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Abstract—The effect of nonlinearity on the possibility of Group III metals to support propagating radio waves
is investigated theoretically. A nonlinear wave is shown to be able to propagate in a metal when the magnetic
field of a wave of a large amplitude traps holes and causes collisionless cyclotron absorption to be suppressed.
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INTRODUCTION

Propagation of linear radio waves in Group III met-
als (aluminum and indium) has been theoretically and
experimentally investigated in [1–5]. It was shown that,
in addition to helicons, the field of which rotates in the
same direction as holes do in a magnetic field, dopple-
rons can propagate in these metals, which are associ-
ated with Doppler-shifted cyclotron resonance (DSCR)
for holes. The field of doppleron modes rotates in the
opposite direction, and the range of magnetic fields in
which these modes exist is situated below that for heli-
cons. In this paper, we consider new effects that occur
in these metals when the amplitude of an exciting
radio-frequency field is large. A magnetic field of a
large amplitude “traps” holes responsible for cyclotron
absorption, and the latter becomes significantly lower.
Because of this, the collisionless damping of dopple-
rons decreases and, in magnetic fields much lower than
the threshold field for a helicon, the propagation of a
new wave becomes possible, which cannot exist in the
linear regime. For definiteness, we will consider the
propagation of radio waves in aluminum; similar
effects should occur in indium.

1. A FERMI SURFACE MODEL 
AND NONLOCAL CONDUCTIVITY

We consider the propagation of a radio wave in alu-
minum in the geometry where a static magnetic field H
and the propagation vector k are parallel to a fourfold
axis of symmetry (H || k || [100] || z). The k and H
dependences of the nonlocal conductivity and its fea-
tures are determined by the form of the function ∂S/∂pz,
where S is the area of the cross section of the Fermi sur-
face by a plane pz = const and pz is the component of the
momentum of a hole along the field H. According to
calculations performed by Larsen and Greisen [2], the
distinctive feature of the Fermi surface of aluminum is
that a plot of the derivative ∂S/∂pz (in the geometry in
question) has two maxima of the same height and a
minimum, with the maxima being roughly 10% higher
1063-7834/00/4204- $20.00 © 20589
than the minimum. We will use a model Fermi surface
for which the function ∂S/∂pz has the form

(1)

(2)

(3)

where β is a dimensionless constant and p, p1, and p2
are parameters having dimensions of momentum. In
the range ( p1 + p2) ≤ |pz| ≤ 2( p1 + p2), the function
y( pz) is such that it is symmetric about the point pz =
p1 + p2; its plot is shown in Fig. 1 for β = 0.05 and p2 =
2p1 = 0.35" Å–1. The symmetry of this function with
respect to its minimum point makes calculation of the
nonlocal conductivity much easier. The left-hand part
of the y( pz) curve is similar to the corresponding part of
the curve calculated by Larsen and Greisen. The dis-
similarity between their right-hand portions is of no
significance, because holes are predominantly in the
region |pz| ≤ ( p1 + p2). The parameter p is taken to be such
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Fig. 1. Graph of the y(pz) function for β = 0.05 and p2 =

2p1 = 0.35" Å–1.
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that the period of doppleron oscillations is equal to that
observed in the experiment (in our case, p = 1 " Å–1).

Although the Fermi surface for aluminum has a
fourfold axis of symmetry, we will approximate it by an
axially symmetric surface. If there is no axial symme-
try, the DSCR will occur at the fundamental and odd
higher harmonic frequencies and there will be corre-
sponding multiple doppleron modes [5]. In our model,
this is not the case and multiple dopplerons are absent.
In actual aluminum, the relative changes in impedance
due to multiple dopplerons are much smaller than one
percent. At the same time, the nonlinear effect we treat
in this paper leads to relative changes in impedance of
order unity. For this reason, we will not take into
account the existence of multiple dopplerons and
restrict our consideration to the case of an axially sym-
metric Fermi surface, for which calculations are much
simpler.

If the vectors k and H are parallel to the axis of the
axially symmetric Fermi surface, the nonlocal conduc-
tivity is given by (see, e.g., [6])

(4)

(5)

where

(6)

e is the absolute value of the electronic charge; c is the
velocity of light; m and ωc are the cyclotron mass and
cyclotron frequency of a hole, respectively; ν is the
hole collision rate with scatterers; and u(pz) is the dis-
placement of a particle with the momentum component
pz during a cyclotron period.

In this paper, we will consider the case of a strong
magnetic field in which the hole cyclotron frequency ωc

is much larger than the collision rate ν and, hence,
γ ! 1.

In our model, the function ∂S/∂pz, and hence the
denominator in the integrand in (4), is symmetric with
respect to the point |pz| = (p1 + p2). For this reason, it is
convenient to represent the function S( pz) in the numer-
ator in (4) in the form

(7)

where S0 is the area of the cross section of the Fermi sur-
face by the plane passing through a point |pz| = (p1 + p2),
and U(pz) is a function antisymmetric with respect to
this point. The integral involving U is equal to zero and,
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hence, the expression for the conductivity becomes

(8)

where

(9)

and N is the concentration of holes. Substituting (2) and
(3) into (8) and evaluating the integral with respect to
pz, we arrive at the formula

(10)

(11)

(12)

(13)

where α = 1 + 2β and I± =  + iγ.

In the local regime (q  0), we have s±  ±1,
whereas, in the limit of q @ 1, we have

(14)

2. THE DISPERSION RELATION AND THE 
PROPERTIES OF MODES IN THE LINEAR 

REGIME

The properties of radio waves propagating in a
metal are determined by the dispersion relation k2c2 =
4πiωσ±, which is conveniently rewritten in the form

(15)
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where

(16)

(17)

The features of relation (15) can be elucidated by
investigating the behavior of the functions Φ±. Their
imaginary parts are identical, while their real parts are
equal in value but opposite in sign. In the limit as
γ  0, the functions  = ReΦ+ and  = ImΦ+ are

plotted in Fig. 2 (in the range q < 1, where  > 0). At
q ! 1, we have Φ+ . 1/q2. This branch of the dispersion
curve corresponds to a helicon, the field of which
rotates in the same direction as holes. The function 
has a minimum at a certain value of q, less than 1/α, and
tends to infinity as q  1/α. Therefore, above the
threshold for a helicon, there is a DSCR mode associ-
ated with the resonance for those holes the displace-
ment of which during a cyclotron period is maximal.
However, this mode is practically impossible to detect,
because it occurs at the same polarization of the excit-
ing wave and in the same field range as the helicon, but
it has a smaller amplitude.

In the range α–1 < q < 1, the function Φ– has a large
imaginary part because of the high cyclotron absorp-
tion of a wave by holes for which the quantity ∂S/∂pz is
between 2πp and 2πpα. Due to this absorption, there
are no propagating modes in the range indicated above.

The functions  = ReΦ– and  = ImΦ– are plot-

ted in Fig. 3 in the range q > 1, where  > 0. In this

range, the function  monotonically decreases and
tends to zero as q  ∞. In high magnetic fields, where
ξ ! 1, the value of q is close to unity and  @ .
Therefore, in the corresponding range of magnetic
fields, there exists a propagating mode due to DSCR for
those holes the displacement of which during a cyclo-
tron period is a minimum. The field of this doppleron
has a sense of rotation opposite to that of holes (the
“plus” polarization), and its damping is due to both col-
lisions and collisionless cyclotron absorption. The cor-
responding branch of the dispersion relation is

(18)

In strong magnetic fields (ξ ! 1), the k'(H) curve
asymptotically approaches the straight line k0(H) =
eH/pc, which corresponds to the DSCR for holes whose
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displacement is minimal (q = 1). In this field range,
the damping of dopplerons is due to collisions; it is
practically independent of H, and we have k'' = mν/p.
As H decreases, the k'(H) and k''(H) curves deviate from
their asymptotes towards higher values and the contri-
bution to the doppleron damping from collisionless
cyclotron absorption becomes dominant. The depen-
dence of the doppleron damping length lD = 1/k'' on the
magnetic field H is shown in Fig. 4 (curve 1). The calcu-
lation is performed for the frequency ω/2π = 100 kHz,
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Fig. 2. Graphs (1) of the real and (2) imaginary parts of the
function Φ+.

