied voltage plots are presented for systems consisting of a transparent conducting elec-
trode, an a-C : H film, and a mercury contact. The resistivity, absorption coefficient at a wavelength of 632.8 nm,
and the optical energy gap of a-C : H films are related to the deposition rate. © 2000 MAIK “Nauka/Interperi-
odica”.
Visible-light-absorbing films of amorphous hydro-
genated carbon (a-C : H) are finding application as
light-blocking layers in light-controlled liquid-crystal
reflection modulators [1]. This is a new solution to the
problem of optically isolating write and reading radia-
tions. Optical and electrical properties of a-C : H films
depend on their structure and preparation conditions
[2]. a-C : H light-blocking layers with optimum proper-
ties can be produced if the range of parameters for
glow-discharge plasma deposition is known. This calls
for further investigation of the electrical and optical
properties of a-C : H films.

In this work, we study the dependence of the current
density on the applied voltage for transparent conduct-
ing electrode/a-C : H/metal structures. Dependences of
the a-C : H resistivity, absorption coefficient at a wave-
length of 632.8 nm, and optical gap on the deposition
rate are presented.

a-C : H films were prepared by chemical vapor dep-
osition in a dc glow-discharge plasma. The plasma was
produced with a planar magnetron [3]. Such a system,
unlike a conventional diode one, provides high gas ion-
ization and requires a lower-pressure vacuum reactor.
The voltage U between the anode and the cathode (sub-
strate carrier) varied between 700 and 900 V. The
anode–cathode distance was 50 mm. The electrodes
and a glass insulating cylinder form a quasi-closed vol-
ume to which an operating gas, pure acetylene, was
applied. The gas pressure P in the chamber varied
between 0.02 and 0.08 Pa. The films were deposited at
room temperature onto glass substrates covered by an
ITO transparent conducting electrode. The film thick-
ness was measured with an MII-4M microinterferome-
ter. The relative error was 10%. The film thickness was
in the range of 0.1–0.3 µm. The deposition rate was
determined as the film thickness–deposition time ratio.
1063-7842/00/4503- $20.00 © 20374
A mercury droplet (Fig. 1a) was used as a metal
contact in measuring current density I vs. applied volt-
age V dependences. The contact area was ~10–2 cm2.
Figure 1b shows a dark I–V curve for an a-C : H film
with a resistivity ρ = 2 × 109 Ω cm. I–V curves for all
ITO/a-C : H/Hg systems were symmetric if ρ of the
a-C : H films fell into the 7 × 108 Ω cm–1 × 1012 Ω cm
range. Symmetric I–V characteristics for positive and
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I, A cm–2

–0.8 –0.4 0 0.4 0.8 1.2

10–4

Hg

ITO

a-C:H

(a)

(b)

Fig. 1. (a) Substrate/ITO/a-C : H/Hg contact structure and
(b) the current density I plotted against applied voltage U for
an a-C : H film with ρ = 2 × 109 Ω cm.
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negative applied voltages were also observed for
metal/a-C : H/metal structures with Al and Cr upper
contacts [4]. This indicates that the current in these
structures does not depend on the contact electronega-
tivity and is related to the a-C : H electron structure.

Figure 2 shows I–V curves for ITO/a-C : H/Hg
contact systems with positive voltages applied to a-
C : H films obtained under different conditions. As
the pressure in the vacuum chamber increases from
0.03 (curve 1) to 0.05 Pa (curve 2) with the discharge
power remaining constant (N = 3 ± 0.2 W), the cur-
rent density decreases at the same positive voltages.
A further increase in P to 0.08 Pa at the same power
leads to a substantial rise in the threshold voltage
(curve 3). Similar changes are observed when the
discharge power rises to 5.4 W due to an increase in
the voltage at P = 0.05 Pa (curve 4). At different
parameters of acetylene plasma deposition, the Taus
optical gap ET, which is determined by extrapolating
an (αE)1/2 vs. E dependence, varied from 0.8 to
2.3 eV [5].

