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Abstract—A generalization of the correlation integral, called the cross-correlation integral, is suggested. Fea-
tures of the cross-correlation integral are studied, and a new attribute of a time series is defined. It is viewed as
some kind of dimension and is associated with the fill rate of the attractor. It is demonstrated that the cross-
correlation integral is calculated in much the same way as the wavelet transform of the density of points in the
attractor. The cross-correlation integral is applied to detection of nonstationarity in time series. A comparison
with statistical methods is made. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The correlation integral is among the basic tools for
the analysis of time series [1]. It has received broad
application in the last 10–15 years. For example, it was
used as the basis for evaluating the dimension of an
embedding for a system under study, defining the con-
cept of correlation dimension, and differentiating ran-
dom noise from deterministic chaos, to name but a few.
The correlation integral has been applied to various
types of data pertaining to technology, medicine,
hydrodynamics, astrophysics, finance, etc. On the other
hand, the approach can be extended to a wealth of prob-
lems beyond the scope of the analysis of individual sys-
tems and their related time series. This new direction
consists in comparing the modes of behavior of two dif-
ferent systems or those of the same system observed at
different instants. The latter problem can be regarded as
nonstationarity detection.

This paper suggests a generalization of the correla-
tion integral, studies certain features of the new mathe-
matical object, and defines a new attribute of a time
series. The last-named quantity is viewed as some kind
of dimension and is associated with the fill rate of the
attractor. In this work, the generalized correlation inte-
gral is applied to nonstationarity detection in time
series and is compared with statistical methods.

DEFINITION OF CROSS-CORRELATION 
INTEGRAL

The analysis of time series in nonlinear dynamics
widely employs the correlation integral C(r) [1]. Let
ρ(yi , yj) be the distance between phase vectors yi and yj.
Then the correlation integral C(r) of an N-point vector
1063-7842/00/4506- $20.00 © 0667
time series {yi}N is defined as

where Θ is the Heaviside function.
If the available time series {xi} is a scalar one, it can

be associated with a vector time series {yi} by the
Takens method [2] (see also [3]):

where d is the dimension and M is the delay.
We generalize this concept as follows. Let vector

time series {yi}n and {zi}m, comprising, respectively, n
and m points, be available. Let ρ(yi , zj) denote the dis-
tance. Then the cross-correlation integral C+(r) is
defined as

. (1)

Obviously, (r) = C(r).

This study deals with the case where the cross-cor-
relation integral is taken over segments from the same
time series {xi}. The segments differ only in location.

Let them be numbered and  denote the cross-corre-
lation integral for segments i and j. For the sake of con-
venience, define the quantities
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(3)
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They reflect both the local (with regard for scale) and
aggregate variations in the density of attractor points
for segments i and j. Here, rmax is the saturation scale of
the cross-correlation integral (rmax is of the order of the
maximum attractor size) and rmin is the scale corre-
sponding to the minimum distance between attractor
points (for the sample at hand) or to the noise amplitude
for noisy data. We restrict ourselves to the case j = 1,
denoting ∆i, 1 as ∆i and δi, 1 as δi. In other words, the
variations are considered with reference to segment 1.

CROSS-CORRELATION INTEGRAL 
AND WAVELET TRANSFORM

Let us calculate the cross-correlation integral of two
one-dimensional random variables ξ1 and ξ2, their
probability distribution functions (PDFs) being F1 and
F2, respectively. If the probability density function of ξ1
is p1, then an interval dx around x contains p1(x)dx val-
ues of ξ1. The number of ξ2 values whose distance from
x is less than or equal to r is F2(x + r) – F2(x – r). Thus,

the cross-correlation integral  has the form

Let the width of F2 be changed by a factor a. (In a
Gaussian case, the width is the variance.) Then the
cross-correlation integral becomes

(4)

Expression (4) is similar to the wavelet transform

Cξ1ξ2

+

Cξ1ξ2

+
r( ) p1 x( ) F2 x r+( ) F2 x r–( )–( ) x.d

∞–

+∞

∫=

Cξ1ξ2

+
r a,( ) p1 x( )

∞–

+∞

∫ F2
x r+

a
----------- 

  F2
x r–

a
----------- 

 – 
  dx.=

Fig. 1. δ vs. sample size for the (a) Lorentz system and
(b) Rössler system. Straight line, linear approximation.

(b)
0

–1.0

–2.0

–3.0

(a)–3.0

–4.0

–5.0

–6.0

Inδ

6.91 7.60 8.29 8.99 9.68 10.37
InN

–0.5

–1.5

–2.5

–3.5

0.5

–3.5

–4.5

–5.5
of p1 [4]:

(5)

Transforms (4) and (5) differ from each other in two
respects. First, (4) is “symmetric” in r (except for sign).
Second, recall that the kernel F is usually assumed to
meet the condition

and sometimes also the higher order moment condition

.

With transform (4), for any r and a, this requirement is
satisfied by the PDF difference (in brackets):

Note that formula (4) can be modified to meet the nor-

malization condition [see the factor 1/  in (5)].

In (4), integrating by parts demonstrates the symme-

try of the cross-correlation integral:  = . The
multidimensional case can obviously be treated simi-
larly.

The linkage with the wavelet transform applied to
the PDFs seems to be helpful when time series of the
system are unavailable or more difficult to obtain than
the PDFs.

ATTRACTOR FILL RATE

For a stationary time series, δ is nonzero [see (3)],
since any time series is a finite and discrete entity. Let
us trace how δ depends on the length N of the segment
used to estimate C+. Figure 1 shows the behavior of δ
for the Lorentz and Rössler systems. It is seen that the

curves approximately obey the power law δ ~ .
Here, dfr refers to the fill rate of the system attractor for
a given accuracy (of computation or measurement). It
can be viewed as a dimension (by construction). Notice
that the curves deviate downward at large N. The value
of N* at which the deviation from the power law
becomes considerable could be regarded as the maxi-
mum length suitable for analyzing the density of attrac-
tor points: increasing N any further refines the picture
insignificantly.
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NONSTATIONARITY DETECTION
IN TIME SERIES

It may be very important to know whether a time
series of interest is stationary. (By stationarity, one may
mean that the parameters of the generating system are
independent of time.) Stationarity is a necessary condi-
tion for many algorithms of nonlinear dynamics, such
as those evaluating dimensions, the Lyapunov expo-
nents, etc.

Let us apply the cross-correlation integral to nonsta-
tionarity detection in time series and compare the
results with those of traditional statistical methods.

Statistical Methods

Nonstationarity is commonly detected with the help
of mathematical statistics. It enables one to estimate the
probability that two samples are the realizations of ran-
dom processes with differing PDFs (the H1 hypothe-
sis). The most efficient tool to solve this problem is the
Kolmogorov–Smirnov method [5], which is stated as

follows. Let samples { }m and { }n be available,
comprising, respectively, m and n points. Furthermore,
assume that

where ν1(a) and ν2(a) the numbers of points from { }

such that  < a (j = 1 or 2), and denote

Then the PDF of the random variable

Dm, n tends to

(6)

The graph of K(q) is shown in Fig. 2. Given

Dm, n = K*, the probability q* for the H1
hypothesis to be true is determined from (6) subject to
K(q*) = K*. The Kolmogorov–Smirnov method was
applied to attractor identification (see, e.g., [6]). It has
proven to be highly efficient for many model systems.
However, there are cases where the method is inappro-
priate or suffers from limitations. To exemplify the dif-
ficulties, consider the Lorentz and Rössler systems with
the following dependences of the system parameter r
on time:
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The Lorentz system L1 is

.

Here, we set b = 8/3, σ = 10, r = f1(t), Tmax = 5000 (the
sample comprises 100000 points with the time step
0.05), rmax = 29, and rmin = 28. In the Lorentz version L2,
we set r = f2(t), the other parameters being as in L1. The
Rössler system R1 is

Here, we set r = f2(t), Tmax = 50000 (the sample com-
prises 100000 points with the time step 0.5), rmax =
4.30, and rmin = 4.23. In the Rössler version R2, we set
r = f2(t), the other parameters being as in R1.

ẋ σ y x–( ), ẏ rx y– xz, ż– xy bz–= = =

ẋ y z+( ), ẏ– x 0.2y, ż+ 0.2 z x r–( ).+= = =
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Fig. 2. The Kolmogorov–Smirnov distribution K(q).

Fig. 3. Estimated values of Dm, n vs. sequence
number of the first point in a segment of interest. Panel (a)
refers to the system R1; Panel (b), to the systems (1) L1 and
(2) L2. The parameter M indicates the degree of thinning.
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Fig. 5. δ for (a) L1 and L2 and (b) R1 and R2. The meaning
of N is as in Fig. 3.
The check for stationarity is based on the Kolmo-
gorov–Smirnov method applied to samples comprising
10000 successive points. Beginning with the second
sample, each sample is shifted by 5000 against its
immediate predecessor so that sample 1 covers points
1–10000; sample 2, points 5001–15000; sample 3,
points 10001–20000; and so on.

To avoid internal correlations, the original time
series {xi} is “thinned”: we take only the points x1,
xM + 1, x2M + 1, etc. The necessity of thinning and its real-
ization are comprehensively discussed in [6].

Figure 3a refers to R1. It shows estimated values of

Dm, n against the sequence number of the
first point in a segment of interest. The thinning param-
eter M is set at 3 or 4 so that the autocorrelation integral
is zero: for the Rössler systems, examined at the time
step τ = 0.5, the integral is positive at 3τ and negative at
4τ. It is seen that the estimates vary considerably and
the curves give no idea of how the system parameters
behave. Indeed, one could estimate the correlation
length more accurately if the system were defined for-
mally (e.g., in terms of ordinary differential equations).
However, such a definition is impossible in practice.
For the Lorentz systems, the correlation length Tcorr
estimated from x is very large, so that thinning at the
corresponding value of M leaves too little data for esti-
mating the PDFs. By convention, M may be set equal to
the quarter-quasi-period (mean distance between suc-
cessive peaks). This gives M ~ 5 for the time series at
hand. For L1 and L2, estimated values of

Dm, n are plotted in Fig. 3b. It is seen that
the estimates do not reflect the behavior of the system
parameter. In fact, they may indicate that the parameter
has different values for the two samples when its actual
values are the same.

Thus, approaches based on the Kolmogorov–
Smirnov method may be sensitive, e.g., to M. For the
Lorentz system, similar techniques of attractor identifi-
cation may be sensitive to initial conditions as well [6].
This paper suggests an alternative approach, which is
built around the cross-correlation integral.

Using the Cross-Correlation Integral
for Nonstationarity Detection 

Let us apply the cross-correlation integral to nonsta-
tionarity detection in L1, L2, R1, and R2.

Figure 4 depicts  and ∆i for L2. Notice that the
maximum deviation relates to the segment where the
deviation of the parameter is maximum in terms of
time. The values of δi are displayed in Fig. 5a for L1 and
L2 and in Fig. 5b for R1 and R2. It is seen that the behav-
ior of δi faithfully reflects the variations in the system
parameter.

Consider the sensitivity of the method to M (for d =
5). Figure 6a shows estimated values of δi for L2 at M =

mn/ m n+( )

mn/ m n+( )

Ci 1,
+
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2, 4, and 6. Figure 6b displays those for R2 at M = 2, 3,
4, and 5. The results are qualitatively the same and cor-
respond to the variations in the system parameter.

Figure 7 shows the graphs of δi for L1 and L2 in the
presence of additive noise. The noise is uniformly dis-

Fig. 6. δ for (a) L2 and M = 2, 4, and 6 and (b) R2 and M =
2, 3, 4, and 5. The meaning of N is as in Fig. 3.
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Fig. 7. δ for (1) L1 and (2) L2 under the action of additive
noise. 1, f1(t); 2, f2(t).
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tributed over the interval (–a, a), where a is equal to
10% of the standard deviation of the time series. Qual-
itatively, the result is immune to the noise.

If a time series is the realization of a nonstationary
random process, the outcome of the cross-correlation-
integral approach is similar.

CONCLUSION

We suggested a generalization of the correlation
integral. The new mathematical tool was called the
cross-correlation integral. Its similarity to the wavelet
transform of the PDF was demonstrated. The effect of
sample size was studied. We defined the quantity char-
acterizing the aggregate discrepancy between the corre-
lation and cross-correlation integrals. It was found that
this quantity is a power function of sample size. The
exponent governs the fill rate of the attractor. The sam-
ple size for which the deviation from the power law
becomes considerable can be regarded as the maximum
size suitable for estimating the density of attractor
points (with regard for the accuracy of a time series).
The cross-correlation integral was applied to nonsta-
tionarity detection in time series. A comparison with
statistical methods was made. It demonstrated that the
method of the cross-correlation integral is advanta-
geous in some cases. The effect of additive noise was
considered.
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Abstract—The paper presents a theoretical analysis of the glass transition. It is demonstrated that the kinetics
of glass transition is described by the following equations: the Maxwell equation of a viscoelastic medium; the
equation of elastic relaxation, which, in addition to the usual Debye term, involves a nonlinear term due to the
positive feedback between the strain field and temperature; and the equation of specific heat continuity, in which
the entropy term includes the contribution of elastic fields and the heat flux contains a term related to external
cooling. These equations are analogous to the Lorenz synergetic system, in which the strain plays the role of an
order parameter, the conjugate field reduces to elastic stresses, and the temperature is a controlling parameter.
© 2000 MAIK “Nauka/Interperiodica”.
Despite great scientific and practical interest, the
nature of the glass transition in liquids is not yet clearly
understood [1–4]. This is primarily associated with an
ambiguous interpretation of the amorphous state. At
present, there are three main concepts of the amorphous
state [5–9]. The first concept has a thermodynamic
character and assumes the occurrence of a structural
glass phase, which, in essence, is described in the same
fashion as spin glasses: the frozen disorder in the
parameters of interatomic interaction brings about frus-
trations and, hence, the loss of ergodicity of the glass
phase [5–7]. Within the second approach, the glass
transition is treated as a kinetic transition to a noner-
godic stationary state [3]; however, according to Das
and Mazenko [8], this transition cannot be realized. As
regards the third approach, Stein and Palmer [9] pro-
posed a scheme according to which the glass transition
leads neither to the formation of a thermodynamic
phase nor to the realization of a stationary kinetic state
but is accompanied by the complete loss of stability of
metastable states of the liquid whose configurations
become trapped in the regions of the phase space
bounded by barriers of finite height.

The loss of ergodicity upon glass transition is a
common feature of the above approaches. The first
approach assumes the absolute loss of ergodicity in the
configuration space of states, whereas the second
approach implies absolute ergodicity loss in the space
of fluxes. In the framework of the latter approach, it is
supposed that, owing to a finite barrier height, the
regions of the phase space are governed by the distribu-
tion of barriers and their configuration changes in a
fluctuational way. It is evident that such a slow evolu-
tion corresponds to the structural relaxation of the
glass. Consequently, although the glass is not associ-
ated with a particular state, it is assumed that the glass
is a set of stationary nonergodic states which has
evolved in accordance with the structural relaxation.
1063-7842/00/4506- $20.00 © 20672
From the foregoing, it is seen that a rather paradox-
ical situation arises today in the theory of the glass tran-
sition. Actually, all the above concepts are based on the
microscopic approach, whereas the phenomenological
scheme of the glass transition (similar to the Landau
theory of phase transitions) is currently absent. The rea-
son is that the violation of ergodicity upon glass transi-
tion is a more complex phenomenon than the phase
transition [10]. Indeed, in order to obtain the thermody-
namic description of the phase transition, it is sufficient
to represent the behavior of the sole hydrodynamic
mode whose amplitude reduces to the order parameter.
At the same time, the representation of the overall
pattern of the loss of ergodicity requires the description
of specific features in the distribution of microstates
over the phase space of the system as a whole, which,
quite apparently, cannot be achieved with a single
parameter [10]. In the theory of spin glasses, this is
embodied in the fact that, in addition to the memory
parameter introduced by Edwards and Anderson [11],
there arises the necessity of applying the nonergodicity
parameter accounting for the de Almeida–Thouless
instability [12].

However, it should be remembered that the afore-
mentioned simple scheme of the phase transition makes
it possible to represent only the thermodynamic behav-
ior of the hydrodynamic mode in a thermostat whose
state does not depend on the order parameter. When
describing the kinetics of phase transition, this condi-
tion is violated, and it is necessary to consider the self-
consistent behavior of the hydrodynamic mode and the
thermostat. In our earlier work [13], we showed that
this can be accomplished with the use of the Lorenz
synergetic scheme. Within this scheme, the state of a
thermostat is represented as a field which is conjugate
to the order parameter and a controlling parameter of
the temperature type. Such a three-parameter model
enables one to construct a nontrivial kinetic scheme of
phase transition, which, at a certain ratio between
000 MAIK “Nauka/Interperiodica”



        

PHENOMENOLOGICAL EQUATIONS OF THE GLASS TRANSITION IN LIQUIDS 673

                                                                          
relaxation times, reduces to the Landau–Khalatnikov
dissipative dynamics. Since the glass transition in a liq-
uid is a kinetic transition, the aforesaid brings up the
reasonable question as to whether the phenomenologi-
cal theory of the glass transition in liquids can be con-
structed using the Lorenz scheme, which provides the
simplest description of a self-organizing system [14].
The purpose of the present work was to derive the basic
equations of this theory.

Although the glass transition is attended by the loss
of ergodicity, in our derivation, we will deliberately
ignore this circumstance and proceed from the concept
of a viscoelastic medium, which goes back to rheolog-
ical models. To put it differently, instead of primary
glass transition parameters, such as the parameters of
memory and nonergodicity, we will use the secondary
parameters—the strain of the medium, the elastic
stress, and the temperature, which, within the syner-
getic approach, fulfill the role of an order parameter, its
conjugate field, and a controlling parameter, respec-
tively. This parametrization is justified by the fact that,
in the phenomenological representation, the fundamen-
tal difference between a liquid and a glass resides in the
relaxation character of the shear component of elastic
stresses: in a perfect glass, they persist infinitely long,
whereas, in liquid, relaxation proceeds over a finite
period of time [15]

(1)

where η is the dynamic shear viscosity and G is the
shear modulus.

In the simplest case, it is suggested that the glass
transition is due to the purely kinetic effect of freezing
the liquid when the viscosity η becomes infinite at a
finite shear modulus G [16]. At the same time, the
opposite situation is observed upon the usual second-
order phase transition when τ also infinitely increases
at the critical point. Actually, in going from the vis-
coelastic liquid to the general case, formula (1) takes
the form τ = χ/γ, where χ is the generalized susceptibil-
ity and γ is the kinetic coefficient (in relationship (1),
these quantities are G–1 and η–1, respectively) [17].
Upon the phase transition, the susceptibility χ infinitely
increases and the kinetic coefficient γ has no singular-
ity. In formula (1), this is equivalent to the fact that the
shear modulus G tends to zero at a finite viscosity η.
Such a situation corresponds to the viscoelastic transi-
tion [18].

As a rule, the glass transition is attended by the
emergence of thermodynamic features such as an
increase in the heat capacity [1, 2]. It is believed that, in
actual fact, the glass transition in a liquid does not
always reduce to a purely mechanical process of super-
cooling during which the shear viscosity becomes infi-
nite. Moreover, it is known that liquids of the metal
melt type undergo a glass transition only at cooling
rates exceeding a critical value [1, 2]. This follows from
the simplest qualitative considerations [19]; the basic

τ η /G,=
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equations of the quantitative theory will be determined
below. Essentially, the proposed approach is as follows:
the glass transition is provided by the self-organization
of the elastic fields of the shear components of stresses
σ and strains ε, on the one hand, and of the temperature
T, on the other.1 If the relationship between the first two
components is well known and, in the simplest case, is
described by the Maxwell model [15], the effect of tem-
perature is ensured by the critical increase in the shear
modulus G(T) with a decrease in the temperature: G = 0
in the liquid state, and G ≠ 0 in the glass.

The main finding that underlies the following deri-
vation of the synergetic equations resides in the fact
that the total strength of the gauge field is the sum of the
pure force and material components (the former com-
ponent is determined by the field equations, and the lat-
ter component reduces to the order parameter charac-
terizing the self-organization of the medium) [20]. Spe-
cifically, for a magnet, we have [21]

(2)

where the strength H represents the force contribution,
and the magnetization M is the material component.

It is characteristic that the total strength, namely, the
magnetic induction B = curlA, reduces to the derivative
of the vector potential A. A similar situation takes place
for a ferroelectric [21]:

(3)

where the electric induction D, the polarization P, and
the potential ϕ determine the force, material, and total
components of the electric field, respectively.

In the case of the viscoelastic liquid under consider-
ation, the tensor of total strain  fulfills the role of a
gauge field strength and the potential is the displace-
ment vector u. Taking into account the symmetry of ,
these quantities are related by the relationship [15]

(4)

Similar to the quantities defined by formulas (2) and
(3), the total strain  involves the field (purely elastic)

component  and the material component . For
thermoelastic stresses, this component is determined by
a change in the temperature and reduces to the dilata-
tion [15]

(5)

1 In relation to the synergetic concept as applied to the description
of the glass transition in a liquid, it should be noted that a scheme
of this type was proposed earlier in [19]. However, instead of the
temperature, we used the site occupation density, which is
inversely proportional to the atomic volume. This model is essen-
tially a lattice model rather than a continual one and gives the crit-
ical value for the free volume rather than for the cooling rate [3].

H 4πM+ curlA,=

D 4πP– ∇ ϕ ,–=

ε̂t

ε̂t

ε̂t
1
2
--- ∇ u u∇+( ).=

ε̂t

ε̂ ε̂0

ε̂0 ε0
Î , ε0 α T T0–( ),= =
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where α is the thermal expansion coefficient, T0 is the

equilibrium temperature, and  is the unit tensor.
For the glass-forming liquid under consideration,

the material component is due to nonzero shear moduli
G(T) arising with a decrease in the temperature. This is
conveniently expressed by the shear component of the
strain tensor ε0 ≡ G–1(G – G(T)) in the linear approxi-
mation with respect to temperature

(6)

where G is the characteristic value of the shear modu-
lus.

Now, we turn to the direct derivation of the syner-
getic equations for a viscoelastic medium. The basic
equation reduces to the Maxwell equation [15]

(7)

Here, the point signifies differentiation with respect to
time, the first term in the right-hand side describes the
Debye relaxation with time (1), and the second term
represents the flow of viscous liquid under the shear
component of elastic stresses. It is important to keep in
mind that equation (7) involves only the force (rather
than material) components of strain ε and stresses σ. In
the stationary case  = 0, kinetic equation (7) trans-
forms into the equation describing the Hooke law

(8)

The equation for determining the time dependence
of elastic stresses σ(t) is given by

(9)

where τσ and gσ are positive constants.
As in the Maxwell equation (7), the first term on the

right-hand side of relationship (9) describes the dissipa-
tive process of stress relaxation toward the equilibrium
value σ = 0. However, the process is accomplished in a
microscopic time τσ rather than in a macroscopic time
τ. The former time reduces to a Debye time of ~10–12 s,
so that the condition τσ ! τ (important for the subse-
quent consideration) is met. As regards the second term
in relationship (9), it accounts for the positive feedback
between the elastic strain ε and temperature T, which
results in an increase in the elastic stresses σ and, thus,
governs the self-organization process. The physical
meaning of this term can be easily understood for the
stationary case when  = 0. Then, equation (9) takes the
form

(10)

where we introduced the dimensionless positive con-
stant

(11)

and v is the atomic volume.

Î

ε0
G

1– dG T( )
dT

----------------
T 0=

T ,=

ε̇ ε/τ– σ/η .+=

ε̇

σ Gε.=

σ̇ σ/τσ– gσεT ,+=

σ̇

σ aσ/v( )Tε,=

aσ gστσv≡
Comparison of equation (10) with the relationship
following from expression (6) for the material compo-
nent σ0 = Gε0 demonstrates that they coincide at ε = 1.
Hence, it follows that the nonlinear term in equation (9)
accounts for the relation between the material and elas-
tic components of the strain, and parameter (11) of this
relation has the form

(12)

The kinetic equation for the temperature can be
deduced by analogy with the derivation of the heat con-
ductivity equation (see [15, §31]). In this case, it is nec-
essary to proceed from the heat equation of continuity
δQ = TδS:

(13)

Here, the heat flux is described by the Onsager relation-
ship

(14)

where k is the heat conductivity.
In the simplest case of thermoelastic stresses, the

entropy

(15)

is the sum of the purely thermodynamic component S0
and the field contribution (5), where K is the bulk mod-
ulus [15, §6]. It is easy to see that, in the glass-forming
liquid, we should go from the dilatation component
Kαε0 to the elastic energy of the shear component
divided by the temperature σε/T [here, the minus sign
allows for the relation (at S0 = const) TδS = pδV ⇒
−σδε, which is due to the opposite signs of the pressure
p and stresses σ]. As a result, equation (13) becomes

(16)

Let us now take into account the definition of the
heat capacity cp = TdS0/dT and, within the one-mode
approximation, replace ∇ 2 by – l–2, where l is the heat
conductivity scale. Then, from relationship (16), we
obtain

(17)

Substitute the relationship for  from equation (7)
into formula (17). The term σ2/η appearing in this case
describes a trivial effect of dissipative heating of a vis-
cous liquid flowing under the stresses σ. The specific
feature of the glass transition in liquids consists in pro-
viding oppositely directed heat removal of the intensity
q0, whose magnitude does not reduce to the Onsager
component but is determined by external conditions.
With allowance made for the above circumstances, the
kinetic equation for temperature takes the final form

(18)

aσ v dG
dT
------- , dG

dT
------- dG T( )

dT
----------------

T 0=

.≡=

TṠ ∇ q.–=

q k∇ T ,–=

S S0 T( ) Kαε0
+=

TṠa T( ) σε̇– k∇ 2
T .=

cpṪ kl
2–
T– σε̇.+=

ε̇

Ṫ T /τT– gTεσ– Q.+=
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Here, τT = cpl2/k is the time of relaxation due to the ther-
mal diffusivity χ ≡ k/cp , gT ≡ (τcp)–1 is the constant of
the negative feedback, and the last term

(19)

is the sum of the external component Q0 and a quadratic
contribution of elastic stresses. An explicit form of the
latter contribution considerably complicates the subse-
quent analysis, even though it leads only to a trivial
renormalization of the quantities. Hence, hereafter, the
term Q in equation (18) is assumed to be constant. Note
that equation (18) was derived under the assumption
that the equilibrium temperature T00 is equal to 0. It is
evident that, otherwise, when the liquid is cooled to the
temperature T00 ≠ 0, the term T00/τT should enter into
relationship (19).

The Maxwell equation (7) assumes the use of the
idealized Hencky model, in which the strain depen-
dence of the stress σ(ε) is represented by the Hooke law
σ = Gε at ε < εm and by the constant σm = Gεm at ε ≥ εm

(the stresses σ > σm give rise to viscous flow with the
strain rate  = (σ – σm)/η. Actually, the simplest curve
σ(ε) exhibits not one but two portions: the first
(Hookean) portion is characterized by a large slope
specified by the shear modulus G; and the second, sub-
stantially flatter portion of plastic strain has a slope
determined by the strain hardening coefficient Θ < G.
Obviously, this pattern implies that the shear modulus
entering [through the relaxation time (1)] into equation
(7), in actuality, depends on the strain. Let us use the
simplest approximation

(20)

which describes the above transition from elastic to
plastic strain. This transition occurs at the characteristic
strain εp, which should not exceed the maximum value
εm (otherwise, plastic strain is not observed). As a con-
sequence, the relaxation time (1) becomes dependent
on the strain:

(21)

In this relationship, we introduced the relaxation time
for the plastic flow (cf. formula (1))

(22)

and the parameter

(23)

which characterizes the ratio between the slopes of the
plastic and Hookean portions in the strain curve. It
should be noted that a relationship of type (21) was first
proposed by Haken [22] for the description of a hard
mode of laser radiation and then was used in our earlier
work [13] in order to describe the kinetics of the first-

Q Q0 σ2
/ηcp, Q0 ∇ q0/cp≡+=

ε̇

G ε( ) Θ G Θ–
1 ε/εp+
-------------------,+=

1
τ ε( )
----------

1
τ p

----- 1 θ 1–
1–

1 ε/εp+
-------------------+ 

  .=

τ p η /Θ=

θ Θ/G 1,<=
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order phase transition. However, in this case, relation-
ship (21) included the ratio ε/εp squared, and the result-
ing dependence of the synergetic potential V(ε) on the
order parameter ε was even. The description of struc-
tural phase transitions in liquids is characterized by the
presence of third invariants, which violate this parity
[23]. Hence, in approximation (21), we used the linear
term ε/εp rather than the quadratic term (ε/εp)2. As can
be seen, the corresponding dependence of the syner-
getic potential on the order parameter is not even.

It is easily seen that kinetic equations (7), (9), and
(18) coincide in their form with the known Lorenz sys-
tem, which was first applied to the description of turbu-
lent streams in the atmosphere [24]. Allowance made
for the strain dependence of the modulus in going from
the Hookean portion in the dependence σ(ε) to the flat
portion of plastic flow, which is characterized by the
hardening Θ < G, permits one to adequately describe
the glass transition in liquids. The investigation of the
appropriate synergetic scheme calls for special consid-
eration.
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Abstract—The glass transition is treated as a spontaneous emergence of the shear components of strain and
stress elastic fields upon cooling a liquid at a rate exceeding the critical value. The stationary elastic strains and
stresses and the effective relaxation time are determined within the adiabatic approximation. It is shown that
the glass transition process occurs through the mechanism of a first-order kinetic transition with allowance
made for the strain dependence of the shear modulus. The critical cooling rate turns out to be proportional to
the thermal diffusivity and unrelaxed shear modulus and inversely proportional to the temperature derivative of
the relaxed shear modulus and the square of the heat conductivity length of the sample. © 2000 MAIK
“Nauka/Interperiodica”.
In our previous work [1], starting from the rheolog-
ical concept of a viscoelastic medium possessing heat
conductivity, we derived a set of kinetic equations (7),
(9), and (18), which describe the self-consistent varia-
tion in the shear components of strains and stresses and
the temperature of the medium. The present work is
dedicated to analysis of these equations within the syn-
ergetic approach. This approach is based on the adia-
batic approximation for the characteristic times of
changes in the strain ε, the stresses σ, and the tempera-
ture T:

(1)

According to (1), during the evolution of the
medium, the elastic stresses σ(t) and temperature T(t)
follow the change in the strain ε(t). The first condition
in (1) relates the microscopic time τσ ~ 10–12 s and the
macroscopic time τ and always holds. By using the def-
initions of the thermal diffusivity χ = κ/cp, the kine-
matic viscosity ν = η/ρ, the relaxation time τ = η/G, and
the sound velocity c = (G/ρ)1/2 (where κ is the heat con-
ductivity coefficient, cp is the heat capacity, η is the
shear viscosity, ρ is the density, and G is the shear mod-
ulus), it is convenient to rearrange the second condition
in (1) as follows:

(2)

from which it follows that the characteristic length of
heat conductivity l = (χτT)1/2 should not exceed the
quantity

(3)

The physical meaning of this condition can be illus-
trated by the hydrodynamic inequality

(4)

τσ ! τ , τT  ! τ .

l
2
 ! L

2
,

L
χν( )1/2

c
----------------.=

τTτεωk
2
 ! 1,
1063-7842/00/4506- $20.00 © 20677
which implies that the geometric mean of the heat con-
ductivity time τT and the convection time τε is consider-
ably less than the reciprocal of the sound frequency ωk
(here, we took into consideration the relationships kl ~ 1,

 ≡ νk2, ωkck, and ττε  = 1, where k is the
wavevector). In systems susceptible to the glass transi-
tion, this conditions is universally fulfilled. Let us
rewrite equations (7), (9), and (18), taken from [1], in
the following form:

(5)

(6)

(7)

where the constant

(8)

is determined by the external heat removal Q0 and the
contribution from elastic stresses, which accounts for
the dissipative heating of the viscous liquid. In equa-
tions (5)–(7), we introduced the dimensionless con-
stants [1]

(9)

According to (4), the condition aT ! 1 is met.
Taking into account conditions (1), the left-hand

sides of equations (6) and (7), which contain the short
relaxation times τσ and τT, can be set equal to zero. As
a result, these equations are rearranged to give the fol-
lowing expressions for temperature and elastic stresses
in terms of the strain:

(10)

τε
1– ωk

2

τε̇ ε– σ/G,+=

τTṪ τTQ T–( ) aTν( )εσ,–=

τσσ̇ σ– aσ/ν( )εT ,+=

Q Q0 σ2
/ηcp+=

aσ τσgσν≡ ν dG
dT
------- , aT

τTgT

ν
-----------≡

τTτεωk
2

cpν
-----------------.= =

T
τTQ

1 ε2
/εm

2
+

----------------------,=
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(11)

where we introduced the designation

(12)

[the second equality is obtained with the use of rela-

tionships (9)].1 According to equation (10), as the strain
ε increases from ε = 0 to ε = εm, the temperature T
monotonically decreases from T 0 ≡ τTQ to T 0/2. It is
obvious that this decrease is caused by the negative
feedback in equation (6), which is a manifestation of Le
Chatelier’s principle for the problem under consider-
ation. Indeed, the self-organization of the liquid that
results in the glass transition is accounted for by the
positive feedback between the strain and temperature in
equation (7). Therefore, an increase in the temperature
should enhances the self-organization effect. However,
as follows from relationship (10), the system is con-
structed so that the result of the self-organization—an
increase in the elastic strain—leads to a decrease in its
cause, namely, the temperature. With regard to
dependence (11) relating the elastic stress to the strain,
at ε ! εm, it exhibits a linear behavior corresponding to
the Hooke law with the effective shear modulus

(13)

where the second equality follows from relationship (9).

The function σ(ε) reaches a maximum at ε = εm and
decreases at ε > εm, which has no physical meaning.
Hence, it follows that the constant εm defined by equal-
ity (12) is the maximum attainable strain. As is seen
from relationships (12) and (13), an increase in the tem-
perature derivative of the modulus |dG/dT | leads to a
decrease in the maximum strain εm and an increase in
the effective modulus Geff, which is proportional to the
characteristic temperature T0 = τTQ. On the other hand,
the ratio between the characteristic values of the ther-
mal energy ET = cpτTQ and the elastic energy Eε =

Geff , that is,

(14)

has, according to (4), small values. Substitution of
equation (11) into formula (5) gives the equation for the
evolution of the system in the course of the glass tran-

1 Note that, if the term quadratic in σ is retained in (8), the depen-
dences (10) and (11) should be expressed in terms of roots of the
quadratic equation, which substantially complicates analysis and
furnishes no radically new result.

σ
aσ

ν
----- τTQ( )ε 1 ε2

εm
2

-----+
 
 
  1–

,=

εm
2–

aTaσ≡ 1
cp

----- dG
dT
------- τTτεωk

2
=

Geff aσ/ν( )τTQ≡ dG
dT
------- τTQ,=

εm
2

ET

Eε
------ τTτεωk

2
,=
sition

(15)

Its form is determined by the strain dependence of
the synergetic potential V(ε)

(16)

where the characteristic temperatures are defined as

(17)

(18)

and relationship (9) is used in the second equality (18).
It is of interest that the ratio between these temperatures

(19)

reduces to the ratio between the effective shear modu-
lus (13) and its characteristic value G. At T 0 ≤ Tc,
dependence (16) exhibits a monotonically increasing
behavior with a minimum at the point ε = 0. This
implies that, in the stationary state (  = 0), the elastic
strain is absent; i.e., the liquid state is realized when the
strain caused by external stresses relaxes for a time

(20)

This relationship follows from equation of motion (15),
which is written in the linear approximation. As the
effective temperature T 0 increases up to the critical
temperature Tc, the relaxation time infinitely increases;
and, at T 0 > Tc, the system transforms into the vitreous
state. In this case, a multiplier of 1/2 appears in depen-
dence (20) and the minimum of synergetic potential
(16) corresponds to the elastic strain

(21)

which increases as the root with an increase in the dif-
ference T 0 – Tc. According to equation (10), the temper-
ature of the system becomes critical [relationship (18)]
and the elastic stresses reach the stationary value

(22)

where σm ≡ Gεm.

Physically, the glass transition is due to the fact that,
at T 0 > Tc, in accordance with (19), the effective shear
Geff exceeds the characteristic value G. As follows from
definitions (17) and (18), the original reason for the
glass transition is an increase in the cooling rate (8) up

ηε̇ ∂V
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-------.–=

V
Gεm

2

2
---------- ε2

εm
2
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εm
2
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T
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νG
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τeff τ 1 T
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.=

ε0 εm T
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to the Q values exceeding the critical rate

(23)

Among the parameters affecting the critical rate Qc

are the kinetic parameters, which determine the heat
conductivity time τT, and the synergetic parameters
characterizing the self-organization of elastic and tem-
perature fields. According to relationship (23), the first
group of parameters involves the thermal diffusivity
κ/cp and the heat conductivity length l. An increase in
the former parameter results in an increase in Qc,
whereas an increase in l causes an opposite, stronger
(quadratic) effect. The influence of the synergetic fac-
tors is governed by the ratio between the shear modulus
G and its temperature derivative |dG/dT |: the smaller
this ratio, the lower the critical rate of quenching. In
other words, systems with relatively small shear moduli
that strongly depend on temperature are susceptible to
the glass transition. It is this situation that is realized in
polymers [2]. Among metallic glasses, eutectics pos-
sess this property [3, 4].

In the above treatment, we assumed that the cooling
rate Q is a model parameter independent of ε, σ, and T.
However, it is seen from expression (8) that the quantity
Q is the sum of the component Q0, which is associated
with the external heat removal, and the dissipative con-
tribution ∆Q = σ2/ηcp specified by elastic stresses (22).
By assuming that Q is independent of σ, we actually
ignored the term ∆Q. Therefore, in the above cases, the
quantity Q should be taken to mean the external com-
ponent Q0. Let us correct this approximation by using
the stationary value of the dissipative contribution, that
is,

(24)

Then, from equation (8), it follows that

(25)

and relationships (20)–(22) take the form 

(26)

(27)

(28)

Here, the last two relationships correspond to the super-
critical region Q0 > Qc and the first relationship, to the
subcritical region [in passing through Qc, according to
the law of duality, an additional multiplier of 1/2
appears in formula (26)]. A comparison of equalities
(20)–(22) and (26)–(28) demonstrates that allowance
made for the dissipative heating of the medium at the
rate defined by (24) leads to a trivial twofold decrease
in the relaxation time τeff and an increase in the station-

Qc
G
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1/2εm Q0/Qc 1–( )1/2

,=

σ0 2
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ary elastic fields of strain ε0 and stresses σ0 by a factor

of .

Now let us replace τ in the set of Lorenz equations
(5)–(7) by the dependence τ(ε) [1]:

(29)

where we introduced the relaxation time for plastic
flow τp = η/Θ (Θ is the strain hardening coefficient), the
parameter Θ = Θ/G < 1, and the characteristic strain
εp < εm.

It is easy to see that, within the adiabatic approxima-
tion (1), this set, as before, reduces to the Landau–Kha-
latnikov equation (15). However, in this case, the coef-
ficient G in synergetic potential (16) is replaced by Θ
and there appears the odd term proportional to G – Q,

(30)

Here, we introduced the critical temperature [cf. for-
mula (18)]

(31)

At low effective temperatures T 0 [formula (17)],
potential (30) exhibits a monotonically increasing
behavior with a minimum at the point ε = 0, which cor-
responds to the stationary liquid state. As can be seen
from Fig. 1, at the values

(32)
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there appears a plateau, which, at T 0 > , transforms
into a minimum (corresponding to the strain ε0 ≠ 0) and
a maximum εm, which separates the minima at ε = 0 and
ε0. With a further increase in the effective temperature
T 0, the minimum of an ordered phase, which corre-
sponds to the vitreous state ε = ε0, becomes deeper and
the height of the interface barrier decreases and
becomes zero at the critical value

(33)

which exceeds the critical temperature Tc0 [formula
(31)]. The above stationary strains for the vitreous state
(Figs. 1, 2) are given by

(34)

The stationary elastic stress σ0 is determined by the
substitution of ε0 into relationship (11). At T 0 ≥ T c, the
character of the dependence V(ε) is identical to that
observed in the absence of the strain dependence of the
modulus (Fig. 1, curve 4).

Tc
0
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Fig. 1. Dependences of the synergetic potential on the elas-

tic strain at different temperatures: (1) T 0 < , (2) T 0 =

, (3)  < T 0 < T c, and (4) T 0 ≥ T c.

Tc
0

Tc
0

Tc
0

The aforementioned features correspond to the pos-
itive strains ε. In the negative semiaxis, as |ε| increases,
the potential V(ε) passes through a very weak minimum
and then infinitely increases at ε = –εp. Thus, the nega-
tive elastic fields ε and σ turn out to be virtually unre-
alizable.

The characteristic feature of our scheme resides in
the fact that the energy barrier inherent in the first-order
synergetic transition manifests itself only in the pres-
ence of the strain dependence of the modulus. Since
this dependence always occurs in reality, it can be con-
cluded that the glass transition in liquids is a first-order,
rather than a second-order, synergetic transition. Note
that the situation under consideration is substantially
more complex than that observed upon conventional
phase transitions. Indeed, in the latter case, the station-
ary temperature of the system T0 reduces to the temper-
ature T00 for a thermostat (above, it was assumed that
T00 = 0). In our case, for the second-order synergetic
transition occurring in the absence of the strain depen-
dence of the modulus, T0 reduces to the critical temper-
ature Tc. The inclusion of the strain dependence of the
modulus leads to the temperature

(35)

which is determined by the location of the minimum in
dependence (30). According to equalities (34) and (35),
the temperature T0 gradually decreases from

(36)

at T 0 =  to Tc0 at T 0  ∞. It is seen from Fig. 3 that
a quasi-static increase in the parameter T 0 from 0 to T c

brings about a linear increase in the stationary temper-
ature of the system in the same range. The temperature
T 0 abruptly diminishes at T 0 = T c and then smoothly
decreases. As the temperature T 0 decreases, the T0
quantity at Tc0 [see relationships (32)] abruptly
increases from Tm (36) to Tc0 (32). Since, in the actual
range of the parameters α and Θ, which is limited by
the maximum value

(37)

the temperature of the medium Tm (36) is lower than the
minimum thermostat temperature (32), it can be seen
from Fig. 3 that the temperature of the medium T 0 is
always less than its value T 0 provided by cooling of the
system at the rate Q = T0/τT.

The above picture is based on the assumption that
the glass transition is caused by the self-organization of
the shear components of the stress and strain elastic
fields, on the one hand, and of the sample temperature,
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on the other. Note that the strain ε plays the role of an
order parameter, the conjugate field reduces to the elas-
tic stresses σ, and the temperature T is a controlling
parameter. The original reason for the self-organization
is the positive feedback between the temperature T and
strain ε [see relationship (7)]. According to (9), this
feedback results from the temperature dependence of
the characteristic shear modulus. Since the strain
dependence of the modulus was not taken into account
in the above relationships, they involved the shear mod-
ulus G. However, it is easily seen that, in actuality, it is
necessary to employ not the initial shear modulus G,
which is virtually temperature-independent, but the
relaxed quantity Θ determining the slope of the σ(ε)
dependence in the portion of the plastic strain. Hence,
G should be replaced by Θ in formulas (5), (9), (12),
(13), (16), (18), (19), and (22)–(24). Then, with due
regard for renormalization (33), expression (23) for the
critical cooling rate Qc takes the form

(38)

It is characteristic that this quantity is determined by
both the unrelaxed shear modulus G and the relaxed
shear modulus Θ.

The kinetics of the glass transition is defined by the
Landau–Khalatnikov equation (15), in which the syner-
getic potential has the form (30) typical of a first-order
transition. In the supercooled liquid state (η = ∞), the
system can be frozen (   0) even in the nonstation-
ary state (∂V/∂ε ≠ 0).

The picture under discussion has a phenomenologi-
cal character, and it is expedient to compare the
obtained data with the microscopic theory [5, 6].
Within this theory, the role of the state parameters is
played by the quenching temperature T00 and the inten-
sity of quenched disorder

(39)

This intensity is equal to the difference between the
variance of the microstresses σi produced by quenching
and the variance of the microscopic quantities σi(t),
which, on the time scale ~τσ, vary in a fluctuational
manner near the macroscopic quantity σ(t) [in relation-
ships (39), N is the number of atoms over which the
summation is carried out].2 According to [5, 6], in the
field h ≠ 0, the term –(h2/2)ε2 arises in the effective
Hamiltonian, whose function, in our case, is fulfilled by

2 Owing to the adiabatic approximation, we went from the micros-
tresses σi(t) to the macroscopic quantities σ(t).
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synergetic potential (30). By expanding the logarithms
in the potential, we obtain the term

which corresponds to the above contribution of the
quenched disorder. Taking into consideration depen-
dences (17) and (31), the disorder intensity can be writ-
ten as

(40)

With allowance made for renormalization (25) and
dependence (38), we obtain an expression in terms of
the initial cooling rate Q0:

(41)

Θ T
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Fig. 2. Dependences of the stationary strains on the thermo-
stat temperature at εm = 1, Tc0 = 1, Θ = 0.25, and α = 0.5.
The solid line corresponds to the stable state ε0, and the
dashed line represents the unstable state εm.
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Fig. 3. Dependence of the stationary temperature of the sys-
tem T0 on the thermostat temperature at Tc0 = 1, Θ = 0.25,
and α = 0.5.
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Hence, it follows that the quenched disorder

(42)

appears only at the quenching rates exceeding the quan-
tity

(43)

The dependences obtained make it possible to
express the results of the microscopic theory in terms of
the experimentally observed quantity—the quenching
rate Q0. Indeed, for the Edwards–Anderson parameter
q and the nonergodicity parameter ∆, we have q ∝  h2/3

and ∆ ∝  h2/3 – , where the critical field hc corre-
sponds to the quenching rate (38) at which the glass
transition leads to the loss of ergodicity. According to
[7, 8], for a viscoelastic medium, the nonergodicity
parameter ∆ ∝ η g – η is determined by the difference
between the viscosities in the vitreous (nonergodic) and
liquid (ergodic) states. Then, taking into account for-
mula (42), one obtains the relationships

(44)

(45)

in which it is assumed that Q0 > Qc0. Therefore, with an
increase in the quenching rate, the liquid in the vicinity
of the glass transition point Qc (at Qc0 & Qc) acquires
memory, whose parameter begins to increase very rap-
idly at the point Q0 = Qc0. As follows from relationship
(45), at the glass transition point, the difference in shear
viscosities ηg – η ∝ ∆  increases equally sharply.

It is clear that the above features should be observed
experimentally. In particular, a singular increase in the
relaxation time τg ∝ η g should be expected upon the
glass transition. In this case, the memory effects mani-
fest themselves in a nontrivial fashion [5, 6]. Specifi-
cally, in low-frequency measurements of elastic stress
relaxation times (for example, with the use of the inter-
nal friction technique [9]), the τg value obtained upon
quenching of the sample, which was initially subjected
to constant shear stresses, should be larger than the τ
time obtained upon quenching in the absence of
stresses. A similar difference that is proportional to
the irreversible response (45) should also be observed
for the material component of the strain ε0 =
G−1 |dG(T)/dT |T = 0T [1]. As for spin glasses [6], it

h
2

2G Q0 Qc0–( )/Q
c

=

Qc0 Q
c

1 Q/2G–( ).=

hc
2/3

q Q0 Qc0–( )/Q
c[ ]

1/3
,∝

∆ Q0 Qc0–( )/Q
c[ ]

1/3
hc

2/3
,–∝
should be expected that, in the course of structural
relaxation, the above difference will very slowly
decrease with time. However, the time dependence can
be described not only by a logarithmic function, but
also by the power and Kohlrausch (stretched exponent)
laws; moreover, even a double logarithmic dependence
(virtually the termination of structural relaxation) can
occur [10].
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Abstract—The evolution of a randomly modulated sine-Gordon breather in a nonlinear medium is studied the-
oretically. The initial wave field is affected by multiplicative noise. For breather amplitude and velocity, the
probability distribution function is determined by means of the inverse scattering transform and the method of
cumulants. The distributions are shown to be non-Gaussian. The mean and the most probable values of the
breather amplitude and velocity are calculated. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Investigating the evolution of random fields in non-
linear dispersive media is among the basic challenges
in the theory of nonlinear waves [1–3]. Of particular
interest is the propagation of randomly modulated soli-
tons and soliton systems in media described by integra-
ble or nearly integrable nonlinear wave equations.
Problems of this type are raised in areas such as optical-
soliton propagation in fibers with amplifiers [4], opti-
cal-pulse propagation in resonant media [5], soliton
generation in nematic liquid crystals [6], and the effects
of quantum noise on fluxon dynamics in long Joseph-
son junctions. The inverse scattering transform [7] has
been instrumental in attacking them. This approach was
applied to the propagation of a nonlinear-Schrödinger
[4, 8–10], Korteweg–de Vries [8], or dark soliton [11]
under random modulation. All of the soliton distribu-
tion functions (DFs) obtained in those studies have a
Gaussian shape. On the other hand, for nonlinear-
Schrödinger and sine-Gordon (SG) solitons, it has
recently been demonstrated that second-order noise
effects result in a non-Gaussian DF for parameters of
single solitons generated [7, 12]. It is therefore interest-
ing to consider the problem in the context of a system
of randomly modulated solitons. One could give many
examples of coupled soliton systems, including soliton
pairs that form breathers. Of special importance is a
randomly modulated SG-equation breather. Being a
bound state of a kink–antikink pair, it has a finite bind-
ing energy, in contrast to nonlinear-Schrödinger or
other breathers with a zero binding energy. Due to the
energy and the internal-oscillation parameter, a
breather may interact with noise in a variety of ways
and even undergo decay. Breathers are a key issue in the
statistical mechanics of soliton systems and nonequi-
librium processes related to solitons. Taking them into
account helps one understand the nature of noise in dis-
tributed systems. For example, breathers contribute to
noise in long Josephson junctions [13]. To understand
1063-7842/00/4506- $20.00 © 20683
fluctuations in these structures, one should consider the
effect of quantum fluctuations on kinks and breathers.

This paper studies the evolution of an SG breather
with a randomly modulated initial condition.

FORMALISM OF THE INVERSE SCATTERING 
TRANSFORM FOR CHANGES 

IN THE BREATHER PARAMETERS

Consider the SG equation

(1)

with the randomly modulated initial breather condition

(2)

where ε(x) is a Gaussian random function for which

(3)

Here, B(x) is the noise correlation function and l is the
correlation length; the angled brackets denote the aver-
aging over all realizations of ε(x). The noise intensity is
assumed to be small, so that B ! 1. This model applies
to soliton excitation in liquid crystals [6] and to quan-
tum effects in long Josephson junctions [13].

Now, we give some relevant formulas of the inverse
scattering transform, the notation being borrowed from
[14]. Recall that this technique associates a nonlinear
evolution equation with a linear spectral problem:

(4)

In the case of the SG equation, L is a 2 × 2 matrix
and ψ = (ψ1, ψ2). The complex number λ is called the
spectral parameter. Let a(λ) and b(λ) denote the Jost
coefficients. A breather relates to a symmetric pair of
zeros of a(λ) in the λ-plane, denoted as λ1 = µ + iν and
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Lψ λψ.=
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λ2 = –µ + iν. A breather solution has the form

(5)

Here, ξ(t) = ξ0 + vt and the phase of the breather is

The amplitude of the breather is γ = .
Furthermore,

(6)

The Jost coefficients are expressed as

(7)

It is very difficult to solve the problem in a general
case. We therefore concentrate on the limit of a small-
amplitude breather: ν ! µ and ν ! |λ1|. Under this con-
dition, the analysis can be carried out completely. The
corresponding solution is

(8)

The Jost functions of a small-amplitude breather are

(9)

where
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The statistical characteristics of breather parameters
are computed from variational derivatives of the scat-
tering data. The derivatives give corrections to the scat-
tering data:

(10)

The first variational derivative of the spectral param-
eter λ1 is

The second variational derivative is

(11)

A correction to a(λ) comes from

(12)

and

(13)

This gives corrections to the breather amplitude:

(14)

The first- and second-order corrections to the
breather velocity are calculated similarly:
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(15)

BREATHER-PARAMETER DISTRIBUTION

Let us calculate the DF of the breather parameters.
We employ the method of cumulants [15]. According to
(13) and (14), the corrections to λ are nonlinear func-
tionals of the random process ε(x). Therefore, the DF of
the corrections is non-Gaussian. Cumulants are more
convenient than moments as far as a non-Gaussian DF
is concerned. First, a few cumulants suffice for describ-
ing the shape of a non-Gaussian DF: the first and the
second cumulants refer to the Gaussian approximation
of the DF shape, whereas the higher cumulants describe
the deviation of the DF from the Gaussian DF.