Fig. 3. Graphs of the (q) (curve 1) and (q) (curve 2)
functions in the range of q > 1.
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Fig. 4. Doppleron damping length lD as a function of H in
(1) the linear and (2) nonlinear regimes.
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concentration N = 6 × 1022 cm–3, hole mass m = 1.3 ×
10–27 g, and collision rate ν = 4 × 108 s–1. It is seen that
the doppleron damping becomes very great in low mag-
netic fields.

3. NONLINEAR WAVES AND OSCILLATIONS IN 
THE IMPEDANCE OF A PLATE

Let us now consider the propagation of waves of a
large amplitude. It was shown in [7] that the magnetic
field of such a wave “traps” holes with the momentum
pz = pz0 satisfying the condition

(19)

These holes cause cyclotron absorption; their longitu-
dinal velocity is modulated with the frequency

(20)

where Ha is the amplitude of the magnetic field of the
wave in the metal. In the nonlinear regime, when the
frequency ω0 of oscillation of holes trapped by the
magnetic field becomes much higher than the collision
rate ν, the cyclotron absorption decreases in proportion
to the ratio ν/ω0. Therefore, in the expression for s– in
(13), the first term, which is due to cyclotron absorp-
tion, should be multiplied by ν/ω0. Figure 4 shows the
calculated doppleron damping length for the values of
parameters indicated above and Ha = 100 Oe (curve 2).
It is seen that the trapping of holes in the nonlinear
regime results in a considerable increase in the damp-
ing length of a doppleron.

The nonlinear effect is even more dramatic in the
case of low magnetic fields (ξ @ 1), where there are no
propagating modes in the linear regime. If the nonlin-
earity is strong (ν/ω0 ! 1), the expression for s– in (14)
is replaced by

(21)
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Fig. 5. Surface resistance of a plate of aluminum R– as a
function of H in the nonlinear regime.
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When the ratio ν/ω0 is fairly small, the imaginary part
of (21) becomes much smaller than its real part; that is,
the metal becomes transparent to radio waves. Substi-
tuting (21) into the dispersion relation (15) and solving
the latter, we obtain

(22)

where

(23)

The root q2 describes a damping component of the
field, whereas the root q1 corresponds to a new nonlin-
ear wave for which there is no analog in the linear
regime.

Concluding this section, we consider the surface
impedance of a plate of aluminum for the excitation
being antisymmetric with respect to the electric field.
For the case where the reflection of carriers from the
surface of the plate is diffuse and the field in the plate
consists of two exponential components, the corre-
sponding formula for the impedance was obtained in
[6, formula (3.11)]. In the magnetic-field range in ques-
tion (ξ @ 1), this formula reduces to

(24)

where

(25)

and d is the thickness of the plate. In (24), the first term
is due to the excitation of a nonlinear wave in the plate,
whereas the second term is due to a damping compo-
nent.

Figure 5 shows the calculated surface resistance
R− = ReZ– of the plate for the values of parameters indi-
cated above, d = 1 mm, and ω/2π = 100 kHz. The peaks
in the resistance occur at the values of H for which the
plate thickness is an odd-integer multiple of half the
wavelength of the wave, (H)d = π(2n + 1), where n
is an integer. We note that, in the linear regime, the R–
(H) dependence has no oscillation in the range of mag-
netic fields in question.
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Abstract—The current–voltage characteristics of the metal–dielectric composite have been investigated in the
range of the resistive state near the superconducting transition temperature Tc. The composite structure can be
represented as a face-centered cubic lattice, which involves a large number of weakly linked indium nanograins
and is stabilized in structural cavities of opal. The response to microwave radiation is used to characterize the
resistive state of the composite. The comparative investigation into the current–voltage characteristics and the
response of the composite to microwave radiation makes it possible to conclude that the weak links are super-
conducting in the region of critical current (Ic) of the composite as a whole. The transition of weak links to the
resistive state occurs at currents immediately preceding the transition of the composite from the resistive state
to the ohmic state. The model of resistivity of the indium–opal composite is proposed on the basis of morpho-
logical examinations. According to this model, the energy dissipation in the resistive state is brought about by
the quasi-discrete (due to the quantization of the magnetic flux in circuits of a three-dimensional lattice com-
prised of multiply connected grains) redistribution of transport current over the cross-section of composite.
© 2000 MAIK “Nauka/Interperiodica”.
The construction of regular spatial ensembles
involving a great number of identical nanostructures
implies the development of materials whose functional
characteristics are similar to those of small-sized
objects but whose energy parameters reach the values
corresponding to the operating range of electronic
devices with microscopic sizes [1]. In addition to the
extension of operating ranges of currents and voltages,
the transport properties of the lattice of interacting
nanostructures can exhibit collective effects. An exam-
ple of the nanostructurized superconductor is provided
by a three-dimensional array of Josephson junctions, a
the discrete system with a nonlinear dynamics. So far,
the physical understanding of similar superconductors,
in particular, their interaction with electromagnetic
field, remains semiempirical [2]. In this respect, the
study of granular superconductors with a known sub-
microstructure is an urgent problem.

A regular Josephson medium can be treated either as
a lattice of weak links or as an array of closed circuits,
depending on the nature of the discussed phenomena,
for example, the interaction with microwave radiation
or the motion of magnetic flux.

The response of a Josephson system to electromag-
netic radiation is dual. On the one hand, upon exposure
to microwave radiation, the order parameter, critical
temperature, and critical current of a superconductor
increase at the expense of changes in the distribution of
normal electrons with respect to the equilibrium state
1063-7834/00/4204- $20.00 © 20594
[3]. On the other hand, the microwave radiation under-
goes rectification, which results in an increase in the dc
current flowing in a system. The specificity of the
microwave radiation response of a Josephson system
shifted by the current to the resistive state is determined
by the possibility of its resonance at a natural frequency
of oscillations of the order parameter in weak links.
This resonance was found in natural superlattices of
weak links [4] and also in specially constructed Joseph-
son junction arrays [5]. Since the resonance response of
a Josephson medium to an applied perturbation
requires a coherent change in the phase of the order
parameter in single junctions [6], the degree of phase
locking of single junctions is an important parameter of
their system.

The dynamics of the magnetic flux in a supercon-
ducting system governs the critical parameters of the
system. The introduction of structural inhomogeneities
comparable in size to the penetration depth of a mag-
netic field leads to an increase in the upper critical field
of a system, and the spatial ordering of inhomogene-
ities, for example, the formation of a two-dimensional
lattice of superconducting nanostructures, enhances the
possibilities of controlling the properties of an ensem-
ble at a sacrifice in use of the commensurability
between the magnetic vortex and nanostructure lattices
[7].

Up to now, the creation of three-dimensional ensem-
bles of nanostructures has remained a nontrivial prob-
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Electron micrograph of the In–opal composite. Light and dark regions correspond to the metal and dielectric, respectively.
lem for the traditional nanotechnology. However, to a
certain degree, this problem has been solved by using a
synthetic opal as a matrix for filling with a supercon-
ducting metal [8–10]. A superconductor–opal compos-
ite can serve as a model object in research into the
behavior of three-dimensional Josephson media owing
to the known geometry of a system and its controllabil-
ity. These ordered nanocomposites possess a number of
unusual properties, for example, an anomalous hyster-
esis of current–voltage characteristics (i.e., the situa-
tion when the critical current of the reverse branch of
the current–voltage characteristic Icd considerably
exceeds the critical current of the direct branch Icu) [9]
and a discrete penetration of the magnetic field into a
lattice [11]. At the same time, the behavior of three-
dimensional ensembles is more complex in the inter-
pretation as compared to the two-dimensional systems
and has been poorly understood, especially in respect to
collective effects.

In the present work, we experimentally studied the
resistive state of an ordered lattice involving a large
number of weakly linked superconducting indium
grains in opal (In–opal) at different currents and under
exposure to microwave radiation.

