Technical Physics, Vol. 45, No. 6, 2000, pp. 667-671. Translated from Zhurnal Tekhnicheskor Fiziki, Vol. 70, No. 6, 2000, pp. 1-5.

Original Russian Text Copyright © 2000 by Fel'dshtein.

THEORETICAL AND MATHEMATICAL PHYSICS

The Cross-Correlation Integral: Its Featuresand Application
to Nonstationarity Detection in Time Series

l. V. Fel’dshtein

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,
Miusskaya pl. 4, Moscow, 125047 Russia

Received June 16, 1998; in final form, December 7, 1999

Abstract—A generalization of the correlation integral, called the cross-corrélation integral, is suggested. Fea-
tures of the cross-correlation integral are studied, and a new attribute of atime seriesis defined. It isviewed as
some kind of dimension and is associated with the fill rate of the attractor. It is demonstrated that the cross-
correlation integral is calculated in much the same way as the wavelet transform of the density of pointsin the
attractor. The cross-correlation integral is applied to detection of nonstationarity in time series. A comparison
with statistical methodsis made. © 2000 MAIK “ Nauka/| nterperiodica” .

INTRODUCTION

The correlation integral is among the basic tools for
the analysis of time series [1]. It has received broad
applicationin the last 10-15 years. For example, it was
used as the basis for evaluating the dimension of an
embedding for a system under study, defining the con-
cept of correlation dimension, and differentiating ran-
dom noise from deterministic chaos, to name but afew.
The correlation integral has been applied to various
types of data pertaining to technology, medicine,
hydrodynamics, astrophysics, finance, etc. On the other
hand, the approach can be extended to aweal th of prob-
lems beyond the scope of the analysisof individual sys-
tems and their related time series. This new direction
consistsin comparing the modes of behavior of two dif-
ferent systems or those of the same system observed at
different instants. The latter problem can beregarded as
nonstationarity detection.

This paper suggests a generalization of the correla
tion integral, studies certain features of the new mathe-
matical object, and defines a new attribute of a time
series. The last-named quantity is viewed as some kind
of dimension and is associated with the fill rate of the
attractor. In thiswork, the generalized correlation inte-
gral is applied to nonstationarity detection in time
series and is compared with statistical methods.

DEFINITION OF CROSS-CORRELATION
INTEGRAL

The analysis of time series in nonlinear dynamics
widely employs the correlation integral C(r) [1]. Let
P(Y:, ;) be the distance between phase vectorsy, and ;.
Then the correlation integral C(r) of an N-point vector

time series{y:}\ isdefined as

N
) =5y O -p(%y,)),
N ij=1
where O is the Heaviside function.
If the availabletime series{x;} isascaar one, it can
be associated with a vector time series {y;} by the
Takens method [2] (see dso [3]):

N
Yi = (X Xps ooos Xj e (d=ym)

where d isthe dimension and M isthe delay.

We generadlize this concept as follows. Let vector
time series{y:}, and {z},, comprising, respectively, n
and m points, be available. Let p(y;, z) denote the dis-
tance. Then the cross-correlation integral C*(r) is
defined as

C) = =¥ 0r-p(y,z). M
ij=1
Obviously, C,,, (r) = C(r).

This study deals with the case where the cross-cor-
relation integral is taken over segments from the same
time series {x;}. The segments differ only in location.

Let them be numbered and C;’ ; denote the cross-corre-

lation integral for segmentsi and j. For the sake of con-
venience, define the quantities

Ay(r) = [InC;' () =Inc; ()| )
and
8y = [ Ay 3)

T'min
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They reflect both the local (with regard for scale) and
aggregate variations in the density of attractor points
for segmentsi and j. Here, r,,,, IS the saturation scale of
the cross-correlation integral (r . IS of the order of the
maximum attractor size) and r,;, is the scale corre-
sponding to the minimum distance between attractor
points (for the sample at hand) or to the noise amplitude
for noisy data. We restrict ourselves to the casej = 1,
denoting A; ; as A and 9, ; as §,. In other words, the
variations are considered with reference to segment 1.

CROSS-CORRELATION INTEGRAL
AND WAVELET TRANSFORM

L et us calculate the cross-correlation integral of two
one-dimensional random variables &, and &, their
probability distribution functions (PDFs) being F; and
F,, respectively. If the probability density function of &,
is p,, then aninterval dx around x contains p,(xX)dx val-
ues of &,. The number of &, valueswhaose distance from
xislessthan or equa tor isF,(x +r) —F,(x—r). Thus,

the cross-correlation integral Cy ¢, has the form

+o00

Cer, (1) = Ipl(x)(Fz(X+r)_Fz(X—r))dX.

Let the width of F, be changed by afactor a. (Ina
Gaussian case, the width is the variance.)) Then the
cross-correlation integral becomes

D<+rD

Cilzz(r a) = Ipl(x) 204

Fzg%%jx. 4)

Expression (4) is similar to the wavelet transform
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Fig. 1. d vs. sample size for the (a) Lorentz system and
(b) Rossler system. Straight line, linear approximation.
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of p; [4]:

S(r,a) = %I pa()FE—ix (5)

Transforms (4) and (5) differ from each other in two
respects. First, (4) is"symmetric” inr (except for sign).
Second, recall that the kernel F is usualy assumed to
meet the condition

+00

[Fodx =0,

and sometimes al so the higher order moment condition
+00

J'xkF(x)dx = 0.

With transform (4), for any r and a, this requirement is
satisfied by the PDF difference (in brackets):

+o00

J’x 5}(+rg %jx-o

—00

Note that formula (4) can be modified to meet the nor-
malization condition [see the factor 1/./a in (5)].
In (4), integrating by parts demonstrates the symme-

try of the cross-correlation integral: C; ¢, = C¢ ¢, . The

multidimensional case can obviously be treated simi-
larly.

The linkage with the wavelet transform applied to
the PDFs seems to be helpful when time series of the
system are unavailable or more difficult to obtain than
the PDFs.

ATTRACTOR FILL RATE

For a stationary time series, 9 is nonzero [see (3)],
since any time series is a finite and discrete entity. Let
us trace how & depends on the length N of the segment
used to estimate C*. Figure 1 shows the behavior of &
for the Lorentz and Rossler systems. It is seen that the
curves approximately obey the power law & ~ N d".
Here, d;, refersto thefill rate of the system attractor for
a given accuracy (of computation or measurement). It
can be viewed as adimension (by construction). Notice
that the curves deviate downward at large N. The value
of N* a which the deviation from the power law
becomes considerable could be regarded as the maxi-
mum length suitable for analyzing the density of attrac-
tor points: increasing N any further refines the picture
insignificantly.
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NONSTATIONARITY DETECTION
IN TIME SERIES

It may be very important to know whether a time
series of interest is stationary. (By stationarity, one may
mean that the parameters of the generating system are
independent of time.) Stationarity is a necessary condi-
tion for many algorithms of nonlinear dynamics, such
as those evaluating dimensions, the Lyapunov expo-
nents, etc.

Let usapply the cross-correlation integral to nonsta-
tionarity detection in time series and compare the
results with those of traditional statistical methods.

Satistical Methods

Nonstationarity is commonly detected with the help
of mathematical statistics. It enables oneto estimate the
probability that two samples are the realizations of ran-
dom processes with differing PDFs (the H; hypothe-
sis). The most efficient tool to solve this problemisthe
Kolmogorov—Smirnov method [5], which is stated as

follows. Let samples {x'},, and { x°}, be available,

comprising, respectively, mand n points. Furthermore,
assume that

F,(a) = Vl;a),

Fa(a) = 228

wherev,(a) and v,(a) the numbers of pointsfrom { xij }

such that xij <a(j =1or 2), and denote

Dm,n = m§x|F1(a)—F2(a)|.

Then the PDF of the random variable
Jmn/(m+n) Dy, , tendsto

K(q) =1-2F &
2
The graph of K(g) is shown in Fig. 2. Given

Jmn/(m+n) D, , = K*, the probability o* for the H,
hypothesis to be true is determined from (6) subject to
K(g*) = K*. The Kolmogorov—Smirnov method was
applied to attractor identification (see, e.g., [6]). It has
proven to be highly efficient for many model systems.
However, there are cases where the method is inappro-
priate or suffers from limitations. To exemplify the dif-
ficulties, consider the Lorentz and Rossler systemswith
the following dependences of the system parameter r
on time:

r= fl(t) = r.min"'(rmax_rmin)t/TmaXl

2k2

(6)

Tin 0.45T 1 <t<0.55T
r=1fy(t) =0

e t<045T,.,, t>055T,,.
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Fig. 2. The Kolmogorov—Smirnov distribution K(q).
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Fig. 3. Estimated valuesof /mn/(m+n) Dy, Vvs. sequence

number of the first point in a segment of interest. Panel (a)
refers to the system Ry; Panel (b), to the systems (1) L, and
(2) Ly. The parameter M indicates the degree of thinning.

The Lorentz system L, is
X = o(y—x),

Here, weset b= 8/3, 0 = 10, r = fy(t), T = 5000 (the
sample comprises 100000 points with the time step
0.05), rmax =29, and r,;, = 28. Inthe Lorentz version L,,
we set r = fy(t), the other parametersbeing asinL,. The
Rossler system R, is

X = —(y+2),

Here, we set r = fy(t), T = 50000 (the sample com-
prises 100000 points with the time step 0.5), rx =
4.30, and r;, = 4.23. In the Réssler version R,, we set
r = f,(t), the other parameters being asin R;.

Yy = rX—y—xz, 2= xy-—-bz.

y = x+0.2y, z=02+2z(x-r).
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Fig. 4. Cj ; and A for L.
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Fig. 5. & for (a) L, and L, and (b) R; and R,. The meaning
of Nisasin Fig. 3.

The check for stationarity is based on the Kolmo-
gorov—Smirnov method applied to samples comprising
10000 successive points. Beginning with the second
sample, each sample is shifted by 5000 against its
immediate predecessor so that sample 1 covers points
1-10000; sample 2, points 5001-15000; sample 3,
points 10001-20000; and so on.

To avoid internal correlations, the original time
series {x} is “thinned”: we take only the points X,
XM + 10 Xom + 1o €1C. The necessity of thinning and itsreal-
ization are comprehensively discussed in [6].

Figure 3arefersto R;. It shows estimated values of

Jmn/(m+ n) D, , against the sequence number of the
first point in asegment of interest. The thinning param-
eter M isset at 3 or 4 so that the autocorrel ation integral
is zero: for the ROsder systems, examined at the time
step 1= 0.5, theintegral ispositive at 3t and negative at
4t. It is seen that the estimates vary considerably and
the curves give no idea of how the system parameters
behave. Indeed, one could estimate the correlation
length more accurately if the system were defined for-
mally (e.g., intermsof ordinary differential equations).
However, such a definition is impossible in practice.
For the Lorentz systems, the correlation length T,
estimated from X is very large, so that thinning at the
corresponding value of M leavestoo little data for esti-
mating the PDFs. By convention, M may be set equal to
the quarter-quasi-period (mean distance between suc-
cessive peaks). This gives M ~ 5 for the time series at
hand. For L; and L, estimated values of

Jmn/(m+n) D, ,areplotted in Fig. 3b. It is seen that
the estimates do not reflect the behavior of the system
parameter. In fact, they may indicate that the parameter
has different values for the two samples when its actual
values are the same.

Thus, approaches based on the Kolmogorov—
Smirnov method may be sensitive, e.g., to M. For the
Lorentz system, similar techniques of attractor identifi-
cation may be sensitiveto initial conditions aswell [6].
This paper suggests an alternative approach, which is
built around the cross-correlation integral .

Using the Cross-Correlation Integral
for Nonstationarity Detection

Let usapply the cross-correlation integral to nonsta-
tionarity detectioninL,, L,, R;, and R,.

Figure 4 depicts Cf 1 and A, for L,. Notice that the
maximum deviation relates to the segment where the
deviation of the parameter is maximum in terms of
time. Thevaluesof 9, aredisplayedin Fig. 5afor L, and
L, andinFig. 5b for R, and R,. It is seen that the behav-
ior of & faithfully reflects the variations in the system
parameter.

Consider the sensitivity of the method to M (for d =
5). Figure 6a shows estimated values of o, for L, at M =

TECHNICAL PHYSICS Vol. 45 No. 6 2000
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Fig. 6. dfor (@) L,andM =2, 4, and 6 and (b) R, and M =
2, 3,4, and 5. The meaning of Nisasin Fig. 3.
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Fig. 7. & for (1) L1 and (2) L, under the action of additive
noise. 1, f1(t); 2, fy(t).

2, 4, and 6. Figure 6b displaysthosefor R, at M =2, 3,
4, and 5. Theresults are qualitatively the same and cor-
respond to the variations in the system parameter.

Figure 7 shows the graphs of §, for L, and L, in the
presence of additive noise. The noise is uniformly dis-
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tributed over the interval (—a, a), where a is equal to
10% of the standard deviation of the time series. Qual-
itatively, the result isimmune to the noise.

If atime seriesis the realization of a nonstationary
random process, the outcome of the cross-correlation-
integral approach is similar.

CONCLUSION

We suggested a generalization of the correlation
integral. The new mathematical tool was called the
cross-correlation integral. Its similarity to the wavelet
transform of the PDF was demonstrated. The effect of
sample size was studied. We defined the quantity char-
acterizing the aggregate discrepancy between the corre-
lation and cross-correlation integrals. It was found that
this quantity is a power function of sample size. The
exponent governs thefill rate of the attractor. The sam-
ple size for which the deviation from the power law
becomes considerabl e can be regarded as the maximum
size suitable for estimating the density of attractor
points (with regard for the accuracy of atime series).
The cross-correlation integral was applied to nonsta-
tionarity detection in time series. A comparison with
statistical methods was made. It demonstrated that the
method of the cross-correlation integral is advanta-
geous in some cases. The effect of additive noise was
considered.
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Abstract—The paper presents a theoretical analysis of the glass transition. It is demonstrated that the kinetics
of glasstransition is described by the following eguations: the Maxwell equation of a viscoel astic medium; the
equation of elastic relaxation, which, in addition to the usual Debye term, involves a nonlinear term due to the
positive feedback between the strain field and temperature; and the equation of specific heat continuity, in which
the entropy term includes the contribution of elastic fields and the heat flux contains aterm related to external
cooling. These equations are anal ogous to the L orenz synergetic system, in which the strain playstherole of an
order parameter, the conjugate field reduces to elastic stresses, and the temperature is a controlling parameter.

© 2000 MAIK * Nauka/Interperiodica” .

Despite great scientific and practical interest, the
nature of the glasstransition in liquidsis not yet clearly
understood [1-4]. Thisis primarily associated with an
ambiguous interpretation of the amorphous state. At
present, there are three main concepts of the amorphous
state [5-9]. The first concept has a thermodynamic
character and assumes the occurrence of a structural
glass phase, which, in essence, is described in the same
fashion as spin glasses. the frozen disorder in the
parameters of interatomic interaction brings about frus-
trations and, hence, the loss of ergodicity of the glass
phase [5-7]. Within the second approach, the glass
transition is treated as a kinetic transition to a noner-
godic stationary state [3]; however, according to Das
and Mazenko [8], this transition cannot be redlized. As
regards the third approach, Stein and Palmer [9] pro-
posed a scheme according to which the glass transition
leads neither to the formation of a thermodynamic
phase nor to the realization of a stationary kinetic state
but is accompanied by the complete loss of stahility of
metastable states of the liquid whose configurations
become trapped in the regions of the phase space
bounded by barriers of finite height.

The loss of ergodicity upon glass transition is a
common feature of the above approaches. The first
approach assumes the absolute loss of ergodicity in the
configuration space of states, whereas the second
approach implies absolute ergodicity loss in the space
of fluxes. In the framework of the latter approach, it is
supposed that, owing to a finite barrier height, the
regions of the phase space are governed by the distribu-
tion of barriers and their configuration changes in a
fluctuational way. It is evident that such a slow evolu-
tion corresponds to the structural relaxation of the
glass. Consequently, although the glass is not associ-
ated with a particular state, it is assumed that the glass
is a set of stationary nonergodic states which has
evolved in accordance with the structural relaxation.

From the foregoing, it is seen that a rather paradox-
ical situation arisestoday inthe theory of the glasstran-
sition. Actually, all the above concepts are based on the
microscopic approach, whereas the phenomenological
scheme of the glass transition (similar to the Landau
theory of phasetransitions) iscurrently absent. Therea-
son isthat the violation of ergodicity upon glasstransi-
tion is a more complex phenomenon than the phase
transition [10]. Indeed, in order to obtain the thermody-
namic description of the phasetransition, it is sufficient
to represent the behavior of the sole hydrodynamic
mode whose amplitude reduces to the order parameter.
At the same time, the representation of the overall
pattern of the loss of ergodicity requiresthe description
of specific features in the distribution of microstates
over the phase space of the system as a whole, which,
quite apparently, cannot be achieved with a single
parameter [10]. In the theory of spin glasses, this is
embodied in the fact that, in addition to the memory
parameter introduced by Edwards and Anderson [11],
there arises the necessity of applying the nonergodicity
parameter accounting for the de Almeida-Thouless
instability [12].

However, it should be remembered that the afore-
mentioned simpl e scheme of the phase transition makes
it possible to represent only the thermodynamic behav-
ior of the hydrodynamic mode in a thermostat whose
state does not depend on the order parameter. When
describing the kinetics of phase transition, this condi-
tionisviolated, and it is necessary to consider the self-
consistent behavior of the hydrodynamic mode and the
thermostat. In our earlier work [13], we showed that
this can be accomplished with the use of the Lorenz
synergetic scheme. Within this scheme, the state of a
thermostat is represented as a field which is conjugate
to the order parameter and a controlling parameter of
the temperature type. Such a three-parameter model
enables one to construct a nontrivial kinetic scheme of
phase transition, which, at a certain ratio between

1063-7842/00/4506-0672%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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relaxation times, reduces to the Landau—Khalatnikov
dissipative dynamics. Sincethe glasstransitioninalig-
uid is a kinetic transition, the aforesaid brings up the
reasonable question as to whether the phenomenologi-
cal theory of the glass transition in liquids can be con-
structed using the Lorenz scheme, which provides the
simplest description of a self-organizing system [14].
The purpose of the present work was to derive the basic
equations of this theory.

Although the glass transition is attended by the loss
of ergodicity, in our derivation, we will deliberately
ignore this circumstance and proceed from the concept
of a viscoelastic medium, which goes back to rheolog-
ica models. To put it differently, instead of primary
glass transition parameters, such as the parameters of
memory and nonergodicity, we will use the secondary
parameters—the strain of the medium, the elastic
stress, and the temperature, which, within the syner-
getic approach, fulfill therole of an order parameter, its
conjugate field, and a controlling parameter, respec-
tively. This parametrization is justified by the fact that,
in the phenomenol ogical representation, the fundamen-
tal difference between aliquid and aglassresidesinthe
relaxation character of the shear component of elastic
stresses. in a perfect glass, they persist infinitely long,
whereas, in liquid, relaxation proceeds over a finite
period of time [15]

T = n/G, D

where n is the dynamic shear viscosity and G is the
shear modulus.

In the simplest case, it is suggested that the glass
transition is due to the purely kinetic effect of freezing
the liquid when the viscosity n becomes infinite at a
finite shear modulus G [16]. At the same time, the
opposite situation is observed upon the usual second-
order phase transition when T aso infinitely increases
at the critical point. Actualy, in going from the vis-
coelagtic liquid to the general case, formula (1) takes
theform 1 = x/y, where x isthe generalized susceptibil-
ity and vy is the kinetic coefficient (in relationship (1),
these quantities are G and n, respectively) [17].
Upon the phase transition, the susceptibility x infinitely
increases and the kinetic coefficient y has no singular-
ity. In formula (1), thisis equivalent to the fact that the
shear modulus G tends to zero at a finite viscosity n).
Such a situation corresponds to the viscoelastic transi-
tion [18].

As a rule, the glass transition is attended by the
emergence of thermodynamic features such as an
increase in the heat capacity [1, 2]. It isbelieved that, in
actual fact, the glass transition in a liquid does not
always reduce to a purely mechanical process of super-
cooling during which the shear viscosity becomes infi-
nite. Moreover, it is known that liquids of the metal
melt type undergo a glass transition only at cooling
rates exceeding acritical value[1, 2]. Thisfollowsfrom
the simplest qualitative considerations [19]; the basic
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equations of the quantitative theory will be determined
below. Essentially, the proposed approachisasfollows:
the glass transition is provided by the self-organization
of the elastic fields of the shear components of stresses
o and strains €, on the one hand, and of the temperature
T, onthe other.! I the relationship between thefirst two
components is well known and, in the ssimplest case, is
described by the Maxwell model [15], the effect of tem-
perature is ensured by the critical increase in the shear
modulus G(T) with adecreasein thetemperature: G=0
inthe liquid state, and G # 0 in the glass.

The main finding that underlies the following deri-
vation of the synergetic equations resides in the fact
that thetotal strength of the gaugefield isthe sum of the
pure force and material components (the former com-
ponent is determined by the field equations, and the | at-
ter component reduces to the order parameter charac-
terizing the self-organization of the medium) [20]. Spe-
cifically, for amagnet, we have [21]

H+4mM = curlA, 2

where the strength H represents the force contribution,
and the magnetization M is the material component.

Itischaracteristic that the total strength, namely, the
magnetic induction B = curl A, reducesto the derivative
of the vector potential A. A similar situation takes place
for aferroelectric [21]:

D—4mP = -0¢, ©)

where the electric induction D, the polarization P, and
the potential ¢ determine the force, material, and total
components of the electric field, respectively.

In the case of the viscoelastic liquid under consider-
ation, the tensor of total strain &; fulfills the role of a
gauge field strength and the potentia is the displace-
ment vector u. Taking into account the symmetry of €, ,
these quantities are related by the relationship [15]

8 =3
2

Similar to the quantities defined by formulas (2) and

(3), the total strain €, involvesthefield (purely elastic)

~ . ~0
component € and the material component € . For
thermoel astic stresses, this component is determined by
a change in the temperature and reduces to the dilata-
tion [15]

(Ou +ub). 4

A0 op

g =¢%, €= a(T-Ty), 5)

LIn relation to the synergetic concept as applied to the description
of the glasstransitionin aliquid, it should be noted that a scheme
of this type was proposed earlier in [19]. However, instead of the
temperature, we used the site occupation density, which is
inversely proportional to the atomic volume. This model is essen-
tially alattice model rather than a continual one and givesthe crit-
ical value for the free volume rather than for the cooling rate [3].
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where a is the thermal expansion coefficient, T, is the

equilibrium temperature, and 1 is the unit tensor.

For the glass-forming liquid under consideration,
the material component is due to nonzero shear moduli
G(T) arising with a decrease in the temperature. Thisis
conveniently expressed by the shear component of the
strain tensor €2 = GG — G(T)) in the linear approxi-
mation with respect to temperature

dG(T)
dT

where G is the characteristic value of the shear modu-
lus.

Now, we turn to the direct derivation of the syner-
getic equations for a viscoelastic medium. The basic
equation reduces to the Maxwell equation [15]

e = —g/t+aln. (7

Here, the point signifies differentiation with respect to
time, the first term in the right-hand side describes the
Debye relaxation with time (1), and the second term
represents the flow of viscous liquid under the shear
component of elastic stresses. It isimportant to keep in
mind that equation (7) involves only the force (rather
than material) components of strain € and stresses . In
the stationary case € = 0, kinetic equation (7) trans-
formsinto the equation describing the Hooke law

o = Ge. (8

The equation for determining the time dependence
of elastic stresses o(t) is given by

f=cg" T, (6)

T=0

0 = —0/1,+g,eT, 9)

where 1, and g, are positive constants.

Asinthe Maxwell equation (7), the first term on the
right-hand side of relationship (9) describesthe dissipa
tive process of stress relaxation toward the equilibrium
value o = 0. However, the process is accomplished in a
microscopic time 1, rather than in a macroscopic time
1. The former time reducesto a Debyetime of ~10? s,
so that the condition 1, < 1 (important for the subse-
guent consideration) is met. Asregards the second term
in relationship (9), it accounts for the positive feedback
between the elastic strain € and temperature T, which
resultsin an increase in the elastic stresses o and, thus,
governs the self-organization process. The physica
meaning of this term can be easily understood for the
stationary casewhend = 0. Then, equation (9) takesthe
form

0 = (a/V)T,, (10)

where we introduced the dimensionless positive con-

Stant
a5 =0sTgV (11)

and v is the atomic volume.

OLEMSKOI, KHOMENKO

Comparison of equation (10) with the relationship
following from expression (6) for the material compo-
nent ° = Ge® demonstrates that they coincide at € = 1.
Hence, it followsthat the nonlinear term in equation (9)
accountsfor the relation between the material and elas-
tic components of the strain, and parameter (11) of this
relation has the form

= y|dg|  |dg| = |dG(T)
dT dT dT

The kinetic equation for the temperature can be

deduced by analogy with the derivation of the heat con-

ductivity equation (see[15, 831]). Inthiscaseg, it isnec-

essary to proceed from the heat equation of continuity
0Q =ToéS

a, (12

T=0

TS = -0q. (13)
Here, the heat flux is described by the Onsager rel ation-
ship

g = -kOT,

where k isthe heat conductivity.

In the simplest case of thermoelastic stresses, the
entropy

(14)

S = S(T) + Kag’ (15)

is the sum of the purely thermodynamic component S,
and the field contribution (5), where K isthe bulk mod-
ulus[15, 86]. It is easy to seethat, in the glass-forming
liquid, we should go from the dilatation component
Kae® to the elastic energy of the shear component
divided by the temperature o€/T [here, the minus sign
alows for the relation (at ) = const) TS = pdV O
—-odg, which isdueto the opposite signs of the pressure
p and stresses o]. As aresult, equation (13) becomes

TS(T) -0t = kO°T. (16)

Let us now take into account the definition of the
heat capacity ¢, = TdS,/dT and, within the one-mode
approximation, replace (12 by —I=2, where | is the heat
conductivity scale. Then, from relationship (16), we
obtain

(17)

Substitute the relationship for € from equation (7)
into formula (17). The term 62/ appearing in this case
describes atrivial effect of dissipative heating of avis-
cous liquid flowing under the stresses 0. The specific
feature of the glass transition in liquids consists in pro-
viding oppositely directed heat removal of the intensity
Jo, Whose magnitude does not reduce to the Onsager
component but is determined by external conditions.
With allowance made for the above circumstances, the
kinetic equation for temperature takes the final form

(18)

c,T = —KI”T +o¢.

T=-Tl;—gre0+Q.
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Here, 11 = ¢l 7/kisthetime of relaxation dueto the ther-
mal diffusivity x = k/c,, gr = (1¢,)™ is the constant of
the negative feedback, and the last term

Q = Qo+ a’inc, Qy=0gy/c, (19)

isthe sum of the external component Q, and aquadratic
contribution of elastic stresses. An explicit form of the
latter contribution considerably complicates the subse-
guent analysis, even though it leads only to a trivia
renormalization of the quantities. Hence, hereafter, the
term Q in equation (18) is assumed to be constant. Note
that equation (18) was derived under the assumption
that the equilibrium temperature Ty, is equal to O. It is
evident that, otherwise, when the liquid is cooled to the
temperature Ty, # O, the term T,,/T should enter into
relationship (19).

The Maxwell equation (7) assumes the use of the
idealized Hencky model, in which the strain depen-
dence of the stress 6 (€) isrepresented by the Hooke law
0 =Ge at € < g, and by theconstant 0,,,= Geg,ate= ¢,
(the stresses 0 > 0, give rise to viscous flow with the

strain rate € = (0 — 0,,)/n. Actualy, the simplest curve
o(€) exhibits not one but two portions: the first
(Hookean) portion is characterized by a large slope
specified by the shear modulus G; and the second, sub-
stantiadly flatter portion of plastic strain has a sope
determined by the strain hardening coefficient © < G.
Obviously, this pattern implies that the shear modulus
entering [through the relaxation time (1)] into equation
(7), in actuality, depends on the strain. Let us use the
simplest approximation

G-0
1+eley,

G(e) =6+ (20
which describes the above transition from elastic to
plastic strain. Thistransition occurs at the characteristic
strain €,, which should not exceed the maximum value
€n (otherwise, plastic strain is not observed). As a con-
sequence, the relaxation time (1) becomes dependent
on the strain:

1 _1g,6°-1(
1(e) rp%L 1T ele,d
In this relationship, we introduced the relaxation time
for the plastic flow (cf. formula (1))

T, = n/©

(21)

(22)
and the parameter
6 = 0/G<1, (23)

which characterizes the ratio between the slopes of the
plastic and Hookean portions in the strain curve. It
should be noted that arelationship of type (21) wasfirst
proposed by Haken [22] for the description of a hard
mode of laser radiation and then was used in our earlier
work [13] in order to describe the kinetics of the first-
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order phase transition. However, in this case, relation-
ship (21) included the ratio /g, squared, and the result-
ing dependence of the synergetic potential V(g) on the
order parameter € was even. The description of struc-
tural phase transitionsin liquids is characterized by the
presence of third invariants, which violate this parity
[23]. Hence, in approximation (21), we used the linear
term €/g, rather than the quadratic term (e/g,)?. As can
be seen, the corresponding dependence of the syner-
getic potentia on the order parameter is not even.

It is easily seen that kinetic equations (7), (9), and
(18) coincidein their form with the known Lorenz sys-
tem, which wasfirst applied to the description of turbu-
lent streams in the atmosphere [24]. Allowance made
for the strain dependence of the modulusin going from
the Hookean portion in the dependence a(g) to the flat
portion of plastic flow, which is characterized by the
hardening © < G, permits one to adequately describe
the glass transition in liquids. The investigation of the
appropriate synergetic scheme calls for specia consid-
eration.
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Abstract—The glass transition is treated as a spontaneous emergence of the shear components of strain and
stress elastic fields upon cooling aliquid at arate exceeding the critical value. The stationary elastic strains and
stresses and the effective relaxation time are determined within the adiabatic approximation. It is shown that
the glass transition process occurs through the mechanism of a first-order kinetic transition with allowance
made for the strain dependence of the shear modulus. The critical cooling rate turns out to be proportional to
the thermal diffusivity and unrelaxed shear modulus and inversely proportional to the temperature derivative of
the relaxed shear modulus and the square of the heat conductivity length of the sample. © 2000 MAIK

“Nauka/Interperiodica” .

In our previous work [1], starting from the rheolog-
ical concept of a viscoelastic medium possessing heat
conductivity, we derived a set of kinetic equations (7),
(9), and (18), which describe the self-consistent varia-
tion in the shear components of strains and stresses and
the temperature of the medium. The present work is
dedicated to analysis of these equations within the syn-
ergetic approach. This approach is based on the adia-
batic approximation for the characteristic times of
changesin the strain €, the stresses g, and the tempera-
ture T:

LT, T1<T. Q)

According to (1), during the evolution of the
medium, the elastic stresses o(t) and temperature T(t)
follow the change in the strain g(t). The first condition
in (1) relates the microscopic time 1, ~ 1072 s and the
macroscopic time T and aways holds. By using the def-
initions of the thermal diffusivity x = k/c,, the kine-
matic viscosity v =n/p, therelaxationtimet =n/G, and
the sound velocity ¢ = (G/p)Y? (Wherek isthe heat con-
ductivity coefficient, ¢, is the heat capacity, n is the
shear viscosity, p isthe density, and G isthe shear mod-
ulus), it is convenient to rearrange the second condition
in (1) asfollows:

1< L% )
from which it follows that the characteristic length of
heat conductivity | = (xt)¥2 should not exceed the
guantity
1/2
L= (Xv)
c

©)

The physical meaning of this condition can beillus-
trated by the hydrodynamic inequality

T, Twp < 1, (4)

which implies that the geometric mean of the heat con-
ductivity time 1, and the convection time 1, is consider-
ably less than the reciprocal of the sound frequency
(here, wetook into consideration the relationshipskl ~ 1,

rgl = vk’, wck, and TTE(DE = 1, where k is the
wavevector). In systems susceptible to the glass transi-
tion, this conditions is universally fulfilled. Let us
rewrite equations (7), (9), and (18), taken from [1], in
the following form:

1€ = —e+0/G, (5)
T = (1;Q-T) - (arv)eo, (6)
1,0 = —0 +(a,/V)eT, (7)
where the constant
Q= Q+0’ing, ®

is determined by the external heat removal Q, and the
contribution from elastic stresses, which accounts for
the dissipative heating of the viscous liquid. In equa-
tions (5)—7), we introduced the dimensionless con-
stants[1]

2
TrOr _ Trlelo
Y CpV

dG =
—, ar= 9

8y =To0oV = V

According to (4), the condition a; < 1is met.

Taking into account conditions (1), the left-hand
sides of equations (6) and (7), which contain the short
relaxation times 1, and T, can be set equal to zero. As
aresult, these equations are rearranged to give the fol-
lowing expressions for temperature and elastic stresses
in terms of the strain:

T = :Q

1+ z‘:zle,f1
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a 0 20
0= 2(,Qed+&, (11)
v O g0
where we introduced the designation
2 _ _ 1idG 2
€, =ara, o|aT T+T .0 (12

[the second equality is obtained with the use of rela-

tionships (9)].1 According to equation (10), asthe strain
€ increases from € = 0 to € = ¢, the temperature T
monotonically decreases from T? = ;Q to TY2. It is
obvious that this decrease is caused by the negative
feedback in equation (6), whichisamanifestation of Le
Chatelier's principle for the problem under consider-
ation. Indeed, the self-organization of the liquid that
results in the glass transition is accounted for by the
positive feedback between the strain and temperaturein
equation (7). Therefore, an increase in the temperature
should enhances the self-organization effect. However,
as follows from relationship (10), the system is con-
structed so that the result of the self-organization—an
increase in the elastic strain—Ileads to adecreasein its
cause, namely, the temperature. With regard to
dependence (11) relating the elastic stress to the strain,
a € < g, it exhibitsalinear behavior corresponding to
the Hooke law with the effective shear modulus

TTQ! (13)

Ger = (3,/V)1:Q = “;—;5

where the second equdlity follows from relationship (9).

The function o(g) reaches amaximum at € = €, and
decreases at € > €, which has no physical meaning.
Hence, it follows that the constant €,,, defined by equal-
ity (12) is the maximum attainable strain. As is seen
from relationships (12) and (13), an increasein the tem-
perature derivative of the modulus |dG/dT| leads to a
decrease in the maximum strain €, and an increase in
the effective modulus G, which is proportional to the
characteristic temperature T° = 1;Q. On the other hand,
the ratio between the characteristic values of the ther-
mal energy E; = ¢,1;Q and the elastic energy E; =

Geffsf1 ,that is,

= rTrswlf, (19)

T
E.
has, according to (4), smal values. Substitution of

equation (11) into formula(5) givesthe equation for the
evolution of the system in the course of the glass tran-

I Notethat, if the term quadratic in o is retained in (8), the depen-
dences (10) and (11) should be expressed in terms of roots of the
quadratic equation, which substantially complicates analysis and
furnishes no radically new result.
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sition
-
ne = — e (25
Its form is determined by the strain dependence of
the synergetic potential V(g)

—Gizn 8_2 -LO|nE|ﬂ_+€_ZE
T2l 2T 25|
€n 'c O g0

m

Vv (16)

where the characteristic temperatures are defined as

T°=1,0Q, (17)

-1

TE!-ngd_g
¢ a dT

and relationship (9) is used in the second equality (18).
Itisof interest that the ratio between these temperatures

(18)

T° _ Gu

T, G (19)

reduces to the ratio between the effective shear modu-
lus (13) and its characteristic value G. At T® < T,
dependence (16) exhibits a monotonically increasing
behavior with a minimum at the point € = 0. This
implies that, in the stationary state (¢ = 0), the elastic
strainisabsent; i.e., theliquid state isrealized when the
strain caused by external stresses relaxes for atime

Tg = T(L-TUT) ™. (20)

Thisrelationship follows from eguation of motion (15),
which is written in the linear approximation. As the
effective temperature T° increases up to the critical
temperature T, the relaxation time infinitely increases,
and, at T° > T, the system transforms into the vitreous
state. In this case, a multiplier of 1/2 appears in depen-
dence (20) and the minimum of synergetic potential
(16) corresponds to the elastic strain

g, = £ (TT,— 1), 1)

which increases as the root with an increase in the dif-
ference T°—T.. According to equation (10), the temper-
ature of the system becomes critical [relationship (18)]
and the el astic stresses reach the stationary value

G, = Gegg = 0 (TUT,—1)", (22)

where 0., = Gg,,..

Physically, the glass transition is due to the fact that,
at T%> T, in accordance with (19), the effective shear
Gy exceeds the characteristic value G. Asfollowsfrom

definitions (17) and (18), the original reason for the
glass transition is an increase in the cooling rate (8) up
TECHNICAL PHYSICS Vol 45
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to the Q values exceeding the critical rate

- GldG gldg™
Q= rlaT dT‘

Among the parameters affecting the critical rate Q,
are the kinetic parameters, which determine the heat
conductivity time 14, and the synergetic parameters
characterizing the self-organization of elastic and tem-
perature fields. According to relationship (23), the first
group of parameters involves the therma diffusivity
K/c, and the heat conductivity length |. An increase in
the former parameter results in an increase in Q.
whereas an increase in | causes an opposite, stronger
(quadratic) effect. The influence of the synergetic fac-
torsisgoverned by the ratio between the shear modulus
G and its temperature derivative |dG/dT|: the smaller
this ratio, the lower the critical rate of quenching. In
other words, systemswith relatively small shear moduli
that strongly depend on temperature are susceptible to
the glasstransition. It isthis situation that isrealized in
polymers [2]. Among metallic glasses, eutectics pos-
sess this property [3, 4].

In the above treatment, we assumed that the cooling
rate Q isamodel parameter independent of €, o, and T.
However, it is seen from expression (8) that the quantity
Q isthe sum of the component Q,, which is associated
with the external heat removal, and the dissipative con-
tribution AQ = a?/nc, specified by elastic stresses (22).
By assuming that Q is independent of o, we actually
ignored the term AQ. Therefore, in the above cases, the
guantity Q should be taken to mean the external com-
ponent Q,. Let us correct this approximation by using
the stationary value of the dissipative contribution, that
IS,

K

(23)

c,I?
p

5Qy= % = i = 24
Qo_ncp - TCpQC(QO_QC) - QO_Qc- ( )
Then, from equation (8), it follows that
Q = ZQO_QCl (25)
and relationships (20)—22) take the form
e = (12)[1-Q/QJ 7, (26)
g = 2"n(Qu/Q—1) ", (27)
g0 = 2%0,(Q/Q-1)"™". (28)

Here, the last two relationshi ps correspond to the super-
critical region Q, > Q. and the first relationship, to the
subcritical region [in passing through Q,, according to
the law of duality, an additional multiplier of 1/2
appears in formula (26)]. A comparison of equalities
(20)«22) and (26)—(28) demonstrates that allowance
made for the dissipative heating of the medium at the
rate defined by (24) leads to atrivial twofold decrease
in the relaxation time T4 and an increase in the station-
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ary elastic fields of strain €, and stresses g, by afactor

of /2.

Now let us replace T in the set of Lorenz equations
(5)—(7) by the dependence 1(g) [1]:

1 _ 1,0 '-1Q
— T + —_—
1(¢) Tp%L 1+ele 1

where we introduced the relaxation time for plastic
flow 1, =n/O (© isthe strain hardening coefficient), the
parameter © = O/G < 1, and the characteristic strain
€< Em.

Itiseasy to seethat, within the adiabatic approxima-
tion (1), this set, as before, reduces to the Landau—K ha-
latnikov equation (15). However, in this case, the coef-
ficient G in synergetic potential (16) is replaced by ©
and there appears the odd term proportional to G — Q,

2r 2 0 2
€ g O
V= O—""F——T—Inljlﬁg—ﬂ}

(29)

2 Sri TcO O SriD (30)
2[€ elo
+ — — —|nl1+ =
(G G)SPE&:p n spD

Here, we introduced the critical temperature [cf. for-
mula (18)]

vO
TCO = g

At low effective temperatures T [formula (17)],
potential (30) exhibits a monotonicaly increasing
behavior with aminimum at the point € = 0, which cor-
responds to the stationary liquid state. As can be seen
from Fig. 1, at the values

(31)

T = ToHD* - 4/2)° - (0 + ¢/2)"”
O

2
3 O
L et -2%3+1g
7 =

a=eyle,, D=(p3)’+(a2),

1 20, ~—1 2 2.3 2
=—={(a/2)[(@7" +9) - 2°3*] -3
p=—35{(a/2)(®" +9) 1-3} 2
+(a’10)[(a/©)*—=5/0 + 3°] + 3,

q= 3%{ (@)@ +9) -223% -3}°

—%{ (@/2)(07 +9)*—2°3*] -3}

x{ (a*/©)[(a/@)>~5/0 + 37 + 3} —[(a/©)* + 1]
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1 2 3 4

Fig. 1. Dependences of the synergetic potential on the elas-
tic strain at different temperatures; (1) T® < Tg, @T1Y=

72,3 TO <TO<TC and (4) TO= TC.

there appears a plateau, which, at T% > TS , transforms
into aminimum (corresponding to the strain €, # 0) and
amaximum €™, which separates the minimaat € = 0 and
€o. With a further increase in the effective temperature
TO, the minimum of an ordered phase, which corre-
spondsto the vitreous state € = €;, becomes deeper and

the height of the interface barrier decreases and
becomes zero at the critical value

T°=T.,/0 = (G/IO)Ty, (33)

which exceeds the critical temperature T, [formula
(31)]. The above stationary strains for the vitreous state
(Figs. 1, 2) are given by

€0 _ ., 2mg
sm% = sm[2e COSEE + 30" @}
€= sgnm(lp/3)1’2, cosd = w/2€’,
34)
_r° 40, (@/0)® (
Ll P A
0 -1

2arpa f I ® 0
W= SG[KB@D+1}+GT 03 ~1o

The stationary elastic stress g, is determined by the

substitution of &, into relationship (11). At T°>T¢, the
character of the dependence V(¢) is identical to that
observed in the absence of the strain dependence of the
modulus (Fig. 1, curve 4).
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The aforementioned features correspond to the pos-
itive strains €. In the negative semiaxis, as || increases,
the potential V(g) passes through avery weak minimum
and then infinitely increases at € = —¢,,. Thus, the nega-
tive elastic fields € and ¢ turn out to be virtually unre-
dizable.

The characteristic feature of our scheme resides in
thefact that the energy barrier inherent in thefirst-order
synergetic transition manifests itself only in the pres-
ence of the strain dependence of the modulus. Since
this dependence always occursin redlity, it can be con-
cluded that the glasstransition in liquidsis afirst-order,
rather than a second-order, synergetic transition. Note
that the situation under consideration is substantialy
more complex than that observed upon conventional
phase transitions. Indeed, in the latter case, the station-
ary temperature of the system T, reduces to the temper-
ature Ty, for a thermostat (above, it was assumed that
Too = 0). In our case, for the second-order synergetic
transition occurring in the absence of the strain depen-
dence of the modulus, T, reduces to the critical temper-
ature T.. The inclusion of the strain dependence of the
modulus |eads to the temperature

0
To= ——, (35)
1+ (gp/en)

which is determined by the location of the minimum in

dependence (30). According to equalities (34) and (35),
the temperature T, gradually decreases from

—1

0 12
ele , (/)" 40 (36)

T, 3 O

0
T =T+ [3 }
m C[| 3@

aTo=TJtoT,,at T —» oo. Itisseen from Fig. 3that
aquasi-static increase in the parameter T°fromQOto T¢
brings about a linear increase in the stationary temper-
ature of the system in the same range. The temperature
TO abruptly diminishes at T° = T and then smoothly
decreases. As the temperature TO decreases, the T,
guantity at Ty [see reationships (32)] abruptly
increases from T,, (36) to Ty, (32). Since, in the actual
range of the parameters a and ©, which is limited by
the maximum value

N T 37)

the temperature of the medium T, (36) islower than the
minimum thermostat temperature (32), it can be seen
from Fig. 3 that the temperature of the medium T, is
alwayslessthanitsvalue T° provided by cooling of the
system at the rate Q = T1+.

The above picture is based on the assumption that
the glasstransition is caused by the self-organization of
the shear components of the stress and strain elastic
fields, on the one hand, and of the sample temperature,
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on the other. Note that the strain € plays the role of an
order parameter, the conjugate field reducesto the elas-
tic stresses g, and the temperature T is a controlling
parameter. The original reason for the self-organization
isthe positive feedback between the temperature T and
strain € [see relationship (7)]. According to (9), this
feedback results from the temperature dependence of
the characteristic shear modulus. Since the strain
dependence of the modulus was not taken into account
inthe above relationships, they involved the shear mod-
ulus G. However, it is easily seen that, in actuality, itis
necessary to employ not the initial shear modulus G,
which is virtually temperature-independent, but the
relaxed quantity © determining the slope of the o(g)
dependence in the portion of the plastic strain. Hence,
G should be replaced by © in formulas (5), (9), (12),
(13), (16), (18), (19), and (22)—<24). Then, with due
regard for renormalization (33), expression (23) for the
critical cooling rate Q° takes the form

Q= 55

Cp |2

(38)

dT

It ischaracteristic that this quantity is determined by
both the unrelaxed shear modulus G and the relaxed
shear modulus ©.

The kinetics of the glass transition is defined by the
Landau—K halatnikov equation (15), in which the syner-
getic potential has the form (30) typical of afirst-order
transition. In the supercooled liquid state (n = »), the
system can be frozen (¢ — 0) even in the nonstation-
ary state (0V/oe # 0).

The picture under discussion has a phenomenol ogi-
cal character, and it is expedient to compare the
obtained data with the microscopic theory [5, 6].
Within this theory, the role of the state parameters is
played by the quenching temperature Ty, and the inten-
sity of quenched disorder

h*=N"Y (0,-0)° =Ny (a(t) ~o(V)’,
| | (39)
_EN_le'i, G(t)EN_lZUi(t)-

This intensity is equa to the difference between the
variance of the microstresses o; produced by quenching
and the variance of the microscopic quantities o(t),
which, on the time scale ~1,, vary in a fluctuational
manner near the macroscopic quantity o(t) [in relation-
ships (39), N is the number of atoms over which the
summation is carried out] According to [5, 6], in the
field h # 0, the term —(h?%/2)e? arises in the effective
Hamiltonian, whosefunction, in our case, isfulfilled by

2 Owing to the adiabatic approximation, we went from the micros-
tresses 0;(t) to the macroscopic quantities o(t).
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3 4 5 70

Fig. 2. Dependences of the stationary strains on the thermo-
stat temperature at £,= 1, Tg=1, © = 0.25, and a = 0.5.

The solid line corresponds to the stable state €, and the
dashed line represents the unstable state €™

Fig. 3. Dependence of the stationary temperature of the sys-
tem Ty on the thermostat temperature at T.g = 1, © = 0.25,
anda =0.5.

synergetic potential (30). By expanding the logarithms
in the potential, we obtain the term

TO [ﬁz
-P7--(G-0),

which corresponds to the above contribution of the
guenched disorder. Taking into consideration depen-
dences (17) and (31), the disorder intensity can be writ-
ten as

h*=0(T%T,) - (G -0)
= 1,/dO/dT|Q - (G -0).

With alowance made for renormalization (25) and
dependence (38), we obtain an expression in terms of
theinitia cooling rate Qy:

(40)

h> = @+2G(Q,/Q°-1). (42)
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Hence, it follows that the quenched disorder

h® = 2G(Qp— Qu)/Q° (42)

appearsonly at the quenching rates exceeding the quan-
tity

Qe = Q°(1-Q/2G). (43)

The dependences obtained make it possible to
expressthe results of the microscopic theory interms of
the experimentally observed quantity—the quenching
rate Qy. Indeed, for the Edwards—Anderson parameter

q and the nonergodicity parameter A, we have q O h?3

and A O h?3 — h?®, where the critical field h, corre-

sponds to the quenching rate (38) at which the glass
transition leads to the loss of ergodicity. According to
[7, 8], for a viscodlastic medium, the nonergodicity
parameter A [ 4 —n is determined by the difference
between the viscositiesin the vitreous (nonergodic) and
liquid (ergodic) states. Then, taking into account for-
mula (42), one obtains the relationships

90 [(Qo—Qu)/Q1",

AD[(Qo—Qu)/Q1" ~h2®, (45)

inwhichitisassumed that Q, > Q. Therefore, with an
increase in the quenching rate, the liquid in the vicinity
of the glass transition point Q° (at Q. = QF) acquires
memory, whase parameter begins to increase very rap-
idly at the point Q, = Q.. Asfollows from relationship
(45), at the glasstransition point, the difference in shear
viscositiesng—n [A increases equally sharply.

It isclear that the above features should be observed
experimentally. In particular, a singular increase in the
relaxation time 14 [N 4 should be expected upon the
glass transition. In this case, the memory effects mani-
fest themselves in a nontrivial fashion [5, 6]. Specifi-
caly, in low-frequency measurements of elastic stress
relaxation times (for example, with the use of the inter-
nal friction technique [9]), the T, value obtained upon
quenching of the sample, which was initially subjected
to constant shear stresses, should be larger than the T
time obtained upon quenching in the absence of
stresses. A similar difference that is proportional to
the irreversible response (45) should also be observed
for the materia component of the strain € =
GHdG(M)/dT|r=oT [1]. As for spin glasses [6], it

(44)

OLEMSKOI, KHOMENKO

should be expected that, in the course of structura
relaxation, the above difference will very slowly
decrease with time. However, the time dependence can
be described not only by a logarithmic function, but
also by the power and Kohlrausch (stretched exponent)
laws; moreover, even a double logarithmic dependence
(virtually the termination of structural relaxation) can
occur [10].
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Abstract—The evolution of arandomly modulated sine-Gordon breather in anonlinear medium is studied the-
oretically. The initial wave field is affected by multiplicative noise. For breather amplitude and velocity, the
probability distribution function is determined by means of the inverse scattering transform and the method of
cumulants. The distributions are shown to be non-Gaussian. The mean and the most probable values of the
breather amplitude and velocity are calculated. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Investigating the evolution of random fields in non-
linear dispersive media is among the basic challenges
in the theory of nonlinear waves [1-3]. Of particular
interest isthe propagation of randomly modulated soli-
tons and soliton systemsin media described by integra-
ble or nearly integrable nonlinear wave equations.
Problems of thistype areraised in areas such asoptical -
soliton propagation in fibers with amplifiers [4], opti-
cal-pulse propagation in resonant media [5], soliton
generation in nematic liquid crystals[6], and the effects
of quantum noise on fluxon dynamics in long Joseph-
son junctions. The inverse scattering transform [7] has
been instrumental in attacking them. This approach was
applied to the propagation of a nonlinear-Schrodinger
[4, 8-10Q], Korteweg—de Vries [8], or dark soliton [11]
under random modulation. All of the soliton distribu-
tion functions (DFs) obtained in those studies have a
Gaussian shape. On the other hand, for nonlinear-
Schrédinger and sine-Gordon (SG) solitons, it has
recently been demonstrated that second-order noise
effects result in a non-Gaussian DF for parameters of
single solitons generated [7, 12]. It istherefore interest-
ing to consider the problem in the context of a system
of randomly modulated solitons. One could give many
examples of coupled soliton systems, including soliton
pairs that form breathers. Of special importance is a
randomly modulated SG-equation breather. Being a
bound state of a kink—antikink pair, it has afinite bind-
ing energy, in contrast to nonlinear-Schrédinger or
other breathers with a zero binding energy. Due to the
energy and the internal-oscillation parameter, a
breather may interact with noise in a variety of ways
and even undergo decay. Breathersare akey issueinthe
statistical mechanics of soliton systems and nonequi-
librium processes related to solitons. Taking them into
account helps one understand the nature of noisein dis-
tributed systems. For example, breathers contribute to
noise in long Josephson junctions [13]. To understand

fluctuations in these structures, one should consider the
effect of quantum fluctuations on kinks and breathers.

This paper studies the evolution of an SG breather
with arandomly modulated initial condition.

FORMALISM OF THE INVERSE SCATTERING
TRANSFORM FOR CHANGES
IN THE BREATHER PARAMETERS

Consider the SG equation
Uy—Uyt+sin(u) =0 (1)
with the randomly modulated initial breather condition
u(x, t =0) = uy(x),

—0) = )
U (X t=0) = uy(x)(1+e(x)),

where g(X) is a Gaussian random function for which
()0 =0, [E(Xe(y)d= B(x=y;1). (3

Here, B(X) is the noise correlation function and | is the
correlation length; the angled brackets denote the aver-
aging over all realizations of €(X). The noiseintensity is
assumed to be small, so that B < 1. Thismodel applies
to soliton excitation in liquid crystals [6] and to quan-
tum effects in long Josephson junctions [13].

Now, we give some relevant formulas of the inverse
scattering transform, the notation being borrowed from
[14]. Recall that this technique associates a nhonlinear
evolution equation with alinear spectral problem:

Ly = Ap. (4)

In the case of the SG equation, L isa 2 x 2 matrix
and Y = (Y, Y,). The complex number A is called the
spectral parameter. Let a(A) and b(A) denote the Jost
coefficients. A breather relates to a symmetric pair of
zeros of a(A) in the A-plane, denoted asA; = 1 +iv and
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A, =—U +iv. A breather solution has the form

() —xv

Sy

Sln(V)Dlj

u, = 4arctan[(tan(y))sm cos(y)%

5)
xﬁmm £(t)

V

Here, &(t) = &, + vt and the phase of the breather is

A/l—v2

cos(y)

The amplitude of the breather isy = arctan(v/p) .
Furthermore,
1+v

= % lii—“;cos(y), v —; T, Snv). (©

The Jost coefficients are expressed as

a(n) = L))
(AN (A=)

P(t) = t-y,

(7)

a( 1) ZV)\

It is very difficult to solve the problem in a general
case. We therefore concentrate on the limit of a small-
amplitude breather: v < pandv < |A4|. Under this con-

dition, the analysis can be carried out completely. The
corresponding solution is

. — O
O
1-v? O

a(;) = 2i5)\2'

(8)

x Sech%/(x E(t))g

The Jost functions of a small-amplitude breather are

(A®=|A,/*+iAv)cosh(z) + 2iAvsinh(2)

Wi = (A—AT)(A + A,)cosh(2)
x exp(ikr), )
_ 2v(Acos(¢) —insin(9)) -
V2 = -AD) (h + Ap cosn(z) “PUKD
where
- lg_1o . _1 o Inid
kN =5 -0 27 V%[+4|)\1|2 >y

¢ = nH-—Oc+age,

4n*

ABDULLAEV, ABDUMALIKOV

by
a(An)

c,=¢C C=c¢cf =c* ¢, =

The statistical characteristics of breather parameters
are computed from variational derivatives of the scat-
tering data. The derivatives give corrections to the scat-
tering data:

(10)

Thefirst variational derivative of the spectral param-
eter A, is
oA, _
du,

ivn

———1___cosh(z+id).
4)\1coshz(z)co (z+19)

The second variationa derivativeis

52)\1 _ v
du()duly) 32\
x[(exp(z(X) —z(y)) — exp(=id(x) +id(y)))
x exp(iky(x—y))3(x—-y)
—i[cos((z+i¢)(x))cos((z—i¢)(x))
+cos((z+id)(y))cos((z—id)(y))].