Recall that the DF of a random variable ∆ is the Fou-
rier transform of the characteristic function χ:

(16)

The cumulants Kn are determined from the coeffi-
cients of the expansion

(17)

To calculate Kn, let us express them in terms of the
moments Mn:

(18)

Formulas (16)–(18) yield an expression for the DF:
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where y = (∆ – K1)/  and α3 = K3/(K2)3/2.

In (18), all of the cumulants are developed in ε up to
fourth-order terms, since K3 ~ ε4. Looking at (19),
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notice that K3 appears only in the term / . The
joint contribution of K2 and K3 is of the order of ε2. It is
therefore sufficient to develop K3 up to ε4 and K1 and K2

up to ε2.

In the following, we use the correlation function

(20)

where l is the correlation length.

STATISTICAL CHARACTERISTICS 
OF BREATHER-PARAMETER FLUCTUATIONS

Amplitude Fluctuations

Using (14), we arrive at formulas for amplitude-cor-
rection cumulants:

(21)

(22)

and

(23)

Here, σ2 = B0l with B0 = ε2. The DF peak of P(∆γ) is at

. The mean amplitude is found from the equation

〈∆γ〉 = . We have

(24)

This indicates that breather amplitude falls as σ2

rises. The dependence of the correction is not mono-
tonic at larger γ. The most probable breather amplitude
is

(25)

Thus, the most probable amplitude is less than the
mean amplitude.
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The deviation of the DF from the Gaussian law is
characterized by the coefficient of skewness

(26)

For example, if σ = 0.1, η = 1, γ = 0.1, and ν = 0.5,

then  is as large as 0.17, which is an appreciable
deviation from a Gaussian distribution.

Breather Velocity Fluctuations

Velocity-correction cumulants are

(27)

(28)

and

(29)

The peak of the velocity DF is at 〈∆v〉  = , so that
the mean breather velocity is

(30)

The correction is positive and decreases with
increasing v. Furthermore, ∆v  0 with v  1. The
correction is maximum when the initial velocity is zero.

The most probable breather velocity is

(31)

Thus, the most probable velocity is less than the
mean velocity. The velocity skewness coefficient is

(32)

Thus, the velocity DF of the breather becomes less
asymmetric as v  1 (relativistic limit). On the other
hand, the asymmetry grows with decreasing amplitude.

CONCLUSIONS

We studied the effect of a noisy initial condition on
the evolution of an SG-equation breather. Since the SG
equation is a completely integrable equation, the evolu-
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tion of the initial wave field results in the formation of
a breather with random parameters together with a radi-
ation field. The former and the latter separate in a fairly
short time, allowing one to examine their statistical
properties individually. Using the inverse scattering
transform and the method of cumulants, we found the
DFs for the amplitude and velocity of an asymptotic
breather generated by the noisy initial condition. Both
of the DFs are non-Gaussian. Finally, we calculated the
coefficients of skewness and the most probable and
mean values for the breather amplitude and velocity.
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Some Laws of Polarization and Dispersion of a Drop 
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Abstract—The laws of distribution among contributions in various interactions to the total polarization energy
of a conductor in a uniform electrostatic field was analyzed. It is shown that in a closed system, spontaneous
shape variations of a liquid conductor with a free surface in an external magnetic field are possible only if they
are accompanied by an increase in the conductor dipole moment. Variations of the intrinsic energy of a conduc-
tor are studied by the example of a conductive liquid drop in the case where a drop affected by a polarization
charge becomes unstable. Analytical expressions defining the sizes and charges of the droplets ejected out of
the initial drop under the conditions of instability are derived. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In spite of numerous theoretical and experimental
investigations of the laws of polarization of a conductor
in an external electrostatic field, some problems con-
cerning this phenomenon are still poorly understood so
far. This is related to a certain complexity in solving
electrostatic problems, on the one hand, and to the fact
that physical models used for the theoretical descrip-
tion of electrostatic phenomena are not realistic, on the
other hand [1–5]. Suffice it to recollect a well-known
problem concerning the relation between the surface
density of the electric charge of a conductor and the
curvature of its surface, shortcomings resulting from
the “point” charge idealization, and the problem in
obtaining the linear and surface distributions of charges
when their own sizes are ignored [4, 6, 7]. In particular,
temporal variation in the shape of a conducting liquid
drop in the electrostatic field E0, the theoretical study
of which is based on the conductor polarization phe-
nomenon [8], is poorly understood.

1. The expression for the polarization energy of an
uncharged conductor in a uniform electrostatic field of
strength E0 is easily derived [1, 2] and has the form

(1)

where p is the dipole moment of the conductor in the
field E0.

On the other hand, it is known [1–5] that the energy
Ud of an arbitrary rigid dipole p in the field E0 is defined
by the expression

(2)

The distinction between (1) and (2) is caused by the
fact that (2) is derived neglecting the energy U∗  of
interaction between the dipole charges, which is con-

U
1
2
---pE0,–=

Ud pE0.–=
1063-7842/00/4506- $20.00 © 20687
stant for the model of a “rigid” dipole, and neglecting
the intrinsic energy 2U0 of both charges, which is also
constant both for dipoles consisting of point charges
and for those consisting of charges distributed over
small finite volumes (let us recollect here that the
intrinsic energy of point charges is assumed to be infi-
nite).

Neglect of constant terms of the energy when deriv-
ing (2) is based on the fact that, in practice, we observe
only energy variations, but not constant energy values
[5]. However, if we deal with a polarized conductor,
neither the energy U∗  of the interaction of the charges
of the polarization dipole with each other nor the intrin-
sic energy 2U0 of both charges should be assumed con-
stant, because these energies depend on external field
strength E0 and, for finite volumes of conducting liquid
bounded by a free equilibrium surface, they also
depend on the surface shape.

It is easy to see from (1) and (2) that the intrinsic
energy Ugd ≡ U∗  + 2U0 of a conductor polarized in the
field E0 is defined by the expression

(3)

The energy U∗  of interaction of the dipole charges
with each other is negative, because the dipole charges
are of opposite sign. The intrinsic energy 2U0 of the
dipole charges is always positive, and its absolute mag-
nitude satisfies the condition [5]

(4)

It is clear that the equality sign in (4) is impossible
for the system of polarization charges under consider-
ation, because it would contradict relation (3).

Ugd U* 2U0+≡ U Ud–
1
2
---pE0.= =

2U0 |U*|.≥
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2. If the conductor dipole moment is known, one can
easily derive expressions for the conductor polarization
energy U and the intrinsic energy Ugd on the basis of (1)
and (3). Let us do this for a conductor of spherical
shape. Surface density κ = κ(Θ) of a polarization
charge at a sphere is known and is given by the expres-
sion [1]

(5)

where the angle Θ is reckoned from the direction of
field E0.

Therefore, it is possible to determine the polariza-
tion dipole characteristics, namely, the value q of the
charges involved and the distance l between their “cen-
ters of gravity.” To derive an expression for q, it is suf-
ficient to integrate (5) over a half of the sphere, with the
angle Θ varying in a range of 0 ≤ Θ ≤ π/2. As a result,
we obtain

(6)

Multiplying (5) by 2z ≡ 2RcosΘ and integrating Θ
over the angle again, we obtain the dipole moment of
the polarized sphere [1]

(7)

It is easy to the find dipole length l by dividing (7)
by (6); i.e.,

(8)

Consequently, the energy U of the conducting
sphere polarized in the field E0 and the intrinsic energy
of the charges of the polarization dipole Ugd are defined
by the expression

3. Let us explore the influence of deformation of the
conductor shape on the energy U of its polarization and
on intrinsic energy Ugd of a polarization dipole in the
field E0. While on the subject of conductor deforma-
tion, we will imply deformations caused by the action
of field E0 itself bearing in mind applications of the
problem under consideration to the problem of stability
of the free surface of a conducting liquid with respect
to the polarization and intrinsic charges (see, for exam-
ple, [8–12] and the references therein). In particular, it
is known that the equilibrium shape of a conducting liq-
uid drop in the field E0 is close to a prolate spheroid [1]
(it coincides to the approximation linear with respect to
the square of the eccentricity e2 [8, 13]). Therefore, in
the further consideration, we will assume that an ini-
tially spherical drop of a conducting liquid subjected to
a constant uniform electrical field E0 will suffer trans-
formation into a prolate spheroid with the eccentricity

κ Θ( ) 3
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p R
3E0.=

l
4R
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-------.=

U Ugd–
1
2
---R

3
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2
.–= =
governed by the strength of the external uniform elec-
trostatic field E0, the surface tension σ of the liquid and
the initial radius of the drop. To the approximation lin-
ear with respect to e2, the relation between the square of
the eccentricity of the equilibrium spheroid and the
aforementioned parameters is defined by the expres-
sion [7, 13]

(9)

This expression for the dipole moment of the spher-
oid is valid only to the approximation linear in e2. For
arbitrary values of e2, the polarization dipole moment
of a conducting spheroidal drop in the field E0 is
defined by the expression [1]

The equation describing a spheroid surface in a
spherical coordinate system with the origin at the
spheroid center is

(10)

To the approximation linear with respect to the
square of the eccentricity, the surface density of the
polarization charge of the prolate spheroid is defined by
the expression [1, 13]

(11)

Let us integrate (11) over half of the spheroid (i.e.,
over 0 ≤ Θ ≤ π/2) using equation (10), which defines the
free surface of the spheroid, and determine the polar-
ization charge value

(12)

To determine the dipole moment of the polarized
spheroid, we multiply (11) by 2r(Θ)cosΘ and integrate
the resulting expression with respect to the angle Θ
over the interval 0 ≤ Θ ≤ π/2. As a result, we have

(13)

Dividing (12) by (13), we obtain an expression for
the dipole length l:

(14)

If the above is referred to the equilibrium spheroidal
shape of the conducting drop in the field E0, it should
be remembered that, in expressions (12)–(14), the
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SOME LAWS OF POLARIZATION AND DISPERSION 689
square of the eccentricity and the external field strength
are related by expression (9).

Comparing relations (6)–(8) and (12)–(14), we can
see that the transformation of an initially spherical drop
in the field E0 into a prolate spheroid leads to an
increase in all characteristics of the polarization dipole,
namely, the charge, length, and moment. Transition
from the initial spherical shape of the drop to the equi-
librium spheroidal shape starts at an infinitely low
strength of the field E0. This transition is accompanied
by a decrease in the total potential energy of the closed
system involving the drop, uniform external field E0,
and infinitely distant charges inducing this field.

The fact that we are dealing with spontaneous defor-
mations of a drop in a closed system imposes certain
restrictions on the form of admissible deformations.
Indeed, only deformations accompanied by a decrease
in the total potential energy may spontaneously occur
in a closed system. In the considered case of a conduct-
ing drop in an external electrostatic field, the only
admissible deformations are those for which the dipole
moment of the drop increases and the electrical part of
the total potential energy (described by relation (1))
decreases, because the energy of the surface tension
forces at any deformations may only increase propor-
tionally to an increase in the drop surface. The intrinsic
energy Ugd of the polarization dipole at such deforma-
tions will increase according to (3); and the energy of
interaction of polarization charges U∗  decreases,
because, according to (12) and (14), if the drop elon-
gates, the charge q increases much more slowly than
the length l of the dipole does. An increase in Ugd with
a simultaneous decrease in U∗  may occur only due to a
considerable increase in the electrostatic intrinsic
energy 2U0 of the polarization charges (see (3), (4)).

In particular, it follows from the above that sponta-
neous deformations of the drop in the field E0 trans-
forming the drop into an prolate spheroid lead to a
decrease in the potential energy of the system and
deformations resulting in an oblate spheroid cause an
increase in it. We note that the polarization dipole char-
acteristics of an oblate spheroid with its axis parallel to
the field E0 differ from (11)–(14) only in the sign of the
term e2. In the calculation of a bubble shape in a liquid
in an external electrostatic field, an inverse dependence
will be encountered: deformation of the bubble in the
field E0 resulting in an oblate spheroid is accompanied
by a decrease in the polarization energy, because the
main contribution to the polarization energy is made by
the polarization of the liquid surrounding the bubble.
However, in the bubble problem, depending on the sur-
face mobility of the charges at the bubble walls and the
permitivity of the surrounding liquid (depending on the
ratio between the contributions to the total potential-
energy variation caused by polarization of the sur-
rounding liquid and the bubble itself due to redistribu-
tion of the free charge at its walls), various deformation
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
types may occur: an oblate spheroid, sphere, and pro-
late spheroid as was mentioned previously [14, 15].

We now demonstrate that the further evolution of
the instability of a conducting drop in an external uni-
form electrostatic field leads to a decrease in the poten-
tial energy of the system as well.

4. A drop of radius R of an ideally conducting
incompressible liquid with surface tension σ is sub-
jected to an external uniform electrostatic field of
strength E0; as a result, the drop takes a spheroidal
shape specified by the eccentricity defined by relation
(9). As the field strength increases, the drop eccentric-
ity, as well as the surface density of the charge induced
at the drop apices, increases too. At a certain critical
strength E0 (when E0 ≥ (2.6σ/R)1/2 [7, 16]), the drop
becomes unstable with respect to a virtual increase in
the eccentricity and then starts to elongate rapidly
(faster than according to the exponential law [17]).
When the pressure of the electric field of the charges
induced at the drop apices (this field strengthens with
increasing e2, see Section 3 of this paper) exceeds the
pressure of the capillary forces, the drop charge starts
to decrease owing to an emission of highly dispersed,
strongly charged droplets from both of the drop apices
and the drop eccentricity growth ceases. The square of
the eccentricity e2 of the parent drop at this instant is
unknown, because expression (9) is valid only for equi-
librium forms.

We note that the emission of the daughter droplets
occurs from the emitting bulges being formed at the
apices of the unstable drop owing to superposition of
the high-order modes of the capillary oscillations of the
drop, which lose stability when the surface density of
the induced charge increases. The emission of the
daughter droplets involves the detachment of the tips of
the emission bulges by the field together with the polar-
ization charges accumulated at them. Formation of the
emission bulges, according to the aforesaid, leads to an
increase in the drop dipole moment and to a decrease in
the total potential energy of the system.

Assuming that there is axial symmetry, as well as
symmetry about the equatorial plane of the drop, we
will consider the droplets simultaneously detaching
from the opposite apices of the parent drop as being
alike in size, with their charges being equal in magni-
tude but opposite in sign. It is possible to assume that
two simultaneously emitted daughter droplets form
dipole p with a loose coupling and the dipole extent
grows as the droplets fly apart. Thus, the process of the
emission of the daughter droplets again leads to an
increase in the dipole moment and to a decrease in the
potential energy of the entire system. The intrinsic elec-
trostatic energy of the system in this process steadily
increases.

We now find the variation of the potential energy of
the system resulting from simultaneous emission of
two identical but opposite-charged daughter droplets
from the opposite apices of the parent drop specified by



690 SHIRYAEVA
eccentricity e and major semiaxis a. We neglect the
influence of evaporation and condensation, and we
assume the temperature of the system to be constant.
A specific mechanism for the emission of droplets will
not be considered (typical models can be found, for
example, in [11, 18]), and instead we assume that the
daughter droplets are virtually formed at a distance on
the order of the characteristic linear size of the daughter
droplet (the radius of a spherical drop r of equal vol-
ume) from an apex of the parent drop. Thus, the dis-
tance l between the centers of simultaneously emitted
daughter droplets is defined by the expression l ≈ 2(a + r).
Let q denote the daughter droplet charge; then the
dipole formed by two opposite-charged droplets has the
magnitude of p = ql.

An expression for the potential energy of the parent
drop just before shedding the surface charge can be eas-
ily written as

where

The first term in the expression for U1 defines the
energy of the surface tension forces, and the second
term accounts for the polarization energy of the drop in
the field E0.

The potential energy of the parent drop and a pair of
the emitted daughter droplets forming the dipole p is
given by

(15)

Here, E∗  is the field strength of the induced charge of
the parent drop and e0 is the eccentricity of the daughter
droplet. The first term in (15) defines the energy of the
surface-tension forces of the parent drop with regard to
a decrease in its surface area; the second term is the
energy of the surface tension forces of the two daughter
droplets; the third term is the polarization energy of the
remainder of the parent drop in the field E0; the fourth
term is the energy of the dipole consisting of the daugh-
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ter droplets in the resultant electric field near the parent
drop apices (this field is assumed to be quasi-uniform
throughout the daughter-droplet volumes); the fifth
term is the intrinsic electrostatic energy of the daughter
droplets; and the sixth term defines the polarization
energy of the daughter droplets in the resultant electric
field in the vicinity of the parent drop apices.

When writing expression (15), we disregarded small
energetic contributions of the interaction of intrinsic
polarization charges of the daughter droplets with each
other and of the interaction between the charges of the
emitted droplets and their images in the parent drop. In
this sense, expression (15) is approximate. To make our
concepts of the ratio between the magnitudes of various
terms in (15) consistent with the results of experimental
and theoretical investigations (see, for example, [8, 11,
19] and references therein), we will consider the charge
q of the daughter droplet and its characteristic linear
dimension (that is, the radius r of a spherical droplet of
the same volume) as small quantities of the first order.
Further calculations will be performed in the context of
a quadratic approximation with respect to small param-
eters, which will allow us to simplify expression (15)
somewhat by omitting the sixth summand and to dis-
card the terms of the third order of smallness in the first
and third summands.

The potential-energy variation ∆U resulting from
the emission of a pair of daughter droplets takes the
form

The daughter-droplet eccentricity e0 is related to its
characteristic linear dimension r and the strength of
field (E0 + E∗ ) by an expression of type (9) [13]:

(9a)

Here, W2 is the Rayleigh parameter characterizing the
stability of a charged drop of a conducting liquid with
respect to its intrinsic charge: the drop is stable for
W 2 < 1 and is unstable for W ≥ 1 [8,11,18]; the param-
eter w2 characterizes the stability of the parent drop
with respect to the polarization charge: the drop is
unstable for w2 > 2.6/16π [16, 18]; ξ is the spheroidal
coordinate of the daughter droplet’s center of gravity;
and ν is the distance between the centers of the daugh-
ter and parent drops rendered dimensionless by divid-
ing by the major semiaxis a = R(1 – e2)–1/3 of the sphe-
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SOME LAWS OF POLARIZATION AND DISPERSION 691
roidal parent drop. The dipole length l is related to the
dimensionless coordinate ν by the simple expression

When deriving (9a), it was taken into account that
the field strength near the parent drop apices at the sym-
metry axis of the system, where the daughter droplets
are virtually formed (we ignore the specific mechanism
for the emission of the daughter droplets), is defined by
the well-known expression [1, 18]

Figure 1 displays the system energy variation ∆U
(rendered dimensionless by dividing by 8πR2σ) in rela-
tion to dimensionless radius X and dimensionless
charge Y ≡ q/E0R2 of the droplets for W = const, w =
const, and ν = const. It can easily be seen that the func-
tion ∆U = ∆U(X, Y) has a minimum. Physically, the
minimum of function ∆U = ∆U(r, q) means that,
according to the principle of minimality of the energy
dissipation in nonequilibrium processes (the Onsager
principle), the system’s energy variation in the course
of losing excess charge by an unstable drop is extremal
[20]. In a small neighborhood of the minimum of the
function ∆U = ∆U(r, q), relations

should be fulfilled. 
These conditions will result in a set of homogeneous

algebraic equations for the determination of the charge
q and radius r of the daughter droplets at the instant of
their separation from the parent drop, namely,

(16)

(17)

Analyzing the set of equations (16) and (17), we
should bear in mind that the characteristic linear
dimension r and the daughter-droplet charge q, as well
as the field strength (E0 + E∗ ) in the vicinity of the sep-
arated droplets, are functions of distance ν (or, which is
just the same, of dipole length l). For this reason, to
close the set of equations, it is necessary to complement
(16) and (17) with another equation relating e, q, and ν.
For such an equation, we take the condition for balanc-
ing the forces inside the neck linking the separating
daughter droplets with the parent drop at the instant of
neck disruption [19],

(18)

where r∗  is the radius of the neck at the instant of dis-
ruption.

l 2νa 2νR 1 e
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5. The set of equations (16)–(18) is rather clumsy
and should be solved numerically. However, one can
acquire helpful information on the process of losing
excess charge by the unstable drop, even without solv-
ing system (16)–(18), on the basis of a general analysis
of it. Dividing the first term by the second term in (16),
we obtain

(16a)

In Fig. 2, the functions A = A(e0), B = B(e0), and F =
F(e0) ≡ A(e0)/B(e0) are represented by curves 1–3. It can
be seen that W 2 > 1 for all daughter droplets (note that
calculated value e0 ≈ 0.4). Thus, the daughter droplets
emitted by the parent drop, being unstable with respect
to the polarization charge, in their turn, are unstable
with respect to their intrinsic charges and will disinte-
grate. The disintegration of drops unstable with respect
to their intrinsic charges may occur, depending on their
size and the liquid viscosity, in two ways: either by fis-
sion into two parts of comparable size or in the form of
the emission of a large number of highly charged drop-
lets whose sizes are smaller by a factor of roughly 0.01
[8, 11, 18, 21].

W
2 q

2

16πσr
3

------------------≡
A e0( )
B e0( )
-------------.=

0
–0.4

0

1

0

1
X

Y

∆U

Fig. 1. Variation of the dimensionless system energy caused
by emission of two daughter droplets in relation to their
nondimensional radius X and charge Y for e = 0.85, w2 =
0.05, and ν = 1.32.
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Fig. 2. The dependences of coefficients A, B, and F on the
daughter-droplet eccentricity e0.
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Relation (16a) also indicates that orders of small-
ness of charge q and size r of the daughter droplets are
different. From (16a), it follows that, if r varies, charge
q changes according to the law q ~ r3/2. This, in partic-
ular, means that, when carrying out a rigorous numeri-
cal analysis of the expression for the system’s energy
change ∆U caused by the emission of the daughter
droplets, it is necessary to take into account terms of the
second order of smallness in q and the third order of
smallness in r ~ r3.

We now multiply (17) by q/32πσr2A(e0) and then,
taking into account (16a), obtain

This means that the ratio of the energy of the dipole
formed by simultaneously detaching opposite-charged
droplets in the field (E0 + E∗ ) at the instant of their sep-
aration to the energy of their surface tension forces is
constant; that is, it is independent of the ordinal number
of the emission event.

6. From set (16) and (17), it is easy to find analytical
expressions for the sizes and charges of the daughter
droplets as functions of eccentricity e of the parent drop
and distance ν. We have

(19)

The relation between the parent-drop eccentricity e

lq E0 E*+( )/32πσr
2
A e0( ) 1.=

X e ν,( ) T
2

e ν,( )w
2

4A e0( )B e0( ) 1 e
2

–( )
2/3

-------------------------------------------------------;=
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3
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0.80 0.85

ν

12
3

Fig. 3. Dimensionless (1) radius X and (2) charge Y of the
daughter droplets and (3) the distance ν between the centers
of the parent and daughter drops at the instant of rupture of
the neck linking them in relation to the parent drop eccen-
tricity e for w2 = 0.05 and β = 0.9.
and the distance ν is defined by expression

(20)

derived from (16)–(18). The value of parameter β
related to the uncontrolled neck radius r∗  (β is consid-
ered to be constant during loss of the excess charge by
the parent drop) is chosen on the basis of semiphenom-
enological reasons [11, 18] to be equal β = 0.9.

From (19) and Fig. 2, one can see that for fixed
parameter w2 and distance ν, the dimensionless sizes
and charges of the daughter droplets essentially depend
only on the parent-drop eccentricity. In Fig. 3, the
dependences X = X(e) and Y = Y(e) calculated using
(9a), (16a), (19), and (20) are shown (curves 1, 2); it can
be seen that sizes X and charges Y of the daughter drop-
lets decrease with decreasing parent-drop eccentricity
(as the parent drop volume decreases in the course of
losing the polarization charge [8, 18, 19]).

If we use the current radius of the parent drop corre-
sponding to the instant of separation of the next pair of
droplets (rather than the initial radius of the parent
drop) as a characteristic linear scale to render the radii
and charges of the daughter droplets dimensionless,
then the radii and charges of the daughter droplets ren-
dered dimensionless in such a way will increase with
decreasing parent-drop eccentricity or, which is the
same, with increasing ordinal number of a pair of the
emitted droplets, which was observed in calculations
[18]. Curve 3 In Fig. 3 shows the dependence of the dis-
tance ν between the centers of the parent and daughter
drops depends on the parent-drop eccentricity at the
instant of neck rupture. The dependence was calculated
using (9a), (16a), (19), and (20). It can be seen that the
dimensionless distance ν between the drops decreases
as the parent-drop eccentricity e decreases.

7. An accurate estimate of contributions of various
interactions to the total polarization energy of a liquid
conductor bounded by a free surface in an external elec-
trostatic field E0 allows one to obtain additional infor-
mation about the laws of equilibrium deformation of
the conductor in the field. It is found that, in a closed
system, spontaneous variations of the shape of a liquid
conductor in field E0 are possible only if they are
accompanied by an increase in the polarization dipole
moment of the conductor. This means, in particular,
that an initially spherical drop in uniform field E0 will
elongate, transforming into a body close to a spheroid.
A bubble in a liquid dielectric in the field E0 may trans-
form into an oblate or prolate spheroid, or retain its
spherical shape depending on the extent of the surface
mobility of free charges at its surface, and conductivity
and permitivity of the liquid (for various laws of polar-
ization dipole moment evolution). A correct consider-
ation of the polarization energy of a drop of a conduct-
ing liquid suffering instability with respect to the polar-

β 1 e0
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ization charge allows one to derive analytical
expressions for calculating the sizes and charges of the
daughter droplets and is indicative of their initial insta-
bility with respect to the intrinsic charge.
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Breakup of an Uncharged Droplet in an Electrostatic Field
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Abstract—The breakup of an uncharged electrically conducting liquid dropet placed in a uniform electrostatic
field into two daughter droplets caused by strong nonspheroidal deformation is qualitatively analyzed by apply-
ing the principle of minimum potential energy under spontaneous virtual variations of the droplet’s state. It is
shown that the breakup mechanism involves asymmetric mass distribution among the daughter droplets, which
are found to be stable with respect to their respective intrinsic charges. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

Characterization of the instability of uncharged
droplets and clusters in intense electric fields is of inter-
est for numerous applications in geophysics, electro-
spray mass spectrometry, metal liquid-phase epitaxy,
and lithography [1–3]. The instability may develop by
different scenarios, depending on the amplitude and
geometry of the initial droplet deformation; the drop-
let’s size, viscosity, and electrical conductivity; and the
intensity and degree of nonuniformity of the external
electric field [1–9].

The breakup of a highly charged droplet of a low-
viscosity liquid characterized by high conductivity has
been analyzed in most detail [1–4, 6, 9]. In this case, a
droplet whose charge exceeds the threshold of instabil-
ity with respect to polarization breaks up into a host of
highly charged secondary droplets, which are smaller
by two orders of magnitude. A charged or uncharged
droplet of a high-viscosity or low-conductivity liquid
placed in an intense electrostatic field can break up into
a few fragments of comparable size [1, 5, 10]. The latter
breakup scenario, which is characteristic of very small
droplets of various liquids [3, 11–13], has so far been
analyzed incompletely, even though it is of interest for
numerous applications. The breakup of a droplet non-
spheroidally deformed by an external electric field has
not been analyzed at all, despite the fact that some
experimental studies of this scenario have been con-
ducted [14]. In this paper, we present a qualitative anal-
ysis of the breakup of an uncharged parent droplet into
two daughter droplets caused by its nonspheroidal
deformation in an external electric field. Our analysis is
analogous to that carried out in [10] for a charged drop-
let that spontaneously breaks up into two fragments
through a strong nonspheroidal deformation.

1. Suppose that a spherical droplet of a perfectly
conducting liquid of radius R, characterized by a sur-
face tension α breaks up into two daughter droplets as
shown in Fig. 1. Assuming that the daughter droplets
that form after the liquid bridge of length L is disrupted
are close to spheres of radii R1 and R2 and their respec-
1063-7842/00/4506- $20.00 © 20694
tive charges are –q and q, we express the potential
energy Up of the highly distorted parent droplet shown
in Fig. 1b just before the breakup as follows:

(1)

where x = R2/R1 and z = L /R.

The first term in (1) represents the energy of surface
tension; the second term, the energy of a dipole that
consists of two daughter droplets and has the moment
q(R1 + R2 + L) in a field of intensity E0; the third one,
the energy of interaction between two point charges
separated by the distance (R1 + R2 + L) in the absence
of an external electric field; the fourth one, the intrinsic
electrostatic energy of droplets of radii R1 and R2 whose
charges are q and –q, respectively; the fifth one, the
energy of the dipoles induced by the field E0 in each
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Fig. 1. Deformation of a droplet that breaks up into two
fragments of comparable size.
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daughter droplet; and the sixth one, the energy of inter-
action between dipoles separated by the distance (R1 +
R2 + L), with dipole moments equal to those induced by
the field E0 in the spherical daughter droplets.

Normalizing Up to the total potential energy of the
spherical parent droplet placed in a field of intensity E0,

we rewrite (1) as

(2)

where w = Rα–1 is the Taylor parameter of the parent
droplet, which characterizes its instability with respect
to polarization (developing when w ≥ 2.62 [2] and
resulting in the loss of polarized charge through ejec-
tion of a host of highly charged minuscule droplets),
and y = q(4παR3)–1/2 is the normalized charge of a
daughter droplet.

Figure 2 illustrates the general form of U = U(x, y)
for w = const and z = const and demonstrates that there
exist combinations of w, x, y, and z for which the poten-
tial energy of a droplet distorted as in Fig. 1 is lower
than that of the parent droplet (U < 1) and, therefore,
spontaneous virtual transitions from its initial state to
the final state can occur.

Equating the normalized energy given by (2) to
unity and solving the equation U = 1 with constant z
and w, one can determine the locus of {y, x} at which
the total potential energy of the resulting two-droplet
system is lower than that of the parent droplet (i.e., the
breakup of a droplet into two is unlikely to occur as
illustrated by Fig. 1 for energy reasons). Figure 3 shows
the graphs of y = y(x) obtained for w = 0.8, 1.6, and 2.4
(curves 1) with a, b, and c corresponding to the dimen-
sionless liquid-bridge lengths z = 0.1, 0.2, and 0.4. The
domains encompassed by the curves are the ranges of
admissible daughter-droplet size and charge. One trend
exposed by Fig. 3 is that the breakup of a droplet into
two through the deformation depicted in Fig. 1 can
occur when the Taylor parameter w is well below the
threshold value for its instability with respect to polar-
ization in the case of a purely spheroidal deformation
(2.62, according to [2]). This is explained by the fact
that the deformation illustrated by Fig. 1 can occur at
arbitrarily small q and E0.
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2. As noted above, a spontaneous droplet breakup
induced by E0 proceeds in such a manner that the
energy of the resulting system in Fig. 1b (treated as
closed) is minimal with respect to x and y while w and
z are held constant. The necessary conditions for an
extremum have the form

They lead to the following set of equations for x and
y corresponding to an extremal state:
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Fig. 2. Total potential energy U of a disintegrating droplet as
a function of the diameter ratio x and normalized charge y of
the daughter droplets: (a) w = 0.8, z = 0.1 and (b) w = 2.4,
z = 0.4.
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Solutions to the set of equations (3) and (4) are plot-
ted in Figs. 4 and 5 as graphs of x = x(w, z) and y =
y(w, z). It quite clear (see also Fig. 3) that the breakup
is asymmetric in the general case, which agrees with
experimental results [14]. The functions x = x(w, z) and
y = y(w, z) are obviously monotonic with respect to z
and w. With increasing Taylor parameter w, both x and
y increase. Moreover, the breakup tends to become
symmetric: the parent droplet splits in two daughter
droplets of nearly equal size (see Fig. 3).

Figures 6a and 6b show the Rayleigh parameters

(W1 ≡ q2/4πα ) and (W2 ≡ q2/4πα ) of the larger
and smaller droplets, respectively, as functions of w
obtained by solving (3) and (4) numerically. Here,
curves 1–4 correspond to z = 0.1, 0.2, 0.3, and 0.4,
respectively. The Rayleigh parameter characterizes the
stability of a droplet with respect to its intrinsic charge:
a droplet is unstable when W ≥ 4 [3, 15]. According to
Fig. 6, each charged droplet resulting from the breakup
of an uncharged droplet in an intense electrostatic field
E0 is stable with respect to polarization of its intrinsic
charge, but the smaller one is very close to the instabil-
ity threshold, and its breakup through the Rayleigh
mechanism can be caused by a sufficiently large sphe-
roidal deformation as observed in [3, 16, 17].

It should be noted that the relative size x and charge
y calculated for daughter droplets resulting from a
deformation illustrated by Fig. 1 are consistent with the
system’s extremal energy only. They are not related to
the self-consistent evolution of a droplet distorted by a
field E0, in contrast to the case of droplet breakup
through the Taylor mechanism [11]. We leave the
mechanism of droplet deformation illustrated by
Fig. 1b outside the scope of the present analysis,
assuming that the daughter droplets acquire their
charges through polarization. If the deformation is sup-
posed to be induced by external forces of nonelectrical
nature, then the analysis presented above makes sense.
However, the analysis becomes incorrect if the defor-
mation discussed here is attributed to the field E0,
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because the daughter-droplet charge q must tend to zero
with the external field intensity E0. Unlike the present
qualitative treatment, an analysis of the breakup of a
droplet severely distorted by a weak electric field E0 as
shown in Fig. 1, when one resultant droplet is much
smaller than the other, should take into account the
interaction between polarization-induced charges in
order to yield the correct asymptotic limit q  0 as
E0  0.

CONCLUSIONS 

The analysis presented here shows that the strength
of a uniform electrostatic field E0 required to break a
droplet through a severe nonspheroidal deformation
can be much weaker as compared to the Taylor thresh-
old value for a spheroidally distorted droplet and
depends on the initial nonspheroidal deformation. The
parent-droplet mass is asymmetrically distributed
among the daughter droplets, which agrees with exper-
imental results [14]. However, the breakup tends to
become symmetric as the Taylor parameter w of the
parent droplet and the distance z between the centers of
the daughter droplets at the moment of breakup
increase. The intrinsic charges of the daughter droplets
do not exceed the Rayleigh threshold values.
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Abstract—The spectrum of capillary–relaxational motions of a charged free liquid surface is analyzed. The
analysis takes into account the effect of surface-tension relaxation and the existence of two relaxation times due
to different physical mechanisms. Each relaxation mechanism is associated with certain liquid wave motions.
Motions due to different relaxation processes interact with each other and with capillary–gravity waves through
nonlinear mechanisms. © 2000 MAIK “Nauka/Interperiodica”.
Relaxation of surface tension, also known as
dynamic surface tension, manifests itself by the depen-
dence of surface tension on the time scale of surface
deformation at frequencies 10–9 ≤ ω ≤ 109 Hz. Being an
essentially dispersive phenomenon, it is of interest for
a variety of applications [1–5]. For example, this effect
plays an important role in electrically driven liquid
atomization, which is characterized by time scales
shorter than 0.01 s [6, 7]. However, current research is
mainly focused on measurements of the characteristics
of dynamic surface tension for specific liquids under
various external conditions, whereas studies of its
physical nature remain scarce and are restricted to qual-
itative characterization. In particular, the physical
mechanism of interactions between capillary motions
and dispersive motions (due to the dependence of sur-
face tension on the perturbation time scale) is poorly
understood even though some work is in progress (see
[4–10] and references cited therein).

The effect of relaxation of surface tension on the
spectrum of liquid motions can be described by intro-
ducing a complex surface tension σ as given by Max-
well’s formula [1, 5]

which is the Fourier transform of the simplest time-
dependence of the surface tension of a perturbed free
liquid surface,

Here, σ0 is the surface tension at zero frequency (i.e.,
when the liquid is in equilibrium), σ∞ is the surface ten-
sion at high frequencies (for ωτ @ 1), τ is the surface-
tension relaxation time (i.e., the characteristic time of
formation of a double electric layer at the liquid sur-
face), ω is the complex frequency in the exponential

σ σ∞ σ* 1 iωτ–( ) 1–
– σ0 iωτσ* 1 iωτ–( ) 1–

;–= =

σ* σ∞ σ0,–=

σ t( ) σ0 σ* t/τ–( ).exp+=
1063-7842/00/4506- $20.00 © 20698
time dependence of capillary-motion amplitudes of the
form ζ(t) ~ exp(iωt), and i is the imaginary unit.

In this paper, we analyze the dynamic surface ten-
sion of a liquid characterized by several surface-tension
relaxation times, keeping in mind the fact that the phys-
icochemical nature of this phenomenon is explained by
the existence of a double electric layer at the liquid sur-
face, which can develop through physically different
mechanisms. (These mechanisms include the effect of
a free surface on the orientation of molecular dipoles,
electrostatic interactions between bound and free
charged liquid particles near the surface, diffusive cha-
otization of the ordered liquid structure near the sur-
face, and effects due to the presence of surfactants and
their concentration).

1. Suppose that the surface tension σ(t) is character-
ized by two relaxation times τ1 and τ2:

where σ0 is the equilibrium surface tension and σ1 and
σ2 are additional contributions to the surface tension
due to different relaxation mechanisms that manifest
themselves when the surface is perturbed.

Variations of surface pressure and curvature are
related by the equation

where U(τ) is the surface curvature [1, 11], which
entails a relation between their Fourier transforms:

Hence, one obtains the required expression for a
complex surface tension involving two relaxation

σ t( ) σ0 σ1 t/τ1–( )exp σ2 t/τ2–( ),exp+ +=

∆p σ t τ–( ) U τ( )d
τd

--------------- τ .d

∞–

t

∫=

∆p ω( ) σ0 σ1

iωτ1–
1 iωτ1–
-------------------- σ2

iωτ2–
1 iωτ2–
--------------------+ + 

  U ω( ).=
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times:

(1)

2. Consider an infinite plane surface of a viscous,
incompressible, perfectly conducting liquid carrying a
charge of surface density κ. The liquid occupies the
half-space z < 0 in a gravitational field characterized by
acceleration g || –nz (nz is the unit vector in the z-direc-
tion). In the Cartesian coordinate system, the unper-
turbed free liquid surface is described by the equation
z = 0. We denote the surface tension, kinematic viscos-
ity, and density of the liquid by σ, ν, and ρ, respectively.

The capillary motions of a liquid with a charged free
surface are described by the linearized Navier–Stokes
equations and the continuity equation for an incom-
pressible fluid,

(2)

supplemented with the boundary conditions

(3)

(4)

(5)

which are set on the free surface described by the equa-
tion

In these equations, U(r, t) is the liquid velocity field
associated with capillary motions of the free surface,
P(r, t) is the pressure induced in the liquid by the veloc-
ity field U(r, t), k is the wavenumber, and t and n are
the unit vectors tangential and normal to the free sur-
face, the third term in (5) is the pressure induced by sur-
face-tension forces below an initially plane surface dis-
torted by a capillary wave motion, and the last term in
(5) represents the electrical pressure on the charged free
liquid surface written in the linear approximation with
respect to the surface-perturbation amplitude ζ(x, t) =
Aexp(ikx – iωt) [12]. The fields of liquid velocity
U(r, t) and pressure P(r, t) are small quantities on the
order of ζ.

The set of equations (2) supplemented with bound-
ary conditions (3)–(5) and expression (1) is the mathe-
matical formulation of the problem to be solved.

By the Helmholtz theorem, the velocity field in
problem (1)–(5) should be sought as the sum of poten-

σ ω( ) σ0 σ1

iωτ1–
1 iωτ1–
-------------------- σ2

iωτ2–
1 iωτ2–
--------------------.+ +=

∂U
∂t
-------

1
ρ
---—P– ν∆U g, — U⋅+ + 0,= =

dF
dt
------- ∂F

∂t
------ U —F⋅+ 0,= =

t n —⋅( )U n t —⋅( )U+ 0,=

P 2ρνn n —⋅( )U– σ∂2ζ
∂x

2
-------- 4πκ 2

kζ+ + 0,=

F r t,( ) z ζ x t,( )–≡ 0.=
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tial and solenoidal components (see [13]),

(6)

where A, B, and C are constant coefficients and l–1 is the
length scale of the spatial variation of the solenoidal
velocity component.

Substituting (6) into (2)–(5), repeating the analysis
performed in [13] to derive the dispersion equation for
capillary–gravity waves in a viscous fluid, and assum-
ing that σ is given by (1), one readily obtains a disper-
sion equation for capillary–gravity waves and the relax-
ational waves induced by dynamic surface tension. In
terms of the dimensionless quantities

the dispersion equation is written as

(7)

3. Note that the dispersion equation to be analyzed
is a transcendental one. We can eliminate the radical by
isolating it and squaring the resulting equation (7).
Then, we have an algebraic equation of the eighth
degree for the complex variable y. It is clear that not all
of its eight roots are physically meaningful, because
equation (7) contains a radical and is therefore defined
on a two-sheeted Riemann surface. Physical branches
of the dispersion equation should be sought on the
upper sheet of the Riemann surface, which corresponds
to the positive value of the radical in (7).

The solutions to the dispersion equation corre-
sponding to the negative value of the radical in (7) are
physically meaningless, because, according to (6), the
radical is the dimensionless ratio l/k (the ratio of the
wavelength k–1 to the length scale l–1 of the solenoidal
velocity field), which cannot be negative.

Figures 1–7 show the imaginary and real parts of the
dimensionless complex frequency, Imy(α2) and
Rey(α2), which were calculated numerically by solving
(7) for constant values of the parameters γ1, γ2, β1, and
β2. In these figures, branches 1–3 correspond to capil-
lary–gravity wave motions of the liquid and branches 4
and 5 represent the relaxational waves associated with
the time dependence of surface tension and character-

Ux x z t, ,( )

=  ikB kz( )exp lC lz( )exp–( ) ikx iωt–( ),exp

Uz x z t, ,( )

=  kB kz( )exp ikC lz( )exp+( ) ikx iωt–( ),exp

l
2

k
2

iων 1–
,–=

y
ω

νk
2

--------; α
ω0

νk
2

--------, β1 σ1/ρν2
k, β2 σ2/ρν2

k,= = = =

γ1 νk
2τ1, γ2 νk

2τ2,= =

ω0
2 k

ρ
--- gρ σ0k

2
4πkκ 2

–+( ),=

1 iγ1y–( ) 1 iγ2y–( ) 2 iy–[ ] 2 α 2
4 1 iy––+( )

– iy β1γ1 β2γ2+( ) y
2γ1γ2 β1 β2+( )+ 0.=
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ized by the time scales τ2 and τ1, respectively. Bran-
ches 6–9 correspond to the mixed capillary–relax-
ational waves generated as a result of interaction
between capillary–gravity and relaxational waves. The
portion of branch 2 lying in the left half-plane (at α2 < 0)
determines the Tonks–Frenkel instability increment.

Our calculations show that each of the two relax-
ation processes described by (1) is associated with a
corresponding spectrum of capillary liquid motions
qualitatively similar to capillary motions of a free sur-
face. The liquid motions associated with different
relaxation mechanisms interact with each other and
with the capillary–gravity motions of the free liquid
surface. These interactions manifest themselves in the
mixed motions corresponding to certain combinations
of the parameters γi and βj (branches 6–9 in Figs. 3–7).
Figures 1–7 are designed to illustrate numerical results
by exposing the interactions of relaxational motions
with capillary waves and with each other.

Figures 1–4 correspond to γ1 = 0.5, β1 = 1, β2 = 0.5,
and 0.3 ≤ γ2 ≤ 0.65 and illustrate the interaction
between the liquid motion associated with the relax-
ation process denoted by subscript 2 (branch 4) and the
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2
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Rey

–5 α2

–2

1
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1
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5

Fig. 1. Imaginary and real parts of the dimensionless fre-
quency y as a function of the parameter α2 characterizing
pressure balance on a free liquid surface at β1 = 1, γ1 = 0.5,
β2 = 0.5, and γ2 = 0.3.
capillary–gravity motions of the free surface
(branches 1–3). When 0.43 ≤ γ2 ≤ 0.44, the interaction
between branches 1 and 4 gives rise to the mixed
motions represented by branches 6 and 7. It is interest-
ing to note that the frequencies and decrements of the
motion denoted by subscript 1 and represented by
branch 5 are also modified by this interaction.

With further increase in γ2 (see Figs. 5–7), bran-
ches 5–7 are distorted. The mixed capillary–relax-
ational branch 7 and the “first” relaxational branch 5
join together at 0.93 ≤ γ2 ≤ 0.94, transforming into new
capillary–relaxational branches 8 and 9. Note that both
purely relaxational and capillary–relaxational wave
motions exist at both positive and negative values of α2,
whereas capillary–gravity waves exist only at α2 > 0.

Figures 1–7 demonstrate that the decrements of both
relaxational motions decrease with increasing γ2. Over
a greater part of the α2 domain, the decrements of both
purely relaxational and mixed capillary–relaxational
waves are close to—or even higher than—the corre-
sponding frequencies (particularly at α2 < 0). There-
fore, one should be cautious in interpreting the relax-
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Fig. 2. Same as Fig. 1, with γ2 = 0.43.
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ational modes as “wave” motions in view of their sub-
stantial decay over a single period. The 1–2–3
bifurcation point of the capillary–gravity motions
moves rightwards as γ2 is increased (and wave frequen-
cies decrease). According to [14], this means that the
spectrum of physically observable waves contracts at
its short-wavelength boundary.

The quantitative change in the frequencies of relax-
ational wave motions and mixed capillary–relaxational
waves associated with increasing γ2 is insignificant,
whereas their qualitative dependence on α2 may vary in
quite a complicated manner.

Our numerical analysis shows that the interactions
of the two relaxational motions with each other and
with capillary motions cannot be reduced to simple
superpositions of the corresponding branches of the
dispersion equation; rather, they involve distortions,
mergers, and reconnections and result in new branches.
These changes could be expected to occur, since equa-
tion (7) combines different relaxation processes in a
multiplicative, rather than additive, manner. Note that
the interactions involve only waves (as described by
branches of the dispersion equation), whereas aperiodic
motions do not interact with waves. In any event, an
interaction takes place when the frequencies and decre-
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Fig. 3. γ2 = 0.44.
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ments of certain waves are equal (i.e., when branches
representing different waves intersect). After the inter-
acting branches have reconnected and transformed into
those corresponding to mixed motions, the newly
formed branches diverge with a further increase in γ2.
As they diverge, the frequency of one mixed motion
increases while its decrement decreases, and the fre-
quency of the other decreases while its decrement
increases, so that the latter can be only formally inter-
preted as a wave motion.

A numerical analysis shows that the diagrams of
capillary and dispersive waves characterized by equal
relaxation times are qualitatively similar in structure:
each contains a single branch describing a decaying
wave that exists on a semi-infinite interval of α2 and
two branches representing decaying motions, one of
which disappears as it goes to the other sheet of the Rie-
mann surface at certain values of (α2, γ, and β). There
exists another aperiodic branch on a semi-infinite inter-
val of α2. Analyzing numerically the effect of surface-
tension relaxation on the Tonks–Frenkel instability, we
found that its increment decreases by one-tenth of its
value as the relaxation time τ decreases by an order of
magnitude. The increment strongly depends only on the
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Fig. 4. γ2 = 0.65.
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Fig. 7. γ2 = 0.94. 
extent of the surface-charge supercriticality, rapidly
increasing with it.

In summary, we note that the spectrum of capillary–
relaxational motions of a liquid with a charged free sur-
face characterized by two physically different surface-
tension relaxation times is strongly affected by interac-
tions between capillary–gravity and relaxational wave
motions. Motions due to different relaxation processes
interact with each other and with capillary–gravity
waves through nonlinear mechanisms. An increase in
the relaxation time of a charged free surface results in
an insignificant decrease in the Tonks–Frenkel instabil-
ity increment.

In experimental studies of surface-tension relax-
ation, it should be kept in mind that the relaxation may
involve several time scales and the detected waves may
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
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be attributed to mixed wave processes resulting from
interactions between capillary–gravity waves and at
least one relaxational wave motion, rather than to
purely relaxational waves. Therefore, measurements
should span several ranges of physical parameters of
the system, and special attention should be given to rap-
idly decaying wave motions, which may be associated
with relaxation phenomena. To identify different relax-
ation processes in surface-tension dynamics, one may
analyze their temperature-dependent behavior: for
example, surfactants are characterized by quite a sub-
stantial temperature dependence of solubility and con-
centration, whereas the diffusive contribution to the
formation of a double electric layer depends on temper-
ature only through the weakly temperature-dependent
transport coefficients [15].
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Abstract—Onsager’s principle of minimum energy dissipation in nonequilibrium processes is applied to cal-
culate the characteristics of a surface-conducting charged bubble breakup in a liquid dielectric in a uniform
electrostatic field. The domains of physical parameters are determined in which daughter bubbles are ejected
from both apexes and are not ejected from only one apex. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Fluid dispersion in external electrostatic fields, as
well as equilibrium geometry and stability of charged
drops and bubbles in dielectric liquids, are of interest
for applications in technical physics, geophysics, and
engineering [1–3]. Nevertheless, many problems con-
cerning the stability of bubbles in dielectric liquids with
respect to their intrinsic charge or polarization have
been studied very superficially, although some experi-
mental [3, 4] and theoretical [3, 5–8] research has been
conducted in this line. However, the most interesting
problem raised in the experimental work reported in
[4], namely, bubble dispersion in a liquid dielectric by
external electrostatic fields, has remained almost
unstudied theoretically, although this effect, which
leads to a rapid increase in both dispersion of bubbles
and the area of their contact with the ambient liquid, is
of certain interest. The goal of this paper is to fill this
gap.

1. Suppose that, in a liquid dielectric characterized
by a dielectric constant ε, density ρ, and surface tension
σ, there is a speherical bubble of initial radius R0 carry-
ing an electric change Q. A uniform electrostatic field
of intensity E is applied to the dielectric, polarizing the
bubble by means of the surface mobility B of electric
charge carriers. The action of E on the charge Q
stretches the bubble in the direction of E into a shape
close to a spheroid of eccentricity e [5, 9], and the
radius of the equivalent sphere increases to R while the
gas pressure in the bubble becomes equal to P. As found
in [4], an increase in Q and E can lead to a bubble insta-
bility, which manifests itself in the ejection of highly
dispersed charged daughter bubbles from the bubble
apexes. The instability can develop by different scenar-
ios depending on the ratio of the bubble thermal oscil-
lation period to the characteristic time of electric-
potential relaxation over the bubble surface through the
surface motion of charge carriers.

The characteristic time of electric-potential relax-
ation through the motion of charge carriers on a gas–
1063-7842/00/4506- $20.00 © 0704
fluid interface is τq = εR/(E + BQ/R2); and the period of
bubble thermal oscillation is τu = [ρR3/σ{1 – W 2 –
w2/(16π)}]1/2, where w2 = εE 2R/σ is the parameter char-
acterizing the Taylor instability of a conducting bubble
with respect to surface polarization and W 2 =
Q2/(16πεσR3) is the Rayleigh parameter characterizing
the stability of the bubble with respect to electric
charge.

If the charge mobility B is so small that τu ! τq, then
the bubble surface can be treated as nonconducting in
the course of instability development and the charge is
“frozen” into the surface. When such a bubble is unsta-
ble with respect to the charge buildup on its surface, it
breaks up into two equal daughter bubbles carrying
equal charges [7].

When the charge mobility B is so high that τq ! τu,
the bubble surface can be treated as perfectly conduct-
ing. In this case, the bubble disintegrates into a host of
highly dispersed daughter bubbles [1, 4, 10].

To determine the critical conditions for the instabil-
ity of a charged bubble in a liquid dielectric, we write
out the potential energy of a spheroidal bubble in a lin-
ear approximation with respect to e2:

(1)

where V0 and V are the initial and final volumes of the
bubble, respectively, and Pat is atmospheric pressure.

Since an equilibrium state of the bubble corresponds
to a minimum of its potential energy, the derivatives of
(1) with respect to e2 and R must vanish. In a linear
approximation with respect to e2, one obtains the fol-
lowing equations describing the critical conditions for
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the instability of a charged spheroidal gas bubble in
field E:

(2)

In contrast to the case of a liquid drop placed in a
uniform electric field E, the critical conditions for the
instability of a gas bubble in a field E depend on the gas
pressure through the dimensionless parameter β
[1, 5, 9].