1. MATERIAL AND EXPERIMENTAL 
TECHNIQUE

Structurally, opal is a regular three-dimensional
packing of identical silicate spheres with free cavities
between touching spheres. A face-centered cubic pack-
ing of spheres involves cavities of two types: octahedral
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
cavities with the characteristic size dO = 0.41D
(O-grains) and tetrahedral cavities with dT = 0.23D
(T-grains), which are connected through bridges with
the smallest diameter db = 0.15D, where D is the sphere
diameter [12]. In the present work, we used opal with
D = 260 nm. In order to increase the dO, T /db ratio, we
performed 80 cycles of TiO2 molecular layer deposition
[13]. Then, the porous matrix was completely filled
with an indium melt under pressure [12, 13]. The elec-
tron micrographs (Fig. 1) demonstrate that the metal in
opal forms a continuous regular three-dimensional net-
work in the space between dielectric spheres. In the
cross-section, the metal network takes the form of a
regular lattice of closed circuits containing metal
grains, which connect with each other via bridges with
a cross-section smaller than that of grains. A fine struc-
ture of grains and bridges formed by a filler in opal was
discussed in [14].

A sample was prepared in the form of a 5 × 1 ×
0.5 mm3 bar with a local slot in the center to decrease
the thickness down to 0.25 mm. Four silver strips were
electrochemically deposited onto a larger face of the
sample, and electrical leads were soldered to the strips.
The current–voltage characteristics were measured
using the four-point probe method in a current source
mode. The microwave field at a frequency of 1.2 GHz
was supplied with a coaxial cable. The induction loop
closing a cable and going round the sample served as a
coupling element. The traveling-wave mode was cre-
ated by a directional coupler. The microwave signal
with a power of 50 mW at the output of a generator had
the pulse modulation with a frequency of 8 kHz. The
0
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sample was excited by the magnetic component of the
microwave field in order to increase the efficiency of
coupling with the low-resistance sample. The power
losses due to the impedance mismatch ranged up to
50 dB. The response to microwave radiation ∆Vres(V)
(where V is the dc bias voltage across potential con-
tacts) is the alternating signal with a frequency of
microwave modulation. This signal was amplified by a
frequency selective voltmeter and then was recorded
with a phase-lock detector. No shielding from the earth
magnetic field was applied.

2. RESULTS

Figure 2a demonstrates the current–voltage charac-
teristics for In–opal sample at T = 3.45 and 3.4 K,
which correspond to the conductivity modes with Ic = 0
and Ic > 0, respectively. The resistive and ohmic ranges
of critical currents can be distinguished in the current–
voltage characteristic obtained at T = 3.4 K (Fig. 2a,
curve 1). The current of the reverse branch in the cur-
rent–voltage characteristic Icd is approximately 30%
larger than the critical current of the direct branch Icu;
however, the functional dependence I(V) does not
change. Note that the current–voltage characteristic of
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Fig. 2. (a) Current–voltage characteristics and (b) their first
derivatives for In–opal composite at T = (1) 3.40 and
(2) 3.45 K (curve 2 in Fig. 2b is shown on an enlarged
scale).
P

the sample in the resistive state is irreversible at each
point; i.e., the current depends on the prehistory of cur-
rent changes. The first derivative of the current–voltage
characteristic (Fig. 2b) indicates that its nonlinearity is
predominantly observed in the initial region.

The current–voltage characteristic measured at T =
3.45 K (Fig. 2a, curve 2) also exhibits a weak nonlin-
earity. The evaluation of an increase in the Tc tempera-
ture due to a change in size of the indium bridges by
using the empirical formula Tc = 3.41 + 5.1/d [15]
(where the temperature is in degrees Kelvin, and the
diameter d is in nanometers) leads to Tc = 3.75 K at
d = 15 nm. The applicability of this formula to the
determination of the critical temperature for indium in
opal was considered in [16]. This estimate allows us to
assume the fluctuation superconductivity in the lattice
of grains at the given temperature. In this case, the
direct and reverse branches of the current–voltage char-
acteristic coincide with each other.

The dependences ∆Vres(V) at the same temperatures
are depicted in Figs. 3a and 4a. At T = 3.4 K, the peak
of microwave response is observed in a portion of the
current–voltage characteristic that does not show pro-
nounced nonlinearity and is located immediately ahead
of the ohmic region.

The change in the static current–voltage characteris-
tic ∆Ist(V) upon exposure to external microwave radia-
tion was directly determined by the subtraction of the
current–voltage characteristic obtained under micro-
wave irradiation from the initial current–voltage char-
acteristic (Figs. 3b, 4b). At T = 3.4 K, in a certain cur-
rent range, ∆Ist(V) < 0, which corresponds to an
increase in the current-carrying capacity of the conden-
sate in response to an external microwave field. The
reproducibility of the effect for the current–voltage
characteristic in the presence of critical current with a
change in the temperature suggests that the microwave
radiation stimulates the superconductivity (the critical
current or the order parameter, which is insignificant in
the context of this experiment). Actually, for the cur-
rent–voltage characteristic without critical current, the
sign of ∆Ist(V) varies in an arbitrary way with a change
in the temperature and a change in the bias current
(Fig. 4b). The dependences Ic(T) (Fig. 6a) were
obtained from the current–voltage characteristics
(Fig. 5a, the reverse branches are not shown) and the
corresponding responses (Fig. 5b) measured at differ-
ent temperatures. For uniformity in determination of
the peak location, the dependences ∆Vres(V) of the
microwave response and the radiation-stimulated static
current–voltage characteristics ∆Ist(V) were processed
with a Gaussian distribution in order to approximate the
peaks. Figure 6a shows the temperature dependence
Im(T) of the current corresponding to a maximum of the
microwave response depicted in Fig. 5b, and the depen-
dence Ist(T) of the maximum current stimulated by the
microwave irradiation is displayed in Fig. 7.
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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3. CURRENT–VOLTAGE CHARACTERISTICS

The structure of In–opal can be represented as a
face-centered cubic lattice formed by nanostructures of
the grain–bridge–grain type. The resistive state of this
nanostructure will be taken to mean the state when the
flowing current is larger than the critical current of a
bridge.

The current–voltage characteristic of the In–opal
composite (Fig. 2a) with Ic > 0 is adequately described

by the relationship V = (I 2 – )0.7. Such a hyperbolic
current–voltage characteristic is typical of a single
resistively shunted bridging Josephson junction [17].
On the other hand, similar behavior of the current–volt-
age characteristic is observed in superconducting films
with a regular lattice of pinning centers when the lat-
tices of magnetic vortices and spinning centers are
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Fig. 3. (a) Microwave responses for the direct (solid line)
and reverse (dashed line) branches of the current–voltage
characteristic (dot-and-dash lines show the contours of the
curves corresponding to a Gaussian distribution). (b) Differ-
ences in the current–voltage characteristics obtained with-
out and under microwave radiation for the direct (solid line)
and reverse (dashed line) branches (dot-and-dash line shows
the Gaussian contour). T = 3.40 K.
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commensurable [18]. For a two-dimensional lattice of
Josephson junctions, a hyperbolic current–voltage
characteristic corresponds to the junctions with zero
McCumber parameter [19], i.e., to bridges with a very
low resistance and capacitance. Evidently, the fact that
the current–voltage characteristic has hyperbolic
behavior is not sufficient to elucidate the mechanism of
its formation. However, the shape of the current–volt-
age characteristic gives grounds to assume that the sys-
tem of indium grains in opal is regular from the view-
point of both geometric sizes and the parameters of
intergranular links and/or circuits.

Knowing the resistance of the sample and its geo-
metric cross-section, we estimated the resistance of a
single bridge in the normal state near the transition tem-
perature as Ri ≈ 0.5 Ω. These bridges are characterized
by a high transparency and can be considered within
the classical approach to the conductivity [20, 21]. In
the general case, the conductivity of single bridging
junctions at I > Ic can be described in the framework of
the Andreev multiple reflection model [21]. However,
this theory cannot be directly applied to the charge
transfer in the lattice of multiply connected grains,
because the grain sizes are comparable to the coherence
length ξ and are substantially less than the relaxation
length of quasiparticles.