With increasing deposition rate v, the absorption
coefficient α at a wavelength of 632.8 nm drops from
1 × 105 to ~1 × 104 cm–1 (Fig. 3) and the light blocking
efficiency of an a-Si : C : H semiconducting layer
degrades [1]. This is due to a substantial effect of dep-
osition rate on a-C : H optical constants [6, 7]. We suc-
ceeded in obtaining a resistivity vs. deposition rate
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Fig. 2. Dark I–V characteristics for ITO/a-C : H/Hg struc-
tures with a-C : H films obtained from the acetylene plasma
at a constant discharge power N = 3 ± 0.2 W and a pressure
P = (1) 0.03, (2) 0.05, and (3) 0.05 Pa; (4) N = 5.4 W and
P = 0.08 Pa.
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dependence. As v grows from 1 to 10 Å/s, ρ exponen-
tially rises by six orders of magnitude to ~107 Ω cm.
For 108 < ρ < 1010 Ω cm, a-C : H films become conduct-
ing and have an energy gap of ~1 eV. For v > 5 Å/s,
a-C : H insulating films are transparent in the visible
range and have ET ~ 1.6–2.0 eV. Figure 3 is an indica-
tion that a film satisfying light-blocking conditions
and having an absorption coefficient of ~5 × 104 cm–1

must have ρ ~ 1010 Ω cm. This is consistent with the
conductivity value of a liquid-crystal layer and pro-
vides high spatial resolution of a liquid-crystal modu-
lator. Such light-blocking layers can be made by acet-
ylene vapor condensation in a plasma at rates from 3
to 5 Å/s.

Thus, it was shown that dark I–V dependences of
a-C : H films depend considerably on the pressure in the
vacuum chamber and on the power of a dc glow dis-
charge. The resistivity of the films is related to the dep-
osition rate in the interval of 1–10 Å/s: as the rate
increases, so does ρ from ~107 to ~1013 Ω cm. The
transparency of the films at a wavelength of 632.8 nm
also rises. Light-absorbing a-C : H films with α ~ 5 ×
104 cm–1, used for light blocking in liquid-crystal
modulators, have ρ ~ 1010 Ω cm and an optical gap of
~1 eV. The results obtained can be used for fabricating
liquid-crystal light modulators applied in systems
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Fig. 3. Absorption coefficient α at 632 nm and the resistivity
ρ vs. deposition rate v for a-C : H films obtained from the
acetylene plasma.



376 KONSHINA
for optic data transmission, conversion, recording, and
processing.

REFERENCES

1. E. A. Konshina and A. P. Onokhov, Zh. Tekh. Fiz. 69 (3),
80 (1999) [Tech. Phys. 44, 340 (1999)].

2. J. Robertson, Thin Solid Films 296, 61 (1997).

3. A. V. Balakov and E. A. Konshina, Zh. Tekh. Fiz. 52, 810
(1982) [Sov. Phys.—Tech. Phys. 27, 521 (1982)].
4. S. Egret, J. Robertson, W. I. Milne, et al., Diamond
Relat. Mater. 6, 879 (1997).

5. E. A. Konshina, Fiz. Tverd. Tela (S.-Peterburg) 37, 1120
(1995).

6. E. A. Konshina and V. A. Tolmachev, Zh. Tekh. Fiz. 65,
175 (1995) [Tech. Phys. 40, 97 (1995)].

7. V. A. Tolmachev and E. A. Konshina, Diamond Relat.
Mater. 5, 1397 (1996).

Translated by V. A. Isaakyan
TECHNICAL PHYSICS      Vol. 45      No. 3      2000



  

Technical Physics, Vol. 45, No. 3, 2000, pp. 377–379. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 70, No. 3, 2000, pp. 90–92.
Original Russian Text Copyright © 2000 by Evard, Sidorov, Gabis.