2. As the bubble instability with respect to its sur-
face charge (i.e., the sum of its intrinsic and polariza-
tion charges) develops, the spheroidal bubble begins to
emit small charged daughter bubbles from one or both
of its apexes, depending on charge value Q and external
electric field E.

After an emitted bubble breaks away from the par-

ent, the daughter-bubble volume changes from , to
Vij and the gas pressure inside it becomes equal to Pij.
The first subscript refers to an apex of the parent bub-
ble: i = 1 corresponds to the apex from which a bubble
is ejected in the direction of E, and i = 2 corresponds to
the other apex. The subscript j is the number of an emit-
ted bubble. The relative change in the daughter-bubble
volume can be estimated by using the definition of the
isothermal coefficient of compressibility

(3)

Since χ ≈ (10–7–10–5) Pa–1 for gases, it is easy to
show that the relative change in the bubble volume is on
the order of 1–10–2.

Figures presented in [4] show that the daughter bub-
bles are driven away from the parent bubble by forces
of electrical repulsion; quickly lose their energy
through friction; and then stop, making up two groups
of daughter bubbles located at a distance L = ma from
the apexes of the parent bubble, where a is its semima-
jor axis and m is a parameter. These groups of charged
bubbles generate an additional electric field in the
neighborhoods of the apexes of the parent bubble,
which hampers the breakaway of new daughter bub-
bles. To simplify the model calculations presented
below, the electric field generated by a group of daugh-
ter bubbles is replaced with the field of a point charge
located on the symmetry axis at a distance L from the
corresponding apex of the parent bubble.

Let us consider the separation of the nth daughter
bubble ejected from one apex of the parent bubble and
the separation of the lth bubble ejected from the other
apex, taking into account the fact that, by the current
time moment, n – 1 daughter bubbles have been ejected
from the one apex of the parent bubble and l – 1 daugh-
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ter bubbles have been ejected from the other apex. The
ejected daughter bubbles have charges qij ! (Q + ER2)
and radii rij ! R. We assume that the time of daughter-
bubble separation is on the order of the period of the
principal eigenmode of capillary oscillation of a daugh-
ter bubble, ~(rij)3/2. Then, k bubbles detach from one
apex during the time required for one daughter bubble
to break away from the other apex, where k is the inte-
gral part of (r2l/r1n)3/2. In the resultant electric field,
which can be considered as quasi-uniform over a length
comparable to the bubble size, a daughter bubble has
the shape of a prolate spheroid with eccentricity eij [9].
In our calculations, the values eij are determined by
means of an iterative procedure.

The breakup of an unstable bubble is assumed to
take place at a constant temperature, since the heat
capacity of the liquid is much greater than the heat
capacity of the gas contained in the bubbles. Using the
fact that the total charge of the system is constant, we
find the change in the system’s potential energy due to
the ejection of a daughter bubble from an apex of the
parent bubble:

(4)

where
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,

where ξij are the spheroidal coordinates of a daughter
bubble at the moment of its separation from the parent
bubble.

The first term in (4) characterizes the surface energy
of a daughter bubble; the second and the third terms
describe the change in the intrinsic electrostatic energy
of the bubble system; the fourth one corresponds to the
energy of electric interaction between the charges of
daughter and parent bubbles; the fifth term is the energy
of interaction between a daughter bubble and the par-
ent-bubble polarization charge; the sixth one describes
the energy of interaction between a daughter bubble
and the group of bubbles emitted earlier; and the sev-
enth and the eighth represent the work done by the gas
during the isothermal variation of the daughter-bubble
volume.

The emission of daughter bubbles continues as long
as the Coulomb force that ejects a daughter bubble is
larger than the counteracting Laplace force 2πσ ,

where  is the radius of the gas bridge connecting a
daughter bubble with the parent. Assuming that the
electrostatic field intensity at the point of daughter-bub-
ble separation is determined by the fields generated by
the parent bubble and the daughter bubbles ejected ear-
lier, one obtains the following conditions for daughter-
bubble separation from the apexes of the parent bubble:

(5)
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where Xij is the dimensionless radius of a daughter bub-
ble, Yij is its charge, and bij is the semiminor axis of a
spheroidal daughter bubble.

The first and the second terms in the braces in (5)
characterize the intensities of the electric fields gener-
ated by the intrinsic and polarization charges of the par-
ent bubble at the daughter-bubble separation point,
respectively; and the third term is the intensity of the
electric field generated by the total charge of the group
of bubbles emitted earlier at the same point.

Invoking Onsager’s principle of minimum energy
dissipation in nonequilibrium processes, we postulate
that the variation of potential energy of the system asso-
ciated with daughter-bubble emission be extremal; i.e.,
the conditions ∂(∆Uij)/∂qij = 0 and ∂(∆Uij)/∂rij = 0 are
assumed to hold [10, 11]. In addition to the two equa-
tions in (5), this yields the following four equations for
the dependent variables X1j , Y1j , ν1j , X2j , Y2j , and ν2j:

(6)

(7)

3. In our numerical analysis of system (5)–(7), the
parameters αij and ηij were assumed to be equal for
bubbles detaching from both apexes of the parent bub-
ble and independent of the bubble number: α1 = α2 =
0.9 and η1 = η2 = 0.6. The analysis showed that solu-
tions to this system depend not only on the values of its
parameters but also on the sign of the parent-bubble
charge Q.

In the plane (W 2, w2), at constant values of other
physical quantities, there are six domains of existence
of solutions to system (5)–(7) shown in Fig. 1. In
domain A1, emission takes place only at one apex of the
parent bubble. In domain A2, emission takes place only
at the other apex of the parent bubble. In domain B, the
parent bubble is stable. In domains D1 and D2, emission
takes place at both apexes and the charges of daughter
bubbles emitted from both apexes of the parental bub-
ble are of the same sign. In domain C, emission takes
place at both apexes but the charges of daughter bub-
bles ejected from different apexes of the parent bubble
have opposite signs. Note that the domains weakly
depend on the value of β. For example, when W 2 =

Yij
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const, the change in the Taylor parameter is w2(β = 0) –
w2(β = 0.75) ≈ 10–3.

The curves separating the domains from each other
were obtained in the following way. The values of w2 <
2.59 and W2 were chosen from domain A1, where solu-
tions describing daughter bubbles ejected from the sec-
ond apex of the parent bubble do not exist. Solutions
X11, Y11, and ν11 to the system of three equations for the
first bubble ejection from the first apex were sought for
a constant Rayleigh parameter and decreasing Taylor
parameter. As the Taylor parameter reached a certain
value, the solutions disappeared. In this way, the curve
w2(W 2) separating domains A1 and B was obtained as
the Rayleigh parameter was varied from 0 to 0.6. Next,
the values of w2 > 2.59 and W 2 were chosen from
domain C. Solutions X11, Y11, ν11, X21, Y21, and ν21 to
system (5)–(7) for the first emission event at both
apexes of the parent bubble were sought. Again, the
Rayleigh parameter was held constant and the Taylor
parameter was decreased. As the Taylor parameter
reached a certain value, the solutions X21, Y21, and ν21

disappeared. As a result, the curve w2(W2) separating
domains C and A1 was calculated for the Rayleigh
parameter varying from 0 to 0.225. Next, the parame-
ters W2 ≥ 0.6 and w2 were chosen from domain D1.
Solutions X11, Y11, ν11, X21, Y21, and ν21 to the system of
six equations for the first emission event at both apexes
of the parent bubble were sought for a constant Ray-
leigh parameter and increasing Taylor parameter. As
the Taylor parameter reached a certain value, the solu-
tions X21, Y21, and ν21 disappeared. Thus, the curve sep-
arating domains D1 and A1 was obtained for constant
values of the Rayleigh parameter lying in the interval
from 0.6 to 2. All domains corresponding to Q < 0 were
obtained by reflecting the domains calculated for Q > 0,
because the equations for X1j , Y1j , and ν1j take the form
of those for X2j , Y2j , and ν2j when Q is replaced by –Q
in the equations of system (5)–(7).

A. Suppose that the initial values of the bubble
parameters W 2 and w2 lie in A1 or A2. Then, emission
takes place at only one apex (at the first one if Q > 0 and
at the second one if Q < 0). Dispersion in domains A1
and A2 proceeds in the same manner, except that the
daughter bubbles carry negative charges in domain A1,
while the charge of daughter bubbles in domain A2 is
positive. During emission, the Rayleigh parameter of
the bubble decreases faster than the Taylor parameter,
and the bubble can reach the boundary of domain A1 or
A2 in the plane (W 2, w2) if the total electric charge accu-
mulated at the apexes of the parent bubble of the daugh-
ter bubbles is too small to stop the emission. Further
development of the breakup process depends on the
Taylor parameter. If w2 < 2.59, the bubble falls into
domain B of the (W 2, w2) diagram and emission ceases
completely. If w2 > 2.59, the bubble falls into domain C
and emission takes place at both apexes. Figure 2 shows
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
the results of our calculations of unstable bubble
breakup performed for W2 = 0.4 and w2 = 0.4.

B. If the initial values of W 2 and w2 for the an unsta-
ble bubble lie in domain D1 or D2, emission takes place
at both apexes. The signs of daughter bubbles detaching
from both apexes are now the same. The Rayleigh
parameter of the parent bubble decreases in the course
of emission: it moves from domain Di to domain Ai,
whereupon the breakup process develops as described
in subsection A. Figures 3 and 4 show the results calcu-

A1A2

C

D1D2 B

w2

0

2

4

0 11 W2

Q < 0 Q > 0

Fig. 1. Boundaries for domains in the plane (W 2, w2) corre-
sponding to various mechanisms of excessive surface-
charge loss by a bubble for e2 = 0.7, α1 = α2 = 0.9, β = 0.75,
and η1 = η2 = 0.6.

0.4

0
12 24

0.8

W2

n

0.4
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0

X1 × 10–1; Y1 × 10–1; Z1 × 104

Fig. 2. Daughter-bubble number dependence of the radius
X1 (×), charge Y1 (s), relative charge Z1 (h), and Rayleigh

parameter W 2 (+) for bubble emission from the first apex of
the parental bubble for Q > 0 at e2 = 0.7, α1 = 0.9, m = 1,
β = 0.75, and η = 0.6.
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lated for W 2 = 1.2 and w2 = 0.18. During the time
required for one to seven daughter bubbles to break
away from the second apex, the first one emits 8, 9, 9,
10, 11, 13, or 18 bubbles respectively. Then, the bubble
enters domain A1 in the plane (W 2, w2) and emission
continues only at the first apex of the parent bubble.
The total charge of the daughter bubbles ejected earlier
from the first apex of the parent bubble then becomes
sufficiently large for emission from this apex to cease,
although the bubble does not enter domain B in the
plane (W 2, w2).

C. If the initial values of W 2 and w2 lie in domain C,
emission takes place at both apexes, and the charges of
daughter bubbles ejected from both apexes differ in
both sign and value. The results calculated for W 2 =

1
2

3

4

0.40.2

0.8

0 70 210140 n

0.4

0

X1 × 10–1; W 2 × 101 Y1 × 10–2; Z1 × 104

Fig. 3. The same as in Fig. 2 for w2 = 0.18 and W2 = 1.2;
curves 1, 2, 3, and 4 correspond to (×), (s), (h), and (+),
respectively.

Z1 × 104 X1 × 10–1; Y1 × 10–1;

0.40.2

0
8 16

0.8

n0

0.4

W2 × 10–2

Fig. 5. The same as in Fig. 2 for w2 = 2.7 and W2 = 0.0025.
0.0025 and w2 = 2.7 are shown in Figs. 5 and 6. In this
case, during the time required for six daughter bubbles
to break away from the second apex, the first apex of
the parent bubble emits 4, 3, 4, 3, 3, and 1 bubble,
respectively.

The calculations revealed that the left-hand side of
the second equation in (2) does not exceed 1.04 and
remains almost constant during emission. This means
that daughter bubbles are unstable with respect to
expansion.

CONCLUSIONS

Depending on both external electrostatic-field inten-
sity E and the value and sign of the intrinsic charge Q

0 2 4 6

0.4

0.8

0.2

0.4

0
l

X2 × 10–1; Y2 × 10–2;

0.8

0.4

0 2 4 6 l

X2 × 10–1; |Y2| × 10–1; |Z2| × 103; W2 × 10–2

W2 × 101 Z2 × 103

Fig. 4. Daughter-bubble number dependence of radius
X2 (×), charge Y2 (s), relative charge Z2 (h) and Rayleigh

parameter W2 (+) for bubble emission from the second apex
of the parental bubble for Q > 0 at e2 = 0.7, α2 = 0.9, m = 1,
β = 0.75, and η = 0.6.

Fig. 6. Daughter-bubble number dependence of the dimen-
sionless radius X2 (×), magnitude of charge |Y2 | (s), magni-
tude of relative charge |Z2 | (h), and Rayleigh parameter

W2 (+) for bubble emission from the second apex of the
parental bubble for w2 = 2.7 and W2 = 0.0025; other param-
eters are the same as in Fig. 4.
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of a surface-conducting bubble in a liquid dielectric,
the instability of the bubble with respect to both intrin-
sic and induced surface electric charges can develop by
different scenarios, with daughter bubbles ejected
either from only one apex of the parent bubble or from
both. During bubble breakup, a smooth change in the
emission regime may occur.
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Abstract—A model of leader breakdown in air is considered. The channel is formed due to heating of the
streamer trace in the field of the streamer zone. A previous model of a streamer is generalized with allowance
for recombination of charged particles. A mathematical model of heating of the streamer trace is developed. It
is demonstrated that, at a given potential, the ignition of the channel is provided by streamers that possess a
certain charge and the corresponding propagation velocity. This velocity determines the propagation velocity
of a steady leader. The dependence of the leader velocity on the cloud potential is found. The results obtained
are compared with the data from in-situ observations and laboratory studies. © 2000 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

Based on the results of in-situ observations and lab-
oratory studies, two discharge regions can be distin-
guished in the leader stage of a spark discharge: a
streamer zone and a channel [1]. The channel is a
region filled with a high-temperature plasma that pro-
vides charge transfer from the high-voltage electrode
(cloud) to the leader head. The propagation velocity of
the leader is ϑh ~ 106–108 cm/s. The length of the chan-
nel can be as long as several kilometers, whereas its
diameter is only a fraction of millimeter. A great num-
ber of streamers start from the leader head at the veloc-
ities ϑ st, which can be much higher then ϑh. A family of
streamers forms the streamer zone, whose typical
length is tens of meters; the transverse size is several
meters. The channel currents govern macroscopic pro-
cesses in the leader discharge (charge transfer, propaga-
tion, and the formation of the streamer zone). However,
the parameters of the channel are determined by the
processes in the streamer zone. That is why the
streamer zone plays an important role in the leader
breakdown.

Although there is a general concept of the process,
a self-consistent mathematical model of the leader
stage of a spark discharge allowing one to establish the
relationship between the propagation velocity of the
leader, the parameters of the channel and the streamer
zone, and the cloud potential Vcl is still lacking.

BASIC ASSUMPTIONS

By analogy with an arc discharge, we can assume
that, at currents ≥10 A, the electric field inside the chan-
nel is about 1 kV/m [2]. For megavolt potential drops at
distances of hundreds of meters, we can neglect the
variation in the potential over the channel and consider
a steady-state regime of penetration at the velocity ϑh
corresponding to a potential V of the leader head equal
1063-7842/00/4506- $20.00 © 20710
to Vcl. Thus, the role of the channel reduces to the trans-
fer of the potential Vcl from the cloud to the streamer
zone.

We assume that the electric field Est is constant
along the streamer zone. The field is produced and sus-
tained by charge transferred into the streamer zone by
all the streamers starting from the leader head [1].
Streamers are plasma formations with a charge qst and
length determined by electron attachment [3] and elec-
tron–ion recombination. Due to polarization, the field
at the head increases. Ionization in the increased field
compensates for the loss of electrons due to attachment
and recombination and ensures penetration of the
streamer. At fixed Est, the charge qst unambiguously
determines the velocity ϑ st, the streamer radius ast, and
the concentration of electrons nst [4].

The leader channel is formed during heating of the
streamer trace in the field Est by the current produced by
ions, electrons detaching from negative ions, and elec-
trons produced due to ionization by detaching particles.
Electron detachment takes place in the interaction of
negative ions with electronically excited molecules. At
high temperatures, the processes of detachment due to
the interaction with molecules in the ground state (at
T ≥ 103 K) and energy relaxation of vibrationally
excited molecules (at T ≥ 2.5 × 103 K) become impor-
tant [5, 6]. These processes determine the dynamics of
the channel formation, but weakly influence the propa-
gation velocity of the leader and the parameters of the
streamer zone and the channel in the steady-state
regime.

If the heating time tst of the streamer trace is con-
stant, then the potential of the channel formation Vst ≅
Estϑ sttst increases with increasing ϑ st or qst. A decrease
in qst leads to a decrease in the streamer radius ast and
an increase in tst due to the growth of thermal conduc-
tivity. An increase in tst leads to an increase in Vst. We
000 MAIK “Nauka/Interperiodica”
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can expect that, at fixed Est, the Vst(qst) dependence has
a minimum Vm, the corresponding streamer velocity
and charge being ϑm and qm, respectively. This mini-
mum determines the potential V = Vm and the leader
velocity ϑh = ϑm in the steady-state regime, which
means that, among the streamers starting from the
leader head, only the streamers with the charge qm form
the channel. The other streamers starting from the
leader head produce and sustain the field Est.

The cloud potential Vcl determines the leader current
J = c0ϑhVcl, where c0 is the capacitance per unit length.
In turn, the leader current determines the steady-state
parameters of the channel according to the arc-dis-
charge theory. Below, we discuss the above statements
in more detail.

A SOLITARY STREAMER DISCHARGE

We will characterize a streamer by a charge distribu-
tion over the length

(1)

where zf is the front coordinate, λ is the spatial scale of
charge relaxation determined by attachment and
recombination, and q1 is the head charge.

In my previous paper [4], it was shown that, from
the condition of continuity of the current density at the
front, it follows that q1 = ast q0. If λ/ast @ 1, then, for the
charge distribution given by (1), the field E on the
streamer axis is described by the equation

(2)
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dimensionless charge per unit length, τ = ast /ϑ st is the
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characteristic time, E1(λ/ast, x) and E2(x) are the given
functions of x and the parameters λ/ast, C0 =
2πε0/ln(2λ/ast – γ + 0.5) is the capacitance per unit
length, and γ = 0.577215665 is the Euler constant.

The conductivity is determined by electrons: σ =
eµene, where µe(E) is the electron motility. To deter-
mine the electron density n

 

e

 

, it is necessary to solve the
system of equations describing the ionization kinetics.
For a streamer propagating at the velocity 
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st 

 

(in this
case, we have 
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), this system
has the form

(3)

where 

 

n

 

+

 

 and 

 

n

 

–

 

 are the densities of positive and nega-
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are the rate constants of electron–ion and ion–ion
recombination, respectively.

System (3) is written under the assumption that the
plasma is quasineutral, which is valid for 
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 is the drift velocity of electrons.
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; as a result, equation (3) reduces to

(4)

We assume that 
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 (where 

 

αr = αei(Est))
behind the ionization front (i.e., at x ≤ xf). In this case,
ionization in the streamer trace is inessential and can be
neglected, so that equation (3) takes the form

(5)

The solution to equation (5) with the boundary con-
dition n+(x = xf) = n+ has the form n+(x) = n+/(1 +
αrτ(xf – x)n+). The value of n+ is determined from the
equality n+ = ne(x = xf), where ne(x = xf) is the solution
to equation (4) (in the vicinity of the front, we have
ne @ n– and ne ≅  n+). Finally, we arrive at

(6)

When choosing the initial conditions for (4) and (6),
we assume (as is usually done in numerical simulations
of streamers; see, e.g., [7, 8]) that, when the electric
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field reaches the value of Ebr, the electron density is
ne = n0 ≅  105 cm–3.

The algorithm for solving equations (2), (4), and (6)
was developed in [4]. At a given value of Est, the
unknown parameters , τ, and λ/ast are determined
from the following conditions.

(i) The parameter  is determined from the condi-
tion that the charge per unit length q(x) = πastτσE
attains its maximum at the streamer head (at x = xf).
Figure 1 shows the curves q(x) obtained by numerically
solving equations (2) and (4) for  = 21.4, 15, and 25;

Est = 0.4Ebr; and τ = 1.8 × 10–11 s. The true value of 
is 21.4, because q(x) attains its maximum at x = xf.
Curve 4 illustrates the corresponding dependence E(x).
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Fig. 1. The charge per unit length vs. x for  = (1) 21.4,

(2) 15, and (3) 25, and (4) the field E vs. x for  = 21.4.
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Fig. 2. (1) The time τ and (2) charge  vs. the field Est.qst'
(ii) The parameter τ is determined by equating the
electron density at the front ne(x = xf) (or E(x = xf))
obtained from equations (2) and (6) under the condi-
tions ne(x  –∞)  0 and E(x  –∞)  Est to
the established electron density n+ (or the field E+)
behind the front obtained from equations (2) and (4).
For Est = 0.4Ebr and τ = 1.8 × 10–11 s, we have E+ =
0.497Ebr and n+ = 4.6 × 1015 cm–3 (Fig. 1).

(iii) The parameter λ/ast is determined from the con-
dition that the streamer charge obtained from equations
(2), (4), and (6) be equal to qst. Taking into account
expression (1), this condition can be rewritten in the
form

(7)

where  = qst /(2πε0 Est) is a dimensionless
streamer charge, which is determined by the values of
σ and E obtained from equations (2), (4), and (6):

(7')

The parameters , τ, and λ/ast satisfying condi-
tions (i)–(iii) can be found by iteration.

Figures 2 and 3 show the plots of τ, , and the
steady-state electron density behind the ionization front
n+ versus Est. The streamer parameters corresponding
to the field Est and charge qst can be found as follows.

The radius ast = [qst /(2πε0 Est)]1/2 is determined by qst

and (Est) (Fig. 2). The velocity ϑ st = ast/τ is deter-
mined by ast and τ(Est).

The solutions obtained exist at Est greater than the
threshold field Eth, which corresponds to the minimum
in the dependence of the attachment rate on the electric
field (Eth ≅  4 kV/cm; Fig. 3, curve 2) [4].

The data presented in Figs. 2 and 3 are the starting
point for studies of the formation of a leader channel in
the field of the streamer zone.

FORMATION OF THE LEADER CHANNEL

We assume that channel formation occurs at a con-
stant pressure P0 equal to atmospheric pressure. At low
levels of dissociation (ionization), the pressure P0 is
determined by the density N and temperature T of neu-
tral molecules. Hydrodynamic equations for N and T

λ
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qst'

q0'
------ 1,–=

qst' ast
2
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2πε0astEst
------------------------ q x( ) xd
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have the form [2]

(8)

where λ is the thermal conductivity at constant pressure
[2] and the time is counted from the arrival of the
streamer front: τ = t – z/ϑ st.

In equations (8), we neglected kinetic energy as
compared to thermal energy, the longitudinal heat flux
as compared to the radial flux, and the longitudinal
velocity as compared to the radial velocity u. By virtue
of the high rate of relaxation of rotationally excited
molecules, we assume that the translational and rota-
tional temperatures are equal to each other. We neglect
heating of the medium due to relaxation of vibra-
tionally and electronically excited molecules. The heat
capacity of air at constant pressure is cp = 7/2kT. The
source heating the medium (qt) includes elastic colli-
sions of electrons (qen) and ions (qin) with neutral mol-
ecules, excitation of the rotational degrees of freedom
(qr), energy dissipation due to electron–ion (qei) and
ion–ion (qii) recombination, and dissipative attachment
(qatt):

(9)

The sources of the bulk energy deposition depend
on the electron density ne and the densities of positive
(n+) and negative (n–) ions. Assuming that the plasma of
the streamer trace is quasineutral, we determine ne, n+,
and n– from the equations

(10)

Here, νion(Te, δ) and νatt(Te, δ) are the ionization and
attachment rates determined by the electron tempera-
ture Te and the relative air density δ = N/N0, where N0 =
2.5 × 1019 cm–3); νdet is the detachment rate; and λei(Te)
and λii(Ti , δ) are the rate constants of dissociative elec-
tron–ion and three-particle ion–ion recombination,
respectively. Since the mass of an ion is close to that of
a neutral particle, the ion temperature is Ti ≅  T. At ϑ st @
ϑdr, we can neglect the drift of electrons along the elec-
tric field, assuming that ϑdr ≡ 0 (for a positive leader, we
have ϑdr < 0).

The radial flows of charged particles are determined
by the sum of the flows related to the motion of the
medium (neu and n–u) and diffusion. In a quasineutral
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plasma of a streamer trace, diffusion is ambipolar.
Neglecting thermal diffusion and assuming that Te @ T,
we obtain [9] (here, ∇  = ∂/∂r)

(11)

We assume that electron detachment results from
collisions of negative ions with electronically-excited
molecules; i.e., νdet = α*N*, where α* is the detach-
ment rate constant and N* is the density of electroni-
cally excited particles. We will vary α* and determine
N* from the equation

(12)
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Fig. 3. (1) The electron density n+ in the streamer channel
and (2) the attachment rate νatt vs. the field Est of the
streamer zone.
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714 IVANOVSKIŒ
where νex(Te , δ) is the excitation rate of the molecular
electronic levels.

The electron temperature, which governs the rates
of production and annihilation of charged particles, is
determined from the energy balance for electrons [10]:

(13)

where qv , qex, and qi are the energy losses due to vibra-
tional and electronic excitation and ionization, respec-
tively; λe = 5/2nekTe/meνm is the electron thermal con-
ductivity; and νm is the frequency of elastic collisions.

Figure 4 shows the dynamics of streamer trace heat-
ing. The figure presents the time dependences of the
relative air density δ and the electron density ne at r = 0
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Fig. 5. The potential of channel formation Vst vs. the
streamer velocity at Est = 12.7 kV/cm in (1) the comprehen-
sive model and (2) the model without allowance for the
transfer processes.

Fig. 6. The potential of channel formation Vst vs. the
streamer velocity for Est = (1) E1, (2) E2, and (3) E3.
obtained by numerically solving equations (8)–(13) at
Est = 12.7 kV/cm and qst = 0.33 × 109 C (ϑ st = 8.5 ×
107 cm/s) at α* = 10–8 cm/s. The decrease in the elec-
tron density in the streamer trace due to attachment and
recombination is followed by an increase in ne, which
is explained by accumulation of electronically excited
molecules. The formation of the channel at τ = tst ≅
48 µs is characterized by a sharp increase in ne and a
decrease in δ. In order to describe the subsequent heat-
ing dynamics, it is necessary to take into account Cou-
lomb collisions, relaxation of vibrationally excited
molecules, dissociation of molecules, radiation trans-
fer, etc. However, even without going into details, we
can expect further growth of the conductivity and the
channel current and, consequently, a sharp decrease in
the field Est of the streamer zone. This allows us to
introduce the potential of channel formation Vst ≅
Estϑ sttst.

Figure 5 shows a typical plot of Vst versus ϑ st(qst).
Here, tst is the time required for the relative air density
to achieve the value δ = 0.1. A comparison with the
curve obtained for ϑe = ϑ– = u, λe = 0, and λ = 0 shows
that the increase in Vst at small velocities ϑ st (small
charges qst) is related to the increase in the role of trans-
fer processes (mainly heat conduction) with decreasing
streamer trace radius ast; i.e., the dependence of Vst on
ϑ st(qst) has a minimum determined by the heat conduc-
tivity of a medium.

STEADY-STATE LEADER DISCHARGE

Figure 6 shows the plots of the potential Vst of
channel formation versus the streamer velocity ϑ st for
three values of the field Est of the streamer zone at α* =
10–8 cm3/s. Let the cloud potential be V. In the steady-
state regime, V = Vst (we neglect the potential drop
along the channel) and the leader velocity is ϑh = ϑ st. At
Est < E2, leader propagation is impossible. For Est ≥ E2

(e.g., Est = E3), two groups of streamers correspond to
each value of the field of the streamer zone. For Est =
E3, these are the streamers propagating at the velocities
ϑA and ϑC, which correspond to two possible velocities
of leader penetration. Stable propagation at the velocity
ϑh = ϑA is impossible, because the streamers with the
velocities ϑA < ϑ st < ϑC form the channel at smaller
potentials. Steady-state penetration at the velocity ϑC is
also unstable, because the streamers with ϑ st > ϑC over-
take the leader and decrease the field of the streamer
zone. We can assume that the field Est = E2 and the
velocities ϑh = ϑ st = ϑB (point B) correspond to stable
penetration of the leader. In this case, the decrease in
the field Est by the streamers with ϑ st > ϑB leads to the
termination of propagation; as a result, the field Est

increases.
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Thus, the minimum field of the streamer zone Em

that still allows the growth of the leader is established
at a given cloud voltage V. A group of streamers with
the charge qm and velocity ϑm correspond to this field.
The heating of the traces of these streamers results in
channel formation.

Figure 7 shows the plots of the leader penetration
velocity ϑh versus the cloud potential (Fig. 6; points F,
B, E). The propagation velocity ϑh increases with
increasing α*. For natural lightning, the maximum
velocity is about 2.6 × 108 cm/s and the maximum
charge is about 20 C [11]. Assuming that the capaci-
tance of the leader is 4 × 10–8 F (the length is about 5 ×
103 m), we estimate the maximum potential to be
~500 MV. Close values result from calculations at α* =
(0.5–1) × 10−8 cm3/s (Fig. 7).

The drift of electrons along the field (Fig. 8) affects
the leader parameters if the propagation velocity is
comparable with the drift velocity. The increase in the
conductivity at the stage of channel formation leads to
a decrease in the field of the streamer zone. For a leader
propagating at the velocity ϑh, the estimate for the
decrease in the field Est(τ) of the streamer zone can be
found from the equations

(14)

where V is the potential, I is the total current of the
streamers, Cst = 2πε0/ln(2ϑhtst/Rst) is the capacitance per

unit length of the streamer zone, Gtr = 2π (r, τ)rdr

(where σ = eµene + eµi(n+ + n–)) is the linear conductiv-
ity of the trace of a streamer that forms the channel, and
Gst is the total linear conductivity of all the streamers.

From (14) we obtain the equation for the field of the
streamer zone

(15)

For small conductivity of the streamer trace (Gtr 
0), the field is constant along the streamer zone (Est(τ) =

Est(τ = 0) = Est) if Gst = Cst τ. The growth of Gtr in the
stage of channel formation causes a decrease in the
field. Note that the linear conductivity that is necessary
to sustain the field of the streamer zone can be provided
even by a solitary streamer, because the conducting
zone widens due to the ionization of new areas by the
transverse electric field [12].

Figure 8 presents the plots of the leader velocity ver-
sus potential obtained from equations (8)–(13) with
field (15) for a ratio ϑhtst /Rst between the length and
radius of the streamer zone equal to 3 [1]. It is seen
from the figure that taking into account the capacitance
of the streamer zone results in the appearance of the
threshold voltage Vmin for leader breakdown, which
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corresponds to the minimum velocity ϑmin of leader
propagation. Laboratory studies yield the following
minimum values of the leader velocity and potential:
ϑmin ~ 2 × 106 cm/s and Vmin ~ 300–400 kV [1].

In order to estimate the maximum leader length Lm,
we present the cloud potential Vcl as a sum of the poten-
tial V of the streamer zone and the potential drop Vc =
EcL along the channel. We assume that the field Ec is on
the order of the arc field: Ec(V/m) ≅  A1J–0.5, where
J(A) = c0ϑhVcl is the leader current, c0 ≅  8 × 10–12 F/m,
and ϑh(m/s) ≅  A2V 2/3. The value of A1 = 104(VA1/2)/m is
obtained by interpolating the data from [13], and the
value of A2 = 4.5m/(V2/3s) is obtained by interpolating
curve 3 in Fig. 7. Finally, for the length and velocity of
the leader, we obtain

(16)
L
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Fig. 7. The leader velocity vs. the potential V for α* =
(1) 2.5 × 10–9, (2) 5 × 10–9, and (3) 10–8 cm3.
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The notation is the same as in Fig. 10.
We estimate the maximum velocity of the leader

assuming that V = Vcl, i.e., ϑm ≅  4.5 . The length
attains its maximum at V = 0.25Vcl: Lm ≅  2.8 ×
10−10 . Note that, for the leader length L ! Lm(Vcl),
we can neglect the potential drop along the channel and
consider steady-state propagation.

For the maximum potentials of artificial lightning,
we have Vcl ≅  3–5 MV, Lm ≅  200–500 m, and ϑm ≅  0.94–
1.3 × 105 m/s. The observed values are L ≅  1000 m and
ϑ  ≅ 105 m/s [1].

For the minimum lengths of natural lightning, we
have L ≅  103 m, Vcl ≅  7 MV, and ϑm ≅  1.6 × 105 m/s. The
observed value is ϑ  ≅  105 m/s [11].

For gigantic lightning, we have Vcl ≅  500 MV, Lm ≅
2.5 × 106 m, and ϑm ≅  2.8 × 106 m/s.

DISCUSSION

The electron energy losses due to the excitation of
electronic levels sharply increase in the fields E ≥ E* ≅
10 V/cm (Fig. 9). In the above analysis, the field E*
determines the threshold for leader breakdown in air. It
is believed that the field in the streamer zone is Est ~
5 kV/cm [1]; i.e., Est is close to the threshold for
streamer breakdown Eth (Fig. 3, curve 2). This is the
main difference between the above concept and the
generally accepted views [1].

Direct measurements of the field of the streamer
zone in a rod–plane gap with a length up to 20 m [14]
provide evidence of the validity of the relationship Est ~
Eth. Those measurements were based on the Pockels
effect; however, at the field strengths ≥2–3 kV/cm, cor-
rect measurements of the fields in air by detectors based
on bismuth silicate crystals are hardly possible because
of the field distortion by a local corona [1]. It is possible
that multiple streamer breakdowns (corona) near the
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Fig. 12. The attachment rate vs. the electric field E. The
notation is the same as in Fig. 10.
TECHNICAL PHYSICS      Vol. 45      No. 6      2000



MECHANISM FOR PROPAGATION OF A POSITIVE LEADER 717
detector at the field strength E > Eth decrease the local
field strength to E ~ Eth. In this case, the results pre-
sented in [14] only allow one to be confident that the
field in the streamer zone is greater than Eth.

The estimate Est ~ 1/ϑ stdV/dt ~ 12 kV/cm obtained
from an experimentally observed linear dependence of
the velocity of a streamer starting from a point on the
steepness of the front of the voltage pulse dV/dt at ϑ st ≥
2 × 105 cm/s [3] provides indirect evidence in favor of
the relationship Est ~ E*.

At fields of about E*, the N2(A ) and N2(B3Πg)
levels with the energies I* = 6.14 and 7.3 eV, respec-
tively, are mainly excited [15]. In the interaction with
these molecules, the detachment rate constant is α* ~
2.5 × 10–9 cm3/s [1, 9]. An increase in α* by a factor of
2–4 provides the best agreement with the experimental
data. Additional channels of destruction of negative
ions are provided by detachment in the interaction with
molecules excited to higher electronic levels (I* ≥
10 eV; the relative concentration of such particles is
about 10%); detachment due to the interaction with res-
onant radiation; electron-impact detachment in the
regions with high electron density, e.g., in the vicinity
of the front of a streamer discharge (Fig. 3, curve 1).
This problem requires further investigation.

We did not manage to produce a similar steady-state
regime of breakdown for a negative leader, because, in
the stage of channel formation (Fig. 4), the electron
drift velocity ϑdr exceeded the streamer velocity ϑ st,
which led to discharge termination [see the first equa-
tion in (10)].

CONCLUSIONS

We have considered a model of leader breakdown in
air in which the channel is formed due to heating of the
streamer trace in the field of the streamer zone, which
is formed by a great number of streamers starting from
the leader head [1]. The initial parameters of the plasma
in the streamer trace are determined with the use of the
previously developed model of streamer discharge [4],
which was generalized by allowing for the recombina-
tion of charged particles. Detachment of electrons in
the interaction of negative ions with electronically
excited molecules plays the key role in the formation of
the channel.

It is demonstrated that, in the steady-state regime,
the channel is formed from streamer traces with a cer-
tain charge. The other streamers produce and sustain
the field of the streamer zone.

We have found the penetration rate, the length of the
streamer zone, and the length of the leader discharge as
functions of the cloud potential. We have estimated the
minimum potential that makes leader discharge possi-
ble and have found the corresponding propagation
velocity.

Σ2 +
u
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It is the N2(A )and N2(B3Πg) electronic levels that
are mainly excited in the fields under consideration.
The detachment rate constant in the interaction with
these molecules is α* ~ 2.5 × 10–9 cm3/s. An increase
in α* by a factor of 2–4 provides the best agreement
with the experimental data. The problem of additional
channels of destruction of negative ions requires further
investigation.

For a negative leader, a similar steady-state regime
of breakdown is impossible, because, in the stage of
channel formation, the electron drift velocity is greater
than the streamer velocity, which leads to current termi-
nation.

Within the model presented, the threshold (with
respect to the formation of the leader discharge) field of
the streamer zone, E* ≅  10 kV/cm, is determined by a
sharp increase in electron energy losses due to excita-
tion of the electronic levels. Bazelyan and Raiser sug-
gested [1] that the field of the streamer zone is close to
the threshold field of the streamer discharge Eth ≅
5 kV/cm. There are arguments in favor of both hypoth-
eses. In order to clarify this problem, further investiga-
tions are necessary.

APPENDIX

Reaction Rate Constants

The cross sections of interactions of electrons with
molecular nitrogen and oxygen are studied in [16, 17].
Let us briefly describe the cross sections used in this
paper. The dependences of the transport cross sections
qm of elastic collisions on the electron energy ε were
taken from [18]. We follow [19, 20] in the description
of rotational excitation. To determine the total cross
sections, we take into account the smallness of the rota-
tional constants (B0 = 2.5 × 10–4 eV for N2 and B0 =
1.8 × 10–4 eV for O2) and replace summation over the
indices of the levels j with integration over j from j = 0
to j = ∞. For the deceleration cross section, we obtain

(A1)

where σ0 = 8π/15(a0)2, a0 is the Bohr radius and Q is the
quadrupole electric moment (Q = 1.05 for N2 and Q =
0.3 for O2).

When describing vibrational excitation, we only
consider collisions of the first type, which means that
we assume the molecules to be in the ground state. The
excitation cross sections of the first eight levels of N2
and four levels of O2 can be found in [21] and [22],
respectively.

The cross sections of the electronic excitation of

molecular nitrogen are taken from [23] (for the A
and a1Πg states), [24] (for the B3Πg and C3Πu states),

and [25] (for the b1Πu and b  states and the sum of

Σ3 +
u

Sin
R

4B0σ0 1 kT
ε

------– 
  ,=

Σ3 +
u

Σ1 +
u
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cross sections of the higher lying states). For molecular
oxygen, the cross sections of the excitation of the a1∆g

and b  states are taken from [15, 22] and the cross

sections of the excitation of the A  and B  states
and the sum of the cross sections of the higher lying
states are taken from [25]. When describing electron-
impact ionization, we restrict ourselves to the process
starting from the ground state. The corresponding cross
sections for N2 and O2 are taken from [26] and [27],
respectively.

The cross sections of a three-particle attachment to
O2 are taken from [28], assuming O2 to be the third par-
ticle. The dissociative attachment rates are determined
based on the cross sections from [29].

The temperature dependences of the rates of pro-
duction and annihilation of charged particles corre-
sponding to the above cross sections are determined
from the kinetic equation for the symmetric part of the
electron distribution function f0 [30],

(A2)

which is solved for various values of the ratio E/N
according to the technique developed by Sherman [31].
From the distribution function f0, we obtain the electron
temperature

(A3)

and the corresponding rate constants of production and
annihilation of charged particles, as well as the colli-
sion frequencies and the rates of energy losses [30, 32].
The obtained dependences of the rate constants on Te

are interpolated with the use of the analytical formulas
([Te] is in eV)

Σ1 +
g
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(A4)

where  and  are the rates of three-particle and

dissociative attachment, respectively: νatt =  + .

We assume dissociative recombination and recom-
bination in triple collisions to be the main channels of
electron–ion and ion–ion recombination, respectively.
The corresponding constants were determined from
[33, 34]

(A5)

where Te and T are in K.
The rate of the bulk loss of electron energy due to

ionization was determined from qi = Iνionne, where I =
14.9 eV is the mean ionization potential of air mole-
cules. We assume that the particles produced via elec-
tron–ion and ion–ion recombination and dissociative
attachment remain in the ground state, so that all the
released energy is transformed into heat. In this case,

qei = αei(Ie + 3/2kTe) ; qii = αiiIin+n–, and qatt =

2εi ne. The energies released in different elementary
acts are assumed to be Ie = 6 eV, Ii = 13.44 eV, and εi =
1.35 eV.

Figures 10–12 compare the ionization rates νion,
electron drift velocities 

 

ϑ

 

dr

 

, and the attachment rates 

 

ν

 

att

 
obtained from the experimental data [35] and from for-
mulas (A4) at  δ  = 1. In the last case, the electric field  E
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corresponding to the temperature Te was determined
from [see (13), in which ∂/∂τ, ∂/∂r = 0]:

(A6)
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Abstract—A model of solid hydrogen isotope pellet formation is proposed for an original porous generator
employed in the system of periodic particle injection into the plasma of thermonuclear devices. The results of
model calculations show that the frequency of 3-mm pellet formation in this system may reach up to 2, 1.3, and
1 Hz for hydrogen, deuterium, and tritium, respectively. © 2000 MAIK “Nauka/Interperiodica”.
 INTRODUCTION

A widely recognized method of maintaining ther-
monuclear reactions consists in injecting macroparti-
cles (pellets) of solid hydrogen isotopes into the plasma
of thermonuclear devices [1]. Many of these devices
are equipped with pellet generators which, together
with the gas injection valves, constitute a base of the
fuel supply system. Most frequently employed are
pneumatic injectors, in which the pellets are acceler-
ated with compressed air (like projectiles in a gun bar-
rel) up to a velocity of 1–3 km/s and injected into the
plasma. The problem of injector development reduces
to designing a device capable of generating solid pellets
of hydrogen isotopes with a temperature of about 10 K
at a steady-state production rate above 1 Hz and a reli-
ability of operation exceeding 95%.

Several possible designs of the pellet generator have
been proposed [2–7]. In the Zambony generator [2], the
gas is continuously frozen onto the rim of a rotating
disk and the ice is periodically cut off. However, this
device provides pellet production in a steady-state
regime at a frequency not exceeding 0.2 Hz. Another
generator [3], consisting of a system of three switched
piston extruders pressing a fuel ice rod cut into pellets,
requires keeping a large stock of fuel, which is rather
dangerous (especially when working with tritium).
More promising systems are apparently offered by gen-
erators using “gas” or screw extruders [4, 5]. Here,
obvious disadvantages are a rather high gas pressure
(10 MPa) in the first case and a quite large necessary
fuel stock (reaching several grams) in the latter case
(again, undesired when dealing with tritium).

Recently [6], a new generator scheme was proposed
in which the fuel pellets are formed upon melting a
small volume of solid fuel continuously frozen in a
porous sleeve, essentially representing a short part of
the injector barrel, followed by the liquid phase leaking
and freezing again in the barrel. The first tests showed
[7] that solid hydrogen pellets 3 mm in diameter can be
formed in such a system at a frequency of 0.1 Hz. To
increase the rate of pellet production, it was necessary
to optimize the system design. The task of this work
1063-7842/00/4506- $20.00 © 20720
was to develop a model of particle formation in the pro-
posed porous generator and perform the optimization
procedure based on this model.

PELLET FORMATION MODEL

Prior to estimating the minimum time required for
pellet formation in the proposed generator, let us deter-
mine the maximum barrel diameter for which a liquid
drop of fuel will not spread over the surface. Consider
a liquid drop occurring in equilibrium inside a horizon-
tal round barrel. The orthogonal coordinate axes x and
y perpendicular to the barrel axis are conveniently ori-
ented in the horizontal and vertical directions as
depicted in Fig. 1. Let the saturated vapor pressure and
the liquid-phase pressure at the point y = R in the barrel
be Ps and PR, respectively, where R is the barrel radius.
The free surface of the liquid is described by the func-
tion u(x, y). A static equation for this system describes
the balance of gravity and surface tension forces [8]:

(1)

where ρ2 and σ2 are the density and the surface tension
coefficient of the liquid, respectively, and g is the accel-

σ2 div
∇ u x y,( )

1 ∇ u x y,( )[ ] 2
+

---------------------------------------- 
  ρ2g R x–( ) PR Ps–( ),+=

Ps

u(x, y)
0

R

x

y

Fig. 1. Schematic diagram showing a liquid fuel drop in the
injector barrel.
000 MAIK “Nauka/Interperiodica”



        

POROUS GENERATOR OF THERMONUCLEAR FUEL PELLETS 721

                                                                           
eration of gravity; here and below, the indices 1–3 refer
to the solid, liquid, and gas phases of the fuel, respec-
tively.

Integrating equation (1) over the barrel cross section
x2 + y2 ≤ R2 and using the Ostrogradsky–Gauss theo-
rem, we obtain a relationship

where ϕ is the contact angle for the liquid on the barrel
surface. This relationship yields a formula for the barrel
radius:

(2)

As is seen from this expression, the maximum pos-
sible radius is that corresponding to PR = Ps. Taking into
account that liquid hydrogen almost perfectly wets the
barrel surface, we obtain a final expression for the max-
imum barrel radius Rmax at which the fuel drop will not
spread over the surface:

(3)

Calculations by formula (3) performed for the ρ2
and σ2 values taken from [9] showed that the surface
tension would prevent drops of hydrogen, deuterium,
and tritium with radii below 2.8, 2.1, and 1.85 mm,
respectively, from spreading in the barrel. Of course,
the liquid fuel can be frozen in a barrel of greater radius
as well, but in this case the liquid would partly spread
on the surface, vaporize, and condense again onto the
surface of ice formed in the barrel. Increased duration
of this process would render the system hardly applica-
ble to periodic fuel injection.

The new principle of pellet formation consists
essentially in pulsed heating and melting of the fuel in
the pores of the injector, whereby the melted fuel would
leak through the pores into the injector barrel to freeze
there again [6]. Since a generator with fuel operating in
this mode has to be periodically heated only by 5–10 K,
the time of pellet formation would markedly decrease
compared to the time usually required to freeze a por-
tion of the gas in the barrel by cooling the fuel from 290
to 10 K.

As is seen from the scheme presented in Fig. 2, the
accelerating gas, driving pellet 1 in barrel 2, enters (at
room or elevated temperature) via valve 4 and passes
via tube 3 through pellet generator 5 (cooled down to
approximately 10 K), thus heating this part of the injec-
tor. If the solid fuel, melted by heat delivered with the
gas, penetrates through sleeve 6 into the barrel, the
whole process of pellet formation will be self-sustain-
ing, requiring no drives or mechanisms. This circum-
stance would render the generator simple in design and
use, markedly increasing the reliability of the system.
Liquid helium permanently circulating inside heat
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exchanger 7 cools the generator so that the accumulated
liquid fuel freezes inside the injector barrel and in the
porous generator. The volume of the porous sleeve,
emptying when the liquid drop leaks into the barrel, is
rapidly filled with a new portion of fuel condensing on
the developed pore surface.

The purpose of developing the proposed model con-
sists in evaluating the minimum time necessary for pel-
let formation, depending on the characteristic of the
fuel and the parameters of the system design.

The amount of heat delivered to the generator with
the accelerating gas can be evaluated by using, in the
first approximation, a relationship between the Nusselt
number (Nu) for a steady-state gas flow in a round tube
and the Reynolds (Re) and Prandtl (Pr) numbers [10]:

(4)

The local Re and Pr values can be calculated using
the cross-section-average parameters of a given accel-
erating gas with allowance for its adiabatic expansion
upon entering the barrel from a shot valve volume of
about 6 cm3. Assuming the gas enthalpy variation to be
small (despite the heat exchange with the barrel walls),
the gas escape time t* from the barrel can be estimated
by the formula [11]

(5)

where P0 and P3 are the initial and final gas pressure in
the barrel, a3 is the sound velocity in the unperturbed
gas, and S is the barrel length (including the inlet tube
carrying the gas ejected from the shot valve).

Let us assume that the heat supplied to the system
by the accelerating gas to the barrel and the inlet tube
and removed in the steady-state regime by the injector
cooling system is transferred only within small parts of
the inlet tube 2, barrel 3, and the generator surface con-
tacting the gas (Fig. 2). For definiteness, we also
assume that the pellet length, porous sleeve thickness,
and barrel diameter have equal values and the heat-
exchange area between gas and generator is two times
the pellet surface area. Under these assumptions, the
heat transferred from gas to generator during every
cycle can be calculated using the heat-exchange coeffi-
cient αg(t) expressed via the Nusselt number (4), and the
gas temperature can be determined using equation (5).
We assume that the main heat exchange takes place
within a time period during which the accelerating gas
(helium) pressure in the barrel drops from 5 MPa to
10 kPa. The barrel length (with the gas inlet tube) is
taken equal to S = 460R.

The amount of fuel that must be melted in the gen-
erator pores so as to form a pellet is equal to the sum of
the mass of the liquid pellet and the mass of the satu-
rated vapor in the barrel (necessary to provide for equi-
librium of the drop). For a linear variation of the tem-
perature from T0 (room temperature) to the generator
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temperature T, the required mass of the melted solid
fuel m* is not less than

(6)

where ρ2 and ρs are the densities of the liquid fuel and
its vapor at the melting point, respectively.

In order to ensure that a part of the fuel will freeze
in the pores, preventing new portions from leaking into
the barrel, the mass of the fuel inside the pores must
somewhat exceed that calculated by formula (6):

m = nm*. (7)

In order to estimate the minimum time required to
form a new pellet, we will take n = 1.2. Estimates of the
time required for heating and cooling the generator
filled with solid fuel can be obtained using equations of
the energy balance of a system including the generator,
the solid and liquid fuel in the pores, and the pellet fro-
zen in the barrel. We will use the approximation of
spherical pores uniformly distributed over the sleeve
volume and assume that the porous copper sleeve,
owing to a high thermal conductivity, has the same tem-
perature over the entire volume. Then, the generator
cooled by liquid helium with a heat transfer coefficient
αHe is descried by the following balance equation:

(8)

m* πR
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2Rρ2 Sρs
T

T0 T–
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34

5

6

7

Fig. 2. Schematic diagram of a fuel injector with the pro-
posed porous generator (see the text for explanations).

.

where qg , qw , qc , qp, and qm denote the thermal fluxes
from accelerating gas and additional heater, the con-
stant heat supply, the heat delivered to the solid/liquid
fuel in the pores and to the pellet frozen in the barrel;
THe is the constant temperature of helium in the heat
exchanger; F is the heat exchanger area; and M and c
are the intrinsic mass and heat capacity of the generator
(without fuel in the pores).

The constant heat supply to the generator, which can
be reduced down to a level below 0.1 W, will be
neglected as compared to the other contributions enter-
ing into equation (8). The thermal flux to the pores is
determined as

(9)

where Θi(r, t) is the temperature of the ith phase of fuel
in the pores; N is the effective number of pores in the
generator, equal to the ratio of the total volume of fuel
in the pores to a single pore volume for the average pore
radius rp; λi is the thermal conductivity of the fuel; and
i = 1, 2 for the solid and liquid fuel phase, respectively.

Let rs be a radial coordinate of the spherical surface
separating sold and liquid fuel phases inside a pore. The
energies of both phases can be expressed as

(10)

where ci are the specific heat capacities of the fuel
phases at constant pressure.

We assume that the generator temperature does not
exceed the boiling temperature of the fuel, so that no
vaporization takes place at the metal–fuel interface.
Then, the boundary conditions can be formulated as

(11)

and the Stefan condition at the phase transition bound-
ary as

(12)

where Ts and L are the temperature and latent heat of
fusion of the fuel.

As the fuel is melted, the liquid penetrates through
the pores into the barrel. If the fuel is again frozen at the
time instant when the amount of liquid in the barrel is
m*, then the pellet freezing time will be minimum and
the porous sleeve will essentially play the role of a dos-
ing valve for liquid fuel delivery to the barrel.
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In order to estimate the time required for the liquid
to leak into the barrel, it is necessary to consider the
dynamics of liquid fuel flowing through the given
porous medium. However, it is clear that the nonlinear
character of the Navier–Stokes equations, together with
the impossibility of determining the positions of sur-
faces at which the necessary boundary conditions can
be formulated, hinder the obtaining of a rigorous solu-
tion for the flow velocities. However, provided that the
Reynolds numbers are small, the effect of inertial
forces can be neglected in comparison with the viscous
forces and the flow of liquid in a porous medium can be
described with sufficient precision by the following
equation [12]:

(13)

where U is the mean rate of liquid filtration through the
porous medium, K = 5.0 is the Kozeny empirical coef-
ficient, µ is the coefficient of dynamic viscosity, ε is the
ratio of the total pore volume to the porous sleeve vol-
ume, A is the total specific pore surface (per unit vol-
ume), ∆P is the driving pressure gradient, and h is the
height of the porous sleeve above the barrel axis.