As the initial approximation, the bridges between
the adjacent grains are treated as short (L < 100 nm) and
narrow neckings of variable cross-section (the mini-
mum diameter db ~ 15 nm) between superconducting
grains. The junction length is considerably less than ξ,
which, in bulk indium, is equal to ξ0 = 360 nm. It was
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Fig. 6. (a) Dependences of the critical current for the direct Icu
and reverse Icd branches of the current–voltage characteristics
and the current Im at a maximum of the microwave response
on the temperature. (b) Resistive transition in the In–opal
composite. Arrows indicate the transition temperatures
obtained by the extrapolation of the data shown in Fig. 6a.
P

demonstrated that, in the case when the ratio between
the width of the Josephson bridge necking width and
the coherence length is small (d / 2ξ ! 1), the size of
the region in which the order parameter is suppressed is
comparable to the minimum width of necking and does
not depend on the coherence length [22]. It is obvious
that this ratio holds for the indium–opal nanostructures.
The current–phase relationship for these bridges is
purely sinusoidal, as is the case of tunnel junctions. By
assuming that the critical current of a lattice is deter-
mined by the suppression of superconductivity in
bridges, it should be taken into account that the critical
current density in a bridge increases with a decrease in
its diameter jci ~ ξ /d [22] and should be larger than the
critical current density in a bulk superconductor. How-
ever, the estimate of the critical current density jci in a
bridge from Ic = 280 mA (the direct branch of the cur-
rent–voltage characteristic at T = 3.4 K) and the number
of bridges connected in parallel in the sample cross-
section N ≈ 4 × 106 leads to jci ≈ 108 A/m2, which is
close in the order of magnitude to the critical current
density of bulk indium. On the other hand, since
dO, T < ξ, the grains cannot serve as massive “banks,”
and, hence, their critical parameters depend on the state
of bridges. This means that the difference in critical
currents of grains and bridges cannot be large.

The experimental dependence Ic(T) is close to linear
(which is in agreement with the relationship Ic ~ 1 – T/Tc

obtained in [22] for short narrow bridges), but exhibits
a weak kink at T ≈ 0.9Tc. This kink is characteristic of
the superconductor–opal composites (see, for example,
[10, 23]) and can be explained by the correlation
between ξ and the unit cell parameter. The critical tem-
perature Tc1 = 3.45 K determined from the intersection
of the asymptotics of Ic(T) with the T-axis is the same
for the direct and reverse branches of the current–volt-
age characteristic (Fig. 6a), which suggests that the
mechanism of resistivity is identical for both branches
of the current–voltage characteristic.

The data discussed above result in a discrepant pic-
ture of the resistive state: (i) according to the current–
voltage characteristic of the lattice, the resistive state
embraces an appreciable current range, whereas the
critical currents of grains and bridges should be close to
each other; (ii) the current suppression of superconduc-
tivity in bridges gives no reasons for an anomalous hys-
teresis in the current–voltage characteristic; and
(iii) the Ic current of the lattice per one bridge is consid-
erably less than the geometry-allowed current. In order
to resolve these contradictions, it is necessary to take
into consideration the interaction between single nano-
structures.

4. MICROWAVE RESPONSE
The response of the indium–opal composite to the

microwave radiation can be caused neither by the clas-
sical rectification, because the ∆Vres(V) dependence is
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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not proportional to dV(I) / dI, nor by the Josephson fre-
quency-selective rectification, since the location of a
maximum in the ∆Vres(V) dependence varies with tem-
perature at a constant radiation frequency. Most likely,
the observed response is the Josephson wide-band
response. The rectification through this mechanism
requires that the ensemble involves bridges in the resis-
tive state.

The observed responses ∆Vres(V) are qualitatively
similar to each other in the entire studied range of tem-
peratures and currents. The width of the microwave
response range is the sole parameter varying in a regu-
lar way. For the current–voltage characteristic with Ic = 0,
the microwave response is observed at any current in
the resistivity range (Fig. 4). In the case of the current–
voltage characteristic with Ic > 0, the width of the peak
monotonically decreases with a decrease in the temper-
ature (Fig. 5b), as contrasted to an increase in the volt-
age range of resistivity in the current–voltage character-
istic. Note that the width of the response range for the
reverse branch of the current–voltage characteristic is
somewhat less than that for the direct branch (Fig. 3a).

Reasoning from these facts, we believe that the
maximum of the microwave response corresponds to
the current at which a relatively large fraction of
bridges is in the resistive state. We also suppose that, in
the response range ∆Vres(V), the relationship Icbridge < I <
Icgrain is valid, at least, for a part of bridges. A narrowing
of the response range with a decrease in the tempera-
ture indicates that Icbridge  Icgrain according to the
inference drawn from analysis of the bridge structure.

The critical temperature Tc2 = 3.7 K, which is deter-
mined from the asymptotic of the Im(T) dependence, is
higher than the temperature Tc1 = 3.45 K obtained from
the asymptotics of the Ic(T) dependence (Fig. 6a). This
implies that the transition to the superconducting state
involves two stages. Let us demonstrate that the differ-
ence resides in the state of weak links. A comparison of
the Tc1 and Tc2 temperatures with the R(T) curve of the
resistive transition (Fig. 6b) shows that the former tem-
perature corresponds to the resistive transition temper-
ature, and the latter temperature, to the onset of resis-
tance fluctuations (the R(T) dependence was discussed
in [24]). In the temperature range between Tc1 and Tc2,
the current–voltage characteristic exhibits a pro-
nounced nonlinearity (Fig. 2b). It is clear that, in the
fluctuation pairing mode, the lattice contains supercon-
ducting and nonsuperconducting regions whose bound-
aries are responsible for the microwave response.

In the case of the resistive state of bridges, the oscil-
lating current of quasiparticles in a single bridge neces-
sarily modulates the current flowing through the adja-
cent bridge; i.e., the oscillations of voltage (order
parameter) in the adjacent bridges are phase-locked
through the injection of quasiparticles. At the same
time, the branching of current flow paths (Fig. 8) can
bring about the cross-locking of the lattice as a whole.
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In the lattice of identical bridges, the effect of phase-
locking can be very strong. In the presence of lattice
defects, the phase-locking is lost, and the number of
bridges phase-unlocked by one defect depends on the
path length of quasiparticles. In the case under consid-
eration, the small amplitude of response and the
absence of sharp peaks with a change in the voltage
across the sample indicate that the oscillations of qua-
siparticle current are phase-uncorrelated. Therefore,
the lattice of weakly linked grains, which is ordered rel-
ative to the low-frequency processes, can be considered
the so-called Josephson glass with respect to the high-
frequency processes.

As follows from analysis of the microwave response
of the indium–opal composite, the critical current of the
lattice is determined by a mechanism unrelated to the
suppression of superconductivity in bridges, and the
bridges undergo a transition to the resistive state when
the currents considerably exceed the critical current of
the lattice.

5. DISTRIBUTION OF CURRENT 
OVER THE LATTICE

The close packing of grains in the lattice (the unit

cell parameter f = D ≅ 360 nm ~ ξ) provides a means
of describing the vortex dynamics in the indium–opal
composite within both the continual and discrete
approaches. The continual approach was used by
Babaev and Ktitorov [25], who treated the lattice of
Abrikosov vortices and the lattice of grains as incom-
mensurable phases; however, the current–voltage char-
acteristics were not considered. We will adhere to the
discrete approach under the assumption that vortices in
their ordinary sense are absent in the indium–opal com-
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Fig. 8. Schematic representation of the structure of current-carrying paths in the In–opal lattice. The O-grains located in the (110)
planes outside the figure plane are hatched. Current flowing along the path shown by dashed lines in the [011] direction produces
the magnetic field in the [011] direction due to tracing the circuits.
posite, because the size of indium grains corresponds to
the London penetration depth of a magnetic field λ0 =
65 nm and is appreciably less than ξ = 360 nm.