A correction to a(\) comes from

sech’ Z(X) sech’ Z(y)

(11)

da(\) _
du(x)

(w(l) (2) UJ(Z)(P(l)), (12)

and
a __ .o n (¢
du,(X)duy(y) [8A, cosh(z)U

x (exp(Z(X) —zy)) —exp(=id(x) +id(y)))
x exp(iky(x—Y))9(x-y).

(13)

This gives corrections to the breather amplitude:

_ oy
61y 6ut( )6ut(x)1

(14)

_ 5y
Oy = W5Ut(x)5ut(y)-

The first- and second-order corrections to the
breather velacity are calculated similarly:

A B AL +AF B

o,v = -8
' (1+4]A%)°

15u,(x),

TECHNICAL PHYSICS Vol. 45 No. 6 2000
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g BT FATB N

~E (1+4 D
L BABAL +BATBA;

(1+4\ D)

o,V =

(15

AZBAEB Y +AE25 A 5\
+8-1 Y 1Elﬁut(X)?Sut(y)
(1+4A )%

BREATHER-PARAMETER DISTRIBUTION

Let us calculate the DF of the breather parameters.
We employ the method of cumulants[15]. According to
(13) and (14), the corrections to A are nonlinear func-
tionals of the random processg(x). Therefore, the DF of
the corrections is non-Gaussian. Cumulants are more
convenient than moments as far as a non-Gaussian DF
isconcerned. First, afew cumulants suffice for describ-
ing the shape of a non-Gaussian DF: the first and the
second cumulants refer to the Gaussian approximation
of the DF shape, whereasthe higher cumulants describe
the deviation of the DF from the Gaussian DF.

Recall that the DF of arandom variable A isthe Fou-
rier transform of the characteristic function x:

00

x(u) = Cexp(iAu)d= J’dAP(A)exp(iAu). (16)

The cumulants K,, are determined from the coeffi-
cients of the expansion

© inun
Inx(u) = o
i=1
To calculate K, let us express them in terms of the
moments M,,:

n: 17

Ky, = My = ADH MADF O(e?),

K, = My—M?Z= QAN T QAN T AT
+ 2 NAMNDF O(e®), (18)

Ky = My—3M;M, + 2MS = 3{A,N) A0

— 3 AI{AN) T+ O(D).
Formulas (16)—(18) yield an expression for the DF:
~ 1 |:1_g_3y%__)_/f|:|i| expD_)_/fD (19)
PT,LT 2 b2b

wherey = (A —Ky)/ /K, and a3 = Kq/(K,)32.

In (18), all of the cumulants are developed in € up to
fourth-order terms, since K; ~ €*. Looking at (19),
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notice that K appears only in the term K§/K§. The
joint contribution of K, and K is of the order of €2. Itis
therefore sufficient to develop K; up to €* and K; and K,
up to 2.

In the following, we use the correlation function

0lx- Y|D

| (20)

B(x—y) = Boexpt

where | isthe correlation length.

STATISTICAL CHARACTERISTICS
OF BREATHER-PARAMETER FLUCTUATIONS

Amplitude Fluctuations

Using (14), we arrive at formulas for amplitude-cor-
rection cumulants:

y 8 22 1 Dz 21 20
K = —1—50' \Y +4_r]2D %‘»"‘EV 0 (21)
K} 102v2y%l+ (1 6v?). 22)

and
vy _ 3 4.4 10
Kj 2V y%l 4_2D (23
n

Here, 02 = Byl with B, = €2. The DF peak of P(Ay) isat

KJ . The mean amplitude is found from the equation
MyCE K] . We have

yd= y+ LAyQ
0 8o°v’ 1 . 21y° (24)
e s v s

This indicates that breather amplitude falls as 02
rises. The dependence of the correction is not mono-
tonic at larger y. The most probable breather amplitude
is

KV
Yop = Y+ (AV)mp = Y+ K ——
2K
(25)
_ gV 22 10 5173 2]
=y-— 40 +4n2DD6 +101VD

Thus, the most probable amplitude is less than the
mean amplitude.
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The deviation of the DF from the Gaussian law is

characterized by the coefficient of skewness

Y
Yy — K3

O3 = 32
(K3)
For example, if 0=0.1,n=1,y=0.1,andv = 0.5,

then o) is as large as 0.17, which is an appreciable
deviation from a Gaussian distribution.

2
= ovy_mgl + zﬁz% (1-6y%) "% (26)

Breather Vel ocity Fluctuations
Velocity-correction cumulants are

v _ 8 2 2V
Ky = o212 L —» (28)
15 H(1+47%)
and
4 ve 1
i = mot-vhh—i
ph(1+4 % (29)
x (1+8u°+32u%.

The peak of the velocity DF isat AvCE K , sothat
the mean breather velocity is

2 3
wo=v+vo= vE+ 22 11
15u"v
The correction is positive and decreases with
increasing v. Furthermore, Av — Owithv — 1. The
correction ismaximum when theinitial velocity iszero.

The most probable breather velocity is

(30)

2.3
(V)mp = v—% l—vza—75+8pz+32p‘%r (31

Thus, the most probable velocity is less than the
mean velocity. The velocity skewness coefficient is

q = ﬁ0v32(1 v +8p®+ 32p%
° A5 16p*? (32)
x (1+4)A,%).

Thus, the velocity DF of the breather becomes less
asymmetric as v —» 1 (relativistic limit). On the other
hand, the asymmetry grows with decreasing amplitude.

CONCLUSIONS

We studied the effect of anoisy initia condition on
the evolution of an SG-equation breather. Since the SG
equation isacompletely integrable equation, the evolu-

ABDULLAEV, ABDUMALIKOV

tion of the initial wave field results in the formation of
abreather with random parameterstogether with aradi-
ation field. The former and the | atter separate in afairly
short time, alowing one to examine their statistical
properties individually. Using the inverse scattering
transform and the method of cumulants, we found the
DFs for the amplitude and velocity of an asymptotic
breather generated by the noisy initial condition. Both
of the DFs are non-Gaussian. Finally, we calculated the
coefficients of skewness and the most probable and
mean values for the breather amplitude and velocity.
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Abstract—The laws of distribution among contributionsin various interactions to the total polarization energy
of a conductor in auniform electrostatic field was analyzed. It is shown that in a closed system, spontaneous
shape variations of aliquid conductor with afree surface in an external magnetic field are possible only if they
are accompanied by an increase in the conductor dipole moment. Variations of the intrinsic energy of a conduc-
tor are studied by the example of a conductive liquid drop in the case where a drop affected by a polarization
charge becomes unstable. Analytical expressions defining the sizes and charges of the droplets g ected out of
theinitial drop under the conditions of instability are derived. © 2000 MAIK “ Nauka/l nterperiodica” .

INTRODUCTION

In spite of numerous theoretical and experimental
investigations of the laws of polarization of aconductor
in an external electrostatic field, some problems con-
cerning this phenomenon are still poorly understood so
far. This is related to a certain complexity in solving
electrostatic problems, on the one hand, and to the fact
that physical models used for the theoretical descrip-
tion of electrostatic phenomena are not realistic, on the
other hand [1-5]. Suffice it to recollect a well-known
problem concerning the relation between the surface
density of the electric charge of a conductor and the
curvature of its surface, shortcomings resulting from
the “point” charge idealization, and the problem in
obtaining the linear and surface distributions of charges
when their own sizesareignored [4, 6, 7]. In particul ar,
temporal variation in the shape of a conducting liquid
drop in the electrostatic field E,, the theoretical study
of which is based on the conductor polarization phe-
nomenon [8], is poorly understood.

1. The expression for the polarization energy of an
uncharged conductor in a uniform electrostatic field of
strength E, is easily derived [1, 2] and has the form

1
U = —pE,, ®

where p is the dipole moment of the conductor in the
field E,.

On the other hand, it isknown [1-5] that the energy

Uy of anarbitrary rigid dipole p inthefield E, is defined
by the expression

Uy = —pEo. ()

The distinction between (1) and (2) is caused by the

fact that (2) is derived neglecting the energy Up of

interaction between the dipole charges, which is con-

stant for the model of a*“rigid” dipole, and neglecting
the intrinsic energy 2U, of both charges, which is aso
constant both for dipoles consisting of point charges
and for those consisting of charges distributed over
small finite volumes (let us recollect here that the
intrinsic energy of point charges is assumed to be infi-
nite).

Neglect of constant terms of the energy when deriv-
ing (2) is based on the fact that, in practice, we observe
only energy variations, but not constant energy values
[5]. However, if we deal with a polarized conductor,
neither the energy U of the interaction of the charges

of the polarization dipole with each other nor theintrin-
sic energy 2U, of both charges should be assumed con-
stant, because these energies depend on external field
strength E, and, for finite volumes of conducting liquid
bounded by a free equilibrium surface, they also
depend on the surface shape.

It is easy to see from (1) and (2) that the intrinsic
energy Uy = U+ 2U, of a conductor polarized in the

field E; is defined by the expression
1
Uga=Us +2U, = U-Uy = épEo. (©)]

The energy U of interaction of the dipole charges

with each other is negative, because the dipole charges
are of opposite sign. The intrinsic energy 2U, of the
dipole chargesis aways positive, and its absolute mag-
nitude satisfies the condition [5]

2U, = U4 4
It is clear that the equality signin (4) isimpossible

for the system of polarization charges under consider-
ation, because it would contradict relation (3).
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2. If the conductor dipole moment isknown, one can
easily derive expressions for the conductor polarization
energy U and theintrinsic energy Uy, onthe basis of (1)
and (3). Let us do this for a conductor of spherical
shape. Surface density kK = K(®) of a polarization
charge at a sphere is known and is given by the expres-
sion[1]

K(®) = %TEOCOSO, (5)

where the angle © is reckoned from the direction of
field E,.

Therefore, it is possible to determine the polariza-
tion dipole characteristics, namely, the value q of the
chargesinvolved and the distance | between their “cen-
ters of gravity.” To derive an expression for q, it is suf-
ficient to integrate (5) over ahalf of the sphere, with the
angle © varying in arange of 0 < © < /2. As aresullt,
we obtain

3
q= 21EORZ. (6)

Multiplying (5) by 2z = 2Rcos© and integrating ©
over the angle again, we obtain the dipole moment of
the polarized sphere [1]

p = RE, @)
It is easy to the find dipole length | by dividing (7)

by (6); i.e.,
= 4R

Consequently, the energy U of the conducting
sphere polarized in the field E, and the intrinsic energy
of the charges of the polarization dipole Uy, are defined
by the expression

1.3-2
gd = —ER Eo.

Uu=-U

3. Let usexploretheinfluence of deformation of the
conductor shape on the energy U of its polarization and
on intrinsic energy Uy, of a polarization dipole in the
field Ey. While on the subject of conductor deforma-
tion, we will imply deformations caused by the action
of field E, itself bearing in mind applications of the
problem under consideration to the problem of stability
of the free surface of a conducting liquid with respect
to the polarization and intrinsic charges (see, for exam-
ple, [8-12] and the references therein). In particular, it
isknown that the equilibrium shape of aconducting lig-
uiddrop inthefield E, iscloseto aprolate spheroid [1]
(it coincidesto the approximation linear with respect to
the sguare of the eccentricity € [8, 13]). Therefore, in
the further consideration, we will assume that an ini-
tially spherical drop of aconducting liquid subjected to
a constant uniform electrical field E, will suffer trans-
formation into a prolate spheroid with the eccentricity
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governed by the strength of the external uniform elec-
trostatic field E,, the surface tension o of theliquid and
theinitial radius of the drop. To the approximation lin-
ear with respect to €, the rel ation between the square of
the eccentricity of the equilibrium spheroid and the
aforementioned parameters is defined by the expres-
sion[7, 13]

2. 9 RES
e 16T 0 ©)

This expression for the dipole moment of the spher-
oid is valid only to the approximation linear in €. For
arbitrary values of €2, the polarization dipole moment
of a conducting spheroidal drop in the field E, is
defined by the expression [1]

3
3 e

E,.
(1—e2)(arctanhe—e) °

The equation describing a spheroid surface in a
spherical coordinate system with the origin at the
spheroid center is

r(®) = R(1- ez)l/s(l — ezcosze))_ll2

p=3R

2 (10)
DR[l—%(l—scosze)]

To the approximation linear with respect to the
square of the eccentricity, the surface density of the
polarization charge of the prolate spheroid is defined by
the expression [1, 13]

3E
K(©) = 4—n°cosG)[ 1-€’(06—-cos’@)].  (11)

Let us integrate (11) over half of the spheroid (i.e.,

over 0< © < 172) using equation (10), which definesthe

free surface of the spheroid, and determine the polar-
ization charge value

3 e
q = ZERH+ =7
To determine the dipole moment of the polarized
spheroid, we multiply (11) by 2r(©)cos®© and integrate

the resulting expression with respect to the angle ©
over theinterval 0 < © < 172. Asaresult, we have

(12)

_ 3 2625
p = REd+5 g

Dividing (12) by (13), we obtain an expression for
the dipole length [:

(13)

_ 4Ry , €1
3 30

If the aboveisreferred to the equilibrium spheroidal
shape of the conducting drop in the field E,, it should
be remembered that, in expressions (12)—(14), the

| (14)
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square of the eccentricity and the externa field strength
arerelated by expression (9).

Comparing relations (6)—(8) and (12)—14), we can
seethat the transformation of aninitially spherical drop
in the field E, into a prolate spheroid leads to an
increasein al characteristics of the polarization dipole,
namely, the charge, length, and moment. Transition
from the initial spherical shape of the drop to the equi-
librium spheroidal shape starts at an infinitely low
strength of the field E,. Thistransition is accompanied
by a decrease in the total potential energy of the closed
system involving the drop, uniform externa field E,,
and infinitely distant charges inducing thisfield.

Thefact that we are dealing with spontaneous defor-
mations of a drop in a closed system imposes certain
restrictions on the form of admissible deformations.
Indeed, only deformations accompanied by a decrease
in the total potential energy may spontaneously occur
in aclosed system. In the considered case of a conduct-
ing drop in an externa electrostatic field, the only
admissible deformations are those for which the dipole
moment of the drop increases and the electrical part of
the total potential energy (described by relation (1))
decreases, because the energy of the surface tension
forces at any deformations may only increase propor-
tionally to anincrease in the drop surface. Theintrinsic
energy Uy of the polarization dipole at such deforma-
tions will increase according to (3); and the energy of
interaction of polarization charges U decreases,

because, according to (12) and (14), if the drop elon-
gates, the charge g increases much more slowly than
the length | of the dipole does. Anincrease in Uy, with
asimultaneous decrease in U;may occur only dueto a

considerable increase in the e€lectrostatic intrinsic
energy 2U, of the polarization charges (see (3), (4)).

In particular, it follows from the above that sponta-
neous deformations of the drop in the field E, trans-
forming the drop into an prolate spheroid lead to a
decrease in the potential energy of the system and
deformations resulting in an oblate spheroid cause an
increasein it. We note that the polarization dipole char-
acteristics of an oblate spheroid with its axis parallel to
thefield E, differ from (11)—(14) only in the sign of the

term €. In the calculation of abubble shapein aliquid
in an external electrostatic field, an inverse dependence
will be encountered: deformation of the bubble in the
field E, resulting in an oblate spheroid is accompanied
by a decrease in the polarization energy, because the
main contribution to the polarization energy is made by
the polarization of the liquid surrounding the bubble.
However, in the bubble problem, depending on the sur-
face mobility of the charges at the bubble walls and the
permitivity of the surrounding liquid (depending on the
ratio between the contributions to the total potential-
energy variation caused by polarization of the sur-
rounding liquid and the bubble itself due to redistribu-
tion of the free charge at itswalls), various deformation
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types may occur: an oblate spheroid, sphere, and pro-
late spheroid as was mentioned previoudly [14, 15].

We now demonstrate that the further evolution of
the instability of a conducting drop in an externa uni-
form electrostatic field leads to a decrease in the poten-
tial energy of the system as well.

4. A drop of radius R of an ideally conducting
incompressible liquid with surface tension ¢ is sub-
jected to an external uniform electrostatic field of
strength E,; as a result, the drop takes a spheroidal
shape specified by the eccentricity defined by relation
(9). As the field strength increases, the drop eccentric-
ity, aswell asthe surface density of the charge induced
at the drop apices, increases too. At a certain critical
strength E, (when E, = (2.60/R)¥2 [7, 16]), the drop
becomes unstable with respect to a virtual increase in
the eccentricity and then starts to elongate rapidly
(faster than according to the exponential law [17]).
When the pressure of the electric field of the charges
induced at the drop apices (this field strengthens with
increasing €2, see Section 3 of this paper) exceeds the
pressure of the capillary forces, the drop charge starts
to decrease owing to an emission of highly dispersed,
strongly charged droplets from both of the drop apices
and the drop eccentricity growth ceases. The square of
the eccentricity €* of the parent drop at this instant is
unknown, because expression (9) isvalid only for equi-
librium forms.

We note that the emission of the daughter droplets
occurs from the emitting bulges being formed at the
apices of the unstable drop owing to superposition of
the high-order modes of the capillary oscillations of the
drop, which lose stability when the surface density of
the induced charge increases. The emission of the
daughter droplets involves the detachment of the tips of
the emission bulges by the field together with the polar-
ization charges accumulated at them. Formation of the
emission bulges, according to the aforesaid, leadsto an
increasein the drop dipole moment and to adecreasein
the total potential energy of the system.

Assuming that there is axial symmetry, as well as
symmetry about the equatorial plane of the drop, we
will consider the droplets simultaneously detaching
from the opposite apices of the parent drop as being
alike in size, with their charges being equal in magni-
tude but opposite in sign. It is possible to assume that
two simultaneously emitted daughter droplets form
dipole p with a loose coupling and the dipole extent
grows as the droplets fly apart. Thus, the process of the
emission of the daughter droplets again leads to an
increase in the dipole moment and to a decrease in the
potential energy of the entire system. Theintrinsic elec-
trostatic energy of the system in this process steadily
increases.

We now find the variation of the potential energy of
the system resulting from simultaneous emission of
two identical but opposite-charged daughter droplets
from the opposite apices of the parent drop specified by
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eccentricity e and magjor semiaxis a. We neglect the
influence of evaporation and condensation, and we
assume the temperature of the system to be constant.
A specific mechanism for the emission of droplets will
not be considered (typical models can be found, for
example, in [11, 18]), and instead we assume that the
daughter droplets are virtually formed at a distance on
the order of the characteristic linear size of the daughter
droplet (the radius of a spherical drop r of equal vol-
ume) from an apex of the parent drop. Thus, the dis-
tance | between the centers of smultaneoudy emitted
daughter dropletsisdefined by theexpresson| = 2(a+r).
Let q denote the daughter droplet charge; then the
dipoleformed by two opposite-charged droplets hasthe
magnitude of p=¢l.

An expression for the potential energy of the parent
drop just before shedding the surface charge can be eas-
ily written as

U, = 4oR°A(e) — %R3C(e) EZ,
where

A(e) = %(l—ez)_lle[(l—es)ﬂ2 + %arcsine],

3¢’

(l—ez)(arctanhe—e)'

The first term in the expression for U, defines the
energy of the surface tension forces, and the second
term accounts for the polarization energy of thedrop in
thefield E,.

The potential energy of the parent drop and a pair of
the emitted daughter droplets forming the dipole p is
given by

C(e) =

3423

U, = 4T[0R2A(e)[1—2—r—3} +8n0r2A(eo)
R

- (R~ 2r)C(e)E] - p(Eq + E.)
o . (15)
+ 5L B(e;) ~251°Cle0) (g + Ex)”

B(gy) = e—lo(l - ef))ﬂsarctanheo.

Here, Eqjis the field strength of the induced charge of

the parent drop and g, is the eccentricity of the daughter
droplet. Thefirst term in (15) defines the energy of the
surface-tension forces of the parent drop with regard to
a decrease in its surface area; the second term is the
energy of the surface tension forces of the two daughter
droplets, the third term is the polarization energy of the
remainder of the parent drop in the field E,; the fourth
termisthe energy of the dipole consisting of the daugh-
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ter dropletsin the resultant electric field near the parent
drop apices (this field is assumed to be quasi-uniform
throughout the daughter-droplet volumes); the fifth
termistheintrinsic electrostatic energy of the daughter
droplets;, and the sixth term defines the polarization
energy of the daughter dropletsin the resultant electric
field in the vicinity of the parent drop apices.

When writing expression (15), we disregarded small
energetic contributions of the interaction of intrinsic
polarization charges of the daughter droplets with each
other and of the interaction between the charges of the
emitted droplets and their images in the parent drop. In
this sense, expression (15) is approximate. To make our
concepts of the ratio between the magnitudes of various
termsin (15) consistent with the results of experimental
and theoretical investigations (see, for example, [8, 11,
19] and referencestherein), we will consider the charge
g of the daughter droplet and its characteristic linear
dimension (that is, the radius r of aspherical droplet of
the same volume) as small quantities of the first order.
Further calculations will be performed in the context of
aquadratic approximation with respect to small param-
eters, which will allow us to simplify expression (15)
somewhat by omitting the sixth summand and to dis-
card theterms of the third order of smallnessin thefirst
and third summands.

The potential-energy variation AU resulting from
the emission of a pair of daughter droplets takes the
form

2

AU = —p(E,+E,) + qTB(eO) + 8Tr°GA(ey).

The daughter-droplet eccentricity e, isrelated to its
characteristic linear dimension r and the strength of
field (Eo + Ep) by an expression of type (9) [13]:

e2= ow’X(1+ W) T%(e v),
T(e, V)
ev

0
> 2}(arctanhe—e) 1[; (9a)
v —e U

= Eﬂ - [arctanhg -
0 \Y)

2 2
w2z 4 o Wl = EoR,XEL,V:%H_%gUz.
16ttoTr R

Here, W2 is the Rayleigh parameter characterizing the
stability of a charged drop of a conducting liquid with
respect to its intrinsic charge: the drop is stable for
W?2< 1 andisunstable for W= 1[8,11,18]; the param-
eter W? characterizes the stability of the parent drop
with respect to the polarization charge: the drop is
unstable for w? > 2.6/161 [16, 18]; € is the spheroidal
coordinate of the daughter droplet’s center of gravity;
and v is the distance between the centers of the daugh-
ter and parent drops rendered dimensionless by divid-
ing by the major semiaxis a = R(1 — %) of the sphe-
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roidal parent drop. The dipole length | is related to the
dimensionless coordinate v by the smple expression

| = 2vas 2vR(1—e2)_1/3.

When deriving (9a), it was taken into account that
thefield strength near the parent drop apices at the sym-
metry axis of the system, where the daughter droplets
arevirtually formed (weignore the specific mechanism
for the emission of the daughter droplets), is defined by
the well-known expression [1, 18]

Eo+E. = E,T(e V).

Figure 1 displays the system energy variation AU
(rendered dimensionless by dividing by 8mR?c) inrela
tion to dimensionless radius X and dimensionless
charge Y = ¢/EyR? of the droplets for W = const, w =
const, and v = const. It can easily be seen that the func-
tion AU = AU(X, Y) has a minimum. Physically, the
minimum of function AU = AU(r, q) means that,
according to the principle of minimality of the energy
dissipation in nonequilibrium processes (the Onsager
principle), the system’s energy variation in the course
of losing excess charge by an unstable drop is extremal
[20]. In a small neighborhood of the minimum of the
function AU = AU(r, q), relations

o(AU) _ 4 9(AU) _
ar ' 0q

should be fulfilled.

These conditionswill result in aset of homogeneous
algebraic equations for the determination of the charge
g and radiusr of the daughter droplets at the instant of
their separation from the parent drop, namely,

2
—%B(eo) + 16101 A(g) = O,

0

(16)

~I(Eo+E,) + 29B(ey) = 0 (17)

Analyzing the set of equations (16) and (17), we
should bear in mind that the characteristic linear
dimension r and the daughter-droplet charge g, as well
asthefield strength (E, + Epj in the vicinity of the sep-

arated droplets, are functions of distancev (or, whichis
just the same, of dipole length I). For this reason, to
closethe set of equations, it isnecessary to complement
(16) and (17) with another equation relating e, g, and v.
For such an equation, we take the condition for balanc-
ing the forces inside the neck linking the separating
daughter droplets with the parent drop at the instant of
neck disruption [19],

2mr, 0 = q(Ey+ Ey), (18)

where rn is the radius of the neck at the instant of dis-
ruption.
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Fig. 1. Variation of the dimensionless system energy caused
by emission of two daughter droplets in relation to their
nondimensional radius X and charge Y for e = 0.85, W =
0.05, and v = 1.32.

A,B,F

1.050

1.025

1.000

0.1 0.3 05 e

Fig. 2. The dependences of coefficients A, B, and F on the
daughter-droplet eccentricity eg.

5. The set of equations (16)—(18) is rather clumsy
and should be solved numerically. However, one can
acquire helpful information on the process of losing
excess charge by the unstable drop, even without solv-
ing system (16)—(18), on the basis of ageneral analysis
of it. Dividing thefirst term by the second term in (16),
we obtain

W= q2 _ A(eo).
16Tor®  B(e)

(16a)

InFig. 2, thefunctions A = A(ey), B=B(gy), and F =
F(ey) =A(ey)/B(e,) arerepresented by curves 1-3. It can

be seen that W? > 1 for al daughter droplets (note that
calculated value e, = 0.4). Thus, the daughter droplets
emitted by the parent drop, being unstable with respect
to the polarization charge, in their turn, are unstable
with respect to their intrinsic charges and will disinte-
grate. The disintegration of drops unstable with respect
to their intrinsic charges may occur, depending on their
size and the liquid viscosity, in two ways: either by fis-
sion into two parts of comparable size or in the form of
the emission of alarge number of highly charged drop-
letswhose sizes are smaller by afactor of roughly 0.01
[8, 11, 18, 21].
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Fig. 3. Dimensionless (1) radius X and (2) charge Y of the
daughter droplets and (3) the distance v between the centers
of the parent and daughter drops at the instant of rupture of
the neck linking them in relation to the parent drop eccen-
tricity e for w® = 0.05 and 3 = 0.9.

Relation (16a) also indicates that orders of small-
ness of charge g and size r of the daughter droplets are
different. From (164), it followsthat, if r varies, charge
g changes according to the law g ~ r¥2. This, in partic-
ular, means that, when carrying out a rigorous numeri-
cal analysis of the expression for the system’s energy
change AU caused by the emission of the daughter
droplets, it is necessary to take into account termsof the
second order of smallness in g and the third order of
smallnessinr ~r3,

We now multiply (17) by g/32mor?A(g,) and then,
taking into account (16a), obtain

1q(E, + Ey )/32T01°A(g,) = 1.

This means that the ratio of the energy of the dipole
formed by simultaneously detaching opposite-charged
dropletsinthefield (E; + Ep) at theinstant of their sep-

aration to the energy of their surface tension forcesis
constant; that is, it isindependent of the ordinal number
of the emission event.

6. From set (16) and (17), it iseasy to find analytical
expressions for the sizes and charges of the daughter
droplets asfunctions of eccentricity e of the parent drop
and distance v. We have

_ T’ evW
X&) = 4A(e,)B(ey)(1-e3)™
(e0)B(&)(1-¢€") (19)
v _ T3(e,v)w2
(e,V) -

8A (&) B (ep)(1—€")

The relation between the parent-drop eccentricity e
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and the distance v is defined by expression

B(1-ed) °(1-€")"B(ey) = 4w’T (e, v);
5 U6 (20)
B=r,/r(l-e))

derived from (16)—18). The value of parameter 3
related to the uncontrolled neck radius r;(B is consid-

ered to be constant during loss of the excess charge by
the parent drop) is chosen on the basis of semiphenom-
enological reasons[11, 18] to be equal 3 = 0.9.

From (19) and Fig. 2, one can see that for fixed
parameter w? and distance v, the dimensionless sizes
and charges of the daughter dropl ets essentially depend
only on the parent-drop eccentricity. In Fig. 3, the
dependences X = X(e) and Y = Y(e) calculated using
(9a), (16a), (19), and (20) are shown (curves 1, 2); it can
be seen that sizes X and charges Y of the daughter drop-
lets decrease with decreasing parent-drop eccentricity
(as the parent drop volume decreases in the course of
losing the polarization charge [8, 18, 19]).

If we use the current radius of the parent drop corre-
sponding to the instant of separation of the next pair of
droplets (rather than the initial radius of the parent
drop) as a characteristic linear scale to render the radii
and charges of the daughter droplets dimensionless,
then the radii and charges of the daughter droplets ren-
dered dimensionless in such a way will increase with
decreasing parent-drop eccentricity or, which is the
same, with increasing ordinal number of a pair of the
emitted droplets, which was observed in calculations
[18]. Curve 3In Fig. 3 showsthe dependence of the dis-
tance v between the centers of the parent and daughter
drops depends on the parent-drop eccentricity at the
instant of neck rupture. The dependence was cal cul ated
using (9a), (16a), (19), and (20). It can be seen that the
dimensionless distance v between the drops decreases
as the parent-drop eccentricity e decreases.

7. An accurate estimate of contributions of various
interactions to the total polarization energy of aliquid
conductor bounded by afree surfacein an externa elec-
trostatic field E, allows one to obtain additional infor-
mation about the laws of equilibrium deformation of
the conductor in the field. It is found that, in a closed
system, spontaneous variations of the shape of aliquid
conductor in field E, are possible only if they are
accompanied by an increase in the polarization dipole
moment of the conductor. This means, in particular,
that an initially spherical drop in uniform field E, will
elongate, transforming into a body close to a spheroid.
A bubblein aliquid dielectric in thefield E, may trans-
form into an oblate or prolate spheroid, or retain its
spherical shape depending on the extent of the surface
mobility of free charges at its surface, and conductivity
and permitivity of the liquid (for various laws of polar-
ization dipole moment evolution). A correct consider-
ation of the polarization energy of adrop of a conduct-
ing liquid suffering instability with respect to the polar-
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ization charge dlows one to derive analytica
expressions for calculating the sizes and charges of the
daughter droplets and isindicative of their initial insta-
bility with respect to the intrinsic charge.

10.
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Breakup of an Uncharged Droplet in an Electrostatic Field
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Abstract—The breakup of an uncharged electrically conducting liquid dropet placed in auniform electrostatic
field into two daughter droplets caused by strong nonspheroidal deformation isqualitatively analyzed by apply-
ing the principle of minimum potential energy under spontaneous virtual variations of the droplet’s state. It is
shown that the breakup mechanism involves asymmetric mass distribution among the daughter droplets, which
arefound to be stable with respect to their respective intrinsic charges. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Characterization of the instability of uncharged
dropletsand clustersinintense electric fieldsis of inter-
est for numerous applications in geophysics, electro-
spray mass spectrometry, metal liquid-phase epitaxy,
and lithography [1-3]. The instability may develop by
different scenarios, depending on the amplitude and
geometry of the initial droplet deformation; the drop-
let's size, viscosity, and electrical conductivity; and the
intensity and degree of nonuniformity of the external
electric field [1-9].

The breakup of a highly charged droplet of a low-
viscosity liquid characterized by high conductivity has
been analyzed in most detail [1-4, 6, 9]. Inthis case, a
droplet whose charge exceeds the threshold of instabil-
ity with respect to polarization breaks up into a host of
highly charged secondary droplets, which are smaller
by two orders of magnitude. A charged or uncharged
droplet of a high-viscosity or low-conductivity liquid
placed in an intense electrostatic field can break up into
afew fragments of comparablesize[1, 5, 10]. Thelatter
breakup scenario, which is characteristic of very small
droplets of various liquids [3, 11-13], has so far been
analyzed incompletely, even though it is of interest for
numerous applications. The breakup of a droplet non-
spheroidally deformed by an external electric field has
not been analyzed at all, despite the fact that some
experimental studies of this scenario have been con-
ducted [14]. In this paper, we present a qualitative anal -
ysis of the breakup of an uncharged parent droplet into
two daughter droplets caused by its nonspheroidal
deformation in an external electric field. Our analysisis
analogousto that carried out in [10] for acharged drop-
let that spontaneously breaks up into two fragments
through a strong nonspheroidal deformation.

1. Suppose that a spherical droplet of a perfectly
conducting liquid of radius R, characterized by a sur-
face tension a breaks up into two daughter droplets as
shown in Fig. 1. Assuming that the daughter droplets
that form after the liquid bridge of length L is disrupted
are close to spheres of radii R, and R, and their respec-

tive charges are —-q and q, we express the potential
energy U, of the highly distorted parent droplet shown
in Fig. 1b just before the breakup as follows:

_ 4T[(1R2(]_ + x2) 3 qRE,(1+x+Z3/1+ x3)

(1+x3)”° 31+
. q23/1+ X3%L+ 1)5

R (D)

U,

_ q231+x3
(1+x+2/1+x)R
1 2 3

_éEoR

R EXX

_(1+x3)(1+x+z§/1+x3)’

wherex=R,/R,andz=L/R.

Thefirst termin (1) represents the energy of surface
tension; the second term, the energy of a dipole that
consists of two daughter droplets and has the moment
g(R, + R, + L) in afield of intensity E; the third one,
the energy of interaction between two point charges
separated by the distance (R; + R, + L) in the absence
of an external electric field; the fourth one, the intrinsic
electrostatic energy of dropletsof radii R, and R, whose
charges are q and —q, respectively; the fifth one, the
energy of the dipoles induced by the field E, in each

(a)

S

Fig. 1. Deformation of a droplet that breaks up into two
fragments of comparable size.
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daughter droplet; and the sixth one, the energy of inter-
action between dipoles separated by the distance (R; +
R, + L), with dipole moments equal to those induced by
the field E, in the spherical daughter droplets.

Normalizing U, to the total potential energy of the
spherical parent droplet placed in afield of intensity E,,

U, = 4n0(R2—%R3E§,

we rewrite (1) as

_g 1+% (1+X+Z3J1+X3)YJW

U

01+ 314+ m
0
—3A/1+x3%+21— 1 2—8ﬂ @)
X @+ x+B1+x3)0 n

B X %l_ﬂg‘l
3 1
A1+xX)(L+x+ 81+ gt

wherew = Eg Rotisthe Taylor parameter of the parent

droplet, which characterizesits instability with respect
to polarization (developing when w = 2.62 [2] and
resulting in the loss of polarized charge through ejec-
tion of a host of highly charged minuscule droplets),
and y = g(4maR®)2 is the normalized charge of a
daughter droplet.

Figure 2 illustrates the general form of U = U(X, y)
for w = const and z = const and demonstrates that there
exist combinations of w, X, y, and zfor which the poten-
tial energy of a droplet distorted asin Fig. 1 is lower
than that of the parent droplet (U < 1) and, therefore,
spontaneous virtual transitions from its initial state to
the final state can occur.

Equating the normalized energy given by (2) to
unity and solving the equation U = 1 with constant z
and w, one can determine the locus of {y, x} at which
the total potential energy of the resulting two-droplet
system is lower than that of the parent droplet (i.e., the
breakup of a droplet into two is unlikely to occur as
illustrated by Fig. 1 for energy reasons). Figure 3 shows
the graphs of y = y(x) obtained for w= 0.8, 1.6, and 2.4
(curves 1) with a, b, and c corresponding to the dimen-
sionless liquid-bridge lengths z= 0.1, 0.2, and 0.4. The
domains encompassed by the curves are the ranges of
admissible daughter-dropl et size and charge. One trend
exposed by Fig. 3 isthat the breakup of a droplet into
two through the deformation depicted in Fig. 1 can
occur when the Taylor parameter w is well below the
threshold value for its instability with respect to polar-
ization in the case of a purely spheroidal deformation
(2.62, according to [2]). This is explained by the fact
that the deformation illustrated by Fig. 1 can occur at
arbitrarily small q and E,.

TECHNICAL PHYSICS Vol. 45 No. 6 2000

695

Fig. 2. Total potential energy U of adisintegrating droplet as
afunction of the diameter ratio x and normalized chargey of
the daughter droplets: () w=0.8,z= 0.1 and (b) w = 2.4,
z=04.

y
0.5
04
0.3
0.2F
0.1r

1 1 1 1 1
0 0.1 02 03 04 05 06 x

Fig. 3. Ranges of admissible values of the diameter ratio x
and normalized charge y of the daughter droplets.

2. As noted above, a spontaneous droplet breakup
induced by E, proceeds in such a manner that the
energy of the resulting system in Fig. 1b (treated as
closed) is minimal with respect to x and y while w and
z are held constant. The necessary conditions for an
extremum have the form

U _ o QU _
0X Y

They lead to the following set of equationsfor x and
y corresponding to an extremal state:

0.

U _ 03wx’ X . xr .0, 2x (1+x)x
2y _ gawi ol x_yn, 2xfy_(+xx
X D4T[gh3Dg h U 923 g
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2 0.4
1 o-1-0:2 20.3

Fig. 4. Most probable diameter ratio x for daughter droplets
as afunction of the parent-droplet Taylor parameter w and
liquid-bridge length z
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Fig. 5. The most probable daughter-droplet charge y as a
function of the parent-droplet Taylor parameter w and lig-
uid-bridge length z
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Fig. 6. The Rayleigh parameters of the daughter droplets as
functions of the Taylor parameter w of the parent droplet:
(a) larger droplet; (b) smaller droplet.
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q%l%/%l °

x O WO~ o (4)

U3 7x°
h=1l+x+2z9 r—1+—z3.

g=1+x%
Solutionsto the set of equations (3) and (4) are plot-
ted in Figs. 4 and 5 as graphs of x = x(w, 2) and y =
y(w, 2). It quite clear (see aso Fig. 3) that the breakup
is asymmetric in the general case, which agrees with
experimental results[14]. The functions x = x(w, z) and
y = y(w, 2) are obviously monotonic with respect to z
and w. With increasing Taylor parameter w, both x and
y increase. Moreover, the breakup tends to become
symmetric: the parent droplet splits in two daughter
droplets of nearly equal size (see Fig. 3).

Figures 6a and 6b show the Rayleigh parameters
(W, = g¥4maR?) and (W, = q¥4maRS) of the larger
and smaller droplets, respectively, as functions of w
obtained by solving (3) and (4) numerically. Here,
curves 14 correspond to z = 0.1, 0.2, 0.3, and 0.4,
respectively. The Rayleigh parameter characterizes the
stability of adroplet with respect toitsintrinsic charge:
adroplet is unstable when W= 4 [3, 15]. According to
Fig. 6, each charged droplet resulting from the breakup
of an uncharged droplet in an intense electrostatic field
E, is stable with respect to polarization of itsintrinsic
charge, but the smaller oneis very close to the instabil-
ity threshold, and its breakup through the Rayleigh
mechanism can be caused by a sufficiently large sphe-
roidal deformation as observed in [3, 16, 17].

It should be noted that the relative size x and charge
y caculated for daughter droplets resulting from a
deformation illustrated by Fig. 1 are consistent with the
system’s extremal energy only. They are not related to
the self-consistent evolution of a droplet distorted by a
field Eg, in contrast to the case of droplet breakup
through the Taylor mechanism [11]. We leave the
mechanism of droplet deformation illustrated by
Fig. 1b outside the scope of the present analysis,
assuming that the daughter droplets acquire their
charges through polarization. If the deformation is sup-
posed to be induced by external forces of nonelectrical
nature, then the analysis presented above makes sense.
However, the analysis becomes incorrect if the defor-
mation discussed here is attributed to the field E,
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because the daughter-dropl et charge g must tend to zero
with the external field intensity E,. Unlike the present
gualitative treatment, an analysis of the breakup of a
droplet severely distorted by aweak electric field E, as
shown in Fig. 1, when one resultant droplet is much
smaller than the other, should take into account the
interaction between polarization-induced charges in
order to yield the correct asymptotic limit g — 0 as
EO I O

CONCLUSIONS

The analysis presented here shows that the strength
of a uniform electrostatic field E, required to break a
droplet through a severe nonspheroidal deformation
can be much weaker as compared to the Taylor thresh-
old value for a spheroidally distorted droplet and
depends on the initial nonspheroidal deformation. The
parent-droplet mass is asymmetrically distributed
among the daughter droplets, which agrees with exper-
imental results [14]. However, the breakup tends to
become symmetric as the Taylor parameter w of the
parent droplet and the distance z between the centers of
the daughter droplets at the moment of breakup
increase. The intrinsic charges of the daughter droplets
do not exceed the Rayleigh threshold values.
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Effect of Surface-Tension Relaxation on the Spectrum of Motions

of a Liquid with Charged Free Surface
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Abstract—The spectrum of capillary—relaxational motions of a charged free liquid surface is analyzed. The
analysistakesinto account the effect of surface-tension relaxation and the existence of two relaxation times due
to different physical mechanisms. Each relaxation mechanism is associated with certain liquid wave motions.
Motions dueto different rel axation processes interact with each other and with capillary—gravity wavesthrough
nonlinear mechanisms. © 2000 MAIK “ Nauka/Interperiodica” .

Relaxation of surface tension, aso known as
dynamic surface tension, manifests itself by the depen-
dence of surface tension on the time scale of surface
deformation at frequencies 10° < w< 10° Hz. Being an
essentially dispersive phenomenon, it is of interest for
avariety of applications [1-5]. For example, this effect
plays an important role in electrically driven liquid
atomization, which is characterized by time scales
shorter than 0.01 s[6, 7]. However, current research is
mainly focused on measurements of the characteristics
of dynamic surface tension for specific liquids under
various external conditions, whereas studies of its
physical nature remain scarce and are restricted to qual-
itative characterization. In particular, the physical
mechanism of interactions between capillary motions
and dispersive motions (due to the dependence of sur-
face tension on the perturbation time scale) is poorly
understood even though some work is in progress (see
[4-10] and references cited therein).

The effect of relaxation of surface tension on the
spectrum of liquid motions can be described by intro-
ducing a complex surface tension ¢ as given by Max-
well’'sformula[l, 5]

o= crm,—o*(l—ioor)_1 = oo—ioom*(l—ioor)_l;
0* = 0-00_0-01

which is the Fourier transform of the simplest time-
dependence of the surface tension of a perturbed free
liquid surface,

o(t) = g5+ 0, exp(-t/1).

Here, g, is the surface tension at zero frequency (i.e.,
when theliquidisin equilibrium), o, isthe surface ten-
sion at high frequencies (for wt > 1), T isthe surface-
tension relaxation time (i.e., the characteristic time of
formation of a double electric layer at the liquid sur-
face), w is the complex frequency in the exponential

time dependence of capillary-motion amplitudes of the
form ¢(t) ~ exp(iwt), and i isthe imaginary unit.

In this paper, we analyze the dynamic surface ten-
sion of aliquid characterized by several surface-tension
relaxation times, keeping in mind the fact that the phys-
icochemical nature of this phenomenonis explained by
the existence of adouble electric layer at the liquid sur-
face, which can develop through physically different
mechanisms. (These mechanisms include the effect of
a free surface on the orientation of molecular dipoles,
electrostatic interactions between bound and free
charged liquid particles near the surface, diffusive cha-
otization of the ordered liquid structure near the sur-
face, and effects due to the presence of surfactants and
their concentration).

1. Suppose that the surface tension o(t) is character-
ized by two relaxation times T, and T,:

o(t) = oo+ 0,exp(-t/1,y) + 0,exp(-t/1,),

where gy is the equilibrium surface tension and o, and
0, are additional contributions to the surface tension
due to different relaxation mechanisms that manifest
themselves when the surface is perturbed.

Variations of surface pressure and curvature are
related by the equation

Ap = J’o(t—r)%dr.

where U(1) is the surface curvature [1, 11], which
entails arelation between their Fourier transforms:

—-wTy

—-wt
Ap(®) = o+ 17— 5

021—ioor}3

Hence, one obtains the required expression for a
complex surface tension involving two relaxation

U(w).
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times:

00'[1 -,
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(D)

0(®) = 0y + 017

2. Consider an infinite plane surface of a viscous,
incompressible, perfectly conducting liquid carrying a
charge of surface density k. The liquid occupies the
half-space z< 0 in agravitational field characterized by
acceleration g ||—n, (n, is the unit vector in the z-direc-
tion). In the Cartesian coordinate system, the unper-
turbed free liquid surface is described by the equation
z= 0. We denote the surface tension, kinematic viscos-
ity, and density of theliquid by o, v, and p, respectively.

The capillary motions of aliquid with acharged free
surface are described by the linearized Navier—Stokes
equations and the continuity equation for an incom-
pressible fluid,

oy _ —F—)VP+VAU+g,

= vViu =0, (2

supplemented with the boundary conditions

dF _ oF _
S =STrUDF =0, 3)
t(n IV)U +n(t IV)U = 0, 4

2
P-2pvn(n DV)U+03 Z+4m< k¢ = 0, 5
X

which are set on the free surface described by the equa-
tion

F(r,t)=z-{(x,t) = 0.

In these equations, U(r, t) istheliquid velocity field
associated with capillary motions of the free surface,
P(r, t) isthe pressure induced in theliquid by the veloc-
ity field U(r, t), k is the wavenumber, and t and n are
the unit vectors tangential and normal to the free sur-
face, thethird termin (5) isthe pressureinduced by sur-
face-tension forces below aninitially plane surface dis-
torted by a capillary wave motion, and the last term in
(5) representsthe el ectrical pressure on the charged free
liquid surface written in the linear approximation with
respect to the surface-perturbation amplitude {(x, t) =
Aexp(ikx —iwt) [12]. The fields of liquid velocity
U(r, t) and pressure P(r, t) are small quantities on the
order of .

The set of equations (2) supplemented with bound-
ary conditions (3)—(5) and expression (1) is the mathe-
matical formulation of the problem to be solved.

By the Helmholtz theorem, the velocity field in
problem (1)—(5) should be sought as the sum of poten-
TECHNICAL PHYSICS  Vol. 45
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tial and solenoidal components (see [13]),
U, (X z t)
= (ikBexp(kz) —1Cexp(lz)) exp(ikx —iwt),
U/ x, zt) (6)
= (kBexp(kz) +ikCexp(1z))exp(ikx —iwt),
1> = K —iwv™,

where A, B, and C are constant coefficientsand [ isthe
length scale of the spatial variation of the solenocidal
velocity component.

Substituting (6) into (2)—(5), repeating the analysis
performed in [13] to derive the dispersion equation for
capillary—gravity waves in a viscous fluid, and assum-
ing that o is given by (1), one readily obtains a disper-
sion equation for capillary—gravity waves and the rel ax-
ational waves induced by dynamic surface tension. In
terms of the dimensionless quantities

y = = a = —2 B, = a.pvk, B, = oilpvik,

Y1 = vkzrl, Yo = vkzrz,
mé = :—;(gp+00k2—4nk|<2),
the dispersion equation is written as
(1-iyy)(A=iyay)([2-iy]” +a” - 4/1=iy)

. 5 (7)
—1y(B1y1 * BaY2) + Y Y1Y2(BL +By) = 0.

3. Note that the dispersion equation to be analyzed
isatranscendental one. We can eliminate theradical by
isolating it and squaring the resulting equation (7).
Then, we have an algebraic equation of the eighth
degree for the complex variabley. It is clear that not all
of its eight roots are physically meaningful, because
equation (7) contains aradical and is therefore defined
on a two-sheeted Riemann surface. Physical branches
of the dispersion equation should be sought on the
upper sheet of the Riemann surface, which corresponds
to the positive value of theradical in (7).

The solutions to the dispersion equation corre-
sponding to the negative value of the radical in (7) are
physically meaningless, because, according to (6), the
radical is the dimensionless ratio I/k (the ratio of the
wavelength k™ to the length scale I of the solenoidal
velocity field), which cannot be negative.

Figures 1-7 show theimaginary and real parts of the
dimensionless complex frequency, Imy(a?) and
Rey(a?), which were cal culated numerically by solving
(7) for constant values of the parametersy,, V,, B;, and
B,. In these figures, branches 1-3 correspond to capil-
lary—gravity wave motions of the liquid and branches 4
and 5 represent the relaxational waves associated with
the time dependence of surface tension and character-
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Fig. 1. Imaginary and real parts of the dimensionless fre-
quency y as a function of the parameter a“ characterizing
pressure balance on afreeliquid surface at 3, = 1, y; = 0.5,
[32 =0.5 and Yo = 0.3.

ized by the time scales 1, and t,, respectively. Bran-
ches6-9 correspond to the mixed capillary—relax-
ationa waves generated as a result of interaction
between capillary—gravity and relaxational waves. The
portion of branch 2 lying in the lft haf-plane (at a? < 0)
determines the Tonks—Frenkel instability increment.

Our calculations show that each of the two relax-
ation processes described by (1) is associated with a
corresponding spectrum of capillary liquid motions
qualitatively similar to capillary motions of a free sur-
face. The liquid motions associated with different
relaxation mechanisms interact with each other and
with the capillary—gravity motions of the free liquid
surface. These interactions manifest themselves in the
mixed motions corresponding to certain combinations
of the parametersy; and [3; (branches 6-9in Figs. 3-7).
Figures 1—7 are designed to illustrate numerical results
by exposing the interactions of relaxational motions
with capillary waves and with each other.

Figures 1-4 correspond toy; = 0.5, 3, =1, B, = 0.5,
and 0.3 < y, < 0.65 and illustrate the interaction

between the liquid motion associated with the relax-
ation process denoted by subscript 2 (branch 4) and the

SHIRYAEVA, GRIGOR’EV

Fig. 2. SameasFig. 1, withy, = 0.43.

capillary—gravity motions of the free surface
(branches 1-3). When 0.43 < v, < 0.44, the interaction
between branches 1 and 4 gives rise to the mixed
motions represented by branches 6 and 7. It isinterest-
ing to note that the frequencies and decrements of the
motion denoted by subscript 1 and represented by
branch 5 are also modified by thisinteraction.

With further increase in v, (see Figs. 5-7), bran-
ches5-7 are distorted. The mixed capillary—relax-
ational branch 7 and the “first” relaxational branch 5
join together at 0.93 <y, < 0.94, transforming into new
capillary—relaxational branches 8 and 9. Note that both
purely relaxational and capillary—relaxational wave
motions exist at both positive and negative values of a?,
whereas capillary—gravity waves exist only at a2 > 0.

Figures 1-7 demonstrate that the decrements of both
relaxational motions decrease with increasing y,. Over
agreater part of the a? domain, the decrements of both
purely relaxational and mixed capillary—relaxational
waves are close to—or even higher than—the corre-
sponding frequencies (particularly at a? < 0). There-
fore, one should be cautious in interpreting the relax-
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Fig. 3.y, = 0.44.

ational modes as “wave” motions in view of their sub-
stantial decay over a single period. The 1-2-3
bifurcation point of the capillary—gravity motions
movesrightwards asy, isincreased (and wave frequen-
cies decrease). According to [14], this means that the
spectrum of physically observable waves contracts at
its short-wavelength boundary.

The quantitative change in the frequencies of relax-
ational wave motions and mixed capillary—relaxational
waves associated with increasing Yy, is insignificant,
whereastheir qualitative dependence on a? may vary in
quite a complicated manner.

Our numerical analysis shows that the interactions
of the two relaxational motions with each other and
with capillary motions cannot be reduced to simple
superpositions of the corresponding branches of the
dispersion eguation; rather, they involve distortions,
mergers, and reconnections and result in new branches.
These changes could be expected to occur, since equa-
tion (7) combines different relaxation processes in a
multiplicative, rather than additive, manner. Note that
the interactions involve only waves (as described by
branches of the dispersion equation), whereas aperiodic
motions do not interact with waves. In any event, an
interaction takes place when the frequencies and decre-
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ments of certain waves are equal (i.e., when branches
representing different waves intersect). After the inter-
acting branches have reconnected and transformed into
those corresponding to mixed motions, the newly
formed branches diverge with a further increase in v,.
As they diverge, the frequency of one mixed motion
increases while its decrement decreases, and the fre-
guency of the other decreases while its decrement
increases, so that the latter can be only formally inter-
preted as a wave motion.

A numerical analysis shows that the diagrams of
capillary and dispersive waves characterized by equal
relaxation times are qualitatively similar in structure:
each contains a single branch describing a decaying
wave that exists on a semi-infinite interval of a? and
two branches representing decaying motions, one of
which disappears asit goesto the other sheet of the Rie-
mann surface at certain values of (a2, y, and B). There
exists another aperiodic branch on a semi-infinite inter-
val of a?. Anayzing numerically the effect of surface-
tension relaxation on the Tonks—Frenkel instability, we
found that its increment decreases by one-tenth of its
value as the relaxation time 1 decreases by an order of
magnitude. Theincrement strongly depends only on the
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extent of the surface-charge supercriticality, rapidly
increasing with it.

In summary, we note that the spectrum of capillary—
relaxational motions of aliquid with acharged free sur-
face characterized by two physically different surface-
tension relaxation timesis strongly affected by interac-
tions between capillary—gravity and relaxational wave
motions. Motions due to different relaxation processes

interact with each other and with capillary—gravity
waves through nonlinear mechanisms. An increase in
the relaxation time of a charged free surface results in
an insignificant decrease in the Tonks—Frenkel instabil-
ity increment.

In experimental studies of surface-tension relax-
ation, it should be kept in mind that the relaxation may
involve several time scales and the detected waves may
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be attributed to mixed wave processes resulting from
interactions between capillary—gravity waves and at
least one relaxational wave motion, rather than to
purely relaxational waves. Therefore, measurements
should span severa ranges of physical parameters of
the system, and special attention should be given to rap-
idly decaying wave motions, which may be associated
with relaxation phenomena. To identify different relax-
ation processes in surface-tension dynamics, one may
analyze their temperature-dependent behavior: for
example, surfactants are characterized by quite a sub-
stantial temperature dependence of solubility and con-
centration, whereas the diffusive contribution to the
formation of adouble electric layer depends on temper-
ature only through the weakly temperature-dependent
transport coefficients[15].
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Abstract—Onsager’s principle of minimum energy dissipation in nonequilibrium processes is applied to cal-
culate the characteristics of a surface-conducting charged bubble breakup in a liquid dielectric in a uniform
electrostatic field. The domains of physical parameters are determined in which daughter bubbles are gjected
from both apexes and are not g ected from only one apex. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Fluid dispersion in external electrostatic fields, as
well as equilibrium geometry and stability of charged
drops and bubbles in dielectric liquids, are of interest
for applications in technical physics, geophysics, and
engineering [1-3]. Nevertheless, many problems con-
cerning the stability of bubblesin dielectric liquidswith
respect to their intrinsic charge or polarization have
been studied very superficialy, athough some experi-
mental [3, 4] and theoretical [3, 5-8] research has been
conducted in this line. However, the most interesting
problem raised in the experimental work reported in
[4], namely, bubble dispersion in aliquid dielectric by
external electrostatic fields, has remained amost
unstudied theoretically, although this effect, which
leads to a rapid increase in both dispersion of bubbles
and the area of their contact with the ambient liquid, is
of certain interest. The goal of this paper isto fill this
gap.