Using equation (13), we determine the filtration
time required for the preset amount of liquid to accu-
mulate in the injector barrel:

or after some transformations,

(14)

The cycle of pellet formation is terminated by freez-
ing in the barrel. This process begins as soon as the gen-
erator temperature decreases below the melting point of
the fuel and proceeds simultaneously with fuel cooling
and freezing in the pores. Calculation of the time
required for this process is based on solving the Stefan
problem with boundary conditions of the third kind,
which is analogous to the problem of fuel freezing in
the pores. Thus, each phase of fuel in the barrel is
described by the equation

(15)

with the boundary conditions

(16)

and the Stefan condition at the phase transition
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boundary

, (17)

where rc is the radial coordinate of the spherical surface
separating solid and liquid fuel phases in the barrel. The
set of equations (4), (5), (8)–(12), (14), and (15)–(17)
were solved by numerical methods. The mass of copper
and the number of pores were selected so as to ensure
that the heat transferred by the accelerating gas would
not increase the temperature of the generator (with a
given heat capacity) up to the boiling point of the fuel
(to avoid undesired vaporization), while melting all the
fuel filling the pores.

Figure 3 (solid curves) shows the results of calcula-
tions of the temperature–time profiles during heating
and cooling of the porous generator containing hydro-
gen or its isotopes in the pores. Also presented in Fig. 3
(dashed curves) are the profiles of temperature varia-
tion with time on the axis of pellets. The calculations
were performed for a generator with a mass of 30 g and
a pore diameter of 0.06 mm, forming pellets with a
diameter and length of 3 mm. This size is of interest for
thermonuclear setups such as JET (Great Britain), LHD
(Japan), and Tore-Supra (France). The coolant (helium)
temperature was taken equal to 6 K, the heat exchanger
surface was 10 cm2, and the coolant heat transfer coef-
ficient was calculated for a helium flow rate of 10 h–1.
As is seen, heating of the generator with the pores filled
with solid fuel takes about 20–30 ms, which is approx-
imately equal to the time of accelerating gas escape
from the barrel. Cooling the generator to the initial tem-
perature level prior to every injection cycle (10, 16, and
19 K for hydrogen, deuterium, and tritium, respec-
tively) proceeds at a threefold slower rate (because of
the less effective heat exchange with liquid helium) and

λ2

∂Ψ2

∂r
---------- λ1
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∂r
----------– ρ1L

drc

dt
------- at r rc= =

T, K
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Fig. 3. Time variation of (1–3) the temperature of the porous
generator sleeve filled with hydrogen, deuterium, and tri-
tium, respectively, and (a–c) the temperature on the axis of
the corresponding pellets.
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is less dependent on the fuel type. The longest stage in
the pellet formation cycle is that of fuel freezing in the
barrel, which takes about 0.45, 0.70, and 0.80 s for
hydrogen, deuterium, and tritium, respectively.
Another 50 ms are required for cooling the frozen fuel
to a temperature 4–5 K below the solidification point.

The results of calculations presented in Fig. 3 show
that the time of pellet solidification in the injector barrel
exceeds the time of fuel melting and freezing in the
pores. This is valid for the pore size below 0.2 mm. If
the pore diameter increases, the liquid fuel penetrates
into the barrel faster and it is difficult to provide for a
dosed fuel admission at the expense of rapid cooling of
the porous sleeve only. Oscillations in the gas pressure
at the generator input or in the vapor pressure in the bar-

t, ms
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0
0.01 0.03 0.05 0.07 0.09 0.11

rp, mm

1
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a
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Fig. 4. The plots of (1–4) the time required for accumulation
of a liquid hydrogen mass m* in the injector barrel at an
input fuel pressure of 0.1, 0.05, 0.02, and 0.01 MPa, respec-
tively, and (a–d) the sleeve open state duration for an addi-
tional heating power of 0, 5, 10, and 20 W, respectively, ver-
sus the generator pore radius.
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Fig. 5. Time schedule of pulses in a working cycle of pellet
formation: (a) shot valve opened; (b) gate valve closed;
(c) additional heater switched on; and (d) gate valve opened.
rel readily break the conditions of liquid drop equilib-
rium (1), whereby an excess amount of liquid fuel may
leak into the barrel. This circumstance increases the
time of pellet formation and violates stable operation of
the generator. Therefore, the pore size should be
selected based on the optimum time of liquid fuel leak-
age into the barrel.

According to the results of numerical modeling, the
time of accumulation of the required volume of liquid
fuel for a generator pore radius from 0.01 to 0.05 mm
is approximately equal to the time during which the
sleeve temperature exceeds the fuel melting point. The
latter state is called the open state of the porous sleeve.
Figure 4 shows calculated plots of (1–4) the time tf

required for accumulation of the liquid fuel necessary
to form a pellet and (a–d) the time of the open state of
the sleeve versus the pore radius for various levels of
the additional power supplied to heat the generator. The
height of the porous sleeve was taken equal to 25 mm.
The data presented in Fig. 4 indicate that, in order to
increase stability of the system operation and facilitate
control of pellet formation, it is necessary to ensure that
the open state duration (i.e., the time of liquid fuel
accumulation in the barrel) is sufficiently long (tens of
milliseconds) at a minimum additional heating power
(still sufficient to melt all fuel in the pores). The addi-
tional heating power strongly influences the open state
duration and can be used, together with the fuel gas
pressure, to effectively control the process of liquid fuel
melting and filtration into the injector barrel.

An analysis of the calculated results showed that the
following conditions have to be satisfied to reach the
minimum time of pellet formation (for the pellet size
below 4 mm): generator mass, M < 50 g; pore radius,
rp < 0.05 mm; total pore volume must not be greater
than four times the pellet volume; and refrigerating
capacity must be maximum (not less than 7 W at 4.2 K).
For example, in a 20-g generator with a pore radius of
0.03 mm, a fuel stock coefficient of n = 2, and a refrig-
erating capacity of 7 W, the time required to form a
3-mm solid hydrogen pellet is 0.5 s, the corresponding
values for deuterium and tritium being 0.8 and 1.0 s,
respectively.

EXPERIMENTAL RESULTS

The purpose of our experiments was to determine
the minimum time of pellet formation in a porous gen-
erator and to compare this value to the results of calcu-
lations based on the model described above. The exper-
iments were performed with a generator weighing 77 g
mounted in an injector [13] equipped with a pro-
grammed controller.

Figure 5 shows the time schedule of control pulses
generated by the controller in a working cycle of pellet
formation and injection. The cycle begins with a pulse
opening the valve admitting the accelerating gas. Then,
10 ms after the valve opening, the additional heater was
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
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switched on to operate for 0.4–0.8 s. During this period,
the gate valve was closed (10–80 ms after the starting
pulse) and solid fuel (hydrogen) melted in the pores and
leaked into the injector barrel. During the whole exper-
iment, gaseous hydrogen at a pressure of 0.1 MPa was
supplied to the input tube of the porous generator. The
injector design allowed visual monitoring of the barrel
into which liquid hydrogen leaked through the porous
sleeve. Within less than 0.5 s after the cycle started,
hydrogen melted in the pores and leaked out to fill the
barrel. This portion of liquid hydrogen was frozen
within 6–7 s, and then the gate valve was opened. The
next shot was produced 1 s after opening the gate. The
accelerating gas and that formed upon pellet impact
onto the diagnostic chamber flange and evaporation
were evacuated by a pumping system, and the cycle
was repeated.

Thus, in the steady-state regime of injector opera-
tion, the total time of pellet formation was about 8 s.
Attempts at reducing this time showed that the genera-
tor was capable of producing pellets in a period of 6 s.
However, the video record of flying pellets in this case
frequently revealed a smeared, apparently snowy, axial
trace. The probability of injecting intact pellets dropped
from 80 to 50%.

Figure 6 shows plots of the generator temperature
versus time over the working cycle. Curve 1 is the tem-
perature variation measured by a sensor mounted near
the porous sleeve, and curve 2 presents the results of
calculation for the same generator. As is seen, the two
plots are sufficiently close to each other, which con-
firms the applicability of the proposed model to a
description of the process of pellet formation in the
porous generator and minimization of the pellet forma-
tion time. The temperature profile measured by the sen-
sor was reproduced from cycle to cycle, which is evi-
dence of stable operation of the system. The video
record of flying pellets allowed their quality, dimen-
sions, and velocities to be evaluated. According to these
data, the pellets appeared as transparent ice columns,
containing no noticeable cracks or cleavages, with a
diameter of 2.4 mm and a length of 3–4 mm. Some
decrease in the pellet size as compared to the barrel
diameter (2.7 mm) is explained by friction-induced
sublimation of fuel from the side surface of pellets
moving in the barrel, in agreement with the experi-
ments using injectors of other types [3] and with the
results of model calculations [14].

We have studied the system operation during several
series of injection cycles, with the total number of pel-
lets above one thousand. The pellet velocities were
determined by monitoring their position relative to a
measuring scale in the video frame and by measuring
the delay time between the starting pulse and the instant
when the pellet crossed a laser pulse focused on the
photodetector. The experimental pellet velocities var-
ied within 1.1–1.2 km/s for a system using acceleration
with helium at a pressure of 7 MPa.
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
CONCLUSION

We have completed the first stage of tests on pellet
generators of a new type, capable of producing an
unlimited number of fuel pellets in a steady-state peri-
odic operation mode. The generators are referred to as
porous, since the main element is a porous metal sleeve
filled with a thermonuclear fuel. A generator with
a mass of 77 g formed solid hydrogen pellets with a
diameter of 2.4 mm and a length of 3–4 mm at a fre-
quency of 0.125 Hz. In order to design generators with
increased injection frequency, we have developed a
model for calculation of the regime of system opera-
tion, which allows the pellet formation time to be
reduced by selecting optimum structural parameters of
the porous generator. The results of model calculations
showed that a generator with a mass below 50 g and a
pore diameter below 0.1 mm may provide a pellet for-
mation frequency of up to 1–2 Hz. In the second stage
of this work, we are planning to perform the tests with
generators weighing about 30 and 40 g.

An advantage of the new type of pellet generator is
that the fuel stock in the system at each time instant
does not exceed a few pellet volumes. This feature
makes the new system more attractive for handling tri-
tium as compared to existing extruders containing a
fuel volume amounting to hundreds of pellets. The pro-
posed generator involves no moving parts, which
increases reliability of the system and makes it an
acceptable part for the fuel injection systems in thermo-
nuclear devices of long-term operation.
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Abstract—Breakdown of inert gases in a homogeneous dc electric field is studied experimentally and theoret-
ically at various distances L between the electrodes and radii R of the discharge tubes. It is shown that, for arbi-
trary geometric dimensions of the discharge chamber and cathode materials, the ratio of the breakdown electric
field strength to the gas pressure holds constant at the breakdown curve minimum. A modified Paschen law is
obtained, according to which the breakdown voltage is a function of both the product of the gas pressure by the
distance L and the ratio L/R. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The dc glow discharge is widely used for obtaining
thin polymer and oxide films, cleaning surfaces of
materials, pumping gas-discharge lasers, in plasma dis-
plays, voltage stabilizers, etc. Therefore, studying the
conditions for glow discharge initiation is of significant
interest. As is known [1–7], the dc glow-discharge
breakdown curves are described by the Paschen law
Udc = f(pL); i.e., the breakdown voltage Udc is a func-
tion of the product of the gas pressure p and distance
between the electrodes L. This means that the break-
down curves Udc(p) obtained for various distances L
must be superimposed on each other when being plot-
ted as the function Udc(pL). However, in some experi-
mental studies it was revealed that, at equal values of
the product pL, the breakdown voltage for a long dis-
charge gap with flat electrodes is appreciably higher
than for a short gap [4, 8–17].

In this work, we have studied experimentally and
theoretically the breakdown of inert gases in a dc elec-
tric field in discharge chambers with various interelec-
trode distances L and interior radii R.

THEORY

The equation for gas breakdown in a homogeneous
dc electric field derived in [18] takes into account elec-
tron-impact ionization of gas molecules, the drift of
electrons and ions along the field direction, and the dif-
fusive motion of electrons along the discharge-tube
radius. However, the authors [18] neither analyzed the
breakdown equation obtained, nor compared its solu-
tions with the experimental results. Therefore, after
simple transformations, equation (12) from [18] is
1063-7842/00/4506- $20.00 © 0727
written in the form

(1)

where α and γ are the first and second Townsend coef-
ficients, De is the transverse electron diffusion coeffi-
cient, and Ve is the drift velocity of electrons.

The following expressions can be written for Ve, De,
and α in a wide range of the ratio Edc/p (close to, and to
the right of, the minima of the breakdown curves) for
inert gases (argon, xenon, etc.) [19–22]:

(2)

(3)

(4)

where µe0 is the electron mobility at p = 1 Torr and A0
and B0 are constants [3].

Substituting (2)–(4) into (1) and multiplying the
left- and right-hand sides of (1) by L, we have the fol-
lowing equation for the breakdown:

(5)
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Since, as a rule, γ ! 1, equation (5) can be simplified
to the form

(6)

Equations (5) and (6) show that the breakdown volt-
age Udc is a function not only of the product pL, but also
of the ratio L/R. Let us differentiate (5) with respect to
pL and equate the derivative dUdc/d(pL) to zero. Then,
we derive two solutions for the breakdown curve mini-
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Fig. 1. (a) Experimental breakdown curves for a glow dis-
charge in argon: (1) our measurements; (2, 3) experiment [5]
(Pt and Ni cathodes, respectively); (4) steel cathode [23];
(5) Ni cathode [24]; (6) steel cathode [25]; (7) Pt cathode
[26]; (8) stainless steel cathode [27]; (9) Cu cathode [13];
(b) breakdown curves for a glow discharge in argon (R =
3.15 cm) at various distances between the electrodes L, cm:
(1) 0.5; (2) 1; (3) 2; (4) 4; and (5) 6.
mum, one of which has no physical meaning and the
other of which yields the relations

(7)

(8)

(9)

where e is the natural logarithmic base and Umin =
(Udc)min.

For L/R  0, expressions (8) and (9) take the form
[3]

(10)

(11)

From (7), it follows that, when the values of L, R,
and γ are varied in discharge chambers, the breakdown
curves are shifted in such a manner that the (Edc/p)min
value always remains constant, accompanied by the
maximum electron ionizing power. Formulas (8) and
(9) show that the coordinates of the minima (pL)min and
Umin depend on the ratio L/R but not on L and R sepa-
rately.

EXPERIMENTAL RESULTS

The above theoretical results were tested experi-
mentally by measuring the breakdown curves for a
glow discharge in argon at dc voltages Udc ≤ 1000 V and
pressures p ≈ 10–2–10 Torr. Discharge tubes with inner
diameters of 9, 14, 27, 63, and 100 mm were used. Flat
parallel electrodes were manufactured from stainless
steel and occupied the entire cross section of the dis-
charge tube.

Figure 1a shows one of the breakdown curves (L =
11 mm and R = 50 mm) and experimental curves
obtained with argon in [5, 13, 23–27]. Our data are
obviously in good agreement with the results of other
authors. Figure 1b shows the breakdown curves mea-
sured by us at various distances L between the elec-
trodes. These results prove that, as L increases, the
breakdown curves are shifted not only to higher break-

Udc

pL
-------- 

 
min

Edc

p
------- 

 
min

B0,= =

A0

e
------ pL( )min

De0

µe0
-------- 2.4( )2

B0 pL( )min

----------------------- L
R
--- 

 
2 γA0

e
--------- pL( )min+=

×
A0

e
------ pL( )min

De0

µe0
-------- 2.4( )2

B0 pL( )min

----------------------- L
R
--- 

 
2

–exp 1–
 
 
 

,

A0

eB0
--------Umin

De0

µe0
-------- 2.4( )2

Umin
-------------- L

R
--- 

 
2 γA0

e
---------

Umin

B0
----------+=

×
A0

eB0
--------Umin

De0

µe0
-------- 2.4( )2

Umin
-------------- L

R
--- 

 
2

–exp 1–
 
 
 

,

pL( )min
e
A0
------ 1 γ+

γ
------------ 

  ,ln=

Umin

eB0

A0
-------- 1 γ+

γ
------------ 

  .ln=
TECHNICAL PHYSICS      Vol. 45      No. 6      2000



A MODIFIED PASCHEN LAW FOR THE INITIATION 729

                    
down voltages Udc (as was obtained in [8–17]) but also
simultaneously to higher pL values. Such a conclusion
can also be drawn from the experimental results
shown in Fig. 3 of [13] for neon. Breakdown curves
were obtained in [13] close to the minimum and to the
left of it; it was pointed out that Udc rises with increas-
ing L. However, these results also show that the break-
down curves are shifted to higher pL values with
increasing L (this fact was fully ignored in [13]).
Hence, the departure from the Paschen law observed
by us is well confirmed in independent measurements.
Such a shift of the breakdown curves to the regions of
higher Udc and pL with an increase in the interelec-
trode distance L is apparently related to an increase in
the loss of charged particles at the side (radial) walls
of the discharge tube due to diffusion transverse to the
electric field.

Figures 2 and 3 show Umin and (Edc/p)min as func-
tions of (pL)min and ratio L/R obtained from our exper-
imental breakdown curves. Figure 2 shows that, for the
measured coordinates of the breakdown curve minima,
Umin ∝  (pL)min; from Figs. 2 and 3 it follows that
(Edc/p)min ≈ const = 194 ± 5 V/(cm Torr) (this value is
in satisfactory agreement with B0 = 180 V/(cm Torr)
[3]). Figure 2 also presents a straight line Umin =
194(pL)min describing the experimental points well.
Therefore, the behavior of the coordinates of the break-
down curve minimum for a glow discharge, which was
predicted by formula (7), is confirmed by our experi-
mental results. Consequently, the ratio (Edc/p)min at the
breakdown curve minimum in an inert gas always
remains constant for arbitrary experimental values of
the interelectrode gap L and the tube radius R. The same
rule is valid if the coefficient of ion–electron emission
γ is varied (this was noted in [4, 5] and follows from the
results of [28, 29]).

Figure 3 also shows that the Umin values obtained
from experimental breakdown curves for various L and
R fall satisfactorily on a single monotonically increas-
ing curve. There is also a theoretical curve Umin(L/R)
in Fig. 3, which was calculated from (9) and agrees
well with our experimental results (in these calcula-
tions, we used the values of α, Ve, and De from [3, 4,
19–22]). Therefore, the parameter L/R, as well as pL,
is also important for the description of the glow-dis-
charge breakdown curves. Figure 4 shows two break-
down curves in discharge chambers with different
radii and interelectrode distances but equal ratios
L/R = 2.4. As we see, the breakdown curves almost
coincide in this case. Thus, the Paschen law can be
written in the modified form

(12)

Let us formulate the modified law (12) in the follow-
ing manner. Taking two discharge tube with L1, R1 and
L2, R2, we measure the breakdown curves for them and

Udc f pL
L
R
---, 
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plot these curves as Udc1, 2 = f(pL1, 2). These two break-
down curves then coincide only in the case if L1/R1 =
L2/R2. In other words, the conventional Paschen law
Udc = f(pL) is valid only for discharge tubes with iden-
tical L/R. Discharges for which the dimensions of the
electrodes and distances between them are geometri-
cally similar and the gas pressures are inversely propor-
tional to the interelectrode distances have equal dis-
charge initiation voltages. In the general case with arbi-
trary L and R, the conventional Paschen law is not valid.

Note that with appropriately selected coordinate
axes, we can achieve the coincidence of all the mea-
sured breakdown curves. For example, if we plot

(13)pL* pL  1 
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various R, cm: (1) 0.7; (2) 3.15; (3) 5; (4) 0.45; and (5) 1.35.
Solid line: (Edc/p)min = 194 V/(cm Torr); dashed line:
Umin = 194(pL)min.

Fig. 3. Dependences of Umin and (Edc/p)min on L/R; R val-
ues are the same as in Fig. 2. Solid line: (Edc/p)min =
194 V/(cm Torr); dashed line: calculations from (9).
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and

(14)

along the horizontal and vertical axes, respectively,
where a ≈ 0.16 for argon, then the breakdown curves in
Fig. 1b are mutually superimposed to within an accu-
racy of ±5 V (Fig. 5). At L/R  0, we obviously have
a customary Paschen curve Udc = f(pL). Relations (13)

and (14) show that /(pL*) = Udc/(pL) = Edc/p; i.e.,
the dependences Edc/p = f((pL)*) for different break-
down curves must also coincide (this is demonstrated in
Fig. 5). By using relations (13) and (14) and breakdown
voltage values shown in Fig. 5, we can predict to a high
accuracy the breakdown curve in a discharge chamber
for arbitrary L and R values. It follows from Fig. 5 that
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Fig. 4. Breakdown curves for L/R = 2.4: L = 1.1 (1) and
3.3 cm (2); R = 0.45 (1) and 1.35 cm (2).

Fig. 5. Dependences of  and Edc/p on (pL)* in a dis-

charge tube with R = 3.15 cm; L, cm: (1) 0.5; (2) 1; (3) 2;
(4) 4; and (5) 6.

Udc
*

the Paschen law can be written in another modified
form,  = f((pL)*).

We will make one remark concerning the break-
down curve measurement technique. The glow-dis-
charge breakdown curve is usually measured by two
methods: (1) the distance L is fixed, and the breakdown
voltages are then measured as a function of gas pres-
sure; (2) breakdown voltages are measured at varied
distances L and a fixed gas pressure. However, from the
data obtained in this study, it follows that the second
method of measuring the breakdown curve (at a fixed
pressure and variable L) is not correct. The “breakdown
curve” thus obtained represents a certain function,
which is close to the Paschen curve at small L but is
shifted to higher breakdown voltages with increasing L.
In order to extract some valid information on discharge
initiation, each experimental point obtained by this
method should be recalculated by using relations (13)
and (14).

CONCLUSIONS

In this study, glow-discharge initiation in inert gases
was investigated experimentally and theoretically for
variable interelectrode gaps and radii of the discharge
tubes. It is shown that the ratio (Edc/p)min holds constant
at the minima of the breakdown curves for arbitrary
interelectrode gaps, radii of the discharge chamber, and
ion–electron emission coefficients. A modified Paschen
law Udc = f(pL, L/R) is obtained; i.e., the breakdown
voltage Udc is a function of both the product of the gas
pressure and gap width and the ratio L/R. It is shown
experimentally that the conventional Paschen law Udc =
f(pL) is valid only for discharge tubes in which the
dimensions of the electrodes and the distances between
them are geometrically similar. In the general case, the
Paschen law is not valid.
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Abstract—In experiments on indium antimonide single crystals, the dynamic behavior of a screw dislocation–
impurity ambient system was studied. It was found that local absorption of electromagnetic energy takes place
in this system, leading to development of relaxation processes which change the system energy and, conse-
quently, its dynamic properties. It is remarkable that the system can be activated by an electromagnetic field due
to the presence of impurity ambient around otherwise inactive screw dislocations. © 2000 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

Until recently, weak electromagnetic (EM) fields
(U ! kT, where U is the energy of the electric or mag-
netic component of the field; and T is the temperature
of an object) constituted the basis of scientific methods
of investigating physical phenomena of materials and
their properties. It had been considered that such expo-
sure could not bring about an irreversible change in the
structure or properties of condensed matter, as they did
not affect the dynamic equilibrium in the concentration
of defects. However, in nonequilibrium condensed sys-
tems, both crystalline [1–4] and amorphous [5], appli-
cation of weak EM fields caused irreversible changes in
their structure and properties. These facts have led to
intensive developments in laboratory and industrial
methods of EM processing of materials and products
aimed at improvement of their physico-mechanical,
electrophysical, and operational characteristics [4, 6].
Despite the applied nature of these research efforts, the
immediate cause of the observed structural transforma-
tions has been identified: the relaxation processes trig-
gered by EM stimulation of thermodynamically unsta-
ble materials.

Still, a question remains as to what elements of the
system are responsible for the absorption of EM energy
and the ensuing relaxation processes. Finding a solu-
tion to this problem can open prospects for efficient
employment of EM fields in various applications. In
order to solve such a problem, it is necessary to find a
relation between macroscopic properties of a material
and EM stimulation. Once this relation has been found,
a scientific approach to employing weak EM fields can
be formulated and their effect on the structure and prop-
erties of materials can be estimated both qualitatively
and quantitatively. Guidelines for such an approach
have been formulated by the present author [7]. Basi-
cally, these guidelines rely upon the knowledge of
1063-7842/00/4506- $20.00 © 20732
structural and energy states of a material that might be
responsible for the relaxation processes and be directly
involved in absorption of EM energy. In general, the
nature of the structural and energy states can can differ
by point defects, impurity atoms, linear defects, com-
plexes, or volume defects. For example, it has been
shown [1] that in NaCl single crystals treated in a mag-
netic field, the relaxation process is a result of decom-
position of impurity phases CdCl2 and PbCl2. In [2], the
relaxation process consisting of a periodic variation of
the internal friction is linked to formation–disintegra-
tion processes of impurity ambients around disloca-
tions as a result of magnetic field pulses applied to a
polycrystalline structure. On the other hand, some
authors [5] relate the relaxation process in disordered
systems initiated by EM fields to alternating formation
and disintegration of cluster structures. The above
works, as well as many others, have a serious draw-
back. In none of the cases considered has the type of
defects responsible for the EM energy absorption and
relaxation processes been uniquely identified. In the
objects studied, various types of defects can simulta-
neously be present, whereas the problem of their selec-
tion from the viewpoint of applying EM stimulation has
not been addressed. This is probably the reason why a
general model of relaxation processes caused by EM
stimulation is still unavailable.

In this work, a serious attempt is undertaken to
improve the general situation in this field. To identify
the particular elements in a structure which absorb EM
field energy and establish possible mechanisms of
induced relaxation processes, a correct approach is
required, namely, the appropriate choice of materials
for study; formation in the chosen material of a partic-
ular system, of defects to be tested for the possibility of
EM field absorption and initiation of a relaxation pro-
cess, and, finally, the delineation of a technique for
000 MAIK “Nauka/Interperiodica”
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locally (in situ) controlling the behavior of this system
of defects.

The system of defects chosen for this study consists
of aged dislocations with an impurity ambient formed
around them. It is understandable that the material
should be monocrystalline, with controlled density of
dislocations of a known type. In addition, the disloca-
tion density should be such as to exclude their interac-
tion and thus prevent uncontrolled delocalization of the
process under study. To exclude the influence of the
crystal bulk on initiation of the relaxation process, it is
important that the crystal be diamagnetic, i.e., insensi-
tive to external fields.

OBJECT OF STUDY AND EXPERIMENTAL 
TECHNIQUES

In conformity with the foregoing discussion, the
studies were performed on initially dislocation-free
(ρ < 102 cm–2) monocrystalline indium antimonide
(InSb) doped with tellurium to a concentration of
1015 cm–3. The samples used had the form of a parallel-
epiped 2.5 × 2.5 × 15 mm cut along crystallographic
axes [111], [112], and [110], respectively. The studies
were carried out for screw dislocations insensitive to
EM stimulation, whose mobility was therefore unaf-
fected by the EM field. The dislocations were intro-
duced by scribing the (112) facet and then bending the
sample placed on a four support in a transverse direc-
tion to the [111] axis. In a sample put under stress in
this way, there forms after a time an ensemble of dislo-
cations such as those seen in the micrograph in Fig. 1a
of the (111) crystal face after a selective chemical etch.
Figure 1b shows an X-ray topogram of an ensemble of
dislocations introduced in the above manner. The topo-
grams were registered using a technique of anomalous
propagation of X rays. To increase the resolution, the
topograms were taken in a one-crystal geometry with
the use of MoKα1 radiation. The sample thickness for
the topographic investigations was ~250 µm. X-ray
topographic identification of an ensemble of disloca-
tions for revealing the screw dislocations was per-
formed using the condition of “invisibility” of disloca-
tions on the topogram

(1)

where  is the diffraction vector of a reflecting plane,

 is the Burgers vector of a dislocation, and  is the
dislocation line vector [8].

It is evident that a screw dislocation has a lot of
planes meeting this condition and that an edge disloca-
tion has a single reflecting plane. This fact makes pos-
sible identification of the type of dislocations intro-
duced by sample deformation. A series of topograms of
types {220}, {224}, and {004} have been obtained.
Three of these topograms are shown in Figs. 1c–1e.
Seen in the topogram of Fig. 1c are large segments

g b×( ) 0, g n×[ ] 0,= =

g

b n
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directed along two crystallographic axes, [ ] and

[ ]. Dislocations aligned with [ ] slip along the

( ) axis and fade out in topogram 400 (Fig. 1d),
which indicates that they are screw-type dislocations.

Segments aligned with [ ] slide in the ( ) plane
and fade out in topogram 040 (Fig. 1e), which is also
evidence that they are screw-type. It is to be empha-
sized that these dislocations are observed on the (111)
sample face after a chemical etch (Fig. 1a). All of the
work reported in this paper was performed on these dis-
locations, because their movement can be conveniently
monitored using a chemical etch.

The impurity ambient around dislocations was pro-
duced by annealing the samples at a temperature of
300°C for 4 h. For EM field generation, an OIMP-101
oscillator was used that generated magnetic field pulses
of amplitude 105 A/m at a repetition rate of 1 Hz. EM
stimulation of samples with screw dislocations was car-
ried out at room temperature.

As a parameter to be measured, the average dis-
placement l of the ensemble of dislocations in the field
of external mechanical stress σ was used, which is
fairly sensitive to the condition of the dislocation ambi-
ent. Values of l were determined by averaging displace-
ments of individual dislocations in the ensemble being
investigated. Ensembles of 40–50 dislocations were
studied. Mechanical strain in the sample was produced
by bending a sample placed on four supports.

Using an optical microscope and the technique of a
repeated selective sample etch, displacements of the
aged screw dislocations were determined as a change of
position of the respective etch pits. Variations of l with
time t of sample loading were measured.

011

101 011

111

101 111

Fig. 1. (a) Micrographs of the (111) facet and (b–e) X-ray
topograms showing screw dislocations in single crystals of
deformed indium antimonide. Magnification in all topo-
grams is ×28.5.

(b)

(a)

(d)

(e)(c)

g(022)

g(202)
g(040)

g(400)
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RESULTS OF THE STUDY

Prior to studying the dynamic behavior of the screw
dislocation–impurity system following EM stimulation
of the sample, let us consider the system dynamics in
the absence of EM stimulation. Figure 2 shows l as a
function of applied mechanical stress duration for an
indium antimonide sample after annealing in the
regime described above. The curves were obtained at a
bending stress of σ = 10 MPa and temperatures T1 =
150 (curve 1), T2 = 130 (curve 2), and T3 = 115°C
(curve 3). In the curves shown, critical durations (tcr) of
mechanical stress can be distinguished within which
l = 0. It should be noted that the l(t) curves of annealed
samples were measured taking into account zero dis-
placements of the screw dislocations. It is owing to this
fact that tcr could be defined. As seen in Fig. 2, tcr of a
strained sample depends on temperature.

Using an expression for tcr of a strained sample as a
function of temperature [9],

(2)

the activation energy for the breakaway of an impurity
ambient from a dislocation under externally applied
stress can be estimated. It was found to be equal to Ua =
1.0 ± 0.1 eV. Using a linear approximation of the func-
tion Ua(σ) [9],

(3)

(U0 is the binding energy between the impurity ambient
and the dislocation line; γ = b2Lc is the activation vol-
ume for the process of breaking a dislocation away

tcr tcr° σ m–
Ua/kT( ),exp=

Ua U0 γσ–=

Fig. 2. Dependence of the average displacement of an
ensemble of screw dislocations in an indium antimonide
crystal on mechanical stress.
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from its ambient; b is the Burgers vector; and Lc is the
distance between points where the dislocation is pinned
by impurities), the energy of interaction between a dis-
location and its ambient U0 can be determined. For the
indium antimonide single crystals studied, U0 = 1.3 ±
0.1 eV at σ = 10 MPa and Lc = 1/n = 2 × 10–6 cm. The
linear dislocation density along a dislocation line n was
estimated using the Cottrell–Bilby expression [10]

(4)

where tT and TT are the annealing time and temperature,
respectively, of the samples with screw dislocations;
α = 6; A = 10–7 eV cm; D is the impurity diffusion coef-
ficient; and n0 is the total number of atoms per unit vol-
ume of solution. The experimentally determined diffu-
sion coefficient is equal to D = 10–15 cm2/s.

As the problem is to find out whether the EM field
can influence the dynamic properties of screw disloca-
tions, it appears that the characteristics to be investi-
gated are tcr , Ua , and U0.

Figure 3 shows l(t) curves at σ = 10 MPa and tem-
peratures 150, 130, and 115°C immediately after EM
stimulation of annealed indium antimonide containing
screw dislocations (curves 1'–3') and 24 h later (cur-
ves 1''–3''). Immediately after EM stimulation, the
number of dislocations with zero displacement is
lower, resulting in shorter times tcr under applied stress
at all temperatures. In addition, the curves in question
tend to straighten, because their nonlinearity is due to
growth (with the time of exposure to stress) of the num-
ber of displaced dislocations. The estimated activation
energy for the breakaway of a dislocation from its

n tT( ) αn0 ADtT /kTT( ),=
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Fig. 3. Same as in Fig. 2, after EM stimulation.
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impurity ambient under externally applied stress lowers
to Ua = 0.8 ± 0.1 eV. Similarly, the binding energy
between dislocations and impurities lowers to U0 = 1.1 eV.
After being stored for 24 h at room temperature follow-
ing EM stimulation, the situation is found to have
changed in the reverse direction: tcr at all temperatures
is higher (Fig. 3, curves 1''–3''), even compared with a
material not subjected to EM stimulation (Fig. 2). It is
remarkable that after storage for 24 h at room tempera-
ture, the dislocation–impurity system transformed in
such a way that the energies increased as follows: Ua =
1.1 eV and U0 = 1.4 eV. It will be recalled that in the ini-
tial sample, the impurity ambient (less tightly bound)
formed after a 4-h hold at 300°C. With a diffusion acti-
vation energy of tellurium impurity of about 0.5 eV, the
diffusion coefficients D1 at T1 = 20°C and D2 at T2 =
300°C differ by about four orders of magnitude. From
the diffusion time relation D1t1/D2t2 = 1, it follows that
the diffusion times t1 and t2 should also differ by about
the same factor, but in this study this ratio was found to
be less than an order of magnitude. It is thus evident
that during a 24-h experiment, no ambient, let alone the
one bound to a dislocation, can form as a result of
impurity diffusion from the bulk. Qualitatively, this
result can be understood in terms of the concept of dif-
fusion instability produced by EM stimulation of the
material [4]. Then, according to the above consider-
ations, in the 24 h following EM stimulation, an impu-
rity ambient should have formed around newly intro-
duced screw dislocations at room temperature. Yet, no
experimental evidence to confirm this was found: for
screw dislocations induced in a sample after EM stim-
ulation, no time delay of displacement was detected in
the course of a few days, i.e., Tcr = 0.

CONCLUSIONS

The following important conclusions can be drawn
from the analysis carried out in this work. As a result of
EM stimulation of indium antimonide samples contain-
ing aged screw dislocations, a relaxation process is trig-
gered, which transforms the impurity ambient in such a
way as to make it more tightly bound to the dislocation.
This in turn causes a lowering (relative to the initial
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
state) of U0, Ua, and tcr values immediately after EM
stimulation (apparently during its disruption), followed
by an increase in these parameters; localization of the
EM energy and the relaxation process takes place in a
system consisting of dislocations and their impurity
ambients, because in a system of dislocations devoid of
impurity ambients, no relaxation processes are obser-
ved; the transition of the dislocation–impurity ambient
system from one state to another as a result of EM stim-
ulation is evidence of metastable states, which may be
the states responsible for absorption of the EM field and
the processes induced by this field.

The obtained results can serve as a basis for the
development of electromagnetic methods of control-
ling the mechanical properties of materials.
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Abstract—Influence of the current redistribution in the stabilizing matrix of a composite superconductor with
nonuniform distribution of the superconducting component over its cross section on the normal zone propaga-
tion is calculated. Analysis of the problem in dimensionless variables allows one to find parameters determining
the import of the effect considered. Parametric relationships for the normal zone propagation velocity are
obtained under cooling conditions inadequate for steady state stabilization. © 2000 MAIK “Nauka/Interperi-
odica”.
Transition of a composite superconductor to the
resistive state is accompanied by a flow of the transport
current to the stabilizing matrix. The characteristic time
for current redistribution in a nonuniform stabilizer of
a large cross section may be as long as several seconds;
therefore, this process can have significant effects on
superconductor stability and the normal zone dynam-
ics. A cable consisting of twisted wires of a composite
superconductor surrounded by an additional aluminum
stabilizer is an example of such conductors. Such con-
ductors are intended, among other things, for magnetic
systems of the detectors of particle accelerators where
cryogenic stabilization of the winding is usually
ensured by means of indirect cooling. Numerical and
analytical methods were suggested [1, 2] to calculate
current diffusion to the stabilizing matrix. The effect of
current redistribution on superconductor stability was
investigated under conditions of indirect cooling [3] as
well as cooling by superfluid helium [4]. Other papers
[5, 6] are devoted to studying moving normal finite-size
regions in steady-state stabilized conductors of a large
cross section.

Let us consider a composite superconductor of
radius R0, where superconducting filaments are uni-
formly distributed within the inner part of radius Ri sur-
rounded by the region of an additional stabilizer, i.e.,
normal metal. Let us assume that the average specific
resistance ρ of both parts of the conductor is equal at a
temperature higher than critical. At the initial moment,
the transport current I flows through the inner area of
the conductor whose temperature is equal to the cool-
ing medium temperature T0 everywhere except for
some length that instantly transforms to the normal
state. Let us write the magnetic field diffusion equation
(1) in cylindrical coordinates for an azimuthal compo-
1063-7842/00/4506- $20.00 © 20736
nent of the magnetic induction and the thermal balance
equation (2) in the form

(1)

(2)

Here, c and λ are the mean volume thermal capacity and
thermal conductivity of the conductor; A is the total
cross section; P is the perimeter being cooled; h is the

convective heat transfer coefficient; and W = A–1 j 2dS

is the heat release rate per unit conductor volume aver-
aged over its cross section, where the current density j
is found by differentiation with respect to the magnetic
induction

Let us adopt a “step” model of conductivity of a
superconductor [7], where the resistivity of the com-
posite changes abruptly at some temperature Ts, which
is the mean between the current sharing temperature
and the critical temperature. For simplicity, let us regard
thermal and electrophysical parameters of the conductor
constant. Let us introduce dimensionless variables (3)
and write expressions for the characteristic magnetic
induction, time, and length according to (4)

(3)
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(4)

In this case, the magnetic field diffusion equation
assumes the form (5) with boundary conditions (6) and
initial conditions (7). Here, we neglected the second
term on the right side of equation (1) associated with
the radial component of current density. This approxi-
mation has practically no effect on the accuracy
because of the small magnitude of the factor (Lm/Lh)2

appearing in the second term in the dimensionless
equation (typically10–3)

(5)

(6)

(7)

Here r0 = R0/Lm  and β = R0/Ri. The parameter Lm is the
depth to which the electric field will diffuse in the time
period when some cross section of the conductor is
heated by the passing normal zone front. Under the
above assumptions, the current diffusion in every cross
section of the conductor occurs independently, and the
moment when the temperature reaches Ts represents the
initial moment for the system (5)–(7). Using the solu-
tion of the system (5)–(7), we can calculate a variation
with the time of the dimensionless specific heat release

which we will use to analyze thermal processes in
dimensionless variables. Equation (2) for this case can
be written as

(8)

where α = ρI2/(hP(Ts – T0)A); and τs(x) is the moment
when the dimensionless temperature at the point x
reaches unity.

The stationary value of the dimensionless normal
zone propagation velocity determined by the equations
(5)–(8) depends on three dimensionless parameters: β,
which is the relation between the conductor’s overall
dimensions and the size of an area containing the super-
conducting fraction, α characterizing the intensity of
cooling, and r0. The parameter r0 is determined by the
ratio between the characteristic times of transverse cur-

rent diffusion tm = µ0 /ρ and ohmic heating r0 =
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(tm/th)1/2. In the case of instantaneous current redistribu-
tion over the matrix cross section, the problem has a
well-known analytical solution [7] and the dimension-
less normal zone propagation velocity is determined by
the expression

(9)

At first, numerical integration of the system (5)–(7)
was carried out by the finite-difference method [8] to
find the normal zone propagation velocities. Then, evo-
lution of the initial thermal disturbance in the conduc-
tor was calculated using the obtained time dependence
of heat release (tabulated in increments small enough to
provide velocity calculations with an accuracy of about
1%), as well as the finite-difference method. The calcu-
lation results of the stationary normal zone propagation
velocity without cooling are shown in Fig. 1. The
denominate value of velocity can be obtained by multi-
plying the corresponding dimensionless value by a
parameter Vh = Lh/th = IA–1(ρλ/(Ts – T0))1/2 s–1. The
dependence of the dimensionless velocity as a function
of the dimensionless conductor radius has the charac-
teristic form of a transition between two limiting cases:
at low values of r0, current redistribution over the entire
cross section of the stabilizing matrix occurs fast
enough so that this process does not affect the normal
zone dynamics. At r0 values higher than 10–30, the cur-
rent is practically unable to flow to the region of the
additional stabilizer in the transit time of the normal
zone front, the specific heat release averaged over the
cross section approaches β2ρ(I/A)2, and the dimension-
less propagation velocity approaches β. Note that

v 0
α 2–

α 2 α–
-------------------.=

5

4

3

2

1

0
100 101 r0

V/Vh

1

2

3

4

Fig. 1. Dimensionless normal zone propagation velocity
versus parameter r0 under adiabatic conditions. β = 5 (1),
4 (2), 3 (3), and 2 (4).
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within the framework of the model used, the dimen-
sionless velocity does not depend on the matrix con-
ductivity under adiabatic conditions (parameter Lm is
independent of ρ). The reason is that the influence of
current redistribution on the propagation velocity is
determined by the ratio between the characteristic
times of diffusion and ohmic heating, which depend on
ρ in the same way. Let us estimate a typical transverse
dimension of Lm. At I/A = 108 A/m2, c = 2 × 103 JK–1 m–3,
Ts – T0 = 2.5 K, we obtain Lm ≈ 0.6 mm.

The calculation results for the case of linear heat
removal are presented in Fig. 2. The magnitudes of
velocity for the case of a uniform distribution of the
superconducting component over the stabilizer cross
section are shown by dashed lines in Fig. 2. As well as
in adiabatic conditions, at low values of r0, the velocity
is determined by the expression (9). With increasing r0,
the dimensionless velocity approaches βv0; β2α should
be used as an effective stabilization parameter in calcu-
lating v0.

3.0

2.5

2.0

1.5

1.0

0.5

0
100 101 r0

V/Vh

1
2
3

4

Fig. 2. Dimensionless normal zone propagation velocity
versus parameter r0. β = 3; α = ∞ (1), 10 (2), 4 (3), and
2.5 (4).
To verify the obtained results, numerical simulation
of normal zone propagation was carried out by the
simultaneous solution of equations (1) and (2) using the
finite-difference method. The differences in velocity
magnitudes did not exceed 1–2%.

The results of the work demonstrate that analysis of
the transition to the normal state of a superconducting
magnet wound with a conductor of the type considered,
and of the typical transverse dimension in the range of
(1–10)Lm, must be carried out taking into account the
finite time of current redistribution. For conductors
with a typical transverse dimension larger than (10–
20)Lm, the normal zone propagation velocity may be
found if it is assumed that the heat release is due to the
current flowing in that part of the stabilizer where the
superconducting component is concentrated.
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Abstract—The change in the orientation of the director of a nematic liquid crystal in a light wave field under
a uniform illumination is analyzed. A system of equations for the distribution of the director angle of inclination
is derived for the case of normal incidence. This system accounts for the finite energy of interaction between
the nematic and substrate. The dependence of the director distribution profile on the incident light intensity and
cohesion energy is studied at fields considerably above the threshold. © 2000 MAIK “Nauka/Interperiodica”.
A remarkable feature of liquid crystals is their capa-
bility to reorient in relatively weak fields [1]. One such
effect is the optical Frederix effect [1–5]. It implies a
change in the orientation of the nematic liquid crystal
director in the light wave field and could be of both
threshold and nonthreshold character. Experimentally,
it results in interference rings in the light wave field of
sufficiently high intensity.

Special interest in the studies of this phenomenon in
recent years is due to the discovery of a new effect. The
threshold field decreases rapidly after a very small
amount of dye is added to the liquid crystal [6, 7]. This
phenomenon has the following physical explanation.
The interaction potential of the excited dye molecule
and nematic is changed, thus inducing an additional
orienting moment [8, 9]. As a result, studies in fields
considerably above the threshold become possible.
This problem was discussed in papers [2, 10]. However,
the problem was being solved for a simplified model.
The authors worked under the single-constant approxi-
mation and strict boundary conditions.

In order to describe the experimental data quantita-
tively and to determine the liquid crystal parameters, a
step-by-step description of the liquid crystal structure
in the light wave field under the actual boundary condi-
tions is treated. The present paper is devoted to this
problem.

We now want to discuss a homeotropically oriented
nematic liquid crystal sample of thickness d. Assume
that it is located between two parallel plates. The light
polarized along the plates’ plane propagates normally
to their surface parallel to the z-axis. Suppose that the
layer is infinite in the xy-plane and the incident light
produces a uniform illumination (Fig. 1).

Under these conditions, the effect of the director
reorientation in the light wave field is of threshold char-
acter. The threshold value depends on the liquid crystal
parameters, the thickness of the plate, and boundary
conditions [2]. We investigate the distribution of the
1063-7842/00/4506- $20.00 © 20739
director angle of inclination in the fields much above
the threshold. Free energy of the nematic is given by

(1)

Here n is the director vector, Ki (i = 1, 2, 3) are the
Frank modules, and Fe is the contribution due to the
interaction of the nematic with the light wave field [2]

(2)

where S is the Poynting vector projection on the normal
to the liquid crystal layer, c is the velocity of light in a

vacuum, p = 1 – (n0/ne)2, n0 = , ne = , ε⊥  and ε||
are the transversal and longitudinal dielectric constants
at the optical frequency relative to the director vector
axis, and u(r) is the angle between the wave propaga-
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Fig. 1. The geometry of a homeotropically orientated liquid
crystal layer in the field of a plane-polarized light wave at
normal incidence with polarization along the x-axis.
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tion direction and the director. Under the uniform illu-
mination of the sample, the problem is one-dimen-
sional because the director distribution in the plates’
plane is uniform and depends only on z. Suppose that
the light is polarized along the x-axis. Then the director
vector has components n = (sinu(z), 0, cosu(z)), and the
free energy of the liquid crystal transforms into

(3)

Minimizing the free energy, we get the equation for
the distribution of the angle of inclination of the direc-
tor at fields higher than the threshold:

(4)

where δ ≡ (K1 – K3)/K3 and Sc = K3π2c/d2n0 p is the
threshold intensity under the strict boundary conditions
(u(0) = u/d = 0).

For convenience, replace the variables in equation
(4)  = πz/d. Then, we come to

(5)

At fields close to the threshold, equation (5) is
solved by expanding the term responsible for the inter-
action with the light in terms of u. But at strong fields,
when the electromagnetic energy fluxes are consider-
ably above the threshold, it is necessary to find an exact
solution. This can be done after linearization of equa-
tion (5) if one replaces g by (∂u/∂z)2. It results in

(6)

While solving this equation, let us take into account
that u(z) has a maximum at the center of the layer. Then,
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and the solution to equation (6) is

(7)

where a is the angle of inclination of the director at the
point z = d/2.

For u(z),

(8)

where plus corresponds to the case of  < π/2 and
minus to  > π/2. The integration of (8) results in the
equation for u. Because of the problem’s symmetry, we
shall analyze this equation in the interval 0 ≤ z ≤ d/2,

(9)

where

and us is the angle of inclination of the director at the
boundary of the liquid crystal layer. Equation (9) char-
acterizes the dependence of u on z with two parameters
a and us. The relation between us and a under the fixed
value of the electromagnetic energy flux S is given by
the equation

(10)

In order to solve equation (9), one has to take into
account directly the boundary conditions in explicit
form. We take the surface energy density to be identical
to the Rapini potential [11]:
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energy containing the surface terms. As a result, the
boundary conditions takes the form

(12)

Replacing the derivative ∂u/∂z by its expression (8),
we derive

(13)

To derive the threshold value of the electromagnetic
energy flux, we make the replacement sinu/sina = sinx
in equations (10) and (13). It results in

(14)

(15)

Forcing a to zero transforms these equations into

(16)

(17)

To find the condition for the threshold intensity, we
exclude x [2]:

(18)
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netic energy turns out to be proportional to the adhesion
energy

 ~ W, W  0.

Specifying the parameters of the system δ and p, the
incident light intensity, and the cohesion energy and
using equations (10) and (13), we calculated the slope
angle of the director at the surface us and at the center
of the layer a. After that, we determined from equation
(9) the nematic transversal structure above the thresh-
old. The parameters of the nematic liquid crystal
used are the following: K1 = 6.95 × 10–7 din, K3 = 8.99 ×
10−7 din, n0 = 1.544, and ne = 1.758. The results of cal-
culations are shown in Figs. 2 and 3.
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0.5 1.0 1.5

~

0.5

1.0

1.5

u, rad

z = πz/d
0.5 1.0 1.5

~

0.5

1.0

4

3

2

1

0
0

0
0

4

3

2

1

Fig. 2. The director angular distribution in the liquid crystal
layer of thickness d = 2 × 102 µm at cohesion energy W =

5 × 10–4 erg/cm2 for light energy fluxes S = 1.3  (1),

2  (2), 5  (3), and 8  (4),  = 0.72Sc.

S̃c

S̃c S̃c S̃c S̃c

Fig. 3. The director angular distribution at different cohe-

sion energy values for S = 2 ; W = 5 × 10–2 (1), 4 × 10–4 (2),

2 × 10–4 (3), and 1.5 × 10–4 erg/cm2 (4); layer thickness
d = 2 × 102 µm.
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It is seen from Fig. 2 that, as the intensity increases,
the thickness of the near-wall layer decreases. The
shape of the distribution curve of angles of deflection
from homeotropical orientation noticeably differs from
sinusoidal, which is observed in relatively weak fields.
It can also be seen that, at finite cohesion energy, the
director deviation occurs not only in the volume but on
the surface as well.

Figure 3 illustrates the distribution of the director
angle of deviation at different values of cohesion
energy for fixed radiation intensity. A very strong
dependence of the results on W values deserves our
attention.

It follows from the presented figures that the varia-
tion of local direction of the optical axis is sensitive to
the radiation intensity values and nematic parameters.
In particular, this enables one to determine liquid crys-
tal parameters and, above all, cohesion energy with
substrate from the dependence of the interference pat-
tern on the radiation intensity.
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Abstract—The results of the investigation of recording Fourier phase holograms on a self-developing photo-
polymer photosensitive in the range λ = 400–515 nm are presented. It has been found that, due to the transient
energy transfer between the beams, noise gratings are recorded, and a corresponding sharp reduction in the sig-
nal-to-noise ratio occurs, while the diffraction efficiency of the hologram as a whole remains relatively high
(above 50%). It has been found that the noise-grating recording can be substantially suppressed by increasing
the intensity of the reference beam relative to the intensity of the object beam. In this way, the signal-to-noise
ratio has been considerably improved for Fourier holograms of binary phase masks: at a reference to object
beam intensity ratio R = 26, Fourier phase holograms are recorded with a diffraction efficiency η = 15% and
signal-to-noise ratio N = 20 dB. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The application of Fourier holograms to solving
spatial filtering problems and as matched filters in
image-recognition systems [1, 2] makes the study of
holographic media for these purposes important. One
of the first papers where the advantages of photopoly-
mer spatial filters were shown is [3]. The formation of
holograms in the course of exposure (1–3 min) without
the application of a wet chemical process allowed the
authors of [3] to use this polymer successfully for the
holographic recording of matched filters in van der
Lugt’s arrangement. To record the filters, they used the
OmniDex material of the DuPont Company.