The morphology of the material (Fig. 1) is such that
the current flow can be considered as a periodic branch-
ing and merging of current-carrying paths at sites of
grain lattice. The magnetic field produced by the cur-
rent affects the interference of the wave functions of
carriers by introducing the phase difference in tracing
the circuits. Hence, the quantization of the magnetic
flux imposes some restrictions on possible paths of the
superconducting current and magnitudes of circuit cur-
rents. This gives rise to the self-consistent state, which
is characterized by a nonuniform distribution of the
current throughout the cross-section of the lattice due
to the interaction between circuits. This interaction
involves circuits whose perimeter allows the wave
function of carriers to retain the phase in tracing the cir-
cuit, and the weak links involved in the circuits are in
the superconducting state. This distribution of current
over the lattice will be referred to as the lattice of circuit
currents.

Since the circuit currents are self-consistent, the lat-
tice volume is divided into regions, and the transport
current flows along their boundaries. The size of a
region should be large enough for the circuit to include
up to several flux quanta. The accumulation of mag-
netic flux in a circuit is likely limited by the condition
for the retention of superconductivity by weak links,
because the resistive link frustrates the interference. By
definition, the lattice of circuit currents is commensura-
ble with the grain lattice. As the current increases, these
regions undergo a further division to increase the cur-
P

rent-carrying capacity of the lattice. At the instant of
rearrangement, the lattice of circuit currents becomes
unstable; i.e., this lattice can undergo not only division,
but also displacement relative to the lattice of grains. A
decrease in the circuit size brings about a decrease in
the spread of the parameters of weak links involved in
the circuit, which becomes more stable to an increase in
the magnetic field. The displacement of circuit currents
is caused by the Lorentz forces. These forces acting on
a circuit current at any nonzero value are induced by the
other circuits, because the planes of circuits with differ-
ent configurations are rotated in the face-centered lat-
tice (Fig. 8). The displacement of magnetic flux pro-
duced by the lattice of circuit currents is accompanied
by the dissipation of energy and the appearance of volt-
age across the junctions. The structural defects of opal
and the thermal fluctuations also favor the “melting” of
the circuit current lattice. Consequently, the critical
current determined from the current–voltage character-
istic is the critical current corresponding to the onset of
the motion of the magnetic flux. However, the motion
of magnetic flux is also attended by a further division of
the circuit current lattice to the minimum possible size.
As is known from the experiments on the penetration of
the magnetic field into the indium–opal composite [11],
the circuits whose diameters change by a factor of
twenty are involved in the process. When the current
becomes sufficiently large to destroy the superconduc-
tivity of bridges, the lattice as a whole transforms into
the normal state.

The change in sign of the current gradient brings
about the enlarging of circuits rather than their division.
It is evident that, compared to the “wide-mesh” lattice,
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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the “fine-mesh” lattice is capable of carrying a larger
amount of current, because the limiting magnetic flux
trapped in the latter lattice is larger. The discreteness of
the magnetic flux results in the delay of the lattice trans-
formation to the wide-mesh state, which is responsible
for the irreversibility of the current–voltage character-
istic and anomalous hysteresis.

6. MICROWAVE STIMULATION 
OF SUPERCONDUCTIVITY

The stimulation of superconductivity by an external
microwave field is associated with an additional contri-
bution of the Cooper pairs to the current flow in an
ensemble under external irradiation (Fig. 3). It seems
likely that the stimulation effect can be interpreted as an
increase in the flux trapped in a circuit due to the stim-
ulation of the order parameter, as is the case of the
microwave-induced superconductivity in thin super-
conducting cylinders [26].

The temperature dependence Ist(T) of the maximum
stimulated current in the temperature range T < Tc is
limited from below by the Ic(T) dependence (Fig. 7).
This implies that the manifestation of the stimulation
effect requires a branched system of current flow paths
in the lattice. On the other hand, the Ist(T) currents do
not exceed the Im(T) currents; i.e., the microwave stim-
ulation is observed in the range of currents at which the
bridges are predominantly in the superconducting state
and the system of circuit currents is not disturbed. In
this range, the microwave field enhances the stability of
weak links with respect to the suppression of supercon-
ductivity by current and, hence, provides a way of trap-
ping a larger number of magnetic flux quanta by a cir-
cuit. Thus, the fact that the Ist(T) currents are interme-
diate between the Ic(T) and Im(T) currents indicates the
correlation between the microwave stimulation and the
stability of circuit current lattice.

No stimulation of superconductivity is found in the
reverse branch of the current–voltage characteristic,
which can be a consequence of the masking effect of
heat release. For the current–voltage characteristic
without critical current, the resistivity has a different
nature: the circuit currents are absent in the lattice, the
stable superconducting state is not observed, and the
stimulation effect does not manifest itself.

Therefore, the application of the microwave
response allowed us to distinguish between the resistive
state of the lattice consisting of multiply connected
indium nanostructures in the opal matrix as a whole and
the resistive state of nanostructures comprising the lat-
tice. It was demonstrated that, first, the critical current
of the lattice is not associated with the suppression of
superconductivity in the nanostructures forming the lat-
tice, and, second, the superconductivity in nanostruc-
tures can be stimulated by the external microwave field,
but this effect does not lead to an increase in the critical
current in the lattice as a whole. The proposed model
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describes the resistive state of the lattice of weakly
linked superconducting grains as a result of the self-
consistent change in the distribution of the transport
current over the lattice. The critical current in the
indium–opal composite is determined by the displace-
ment of the lattice of circuit currents with respect to the
grain lattice, and the resistive state of the indium–opal
composite is predominantly caused by the quasi-con-
tinuous rearrangement and displacement of the circuit
current lattice. A nonequivalent configuration of circuit
currents upon change in the sign of the transport current
gradient is responsible for the anomalous hysteresis of
the current–voltage characteristic. The external micro-
wave field enhances the stability of circuit currents due
to an increase in the critical current of nanostructures,
which results in an additional contribution to the cur-
rent flow in the ensemble.

The shape of the current–voltage characteristic is
determined by a collective effect—the interaction of
circuit currents in the ordered lattice. The range in
which this effect is stable is determined by the current
required for the transformation of weak links into the
resistive state. At the same time, the achieved degree of
crystallinity of the lattice is not sufficient to provide the
locking of the lattice with respect to the high-frequency
process (microwave response) due to the nonidentity of
the parameters of bridges in the resistive state. It seems
likely that the phase locking of the dynamic response of
junctions requires the fulfillment of considerably more
rigorous constraints for the lattice ordering and the cou-
pling of bridges with an external field.
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Abstract—An Auger electron spectroscopy study is reported of the elemental depth profile of Y–Ba–Cu–O
HTSC targets subjected to ion-plasma sputtering in a magnetron deposition system and ion-beam sputtering in
the Auger spectrometer chamber. It has been established that the process consists in all cases of predominant
copper sputtering accompanied by the formation of a modified surface layer and of a copper-depleted region.
This region is assumed to originate from intense copper diffusion from the bulk to the modified surface layer
driven by a concentration gradient. © 2000 MAIK “Nauka/Interperiodica”.
An analysis of composition-property diagrams [1–4]
revealed that Y–Ba–Cu–O (YBCO) superconducting
films prepared in situ have optimum superconducting
properties not at the stoichiometric composition,
YBa2Cu3O7 – δ, but rather when enriched heavily in
copper and, less strongly, in yttrium (in the region of
the Cu/Ba ≈ 2.2–3.5 and Ba/Y ≈ 1.0–1.5 atomic ratios,
respectively). The fact is that at close-to-stoichiometric
compositions, there is a high probability of cationic dis-
ordering to set in the YBCO unit cell (substitution of
barium for yttrium and creation of copper vacancies),
processes that distort the lattice and degrade seriously
the superconducting properties of a film [2, 5]. As a
result, stoichiometric YBCO films with a “smooth” sur-
face (by [3], deviations from the 123 composition
should not exceed 1%) exhibit poorer electrical charac-
teristics [6–8]. On the other hand, an excess of copper
and yttrium in YBCO films with good electrical param-
eters precipitates in the form of particles of secondary
phases, whose presence is extremely undesirable for
most technical applications. Thus, the cationic compo-
sition determines practically all properties of YBCO
films, namely, the electrical parameters, microstruc-
ture, phase composition, and surface morphology. Note
that the compositions optimum for various parameters
of the YBCO films do not coincide. Preparation of
YBCO films with preset properties is obviously possi-
ble only if one properly understands the specific fea-
tures of formation of the cationic composition of films
in the course of their growth. This relates primarily to
the methods of YBCO film fabrication that employ
multicomponent monosources of material (laser-
induced evaporation and ion sputtering), because, in
this case, unlike the MOCVD and co-evaporation tech-
nologies, there is no possibility of controlling the emis-
sion of each component. However, monosource-based
deposition systems are presently enjoying widespread
use, primarily due to their simplicity and reliability; the
1063-7834/00/4204- $20.00 © 20603
cylindrical magnetron sputtering system (ICMS) [9]
may serve as an example.