1. Suppose that, in aliquid dielectric characterized
by adielectric constant €, density p, and surface tension
0, thereisaspeherical bubble of initial radius R, carry-
ing an electric change Q. A uniform electrostatic field
of intensity E is applied to the dielectric, polarizing the
bubble by means of the surface mobility B of electric
charge carriers. The action of E on the charge Q
stretches the bubble in the direction of E into a shape
close to a spheroid of eccentricity e [5, 9], and the
radius of the equivalent sphere increasesto R while the
gas pressure in the bubble becomes equal to P. Asfound
in[4], anincreasein Q and E can lead to abubbleinsta-
bility, which manifests itself in the gjection of highly
dispersed charged daughter bubbles from the bubble
apexes. Theinstability can develop by different scenar-
ios depending on the ratio of the bubble thermal oscil-
lation period to the characteristic time of electric-
potential relaxation over the bubble surface through the
surface motion of charge carriers.

The characteristic time of electric-potential relax-
ation through the motion of charge carriers on a gas-

fluid interface is 1, = eR/(E + BQ/R?); and the period of
bubble thermal oscillation is 1, = [pR¥/c{1 — W? —
w?/(16m)} Y2, wherew? = €E °R/g isthe parameter char-
acterizing the Taylor instability of a conducting bubble
with respect to surface polarization and W? =
Q?/(16meoR’) isthe Rayleigh parameter characterizing
the stability of the bubble with respect to electric
charge.

If the charge mobility B isso small that T, < T, then
the bubble surface can be treated as nonconducting in
the course of instability development and the charge is
“frozen” into the surface. When such abubbleis unsta-
ble with respect to the charge buildup on its surface, it
breaks up into two equal daughter bubbles carrying
equal charges[7].

When the charge mobility B is so high that 1, < 1,
the bubble surface can be treated as perfectly conduct-
ing. In this case, the bubble disintegrates into a host of
highly dispersed daughter bubbles[1, 4, 10].

To determine the critical conditions for the instabil-
ity of a charged bubble in aliquid dielectric, we write
out the potential energy of a spheroidal bubblein alin-
ear approximation with respect to €*

- snorfd+ 260_ERG 22, 58 1
AU = 4mtoR %L+45eD e +5e +175eD
QA 1.4 v (1)
4+ = L1 _ _— — —
2erC 550 PVIng,

+P,(V—V,) —4moR,,

where V, and V are the initial and final volumes of the
bubble, respectively, and P, is atmospheric pressure.
Since an equilibrium state of the bubble corresponds
to aminimum of its potential energy, the derivatives of
(1) with respect to € and R must vanish. In a linear
approximation with respect to €, one obtains the fol-
lowing equations describing the critical conditions for
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the instability of a charged spheroidal gas bubble in
field E:

oW1
16111 _\W?'

(P-P4)R 2 3 2
20 161

In contrast to the case of aliquid drop placed in a
uniform €eectric field E, the critical conditions for the
instability of agasbubblein afield E depend onthe gas
pressure through the dimensionless parameter f3
[1,5,9].

2. As the bubble instability with respect to its sur-
face charge (i.e., the sum of itsintrinsic and polariza-
tion charges) devel ops, the spheroidal bubble begins to
emit small charged daughter bubbles from one or both
of its apexes, depending on charge value Q and external
electric field E.

After an emitted bubble breaks away from the par-

ent, the daughter-bubble volume changes from VI j s

V;; and the gas pressure inside it becomes equal to P
The first subscript refers to an apex of the parent bub-
ble: i = 1 corresponds to the apex from which a bubble
isejected in the direction of E, and i = 2 corresponds to
the other apex. The subscript j isthe number of an emit-
ted bubble. The relative change in the daughter-bubble
volume can be estimated by using the definition of the
isothermal coefficient of compressibility

— = X(P;=P). ©)
i
Since x = (107-10) Pa? for gases, it is easy to
show that therelative changein the bubble volumeison
the order of 1-1072,

Figures presented in [4] show that the daughter bub-
bles are driven away from the parent bubble by forces
of electrical repulsion; quickly lose their energy
through friction; and then stop, making up two groups
of daughter bubbles located at a distance L = ma from
the apexes of the parent bubble, where a isits semima-
jor axis and mis a parameter. These groups of charged
bubbles generate an additional electric field in the
neighborhoods of the apexes of the parent bubble,
which hampers the breakaway of new daughter bub-
bles. To simplify the model calculations presented
bel ow, the electric field generated by a group of daugh-
ter bubbles is replaced with the field of a point charge
located on the symmetry axis at a distance L from the
corresponding apex of the parent bubble.

Let us consider the separation of the nth daughter
bubble gjected from one apex of the parent bubble and
the separation of the Ith bubble ejected from the other
apex, taking into account the fact that, by the current
time moment, n — 1 daughter bubbles have been gjected
from the one apex of the parent bubble and | — 1 daugh-

(2
EB =1-W
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ter bubbles have been g ected from the other apex. The
ejected daughter bubbles have charges g; < (Q + ER?)
and radii r;y < R. We assume that the time of daughter-
bubble separation is on the order of the period of the
principal eigenmode of capillary oscillation of adaugh-
ter bubble, ~(r;))¥2 Then, k bubbles detach from one
apex during the time required for one daughter bubble
to break away from the other apex, where k is the inte-
gral part of (ry/r))%2. In the resultant electric field,
which can be considered as quasi-uniform over alength
comparable to the bubble size, a daughter bubble has
the shape of a prolate spheroid with eccentricity g; [9].
In our calculations, the values g; are determined by
means of an iterative procedure.

The breakup of an unstable bubble is assumed to
take place at a constant temperature, since the heat
capacity of the liquid is much greater than the heat
capacity of the gas contained in the bubbles. Using the
fact that the total charge of the system is constant, we
find the change in the system’s potential energy due to
the gection of a daughter bubble from an apex of the
parent bubble:

B(e )
AU = 4n0r,,A(eU)+qﬁ 2er,

|jB€(F§)|: quj Zq21i|

K I n-1
IJ i\I;J)|: quj Zq2]i| (4)

n(i)-1

+(_1)|+1ER Q(V )+&l Z o

v,
—P,V, In[ ”}+Pat[v ~V,
Ve

where
Ale,) = SH1-¢)"+ arcsing, Ekl— e2)™*
Be,) = & e”'zj)marctanh(e”)
aw,) = e(vij—1)—vijarctanh[e(vij—1)(vij—e2)_1]7

(1- ez)llg(arctanhe— e)
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D, if i=1
n(')_H, if i=2’

where &;; are the spheroidal coordinates of a daughter
bubble at the moment of its separation from the parent
bubble.

Thefirst termin (4) characterizes the surface energy
of a daughter bubble; the second and the third terms
describe the change in the intrinsic electrostatic energy
of the bubble system; the fourth one corresponds to the
energy of electric interaction between the charges of
daughter and parent bubbles; thefifth term isthe energy
of interaction between a daughter bubble and the par-
ent-bubble polarization charge; the sixth one describes
the energy of interaction between a daughter bubble
and the group of bubbles emitted earlier; and the sev-
enth and the eighth represent the work done by the gas
during the isothermal variation of the daughter-bubble
volume.

The emission of daughter bubbles continues aslong
as the Coulomb force that € ects a daughter bubble is

larger than the counteracting Laplace force 2mor] ,

where r]] is the radius of the gas bridge connecting a

daughter bubble with the parent. Assuming that the
electrostatic field intensity at the point of daughter-bub-
ble separation is determined by the fields generated by
the parent bubble and the daughter bubbles gjected ear-
lier, one obtains the following conditions for daughter-
bubbl e separation from the apexes of the parent bubble:

n-1 -1

z Yij— z Yzj}C(Vij)

xH_ W
waen C+w & &

i+1_216_§%mr_—— (V”)

©)
+(-1)

2 2/3 n(i)—1

( ) :E: Yh[]

where
T(vy) = 1—arCtanh(eV51)‘eVii(ViZj—ez)_l
v arctanh(e) —e '
2.2/3 %
1 r
C(Vu) = L—*““)——, q” = B%’
( ij— ) ij
_ Qij T
Yij = ——1—, X = —RJ
(Q+ER)
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where X;; isthe dimensionless radius of a daughter bub-
ble, Y; isits charge, and by is the semiminor axis of a
spheroidal daughter bubble.

The first and the second terms in the braces in (5)
characterize the intensities of the electric fields gener-
ated by theintrinsic and polarization charges of the par-
ent bubble at the daughter-bubble separation point,
respectively; and the third term is the intensity of the
electric field generated by the total charge of the group
of bubbles emitted earlier at the same point.

Invoking Onsager’s principle of minimum energy
dissipation in nonequilibrium processes, we postulate
that the variation of potential energy of the system asso-
ciated with daughter-bubble emission be extremal; i.e.,
the conditions 9(AUj)/0q; = 0 and d(AUy)/or;; = 0 are
assumed to hold [10, 11]. In addition to the two equa-
tionsin (5), thisyields the following four equations for
the dependent variables X;;, Yy, vlj , XZJ- , Yzj , and vy

W(16)" = W ,Z Yu~ Z YZJ}

W
W(16T[)_]J2

2ﬂ3n0) 1

( ) j{ \Y” - ,

j=1

X A ow . f\2B(e)
ij (QJ)—[&W D ij 2

B(ey) .

Y'X

x [K(v;) —B(@] + (-1)' " Q(v;) (6)
W

n,BX: =0,

i (7)
_ PPy (P—PyR

=P p, PT T

3. In our numerical analysis of system (5)—7), the
parameters aj; and n; were assumed to be equal for
bubbles detaching from both apexes of the parent bub-
ble and independent of the bubble number: a;, = a, =
0.9 and n; = n, = 0.6. The analysis showed that solu-
tionsto this system depend not only on the values of its
parameters but also on the sign of the parent-bubble
charge Q.

In the plane (W2, w?), at constant values of other
physical quantities, there are six domains of existence
of solutions to system (5)—«7) shown in Fig. 1. In
domain A, emission takes place only at one apex of the
parent bubble. In domain A,, emission takes place only
at the other apex of the parent bubble. In domain B, the
parent bubbleisstable. In domains D, and D,, emission
takes place at both apexes and the charges of daughter
bubbles emitted from both apexes of the parental bub-
ble are of the same sign. In domain C, emission takes
place at both apexes but the charges of daughter bub-
bles gjected from different apexes of the parent bubble
have opposite signs. Note that the domains weakly
depend on the vaue of B. For example, when W?2 =

TECHNICAL PHYSICS Vol 45
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congt, the change in the Taylor parameter isw?( = 0) —
w2(3 =0.75) = 103,

The curves separating the domains from each other
were obtained in the following way. The values of w? <
2.59 and W2 were chosen from domain A, , where solu-
tions describing daughter bubbles gjected from the sec-
ond apex of the parent bubble do not exist. Solutions
X11, Y11, ad vy, to the system of three equationsfor the
first bubble g ection from the first apex were sought for
a constant Rayleigh parameter and decreasing Taylor
parameter. As the Taylor parameter reached a certain
value, the solutions disappeared. In this way, the curve
W2(W?) separating domains A, and B was obtained as
the Rayleigh parameter was varied from 0 to 0.6. Next,
the values of w? > 2.59 and W? were chosen from
domain C. Solutions Xi;, Y11, Vi1, Xo1, Yop, @0d vy tO
system (5)—(7) for the first emission event at both
apexes of the parent bubble were sought. Again, the
Rayleigh parameter was held constant and the Taylor
parameter was decreased. As the Taylor parameter
reached a certain value, the solutions X,,, Y,;, and v,,
disappeared. As a result, the curve w?(W?) separating
domains C and A, was calculated for the Rayleigh
parameter varying from 0 to 0.225. Next, the parame-
ters W2 > 0.6 and w? were chosen from domain D;.
Solutions X1, Y11, Vi1, Xo1, Yap, @nd vy, to the system of
six equations for the first emission event at both apexes
of the parent bubble were sought for a constant Ray-
leigh parameter and increasing Taylor parameter. As
the Taylor parameter reached a certain value, the solu-
tions X4, Y4, and vy, disappeared. Thus, the curve sep-
arating domains D, and A, was obtained for constant
values of the Rayleigh parameter lying in the interval
from 0.6 to 2. All domains corresponding to Q < 0 were
obtained by reflecting the domains calculated for Q > 0,
because the equations for Xy;, Yy;, and v,; take the form
of those for X, Y5, and v, when Q is replaced by —Q
in the equations of system (5)—(7).

A. Suppose that the initial values of the bubble
parameters W2 and w? lie in A; or A,. Then, emission
takes place at only one apex (at thefirst oneif Q >0 and
at the second one if Q < 0). Dispersion in domains A,
and A, proceeds in the same manner, except that the
daughter bubbles carry negative charges in domain A,,
while the charge of daughter bubbles in domain A, is
positive. During emission, the Rayleigh parameter of
the bubble decreases faster than the Taylor parameter,
and the bubble can reach the boundary of domain A; or
A, inthe plane (W2, w?) if thetotal electric charge accu-
mulated at the apexes of the parent bubble of the daugh-
ter bubbles is too small to stop the emission. Further
development of the breakup process depends on the
Taylor parameter. If w? < 2.59, the bubble falls into
domain B of the (W?, w?) diagram and emission ceases
completely. If w? > 2.59, the bubble fallsinto domain C
and emission takes place at both apexes. Figure 2 shows
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W2

Fig. 1. Boundariesfor domainsin the plane (W2, w?) corre-
sponding to various mechanisms of excessive surface-

chargeloss by abubblefor €= 0.7, a; = a,= 0.9, B=0.75,
andn,=n,=0.6.

X, x 107 v, x 1075 Z x 104 w2

04r 0.8

X

X

X

X
X

x
0.2 fhtt bbbt bt g X 04
Oopg, *;( Pt
On X et
D0g G0
e XX XXX Bog
Bo
Oog o
o
0050
o
00 00 o
ooooooooooo?oooooo | o .
0 12 24 n

Fig. 2. Daughter-bubble number dependence of the radius
X1 (%), charge Y; (0), relative charge Z; (T0), and Rayleigh
parameter w2 (+) for bubble emission from thefirst apex of
the parental bubble for Q >0 at € =0.7,a; = 0.9, m=1,
B=0.75andn =0.6.

the results of our calculations of unstable bubble
breakup performed for W? = 0.4 and w? = 0.4.

B. If theinitial values of W2 and w? for the an unsta-
ble bubbleliein domain D, or D,, emission takes place
at both apexes. The signs of daughter bubbles detaching
from both apexes are now the same. The Rayleigh
parameter of the parent bubble decreases in the course
of emission: it moves from domain D; to domain A,
whereupon the breakup process develops as described
in subsection A. Figures 3 and 4 show the results calcu-
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Fig. 3. The same as in Fig. 2 for w? = 0.18 and W2 = 1.2;
curves 1, 2, 3, and 4 correspond to (x), (0), (O0), and (+),
respectively.
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Fig. 5. Thesame asin Fig. 2 for w? = 2.7 and W2 = 0.0025.

lated for W? = 1.2 and w? = 0.18. During the time
required for one to seven daughter bubbles to break
away from the second apex, the first one emits 8, 9, 9,
10, 11, 13, or 18 bubbles respectively. Then, the bubble
enters domain A, in the plane (W2, w?) and emission
continues only at the first apex of the parent bubble.
Thetotal charge of the daughter bubbles gjected earlier
from the first apex of the parent bubble then becomes
sufficiently large for emission from this apex to cease,
although the bubble does not enter domain B in the
plane (W2, w?).

C. If theinitial valuesof W2 and w? liein domain C,
emission takes place at both apexes, and the charges of
daughter bubbles gected from both apexes differ in
both sign and value. The results calculated for W? =

Fig. 4. Daughter-bubble number dependence of radius
X5 (%), charge Y, (0), relative charge Z, (0) and Rayleigh
parameter W2 (+) for bubble emission from the second apex
of the parental bubblefor Q>0 at €?=0.7,a,= 0.9, m=1,
B=0.75andn =0.6.
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Fig. 6. Daughter-bubble number dependence of the dimen-
sionlessradius X, (%), magnitude of charge [Y| (0), magni-
tude of relative charge |Z,| (O), and Rayleigh parameter
W2 (+) for bubble emission from the second apex of the

parental bubble for w? = 2.7 and W2 = 0.0025; other param-
etersarethe same asin Fig. 4.

0.0025 and w? = 2.7 are shown in Figs. 5 and 6. In this
case, during the time required for six daughter bubbles
to break away from the second apex, the first apex of
the parent bubble emits 4, 3, 4, 3, 3, and 1 bubble,
respectively.

The calculations revealed that the left-hand side of
the second equation in (2) does not exceed 1.04 and
remains almost constant during emission. This means
that daughter bubbles are unstable with respect to
expansion.

CONCLUSIONS

Depending on both external electrostatic-field inten-
sity E and the value and sign of the intrinsic charge Q
TECHNICAL PHYSICS Vol 45
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a surface-conducting bubble in a liquid dielectric,

the instability of the bubble with respect to both intrin-
sic and induced surface electric charges can develop by
different scenarios, with daughter bubbles g ected
either from only one apex of the parent bubble or from
both. During bubble breakup, a smooth change in the
emission regime may occur.

1

2.

3.
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Mechanism for Propagation of a Positive L eader
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Abstract—A model of leader breakdown in air is considered. The channel is formed due to heating of the
streamer trace in the field of the streamer zone. A previous model of a streamer is generalized with allowance
for recombination of charged particles. A mathematical model of heating of the streamer trace is developed. It
is demonstrated that, at a given potential, the ignition of the channel is provided by streamers that possess a
certain charge and the corresponding propagation velocity. This velocity determines the propagation velocity
of asteady leader. The dependence of the leader velocity on the cloud potential is found. The results obtained
are compared with the data from in-situ observations and laboratory studies. © 2000 MAIK “ Nauka/lnterperi-

odica” .

INTRODUCTION

Based on the results of in-situ observations and lab-
oratory studies, two discharge regions can be distin-
guished in the leader stage of a spark discharge: a
streamer zone and a channel [1]. The channdl is a
region filled with a high-temperature plasma that pro-
vides charge transfer from the high-voltage electrode
(cloud) to the leader head. The propagation velocity of
theleader is 9, ~ 106-108 cm/s. The length of the chan-
nel can be as long as severa kilometers, whereas its
diameter is only afraction of millimeter. A great num-
ber of streamers start from the leader head at the veloc-
ities 84, which can be much higher then 8,. A family of
streamers forms the streamer zone, whose typica
length is tens of meters; the transverse size is severa
meters. The channel currents govern macroscopic pro-
cessesin theleader discharge (chargetransfer, propaga-
tion, and the formation of the streamer zone). However,
the parameters of the channel are determined by the
processes in the streamer zone. That is why the
streamer zone plays an important role in the leader
breakdown.

Although there is a general concept of the process,
a self-consistent mathematical model of the leader
stage of a spark discharge alowing one to establish the
relationship between the propagation velocity of the
leader, the parameters of the channel and the streamer
zone, and the cloud potential V is still lacking.

BASIC ASSUMPTIONS

By analogy with an arc discharge, we can assume
that, at currents=10A, the electric field inside the chan-
nel isabout 1 kV/m[2]. For megavolt potential drops at
distances of hundreds of meters, we can neglect the
variation in the potential over the channel and consider
a steady-state regime of penetration at the velocity 3,
corresponding to a potential V of the leader head equal

to V. Thus, therole of the channel reducesto the trans-
fer of the potential V, from the cloud to the streamer
zone.

We assume that the electric field Eg is constant
along the streamer zone. Thefield is produced and sus-
tained by charge transferred into the streamer zone by
al the streamers starting from the leader head [1].
Streamers are plasma formations with a charge g4 and
length determined by electron attachment [3] and elec-
tron—ion recombination. Due to polarization, the field
at the head increases. lonization in the increased field
compensates for the loss of electrons due to attachment
and recombination and ensures penetration of the
streamer. At fixed Eg, the charge g4 unambiguously
determines the velocity 9, the streamer radius ay, and
the concentration of electrons ng [4].

The leader channel is formed during heating of the
streamer tracein thefield E4 by the current produced by
ions, electrons detaching from negative ions, and elec-
trons produced due to ionization by detaching particles.
Electron detachment takes place in the interaction of
negative ions with electronically excited molecules. At
high temperatures, the processes of detachment due to
the interaction with molecules in the ground state (at
T=10° K) and energy relaxation of vibrationally
excited molecules (at T = 2.5 x 10° K) become impor-
tant [5, 6]. These processes determine the dynamics of
the channel formation, but weakly influence the propa-
gation velocity of the leader and the parameters of the
streamer zone and the channel in the steady-state
regime.

If the heating time ty of the streamer trace is con-
stant, then the potential of the channel formation Vg [
EyJ 4ty increases with increasing 9 or gg. A decrease
in g4 leads to a decrease in the streamer radius a4 and
an increase in ty due to the growth of thermal conduc-
tivity. An increase in ty leads to an increase in V4. We
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MECHANISM FOR PROPAGATION OF A POSITIVE LEADER

can expect that, at fixed Eg, the V4(q4) dependence has
a minimum V,, the corresponding streamer velocity
and charge being 9, and q,, respectively. This mini-
mum determines the potential V = V,, and the |leader
velocity 9y, = 9,, in the steady-state regime, which
means that, among the streamers starting from the
leader head, only the streamers with the charge g, form
the channel. The other streamers starting from the
leader head produce and sustain the field Eg.

Thecloud potential V4 determinestheleader current
J = ¢g8Vy, Where ¢, isthe capacitance per unit length.
In turn, the leader current determines the steady-state
parameters of the channel according to the arc-dis-
charge theory. Below, we discuss the above statements
in more detail.

A SOLITARY STREAMER DISCHARGE

Wewill characterize astreamer by acharge distribu-
tion over the length

50, 227

A = goO [Z—Z +0:0(z2—-2¢),
DeXpH—~—p 2<%
u D

+00

Os = _[q(z)dz = Qo +Q,

where z isthe front coordinate, A isthe spatial scale of
charge relaxation determined by attachment and
recombination, and g, is the head charge.

In my previous paper [4], it was shown that, from
the condition of continuity of the current density at the
front, it followsthat g, = a4 gy If A/ag > 1, then, for the
charge distribution given by (1), the field E on the
streamer axis is described by the equation

dE _o

&—TE—OE=—EQQ6
0 x-x, T
X [1- + 0
X=X,
Trrdgx(oE) +C,E @)

= CoE{ 1+ o(Eq(Mag, X) + Ex(X))},
X< X,

where x = Zlag, X = zlag, Qo = Qo/(2M&agEy) is a
dimensionless charge per unit length, T = a4/34 is the
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characteristic time, E;(A/agy, X) and E,(X) are the given
functions of x and the parameters Aay, C, =
2ngl/in(2hay — y + 0.5) is the capacitance per unit
length, and y = 0.577215665 is the Euler constant.

The conductivity is determined by electrons. ¢ =
elne, where U (E) is the electron motility. To deter-
mine the electron density n,, it is necessary to solve the
system of equations describing the ionization kinetics.
For a streamer propagating at the velocity 94 (in this
case, we have d/dt — —9 4 d/dz = —td/dx), this system
has the form

C:j_r)]: = (Vatt_vion)-[ne-i'aei-[nenw
dn ©)
dx

where n, and n_ are the densities of positive and nega-
tiveions, respectively; v (E) and v;,,(E) are the attach-
ment and ionization rates, respectively; and a4 and ;;
are the rate constants of electron-ion and ion—on
recombination, respectively.

System (3) is written under the assumption that the
plasma is quasineutral, which is valid for 94 > 3,
where 9, isthe drift velocity of electrons.

For x = X, inthevicinity of the streamer head, where
E > E,, (here, E,, 030 kV/cm is the breakdown field
determined by the conditionsv(E) = Vio(E)), we have
Vion(E) = agn,; asaresult, equation (3) reduces to

= —V,TN.+0;TN.N,, N, = N,+n_,

dn,
dx

We assume that a4 = a;; = a, (where a, = a4(Ey))
behind the ionization front (i.e., at X < x;). In this case,

ionization in the streamer traceisinessential and can be
neglected, so that equation (3) takes the form

= (Vatt_vion)Tne1 XZXf- (4)

dn,
a = V4The + O, TN N,
)
dn, _ a,tn’, X<X
dx e AE o

The solution to equation (5) with the boundary con-
dition n,(x = x) = n* has the form n,(x) = n*/(1 +
0, T(X% — X)n*). The value of n* is determined from the
equality n* = ny(X = X;), where ny(x = X;) is the solution
to equation (4) (in the vicinity of the front, we have
n.> n_and n, 0n,). Finally, we arrive at

ng O n' a
d_ez W + ar (N, X<X;. (6)
dx g 1+0,1(X;—x)n"0

When choosing theinitia conditionsfor (4) and (6),
we assume (asis usually donein numerical simulations
of streamers; see, e.g., [7, 8]) that, when the electric
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q(x)[2Tgay E,, E/E,, (ii) The parameter T is determined by equating the
150 & 130 electron density at the front nyx = x;) (or E(X = x))
obtained from equations (2) and (6) under the condi-
ol 495 tions Ny(X — —o) — 0 and E(Xx — —o) — E4 t0
the established electron density n* (or the field E*)
=420 behind the front obtained from equations (2) and (4).
90 2 ! ¢ For Eq = 0.4E,, and T = 1.8 x 10! s, we have E* =
o 115 0.497E,, and n* = 4.6 x 10% cm3 (Fig. 1).
- 3
410 (iii) The parameter A/ag is determined from the con-
30l dition that the streamer charge obtained from equations
T\ 15 (2), (4), and (6) be equa to qy. Taking into account
———  \ . . 0 expression (1), this condition can be rewritten in the
210 —05 0 0.5 1.0 form

X—Xf

Fig. 1. The charge per unit length vs. x for g5 = (1) 21.4,
(2) 15, and (3) 25, and (4) thefield E vs. x for q; = 21.4.

X 10710, S q‘sl/zns()azstEsl
2.5+ 41.5x10*
2.0
1.0x10*
1.5F
1.0 -
0.5x10*
05+
0 I I I 0
0 5 10 15 20

Ey, kV/cm

Fig. 2. (1) Thetimet and (2) charge gy Vvs. thefield Eg.

field reaches the value of E,, the electron density is
Ne=Ng 010° cm3,

The algorithm for solving equations (2), (4), and (6)
was developed in [4]. At a given value of Eg, the
unknown parameters ¢, T, and AMay are determined
from the following conditions.

(i) The parameter ¢, is determined from the condi-

tion that the charge per unit length q(x) = maytoE
attains its maximum at the streamer head (at x = x;).
Figure 1 showsthe curves g(x) obtained by numerically

solving equations (2) and (4) for g, =21.4, 15, and 25;
Eq=0.4E,; and T = 1.8 x 10' s. The true value of g,

is 21.4, because g(x) attains its maximum at X = X;.
Curve 4 illustrates the corresponding dependence E(X).

A% g (7)

as Qo
where qy = qst/(2nsoa§ Ey) is a dimensionless
streamer charge, which is determined by the values of
o and E obtained from equations (2), (4), and (6):

+00 +o00

Qs = ZneoastEstI a(x)dx = TES J' a(X) E(X)dx. (7')

The parameters g, T, and Aay satisfying condi-
tions (i)—(iii) can be found by iteration.

Figures 2 and 3 show the plots of T, g, and the

steady-state electron density behind theionization front
n* versus Eg. The streamer parameters corresponding
to the field E4 and charge g4 can be found as follows.

Theradius ay = [g4/(211& gy E4)]Y? is determined by gq

and g4 (E) (Fig. 2). The velocity 94 =
mined by a4 and t(Ey).

a /T is deter-

The solutions obtained exist at Ey greater than the
threshold field E,,, which corresponds to the minimum
in the dependence of the attachment rate on the electric
field (E4, 04 kV/cm; Fig. 3, curve 2) [4].

The data presented in Figs. 2 and 3 are the starting
point for studies of the formation of aleader channel in
the field of the streamer zone.

FORMATION OF THE LEADER CHANNEL

We assume that channel formation occurs at a con-
stant pressure P, equal to atmospheric pressure. At low
levels of dissociation (ionization), the pressure Py is
determined by the density N and temperature T of neu-
tral molecules. Hydrodynamic equations for N and T
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have the form [2]

[@T GOT0 - 10 0g,9(KDN
C" Yaro” rar%)\ or O G @
_or o7 -
TF&(I' ) = E +Uar, PO = NkT,

where A isthe thermal conductivity at constant pressure
[2] and the time is counted from the arrival of the
streamer front: T =t —z/34.

In equations (8), we neglected kinetic energy as
compared to thermal energy, the longitudinal heat flux
as compared to the radia flux, and the longitudinal
velocity as compared to the radial velocity u. By virtue
of the high rate of relaxation of rotationally excited
molecules, we assume that the trandational and rota-
tional temperatures are equal to each other. We neglect
heating of the medium due to relaxation of vibra-
tionally and electronically excited molecules. The heat
capacity of air at constant pressure is ¢, = 7/2kT. The
source heating the medium (q,) includes elastic colli-
sions of electrons (q,,) and ions (g;,) with neutral mol-
ecules, excitation of the rotational degrees of freedom
(g, energy dissipation due to electron-ion (gy) and
ion—on (q;) recombination, and dissipative attachment

(da):
Ot = Oent Uint O + Qg + Qi + Caat- 9
The sources of the bulk energy deposition depend
on the electron density n, and the densities of positive
(n,) and negative (n_) ions. Assuming that the plasma of
the streamer trace is quasineutral, we determine n,, n,,
and n_from the equations

[ne(1 'Sdr/'sst)]+ (Fnﬁe)

= (Vion_vatt)ne_)\einen++Vde[n_1 (10)
on_ 19 _
Fra + rar( N_8_) = VgNe—AjN_N, —vgghn_,
n, = n_+n..

Here, vion(Te, 0) and v4(T,, 0) are the ionization and
attachment rates determined by the electron tempera-
ture T, and the relative air density & = N/N,, where Ng =
2.5 x 10 cm®); v IS the detachment rate; and A4 (T,)
and A;(T;, ) are the rate constants of dissociative elec-
tronHon and three-particle ion-ion recombination,
respectively. Since the mass of anion is closeto that of
aneutral particle, theion temperatureisT, OT. At 94 >
B4, We can neglect the drift of electrons along the elec-
tricfield, assuming that 3 4 = 0 (for apositive leader, we
have 9 < 0).

Theradia flows of charged particles are determined
by the sum of the flows related to the motion of the
medium (n.u and n_u) and diffusion. In a quasineutral
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nt x105, cm™ Vo X108, 571
- 1.0

0.8
0.6
04

0.2

)

1 1 0
0 5 10 15 20
E, kV/cm

Fig. 3. (1) The dectron density n* in the streamer channel
and (2) the attachment rate vy vs. the field Eq of the
streamer zone.

3

o n,, cm-
1.0 4107
0.8 410"
0.6 4101
0.4 410%™
0.2 41013

0 1 1 1 1 1012
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t, Us

Fig. 4. (1) Therelativeair density d and (2) the electron den-
Sity ng in the streamer trace vs. time for ESt 12.7 kV/cm,
Ogt =033 x 1072 C(Sst—BSX1O cm/s), and a* =
108 cm3/s,

plasma of a streamer trace, diffusion is ambipolar.
Neglecting thermal diffusion and assuming that T, > T,
we obtain [9] (here, O = d/0r)
HeH; (2n— _ ne) kTeDne

e HeNe + Zp-i n;
ui_n_2uikTD n_— KT N,

e HeNe + 2151; '

N = NU—

(11)
nd_ =nu-

We assume that electron detachment results from
collisions of negative ions with electronically-excited
molecules; i.e, Vg = 0*N*, where a* is the detach-
ment rate constant and N* is the density of electroni-
cally excited particles. We will vary a* and determine
N* from the equation

ON* 10

v rar(ruN*) = VgNe—0*N*n

(12)
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Fig. 5. The potential of channel formation Vg vs. the
streamer velocity at E4 = 12.7 kV/cmin (1) the comprehen-
sive model and (2) the model without allowance for the
transfer processes.
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Fig. 6. The potential of channel formation Vg vs. the
streamer velocity for Eq = (1) Eq, (2) Ep, and (3) Es.

where v (T, 0) is the excitation rate of the molecular
electronic levels.
The electron temperature, which governs the rates

of production and annihilation of charged particles, is
determined from the energy balance for electrons [10]:

98 T 04 49 By o1 04 O 1. .19
aTEQnekTeD+ uar [QnekTED+ 2nekTer ar(ru) w3

2 (KT

e’n,
My, e or O

19
Eq —Gen = G — Uy — Cloc— 0 * T5-(1 A

where q,, 0., and g; are the energy losses due to vibra-
tional and electronic excitation and ionization, respec-
tively; A, = 5/2nKT./my,, is the electron thermal con-
ductivity; and v,, is the frequency of elastic collisions.
Figure 4 shows the dynamics of streamer trace heat-

ing. The figure presents the time dependences of the
relative air density & and the electron density n,atr =0

IVANOVSKII

obtained by numerically solving equations (8)—(13) at
Ey =127 kV/cm and g4 = 0.33 x 10° C (84 = 85 x
107 cm/s) at o* = 10 cm/s. The decrease in the elec-
tron density in the streamer trace due to attachment and
recombination is followed by an increase in n,, which
is explained by accumulation of electronically excited
molecules. The formation of the channel at t = t, O
48 ps is characterized by a sharp increase in n, and a
decreasein d. In order to describe the subsequent heat-
ing dynamics, it is necessary to take into account Cou-
lomb collisions, relaxation of vibrationally excited
molecules, dissociation of molecules, radiation trans-
fer, etc. However, even without going into details, we
can expect further growth of the conductivity and the
channel current and, consequently, a sharp decrease in
the field Eg4 of the streamer zone. This alows us to
introduce the potential of channel formation Vy [
Es9 4ty

Figure 5 shows a typical plot of V4 versus 94(qy).
Here, t4 isthe time required for the relative air density
to achieve the value & = 0.1. A comparison with the
curve obtained for 8,=9_=u, A,= 0, and A = 0 shows
that the increase in V4 a small velocities 94 (small
chargesqy) isrelated to theincreasein therole of trans-
fer processes (mainly heat conduction) with decreasing
streamer trace radius ag; i.e., the dependence of Vg on
B 4(0y) has a minimum determined by the heat conduc-
tivity of amedium.

STEADY-STATE LEADER DISCHARGE

Figure 6 shows the plots of the potential Vg of
channel formation versus the streamer velocity 94 for
three values of thefield E4 of the streamer zone at a* =
108 cm®/s. Let the cloud potential be V. In the steady-
state regime, V = V4 (we neglect the potential drop
along the channel) and the leader velocity is9, = 0 4. At
Ey < E,, leader propagation isimpossible. For E4 = E,
(e.g., E4 = E3), two groups of streamers correspond to
each value of the field of the streamer zone. For Eg =
E;, these are the streamers propagating at the velocities
9, and 9, which correspond to two possible velocities
of leader penetration. Stable propagation at the velocity
9y, = 9,4 isimpossible, because the streamers with the
velocities 95 < 94 < 9¢ form the channel at smaller
potentials. Steady-state penetration at the velocity 3 is
also unstable, because the streamerswith 84 > 9 over-
take the leader and decrease the field of the streamer
zone. We can assume that the field E4 = E, and the
velocities 3,, = 94 = 9 (point B) correspond to stable
penetration of the leader. In this case, the decrease in
the field E4 by the streamers with 3 > 35 leads to the
termination of propagation; as a result, the field Eq
increases.
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Thus, the minimum field of the streamer zone E,,
that still allows the growth of the leader is established
at a given cloud voltage V. A group of streamers with
the charge q,, and velocity 3, correspond to this field.
The heating of the traces of these streamers results in
channel formation.

Figure 7 shows the plots of the leader penetration
velocity 9, versus the cloud potential (Fig. 6; points F,
B, E). The propagation velocity 9, increases with
increasing a*. For natural lightning, the maximum
velocity is about 2.6 x 108 cm/s and the maximum
charge is about 20 C [11]. Assuming that the capaci-
tance of the leader is4 x 108 F (the length is about 5 x
10° m), we estimate the maximum potential to be
~500 MV. Close valuesresult from calculations at a* =
(0.5-1) x 108 cm®/s (Fig. 7).

The drift of electrons along the field (Fig. 8) affects
the leader parameters if the propagation velocity is
comparable with the drift velocity. The increase in the
conductivity at the stage of channel formation leads to
adecreasein thefield of the streamer zone. For aleader
propagating at the velocity 9, the estimate for the
decrease in the field E4(1) of the streamer zone can be
found from the equations

ov _
5? - -ShESt(T)! (14)
| = C43,V, | = (Gy+ Gg)Eg(T),

where V is the potential, | is the total current of the
streamers, Cy = 211&,/IN(29t4/Ry) is the capacitance per

unit length of the streamer zone, G, = 21T o o (r, Drdr

(where o = e, + ep;(n, + n)) isthelinear conductiv-
ity of thetrace of astreamer that formsthe channel, and
G4 isthetotal linear conductivity of all the streamers.

From (14) we obtain the equation for the field of the
streamer zone
0
57l(Gu * GoE4(1)] = CHIE4(1).  (15)
For small conductivity of the streamer trace (G,, —
0), thefield isconstant along the streamer zone (Ey(T) =

Eq(t=0)=Ey ifG4= Cstﬁﬁr. Thegrowth of G, inthe
stage of channel formation causes a decrease in the
field. Note that the linear conductivity that is necessary
to sustain the field of the streamer zone can be provided
even by a solitary streamer, because the conducting
zone widens due to the ionization of new areas by the
transverse electric field [12].

Figure 8 presentsthe plots of theleader velocity ver-
sus potential obtained from equations (8)—(13) with
field (15) for aratio 9,t4/Ry between the length and
radius of the streamer zone equal to 3 [1]. It is seen
from the figure that taking into account the capacitance
of the streamer zone results in the appearance of the
threshold voltage V,,, for leader breakdown, which
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Fig. 7. The leader velocity vs. the potential V for a* =
(1) 25 %107, (2) 5% 107, and (3) 108 cm®.
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Fig. 8. The leader velocity vs. the potential V a o* =
1078 cm¥/sfor 94 = 0 and Cy = oo (solid line), 94 # 0 and
Cgy = o (dashed line), and 9 4, # 0 and Cp # o (crosses).

corresponds to the minimum velocity 9, of leader
propagation. Laboratory studies yield the following
minimum values of the leader velocity and potential:
B min ~ 2 x 10° cm/s and V,y;,, ~ 300400 kV [1].

In order to estimate the maximum leader length L,
we present the cloud potential V asasum of the poten-
tial V of the streamer zone and the potential drop V, =
E.L along the channel. We assumethat thefield E . ison
the order of the arc field: Ey(V/m) O A,J°5, where
J(A) = cy9,V, isthe leader current, ¢, (08 x 102 F/m,
and 9,,(m/s) JA,V 23, Thevalue of A; = 104(VAY)/mis
obtained by interpolating the data from [13], and the
value of A, = 4.5m/(V?3s) is obtained by interpolating
curve 3in Fig. 7. Finaly, for the length and velocity of
the leader, we obtain

/CoszlmleD”?’%l_lD

Al . Ij‘/cl O VcI 0

9, = AV

L =

(16)
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Si/So
10F

We estimate the maximum velocity of the leader
assuming that V = V, i.e, 9,, 04.5V;">. The length
attains its maximum at V = 0.25V,: L, O 28 x

10-10V2"°  Note that, for the leader length L < L, (Vy),

we can neglect the potential drop aong the channel and
consider steady-state propagation.

For the maximum potentials of artificia lightning,
we haveV, 03-5 MV, L, [1200-500 m, and 8, 10.94—
1.3 x 10° m/s. The observed values are L (11000 m and
9§ 010° m/s[1].

For the minimum lengths of natural lightning, we
haveL 010°m, Vy 07 MV, and 8,,01.6 x 10° m/s. The
observed valueis 9 010° m/s[11].

For gigantic lightning, we have V4 1500 MV, L, O
25x10°m, and 9,,12.8 x 10° m/s.

0.8

0.6

0.4

0.2

0 L 1 L 1 1 1
5 15 25 35 45 55 65 75

E, kV/cm

Fig. 9. The relative electron energy losses vs. the electric
field: (1) vibrational excitation, (2) electronic excitation,
and (3) ionization of air (§ = ZSi).

DISCUSSION

Vion 571 The electron energy losses due to the excitation of
10' - electronic levels sharply increase in the fields E = E* [
0 10 V/iem (Fig. 9). In the above analysis, the field E*
107k determines the threshold for leader breakdown in air. It
100k is believed that the field in the streamer zone is Eg ~
5kV/em [1]; i.e, E4 is close to the threshold for
108 streamer breakdown Ey, (Fig. 3, curve 2). This is the
main difference between the above concept and the

107 - generally accepted views[1].
1061 Direct measurements of the field of the streamer
zone in a rod—plane gap with a length up to 20 m [14]
109 . ! ! ! ! provide evidence of the validity of therelationship Ey ~
0 20 40 60 80E kV/lc?g Ey. Those measurements were based on the Pockels

effect; however, at thefield strengths =2-3 kV/cm, cor-
rect measurements of thefieldsin air by detectors based

Fig. 10. Theionization rate vs. the electric field E: the solid
line shows the experimental datafrom [35] and circles show
the resullts of calculations by (A4).

94 % 107, cm/s

o
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o
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1
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Fig. 11. The electron drift velocity vs. the electric field E.
The notation isthe same asin Fig. 10.

on bismuth silicate crystals are hardly possible because
of thefield distortion by alocal corona[1]. Itispossible
that multiple streamer breakdowns (corona) near the

Vates S

3.0x108}
2.5%108
2.0x108

1.5x108

1.0x108

1
100
E, kV/cm

60 80

Fig. 12. The attachment rate vs. the electric field E. The
notation isthe same asin Fig. 10.
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detector at the field strength E > E;;, decrease the local
field strength to E ~ E,. In this case, the results pre-
sented in [14] only alow one to be confident that the
field in the streamer zone is greater than E,

The estimate Ey ~ 1/9 4dV/dt ~ 12 kV/cm obtained
from an experimentally observed linear dependence of
the velocity of a streamer starting from a point on the
steepness of the front of the voltage pulse dV/dt at 9 =
2 x 10° cm/s [3] provides indirect evidence in favor of
therelationship E4 ~ E*.

At fields of about E*, the N,(A’}) and Ny(B%,)

levels with the energies I* = 6.14 and 7.3 eV, respec-
tively, are mainly excited [15]. In the interaction with
these molecules, the detachment rate constant is a* ~
2.5x10° cm?/s[1, 9]. Anincreasein a* by afactor of
24 provides the best agreement with the experimental
data. Additional channels of destruction of negative
ions are provided by detachment in the interaction with
molecules excited to higher electronic levels (I* =
10 eV; the relative concentration of such particles is
about 10%); detachment due to the interaction with res-
onant radiation; electron-impact detachment in the
regions with high electron density, e.g., in the vicinity
of the front of a streamer discharge (Fig. 3, curve 1).
This problem requires further investigation.

We did not manage to produce asimilar steady-state
regime of breakdown for a negative |leader, because, in
the stage of channel formation (Fig. 4), the electron
drift velocity 94 exceeded the streamer velocity 94,
which led to discharge termination [see the first equa-
tion in (10)].

CONCLUSIONS

We have considered amodel of leader breakdown in
air in which the channel is formed due to heating of the
streamer trace in the field of the streamer zone, which
isformed by a great number of streamers starting from
theleader head [1]. Theinitial parameters of the plasma
in the streamer trace are determined with the use of the
previously developed model of streamer discharge [4],
which was generalized by allowing for the recombina-
tion of charged particles. Detachment of electrons in
the interaction of negative ions with electronically
excited molecules playsthe key rolein the formation of
the channel.

It is demonstrated that, in the steady-state regime,
the channel is formed from streamer traces with a cer-
tain charge. The other streamers produce and sustain
the field of the streamer zone.

We have found the penetration rate, the length of the
streamer zone, and the length of the leader discharge as
functions of the cloud potential. We have estimated the
minimum potential that makes leader discharge possi-
ble and have found the corresponding propagation
velocity.
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Itisthe Ny(A’S;, )and N,(B3M,) electronic levels that

are mainly excited in the fields under consideration.
The detachment rate constant in the interaction with
these molecules is a* ~ 2.5 x 10° cm®/s. An increase
in a* by a factor of 2—4 provides the best agreement
with the experimental data. The problem of additional
channels of destruction of negativeionsrequiresfurther
investigation.

For a negative leader, a Smilar steady-state regime
of breakdown is impossible, because, in the stage of
channel formation, the electron drift velocity is greater
than the streamer vel ocity, which leadsto current termi-
nation.

Within the model presented, the threshold (with
respect to the formation of the leader discharge) field of
the streamer zone, E* 110 kV/cm, is determined by a
sharp increase in electron energy losses due to excita
tion of the electronic levels. Bazelyan and Raiser sug-
gested [1] that the field of the streamer zone is close to
the threshold field of the streamer discharge E;, O
5 kV/cm. There are argumentsin favor of both hypoth-
eses. In order to clarify this problem, further investiga-
tions are necessary.

APPENDIX
Reaction Rate Constants

The cross sections of interactions of electrons with
molecular nitrogen and oxygen are studied in [16, 17].
Let us briefly describe the cross sections used in this
paper. The dependences of the transport cross sections
0., of elastic collisions on the electron energy € were
taken from [18]. We follow [19, 20] in the description
of rotational excitation. To determine the total cross
sections, we take into account the smallness of the rota-
tional constants (B, = 2.5 x 10 eV for N, and B, =
1.8 x 10 eV for O,) and replace summation over the
indices of the levelsj with integration over j fromj =0
toj = oo. For the decel eration cross section, we obtain

kT
SF; = 48000%_?g

where g, = 817/15(ay)?, 8y isthe Bohr radiusand Q isthe
guadrupole electric moment (Q = 1.05 for N, and Q =
0.3for Oy).

When describing vibrational excitation, we only
consider collisions of the first type, which means that
we assume the molecules to be in the ground state. The
excitation cross sections of the first eight levels of N,
and four levels of O, can be found in [21] and [22],
respectively.

The cross sections of the electronic excitation of

molecular nitrogen are taken from [23] (for the A“‘z;
and a'l1l, states), [24] (for the B3 and C°M1, states),
and [25] (for the b'M, and b'S; states and the sum of

(A1)
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cross sections of the higher lying states). For molecular
oxygen, the cross sections of the excitation of the a'A,

and blz; states are taken from [15, 22] and the cross

sections of the excitation of the A’S" and B’s, states

and the sum of the cross sections of the higher lying
states are taken from [25]. When describing electron-
impact ionization, we restrict ourselves to the process
starting from the ground state. The corresponding cross
sections for N, and O, are taken from [26] and [27],
respectively.

The cross sections of a three-particle attachment to
O, aretaken from [28], assuming O, to be the third par-
ticle. The dissociative attachment rates are determined
based on the cross sections from [29].

The temperature dependences of the rates of pro-
duction and annihilation of charged particles corre-
sponding to the above cross sections are determined
from the kinetic equation for the symmetric part of the
electron distribution function f, [30],

0 Te’E’ ¢ 2M, 0
&ﬁvg%@ T TEa(0) [ 2ol

+E e o(©) 0= 3 [£0E) )

—(e+&)Qie +&)fole + &) +£Qi(e) fole)

—(e—&)Qi(e—&)) fo(e —&))] +€ion(e) fo(€)

(A2)

-2 J' €'Gion(€) fo(E)W(E', €)dE,

£+ 1

which is solved for various values of the ratio E/N
according to the technique developed by Sherman [31].
From the distribution function f,, we abtain the electron
temperature

00

_ 2 12
T, = SKIS fo(€)de (A3)
0

and the corresponding rate constants of production and
annihilation of charged particles, as well as the colli-
sion frequencies and the rates of energy losses[30, 32].
The obtained dependences of the rate constants on T,
are interpolated with the use of the analytical formulas
([T isineV)

V= 2.52 % 10723, /T.[0.727

+ T exp(—0.791/TH)], s,

IVANOVSKII

92 -11

Vin = 8.975 x 10°5T,(0.0018 + T, )

-1

x exp(~10.13/T?), s,
Vo = 5.53x10°8T(1812.23+ T.")
x exp(-1.7835/T2), s*,

V3. = 3.075x 10'8°[0.08554

3/4 2\ 1~ V2 -1 (A4)
+ T3 (1+16.23exp(-0.734/T2)) ], ST,
v2 = 3.06x10%
69.6 $l

X exp|: 32 55 2 i|’
2297241+ 10.1T.> exp(=2.53/T2))
O+ G = (8.15+6.39 % 10™'v,,,/To)
x 10 [To(1=T/T )N, eVi(scm®),

10+-3

Oy + 0o = 8.917 x 10°T.%(9.93+ TY)
X exp(—2.36/T2)ne, eVi(s cmg),

where vfn and vazIt are the rates of three-particle and
dissociative attachment, respectively: vy = vfn + vazn :

We assume dissociative recombination and recom-
bination in triple collisions to be the main channels of
electron-ion and ion—on recombination, respectively.
The corresponding constants were determined from
[33, 34]

- 7800 3
0y = 3x10 DT_eD , cm’/s,
o (A5)
a, = 2x10°88X0 " em%s, [T, T] = K,

oT o

where T,and T arein K.

The rate of the bulk loss of electron energy due to
ionization was determined from g; = [v;y,N., Where | =
14.9 eV is the mean ionization potential of air mole-
cules. We assume that the particles produced via elec-
tron—Hon and ion-ion recombination and dissociative
attachment remain in the ground state, so that all the
released energy is transformed into heat. In this case,

Qs = Og(le + 3/2kTe)n§; Gi = o;lin.n,, and Qg =

2¢,V azn n.. The energies released in different elementary
actsareassumedtobel,=6¢eV,|;=13.44 eV, and g =
1.35¢€V.

Figures 10-12 compare the ionization rates vq,,
electron drift velocities 94, and the attachment ratesv 4

obtained from the experimental data[35] and from for-
mulas (A4) at & = 1. Inthelast case, the electric field E
TECHNICAL PHYSICS Vol 45
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corresponding to the temperature T, was determined
from [see (13), in which d/dt, d/dr = 0]:

10.

11

12.

13.

14.

2
en,

T (A6)

E* = Qe+ O+ Qy + Qo + G-
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Abstract—A model of solid hydrogen isotope pellet formation is proposed for an origina porous generator
employed in the system of periodic particle injection into the plasma of thermonuclear devices. The results of
model cal culations show that the frequency of 3-mm pellet formation in this system may reach upto 2, 1.3, and
1 Hz for hydrogen, deuterium, and tritium, respectively. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

A widely recognized method of maintaining ther-
monuclear reactions consists in injecting macroparti-
cles (pellets) of solid hydrogen isotopesinto the plasma
of thermonuclear devices [1]. Many of these devices
are equipped with pellet generators which, together
with the gas injection valves, constitute a base of the
fuel supply system. Most frequently employed are
pneumatic injectors, in which the pellets are acceler-
ated with compressed air (like projectilesin a gun bar-
rel) up to a velocity of 1-3 km/s and injected into the
plasma. The problem of injector development reduces
to designing adevice capable of generating solid pellets
of hydrogen isotopes with atemperature of about 10 K
at a steady-state production rate above 1 Hz and areli-
ability of operation exceeding 95%.

Several possible designs of the pellet generator have
been proposed [2—-7]. In the Zambony generator [2], the
gas is continuously frozen onto the rim of a rotating
disk and the ice is periodically cut off. However, this
device provides pellet production in a steady-state
regime at a frequency not exceeding 0.2 Hz. Another
generator [3], consisting of a system of three switched
piston extruders pressing afuel icerod cut into pellets,
requires keeping a large stock of fuel, which is rather
dangerous (especially when working with tritium).
More promising systems are apparently offered by gen-
erators using “gas’ or screw extruders [4, 5]. Here,
obvious disadvantages are a rather high gas pressure
(10 MPa) in the first case and a quite large necessary
fuel stock (reaching severa grams) in the latter case
(again, undesired when dealing with tritium).

Recently [6], anew generator scheme was proposed
in which the fuel pellets are formed upon melting a
small volume of solid fuel continuously frozen in a
porous sleeve, essentially representing a short part of
theinjector barrel, followed by the liquid phase leaking
and freezing again in the barrel. The first tests showed
[7] that solid hydrogen pellets 3 mm in diameter can be
formed in such a system at a frequency of 0.1 Hz. To
increase the rate of pellet production, it was necessary
to optimize the system design. The task of this work

wasto develop amodel of particle formation in the pro-
posed porous generator and perform the optimization
procedure based on this mode.

PELLET FORMATION MODEL

Prior to estimating the minimum time required for
pellet formation in the proposed generator, let us deter-
mine the maximum barrel diameter for which aliquid
drop of fuel will not spread over the surface. Consider
aliquid drop occurring in equilibrium inside a horizon-
tal round barrel. The orthogonal coordinate axes x and
y perpendicular to the barrel axis are conveniently ori-
ented in the horizontal and vertical directions as
depicted in Fig. 1. Let the saturated vapor pressure and
the liquid-phase pressure at the point y = Rin the barrel
be P, and Py, respectively, where Risthe barrel radius.
The free surface of the liquid is described by the func-
tion u(x, y). A static equation for this system describes
the balance of gravity and surface tension forces [8]:

crzdivD Hu(x y)
[+ [0ux, v -

where p, and g, are the density and the surface tension
coefficient of theliquid, respectively, and g isthe accel-

0
u(x, y)

% 4

= P29(R-X) + (Pr—Py),(1)

y

Fig. 1. Schematic diagram showing aliquid fuel drop inthe
injector barrel.
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eration of gravity; here and below, the indices 1-3 refer
to the solid, liquid, and gas phases of the fuel, respec-
tively.