Substantial modulation of the average refractive
index of the material accompanying the hologram for-
mation on photopolymers is the cause of dynamic
energy exchange between the recording and scattered
beams [4], which may distort the interference pattern in
the medium and considerably reduce the signal-to-
noise ratio N. The role of dynamic effects is particularly
great when holograms of diffuse objects are recorded.
Therefore, the holographic recording on photopoly-
merizable compositions (PPC) requires a comprehen-
sive study of the influence of recording conditions on
the hologram parameters.

The objective of this work is to investigate and opti-
mize the basic characteristics (diffraction efficiency η
and signal-to-noise ratio N) of diffuse-object Fourier
holograms using the FPK-488 photopolymerizable
composition as the recording medium. It is known
[5−7] that this photopolymer allows one to record spa-
tial phase gratings with a spatial frequency of up to
6000 mm–1, η practically up to 100%, and low noise
level N > 20 dB. Unlike the OmniDex materials, photo-
polymerizable composition FPK-488 provides the
1063-7842/00/4506- $20.00 © 20743
maximal diffraction efficiency of holograms in the
course of recording and does not require postexposure
processing. The latter makes it more promising for use
in image recognition systems as compared to photo-
polymer materials that require optical or thermal devel-
opment.

In this paper, Fourier holograms of a particular class
of objects, namely, random binary phase masks [8],
were investigated. The dimensions of phase masks
were 5 × 5 mm, and the number of phase elements were
256 × 256. Fourier spectra of these objects are charac-
terized by the most uniform intensity distribution,
which allows one to estimate correctly the ultimate dif-
fraction efficiency η at a specified convergence angle
between the reference and object beams.

EXPERIMENT

Fourier holograms were recorded by He–Cd laser
radiation (λ = 441.2 nm) using a conventional arrange-
ment (Fig. 1) [1]. The object was placed in the object
plane Pobj, where it was illuminated by the transmitted
collimated laser beam. The angle between the reference
and object beams was α = 13°. For a specified thickness
of the recording film d = 25 µm, the Bragg recording
mode was achieved for the mean spatial frequency.
Selection of a random binary phase mask (RBPM) as
the object allowed us to remove the problem of nonuni-
formity in intensity distribution in the plane of holo-
gram recording, which often arises when Fourier holo-
grams are recorded. The registering film was placed in
the plane of recording, where a Fourier hologram of the
phase mask was formed in the process of exposure.

The registering film was formed by introducing the
initially liquid PPC between two glass substrates with
spacers of calibrated thickness. In order to reduce the
000 MAIK “Nauka/Interperiodica”
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noise, the PPC film was prepolymerized by an optimal
dose of incoherent radiation in a wavelength range of
250–300 nm.

An automatic system detecting the intensity of the
transmitted It and diffracted Id beams of a He–Ne laser
(λ = 633 nm) allowed one to record the dependence of
diffraction efficiency on time as η(t) = Id(t)/(Id(t) +
It(t)). A similar recording system was used to measure
the kinetics of transient energy transfer between the
interfering object and reference beams.

As the ratio of intensities of the object and reference
beams R changed, the resulting intensity in the record-

B

M1

BEx
Pobj

F Prec
Irt

Iref

Iobj

Ph

Ph
Ird

M2 BEx

(He–Cd)L

(He–Ne)L

ADC

Fig. 1. Fourier-hologram recording arrangement with a reg-
istering system: (M1, M2) mirrors; (B) beamsplitter;
(BEx) collimator with spatial filtering; (Pobj, Prec) object
plane and recording plane; (F) Fourier lens; (Ird, Irt) are the
intensities of the diffracted and transmitted beams of the
testing He–Ne laser [(He–Ne)L]; (Iobj, Iref) intensities of the
object beam and reference beam of He–Cd [(He–Cd)L] or
Ar+ laser; (ADC, Ph) analog-to-digital converter in the
IBM-compatible computer and photodiodes of the register-
ing system, respectively.
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Fig. 2. Diffraction efficiency as a function of time for vari-
ous R: (a) record of a grating, R = 1, N > 20 dB; (b) record
of Fourier holograms, R = 1, N = 4.8 dB; and (c) record of
Fourier holograms, R = 26, N > 20 dB.
ing plane remained constant and was 4 mW/cm2. In
order to estimate the signal-to-noise ratio N, the holo-
gram was placed in the object plane and the recon-
structed image was analyzed by the procedure
described in [9]. According to this procedure, in order
to calculate N, signals I0 and I1 were measured. I0 was a
signal comprising the desired signal and a noise com-
ponent, and I1 was the desired signal. N was determined
as N = 10 /(I0 – I1)).

RECORDING OF FOURIER PHASE 
HOLOGRAMS

In order to determine the optimal conditions for
recording Fourier holograms of the selected objects on
the FPK-488, R was measured as a function of Fourier-
hologram characteristics, such as η(t), N, and maxi-
mum-efficiency attainment time tm. The results of mea-
surements are presented in the table and shown in
Fig. 2. Initial values of such parameters as photopoly-
mer-film thickness, ratio of the intensities of the holo-
gram-forming beams, and total light intensity in the
plane of hologram recording were taken that were opti-
mized for recording transmission volume phase grat-
ings [3–6].

Comparing the diffraction efficiency and signal-to-
noise ratio for transmission volume phase gratings and
Fourier holograms, one can see (Fig. 2) that the maxi-
mum efficiencies for the gratings and Fourier holo-
grams with the same noise level (N > 20 dB) differ by
more than a factor of 6.5.

Taking into account that, for the object used
(RBPM), the uniformity of illuminance in the Fourier
plane is maximal (Fig. 3a), we can say, without a loss
in generality, that the obtained Fourier-hologram effi-
ciency η = 15% is maximum for the given recording
conditions and the medium. Attention is drawn to the
steep rise of noise for Fourier holograms recorded at
R = 1. This results from dynamic noise amplification
and is considered in detail below. From the data
obtained, one can draw a conclusion that, for recording
thick phase holograms of diffuse objects on the photo-
polymer FPK-488 at α = 13° and d = 25 µm, the opti-
mal parameters are the following: R = 26, η = 15%,
N > 20 dB, and tn = 5–15 min (Fig. 2). An example of
an image reconstructed from a Fourier hologram is
shown in Fig. 3b.

In a number of papers [4, 10–13], it is shown that,
for materials with sluggish response in which the image
is formed in the process of recording, for FPK-488 in
particular, transient energy transfer between interfering
beams is characteristic because of changes in the
refractive index during hologram recording. This
results in (i) the amplification of weak noise gratings
[11, 12] that occur due to the interference of the plane
reference and spherical wave fronts (the consequence
of the scattering of the plane wave by phase nonunifor-
mities) [10]; (ii) amplification of the less intense wave

(I1log
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Fig. 3. (a) Spectrum of Fourier RBPM and (b) the image reconstructed from the Fourier hologram.

Fig. 4. Intensities of the reference and object beams as a function of time. Iref  and Iobj correspond to the transmission reference beam
and object beam; (a) R < 1, (b) R > 1, and (c) R ≈ 1.
[4] when gratings are recorded by plane waves with dif-
ferent intensities; and (iii) anomalous [13] amplifica-
tion of the wave with greater intensity owing to the
wave with lesser intensity which is observed during
recording of diffuse objects.

The intensity of the energy transfer and its direction
may [13] depend on such parameters as the ratio
between the intensities of the object and reference
beams, asymmetry in their incidence on the recording
film, and total intensity of the recording field. In this
paper, the energy transfer was investigated for various
R, the other parameters being constant.

The dynamic effects may reduce the signal-to-noise
ratio in the images reconstructed from holograms
recorded on FPK-488. In principle, they cannot be
removed. However, there is a possibility to minimize
the noise level by either suppressing or counterbalanc-
ing the transient energy transfer [11, 12].

Since there is a need to minimize these noises for
Fourier holograms, we measured, in the process of
recording, the time dependences of the recording-beam
intensities Ir(t) and Iobj(t) for the limiting cases: R < 1,
R > 1, and R = 1. These dependences are shown in
Figs. 4a–4c. The registration plane is located behind
the hologram-recording plane Prec (Fig. 1).
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
It is seen that, for R < 1 (Fig. 4a), a strong light scat-
tering is observed at the initial moment without energy
transfer between the recording beams. It is supposedly
the result of amplification of noise gratings formed by
the object beam (the presence of intermodulation noise
in the image reconstructed from Fourier holograms).
For R > 1 (Fig. 4b), a weak energy transfer occurs from
the reference beam to the object beam. When R ≈ 1
(Fig. 4c), a strong energy transfer is observed from the
object beam to the reference beam against the back-
ground of dynamic noise amplification, as demon-
strated by the asymmetry in the intensity variations of
both beams.

Fourier-hologram recording parameters

No. R η, % N, dB tm , s

1 1* 98 20 400

2 1 62 –4.77 –

3 4 52 –3.68 500

4 9 30 6.02 –

5 26 15 20 1000

* Recording of volume phase gratings [3–6].
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From the results obtained, we may draw the conclu-
sion that the region R > 1 is the one best suited to
recording Fourier holograms of diffuse objects with
N > 20 dB.

CONCLUSION
This paper presents the results of an investigation of

recording thick Fourier holograms on FPK-488. It has
been found that, due to a transient energy transfer
between the beams, noise gratings are recorded and,
respectively, a sharp reduction in the signal-to-noise
ratio occurs, while the diffraction efficiency of the
hologram as a whole remains relatively high (greater
than 50%). It has been found that the noise-grating
recording can be substantially suppressed by increasing
the intensity of the reference beam relative to the inten-
sity of the object beam. In this way, the signal-to-noise
ratio has been considerably improved for the Fourier
holograms of binary phase masks: for R = 26, Fourier
phase holograms are recorded with the diffraction effi-
ciency η = 15% and N = 20 dB.
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Abstract—A new mechanism for the transformation of video pulses into radio pulses during their propagation
along a nonlinear transmission line with spatial dispersion—synchronism with a backward wave—is consid-
ered. Numerical simulations demonstrate that a substantial advantage of this mechanism over the interaction
with a forward wave is the possibility of generating longer radio pulses at higher frequencies. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The possibility of the direct and efficient transfor-
mation of video pulses into radio pulses during their
propagation along a nonlinear transmission line (TL)
with spatial dispersion was considered in [1–3]. The
method is based on the instability of the front of an
electromagnetic shock (EMS) interacting with a syn-
chronous wave (vs = vp(ω), where vs is the EMS veloc-
ity and vp(ω) is the phase velocity of the wave). The
efficiency of transformation of an EMS propagating in
synchronism with a forward wave (vpvg > 0, where
vg(ω) is the group velocity, vg < vs) was studied with
account of high-frequency losses for various dispersion
properties of the TL. In our previous paper [2], we have
demonstrated that both the duration of a quasi-steady
train of the generated oscillations and the TL length
necessary for its formation depend on the choice of a
“working point” at the TL dispersion curve upon satu-
ration of nonlinearity. In particular, it was shown that,
in the case of the generation of RF oscillations at the
frequency corresponding to a minimum of vg, when the
dispersion broadening of the radio pulse is minimal,
both the TL length that is necessary for the generation
of a given number of oscillations and the damping rate
of these oscillations depend strongly on the difference
vp – vg. In the case of synchronism with a forward
wave, this difference can be slightly increased by
changing the TL dispersion. The situation changes
drastically when vp and vg have opposite signs, i.e.,
when the EMS is in synchronism with either a back-
ward harmonic of a periodic system or a normal
backward wave (vgvp < 0). In this paper, we study the
distinctive features of the generation of RF oscillations
in a TL with ferrite in the case when the EMS is in syn-
chronism with a backward wave or backward spatial
harmonic and compare the results obtained with those
for synchronism with a forward wave. Obviously, each
1063-7842/00/4506- $20.00 © 0747
particular electrodynamic system requires special study
of spatial harmonics or normal waves and the efficiency
of their excitation by a traveling source (EMS front).
However, the main features of the synchronism
between the EMS and a backward harmonic (or wave)
can be establish based on general considerations using
the simplest equivalent schemes of a TL with nonlinear
ferrite elements. The analysis of the processes in such
lines shows that, in the case of synchronism of an EMS
with a backward spatial harmonic (or backward wave),
the above mechanism can be used to generate longer
radio pulses in a higher frequency range.

THE MODEL OF AN ELECTRODYNAMIC 
SYSTEM WITH FORWARD AND BACKWARD 

WAVES

It is well known that backward waves can exist in
the media with anomalous spatial dispersion [4] and in
various periodic systems, in particular, slow-wave elec-
trodynamic systems (see, e.g., [5]), in which the propa-
gating wave is spatially modulated. Such a wave can be
considered as a wave group consisting of spatial har-
monics whose amplitudes are coupled. The harmonics
travel with different phase velocities, but the group
velocity is the same for all of them. Some of the har-
monics are forward, and some are backward. In differ-
ent slow-wave systems, the fundamental (or zero) spa-
tial harmonic, which has the largest absolute value of
the phase velocity, can be either forward or backward
[5]. If the wavelength is much longer than the period d
of the system (λ @ d), then the backward zero harmonic
is dominating in the wave group [5]. This fact some-
times allows one to consider the wave group of a peri-
odic system as a quasi-normal backward wave analo-
gous to the backward wave in a system with anomalous
spatial dispersion. The waves with zero backward har-
monic propagate in slow-wave systems only within a
2000 MAIK “Nauka/Interperiodica”



 

748

        

BELYANTSEV, KOZYREV

                                                                                            
certain RF band, which makes impossible the propaga-
tion of shock waves in such systems (for the excitation
of a shock wave, it is necessary that low-frequency
waves can propagate in the system). However, if such a
slow-wave system is coupled with another slow-wave
system in which the forward zero harmonic dominates
in the wave group propagating at low frequencies, then
such an electrodynamic system allows both forward
and backward quasi-normal waves, which makes possi-
ble the synchronism of an EMS with a backward wave.
The use of a discrete equivalent chain (Fig. 1) allows
simple description of such a situation. The discreteness
of the equivalent chain gives rise to fundamental har-
monics (0 ≤ ϕ0 ≤ π and –π ≤ ϕ0 ≤ 0) traveling in the +z
and –z directions and a set of harmonics ϕn = ϕ0 ± 2πn,
where ϕn is the phase shift per cell or the wavenumber
of the nth spatial harmonic normalized to the period d
of the system. In contrast to real periodic slow-wave
systems, these harmonics do not form wave groups,
because the equivalent scheme does not provide the
amplitude coupling between them. Hence, each har-
monic can be regarded as a normal wave with the phase

( ) and group ( ) velocities

(1)

This model allows us to study qualitatively the main
features of the excitation of a wave group of a slow-
wave system in the case of synchronism of the EMS
front with one of the backward spatial harmonics. How-
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Fig. 1. The equivalent scheme of an LC nonlinear transmis-
sion line with ferrites and cross-coupling between the next
nearest cells.
ever, for each particular slow-wave system, the effi-
ciency of excitation oscillations by an EMS front prop-
agating in synchronism with a quasi-normal backward
wave or backward spatial harmonic of the wave group
depends strongly on the relationship between their
fields and the currents of the traveling source (EMS
front).

THE STRUCTURE OF A STEADY EMS 
IN A PERIODIC TL

1. General Considerations

The main features of the generation of RF oscilla-
tions in a TL with ferrite in the case of synchronism
with a backward or forward wave (spatial harmonic)
can be established based on the studies of the structure
of a steady EMS.

If a TL has a periodic structure in the longitudinal
direction z, then the alternating field behind the front of
a steady EMS depends not only on the transverse coor-
dinate r⊥  and the variable ξ = (z – vst)/d related to the
EMS front, but also on z. In particular, for synchronism
of the EMS front with the nth spatial harmonic (vs =
Redω/ϕn(ω)), the alternating component of the field
behind the front upon saturation of nonlinearity can be
represented qualitatively as [6]

(2)

Here em(r⊥ , ω) is the electric field of the mth spatial har-
monic and an(ω) is the excitation coefficient of the
wave group, which is governed by the processes occur-
ring at the EMS front, where the nonlinearity is not sat-
urated. It follows from (2) that the oscillations in a
steady wave damp with distance from the front as
exp(− ξ) with the damping rate determined by the
imaginary part of the wavenumber of the harmonic
(ϕn =  + i ) that is in synchronism with the EMS
front. In addition, the field is spatially modulated with
the period equal to the period d of the structure. How-
ever, if the EMS is in synchronism with the dominating
harmonic of one of the wave groups (waves) of a slow-
wave system, then the periodicity over z is insignificant
and the distribution of the alternating field of a steady
EMS along the TL is governed mainly by the propaga-
tion constant of this harmonic.

At fixed z = z0, relationship (2) describes the time
behavior of the electric field of a steady EMS passing
through a given section of a periodic slow-wave sys-
tem. The electric field exhibits harmonic oscillations
with the damping rate – vs /d, which depends on both

E~ an ω( )Re jϕnξ( )
( )
------------exp∼

× em r⊥ ω,( ) j ϕm ϕn–( )z/d{ }exp
m

∑ .

ϕn''

ϕn' ϕn''

ϕn''
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the frequency of oscillations and the EMS velocity. It is
clear that, for a steady EMS, the time behavior is iden-
tical for all the points z = z0 + nd.

Evidently, the structure of a steady EMS in the case
of synchronism with a forward harmonic is qualita-
tively the same as that for synchronism with a back-
ward harmonic. However, such parameters as the
damping rate and relative amplitude of oscillations can
be substantially different. These differences can be
established based on the consideration of a model prob-
lem using an equivalent scheme similar to that shown in
Fig. 1.

2. Basic Equations

Nonlinear processes in an LC chain with capacitive
cross-coupling (Fig. 1) are described by a system of dif-
ferential difference equations,

(3)

(4)

(5)

Here, Φn is the induction flux in the nth cell of the non-
linear TL, In is the current, Vn is the voltage, Mhn is the
mean value of the magnetization vector (which is par-
allel to the magnetic field), Hn(In) is the magnetic field,
γ is the absolute value of the gyromagnetic ratio, M is
the saturation magnetization (4πM = Bs), η is the ferrite
space factor of the TL, α is the dissipation coefficient,
C0 is the capacitance of a unit cell of the TL, L0 is the
inductance of a unit cell upon saturation of nonlinear-
ity, and C∗  is the cross-coupling capacitance. The resis-
tance R0(ω) takes into account high-frequency losses in
the TL that are related to dissipation in metal surfaces
(due to skin effect) and high-frequency dielectric losses
in the saturated ferrite. The frequency dependence of
the resistance is given by

, (6)

where  is the tangent of dielectric losses in the sat-
urated ferrite and the coefficients k0 and Γ0(ω) are
determined by the TL structure. The frequency depen-
dence of Γ0(ω) is also determined by TL geometry and,
in the general case, cannot be specified as a known
function of frequency. However, for the estimates, we
can assume that Γ0 is constant within a wide frequency
range. The frequency dependence of the tangent of
dielectric losses , which is different for different
ferrites, determines the frequency dependence of
dielectric losses in the ferrite [see (6)]. Below, we

dΦn
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---------- Vn 1– Vn– InR0 ω( ),–=

Φn L0 In 4πηMhn+( ),=
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assume that  ~ ω2 (in particular, such a depen-
dence approximates well  in the frequency range
500–1000 MHz for nickel–zinc ferrites).

Figure 2a presents the dispersion characteristics of
the LC chain with a capacitive cross-coupling between
the next nearest cells upon saturation of the ferrite and
in the absence of losses. The figure shows the depen-
dences of (1) the relative frequency ω/ωc, (2) relative
phase velocity vp/v0, and (3) relative group velocity
vg/v0 on the wavenumber ϕ' for the forward wave (0 ≤
ϕ0 ≤ π) and for the first spatial harmonic (ϕ1 = 2π – ϕ0).
Here ωc = 2/τ0 is the critical frequency, τ0 = (L0C0)1/2 is
the time constant of a unit cell, and v0 = d/τ0 is the char-
acteristic velocity. It is seen that the synchronism of the
EMS with a backward harmonic is possible near the
minimum of the group velocity vg but for values of
vs = vp(ω) smaller than those in the case of synchro-
nism with a forward wave.

As was mentioned above, in the case of saturated
nonlinearity, the structure of a steady EMS is deter-
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Fig. 2. (a) Dispersion characteristics of an LC chain with
cross-coupling between the next nearest cells for the cross-
coupling coefficient γ∗  = C∗ /C0 = 0.2, (b) the imaginary
part of the wavenumber ϕ'', and (c) the duration of the gen-
erated radio pulse Ne versus the wavenumber ϕ'; for R0/Z0 =
0.000293 (dashed line) and R0 ~ ω2 (for R0/Z0 (500 MHz) =
0.000293) (solid line).
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mined by the wavenumber ϕ, which, in the case at
hand, can be found by linearizing the system of equa-
tions (3)–(5) and passing over to the coordinate ξ = (z –
vst)/d related to the steady EMS. The unknown wave-
numbers, which are the characteristic numbers ϕ of the
linear differential difference equation obtained, are
determined by

(7)

Here, γ∗  = C∗ /C0 and Z0 = (L0/C0)1/2. In the case of
small losses, ϕ''/ϕ' ! 1 (ϕ = ϕ' + iϕ''), we arrive at

(8)

3. Calculation of the Parameters of a Steady-State 
Structure

Figures 2b and 2c show the dependences of the
damping rate ϕ'' and the duration of the steady radio
pulse (the number Nc of oscillations in the oscillating
part of the EMS front corresponding to an e-fold
decrease in the amplitude) on the real part of the wave-
number ϕ' (or the wavenumber in the absence of losses)
for frequency-independent resistance R0 (dotted curve)
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Fig. 3. Time dependences of the voltage (a) at the input cell
(the input video pulse) and in the inductances of the (b)
100th, (c) 200th, and (d) 300th cells of a nonlinear TL with
ferrites for synchronism of the EMS front with a forward
wave at γ∗  = 0.2; τ0 = 6.4 × 10–10 s; η = 0.5; M = 300 Oe;
and M0/M = –0.8, where M0 is the initial magnetization. The
dispersion characteristics of the synchronous wave are ϕ =
1.264, ω/ωc = 0.45, vp/v0 = 0.71, vg/v0 = 0.49, and
Zω/Z0 = 0.61.
and for the frequency dependence of R0 typical of
dielectric losses in ferrite (R0 ~ ω2) (solid curve). In cal-
culations, we used the values of the resistance R0 that
are typical of the frequencies of about 500 MHz.

Note that, for frequency-independent losses, the
maximum duration of a steady radio pulse corresponds
to a certain optimum value of the wavenumber near the
minimum of vg for both forward and backward waves.
However, the maximum of Ne is less pronounced for
backward waves, and it disappears completely under
strong frequency dependence of R0.

The duration of a steady radio pulse in the case of
synchronism with a backward wave (π < ϕ' < 2π) is
about one order of magnitude longer than that for syn-
chronism with a forward wave (spatial harmonic). For
frequency-dependent losses (R0 ~ ω2), this is valid for
any fixed frequency from the transmission band, and,
for frequency-independent losses, this holds simulta-
neously for all the frequencies within the transmission
band (Figs. 2b, 2c). Therefore, it is more advantageous
to use the synchronism with a backward wave rather
than with a forward wave in order to produce a long
radio pulse with a higher carrier frequency.

It is seen from formula (8) that, in the case of syn-
chronism with a backward wave, the smaller damping
rate is explained, on one hand, by a relatively high rate
of energy outflow (with the group velocity vs < 0) from
the EMS front and, on the other hand, by a greater value
of the wavenumber ϕ'. An analogy with a traveling
source provides a qualitative explanation of this fact.
For synchronism with a backward wave, the energy of
oscillations outflows fast from the EMS front, As a
result, the damping of the generated radio pulse has no
time to strongly affect the pulse envelope. This fact is
also proved by numerical simulations of a nonsteady
transformation of a video pulse into a radio pulse in the
case of synchronism of the EMS front with a backward
wave (harmonic) of a periodic TL.

NUMERICAL SIMULATIONS 
OF THE NONSTEADY GENERATION 
OF RF OSCILLATIONS BY AN EMS

1. Synchronism with a Forward Wave

Figure 3 shows the time dependences of the voltage
in several cells of a TL with dispersion and ferrite non-
linearity in the case of synchronism with a forward
wave. The EMS front is formed after the leading edge
of the video pulse fed to the TL input (Fig. 3a) has
passed three to four TL cells. After that, oscillations
appear behind the front. The generated oscillations
travel with a velocity lower than the EMS front velocity
and gradually fall behind it (with the relative velocity
equal to the difference of the phase and group veloci-
ties). The number of these oscillations is proportional
to the distance covered by the EMS front (Figs. 3b–3d).
The generation of the radio pulse is accompanied by a
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
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decrease in the video pulse duration. The video pulse
energy decreases due to dissipation at the EMS front
and generation of oscillations behind it. In the non-
steady stage of the video pulse evolution shown in
Fig. 3, the train of the generated oscillations can be
divided into a train of quasi-steady oscillations, whose
damping is determined mainly by the imaginary part of
the wavenumber (which is the same as for a steady-
state wave), and the trailing edge, where the damping of
oscillations is determined mainly by the local disper-
sion of the group velocity. Note that the duration of the
trailing edge and the dispersion broadening of the gen-
erated train are minimal when the working point corre-
sponds to the minimum of the group velocity [2].

A train of oscillations can be output from the non-
linear TL to a matched load with Zω equal to the RF
wave impedance (Zω = Re(Vω/Iω), where Vω and Iω are
the voltage and current amplitudes of the generated RF
wave). An analogy with a traveling source allows us to
determine the line length L (the number of cells) that is
necessary for the formation of a train consisting of N
oscillations [1, 2]:

(9)

2. Synchronism with a Backward Wave

The nonsteady generation of RF oscillations by an
EMS in the case of synchronism with a backward wave
has some specific features. In contrast to the synchro-
nism with a forward wave, in this case, the energy of RF
oscillations travels in the direction opposite to the
direction of propagation of the EMS front. Since, in this
case, vg < 0, the energy of the generated oscillations
reaches the TL input very soon after the formation of
the EMS front, and the further processes in the TL
depend on the conditions at the input. In the general
case, when there is no RF matching at the input, a part
of the RF power is absorbed there and another part is
reflected back into the line and, at |vg | > vs, experiences
sequential reflections from the EMS front and the TL
input. In the reflection from the moving boundary
(EMS front), the double Doppler effect takes place.
Consequently, the spectrum of a nonsteady EMS con-
tains a set of frequencies, only one of which corre-
sponds to the synchronous wave and appears in the
steady-state structure of the EMS. Thus, several waves
are generated simultaneously. The intensities of these
waves depend on the boundary conditions at the walls
of the formed “resonator” with a moving right bound-
ary. Note that the character of the nonsteady processes
during the generation of oscillations in the case of syn-
chronism with a forward wave does not depend on the
boundary condition at the input of a nonlinear TL. We
omit the details of nonsteady processes related to the
absence of RF matching at the TL input and consider
the case when the spectrum contains only a wave syn-

L N( )
2πv sN
v s v g–( )ϕ'

---------------------------.=
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chronous with the EMS front and the load at the TL
input Zω is matched at the frequency of the synchronous
wave (see Fig. 1). Note that this case is most important
for the development of generators of long radio pulses
with a single carrier frequency.

We carried out numerical simulations of nonsteady
processes for a TL with 85 nonlinear cells. Figure 4
shows the time dependences of the voltage at several
TL cells and the matched input and output loads Zω. The
sequence of nonsteady processes is as follows. The
EMS front formed in the first cells travels along the TL
and generates RF oscillations. The energy of these
oscillations runs to the load at the TL input and is
almost completely absorbed in it. The voltage pulse at
the input load is the longest. As the cell number
increases, the duration of the voltage pulse decreases,
so that RF oscillations are almost absent at the matched
output load.

The oscillograms in Fig. 4 also show the reflected
signal that appears due to RF mismatch, which takes
place even when the line input is loaded on the ohmic
resistance equal to the wave impedance Zω. The reason
for this mismatch is an uncompensated reactance
resulting from breaking cross-coupling.

As for synchronism with a forward wave, the damp-
ing rate and TL dispersion determine the shape of the
envelope of the generated radio pulse. The broadening
of the trailing edge of the radio pulse is minimal when
the synchronism corresponds to the minimum of the
group velocity. Formula (9) can be used to estimate the
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Fig. 4. Time dependences of the voltage (a) at the input load,
in (b) the 10th and (c) 69th cells, and (d) at the output load
of a nonlinear TL with ferrites for synchronism of the EMS
front with a backward wave with the same parameters as in
Fig. 3. The dispersion characteristics of the synchronous
wave are ϕ = 3.827, ω/ωc = 0.82, vp/v0 = 0.43, vg/v0 =
0.78, and Zω/Z0 = 0.29.
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length of the line that is necessary for the formation of
a given number of oscillations in the case of synchro-
nism with a backward wave. This length appears to be
30 times smaller than that in the case of synchronism
with a forward wave because of the negative group
velocity and larger value of the wavenumber. As was
expected, the damping of the nth oscillation of the volt-
age at the load is also smaller by one order of magni-
tude than that for synchronism with a forward wave.

3. Modulation Depth and Generation Efficiency

An important characteristic of the generated radio
pulse is the modulation depth (i.e., the ratio of the
amplitude of RF oscillations Vω to the EMS amplitude
Vs), which determines the generation efficiency for syn-
chronism with both a forward and a backward wave.
Modulation depth in the case of synchronism with a
backward wave is smaller than that for synchronism
with a forward wave (Figs. 3b, 3c, 4b, 4c).

An analytical expression for the modulation depth is
given by

(10)

Here, τf is the shock front width in a medium without
dispersion calculated using the formula from [7], and T
is the period of a synchronous wave. Relationship (10)
is obtained based on the equation for the balance of the
power fluxes [1] under the assumption that the mean
power spent on remagnetization of ferrite in a TL with
dispersion (i.e., for the front width comparable with the
period of the generated oscillations) is Psτf/T. Two main
factors determining the modulation depth Vω/Vs are dis-
persion (specifically, the rate of the energy outflow
from the EMS front) and the ratio τf/T of the EMS front
width in a medium without dispersion to the period of
a synchronous wave in a dispersive medium. The latter,
along with high-frequency losses, determines the high-
est generation frequency, because the period of the syn-
chronous wave can not be smaller than the EMS front
width in a medium without dispersion.

Knowing the ratio Vω/Vs, we can find the ratio of the
power Pω = 1/2Re(Iω/ ) of the generated RF oscilla-
tions to the EMS power Ps = IsVs in a discrete TL
(Fig. 1):

(11)

In the case of synchronism with a forward wave
(harmonic) (Fig. 3), the ratio Pω/Ps is about 0.47,
whereas, for synchronism with a backward harmonic
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(Fig. 4), this ratio is about 0.27. However, the energy
efficiency (the ratio of the mean energy of the generated
radio pulse PωN, where N is the number of oscillations
in the radio pulse, to the total energy lost by the video
pulse) is almost the same for synchronism with both a
forward and a backward wave and, for comparable val-
ues of ω, ranges from 70 to 80%.

In other words, accelerating the RF generation pro-
cess (by decreasing the EMS velocity and increasing
the difference between the phase and group velocities)
can substantially reduce the energy losses, thus lessen-
ing their influence. However, the fast energy outflow
necessarily leads to the decrease in the modulation
depth and power of the generated RF wave.

CONCLUSION

The study of the structure of an EMS propagating in
synchronism with a backward wave (spatial harmonic)
has shown that the regime in which a backward wave in
coupled TLs or a wave group in a periodic electrody-
namic system is excited is advantageous from the point
of view of generating longer radio pulses at higher fre-
quencies. This is due to the fact that, in this case, the
damping rate of the generated RF oscillations and the
required length of the line appear to be one order of
magnitude smaller than those in the case when a for-
ward wave is excited. The carrier frequency of the gen-
erated radio pulse can be controlled by varying the ini-
tial magnetization of the ferrite for synchronism with
both a forward and a backward wave.
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Abstract—Experimental and analytic studies of the generation and propagation of electromagnetic radiation
due to repetitive current pulses of a nanosecond duration (peak power to 1 MW, current slew rate of 3.5 A/ns)
are presented. The radiation source was a fine-wire ring antenna of large radius (ρa = 1.4 m). The antenna was
driven along its full length instantaneously within the time τ shorter than the time of wave travel along the ring
diameter (τ ≤ 2ρa/c). Parameters of the emitted wave were measured. The experimental data are consistent with
the calculated emitted-wave parameters that take into account radiation reflection from the conducting walls of
the laboratory. The efficiency of transformation of drive pulse energy into ultra-wideband radiation was found
to be approximately 15%. A ring antenna driven by repetitive current pulses (within the time τ ≤ 2ρa/c) is sug-
gested to be used as a reference ultra-wideband emitter. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The study of ultra-wideband (UWB) electromag-
netic pulses is a new branch of scientific research hold-
ing much promise both for the extension of radar capa-
bilities and for the simulation of the effect of lightning
discharge and high-power electromagnetic pulses on
nonlinear media and distributed electronic control sys-
tems [1, 2]. However, the lack of adequate measuring
devices and processing algorithms makes it difficult to
determine UWB radiation field parameters. Therefore,
the development of a reference UWB pulse radiation
source appears to be topical [3, 4]. A consistent set of
calculated and experimental data would help to verify
the results obtained in this field.

A fine-wire ring antenna can be used as a reference
UWB emitter. The parameters of this antenna both as
an emitter and as a receiver can be accurately calcu-
lated, because the spatial configuration of the current
loop is well defined. As shown in [5] and experimen-
tally demonstrated in [7, 8], if the antenna is driven
simultaneously along its full length by a short current
pulse (τ ! ρa/c), it emits with a high efficiency ηa ~
ln(ρa/cτ)/ln(ρa/r) (r is the antenna radius, r < cτ) and a
low angular divergence (Θ ≈ cτ/ρa ! 1) in an ultrawide
frequency band (∆f ~ f ~ τ –1). The advent of high-cur-
rent (~1 kA) semiconductor pulse generators with a
short rise time (~1 ns) and a pulse rate of ~1 kHz [6, 9,
10] has given rise to the development of pulse drivers
for efficiently emitting large-size current loops. Long-
term (for hours) stable generation of nanosecond pulses
1063-7842/00/4506- $20.00 © 20753
significantly facilitates the detection of electromagnetic
field parameters.

The goals of this work were (1) the fast (τ < 2ρa/c)
and instantaneous excitation of a large-radius (ρa =
1.4 m) ring antenna at each of its points, (2) direct mea-
surements of the pulse-induced current in the antenna
and the antenna field, (3) comparison of the experimen-
tal data with the calculations including radiation reflec-
tion from the conducting surfaces in the laboratory, and
(4) the assessment of the methodical error involved in
wideband field parameters of large-size open current
loops.

DIPOLE RADIATION FIELD PARAMETERS 
IN AN UNSTEADY DRIVE MODE

The axial symmetry of a ring antenna (magnetic
dipole) simplifies the calculation of its field parameters.
Given the time dependence of the induced current and
its distribution over the antenna, the radiation field
parameters can be calculated with well-known analytic
equations [5, 11].

The ring current was studied in a conducting-wall
room of characteristic size ~15 m. For the antenna
radius ρa = 1.4 m and the total rise time τ ≈ 8 ns (cτ ≤
2ρa), the antenna radiation wavelength was λ~ ≈ 2cτ ≈
4ρa ≈ 5–6 m, which is comparable to the laboratory
size. The conducting surfaces in the laboratory (walls,
screens, etc.) reflect electromagnetic waves. The time
delay of a reflected wave at the point of observation
depends on the position of this point relative to the
000 MAIK “Nauka/Interperiodica”
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antenna and reflecting surfaces. The radiation field
parameters were preliminarily assessed using the
KARAT electromagnetic program [12], which solves
Maxwell’s equations in the 2.5-dimensional approxi-
mation and allows experimental conditions to be taken
into account.

Two geometrical axes passing through the center of
the ring antenna are considered: the axis normal to the
ring plane (z-axis) and any of the axes in the ring plane
(r-axis). Strictly in the z direction, the emission is
absent because of the ring symmetry. The point of
observation is on the r-axis, because the angular depen-
dence of the electromagnetic field parameters in this
direction is weak. The position of this point depends on
two mutually related, but inconsistent, factors: the con-
formity of the field lateral components to the plane
wave condition Eϕ /Bz = c and the time delay of the
reflected wave at the point of observation (as the dis-
tance r increases, the wave front shapes but the delay
time decreases).

Oscillograms of induced current Jϕ(t) and an axi-
symmetric model for reflecting-boundary area of prop-
agation (Fig. 1) were used as initial data for calcula-
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Fig. 1. (a) Axisymmetric model of the area of propagation
(the ring antenna of radius ρa and points of observation r1
and r2 are shown) and (b) the time dependence of the
induced current (solid curve, experiment; dashed curve, cal-
culation).
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electric fields for the ring antenna emitting into free space.
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actual value of induced current Jϕ(t).
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tions. The current rise time was ≈8 ns; and the current
slew rate, ~3.5 A/ns.

The dynamics of wave generation and propagation
was simulated by calculating the parameters of antenna
emission into free space (Fig. 2). The difference
between the first (8 mGs) and second (6 mGs) half-
wave amplitudes of the magnetic field that are gener-
ated by diametrically opposite parts of the ring at the
point r1 = 4.5 m (≈3ρa) on the radial axis shows that the
point r1 is close to the antenna. In contrast to plane
waves, the lateral components of the electric and mag-
netic fields (Eϕ and Bz, respectively) are not propor-
tional to each other.

At the point r2 = 9 m (≈6ρa), the components Eϕ and
Bz are much larger than the other field components: {Br ,
Bϕ} ! Bz , {Ez , Er} ! Eϕ. They are related as
Eϕ (V/cm) ≅  3.3Bz (mGs), which is consistent with the
plane wave condition. The electric field amplitudes for
the first and second half-waves are ≈1 V/cm, and the
radiation wavelength is 5–6 m; i.e., λ~ ≈ 4ρa. Thus, a
ring antenna driven within a time τ ≤ 2ρa/c generates a
plane electromagnetic wave in the radial direction even
at r/ρa ≥ 6 and r/λ~ ≥ 1.5.

The large-radius antenna is inductively coupled
with the conducting surfaces of the area of propagation
(Fig. 1). The antenna radiation induces eddy currents in
them and, thus, reflected waves, which disturb the ini-
tial field configuration. The effect of reflection on the
radiation field parameters is presented in Fig. 3 for the
point r2 where the plane wave has been already formed.

This effect is manifested in two ways (Fig. 3). First,
a strong longitudinal magnetic field Br (curve 2) occurs
≈16 ns after the forward wave front (curve 1) has
reached the point of observation. This field is due to the
different distances of the ring plane to the side reflect-
ing screens (z = –5 and 7 m, respectively). Second, the
first and second half-wave amplitudes become unequal.
The second half-wave amplitude increases by 30%
because of the “pump” effect from eddy currents
induced by the antenna in the nearest symmetrically
arranged screens (z = ±2 m). However, it should be
noted that the condition Eϕ /Bz ≅  c remains valid at least
until the longitudinal component Br of the magnetic
field arises. Thus, the numerical simulation of the emis-
sion of the ring antenna driven for a short time τ ≤ 2ρa/c
shows that the forward wave propagating in the radial
direction can be detected at the point r2 ≈ 6ρa ≈ 1.5λ~
for a limited time (≈16 ns, or ≈2τ) determined by the
reflecting screen geometry.

EXPERIMENTAL SETUP
Circuit. The current setting time τ in a circuit with

an inductance La and an impedance Ra depends on the
time of quasi-steady-state current relaxation τR ≈ La/Ra

and the rise time of a driving voltage pulse τg. If τg !
τR, the time it takes for the current to reach 0.95 of the
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
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amplitude value is τ ≈ 3τR. The circuit impedance Ra (or
the impedance introduced into the circuit) is related to
the “rate” of ring antenna driving 2ρa/cτ (the term used
in [5]) as

where µ0c = 377 Ω is the wave impedance of vacuum.
If the parameter 2ρa/cτ is fixed, Ra depends on the
antenna radius ρa only slightly. If τg ! τR, the unsteady
mode of antenna driving (2ρa/cτ ≥ 1) is set at the circuit
impedance Ra ≥ (4–5) kΩ (it is assumed that ρa/r =
200–500) regardless of the antenna radius. With the
parameter 2ρa/cτ fixed, the antenna radius ρa defines
the upper boundary frequency of the radiation spectrum
(the less the radius, the higher this frequency). At a
given induced current amplitude, the antenna radius
specifies the total energy of the radiation pulse. If τg ≈
τR, the radius ρa of a “fast”-driven antenna should
exceed cτg.

The axial symmetry of the antenna implies the uni-
form distribution of the impedance and simultaneous
change of the current at each point of the antenna. This
requirement is met if the spatial longitudinal structure
∆s of a ring antenna satisfies the condition 2∆s/c ≤
0.2τ ! τ; i.e., the permissible longitudinal discretiza-
tion of the loop should be at least ≥10π(2ρa/cτ). An
experimental ring oscillator meeting this condition was
developed in our laboratory. Its fragment is shown in
Fig. 4.

Driver 1 is built on conventional drift diodes. Their
blocking properties are sharply restored if the diode
forward current is pumped in a special mode [6]. A
series three-stage pulse shaper was used. The driver
output stage consisted of 24 parallel channels. When
the driver was made to pick up a matched load of 0.5 Ω ,
a trapezoidal voltage pulse with a rise time of τg ≈ 3 ns,
amplitude up to 600 V, and a half-amplitude duration of
approximately 20 ns was detected. The pulse power of
the driver did not exceed 0.7 MW, and the pulse repeti-
tion rate was 100 Hz.

The ring antenna of radius ρa = 1.4 m consisted of
N = 96 segments made of fine (r = 1 mm) copper wire.
The length of each segment was 91 mm. The quasi-
steady-state inductance of the antenna was La =
13.3 µH. Driver 1 was connected to wire segments 3 of
the antenna with 1.6-m-long coaxials 2 with the wave
impedance Rc = 50 Ω . The ring current alone was gen-
erated, since the radial currents in the cables were can-
celled. The current rise time in the ring, τ ≈ 8 ns, was
shorter than the doubled time of pulse travel through
cables 2 (16 ns). Thus, within 16 ns, the driver is put
under the optimum load Rc/N ≈ 0.5 Ω and the imped-
ance Ra ≈ RcN ≈ 5 kΩ , necessary for fast driving, is uni-
formly distributed over the antenna loop. When the out-
put voltage of the driver was 510 V, the amplitude of

Ra 1.5µ0c
2ρa

cτ
-------- 

  ρa

r
-----,ln≈
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current pulses in the antenna was found to be (Jϕ)max =
18.7 A; and the slew rate, 3.5 A/ns (Fig. 1). The resis-
tance of the entire circuit (antenna and 96 feed cables)
was assessed from the characteristic current decay time
τd ≈ 150 ns at La/τd ≈ 100 Ω . Oscillations during the
current decay are caused mainly by poor matching of
antenna elements 3 with feed cables 2. Direct current
measurements at various points of the ring (both in its
normal position and at various angles to the radial axis
of suspension) in the conducting-wall room gave the
same results within the accuracy of detection. Thus, the
non-steady-state driving of the ring antenna within the
time τ ≤ 2ρa/c has been shown to be a possibility. The
difference between current setting times along the
antenna was !τ.

Probing. Measurements of the driver voltage and
that across the load (at the ends of cables 2) was per-
formed using a resistive voltage divider with a time res-
olution better than 0.5 ns. The induced current was
measured in the loop by means of resistive shunt 4 with
a compensating inductance (Fig. 4). The measurement
results coincide well with the calculated values taking
into account the actual voltage shape at the output of
the loaded driver (Fig. 1).

Magnetic field oscillations in the emitted wave were
measured with a differential-output probe based on a
conventional symmetric magnetic dipole and an LR
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Fig. 4. Fragment of the ring oscillator: (1) driver, (2) coaxi-
als, (3) elements of the ring antenna, and (4) current meter.
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Fig. 3. Time dependence of the lateral, Bz (1) and longitudi-
nal, Br (2) magnetic field components at the point r2 = 9 m.
Reflection from the conducting surfaces.
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integrator (Fig. 5a). However, such a probe (50 × 20 cm
rectangular frame) turned out to be inappropriate
because of electric-field-induced parasitics. The para-
sitic signals were measured by reversing the probe
phase (by turning the probe through 180°), and their
level was found to be 200%.

To avoid this disadvantage, a special probe of higher
symmetry was developed (Fig. 5b). It consists of two
identical rectangular (45 × 11 cm) symmetric magnetic
dipoles with LR integrators. The planes of the series-
connected dipoles are 11 cm apart. For the characteris-

R

(a) (b)

R

R

Output

45

11

11

Fig. 5. Magnetic probes: (a) conventional symmetric mag-
netic probe with integrating resistors R and (b) symmetric
double-dipole probe with increased immunity to electric
parasitics.

B, mGs

4

2

0

–2

–4
0 10 20 30 40 50

t, ns

1
2

Fig. 6. (1) Lateral and (2) longitudinal components of the
magnetic field of the emitted wave at the point of observa-
tion r2 = 9 m.
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Fig. 7. (1) Measured and (2) calculated lateral and longitu-
dinal components of the magnetic field of the emitted wave.
The time axis is shifted for convenience.
tic antenna radiation wavelengths λ~ ≈ 5–6 m, the probe
can be considered as a lumped (local) sensor.

The probe sensitivity is 33 mGs/V. For a forward
wave of amplitude 3–4 mGs, the probe response was
≈0.1 V, which was reliably detected. The time constant
of the LR integrator is ≈150 ns. This allowed direct
measurement of the magnetic field of the forward wave
for ≤20 ns with an accuracy of ≤10%.

Detection and processing of signals. A number of
known ways to provide interference immunity during
the measurements in an ac electromagnetic field [13,
14] were used: the coaxials were further shielded and
passed through ferrite rings, decoupling filters were
inserted into the supply circuit of the instruments, dif-
ferential recording was applied, etc. S1-97 and S9-4A
oscilloscopes with a frequency band of 0.45 and 1 GHz,
respectively, were employed to record the signals. The
oscillograms were photographed with a digital camera.
A single oscillogram contained up to 400 data points.
In further calculations, these data were interpolated
with Newton and spline interpolation algorithms. The
instrumental and methodical errors did not exceed
10%. The problem of accuracy improvement was
beyond the scope of this article.

RESULTS AND DISCUSSION

The direct measurements of the lateral, Bz, and lon-
gitudinal, Br, components of the magnetic field at the
far point of observation (r2 = 9 m) are presented in
Fig. 6. The magnetic field amplitude detected by the
probe is 3–4 mGs; the oscillation period is 16–20 ns.
The second half-wave of Bz exceeds the first half-wave
by 30%. The longitudinal component Br lags behind the
lateral component by ≈16 ns. The longitudinal (para-
sitic) component is due to reflection radiation from the
metal surfaces of the laboratory. The appearance and
level of parasitics were verified by detecting the mag-
netic field strictly along the z-axis of the antenna, where
the emission is absent because of the ring symmetry.

Calculated and experimental data for the lateral, Bz,
and longitudinal, Br, components of the magnetic field
at the point r2 are compared in Fig. 7. For the lateral
component Bz, the curves agree well for the initial
~16 ns, during which the forward wave is not yet dis-
turbed by reflected waves. For Br, the curves correlate
both quantitatively (the same time of wave appearance
at the point r2) and qualitatively (the same signal varia-
tion) within the initial 15–20 ns. The difference
between the measured and calculated values of Br

arises from the inaccurate simulation of the actual
arrangement of the reflecting surfaces.

The consistency between the calculated and mea-
sured data for Bz makes it possible to determine the lat-
eral component of the electric field Eϕ from the mag-
netic induction: Bz – Eϕ = cBz. At the point of observa-
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
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tion r2, the amplitude of Eϕ was ≈1.1–1.4 V/cm, and the
radiation energy flux density EϕBz was ≈30–50 W/m2.

The obtained results allow us to estimate the effi-
ciency of transformation of induced current energy into
radiant energy. This is also of some methodical signifi-
cance, because it is well known that the antenna effi-
ciency ηa in the quasi-steady-state (τ @ 2ρa/c) mode of
driving a magnetic dipole is ηa ~ (ρa/cτ)3/ln(ρa/r) ! 1
[11]; and in the nonsteady-state mode (τ ! 2ρa/c),
ηa ≤ 1 [5].

Calculated data for the induced energy and total
radiant energy are presented in Fig. 8. The antenna effi-
ciency ηa (i.e., the ratio between the radiant energy and
the sum of the induced and radiant energies) is seen to
be 5–6% by the end of the first half-wave (the first peak
in curve 1) and 15–17% by the end of the second half-
wave (the first minimum in curve 1).

CONCLUSION

The experimental bench for studying the radiation
of large-size current loops driven simultaneously along
their full length within the time interval τ < 2ρa/c (non-
steady-state driving mode) was developed. The setup
can also be used for examining the effect of UWB radi-
ation on nonlinear media. The choice of such an
antenna was dictated by the fact that the field of radia-
tion from a fine-wire loop can be accurately calculated
from the value of the drive current and that a current
loop efficiently emits under the non-steady-state driv-
ing mode.

The fast (τ ≈ 8 ns) pulse driving of the ring antenna
of radius 1.4 m was accomplished. The difference in the
current setting times over the loop was ≈0.5 ns ! τ.

The high-current (≈1 kA) semiconductor generator
was used as a driver. The low output impedance of the
driver allowed the multipoint in-phase excitation of the
antenna. The continuous (for hours) stable generation
of UWB radiation pulses (pulse repetition rate up to
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Fig. 8. Calculated data for the (1) induced and (2) radiant
energy of the ring antenna.
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100 Hz) made the detection of the electromagnetic field
parameters much easier.

The magnetic probe consisting of two identical
symmetric dipoles was developed. The dipole leads are
connected so that the signals induced in the dipoles by
the magnetic field add up, whereas those induced by the
electric field are canceled. Thus, the parasitics due to
the electric field are eliminated, and the magnetic com-
ponent of the UWB radiation is reliably detected.
A conventional magnetic dipole cannot be used in the
measurements because of the incomplete cancellation
of signals induced by the electric field (the error is
~200%).

The time dependence of the magnetic induction
showed that an electromagnetic wave emitted by the
antenna in the radial direction turns into a plane wave
even at a distance 4ρa away from the antenna center.
Thus, experiments with such an antenna can be per-
formed in a limited space. The electric field strength
near the antenna was found to be 6 kV/m; and at a dis-
tance of 9 m away from the antenna, 110–140 V/m.

The results were verified by both analytical and
numerical calculations. The KARAT computer pro-
gram was used to assess the effect of radiation reflec-
tion from the metal surfaces in the laboratory. The mea-
sured UWB radiation parameters agree well with the
calculated data both in the amplitude and variation of
the magnetic component of the forward wave and in the
time delay with which the reflected wave comes to the
point of observation. The efficiency of transformation
of drive pulse energy into radiant energy was found to
be 15–17% for the oscillation period.

The instruments used in these experiments provide
reliable information on the parameters of a UWB elec-
tromagnetic field generated by open current loops of
large size. The possibility of these parameters being
measured in a reflecting-wall room was demonstrated.

The proposed methods of UWB generation and
radiant field detection can be used in the development
of a reference emitter of nanosecond electromagnetic
pulses.
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Abstract—Nonlinear characteristics of plane strontium titanate film capacitors operating at microwave fre-
quencies are investigated by measuring the power of a capacitor signal generated at the third-order intermodu-
lation distortion (IMD) product frequency when the capacitor is excited by a two-tone microwave signal. Mea-
surements are performed at 4 GHz at temperatures of 78 and 300 K. At T = 300 K, the nonlinear response of
the capacitor corresponds to the nonlinearity determined from the low-signal capacitance–voltage characteristic
(CVC). At T = 78 K, the nonlinear response to a two-tone microwave signal is greatly amplified when the signal
components have equal amplitudes and close frequencies. It is demonstrated that this effect is due to the beat-
frequency modulation of the strontium titanate film temperature, because the thermal time constant of a SrTiO3
film on sapphire is small (~10–8 s). An analytical expression for third-order IMD product power generated by a
SrTiO3 capacitor is obtained with regard for the heat-induced nonlinearity. © 2000 MAIK “Nauka/Interperiod-
ica”.
INTRODUCTION

The nonlinearity of the permittivity of ferroelectric
materials has been used in microwave technology for a
long time [1, 2]. At present, the progress in thin-film
technology of oxygen-containing ferroelectrics
(SrTiO3, BaxSr1 – xTiO3), which have a highly nonlinear
permitivity ε at relatively low dielectric losses (  ~
10–2) in the paraelectric phase, has rekindled interest in
these films as a material of passive (phase inverters and
tunable filters [3, 4]) and active (frequency converters
[4, 5]) microwave devices.