One of the reasons that could account for the devia-
tion of the film composition from the starting composi-
tion of a multicomponent target in ion sputtering is the
variation of the target composition through preferential
sputtering and selective diffusion of components from
the bulk of the target into the modified surface layer
[10]. The present work studies the variation of the
YBCO target composition in the course of magnetron
sputtering in an ICMS system, as well as a result of ion-
beam sputtering in an Auger spectrometer.

1. EXPERIMENTAL
The variation of the elemental composition of

YBCO targets was studied with an ÉSO-3 Auger elec-
tron spectrometer. The energy of the probing electron
beam was 3 keV, and the detection region diameter,
5 µm. The residual pressure in the analytical chamber
did not exceed 5 × 10–8 Pa. We analyzed the Auger lines
of Y (126 eV), Ba (600 eV), and Cu (920 eV). The KIB-1
ceramic (TU 48-0531-390-88) of the YBa2Cu3O7 – δ
composition, which was the starting material for the
targets, served as a reference. Because the diameter of
the Auger detection region was ~5 µm, and the most
probable grain size of the KIB-1 ceramic was ~1 µm, it
was assumed that local inhomogeneities would not
affect the results of measurements. We studied the vari-
ations of the YBCO target composition that were pro-
duced by ion-beam sputtering directly in the Auger
spectrometer and by magnetron sputtering in the ICMS
system. The changes in the cation composition of the
YBCO targets subjected to ion-beam sputtering were
studied by layer-by-layer analysis. We have described
the technique of a high-resolution layer-by-layer Auger
analysis employed in this work in detail elsewhere [11].
The elemental depth profile was obtained by sputtering
000 MAIK “Nauka/Interperiodica”
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the surface of a stoichiometric YBa2Cu3O7 – δ target by
a 2-keV Ar+ ion beam incident at an angle of 46°. The
ion current density at the target was ~15 µA/cm2. The
diameter of the sputtered region was ~2 mm. The target
sputtering rate in this regime was ~4 nm/min. Opera-
tion in this mode produces noticeable compositional
changes in the near-surface layer of the target, which
are caused by preferential sputtering. The power den-
sity released at the target in magnetron sputtering was
~14 W/cm2, the target voltage was ~150 V, and the
working gas pressure was ~40 Pa. The target sputter-
ing rate in this regime was ~150 nm/min. One per-
formed elemental analysis of targets with erosion zones
1.5 and 3.5 mm deep. To make a comprehensive inves-
tigation of the composition profile in the modified sur-
face layer of the targets subjected to magnetron sputter-
ing, one carried out layer-by-layer Auger analysis of
samples in the region of the erosion zone by sputtering
the surface away with a 0.5-keV Ar+ ion beam incident
at an angle of 46°. The measurements made with the
reference revealed that the changes in the YBCO target
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Fig. 1. Elemental depth profile of YBCO targets subjected to
ion sputtering: (a) ion-beam sputtering, (b) magnetron sput-
tering (erosion zone depth 3.5 mm).
P

composition introduced by the layer-by-layer analysis
in this regime are negligible compared to those pro-
duced by magnetron sputtering. The composition pro-
file at larger depths was studied by layer-by-layer
Auger analysis of samples with sputtering ions of
2 keV energy. The sputtering rate in the layer-by-layer
analysis was calibrated in all cases against a YBCO film
of known thickness. To investigate the bulk composi-
tion profile of targets subjected to magnetron sputter-
ing, cross cuts of target elements in the region of the
erosion zones were made. The spatial distribution of the
Cu/Ba concentration ratios were obtained by measur-
ing the peak-to-peak signal intensities of the elements
along the surface of the cross cut. A cross cut of the
KIB-1 ceramic was employed as a reference.

2. RESULTS OF THE EXPERIMENT

Consider first the variation of the cation composi-
tion in a YBCO target, produced by ion-beam sputter-
ing. Figure 1a presents an elemental depth profile of a
target derived from a layer-by-layer analysis. One
readily sees that this regime of YBCO target sputtering
results in a preferential sputtering of copper and
yttrium. It is known that preferential sputtering is
observed in the case of multicomponent targets where
individual components are sputtered in amounts not
proportional to the surface concentration of an element
and is due primarily to the following factors: (i) a dif-
ference in the atomic mass of the target components,
which results in different lengths of the collision cas-
cades, and (ii) a difference in surface or chemical bind-
ing energy among the target components [12]. Prefer-
ential removal of one of the components from the sur-
face gives rise to the formation of the so-called
modified surface layer. At temperatures low enough to
make diffusion from the bulk negligible, the modified
layer retains a fixed thickness, thus making it possible
to reach equilibrium conditions at which the sputtered
amount of each component is proportional to the bulk
concentration of the latter. In this case, the composition
of the material lost from the target will be the same as
that of the bulk. The situation changes if, at high
enough temperatures and/or high diffusion coefficients,
the concentration gradient thus produced makes the
mass transport of one of the components from the bulk
to the modified surface layer prevail over the depletion
caused by preferential sputtering. This means that the
sputtering is no longer at equilibrium, i.e., the compo-
sition of the material being sputtered is no longer the
same as in the bulk, and the bulk composition changes
continuously. As seen from Fig. 1a, a modified barium-
enriched surface layer ~50 nm thick forms in our case.
However, equilibrium sputtering conditions are not
attained. As the target sputtering continues, the surface
layer exhibits a noticeable decrease of the copper con-
centration (from ~43 down to ~37%) and, accordingly,
an increase in the yttrium concentration. This implies
the existence of copper mass transport from the bulk to
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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the modified surface layer driven by the concentration
gradient. As evident from Fig. 1a, the copper-depleted
region extends to ~200 nm in depth.

The data obtained permit one to estimate the relative
sputtering coefficients and relative surface binding
energies of the YBCO components, as well as the cop-
per diffusion coefficient. In the case of preferential
sputtering of a multicomponent material, the following
relation holds [12]:

(1)

where  is the component sputtering coefficient, and

ci and  are the bulk and surface concentrations of the

ith component, respectively. We shall take for  the
concentrations at a depth ~50 nm of the modified sur-
face layer (Fig. 1a), and for ci, the stoichiometric con-
centrations of the YBCO components (cY = 17%, cBa =
33%, and cCu = 50%). Equation (1) yields the following
relations for the sputtering coefficients of the YBCO
components:

Because the sputtering ion energy (2 keV) lies in the
range where linear cascades can be initiated, one can
use the Andersen–Sigmund model [13], by which

(2)

where Mi and Ui are the mass and surface binding
energy of the atom of the ith component, and m is a
parameter depending on the incident ion–target atom
interaction potential; typically, 0 ≤ m ≤ 0.2. We set in
our calculations m = 0.2, i.e., we assume that besides
the surface binding energy, the preferential sputtering
process is affected also by the mass factor, because the
mass of copper atoms is less than that of yttrium atoms
approximately by a factor 1.5, and less than that of the
barium atoms, by more than a factor of two. Using the
sputtering coefficient ratios derived from (1), we obtain
from (2) the following surface binding-energy ratios for
the YBCO components:

The copper diffusion coefficient D can be estimated
using the diffusion models of Pickering (thermal diffu-
sion) [14] and Ho (thermal and radiation-enhanced dif-
fusion) [15]. By these models, the effective thickness of
the depleted zone forming as a result of diffusion of one
of the multicomponent target components toward the
modified surface layer can be written as

(3)

where u is the target erosion rate. In our case, the target
sputtering rate in the layer-by-layer analysis regime
u = 4 nm/min. In accordance with the data of Fig. 1a,
δ ≈ 200 nm, which yields D = 1.3 × 10–11 cm2/s.