Integrating equation (1) over the barrel cross section
X% + y? < R? and using the Ostrogradsky—Gauss theo-
rem, we obtain arelationship

20,0080 = p,gR’* + (Pr— PR,

where ¢ isthe contact angle for the liquid on the barrel
surface. Thisrelationship yieldsaformulafor the barrel
radius:

20,c050  Pr—Pyf Pr—Ps
R = + - . 2
«/ pg  H2p,g0  2p,g @)

Asis seen from this expression, the maximum pos-
sibleradiusisthat corresponding to Pg = Ps. Taking into
account that liquid hydrogen almost perfectly wets the
barrel surface, we obtain afinal expression for the max-
imum barrel radius R, a which the fuel drop will not
spread over the surface:

2o,
Rux = [—. 3
P29 3

Calculations by formula (3) performed for the p,
and o, values taken from [9] showed that the surface
tension would prevent drops of hydrogen, deuterium,
and tritium with radii below 2.8, 2.1, and 1.85 mm,
respectively, from spreading in the barrel. Of course,
theliquid fuel can befrozenin abarrel of greater radius
as well, but in this case the liquid would partly spread
on the surface, vaporize, and condense again onto the
surface of ice formed in the barrel. Increased duration
of this process would render the system hardly applica-
ble to periodic fuel injection.

The new principle of pellet formation consists
essentially in pulsed heating and melting of the fuel in
the pores of theinjector, whereby the melted fuel would
leak through the pores into the injector barrel to freeze
there again [6]. Since a generator with fuel operating in
thismode hasto be periodically heated only by 5-10K,
the time of pellet formation would markedly decrease
compared to the time usually required to freeze a por-
tion of the gasin the barrel by cooling the fuel from 290
to 10 K.

Asis seen from the scheme presented in Fig. 2, the
accelerating gas, driving pellet 1 in barrel 2, enters (at
room or elevated temperature) via valve 4 and passes
via tube 3 through pellet generator 5 (cooled down to
approximately 10 K), thus heating this part of the injec-
tor. If the solid fuel, melted by heat delivered with the
gas, penetrates through sleeve 6 into the barrel, the
whole process of pellet formation will be self-sustain-
ing, requiring no drives or mechanisms. This circum-
stance would render the generator simplein design and
use, markedly increasing the reliability of the system.
Liguid helium permanently circulating inside heat
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exchanger 7 coolsthe generator so that the accumul ated
liquid fuel freezes inside the injector barrel and in the
porous generator. The volume of the porous sleeve,
emptying when the liquid drop leaks into the barrel, is
rapidly filled with a new portion of fuel condensing on
the devel oped pore surface.

The purpose of developing the proposed model con-
sistsin evaluating the minimum time necessary for pel-
let formation, depending on the characteristic of the
fuel and the parameters of the system design.

The amount of heat delivered to the generator with
the accelerating gas can be evaluated by using, in the
first approximation, a relationship between the Nusselt
number (Nu) for a steady-state gas flow in around tube
and the Reynolds (Re) and Prandtl (Pr) numbers[10]:

Nu = 0.023Re*°Pr®*. (4)

The local Re and Pr values can be calculated using
the cross-section-average parameters of a given accel-
erating gas with allowance for its adiabatic expansion
upon entering the barrel from a shot valve volume of
about 6 cm3. Assuming the gas enthal py variation to be
small (despite the heat exchange with the barrel walls),
the gas escape time t* from the barrel can be estimated
by the formula[11]

*_i[ﬂﬂjw [B)Dz7 [ﬂ)ljw
t = oo Bf [3+2EPgD +3655 } )

where P, and P are the initial and final gas pressurein

the barrel, a2 is the sound velocity in the unperturbed
gas, and Sisthe barrel length (including the inlet tube
carrying the gas gjected from the shot valve).

Let us assume that the heat supplied to the system
by the accelerating gas to the barrel and the inlet tube
and removed in the steady-state regime by the injector
cooling system istransferred only within small parts of
theinlet tube 2, barrel 3, and the generator surface con-
tacting the gas (Fig. 2). For definiteness, we aso
assume that the pellet length, porous sleeve thickness,
and barrel diameter have equal values and the heat-
exchange area between gas and generator is two times
the pellet surface area. Under these assumptions, the
heat transferred from gas to generator during every
cycle can be calculated using the heat-exchange coeffi-
cient a4(t) expressed viathe Nusselt number (4), and the
gas temperature can be determined using equation (5).
We assume that the main heat exchange takes place
within atime period during which the accelerating gas
(helium) pressure in the barrel drops from 5 MPa to
10 kPa. The barrel length (with the gas inlet tube) is
taken equal to S= 460R.

The amount of fuel that must be melted in the gen-
erator pores so asto form apellet is equal to the sum of
the mass of the liquid pellet and the mass of the satu-
rated vapor in the barrel (necessary to provide for equi-
librium of the drop). For alinear variation of the tem-
perature from T, (room temperature) to the generator
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I

IHe

Fig. 2. Schematic diagram of a fuel injector with the pro-
posed porous generator (see the text for explanations).

temperature T, the required mass of the melted solid
fuel m* is not less than

_ q e
m* = TR [2Rp2+SpST = InHES D} 6)

where p, and p, are the densities of the liquid fuel and
its vapor at the melting point, respectively.

In order to ensure that a part of the fuel will freeze
in the pores, preventing new portions from leaking into
the barrel, the mass of the fuel inside the pores must
somewhat exceed that calculated by formula (6):

m = nm*. @)

In order to estimate the minimum time required to
form anew pellet, wewill taken=1.2. Estimates of the
time required for heating and cooling the generator
filled with solid fuel can be obtained using equations of
the energy balance of a system including the generator,
the solid and liquid fuel in the pores, and the pellet fro-
zen in the barrel. We will use the approximation of
spherical pores uniformly distributed over the sleeve
volume and assume that the porous copper sleeve,
owing to ahigh thermal conductivity, hasthe sametem-
perature over the entire volume. Then, the generator
cooled by liquid helium with a heat transfer coefficient
O IS descried by the following balance equation:

dT(t
qg+qw+qc_qp_qm_aHe(T_THe)F=M () ,(8)

VINIAR, SHLYAKHTENKO

where g, Q, Jc, 0, and g, denote the thermal fluxes
from accelerating gas and additional heater, the con-
stant heat supply, the heat delivered to the solid/liquid
fuel in the pores and to the pellet frozen in the barrel;
The IS the constant temperature of helium in the heat
exchanger; F is the heat exchanger area; and M and ¢
aretheintrinsic mass and heat capacity of the generator
(without fuel in the pores).

The constant heat supply to the generator, which can
be reduced down to a level below 0.1 W, will be
neglected as compared to the other contributions enter-
ing into equation (8). The thermal flux to the poresis
determined as

qp = 4T[r[2)N)\|aela(:'t) a r = rp,
am ©)
N = —3,
4mr

p

where ©(r, t) isthe temperature of the ith phase of fuel
in the pores; N is the effective number of poresin the
generator, equal to the ratio of the total volume of fuel
inthe poresto asingle porevolumefor the average pore
radiusr,, A; isthe thermal conductivity of the fuel; and
i =1, 2 for the solid and liquid fuel phase, respectively.

Let rg be aradial coordinate of the spherical surface
separating sold and liquid fuel phasesinsideapore. The
energies of both phases can be expressed as

o1 ) _ 200,(r, )
- 26r%\'r or O

where ¢, are the specific heat capacities of the fuel
phases at constant pressure.

We assume that the generator temperature does not
exceed the boiling temperature of the fuel, so that no
vaporization takes place at the metal—fuel interface.
Then, the boundary conditions can be formulated as

20,
Por
©0,=0,=T, a
and the Stefan condition at the phase transition bound-
ary as

(10)

=T a& r=r =0 a

0,
(11)
r=rg

00,

00, drg
Ay ar

Alar _plLdt a r=r,
where T, and L are the temperature and latent heat of
fusion of the fuel.

As the fuel is melted, the liquid penetrates through
the poresinto the barrel. If thefuel isagain frozen at the
time instant when the amount of liquid in the barrel is
m*, then the pellet freezing time will be minimum and
the porous sleeve will essentially play the role of ados-
ing valve for liquid fuel delivery to the barrel.

(12)
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In order to estimate the time required for the liquid
to leak into the barrel, it is necessary to consider the
dynamics of liquid fuel flowing through the given
porous medium. However, it is clear that the nonlinear
character of the Navier—Stokes equations, together with
the impossibility of determining the positions of sur-
faces at which the necessary boundary conditions can
be formulated, hinder the obtaining of arigorous solu-
tion for the flow velocities. However, provided that the
Reynolds numbers are small, the effect of inertial
forces can be neglected in comparison with the viscous
forces and the flow of liquid in a porous medium can be
described with sufficient precision by the following
equation [12]:

1€ AP
KHA2 Iy (23
where U isthe mean rate of liquid filtration through the
porous medium, K = 5.0 isthe Kozeny empirical coef-
ficient, 1 isthe coefficient of dynamic viscosity, € isthe
ratio of the total pore volume to the porous sleeve vol-
ume, A is the total specific pore surface (per unit vol-
ume), AP is the driving pressure gradient, and h is the
height of the porous sleeve above the barrel axis.

Using equation (13), we determine the filtration
time required for the preset amount of liquid to accu-
mulate in the injector barrel:

DA f hm*
HERD p,AP’

ty =

or after some transformations,

9Kphf 1
YT o O AP (14)
The cycle of pellet formation isterminated by freez-
ing inthebarrel. This process begins as soon asthe gen-
erator temperature decreases bel ow the melting point of
the fuel and proceeds simultaneously with fuel cooling
and freezing in the pores. Calculation of the time
required for this process is based on solving the Stefan
problem with boundary conditions of the third kind,
which is analogous to the problem of fuel freezing in
the pores. Thus, each phase of fuel in the barrd is
described by the equation

ow;(r,t) _ oW, (r, t)D
ST rar%\r or (19)
with the boundary conditions
W=T a r =R,
ow,
i R = 16
s =0 a r=0, (16)

W =W=T, a r =r,

and the Stefan condition at the phase transition
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Fig. 3. Timevariation of (1-3) the temperature of the porous
generator sleeve filled with hydrogen, deuterium, and tri-
tium, respectively, and (a—) the temperature on the axis of
the corresponding pellets.

boundary
ow, oW dr,
A—— T A= ar = p,L— Tt a r=rg a7

wherer.istheradial coordinate of the spherical surface
separating solid and liquid fuel phasesinthebarrel. The
set of equations (4), (5), (8)—(12), (14), and (15)—17)
were solved by numerical methods. The mass of copper
and the number of pores were selected so as to ensure
that the heat transferred by the accelerating gas would
not increase the temperature of the generator (with a
given heat capacity) up to the boiling point of the fuel
(to avoid undesired vaporization), while melting all the
fuel filling the pores.

Figure 3 (solid curves) shows the results of calcula-
tions of the temperature-time profiles during heating
and cooling of the porous generator containing hydro-
gen or itsisotopesin the pores. Also presented in Fig. 3
(dashed curves) are the profiles of temperature varia-
tion with time on the axis of pellets. The calculations
were performed for agenerator with amass of 30 g and
a pore diameter of 0.06 mm, forming pellets with a
diameter and length of 3 mm. Thissizeisof interest for
thermonuclear setups such asJET (Great Britain), LHD
(Japan), and Tore-Supra (France). The coolant (helium)
temperature was taken equal to 6 K, the heat exchanger
surface was 10 cm?, and the coolant heat transfer coef-
ficient was calculated for a helium flow rate of 10 h.
Asisseen, heating of the generator with the poresfilled
with solid fuel takes about 20-30 ms, which is approx-
imately equal to the time of accelerating gas escape
from the barrel. Cooling the generator to theinitial tem-
peraturelevel prior to every injection cycle (10, 16, and
19 K for hydrogen, deuterium, and tritium, respec-
tively) proceeds at a threefold slower rate (because of
the less effective heat exchange with liquid helium) and
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Fig. 5. Time schedule of pulsesin aworking cycle of pellet
formation: (a) shot valve opened; (b) gate valve closed;
(c) additional heater switched on; and (d) gate valve opened.

is less dependent on the fuel type. The longest stage in
the pellet formation cycle isthat of fuel freezing in the
barrel, which takes about 0.45, 0.70, and 0.80 s for
hydrogen, deuterium, and tritium, respectively.
Another 50 ms are required for cooling the frozen fuel
to atemperature 4-5 K below the solidification point.

The results of calculations presented in Fig. 3 show
that the time of pellet solidification intheinjector barrel
exceeds the time of fuel melting and freezing in the
pores. Thisisvalid for the pore size below 0.2 mm. If
the pore diameter increases, the liquid fuel penetrates
into the barrel faster and it is difficult to provide for a
dosed fuel admission at the expense of rapid cooling of
the porous sleeve only. Oscillations in the gas pressure
at the generator input or in the vapor pressurein the bar-

VINIAR, SHLYAKHTENKO

rel readily break the conditions of liquid drop equilib-
rium (1), whereby an excess amount of liquid fuel may
leak into the barrel. This circumstance increases the
time of pellet formation and violates stable operation of
the generator. Therefore, the pore size should be
selected based on the optimum time of liquid fuel leak-
age into the barrel.

According to the results of numerical modeling, the
time of accumulation of the required volume of liquid
fuel for a generator pore radius from 0.01 to 0.05 mm
is approximately egua to the time during which the
sleeve temperature exceeds the fuel melting point. The
latter state is called the open state of the porous sleeve.
Figure 4 shows caculated plots of (1-4) the time t;
required for accumulation of the liquid fuel necessary
to form a pellet and (a—d) the time of the open state of
the dleeve versus the pore radius for various levels of
the additional power supplied to heat the generator. The
height of the porous sleeve was taken equal to 25 mm.
The data presented in Fig. 4 indicate that, in order to
increase stability of the system operation and facilitate
control of pellet formation, it is necessary to ensure that
the open state duration (i.e., the time of liquid fuel
accumulation in the barrel) is sufficiently long (tens of
milliseconds) at a minimum additional heating power
(still sufficient to melt al fuel in the pores). The addi-
tional heating power strongly influences the open state
duration and can be used, together with the fuel gas
pressure, to effectively control the processof liquid fuel
melting and filtration into the injector barrel.

An analysis of the calculated results showed that the
following conditions have to be satisfied to reach the
minimum time of pellet formation (for the pellet size
below 4 mm): generator mass, M < 50 g; pore radius,
r, < 0.05mm; total pore volume must not be greater
than four times the pellet volume; and refrigerating
capacity must be maximum (not lessthan 7W at 4.2 K).
For example, in a 20-g generator with a pore radius of
0.03 mm, afuel stock coefficient of n =2, and arefrig-
erating capacity of 7 W, the time required to form a
3-mm solid hydrogen pellet is 0.5 s, the corresponding
values for deuterium and tritium being 0.8 and 1.0 s,
respectively.

EXPERIMENTAL RESULTS

The purpose of our experiments was to determine
the minimum time of pellet formation in a porous gen-
erator and to compare this value to the results of calcu-
lations based on the model described above. The exper-
iments were performed with a generator weighing 77 g
mounted in an injector [13] equipped with a pro-
grammed controller.

Figure 5 shows the time schedule of control pulses
generated by the controller in aworking cycle of pellet
formation and injection. The cycle begins with a pulse
opening the valve admitting the accelerating gas. Then,
10 ms after the valve opening, the additional heater was
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switched on to operate for 0.4-0.8 s. During this period,
the gate valve was closed (10-80 ms after the starting
pulse) and solid fuel (hydrogen) melted in the poresand
leaked into the injector barrel. During the whole exper-
iment, gaseous hydrogen at a pressure of 0.1 MPawas
supplied to the input tube of the porous generator. The
injector design allowed visual monitoring of the barrel
into which liquid hydrogen leaked through the porous
sleeve. Within less than 0.5 s after the cycle started,
hydrogen melted in the pores and leaked out to fill the
barrel. This portion of liquid hydrogen was frozen
within 6-7 s, and then the gate valve was opened. The
next shot was produced 1 s after opening the gate. The
accelerating gas and that formed upon pellet impact
onto the diagnostic chamber flange and evaporation
were evacuated by a pumping system, and the cycle
was repeated.

Thus, in the steady-state regime of injector opera-
tion, the total time of pellet formation was about 8 s.
Attempts at reducing this time showed that the genera-
tor was capable of producing pelletsin a period of 6 s.
However, the video record of flying pelletsin this case
frequently revealed a smeared, apparently snowy, axial
trace. The probability of injecting intact pellets dropped
from 80 to 50%.

Figure 6 shows plots of the generator temperature
versus time over the working cycle. Curve 1 isthetem-
perature variation measured by a sensor mounted near
the porous sleeve, and curve 2 presents the results of
calculation for the same generator. As is seen, the two
plots are sufficiently close to each other, which con-
firms the applicability of the proposed model to a
description of the process of pellet formation in the
porous generator and minimization of the pellet forma-
tion time. The temperature profile measured by the sen-
sor was reproduced from cycle to cycle, which is evi-
dence of stable operation of the system. The video
record of flying pellets allowed their quality, dimen-
sions, and velocitiesto be evaluated. According to these
data, the pellets appeared as transparent ice columns,
containing no noticeable cracks or cleavages, with a
diameter of 2.4 mm and a length of 34 mm. Some
decrease in the pellet size as compared to the barrel
diameter (2.7 mm) is explained by friction-induced
sublimation of fuel from the side surface of pellets
moving in the barrel, in agreement with the experi-
ments using injectors of other types [3] and with the
results of model calculations [14].

We have studied the system operation during severa
series of injection cycles, with the total number of pel-
lets above one thousand. The pellet velocities were
determined by monitoring their position relative to a
measuring scale in the video frame and by measuring
the delay time between the starting pul se and the instant
when the pellet crossed a laser pulse focused on the
photodetector. The experimental pellet velocities var-
ied within 1.1-1.2 km/sfor asystem using acceleration
with helium at a pressure of 7 MPa.
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Fig. 6. Time variation of the generator temperature over the
working cycleof hydrogen pellet formation: (1) experiment;
(2) model calculation.

CONCLUSION

We have completed the first stage of tests on pellet
generators of a new type, capable of producing an
unlimited number of fuel pelletsin a steady-state peri-
odic operation mode. The generators are referred to as
porous, since the main element is aporous metal sleeve
filled with a thermonuclear fuel. A generator with
amass of 77 g formed solid hydrogen pellets with a
diameter of 2.4 mm and a length of 34 mm at afre-
guency of 0.125 Hz. In order to design generators with
increased injection frequency, we have developed a
model for calculation of the regime of system opera-
tion, which alows the pellet formation time to be
reduced by selecting optimum structural parameters of
the porous generator. The results of model calculations
showed that a generator with a mass below 50 g and a
pore diameter below 0.1 mm may provide a pellet for-
mation frequency of up to 1-2 Hz. In the second stage
of this work, we are planning to perform the tests with
generators weighing about 30 and 40 g.

An advantage of the new type of pellet generator is
that the fuel stock in the system at each time instant
does not exceed a few pellet volumes. This feature
makes the new system more attractive for handling tri-
tium as compared to existing extruders containing a
fuel volume amounting to hundreds of pellets. The pro-
posed generator involves no moving parts, which
increases reliability of the system and makes it an
acceptable part for the fuel injection systemsin thermo-
nuclear devices of long-term operation.
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Abstract—Breakdown of inert gases in ahomogeneous dc electric field is studied experimentally and theoret-
ically at various distances L between the electrodes and radii R of the discharge tubes. It is shown that, for arbi-
trary geometric dimensions of the discharge chamber and cathode materials, the ratio of the breakdown electric
field strength to the gas pressure holds constant at the breakdown curve minimum. A modified Paschen law is
obtained, according to which the breakdown voltage is afunction of both the product of the gas pressure by the
distance L and theratio L/R. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The dc glow discharge is widely used for obtaining
thin polymer and oxide films, cleaning surfaces of
materials, pumping gas-discharge lasers, in plasmadis-
plays, voltage stabilizers, etc. Therefore, studying the
conditionsfor glow dischargeinitiationis of significant
interest. As is known [1-7], the dc glow-discharge
breakdown curves are described by the Paschen law
Uy = f(pL); i.e., the breakdown voltage U, is a func-
tion of the product of the gas pressure p and distance
between the electrodes L. This means that the break-
down curves U,(p) obtained for various distances L
must be superimposed on each other when being plot-
ted as the function U(pL). However, in some experi-
mental studies it was revealed that, at equal values of
the product pL, the breakdown voltage for a long dis-
charge gap with flat electrodes is appreciably higher
than for a short gap [4, 8-17].

In this work, we have studied experimentally and
theoretically the breakdown of inert gasesin adc elec-
tric field in discharge chambers with various interelec-
trode distances L and interior radii R.

THEORY

The equation for gas breakdown in a homogeneous
dc electric field derived in [18] takes into account elec-
tron-impact ionization of gas molecules, the drift of
electrons and ions along the field direction, and the dif-
fusive motion of electrons along the discharge-tube
radius. However, the authors [18] neither analyzed the
breakdown equation obtained, nor compared its solu-
tions with the experimental results. Therefore, after
simple transformations, equation (12) from [18] is

written in the form

a D247 a Dex
= = +
Vv, UORO VDD p[L

Der2.471y] _ 0
VeDRDD} -0 @)
where a and y are the first and second Townsend coef-
ficients, D, is the transverse electron diffusion coeffi-
cient, and \, is the drift vel ocity of electrons.

The following expressions can be written for V,, D,
and a inawide range of theratio E,./p (closeto, and to
the right of, the minima of the breakdown curves) for
inert gases (argon, xenon, etc.) [19-22]:

Udc

Ve = UeEdc = ueoﬁa (2)

pD,=const = D, ©)
B

a = AgpexpH- L‘]':LE @

where [y is the electron mobility at p = 1 Torr and A,
and B, are constants [ 3].

Substituting (2)—«4) into (1) and multiplying the
left- and right-hand sides of (1) by L, we have the fol-
lowing equation for the breakdown:

Bo(PL)7 _ Deo(2.4)° (s

s =
AO(pL)expD Udc O Heo Udc ER]

Eee[amh)

+yAg(pL) exp-

2 2
x explBPLN_ Deo(24)°r }_1g
O

D_ Udc O Heo Udc EF'D
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Fig. 1. (a) Experimenta breakdown curves for a glow dis-
chargeinargon: (1) our measurements; (2, 3) experiment [5]
(Pt and Ni cathodes, respectively); (4) steel cathode [23];
(5) Ni cathode [24]; (6) steel cathode [25]; (7) Pt cathode
[26]; (8) stainless steel cathode [27]; (9) Cu cathode [13];
(b) breakdown curves for a glow discharge in argon (R =
3.15 cm) at various distances between the electrodes L, cm:
1 05;(21;(3) 2 (4 4; and (5) 6.

Since, asarule, y < 1, equation (5) can be simplified

to the form
Bo(pL)
U, %VGXP[AO(F)L)

AdpL)exp-

0 Bo(PL_ Deo(24)’rL(f7]_, 0
xexpD Udc o Heo Udc ERD:| 1% (6)

Deo(24)°rLrf _
ueO Udc ERD

Equations (5) and (6) show that the breakdown volt-
age U isafunction not only of the product pL, but also
of theratio L/R. Let us differentiate (5) with respect to
pL and equate the derivative dU,./d(pL) to zero. Then,
we derive two solutions for the breakdown curve mini-
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mum, one of which has no physical meaning and the
other of which yields the relations

gﬁzgmi E!Escmmm - Bo, (7)
Aoy - Deo (24 fif, YA
e (pL)mm ueo Bo(pl—)mmERD (pl—)mln ( )
8
><%eXP[ﬁ’(loL)- Doo_(24)° H‘DZ} 10
0 € me Heo BO(pL) min (RO O
AOU — e0(24) [l—l]z yAOUmln
eB ueo min [RD € BO
9
O [ A e0(2 Lt
* Eexp[eBoumn Heo Unmin ERD} %

where e is the natural logarithmic base and U, =
(Udc)min-

For L/IR — 0, expressions (8) and (9) taketheform
[3]

€ |nfLtyo

(pL)min = KO ] y ; (10)
Unn = im0 (1)

From (7), it follows that, when the values of L, R,
and y are varied in discharge chambers, the breakdown
curves are shifted in such a manner that the (Ey./pP)min
value aways remains constant, accompanied by the
maximum electron ionizing power. Formulas (8) and
(9) show that the coordinates of the minima (pL),,, and
U,,in depend on the ratio L/R but not on L and R sepa-
rately.

EXPERIMENTAL RESULTS

The above theoretical results were tested experi-
mentally by measuring the breakdown curves for a
glow dischargein argon at dc voltages U4 < 1000V and

pressures p = 102-10 Torr. Discharge tubes with inner
diameters of 9, 14, 27, 63, and 100 mm were used. Flat
paralel electrodes were manufactured from stainless
steel and occupied the entire cross section of the dis-
charge tube.

Figure 1a shows one of the breakdown curves (L =

11 mm and R = 50 mm) and experimental curves
obtained with argon in [5, 13, 23-27]. Our data are
obviously in good agreement with the results of other
authors. Figure 1b shows the breakdown curves mea-
sured by us at various distances L between the elec-
trodes. These results prove that, as L increases, the
breakdown curves are shifted not only to higher break-
TECHNICAL PHYSICS Vol 45
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down voltages U, (as was obtained in [8-17]) but also
simultaneously to higher pL values. Such aconclusion
can also be drawn from the experimental results
shown in Fig. 3 of [13] for neon. Breakdown curves
were obtained in [13] close to the minimum and to the
left of it; it was pointed out that U rises with increas-
ing L. However, these results also show that the break-
down curves are shifted to higher pL values with
increasing L (this fact was fully ignored in [13]).
Hence, the departure from the Paschen law observed
by usiswell confirmed in independent measurements.
Such a shift of the breakdown curves to the regions of
higher Uy and pL with an increase in the interelec-
trode distance L is apparently related to an increase in
the loss of charged particles at the side (radial) walls
of the discharge tube due to diffusion transverse to the
electric field.

Figures 2 and 3 show U, and (Ey./P)mmin &S func-
tions of (pL),, and ratio L/R obtained from our exper-
imental breakdown curves. Figure 2 shows that, for the
measured coordinates of the breakdown curve minima,
Unin O (PL)mins from Figs. 2 and 3 it follows that
(Ege/P)imin = const = 194 + 5 V/(cm Torr) (this value is
in satisfactory agreement with B, = 180 V/(cm Torr)
[3]). Figure 2 also presents a straight line U, =
194(pL),i, describing the experimental points well.
Therefore, the behavior of the coordinates of the break-
down curve minimum for a glow discharge, which was
predicted by formula (7), is confirmed by our experi-
mental results. Consequently, the ratio (Ey./p)min a the
breakdown curve minimum in an inert gas aways
remains constant for arbitrary experimental values of
theinterelectrode gap L and thetuberadius R. The same
ruleisvalid if the coefficient of ion—electron emission
yisvaried (thiswasnoted in [4, 5] and followsfrom the
results of [28, 29]).

Figure 3 also shows that the U,;,, values obtained
from experimental breakdown curves for various L and
R fall satisfactorily on a single monotonically increas-
ing curve. There is also a theoretical curve U,,;,(L/R)
in Fig. 3, which was calculated from (9) and agrees
well with our experimental results (in these calcula-
tions, we used the values of a, V,, and D, from [3, 4,
19-22]). Therefore, the parameter L/R, as well as pL,
is a'so important for the description of the glow-dis-
charge breakdown curves. Figure 4 shows two break-
down curves in discharge chambers with different
radii and interelectrode distances but equal ratios
L/R= 2.4. As we seg, the breakdown curves almost
coincide in this case. Thus, the Paschen law can be
written in the modified form

(12)

Let usformulate the modified law (12) inthefollow-
ing manner. Taking two discharge tube with L;, R; and
L,, R,, we measure the breakdown curves for them and
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Fig. 3. Dependences of Uy, and (Ege/P)min on L/R; R val-
ues are the same as in Fig. 2. Solid line: (E4e/P)min =
194 V/(cm Torr); dashed line: calculations from (9).

plot these curves as Uy » = f(pL 4, ,). These two break-
down curves then coincide only in the case if L,/R; =
L,/R,. In other words, the conventional Paschen law
Ug = f(pL) isvalid only for discharge tubes with iden-
tical L/R. Discharges for which the dimensions of the
electrodes and distances between them are geometri-
cally similar and the gas pressures are inversely propor-
tiona to the interelectrode distances have equal dis-
chargeinitiation voltages. In the general case with arbi-
trary L and R, the conventional Paschen law isnot valid.

Note that with appropriately selected coordinate
axes, we can achieve the coincidence of all the mea-
sured breakdown curves. For example, if we plot

pL* = pL/H+ n3uls}

CRO0 (13)
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charge tube with R = 3.15 cm; L, cm: (1) 0.5; (2) 1; (3) 2;
(4) 4; and (5) 6.

and

Ug = UG+ LEOD (14

(RO
along the horizontal and vertical axes, respectively,
wherea = 0.16 for argon, then the breakdown curvesin
Fig. 1b are mutually superimposed to within an accu-
racy of £5V (Fig. 5). At L/IR — 0, we obviously have
a customary Paschen curve Uy = f(pL). Relations (13)
and (14) show that U, /(pL*) = Ug/(pL) = E4/p; i.€.,
the dependences E,./p = f((pL)*) for different break-
down curves must also coincide (thisisdemonstrated in
Fig. 5). By using relations (13) and (14) and breakdown
voltage values shown in Fig. 5, we can predict to ahigh
accuracy the breakdown curve in a discharge chamber
for arbitrary L and R values. It follows from Fig. 5 that
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the Paschen law can be written in another modified
form, Uz =f((pL)*).

We will make one remark concerning the break-
down curve measurement technique. The glow-dis-
charge breakdown curve is usually measured by two
methods: (1) the distance L isfixed, and the breakdown
voltages are then measured as a function of gas pres-
sure; (2) breakdown voltages are measured at varied
distances L and afixed gas pressure. However, from the
data obtained in this study, it follows that the second
method of measuring the breakdown curve (at a fixed
pressure and variable L) isnot correct. The “breakdown
curve’ thus obtained represents a certain function,
which is close to the Paschen curve at small L but is
shifted to higher breakdown voltageswith increasing L.
In order to extract some valid information on discharge
initiation, each experimental point obtained by this
method should be recalculated by using relations (13)
and (14).

CONCLUSIONS

In this study, glow-discharge initiation in inert gases
was investigated experimentally and theoretically for
variable interelectrode gaps and radii of the discharge
tubes. It isshown that the ratio (Ey./p)in holds constant
at the minima of the breakdown curves for arbitrary
interelectrode gaps, radii of the discharge chamber, and
ion—electron emission coefficients. A modified Paschen
law Uy = f(pL, L/R) is obtained; i.e., the breakdown
voltage U, is afunction of both the product of the gas
pressure and gap width and the ratio L/R. It is shown
experimentally that the conventional Paschen law U, =
f(pL) is valid only for discharge tubes in which the
dimensions of the electrodes and the distances between
them are geometrically similar. In the general case, the
Paschen law is not valid.
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Abstract—In experiments on indium antimonide single crystal's, the dynamic behavior of ascrew dislocation—
impurity ambient system was studied. It was found that local absorption of electromagnetic energy takes place
in this system, leading to development of relaxation processes which change the system energy and, conse-
quently, itsdynamic properties. It isremarkabl e that the system can be activated by an electromagnetic field due
to the presence of impurity ambient around otherwiseinactive screw dislocations. © 2000 MAIK “ Nauka/Inter-

periodica” .

INTRODUCTION

Until recently, weak electromagnetic (EM) fields
(U < KT, where U is the energy of the electric or mag-
netic component of the field; and T is the temperature
of an object) constituted the basis of scientific methods
of investigating physical phenomena of materials and
their properties. It had been considered that such expo-
sure could not bring about an irreversible change in the
structure or properties of condensed matter, asthey did
not affect the dynamic equilibrium in the concentration
of defects. However, in nonequilibrium condensed sys-
tems, both crystalline [1-4] and amorphous [5], appli-
cation of weak EM fields caused irreversible changesin
their structure and properties. These facts have led to
intensive developments in laboratory and industrial
methods of EM processing of materials and products
aimed at improvement of their physico-mechanical,
electrophysical, and operational characteristics [4, 6].
Despite the applied nature of these research efforts, the
immediate cause of the observed structural transforma-
tions has been identified: the relaxation processes trig-
gered by EM stimulation of thermodynamically unsta-
ble materials.

Still, a question remains as to what elements of the
system are responsible for the absorption of EM energy
and the ensuing relaxation processes. Finding a solu-
tion to this problem can open prospects for efficient
employment of EM fields in various applications. In
order to solve such a prablem, it is necessary to find a
relation between macroscopic properties of a material
and EM stimulation. Once this relation has been found,
a scientific approach to employing weak EM fields can
beformulated and their effect on the structure and prop-
erties of materials can be estimated both qualitatively
and quantitatively. Guidelines for such an approach
have been formulated by the present author [7]. Basi-
caly, these guidelines rely upon the knowledge of

structural and energy states of a material that might be
responsible for the relaxation processes and be directly
involved in absorption of EM energy. In general, the
nature of the structural and energy states can can differ
by point defects, impurity atoms, linear defects, com-
plexes, or volume defects. For example, it has been
shown [1] that in NaCl single crystals treated in a mag-
netic field, the relaxation process is a result of decom-
position of impurity phases CdCl, and PbCl,. In[2], the
relaxation process consisting of a periodic variation of
the internal friction is linked to formation—disintegra-
tion processes of impurity ambients around disloca
tions as a result of magnetic field pulses applied to a
polycrystalline structure. On the other hand, some
authors [5] relate the relaxation process in disordered
systems initiated by EM fields to alternating formation
and disintegration of cluster structures. The above
works, as well as many others, have a serious draw-
back. In none of the cases considered has the type of
defects responsible for the EM energy absorption and
relaxation processes been uniquely identified. In the
objects studied, various types of defects can simulta-
neously be present, whereas the problem of their selec-
tion from the viewpoint of applying EM stimulation has
not been addressed. Thisis probably the reason why a
general model of relaxation processes caused by EM
stimulation is till unavailable.

In this work, a serious attempt is undertaken to
improve the genera situation in this field. To identify
the particular elements in a structure which absorb EM
field energy and establish possible mechanisms of
induced relaxation processes, a correct approach is
required, namely, the appropriate choice of materials
for study; formation in the chosen material of a partic-
ular system, of defects to be tested for the possibility of
EM field absorption and initiation of a relaxation pro-
cess, and, finally, the delineation of a technique for
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locally (in situ) controlling the behavior of this system
of defects.

The system of defects chosen for this study consists
of aged dislocations with an impurity ambient formed
around them. It is understandable that the material
should be monocrystalline, with controlled density of
dislocations of a known type. In addition, the disloca
tion density should be such as to exclude their interac-
tion and thus prevent uncontrolled del ocalization of the
process under study. To exclude the influence of the
crystal bulk on initiation of the relaxation process, it is
important that the crystal be diamagnetic, i.e., insensi-
tive to externa fields.

OBJECT OF STUDY AND EXPERIMENTAL
TECHNIQUES

In conformity with the foregoing discussion, the
studies were performed on initially dislocation-free
(p <10?cm?) monocrystalline indium antimonide
(InSb) doped with tellurium to a concentration of
10% cm3. The samples used had the form of aparallel-
epiped 2.5 x 2.5 x 15 mm cut along crystallographic
axes [111], [112], and [110], respectively. The studies
were carried out for screw dislocations insensitive to
EM stimulation, whose mobility was therefore unaf-
fected by the EM field. The dislocations were intro-
duced by scribing the (112) facet and then bending the
sample placed on a four support in a transverse direc-
tion to the [111] axis. In a sample put under stress in
thisway, there forms after atime an ensemble of dislo-
cations such as those seen in the micrograph in Fig. 1a
of the (111) crystal face after a selective chemical etch.
Figure 1b shows an X-ray topogram of an ensemble of
didlocations introduced in the above manner. The topo-
grams were registered using a technique of anomalous
propagation of X rays. To increase the resolution, the
topograms were taken in a one-crystal geometry with
the use of MoK, radiation. The sample thickness for
the topographic investigations was ~250 yum. X-ray
topographic identification of an ensemble of disloca-
tions for revealing the screw dislocations was per-
formed using the condition of “invisibility” of disloca-
tions on the topogram

(xb) =0, [gxn] =0, D

where g is the diffraction vector of areflecting plane,

b isthe Burgers vector of a dislocation, and n is the
dislocation line vector [8].

It is evident that a screw dislocation has a lot of
planes meeting this condition and that an edge disloca
tion has a single reflecting plane. This fact makes pos-
sible identification of the type of dislocations intro-
duced by sample deformation. A series of topograms of
types {220}, {224}, and {004} have been obtained.
Three of these topograms are shown in Figs. 1c-1e.
Seen in the topogram of Fig. 1c are large segments
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Fig. 1. (a) Micrographs of the (111) facet and (b—€) X-ray
topograms showing screw dislocations in single crystals of
deformed indium antimonide. Magnification in all topo-
gramsis x28.5.

directed along two crystallographic axes, [011] and
[101]. Dislocations aligned with [011] slip along the

(111) axis and fade out in topogram 400 (Fig. 1d),
which indicates that they are screw-type dislocations.

Segments aligned with [101] dlidein the (111) plane
and fade out in topogram 040 (Fig. 1€), which is also
evidence that they are screw-type. It is to be empha-
sized that these dislocations are observed on the (111)
sample face after a chemical etch (Fig. 1a). All of the
work reported in this paper was performed on these dis-
locations, because their movement can be conveniently
monitored using a chemical etch.

The impurity ambient around dislocations was pro-
duced by annedling the samples at a temperature of
300°C for 4 h. For EM field generation, an OIMP-101
oscillator was used that generated magnetic field pulses
of amplitude 10° A/m at a repetition rate of 1 Hz. EM
stimulation of sampleswith screw dislocations was car-
ried out at room temperature.

As a parameter to be measured, the average dis-
placement | of the ensemble of dislocationsin the field
of external mechanical stress o was used, which is
fairly sensitive to the condition of the disl ocation ambi-
ent. Values of | were determined by averaging displace-
ments of individual dislocations in the ensemble being
investigated. Ensembles of 40-50 dislocations were
studied. Mechanical strain in the sample was produced
by bending a sample placed on four supports.

Using an optical microscope and the technique of a
repeated selective sample etch, displacements of the
aged screw dislocations were determined as achange of
position of the respective etch pits. Variations of | with
timet of sample loading were measured.
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Fig. 2. Dependence of the average displacement of an
ensemble of screw dislocations in an indium antimonide
crystal on mechanical stress.

RESULTS OF THE STUDY

Prior to studying the dynamic behavior of the screw
didlocation—impurity system following EM stimulation
of the sample, let us consider the system dynamics in
the absence of EM stimulation. Figure 2 shows | as a
function of applied mechanical stress duration for an
indium antimonide sample after annealing in the
regime described above. The curves were obtained at a
bending stress of o = 10 MPa and temperatures T; =
150 (curve 1), T, = 130 (curve 2), and T; = 115°C
(curve 3). Inthe curves shown, critical durations (t,) of
mechanical stress can be distinguished within which
| = 0. It should be noted that the I(t) curves of annealed
samples were measured taking into account zero dis-
placements of the screw dislocations. It isowing to this
fact that t., could be defined. As seen in Fig. 2, t., of a
strained sample depends on temperature.

Using an expression for t., of astrained sampleasa
function of temperature [9],

te = ta0 eXp(U/KT), )

the activation energy for the breakaway of an impurity
ambient from a dislocation under externally applied
stress can be estimated. It wasfound to beequal toU, =
1.0+ 0.1 eV. Using alinear approximation of the func-
tion U,(0) [9],

Ua = Ug—yo ©)

(Ug isthe binding energy between the impurity ambient
and the dislocation line; y = b2, is the activation vol-
ume for the process of breaking a dislocation away

Fig. 3. Sameasin Fig. 2, after EM stimulation.

from its ambient; b is the Burgers vector; and L. is the
distance between pointswherethe dislocation is pinned
by impurities), the energy of interaction between adis-
location and its ambient U, can be determined. For the
indium antimonide single crystals studied, Uy, = 1.3 £
0leVao=10MPaandL,=1n=2x10%cm. The
linear dislocation density along a dislocation line n was
estimated using the Cottrell-Bilby expression [10]

n(t;) = any(ADt/KTy), (4)

where t; and Ty are the annealing time and temperature,
respectively, of the samples with screw dislocations;
a =6; A=10"eV cm; D istheimpurity diffusion coef-
ficient; and nyisthe total number of atoms per unit vol-
ume of solution. The experimentally determined diffu-
sion coefficient is equal to D = 1075 cm?/s.

As the problem is to find out whether the EM field
can influence the dynamic properties of screw disloca
tions, it appears that the characteristics to be investi-
gated aret,,, U,, and U,

Figure 3 shows I(t) curves at 0 = 10 MPa and tem-
peratures 150, 130, and 115°C immediately after EM
stimulation of annealed indium antimonide containing
screw dislocations (curves 1'-3) and 24 h later (cur-
ves1"-3"). Immediately after EM stimulation, the
number of didocations with zero displacement is
lower, resulting in shorter times t,, under applied stress
at all temperatures. In addition, the curves in question
tend to straighten, because their nonlinearity is due to
growth (with the time of exposure to stress) of the num-
ber of displaced dislocations. The estimated activation
energy for the breakaway of a dislocation from its
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impurity ambient under externally applied stresslowers
to U, = 0.8 £ 0.1 eV. Similarly, the binding energy
between didocationsand impuritieslowersto Uy = 1.1 €V.
After being stored for 24 h at room temperature foll ow-
ing EM stimulation, the situation is found to have
changed in the reverse direction: t,, at al temperatures
is higher (Fig. 3, curves 1"-3"), even compared with a
material not subjected to EM stimulation (Fig. 2). It is
remarkable that after storage for 24 h at room tempera-
ture, the dislocation—mpurity system transformed in
such away that the energiesincreased as follows. U, =
1l.1leVandUy=1.4¢eV.Itwill berecalledthatintheini-
tial sample, the impurity ambient (less tightly bound)
formed after a4-h hold at 300°C. With a diffusion acti-
vation energy of tellurium impurity of about 0.5 €V, the
diffusion coefficients D, at T, =20°Cand D, at T, =
300°C differ by about four orders of magnitude. From
the diffusion time relation D,t,/D,t, = 1, it follows that
the diffusion timest; and t, should aso differ by about
the same factor, but in this study thisratio was found to
be less than an order of magnitude. It is thus evident
that during a 24-h experiment, no ambient, let alonethe
one bound to a didocation, can form as a result of
impurity diffusion from the bulk. Qualitatively, this
result can be understood in terms of the concept of dif-
fusion instability produced by EM stimulation of the
material [4]. Then, according to the above consider-
ations, in the 24 h following EM stimulation, an impu-
rity ambient should have formed around newly intro-
duced screw dislocations at room temperature. Yet, no
experimental evidence to confirm this was found: for
screw dislocations induced in a sample after EM stim-
ulation, no time delay of displacement was detected in
the course of afew days, i.e., T, = 0.

CONCLUSIONS

The following important conclusions can be drawn
from the analysis carried out in thiswork. Asaresult of
EM stimulation of indium antimonide samples contain-
ing aged screw dislocations, arelaxation processistrig-
gered, which transformsthe impurity ambient in such a
way asto makeit moretightly bound to the dislocation.
This in turn causes a lowering (relative to the initia
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state) of U,, U,, and t, values immediately after EM
stimulation (apparently during its disruption), followed
by an increase in these parameters; localization of the
EM energy and the relaxation process takes place in a
system consisting of dislocations and their impurity
ambients, becausein a system of dislocations devoid of
impurity ambients, no relaxation processes are obser-
ved; the transition of the dislocation— mpurity ambient
system from one state to another asaresult of EM stim-
ulation is evidence of metastable states, which may be
the states responsible for absorption of the EM field and
the processes induced by thisfield.

The obtained results can serve as a basis for the
development of electromagnetic methods of control-
ling the mechanical properties of materials.
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Abstract—Influence of the current redistribution in the stabilizing matrix of a composite superconductor with
nonuniform distribution of the superconducting component over its cross section on the normal zone propaga-
tioniscalculated. Analysisof the problem in dimensionless variables allows oneto find parameters determining
the import of the effect considered. Parametric relationships for the normal zone propagation velocity are
obtained under cooling conditions inadequate for steady state stabilization. © 2000 MAIK “ Nauka/ | nterperi-

odica” .

Transition of a composite superconductor to the
resistive state is accompanied by aflow of the transport
current to the stabilizing matrix. The characteristic time
for current redistribution in a nonuniform stabilizer of
alarge cross section may be aslong as several seconds;
therefore, this process can have significant effects on
superconductor stability and the normal zone dynam-
ics. A cable consisting of twisted wires of a composite
superconductor surrounded by an additional aluminum
stabilizer is an example of such conductors. Such con-
ductors are intended, among other things, for magnetic
systems of the detectors of particle accelerators where
cryogenic stabilization of the winding is usualy
ensured by means of indirect cooling. Numerical and
analytical methods were suggested [1, 2] to calculate
current diffusion to the stabilizing matrix. The effect of
current redistribution on superconductor stability was
investigated under conditions of indirect cooling [3] as
well as cooling by superfluid helium [4]. Other papers
[5, 6] are devoted to studying moving normal finite-size
regions in steady-state stabilized conductors of alarge
Cross section.

Let us consider a composite superconductor of
radius R,, where superconducting filaments are uni-
formly distributed within the inner part of radius R, sur-
rounded by the region of an additional stabilizer, i.e.,
normal metal. Let us assume that the average specific
resistance p of both parts of the conductor is equal at a
temperature higher than critical. At the initial moment,
the transport current | flows through the inner area of
the conductor whose temperature is equa to the cool-
ing medium temperature T, everywhere except for
some length that instantly transforms to the normal
state. Let us write the magnetic field diffusion equation
(2) in cylindrical coordinates for an azimutha compo-

nent of the magnetic induction and the thermal balance
equation (2) in theform

0B _ 0 po(RB) 0 0B
W3t = 3RR R axPax’ (@
AT = 9,97 PP ryiwxt).,

ot X X A

Here, c and A are the mean volume thermal capacity and
thermal conductivity of the conductor; A is the total
cross section; P is the perimeter being cooled; h is the

convective heat transfer coefficient; and W= A~ I pj2ds

isthe heat release rate per unit conductor volume aver-
aged over its cross section, where the current density |
isfound by differentiation with respect to the magnetic
induction

. _ 1 |Lo(RBYT , @BF
J(RX.1) = M/ER aR 0 "

Let us adopt a “step” model of conductivity of a
superconductor [7], where the resitivity of the com-
posite changes abruptly at some temperature T, which
is the mean between the current sharing temperature
and the critical temperature. For smplicity, let us regard
thermal and electrophysical parameters of the conductor
constant. Let us introduce dimensionless variables (3)
and write expressions for the characteristic magnetic
induction, time, and length according to (4)

T-T
b=, 8==——2 ==
TS_TO I—m

©)
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Mol _ (T=TA’
0~ A ! h— = 5

2TR, pl?
_ A _ [Pty
In this case, the magnetic field diffusion equation
assumes the form (5) with boundary conditions (6) and
initial conditions (7). Here, we neglected the second
term on the right side of equation (1) associated with
the radial component of current density. This approxi-
mation has practically no effect on the accuracy
because of the small magnitude of the factor (L,,/L;)?
appearing in the second term in the dimensionless
equation (typically10-9)

Ob(r,T) _ 212(rb)

(4)

at  orr or ' ©)
b(0,t) = 0, b(ry 1) = 1, (6)
2r/ro, r<rolf
b(r, =
(r.0) golr, r>rolp. @

Herery, = Ry/L,, and B = Ry/R. The parameter L, isthe
depth to which the electric field will diffusein thetime
period when some cross section of the conductor is
heated by the passing normal zone front. Under the
above assumptions, the current diffusion in every cross
section of the conductor occurs independently, and the
moment when the temperature reaches T, represents the
initial moment for the system (5)—(7). Using the solu-
tion of the system (5)—(7), we can calculate a variation
with the time of the dimensionless specific heat release

To

) = os[RLRIE

which we will use to analyze thermal processes in
dimensionless variables. Equation (2) for this case can
be written as

= S w(-T), (®)

where a = pl%/(hP(T, — Tp)A); and T(X) is the moment
when the dimensionless temperature at the point x
reaches unity.

The stationary value of the dimensionless normal
zone propagation velocity determined by the equations
(5)—(8) depends on three dimensionless parameters: 3,
which is the relation between the conductor’s overall
dimensions and the size of an area containing the super-
conducting fraction, a characterizing the intensity of
cooling, and r,. The parameter r, is determined by the
ratio between the characteristic times of transverse cur-

rent diffusion t,, = uoRf)/p and ohmic heating r, =
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Fig. 1. Dimensionless normal zone propagation velocity
versus parameter rq under adiabatic conditions. B =5 (1),
4(2),3(3),and 2 (4).

(t/t,)Y2. Inthe case of instantaneous current redistribu-
tion over the matrix cross section, the problem has a
well-known analytical solution [7] and the dimension-
less normal zone propagation velocity is determined by
the expression

a-2

(9)

Vg =

7

2
a —a

At first, numerical integration of the system (5)—7)
was carried out by the finite-difference method [8] to
find the normal zone propagation velocities. Then, evo-
[ution of the initial thermal disturbance in the conduc-
tor was calculated using the obtained time dependence
of heat release (tabulated in increments small enough to
provide velocity cal culations with an accuracy of about
1%), aswell asthe finite-difference method. The calcu-
lation results of the stationary normal zone propagation
velocity without cooling are shown in Fig. 1. The
denominate value of velocity can be obtained by multi-
plying the corresponding dimensionless value by a
parameter V,, = Ly/t, = IAYpMN(T, — Tp))Y? st The
dependence of the dimensionless velocity asafunction
of the dimensionless conductor radius has the charac-
teristic form of atransition between two limiting cases:
at low values of ry, current redistribution over the entire
cross section of the stabilizing matrix occurs fast
enough so that this process does not affect the normal
zone dynamics. At r, values higher than 10-30, the cur-
rent is practically unable to flow to the region of the
additional stabilizer in the transit time of the normal
zone front, the specific heat release averaged over the
cross section approaches 3%p(1/A)?, and the dimension-
less propagation velocity approaches (3. Note that
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Fig. 2. Dimensionless normal zone propagation velocity
versus parameter ro. 3 = 3; a = « (1), 10 (2), 4 (3), and
2.5(4).

within the framework of the model used, the dimen-
sionless velocity does not depend on the matrix con-
ductivity under adiabatic conditions (parameter L, is
independent of p). The reason is that the influence of
current redistribution on the propagation velocity is
determined by the ratio between the characteristic
times of diffusion and ohmic heating, which depend on
p in the same way. Let us estimate a typical transverse
dimension of L. At I/A=10A/n?, c=2x 103 KL m3,
T,—Ty=25K, weabtainL,,= 0.6 mm.

The calculation results for the case of linear heat
removal are presented in Fig. 2. The magnitudes of
velocity for the case of a uniform distribution of the
superconducting component over the stabilizer cross
section are shown by dashed linesin Fig. 2. Aswell as
in adiabatic conditions, at low values of r,, the velocity
is determined by the expression (9). With increasing r,
the dimensionless vel ocity approaches Bv,,; B2a should
be used as an effective stabilization parameter in calcu-
lating v,.

LYSENKO

To verify the obtained results, numerical simulation
of normal zone propagation was carried out by the
simultaneous solution of equations (1) and (2) using the
finite-difference method. The differences in velocity
magnitudes did not exceed 1-2%.

Theresults of the work demonstrate that analysis of
the transition to the normal state of a superconducting
magnet wound with aconductor of the type considered,
and of the typical transverse dimension in the range of
(1-10)L,,,, must be carried out taking into account the
finite time of current redistribution. For conductors
with a typical transverse dimension larger than (10—
20)L,,,, the normal zone propagation velocity may be
found if it is assumed that the heat release is due to the
current flowing in that part of the stabilizer where the
superconducting component is concentrated.
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Transversal Structureof Liquid Crystal in aLight Wave Field
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K. Petersburg Sate University, Saryr Peterhof, 198904 Russia
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Abstract—The change in the orientation of the director of a nematic liquid crystal in alight wave field under
auniformilluminationisanalyzed. A system of equationsfor the distribution of the director angle of inclination
is derived for the case of normal incidence. This system accounts for the finite energy of interaction between
the nematic and substrate. The dependence of the director distribution profile on the incident light intensity and
cohesion energy is studied at fields considerably above the threshold. © 2000 MAIK “ Nauka/Interperiodica” .

A remarkablefeature of liquid crystalsistheir capa-
bility to reorient in relatively weak fields [1]. One such
effect is the optical Frederix effect [1-5]. It implies a
change in the orientation of the nematic liquid crystal
director in the light wave field and could be of both
threshold and nonthreshold character. Experimentally,
it results in interference rings in the light wave field of
sufficiently high intensity.

Special interest in the studies of this phenomenonin
recent yearsis due to the discovery of anew effect. The
threshold field decreases rapidly after a very small
amount of dyeisadded to theliquid crystal [6, 7]. This
phenomenon has the following physical explanation.
The interaction potential of the excited dye molecule
and nematic is changed, thus inducing an additional
orienting moment [8, 9]. As a result, studies in fields
considerably above the threshold become possible.
This problem was discussed in papers[2, 10]. However,
the problem was being solved for a ssimplified model.
The authors worked under the single-constant approxi-
mation and strict boundary conditions.

In order to describe the experimental data quantita-
tively and to determine the liquid crystal parameters, a
step-by-step description of the liquid crystal structure
in the light wave field under the actual boundary condi-
tions is treated. The present paper is devoted to this
problem.

We now want to discuss a homeotropically oriented
nematic liquid crystal sample of thickness d. Assume
that it is located between two parallel plates. The light
polarized along the plates plane propagates normally
to their surface parallel to the z-axis. Suppose that the
layer is infinite in the xy-plane and the incident light
produces a uniform illumination (Fig. 1).

Under these conditions, the effect of the director
reorientation in thelight wavefield is of threshold char-
acter. The threshold value depends on the liquid crystal
parameters, the thickness of the plate, and boundary
conditions [2]. We investigate the distribution of the

director angle of inclination in the fields much above
the threshold. Free energy of the nematic is given by

F = Iﬁ%(divn)2+%(n,rotn)2
Y (1)
+ 5—3[n, rotn] 2} +F, E;ﬁ.
2 0

Here n is the director vector, K; (i = 1, 2, 3) are the
Frank modules, and F, is the contribution due to the
interaction of the nematic with the light wave field [2]

Fo = —(1-psinu(r)) @

where Sisthe Poynting vector projection on the normal
to the liquid crystal layer, c isthe velocity of lightina

vacuum, p = 1—(ng/nJ2 ny = Jeo, ne= g, &g and g
arethetransversal and longitudinal dielectric constants
at the optical frequency relative to the director vector
axis, and u(r) is the angle between the wave propaga-

|
!
|
|
;
0 1d/2 d z
1
1
1
|
|

Fig. 1. The geometry of ahomeotropically orientated liquid
crystal layer in the field of a plane-polarized light wave at
normal incidence with polarization along the x-axis.
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tion direction and the director. Under the uniform illu-
mination of the sample, the problem is one-dimen-
sional because the director distribution in the plates
plane is uniform and depends only on z. Suppose that
thelight is polarized along the x-axis. Then the director
vector has componentsn = (sinu(2), 0, cosu(2)), and the
free energy of the liquid crystal transformsinto

F -IDlK sin‘u [@uﬁ +3K 3coszuEguE2
)

o .2 12
—T(l—psm u) %ﬂr.