The discovery of high-temperature superconductiv-
ity (HTSC) in composite metal oxides (1987) has stim-
ulated special interest in strontium titanate, a low-tem-
perature paraelectric. The structural and chemical com-
patibility of superconductive oxides (in particular,
YBa2Cu3O7) and SrTiO3 provides the high-quality
interface between an HTSC electrode and a strontium
titanate film. This decreases losses in the capacitor and
offers considerable scope for the implementation of
cryogen microwave integrated circuits using the unique
properties of nonlinear dielectrics and superconducting
materials [6]. However, the applications of nonlinear
capacitors in linear microwave devices may be limited
by undesirable nonlinear effects (the generation of har-
monics and false signals at IMD product frequencies).

In this paper, we investigate and simulate the non-
linear responses from plane strontium titanate capaci-
tors (STO capacitors) to a high-intensity microwave
signal. The transfer ratio of a resonator containing an
STO capacitor and the third-order IMD product power
generated by the capacitor excited by a two-tone micro-
wave signal were measured for different levels of the

δtan
1063-7842/00/4506- $20.00 © 20759
incident microwave signal. Experiments were per-
formed at the temperatures 78 and 300 K.

SAMPLES AND LOW-SIGNAL 
CHARACTERISTICS

Samples used were nonlinear plane capacitors
(Fig. 1) based on thin strontium titanate films of thick-
ness h = 1 µm. They were deposited on a sapphire sub-
strate of thickness H = 0.3 mm by microwave magne-
tron sputtering [7]. A 8-µm-thick copper film applied to

SrTiO3

+Ub

1

2

9

7

8

6

5

4
3

Fig. 1. Measuring microstrip resonator: (1) microstrip reso-
nator, (2) feed lines, (3) microwave input, (4) ground line,
(5) grounded pad, (6) substrate (alumina), (7) sapphire,
(8) Cu electrodes, and (9) microwave output. The insertion
shows the plane capacitor.
000 MAIK “Nauka/Interperiodica”
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the film served as the capacitor electrodes. The width
and length of the capacitor gap were s = 4–6 µm and
W = 0.6 mm, respectively, and the overall dimensions
of the capacitor were 0.5 × 0.3 × 1.5 mm. The low-sig-
nal microwave parameters were measured at a fre-
quency of about 4 GHz by the resonance method with
an R4-38 complex-transfer-ratio meter. The measuring
microstrip resonator (Fig. 1) was a copper microstrip
(of length l and impedance ZS = 21 Ω) with open- and
short-circuited ends. The capacitor was inserted into a
conductor break near the shorted end. The resonator
was coupled with the external circuits through the
capacitive gap, which provides a transfer ratio of –9 dB
when a linear low-loss (  < 10–3) capacitor with an
intrinsic quality factor Q00 = 200 is used. Depending on
the capacitance and losses of the capacitors being
investigated, transfer ratio S21, resonance frequency f0,

δtan

–23

0 3.9

S21, dB

f, GHz4.0 4.1 4.2 4.3

–21
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Fig. 2. Resonance curves of the measuring resonator: Ub =
(1) 0, (2) 30, (3) 60, and (4) 100 V.
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Fig. 3. Low-signal CVCs of the STO capacitors (solid lines)
at T = (s) 78 and (n) 300 K. Dashed lines are approximation

(3) for  = 1.2 × 104 and 8 × 104 V2 at T = 78 and 300 K,

respectively.

U0
2

and intrinsic Q0-factor of the resonator varied from –13
to –24 dB, from 3.5 to 4.2 GHz, and from 60 to 100,
respectively.

Figure 2 shows the resonance curves of the measur-
ing resonator when the STO capacitor is biased by a dc
voltage Ub. From the resonance curves for the STO
capacitor, we derived the low-signal capacitance C0 =
− (ω0ZS)–1, dielectric loss tangent  =

ξ−1(  – ), and low-signal amplitude of the
microwave voltage [7]

(1)

where Pinc is the incident microwave power and ξ is the
tapping factor (the parameter characterizing the inser-
tion of the capacitor into the resonator):

For all of the investigated capacitors,  = 0.01–
0.02 and 0.02–0.04 at room (T = 300 K) and nitrogen
(T = 78 K) temperatures, respectively. The low-signal
characteristics of the resonator for two of them are
summarized in the table.

Measuring the shift of the resonance frequency of
the resonator with the STO capacitor biased, one can
construct the capacitance–voltage characteristics
(CVCs) of the capacitor. Figure 3 demonstrates differ-
ential capacitance Cd versus Ub for samples 1 and 2 in
the table. The bias voltage Ub = 100 V (corresponding
to the averaged field intensity in the gap E = Ub/s ≈
107 V/m) is seen to decrease the capacitance of the STO
capacitor by factors of about 2 and 1.2 at T = 78 and
300 K, respectively.

THE NONLINEAR BEHAVIOR OF THE SrTiO3 
CAPACITOR IN A MICROWAVE ENVIRONMENT

The nonlinear response of the STO capacitor to a
microwave signal was investigated with the microstrip
resonator (Fig. 1) in harmonic (one-tone) and bihar-
monic (two-tone) excitation modes.

In the one-tone mode, the microwave signal power
at the output of the resonator (Pout) was measured as a
function of the incident power (Pinc) at the low-signal

βl( )tan δtan

Q0
1–

Q00
1–

Uc 4Pincξ ω0C0( ) 1–
Q0 S21 1 S21–( ),=

ξ 2 1 ω0C0ZS ω0C0ZS( ) 1–
+[ ] -+=

× π
2
--- ω0C0ZS( ) 1–

arctan+
1–

.

δtan

Table

Sample
no. T, K C0, pF ζ tanδ Q0 S21, dB f0, GHz , V2

1 78 0.92 0.25 0.04 66 –16.8 3.872 1.2 × 104

2 300 0.66 0.19 0.02 91 –13.0 4.130 8.0 × 104

U0
2
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resonance frequency f0. The experimental transfer
functions were measured at T = 78 and 300 K (Fig. 4).
At T = 78 K, the resonator transfer ratio decreases when
Pinc > +26 dBm, which corresponds to the microwave
amplitude of the capacitor voltage Uc > 12 V. This
effect is typical of an oscillatory circuit with a nonlin-
ear capacitance. At T = 300 K, the transfer ratio remains
constant in the same range of incident power.

The response of the STO capacitor to a two-tone
microwave signal was investigated with the standard
technique for IMD measurement [8]. Two harmonic
microwave signals of equal power (P1inc – P2inc) and
close frequencies (f1 = f0 + Ω and f2 = f0 – Ω) were
applied to the measuring resonator. Due to the nonlin-
ear frequency dependence of the capacitance of the
STO capacitor, the response signals are generated at
IMD product frequencies fS = ±mf1  nf2 (m, n = 0, 1,
2, …). They were recorded by a spectrum analyzer at
the output of the resonator. The output powers P1out and
P3out were measured, respectively, at the fundamental
(f1) and third-order IMD product (f3 = 2f1 – f2) frequen-
cies versus power P1inc of the harmonic component of
the incident signal at the temperatures 78 and 300 K
and different bias voltages Ub. All the measurements
were performed under the condition Ω ≤ 1 MHz, which
confines all the recorded signals to a frequency band
much smaller than the resonator passband.

Figures 5 and 6 present the measured nonlinear
responses of the plane STO capacitor to the two-tone
signal. In Fig. 5 are shown the resonator transfer func-
tions at the fundamental and third-order IMD product
frequencies for T = 78 and 300 K. The influence of a dc
bias voltage on the transfer functions at nitrogen tem-
perature is depicted in Fig. 6. The amplitude of the
microwave voltage across the capacitor Uc1 calculated
by (1) for the fundamental frequency and Ub = 0 is
given on the additional abscissa axis.

In the whole range of the incident microwave power
(P1inc = 0…+26 dBm), the cubic and linear depen-
dences of P3out and P1out, respectively, on P1inc are
observed at T = 300 K. At 78 K, the transfer functions
are cubic and linear at the fundamental and IMD prod-
uct frequencies, respectively, only within the initial part
of the incident power range. Here, the value of
P3out/P1out exceeds the corresponding quantity at T =
300 K by approximately 50 dB. As P1inc increases at
78 K, the dependence of the output power on the inci-
dent power weakens at both frequencies. A dc bias volt-
age applied to the capacitor noticeably suppresses the
third-order IMD product signal and extends the inci-
dent power range where the function P3out(P1inc)
remains cubic.

RESULTS AND DISCUSSION

As the nonlinearity of the STO capacitor is due to
the dependence of the capacitance on the instant micro-

+−
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
wave voltage across the capacitor, the experimental
results will be discussed in terms of CVCs. Since the
amplitude of the microwave voltage across the capaci-
tor at the fundamental frequency does not exceed 30 V,
it suffices to consider only the CVC initial section,
where the nonlinear voltage dependence of the capaci-
tance C(U) can be represented by two terms of the

0 5

Pout, dBm

Pinc, dBm10 15 20

–12

–4

4

12

–20

Fig. 4. Output power of the resonator vs. incident power in
the one-tone excitation mode: (s) data points for sample 1 at
T = 78 K and (,) those for sample 2 at T = 300 K. Solid lines

are calculated by (5) for  found from the CVC approxi-

mation; dashed line is calculated Pout(Pinc) at T = 78 K for

 = ∞ (linear capacitor).
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P1out, P3out, dBm

P1inc, dBm0 +10 +20
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–40

–20

–80

0

Fig. 5. (s) P1out and (d) P3out vs. P1inc dependences taken at
T = (s, d) 78 and (,, .) 300 K. Dashed lines are calculated by
(9) and (17) for T = 300 and 78 K, respectively. Dashed regions
are experimental errors for the quantities in (9) and (17).



762 SAMOŒLOVA, ASTAF’EV
power series:

(2)

where U0 is a phenomenological parameter that has
dimension of voltage and quantitatively determines
C(U).

Since the differential capacitance Cd is measured at
microwave frequencies, the initial section of experi-
mental CVCs should be described by the expression

(3)

Approximation (3) of experimental CVCs enables

one to estimate the parameter . For our capacitors,

 ~105 and ~ 104 V2 at T = 300 and 78 K, respectively.
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Fig. 6. The same as in Fig. 5 for capacitor bias voltages
Ub = (s, d) 0, (,, .) 20, and (h, j) 50 V.
For two capacitors,  is given in the table and the
CVC initial section approximated by (3) is shown in
Fig. 3 (dashed curves).

From (2), we can obtain the transfer functions of the
resonator operating in the one- and two-tone excitation
modes.

Near the resonance frequency, the equivalent elec-
tric circuit of the measuring resonator can be repre-
sented by a parallel oscillatory circuit shown in Fig. 7a,
where Xcoupl is the impedance of the element coupling
the resonator with the external circuits; L', C', and G'
are, respectively, equivalent inductance, capacitance,
and conductance of the resonance microstrip segment;
and C and g = ω0C0  are the capacitance and con-
ductance of the STO capacitor. The equivalent parame-
ters of the circuit are determined from the expressions

In the case of the one-tone excitation, the equivalent
circuit of the resonator symmetrically coupled with the
external circuits is further simplified to a circuit with an
equivalent generator producing the current of ampli-

tude I = 2mIinc (Fig. 7b). Here, Iinc =  is the
amplitude of an incident current wave, Z0 is the wave
impedance of external transmission lines, and m is the
ratio of impedance transformation from the external
lines to the resonator (for weak coupling, m ≈ Z0/Xcoupl).
The differential equation for forced oscillations in the
equivalent parallel circuit,

(4)

where i = Icos(ωt + ϕ), is reduced to the known Duffing
equation [9]. For frequencies f close to the low-signal
resonance frequency f0, the solution to the Duffing
equation for a resonance circuit is a harmonic oscilla-
tion uc = Uccos(ωt). Then, solving (4) and taking into

account the expression Uc = m–1  and (2), we
obtain the dependence of the output power on the inci-
dent power at a fixed frequency:
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Figure 4 demonstrates the transfer functions (solid
curves) of the measuring resonator operating in the

one-tone mode that were calculated by (5) for , sU0
2

found from CVC approximation (3). The experimental
and calculated characteristics are in good agreement for
both T = 78 and 300 K. Obviously, at T = 300 K, the
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
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nonlinearity of the STO capacitors is weak and cannot
noticeably distort the resonance curve in the range of
incident power up to +30 dBm (which corresponds to
Uc ≈ 27 V for sample 2 at T = 300 K). At T = 78 K (sam-
ple 1), the observed decrease in the transfer ratio at a
given frequency f0 is caused by the shift of the reso-
nance frequency due to the decrease in the average

capacitance  = C0[1 – (3/4)( / )] of the capacitor
charged by the microwave voltage. This means that the
permittivity of the strontium titanate film inertialessly
follows the variation of the 4-GHz electric field.

When the resonator operates in the two-tone excita-
tion mode and the voltage across the capacitor is uc(t) =
Uc1(cos(ω1t) + cos(ω2t)) (Uc1 is the voltage amplitude at
the fundamental frequency), the current

(6)

flowing through the nonlinear capacitor contains the
component generated ic3 at the third-order IMD product
frequency ω3 = 2ω1 – ω2:

(7)

Then, the amplitude of the third-order IMD product
voltage across the capacitor is expressed by

(8)

Taking into account the condition ω3 ≈ ω0, we can
assume that the resonator parameters (ξ, Q0, and S21)
and the distributions of voltages and currents along the
resonator are identical at both frequencies. Then, com-
bining (1) and (8) yields the IMD product power at the
output of the resonator:

(9)

According to (9), in the range of incident power
where transfer ratio |S21 | of the resonator can be
assumed to be constant at the fundamental frequency,
the third-order IMD product transfer function of the
resonator in log–log coordinates is linear with a slope
of 3. This was observed experimentally in the whole
range of P1inc at T = 300 K and in the initial section of
the characteristic at T = 78 K (Figs. 5, 6). The variation
of the slope of the log–log transfer function with
increasing power at T = 78 K can be attributed to a vari-
ation of the transfer ratio of the nonlinear resonator at a
fixed frequency.

At T = 300 K, P3out that is calculated by (9) for 
found from the low-signal CVC is in good agreement
with the experimental data. Figure 5 shows P3out(P1inc)

C Uc
2

U0
2

ic
d
dt
----- C uc t( )( )uc t( )[ ]=

ic3
3
4
---ω3C0

Uc1
3

U0
2

-------- ω3t( ).sin=

Uc3
3
4
---

Uc1
3

U0
2

1 δtan
2

+
---------------------------------.=

P3 out

9ξ2
Q0

2
S21

4
1 S21–( )2

ω0C0 1 δtan
2

+( )
------------------------------------------------------

P1inc
3

U0
4

----------- A
P1inc

3

U0
4

-----------.= =

U0
2

TECHNICAL PHYSICS      Vol. 45      No. 6      2000
for T = 300 K (dashed lines). At nitrogen temperature,
the value of P3out calculated by (9) is approximately
30 dB smaller than the experimental result.

The increased nonlinear response of the STO capac-
itor to the two-tone microwave signal at nitrogen tem-
perature can be attributed to capacitance modulation
when the capacitor temperature periodically varies
(with the beat frequency 2Ω = f1 – f2) due to microwave
power dissipation. The contribution of this mechanism
is essential if 2π(2Ω)τ < 1, where τ is the thermal relax-
ation time of the capacitor. We estimated the capacitor
overheat due to the microwave power dissipated in the
strontium titanate film and the thermal relaxation time
from the solution of the heat conduction equation. It
was assumed that heat exchange at the SrTiO3 film–air
interface is absent, the heat flux at the interface is con-
tinuous, and the temperature of the substrate back side
is constant. Under these conditions, the overheat of the
strontium titanate film can be expressed as

(10)

where T0 is the ambient temperature; Pdis is the micro-
wave power dissipated in the strontium titanate film;
and λf  and λsub are the heat conductivities of the film
and substrate, respectively.

Using an analogy between the electric and heat con-
duction equations, expression (10) can be written as

(11)

where CT = CvV is the specific heat of the capacitor, Cv

is the specific heat of strontium titanate, and V = shW is
the volume of the active region of the capacitor.

Comparing (10) and (11), we obtain the expression
for thermal relaxation time

(12)
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Fig. 7. Equivalent electric circuit of the measuring resona-
tor.
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The heat conductivities of single-crystal sapphire
and strontium titanate are, respectively, 900 and
20 Wm–1 K–1 at T = 78 K and 25 and 6 W m–1 K–1 at
T = 300 K [1]. Then, the thermal relaxation times for
the capacitors are τ ≈ 10–7 and 10–8 s at T = 300 and
78 K, respectively. Thus, in our experiments (at 2Ω ≤
2 × 106 Hz), the inequality 2π(2Ω)τ ≤ 1 is satisfied at
nitrogen temperature.

If the capacitance is modulated because of moderate
variations of the film electric field and temperature, it
can be represented as

(13)

where the factor KT characterizes the temperature
dependence of the capacitance near T = 78 K, where the
behavior of the strontium titanate films differs from the
Curie–Weiss law.

Experimental temperature dependences for the
capacitances of STO capacitors similar to those consid-
ered in this paper are presented in [7]. From these
results, KT is estimated as 10–2 K–1 at T = 78 K.

In the two-tone mode, the microwave power dissi-
pated in the strontium titanate film oscillates with the
beat frequency 2Ω:

(14)

C U T,( ) C0 1 U
2

U0
2

------– KT T T0–( )– ,=

Pdis ω0C0 δUc1
2

1 2Ωt( )cos+( ).tan=

 P3out, dBm
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Fig. 8. P3out vs. P2inc. (s, ,) data points at equal values of
U0. For curves 2, the difference in the IMD product signals
is responsible for U0 variation caused by the capacitor tem-
perature modulation with the frequency 2 Ω = f1 – f2.

∆P
Using (6) and (13) in view of (11) and (14), we
obtain the third-order IMD product component of the
current flowing through the nonlinear capacitor
because of the thermal modulation of the capacitance:

(15)

Introducing the notation

(16)

we bring (15) to form (7). Eventually, at T = 78 K, the
IMD product power at the output of the resonator is
expressed by

(17)

where A is determined in (9).

In particular, for sample 1,  ≈ 103 V2, so that
taking account of the thermal nonlinearity of the capac-
itance adds approximately 20 dB to the calculated P3out
value. Figure 5 shows the dependence P3out(P1inc)
(dashed lines) calculated by (17) for T = 78 K. With
regard for errors in determining the quantities involved
in (17), our estimates are in satisfactory agreement with
the experimental data. The application of a dc bias volt-
age weakens the temperature dependence of the capac-
itance (by decreasing KT) and, thus, causes U0T to grow.
This effect shows up in the experimental transfer func-
tions of the resonator (Fig. 6) as a decrease in the IMD
product signal P3out relative to P1inc and an extension of
the incident power range where the transfer ratio
remains constant and the dependence P3out(P1inc) is
cubic.

To further verify the correctness of this result, we
measured (at T = 78 K) the IMD product power P3out at
the output of the resonator that was excited by two-tone
signals with different depths of amplitude modulation.
During the measurements, the power of one component
of the incident signal (P2inc) varied from –10 to
+26 dBm, while that of the other (P1inc) remained con-
stant and equaled +26 dBm. The results of these mea-
surements are presented in Fig. 8 (data points on
curve 1). When P2inc ! P1inc and the modulation of the
microwave voltage across the capacitor can be ignored,
the dependence P3out(P2inc) has the following analytical
form:

(18)

The dependence P3out(P2inc) calculated by (18) at a
constant transfer ratio S21 is shown in Fig. 8 (dashed
part of curve 1). In addition, Fig. 8 shows the already
discussed dependence P3out(P2inc) for the case when the
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resonator is excited by the two-tone signal with equal
powers of its components (P1inc = P2inc) (curves 2). Tri-
angles are data points, and dashed curve 2 shows P3out
calculated by (9) for U0 that was used in constructing
curve 1. One can see that, at T = 78 K, when the modu-
lation depth of the microwave signal incident on the
resonator increases to 1, the nonlinear response of the
STO capacitor noticeably grows. In Fig. 8, we show the
difference ∆P ≈ 22 dB between the experimental and
calculated IMD product signals. This difference is due
to the modulation of the capacitor temperature with the

beat frequency ∆P ≅  10 / ). The value of U0T

found from these measurements is consistent with the
above estimates.

It is significant that the increased nonlinear response
of the STO capacitor to the two-tone microwave signal
at T = 78 K can be suppressed using a substrate with a
heat conductivity lower than that of sapphire. The rea-
son is that, in this case, the thermal relaxation time
increases and the higher-than-T0 steady-state tempera-
ture of the strontium titanate film is set.

CONCLUSION
The nonlinear responses of the plane capacitors to a

high-intensity microwave field were analyzed at T = 78
and 300 K. The capacitors were made of thin strontium
titanate films on single-crystal sapphire substrates. It
was demonstrated that, at T = 300 K, the nonlinear
behavior in the microwave range can be predicted from
the low-signal capacitance vs. dc voltage curve in view
of expression (9). At T = 78 K, due to the small thermal
relaxation time of the STO capacitor, the nonlinear
behavior depends on the exciting microwave signal.
The response of the STO capacitor to the one-tone
microwave signal corresponds to the nonlinearity of the
low-signal CVC. However, the periodic (with the beat
frequency) thermal modulation of the capacitance con-

(U0
4

log U0T
4
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siderably amplifies the nonlinear response to the two-
tone microwave signal with close frequencies of its
components. The expressions for nonlinear behavior of
STO capacitors in the microwave range at T = 300 and
78 K were derived.

Our results can be useful in designing microwave
microelectron devices, specifically, in optimizing the
layout of microwave circuits with nonlinear STO
capacitors to reduce undesired nonlinear distortions.
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Abstract—The sputtering of fullerene C60 films under bombardment with Ar+ ions was studied. In thin films,
blistering effects related to diffusion of the implanted argon ions along the layer and substrate interface have
been found to occur. A threshold behavior was observed for sputtering at ion energies around 0.2 keV, which is
much higher than in graphites. It has been shown that dependence of the work function on ion energy can be
described in the framework of Zigmund–Falcone’s approximation, which takes into account anisotropic effects
in cascade collisions, and with Yudin’s approximation for the sputtering of elemental materials. The obtained
surface binding energy for fullerenes is Us ≅  6.7 eV, which is less than the value for graphites, Us graph = 7.7 eV.
© 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

One of the most interesting modern materials are
fullerenes, which can find application in microelectron-
ics and in nuclear and space technology. Fluxes of fast
atomic particles encountered in nuclear and space tech-
nology and the wide use of ion (atom) bombardment in
microelectronics technology and in modern techniques
of structural analysis of materials stimulate studies of
sputtering of fullerene films (fullerides) and modifica-
tion of their structure, properties, and surface morphol-
ogy as a result of bombardment with ion (atom) beams.

The few known studies of the interaction of
fullerenes with accelerated atomic particles deal with
problems of structural modifications resulting from
bombardment with Ar+ atoms (E = 2 keV) [1], ion and
photon emission produced by bombardment with
hydrogen and helium ions [2], and emission of clusters
containing large numbers of atoms from surfaces of ful-
lerides bombarded with (16.5 keV) Cs+ ions [3, 4].
Unfortunately, important problems of sputtering and
modification of the structure and properties of fullerene
films are not quite understood. For example, Hoffman
et al. [1] used in their work the method of electron
energy loss spectroscopy (EELS), whereas it is known
that the electron bombardment of fullerides can cause
their polymerization [5–7].

In this study, sputtering and modification of the
structure and surface morphology of fullerene C60 films
under bombardment at normal incidence with mono-
chromatic Ar beams of energy from 0.1 to 1 keV were
investigated.
1063-7842/00/4506- $20.00 © 20766
EXPERIMENTAL TECHNIQUE

The experiments were carried out on C60 films of
thickness 100–2000 nm deposited by vacuum sputter-
ing in VUP-5M apparatus. Purity of the fullerene soot
used in the sputtering experiments was 99.98% or
higher. As substrates, GaAs(100) and Si(100) wafers
were used of grades AGChT-4 and KÉF-4.5, respec-
tively, and were treated by chemical-dynamic methods
prior to sputtering [8]. It has been shown in [9–12] that
C60 films obtained under similar conditions have a
polycrystalline structure.

The bombardment of the samples having an area of
0.25–1.5 cm2 was carried out in a specially designed
installation with a neutral Ar beam ~60 mm in diameter
at a flux of j ~ 1015 part cm–2 s–1 up to fluences of around
Φ ~ 1019 part cm–2. The energy of the particles was var-
ied in the range from 0.1 to 1 keV, and the sample tem-
perature during bombardment did not exceed T ~ 75°C.
The residual pressure in the working chamber was not
higher than P ~ 2 × 10–6 torr and increased to P ~ 3 ×
10–4 torr during operation of the source of accelerated
particles. Detailed description of the particle source is
given in [13–16]. The ion beam density was measured
with a Faraday cup. The sputtering yield of the
fullerene films  and the fluence Φ were determined
from measured thicknesses of the layers sputtered from
investigated films and GaAs control targets, , and
hGaAs, respectively. The interrelationship between these
quantities is given by the formula

(1)

YC60

hC60

YC60
ρC60

hC60
/ΦMC60

,=

Φ ρGaAshGaAs/MGaAsYGaAs,=
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where YGaAs is the sputtering yield of gallium arsenide
determined from data given in [14–19];  and ρGaAs

are the densities of C60 and gallium arsenide films equal
to 1.7 and 5.32 g/cm3, respectively [9, 20]; and 
and MGaAs are the average atomic masses of carbon and
gallium arsenide, 12 and 72.4, respectively.

RESULTS AND DISCUSSION

Examination of the surface morphology resulting
from bombardment of the fullerene films using scan-
ning electron microscopy techniques revealed two
types of surface relief: (i) shallow, randomly oriented
ripples and (ii) blisters (Fig. 1). Characteristic dimen-
sions of the random ripples are 0.01 and 0.1 µm in
height and width, respectively. The orientation of the
ripples is apparently affected by the specific etching
pattern at the boundaries of microcrystallites. Charac-
teristic dimension of the blisters is about 1 µm. The for-
mation of blisters appears to be a result of accumulation
of the implanted argon. Analysis of the blisters in sam-
ples bombarded with different doses shows that there is
a step behavior in the blister density variation with
increasing fluence. Samples with an initial C60 film
thickness of about 0.1 µm after an exposure of Φ ~ 1 ×
1018 ion/cm2 had a blister density of around 1.5 ×
104 cm–2, whereas, in samples bombarded with a dose
of Φ ~ 3 × 1018 ion/cm2, the density of blisters was
about twice as high, reaching a value of ~ 3 × 104 cm–2.

Comparison of the surface morphologies formed
under identical bombardment conditions on samples
with different C60 film thicknesses shows that in films
with larger initial thickness, the resulting blister density
is lower. Analysis of the obtained results indicates that
the processes leading to the formation of blisters can be
related to diffusion along the C60/substrate interface.

It is known that fullerene can be polymerized as a
result of various irradiations [9, 21–23]. In order to
determine the condition of the C60 films after bombard-
ment, their solubility in toluene was tested, and it was
found that the fullerene films underwent polymeriza-
tion as a result of sputtering with a neutral argon beam.
Detailed results of the study of this effect will be pre-
sented elsewhere.

The measurement results of the sputtering yield of
C60 films are presented in Figs. 2 and 3. Their analysis
shows that, in films having the residual thickness less
than 40 nm, there is a deviation of the C60 sputtering
yield from the dependence observed in thick films
(Fig. 2). This dependence is probably due to the effect
of the substrate on the propagation of the cascade colli-
sions; i.e., at film thicknesses comparable to the cas-
cade size, some collisions will occur with atoms of the
substrate instead of carbon atoms. Because the ratio of
the masses of the primary particles and substrate atoms
is closer to unity than that of the primary particles and

ρC60

MC60
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carbon atoms, the efficiency of energy dissipation will
be higher in the substrate material. Therefore, lower
yields ought to be expected for films of thickness com-
parable to the size of a collision cascade, as observed in
the experiment.

Comparison of the scattering yields between films
that were first polymerized and the polycrystalline
films showed no dependence on the initial condition of
the film. This is probably the consequence of the higher
rate of film polymerization by the ion beam compared
with the sputtering rate.

Dependence of the sputtering yield of thick C60
films on the particle energy is shown in Fig. 3. This
dependence features a high value of the sputtering

(‡)

(b)

(c)

10 µm

300 nm

300 nm

Fig. 1. Surface morphology of the C60 film with the initial
thickness of d ~ 0.2 µm after bombardment with a neutral
argon beam of energy E = 0.6 keV at flux density
j ~ 1014 part/s cm2 up to fluences of around Φ ~ 3 ×
10−18 part/cm2. (a) general view, (b) cross section of a
closed cavity, and (c) cross section of an open blister.
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threshold energy Eth ~ 0.2 keV and considerable varia-
tion of the sputtering yield in the range of energies up
to 1 keV. In the energy range from 1 to 15 keV, the sput-
tering yield rises slowly reaching a maximum of Y ~ 0.3
atoms per ion at E = 9.5 keV. Comparison of the sput-
tering yields for fullerene films, graphites, and carbon
films shows that the values for fullerenes are intermedi-
ate between the other two materials. This discrepancy
of data can be indicative of the effect of porosity on the
results of determinations; i.e., the deposited carbon
films may have a very porous structure, and, therefore,
higher sputtering yield values are obtained compared
with bulk graphite. The fullerene films possibly have
lower porosity, and their sputtering yield, therefore, dif-
fers less from the data for bulk graphite.

Comparison of the sputtering yield values for ful-
lerides with corresponding data for the most important
microelectronics materials Si, SiO2, and GaAs [14–19,
21, 22] shows that the efficiency of sputtering of ful-
lerides by argon ions with energies 0.3–1 keV is lower
by a factor of 3–10 (depending on the target material
and bombardment conditions). In addition, in the sput-
tering of fullerenes, a threshold behavior is observed at
a particle energy E ~ 200 eV, which is commonly used
in plasmochemical etching, because this is a consider-
ably higher value than that for graphite, Si, SiO2, and
GaAs [14–19, 21, 22].

Fitting the obtained dependence to various approxi-
mations has shown that the best results are obtained
with the use of Zigmund–Falcone’s model [23], which
takes into account anisotropic effects in sputtering,

(2)

where Eth is the sputtering threshold energy determined
from the experimental graph and equal to about 200 eV,
which is considerably higher than the known values for
most of the basic materials of microelectronics. Yis is
the sputtering yield neglecting the anisotropy effects,

Y Yi 1 Eth/E( )2–[ ] ,=

100 101

0.2

0.1

0

Y, at./part.

î, part./cm2 1018

Fig. 2. Dependence of the C60 film sputtering yield on film
thickness for bombardment with a 0.6-keV argon beam.
calculated with the use of the Yudin’s approximation
[24],

(3)

where Emax is the energy of incident particles corre-
sponding to the maximum value of the sputtering
yield Ymax.

Emax and Ymax are defined as

(4a)

(4b)

where Etf is the Thomas–Fermi energy; a is the interac-
tion potential screening radius; and Λ is a material con-
stant given by the formula

(4c)

(4d)

where Z0 = 8 and Z = 0 for Z2 ≤ 18 and Z0 = 18 and Z =
2 for Z2 > 18.

The surface binding energy Us determined from the
best fit of the theory and experiment is equal to 6.7 eV,
which is slightly less than for graphite (Us = 7.7 eV
[21, 24]).

The value of the sputtering threshold energy Eth is
approximately 200 eV (Fig. 3), which is considerably
higher than for graphite [17, 21]. This high sputtering
threshold is probably related to the lower atomic den-
sity of fullerenes compared to graphite and, as a conse-
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10–1 100 101
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Fig. 3. Dependence of the sputtering yield of thick
(>0.05 µm) C60 films on particle (argon) energy at normal
incidence.
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quence, lower retardation efficiency in the near-surface
layer of fullerene, on which the sputtering is largely
dependent.

CONCLUSIONS
In this work, sputtering of C60 films by a neutral

argon beam has been carried out. It has been shown that
under the experimental conditions, the fullerene films
undergo polymerization. The sputtering is accompa-
nied with a number of phases of blister formation,
apparently as a result of diffusion processes at the layer
and substrate interface. In thick films, the formation of
blisters is less intensive. A threshold behavior has been
observed in the dependence of sputtering on particle
energy at energies around 0.2 keV. The experimental
sputtering yield curves are found to be in satisfactory
agreement with Zigmund–Falcone’s model [23], which
takes into account the anisotropy effects in the colli-
sions of target atoms and ions, and with Yudin’s
approximation for the sputtering coefficients of simple
targets [24].
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Abstract—To study the disintegration of the molecules of hydrides at the surface of the growing layer and their
influence on the rate of the epitaxial process a model of the growth kinetics of Si1 – xGex alloy layers from silane
and germane by the molecular beam epitaxy method with SiH4 and GeH4 gas sources is considered. Through
comparison of numerical simulation data and experimental relationships, the steady-state growth kinetics has
been studied and a comparative analysis carried out of the efficiency of entry of Ge(Si) atoms into the growing
layer both in the presence of Si and Ge atomic flows in the reactor (the so-called hot-wire method) and in their
absence. The growth rates obtained with this method of epitaxial growth and with one of its modifications where
the use is made of a sublimating silicon bar as an additional heated element have been compared. Peculiarities
in the behavior of the dependence of the layer growth rate on its composition have been revealed and explained.
© 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years in connection with the prospects of
applying alloyed heterostructures in devices of micro-
electronics and microwave electronics, a considerable
interest is seen in both improvement of the structure
growth techniques and in development of physico-
chemical and mathematical models, which can provide
an adequate description of the epitaxial process. In the
majority of basic studies, the growth of strained Si–Ge
heterostructures had been performed by the traditional
method of molecular beam epitaxy (MBE). In the last
decade, however, in connection with practical require-
ments, vacuum methods of epitaxy with gas sources
(GSMBE) that use hydrides of silicon and germanium
have been intensively developed. This growth method,
which has considerably higher yield compared with
MBE, features better area uniformity of layers and
compares well with the traditional MBE in the possibil-
ity to form abrupt heterointerfaces, which is important
in the growth of nanometer scale structures.

At the present time, in the literature, there is already
a considerable number of experimental studies on vac-
uum hydride epitaxy of Si1 – xGex [1–5] with the use of
both molecular and atomic flows in the reactor. How-
ever, the theoretical grounds of this method are at
present not sufficiently developed [1, 2, 6–11]; as a
result, the paths of the hydride disintegration reactions
proceeding at the surface of the growing layer are not
properly understood and there is little knowledge of the
surface concentrations of different components of the
disintegration products and their interaction. The main
difficulty in modeling the kinetics of the layer growth
1063-7842/00/4506- $20.00 © 20770
from hydrides is the multiplicity of intermediate disin-
tegration reactions and their paths [3, 12], which results
in the appearance of a great many uncertain kinetic
constants in the kinetic equations.

In the present study, a physicochemical model of the
kinetics of the steady-state layer growth from the
atomic flows of silicon and germanium as well as from
the molecular flows of silane and germane [9] is devel-
oped. The model is the extension of the results obtained
in [6–8, 10, 11] to the case of a mixture of two gases
and contains a minimal number of parameters that have
to be determined from the experiment. The numerical
simulation of the technological processes on the basis
of the proposed model has been carried out in a wide
range of the growth parameters in both their presence in
the reactor of additional atomic flows (hot-wire
method) and in their absence. A comparative analysis
of the growth rates for GSMBE and the hybrid Si–GeH4

MBE method of layer growth studied earlier [6–8, 10]
has been carried out. The latter is a modification of the
GSMBE method with an additional hot source in the
form of a silicon bar instead of the commonly used
tungsten wire. The use of the sublimating silicon
source, although involving some technological restric-
tions, allows one to obtain in the growth chamber sili-
con atomic flows without the use of the molecular
silane source. Analysis of the model of surface pro-
cesses for different technological modifications
revealed the origin of the unusual behavior of the
dependence of the layer growth rate on composition for
different versions of the technology.
000 MAIK “Nauka/Interperiodica”
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THE MODEL OF THE PHYSICO-CHEMICAL 
PROCESSES AT THE LAYER SURFACE

To describe the growth kinetics of the alloy layers,
we use the approach proposed in [6–8, 10] for Si–GeH4
MBE. In order to reduce the arbitrariness in the choice
of kinetic constants and their number, the scheme of the
disintegration of silane and germane molecules both at
the substrate and at the additional hot source will be
considered in the following simplified form using the
notion of an effective frequency coefficient  of the
full disintegration of the MH3 molecules

(1)

Here M = Ge, Si; underlining denotes atoms bonded to
the surface. The possible intermediate disintegration
reaction paths of the MH3 molecule were discussed in
[3, 12]. They ought to be taken into account in the study
of thermal desorption spectra [11]. In the present paper,
the disintegration of the MH2 molecules is not consid-
ered in detail. Below, the corresponding system of
kinetic equations for monomolecular adsorption (ΘSi +
ΘGe +ΘH + + Θfr = 1) is presented, which allows
one to calculate concentrations of the adparticles aver-
aged over the surface Θi = ni/ns (i = MH3, M, H; ni is
the density of the ith particle’s pieces; and ns = 6.78 ×
1014 cm–2 is the density of the adsorption centers at the
surface [1]), and of the free adsorption sites Θfr = Θbl +
Θnbl both blocked by MH3 molecules (Θbl = 3  +

3 ), and nonblocked Θnbl

(2)

Here,  is the molecular (atomic) flux inci-
dent on the substrate;  is the sticking coefficient of

the MH4 molecule at zero coverage and temperature T
at the substrate surface (the sticking coefficient of the
M atoms is assumed to be unity); νM(H) is the frequency
coefficient of desorption of M(H) atoms from the sur-
face (νSi = νGe = 1013exp(–2.3/kT) [13]); rM(H) is the
crystallization rate; and g is the transfer coefficient of

νMH3

MH4 gas( ) 2 MH3 H, MH3 3 M 3H,+++ +

M gas( ) 1 M, M M cr( ),+

H SH2 gas( ).

ΘSiH3

ΘSiH3

ΘGeH3

dΘMH3
/dt 2 SMH4

FMH4
/ns( )Θnbl

2
24νMH3

ΘMH3
Θ fr

3
,–=

dΘH/dt

=  2 SMH4
FMH4

/ns( )Θnbl
2

72νMH3
ΘMH3

Θ fr
3

+{ }
M

∑
– νH x( )ΘH rHΘH,–

dΘM/dt 24νMH3
ΘMH3

Θ fr
3

g SMH4
FMH4

/ns( )Θ fr+=

– νMΘM rMΘM.–

FMH4 M( )

SMH4
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atoms from an additional hot source to the substrate.
Here, we suppose that hydrogen is delivered at the sur-
face only by hydride molecules, because it is effec-
tively evacuated from the reactor volume and has a
small value surface sticking coefficient compared with

 ( ≈ 0.01  [1]). Below, it is also assumed

that the removal of hydrogen from the surface proceeds
mainly due to desorption (νH(x) @ rH) and that the con-
centration of hydrogen incorporated into the lattice is
substantially lower than the concentration of host
atoms (rMΘM @rHΘH). The third equation of system (1)
takes account of the atomic flow from the additional
heated element in the growth chamber (the hot-wire
method). With known surface densities Θi it is easy to
calculate the experimentally obtainable growth rate

(3)

and the average composition of the deposited Si1 – xGex

epitaxial layer

(4)

Here n0 = 5.5 × 1022 cm–3 is the number of the Si1 – xGex

alloy atoms per unit volume. The value of the sticking
coefficient  was estimated in [8, 10] on the basis
of experimental data available in the literature. The
value for  is given in [1]. Below, the sticking coef-

ficient  is taken equal to  = 3  = 2 ×
10−2 and independent of the temperature (in the temper-
ature range of interest here, 550–750°C) and on the sur-
face composition.

To accurately describe the growth process, it is
necessary to take into account the dependence of the
rate of crystallization (generally speaking, non-linear)
on the density of adatoms condensed at the surface.
Approximately, the dependence rSi(ΘSi, T) can be
obtained by analyzing MBE growth of a silicon layer.
From the balance equations for silicon atoms, it is
easy to obtain the following expressions relating rSi
and ΘSi [10]

(5)

The typical form of the dependence of rSi(ΘSi) on
ΘSi calculated for several temperatures with the use of
an empirical plots of the flux of Si atoms and Si epitax-
ial layer growth rate versus source and substrate tem-
peratures was given in [9, 10] (for instance, rSi ~ 1 at
T = 600°C and ΘSi = 10–4–10–2). Because of the absence
of similar data for germanium we assumed below rGe =
rSi and, thus, ignored the effect of germanium and sili-
con surface segregation.

SMH4
SH2

SMH4

Vgr rSiΘSi rGeΘGe+( )ns/n0=

x rGeΘGe/ rSiΘSi rGeΘGe+( ).=

SGeH4

SSiH4

SGeH4
SGeH4

SSiH4

rSi FSi νSins+( )Vgrn0/ FSi νSin0–( )ns;=

ΘSi FSi νSin0–( )/ FSi νSins+( ).=
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The hydrogen desorption essentially influences the
epitaxial layer growth rate, especially at low tempera-
tures. For the alloy the rate of hydrogen, desorption will
depend on surface composition as well, since the acti-
vation energies for hydrogen desorption from silicon
(EH–Si = 2.08 eV) and from germanium (EH–Ge =
1.56 eV) differ considerably [2]. Usually, a linear
approximation is used in calculations, obtained under
an assumption that the hydrogen adatoms are equiprob-
ably distributed over Si and Ge sites for adsorption [2].
However, surface migration can appreciably change the
adatom distribution over the lattice sites due to the dif-
ference in Si–H and Ge–H bond energies. In its move-
ment on the surface, an adatom will stay most of the
time at the sites with a greater binding energy. There-
fore, it should be expected that the effective desorption
frequency will be lower. The strongest deviation is
most likely to occur at small x. This shortcoming can be
readily overcome if this factor is taken into account at
least in the approximation of high particle mobility [9].
In this case, it is not difficult to obtain an expression for

101
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(b)
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Fig. 1. (a) Temperature dependence of the silicon layer
growth rate by MBE and (b) dependence of the Si1 – xGex
layer growth rate by GSMBE on composition (germane
pressure in reactor) at a constant silane pressure of 6.5 ×
10−4 Torr. Experimental data [4] denoted as follows: T, °C:
(d) 550, (m) 600, (s) 650; curves represent simulations at
ν0 = 0.7 s–1,  = 0.08 eV (solid lines) and at ν0 =

500 s−1,  = 0.6 eV [6] (dashed line).

ESiH3

ESiH3
the frequency coefficient of hydrogen desorption from
the surface of Si1 – xGex alloy

(6)

where ΘΖ = 1 – ΘH – ΘV, ΘV is the density of free
adsorption sites at the surface, and νij is the frequency
of transfer of hydrogen adatoms between sites of types
i and j.

DETERMINATION OF THE EFFECTIVE RATE 
OF DISINTEGRATION OF THE HYDRIDES 

AT THE GROWING SURFACE 
FROM OBSERVED GROWTH PROCESS 

RELATIONSHIPS

In the foregoing, we discussed the meanings of sev-
eral kinetic coefficients in the system of equations (2).
In order to derive the effective disintegration rate of the
hydride molecules MH3 at the surface, it is necessary,
apart from adjustment of other model parameters, to
compare the theoretical calculations with experimental
data available in the literature. The easiest way of
obtaining an expression for the frequency coefficient of
full disintegration of silane molecules at the growing
surface is by comparing the calculated curves with tem-
perature dependences of the rate of silicon layer growth
from silane, of which a lot can be found in the
literature (see, for example, [4]). A typical plot of
Vgr(T) for silicon is presented in Fig. 1a, from which it
follows that a satisfactory agreement between theory
(solid line) and experiment is achieved at  =

ν0exp(− (eV)/kT) s–1, ν0 = 0.7 s–1,  = 0.08 eV

(at T = 600°C  ≈ 5 s). The change of slope of the
Vgr(T) curve is caused by the fact that at T < 600°C the
growth rate is limited by an increase of the surface cov-
erage by hydrogen (in simulations, we used EH–Si =
2.08 eV) while at T > 600°C it is limited by the hydride
disintegration rate at the surface. Here and below, we
used the same values of the process parameter ν0 and

 as given in [12] for the rate of the reaction SiH3 +
1  SiH2 + H. It can, therefore, be stated that at the
growth temperature higher than 550°C, the disintegra-
tion rate of the surface hydride radicals can be limited
by this reaction. Analysis of mass spectrometry data on
surface composition [11] confirms that this reaction
mainly determines the effective disintegration time of
the SiH3 molecule (the concentration of SiH3 molecules
at the growing surface far exceeds that of the SiH2 mol-
ecules; rapid disintegration of the latter is assumed to

νH x( ) νH–Ge= ΘH–Ge x( ) νH–SiΘH–Si x( ),+

ΘH–Si x( ) –β β2
4α 1 γ–( )ΘH+( )

0.5
+{ } /2 1 γ–( ),=

α γ 1 x–( ) 1 θZ–( ),=

β α x 1 ΘZ–( ) 1 γ–( )ΘH,–+=

γ νGeSi/νSiGe, ΘH ΘH–Si ΘH–Ge,+= =

νSiH3

ESiH3
ESiH3

νSiH3

1–

ESiH3
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proceed by the reaction 2SiH2  2SiH + H2 [12]). In
particular, from Fig. 1a, it is seen that the activation
energy of the SiH3 molecule markedly affects the slope
of the curves in the low temperature region. The use in
simulations of different values of the process parame-
ters (ν0 = 500 s–1,  = 0.6 eV [5]) associated with a
different, more involved disintegration path of the SiH2
molecules at the surface (SiH2 + 1  SiH + H [12])
and sometimes used for the analysis of experimental
data [6, 10] results, in the case under consideration, in
a discrepancy between theoretical and experimental
dependences (Fig. 1, dashed curves).

To determine the value of  and ascertain some
other system parameters, let us use an experimental
dependence of the growth rate of Si1 – xGex layers on
their composition (Fig. 1b) [4]. The numerical simula-
tion (solid curves) has shown that the disintegration
rate of the GeH3 molecules determines the layer growth
rate at a constant silane pressure. In our case, it is equal
to  = 0.03exp(–0.04 (eV)/kT) s–1 (at T = 600°C

 ≈ 1 min). In our calculations of the silane disin-
tegration rate, we assume the following values of the
parameters: ν0 = 0.75 s–1,  = 0.08 eV. The maxi-
mum on the Vgr(x) curve is associated with the depen-
dence of the hydrogen desorption rate on surface com-
position. In the region of small x, the growth rate
increases with germanium content since the hydrogen
desorption from the surface is enhanced (EH–Ge < EH–Si)
and the density of the free adsorption sites is increased.
The further increase of x by means of increasing the
germane pressure causes a covering of the surface by
products of germane disintegration and, as a result, a
lowering of the growth rate. The behavior of the curve
can be easily understood by analyzing the dependences
of surface concentrations of disintegration products of
different hydrides on the germane concentration in the
reactor chamber (Fig. 2a). It is seen that at low germane
pressures (  < 10–5 Torr), the surface concentration
of hydrogen drops sharply with pressure while at ele-
vated germane pressures (  > 10–5 Torr), a drop in
the concentration of silicon atoms is observed.

However, it should be noted that the use for Vgr(x)
calculations of a model that does not take into account
the influence of surface migration of particles on the
distribution of hydrogen adatoms over that surface,
results in a shift of the maximum of the theoretical
curve to the region x = 0.02–0.04 [2] while the maxima
on the experimental curves have positions around x ≈
0.1 at Tgr = 550–600°C (Fig. 1b). Taking into account
the surface migration of H adatoms [see (6)] consider-
ably improves an agreement between theoretical and
experimental curves (Fig. 1b).

A maximum in the Vgr(x) dependence occurs only in
a temperature range from 500 to 700°C. Outside of this

ESiH3

νGeH3

νGeH3

νGeH3

1–

ESiH3

PGeH4

PGeH4
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range, the growth rate is a monotonously sloping curve
[1]. The reason is that at high temperatures, hydrogen
desorption from the surface proceeds rather effectively
and the addition of germane only results in the reduc-
tion of the number of the free adsorption sites. At low
growth temperatures, the contribution of the silicon
component to the growth rate is insignificant and the
addition of germane results in a monotonous increase
of Vgr(x).

EFFECT OF AN ADDITIONAL HEATED 
ELEMENT IN THE GROWTH CHAMBER 

ON THE RATE OF THE EPITAXIAL PROCESS

One of the limitations of MBE with gas sources is
the extremely low layer growth rate, which in some
instances becomes an obstacle in fabrication of device
structures. Using monosilane and monogermane, it is
impossible to obtain a maximum growth rate exceeding
2–3 nm/min (Fig. 1). The growth rate can be increased
through the use of digermane and disilane; however, in
both cases, it decreases exponentially with a lowering
of temperature, which is due to the very nature of ther-
mally activated physicochemical processes at the grow-
ing surface.
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Fig. 2. Dependences of surface densities of hydride disinte-
gration products on germane pressure in the reactor (a) for
GSMBE method at  = 10–4 Torr, T= 700°C, g = 0, 0.1

and (b) for Si–GeH4 MBE method at JSi ≈ 1 × 1015 cm–2 s–1,
T = 700°C, g = 0, 0.037. Dashed and solid lines correspond
to g = 0 and g > 0, respectively. (1) ΘSi, (2) ΘGe, (3) ΘH,

(4) , and (5) .

PSiH4

ΘGeH3
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One of the most simple methods for the acceleration
of the pyrolysis process in the reactor is a hot-wire
method [14], which essentially consists in placing in
front of the substrate of an element heated to a high
temperature, for instance, a tungsten wire spiral resis-
tively heated to 1200°C. Such an element can play a
role of its own as a source of the flow of atoms if a sub-
limating silicon bar is used instead of the tungsten wire
as in the hybrid S–GeH4 MBE method [6–8, 10]. The
process of disintegration of hydrides of silicon and ger-
manium proceeds effectively at a surface heated to tem-
peratures exceeding 1000°C. The produced Si and Ge
atoms desorb and arrive at the substrate. This way of
delivering atoms of the growing material indirectly by
increasing the coverage of the layer surface, apprecia-
bly increases the growth rate, which, in this case, is
independent of the substrate temperature.

The presence of additional atomic flows can affect
both the shape of the Vgr(x) curves and the effective rate
of disintegration of the hydride molecules at the grow-
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Fig. 3. (a) Experimental (signs) and theoretical (for g =
0.037—curves 1 and g = 0—curve 2) dependences of ger-
manium content in Si1 – xGex layers on growth temperature

at , Torr: (s) 5 × 10–4, (h) 5 × 10–5. (b) Growth rate

of Si1 – xGex layers as a function of alloy composition at
T, °C: (r) 700, (×) 850; curves are polynomial fits; JSi = 1 ×
1015 cm–2 s–1.

PGeH2
ing surface. To see that this is indeed the case, we con-
sidered an example of a simple technology that uses
only one source of gaseous germane and an additional
hot source of the sublimating monocrystalline silicon
(Si–GeH4 MBE [6–8, 10, 15]). The silicon bar heated
by electric current is the source of both silicon and ger-
manium atomic flows. With this technology, the only
unknown parameter of the model,  can be deter-

mined by fitting the calculated dependences x(T, )
to the experimental curves (Fig. 3a) obtained with our
direct participation [15]. From the x(T) dependence, we
have found that for Si–GeH4 MBE, the best agreement
of theory and experiment is achieved at  =

2exp(−0.47 (eV)/kT) s–1. A similar  value is

defined from an analysis of the x( ) dependence
[7]. It is seen that the activation energy for disintegra-
tion of a GeH3 molecule in the considered case differs
essentially from the value obtained above for the
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Fig. 4. Calculated growth rate Vgr(x) of Si1 – xGex layers as
a function of composition without (g ≠ 0) (dashed lines) and
with (g = 0.1 (a), 0.037 (b)) an additional hot source (dotted
lines) in the growth chamber. (a) – GSMBE at a constant
silane pressure (1, 2) or constant germane pressure (3, 4);

 = 10–4 (1, 4), 10–3 (2, 3) Torr; partial pressure of

the second gas component was varied from 10–7 to 10−2 Torr.
(b) Si–GeH4 MBE method at JSi ≈ 1 × 1015 cm–2 s–1,

600 (1), and 700°C (2);  = 10–8–5 × 10–2 Torr.
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GSMBE method. This can be explained by the rate-
determining effect of the disintegration process of the
molecule GeH2  GeH + H. The dominating role of
different chemical reactions in different techniques is
possibly related both to the influence of the atomic
flows on the rate of chemical reactions at the surface,
and to the dependence of the rate of these reactions on
the concentration of the reactants. The low concentra-
tion of GeH2 molecules at the growing surface pre-
cludes their disintegration by the faster bimolecular
reaction 2GeH2  2GeH + H2(gas).