                                                 

BRIEF COMMUNICATIONS
Hydrogen Permeability of Amorphous 
and Recrystallized Iron Alloys

E. A. Evard*, N. I. Sidorov**, and I. E. Gabis*
* Research Institute of Physics, St. Petersburg State University, St. Petersburg, 198904 Russia

** Institute of Metallurgy, Ural Division, Russian Academy of Sciences, Yekaterinburg, 620016 Russia
Received March 12, 1999

Abstract—The hydrogen permeability of amorphous and recrystallized Fe alloys is investigated. It is found
that the surface layers of both samples are enriched with metalloids, which interfere with the penetration of
hydrogen from the molecular and atomic phases. The kinetics of curves of flow transition to a steady state upon
ion irradiation in an amorphous alloy points to processes of reversible capture. The penetrating flow demon-
strates Arrhenius dependence on temperature in the case of recrystallized samples and nonmonotonic depen-
dence on temperature in the case of amorphous samples. A model of hydrogen penetration is suggested, which
includes the reemission and diffusion processes; and estimates are obtained of the energy of activation of ther-
modesorption and diffusion. © 2000 MAIK “Nauka/Interperiodica”.
Amorphous alloys differ from classical metals by
the absence of ordered crystal lattice, which must lead
to singularities of diffusion of interstitial impurities.
Unfortunately, published data on diffusion in amor-
phous materials are scarce because of serious experi-
mental difficulties associated with the need for per-
forming measurements in a narrow temperature range
(see, for example, [1–3]).

EXPERIMENT

We have investigated the hydrogen permeability of
a membrane of amorphous and recrystallized iron
alloys (Fe, 77.3; Ni, 1.1; Si, 7.7; B, 13.6; C, 0.2; P,
0.009) 25 µm thick. Preliminary degassing of a sample
in vacuum was performed at a temperature of 300°C.
Continuous annealing at a high temperature results in
the formation of a polycrystalline structure with a char-
acteristic grain size of 1 µm.

The steady flow time relaxation method was used to
determine the parameters of diffusion. The admission
of molecular hydrogen to the inlet side of a degassed
sample at the maximum permissible temperature
(300°C for amorphous and 400°C for recrystallized)
did not result in a marked increase in the outward flow:
for a hydrogen pressure of 10 torr, the flow amounted
to 3.8 × 1012 cm–2 s–1. It is known that the coefficient of
attachment for hydrogen atoms is three to four orders of
magnitude higher than for molecules [4]. However, the
use of a dissociator (an incandescent tungsten filament
at a distance of 10 mm from the sample) in the pressure
range of 0.1–0.2 torr also failed to produce an apprecia-
ble penetrating flow.

Images of the surface of an amorphous strip in sec-
ondary electrons (200 and 800 magnification) demon-
1063-7842/00/4503- $20.00 © 0377
strated the presence of microswellings, which is associ-
ated with the process of capture of air bubbles during
strip formation. It is further known [5] that iron alloys
containing Si and B exhibit a tendency to enrichment of
surface layers with these elements, which may prevent
the adsorption and penetration of hydrogen into the
bulk of material.

A glow discharge in an atmosphere of hydrogen was
used for moving across the passivating layer. Hydrogen
ions formed in the glow discharge penetrated easily
into the bulk of the sample [4]. In so doing, we
observed a marked penetrating flow. All investigations
were performed at an inlet pressure of hydrogen of
2 torr, at which the discharge is most stable.

The temperature dependences of the steady-state
flow were determined for amorphous and recrystallized
samples. The measurement results are given in Fig. 1.
One can see that, as the temperature in the amorphous
material rises, the flow increases to reach the maximum
value of 3.3 × 1013 cm–2 s–1 at 200°C and, on further
heating, exhibits an anomalous decrease. The recrystal-
lized sample follows the classical Arrhenius depen-
dence with an activation energy of 17.9 kJ/mol and a
maximum flow of 2.7 × 1013 cm–2 s–1 at 375°C.