Minimizing the free energy, we get the equation for
the distribution of the angle of inclination of the direc-
tor at fields higher than the threshold:

2
d—(1+63|n )6—u+d—ésmucosua—u
™ 0 1 0z

(4)

+ §Scsinucosu(1— psinzu)_Bl2 =0,

where 6 = (K, — K3)/K; and S, = K;ec/d?ngp is the
threshold intensity under the strict boundary conditions
(u(0) = u/d = 0).

For convenience, replace the variables in equation
(4) Z = T@/d. Then, we come to

purf

(1+ dsin’ u) + 6smucosuEBZD

()

+ §sinucosu(l— psinzu)_s/2

S

At fields close to the threshold, equation (5) is
solved by expanding the term responsible for the inter-
action with the light in terms of u. But at strong fields,
when the electromagnetic energy fluxes are consider-
ably above thethreshold, it is necessary to find an exact
solution. This can be done after linearization of equa-
tion (5) if one replaces g by (0u/d2). It resultsin

1/2(1+ dsin‘u)g

. Snypsinucosu® (6)
+ dsinucosug + oP = 0.

(1-psin‘u)

While solving this equation, let us take into account
that u(z) hasamaximum at the center of thelayer. Then,

9(z=dI2) = E@“ﬁ -0,
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and the solution to equation (6) is
25/S,

o) = —————
p(1+dsin"u)
7
E 1 ) % ()
y -
a1l- psinza)ﬂ2 (1- psinzu)ﬂzm
where aisthe angle of inclination of the director at the
point z=d/2.
For u(2),

29S,
p(1+ dsin’u)

==

Q)lQJ
NIC

12 (8
0 1 ~ 1 0

x D D H
[A1-psinfa)? (1—psinfu)’O

where plus corresponds to the case of z < 1/2 and

minus to z > 1Y2. The integration of (8) results in the
equation for u. Because of the problem’s symmetry, we
shall analyze this equation in theinterval 0 < z< d/2,

[f(wa)du = /ZS’TSCE, 9)

A/1+6sin2u

J 1 B 1

(1- psinza)ﬂ2 (1-ps nzu)l/2

and u is the angle of inclination of the director at the
boundary of the liquid crystal layer. Equation (9) char-
acterizes the dependence of u on zwith two parameters
a and u.. The relation between ug and a under the fixed
value of the electromagnetic energy flux Sis given by
the equation

where

f(u,a) =

ZS/S.CT[/2

If(u, a)du = (20

In order to solve equation (9), one has to take into
account directly the boundary conditions in explicit
form. We take the surface energy density to beidentical
to the Rapini potential [11]:

1,,.

Fe = EWsmzus,
where ug = u(0) = u(d) under the assumption that prop-
erties of both surfaces are identical.

At the same time, the volume density of the elastic
energy also contributes to the surface energy. In the
present case, it stems from the minimization of the free

(11)

TECHNICAL PHYSICS Vol. 45 No. 6 2000
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energy containing the surface terms. As a result, the
boundary conditions takes the form

. . 0
Wsinu,cosug £ K;5(1 + dsi nzus)a—uzS =0. (12

Replacing the derivative du/dz by its expression (8),
we derive

12 sin2u, — (1 + ssinuy) 5
Ks d p(1+ dsinuy)
(13
0 0
1 1 _p=o0

x [3 —_
0/1-psin’a /1-psin‘ul

To derive the threshold value of the electromagnetic
energy flux, we make the replacement sinu/sina = sinx
in equations (10) and (13). It resultsin

.2 . 2
AJ1+dsin“asin®x

1 1
S&/(l—psinza)ﬂ2 (1—psin2asin2x)1/2 (14)

w2
gnaj
X

COSX

x 00X 4y = |2y
A/l—sinzasinzx PS

W . . .2 .2 A2
K—smxssma(l—sm asinxy)
3

T L2 .2 12 |2S
—=(1+dsin"asin x, —
3¢ ) /pSc

.0 1 B 1 D1/2
D(1— psinza)ﬂ2 (1- psinzasinzxs)ﬂZD

(15

=0.

Forcing a to zero transforms these equations into

JIIS T2 = W2-x,, (16)
_ Wd
tan(xs) = @Jﬁ. (17)

To find the condition for the threshold intensity, we
exclude x [2]:

Cot(TU2./S:/S,) = ”W—%A/éclsc.

Forcing Win (18) to zero resultsin
2Wd
K3n2

Thus, if the adhesion between the liquid crystal and
a substrate is weak, the threshold flux of electromag-

(18)

S =
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Fig. 2. Thedirector angular distribution in theliquid crystal
layer of thicknessd = 2 x 10° pm at cohesion energy W =
5x 10~ erg/cm? for light energy fluxes S = 1.3S, (1),

2% (2,55 (3), and 85, (4), & =0.725..

u, rad

Fig. 3. The director angular distribution at different cohe-
sionenergy valuesfor S=2S.; W=5x1072(1), 4x 1074(2),
2 x 104 (3), and 1.5 x 10~ erg/cm? (4); layer thickness
d=2x10% pm.

netic energy turnsout to be proportional to the adhesion
energy

S ~WW-—»0.

Specifying the parameters of the system & and p, the
incident light intensity, and the cohesion energy and
using equations (10) and (13), we calculated the slope
angle of the director at the surface ug and at the center
of the layer a. After that, we determined from equation
(9) the nematic transversal structure above the thresh-
old. The parameters of the nematic liquid crysta
used arethefollowing: K; =6.95 x 10~ din, K; = 8.99 x
1077 din, ny = 1.544, and n, = 1.758. The results of cal-
culations are shown in Figs. 2 and 3.
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It isseen from Fig. 2 that, asthe intensity increases,
the thickness of the near-wall layer decreases. The
shape of the distribution curve of angles of deflection
from homeotropical orientation noticeably differsfrom
sinusoidal, which is observed in relatively weak fields.
It can aso be seen that, at finite cohesion energy, the
director deviation occurs not only in the volume but on
the surface as well.

Figure 3 illustrates the distribution of the director
angle of deviation at different values of cohesion
energy for fixed radiation intensity. A very strong
dependence of the results on W values deserves our
attention.

It follows from the presented figures that the varia-
tion of local direction of the optical axisis sensitive to
the radiation intensity values and nematic parameters.
In particular, this enables one to determine liquid crys-
tal parameters and, above al, cohesion energy with
substrate from the dependence of the interference pat-
tern on the radiation intensity.
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Abstract—The results of the investigation of recording Fourier phase holograms on a self-devel oping photo-
polymer photosensitivein the range A = 400-515 nm are presented. It has been found that, due to the transient
energy transfer between the beams, noise gratings are recorded, and a corresponding sharp reduction in the sig-
nal-to-noise ratio occurs, while the diffraction efficiency of the hologram as a whole remains relatively high
(above 50%). It has been found that the noise-grating recording can be substantially suppressed by increasing
the intensity of the reference beam relative to the intensity of the object beam. In this way, the signal-to-noise
ratio has been considerably improved for Fourier holograms of binary phase masks: at a reference to object
beam intensity ratio R = 26, Fourier phase holograms are recorded with a diffraction efficiency n = 15% and
signal-to-noiseratio N = 20 dB. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The application of Fourier holograms to solving
gpatia filtering problems and as matched filters in
image-recognition systems [1, 2] makes the study of
holographic media for these purposes important. One
of the first papers where the advantages of photopoly-
mer spatial filters were shown is[3]. The formation of
holograms in the course of exposure (1-3 min) without
the application of a wet chemical process alowed the
authors of [3] to use this polymer successfully for the
holographic recording of matched filters in van der
Lugt’s arrangement. To record the filters, they used the
OmniDex materia of the DuPont Company.

Substantial modulation of the average refractive
index of the material accompanying the hologram for-
mation on photopolymers is the cause of dynamic
energy exchange between the recording and scattered
beams[4], which may distort the interference patternin
the medium and considerably reduce the signal-to-
noiseratio N. Therole of dynamic effectsis particularly
great when holograms of diffuse objects are recorded.
Therefore, the holographic recording on photopoly-
merizable compositions (PPC) requires a comprehen-
sive study of the influence of recording conditions on
the hologram parameters.

The objective of thiswork isto investigate and opti-
mize the basic characteristics (diffraction efficiency n
and signal-to-noise ratio N) of diffuse-object Fourier
holograms using the FPK-488 photopolymerizable
composition as the recording medium. It is known
[5-7] that this photopolymer allows one to record spa
tial phase gratings with a spatial frequency of up to
6000 mm, n practically up to 100%, and low noise
level N > 20 dB. Unlike the OmniDex materials, photo-
polymerizable composition FPK-488 provides the

maximal diffraction efficiency of holograms in the
course of recording and does not require postexposure
processing. The latter makes it more promising for use
in image recognition systems as compared to photo-
polymer materialsthat require optical or thermal devel-
opment.

In this paper, Fourier holograms of a particular class
of objects, namely, random binary phase masks [§],
were investigated. The dimensions of phase masks
were 5 x 5 mm, and the number of phase elementswere
256 x 256. Fourier spectra of these objects are charac-
terized by the most uniform intensity distribution,
which alows one to estimate correctly the ultimate dif-
fraction efficiency n at a specified convergence angle
between the reference and object beams.

EXPERIMENT

Fourier holograms were recorded by He-Cd laser
radiation (A = 441.2 nm) using a conventional arrange-
ment (Fig. 1) [1]. The object was placed in the object
plane P, where it was illuminated by the transmitted
collimated laser beam. The angle between the reference
and object beamswas a = 13°. For aspecified thickness
of the recording film d = 25 um, the Bragg recording
mode was achieved for the mean spatial frequency.
Selection of a random binary phase mask (RBPM) as
the object allowed us to remove the problem of nonuni-
formity in intensity distribution in the plane of holo-
gram recording, which often arises when Fourier holo-
grams are recorded. The registering film was placed in
the plane of recording, where a Fourier hologram of the
phase mask was formed in the process of exposure.

The registering film was formed by introducing the
initially liquid PPC between two glass substrates with
spacers of calibrated thickness. In order to reduce the

1063-7842/00/4506-0743%20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Fourier-hologram recording arrangement with areg-
istering system: (M;, M,) mirrors; (B) beamsplitter;
(Bgy) collimator with spatial filtering; (Pobe-, Prec) Object

plane and recording plane; (F) Fourier lens; (1,4, I ;) arethe
intensities of the diffracted and transmitted beams of the
testing He-Nelaser [(He-Ne)L]; (Ip;, Iref) intensities of the
object beam and reference beam of He—Cd [(He-Cd)L] or
Art laser; (ADC, Ph) analog-to-digital converter in the
IBM-compatible computer and photodiodes of the register-
ing system, respectively.

n, %
1.0r a
0.8}
0.6}

b
0.4f
0.2f c

| | | | |

0 200 400 600 800 1000 1200
fs

Fig. 2. Diffraction efficiency as a function of time for vari-
ous R: (a) record of agrating, R=1, N > 20 dB; (b) record
of Fourier holograms, R=1, N = 4.8 dB; and (c) record of
Fourier holograms, R =26, N > 20 dB.

noise, the PPC film was prepolymerized by an optimal
dose of incoherent radiation in a wavelength range of
250-300 nm.

An automatic system detecting the intensity of the
transmitted I, and diffracted |, beams of a He-Ne laser
(A = 633 nm) allowed one to record the dependence of
diffraction efficiency on time as n(t) = I4(t)/(14(t) +
I(t)). A similar recording system was used to measure
the kinetics of transient energy transfer between the
interfering object and reference beams.

Astheratio of intensities of the object and reference
beams R changed, the resulting intensity in the record-
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ing plane remained constant and was 4 mW/cm?. In
order to estimate the signal-to-noise ratio N, the holo-
gram was placed in the object plane and the recon-
structed image was analyzed by the procedure
described in [9]. According to this procedure, in order
to calculate N, signals|y and |; were measured. |, wasa
signal comprising the desired signal and a noise com-
ponent, and |, wasthe desired signal. N was determined

asN=10log(l,/(Ig=19)).

RECORDING OF FOURIER PHASE
HOLOGRAMS

In order to determine the optimal conditions for
recording Fourier holograms of the selected objects on
the FPK -488, R was measured as a function of Fourier-
hologram characteristics, such as n(t), N, and maxi-
mum-efficiency attainment timet,,,. The results of mea-
surements are presented in the table and shown in
Fig. 2. Initial values of such parameters as photopoly-
mer-film thickness, ratio of the intensities of the holo-
gram-forming beams, and tota light intensity in the
plane of hologram recording were taken that were opti-
mized for recording transmission volume phase grat-
ings [3-6].

Comparing the diffraction efficiency and signal-to-
noise ratio for transmission volume phase gratings and
Fourier holograms, one can see (Fig. 2) that the maxi-
mum efficiencies for the gratings and Fourier holo-
grams with the same noise level (N > 20 dB) differ by
more than a factor of 6.5.

Taking into account that, for the object used
(RBPM), the uniformity of illuminance in the Fourier
plane is maximal (Fig. 3a), we can say, without a loss
in generality, that the obtained Fourier-hologram effi-
ciency n = 15% is maximum for the given recording
conditions and the medium. Attention is drawn to the
steep rise of noise for Fourier holograms recorded at
R=1. This results from dynamic noise amplification
and is considered in detail below. From the data
obtained, one can draw a conclusion that, for recording
thick phase holograms of diffuse objects on the photo-
polymer FPK-488 at a = 13° and d = 25 pm, the opti-
mal parameters are the following: R = 26, n = 15%,
N> 20 dB, and t, = 5-15 min (Fig. 2). An example of
an image reconstructed from a Fourier hologram is
shown in Fig. 3b.

In a number of papers [4, 10-13], it is shown that,
for materialswith sluggish response in which theimage
is formed in the process of recording, for FPK-488 in
particular, transient energy transfer between interfering
beams is characteristic because of changes in the
refractive index during hologram recording. This
results in (i) the amplification of weak noise gratings
[11, 12] that occur due to the interference of the plane
reference and spherical wave fronts (the consequence
of the scattering of the plane wave by phase nonunifor-
mities) [10]; (ii) amplification of the less intense wave

TECHNICAL PHYSICS Vol. 45
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Fig. 3. (a) Spectrum of Fourier RBPM and (b) the image reconstructed from the Fourier hologram.
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Fig. 4. Intensities of the reference and object beams asafunction of time. I ¢ and 5 correspond to the transmission reference beam

and object beam; (a) R< 1, (b) R>1, and (c) R= 1.

[4] when gratings are recorded by plane waveswith dif-
ferent intensities; and (iii) anomalous [13] amplifica
tion of the wave with greater intensity owing to the
wave with lesser intensity which is observed during
recording of diffuse objects.

Theintensity of the energy transfer and its direction
may [13] depend on such parameters as the ratio
between the intensities of the object and reference
beams, asymmetry in their incidence on the recording
film, and total intensity of the recording field. In this
paper, the energy transfer was investigated for various
R, the other parameters being constant.

The dynamic effects may reduce the signal-to-noise
ratio in the images reconstructed from holograms
recorded on FPK-488. In principle, they cannot be
removed. However, there is a possibility to minimize
the noise level by either suppressing or counterbalanc-
ing the transient energy transfer [11, 12].

Since there is a need to minimize these noises for
Fourier holograms, we measured, in the process of
recording, the time dependences of the recording-beam
intensities I (t) and | ,(t) for the limiting cases: R< 1,
R > 1, and R = 1. These dependences are shown in
Figs. 4a-4c. The registration plane is located behind
the hologram-recording plane P, (Fig. 1).

TECHNICAL PHYSICS Vol. 45

No. 6 2000

Itisseenthat, for R< 1 (Fig. 4a), astrong light scat-
tering is observed at the initial moment without energy
transfer between the recording beams. It is supposedly
the result of amplification of noise gratings formed by
the object beam (the presence of intermodulation noise
in the image reconstructed from Fourier holograms).
For R> 1 (Fig. 4b), aweak energy transfer occurs from
the reference beam to the object beam. When R = 1
(Fig. 4c), astrong energy transfer is observed from the
object beam to the reference beam against the back-
ground of dynamic noise amplification, as demon-
strated by the asymmetry in the intensity variations of
both beams.

Fourier-hologram recording parameters

No. R n, % N, dB tns S
1 1* 98 20 400
2 1 62 —A4.77 -
3 4 52 -3.68 500
4 9 30 6.02 -
5 26 15 20 1000

* Recording of volume phase gratings [3-6].
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From the results obtained, we may draw the conclu-
sion that the region R > 1 is the one best suited to
recording Fourier holograms of diffuse objects with
N > 20 dB.

CONCLUSION

This paper presents the results of an investigation of
recording thick Fourier holograms on FPK-488. It has
been found that, due to a transient energy transfer
between the beams, noise gratings are recorded and,
respectively, a sharp reduction in the signal-to-noise
ratio occurs, while the diffraction efficiency of the
hologram as a whole remains relatively high (greater
than 50%). It has been found that the noise-grating
recording can be substantially suppressed by increasing
theintensity of the reference beam relative to the inten-
sity of the object beam. In this way, the signal-to-noise
ratio has been considerably improved for the Fourier
holograms of binary phase masks: for R = 26, Fourier
phase holograms are recorded with the diffraction effi-
ciency n = 15% and N = 20 dB.
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RADIOPHYSICS

Generation of RF Oscillationsin the Interaction
of an Electromagnetic Shock with a Synchronous Backward
Wave
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Abstract—A new mechanism for the transformation of video pulsesinto radio pulses during their propagation
along a nonlinear transmission line with spatial dispersion—synchronism with a backward wave—is consid-
ered. Numerical simulations demonstrate that a substantial advantage of this mechanism over the interaction
with aforward wave is the possibility of generating longer radio pulses at higher frequencies. © 2000 MAIK

“Nauka/Interperiodica” .

INTRODUCTION

The possibility of the direct and efficient transfor-
mation of video pulses into radio pulses during their
propagation along a nonlinear transmission line (TL)
with spatial dispersion was considered in [1-3]. The
method is based on the instability of the front of an
electromagnetic shock (EMS) interacting with a syn-
chronous wave (v = v (w), where v isthe EM S veloc-
ity and v,(w) is the phase velocity of the wave). The
efficiency of transformation of an EMS propagating in
synchronism with a forward wave (v,v, > 0, where
v4(w) is the group velocity, v, < v,) was studied with
account of high-frequency lossesfor various dispersion
properties of the TL. In our previous paper [2], we have
demonstrated that both the duration of a quasi-steady
train of the generated oscillations and the TL length
necessary for its formation depend on the choice of a
“working point” at the TL dispersion curve upon satu-
ration of nonlinearity. In particular, it was shown that,
in the case of the generation of RF oscillations at the
frequency corresponding to aminimum of v, whenthe
dispersion broadening of the radio pulse is minimal,
both the TL length that is necessary for the generation
of agiven number of oscillations and the damping rate
of these oscillations depend strongly on the difference
Vp — Vg In the case of synchronism with a forward
wave, thls difference can be dightly increased by
changing the TL dispersion. The situation changes
drastically when v, and v, have opposite signs, i.e.,
when the EMS is in synchronism with either a back-
ward harmonic of a periodic system or a normal
backward wave (v4v, < 0). In this paper, we study the
distinctive features of the generation of RF oscillations
inaTL with ferritein the case when the EMSisin syn-
chronism with a backward wave or backward spatial
harmonic and compare the results obtained with those
for synchronism with aforward wave. Obvioudy, each

particular electrodynamic system requires special study
of spatial harmonics or normal waves and the efficiency
of their excitation by a traveling source (EMS front).
However, the main features of the synchronism
between the EM S and a backward harmonic (or wave)
can be establish based on general considerations using
the simplest equivalent schemes of aTL with nonlinear
ferrite elements. The analysis of the processes in such
lines shows that, in the case of synchronism of an EMS
with a backward spatial harmonic (or backward wave),
the above mechanism can be used to generate longer
radio pulses in a higher frequency range.

THE MODEL OF AN ELECTRODYNAMIC
SYSTEM WITH FORWARD AND BACKWARD
WAVES

It is well known that backward waves can exist in
the media with anomalous spatial dispersion [4] and in
various periodic systems, in particular, slow-wave el ec-
trodynamic systems (see, e.g., [5]), in which the propa-
gating wave is spatially modulated. Such awave can be
considered as a wave group consisting of spatial har-
monics whose amplitudes are coupled. The harmonics
travel with different phase velocities, but the group
velocity is the same for al of them. Some of the har-
monics are forward, and some are backward. In differ-
ent slow-wave systems, the fundamental (or zero) spa-
tial harmonic, which has the largest absolute value of
the phase velocity, can be either forward or backward
[5]. If the wavelength is much longer than the period d
of the system (A > d), then the backward zero harmonic
is dominating in the wave group [5]. This fact some-
times allows one to consider the wave group of a peri-
odic system as a quasi-normal backward wave analo-
gousto the backward wave in a system with anomalous
gpatial dispersion. The waves with zero backward har-
monic propagate in slow-wave systems only within a
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Fig. 1. The equivalent scheme of an LC nonlinear transmis-
sion line with ferrites and cross-coupling between the next
nearest cells.

certain RF band, which makes impaossible the propaga-
tion of shock waves in such systems (for the excitation
of a shock wave, it is necessary that low-frequency
waves can propagate in the system). However, if such a
slow-wave system is coupled with another dow-wave
system in which the forward zero harmonic dominates
in the wave group propagating at low frequencies, then
such an electrodynamic system allows both forward
and backward quasi-normal waves, which makes possi-
ble the synchronism of an EM S with a backward wave.
The use of a discrete equivalent chain (Fig. 1) alows
simple description of such asituation. The discreteness
of the equivalent chain gives rise to fundamental har-
monics (0 < ¢, < Ttand -t < ¢, < 0) traveling in the +z
and —z directions and a set of harmonics ¢, = ¢, + 2,
where ¢, is the phase shift per cell or the wavenumber
of the nth spatial harmonic normalized to the period d
of the system. In contrast to real periodic slow-wave
systems, these harmonics do not form wave groups,
because the equivalent scheme does not provide the
amplitude coupling between them. Hence, each har-
monic can be regarded as anormal wave with the phase

(v and group (v ") velocities
m _ 40 m _ 0w _ 0w
Vp = d(l)_n, Vg = aT‘)n = dc’)T)O (1)

Thismodel allows usto study qualitatively the main
features of the excitation of a wave group of a slow-
wave system in the case of synchronism of the EMS
front with one of the backward spatial harmonics. How-
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ever, for each particular slow-wave system, the effi-
ciency of excitation oscillations by an EM S front prop-
agating in synchronism with a quasi-normal backward
wave or backward spatial harmonic of the wave group
depends strongly on the relationship between their
fields and the currents of the traveling source (EMS
front).

THE STRUCTURE OF A STEADY EMS
IN A PERIODIC TL

1. General Considerations

The main features of the generation of RF oscilla-
tions in a TL with ferrite in the case of synchronism
with a backward or forward wave (spatial harmonic)
can be established based on the studies of the structure
of asteady EMS.

If aTL has a periodic structure in the longitudinal
direction z, then the alternating field behind the front of
asteady EM S depends not only on the transverse coor-
dinate r; and the variable § = (z— v¢)/d related to the
EMSfront, but also on z In particular, for synchronism
of the EMS front with the nth spatial harmonic (v =
Redw/¢,(w)), the aternating component of the field
behind the front upon saturation of nonlinearity can be
represented qualitatively as[6]

E- Dan(w)Re|:eXp(j¢nE)
)
X e 0)expf j(¢m_¢n)2/d}i|-

Heree (r, w) isthedectric field of the mth spatial har-
monic and a.(w) is the excitation coefficient of the
wave group, which is governed by the processes occur-
ring at the EM S front, where the nonlinearity is not sat-
urated. It follows from (2) that the oscillations in a
steady wave damp with distance from the front as
exp(=¢, &) with the damping rate determined by the
imaginary part of the wavenumber of the harmonic
(d,= ¢, +id,) that isin synchronism with the EMS
front. In addition, the field is spatially modulated with
the period equal to the period d of the structure. How-
ever, if the EMSisin synchronism with the dominating
harmonic of one of the wave groups (waves) of a slow-
wave system, then the periodicity over zisinsignificant
and the distribution of the aternating field of a steady
EMS aong the TL is governed mainly by the propaga
tion constant of this harmonic.

At fixed z = z,, relationship (2) describes the time
behavior of the electric field of a steady EMS passing
through a given section of a periodic slow-wave sys-
tem. The electric field exhibits harmonic oscillations

with the damping rate—¢,; v./d, which depends on both
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the frequency of oscillations and the EMSvelocity. It is
clear that, for asteady EMS, the time behavior is iden-
tical for all the points z = z, + nd.

Evidently, the structure of a steady EMS in the case
of synchronism with a forward harmonic is qualita-
tively the same as that for synchronism with a back-
ward harmonic. However, such parameters as the
damping rate and relative amplitude of oscillations can
be substantially different. These differences can be
established based on the consideration of amodel prob-
lem using an equivalent scheme similar to that shownin
Fig. 1.

2. Basic Equations

Nonlinear processesin an LC chain with capacitive
cross-coupling (Fig. 1) are described by asystem of dif-
ferential difference equations,

do,
dt - Vn—l_vn_InRO((*))’

ch = LO(In+4T[thn)a

©)

dv d
COd_tn = In_|n+1+C*d_t(vn—z_zvn+vn+2)1 (4)

My _ @Y 22y, ()

dt (1+a )M

Here, @, isthe induction flux in the nth cell of the non-
linear TL, I, isthe current, V, isthe voltage, M,,, isthe
mean value of the magnetization vector (which is par-
allel to the magnetic field), H(1,) isthe magnetic field,
y is the absolute value of the gyromagnetic ratio, M is
the saturation magnetization (4riM = By), ) istheferrite
space factor of the TL, a is the dissipation coefficient,
C, is the capacitance of a unit cell of the TL, L, isthe
inductance of a unit cell upon saturation of nonlinear-
ity, and Cjisthe cross-coupling capacitance. Theresis-
tance Ry(w) takesinto account high-frequency lossesin
the TL that are related to dissipation in metal surfaces
(dueto skin effect) and high-frequency dielectric losses
in the saturated ferrite. The frequency dependence of
the resistance is given by

Ry = Kon/w+ I o(w)tand(w), (6)

where tand isthetangent of dielectric lossesin the sat-
urated ferrite and the coefficients k, and M'y(w) are
determined by the TL structure. The frequency depen-
dence of I o(w) isalso determined by TL geometry and,
in the general case, cannot be specified as a known
function of frequency. However, for the estimates, we
can assume that I, is constant within a wide frequency
range. The frequency dependence of the tangent of
dielectric losses tand, which is different for different
ferrites, determines the frequency dependence of
dielectric losses in the ferrite [see (6)]. Below, we
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Fig. 2. (a) Dispersion characteristics of an LC chain with
cross-coupling between the next nearest cells for the cross-
coupling coefficient y= C{Cq = 0.2, (b) the imaginary
part of the wavenumber ¢", and (c) the duration of the gen-
erated radio pulse N, versus the wavenumber ¢'; for Ry/Zy =
0.000293 (dashed line) and Ry ~ o (for Ry/Zg (500 MHz) =
0.000293) (solid line).

assume that tand ~ «? (in particular, such a depen-

dence approximates well tand in the frequency range
500-1000 MHz for nickel-zinc ferrites).

Figure 2a presents the dispersion characteristics of
the LC chain with a capacitive cross-coupling between
the next nearest cells upon saturation of the ferrite and
in the absence of losses. The figure shows the depen-
dences of (1) the relative frequency wwy, (2) relative
phase velocity v,/v,, and (3) relative group velocity
V4l Vo on the wavenumber ¢' for the forward wave (0 <
o< 1) and for the first spatial harmonic (¢, = 21— ¢).
Here w, = 2/t isthe critical frequency, 1, = (L,Co)Y? is
the time constant of aunit cell, and v, = d/tyisthe char-
acteristic velocity. It is seen that the synchronism of the
EMS with a backward harmonic is possible near the
minimum of the group velocity v, but for values of
Vs = Vp(w) smaller than those in the case of synchro-
nism with aforward wave.

As was mentioned above, in the case of saturated
nonlinearity, the structure of a steady EMS is deter-
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Fig. 3. Time dependences of the voltage (a) at the input cell
(the input video pulse) and in the inductances of the (b)
100th, (c) 200th, and (d) 300th cells of anonlinear TL with
ferrites for synchronism of the EMS front with a forward
wave at y= 0.2, 19 = 6.4 x 100 n =0.5; M =300 Oe;
and Mg/M =-0.8, where Mg istheinitial magnetization. The
dispersion characteristics of the synchronous wave are ¢ =
1.264, wio, = 045, vplvg = 0.71, v4lvg = 049, and

Z,/Zo = 0.61.

mined by the wavenumber ¢, which, in the case at
hand, can be found by linearizing the system of equa-
tions (3)—(5) and passing over to the coordinate & = (z—
v{)/d related to the steady EMS. The unknown wave-
numbers, which are the characteristic numbers ¢ of the
linear differential difference equation obtained, are
determined by

ViR 4sn’pl2 _ @)

2
2V
¢—52 id -2
1+4ysin" ¢

Vo Vol
Here, yg= C{Cy and Z, = (Lo/Cy)¥2. In the case of
small losses, ¢"/d' < 1 (¢ =¢' +id"), wearrive at

0" = Ro(w)/Z,
20" (vglvo—VvdVve)

(8

3. Calculation of the Parameters of a Steady-Sate
Structure

Figures 2b and 2c show the dependences of the
damping rate ¢" and the duration of the steady radio
pulse (the number N, of oscillations in the oscillating
part of the EMS front corresponding to an e-fold
decrease in the amplitude) on the real part of the wave-
number ¢' (or the wavenumber in the absence of |osses)
for frequency-independent resistance R, (dotted curve)

BELYANTSEV, KOZYREV

and for the frequency dependence of R, typical of
dielectric lossesinferrite (R, ~ w?) (solid curve). In cal-
culations, we used the values of the resistance R, that
aretypical of the frequencies of about 500 MHz.

Note that, for frequency-independent losses, the
maximum duration of a steady radio pulse corresponds
to a certain optimum value of the wavenumber near the
minimum of v, for both forward and backward waves.
However, the maximum of N, is less pronounced for
backward waves, and it disappears completely under
strong frequency dependence of R,.

The duration of a steady radio pulse in the case of
synchronism with a backward wave (Tt < ¢' < 2m) is
about one order of magnitude longer than that for syn-
chronism with a forward wave (spatial harmonic). For
frequency-dependent losses (R, ~ «¥), thisis valid for
any fixed frequency from the transmission band, and,
for frequency-independent losses, this holds simulta-
neoudly for all the frequencies within the transmission
band (Figs. 2b, 2¢). Therefore, it is more advantageous
to use the synchronism with a backward wave rather
than with a forward wave in order to produce a long
radio pulse with a higher carrier frequency.

It is seen from formula (8) that, in the case of syn-
chronism with a backward wave, the smaller damping
rate is explained, on one hand, by arelatively high rate
of energy outflow (with the group velocity v, < 0) from
the EM Sfront and, on the other hand, by agreater value
of the wavenumber ¢'. An analogy with a traveling
source provides a qualitative explanation of this fact.
For synchronism with a backward wave, the energy of
oscillations outflows fast from the EMS front, As a
result, the damping of the generated radio pulse has no
time to strongly affect the pulse envelope. This fact is
also proved by numerical simulations of a nonsteady
transformation of avideo pulseinto aradio pulseinthe
case of synchronism of the EM S front with a backward
wave (harmonic) of a periodic TL.

NUMERICAL SIMULATIONS
OF THE NONSTEADY GENERATION
OF RF OSCILLATIONS BY AN EMS

1. Synchronismwith a Forward Wave

Figure 3 shows the time dependences of the voltage
in several cellsof aTL with dispersion and ferrite non-
linearity in the case of synchronism with a forward
wave. The EMS front is formed after the leading edge
of the video pulse fed to the TL input (Fig. 3a) has
passed three to four TL cells. After that, oscillations
appear behind the front. The generated oscillations
travel with avelocity lower than the EM Sfront velocity
and gradually fall behind it (with the relative velocity
equal to the difference of the phase and group veloci-
ties). The number of these oscillations is proportiona
to the distance covered by the EM S front (Figs. 3b—3d).
The generation of the radio pulse is accompanied by a
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decrease in the video pulse duration. The video pulse
energy decreases due to dissipation at the EMS front
and generation of oscillations behind it. In the non-
steady stage of the video pulse evolution shown in
Fig. 3, the train of the generated oscillations can be
divided into atrain of quasi-steady oscillations, whose
damping is determined mainly by the imaginary part of
the wavenumber (which is the same as for a steady-
state wave), and thetrailing edge, where the damping of
oscillations is determined mainly by the local disper-
sion of the group velocity. Note that the duration of the
trailing edge and the dispersion broadening of the gen-
erated train are minimal when the working point corre-
sponds to the minimum of the group velocity [2].

A train of oscillations can be output from the non-
linear TL to a matched load with Z, equal to the RF
wave impedance (Z, = Re(V, /), where V,and | , are
the voltage and current amplitudes of the generated RF
wave). An analogy with atraveling source allows us to
determine the line length L (the number of cells) that is
necessary for the formation of a train consisting of N
oscillations[1, 2]:

2nv N

LN = e

(9)

2. Synchronism with a Backward Wave

The nonsteady generation of RF oscillations by an
EMS in the case of synchronism with abackward wave
has some specific features. In contrast to the synchro-
nism with aforward wave, in thiscase, the energy of RF
oscillations travels in the direction opposite to the
direction of propagation of the EM Sfront. Since, inthis
case, vy <0, the energy of the generated oscillations
reaches the TL input very soon after the formation of
the EMS front, and the further processes in the TL
depend on the conditions at the input. In the general
case, when there is no RF matching at the input, a part
of the RF power is absorbed there and another part is
reflected back into thelineand, at |v4| > v, experiences
sequential reflections from the EMS front and the TL
input. In the reflection from the moving boundary
(EMS front), the double Doppler effect takes place.
Consequently, the spectrum of a nonsteady EMS con-
tains a set of frequencies, only one of which corre-
sponds to the synchronous wave and appears in the
steady-state structure of the EMS. Thus, several waves
are generated simultaneously. The intensities of these
waves depend on the boundary conditions at the walls
of the formed “resonator” with a moving right bound-
ary. Note that the character of the nonsteady processes
during the generation of oscillations in the case of syn-
chronism with a forward wave does not depend on the
boundary condition at the input of a nonlinear TL. We
omit the details of nonsteady processes related to the
absence of RF matching at the TL input and consider
the case when the spectrum contains only a wave syn-
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Fig. 4. Time dependences of the voltage (a) at theinput load,
in (b) the 10th and (c) 69th cells, and (d) at the output load
of anonlinear TL with ferrites for synchronism of the EMS
front with a backward wave with the same parametersasin
Fig. 3. The dispersion characteristics of the synchronous
wave are ¢ = 3.827, w/w, = 0.82, vp/vo = 0.43, vg/vo =
0.78, and Z,/Z5 = 0.29.

chronous with the EMS front and the load at the TL
input Z, is matched at the frequency of the synchronous
wave (see Fig. 1). Note that this case is most important
for the development of generators of long radio pulses
with asingle carrier frequency.

We carried out numerical simulations of nonsteady
processes for a TL with 85 nonlinear cells. Figure 4
shows the time dependences of the voltage at severa
TL cellsand the matched input and output loads Z, The
sequence of nonsteady processes is as follows. The
EMSfront formed in thefirst cellstravelsalong the TL
and generates RF oscillations. The energy of these
oscillations runs to the load at the TL input and is
almost completely absorbed in it. The voltage pulse at
the input load is the longest. As the cell number
increases, the duration of the voltage pulse decreases,
so that RF oscillations are almost absent at the matched
output load.

The oscillograms in Fig. 4 also show the reflected
signa that appears due to RF mismatch, which takes
place even when the line input is loaded on the ohmic
resistance equal to the wave impedance Z,, The reason
for this mismatch is an uncompensated reactance
resulting from breaking cross-coupling.

Asfor synchronism with aforward wave, the damp-
ing rate and TL dispersion determine the shape of the
envelope of the generated radio pulse. The broadening
of the trailing edge of the radio pulse is minimal when
the synchronism corresponds to the minimum of the
group velocity. Formula (9) can be used to estimate the
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length of the line that is hecessary for the formation of
a given number of oscillations in the case of synchro-
nism with a backward wave. This length appears to be
30 times smaller than that in the case of synchronism
with a forward wave because of the negative group
velocity and larger value of the wavenumber. As was
expected, the damping of the nth oscillation of the volt-
age at the load is also smaller by one order of magni-
tude than that for synchronism with aforward wave.

3. Modulation Depth and Generation Efficiency

An important characteristic of the generated radio
pulse is the modulation depth (i.e., the ratio of the
amplitude of RF oscillations V,, to the EM S amplitude
V), which determinesthe generation efficiency for syn-
chronism with both a forward and a backward wave.
Modulation depth in the case of synchronism with a
backward wave is smaller than that for synchronism
with aforward wave (Figs. 3b, 3c, 4b, 4c).

An analytical expression for the modulation depthis
given by
2 zZii-viven 140 10
v:  z2l-vgvO T (10)
Here, 1; is the shock front width in a medium without
dispersion calculated using the formulafrom [7], and T
is the period of a synchronous wave. Relationship (10)
is obtained based on the equation for the balance of the
power fluxes [1] under the assumption that the mean
power spent on remagnetization of ferritein a TL with
dispersion (i.e., for the front width comparable with the
period of the generated oscillations) is Pt;/T. Two main
factors determining the modulation depth V,/V  are dis-
persion (specificaly, the rate of the energy outflow
from the EM Sfront) and theratio t;/T of the EM Sfront
width in a medium without dispersion to the period of
asynchronous wave in adispersive medium. The latter,
along with high-frequency losses, determines the high-
est generation frequency, because the period of the syn-
chronous wave can not be smaller than the EMS front
width in a medium without dispersion.

Knowing theratio V,/V,, we can find theratio of the
power P, = 1/2Re(l,/V;; ) of the generated RF oscilla-
tions to the EMS power Pg = 1.V in a discrete TL

(Fig. 2):
NMof 1

1
2LVH(Z,/Z0)v /v,

(11)

8 0 w/w, _AYa w/w.sSn2¢ %
Etancblz 1+4ysin’¢ [
In the case of synchronism with a forward wave

(harmonic) (Fig. 3), the ratio P, /P, is about 0.47,
whereas, for synchronism with a backward harmonic
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(Fig. 4), thisratio is about 0.27. However, the energy
efficiency (the ratio of the mean energy of the generated
radio pulse PN, where N is the number of oscillations
in the radio pulse, to the total energy lost by the video
pulse) is amost the same for synchronism with both a
forward and a backward wave and, for comparable val-
ues of w, ranges from 70 to 80%.

In other words, accelerating the RF generation pro-
cess (by decreasing the EMS velocity and increasing
the difference between the phase and group velocities)
can substantially reduce the energy losses, thus lessen-
ing their influence. However, the fast energy outflow
necessarily leads to the decrease in the modulation
depth and power of the generated RF wave.

CONCLUSION

The study of the structure of an EM S propagating in
synchronism with a backward wave (spatial harmonic)
has shown that the regime in which abackward wavein
coupled TLs or a wave group in a periodic electrody-
namic system is excited is advantageous from the point
of view of generating longer radio pulses at higher fre-
guencies. This is due to the fact that, in this case, the
damping rate of the generated RF oscillations and the
required length of the line appear to be one order of
magnitude smaller than those in the case when a for-
ward wave is excited. The carrier frequency of the gen-
erated radio pulse can be controlled by varying the ini-
tial magnetization of the ferrite for synchronism with
both aforward and a backward wave.
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Abstract—Experimental and analytic studies of the generation and propagation of electromagnetic radiation
due to repetitive current pulses of a nanosecond duration (peak power to 1 MW, current slew rate of 3.5 A/ns)
are presented. The radiation source was a fine-wire ring antenna of large radius (p, = 1.4 m). The antennawas
driven aong its full length instantaneously within the time t shorter than the time of wave travel along the ring
diameter (1 < 2p,/c). Parameters of the emitted wave were measured. The experimental data are consistent with
the calculated emitted-wave parameters that take into account radiation reflection from the conducting walls of
the laboratory. The efficiency of transformation of drive pulse energy into ultra-wideband radiation was found
to be approximately 15%. A ring antenna driven by repetitive current pulses (within thetimet < 2p,/c) is sug-
gested to be used as a reference ultra-wideband emitter. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The study of ultrawideband (UWB) electromag-
netic pulsesisanew branch of scientific research hold-
ing much promise both for the extension of radar capa-
bilities and for the simulation of the effect of lightning
discharge and high-power electromagnetic pulses on
nonlinear media and distributed electronic control sys-
tems [1, 2]. However, the lack of adegquate measuring
devices and processing algorithms makes it difficult to
determine UWB radiation field parameters. Therefore,
the development of a reference UWB pulse radiation
source appears to be topical [3, 4]. A consistent set of
calculated and experimental data would help to verify
the results obtained in thisfield.

A fine-wire ring antenna can be used as a reference
UWB emitter. The parameters of this antenna both as
an emitter and as a receiver can be accurately calcu-
lated, because the spatia configuration of the current
loop is well defined. As shown in [5] and experimen-
tally demonstrated in [7, 8], if the antenna is driven
simultaneously along its full length by a short current
pulse (T < p,/C), it emits with a high efficiency n, ~
In(p,/ct)/In(p,/r) (r isthe antennaradius, r < ct) and a
low angular divergence (© = ct/p, << 1) in an ultrawide
frequency band (Af ~ f ~ 171). The advent of high-cur-
rent (~1 kA) semiconductor pulse generators with a
short risetime (~1 ns) and a pulse rate of ~1 kHz [6, 9,
10] has given rise to the development of pulse drivers
for efficiently emitting large-size current loops. Long-
term (for hours) stable generation of hanosecond pul ses

significantly facilitates the detection of electromagnetic
field parameters.

The goals of this work were (1) the fast (t < 2p,/c)
and instantaneous excitation of a large-radius (p, =
1.4 m) ring antennaat each of its points, (2) direct mea-
surements of the pulse-induced current in the antenna
and the antennafield, (3) comparison of the experimen-
tal datawith the calculationsincluding radiation reflec-
tion from the conducting surfacesin the laboratory, and
(4) the assessment of the methodical error involved in
wideband field parameters of large-size open current
loops.

DIPOLE RADIATION FIELD PARAMETERS
IN AN UNSTEADY DRIVE MODE

The axial symmetry of a ring antenna (magnetic
dipole) smplifiesthe calculation of itsfield parameters.
Given the time dependence of the induced current and
its distribution over the antenna, the radiation field
parameters can be calculated with well-known analytic
equations [5, 11].

The ring current was studied in a conducting-wall
room of characteristic size ~15 m. For the antenna
radius p, = 1.4 m and the total risetimet =8 ns(ct <
2p,), the antenna radiation wavelength was A_ = 2ct =
4p, = 5-6 m, which is comparable to the laboratory
size. The conducting surfaces in the laboratory (walls,
screens, etc.) reflect electromagnetic waves. The time
delay of a reflected wave at the point of observation
depends on the position of this point relative to the
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Fig. 1. (8) Axisymmetric model of the area of propagation
(the ring antenna of radius p, and points of observation rq
and r, are shown) and (b) the time dependence of the
induced current (solid curve, experiment; dashed curve, cal-
culation).
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Fig. 2. Calculated lateral components of the magnetic and
electric fields for the ring antenna emitting into free space.
(1) ry=4.5and (2) r, = 9 m. Calculations were made for the
actual value of induced current Jy (t).

antenna and reflecting surfaces. The radiation field
parameters were preliminarily assessed using the
KARAT electromagnetic program [12], which solves
Maxwell’s equations in the 2.5-dimensional approxi-
mation and allows experimental conditions to be taken
into account.

Two geometrical axes passing through the center of
the ring antenna are considered: the axis normal to the
ring plane (z-axis) and any of the axesin thering plane
(r-axis). Strictly in the z direction, the emission is
absent because of the ring symmetry. The point of
observationison ther-axis, because the angular depen-
dence of the electromagnetic field parameters in this
direction isweak. The position of this point depends on
two mutually related, but inconsistent, factors: the con-
formity of the field latera components to the plane
wave condition E,/B, = ¢ and the time delay of the
reflected wave at the point of observation (as the dis-
tance r increases, the wave front shapes but the delay
time decreases).

Oscillograms of induced current Jy(t) and an axi-
symmetric model for reflecting-boundary area of prop-
agation (Fig. 1) were used as initial data for calcula-
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tions. The current rise time was =8 ns; and the current
slew rate, ~3.5A/ns.

The dynamics of wave generation and propagation
was simulated by cal culating the parameters of antenna
emisson into free space (Fig. 2). The difference
between the first (8 mGs) and second (6 mGs) half-
wave amplitudes of the magnetic field that are gener-
ated by diametrically opposite parts of the ring at the
pointr, =4.5m (=3p,) ontheradial axis showsthat the
point r, is close to the antenna. In contrast to plane
waves, the lateral components of the electric and mag-
netic fields (E, and B, respectively) are not propor-
tional to each other.

At the point r, = 9 m (=6p,), the components E, and
B, aremuch larger than the other field components: { B, ,
By} < B, {E, E} < E,. They are related as
Ey (V/cm) 03.3B, (MmGs), which is consistent with the
plane wave condition. The electric field amplitudes for
the first and second half-waves are =1 V/cm, and the
radiation wavelength is 5-6 m; i.e.,, A_ = 4p,. Thus, a
ring antenna driven within atime t < 2p,/c generates a
plane electromagnetic wave in theradial direction even
ar/p,z26andr/A_=15.

The large-radius antenna is inductively coupled
with the conducting surfaces of the area of propagation
(Fig. 1). The antennaradiation induces eddy currentsin
them and, thus, reflected waves, which disturb the ini-
tial field configuration. The effect of reflection on the
radiation field parametersis presented in Fig. 3 for the
point r, where the plane wave has been already formed.

This effect is manifested in two ways (Fig. 3). First,
astrong longitudinal magnetic field B, (curve 2) occurs
=16 ns after the forward wave front (curve 1) has
reached the point of observation. Thisfield isdueto the
different distances of the ring plane to the side reflect-
ing screens (z=-5 and 7 m, respectively). Second, the
first and second half-wave amplitudes become unequal .
The second half-wave amplitude increases by 30%
because of the “pump” effect from eddy currents
induced by the antenna in the nearest symmetrically
arranged screens (z = +2 m). However, it should be
noted that the condition E,/B, [Jc remains valid at least
until the longitudinal component B, of the magnetic
field arises. Thus, the numerical simulation of the emis-
sion of thering antennadriven for ashorttimet < 2p,/c
shows that the forward wave propagating in the radial
direction can be detected at the point r, = 6p, = 1.5A_
for a limited time (=16 ns, or =21) determined by the
reflecting screen geometry.

EXPERIMENTAL SETUP

Circuit. The current setting time T in a circuit with
an inductance L, and an impedance R, depends on the
time of quasi-steady-state current relaxation g = L, /R,
and the rise time of a driving voltage pulse 1. If 14 <
Tr, the time it takes for the current to reach 0.95 of the
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amplitudevalueist = 31x. The circuit impedance R, (or
the impedance introduced into the circuit) is related to
the “rate” of ring antennadriving 2p,/ct (the term used
in[5]) as

R, = 1.5u0c5%Hn%‘,

where pc = 377 Q is the wave impedance of vacuum.
If the parameter 2p,/ct is fixed, R, depends on the
antennaradius p, only slightly. If T, < Tg, the unsteady
mode of antennadriving (2p,/ct = 1) isset at the circuit
impedance R, = (4-5) kQ (it is assumed that p,/r =
200-500) regardiess of the antenna radius. With the
parameter 2p,/ct fixed, the antenna radius p, defines
the upper boundary frequency of the radiation spectrum
(the less the radius, the higher this frequency). At a
given induced current amplitude, the antenna radius
specifies the total energy of the radiation pulse. If 14 =
T, the radius p, of a “fast”-driven antenna should
exceed cTy,.

The axial symmetry of the antennaimplies the uni-
form distribution of the impedance and simultaneous
change of the current at each point of the antenna. This
requirement is met if the spatial longitudinal structure
As of a ring antenna satisfies the condition 2As/c <
0.2t < T1; i.e, the permissible longitudinal discretiza-
tion of the loop should be at least 2101(2p,/cT). An
experimental ring oscillator meeting this condition was
developed in our laboratory. Its fragment is shown in
Fig. 4.

Driver 1 is built on conventional drift diodes. Their
blocking properties are sharply restored if the diode
forward current is pumped in a special mode [6]. A
series three-stage pulse shaper was used. The driver
output stage consisted of 24 paralel channels. When
the driver was made to pick up amatched load of 0.5Q,
atrapezoidal voltage pulse with arisetime of T, = 3 ns,
amplitude up to 600V, and a half-amplitude duration of
approximately 20 ns was detected. The pulse power of
the driver did not exceed 0.7 MW, and the pul se repeti-
tion rate was 100 Hz.

The ring antenna of radius p, = 1.4 m consisted of
N = 96 segments made of fine (r = 1 mm) copper wire.
The length of each segment was 91 mm. The quasi-
steady-state inductance of the antenna was L, =
13.3 uH. Driver 1 was connected to wire segments 3 of
the antenna with 1.6-m-long coaxials 2 with the wave
impedance R, = 50 Q. Thering current alone was gen-
erated, since the radial currentsin the cables were can-
celled. The current rise time in the ring, T = 8 ns, was
shorter than the doubled time of pulse travel through
cables 2 (16 ns). Thus, within 16 ns, the driver is put
under the optimum load R./N = 0.5 Q and the imped-
ance R, = RN =5kQ, necessary for fast driving, isuni-
formly distributed over the antennaloop. When the out-
put voltage of the driver was 510 V, the amplitude of
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Fig. 3. Time dependence of thelateral, B, (1) and longitudi-
nal, B, (2) magnetic field components at the point r, = 9 m.
Reflection from the conducting surfaces.

Fig. 4. Fragment of thering oscillator: (1) driver, (2) coaxi-
as, (3) elements of the ring antenna, and (4) current meter.

current pulses in the antenna was found to be (Jy)mex =
18.7 A; and the dlew rate, 3.5 A/ns (Fig. 1). The resis-
tance of the entire circuit (antenna and 96 feed cables)
was assessed from the characteristic current decay time
Tq= 150 nsat L,/ty = 100 Q. Oscillations during the
current decay are caused mainly by poor matching of
antenna elements 3 with feed cables 2. Direct current
measurements at various points of the ring (both in its
normal position and at various angles to the radial axis
of suspension) in the conducting-wall room gave the
same results within the accuracy of detection. Thus, the
non-steady-state driving of the ring antenna within the
time T < 2p,/c has been shown to be a possibility. The
difference between current setting times along the
antennawas <T.

Probing. Measurements of the driver voltage and
that across the load (at the ends of cables 2) was per-
formed using aresistive voltage divider with atimeres-
olution better than 0.5 ns. The induced current was
measured in the loop by means of resistive shunt 4 with
a compensating inductance (Fig. 4). The measurement
results coincide well with the calculated values taking
into account the actual voltage shape at the output of
the loaded driver (Fig. 1).

Magnetic field oscillationsin the emitted wave were
measured with a differential-output probe based on a
conventional symmetric magnetic dipole and an LR



756

(b)

L 4
~A
R&“

Output

11
=

Fig. 5. Magnetic probes: (a) conventional symmetric mag-
netic probe with integrating resistors R and (b) symmetric
double-dipole probe with increased immunity to electric
parasitics.
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Fig. 6. (1) Latera and (2) longitudinal components of the
magnetic field of the emitted wave at the point of observa-
tionr,=9m.
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Fig. 7. (1) Measured and (2) calculated lateral and longitu-
dinal components of the magnetic field of the emitted wave.
Thetime axisis shifted for convenience.

integrator (Fig. 5a). However, such aprobe (50 x 20 cm
rectangular frame) turned out to be inappropriate
because of electric-field-induced parasitics. The para-
sitic signals were measured by reversing the probe
phase (by turning the probe through 180°), and their
level was found to be 200%.

To avoid this disadvantage, aspecial probe of higher
symmetry was developed (Fig. 5b). It consists of two
identical rectangular (45 x 11 cm) symmetric magnetic
dipoles with LR integrators. The planes of the series-
connected dipoles are 11 cm apart. For the characteris-
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tic antenna radiation wavelengths A_ = 5-6 m, the probe
can be considered as alumped (local) sensor.

The probe sensitivity is 33 mGs/V. For a forward
wave of amplitude 34 mGs, the probe response was
=0.1V, which was reliably detected. The time constant
of the LR integrator is =150 ns. This allowed direct
measurement of the magnetic field of the forward wave
for <20 nswith an accuracy of <10%.

Detection and processing of signals. A number of
known ways to provide interference immunity during
the measurements in an ac electromagnetic field [13,
14] were used: the coaxials were further shielded and
passed through ferrite rings, decoupling filters were
inserted into the supply circuit of the instruments, dif-
ferential recording was applied, etc. S1-97 and S9-4A
oscilloscopeswith afrequency band of 0.45 and 1 GHz,
respectively, were employed to record the signals. The
oscillograms were photographed with adigital camera.
A single oscillogram contained up to 400 data points.
In further calculations, these data were interpolated
with Newton and spline interpolation algorithms. The
instrumental and methodical errors did not exceed
10%. The problem of accuracy improvement was
beyond the scope of this article.

RESULTS AND DISCUSSION

The direct measurements of the lateral, B,, and lon-
gitudinal, B,, components of the magnetic field at the
far point of observation (r, = 9 m) are presented in
Fig. 6. The magnetic field amplitude detected by the
probe is 3-4 mGs; the oscillation period is 16-20 ns.
The second half-wave of B, exceeds the first half-wave
by 30%. Thelongitudinal component B, lags behind the
lateral component by =16 ns. The longitudina (para
sitic) component is due to reflection radiation from the
metal surfaces of the laboratory. The appearance and
level of parasitics were verified by detecting the mag-
netic field strictly along the z-axis of the antenna, where
the emission is absent because of the ring symmetry.