Varying contributions of atomic and molecular
flows in different experimental conditions in the reactor
can considerably affect the shape of the Vgr(x) depen-
dence as well. The corresponding curves obtained at a
constant flux of silicon atoms from the sublimating Si
source in the Si–GeH4 MBE [6, 7] are presented in
Fig. 3b. It is seen that the behavior of the curves in
Figs. 1b and 3b differs greatly. The reasons for the
behavior of the curves in Fig. 1b were discussed above,
while the reasons for the behavior of the curves in
Fig. 3b will be considered below.

COMPARATIVE ANALYSIS OF THE BEHAVIOR 
OF THE GROWTH PROCESS DEPENDENCES 
FOR GSMBE METHOD WITH AND WITHOUT 

ATOMIC FLOWS IN THE REACTOR

Having determined the kinetic coefficients, the
dependence of the layer growth rate on its composition
can be calculated in a more general case for a wide
range of technological parameters. The behavior of the
curves reflects the role of different physicochemical
processes in the conditions of a given technological
experiment. First, let us consider the case of GSMBE
with gaseous silane and germane sources. The use in
the growth of only molecular flows (g = 0) results in
theoretical Vgr(x) curves of Fig. 4a similar to curves in
Fig. 1b. The behavior of the curves at a constant partial
silane pressure was already discussed. The reasons for
the specific shape of the curves at a constant partial ger-
mane pressure are similar. Comparison of the curves
for g = 0 (solid lines) and g ≠ 0 (dashed lines) in Fig. 4a
shows that the introduction of the hot source consider-
ably influences the growth rate, especially in the com-
position ranges where the content of one of the alloy
components is low. The introduction of additional
atomic flows with rising pressure of the varying com-
ponent GeH4(SiH4) considerably changes the effective
hydride disintegration rates (Fig. 4a) due to an increase
in the concentration of condensing adatoms ΘGe and
ΘSi (Fig. 2a).

Let us compare the obtained dependences with sim-
ilar curves calculated for the Si–GeH4 MBE method
with a single gas source of germane and sublimating
hot silicon source (Fig. 4b). Curves in Fig. 4b can be
easily interpreted if it is noted that at the zero value of

, all Vgr(x) curves should meet at a point Vgr(Si)PGeH4
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
corresponding to the growth of a pure silicon layer. In
contrast to the previous, casehydrogen in this growth
process takes no part whatsoever. As the GeH4 pressure
rises, the growing surface becomes blanketed by the
products of germane disintegration (Fig. 2b), which
results in decreased density of adsorbed Si atoms and,
consequently, in lower growth rates. In this case, the
lower is the substrate temperature, the more noticeable
is the decrease of the growth rate (Figs. 3b, 4b).
A further increase in the germane pressure, and accord-
ingly the germanium content, results in a more inten-
sive flow of Ge atoms from the hot source and the con-
centration of Ge atoms at the growing surface (Fig. 2b).
Therefore, the growth rate increases (Figs. 3b, 4b).

ACKNOWLEDGMENTS
The authors wish to thank the interindustrial scien-

tific research program, “Physics of Solid State Nano-
structures” (grant no. 97-2023) and INTAS (grant
no. 96-0580) for their financial support.

REFERENCES
1. D. W. Greve, Mater. Sci. Eng. B 18, 22 (1993).
2. D. J. Robbins, J. L. Glasper, A. G. Cullis, et al., J. Appl.

Phys. 69, 3729 (1991).
3. B. Cunningham, J. O. Chu, and S. Akbar, Appl. Phys.

Lett. 59, 3574 (1991).
4. L. T. Vinh, V. Aubry-Fortuna, Y. Zheng, et al., Thin Solid

Films 294, 59 (1997).
5. T. R. Bramblett, Q. Lu, N. E. Lee, et al., J. Appl. Phys.

77, 1504 (1995).
6. L. K. Orlov, V. A. Tolomasov, A. V. Potapov, et al., Inst.

Phys. Conf. Ser. 155 (3), 205 (1997).
7. L. K. Orlov, V. A. Tolomasov, A. V. Potapov, et al., Izv.

Vyssh. Uchebn. Zaved., Ser. Mat. Élektron. Tekh. 2, 30
(1998).

8. L. K. Orlov, V. A. Tolomasov, A. V. Potapov, et al., IEEE
SIMC 9, 215 (1996).

9. A. V. Potapov, L. K. Orlov, and S. V. Ivin, Thin Solid
Films 336 (1–2), 191 (1998).

10. L. K. Orlov, A. V. Potapov, V. A. Tolomasov, et al., in
Proceedings of the 2nd Russia Symposium “Heat-and-
Mass Transfer and Growth of Single Crystals and Thin
Film Structures,” Obninsk, Russia, 1997, Ed. by
V. P. Ginkin, p. 288.

11. A. V. Potapov and L. K. Orlov, in Proceedings of the
International Symposium “Nanostructures: Physics and
Technology,” St. Petersbrug, Russia, 1998, p. 487.

12. S. M. Gates, C. M. Greenlief, D. B. Beach, et al.,
J. Chem. Phys. 93, 7493 (1990).

13. H. C. Abbink, R. M. Broudy, and G. P. McCarthy,
J. Appl. Phys. 39, 4673 (1968).

14. P. Brogueira, J. P. Conde, S. Arekat, et al., J. Appl. Phys.
78, 3776 (1995).

15. V. A. Tolomasov, L. K. Orlov, S. P. Svetlov, et al., Kri-
stallografiya 43, 535 (1998) [Crystallogr. Rep. 43, 493
(1998)].

Translated by M. Lebedev



  

Technical Physics, Vol. 45, No. 6, 2000, pp. 776–779. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 70, No. 6, 2000, pp. 108–112.
Original Russian Text Copyright © 2000 by Sadykov, Borodin, Agalarov.

                                                                         

EXPERIMENTAL INSTRUMENTS AND TECHNIQUES

                         
Reversible Polarization of Ferroelectric Ceramics 
in a Rapid-Growing Electric Field

S. A. Sadykov1, V. Z. Borodin2, and A. Sh. Agalarov2
1 Dagestan State University, Makhachkala, 367025 Dagestan, Russia

2 Research Institute of Physics, Rostov State University, pr. Stachki 194, Rostov-on-Don, 344090 Russia
Received December 1, 1998; in final form, October 19, 1999

Abstract—The complex permittivity of ferroelectric PZT ceramics with different compositions was measured
in a pulsed rapid-growing electric field. The time dependence of the real component exhibits three peaks. The
dips between them correlate with imaginary component peaks. Domain mechanisms that contribute to the fer-
roelectric polarization and are responsible for the time dependences are considered. © 2000 MAIK
“Nauka/Interperiodica”.
During polarization reversal in ferroelectrics sub-
jected to an electric field, the domain walls are dis-
placed, leading to a significant increase in the complex
permittivity ε*. Up to now, nonlinear features of ε*
have been investigated mostly in crystalline ferroelec-
trics for repolarization due to rectangular bipolar volt-
age pulses. As shown in [1, 2], the permittivity is
ambiguously related to the reversing current and
strongly depends on frequency. The peak of the real
component ε' of permittivity has been found to lag
behind that of the reversing current ir, whereas the
imaginary component ε'' and ir vary synchronously.
Similar results have been obtained for PZT polycrystal-
line samples polarized by a pulse electric field with a
controllable buildup rate [3]. With such a reversal
method, an ε'(t) curve has three distinct peaks and ε''(t),
two smeared ones. It has been suggested [1–3] that the
components of ε* depend not only on the total area of
the domain walls; otherwise, the ε'(t) and ε''(t) curves
would be similar. It appears that relaxation processes
associated with domain wall displacement also influ-
ence the permittivity of ferroelectrics.

In ceramics, the microscopic nature of polarization
in an external electric field is much more complicated
than in single crystals. This is particularly true for
intense rapid-growing fields, when, even at normal
temperatures, the macroscopic polarization of ceramics
reaches values typical of standard methods within
microseconds [4]. The physical mechanism of ε*
growth in ceramic ferroelectrics has not yet been com-
pletely understood, though it is of importance in appli-
cations. Little is also known about the dynamics of the
domain structure and its relaxation in pulse fields.

In this work, we pursue our study on the reversibil-
ity of ε'(t) and ε''(t) in PZT ferroelectrics [3]. The
reverse characteristics can shed light upon the domain
dynamics in external electric fields at various stages of
fast (microsecond) polarization switching.
1063-7842/00/4506- $20.00 © 20776
EXPERIMENT

Conventional ferroelectric ceramics PKR-1 and
PZT-19 [5] with a low coercive field Ec (0.6–1.0 and
1.2 kV/mm, respectively) were used as samples.
PKR-1 is a three-component solid solution of complex
oxides (like PbTiO3–PbZrO3–Pb O3) that has
the rhombohedral phase near the morphotropic region.
PZT-19 also belongs to the morphotropic region and

has a relatively high permittivity  = 1600 (compare

with  = 700 for PKR-1). One-mm-thick disc-shaped
samples 10 mm in diameter were prepared by hot press-
ing. Flat silver electrodes were applied to the disk
faces.

The experimental setup is shown in Fig. 1. Prean-
nealed samples were subjected to electrical pulses
whose rise rate, controlled by plug-in inductors, was
chosen such that the complete polarization period tp

lasted 50–100 µs. This time interval is optimum for

B1/2' B1/2''

ε33
T

ε33
T

G1

G1 HSF

O1

O2
HIF

C0

L

R C

FC

R0

Fig. 1. Experimental setup. G1, high-voltage pulse genera-
tor; G2, sinusoidal voltage generator; HSF, high-frequency
separation filter; HIF, high-frequency in-line filter; O1 and
O2, oscillographs; FC, ferroceramic.
000 MAIK “Nauka/Interperiodica”
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oscillographic measurements of the permittivity at 0.3–
1.5 MHz. The real, ε', and imaginary, ε'', parts of the
reverse permittivity, which are effective kinetic param-
eters of polarization, were calculated from the mea-
sured instantaneous low-voltage input signal U0; sam-
ple signal U at the instant of switching; and phase dif-
ference ϕ between them, which is related to dielectric
losses. In the calculations, a ferroelectric sample was
represented as a capacitance C and a resistance R con-
nected in parallel. The analysis of this circuit by the
method of conductivities gives the following comput-
ing formulas:

(1)

(2)

where A = (U0R0U–1)(1 + )–1/2, C0 is the stopping
capacitance (1 nF), R0 is the load resistance (6.3 Ω),
and ω is the circular frequency of the measuring volt-
age. ε' and ε'' were calculated from expressions (1) and
(2), respectively (σ = ε0ε''ω, where σ is the equivalent
parallel conductance).

The accuracy of the C and R calculation was
checked by replacing the sample by discrete capaci-
tance and resistance of known values.

Potential and current oscillograms for three times of
polarization reversal are presented in Fig. 2. Also
shown is the output measuring voltage for one of the
reversal period. The input signal voltage was 5 V. It is
seen that polarization proceeds mostly under the con-
stant electric field (dynamic coercive field  > Ec) and
is completed when the field monotonically rises for the
second time and reaches 2–3 . The reversing current
curves have a specific asymmetric shape with a
smoothed peak and sharp fall. Such a variation of the
field is defined by that of the polarization current,
which in turn depends on the initial rise rate of the field
and properties of a ferroelectric sample. Thus, the sam-
ple potential is controlled by the polarization current,
while the switching processes take place under the self-
consistent electric field.

A variation of the high-frequency output signal is a
direct result of the variation of the sample impedance
during polarization. As soon as the domain walls are
rearranged and a new polarization state is formed, the
output signal stops growing, though the field in the
sample continues to increase. Therefore, the polariza-
tion period tp was defined as an interval between the

C
R
A
--- 1– 

  1/2

ωR( ) 1–
,=

R A ϕtan 1
ωC0
----------– 

  2

A
1–

A,+=

ϕtan
2

Ec'

Ec'
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application of a high-voltage pulse and the instant when
the low-voltage output signal ceases to vary.

RESULTS AND DISCUSSION

Time dependences of the real part ε' for PKR-1 dur-
ing polarization are plotted in Fig. 3. During the rever-
sal period, ε' goes through three peaks with different
amplitudes. Note that, when tp decreases from 100 to
40 µs, the shape of the ε'(t) curve does not change.

The first and highest peak occurs at the leading edge
of a voltage pulse and corresponds to low dielectric
losses. In [3], this peak is associated with the elastic
vibrations of the domain walls about their equilibrium
positions. The domain walls fixed at defects are consid-
ered as damped oscillators.

At the first stage of reversal, 180° domain walls
become unstable and their mobility increases, but the
initial structure does not change. Then, 180° tapered
domains arise and extend along the electric field. As the
number of domains involved in polarization and their
mobility increase, so does ε'. Concurrently, conditions
for piezoelectric domain contraction are set, which
results in a decrease in ε'. Thus, the effect of negative
∆ε' can be attributed to domain contraction due to the
piezoelectric deformations of individual domains by
the high-frequency measuring field. When these pro-
cesses are balanced, ε' peaks (the first peak) at E ≈ .
As the electric field in the sample grows faster (i.e., the
polarization rate increases), both the magnitude of ε'
and its rate of change increase.

The second peak of ε' can be associated with the lat-
eral motion of expanding 180° domains. The subse-
quent monotone decrease in ε' may result from a num-
ber of factors. The most probable ones are a reduction
of the number of 180° reversals and enhanced domain

Ec'

Ip, A
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0.4

0 4020 60 80 100 120

U, kV

5.6

4.8
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2.4

1.6

0.8

0

t, µs

1 2 3

4

1' 2' 3'

Fig. 2. (1'–3') Typical high-voltage electric pulses and (1–3)
reversing current for PKR-1 at tp = (1) 40, (2) 60, and
(3) 100 µs; (4) output measuring voltage with a frequency of
1 MHz for tp = 40 µs.
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contraction. Screening by bulk and surface charges also
produces a noticeable effect on the domain dynamics.
Different mobile point defects are known to pin the
domain walls, thus markedly affecting their mobility
[6]. The rate of wall screening depends on both the
point defect mobility and the strength of their interac-
tion, causing defects to drift. In the case of superfast
field reversal, the bulk charges do not keep pace with
the domain walls. Having broken free of the influence
of the bulk charges, the walls become more mobile in
the high-frequency field and contribute more to ε'.
However, experimental results [4] indicate the com-
plete screening of the polarization charge during micro-
second reversal; i.e., when the characteristic polariza-
tion periods are significantly less than the times of
Maxwellian relaxation of the bulk charges. We will
consider this situation below.

ε' × 10–2

14

12

10

8

6

4
0 20 40 60 80 100 t, µs

1 2 3

Fig. 3. ε'(t) curve for PKR-1. tp = (1) 40, (2) 60, and
(3) 100 µs.
As shown in [7], the interaction of walls with point
or linear defects during repolarization produces field
concentrators near pinning points. The concentrators
are areas of anomalously high internal field. The field
amplification factor can reach ~103 for linear defects. In
strong local fields, E ≈ 105–106 V/cm, impact ionization
of impurities generates free carriers, which screen
bound charge and cause radiative recombination [8].
Because of the small relaxation time (τ < 10–6 s), the
excess charges compensate the depolarizing fields even
at the nucleation stage. As a result, the walls slow down
and ε' decreases. The electron subsystem influences the
domain dynamics throughout the period of repolariza-
tion. It is supported by the fact that electrolumines-
cence from ferroelectric ceramics in a self-consistent
field appears at the beginning of repolarization and has
several peaks similar to those in the ε'(t) curve [8].

At the final stage of reversal, the third peak due to
90° domain walls arises. Transmission electron micros-
copy studies of ceramics polarized in a self-consistent
field have shown that their domain structure is a set of
90° lamellas with the walls oriented largely perpendic-
ularly to the applied field and crossing grain boundaries
(Fig. 4). In partially polarized ceramic samples, the
rearrangement of 90° domain walls starts nearly simul-
taneously with the appearance of the second peak but
becomes dominant only near the third peak of ε'. As the
reversal time tp shrinks, the third peak grows and tends
to saturation. Thus, each of the ε' peaks behaves in a
different manner.

Both ε' and ε'' drop as the measuring voltage fre-
quency f grows from 0.3 to 1.5 MHz (Fig. 5). This
decrease was most pronounced for the second and third
ε' peaks. The ε' value in the first minimum does not
depend virtually on frequency and remains close to the
(‡) (b)

Fig. 4. Domain structure of PKR-1 after pulse polarization. Arrows indicate the direction of the applied field. (a) Orientation texture
of 90° domain lamellas on the lateral sides of grains for tp = 40 µs; ×11800. (b) Oriented 90° domain lamellas, t = 20 µs at tp = 40 µs;
×7250.
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
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initial value of ε' (at t = 0), because domain contraction
suppresses domain vibrations. The increase in ε' with
decreasing frequency is associated with relaxation pro-
cesses, among which 90° wall rearrangement proves to
be the slowest. The different frequency dependences of
ε* at different polarization stages imply the presence of
a set of relaxation oscillators with different relaxation
times. This should be kept in mind while interpreting
the experimental results.

A change in the domain wall mobility during polar-
ization significantly affects the ε''(t) dependence, since
the motion of domains accounts for dielectric losses to
a large extent. The dielectric viscosity for the lateral
motion of 180° and 90° walls is larger than that for
direct propagation. An increase in the domain mobility
due to depinning from defects diminishes dielectric
losses.
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Fig. 5. ε'(t) and ε''(t) for PZT-19 at tp = 60 µs and f = (1) 0.3,
(2) 0.5, (3) 1.0, and (4) 1.5 MHz.
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CONCLUSION

The time dependences of the reversible characteris-
tics ε'(t) and ε''(t) of ferroelectric ceramics indicate dif-
ferent contributions from 180° and 90° domain walls to
the permittivity at various stages of switching. The fre-
quency dependence of ε* suggests the relaxation char-
acter of domain wall rearrangement, with the relaxation
time varying in a broad interval. The relaxation time of
domain walls can be estimated as

,

which gives ≈0.2 µs for PZT-19 and 0.3–0.45 µs for
PKR-1. These values are approximately one order of
magnitude less than those for crystals [1]. Presumably,
the mobility of domains in a self-consistent field is gov-
erned not only by their interaction with defects and
contraction but also by their screening owing to impact
ionization of impurities during reversal.

REFERENCES

1. E. Fatuzzo, J. Appl. Phys. 33, 2588 (1962).
2. A. Fouscova and V. Janousek, J. Phys. Soc. Japan 20,

1619 (1965).
3. S. A. Sadicov, A. Sh. Agalarov, and V. Z. Borodin, Ferro-

electrics 86, 127 (1996).
4. S. A. Sadykov, E. I. Bondarenko, and A. Sh. Agalarov,

Zh. Tekh. Fiz. 63 (11), 60 (1993) [Tech. Phys. 38, 965
(1993)].

5. Yu. N. Venevtsev, E. D. Politova, and S. A. Ivanov, Fer-
roelectrics and Antiferroelectrics in the Barium Titanate
Family (Khimiya, Moscow, 1985).

6. L. I. Dontsova, N. A. Tikhomirova, and L. A. Shuvalov,
Kristallografiya 39, 158 (1994) [Crystallogr. Rep. 39,
140 (1994)].

7. B. M. Darinskiœ and A. S. Sidorkin, Fiz. Tverd. Tela
(Leningrad) 26, 1634 (1984) [Sov. Phys.—Solid State
26, 992 (1984)].

8. S. A. Sadykov and A. Sh. Agalarov, Pis’ma Zh. Tekh.
Fiz. 16 (17), 32 (1990) [Sov. Tech. Phys. Lett. 16, 655
(1990)].

Translated by A. Sidorova

τ σ
ε0ω

2ε'
---------------=



  

Technical Physics, Vol. 45, No. 6, 2000, pp. 780–782. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 70, No. 6, 2000, pp. 113–115.
Original Russian Text Copyright © 2000 by Lomonosov, Talantov.

                                                                           

BRIEF COMMUNICATIONS

                          
Resonance Fluorescence in a Radio Frequency Field 
for a System of Two Nuclear Levels

V. V. Lomonosov and M. Yu. Talantov

Kurchatov Institute Russian Research Centre, pl. Kurchatova 1, Moscow, 123182 Russia

Received October 23, 1998; in final form, June 1, 1999

Abstract—The quantum-mechanical theory of resonance fluorescence in a radio frequency (RF) field is devel-
oped for a system of two mixed nuclear levels. The case when the resonant γ ray absorption is permitted only
for a single level is considered. It is shown that the bare energies of nuclear states vary simultaneously with the
parameters of the mixing RF field, and an additional quasilevel appears in the system. The time-dependent prob-
abilities of the corresponding transitions are calculated. © 2000 MAIK “Nauka/Interperiodica”.
It was qualitatively shown in [1, 2] that the interfer-
ence resulting from the quantum coherence of crossing
Zeeman levels may significantly suppress the resonant
γ ray absorption by one of them, whereas the emission
probability remains significant under certain condi-
tions. This property can be applied to the development
of γ ray lasers and in other fields of γ ray optics.

The resonance fluorescence of photons at the Zee-
man levels was analyzed in [3] for the case when the
atomic system is affected by dc and ac magnetic fields.
The temporal dynamics of the nuclear system should be
described accurately taking into complete account the
radiation widths of nuclear levels. In fact, the contribu-
tion of these levels can become significant.

For this purpose, we use in our paper the quantum-
mechanical formalism developed in [4, 5] and used in
[6] for describing the temporal dynamics of multilevel
systems.

Let us consider two adjacent or degenerate nuclear
levels with energies ε1 and ε2, and the ground state with
energy ε0 (Fig. 1). To prepare the system of this type for
5Fe, the authors of [1] used dc magnetic field directed
along the EFG axis of the quadrupole. When the mag-
netic field slightly deviates from this axis, the Zeeman
interaction causes the mixing of levels 1 and 2 owing to
the field component perpendicular to the EFG axis.

In contrast to this case, for mixing the levels, we use
a radio frequency ac magnetic field directed perpendic-
ular to the EFG axis. Thus, we consider a system of two
adjacent levels under the effect of the RF magnetic field
mixing these levels and an external radiation field. Let
us assume that these fields are switched on simulta-
neously at the moment t = 0. This assumption allows us
to describe correctly the phases of quantum states.

Following a conventional approach, we separate the
system’s Hamiltonian into two parts, H and H1. The
former includes nuclear effects, the RF field, and the
1063-7842/00/4506- $20.00 © 20780
free radiation field. The latter is related to the interac-
tion responsible for the transitions between the pure
states |ψp〉  of the free Hamiltonian. For the correspond-
ing amplitudes Qp(t) of these states, we have the set of
coupled equations [5]

(1)

where δpo is the Kronecker delta and δ(t) is the delta-
function.

The set of all possible states for the system is
described by five amplitudes: (1) A(t) corresponds to
the ground state of a nucleus with N s photons having

energies from the specified distribution; (2) (t) cor-
responds to the first excited state of the nucleus with
energy ε1 (there are N – 1 s photons, and one k photon

with energy ωk is absorbed); (3) (t) corresponds to
the first excited state of the nucleus with energy ε2

i
d
dt
-----Qp t( ) Qm t( )

m

∑=

× i εp εm–( )t–[ ] ψ p H
1 ψm〈 〉exp iδpoδ t( ),+

B1
k

B2
k
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ε2
ε1

ε0

u1
k

I

–
–

u2–

Fig. 1. The diagram illustrating the arrangement of nuclear
energy levels considered in the problem of resonance fluo-
rescence in the system with two adjacent levels in the pres-
ence of a mixing RF field I.
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(there are N – 1 s photons, one k photon with energy ωk
is absorbed, direct transitions from the initial state to

(t) are forbidden); (4) (t) corresponds to the
ground state of the nucleus (there are N – 1 s photons,
one k photon is absorbed, and one u1 photon with

energy ωu1 is emitted); (5) (t) corresponds to the
ground state of the nucleus (there are N – 1 s photons,
one k photon is absorbed, and one u2 photon with
energy ωuz is emitted). Applying the Fourier transform
to (1), we come to the following set of equations:

(2)

(3)

(4)

(5)

(6)

Here, all capital letters denoting the amplitudes are
replaced by small letters denoting the corresponding
Fourier components, E0 is the energy of the system as a
whole (further on, it is convenient to set E0 = 0), δ is an
infinitesimal positive parameter specifying the rule of
the path tracing around the poles, Hs is the matrix ele-
ment of the transition induced by the external radiation
field and accompanied by absorption or emission of an
s photon, V12 is the matrix element of transitions
between levels 1 and 2 induced by the RF field (below,
we assume that V12 = V21 = V), and Ω is the frequency
of the RF magnetic field. Solving set (2)–(6) at large Ω
(the actual small parameter will be specified below), we
derive

(7)

(8)
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(10)

Here, Γ0 is the half-width of the initial state or the
absorption probability that can be set constant, and γ1
and γ2 are the half-widths of the corresponding levels
defined in the standard way [5]. We assume that condi-
tion Γ0 < γ1, γ2, usual for such a problem, is met. The
energies in (8) are the solutions to a cubic equation.
Under the condition (∆ε12 + ∆γ12)/(V2 + Ω2) ! 1, they
have a simple form

(11)

(12)

where ε = (ε1 + ε2)/2, γ = (γ1 + γ2)/2, and F(V, Ω) =
(2ω2 – V2/2)(Ω2 + V 2/2).

Expressions (7)–(12) determine a solution to set
(2)–(6) under the condition ω @ |Ej(V, Ω) – ωk| (j = 1–3).
In this case, additional level E1 arises in the system. If
we just formally set Ω = 0 in equations (7)–(11) and
replace V 2/2  V in (11)–(12), then the expressions
for the corresponding amplitudes will coincide with
those governing the temporal dynamics in the constant
magnetic field.

After transition to the time representation for state
amplitudes (7)–(10), the normalization condition can
be written in the following form:

(13)

Let us perform the summation over all energies of k
photons from the initial distributions for the case of a
broad line retaining unchanged the energies of emitted
photons. We find 

(14)

The time dependence of modules squared for the
calculated amplitudes characterizes the dynamics of
the corresponding states. It is presented in Fig. 2 for
several realistic values of parameters.

In conclusion, let us briefly discuss the obtained
results. Note first that the external radiation field and
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Fig. 2. Time dependences of moduli squared for amplitudes |B1(t)|2, |B2(t)|2, | (t)|2, and | (t)|2. ε1 = ε2 = ε = 1.44 × 1012Γ0,

γ1 = γ2 = γ = 2.2Γ0, v = 5Γ0, ωu1 = ωu2 = ωu , ωu – ε = 1 × 10–1Γ0; Ω = 0 (a, b) and 7Γ0 (c, d).
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the RF field simultaneously switched on because of not
only of a pushing apart of bare nuclear levels 1 and 2,
but also the creation of an additional level disappearing
in the limiting case of the constant field at Ω = 0. In
addition, expressions (11) and (12) demonstrate the
dependence of the features characterizing the arising
states on the RF field parameters. This result can be
used for the control and for providing the favorable
development of experimental situation. Note also that
the behavior of quantum-emission probabilities

| (t)|2 and | (t)|2 (Figs. 2b, 2d) strongly depends
on the photon energy.
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Abstract—A novel procedure of sample preparation for transmission electron microscopy of nanoparticles is
proposed yielding a monolayer of nanoparticles. The procedure offers the possibility of sorting nanoparticles
by size and studying the influence of external fields on their arrangement. This technology can also be applied
for the creation of ordered arrays of nanoparticles in ultrathin polymer films. © 2000 MAIK “Nauka/Interpe-
riodica”.
High-resolution transmission electron microscopy
(HRTEM) is the only technique for direct study of the
structure of nanoparticles and nanoobjects on an atomic
scale. Usually, ultradisperse materials for transmission
microscopy are prepared by deposition on an object net
(by sputtering or placing a drop of colloid solution).
With all its simplicity, this procedure has a serious
drawback, namely, the impossibility of obtaining a
monolayer of nanoparticles, which is required for
studying their structure. In this paper, we propose a pro-
cedure of sample preparation for the transmission elec-
tron microscopy of nanoparticles, which affords the
possibility of (1) forming a monolayer of nanoparticles;
(2) grading of nanoparticles by size; (3) studying the
influence of external electric and magnetic fields on the
arrangement of nanoparticles.

Magnetite (Fe3O4) nanoparticles were chosen for
this study. Two alternative methods of sample prepara-
tion were used. In the simpler of the two methods,
cracks in the [110] direction were produced in 300–
400 µm-thick standard GaAs substrates by a mechanic
indenter. Since cracking of gallium arsenide in this case
occurs along cleavage planes, the crack has perfectly
straight boundaries and its width smoothly decreases
from the mouth of the crack to its apex. Then, a drop of
suspension of the magnetite nanoparticles in solution of
polystyrene solution in toluene is placed in the crack.
Due to capillary forces, the solution containing nano-
particles fills the crack and after the drying of the sol-
vent, a polystyrene film with embedded magnetite par-
ticles forms inside the crack. The crack volume acts as
a “mould.” Since the width of the formed crack is com-
parable with the size of particles (hundreds and tens of
angstroms) [1], the particles are forced to arrange as a
monolayer. Furthermore, because of the gradual
decrease of the crack width, down to several angstroms
near the apex, only the smallest particles can be accom-
modated close to the apex. Therefore, size grading of
the particles along the crack takes place. It should be
1063-7842/00/4506- $20.00 © 0783
noted that the time of solvent evaporation is long
because of the small area of contact with air; therefore,
it is possible to influence particle distribution along the
crack by application of external electric or magnetic
fields. After solvent evaporation, the particles are found
rigidly fixed in a polymer matrix and retain their mutual
arrangement after removal of the field. In order to make
the polymer film with embedded nanoparticles suitable
for microscopy, the GaAs wafer was cleaved carefully
along the crack and the film lifted off by its edges. The
lifting-off was carried out in a liquid (water or alcohol),
whence it was picked up by an object net and dried.

In the HRTEM images (Fig. 1), separate crystalline
particles with lateral dimensions 40–200 Å and their
agglomerates are seen. The lattice stripes of these par-
ticles correspond to the cubic structure of magnetite.
Stripes corresponding to the {111} planes (the distance
between stripes is 4.8 Å), {200} (4.2 Å), and {220}
(2.9 Å) were observed.

A drawback of such an approach is the risk of dam-
aging the film during lift-off as well as a rather small
area of the portion of the film where its thickness is less
than 400 Å thick and transparent to an electron beam,
because cracks in thick GaAs wafers have small
enough width only in a small region near the apex.
Therefore, it is preferable to use as a “mould” cracks in
thin (<10 µm) epitaxial GaAs films in which thin, ide-
ally level crevices with sharp near-atomically-flat
boundaries can be created [1].

In the second case, epitaxial GaAs/AlAs structures
were used for sample preparation. On a GaAs substrate,
a thin (100 Å) AlAs layer was grown and, atop of it, a
GaAs layer of a thickness between 2–10 µm in different
structures. The GaAs film was undercut and lifted off
the substrate by a selective HF : H2O etchant, which
removed AlAs (the ratio of etching rates of AlAs and
GaAs is more than 109 [2]). Then, a rectangular sample
was cleaved out of the film (instead of cleaving photo-
lithography can be used). A narrow crack was made in
2000 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Electron microscopy image (dark field) of magnetite nanoparticles in a polymer film and (b) a part of an image in  a (at
higher magnification). A separate particle with lattice stripes associated with the {111} planes is seen.
the sample with a mechanical indenter parallel to its
long side. Load on the indenter was gradually increased
until the crack apex reached the center of the sample.
Then, the sample with the produced crack was
cemented by a conducting glue to a standard copper
ring in such a way that the crack was above the ring
opening. The sample plane was perpendicular to the
ring plane while the direction of the crack was parallel
to it. To manipulate the sample, we used a waxed
needle.
For filling of the crack capillary, an iron oxide col-
loid solution in toluene with an addition of polystyrene
was used. After toluene evaporation, the sample was
immersed in an H3PO4 : H2O2 : H2O (3 : 1 : 50) etch for
one and a half minutes. On both sides of the GaAs, film
layers of a thickness of about 0.1 µm were etched away
to partially expose the polystyrene film and, thereby,
render it suitable for examination in a transmission
electron microscope (Fig. 2). Immediately after etch-
ing, the sample was rinsed in isopropanol and then
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
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dried in air. Water should not be used for rinsing since
it has a rather high surface tension and while drying, it
would break exposed edges of the thin polymer film.

In HRTEM experiments with such samples, we
examined polymer films with embedded crystalline
particles transparent to an electron beam. The film was
jutting out of the GaAs wafer on both sides and had no
damage over several hundreds of micrometers. Com-
pared with the first case, the particle size distribution
was narrower (70–100 Å), more uniform over the film
area, without large agglomerates and with the particles
arranged as a monolayer, at nearly equal distances from
each other (about 200 Å). The thinnest part of the film
was free of particles, which can be explained by insuf-
ficient crack width for particle penetration (the crack
acts as a filter). It should be noted that image registra-
tion was hampered by drift and vibration of samples
due to charge accumulation. This problem can be over-
come using heavily doped GaAs films, which provide
better electric contact between the polymer film and the
copper ring.

The proposed procedure yields monolayer arrays of
nanoparticles. Such objects are of interest not only for
structural studies, but for transport studies as well.
Nanoparticles are found sandwiched between crack
sides in a semiconductor monocrystal, which can act as
closely spaced electrodes if doped GaAs films are used.
An influence of external electric and magnetic fields
can further modify the properties of nanoparticle array
due to formation of ordered structures. As an example,
let us consider the magnetite Fe3O4 particles. At sizes
less than 100 Å, they exhibit superparamagnetic prop-
erties. Alignment of their own magnetic moments fol-
lows the direction of the externally applied magnetic
field. By placing a thin film with embedded superpara-
magnetic particles into a strong-enough magnetic field,
two-dimensional arrays of identically oriented mag-
netic dipoles can be created. If the particles have a pos-
sibility to move in the film plane (before evaporation of
the solvent from the crack), the interaction of magnetic
dipoles can result in ordered arrangement of particles in
the film, which will be retained after removal of the
field, since the particles will be rigidly fixed in the poly-
mer.

To conclude, a novel procedure of sample prepara-
tion for transmission electron microscopy of nanoparti-
cles is proposed by which, in contrast to the standard
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
technique, it is possible to obtain a monolayer of parti-
cles, as demonstrated in the example of iron oxide par-
ticles, as well as to grade them by size (filtration) and to
study the influence of external fields on their arrange-
ment. The procedure is suitable for particles from hun-
dreds of angstroms down to several angstroms in size.
The technological solutions used can be applied for the
fabrication of structures containing ordered arrays of
nanoparticles in a polymer matrix.
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(a)

(b)

Fig. 2. Scheme of the sample preparation procedure for
transmission electron microscopy: (a) the narrow crack cre-
ates a “mould” in the GaAs film, which is then filled with a
colloid solution of nanoparticles with added polymer;
(b) chemical etch of GaAs partially exposes the polymer
film with nanoparticles making it suitable for electron beam
microscopy (arrows show beam direction).
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Abstract—Under certain (not just any) conditions, omnidirectional pressure applied to the Ti–Ni alloy is
shown to change its superelastic properties, similar to the application of deforming force. © 2000 MAIK
“Nauka/Interperiodica”.
It is known that the application of omnidirectional
pressure to materials prone to thermoelastic martensite
transformation may cause various deformational and
force phenomena, such as transformation plasticity,
shape-memory effect, reversible shape-memory effect
on temperature cycling, and the generation and relax-
ation of reactive stresses [1–3]. However, the influence
of pressure on superelasticity yet remains a mystery.
Investigation into this effect appears to be topical since
it would provide a better insight into martensite inelas-
ticity in general and superelasticity in particular. In this
work, we studied the effect of pressure on the super-
elasticity of the Ti–Ni alloy prone to thermoelastic mar-
tensite transformation.

Tests were performed in a high-pressure chamber
(Fig. 1). Cantilevered specimen 1 15 mm long and
1.8 mm in diameter is loaded by steel spring [2]. The
displacement of the upper end of the spring was con-
trolled by screw 3 with a pitch of 0.5 mm, and that of
the lower end (or the bend of the free end of specimen 1)
was determined with slide-wire rheostat 4, connected
to digital ohmmeter 5. From these two displacements,
one can easily calculate the force experienced by spec-
imen 1 from spring 2. Our test chamber admits loading
to 100 N. Unloading can be accomplished irrespective
of the operating pressure, which ranged from atmo-
spheric to 240 MPa. Machine oil was used as a working
liquid. Absolute errors in measuring the force F and the
bend f of the free end of the specimen with the spring–
rheostat system were found to be 2 N and 0.06 mm,
respectively. The temperature inside the chamber was
varied from room temperature to 360 K by heating the
body of the chamber with heater 6.

All experiments were performed in the temperature
interval 335–337 K. The desired temperature was set
after 3-h heating. Due to the high thermal inertia of the
chamber (the weight of the liquid-filled chamber is
80 kg), the temperature was maintained within 1 K
throughout the experiment.
1063-7842/00/4506- $20.00 © 20786
Test objects were specimens of the
Ti44.2Ni54.4Co0.52Cr0.43 alloy. As-prepared specimens
were annealed at 750 K for 40 min and cooled first to
290 K in the furnace and then to liquid-nitrogen tem-
perature. The same procedure was applied after each
run.

Thermomechanic atmospheric-pressure torsion
tests showed that cooling and heating under a constant
shear stress of 60 MPa lead to the transformation plas-
ticity effect and the shape memory effect with the par-
ticipation of an intermediate phase (possibly, R-phase
[4]). The characteristic temperatures are Ms = 345 K,
Mf = 265 K, As = 303 K, and Af = 416 K.

The experiments were subdivided into three groups.
In the first group, we studied the effect of omnidirec-
tional pressure on the pseudoelastic properties of the
Ti–Ni alloy. After the specimen had been placed in the
high-pressure chamber and the temperature had been
brought to 335–337 K under atmospheric pressure, we
applied to it a force P and recorded the deformation. At
a certain value of P, the pressure p was raised to
200 MPa at a rate of 6 MPa/min. As the pressure grew,
the deformation was built up in the direction of the

p Ω1

2

3

4

5

6

Fig. 1. High-pressure chamber: (1) specimen; (2) elastic
spring; (3) measuring screw; (4) slide-wire rheostat;
(5) ohmmeter; and (6) furnace.
000 MAIK “Nauka/Interperiodica”
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applied force, so that the bend f increased by 0.2–
0.4 mm. At p = 200 MPa, we loaded the specimen again
and recorded deformation buildup.

At  f = 4–7 mm, the specimen was unloaded to some
value of P and the pressure was decreased to atmo-
spheric. In response to the pressure drop, f additionally
went down by 0.2–0.4 mm in proportion to p. With fur-
ther unloading, the specimen behaved in a usual man-
ner for these conditions. A typical curve is shown in
Fig. 2, where portions AB, BC, CD, DE, EF, and FM
correspond to different stages of the experiment. As fol-
lows from this figure, a pressure increase at the loading
stage results in a deformation buildup (portion BC) and
a pressure drop at the unloading stage leads to addi-
tional deformation recovery (portion EF). It is notewor-
thy that these baromechanic effects are absent if the
pressure is varied at the elastic portions of the f (P)
curve. This holds for both load increase and decrease.

In the second group of experiments, the specimen
was placed in the chamber at 290 K, the pressure was
raised to 200 MPa, the specimen was heated to 335–
337 K and loaded by some value of P, and then the pres-
sure was decreased to atmospheric. The pressure drop
was found to be accompanied by severe material disor-
dering (the deformation force became 5 to 15 N, or 15
to 50%, smaller). The value of f increased by 0.5–
1.0 mm in proportion to the pressure variation. Further
atmospheric-pressure loading deformed the specimen.
This is illustrated in Fig. 3a, where portions AB, BC,
and CD describe the different behavior of the Ti–Ni
alloy under loading.

In subsequent experiments from the second group,
the specimen was deformed by f = 5 mm under atmo-
spheric pressure at 337 K, then it was unloaded to some
value of P, and the pressure was raised to 200 MPa
(Fig. 3b). In this case, the pressure rise causes deforma-
tion buildup, and f linearly increases with pressure by
0.2–0.4 mm (portion BC). In other words, in this case,
the pressure increase reverses the sign of deformation
relative to that before the pressure conditions were
changed (note that the pressure rise at the elastic stage
of unloading does not deform the material). The further
decrease in P under a pressure of 200 MPa leads to
usual pseudoelastic recovery.

The obtained results suggest that pressure cycling at
the loading stage deforms the specimen at each cycle.
This supposition was verified with the third group of
experiments. The specimen was inelastically deformed
at 336 K, and at some P, the pressure was raised to
200 MPa and then decreased to atmospheric. At each
pressure cycle, the deformation builds up the deforma-
tion (Fig. 4a). Portions BC and CD refer to the pressure
increase and decrease, respectively. Thus, our supposi-
tion proved to be valid.

Our data indicate that both an increase and a
decrease in pressure cause material deformation at both
the loading and unloading stages. However, the behav-
ior of the material depends on which stage the pressure
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
changes and the sign of change of pressure. The reason
for such an unusual effect has not yet been fully under-
stood. It seems likely that a pressure change induces
various transformations depending on its sign. In the
alloy under study, the direct and reverse martensite
transformations involve the intermediate R-phase. If
the B2  R and R  B19' transformations have the
opposite signs, a change in pressure in one direction
may induce one phase transition, while a change in the
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M

Fig. 2. Deforming force vs. bend under constant atmo-
spheric pressure (portions AB and FM), for an increase in
the pressure from atmospheric to 200 MPa (portion BC),
under the constant pressure 200 MPa (portion CDE), and for
a decrease in pressure from 200 MPa to atmospheric (por-
tion EF).
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Fig. 3. P(f) curves under different pressure conditions.
(a) AB, constant pressure 200 MPa; BC, pressure drops from
200 MPa to atmospheric; and CD, constant atmospheric
pressure. (b) AB, constant atmospheric pressure; BC, pres-
sure rises from atmospheric to 200 MPa; and CD, constant
pressure 200 MPa.
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other direction may cause the other transition (accord-
ing to the Clausius–Clapeyron equation). A comparison
of Figs. 3a and 4b favors the afore-said. In the latter
case, the decrease in pressure immediately after its rise
from atmospheric to 200 MPa initiates deformation
only at 100 MPa, while the f(P) curve in Fig. 3a is
almost linear.

The reason for the softening of the material due to
pressure increase at the unloading stage (Fig. 3b) also
remains unclear. If, at the loading stage, a pressure
decrease initiates some phase transition (B2  R or
R  B19'), as a result of which the material consider-
ably softens (Fig. 3a), one might expect that, at the
unloading stage, a pressure rise will cause reverse tran-
sition and, accordingly, the hardening of the alloy.
Instead, the material softens, as demonstrated in the
experiments. This suggests that the effect of pressure
on the superelastic behavior of the material is not fully
identical to that of a deforming force. This point calls
for further investigation.

P, N

20

10

0

0 1 2 3 4 5
f, mm

(a)

(b)f, mm

2.0

1.4

100 200
p, MPa

A

B
C

D

D

CB

Fig. 4. (a) Deforming force vs. bend under different pres-
sure conditions and (b) bend vs. pressure. AB and DE, con-
stant atmospheric pressure; BC, pressure rises from atmo-
spheric to 200 MPa; and CD, pressure drops from 200 MPa
to atmospheric.

E

Our experimental results can be summarized as fol-
lows.

(1) In the Ti–Ni alloy studied in this work, an
increase in pressure at the stage of loading results in a
deformation buildup. At the stage of unloading, a
decrease in pressure causes pseudoelastic recovery. In
these cases, the effect of pressure on the superelastic
properties of the material is identical to that of deform-
ing force.

(2) A decrease in pressure at the stage of pseu-
doelastic deformation buildup and a rise in pressure at
the stage of pseudoelastic recovery lead to a softening
of the material.

(3) Our findings indicate that the effect of omnidi-
rectional pressure on the superelasticity of the Ti–Ni
alloy is not fully identical to that of a deforming force.
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Abstract—The case of linear dispersion is investigated and a soliton solution is constructed for the problem
of wave propagation in a system consisting of a liquid-filled elastic cylindrical shell. The dependence of
the solution on the parameter characterizing the mutual influence of the shell and the liquid inside it is studied.
© 2000 MAIK “Nauka/Interperiodica”.
BASIC EQUATIONS

This paper considers the problem of wave propaga-
tion in a physical system consisting of an infinitely long
circular cylindrical shell filled with an ideal incom-
pressible liquid. The nonlinear equations that describe
the dynamics of a membrane cylindrical shell in the
coordinate system (r, z, ϕ) have the following dimen-
sionless form [1]

(1)

where γ2 = Rρ0/hρ; R is the shell radius; h is the shell
thickness; ρ is the density of the shell material; ν is
Poisson’s ratio; ρ0 is the density of liquid; u, v, and w,
are the vector components of the shell surface displace-
ment; and p is the pressure at the shell surface.

The Euler equations [2] have the form

(2)

Here, p is the pressure in liquid and ϕ(r, z, t) is the
velocity potential: u = gradϕ. The velocity potential
satisfies the continuity equation
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At the shell surface (r = 1), the normal component
of the velocity of liquid is related to the transverse dis-
placement by the no-leak condition

(4)

We assume that, at infinity z  +∞, the shell is not
moving, and the motion of liquid is unperturbed: ur =
uz = 0, p = 0. The system of equations (1)–(4) forms a
contact problem of hydroelasticity. This problem con-
tains the dimensionless parameter γ characterizing the
degree of the mutual influence of the shell and the liq-
uid. We will call this parameter the coupling parameter
of the problem.

LINEAR DISPERSION

Below, we construct the solutions to the contact
problem (1)–(4) in the form of low-amplitude nonlinear
waves with an infinite period. The leading term of the
expansion of the phase velocity of such waves in pow-
ers of the small parameter (amplitude) coincides with
the phase velocity of linear waves. To determine the lat-
ter quantity, we construct a dispersion relation that cor-
responds to the linearized problem.

We assume that the dependence of all functions on
the z coordinate and the time t has the form exp[i(κz –
ωt)], where κ is the wave number and ω is the cyclic
frequency of the oscillations. The phase velocity of the
wave is determined by the expression c = ω/κ.

From the condition of the existence of nontrivial
solutions to the linearized system (1)–(4), we derive the
dispersion relation

(5)

ur 1 z t, ,( ) ∂ϕ
∂r
------=

r 1=

∂w
∂t
-------.=

c
4 κ 2 γ2δ+( ) c

2
1 κ 2 γ2δ+ +( )– 1 ν2

–( )+ 0,=

δ κ( ) κ I0 κ( )/I1 κ( ).=
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Here, I0(κ) and I1(κ) are the Bessel functions of the first

kind. Equation (5) has two positive roots  and .
Thus, for every wave number, there exist two waves
propagating with the phase velocities c1 and c2 in the
positive or negative direction.

By formally setting γ = 0 in equation (5), we obtain
the dispersion relation corresponding to a “dry” shell.
If κ ! 1, i.e., only long-wave oscillations are consid-
ered, the roots of this equation take the form

Let us study the dependence of the phase velocities
c1 and c2 on the coupling parameter of the problem γ
with allowance for the fact that δ(κ) = O(1) for 0 ≤ κ <
∞. The case γ ! 1 at κ = O(1) reduces to the study of
the dispersion relation for the “dry” shell. When κ 

0, equation (5) singularly degenerates. The root  is
determined by the same expression as above, whereas

the root  depends on the relation between the param-
eters γ and κ.

Now, we consider the case γ  ∞. We seek the
solutions to equation (5) in the form of expansions in
inverse powers of γ2. Then, we obtain

These representations are uniform in κ.

For the case of the propagation of long (κ ! 1)
waves, we assume that γ = O(1) and seek the phase
velocity in the form of a series expansion in powers of
κ2. Then, within O(κ2), the phase velocity is determined
from the equation

The discriminant of this equation is positive, and the
equation has two positive roots, which satisfy the ine-

qualities 0 ≤  ≤ 1 – ν2 and 1 ≤ .

WAVES WITH AN INFINITE PERIOD

We consider the propagation of long waves with low
amplitude. To construct the leading term of the asymp-
totic expansion of the solution, we use the formal small
parameter ε and introduce new variables ξ = ε(z – ct)
and η = ε3t. We seek the solution to the problem in the
form

c1
2

c2
2

c1
2

1 ν2
– O κ 2( ),+=

c2
2

1/κ 2
O 1( ).+=

c1
2

c2
2

c1
2 γ 2–

1 ν2
–( ) 1/δ γ 2– κ 2 ν2

+( )/δ2
– O γ 4–

( )+( ),=

c2
2

1 γ 2– ν2
/δ O γ 4–( ).+ +=

2γ2
c

4
1 2γ2

–( )c
2

– 1 ν2
–( )+ 0.=

c1
2

c2
2

w ξ η,( ) ε2
w

0( ) ξ η,( ) ε2
w

1( ) ξ η,( ) O ε4
( )+ +[ ] ,=
(6)

Note that, to obtain the first approximation to the
solution, we have to consider the expansion of the
velocity potential up to the term ϕ(2) inclusive. We sub-
stitute expansions (6) in equations (1)–(4) and set the
coefficients multiplying identical powers of ε equal to
zero. Then, the continuity equation (3) yields

(7)

Here, we assume that ϕ(–1) = 0. System (7) can be easily
integrated. From the condition of the boundedness of
the velocity potential at r = 0, it immediately follows
that the initial approximation does not depend on the
radial coordinate; the following approximations are
polynomials of different degrees in r:

(8)

Here, (ξ, η), (ξ, η), and (ξ, η) are the func-
tions that result from the integration with respect to r
and are to be determined using the contact condition.
The substitution of expressions (6) into the contact con-
dition (4) yields

(9)

Solutions (8) allow us to write the expressions

(10)
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p
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p
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r ξ η, ,( )+[=

+ ε4ϕ 2( )
r ξ η, ,( ) O ε6( ) ] .+

1
r
---

r∂
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r
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Finally, from the comparison of expressions (9) and
(10), we obtain

(11)

From the Euler equations (2), we derive

(12)

(13)

Using the first equation from (11) and the second
equation from (12), which in particular is valid at the
surface r = 1, we obtain

(14)

Taking into account the conditions at infinity, by vir-
tue of equations (12), we obtain

We use this expression to eliminate ϕ(0) from the
right-hand member of the second equation (13), which
we consider at r = 1. We also eliminate the function ϕ(1)

by using expressions (8) and (11). Then, we obtain an
expression for the tangential derivative of the pressure
at the shell surface:

(15)

We substitute expansions (6) into shell equations
(1), which in the initial approximation yield the expres-
sions

(16)

With allowance for relation (14), equations (16)
reduce to a system of equations that is homogeneous in
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the derivatives of the functions w(0) and u(0):

The condition of the existence of nontrivial solu-
tions to this system yields the equation for the velocity
c of the coordinate system (ξ, η):

(17)

which coincides with the equation that determines the
initial approximation to the phase velocity of long
waves in the case of linear dispersion.

The study of the next approximation yields

(18)

With allowance for the condition at infinity, we have

Differentiating the second equilibrium equation
(18), using expression (15), and eliminating the longi-

tudinal forces  and , we obtain

This inhomogeneous system of equations, which
are linear in the derivatives of the functions w(1) and u(1),
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has a zero determinant by virtue of equation (17). The
requirement for this system of equations to have a solu-
tion leads to the Korteweg–de Vries equation

(19)

The solution to equation (19) has the form of a sin-
gle soliton of amplitude U [3, 4]

(20)

The coefficients a and b are determined by the for-
mulas

The velocity c of the moving coordinate system is
determined from equation (17). Using the linearized
equations of a membrane shell, we obtain the expres-
sion for the coefficient a involved in the Korteweg–
de Vries equation:

The coefficient b will be determined by the same
expression as above.