The transition of flow to a steady state proceeds dif-
ferently in different samples. In both cases, in the entire
investigated temperature range, a fast phase shows up
with characteristic times of transition to a steady state
of the order of 30–60 s. For the amorphous membrane,
after the fast phase (Fig. 2) at temperatures ranging
from 125 to 225°C, a very slow rise in the outward flow
is observed with the time of transition to a steady state
of the order of 6000 s. A temperature rise leads to the
disappearance of the slow component of penetrating
flow and its general decrease.
2000 MAIK “Nauka/Interperiodica”
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DISCUSSION OF THE RESULTS

A delay in the establishment of a steady-state flow
is most likely associated with the reversible capture of
the diffusant [6]; in this case, as the temperature
increases, the probability of release of hydrogen from
the traps increases faster than the probability of cap-
ture. Indeed, as the temperature rises, an increase in the
slow component is observed up to 200°C, after which it
starts to decrease; it is this behavior that is characteris-
tic of traps with the energies of activation of release and
capture Erel > Etrap.

A decrease in the penetrating flow in the amorphous
sample as the temperature rises from 200 to 300°C may
be attributed to the surface processes under conditions
of ion irradiation. The absorption of relatively low-
energy (~200 eV) hydrogen ions occurs at a distance of
30–70 Å from the surface [7]. Because the penetrating
flow is three orders of magnitude less than that incident
on the inlet surface (vf ~ 1016 cm–2 s–1), the balance of
flows is written as vf = vm + vr, where vr = vfC1/Cmax
and vm = b1exp(–E1/RT)C1 are the flows of ion-induced
remission and thermodesorption on the inlet side, C1 is
the concentration of hydrogen in the undisturbed alloy
structure in the vicinity of the inlet surface, and b1 is the
preexponential factor. The maximum attainable con-
centration in the surface layer Cmax at 300 K (when ther-
modesorption is insignificant) is estimated at
1018 atoms/cm3 [8, 9]. We assume that the concentra-
tion C2 on the outlet side is much less than C1 to derive
for steady-state penetrating flow an expression of the
form J = A exp(–Ed/RT)/(1 + Bexp(–E1/RT)), where Ed

is the energy of activation of diffusion. The equation
does not include the parameters of hydrogen interaction
with traps, because, in the steady state, the capture and
release of the diffusant proceed at the same rates and do
not affect the magnitude of steady-state flow. The
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Fig. 1. The penetrating flow as a function of inverse temper-
ature: (1) amorphous sample, (2) recrystallized sample.
approximation results are given in Fig. 1 by solid
curves. A fairly good agreement with the experimental

data is exhibited by the energy values of  = 40.8

and  = 86.7 kJ/mol for the amorphous sample and

 = 71.2 and 51.7 kJ/mol for the crystalline sample.
The use of the parameter Cmax in the calculation has no
effect on the activation energies: it affects only the pre-
exponential functions.

Therefore, the surface processes and the correlation
between the quantities Ed and EI define the temperature
dependence of steady-state flow. In the case of an amor-
phous alloy, the concentration C1, according to calcula-
tions, has the value Cmax up to a temperature of ~170°C
and the rate of penetration is defined by diffusion, with
the flow increasing. As the temperature continues to
rise, the concentration C1 drops exponentially and the
inequality Ed < EI leads to a decrease in the flow. For a
recrystallized alloy, the input concentration decreases
within the entire temperature range and the inequality
Ed > EI leads to the classical Arrhenius dependence J ~
exp(–Ea/RT), where Ea = Ed – EI ~ 19.6 kJ/mol accord-
ing to our calculation results, which is close to Ea =
17.9 kJ/mol (determined experimentally).

The difference in the values of the diffusion activa-
tion energy is, no doubt, due to the sample structure.
The presence of excess free volume in the amorphous
alloy provides for lower consumption of energy during
migrations of hydrogen atoms from one interstice to
another; in addition, some of the interstices may not
have the regular shape of Bernal’s cavities [2], but
rather may be deformed. The energy of activation of
thermodesorption in the recrystallized alloy is less than

that in the amorphous alloy; i.e.,  < , which may
be attributed to rearrangement of the surface and to
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Fig. 2. The kinetics of transition of penetrating flow in an
amorphous Fe alloy to a steady state. 
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variation of the effect of the passivating layer on hydro-
gen desorption. Further investigations are required for
detailed determination of the processes of hydrogen
penetration.
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