Calculated and experimental data for the lateral, B,,
and longitudinal, B,, components of the magnetic field
at the point r, are compared in Fig. 7. For the latera
component B,, the curves agree well for the initia
~16 ns, during which the forward wave is not yet dis-
turbed by reflected waves. For B,, the curves correlate
both quantitatively (the same time of wave appearance
at the point r,) and qualitatively (the same signal varia-
tion) within the initid 1520 ns. The difference
between the measured and calculated values of B,
arises from the inaccurate simulation of the actual
arrangement of the reflecting surfaces.

The consistency between the calculated and mea-
sured datafor B, makesit possible to determine the lat-
eral component of the electric field E, from the mag-
netic induction: B, — E, = cB,. At the point of observa-
No. 6
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Fig. 8. Calculated data for the (1) induced and (2) radiant
energy of the ring antenna.

tionr,, theamplitude of E, was=1.1-1.4V/cm, and the
radiation energy flux density E,B, was =30-50 W/m?.

The obtained results allow us to estimate the effi-
ciency of transformation of induced current energy into
radiant energy. Thisis also of some methodical signifi-
cance, because it is well known that the antenna effi-
ciency n,in the quasi-steady-state (t > 2p,/c) mode of
driving amagnetic dipole isn, ~ (p./ct)¥In(p,/r) < 1
[11]; and in the nonsteady-state mode (T <€ 2p,/c),
Na<1[3].

Calculated data for the induced energy and total
radiant energy are presented in Fig. 8. The antenna effi-
ciency n, (i.e., theratio between the radiant energy and
the sum of the induced and radiant energies) is seen to
be 5-6% by the end of thefirst half-wave (thefirst peak
in curve 1) and 15-17% by the end of the second half-
wave (the first minimum in curve 1).

CONCLUSION

The experimental bench for studying the radiation
of large-size current loops driven simultaneously along
their full length within the timeinterval T < 2p,/c (non-
steady-state driving mode) was developed. The setup
can also be used for examining the effect of UWB radi-
ation on nonlinear media. The choice of such an
antenna was dictated by the fact that the field of radia-
tion from afine-wire loop can be accurately calculated
from the value of the drive current and that a current
loop efficiently emits under the non-steady-state driv-
ing mode.

The fast (T = 8 ns) pulse driving of the ring antenna
of radius 1.4 m was accomplished. Thedifferenceinthe
current setting times over the loop was=0.5 ns < 1.

The high-current (=1 kA) semiconductor generator
was used as a driver. The low output impedance of the
driver allowed the multipoint in-phase excitation of the
antenna. The continuous (for hours) stable generation
of UWB radiation pulses (pulse repetition rate up to
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100 Hz) made the detection of the electromagnetic field
parameters much easier.

The magnetic probe consisting of two identical
symmetric dipoles was developed. The dipole leads are
connected so that the signals induced in the dipoles by
the magnetic field add up, whereasthose induced by the
electric field are canceled. Thus, the parasitics due to
the electric field are eliminated, and the magnetic com-
ponent of the UWB radiation is reliably detected.
A conventional magnetic dipole cannot be used in the
measurements because of the incomplete cancellation
of signals induced by the electric field (the error is
~200%).

The time dependence of the magnetic induction
showed that an electromagnetic wave emitted by the
antenna in the radial direction turns into a plane wave
even at a distance 4p, away from the antenna center.
Thus, experiments with such an antenna can be per-
formed in a limited space. The electric field strength
near the antenna was found to be 6 kV/m; and at a dis-
tance of 9 m away from the antenna, 110-140V/m.

The results were verified by both analytical and
numerical calculations. The KARAT computer pro-
gram was used to assess the effect of radiation reflec-
tion from the metal surfacesin the laboratory. The mea-
sured UWB radiation parameters agree well with the
calculated data both in the amplitude and variation of
the magnetic component of the forward wave and inthe
time delay with which the reflected wave comes to the
point of observation. The efficiency of transformation
of drive pulse energy into radiant energy was found to
be 15-17% for the oscillation period.

The instruments used in these experiments provide
reliable information on the parameters of a UWB elec-
tromagnetic field generated by open current loops of
large size. The possibility of these parameters being
measured in areflecting-wall room was demonstrated.

The proposed methods of UWB generation and
radiant field detection can be used in the development
of a reference emitter of nanosecond electromagnetic
pulses.
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Abstract—Nonlinear characteristics of plane strontium titanate film capacitors operating at microwave fre-
guencies are investigated by measuring the power of a capacitor signal generated at the third-order intermodu-
lation distortion (IMD) product frequency when the capacitor is excited by atwo-tone microwave signal. Mea-
surements are performed at 4 GHz at temperatures of 78 and 300 K. At T = 300 K, the nonlinear response of
the capacitor correspondsto the nonlinearity determined from the low-signal capacitance—voltage characteristic
(CVC). At T=78K, the nonlinear response to atwo-tone microwave signal is greatly amplified when the signal
components have equal amplitudes and close frequencies. It is demonstrated that this effect is due to the beat-
frequency modulation of the strontium titanate film temperature, because the thermal time constant of aSrTiO;
film on sapphireissmall (~102s). An analytical expression for third-order IMD product power generated by a
SrTiO5 capacitor is obtained with regard for the heat-induced nonlinearity. © 2000 MAIK “ Nauka/ I nter period-

ica” .

INTRODUCTION

The nonlinearity of the permittivity of ferroelectric
materials has been used in microwave technology for a
long time [1, 2]. At present, the progress in thin-film
technology of oxygen-containing ferroelectrics
(SITiOg, BaSr, _TiOg), which have a highly nonlinear

permitivity € at relatively low dielectric losses (tand ~

10-?) in the parael ectric phase, has rekindled interest in
these films asamaterial of passive (phaseinverters and
tunable filters [3, 4]) and active (frequency converters
[4, 5]) microwave devices.

The discovery of high-temperature superconductiv-
ity (HTSC) in composite metal oxides (1987) has stim-
ulated special interest in strontium titanate, a low-tem-
perature paraelectric. The structural and chemical com-
patibility of superconductive oxides (in particular,
YBa&a,Cu;O;) and SITiO; provides the high-quality
interface between an HTSC electrode and a strontium
titanate film. This decreases |osses in the capacitor and
offers considerable scope for the implementation of
cryogen microwave integrated circuits using the unique
properties of nonlinear dielectrics and superconducting
materials [6]. However, the applications of nonlinear
capacitorsin linear microwave devices may be limited
by undesirable nonlinear effects (the generation of har-
monics and false signals at IMD product frequencies).

In this paper, we investigate and simulate the non-
linear responses from plane strontium titanate capaci-
tors (STO capacitors) to a high-intensity microwave
signal. The transfer ratio of a resonator containing an
STO capacitor and the third-order IMD product power
generated by the capacitor excited by atwo-tone micro-
wave signal were measured for different levels of the

incident microwave signal. Experiments were per-
formed at the temperatures 78 and 300 K.

SAMPLES AND LOW-SIGNAL
CHARACTERISTICS

Samples used were nonlinear plane capacitors
(Fig. 1) based on thin strontium titanate films of thick-
ness h = 1 um. They were deposited on a sapphire sub-
strate of thickness H = 0.3 mm by microwave magne-
tron sputtering [7]. A 8-um-thick copper film applied to

7
8

+U, 6

I

3

Fig. 1. Measuring microstrip resonator: (1) microstrip reso-
nator, (2) feed lines, (3) microwave input, (4) ground line,
(5) grounded pad, (6) substrate (alumina), (7) sapphire,
(8) Cu electrodes, and (9) microwave output. The insertion
shows the plane capacitor.

1063-7842/00/4506-0759%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 2. Resonance curves of the measuring resonator: Uy, =
(1) 0, (2) 30, (3) 60, and (4) 100 V.

Cy(U)/C4(0)
1.1
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0.9
0.8
0.7
0.6

0.5

0.4 | - | |
0 20 40 60 80

1
Up, V

Fig. 3. Low-signal CVCsof the STO capacitors (solid lines)
at T=(o) 78 and (») 300 K. Dashed lines are approximation
(3) for US =1.2x10%and 8 x 10 V2 at T= 78 and 300 K,
respectively.

the film served as the capacitor electrodes. The width
and length of the capacitor gap were s = 4-6 um and
W = 0.6 mm, respectively, and the overall dimensions
of the capacitor were 0.5 x 0.3 x 1.5 mm. The low-sig-
nal microwave parameters were measured a a fre-
guency of about 4 GHz by the resonance method with
an R4-38 complex-transfer-ratio meter. The measuring
microstrip resonator (Fig. 1) was a copper microstrip
(of length | and impedance Zs = 21 Q) with open- and
short-circuited ends. The capacitor was inserted into a
conductor break near the shorted end. The resonator
was coupled with the external circuits through the
capacitive gap, which provides atransfer ratio of -9 dB
when alinear low-loss (tand < 10-%) capacitor with an
intrinsic quality factor Qu, = 200 is used. Depending on
the capacitance and losses of the capacitors being
investigated, transfer ratio S,;, resonance frequency fj,

SAMOILOVA, ASTAFEV

and intrinsic Q,-factor of the resonator varied from —13
to =24 dB, from 3.5 to 4.2 GHz, and from 60 to 100,
respectively.

Figure 2 shows the resonance curves of the measur-
ing resonator when the STO capacitor is biased by adc
voltage U,. From the resonance curves for the STO

capacitor, we derived the low-signal capacitance C, =
—tan(Bl) (wZy™?, dielectric loss tangent tand =

Qs - Qu), and low-signa amplitude of the
microwave voltage [ 7]

Uc = AP (00Co) " QolSul(1-[Sul), (1)

where P, isthe incident microwave power and & isthe
tapping factor (the parameter characterizing the inser-
tion of the capacitor into the resonator):

& = 2[1"' [0CoZs+ (wocozs)_l]

-1
x [g+ arctan(ooOCoZS)_lﬂ :

For al of the investigated capacitors, tand = 0.01-
0.02 and 0.02-0.04 at room (T = 300 K) and nitrogen
(T = 78 K) temperatures, respectively. The low-signal
characteristics of the resonator for two of them are
summarized in the table.

Table

SAPIENT K| Co, pF| ¢ |tand| Qo[ Su, dB [T, GHz| U2, V2
1 | 78] 0.92 |025/0.04]66| 168 | 3872 [12x10°
2 |300| 066 [0.19/002|91| 130 | 4130 [80x 10*

Measuring the shift of the resonance frequency of
the resonator with the STO capacitor biased, one can
construct the capacitance-voltage characteristics
(CVCs) of the capacitor. Figure 3 demonstrates differ-
ential capacitance C, versus Uy, for samples 1 and 2 in
the table. The bias voltage U, = 100 V (corresponding
to the averaged field intensity in the gap E = U, /s =
107 V/m) is seen to decrease the capacitance of the STO
capacitor by factors of about 2 and 1.2 at T = 78 and
300 K, respectively.

THE NONLINEAR BEHAVIOR OF THE SITiO,
CAPACITOR IN A MICROWAVE ENVIRONMENT

The nonlinear response of the STO capacitor to a
microwave signal was investigated with the microstrip
resonator (Fig. 1) in harmonic (one-tone) and bihar-
monic (two-tone) excitation modes.

In the one-tone mode, the microwave signal power
at the output of the resonator (P,,;) was measured as a
function of the incident power (P;,.) at the low-signal
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resonance frequency f,. The experimental transfer
functions were measured at T = 78 and 300 K (Fig. 4).
At T=78K, theresonator transfer ratio decreaseswhen
P,c > +26 dBm, which corresponds to the microwave
amplitude of the capacitor voltage U, > 12 V. This
effect istypical of an oscillatory circuit with a nonlin-
ear capacitance. At T= 300K, thetransfer ratio remains
constant in the same range of incident power.

The response of the STO capacitor to a two-tone
microwave signal was investigated with the standard
technique for IMD measurement [8]. Two harmonic
microwave signals of equa power (P — Paine) @nd
close frequencies (f; = f, + Q and f, = f, — Q) were
applied to the measuring resonator. Due to the nonlin-
ear frequency dependence of the capacitance of the
STO capacitor, the response signals are generated at
IMD product frequencies fg= +mf; ¥ nf, (m,n=0, 1,
2, ...). They were recorded by a spectrum analyzer at
the output of the resonator. The output powers P,,; and
P30 Were measured, respectively, at the fundamental
(f) and third-order IMD product (f; = 2f, —f,) frequen-
cies versus power P;;.. of the harmonic component of
the incident signal at the temperatures 78 and 300 K
and different bias voltages U, All the measurements
were performed under the condition Q < 1 MHz, which
confines all the recorded signals to a frequency band
much smaller than the resonator passband.

Figures 5 and 6 present the measured nonlinear
responses of the plane STO capacitor to the two-tone
signal. In Fig. 5 are shown the resonator transfer func-
tions at the fundamental and third-order IMD product
frequenciesfor T = 78 and 300 K. The influence of adc
bias voltage on the transfer functions at nitrogen tem-
perature is depicted in Fig. 6. The amplitude of the
microwave voltage across the capacitor U, calculated
by (1) for the fundamental frequency and U, = 0 is
given on the additional abscissa axis.

In the whole range of theincident microwave power
(Pijnc = 0...+26 dBm), the cubic and linear depen-
dences of Ps,, and Py, respectively, on Py, are
observed at T = 300 K. At 78 K, the transfer functions
are cubic and linear at the fundamental and IMD prod-
uct frequencies, respectively, only within theinitial part
of the incident power range. Here, the value of
P3ou/P1out €XCeeds the corresponding quantity at T =
300 K by approximately 50 dB. As Py, increases at
78 K, the dependence of the output power on the inci-
dent power weakens at both frequencies. A dc biasvolt-
age applied to the capacitor noticeably suppresses the
third-order IMD product signal and extends the inci-
dent power range where the function Pso(Piinc)
remains cubic.

RESULTS AND DISCUSSION

As the nonlinearity of the STO capacitor is due to
the dependence of the capacitance on the instant micro-
No. 6

TECHNICAL PHYSICS Vol. 45 2000

761

P,y dBm

12

-12

=20 1 1 1 1 1 1
0 5 10 15 20 P, dBm

Fig. 4. Output power of the resonator vs. incident power in
the one-tone excitation mode: (o) data pointsfor sample 1 at
T=78K and (v) thosefor sample2 at T=300 K. Solid lines

are calculated by (5) for Ug found from the CV C approxi-
mation; dashed lineis calculated Pq (P @ T =78 K for

Ug = oo (linear capacitor).

Plout’ P3out7 dBm

—20

_40 -

—-60

—-80 1 1 1 1
-10 0 +10 +20 P iy, dBm

Fig. 5. (o) P1gyt ad (e) Pzt VS. P1inc dependences taken at
T= (o, e) 78and (v, v) 300 K. Dashed lines are calculated by
(9) and (17) for T=300 and 78 K, respectively. Dashed regions
are experimental errors for the quantitiesin (9) and (17).

wave voltage across the capacitor, the experimental
results will be discussed in terms of CVCs. Since the
amplitude of the microwave voltage across the capaci-
tor at the fundamental frequency does not exceed 30V,
it suffices to consider only the CVC initial section,
where the nonlinear voltage dependence of the capaci-
tance C(U) can be represented by two terms of the
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Plou[’ P30ut’ dBm

—20}

40

—60 |

—-80 1 1 1 1
~10 0 10 20 P,;e, dBm

0.19 0.61 1.9 6.1 Uy, V

Fig. 6. The same as in Fig. 5 for capacitor bias voltages
Up=1(c, )0, (v,v) 20, and (o, m) 50V.

power series:

O y2d
C(U) = C,d-—0
U uygd

0

)

where U, is a phenomenological parameter that has
dimension of voltage and quantitatively determines
C(V).

Since the differential capacitance C; is measured at

microwave frequencies, the initial section of experi-
mental CV Cs should be described by the expression

O yd
Cy(U) = Col—3=50
O )

0

©)

Approximation (3) of experimental CVCs enables
one to estimate the parameter US. For our capacitors,

Ug ~105and ~ 10*V2at T =300 and 78 K, respectively.
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For two capacitors, U§ is given in the table and the

CVC initia section approximated by (3) is shown in
Fig. 3 (dashed curves).

From (2), we can obtain the transfer functions of the
resonator operating in the one- and two-tone excitation
modes.

Near the resonance frequency, the equivalent elec-
tric circuit of the measuring resonator can be repre-
sented by aparallel oscillatory circuit shownin Fig. 7a,
where X, is the impedance of the element coupling
the resonator with the external circuits; L', C', and G'
are, respectively, equivalent inductance, capacitance,
and conductance of the resonance microstrip segment;
and C and g = w,Cytand are the capacitance and con-
ductance of the STO capacitor. The equivalent parame-
ters of the circuit are determined from the expressions

2 _ 1 _ 1 _ Co
“ = Tercy T olc T Tcy

In the case of the one-tone excitation, the equival ent
circuit of the resonator symmetrically coupled with the
external circuitsisfurther simplified to acircuit with an
equivalent generator producing the current of ampli-

tude | = 2ml;.. (Fig. 7b). Here, I, = AIZZgleC isthe
amplitude of an incident current wave, Z, is the wave
impedance of external transmission lines, and mis the
ratio of impedance transformation from the external
linesto the resonator (for weak coupling, m= Z,/X o)
The differential equation for forced oscillations in the
equivalent parallel circuit,

di _ U . du,

at - T [G to¥ —} at
d’u, o|2 @
e SUAP

wherei = cos(wt + ¢), isreduced to the known Duffing
equation [9]. For frequencies f close to the low-signal
resonance frequency f,, the solution to the Duffing
equation for a resonance circuit is a harmonic oscilla-
tion u, = U.cos(wt). Then, solving (4) and taking into

account the expression U, = n1t,/2Z,P,, and (2), we
obtain the dependence of the output power on the inci-

dent power at afixed frequency:
4
P
Po = 475 - ps > (5)
0 - ___O_PED m’ D
%:)—E—w[C+CO%L } Bs+g+

Figure 4 demonstrates the transfer functions (solid
curves) of the measuring resonator operating in the

one-tone mode that were calculated by (5) for US, S

found from CV C approximation (3). The experimental
and calculated characteristicsarein good agreement for
both T = 78 and 300 K. Obvioudy, at T = 300 K, the
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nonlinearity of the STO capacitors is weak and cannot
noticeably distort the resonance curve in the range of
incident power up to +30 dBm (which corresponds to
U.=27V for sample2at T=300K).At T=78K (sam-
ple 1), the observed decrease in the transfer ratio at a
given frequency f, is caused by the shift of the reso-
nance frequency due to the decrease in the average
capacitance C = Cy[1— (3/4)( UC2 / Ué )] of the capacitor
charged by the microwave voltage. This means that the
permittivity of the strontium titanate film inertialessly
follows the variation of the 4-GHz electric field.

When the resonator operates in the two-tone excita-
tion mode and the voltage across the capacitor isug(t) =
Ug(cos(uxt) + cos(wit)) (U, isthevoltage amplitude at
the fundamental frequency), the current

e = SICUM)u(D)] ©)

flowing through the nonlinear capacitor contains the
component generated i ; at the third-order IMD product

frequency w; = 2w, — W,:
3
. 3 Ug .
les = Zco3C0—°215|n(oo3t). (7)
Uo
Then, the amplitude of the third-order IMD product
voltage across the capacitor is expressed by
3
3 Uy
U = 3—F—. €S)
AU 1+ tan’s
Taking into account the condition w; = wy, we can
assume that the resonator parameters (¢, Q,, and S,)
and the distributions of voltages and currents along the
resonator are identical at both frequencies. Then, com-
bining (1) and (8) yields the IMD product power at the
output of the resonator:
b = 9Q0[Su* (1~ [Sul) Prne _ ,Pinc
3out — 2 i 7
wWeCo(l+tan"d) U, Uo

According to (9), in the range of incident power
where transfer ratio |S,;| of the resonator can be
assumed to be constant at the fundamental frequency,
the third-order IMD product transfer function of the
resonator in log—log coordinates is linear with a slope
of 3. This was observed experimentally in the whole
range of Py @& T =300 K and in the initial section of
the characteristicat T= 78 K (Figs. 5, 6). The variation
of the dlope of the log-og transfer function with
increasing power at T =78 K can be attributed to avari-
ation of the transfer ratio of the nonlinear resonator at a
fixed frequency.

At T = 300K, P, that is calculated by (9) for U;

found from the low-signal CVC is in good agreement
with the experimental data. Figure 5 shows P3(Piinc)

9)
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X coupl (a) Xcoupl

bl ol o] o

Fig. 7. Equivalent electric circuit of the measuring resona-
tor.

for T =300 K (dashed lines). At nitrogen temperature,
the value of P;,, calculated by (9) is approximately
30 dB smaller than the experimental result.

Theincreased nonlinear response of the STO capac-
itor to the two-tone microwave signal at nitrogen tem-
perature can be attributed to capacitance modulation
when the capacitor temperature periodicaly varies
(with the beat frequency 2Q = f, —f,) due to microwave
power dissipation. The contribution of this mechanism
isessential if 2rm(2Q)t < 1, wheret isthethermal relax-
ation time of the capacitor. We estimated the capacitor
overheat due to the microwave power dissipated in the
strontium titanate film and the thermal relaxation time
from the solution of the heat conduction equation. It
was assumed that heat exchange at the SrTiO; film—air
interface is absent, the heat flux at the interface is con-
tinuous, and the temperature of the substrate back side
is constant. Under these conditions, the overheat of the
strontium titanate film can be expressed as

_ Pgs th ., 2A¢  H
T=To = ZWAf[s+nAwb|nDs D}'

(10)

where T, is the ambient temperature; Py, is the micro-
wave power dissipated in the strontium titanate film;
and A; and Ay, are the heat conductivities of the film
and substrate, respectively.

Using an anal ogy between the el ectric and heat con-
duction equations, expression (10) can be written as

Pyl
T-T, = —gi

(11)
where C; = C,V isthe specific heat of the capacitor, C,
isthe specific heat of strontium titanate, and V = shWis
the volume of the active region of the capacitor.

Comparing (10) and (11), we obtain the expression
for thermal relaxation time

2
= oh [1+g—)\fS nDT—HD} (12)

T2\ Mg, Us O
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Fig. 8. P3gyt VS. Pojne (o, v) data points at equal values of
Uo. For curves 2, the difference in the IMD product signals
isresponsible for Ug variation caused by the capacitor tem-
perature modul ation with the frequency 2 Q = f; —f,.

The heat conductivities of single-crystal sapphire
and strontium titanate are, respectively, 900 and
20WmiKtlaT=78K and25and 6 W m* K at
T =300 K [1]. Then, the thermal relaxation times for
the capacitors are T = 107 and 108 sat T = 300 and
78 K, respectively. Thus, in our experiments (at 2Q <
2 x 100 Hz), the inequality 2m(2Q)t < 1 is satisfied at
nitrogen temperature.

If the capacitanceis modul ated because of moderate
variations of the film electric field and temperature, it
can be represented as

C(U,T) = Co{l—tj_z—KT(T—To)} (13)

0

where the factor K; characterizes the temperature
dependence of the capacitance near T= 78 K, wherethe
behavior of the strontium titanate films differs from the
Curie-Weiss law.

Experimental temperature dependences for the
capacitances of STO capacitors similar to those consid-
ered in this paper are presented in [7]. From these
results, Ky isestimated as 102 K1 at T= 78 K.

In the two-tone mode, the microwave power dissi-
pated in the strontium titanate film oscillates with the
beat frequency 2Q:

Pae = W,CotandUZ, (1 + cos(2Qt)). (14)
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Using (6) and (13) in view of (11) and (14), we
obtain the third-order IMD product component of the
current flowing through the nonlinear capacitor
because of the thermal modulation of the capacitance:

T _ l-KT(*)OCOT tan6

o = 5y @CoUasin(@s). (19
Introducing the notation
2 _ 3 CVV
Uor = 2K 0,CoTtand’ (16)

we bring (15) to form (7). Eventually, at T = 78 K, the
IMD product power at the output of the resonator is
expressed by

1 DZ

qu uz

where Ais determined in (9).

Paouw = Apllnc (17)

In particular, for sample 1, U2, = 10° V2, so that
taking account of the thermal nonlinearity of the capac-
itance adds approximately 20 dB to the calculated P;
value. Figure 5 shows the dependence Psqu(Piine)
(dashed lines) calculated by (17) for T = 78 K. With
regard for errors in determining the quantities involved
in (17), our estimates are in satisfactory agreement with
the experimental data. The application of adc bias volt-
age weakens the temperature dependence of the capac-
itance (by decreasing Ky) and, thus, causes Ug; to grow.
This effect shows up in the experimental transfer func-
tions of the resonator (Fig. 6) as adecrease in the IMD
product signal P5,, relative to Py, and an extension of
the incident power range where the transfer ratio
remains constant and the dependence Psy(Piinc) iS
cubic.

To further verify the correctness of this result, we
measured (at T = 78 K) the IMD product power P, at
the output of the resonator that was excited by two-tone
signals with different depths of amplitude modulation.
During the measurements, the power of one component
of the incident signal (P, varied from —10 to
+26 dBm, while that of the other (P,;,.) remained con-
stant and equaled +26 dBm. The results of these mea-
surements are presented in Fig. 8 (data points on
curve 1). When P, < Py, and the modulation of the
microwave voltage across the capacitor can be ignored,
the dependence P;.(P,in) has the following analytical
form:

2 1
Psou = APlincPZinc_4

0

(18)

The dependence P5,(P.in.) calculated by (18) at a
constant transfer ratio S,; is shown in Fig. 8 (dashed
part of curve 1). In addition, Fig. 8 shows the already
discussed dependence P5,(P2inc) fOr the case when the
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resonator is excited by the two-tone signal with equal
powers of its components (Py;,c = Painc) (Curves 2). Tri-
angles are data points, and dashed curve 2 shows Py
calculated by (9) for U, that was used in constructing
curve 1. One can seethat, at T = 78 K, when the modu-
lation depth of the microwave signal incident on the
resonator increases to 1, the nonlinear response of the
STO capacitor noticeably grows. In Fig. 8, we show the
difference AP = 22 dB between the experimental and
calculated IMD product signals. This difference is due
to the modulation of the capacitor temperature with the

beat frequency AP DlOIog(UglugT ). Thevalue of Ugy;

found from these measurements is consistent with the
above estimates.

It issignificant that theincreased nonlinear response
of the STO capacitor to the two-tone microwave signal
at T =78 K can be suppressed using a substrate with a
heat conductivity lower than that of sapphire. The rea-
son is that, in this case, the thermal relaxation time
increases and the higher-than-T, steady-state tempera-
ture of the strontium titanate film is set.

CONCLUSION

The nonlinear responses of the plane capacitorsto a
high-intensity microwave field were analyzed at T =78
and 300 K. The capacitors were made of thin strontium
titanate films on single-crystal sapphire substrates. It
was demonstrated that, af T = 300 K, the nonlinear
behavior in the microwave range can be predicted from
the low-signal capacitance vs. dc voltage curvein view
of expression (9). At T =78 K, due to the small thermal
relaxation time of the STO capacitor, the nonlinear
behavior depends on the exciting microwave signal.
The response of the STO capacitor to the one-tone
microwave signal correspondsto the nonlinearity of the
low-signal CVC. However, the periodic (with the beat
frequency) thermal modulation of the capacitance con-
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siderably amplifies the nonlinear response to the two-
tone microwave signal with close frequencies of its
components. The expressions for nonlinear behavior of
STO capacitorsin the microwave range at T = 300 and
78 K were derived.

Our results can be useful in designing microwave
microelectron devices, specificaly, in optimizing the
layout of microwave circuits with nonlinear STO
capacitors to reduce undesired nonlinear distortions.
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Abstract—The sputtering of fullerene Cg, films under bombardment with Ar* ions was studied. In thin films,
blistering effects related to diffusion of the implanted argon ions along the layer and substrate interface have
been found to occur. A threshold behavior was observed for sputtering at ion energies around 0.2 keV, which is
much higher than in graphites. It has been shown that dependence of the work function on ion energy can be
described in the framework of Zigmund—Fal cone’s approximation, which takesinto account anisotropic effects
in cascade collisions, and with Yudin's approximation for the sputtering of elemental materials. The obtained
surface binding energy for fullerenesis U [16.7 €V, which isless than the value for graphites, Ug grqp, = 7.7 €V.
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INTRODUCTION

One of the most interesting modern materials are
fullerenes, which can find application in microelectron-
ics and in nuclear and space technology. Fluxes of fast
atomic particles encountered in nuclear and space tech-
nology and the wide use of ion (atom) bombardment in
microel ectronics technology and in modern techniques
of structural analysis of materials stimulate studies of
sputtering of fullerene films (fullerides) and modifica-
tion of their structure, properties, and surface morphol-
ogy asaresult of bombardment with ion (atom) beams.

The few known studies of the interaction of
fullerenes with accelerated atomic particles deal with
problems of structural modifications resulting from
bombardment with Ar* atoms (E = 2 keV) [1], ion and
photon emission produced by bombardment with
hydrogen and helium ions[2], and emission of clusters
containing large numbers of atomsfrom surfaces of ful-
lerides bombarded with (16.5 keV) Cs" ions [3, 4].
Unfortunately, important problems of sputtering and
maodification of the structure and properties of fullerene
films are not quite understood. For example, Hoffman
et al. [1] used in their work the method of electron
energy loss spectroscopy (EELS), whereasit is known
that the electron bombardment of fullerides can cause
their polymerization [5-7].

In this study, sputtering and modification of the
structure and surface morphology of fullerene Cg, films
under bombardment at normal incidence with mono-
chromatic Ar beams of energy from 0.1 to 1 keV were
investigated.

EXPERIMENTAL TECHNIQUE

The experiments were carried out on Cg, films of
thickness 1002000 nm deposited by vacuum sputter-
ing in VUP-5M apparatus. Purity of the fullerene soot
used in the sputtering experiments was 99.98% or
higher. As substrates, GaAs(100) and Si(100) wafers
were used of grades AGChT-4 and KEF-4.5, respec-
tively, and were treated by chemical-dynamic methods
prior to sputtering [8]. It has been shown in [9-12] that
Cgo films obtained under similar conditions have a
polycrystalline structure.

The bombardment of the samples having an area of
0.25-1.5 cm? was carried out in a specially designed
installation with aneutral Ar beam ~60 mm in diameter
at aflux of j ~ 10 part cm=2 s up to fluences of around
® ~ 10% part cm2. The energy of the particleswas var-
ied in the range from 0.1 to 1 keV, and the sample tem-
perature during bombardment did not exceed T ~ 75°C.
The residual pressure in the working chamber was not
higher than P ~ 2 x 107 torr and increased to P ~ 3 x
10 torr during operation of the source of accelerated
particles. Detailed description of the particle source is
given in [13-16]. The ion beam density was measured
with a Faraday cup. The sputtering yield of the

fullerenefilms Y and the fluence ® were determined
from measured thicknesses of the layers sputtered from
investigated films and GaAs control targets, hc_, and

hcaas respectively. The interrelationship between these
guantitiesis given by the formula

Yceo = pceohcso/chceo’ (1)

® = Poarshcaas’ Maas Y cans:
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where Ygas 1S the sputtering yield of gallium arsenide
determined from data given in [14-19]; pc_ and Pgas
arethe densities of Cgy and gallium arsenidefilms equal
to 1.7 and 5.32 g/cm?, respectively [9, 20]; and Mc_

and Mg, @re the average atomic masses of carbon and
gallium arsenide, 12 and 72.4, respectively.

RESULTS AND DISCUSSION

Examination of the surface morphology resulting
from bombardment of the fullerene films using scan-
ning electron microscopy techniques revealed two
types of surface relief: (i) shallow, randomly oriented
ripples and (ii) blisters (Fig. 1). Characteristic dimen-
sions of the random ripples are 0.01 and 0.1 pm in
height and width, respectively. The orientation of the
ripples is apparently affected by the specific etching
pattern at the boundaries of microcrystallites. Charac-
teristic dimension of the blistersisabout 1 um. Thefor-
mation of blisters appearsto bearesult of accumulation
of the implanted argon. Analysis of the blistersin sam-
ples bombarded with different doses showsthat thereis
a step behavior in the blister density variation with
increasing fluence. Samples with an initial Cg, film
thickness of about 0.1 pum after an exposure of ® ~ 1 x
10% ion/cn? had a blister density of around 1.5 x
10* cm?, whereas, in samples bombarded with a dose
of ® ~ 3 x 10® ion/cm?, the density of blisters was
about twice as high, reaching avalue of ~ 3 x 10* cm2.

Comparison of the surface morphologies formed
under identical bombardment conditions on samples
with different Cg, film thicknesses shows that in films
with larger initial thickness, the resulting blister density
is lower. Analysis of the obtained results indicates that
the processes |eading to the formation of blisters can be
related to diffusion along the Cg,/substrate interface.

It is known that fullerene can be polymerized as a
result of various irradiations [9, 21-23]. In order to
determine the condition of the Cyq, films after bombard-
ment, their solubility in toluene was tested, and it was
found that the fullerene films underwent polymeriza-
tion as aresult of sputtering with a neutral argon beam.
Detailed results of the study of this effect will be pre-
sented elsewhere.

The measurement results of the sputtering yield of
Ceo films are presented in Figs. 2 and 3. Their analysis
shows that, in films having the residual thickness less
than 40 nm, there is a deviation of the Cg, Sputtering
yield from the dependence observed in thick films
(Fig. 2). This dependence is probably due to the effect
of the substrate on the propagation of the cascade colli-
sions, i.e., at film thicknesses comparable to the cas-
cade size, some collisions will occur with atoms of the
substrate instead of carbon atoms. Because the ratio of
the masses of the primary particles and substrate atoms
is closer to unity than that of the primary particles and
No. 6
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Fig. 1. Surface morphology of the Cgq film with the initial
thickness of d ~ 0.2 pm after bombardment with a neutral
argon_beam of energy E = 0.6 keV at flux density
j ~ 10" part/s cm® up to fluences of around ® ~ 3 x
10718 part/cm?. (a) general view, (b) cross section of a
closed cavity, and (c) cross section of an open blister.

carbon atoms, the efficiency of energy dissipation will
be higher in the substrate material. Therefore, lower
yields ought to be expected for films of thickness com-
parableto the size of acollision cascade, as observedin
the experiment.

Comparison of the scattering yields between films
that were first polymerized and the polycrystaline
films showed no dependence on the initial condition of
thefilm. Thisis probably the consequence of the higher
rate of film polymerization by the ion beam compared
with the sputtering rate.

Dependence of the sputtering yield of thick Cg
films on the particle energy is shown in Fig. 3. This
dependence features a high value of the sputtering
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Fig. 2. Dependence of the Cg film sputtering yield on film
thickness for bombardment with a 0.6-keV argon beam.

threshold energy E;, ~ 0.2 keV and considerable varia-
tion of the sputtering yield in the range of energies up
to 1 keV. Inthe energy range from 1 to 15 keV, the sput-
tering yield rises slowly reaching amaximum of Y~ 0.3
atoms per ion at E = 9.5 keV. Comparison of the sput-
tering yields for fullerene films, graphites, and carbon
films showsthat the values for full erenes are intermedi-
ate between the other two materials. This discrepancy
of data can be indicative of the effect of porosity on the
results of determinations; i.e., the deposited carbon
films may have a very porous structure, and, therefore,
higher sputtering yield values are obtained compared
with bulk graphite. The fullerene films possibly have
lower porosity, and their sputtering yield, therefore, dif-
fersless from the data for bulk graphite.

Comparison of the sputtering yield values for ful-
lerides with corresponding data for the most important
microelectronics materials Si, SiO,, and GaAs [14-19,
21, 22] shows that the efficiency of sputtering of ful-
lerides by argon ions with energies 0.3-1 keV is lower
by a factor of 3-10 (depending on the target material
and bombardment conditions). In addition, in the sput-
tering of fullerenes, athreshold behavior is observed at
a particle energy E ~ 200 eV, which is commonly used
in plasmochemical etching, because this is a consider-
ably higher value than that for graphite, Si, SiO,, and
GaAs[14-19, 21, 22].

Fitting the obtained dependence to various approxi-
mations has shown that the best results are obtained
with the use of Zigmund—Falcone's model [23], which
takes into account anisotropic effectsin sputtering,

Y = Y|[1-(E/E)], )

where E;, isthe sputtering threshold energy determined
from the experimental graph and equal to about 200 eV,
which is considerably higher than the known values for
most of the basic materials of microelectronics. Y is
the sputtering yield neglecting the anisotropy effects,

SOSHNIKOV et al.
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Fig. 3. Dependence of the sputtering yield of thick
(>0.05 um) Cgq films on particle (argon) energy at normal
incidence.

calculated with the use of the Yudin's approximation
[24],
172
1+ E/E
where E,, is the energy of incident particles corre-
sponding to the maximum value of the sputtering
yield Yo
Enax @nd Y, are defined as
0.3Z,Z,(1+ M,/M
Emax - O.3Etf - 1 2( 6I t)
6.92x10°a

(42)

nma’Ey
U, '’
where E;; is the Thomas—Fermi energy; a istheinterac-

tion potential screening radius; and A isamaterial con-
stant given by the formula

Ymax = /\(Zla Z2)

(4b)

N(Zy, Z,) = N(Z,)—4.65%107%(Z,—18), (4c)
A(Z,) = 1.3x107°Z2)°
. Z,+Z+ ZolAr (4d)
X |:l + O.ZSSI"\%H———Z—O—D}

whereZ,=8andZ=0forZ,<18and Z,=18and Z =
2for Z,>18.

The surface binding energy U determined from the
best fit of the theory and experiment is equal t0 6.7 eV,
which is dlightly less than for graphite (U = 7.7 eV
[21, 24]).

The value of the sputtering threshold energy E, is
approximately 200 eV (Fig. 3), which is considerably
higher than for graphite [17, 21]. This high sputtering
threshold is probably related to the lower atomic den-
sity of fullerenes compared to graphite and, as a conse-
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guence, lower retardation efficiency in the near-surface
layer of fullerene, on which the sputtering is largely
dependent.

CONCLUSIONS

In this work, sputtering of Cg, films by a neutral
argon beam has been carried out. It has been shown that
under the experimental conditions, the fullerene films
undergo polymerization. The sputtering is accompa:
nied with a number of phases of blister formation,
apparently asaresult of diffusion processes at the layer
and substrate interface. In thick films, the formation of
blistersislessintensive. A threshold behavior has been
observed in the dependence of sputtering on particle
energy at energies around 0.2 keV. The experimental
sputtering yield curves are found to be in satisfactory
agreement with Zigmund—Falcone’s model [23], which
takes into account the anisotropy effects in the colli-
sions of target atoms and ions, and with Yudin's
approximation for the sputtering coefficients of ssmple
targets[24].
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EXPERIMENTAL INSTRUMENTS AND TECHNIQUES

Peculiaritiesof the Growth Kineticsof Silicon—Germanium Alloy
Layersfrom Silane and Germane with an Additional Heated
Element in the Vacuum Chamber
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Abstract—To study the disintegration of the molecules of hydrides at the surface of the growing layer and their
influence on the rate of the epitaxial processamodel of the growth kinetics of Si; _,Ge, aloy layersfrom silane
and germane by the molecular beam epitaxy method with SiH, and GeH, gas sources is considered. Through
comparison of numerical simulation data and experimental relationships, the steady-state growth kinetics has
been studied and a comparative analysis carried out of the efficiency of entry of Ge(Si) atomsinto the growing
layer both in the presence of Si and Ge atomic flows in the reactor (the so-called hot-wire method) and in their
absence. The growth rates obtained with this method of epitaxial growth and with one of its modificationswhere
the use is made of a sublimating silicon bar as an additional heated element have been compared. Peculiarities
in the behavior of the dependence of the layer growth rate on its composition have been reveal ed and explained.

© 2000 MAIK “ Nauka/lnterperiodica” .

INTRODUCTION

In recent years in connection with the prospects of
applying alloyed heterostructures in devices of micro-
electronics and microwave electronics, a considerable
interest is seen in both improvement of the structure
growth techniques and in development of physico-
chemical and mathematical models, which can provide
an adequate description of the epitaxial process. In the
majority of basic studies, the growth of strained Si—-Ge
heterostructures had been performed by the traditional
method of molecular beam epitaxy (MBE). In the last
decade, however, in connection with practical require-
ments, vacuum methods of epitaxy with gas sources
(GSMBE) that use hydrides of silicon and germanium
have been intensively developed. This growth method,
which has considerably higher yield compared with
MBE, features better area uniformity of layers and
compareswell with thetraditional MBE in the possibil-
ity to form abrupt heterointerfaces, which is important
in the growth of nanometer scale structures.

At the present time, in the literature, thereis already
a considerable number of experimental studies on vac-
uum hydride epitaxy of Si;_,Ge, [1-5] with the use of
both molecular and atomic flows in the reactor. How-
ever, the theoretical grounds of this method are at
present not sufficiently developed [1, 2, 6-11]; as a
result, the paths of the hydride disintegration reactions
proceeding at the surface of the growing layer are not
properly understood and thereislittle knowledge of the
surface concentrations of different components of the
disintegration products and their interaction. The main
difficulty in modeling the kinetics of the layer growth

from hydrides is the multiplicity of intermediate disin-
tegration reactions and their paths[3, 12], which results
in the appearance of a great many uncertain kinetic
constants in the kinetic equations.

In the present study, aphysicochemical model of the
kinetics of the steady-state layer growth from the
atomic flows of silicon and germanium as well asfrom
the molecular flows of silane and germane [9] is devel-
oped. The model isthe extension of the results obtained
in [6-8, 10, 11] to the case of a mixture of two gases
and contains aminimal number of parametersthat have
to be determined from the experiment. The numerical
simulation of the technological processes on the basis
of the proposed model has been carried out in a wide
range of the growth parametersin both their presencein
the reactor of additional atomic flows (hot-wire
method) and in their absence. A comparative analysis
of the growth ratesfor GSMBE and the hybrid Si—-GeH,
MBE method of layer growth studied earlier [6-8, 10]
has been carried out. The latter is a modification of the
GSMBE method with an additional hot source in the
form of a silicon bar instead of the commonly used
tungsten wire. The use of the sublimating silicon
source, although involving some technological restric-
tions, allows one to obtain in the growth chamber sili-
con atomic flows without the use of the molecular
silane source. Analysis of the model of surface pro-
cesses for different technological modifications
revealed the origin of the unusua behavior of the
dependence of the layer growth rate on composition for
different versions of the technology.

1063-7842/00/4506-0770%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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THE MODEL OF THE PHY SICO-CHEMICAL
PROCESSES AT THE LAYER SURFACE

To describe the growth kinetics of the alloy layers,
we use the approach proposed in [6-8, 10] for Si-GeH,
MBE. In order to reduce the arbitrariness in the choice
of kinetic constants and their number, the scheme of the
disintegration of silane and germane molecules both at
the substrate and at the additional hot source will be
considered in the following simplified form using the

notion of an effective frequency coefficient vy, of the
full disintegration of the MH; molecules

MH,(gas) +2 — MH; +H, MH;+3 — M +3H,
M(gas)+1<=M, M—M(cr), (1)
H— SH,(gas).

HereM = Ge, Si; underlining denotes atoms bonded to
the surface. The possible intermediate disintegration
reaction paths of the MH; molecule were discussed in
[3, 12]. They ought to be taken into account in the study
of thermal desorption spectra[11]. Inthe present paper,
the disintegration of the MH, molecules is not consid-
ered in detail. Below, the corresponding system of
kinetic equations for monomolecular adsorption (Og +
Oge ¥Oy + Ogy, + O = 1) is presented, which alows
one to calculate concentrations of the adparticles aver-
aged over the surface ©, = n/n, (i = MH;, M, H; n; is
the density of the ith particle’s pieces; and n, = 6.78 x
10* cm? is the density of the adsorption centers at the
surface[1]), and of the free adsorption sites ©;, = @, +

O both blocked by MH; molecules (© = 30gy, +
30geH, ), and nonblocked O

dOyy,/dt = Z(S\AH4FMH4/ns)O§bI _24VMH36MH3O?H
do,/dt

= 3 (28w Fun/ 1O + 720 O &1}
M

—V(X)Oy — 1,0y,

doy/dt = 24VMH36MH3®$r +9(Sun,Fun,/Ns) O

Here, Fyy, ) is the molecular (atomic) flux inci-
dent on the substrate; Sy, isthe sticking coefficient of

the MH, molecule at zero coverage and temperature T
at the substrate surface (the sticking coefficient of the
M atomsis assumed to be unity); vy isthe frequency
coefficient of desorption of M(H) atoms from the sur-
face (Vg = Vge = 108exp(=2.3/KT) [13]); rypy is the
crystallization rate; and g is the transfer coefficient of
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atoms from an additional hot source to the substrate.
Here, we suppose that hydrogen is delivered at the sur-
face only by hydride molecules, because it is effec-
tively evacuated from the reactor volume and has a
small value surface sticking coefficient compared with
Sun, ( Sy, =0.01Syy, [1]). Below, it is also assumed

that the removal of hydrogen from the surface proceeds
mainly due to desorption (v4(X) > ry) and that the con-
centration of hydrogen incorporated into the lattice is
substantialy lower than the concentration of host
atoms (ry©y =>ry®y). Thethird equation of system (1)
takes account of the atomic flow from the additional
heated element in the growth chamber (the hot-wire
method). With known surface densities ©, it is easy to
calculate the experimentally obtainable growth rate

Vgr = (rsiesi + rGeeGe) ns/nO (3)

and the average composition of the deposited Si; _,Ge,
epitaxial layer

X = rGe@Ge/(rSi@Si + rGeeGe)' (4)

Heren,=5.5 x 10% c2 isthe number of the Si; _,Ge,
alloy atoms per unit volume. The value of the sticking
coefficient Sgqy, Was estimated in [8, 10] on the basis

of experimental data available in the literature. The
valuefor Sy, isgivenin[1]. Below, the sticking coef-
ficient Sgqy, is taken equal to Sgqy, = 3Sgy, = 2 %
1072 and independent of the temperature (in the temper-

ature range of interest here, 550—-750°C) and on the sur-
face composition.

To accurately describe the growth process, it is
necessary to take into account the dependence of the
rate of crystallization (generally speaking, non-linear)
on the density of adatoms condensed at the surface.
Approximately, the dependence rq(®g, T) can be
obtained by analyzing MBE growth of a silicon layer.
From the balance equations for silicon atoms, it is
easy to obtain the following expressions relating rg
and Og [10]

rs = (Fs +Vgng)Vgne/(Fs —Vsno)ns,
Og = (Fs—Vghy)/(Fg +Vvgns).

©)

The typical form of the dependence of rg(®g) on
O calculated for severa temperatures with the use of
an empirical plots of the flux of Si atomsand Si epitax-
ial layer growth rate versus source and substrate tem-
peratures was given in [9, 10] (for instance, rg ~ 1 at
T =600°C and ©g = 10-10-?). Because of the absence
of similar data for germanium we assumed below r g =
r5 and, thus, ignored the effect of germanium and sili-
con surface segregation.
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Fig. 1. (@) Temperature dependence of the silicon layer
growth rate by MBE and (b) dependence of the Si; _,Ge,

layer growth rate by GSMBE on composition (germane
pressure in reactor) at a constant silane pressure of 6.5 x

107* Torr. Experimental data [4] denoted as follows: T, °C:
(e) 550, (a) 600, (o) 650; curves represent simulations at

Vo= 07 s, Egy, = 008 eV (solid lines) and at v =

500s %, Egi, = 0.6 eV [6] (dashed line).

The hydrogen desorption essentially influences the
epitaxial layer growth rate, especially at low tempera-
tures. For the alloy therate of hydrogen, desorption will
depend on surface composition as well, since the acti-
vation energies for hydrogen desorption from silicon
(Ehg = 2.08 eV) and from germanium (B, g. =
1.56 eV) differ considerably [2]. Usualy, a linear
approximation is used in calculations, obtained under
an assumption that the hydrogen adatoms are equiprob-
ably distributed over Si and Ge sites for adsorption [2].
However, surface migration can appreciably change the
adatom distribution over the lattice sites due to the dif-
ference in S—H and Ge-H bond energies. In its move-
ment on the surface, an adatom will stay most of the
time at the sites with a greater binding energy. There-
fore, it should be expected that the effective desorption
frequency will be lower. The strongest deviation is
most likely to occur at small x. This shortcoming can be
readily overcome if this factor is taken into account at
least in the approximation of high particle mobility [9].
Inthiscase, it isnot difficult to obtain an expression for

ORLOV et al.

the frequency coefficient of hydrogen desorption from
the surface of Si; _,Ge, aloy

Vi(X) = Vi geOhge(X) + Vi_gOns(X),
Ons(X) = {—B+ (B +4a(1-y)0) }/2(1-y),
a=y(l-x)(1-6,), (6)
B=0a+x(1-0;)-(1-Y)O,,
Y = Vees/Vscer On = Oug *+ Opge

where @, = 1 - Q4 — ©,, O, is the density of free
adsorption sites at the surface, and vj; is the frequency
of transfer of hydrogen adatoms between sites of types
i andj.

DETERMINATION OF THE EFFECTIVE RATE
OF DISINTEGRATION OF THE HYDRIDES
AT THE GROWING SURFACE
FROM OBSERVED GROWTH PROCESS
RELATIONSHIPS

In the foregoing, we discussed the meanings of sev-
eral kinetic coefficients in the system of equations (2).
In order to derive the effective disintegration rate of the
hydride molecules MH; at the surface, it is necessary,
apart from adjustment of other model parameters, to
compare the theoretical calculations with experimental
data available in the literature. The easiest way of
obtaining an expression for the frequency coefficient of
full disintegration of silane molecules at the growing
surfaceis by comparing the cal culated curves with tem-
perature dependences of therate of silicon layer growth
from silane, of which a lot can be found in the
literature (see, for example, [4]). A typica plot of
Vg(T) for silicon is presented in Fig. 1a, from which it
follows that a satisfactory agreement between theory

(solid line) and experiment is achieved at vgy, =
Voexp(—Egy, (BV)/KT) s, vo=0.7 s, Egyy, =0.08€V

(at T=600°C v;ilH3 = 5 5). The change of slope of the
Vg(T) curveis caused by the fact that at T < 600°C the
growth rateislimited by an increase of the surface cov-
erage by hydrogen (in simulations, we used E,, g =
2.08 eV) whileat T > 600°C it islimited by the hydride
disintegration rate at the surface. Here and below, we
used the same values of the process parameter v, and
Egn, asgivenin[12] for therate of the reaction SiH; +
1 — SiH, + H. It can, therefore, be stated that at the
growth temperature higher than 550°C, the disintegra-
tion rate of the surface hydride radicals can be limited
by thisreaction. Analysis of mass spectrometry data on
surface composition [11] confirms that this reaction
mainly determines the effective disintegration time of
the SiH; molecul e (the concentration of SiH; molecules
at the growing surface far exceeds that of the SiH, mol-
ecules; rapid disintegration of the latter is assumed to
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proceed by the reaction 2SiH, — 2SiH + H, [12]). In
particular, from Fig. 1a, it is seen that the activation
energy of the SiH; molecule markedly affects the slope
of the curvesin the low temperature region. The usein
simulations of different values of the process parame-
ters (vo = 500 s, Egy, = 0.6 €V [5]) associated with a
different, more involved disintegration path of the SiH,
molecules at the surface (SH, + 1 — SiH + H [12)])
and sometimes used for the analysis of experimental
data[6, 10] results, in the case under consideration, in
a discrepancy between theoretical and experimental
dependences (Fig. 1, dashed curves).

To determine the value of vy, and ascertain some

other system parameters, let us use an experimental
dependence of the growth rate of Si;_,Ge, layers on
their composition (Fig. 1b) [4]. The numerical simula-
tion (solid curves) has shown that the disintegration
rate of the GeH; molecules determinesthe layer growth
rate at aconstant silane pressure. In our case, it is equal

{0 Ve, = 0.03exp(—0.04 (eV)/KT) s (at T = 600°C

-1 . . . . .
Vgen, =1 min). Inour caculations of the silane disin-

tegration rate, we assume the following values of the
parameters: Vo = 0.75 s, Egy, = 0.08 eV. The maxi-

mum on the V,(X) curve is associated with the depen-
dence of the hydrogen desorption rate on surface com-
position. In the region of small x, the growth rate
increases with germanium content since the hydrogen
desorption from the surface is enhanced (Ey_ge < Ep_g)
and the density of the free adsorption sitesisincreased.
The further increase of x by means of increasing the
germane pressure causes a covering of the surface by
products of germane disintegration and, as a result, a
lowering of the growth rate. The behavior of the curve
can be easily understood by analyzing the dependences
of surface concentrations of disintegration products of
different hydrides on the germane concentration in the
reactor chamber (Fig. 2a). It isseen that at low germane

pressures (Pggy, < 10-°Torr), the surface concentration
of hydrogen drops sharply with pressure while at ele-
vated germane pressures (Pgq;, > 107 Torr), adrop in
the concentration of silicon atomsis observed.

However, it should be noted that the use for V(x)
calculations of amodel that does not take into account
the influence of surface migration of particles on the
distribution of hydrogen adatoms over that surface,
results in a shift of the maximum of the theoretical
curveto theregion x = 0.02-0.04 [2] while the maxima
on the experimental curves have positions around x =
0.1 at T, = 550-600°C (Fig. 1b). Taking into account
the surface migration of H adatoms [see (6)] consider-
ably improves an agreement between theoretical and
experimental curves (Fig. 1b).

A maximum inthe V() dependence occursonly in
atemperature range from 500 to 700°C. Outside of this
TECHNICAL PHYSICS Vol. 45
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Fig. 2. Dependences of surface densities of hydride disinte-
gration products on germane pressure in the reactor (a) for

GSMBE method at PSiH4 =10~ Torr, T= 700°C, g=0,01
and (b) for S—GeH, MBE method at Jg = 1 x 10"° cm? 572,
T =700°C, g =0, 0.037. Dashed and solid lines correspond
tog=0and g > 0, respectively. (1) Og, (2) Oge (3) Oy,
(4) G)GeH3 , and (5) G)SiH3 .

range, the growth rate is a monotonously sloping curve
[1]. The reason is that at high temperatures, hydrogen
desorption from the surface proceeds rather effectively
and the addition of germane only results in the reduc-
tion of the number of the free adsorption sites. At low
growth temperatures, the contribution of the silicon
component to the growth rate is insignificant and the
addition of germane results in a monotonous increase
of Vg (X).