SOLITON SOLUTION

Using expressions (20) and going back to the coor-
dinates z, t, we write the solution in the form

(21)

where

The wave velocity v is a sum of the velocity of lin-
ear waves c and the correction depending on the wave
amplitude: v = c + V and V = Wa/3.

From equation (17), it follows that, in the presence
of liquid inside the shell, for a given amplitude, we
always have two solitons that differ in their propagation
velocities: a “slow” soliton and a “fast” one. In this
respect, the situation is analogous to that observed in
the case of linear waves where, for a given κ, two waves
with the phase velocities c1 and c2 were obtained. Since
the signs of the coefficients a and b are identical, both
solitons have the form of a shell bulging whose propa-
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gation velocity is somewhat higher than the velocity of
linear waves.

The coefficients a and b, which determine the con-
tributions of each of these effects, essentially depend on
the single parameter γ, which determines the type of the
interaction between the shell and the liquid inside it.
The case γ ! 1 corresponds to a light liquid or gas; for
a heavy liquid and a thin shell, we have γ @ 1. Let us
consider the behavior of the soliton solution obtained
above in these limiting cases.

Assuming that, in the problem under study, γ = 0 and
considering the solution corresponding to the “slow”
soliton, we arrive at the case of a shell without liquid.
Then, c2 = 1 – ν2, and we obtain

Since κ is real, we have W < 0, and the wave has the
form of an impression of depth W with the characteris-
tic length 1/κ and the propagation velocity also exceed-
ing the phase velocity of linear waves.

Using the linear relations for the slow soliton, we
obtain a  0 and b = O(1). In this case, the effect of
dispersion predominates, which leads to “smearing” of
the wave profile.

Now, let γ  ∞. Then, for the solution correspond-
ing to the root c1 of the characteristic equation (17), we
have

where the coefficient a0 takes different values for the
shells described by linear and nonlinear relations:

Expressions (21) show that, in the case under study,
the pressure p at the shell surface is of a higher order of
smallness than the displacements u and w: the pressure
tends to zero as O(1/γ2). The velocity v of the soliton is
also a quantity of the order of O(1/γ2).

As for the behavior of the “fast” soliton in the limit-
ing cases of interest, its study with the help of the
expansions obtained above is impossible. At γ  0,
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equation (17) singularly degenerates, and, for the initial
approximation to the wave velocity, we obtain
c2  ∞.

In the case γ  ∞, for the second root of the dis-
persion relation, we obtain c2 = 1 + O(1/γ2), and for-
mula (21) for the longitudinal displacement yields
U  ∞. This case of the degeneracy of the coupling
problem may also be called a singular one in view of
the analogy with the structure of the expansions of the
solutions to the boundary-value problems for differen-
tial equations with boundary layers.
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Abstract—The influence of the concentration dependence of the diffusion coefficient on the stability of a
spherical particle growing from a supersaturated solution was studied with the Mullins–Sekerka approximation.
The critical radius of stability was found, and it was shown that its value may increase by a factor of more than
1.5 if the concentration dependence of the diffusion coefficient is taken into consideration. © 2000 MAIK
“Nauka/Interperiodica”.
Loss of stability and structure formation during
crystallization are basic theoretical and practical issues
[1, 2]. Their extensive investigation dates back to the
pioneering work of Mullins and Sekerka [3], devoted to
the growth of a spherical particle from supersaturated
solution. The approach suggested in [3] has found wide
application. Reports are available that concern growth
stability [1, 4], the anisotropy of surface tension and
kinetic coefficient of crystallization [5], the use of
small quantities of second or higher orders in stability
analysis [6], etc. All of them ignore the dependence of
diffusion coefficient D on the concentration of super-
saturated solution C: D is assumed to be constant. How-
ever, D is a complex function of C, as follows from
physicochemical studies of salt solutions. This depen-
dence shows up most vividly in the metastable region
(for example, D(C) falls down to zero at the point sep-
arating the metastable and labile regions) [7–9]. Since
the major reason for loss of growth stability is diffusion
field nonuniformity [3], stability analysis with regard
for the concentration dependence of the diffusion coef-
ficient seems to be burning.

In this work, the growth of a spherical particle from
supersaturated solution is analyzed. The problem is
stated as in [3], but D is assumed to be C-dependent.
Since this relationship is generally unknown in an
explicit form, we, following [9], take that

(1)

where C∞ is the concentration of a supersaturated solu-
tion far away from the crystal surface and D∞ is the dif-
fusion coefficient at C = C∞.

D C( ) D∞ 1 A C C∞–( )+( );=

A
1

D∞
-------

∂D C( )
∂C

----------------
C C∞=

,=
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In view of (1), the problem is mathematically for-
mulated as

(2)

where Γ is the capillary constant [3], CS is the concen-
tration at the surface, and K is the surface curvature.

Solving equation (2), we obtain the solution concen-
tration at a distance r from the center of a ball:

(3)

where G1 = A(CR – C∞) + 1, CR = C0(1 = 2Γ/R) is the
concentration at the crystal (particle) surface, C0 is the
equilibrium concentration at the straight-line boundary,
and R is the radius of a growing ball.

If A  0, C = C∞ + (CR – C∞)R/r, which is consis-
tent with results in [3]. Figure 1 shows the concentra-
tion field of a spherical crystal. At A > (<) 0, the near-
surface concentration varies sharper (smoother) than at
A = 0. Hence, we can suppose that the critical stability
radius of the crystal for negative A’s (usually, A < 0 [7–
9]) must increase. Let us verify this supposition and
evaluate the stability radius.

Near a weakly distorted sphere (perturbations as
spherical harmonics Ylm(θ, ϕ) are used [3]), the concen-
tration is distributed as

(4)
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where l and δ are respectively the number and ampli-
tude of a spherical harmonic (δ(t)/R ! 1).

Following [3], we assume that a plane tangent to the
particle surface deviates from that tangent to the initial
sphere infinitesimally; then, the growth rate of a parti-
cle is

(5)

× Rl 1–

rl 1+
----------δYlm C∞,+

V
dR
dt
-------

dδ
dt
------Ylm+

D∞–
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2AR
--------------- 1

l 1–
R
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
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= =
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2AC0Γ l 2+( )
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 2C0ΓG1L l 1–( )
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 ,+

39
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0
0.25
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Fig. 1. Concentration of a solution C near a growing ball-
like crystal vs. relative distance r/R from the center of the
ball for various A’s. C0 = 0.36 g/cm3, C∞ = 0.40 g/cm3, Γ =

10–7 cm, and R = 10–4 cm.
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where Csol is the density of the solid phase and L = (l +
1)(l + 2)/2.

Using (5), we obtain the rate of increase of the
spherical harmonic amplitude:

(6)

Equating (6) to zero yields the critical radius of sta-
bility. The resulting equation is nonlinear; however,
only one root determined for A < 2/3(C∞ – C0)–1is
meaningful (since the critical radius of stability must
exceed the size of a critical nucleus R* = 2C0Γ/(C∞ –
C0):
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Rcrit RMSK ,=

–10 –8 –6 –4 –2 0 2

1.5

1.0

0.5

l = 10

l = 4

l = 2

Rcrit /RMS

A(C∞ – C0)

Fig. 2. Rcrit/RMS ratio (RMS is the critical radius obtained in
[3]) vs. dimensional parameter A(C∞ – C0) for l = 2, 4,
and 10.
(7)K
1 G2 3 l 1–( ) l2 l 2+( )+( )– 1 G2l2 l 2+( )–( )2

G2 l 2+( ) l2 3+( )/ 1 L+( )++
2 3G2 1 L+( ) l 1–( )–

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=
where G2 = A(C∞ – C0)/(1 + L)(l – 1) and RMS = R*(1 +
L) is the critical radius found in [3].

Depending on whether the radius of a growing ball
is larger or smaller than Rcrit, the perturbing harmonic l
increases or decreases. The variation of the critical
radius with the dimensionless parameter A(C∞ – C0) is
depicted in Fig. 2. It is seen that taking into consider-
ation the concentration dependence of the diffusion
coefficient may increase the critical radius by a factor
of more than 1.5 in relation to RMS. Note that the
Rcrit/RMS ratio depends on the number of a perturbing
harmonic only slightly and rapidly attains its steady-
state value.
                     

If A(C∞ – C0) is small, expression (7) can be rear-
ranged to the more convenient form

(8)

Thus, we for the first time performed a stability
analysis including the concentration dependence of the
diffusion coefficient and found the analytical expres-
sion for the critical radius of stability for a growing ball.
With allowance for the correction for this dependence,
the critical radius of stability may substantially
increase.

Rcrit R 1 A C∞ C0–( ) l2 3+( ) l 2+( )L

4 l 1–( ) 1 L+( )2
--------------------------------------–

 
 
 

.=
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Abstract—Results are presented from optical measurements of the plasma of a transverse volume discharge in
He(Ar)/Xe/CCl4(HCl) mixtures (at pressures of P = 10–100 kPa) that are used in excimer lamps emitting the
XeCl 308-nm band. Emission spectra in different stages of the formation and degradation of the active medium,
as well as temporal and resource characteristics of the emitter, are studied. The main products of decomposition
of CCl4 molecules that are detected by the plasma emission are C* atoms and  and CN* radicals. The oper-
ating resource of the XeCl emitter is found to be (3–5) × 104 pulses and depends strongly on the pressure and
composition of the active medium. The duration of the emission pulse at a wavelength of λ = 308 nm is 200–
300 ns. © 2000 MAIK “Nauka/Interperiodica”.

C2
*

INTRODUCTION

Powerful electric-discharge sources of spontaneous
radiation in the spectral region ∆λ = 193–353 nm due
to the B–X transitions of inert-gas monohalogenides are
widely used in microelectronics, photochemistry, biol-
ogy, and medicine [1]. This fact promotes their further
improvement, as well as the development of a new
method for diagnosing the processes occurring in the
plasma of such sources. Based on a transverse volume
discharge (TVD), a series of excimer lamps (ELs) have
been designed. In active media of these lamps, HCl
molecules are used as the carriers of chlorine atoms
[2, 3]. Experimental studies of XeCl (B–X) laser emit-
ters have shown that they are also highly efficient when
such complex and low-aggressive carriers of chlorine
atoms as CCl4 [4] or BCl3 [5] are used. Under certain
conditions, the output characteristics of these emitters
appear to be better than those of electric-discharge
XeCl emitters based on He(Ne)/Xe/HCl mixtures. In
[6], this fact was attributed to more efficient production
of Cl– ions in a BCl3 plasma as compared to HCl-con-
taining plasmas. The dissociative-attachment (with
production of Cl– ions) cross section of CCl4 mole-
cules, as well as BCl3 molecules, is as high as 1.3 ×
10−14 cm2 at electron energies close to zero [7]. This
property can be used in medium-pressure ELs. The
destruction of CCl4 molecules in TVD-based ELs at
working-gas pressures of 10–100 kPa has not been
studied.

In this paper, we present the results of investigations
of the plasma of a TVD in He(Ar)/Xe/CCl4(HCl) mix-
tures, which can be used in medium-pressure ELs. The
nonsteady spectroscopy with nanosecond resolution is
applied to study the destruction of CCl4 molecules in a
TVD plasma.
1063-7842/00/4506- $20.00 © 20797
EXPERIMENTAL CONDITIONS

In experiments, we used a TVD-based excimer
emitter with spark preionization. The volume of the
active medium was 18 × 2.2 × (0.5–1.0) cm3, the inter-
electrode distance being 2.2 cm. The capacitance of the
main storage capacitor of the double-loop LC circuit of
TVD ignition system was 30 nF, and that of the pulse
sharper was 9.4 nF. The experimental conditions were
analogous to those described in [8, 9], where the multi-
mode regime of an EL operation was studied. The EL
operated with the system of XeF 353-nm, XeCl
308-nm, KrF 249-nm, and KrCl 222-nm bands. At rep-
etition rates of f ≤ 5 Hz, the experiments were carried
out in a stationary working gas. At higher repetition
rates (5 ≤ f ≤ 40 Hz), at which the resource characteris-
tics of the excimer emitter were studied, the experi-
ments were carried out with the use of a module for
transverse electrical circulation of the working gas; the
parameters of the module are described in [10].

SPECTRAL AND TEMPORAL 
CHARACTERISTICS OF EMISSION

In the initial stage of a repetitive TVD in the
He/Xe/CCl4 = 98/2.8/0.2-kPa mixture at voltages of
U = 15–20 kV, the discharge was contracted and the
main components of the emission spectrum were the
XeCl (B, C, D–X) bands; HeI, XeI, and XeII lines; CI
(2p–3s) 247.9-nm line; and CN (B–X) radical band.
After n ≥ 5 × 103 TVD pulses, the spectrum contained
only the XeI (6s–7p) 467.1-nm line and CN (B–X) band
with the edge at λ = 388.3 nm and the intensity of the
XeCl 308-nm band increased by a factor of about 50.
This means that, during 5 × 103 pulses, the CCl4 mole-
cules transform into other compounds that allow a uni-
form TVD to exist. In order to use such a TVD in an EL
000 MAIK “Nauka/Interperiodica”
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at moderate voltages of U ≤ 20 kV, the working-gas
pressure was decreased to 20–30 kPa. At the carbon-
tetrachloride concentrations of [CCl4] ≤ 120 Pa, the
TVD was highly uniform from the very beginning. The
emission spectrum of the TVD plasma is shown in
Fig. 1. For fresh-prepared mixtures, in the visible part
of the spectrum, the Swan bands with the edges at λ =
468.0 nm (for the C2 (A–X) (6, 5) band) and λ =
516.5 nm (for the C2 (A–X) (0, 0) band) were most pro-
nounced. This is related to the nonequilibrium popula-
tion of vibrational states of the C2 molecule. Such a
spectrum corresponding to A–X transitions of C2 was
also observed earlier in a transversal barrier discharge
in Ar(Kr)/CO mixtures [11], as well as in steady-state
and pulsed (with τ = 5–12 ms) longitudinal discharges
in a He/CO mixture [12]. The resource of the Swan-
band emission is ≤5 × 103 pulses, and the presence of

 emission indicates that the CCl4 molecules trans-
forms into other chlorine-containing molecules, which
is accompanied by the deposition of solid carbon
(soot) on the TVD electrodes. This deposition may
contain such carbon compounds as C60 fullerene. After
n ≥ 104 pulses, in the visible part of the spectrum, there
were only the most intense ArI, XeI, XeII, and ClI
lines, which are characteristic of a XeCl plasma of
emitters based on mixtures of inert gases with HCl
molecules [13].

The oscillograms of the TVD current and the plasma
emission are shown in Fig. 2. The maximum TVD cur-
rent in the pulse attained 10–15 kA, and the duration of

C2
*

200 240 280 320 360 480 520
λ, nm

236 nm XeCL (D–X)

308 nm XeCL (B–X)

XeCL (C–A)

C2 (A–X)

Fig. 1. Emission spectra of the plasma of a TVD in the
He/Xe/CCl4 = 28/4/0.12-kPa mixture at 1 ≤ n ≤ 5 × 103.
the first current peak was ≤50 ns. The emission due to
the D–X transition of XeCl was delayed by 15–20 ns
with respect to the emission at λ = 308 nm and was one
order of magnitude less intense. The emission from the
excited Xe* atoms in helium mixtures was character-
ized by a sharp leading edge, which coincided with the
leading edge of the TVD current pulse. In Ar-contain-
ing mixtures, the XeI (6s–7p) 467.1-nm emission was
delayed by 20 ns with respect to that from a TVD in a
He/Xe/CCl4 mixture. This is due to the energy transfer
from Ar(m) and Ar2(m) to Xe atoms [14]. The spectral
lines of Ar+* and Xe+* ions were delayed and had flat-
ter leading edges of the emission pulses. This is associ-
ated with a multistage mechanism for the population of
the upper exited states of these ions with participation
of Ar(m) and Xe(m) and their positive ions in the
ground states [15]. The CI (2p–3s) 247.9-nm emission
was observed in the afterglow of a TVD and was related
to dissociation of CCl4 molecules, production of C
atoms, and further excitation of carbon by electron
impact. The oscillator strength for this CI line is rather
great (fik = 0.05 [16]), and the corresponding lower state
is metastable. This fact can be used to develop sources
of spontaneous and stimulated emission of UV radia-
tion at the CI (2p–3s) 247.9-nm line similar to hybrid
lasers based on Cu/HBr(HJ) mixtures [17]. Interest in
such an UV source is related to the fact that its wave-
length coincides with the amplification band of elec-
tric-discharge KrF amplifiers. In a He/Xe/CCl4 mixture
under atmospheric pressure, the duration of XeCl (B–
X) emission decreased to 100–150 ns and that of

0 200 400 t, ns

J, arb. units

1

2

3
4

5

67

Fig. 2. Oscillograms of (1) the TVD current and (2–7) inten-
sities of different components of plasma emission in the
Ar/Xe/CCl4 = 16/2/0.12-kPa mixture: (2) XeCl (B–X)
308 nm, (3) XeCl (D–X) 236 nm, (4) XeCl (C–A) 340 nm,
(5) ArI (4s–5p) 430.0 nm, (6) XeI (6s–7p) 467.1 nm, and
(7) CI (3p–3s) 247.9 nm.
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Xe (6s–7p) emission reduced to 300 ns. The duration of
CI (2p–3s) and CN (B–X) emission was ≤100 ns. The
C2 (A–X) emission, which appeared after the intensity
of CI 247.9-nm emission had reached its maximum,
had a duration of 400–500 ns. This is evidence of an
impact mechanism for the population of C2 (A, v) level
in a TVD plasma. Based on the data from [12], we can
conclude that, under the given conditions, the most

probable mechanism for the production of  mole-
cules is the reaction

C2X + C   + CX, (1)

where X represents Cl, F, or O.
In a medium with CF2Cl2 molecules, both C2Cl and

C2F molecules can be involved in reaction (1). A small
admixture of C2O was always present in any fluorine-
carbon-containing medium due to small additives of
air, because the residual pressure in the discharge
chamber was ≤5 Pa. The formation of C2X complexes
in the plasma proceeds through the interaction of CX
radicals with metastable carbon atoms as it occurs
when X is O [12].

RESOURCE CHARACTERISTICS

Figures 3 and 4 show the intensities of XeCl (B–X)
emission in inert-gas mixtures with different chlorine
carriers (CCl4, CF2Cl2, or HCl) as functions of the
number of discharge pulses. When helium was used as
a buffer gas, the n dependence of the intensity of the
308-nm band was closest to that of the power of a XeCl
laser based on a He/Xe/CCl4 mixture [4]. In media
enriched with CCl4 molecules, the emission resource
was relatively small. When argon was used as a buffer
gas, the intensity of XeCl emission as a function of n
reached its maximum somewhat faster (at n = 3 × 104).

C2
*

C2
*

0.4

0 5

J, arb. units

n × 1039 13 17

1

2

3

4

0.8

Fig. 3. Intensities of XeCl (B–X) 308-nm emission band
from a TVD in different mixtures as functions of the dis-
charge number: (1) He/Ar/Xe/CCl4 = 23/8/0.12, (2)
He/Xe/CCl4 = 28/4/0.12, (3) He/Xe/CCl4 = 98/2.8/0.2, and
(4) Ar/Xe/CCl4 = 16/2/0.12 kPa.
TECHNICAL PHYSICS      Vol. 45      No. 6      2000
The emission resource in such media is more than 3 ×
104 pulses. For a TVD in an Ar/Xe/HCl mixture with
the optimum content of HCl, the efficiency of the pro-
duction of XeCl (B) molecules was less than in TVDs
in mixtures of inert gases with CCl4 molecules at nearly
the same ratio between the Ar and Xe concentrations,
though the resource of XeCl (B–X) emission exceeded
5 × 104 pulses. For all the HCl-based working media,
the maximum intensity of XeCl (B–X) emission was
attained in the initial stage of a repetitive discharge,
after preparing a fresh mixture. For a TVD in a
Ar/Xe/CF2Cl2 mixture, the intensity of emission as a
function of n had a maximum at 5 × 103 ≤ n ≤ 8 × 103;
however, the efficiency of the production of working
molecules was significant even at n = 1. The CCl4 mol-
ecules do not participate directly in the production of
XeCl* molecules in a TVD in He/Xe/CCl4 mixtures.
Measurements of IR absorption spectra of a similar
plasma medium [4] showed that the coefficient of
absorption of the main CCl4 bands decreased sharply at
n ≥ 6 × 103 and IR bands of HCl and CO molecules
appeared in the spectrum. Therefore, for n ≥ 6 × 103, it
is thought that the electric-discharge XeCl laser based
on a He/Xe/CCl4 mixture operates by a kinetic scheme
with the production of HCl molecules in the reaction

CCl4 + H2O + hν  2HCl + Cl2 + CO. (2)

Since, in the experiments, we used commercially
pure argon and high-purity helium, the fact that the
intensity of XeCl (B–X) emission reached the plateau
more rapidly in argon-containing mixtures can be due
to a relatively large content of water vapor in these mix-
tures, which, in this case, was a positive effect. When
CF2Cl2 molecules were used as halogen carriers, in
addition to XeCl (B–X) emission, we observed XeF (B–
X) emission. The ratio between the band intensities was
XeCl 308 nm/XeF 353 nm = 9/1, which was equal to

0.2

0 5

0.4

10 n × 103

J, arb. units

1

2

3

Fig. 4. Intensities of XeCl (B–X) 308-nm emission band
from a TVD in different mixtures as functions of the dis-
charge number: (1) Ar/Xe/HCl = 16/4/0.27, (2)
Ar/Xe/CF2Cl2 = 20/0.27/0.04, and (3) He/Xe/HCl =
98/2.8/0.2 kPa.
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the ratio between the concentrations Cl– and F– ions in
the reaction of dissociative attachment of electrons to
CF2Cl2 molecules [18, 19]. A CF2Cl2-containing
plasma is characterized by both the direct production of
XeF and XeCl molecules (i.e., the recombination of Cl–,

F–, Xe+, and  ions in a buffer gas) and the produc-
tion of excimer molecules via secondary processes
including conversion of CCl4 molecules in HCl.

CONCLUSIONS
Thus, the investigations of the active medium of a

repetitive electric-discharge source of XeCl 308-nm
emission have shown that, at moderate discharge volt-
ages, Ar/Xe/CCl4 mixtures at a pressure of 20 kPa have
the greatest emission resource and efficiency: the dura-
tion of the XeCl (B–X) emission pulses is ≤300 ns, and
the resource is ≥3 × 104 pulses. He(Ar)/Xe/HCl mix-
tures are characterized by a lower efficiency. CF2Cl2-
based working media take an intermediate position
between CCl4 and HCl-based media with respect to the
role the direct and secondary processes of the XeCl (B)
production play in a TVD. In the emission spectra of
the plasma of TVDs in fluorinecarbon-containing
media, nonequilibrium visible emission in Swan bands
of C2 molecules is observed. In the UV region, the CI
(2p–3s) 247.9-nm emission and CN (B–X) (0, 0) band
emission with λmax = 388.3 nm are the most pro-
nounced.
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Abstract—The optical characteristics of a transverse-discharge plasma initiated in He/Xe(Kr)/HCl(CF2Cl2)
mixtures were studied. The mixtures contained a small amount of iron vapor due to metal cathode erosion. The
iron atoms were shown to be excited by the spontaneous emission of KrCl (λ = 22 nm) and XeCl (λ = 308 nm)
molecules in a nanosecond transverse discharge. © 2000 MAIK “Nauka/Interperiodica”.
Electrodes exposed to high-power nanosecond
transverse discharges are often sputtered [1]. In a
pulse–periodic regime (f ≥ 5 Hz), this may lead to the
opacity of optical windows of electric-discharge exci-
mer emitters (EDEEs). However, an iron plasma itself
is of interest for generating stimulated emission in the
UV range. In [2], where iron vapor was pumped by a
KrF laser with λ = 249 nm, FeI emission lines were
observed at λ = 299.95, 305.16, and 304.04 nm. There-
fore, the possibility of applying high-power spontane-
ous emission from excimer molecules to excite iron
atoms merits consideration.

In this work, we investigated the optical characteris-
tics of an iron-containing EDEE plasma. The iron vapor
was derived from the erosion of cathodes exposed to a
pulsed transverse discharge. Two discharge-initiating
systems were used: (1) a grid cathode and a continuous
anode with UV preionization and (2) continuous metal
electrodes with spark preionization. The continuous
anode was made from stainless steel. Its radius of cur-
vature and length were 1.7 and 17 cm, respectively. In
system 1, the cathode was a planar grid (made from
stainless steel) with 1 × 1-mm meshes. The interelec-
trode distance was 20 mm [3]. The discharge gap was
preionized with a pulsed corona initiated between the
needles and the grid 100–150 ns before the main dis-
charge. In the system with spark preionization, the
transverse discharge occupied the volume 18 × 2.2 ×
0.7 cm (here, 2.2 cm is the interelectrode distance). Gap
preionization was accomplished with two rows of spark
discharges [4]. A capacitive C – C0 circuit, where a
30-nF capacitor C charged a 9.4-nF capacitor C0, and a
thyratron switch were energized by a pulse voltage
generator. The discharge and optical characteristics of
the plasma were measured with a laser diagnostic com-
plex [3, 4].
1063-7842/00/4506- $20.00 © 20801
Figure 1 illustrates the general view of the emission
spectrum that was obtained in the transverse-discharge
plasma excited in the mixtures of the inert gases and
HCl molecules for an emitter with corona preioniza-
tion. All such spectra had FeI emission lines. Note that
noticeable FeI emission was observed only under con-
ditions optimal for the formation of excimer molecules.
A small amount of HCl molecules in the working
medium and a low pressure are the factors causing the
emission due to transitions in FeI to decrease. The most
intense lines from iron atoms are listed in the table
(with regard for the spectral sensitivity of the recording
system). The intensity of the FeI lines is fairly high
(≤5% of that of the RX lines), which may be used to
extend the spectral range of excimer lamps. Such emit-
ters can be applied for analysis of an iron plasma with
a time resolution of ≤100 ns. The iron vapor spectrum
and the FeI band diagram indicate that lower energy
levels of iron can be optically excited by RX UV emis-
sion. The energy of B–X emission quanta is 5.57 eV for
KrCl and 4.96 eV for XeCl. Such values are sufficient
for the occupation of only upper Fe* levels through

220 300 380 λ, nm

KrCl(B–X)
XeCl(D–X)

Cl2

FeI
FeI

XeCl(C–A)

Fig. 1. General spectrum of the transverse-discharge plasma
with corona preionization for the mixture He/Kr/Xe/HCl =
200/1.6/0.4/0.4 kPa.
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lower levels of FeI, which are excited by discharge elec-
trons. In our electrode system, iron vapor may arise from
hot spots on the continuous cathode and grid, as well as
from hot zones of the corona in the preionization system.

U, arb. units

I, arb. units

I, arb. units

I, arb. units

1

2
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4
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0 200 400 t, ns

Fig. 2. Oscillograms of the (1) voltage, (2) current, and (3–
7) emission of the transverse-discharge plasma with spark
preionization for the mixture He/Kr/CF2Cl2 = 7/4/0.08 kPa;
(3) 222 nm, KrCl; (4) 249 nm, KrF; (5) 258 nm, Cl2;
(6) 318.8 nm, FeI; and (7) 516.5 nm, C2 (A–X).

Most intense iron lines in the EDEE plasma

λ, nm I, 
arb. units Elow, eV Eup, eV Transition

corona-preionization emitter He/Xe/HCl mixture

270.8 1.00 – – –

283.8 0.25 0.99 5.35 a5F2–y5

317.8 0.10 2.40 6.30 z7 –f 7D4

326.5 0.11 0.09 3.89 a5D5–z3

332.9 0.20 3.26 6.99 b3H5–u3

344.7 0.24 2.20 5.79 a5P2–y3

spark-preionization emitter He/Kr/CF2Cl2 mixture

292.9 1.00 2.20 6.41 a5P2–y5

294.1 0.52 0.09 4.30 a5D2–y5

304.8 0.59 0.09 4.16 a5D2–y5

318.9 0.52 2.48 6.37 z7 –e5G2

323.1 0.27 2.45 6.29 z7 –f 5D2

G2
0

D5
0

D3
0

H5
0

P2
0

F2
0

F1
0

D3
0

D1
0

D3
0

In this case, iron vapor enters the discharge gap by means
of electric wind, formed in the corona [5].

FeI emission was also observed in a He/Kr/CF2Cl2
plasma initiated in a typical electrode system with auto-
mated spark preionization (see table). To gain a better
insight into iron emission, we took time variations of
the emission intensities for RX, FeI, and products of
CF2Cl2 decomposition (Fig. 2). As follows from the
table, the energy of quanta of KrCl and KrF molecules
produced in the given plasma is sufficient only for step
occupation of Fe*. Oscillograms were recorded at U =
15 kV and f = 3 Hz. The maximum discharge current
was less than 15 kA. The intensity of all the iron lines
varied with time in a similar way. The emissions of RX
molecules and Fe* atoms correlate in time, indicating a
considerable contribution of optical pumping to the
population of FeI higher excited levels. In the CF2Cl2-
based media, the emission intensity ratio for KrCl, KrF,
and Cl2 molecules was found to be KrCl/KrF/Cl2 =
9/1/1. This can be explained by almost the same ratio
between the densities of negatively charged Cl– and F–

ions, which are produced by dissociative attachment of
electrons to CF2Cl2 [6, 7].

Thus, the emission spectra of an EDEE plasma
involve iron lines. Iron results from electrode sputtering
in the main and auxiliary discharges. Optical pumping
(FeI excimer emission from lower energy levels) seems
to be the most plausible mechanism for occupying
higher excited levels of iron. RX high-power spontane-
ous emission can be used for generating nonequilib-
rium UV emission from Fe atoms.
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Abstract—The dynamics of local magnetic flux vortexes in high-temperature semiconductors is studied with
a mechanical method. Physical conditions in a gradient magnetic field are analyzed. Obtained results are treated
within a model of free and pinned vortexes. The magnitudes of elastic modula, pinning strength, dissipated
energy, viscous friction of the vortexes, and pinning potential were calculated. The method allows the determi-
nation of local, rather than integrated, superconductor characteristics. This makes it possible to map pinning
centers over the crystal structure. © 2000 MAIK “Nauka/Interperiodica”.
High-temperature superconductors (HTSCs) hold
much promise in various domains of industry. Usually,
a specimen is subjected to a uniform magnetic field,
and the integrated critical parameters and their deriva-
tives are evaluated [1–3]. However, for applications
(cryogenic machine building or designing devices with
HTSC components [4–6]), of great interest is the distri-
bution of structure inhomogeneities (particularly, pin-
ning centers) over the specimen volume. In this work,
we experimentally studied the dynamics of vortexes of
a local gradient magnetic flux in yttrium-based metal
oxides.

A mechanical method where an HTSC plate is
placed between magnet poles [7] was employed
(Fig. 1). If an external field B exceeds the first critical
field Bc1, a magnetic flux spot forms in the middle of the
plate. The setup enables us to examine various speci-
men parts. The magnetic system is mobile, and the sen-
sitivity can be improved by narrowing the spot. The
length a of the spot depends on the specimen geometry,
and its width b is defined by the thickness of the pole
pieces and the field distribution between the poles. The
field between the poles can be written as

(1)

In view of the Bc1 value,

(2)

where B0 is the maximum value of the magnetic field, β
is the magnetic system constant (2.2 × 105 m–2), and z
is a linear displacement.

When the plate is displaced under the action of a
force F, each of the vortexes moving in the nonuniform
magnetic field together with the superconductor will

B z( ) B0 βz
2

–( ).exp=

b 2
B0

Bk1
-------- 

 
1
β
---

ln ,=
1063-7842/00/4506- $20.00 © 20803
experience a restoring force

(3)

where pmz is the magnetic moment of a vortex.
If f is smaller than the pinning strength fpi of the vor-

tex, the vortex displacement is elastic (reversible).
A further movement of the plate will cause f to grow.
When this force becomes equal to fpi, vortexes will
begin to unpin from pinning centers and naturally
become in a certain sense fixed relative to the magnetic
system. The pinning strengths of the vortexes differ;
therefore, the number of unpinned vortexes will
increase as the plate is more and more displaced. The
number of unpinned (fixed) vortexes Nf  as a function of
plate displacement is given by

(4)

where k1 is a factor that characterizes a spread of the

f pmz
∂B
∂z
------ 2 pmzB0βz βz

2
–( ),exp–= =

N f z( ) N 1 z
k1
----– 

 exp– ,=

F(z)

∆z

N S

3

1

2

Fig. 1. Superconducting plate in a magnetic system:
(1) superconducting plate; (2) magnet poles; and (3) mag-
netic flux spot.
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vortex pinning strengths, N = Φ/Φ0 is the number of
vortexes, and Φ is the magnetic flux per area under
study:

(5)

Here, k2 is the attenuation coefficient of the external
field B0 in the superconductor. Its value was estimated
at no less than 0.9 for B > 0.01T. We will assume that
all the vortexes are pinned at the initial time instant and
the net force needed to unpin all of them is F =

. With regard for (4), the displacement of a
specimen and the displacing force are related as

(6)

The motion of unpinned vortexes induces an addi-
tional force due to viscous friction between them inside
the superconductor. The viscous friction coefficient η is
then written as

(7)

where ∆F is a change in the force when the specimen is
displaced by ∆z, V is the specimen velocity, S = ad is
the specimen cross section, and d is the specimen thick-
ness. In our experiments, the force sensitivity was
10−7 N, and the displacements, on the order of 10–6 m.

Specimens used were YBaCuO metal oxides with
different compositions and densities (see table, speci-

Φ k2aB0 βz
2

–( ) z.dexp

–b/2

b/2

∫=

f pii 1=
N∑

F z( ) f piN 1 z
k1
----– 

 exp– .
i 1=

N

∑=

η ∆F∆z
VS

--------------,=

10

A
0.5

F × 10–5, N

20

30

1.0 1.5 2.0 z, mm

C
D

B

3

2

1

Fig. 2. Applied force F vs. superconductor displacement z
(1–3, specimen nos.).
mens 1–3). They measured 4 × 1.5 × 20 mm and were
obtained by the two-stage ceramic process at 78 K. In
fields ranging from 0.007 to 0.1 T, the magnetic flux
spot width varied between 5.5 × 10–3 and 9 × 10–3 m.
The specimens were displaced with a velocity of
3 × 10–5 m/s.

The force F is known to depend both on the vortex
density and on the crystal structure of a ceramic mate-
rial. Therefore, the experiments were carried out in var-
ious magnetic fields and also on specimens differing in
porosity and grain size, all other things being equal.

For all of the metal oxides used in the experiments,
the curves F(z) taken under permanent magnetic fields
are similar. They are shown in Fig. 2 for B = 0.025 T.

Initially, at small displacements, the force increases
linearly, pointing to the elastic displacement of the vor-
texes (Fig. 2, portion AB). The measured elastic modula
of the vortex structure are given in the table. At larger
displacements, the curve is no longer linear (portion
BC) and exhibits hysteresis, which is an indication of
vortex unpinning from the pinning centers. Subse-
quently, when all vortexes are unpinned, the curves sat-
urate (portion CD). The slope of the last portion is
defined by the coefficient of viscous friction between
moving vortexes, and the measured force F just charac-
terizes the pinning strength. The viscous friction coef-
ficients and the pinning strengths are also listed in the
table. Naturally, the direct and return (as the displace-
ment z decreases) runs of the curves F(z) are different.
The area of the hysteresis loop reflects the energy W
dissipated during this quarterperiod because of the vis-
cous motion of the vortexes. The values of W for the
displacement z(0 –2– 0) mm are presented in the table.

The pinning strength in superconductors depends on
the energy U0 needed to pin vortexes at pinning centers.
The pinning energy can be estimated from the relax-
ation value. To this end, the specimen placed in the per-
manent magnetic field was displaced by a distance z
under the action of force F. Once the force ceased to
grow, the displacement continued to increase (∆z) with
time because of the thermally activated creep of some
of the vortexes. The pinning energy was calculated by
the formula

(8)U0* 1 ∆z
k1
------– 

 exp– 
  kTln ,–=
Table

Specimen no. Density, g/cm3 pH × 10–5, Ω m Fp mech, N/m3 Fp cur , N/m3 C, N/m2 W × 10–7, J η, kg/m s U0, meV

1 3.3 3.4 1900 9.8 68 7.2 20 16

2 4.2 1.5 3445 210 26 × 102 16.4 52 27

3 5.2 0.76 4282 1480 94 × 102 18.8 300 31
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where  = U0 – fib, b is the vortex displacement due
to an applied force fi = F/N, and k is the Boltzmann con-
stant.

Dependences (F) for B0 = 0.025 T are presented

in Fig. 3. The energy of activation  drops with
increasing force F applied at the initial time instant. By

extrapolating the dependence (F) to F = 0, it is pos-
sible to find U0 for the superconductors (see table).
Knowing U0, one can determine the vortex displace-
ment b due to the force F applied at the initial time
instant. The value of b was found to be independent of
F: it equaled 86 × 10–10, 42 × 10–10, and 36 × 10–10 m for
specimens 1–3, respectively. With an increase in the
YBaCuO density, the elastic modulus, pinning strength
and energy, and dissipated energy grow, whereas the
viscous friction coefficient is inversely proportional to
the resistivity of the superconductor in the normal state.

U0*

U0*

U0*

U0*

10

0 10

U0, meV

F × 10–5, N

20

*

20 30

1

2

3

Fig. 3.  vs. applied force F (1–3, specimen nos.).U0
*
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Our results are consistent with vortex behavior in a per-
manent magnetic field [8].

In the same experimental environment (in particu-
lar, for the same vortex velocity), we also measured the
critical current by a resistive method. The pinning
strength derived from the critical current, Fpcur, turned
out to be smaller than Fpmech (see table). The reason is
that the critical current, from which Fpcur is deduced, is
measured from the motion of weakly pinned vortexes.
Conversely, in our case, the ultimate pinning strength
of the semiconductor was measured.

To conclude, the mechanical method for studying
the dynamics of a localized magnetic flux in supercon-
ductors is suggested. It allows the evaluation of the ulti-
mate pinning strength and energy, elastic modulus of
vortexes, and viscous friction coefficient. With this
method, one can also map effective pinning centers.
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Abstract—A design of a superconducting vibrator of bending oscillations is proposed. The magnetic-field
dependence of the vibrator natural frequency is calculated. It is shown that, for the suggested construction, the
natural frequency is tens of times more sensitive to the magnetic field than for all the resonators used before. It
is proposed to use such a resonator to study the magnetic field penetrating into superconductors. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The magnetic properties of type-II superconductors
have not been adequately studied up to the present day.
In particular, it is associated with a limitation of the
investigation methods. The use of the technique of
oscillating superconducting rods and plates, placed in
the magnetic field, opened up new effective possibili-
ties of studying various processes in superconductors
[1–10]. When a superconductor oscillates in a magnetic
field, currents are induced in its surface layer. An inter-
action between these currents and the field results in the
rise of magneto-elastic forces changing the natural
oscillation frequency of a superconducting specimen.
Oscillations of the vortex lattice together with the spec-
imen induce bulk currents; the interaction between
them and the magnetic field results in the appearance of
a force and, consequently, in a change in the natural
oscillation frequency. When the vortex lattice is fixed
stiffly at the pinning centers, the square of the speci-
men’s natural frequency varies in direct proportion
with the square of the magnetic field intensity. A depar-
ture from this proportionality is a source of information
on, for example, the pinning. Use of a superconducting
screen located parallel to the plate surface or rod axis
increases the accuracy and extends the capabilities of
this technique, in particular, permitting the determining
of the penetration depth of a magnetic field disturbance
into a superconductor. For the first time, the use of a
screen was considered in [6, 10] for the limiting cases
of an infinitely wide plate and a round rod. In [6], it has
been shown that the square of the bending oscillation
frequency of the infinitely wide plate increases in
inverse proportion to the distance between it and a
screen, i.e., increases indefinitely. Consideration of the
similar problem for a round rod has shown that, in this
case, increasing the natural oscillation frequency tends
to a definite limit. The problem of elastic oscillations of
a finitely wide plate above the screen was considered in
[10]. It has been shown that, in this case, as well as in
the case of an infinitely wide plate, a magneto-elastic
1063-7842/00/4506- $20.00 © 20806
force increases indefinitely when the plate approaches
the screen.

In all the cited papers, the magnetic field was paral-
lel to the vibrator length. In this case, during vibrator
oscillations, the magnetic lines of force are distorted
and the magnetic field induction has different magni-
tudes at different areas of the vibrator surface, making
it difficult to consider the magnetic field penetration
into a superconductor.

In this paper, we consider a superconducting vibra-
tor without these limitations.

SETTING AND SOLVING THE PROBLEM.

The suggested vibrator is a superconducting pipe of
rectangular cross-section and length L, for which the
opposite walls have an equal thickness. The inner pipe
sizes are (width) l and (height) 2a (Fig. 1a). The side
walls B and B' are fixed and sufficiently thick to fulfil
the condition for the A and A' wall ends to be stationary.
Antiphase bending oscillations are excited in the A and
A' opposite walls whose thickness is h.

Under the condition that the pipe length is much
more than the linear size of the hole, a vibrator may be
regarded to be infinitely wide. The vibrator is placed in
a homogeneous magnetic field with induction B0 paral-
lel to the walls (perpendicular to the plane of Fig. 1).
Taking into account that oscillations of the AA' walls
occur in opposite phases due to the law of reflection on
a superconducting surface, the problem is reduced to
analyzing oscillations of the A wall of thickness h of the
rectangular cavity of width l and height a made in
superconducting half-space (Fig. 1b) placed in a homo-
geneous magnetic field parallel to the cavity walls.

At oscillations of the vibrator, the magnetic field
outside of the cavity changes neither its direction nor
magnitude. The magnetic field trapped in the cavity
remains homogeneous and parallel to the cavity walls,
and its magnitude varies with time due to variations
resulting from the cavity cross-sectional area oscilla-
tions.
000 MAIK “Nauka/Interperiodica”



        

A SUPERCONDUCTING VIBRATOR WITH A TRAPPED MAGNETIC FIELD 807

                           
For convenience, let us consider the vibrator pre-
sented in Fig. 1b. Since the magnetic field is trapped in
the vibrator cavity, the flux keeps constant during oscil-
lations, i.e.,

where ξ(z) is the oscillation amplitude and ω is the
radian frequency.

In the approximation of small oscillations,

(1)

The force acting on a unit area of the oscillating
plate from the magnetic field is equal to the difference
of the magnetic pressures on its plane,

(2)

Here, µ0 is the magnetic constant. The equation of elas-
tic harmonic oscillations of the plate taking into
account Fm can be written as [11]

(3)

Here, E is the Young modulus, µ is the Poisson coeffi-
cient, and ρ is the density. The general solution of equa-
tion (3) can be written as

(4)

Here,

A, B, C, and D are constants of integration. They can be
determined from the following boundary conditions:

(5)

Boundary conditions (5) give four algebraic equa-
tions connecting the integration constants and
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Upon integrating (4) over z, we obtain the fifth equa-
tion. Thus, we have the system of five equations in five
unknown,

(6)

Only when the determinant composed of the coeffi-

cients at A, B, C, D, and dz is equal to zero, sys-

tem (6) has a nontrivial solution. This results in the dis-
persion equation

(7)

From equation (7), taking account of (4), the follow-
ing relation between the natural oscillation frequency
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Fig. 1. Schematic view of the vibrator.
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and the magnetic field is obtained:

(8)

The coefficient α remains constant with a high
degree of accuracy and is equal to α = 0.690, when the
right side of equation (8) varies in a wide range. For
high values of the magnetic field induction, when ω @
ω0, the magnitude of α decreases. The dependence of
∆α = α – 0.690 on 

is shown in Fig. 2.
As an example, let us consider a niobium resonator

with the parameters: ρ = 8.6 × 103 kg, E = 1.6 ×
1011 N/m2, µ = 0.39, l = 4 cm, h = 0.5 mm, a = 0.5 mm,
and B = 0.4 T. When the field is absent, the natural
oscillation frequency of such a resonator is ω(0) =
1.25 × 104 Hz. In the field with induction of 0.4 T, the
oscillation frequency is ω(0.4) = 1.4 × 104 Hz. Thus, at
the magnetic field with an induction of 0.4 T, the oscil-
lating frequency varies by 12%. At a magnetic field of
the same magnitude parallel to the resonator length, the
frequency varies by 0.126% [10], i.e., by a factor
100 times smaller than for our situation.

In the calculations presented above, it has been
taken into consideration that the penetration depth of
the magnetic field disturbance, appearing in oscilla-
tions, into the superconducting material is equal to
zero. For an actual situation, the magnetic field distur-
bance penetrates into the superconducting material to a
finite depth, thus increasing the effective size of the gap a.
Therefore, the measured oscillation frequency of the
superconducting resonator in the magnetic field is

ω2 ω0
2
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2
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–0.30
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2

Fig. 2. 
always smaller than the calculated one. The compari-
son between the measured and calculated frequencies
permits determining the penetration depth. Using flat
parallel plates of a superconducting material, inserted
into the vibrator cavity, a gap of 5 µm and less may be
obtained. Under the condition that the gap is measured
to an accuracy of 0.1%, absolute measurements of the
penetration depth to an accuracy better than 50 Å can
be performed. Considering that the natural frequency of
mechanical vibrations can be measured to an accuracy
of 10–4% and that, at such a small gap, the frequency is
almost fully determined by the magnetic forces even in
the field of several tenths of a tesla, variations in the
penetration depth of several hundredths of an angstrom
may be registered.

In conclusion, it should be emphasized once again
that the proposed construction has essential advantages
over the resonators used at present. Firstly, oscillations
of such a resonator do not lead to the distortion of the
magnetic lines of force (excepting the edge effects
which are negligible at a sufficiently wide resonator)
and, secondly, the oscillation frequency of such a reso-
nator is more sensitive to the magnetic field. The limi-
tation is that, to vary the field in the resonator cavity, it
is necessary to convert at least a part of the resonator to
the normal state and then to cool it to the initial temper-
ature again.
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Radial Focusing of Ion Beams in a Mass Analyzer 
with an Electrostatic Lens and a Sector-Shaped Inclined-Wall 

Magnetic Prism
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Abstract—The ionic and optical properties of an inclined-wall magnetic mass analyzer with electrostatic direc-
tion focusing of ions in a nonuniform (r–1) magnetic field were studied. A condition for ion focusing in the radial
plane was derived, and the basic parameters of the mass analyzer were determined. © 2000 MAIK
“Nauka/Interperiodica”.
Prismatic mass analyzers with an r–1 magnetic field
offer a number of advantages over those based on uni-
form two-dimensional magnetic fields. Among these
advantages are greater dispersion, flexible geometry of
the instrument, and no need for mechanical adjustment.

Mass analyzers with an r–1 magnetic field use either
magnetic direction focusing of ions or electrostatic
focusing. The latter are easier to fabricate and use,
because there is no need for intricately shaped pole
pieces of a magnet and precision arrangement of ionic–
optical elements in this case.

The first to come into being were mass analyzers
with magnetic direction focusing [1, 2]. Therefore,
their properties are well-understood [3–5]. Sector-
shaped magnetic mass analyzers with electrostatic
direction focusing are comparatively recent [6] and still
under investigation. By now, single-stage and multi-
stage mass-analyzers, achromatic-focusing mass sepa-
rators, and analyzers with direction and velocity focus-
ing have been investigated in a linear approximation.
The studies were made under the assumption that the
central trajectory of ions entering and leaving the prism
is normal to its boundaries [6, 7].

The ionic and optical properties of the systems with
an inclined-boundary prism are of specific interest for
instrument makers. In this case, the angles of entry and
departure of an ion beam are additional independent
parameters of a mass analyzer. Varying them, one can
optimize the properties of the instrument and extend its
capabilities.

The aim of this paper is to find (in a first approxima-
tion) the focusing properties (in the radial plane) and to
determine the basic characteristics of a mass analyzer
that involves an electrostatic lens and a magnetic prism
producing an r–1 nonuniform magnetic field when the
central ion trajectory cuts the magnetic-field bound-
aries at different-from-right angles.
1063-7842/00/4506- $20.00 © 20809
The ionic–optical system of the mass analyzer is
depicted in the figure. The system consists of ion source 1,
electrostatic lens 2, magnetic prism 3 (an ion beam
enters the prism at an angle ε' and leaves it at an angle
ε''), and ion collector 4.

In such a system, ion trajectories are described by
linear differential equations; therefore, the system may
be thought of as a device that transforms the initial
parameters of a trajectory into the final ones, and this
transformation can be represented in terms of matrix
algebra [8–10]. We will consider the electrostatic lens
as being thin, because its field extends to a distance
much less than the focal distance. The leakage mag-
netic fields will be taken into account by replacing the
actual magnetic field with an ideal one that is equiva-
lent of the former in rotation angle; hence, within the
accuracy of the given study, corrections for leakage
field can be neglected.

In our system, an ion trajectory can be divided into
the following regions: free transit from the ion source
to the lens, the path over the lens area, free transit from
the lens to the input boundary of the prism, the path at
the entrance into the prism, the path in the magnetic
field of the prism, the path at the exit from the prism,
and free transit from the output prism boundary to the
ion collector. Then, the three-dimensional matrix trans-
formation that relates the initial and final parameters of
the trajectory can be written as

(1)

where y0, , and µ0 (all referred to the initial condi-
tions of ion movement at the exit from the ion source)
are the initial displacement in terms of the radius of the
central trajectory, as well as the direction and relative

y7
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M7M6M5M4M3M2M1
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The ionic–optical system of the mass analyzer: (1) ion source, (2) electrostatic lens, (3) magnetic prism, and (4) ion collector.
change of the momentum, respectively; Mi is the trans-
fer matrix for the corresponding ion path; and y7, ,
and µ7 are the parameters of the trajectory at the collec-
tor slit.

The transfer matrices for the ion paths at the input
and output boundaries of the magnetic prism are
defined [10] by

(2)

The other matrices appeared in (1) are presented in
[6] and here are left out.

Sequentially multiplying the matrices for the corre-
sponding ion paths, we will obtain the full first-order
transfer matrix in the radial plane:

(3)

where the top-line matrix elements, defining the ion-
beam spread in the plane of the collector slit, are

y7'

M4

1 0 0

ε'tan 1 0

1 0

, M6

1 0 0

ε''tan 1 0

1 0

.= =

M
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a31 a32 a33

,=

a11 1
lm'

f xy

-------– 
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+ lm'' ε' 1 ϕm ε''tan+( ) ] 1 a
f xy

-------– 
 +tan

× ϕm lm'' 1 ϕm ε''tan+( )+[ ] ,
Here, fxy is the radial focal distance of the lens in terms
of the radius of the central trajectory and , , and a
are the geometric parameters of the mass analyzer (see
figure). According to (1) and (2), the deflection of an
ion (subjected to arbitrary initial conditions) from the
central trajectory at the collimator slit can be written as

(4)

Putting a12 = 0 in (4), we will obtain the condition
for direction focusing of ions:

(5)

Equation (5) relates the lens power to the geometri-
cal parameters of mass analyzer.

The dispersion of the mass analyzer is

Taking into account that  = /rm, we have

(6)

The dispersion is independent of the angle of entry
of an ion beam into the magnetic field of the prism.
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The dispersion of a mass analyzer with the inclined
boundaries exceeds that of a prismatic mass analyzer
with the right-angled boundaries by a value of

This makes it possible to improve the resolving
power of a mass analyzer without increasing the overall
dimensions of its ionic–optical system.

A mass analyzer with  = 0, ε' = 0, and a = fxy (the
lens shapes a parallel ion beam at the entrance into the
prism) seems to be of practical interest. In this case, the
condition for direction focusing of ions and the disper-
sion of the mass analyzer are given by

(7)

and

(8)

The magnifying power of this mass analyzer
depends on the coefficient a11. To estimate its value
from the condition for direction focusing, one should
first find the focal distance of the lens and then calculate
the magnifying power.

Since rm and , the angle of ion departure from the
magnetic field of the prism should be negative to ensure
direction focusing; that is, the inclination of the output
boundary to the central trajectory must be such that the
central trajectory and its center of curvature lie on the
opposite sides of the normal to the field boundary.

∆Dm
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2
-------------.=
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Our results show that the electrostatic focusing of
ions in the direction to a sector-shaped inclined-bound-
ary magnetic prism makes the mass analyzer geometry
flexible, increases the dispersion, and suppresses the
effects of leakage fields and ion-beam space charge on
the instrument parameters.
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