YA
c /YB

c cA/cB( )/ cA
s /cB

s( ),=

Yi
c

ci
s

ci
s

YCu
c /YY

c 1.75, YCu
c /YBa

c  = 1.68, YBa
c /YY

c  = 1.04.=

YA
c /YB

c MB/MA( )2m UB/UA( )1 2m– ,=

UY/UCu = 2.02, UBa/UCu = 1.42, UY/UBa = 1.43.

δ D/u,=
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Consider now the changes in the cation composition
produced by magnetron sputtering in a YBCO target.
Figure 1b presents an elemental depth profile of a
YBCO target with a ~3.5-mm deep erosion zone,
obtained by layer-by-layer analysis. As was already
mentioned, this analysis does not affect the profile
resulting from magnetron sputtering. An analysis of the
data obtained permits the following conclusions. The
layer from the surface to a depth of ~4 nm is apparently
formed by the material deposited on the target surface
through back diffusion from the working gas after the
discharge turnoff. The reverse flows onto the target
must be quite substantial, because straightforward esti-
mation of the lengths of directed motion of the sput-
tered YBCO component atoms yields about 1 mm for
the working gas pressures used (~40 Pa). The next 2 nm
in the elemental depth profile correspond to the modi-
fied surface layer depleted in copper. Hence, the mag-
netron sputtering regime employed, as well as the ion-
beam sputtering, is characterized by preferential copper
removal. As seen from Fig. 1b, the composition of the
target bulk differs strongly from the original stoichio-
metric one (cY = 17%, cBa = 33%, cCu = 50%). This indi-
cates that the equilibrium sputtering conditions were
not reached. Just as in the case of ion-beam sputtering,
we have here copper diffusion from the bulk of the tar-
get to the modified surface layer. The data of Fig. 1b
permit one now to calculate the relative sputtering coef-
ficients of the YBCO components using Eq. (1):

The data of Fig. 1b make possible also the determina-
tion of the surface binding energies of the YBCO com-
ponents. Because the sputtering-ion energy in the mag-
netron process (~150 eV) lies below the energy range
where the linear cascade theory [13] is valid, we shall
use for the calculations the model of Kelly [16]. This
model postulates a change in the composition of the
outermost monolayer only, whose atoms are imparted
energy in the course of sputtering in the same way as
the adsorbed ones are. We believe that this model better
reproduces the magnetron sputtering conditions in the
given regime, because a substantial part of the sputtered
material returns back to the target surface through back
diffusion in the working gas and is again resputtered
when in the adsorbed state. By the model of Kelly, we
have

(4)

where γ = 4MA/MB/(MA + MB)2. Calculations using (4)
yield

The difference of the surface binding energy ratios
from the results obtained from (2) reflects the above-
mentioned specific features of the state of the target
surface under magnetron sputtering in the regime cho-
sen. We see that the surface binding energy of copper

YCu
c /YY

c 2.55,  YCu
c /YBa

c 1.90,  YBa
c /YY

c 1.34.= = =

YA
c /YB

c cA cBγ+( )/ cB cAγ+( )[ ] UB/UA( ),=

UY/UCu 2.56,  UBa/UCu 1.96,  UY/UBa 1.33.= = =
0
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atoms is here still lower than that found for an unper-
turbed target.

A layer-by-layer Auger analysis of the target with an
erosion zone 3.5 mm deep made with 2-keV Ar+ sput-
tering ions showed the regions of diffusive depletion in
copper to lie deeper than 1.5 µm. Therefore, cross cuts
of the target elements in the region of the erosion zone
were made in order to probe the bulk composition pro-
files of the magnetron-sputtered targets. The spatial dis-
tribution of the Cu/Ba concentration ratios was studied
by measuring the peak-to-peak signal intensities along
the surface of the cross cut. Figures 2a and 2b present
the Cu/Ba ratios (in formula units) in the bulk of targets
with erosion zones 1.5 and 3.5 mm deep, respectively.
The dashed line corresponds to the reference value
Cu/Ba = 1.5 measured on a cut of the KIB-1 ceramic.
The error bars refer to the maximum allowable devia-
tions of the Cu/Ba ratio as specified by TU 48-0531-
390-88 Technical Requirements (~7%) for the KIB-1
ceramic. The solid curve in Fig. 2b is a plot of a second-
degree smoothening polynomial. The results obtained
permit the following conclusions. Magnetron sputter-
ing produces considerable changes in target composi-
tion to a substantial depth. The target with an erosion
depth of 1.5 mm (Fig. 2a) revealed a depletion in cop-
per to a depth on the order of 100 µm, and the copper
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content at the surface of the erosion zone is about 90%
of that in the reference. In the target with a 3.5-mm
deep erosion zone (Fig. 2b), copper depletion is seen
to exist throughout the remaining part of the target
(~1000 µm), with the copper content at the surface not
exceeding 30% of the reference. In the surface region,
these results agree well with the figures obtained in tar-
get studies by the layer-by-layer Auger analysis. Using
the data of Fig. 2a, one can estimate the copper diffu-
sion coefficient D from (3). For δ = 100 µm, we obtain
D ≈ 2.5 × 10–9 cm2/s. At the same time, the data of
Fig. 2b suggest that if the target is eroded to a depth of
3.5 mm, a steady-state sputtering regime (i.e., with
δ = const) has not been reached at all.

3. DISCUSSION OF RESULTS

The values of D and δ presented here imply that
both in magnetron and in ion-beam sputtering of YBCO
targets, copper diffuses intensely from the bulk of the
target to the modified surface layer. For comparison,
consider the results obtained in a study of the concen-
tration profile of a 52 at. % Ni–Cu alloy following its
bombardment by 500-eV Ar+ ions [17]. At a target tem-
perature of 400°C and a fluence of 7.5 × 1017 cm–2, a
copper-depleted layer with δ ≈ 3 µm forms in the sur-
face region, which corresponds to a copper diffusion
coefficient D ≈ 10–13 cm2/s. Our values of D are higher
by nearly two orders of magnitude in the case of ion-
beam sputtering, and by four orders of magnitude for
magnetron sputtering. One should apparently take here
into account the specific structural features of the
YBCO target, which represents fritted ceramic with a
density of ~4.5 g/cm3. The calculated density of the sin-
gle-crystal YBa2Cu3O7 – δ is ~6.3 g/cm3. This implies
that a large fraction of the target volume is occupied by
pores and, hence, intense diffusion can take place in the
bulk over the grain surfaces.

The conclusion of the existence of mass transport in
the bulk of a YBCO target under ion-beam sputtering in
an Auger spectrometer was fairly unexpected, because
a target subjected to the above-mentioned layer-by-
layer analysis is practically not heated. The diffusion in
this case has apparently a radiation-induced character.
We cannot rule out the possibility that the monotonic
nature of the elemental profile at depths of about 50 nm
(Fig. 1a) is due to an increase in the diffusion coeffi-
cient associated with a buildup of radiation defects. It
should be noted that the Ho kinetic model of preferen-
tial sputtering used here to estimate the diffusion coef-
ficients assumes, in addition to the conventional ther-
mal, a radiation-enhanced diffusion. Additional experi-
ments are planned in order to confirm the existence of
mass transport in the bulk of YBCO targets subjected to
ion-beam sputtering in the given regime.

As for the reasons behind the noticeable copper
mass transport in YBCO targets under magnetron sput-
tering, no comprehensive explanation could be pro-
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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posed for this phenomenon at this stage of the investi-
gation. First of all, one should take into account that a
YBCO target subjected to magnetron sputtering in the
given regime can be heated to fairly high temperatures.
Estimates of the target temperature range from 150 to
500°C. In these conditions, diffusion is more intense. In
addition, we believe that magnetron sputtering in this
regime could initiate generation of diffusion-stimulat-
ing defects, namely, radiation defects themselves and
oxygen vacancies. Radiation-enhanced diffusion
appears to cause substantial changes in the composition
of a multicomponent target under ion-beam sputtering
if the target temperature lies within the range 0.2 ≤ T ≤
0.6Tm, where Tm is the melting point [18]. Considering
that, for the single-crystal YBCO Tm ≈ 950°C [19], and
taking into account the above target temperatures, this
relation is satisfied in our case. Formation of oxygen
vacancies is characteristic of the YBCO material. It is
known that various factors, including fairly soft ones,
are capable of stimulating oxygen loss and formation of
oxygen vacancies in Cu–O chains in the YBCO unit
cell [20–23].