EFFECT OF AN ADDITIONAL HEATED
ELEMENT IN THE GROWTH CHAMBER
ON THE RATE OF THE EPITAXIAL PROCESS

One of the limitations of MBE with gas sources is
the extremely low layer growth rate, which in some
instances becomes an obstacle in fabrication of device
structures. Using monosilane and monogermane, it is
impossible to obtain amaximum growth rate exceeding
2-3 nm/min (Fig. 1). The growth rate can be increased
through the use of digermane and disilane; however, in
both cases, it decreases exponentialy with a lowering
of temperature, which is due to the very nature of ther-
mally activated physicochemical processes at the grow-
ing surface.
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0.037—curves 1 and g = 0—curve 2) dependences of ger-
manium content in Si4 _,Ge, layers on growth temperature
a Pgeyy, , Torr: (0) 5% 107, (o) 5 x 107°. (b) Growth rate
of Si;_,Ge, layers as a function of alloy composition at
T, °C: () 700, (x) 850; curves are polynomial fits; Jg = 1 x
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One of the most simple methodsfor the acceleration
of the pyrolysis process in the reactor is a hot-wire
method [14], which essentially consists in placing in
front of the substrate of an element heated to a high
temperature, for instance, a tungsten wire spiral resis-
tively heated to 1200°C. Such an element can play a
role of its own as a source of the flow of atomsif asub-
limating silicon bar is used instead of the tungsten wire
as in the hybrid S-GeH, MBE method [6-8, 10]. The
process of disintegration of hydrides of silicon and ger-
manium proceeds effectively at asurface heated to tem-
peratures exceeding 1000°C. The produced Si and Ge
atoms desorb and arrive at the substrate. This way of
delivering atoms of the growing material indirectly by
increasing the coverage of the layer surface, apprecia
bly increases the growth rate, which, in this case, is
independent of the substrate temperature.

The presence of additional atomic flows can affect
both the shape of the V,,(X) curves and the effective rate
of disintegration of the hydride molecules at the grow-

ORLOV et al.
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Fig. 4. Calculated growth rate Vi (x) of Si;_,Gey layersas

afunction of composition without (g # 0) (dashed lines) and
with (g =0.1 (a), 0.037 (b)) an additional hot source (dotted
lines) in the growth chamber. (8) — GSMBE at a constant
silane pressure (1, 2) or constant germane pressure (3, 4);

PsiH, GeH, = 1074 (1, 4), 1073 (2, 3) Torr; partial pressure of
the second gas component was varied from 10~ to 1072 Torr.
(b) Si-GeH, MBE method at Jg = 1 x 10%° cm™ s74,
600 (1), and 700°C (2); Pgeyy, = 1085 x 10 Torr.

ing surface. To see that thisisindeed the case, we con-
sidered an example of a simple technology that uses
only one source of gaseous germane and an additional
hot source of the sublimating monocrystalline silicon
(Si—-GeH, MBE [6-8, 10, 15]). The silicon bar heated
by electric current is the source of both silicon and ger-
manium atomic flows. With this technology, the only

unknown parameter of the model, vg,, can be deter-

mined by fitting the cal culated dependences X(T, Pgg,)

to the experimental curves (Fig. 3a) obtained with our
direct participation [15]. From the x(T) dependence, we
have found that for Si—GeH, MBE, the best agreement

of theory and experiment is achieved at Vg, =
2exp(—0.47 (eV)/KT) st. A similar vy, value is
defined from an analysis of the X(Pgg,) dependence

[7]. It is seen that the activation energy for disintegra
tion of a GeH; molecule in the considered case differs
essentially from the value obtained above for the
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GSMBE method. This can be explained by the rate-
determining effect of the disintegration process of the
molecule GeH, — GeH + H. The dominating role of
different chemical reactions in different techniques is
possibly related both to the influence of the atomic
flows on the rate of chemical reactions at the surface,
and to the dependence of the rate of these reactions on
the concentration of the reactants. The low concentra-
tion of GeH, molecules at the growing surface pre-
cludes their disintegration by the faster bimolecular
reaction 2GeH, —» 2GeH + H,(gas).

Varying contributions of atomic and molecular
flowsin different experimental conditionsin the reactor
can considerably affect the shape of the V,(x) depen-
dence as well. The corresponding curves obtained at a
constant flux of silicon atoms from the sublimating Si
source in the Si-GeH, MBE [6, 7] are presented in
Fig. 3b. It is seen that the behavior of the curves in
Figs. 1b and 3b differs greatly. The reasons for the
behavior of the curvesin Fig. 1b were discussed above,
while the reasons for the behavior of the curves in
Fig. 3b will be considered bel ow.

COMPARATIVE ANALY SIS OF THE BEHAVIOR
OF THE GROWTH PROCESS DEPENDENCES
FOR GSMBE METHOD WITH AND WITHOUT

ATOMIC FLOWS IN THE REACTOR

Having determined the kinetic coefficients, the
dependence of the layer growth rate on its composition
can be caculated in a more general case for a wide
range of technological parameters. The behavior of the
curves reflects the role of different physicochemical
processes in the conditions of a given technological
experiment. First, let us consider the case of GSMBE
with gaseous silane and germane sources. The use in
the growth of only molecular flows (g = 0) results in
theoretical V,(X) curves of Fig. 4asimilar to curvesin
Fig. 1b. The behavior of the curves at a constant partial
silane pressure was already discussed. The reasons for
the specific shape of the curves at aconstant partial ger-
mane pressure are similar. Comparison of the curves
for g =0 (solid lines) and g # O (dashed lines) in Fig. 4a
shows that the introduction of the hot source consider-
ably influences the growth rate, especially in the com-
position ranges where the content of one of the alloy
components is low. The introduction of additional
atomic flows with rising pressure of the varying com-
ponent GeH,(SiH,) considerably changes the effective
hydride disintegration rates (Fig. 4a) due to an increase
in the concentration of condensing adatoms @, and
Qg (Fig. 29).

L et us compare the obtained dependences with sim-
ilar curves calculated for the Si—-GeH, MBE method
with a single gas source of germane and sublimating
hot silicon source (Fig. 4b). Curves in Fig. 4b can be
easily interpreted if it is noted that at the zero value of

Pgan, » @l Vg(X) curves should meet at a point Vg (Si)
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corresponding to the growth of a pure silicon layer. In
contrast to the previous, casehydrogen in this growth
process takes no part whatsoever. Asthe GeH, pressure
rises, the growing surface becomes blanketed by the
products of germane disintegration (Fig. 2b), which
results in decreased density of adsorbed Si atoms and,
consequently, in lower growth rates. In this case, the
lower is the substrate temperature, the more noticeable
is the decrease of the growth rate (Figs. 3b, 4b).
A further increase in the germane pressure, and accord-
ingly the germanium content, results in a more inten-
sive flow of Ge atoms from the hot source and the con-
centration of Ge atoms at the growing surface (Fig. 2b).
Therefore, the growth rate increases (Figs. 3b, 4b).
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Abstract—The complex permittivity of ferroelectric PZT ceramics with different compositions was measured
in a pulsed rapid-growing electric field. The time dependence of the real component exhibits three peaks. The
dips between them correlate with imaginary component peaks. Domain mechanisms that contribute to the fer-
roelectric polarization and are responsible for the time dependences are considered. © 2000 MAIK

“ Nauka/Interperiodica” .

During polarization reversal in ferroelectrics sub-
jected to an electric field, the domain walls are dis-
placed, leading to a significant increase in the complex
permittivity €*. Up to now, nonlinear features of &*
have been investigated mostly in crystalline ferroelec-
trics for repolarization due to rectangular bipolar volt-
age pulses. As shown in [1, 2], the permittivity is
ambiguously related to the reversing current and
strongly depends on frequency. The peak of the rea
component €' of permittivity has been found to lag
behind that of the reversing current i,, whereas the
imaginary component €" and i, vary synchronoudly.
Similar results have been obtained for PZT polycrystal-
line samples polarized by a pulse electric field with a
controllable buildup rate [3]. With such a reversa
method, an €'(t) curve hasthree distinct peaks and €"(t),
two smeared ones. It has been suggested [1-3] that the
components of €* depend not only on the total area of
the domain walls; otherwise, the €'(t) and €"(t) curves
would be similar. It appears that relaxation processes
associated with domain wall displacement also influ-
ence the permittivity of ferroelectrics.

In ceramics, the microscopic nature of polarization
in an externa electric field is much more complicated
than in single crystals. This is particularly true for
intense rapid-growing fields, when, even at normal
temperatures, the macroscopic polarization of ceramics
reaches values typical of standard methods within
microseconds [4]. The physical mechanism of &*
growth in ceramic ferroelectrics has not yet been com-
pletely understood, though it is of importance in appli-
cations. Little is also known about the dynamics of the
domain structure and its relaxation in pulse fields.

In this work, we pursue our study on the reversibil-
ity of €'(t) and €"(t) in PZT ferroelectrics [3]. The
reverse characteristics can shed light upon the domain
dynamicsin external electric fields at various stages of
fast (microsecond) polarization switching.

EXPERIMENT

Conventional ferroelectric ceramics PKR-1 and
PZT-19 [5] with a low coercive field E. (0.6-1.0 and
1.2kV/mm, respectively) were used as samples.
PKR-1 is athree-component solid solution of complex

oxides (like PbTiO;—PbZrO;—PbB;,,B;), O;) that has
the rhombohedral phase near the morphotropic region.
PZT-19 adso belongs to the morphotropic region and

has a relatively high permittivity 8;3 = 1600 (compare

with 8;3 =700 for PKR-1). One-mm-thick disc-shaped
samples 10 mmin diameter were prepared by hot press-
ing. Flat silver electrodes were applied to the disk
faces.

The experimental setup is shown in Fig. 1. Prean-
nealed samples were subjected to electrical pulses
whose rise rate, controlled by plug-in inductors, was
chosen such that the complete polarization period t,
lasted 50-100 ps. This time interval is optimum for

— T

HIF 0,

Fig. 1. Experimental setup. G, high-voltage pulse genera-
tor; G,, sinusoidal voltage generator; HSF, high-frequency
separation filter; HIF, high-frequency in-line filter; O, and
O,, oscillographs; FC, ferroceramic.

1063-7842/00/4506-0776%20.00 © 2000 MAIK “Nauka/Interperiodica’



REVERSIBLE POLARIZATION OF FERROELECTRIC CERAMICS

oscillographic measurements of the permittivity at 0.3—
1.5 MHz. Thered, €', and imaginary, €", parts of the
reverse permittivity, which are effective kinetic param-
eters of polarization, were calculated from the mea
sured instantaneous low-voltage input signal Uy, sam-
ple signal U at the instant of switching; and phase dif-
ference ¢ between them, which is related to dielectric
losses. In the calculations, a ferroelectric sample was
represented as a capacitance C and a resistance R con-
nected in paralel. The analysis of this circuit by the
method of conductivities gives the following comput-
ing formulas:

2
C= %—1%1] (WR) ™, 1)
R = %Atanq)—iDZA YA, )

where A = (URU)(1 + tan’d )2, C, is the stopping
capacitance (1 nF), R, is the load resistance (6.3 Q),
and w is the circular frequency of the measuring volt-
age. €' and " were calculated from expressions (1) and
(2), respectively (0 = gy£"w, where o is the equivalent
parallel conductance).

The accuracy of the C and R calculation was
checked by replacing the sample by discrete capaci-
tance and resistance of known values.

Potential and current oscillogramsfor three times of
polarization reversal are presented in Fig. 2. Also
shown is the output measuring voltage for one of the
reversal period. The input signal voltage was5 V. It is
seen that polarization proceeds mostly under the con-

stant electric field (dynamic coercivefield E;, > E,) and
is completed when the field monotonically rises for the
second time and reaches 2-3E_ . The reversing current

curves have a specific asymmetric shape with a
smoothed peak and sharp fall. Such a variation of the
field is defined by that of the polarization current,
which in turn depends on theinitial rise rate of thefield
and properties of aferroelectric sample. Thus, the sam-
ple potentia is controlled by the polarization current,
while the switching processes take place under the self-
consistent electric field.

A variation of the high-frequency output signal isa
direct result of the variation of the sample impedance
during polarization. As soon as the domain walls are
rearranged and a new polarization state is formed, the
output signal stops growing, though the field in the
sample continues to increase. Therefore, the polariza-
tion period t, was defined as an interval between the
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Fig. 2. (1'-3") Typical high-voltage electric pulses and (1-3)
reversing current for PKR-1 at t, = (1) 40, (2) 60, and
(3) 100 pss; (4) output measuring voltageW|th afrequency of
1MHzfort =40 ps.

application of ahigh-voltage pulse and theinstant when
the low-voltage output signal ceasesto vary.

RESULTS AND DISCUSSION

Time dependences of the real part €' for PKR-1 dur-
ing polarization are plotted in Fig. 3. During the rever-
sal period, €' goes through three peaks with different
amplitudes. Note that, when t, decreases from 100 to
40 ps, the shape of the €'(t) curve does not change.

Thefirst and highest peak occurs at the leading edge
of a voltage pulse and corresponds to low dielectric
losses. In [3], this peak is associated with the elastic
vibrations of the domain walls about their equilibrium
positions. The domain wallsfixed at defects are consid-
ered as damped oscillators.

At the first stage of reversal, 180° domain walls
become unstable and their mobility increases, but the
initial structure does not change. Then, 180° tapered
domains arise and extend along the electric field. Asthe
number of domains involved in polarization and their
mobility increase, so does €'. Concurrently, conditions
for piezoelectric domain contraction are set, which
results in a decrease in €'. Thus, the effect of negative
Ag' can be attributed to domain contraction due to the
piezoelectric deformations of individual domains by
the high-frequency measuring field. When these pro-

cesses are balanced, €' peaks (the first peak) at E = E,.
Asthedectric field in the sample grows faster (i.e., the

polarization rate increases), both the magnitude of €'
and itsrate of change increase.

The second peak of €' can be associated with the lat-
eral motion of expanding 180° domains. The subse-
guent monotone decrease in €' may result from a num-
ber of factors. The most probable ones are a reduction
of the number of 180° reversals and enhanced domain
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|
100 1, s

Fig. 3. &(t) curve for PKR-1. t, = (1) 40, (2) 60, and
(3) 100 ps.

contraction. Screening by bulk and surface charges also
produces a noticeable effect on the domain dynamics.
Different mobile point defects are known to pin the
domain walls, thus markedly affecting their mobility
[6]. The rate of wall screening depends on both the
point defect mobility and the strength of their interac-
tion, causing defects to drift. In the case of superfast
field reversal, the bulk charges do not keep pace with
the domain walls. Having broken free of the influence
of the bulk charges, the walls become more mobile in
the high-frequency field and contribute more to €.
However, experimental results [4] indicate the com-
plete screening of the polarization charge during micro-
second reversal; i.e., when the characteristic polariza-
tion periods are significantly less than the times of
Maxwellian relaxation of the bulk charges. We will
consider this situation bel ow.

SADYKOV et al.

As shown in [7], the interaction of walls with point
or linear defects during repolarization produces field
concentrators near pinning points. The concentrators
are areas of anomalously high internal field. The field
amplification factor can reach ~10°% for linear defects. In
strong local fields, E = 10°-10°V/cm, impact ionization
of impurities generates free carriers, which screen
bound charge and cause radiative recombination [8].
Because of the small relaxation time (1 < 106 s), the
excess charges compensate the depolarizing fields even
at the nucleation stage. Asaresult, the walls slow down
and €' decreases. The electron subsystem influences the
domain dynamics throughout the period of repolariza-
tion. It is supported by the fact that electrolumines-
cence from ferroelectric ceramics in a self-consistent
field appears at the beginning of repolarization and has
several peaks similar to thosein the €'(t) curve [8].

At the final stage of reversal, the third peak due to
90° domain walls arises. Transmission electron micros-
copy studies of ceramics polarized in a self-consistent
field have shown that their domain structure is a set of
90° lamellas with the walls oriented largely perpendic-
ularly to the applied field and crossing grain boundaries
(Fig. 4). In partially polarized ceramic samples, the
rearrangement of 90° domain walls starts nearly simul-
taneously with the appearance of the second peak but
becomes dominant only near the third peak of €'. Asthe
reversal timet, shrinks, the third peak grows and tends
to saturation. Thus, each of the €' peaks behaves in a
different manner.

Both €' and €" drop as the measuring voltage fre-
guency f grows from 0.3 to 1.5 MHz (Fig. 5). This
decrease was most pronounced for the second and third
€' peaks. The €' value in the first minimum does not
depend virtually on frequency and remains close to the

Fig. 4. Domain structure of PKR-1 after pulse polarization. Arrowsindicate the direction of the applied field. (a) Orientation texture
of 90° domain lamellas on the | ateral sides of grainsfor t, = 40 us; x11800. (b) Oriented 90° domain lamellas, t =20 psat t, = 40 ps;

x7250.
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Fig. 5. €(t) and &"(t) for PZT-19 at t;, = 60 usand f = (1) 0.3,
(2) 0.5, (3) 1.0, and (4) 1.5 MHz.

initial value of €' (at t = 0), because domain contraction
suppresses domain vibrations. The increase in €' with
decreasing frequency is associated with relaxation pro-
cesses, among which 90° wall rearrangement provesto
be the slowest. The different frequency dependences of
e* at different polarization stagesimply the presence of
a set of relaxation oscillators with different relaxation
times. This should be kept in mind while interpreting
the experimental results.

A change in the domain wall mobility during polar-
ization significantly affects the €"(t) dependence, since
the motion of domains accounts for dielectric losses to
a large extent. The dielectric viscosity for the lateral
motion of 180° and 90° walls is larger than that for
direct propagation. An increase in the domain mobility
due to depinning from defects diminishes dielectric
losses.
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CONCLUSION

The time dependences of the reversible characteris-
ticse'(t) and £"(t) of ferroelectric ceramicsindicate dif-
ferent contributions from 180° and 90° domain wallsto
the permittivity at various stages of switching. The fre-
guency dependence of €* suggests the relaxation char-
acter of domain wall rearrangement, with the relaxation
time varying in abroad interval. The relaxation time of
domain walls can be estimated as

(¢}
T =

2,
EoWE

which gives =0.2 us for PZT-19 and 0.3-0.45 ps for
PKR-1. These values are approximately one order of
magnitude less than those for crystals [1]. Presumably,
the mobility of domainsin aself-consistent field isgov-
erned not only by their interaction with defects and
contraction but also by their screening owing to impact
ionization of impurities during reversal.

REFERENCES

1. E. Fatuzzo, J. Appl. Phys. 33, 2588 (1962).

2. A. Fouscova and V. Janousek, J. Phys. Soc. Japan 20,
1619 (1965).

3. S.A. Sadicov, A. Sh. Agalarov, and V. Z. Borodin, Ferro-
electrics 86, 127 (1996).

4. S. A. Sadykov, E. |I. Bondarenko, and A. Sh. Agalarov,
Zh. Tekh. Fiz. 63 (11), 60 (1993) [Tech. Phys. 38, 965
(1993)].

5. Yu. N. Venevtsev, E. D. Politova, and S. A. Ivanov, Fer-
roelectrics and Antiferroel ectricsin the Barium Titanate
Family (Khimiya, Moscow, 1985).

6. L. I. Dontsova, N. A. Tikhomirova, and L. A. Shuvalov,
Kristallografiya 39, 158 (1994) [Crystallogr. Rep. 39,
140 (1994)].

7. B. M. Darinskii and A. S. Sidorkin, Fiz. Tverd. Tela
(Leningrad) 26, 1634 (1984) [Sov. Phys—Soalid State
26, 992 (1984)].

8. S. A. Sadykov and A. Sh. Agaarov, Pis ma Zh. Tekh.
Fiz. 16 (17), 32 (1990) [Sov. Tech. Phys. Lett. 16, 655
(1990)].

Trandated by A. Sdorova



Technical Physics, Vol. 45, No. 6, 2000, pp. 780-782. Trandlated from Zhurnal Tekhnicheskor Fiziki, Vol. 70, No. 6, 2000, pp. 113-115.

Original Russian Text Copyright © 2000 by Lomonosov, Talantov.

BRIEF COMMUNICATIONS

Resonance Fluorescence in a Radio Frequency Field
for a System of Two Nuclear Levels

V.V.Lomonosov and M. Yu. Talantov
Kurchatov Institute Russian Research Centre, pl. Kurchatova 1, Moscow, 123182 Russia
Received Octaober 23, 1998; in final form, June 1, 1999

Abstract—The quantum-mechanical theory of resonance fluorescencein aradio frequency (RF) field is devel-
oped for a system of two mixed nuclear levels. The case when the resonant y ray absorption is permitted only
for asinglelevel isconsidered. It is shown that the bare energies of nuclear states vary simultaneously with the
parameters of the mixing RF field, and an additional quasilevel appearsin the system. Thetime-dependent prob-
abilities of the corresponding transitions are calculated. © 2000 MAIK “ Nauka/Interperiodica” .

It was qualitatively shownin [1, 2] that the interfer-
ence resulting from the quantum coherence of crossing
Zeeman levels may significantly suppress the resonant
y ray absorption by one of them, whereas the emission
probability remains significant under certain condi-
tions. This property can be applied to the devel opment
of yray lasers and in other fields of y ray optics.

The resonance fluorescence of photons at the Zee-
man levels was analyzed in [3] for the case when the
atomic system is affected by dc and ac magnetic fields.
Thetemporal dynamicsof the nuclear system should be
described accurately taking into complete account the
radiation widths of nuclear levels. In fact, the contribu-
tion of these levels can become significant.

For this purpose, we use in our paper the quantum-
mechanical formalism developed in [4, 5] and used in
[6] for describing the temporal dynamics of multilevel
systems.

Let us consider two adjacent or degenerate nuclear
levelswith energies e, and €,, and the ground state with
energy &, (Fig. 1). To prepare the system of thistypefor
SFe, the authors of [1] used dc magnetic field directed
along the EFG axis of the quadrupole. When the mag-
netic field slightly deviates from this axis, the Zeeman
interaction causes the mixing of levels 1 and 2 owing to
the field component perpendicular to the EFG axis.

In contrast to this case, for mixing the levels, we use
aradio frequency ac magnetic field directed perpendic-
ular to the EFG axis. Thus, we consider a system of two
adjacent level sunder the effect of the RF magneticfield
mixing these levels and an external radiation field. Let
us assume that these fields are switched on simulta-
neously at the moment t = 0. This assumption allows us
to describe correctly the phases of quantum states.

Following a conventional approach, we separate the

system’s Hamiltonian into two parts, H and H*. The
former includes nuclear effects, the RF field, and the

free radiation field. The latter is related to the interac-
tion responsible for the transitions between the pure
states |, [of the free Hamiltonian. For the correspond-
ing amplitudes Q,(t) of these states, we have the set of
coupled equations [5]

.d _
IdtQp(t) - sz(t) (1)

x exp[—i (g, — €m)t] W o Hl W 0+ 18,63(1),
where &, is the Kronecker delta and d(t) is the delta-
function.

The set of al possible states for the system is
described by five amplitudes: (1) A(t) corresponds to
the ground state of a nucleus with N s photons having
energies from the specified distribution; (2) Bf (t) cor-
responds to the first excited state of the nucleus with
energy €; (there are N — 1 s photons, and one k photon
with energy w, is absorbed); (3) B'Z( (t) corresponds to
the first excited state of the nucleus with energy €,

‘ * &
r : g
|
|

k
N\
|
[0] : o
Fig. 1. The diagram illustrating the arrangement of nuclear
energy levels considered in the problem of resonance fluo-

rescence in the system with two adjacent levels in the pres-
ence of amixing RF field I.
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(there are N — 1 s photons, one k photon with energy wy,
is absorbed, direct transitions from the initial state to

B‘; (t) are forbidden); (4) C‘f“l(t) corresponds to the

ground state of the nucleus (there are N — 1 s photons,
one k photon is absorbed, and one ul photon with

energy w,, is emitted); (5) C5* (t) corresponds to the

ground state of the nucleus (there are N — 1 s photons,
one k photon is absorbed, and one u2 photon with
energy w,, is emitted). Applying the Fourier transform
to (1), we come to the following set of equations:

(0=Eo* a+id)a(w) = 1+ Y Hibi(w), (2
k

(w—g,—Eg+ oy +18)bj(w) = Ha(w)

+1/2V,[by(0 + Q) + by(w—Q)]

©)
+ 5 Hie (w),
2
(W—€,—Ey+ W +id)bis(w) = 12V,
ku2 (4)

x[bi(w+ Q)+ b(w-Q)] + 3 Hie;(w),

kul

(W—g;—Eg+ 0y — Wy, +i8)cy (@) = HEDY(W), (5)

ku2

(W—8,— By + W — Wy +18)Cp (W) = HEbs(w). (6)

Here, al capital letters denoting the amplitudes are
replaced by small letters denoting the corresponding
Fourier components, E; isthe energy of the system asa
whole (further on, it is convenient to set E; = 0), disan
infinitesimal positive parameter specifying the rule of
the path tracing around the poles, H, is the matrix ele-
ment of the transition induced by the external radiation
field and accompanied by absorption or emission of an
sphoton, V,, is the matrix element of transitions
between levels 1 and 2 induced by the RF field (below,
we assume that V;, = V,; = V), and Q is the frequency
of the RF magnetic field. Solving set (2)—6) at large Q
(the actual small parameter will be specified below), we
derive

a(w) = (w+ily), @)

by (c)
_H(w+Q—g,+wy +iy)(0—Q—€,+ Wy +1iY,)
T (W—Ey + 0)(0—E, + ) (w—Ez+ w)(w+il )’

(8)

o\ _ Vbi(@+ Q) +bj(w-0)
b(00) = 3 W—E+ W iy, ©)
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Here, I, is the half-width of the initial state or the
absorption probability that can be set constant, and y;
and vy, are the half-widths of the corresponding levels
defined in the standard way [5]. We assume that condi-
tion Ny <Yy, Yo, usua for such a problem, is met. The
energies in (8) are the solutions to a cubic equation.
Under the condition (Ag,, + Ay;,)/(V? + Q) < 1, they
have asimple form

kul(u2)
Ci2)

(w) = (10)

Ag, = €,—€1, AYp = YoV,

E, = £+ (U6)Ae,(1+2F(V, Q)) (11)
—i(y + U6)Ay (1 +2F(V, Q)),

E,s = £ (U6)Ae, + [Q*+ V2] 12

—i(y + (1/6)Ayy,),

where e = (g, + €)/2, y= (V1 + V»)/2, and F(V, Q) =
(207 —V2I2)(Q? + V?/2).

Expressions (7)—(12) determine a solution to set
(2)(6) under the condition w> |E(V, Q) —wy| (j = 1-3).
In this case, additional level E; arises in the system. If
we just formally set Q = 0 in eguations (7)—(11) and
replace V2/2 —= V in (11)<(12), then the expressions
for the corresponding amplitudes will coincide with
those governing the temporal dynamics in the constant
magnetic field.

After transition to the time representation for state
amplitudes (7)—10), the normalization condition can
be written in the following form:

A+ S [l + 3 (850l
k k

) ;Ic;”(t)lz ) %Icszmlz =1

Let us perform the summation over all energies of k
photons from the initial distributions for the case of a
broad line retaining unchanged the energies of emitted
photons. We find

|A)I + By (1)]* +|Ba(t)|®

(13)

ul 2 u2 2 (14)
+ylerol + il = 1

The time dependence of modules squared for the
calculated amplitudes characterizes the dynamics of
the corresponding states. It is presented in Fig. 2 for
severa realistic values of parameters.

In conclusion, let us briefly discuss the obtained
results. Note first that the external radiation field and
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arb. units

x107!
L |C2u2|2

1B,

1 B, ©

Fig. 2. Time dependences of moduli squared for amplitudes [By(t)2 B[ [C5™ ()2 and [Ch7 ()2 €1 = €, = £ = 1.44 x 10227,
Y1=Y2=Y= 2.2F0, v= 5I'0, Wy = Wy =Wy, Wy—€= 1 x 10_1r0: Q= O(a., b) and 7I'0 (C, d)

the RF field simultaneously switched on because of not
only of a pushing apart of bare nuclear levels 1 and 2,
but also the creation of an additional level disappearing
in the limiting case of the constant field at Q = 0. In
addition, expressions (11) and (12) demonstrate the
dependence of the features characterizing the arising
states on the RF field parameters. This result can be
used for the control and for providing the favorable
development of experimental situation. Note also that
the behavior of quantum-emission probabilities

IC ()P and |C2 ()P (Figs. 2b, 2d) strongly depends
on the photon energy.
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Abstract—A novel procedure of sample preparation for transmission electron microscopy of nanoparticlesis
proposed yielding a monolayer of nanoparticles. The procedure offers the possibility of sorting nanoparticles
by size and studying the influence of external fields on their arrangement. This technology can also be applied
for the creation of ordered arrays of nanoparticles in ultrathin polymer films. © 2000 MAIK “ Nauka/Interpe-

riodica” .

High-resolution transmission electron microscopy
(HRTEM) is the only technique for direct study of the
structure of nanoparticles and nanoobjects on an atomic
scale. Usually, ultradisperse materials for transmission
microscopy are prepared by deposition on an object net
(by sputtering or placing a drop of colloid solution).
With al its simplicity, this procedure has a serious
drawback, namely, the impossibility of obtaining a
monolayer of nanoparticles, which is required for
studying their structure. In this paper, we propose apro-
cedure of sample preparation for the transmission elec-
tron microscopy of nanoparticles, which affords the
possibility of (1) forming amonolayer of nanoparticles;
(2) grading of nanoparticles by size; (3) studying the
influence of external electric and magnetic fields on the
arrangement of nanoparticles.

Magnetite (Fe;O,) nanoparticles were chosen for
this study. Two alternative methods of sample prepara-
tion were used. In the simpler of the two methods,
cracks in the [110] direction were produced in 300—
400 pm-thick standard GaAs substrates by a mechanic
indenter. Since cracking of gallium arsenidein this case
occurs along cleavage planes, the crack has perfectly
straight boundaries and its width smoothly decreases
from the mouth of the crack to its apex. Then, adrop of
suspension of the magnetite nanoparticlesin solution of
polystyrene solution in toluene is placed in the crack.
Due to capillary forces, the solution containing nano-
particles fills the crack and after the drying of the sol-
vent, a polystyrene film with embedded magnetite par-
ticles forms inside the crack. The crack volume acts as
a“mould.” Since the width of the formed crack is com-
parable with the size of particles (hundreds and tens of
angstroms) [1], the particles are forced to arrange as a
monolayer. Furthermore, because of the gradua
decrease of the crack width, down to several angstroms
near the apex, only the smallest particles can be accom-
modated close to the apex. Therefore, size grading of
the particles along the crack takes place. It should be

noted that the time of solvent evaporation is long
because of the small area of contact with air; therefore,
it is possible to influence particle distribution along the
crack by application of external electric or magnetic
fields. After solvent evaporation, the particles are found
rigidly fixed in apolymer matrix and retain their mutual
arrangement after removal of thefield. In order to make
the polymer film with embedded nanoparticles suitable
for microscopy, the GaAs wafer was cleaved carefully
along the crack and the film lifted off by its edges. The
lifting-off was carried out in aliquid (water or alcohol),
whence it was picked up by an object net and dried.

In the HRTEM images (Fig. 1), separate crystalline
particles with lateral dimensions 40-200 A and their
agglomerates are seen. The lattice stripes of these par-
ticles correspond to the cubic structure of magnetite.
Stripes corresponding to the{ 111} planes (the distance
between stripes is 4.8 A), {200} (4.2 A), and {220}
(2.9 A) were observed.

A drawback of such an approach is the risk of dam-
aging the film during lift-off as well as a rather small
area of the portion of thefilm whereitsthicknessisless
than 400 A thick and transparent to an electron beam,
because cracks in thick GaAs wafers have smal
enough width only in a small region near the apex.
Therefore, itispreferableto useasa”“mould” cracksin
thin (<10 pm) epitaxial GaAs films in which thin, ide-
aly level crevices with sharp near-atomically-flat
boundaries can be created [1].

In the second case, epitaxial GaAgAlAS structures
were used for sample preparation. On a GaAs substrate,
athin (100 A) AlAs layer was grown and, atop of it, a
GaAslayer of athickness between 2—10 pm in different
structures. The GaAs film was undercut and lifted off
the substrate by a selective HF : H,O etchant, which
removed AlAs (the ratio of etching rates of AlAs and
GaAsismorethan 10°[2]). Then, arectangular sample
was cleaved out of the film (instead of cleaving photo-
lithography can be used). A narrow crack was madein
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Fig. 1. (a) Electron microscopy image (dark field) of magnetite nanoparticlesin a polymer film and (b) a part of animagein a (at
higher magnification). A separate particle with lattice stripes associated with the { 111} planesis seen.

the sample with a mechanical indenter parald to its
long side. Load on the indenter was gradually increased
until the crack apex reached the center of the sample.
Then, the sample with the produced crack was
cemented by a conducting glue to a standard copper
ring in such a way that the crack was above the ring
opening. The sample plane was perpendicular to the
ring plane while the direction of the crack was parallel
to it. To manipulate the sample, we used a waxed
needle.

For filling of the crack capillary, an iron oxide col-
loid solution in toluene with an addition of polystyrene
was used. After toluene evaporation, the sample was
immersed in an H;PO, : H,O, : H,O (3: 1: 50) etch for
one and a half minutes. On both sides of the GaAs, film
layers of athickness of about 0.1 pm were etched away
to partialy expose the polystyrene film and, thereby,
render it suitable for examination in a transmission
electron microscope (Fig. 2). Immediately after etch-
ing, the sample was rinsed in isopropanol and then
No. 6
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dried in air. Water should not be used for rinsing since
it has arather high surface tension and while drying, it
would break exposed edges of the thin polymer film.

In HRTEM experiments with such samples, we
examined polymer films with embedded crystaline
particles transparent to an electron beam. The film was
jutting out of the GaAs wafer on both sides and had no
damage over several hundreds of micrometers. Com-
pared with the first case, the particle size distribution
was narrower (70-100 A), more uniform over the film
area, without large agglomerates and with the particles
arranged as amonolayer, at nearly equal distancesfrom
each other (about 200 A). The thinnest part of the film
was free of particles, which can be explained by insuf-
ficient crack width for particle penetration (the crack
acts as afilter). It should be noted that image registra-
tion was hampered by drift and vibration of samples
due to charge accumulation. This problem can be over-
come using heavily doped GaAs films, which provide
better electric contact between the polymer film and the
copper ring.

The proposed procedure yields monolayer arrays of
nanoparticles. Such objects are of interest not only for
structural studies, but for transport studies as well.
Nanoparticles are found sandwiched between crack
sidesin a semiconductor monocrystal, which can act as
closely spaced electrodesif doped GaAsfilmsare used.
An influence of externa electric and magnetic fields
can further modify the properties of nanoparticle array
due to formation of ordered structures. As an example,
let us consider the magnetite Fe;O, particles. At sizes
less than 100 A, they exhibit superparamagnetic prop-
erties. Alignment of their own magnetic moments fol-
lows the direction of the externally applied magnetic
field. By placing athin film with embedded superpara-
magnetic particles into a strong-enough magnetic field,
two-dimensional arrays of identically oriented mag-
netic dipoles can be created. If the particles have a pos-
sibility to movein the film plane (before evaporation of
the solvent from the crack), the interaction of magnetic
dipolescan result in ordered arrangement of particlesin
the film, which will be retained after removal of the
field, sincethe particleswill berigidly fixed in the poly-
mer.

To conclude, a novel procedure of sample prepara
tion for transmission el ectron microscopy of nanoparti-
cles is proposed by which, in contrast to the standard
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Fig. 2. Scheme of the sample preparation procedure for
transmission el ectron microscopy: (&) the narrow crack cre-
atesa“mould” in the GaAsfilm, which isthen filled with a
colloid solution of nanoparticles with added polymer;
(b) chemical etch of GaAs partially exposes the polymer
film with nanoparticles making it suitable for electron beam
microscopy (arrows show beam direction).

technique, it is possible to obtain a monolayer of parti-
cles, as demonstrated in the example of iron oxide par-
ticles, aswell asto grade them by size (filtration) and to
study the influence of external fields on their arrange-
ment. The procedure is suitable for particles from hun-
dreds of angstroms down to several angstromsin size.
The technological solutions used can be applied for the
fabrication of structures containing ordered arrays of
nanoparticles in a polymer matrix.
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Abstract—Under certain (not just any) conditions, omnidirectional pressure applied to the Ti—Ni aloy is
shown to change its superelastic properties, similar to the application of deforming force. © 2000 MAIK

“ Nauka/Interperiodica” .

It is known that the application of omnidirectional
pressure to materials prone to thermoel astic martensite
transformation may cause various deformational and
force phenomena, such as transformation plasticity,
shape-memory effect, reversible shape-memory effect
on temperature cycling, and the generation and relax-
ation of reactive stresses [1-3]. However, the influence
of pressure on superelasticity yet remains a mystery.
Investigation into this effect appears to be topical since
it would provide a better insight into martensite inelas-
ticity in general and superelasticity in particular. In this
work, we studied the effect of pressure on the super-
elagticity of the Ti—Ni alloy proneto thermoel astic mar-
tensite transformation.

Tests were performed in a high-pressure chamber
(Fig. 1). Cantilevered specimen 1 15 mm long and
1.8 mm in diameter is loaded by stedl spring [2]. The
displacement of the upper end of the spring was con-
trolled by screw 3 with a pitch of 0.5 mm, and that of
the lower end (or the bend of the free end of specimen 1)
was determined with slide-wire rheostat 4, connected
to digital ohmmeter 5. From these two displacements,
one can easily calculate the force experienced by spec-
imen 1 from spring 2. Our test chamber admits loading
to 100 N. Unloading can be accomplished irrespective
of the operating pressure, which ranged from atmo-
spheric to 240 MPa. Machine oil was used as aworking
liquid. Absolute errorsin measuring the force F and the
bend f of the free end of the specimen with the spring—
rheostat system were found to be 2 N and 0.06 mm,
respectively. The temperature inside the chamber was
varied from room temperature to 360 K by heating the
body of the chamber with heater 6.

All experiments were performed in the temperature
interval 335-337 K. The desired temperature was set
after 3-h heating. Due to the high thermal inertia of the
chamber (the weight of the liquid-filled chamber is
80 kg), the temperature was maintained within 1 K
throughout the experiment.

Test objects were gpecimens of the
TisoNigy 4C005,Croqs aloy. As-prepared specimens
were annealed at 750 K for 40 min and cooled first to
290 K in the furnace and then to liquid-nitrogen tem-
perature. The same procedure was applied after each
run.

Thermomechanic  atmospheric-pressure  torsion
tests showed that cooling and heating under a constant
shear stress of 60 MPalead to the transformation plas-
ticity effect and the shape memory effect with the par-
ticipation of an intermediate phase (possibly, R-phase
[4]). The characteristic temperatures are Mg = 345 K,
M; = 265 K, A; =303 K, and A; = 416 K.

The experiments were subdivided into three groups.
In the first group, we studied the effect of omnidirec-
tional pressure on the pseudoelastic properties of the
Ti—Ni alloy. After the specimen had been placed in the
high-pressure chamber and the temperature had been
brought to 335-337 K under atmospheric pressure, we
applied to it aforce P and recorded the deformation. At
a certain value of P, the pressure p was raised to
200 MPa at arate of 6 MPa/min. As the pressure grew,
the deformation was built up in the direction of the

7/
(%)
(o)

T i

Fig. 1. High-pressure chamber: (1) specimen; (2) eastic
spring; (3) measuring screw; (4) dlide-wire rheostat;
(5) ohmmeter; and (6) furnace.
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applied force, so that the bend f increased by 0.2—
0.4 mm. At p =200 MPa, weloaded the specimen again
and recorded deformation buildup.

At f=4-7 mm, the specimen was unloaded to some
value of P and the pressure was decreased to atmo-
spheric. In response to the pressure drop, f additionally
went down by 0.2-0.4 mm in proportion to p. With fur-
ther unloading, the specimen behaved in a usual man-
ner for these conditions. A typical curve is shown in
Fig. 2, where portions AB, BC, CD, DE, EF, and FM
correspond to different stages of the experiment. Asfol-
lows from thisfigure, a pressure increase at the loading
stage resultsin a deformation buildup (portion BC) and
a pressure drop at the unloading stage leads to addi-
tional deformation recovery (portion EF). It isnotewor-
thy that these baromechanic effects are absent if the
pressure is varied at the elastic portions of the f(P)
curve. This holds for both load increase and decrease.

In the second group of experiments, the specimen
was placed in the chamber at 290 K, the pressure was
raised to 200 MPa, the specimen was heated to 335—
337 K and loaded by some value of P, and then the pres-
sure was decreased to atmospheric. The pressure drop
was found to be accompanied by severe material disor-
dering (the deformation force became 5to 15 N, or 15
to 50%, smaller). The value of f increased by 0.5-
1.0 mm in proportion to the pressure variation. Further
atmospheric-pressure loading deformed the specimen.
This isillustrated in Fig. 3a, where portions AB, BC,
and CD describe the different behavior of the Ti—Ni
alloy under loading.

In subsequent experiments from the second group,
the specimen was deformed by f = 5 mm under atmo-
spheric pressure at 337 K, then it was unloaded to some
value of P, and the pressure was raised to 200 MPa
(Fig. 3b). Inthis case, the pressure rise causes deforma-
tion buildup, and f linearly increases with pressure by
0.2-0.4 mm (portion BC). In other words, in this case,
the pressure increase reverses the sign of deformation
relative to that before the pressure conditions were
changed (note that the pressure rise at the elastic stage
of unloading does not deform the material). The further
decrease in P under a pressure of 200 MPa leads to
usual pseudoel astic recovery.

The obtained results suggest that pressure cycling at
the loading stage deforms the specimen at each cycle.
This supposition was verified with the third group of
experiments. The specimen was inelastically deformed
at 336 K, and at some P, the pressure was raised to
200 MPa and then decreased to atmospheric. At each
pressure cycle, the deformation builds up the deforma-
tion (Fig. 4a). Portions BC and CD refer to the pressure
increase and decrease, respectively. Thus, our supposi-
tion proved to be valid.

Our data indicate that both an increase and a
decrease in pressure cause material deformation at both
the loading and unloading stages. However, the behav-
ior of the material depends on which stage the pressure
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P,N

40 F

f, mm

Fig. 2. Deforming force vs. bend under constant atmo-
spheric pressure (portions AB and FM), for an increase in
the pressure from atmospheric to 200 MPa (portion BC),
under the constant pressure 200 M Pa (portion CDE), and for
a decrease in pressure from 200 MPa to atmospheric (por-
tion EF).

P,N (a)

20+
15F
10F c
sk

(0] = 1 1 1 1 1 1

f, mm

Fig. 3. P(f) curves under different pressure conditions.
(a) AB, constant pressure 200 M Pa; BC, pressuredropsfrom
200 MPa to atmospheric; and CD, constant atmospheric
pressure. (b) AB, constant atmospheric pressure; BC, pres-
sure rises from atmospheric to 200 MPg; and CD, constant
pressure 200 MPa.

changes and the sign of change of pressure. The reason
for such an unusual effect has not yet been fully under-
stood. It seems likely that a pressure change induces
various transformations depending on its sign. In the
alloy under study, the direct and reverse martensite
transformations involve the intermediate R-phase. If
the B2 = R and R = B19' transformations have the
opposite signs, a change in pressure in one direction
may induce one phase transition, while a change in the
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Fig. 4. (a) Deforming force vs. bend under different pres-
sure conditions and (b) bend vs. pressure. AB and DE, con-
stant atmospheric pressure; BC, pressure rises from atmo-
spheric to 200 MPa; and CD, pressure drops from 200 MPa
to atmospheric.

other direction may cause the other transition (accord-
ing to the Clausi us-Clapeyron equation). A comparison
of Figs. 3a and 4b favors the afore-said. In the latter
case, the decrease in pressure immediately after itsrise
from atmospheric to 200 MPa initiates deformation
only at 100 MPa, while the f(P) curve in Fig. 3ais
amost linear.

The reason for the softening of the material due to
pressure increase at the unloading stage (Fig. 3b) also
remains unclear. If, at the loading stage, a pressure
decrease initiates some phase transition (B2 == R or
R == B19), asaresult of which the material consider-
ably softens (Fig. 3a), one might expect that, at the
unloading stage, a pressure rise will cause reverse tran-
sition and, accordingly, the hardening of the alloy.
Instead, the material softens, as demonstrated in the
experiments. This suggests that the effect of pressure
on the superelastic behavior of the material is not fully
identical to that of a deforming force. This point calls
for further investigation.

EGOROV, LOBACHEV

Our experimental results can be summarized as fol-
lows.

(1) In the Ti-Ni aloy studied in this work, an
increase in pressure at the stage of loading resultsin a
deformation buildup. At the stage of unloading, a
decrease in pressure causes pseudoel astic recovery. In
these cases, the effect of pressure on the superelastic
properties of the material isidentical to that of deform-
ing force.

(2) A decrease in pressure at the stage of pseu-
doelastic deformation buildup and arise in pressure at
the stage of pseudoelastic recovery lead to a softening
of the material.

(3) Our findings indicate that the effect of omnidi-
rectional pressure on the superelasticity of the Ti—Ni
aloy isnot fully identical to that of a deforming force.
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Abstract—The case of linear dispersion is investigated and a soliton solution is constructed for the problem
of wave propagation in a system consisting of a liquid-filled elastic cylindrical shell. The dependence of
the solution on the parameter characterizing the mutual influence of the shell and the liquid insideiit is studied.
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BASIC EQUATIONS

This paper considers the problem of wave propaga-
tionin aphysical system consisting of aninfinitely long
circular cylindrical shell filled with an ideal incom-
pressible liquid. The nonlinear equations that describe
the dynamics of a membrane cylindrical shell in the
coordinate system (r, z, ¢) have the following dimen-
sionless form [1]

0T, _ d°u o°w aoo_

2 T e P

_du U7 , [OwW
T1_62+VW [EBZD DaD+vw} (D)

du 1 mouT [@V\DD
T2 = WV +3 [W Voot DGZDD}

where y? = Rp,/hp; R is the shell radius; h is the shell
thickness; p is the density of the shell materid; v is
Poisson’'s ratio; pg is the density of liquid; u, v, and w,
are the vector components of the shell surface displace-
ment; and p is the pressure at the shell surface.

The Euler equations [2] have the form

2’0, 300° 00 9° _ op
otor  Or 3,2 0zordz  Or’

2’0 ,000° L0090 _ dp
0tdz 0rodrdz 0z02z° 0z

)

Here, p is the pressure in liquid and ¢(r, z t) is the
velocity potential: u = grad¢. The velocity potential
satisfies the continuity equation

rar[ gﬂ 5_243 - 3

At the shell surface (r = 1), the norma component
of the velocity of liquid isrelated to the transverse dis-
placement by the no-leak condition

_0¢ _ ow
u(1,zt) arl_, - ot 4

We assumethat, at infinity z—— +oo, the shell isnot
moving, and the motion of liquid is unperturbed: u, =
u,= 0, p = 0. The system of egquations (1)—(4) forms a
contact problem of hydroelasticity. This problem con-
tains the dimensionless parameter y characterizing the
degree of the mutual influence of the shell and the lig-
uid. We will call this parameter the coupling parameter
of the problem.

LINEAR DISPERSION

Below, we construct the solutions to the contact
problem (1)—(4) intheform of low-amplitude nonlinear
waves with an infinite period. The leading term of the
expansion of the phase velocity of such wavesin pow-
ers of the small parameter (amplitude) coincides with
the phase vel ocity of linear waves. To determinethelat-
ter quantity, we construct a dispersion relation that cor-
responds to the linearized problem.

We assume that the dependence of all functions on
the z coordinate and the time t has the form expl[i(kz —
wt)], where K is the wave number and w is the cyclic
frequency of the oscillations. The phase velocity of the
wave is determined by the expression ¢ = w/k.

From the condition of the existence of nontrivial
solutionsto thelinearized system (1)—(4), we derive the
dispersion relation

C4(K2 + y25) _cz(l +Kk2+ y26) + (1—V2) =0,

O(K) = Klo(K)/1,(K). ®)

1063-7842/00/4506-0789%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Here, 14(k) and I,(K) arethe Bessel functions of thefirst

kind. Equation (5) has two positive roots cf and c§ .
Thus, for every wave number, there exist two waves
propagating with the phase velocities ¢, and ¢, in the
positive or negative direction.

By formally setting y = 0 in equation (5), we obtain
the dispersion relation corresponding to a “dry” shell.
If K <1, i.e, only long-wave oscillations are consid-
ered, the roots of this equation take the form

cf = 1—V2+O(K2),

¢l = Uk*+0(1).

Let us study the dependence of the phase velocities
¢, and ¢, on the coupling parameter of the problem y
with allowance for the fact that (k) = O(1) for 0< K <
. Thecasey < 1 at K = O(1) reduces to the study of
the dispersion relation for the “dry” shell. Whenk —

0, equation (5) singularly degenerates. The root cf is
determined by the same expression as above, whereas
the root c§ depends on the rel ation between the param-
etersyand K.

Now, we consider the case y —= . We seek the
solutions to equation (5) in the form of expansions in
inverse powers of y?. Then, we obtain

i = YL -V)(WE—y (K2 + VIS + Oy ),
c; = 1+y VI8 + 0>y .

These representations are uniform in K.

For the case of the propagation of long (K < 1)
waves, we assume that y = O(1) and seek the phase
velocity in the form of a series expansion in powers of
k2. Then, within O(k?), the phase vel ocity is determined
from the equation

2yzc4—(1—2y2)02+(1—v2) = 0.
Thediscriminant of thisequation ispositive, and the

equation has two positive roots, which satisfy the ine-
qualities0< ¢Z <1-v2and 1< co.

WAVES WITH AN INFINITE PERIOD

We consider the propagation of long waveswith low
amplitude. To construct the leading term of the asymp-
totic expansion of the solution, we use the formal small
parameter € and introduce new variables & = (z — ct)
and n = €%. We seek the solution to the problem in the
form

w(g,n) = e W& n) + e wE, n) + OEH],

KOREN’KOV

2,®

uE n) = e[u”E, n) +eu®E, n) + oEY],

Ti(E, ) = [TV -iE n) +*TE, n) + OEY], ©
p(r, & ) =e’[p(r, &, n) + £2p'V(r, &, ) + O(eM],

o, &n) = [0, &)+, & n)

+e'o@(r, g, n) + O(%)].

Note that, to obtain the first approximation to the
solution, we have to consider the expansion of the
velocity potentia up to the term ¢@ inclusive. We sub-
stitute expansions (6) in equations (1)—(4) and set the
coefficients multiplying identical powers of € equal to
zero. Then, the continuity equation (3) yields

a(I)(n) _ 62¢(n—1). _
rar[r 3 } = OEZ . n=012 @)

Here, we assumethat 2 = 0. System (7) can be easily
integrated. From the condition of the boundedness of
the velocity potentia at r = O, it immediately follows
that the initial approximation does not depend on the
radial coordinate; the following approximations are
polynomials of different degreesinr:

(0)
0 = 9O ). 0% = ;662 +57(E ),
(8)
@ _ I ‘9 ¢(°’ re %9 iﬁ(l) %)
o7 = G- ).

Here, (€, n), § (€, n), and $(€, n) are the func-
tions that result from the integration with respect to r
and are to be determined using the contact condition.
The substitution of expressions (6) into the contact con-
dition (4) yields

09 0. 2% ow”
= 0; = —C ,
or | -, or |-, 0¢
1) 0 ©)
00? _ _Caw L ow
or |-, 0§  on
Solutions (8) allow us to write the expressions
0@ _ _10%"
ar |- 2 g2’
1 3 (10)
aq)(2) _ 1 a qj(o) 16 qj(l)
ar | _ 16 654 2 552
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Finally, from the comparison of expressions (9) and
(10), we obtain

(0)

%" _ _ o
o’ B3 11
62q5(1) aW(l) aW(O) 063 (0) ( )
= = 2c —
0% 0¢ on 4 5g°

From the Euler equations (2), we derive

(0) (0)
i[p(o)—ca—q) } =0, i[p(o)—ca—q) ] = 0. (12

or 0¢ 0¢ 0¢
or @ _ 6¢(1) _
o oF vl
ﬁ[p L } B _6Ean 08 gg?

Using the first equation from (11) and the second
equation from (12), which in particular is valid at the
surfacer = 1, we obtain

(0)
0p?| = oW 14
57 I (14)

Taking into account the conditions at infinity, by vir-
tue of equations (12), we obtain

96
08 |-

We use this expression to eliminate $© from the
right-hand member of the second equation (13), which
we consider at r = 1. We al so eliminate the function ¢
by using expressions (8) and (11). Then, we obtain an
expression for the tangential derivative of the pressure
at the shell surface:

= ZCW(O)

(0)

(1) 1
ap = 2C26L_4C6L
9% |, -, 0¢ dh
- (15)
462 (0)6W _c 6
—4Cc w
GE 4 az

We substitute expansions (6) into shell equations
(2), which intheinitial approximation yield the expres-
sions

OT(O) 2 (0)
_ Cza u2 , T(O) _ y2p(0)
0t J%
o (16)

(0) 0

U yw®@ TO = w42

0% 0¢

With alowance for relation (14), equations (16)
reduce to a system of equationsthat is homogeneousin

TO -
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the derivatives of the functions w© and u®©:

2. (0)
(1-2 2C2)6W 6 =0,
0F = g
2 (0) (0)
u aw _
(1- C) _aE = 0.

The condition of the existence of nontrivial solu-
tions to this system yields the equation for the velocity
c of the coordinate system (&, n):

2vct—(1+ 2y’ +(1-v?) = 0, (17)

which coincides with the equation that determines the
initial approximation to the phase velocity of long
waves in the case of linear dispersion.

The study of the next approximation yields

a-l-(l) a2 (1) 62 (0)
=cC > —-2cC
0¢ 0% “ogon’
(1) 2 (1) 202W(0)
=yYyp e )
o (18)
@ _ ou w,1 [@_ of (0)°
T —¥+vw + [ fag O =Vw }
(1) (0) 2
W _ @ du ©°, . Pun
T, +V— 3t + = [W +VDOE D}

With allowance for the condition at infinity, we have
ou® _ v (0)
—_— = — SW
0¢ 1-c
Differentiating the second equilibrium equation
(18), using expression (15), and eliminating the longi-
tudina forces T(l) and T(l) we aobtain

ow® %™ 20W
1-2y%c? v-———— = -4c
(0) (0) 72, (0)
(1 + 4¢3 w(O)OW au o°u
3 (0)
—C (1+y /4)
2 (1) (1) (0) 52 (0)
(1-c )6 + Vaw _duo'u
o8 0% 9% og
62u(0) (O)GW(O)
—ZCGEan - VW W

This inhomogeneous system of equations, which
arelinear in the derivatives of the functionsw® and u®,



792

has a zero determinant by virtue of equation (17). The
requirement for this system of equationsto have asolu-
tion leads to the Korteweg—de Vries equation

(0) (0) 3 (0)
ow + aW(O)a + b() W3
on 0g 13

The solution to equation (19) has the form of asin-
gle soliton of amplitude U [3, 4]

w? = Usech’[(E —Vn)/L],
V = Ua/3, L = 2./3b/aU.

The coefficients a and b are determined by the for-
mulas

= 0. (19)

(20)

(1+4y°cA)(1-cD)’ Vi1 -’ V3
2c(1-cH(vi+2y3(1-cd%

(1=’ (1+y°/4)
2(v* +2y°(1-¢%)?)

The velocity ¢ of the moving coordinate system is
determined from equation (17). Using the linearized
equations of a membrane shell, we obtain the expres-

sion for the coefficient a involved in the Korteweg—
de Vries equation:

b =

_2yi(1=c¥)’
v+ 2y2(1—c2)2’
The coefficient b will be determined by the same
expression as above.

SOLITON SOLUTION

Using expressions (20) and going back to the coor-
dinates z, t, we write the solution in the form

w = Wsech’[K(z=vt)], p = Psech’[k(z—vt)],
u = U{1—tanh[K(z—Vv1)]}, (21)
where

1 [aw 2 2v_ [3bW
1AW b= octw, U = [2oW
2730 cw. U=r50

The wave velocity v is asum of the velocity of lin-
ear waves ¢ and the correction depending on the wave
amplitude: v=c+ Vand V = Wa/3.

From equation (17), it follows that, in the presence
of liquid inside the shell, for a given amplitude, we
always have two solitonsthat differ in their propagation
velocities: a “dow” soliton and a “fast” one. In this
respect, the situation is analogous to that observed in
the case of linear waveswhere, for agiven k, two waves
with the phase vel ocities ¢, and ¢, were obtained. Since
the signs of the coefficients a and b are identical, both
solitons have the form of a shell bulging whose propa-

KOREN’KOV

gation velocity is somewhat higher than the velocity of
linear waves.

The coefficients a and b, which determine the con-
tributions of each of these effects, essentially depend on
the single parameter y, which determinesthe type of the
interaction between the shell and the liquid inside it.
The casey < 1 corresponds to alight liquid or gas; for
a heavy liquid and a thin shell, we havey > 1. Let us
consider the behavior of the soliton solution obtained
abovein these limiting cases.

Assuming that, in the problem under study, y=0 and
considering the solution corresponding to the “sow”
soliton, we arrive at the case of a shell without liquid.
Then, ¢2=1-v?, and we obtain

_ W1V’ VT
a=——y b= gNl-v,
_ 1/ 3 :_2_W 2
K—2 W/3v®, V =1-v 6v1v'

Sincek isrea, we have W < 0, and the wave has the
form of an impression of depth W with the characteris-
tic length 1/k and the propagation velocity also exceed-
ing the phase velocity of linear waves.

Using the linear relations for the slow soliton, we
obtaina — O and b = O(1). In this case, the effect of
dispersion predominates, which leads to “smearing” of
the wave profile.

Now, let y — oo. Then, for the solution correspond-
ing to the root ¢, of the characteristic equation (17), we
have

a=vya+0(y), b=y'b+0(y"),
c =y e+ Oy ),

where the coefficient a, takes different values for the
shells described by linear and nonlinear relations:

A/l—v2
J2
aO =

3J1-V°

2.2
b = 2J1-V?
o 32

for alinear shell

for anonlinear shell;

e = A/l—v2
0 - .
J2

Expressions (21) show that, in the case under study,
the pressure p at the shell surfaceis of ahigher order of
smallness than the displacements u and w: the pressure
tendsto zero as O(1/y?). The velocity v of the solitonis
also a quantity of the order of O(1/y?).

Asfor the behavior of the “fast” soliton in the limit-
ing cases of interest, its study with the help of the
expansions obtained above is impossible. Aty —= 0,

TECHNICAL PHYSICS Vol 45
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equation (17) singularly degenerates, and, for theinitial
approximation to the wave velocity, we obtain
C2 —» 00,

In the case y — oo, for the second root of the dis-
persion relation, we obtain ¢, = 1 + O(1/y?), and for-
mula (21) for the longitudinal displacement yields
U — co. This case of the degeneracy of the coupling
problem may also be called a singular one in view of
the analogy with the structure of the expansions of the
solutions to the boundary-value problems for differen-
tial equations with boundary layers.
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Abstract—The influence of the concentration dependence of the diffusion coefficient on the stability of a
spherical particle growing from asupersaturated sol ution was studied with the M ullins-Sekerka approximation.
The critical radius of stability was found, and it was shown that its value may increase by afactor of more than
1.5 if the concentration dependence of the diffusion coefficient is taken into consideration. © 2000 MAIK

“Nauka/Interperiodica” .

Loss of stability and structure formation during
crystallization are basic theoretical and practical issues
[1, 2]. Their extensive investigation dates back to the
pioneering work of Mullinsand Sekerka[3], devoted to
the growth of a spherical particle from supersaturated
solution. The approach suggested in [3] hasfound wide
application. Reports are available that concern growth
stability [1, 4], the anisotropy of surface tension and
kinetic coefficient of crystallization [5], the use of
small quantities of second or higher orders in stability
analysis [6], etc. All of them ignore the dependence of
diffusion coefficient D on the concentration of super-
saturated solution C: D isassumed to be constant. How-
ever, D is a complex function of C, as follows from
physicochemical studies of salt solutions. This depen-
dence shows up most vividly in the metastable region
(for example, D(C) falls down to zero at the point sep-
arating the metastable and labile regions) [7-9]. Since
the major reason for loss of growth stability isdiffusion
field nonuniformity [3], stability analysis with regard
for the concentration dependence of the diffusion coef-
ficient seems to be burning.

In thiswork, the growth of a spherical particle from
supersaturated solution is analyzed. The problem is
stated as in [3], but D is assumed to be C-dependent.
Since this relationship is generally unknown in an
explicit form, we, following [9], take that

D(C) = D,(1+A(C-C.));
A= 19D(C) D
" D, 0C ..o’

o

where C,, is the concentration of a supersaturated solu-
tion far away from the crystal surface and D,, isthe dif-
fusion coefficient at C = C,,.

In view of (1), the problem is mathematically for-
mulated as

AC + AO((C-C,)0C) = 0,

where " isthe capillary constant [3], Csis the concen-
tration at the surface, and K is the surface curvature.

Solving equation (2), we obtain the solution concen-
tration at adistance r from the center of aball:

cr = A1+ G -prRr-H+C.. O

where G; = A(CR - C,) + 1, Cy = Cy(1 = 2I'/R) is the
concentration at the crystal (particle) surface, C, is the
equilibrium concentration at the straight-line boundary,
and Risthe radius of agrowing ball.

IfA—0,C=C, +(Cy—C,)R/r, whichisconsis-
tent with results in [3]. Figure 1 shows the concentra-
tion field of a spherical crystal. At A > (<) 0, the near-
surface concentration varies sharper (smoother) than at
A = 0. Hence, we can suppose that the critical stability
radius of the crystal for negative A's (usually, A< 0 [7—
9]) must increase. Let us verify this supposition and
evaluate the stability radius.

Near a weakly distorted sphere (perturbations as
spherical harmonicsY,(0, ¢) are used [3]), the concen-
tration is distributed as

0 Gi-1)R [
(r,0,6) = 301+ 227 1]

, Col Gl +2)(1 - 1) + (GI ~ )RI(2A)

J1+(Gi—1)R/r

)

(4)
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C x 10%, g/cm?
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Fig. 1. Concentration of a solution C near a growing ball-
like crystal vs. relative distance r/R from the center of the

ball for various A's. Cy = 0.36 glem®, C,, = 0.40 g/em®, T =
107 cm, and R=10"*cm.

| -1
X R—6Y|m+ C..,

I+1
r+

where | and o are respectively the number and ampli-
tude of a spherical harmonic (8(t)/R < 1).

Following [3], we assume that a plane tangent to the
particle surface deviates from that tangent to the initial
sphere infinitessmally; then, the growth rate of a parti-
cleis

795

Rcrit/RMS

1.0

0.5

|
-0 8 -6 4 -2 0 2 A(C,—Cyp)

Fig. 2. Ryi/Rusratio (Rysisthecritical radius obtained in
[3]) vs. dimensional parameter A(C,, — Cg) for | = 2, 4,
and 10.

where Cg, isthe density of the solid phaseand L = (I +
1)(l + 2)/2.

Using (5), we obtain the rate of increase of the
spherical harmonic amplitude:

do —D,, 2

= = —1)(1 -

dt 2AR2(CSO|—CR)((G D=1 (6)
+2AC,I(GA%=1)(1 + 2)/(G,R))&Y,,.

Equating (6) to zero yields the critical radius of sta-
bility. The resulting equation is nonlinear; however,
only one root determined for A < 2/3(C,, — Cy)tis

dr , d& -D. Gi-1p . 1-1 ! _ > . -
V= ot i oTe %(;1AR R dYim  meaningful (since the critical radius of stability must
sol R (5) exceed the size of a critical nucleus R* = 2C,'/(C,, —
2AC I (I +2 oY Co):
+#6Ylmg+ 2C M G,L(I -1)—5 o
R°G,; R Reit = RusK,
K = 1=G(3(1-1) + 1%(1 +2)) + J(l-ezlz(l +2))°+G,(1 +2)(12+3)/(1+L)

where G, =A(C,,—Cp)/(L+L)(I -1) and Rys= R*(1 +
L) isthecritical radius found in [3].

Depending on whether the radius of a growing ball
islarger or smaller than R.;;, the perturbing harmonic |
increases or decreases. The variation of the critical
radius with the dimensionless parameter A(C,, — Cp) is
depicted in Fig. 2. It is seen that taking into consider-
ation the concentration dependence of the diffusion
coefficient may increase the critical radius by a factor
of more than 1.5 in relation to Rys. Note that the
R.i/Rus ratio depends on the number of a perturbing
harmonic only slightly and rapidly attains its steady-
state value.
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2-3G,(L+L)(I-1) 0

If A(C,, — Cp) is small, expression (7) can be rear-
ranged to the more convenient form

(P+3)(1+2)L 0

4(1-1)(1+L)°0 ®)

Re = RE&—A(cw—co)

Thus, we for the first time performed a stability
analysis including the concentration dependence of the
diffusion coefficient and found the analytical expres-
sionfor thecritical radius of stability for agrowing ball.
With alowance for the correction for this dependence,
the critical radius of stability may substantialy
increase.
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Abstract—Results are presented from optical measurements of the plasma of atransverse volume dischargein
He(Ar)/Xe/CCl ,(HCI) mixtures (at pressures of P = 10-100 kPa) that are used in excimer lamps emitting the
XeCl 308-nm band. Emission spectrain different stages of the formation and degradation of the active medium,
aswell astemporal and resource characteristics of the emitter, are studied. The main products of decomposition
of CCl, moleculesthat are detected by the plasma emission are C* atomsand C; and CN* radicals. The oper-
ating resource of the XeCl emitter is found to be (3-5) x 10* pulses and depends strongly on the pressure and
composition of the active medium. The duration of the emission pulse at a wavelength of A = 308 nm is 200—

300 ns. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Powerful electric-discharge sources of spontaneous
radiation in the spectral region A\ = 193-353 nm due
to the B—X transitions of inert-gas monohal ogenides are
widely used in microelectronics, photochemistry, biol-
ogy, and medicine [1]. This fact promotes their further
improvement, as well as the development of a new
method for diagnosing the processes occurring in the
plasma of such sources. Based on a transverse volume
discharge (TVD), a series of excimer lamps (ELs) have
been designed. In active media of these lamps, HCI
molecules are used as the carriers of chlorine atoms
[2, 3]. Experimental studies of XeCl (B-X) laser emit-
ters have shown that they are also highly efficient when
such complex and low-aggressive carriers of chlorine
atoms as CCl, [4] or BCl; [5] are used. Under certain
conditions, the output characteristics of these emitters
appear to be better than those of electric-discharge
XeCl emitters based on He(Ne)/Xe/HCI mixtures. In
[6], thisfact was attributed to more efficient production
of Cl-ionsin aBCl; plasma as compared to HCl-con-
taining plasmas. The dissociative-attachment (with
production of CI- ions) cross section of CCl, mole-
cules, as well as BCl; molecules, is as high as 1.3 x
10™* cm? at electron energies close to zero [7]. This
property can be used in medium-pressure ELs. The
destruction of CCl, molecules in TVD-based ELs at
working-gas pressures of 10-100 kPa has not been
studied.

In this paper, we present the results of investigations
of the plasma of aTVD in He(Ar)/Xe/CCl,(HCI) mix-
tures, which can be used in medium-pressure ELs. The
nonsteady spectroscopy with nanosecond resolution is
applied to study the destruction of CCl, moleculesin a
TVD plasma.

EXPERIMENTAL CONDITIONS

In experiments, we used a TVD-based excimer
emitter with spark preionization. The volume of the
active medium was 18 x 2.2 x (0.5-1.0) cm?, the inter-
electrode distance being 2.2 cm. The capacitance of the
main storage capacitor of the double-loop LC circuit of
TVD ignition system was 30 nF, and that of the pulse
sharper was 9.4 nF. The experimental conditions were
analogous to those described in [8, 9], where the multi-
mode regime of an EL operation was studied. The EL
operated with the system of XeF 353-nm, XeCl
308-nm, KrF 249-nm, and KrCl 222-nm bands. At rep-
etition rates of f < 5 Hz, the experiments were carried
out in a stationary working gas. At higher repetition
rates (5 < f < 40 Hz), at which the resource characteris-
tics of the excimer emitter were studied, the experi-
ments were carried out with the use of a module for
transverse electrical circulation of the working gas; the
parameters of the module are described in [10].

SPECTRAL AND TEMPORAL
CHARACTERISTICS OF EMISSION

In the initial stage of a repetitive TVD in the
He/Xe/CCl, = 98/2.8/0.2-kPa mixture at voltages of
U = 15-20 kV, the discharge was contracted and the
main components of the emission spectrum were the
XeCl (B, C, D—X) bands; Hel, Xel, and Xell lines; Cl
(2p—-3s) 247.9-nm line; and CN (B—X) radical band.
After n>5 x 10° TVD pulses, the spectrum contained
only the Xel (6s-7p) 467.1-nmlineand CN (B—X) band
with the edge at A = 388.3 nm and the intensity of the
XeCl 308-nm band increased by a factor of about 50.
This means that, during 5 x 10° pulses, the CCl, mole-
cules transform into other compounds that allow a uni-
formTVD to exist. Inorder tousesuchaTVD inan EL

1063-7842/00/4506-0797$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Emission spectra of the plasma of a TVD in the
He/Xe/CCl, = 28/4/0.12-kPamixtureat 1 < n< 5 x 10°,

at moderate voltages of U < 20 kV, the working-gas
pressure was decreased to 20-30 kPa. At the carbon-
tetrachloride concentrations of [CCl,] < 120 Pa, the
TVD was highly uniform from the very beginning. The
emission spectrum of the TVD plasma is shown in
Fig. 1. For fresh-prepared mixtures, in the visible part
of the spectrum, the Swan bands with the edges at A =
468.0 nm (for the C, (A—X) (6, 5) band) and A =
516.5 nm (for the C, (A—X) (0, 0) band) were most pro-
nounced. Thisis related to the nonequilibrium popula
tion of vibrationa states of the C, molecule. Such a
spectrum corresponding to A-X transitions of C, was
also observed earlier in a transversal barrier discharge
in Ar(Kr)/CO mixtures [11], as well as in steady-state
and pulsed (with T = 5-12 ms) longitudinal discharges
in a He/CO mixture [12]. The resource of the Swan-
band emission is <5 x 103 pulses, and the presence of

C, emission indicates that the CCl, molecules trans-

forms into other chlorine-containing molecules, which
is accompanied by the deposition of solid carbon
(soot) on the TVD electrodes. This deposition may
contain such carbon compounds as Cg, fullerene. After

n = 10% pulses, in the visible part of the spectrum, there
were only the most intense Arl, Xel, Xell, and ClI
lines, which are characteristic of a XeCl plasma of
emitters based on mixtures of inert gases with HCI
molecules [13].

The oscillograms of the TV D current and the plasma
emission are shown in Fig. 2. The maximum TVD cur-
rent in the pulse attained 1015 kA, and the duration of

Fig. 2. Oscillograms of (1) the TVD current and (2-7) inten-
sities of different components of plasma emission in the
Ar/Xe/CCl, = 16/2/0.12-kPa mixture: (2) XeCl (B—X)
308 nm, (3) XeCl (D—X) 236 nm, (4) XeCl (C-A) 340 nm,
(5) Arl (4s-5p) 430.0 nm, (6) Xel (6s-7p) 467.1 nm, and
(7) ClI (3p=3s) 247.9 nm.

the first current peak was <50 ns. The emission due to
the D—X transition of XeCl was delayed by 1520 ns
with respect to the emission at A = 308 nm and was one
order of magnitude less intense. The emission from the
excited Xe* atoms in helium mixtures was character-
ized by a sharp leading edge, which coincided with the
leading edge of the TVD current pulse. In Ar-contain-
ing mixtures, the Xel (6s-7p) 467.1-nm emission was
delayed by 20 ns with respect to that fromaTVD ina
He/Xe/CCl, mixture. Thisis due to the energy transfer
from Ar(m) and Ar,(m) to Xe atoms [14]. The spectral

lines of Ar** and Xe** ions were delayed and had flat-
ter leading edges of the emission pulses. Thisis associ-
ated with a multistage mechanism for the population of
the upper exited states of these ions with participation
of Ar(m) and Xe(m) and their positive ions in the
ground states [15]. The CI (2p-3s) 247.9-nm emission
was observed in the afterglow of aTVD and wasrelated
to dissociation of CCl, molecules, production of C
atoms, and further excitation of carbon by electron
impact. The oscillator strength for this Cl line is rather
grest (f,,=0.05[16]), and the corresponding lower state
is metastable. This fact can be used to develop sources
of spontaneous and stimulated emission of UV radia-
tion at the ClI (2p-3s) 247.9-nm line similar to hybrid
lasers based on Cu/HBr(HJ) mixtures [17]. Interest in
such an UV source is related to the fact that its wave-
length coincides with the amplification band of elec-
tric-discharge KrF amplifiers. In aHe/Xe/CCl, mixture
under atmospheric pressure, the duration of XeCl (B—
X) emission decreased to 100-150 ns and that of

TECHNICAL PHYSICS Vol. 45
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Fig. 3. Intensities of XeCl (B—X) 308-nm emission band
from a TVD in different mixtures as functions of the dis-
charge number: (1) He/Ar/Xe/CCl, = 23/8/0.12, (2)
He/Xe/CCl, = 28/4/0.12, (3) He/Xe/CCl, = 98/2.8/0.2, and
(4) Ar/Xe/CCl, = 16/2/0.12 kPa.

Xe (6s-7p) emission reduced to 300 ns. The duration of
Cl (2p—3s) and CN (B—X) emission was <100 ns. The
C, (A—X) emission, which appeared after the intensity
of Cl 247.9-nm emission had reached its maximum,
had a duration of 400-500 ns. This is evidence of an
impact mechanism for the population of C, (A, v) level
inaTVD plasma. Based on the data from [12], we can
conclude that, under the given conditions, the most

probable mechanism for the production of C; mole-
culesisthe reaction

CX+C— C; +CX, (1

where X represents Cl, F, or O.

In amedium with CF,Cl, molecules, both C,Cl and
C,F molecules can beinvolved in reaction (1). A small
admixture of C,0O was always present in any fluorine-
carbon-containing medium due to small additives of
air, because the residual pressure in the discharge
chamber was <5 Pa. The formation of C,X complexes
in the plasma proceeds through the interaction of CX
radicals with metastable carbon atoms as it occurs
when X isO [12].

RESOURCE CHARACTERISTICS

Figures 3 and 4 show the intensities of XeCl (B—X)
emission in inert-gas mixtures with different chlorine
carriers (CCl,, CF,Cl,, or HCI) as functions of the
number of discharge pulses. When helium was used as
a buffer gas, the n dependence of the intensity of the
308-nm band was closest to that of the power of aXeCl
laser based on a He/Xe/CCl, mixture [4]. In media
enriched with CCl, molecules, the emission resource
was relatively small. When argon was used as a buffer
gas, the intensity of XeCl emission as a function of n
reached its maximum somewhat faster (at n = 3 x 10%).
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Fig. 4. Intensities of XeCl (B—X) 308-nm emission band
from a TVD in different mixtures as functions of the dis-
charge number: (1) Ar/XeHClI = 16/4/0.27, (2)
Ar/Xe/CF,Cl, = 20/0.27/0.04, and (3) He/Xe/HCl =
98/2.8/0.2 kPa.

The emission resource in such mediais more than 3 x
10* pulses. For aTVD in an Ar/Xe/HCl mixture with
the optimum content of HCl, the efficiency of the pro-
duction of XeCl (B) molecules was less than in TVDs
in mixtures of inert gaseswith CCl, moleculesat nearly
the same ratio between the Ar and Xe concentrations,
though the resource of XeCl (B—X) emission exceeded
5 x 10* pulses. For all the HCI-based working media,
the maximum intensity of XeCl (B—X) emission was
attained in the initial stage of a repetitive discharge,
after preparing a fresh mixture. For a TVD in a
Ar/XelCF,Cl, mixture, the intensity of emission as a
function of n had amaximum at 5 x 10°<n< 8 x 103
however, the efficiency of the production of working
molecules was significant even at n = 1. The CCl, mol-
ecules do not participate directly in the production of
XeCl* molecules in a TVD in He/Xe/CCl, mixtures.
Measurements of IR absorption spectra of a similar
plasma medium [4] showed that the coefficient of
absorption of the main CCl, bands decreased sharply at
n= 6 x 102 and IR bands of HCI and CO molecules
appeared in the spectrum. Therefore, for n> 6 x 103, it
is thought that the electric-discharge XeCl laser based
on a He/Xe/CCl,, mixture operates by akinetic scheme
with the production of HCl molecules in the reaction

CCl,+H,0+hy = 2HCI +Cl,+CO.  (2)

Since, in the experiments, we used commercially
pure argon and high-purity helium, the fact that the
intensity of XeCl (B—X) emission reached the plateau
more rapidly in argon-containing mixtures can be due
to arelatively large content of water vapor in these mix-
tures, which, in this case, was a positive effect. When
CF,Cl, molecules were used as halogen carriers, in
addition to XeCl (B—X) emission, we observed XeF (B—
X) emission. Theratio between the band intensitieswas
XeCl 308 nm/XeF 353 nm = 9/1, which was equal to
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the ratio between the concentrations Cl- and F-ionsin
the reaction of dissociative attachment of electrons to
CF,Cl, molecules [18, 19]. A CF,Cl,-containing
plasmais characterized by both the direct production of
XeF and XeCl molecules (i.e., the recombination of Cl-,

F-, Xe*, and Xe, ionsin abuffer gas) and the produc-

tion of excimer molecules via secondary processes
including conversion of CCl, moleculesin HCI.

CONCLUSIONS

Thus, the investigations of the active medium of a
repetitive electric-discharge source of XeCl 308-nm
emission have shown that, at moderate discharge volt-
ages, Ar/Xe/CCl, mixtures at a pressure of 20 kPa have
the greatest emission resource and efficiency: the dura-
tion of the XeCl (B—X) emission pulsesis <300 ns, and
the resource is >3 x 10* pulses. He(Ar)/Xe/HCl mix-
tures are characterized by a lower efficiency. CF,Cl,-
based working media take an intermediate position
between CCl, and HCI-based media with respect to the
role the direct and secondary processes of the XeCl (B)
production play in a TVD. In the emission spectra of
the plasma of TVDs in fluorinecarbon-containing
media, nonequilibrium visible emission in Swan bands
of C, molecules is observed. In the UV region, the Cl
(2p—3s) 247.9-nm emission and CN (B—X) (0, 0) band
emisson with A, = 388.3 nm are the most pro-
nounced.
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Abstract—The optical characteristics of a transverse-discharge plasma initiated in He/Xe(Kr)/HCI(CF,Cl,)
mixtures were studied. The mixtures contained a small amount of iron vapor due to metal cathode erosion. The
iron atoms were shown to be excited by the spontaneous emission of KrCl (A =22 nm) and XeCl (A = 308 nm)
moleculesin a nanosecond transverse discharge. © 2000 MAIK “ Nauka/Interperiodica” .

Electrodes exposed to high-power nanosecond
transverse discharges are often sputtered [1]. In a
pulse—periodic regime (f = 5 Hz), this may lead to the
opacity of optical windows of electric-discharge exci-
mer emitters (EDEES). However, an iron plasma itself
is of interest for generating stimulated emission in the
UV range. In [2], where iron vapor was pumped by a
KrF laser with A = 249 nm, Fel emission lines were
observed at A = 299.95, 305.16, and 304.04 nm. There-
fore, the possibility of applying high-power spontane-
ous emission from excimer molecules to excite iron
atoms merits consideration.

Inthiswork, weinvestigated the optical characteris-
ticsof aniron-containing EDEE plasma. Theiron vapor
was derived from the erosion of cathodes exposed to a
pulsed transverse discharge. Two discharge-initiating
systems were used: (1) agrid cathode and a continuous
anode with UV preionization and (2) continuous metal
electrodes with spark preionization. The continuous
anode was made from stainless steel. Its radius of cur-
vature and length were 1.7 and 17 cm, respectively. In
system 1, the cathode was a planar grid (made from
stainless steel) with 1 x 1-mm meshes. The interelec-
trode distance was 20 mm [3]. The discharge gap was
preionized with a pulsed corona initiated between the
needles and the grid 100-150 ns before the main dis-
charge. In the system with spark preionization, the
transverse discharge occupied the volume 18 x 2.2 x
0.7 cm (here, 2.2 cmistheinterelectrode distance). Gap
preionization was accomplished with two rows of spark
discharges [4]. A capacitive C — C, circuit, where a
30-nF capacitor C charged a 9.4-nF capacitor C,, and a
thyratron switch were energized by a pulse voltage
generator. The discharge and optical characteristics of
the plasma were measured with alaser diagnostic com-
plex [3, 4].

Figure 1illustrates the general view of the emission
spectrum that was obtained in the transverse-discharge
plasma excited in the mixtures of the inert gases and
HCl molecules for an emitter with corona preioniza-
tion. All such spectra had Fel emission lines. Note that
noticeable Fel emission was observed only under con-
ditions optimal for the formation of excimer molecules.
A smal amount of HCI molecules in the working
medium and a low pressure are the factors causing the
emission dueto transitionsin Fel to decrease. The most
intense lines from iron atoms are listed in the table
(with regard for the spectral sensitivity of the recording
system). The intensity of the Fel lines is fairly high
(5% of that of the RX lines), which may be used to
extend the spectral range of excimer lamps. Such emit-
ters can be applied for analysis of an iron plasma with
atime resolution of <100 ns. The iron vapor spectrum
and the Fel band diagram indicate that lower energy
levels of iron can be optically excited by RX UV emis-
sion. The energy of B—X emission quantais 5.57 eV for
KrCl and 4.96 eV for XeCl. Such values are sufficient
for the occupation of only upper Fe* levels through

KrCl(B-X)
XeCl(D-X)

XeCl(C-A)

220 300 380 A, nm
Fig. 1. General spectrum of the transverse-discharge plasma
with corona preionization for the mixture He/Kr/Xe/HCI =
200/1.6/0.4/0.4 kPa.

1063-7842/00/4506-0801$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 2. Oscillograms of the (1) voltage, (2) current, and (3—
7) emission of the transverse-discharge plasma with spark
preionization for the mixture He/Kr/CF,Cl, = 7/4/0.08 kPs;
(3) 222 nm, KrCl; (4) 249 nm, KrF; (5) 258 nm, Cl,;
(6) 318.8 nm, Fel; and (7) 516.5 nm, C, (A-X).

lower levels of Fel, which are excited by discharge elec-
trons. In our electrode system, iron vapor may arisefrom
hot spots on the continuous cathode and grid, aswell as
from hot zones of the coronain the preionization system.

Most intense iron lines in the EDEE plasma
I

A, nm arb. l'Jnits Ejow, €V |Eyps €V Transition
corona-preionization emitter He/Xe/HCl mixture
2708] 1.00 - - -
2838 025 | 099 | 535 aF ,—y5 G
317.8| 010 | 240 | 630 7DD,
3265/ 011 | 009 | 3.89 a®Ds—2D3
3329| 020 | 326 | 6.99 b*Hs—u3H¢
344.7| 024 | 220 | 579 a®P,~y®P)
spark-preionization emitter He/Kr/CF,Cl, mixture
2929 100 | 220 | 641 aP,y°F)
2941 052 | 009 | 4.30 a®D,y°F )
3048| 059 | 009 | 416 a®D,~y°D3
3189| 052 | 248 | 6.37 7DJ-65G,
3231| 027 | 245 | 6.29 7/ DJ—5D,

SHUAIBOV et al.

Inthiscase, iron vapor entersthe discharge gap by means
of electric wind, formed in the corona[5].

Fel emission was also observed in a He/Kr/CF,Cl,
plasmainitiated in atypical el ectrode system with auto-
mated spark preionization (see table). To gain a better
insight into iron emission, we took time variations of
the emission intensities for RX, Fel, and products of
CF,Cl, decomposition (Fig. 2). As follows from the
table, the energy of quanta of KrCl and KrF molecules
produced in the given plasmais sufficient only for step
occupation of Fe*. Oscillograms were recorded at U =
15 kV and f = 3 Hz. The maximum discharge current
was less than 15 KA. The intensity of al theiron lines
varied with time in a similar way. The emissions of RX
molecules and Fe* atoms correlatein time, indicating a
considerable contribution of optical pumping to the
population of Fel higher excited levels. In the CF,Cl,-
based media, the emission intensity ratio for KrCl, KrF,
and Cl, molecules was found to be KrCI/KrF/Cl, =
9/1/1. This can be explained by almost the same ratio
between the densities of negatively charged Cl- and F~
ions, which are produced by dissociative attachment of
electronsto CF,Cl, [6, 7].

Thus, the emission spectra of an EDEE plasma
involveiron lines. Iron resultsfrom electrode sputtering
in the main and auxiliary discharges. Optical pumping
(Fel excimer emission from lower energy levels) seems
to be the most plausible mechanism for occupying
higher excited levels of iron. RX high-power spontane-
ous emission can be used for generating nonequilib-
rium UV emission from Fe atoms.
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Abstract—The dynamics of local magnetic flux vortexes in high-temperature semiconductors is studied with
amechanica method. Physical conditionsin agradient magnetic field are analyzed. Obtained results are treated
within a model of free and pinned vortexes. The magnitudes of elastic modula, pinning strength, dissipated
energy, viscous friction of the vortexes, and pinning potential were calculated. The method allows the determi-
nation of local, rather than integrated, superconductor characteristics. This makes it possible to map pinning
centers over the crystal structure. © 2000 MAIK “ Nauka/Interperiodica” .

High-temperature superconductors (HTSCs) hold
much promise in various domains of industry. Usually,
a specimen is subjected to a uniform magnetic field,
and the integrated critical parameters and their deriva-
tives are evaluated [1-3]. However, for applications
(cryogenic machine building or designing devices with
HTSC components[4—6]), of great interest isthe distri-
bution of structure inhomogeneities (particularly, pin-
ning centers) over the specimen volume. In this work,
we experimentally studied the dynamics of vortexes of
alocal gradient magnetic flux in yttrium-based metal
oxides.

A mechanica method where an HTSC plate is
placed between magnet poles [7] was employed
(Fig. 1). If an external field B exceeds the first critical
field B, amagnetic flux spot formsin the middle of the
plate. The setup enables us to examine various speci-
men parts. The magnetic system ismobile, and the sen-
sitivity can be improved by narrowing the spot. The
length a of the spot depends on the specimen geometry,
and its width b is defined by the thickness of the pole
pieces and the field distribution between the poles. The
field between the poles can be written as

B(z) = Boexp(—BZ’). (1)

Inview of the B, value,

1
= 5 ||pdBo®
b=2/Ingg"g 2

where B, is the maximum value of the magnetic field,

is the magnetic system constant (2.2 x 10° m~), and z
isalinear displacement.

When the plate is displaced under the action of a
force F, each of the vortexes moving in the nonuniform
magnetic field together with the superconductor will

experience arestoring force

0B _

f = Pugy = 2PnBozexp(-$2), (3

where p,,, is the magnetic moment of a vortex.

If fissmaller than the pinning strength f; of the vor-
tex, the vortex displacement is elastic (reversible).
A further movement of the plate will cause f to grow.
When this force becomes equad to f;, vortexes will
begin to unpin from pinning centers and naturally
become in a certain sense fixed rel ative to the magnetic
system. The pinning strengths of the vortexes differ;
therefore, the number of unpinned vortexes will
increase as the plate is more and more displaced. The
number of unpinned (fixed) vortexes N; asafunction of
plate displacement is given by

Ni(2) = N|1-expHE], (4)

1

where k; is a factor that characterizes a spread of the

F(2
ABzy
N / S
L ;
3
- "’ 2
_A]

Fig. 1. Superconducting plate in a magnetic system:
(2) superconducting plate; (2) magnet poles; and (3) mag-
netic flux spot.
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Fig. 2. Applied force F vs. superconductor displacement z
(1-3, specimen nos.).

vortex pinning strengths, N = ®/®; is the number of
vortexes, and @ is the magnetic flux per area under
study:

b/2

® = kaB, [ exp(-BZ)dz. (5)
—b/2

Here, k, is the attenuation coefficient of the external
field B, in the superconductor. Its value was estimated
at no less than 0.9 for B > 0.01T. We will assume that
all the vortexes are pinned at theinitial timeinstant and
the net force needed to unpin all of them is F =

Z.N f ;. With regard for (4), the displacement of a

i=1 pi
specimen and the displ acing force arerelated as

F(2) = Z fp,N[l expH D} 6)

The motion of unpinned vortexes induces an addi-
tional force due to viscous friction between them inside
the superconductor. Theviscousfriction coefficientn is
then written as

_ AFAz

where AF isachange in the force when the specimenis
displaced by Az, V is the specimen velocity, S= ad is
the specimen cross section, and d isthe specimen thick-
ness. In our experiments, the force sensitivity was
10" N, and the displacements, on the order of 105 m.

Specimens used were YBaCuO metal oxides with
different compositions and densities (see table, speci-

GOLEV et al.

mens 1-3). They measured 4 x 1.5 x 20 mm and were
obtained by the two-stage ceramic process at 78 K. In
fields ranging from 0.007 to 0.1 T, the magnetic flux
spot width varied between 5.5 x 102 and 9 x 10° m
The specimens were displaced with a velocity of
3x10°5m/s.

The force F is known to depend both on the vortex
density and on the crystal structure of a ceramic mate-
rial. Therefore, the experiments were carried out in var-
ious magnetic fields and also on specimens differing in
porosity and grain size, all other things being equal.

For al of the metal oxides used in the experiments,
the curves F(2) taken under permanent magnetic fields
aresimilar. They are shownin Fig. 2for B=0.025T.

Initially, at small displacements, the force increases
linearly, pointing to the elastic displacement of the vor-
texes (Fig. 2, portion AB). The measured elastic modula
of the vortex structure are given in the table. At larger
displacements, the curve is no longer linear (portion
BC) and exhibits hysteresis, which is an indication of
vortex unpinning from the pinning centers. Subse-
guently, when all vortexes are unpinned, the curves sat-
urate (portion CD). The slope of the last portion is
defined by the coefficient of viscous friction between
moving vortexes, and the measured force F just charac-
terizes the pinning strength. The viscous friction coef-
ficients and the pinning strengths are also listed in the
table. Naturaly, the direct and return (as the displace-
ment z decreases) runs of the curves F(2) are different.
The area of the hysteresis loop reflects the energy W
dissipated during this quarterperiod because of the vis-
cous motion of the vortexes. The values of W for the
displacement z(0 —2— 0) mm are presented in the table.

The pinning strength in superconductors depends on
the energy U, needed to pin vortexes at pinning centers.
The pinning energy can be estimated from the relax-
ation value. To thisend, the specimen placed in the per-
manent magnetic field was displaced by a distance z
under the action of force F. Once the force ceased to
grow, the displacement continued to increase (Az) with
time because of the thermally activated creep of some
of the vortexes. The pinning energy was calculated by
the formula

[In %l expD AZ%(T} (8

Table
Specimen no. | Density, g/em® | py x 107>, Q M | Fy mechy N/M® [ Fy o, N/M3 | C, N/m? (W x 1077, J| n, kg/m's | Ug, meV
1 3.3 34 1900 9.8 68 7.2 20 16
2 4.2 15 3445 210 26 x 102 16.4 52 27
3 5.2 0.76 4282 1480 94 x 102 18.8 300 31
TECHNICAL PHYSICS Vol. 45 No.6 2000
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Fig. 3. Uy vs. applied force F (1-3, specimen nos.).

where U = U, —fb, b isthe vortex displacement due
toan applied forcef, = F/N, and k isthe Boltzmann con-
Stant.

Dependences U] (F) for B,=0.025T are presented

in Fig. 3. The energy of activation U drops with
increasing force F applied at theinitial time instant. By
extrapolating the dependence U§ (F) to F =0, itispos-
sible to find U, for the superconductors (see table).
Knowing U,, one can determine the vortex displace-
ment b due to the force F applied at the initial time
instant. The value of b was found to be independent of
F:itequaled 86 x 1071°, 42 x 1071, and 36 x 10° m for
specimens 1-3, respectively. With an increase in the
Y BaCuO density, the elastic modulus, pinning strength
and energy, and dissipated energy grow, whereas the
viscous friction coefficient is inversely proportional to
theresistivity of the superconductor inthe normal state.
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Our results are consistent with vortex behavior in aper-
manent magnetic field [8].

In the same experimenta environment (in particu-
lar, for the same vortex velacity), we al so measured the
critical current by a resistive method. The pinning
strength derived from the critical current, Fq,, turned
out to be smaller than Fy e (See tabl€e). The reason is
that the critical current, from which F,,, is deduced, is
measured from the motion of weakly pinned vortexes.
Conversely, in our case, the ultimate pinning strength
of the semiconductor was measured.

To conclude, the mechanical method for studying
the dynamics of alocalized magnetic flux in supercon-
ductorsissuggested. It allowsthe evaluation of the ulti-
mate pinning strength and energy, elastic modulus of
vortexes, and viscous friction coefficient. With this
method, one can also map effective pinning centers.
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Abstract—A design of a superconducting vibrator of bending oscillations is proposed. The magnetic-field
dependence of the vibrator natural frequency is calculated. It is shown that, for the suggested construction, the
natural frequency istens of times more sensitive to the magnetic field than for all the resonators used before. It
is proposed to use such aresonator to study the magnetic field penetrating into superconductors. © 2000 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

The magnetic properties of type-11 superconductors
have not been adequately studied up to the present day.
In particular, it is associated with a limitation of the
investigation methods. The use of the technique of
oscillating superconducting rods and plates, placed in
the magnetic field, opened up new effective possibili-
ties of studying various processes in superconductors
[1-10]. When a superconductor oscillatesin amagnetic
field, currents are induced in its surface layer. An inter-
action between these currents and thefield resultsin the
rise of magneto-elastic forces changing the natural
oscillation frequency of a superconducting specimen.
Oscillations of the vortex lattice together with the spec-
imen induce bulk currents; the interaction between
them and the magnetic field resultsin the appearance of
a force and, consequently, in a change in the natural
oscillation frequency. When the vortex lattice is fixed
stiffly at the pinning centers, the square of the speci-
men’s natural frequency varies in direct proportion
with the square of the magnetic field intensity. A depar-
ture from this proportionality isasource of information
on, for example, the pinning. Use of a superconducting
screen located parallel to the plate surface or rod axis
increases the accuracy and extends the capabilities of
thistechnique, in particul ar, permitting the determining
of the penetration depth of amagnetic field disturbance
into a superconductor. For the first time, the use of a
screen was considered in [6, 10] for the limiting cases
of aninfinitely wide plate and around rod. In [6], it has
been shown that the square of the bending oscillation
frequency of the infinitely wide plate increases in
inverse proportion to the distance between it and a
screen, i.e., increases indefinitely. Consideration of the
similar problem for around rod has shown that, in this
case, increasing the natural oscillation frequency tends
to adefinite limit. The problem of elastic oscillations of
afinitely wide plate above the screen was considered in
[10Q]. It has been shown that, in this case, as well asin
the case of an infinitely wide plate, a magneto-elastic

force increases indefinitely when the plate approaches
the screen.

In all the cited papers, the magnetic field was paral-
lel to the vibrator length. In this case, during vibrator
oscillations, the magnetic lines of force are distorted
and the magnetic field induction has different magni-
tudes at different areas of the vibrator surface, making
it difficult to consider the magnetic field penetration
into a superconductor.

In this paper, we consider a superconducting vibra-
tor without these limitations.

SETTING AND SOLVING THE PROBLEM.

The suggested vibrator is a superconducting pipe of
rectangular cross-section and length L, for which the
opposite walls have an equal thickness. The inner pipe
sizes are (width) | and (height) 2a (Fig. 1a). The side
walls B and B' are fixed and sufficiently thick to fulfil
the condition for the A and A' wall endsto be stationary.
Antiphase bending oscillations are excited in the A and
A' opposite walls whose thicknessis h.

Under the condition that the pipe length is much
more than the linear size of the hole, avibrator may be
regarded to beinfinitely wide. The vibrator isplaced in
ahomogeneous magnetic field with induction B, paral-
lel to the walls (perpendicular to the plane of Fig. 1).
Taking into account that oscillations of the AA" walls
occur in opposite phases due to the law of reflection on
a superconducting surface, the problem is reduced to
analyzing oscillations of the Awall of thicknessh of the
rectangular cavity of width | and height a made in
superconducting half-space (Fig. 1b) placed in ahomo-
geneous magnetic field parallel to the cavity walls.

At oscillations of the vibrator, the magnetic field
outside of the cavity changes neither its direction nor
magnitude. The magnetic field trapped in the cavity
remains homogeneous and parallel to the cavity walls,
and its magnitude varies with time due to variations
resulting from the cavity cross-sectional area oscilla-
tions.

1063-7842/00/4506-0806%$20.00 © 2000 MAIK “Nauka/Interperiodica’



A SUPERCONDUCTING VIBRATOR WITH A TRAPPED MAGNETIC FIELD

For convenience, let us consider the vibrator pre-
sented in Fig. 1b. Since the magnetic field istrapped in
the vibrator cavity, the flux keeps constant during oscil-
lations, i.e.,

SBo = SHB(,

|
t

S =al; S=al +J’E(z)dze"",
0

where

where §(2) is the oscillation amplitude and w is the
radian frequency.

In the approximation of small oscillations,

S 0 1. .
= Byl — —-J'E(z)dzexp(| wt)d (1)
o al O

B(t) = Bog =

The force acting on a unit area of the oscillating
plate from the magnetic field is equal to the difference
of the magnetic pressures on its plane,

2 |

__Bo -
F., = uoalJO’E(z)dzexp(lc.ot). 2

Here, |, isthe magnetic constant. The equation of elas-
tic harmonic oscillations of the plate taking into
account F,, can be written as [11]

2 |

h°E 2 Bg
i (GG

hpw’E(2) = D

Here, E isthe Young modulus, [ is the Poisson coeffi-
cient, and p isthe density. The general solution of equa-
tion (3) can be written as

&(2) = Acoskz+ Bsinkz+ Ccoshkz + Dsinhkz

|
1 4)
+ Wg’ M'!:E (Z) dz.

Here,
_ 12(1-p)I"Bg, pwzlz(l—uz).
hsauoE ’ hE

A, B, C, and D are constants of integration. They can be
determined from the following boundary conditions:

dé(2)
dz

M K* =

&(D;=01=0, = 0. ©®)

z=0,1

Boundary conditions (5) give four algebraic equa-
tions connecting the integration constants and

¢(2)dz.
!
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Fig. 1. Schematic view of the vibrator.

Upon integrating (4) over z, we obtain thefifth equa
tion. Thus, we have the system of five equationsin five
unknown,

|
1
A+C+—M([E&(2)dz = O,
e {E()

Acoskl + Bsinkl + Ccoshkl + D sinhkl
1 |
+ —M[&(2)dz = O,
I _!E()

B+D =0, (6)
— Asinkl + Bcoskl + Csinhkl + Dcoshkl = 0,
Asinkl + B(1—coskl) = Csinhkl + D(coshkl —1)

|
+ E%M —1EJ’E(2)dz = 0.
0

Only when the determinant composed of the coeffi-
cientsat A, B, C, D, and OE(z) dzisequa to zero, sys-
tem (6) hasanontrivial solution. Thisresultsin the dis-
persion equation

(1 — coskl coshkl)k®
= M[kI(1 - coskl coshkl) —2sinkI (7)
—2sinhkl + 2sinhkl coshkl + 2coskl sinhkl .

From equation (7), taking account of (4), thefollow-
ing relation between the natural oscillation frequency
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and the magnetic field is obtained:
2 2 2
W —-—Ww B
— = a——. (8)
W phawgHo

The coefficient a remains constant with a high
degree of accuracy and is equal to o = 0.690, when the
right side of equation (8) varies in a wide range. For
high values of the magnetic field induction, when w >
Wy, the magnitude of a decreases. The dependence of
Ao =a —0.690 on

= B
o~ T o
phaw,Ho

isshownin Fig. 2.

As an example, let us consider a niobium resonator
with the parameters: p = 8.6 x 10° kg, E = 1.6 x
10" N/m?, p=0.39,1 =4 cm, h=0.5mm, a= 0.5 mm,
and B = 0.4 T. When the field is absent, the natura
oscillation frequency of such a resonator is w(0) =
1.25 x 10* Hz. In the field with induction of 0.4 T, the
oscillation frequency is «(0.4) = 1.4 x 10* Hz. Thus, at
the magnetic field with an induction of 0.4 T, the oscil-
lating frequency varies by 12%. At a magnetic field of
the same magnitude parallel to the resonator length, the
frequency varies by 0.126% [10], i.e, by a factor
100 times smaller than for our situation.

In the calculations presented above, it has been
taken into consideration that the penetration depth of
the magnetic field disturbance, appearing in oscilla-
tions, into the superconducting material is equa to
zero. For an actual situation, the magnetic field distur-
bance penetrates into the superconducting material to a
finite depth, thusincreasing the effective size of the gap a.
Therefore, the measured oscillation frequency of the
superconducting resonator in the magnetic field is

BODROV, SEMENOV

always smaller than the calculated one. The compari-
son between the measured and calculated frequencies
permits determining the penetration depth. Using flat
paralel plates of a superconducting material, inserted
into the vibrator cavity, agap of 5 um and less may be
obtained. Under the condition that the gap is measured
to an accuracy of 0.1%, absolute measurements of the
penetration depth to an accuracy better than 50 A can
be performed. Considering that the natural frequency of
mechanical vibrations can be measured to an accuracy
of 10% and that, at such asmall gap, the frequency is
almost fully determined by the magnetic forces evenin
the field of severa tenths of a teda, variations in the
penetration depth of several hundredths of an angstrom
may be registered.

In conclusion, it should be emphasized once again
that the proposed construction has essential advantages
over the resonators used at present. Firstly, oscillations
of such a resonator do not lead to the distortion of the
magnetic lines of force (excepting the edge effects
which are negligible at a sufficiently wide resonator)
and, secondly, the oscillation frequency of such areso-
nator is more sensitive to the magnetic field. The limi-
tation is that, to vary the field in the resonator cavity, it
IS necessary to convert at least apart of the resonator to
the normal state and then to cool it to the initial temper-
ature again.
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Abstract—Theionic and optical properties of aninclined-wall magnetic massanalyzer with el ectrostatic direc-
tion focusing of ionsin anonuniform (r~) magnetic field were studied. A condition for ion focusing in theradial
plane was derived, and the basic parameters of the mass anayzer were determined. © 2000 MAIK
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Prismatic mass analyzers with an r = magnetic field
offer a number of advantages over those based on uni-
form two-dimensional magnetic fields. Among these
advantages are greater dispersion, flexible geometry of
the instrument, and no need for mechanical adjustment.

Mass analyzers with an r = magnetic field use either
magnetic direction focusing of ions or electrostatic
focusing. The latter are easier to fabricate and use,
because there is no need for intricately shaped pole
pieces of amagnet and precision arrangement of ionic—
optical elementsin this case.

The first to come into being were mass analyzers
with magnetic direction focusing [1, 2]. Therefore,
their properties are well-understood [3-5]. Sector-
shaped magnetic mass analyzers with electrostatic
direction focusing are comparatively recent [6] and still
under investigation. By now, single-stage and multi-
stage mass-analyzers, achromatic-focusing mass sepa-
rators, and analyzers with direction and vel ocity focus-
ing have been investigated in a linear approximation.
The studies were made under the assumption that the
central trajectory of ions entering and leaving the prism
isnormal to its boundaries[6, 7].

Theionic and optical properties of the systems with
an inclined-boundary prism are of specific interest for
instrument makers. In this case, the angles of entry and
departure of an ion beam are additional independent
parameters of a mass analyzer. Varying them, one can
optimize the properties of the instrument and extend its
capabilities.

Theaim of thispaper isto find (in afirst approxima-
tion) the focusing properties (inthe radial plane) and to
determine the basic characteristics of a mass analyzer
that involves an electrostatic lens and a magnetic prism
producing an r~t nonuniform magnetic field when the
central ion trgjectory cuts the magnetic-field bound-
aries at different-from-right angles.

The ionic—optical system of the mass analyzer is
depicted inthefigure. The system consists of ion source 1,
electrostatic lens 2, magnetic prism 3 (an ion beam
enters the prism at an angle €' and leaves it at an angle
€"), and ion collector 4.

In such a system, ion trajectories are described by
linear differential equations; therefore, the system may
be thought of as a device that transforms the initial
parameters of atrgjectory into the final ones, and this
transformation can be represented in terms of matrix
algebra [8-10]. We will consider the electrostatic lens
as being thin, because its field extends to a distance
much less than the focal distance. The leakage mag-
netic fields will be taken into account by replacing the
actual magnetic field with an ideal one that is equiva-
lent of the former in rotation angle; hence, within the
accuracy of the given study, corrections for leakage
field can be neglected.

In our system, an ion trajectory can be divided into
the following regions: free transit from the ion source
to the lens, the path over the lens area, free transit from
the lens to the input boundary of the prism, the path at
the entrance into the prism, the path in the magnetic
field of the prism, the path at the exit from the prism,
and free transit from the output prism boundary to the
ion collector. Then, the three-dimensional matrix trans-
formation that relatestheinitial and final parameters of
the tragjectory can be written as

Y7 Yo Yo
M7 Ho Ho

where y,, Yy, and Y, (al referred to the initial condi-
tions of ion movement at the exit from the ion source)
aretheinitia displacement in terms of the radius of the
central tragjectory, as well as the direction and relative

1063-7842/00/4506-0809%$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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Theionic—optical system of the mass analyzer: (1) ion source, (2) electrostatic lens, (3) magnetic prism, and (4) ion collector.

change of the momentum, respectively; M, isthe trans-
fer matrix for the corresponding ion path; and y,, vy,
and |1, are the parameters of the trgjectory at the collec-
tor dlit.

The transfer matrices for the ion paths at the input
and output boundaries of the magnetic prism are
defined [10] by

1 00 1 00
My =|tang10|» Ms=]|tane"10|- (2
10 10

The other matrices appeared in (1) are presented in
[6] and here are left out.

Sequentially multiplying the matrices for the corre-
sponding ion paths, we will obtain the full first-order
transfer matrix in the radial plane:

ay; pp Az
Ay Ay Ay |» ©)
Az Azp Ags

M =

where the top-line matrix elements, defining the ion-
beam spread in the plane of the collector dlit, are

I' 1 " n
a;, = %l—f—’:yal+¢mtans + 1 tane

Om _ Im

+ 1 tang' (1 + ¢ tane) ] T —f—(l + ¢ tane"),
Xy Xy

Il
a;, = [a%[—f—mg+I‘n;}[1+¢mtan£‘+l;;1tans"
Y

+1"tane'(1 + o, tane" )] + gl-fig
Y

X[Gm+Im(1+ drmtane™)],

2 2
F
Q3 = %1"'”1'1 m"’%‘ntangug fry = —r'x‘y,
Ll Lll
a.=-é, |% = m’ ”;: _m
Mm Mm Mm

Here, f,, istheradial focal distance of the lensin terms

of the radius of the central trgjectory and I, I;,,, and a

are the geometric parameters of the mass analyzer (see
figure). According to (1) and (2), the deflection of an
ion (subjected to arbitrary initial conditions) from the
central trgjectory at the collimator dlit can be written as

Y7 = @Yo * @1Yo * a13Ho. (4)

Putting a;, = 0 in (4), we will obtain the condition
for direction focusing of ions:

I;TI l 1 " n
[a%[—?:y%+ Im}[1+¢mtans + | tane
" 1 mn a
+1" tane'(1 + ¢, tane") ] +%L--f—g (5)

X[m+1n(1+dytane”)] = 0.
Equation (5) relates the lens power to the geometri-
cal parameters of mass analyzer.
The dispersion of the mass analyzer is

1
Dm = éalgrm.

Taking into account that |, = L,,/r,, we have

ﬂqBp + q)—i‘tans" O (6)
2U0m 2 U

The dispersion is independent of the angle of entry
of anion beam into the magnetic field of the prism.

2
Dnm = rm%”+
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The dispersion of a mass analyzer with the inclined
boundaries exceeds that of a prismatic mass analyzer
with the right-angled boundaries by a value of

L.. 2
AD,, = —Tj—)-r—"tana".

This makes it possible to improve the resolving
power of amass analyzer without increasing the overall
dimensions of itsionic—optical system.

A mass analyzer with I, =0, &' =0, and a = f,, (the
lens shapes a parallel ion beam at the entrance into the
prism) seemsto be of practical interest. In this case, the

condition for direction focusing of ions and the disper-
sion of the mass analyzer are given by

rm
and
_ Lu®n
Dm - 2 . (8)

The magnifying power of this mass anayzer
depends on the coefficient a;;. To estimate its value
from the condition for direction focusing, one should
first find thefocal distance of thelensand then calculate
the magnifying power.

Sincer,and L, theangle of ion departure from the

magnetic field of the prism should be negative to ensure
direction focusing; that is, the inclination of the output
boundary to the central trgjectory must be such that the
central tragjectory and its center of curvature lie on the
opposite sides of the normal to the field boundary.
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Our results show that the electrostatic focusing of
ionsin the direction to a sector-shaped inclined-bound-
ary magnetic prism makes the mass analyzer geometry
flexible, increases the dispersion, and suppresses the
effects of leakage fields and ion-beam space charge on
the instrument parameters.
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