Thus, both in magnetron and ion-beam sputtering,
the high porosity of YBCO targets is apparently capa-
ble of stimulating intense diffusion over the grain sur-
faces, while the grain bulk diffusion is initiated by the
formation of radiation defects and oxygen vacancies. In
the conditions of magnetron sputtering, the diffusion
rate is higher because of target heating. All this
accounts for the anomalously high diffusion coeffi-
cients found in our experiments.

The data presented in this study show that the
noticeable changes in the composition of a multicom-
ponent target resulting from selective diffusion from
the bulk to the modified surface layer are phenomena
typical of YBCO film preparation by ion sputtering in
general and by the magnetron process in particular.
This emphasizes the importance of understanding how
the changes occurring in the target composition can
affect the properties of thin YBCO films. First of all,
one has to stress once more that the superconducting
characteristics of YBCO films become optimum in the
region of compositions heavily enriched in copper (to
an atomic ratio Cu/Ba ≈ 2.2–3.5). Also, the supercon-
ducting properties of YBCO films vary insignificantly
with the composition changed from the above figure to
stoichiometric values and become dramatically
degraded only when the copper content drops below the
stoichiometric level [2, 5]. One may conjecture that the
magnetron process, due to the preferential copper sput-
tering occurring for a long time (tens of hours [24–26]),
produces YBCO films enriched in copper and, hence,
with close-to-optimum superconducting properties. We
also believe that besides the preferential copper sputter-
ing, the YBCO film composition is determined in a
large measure, if not primarily, by selective reevapora-
tion of barium from the condensation surface. We
showed [27] that, at substrate temperatures above
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
~700°C, YBCO films start to become noticeably
depleted in barium. By properly optimizing the sub-
strate temperature in accordance with the running tar-
get composition, one can prepare YBCO films with an
optimum composition and, hence, with optimum super-
conducting properties. We prepared high-quality thin
YBCO films (with a zero resistivity temperature of
~90 K and a critical current density of ~2 MA/cm2 at
77 K) even in the case where the copper content in the
bulk of the target did not exceed 50% of the stoichio-
metric value (Fig. 1b).

The results presented in this work and in [27–29]
permit one to classify the processes accounting for the
variation of the cationic composition of YBCO films
during their growth in the following way: (i) the use of
off-axis deposition systems (in particular, ICMS) rules
out variation of the cation composition in the bombard-
ment of the growing film by energetic particles (oxygen
ions and secondary electrons) accelerated in the field of
the target; (ii) the variation of the film cation composi-
tion through selective scattering and diffusion of sput-
tered YBCO component atoms in the working gas in the
typical film preparation conditions does not exceed
15% [28]; (iii) the variation of the film cation composi-
tion due to selective desorption of copper and barium
adatoms from the surface of a growing film under bom-
bardment by the plasma ions accelerated by the floating
substrate potential can reach as high as 30% [29];
(iv) the variation of the film cation composition, caused
by preferential sputtering and selective diffusion in the
bulk of a monotarget can reach 50%; (v) the variation
of the film cation composition induced by selective
reevaporation of barium from the surface of the grow-
ing film at a growth temperature of about 700°C [27] is
apparently the most significant factor, because it makes
it possible to prepare films with an optimum composi-
tion by properly varying the growth temperature within
a narrow interval, even if processes (i)–(iv) are opera-
tive.

Thus, the studies described in this paper have dem-
onstrated that an ion beam incident on a Y–Ba–Cu–O
HTSC ceramic target gives rise to preferential sputter-
ing of copper with formation of a copper-depleted mod-
ified surface layer. In the regimes conventionally
employed in ion-beam and magnetron sputtering, cop-
per diffuses from the bulk to the modified surface layer
because of a concentration gradient, which may change
substantially the target bulk composition. The anoma-
lously large diffusion coefficients may be apparently
accounted for by intense diffusion over the grain sur-
faces because of the high target porosity, and by the
onset of grain bulk diffusion stimulated by the forma-
tion of radiation defects and oxygen vacancies. The dif-
fusion observed under magnetron sputtering is more
intense due to the target heating. The results of this
work permit one to classify the processes occurring
during the growth of YBCO films and responsible for
their cation composition. Our present studies provide a
deeper insight into the processes involved in ion-beam
0
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sputtering of complex multicomponent and oxygen-
containing compounds. The results obtained can be
applied to reduce the total time of target sputtering
needed to prepare thin YBCO films of a given compo-
sition.
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Abstract—The diffusion of oxygen tracer atoms has is, and a diffusion-structural analysis is made of the oxy-
gen subsystem of the Sr2.4Ca1.6Bi2O8.8 oxide representing a copper-free precursor of bismuth high-Tc supercon-
ductors. The diffusion in this compound has been shown to be superanisotropic. It has been established that
superanisotropic diffusion in the oxygen subsystem of oxide systems, rather than being connected with the
high-temperature superconductivity and the existence of CuO2 planes, is accounted for by the general features
of their crystal structure. © 2000 MAIK “Nauka/Interperiodica”.
It has been established that the oxygen subsystems
of the yttrium- and bismuth-containing HTSC oxides
possess unusual diffusion properties, namely, a record-
high, at a level of 105–106, anisotropy in the diffusion
coefficients of oxygen tracer atoms and an anomalously
high oxygen mobility in the basal planes [1–4]. As a
result, Fick’s phenomenological equations turn out to
be insufficient for a description of diffusion processes
in single crystals of these compounds [5]. This
accounts for the HTSC oxides having been placed into
a specific class of superanisotropic diffusion systems
[5]. It appeared of interest to establish the extent to
which their anomalous diffusion characteristics are
related to the quasiplanar structure of the compounds,
their superconducting properties, and the presence in
their structure of CuO2-type planes. This has stimulated
our present study of diffusion in the Sr2.4Ca1.6Bi2Ox

oxide.

The choice of the subject was dictated primarily by
[6], where this compound was proposed to be consid-
ered as a copper-free precursor of bismuth-containing
HTSC oxides. The Sr2.4Ca1.6Bi2Ox bismuthite belongs
to perovskite-like Sr3.5 – yCa0.5 – yBi2O7 solid solutions,
with 0 ≤ y ≤ 1.1 (monoclinic structure, space group
c2/m [7]). A preliminary study of the temperature
dependence of the permeability of samples revealed no
superconductivity in this compound down to 4.2 K.

The traditional approach to such a problem assumes
using single crystals to study diffusion and carrying out
complex structural measurements of the compound by
means of X-ray, neutron, and electron diffraction tech-
niques, including those on single crystals. This work
followed an alternative approach based on the so-called
site-plane effect [8]. The phenomenon observed on the
1063-7834/00/4204- $20.00 © 20609
HTSC 123 yttrium oxide lies in consecutive filling by
18O atoms of energetically inequivalent lattice sites
under isochronous annealing of a sample in gaseous
oxygen enriched in the 18O isotope. The isotope
exchange kinetics are studied on polycrystalline sam-
ples [5, 8]. The possibility of observing the site-plane
effect is directly connected with the anomalous diffu-
sion in superanisotropic systems [5, 8]. This permits a
comprehensive description of diffusion in the object
under study without direct measurements of the diffu-
sion coefficient anisotropy.

Investigation of the site-plane effect can yield infor-
mation not only on the energy states of oxygen atoms,
but on the number of sites of each species as well, i.e.,
data on the atomic structure of the object. This has ini-
tiated an attempt at identification of the atomic struc-
ture of Sr2.4Ca1.6Bi2Ox by diffusion measurements. It
can be considered as a method of structural-diffusion
analysis. This approach obviously has a methodologi-
cal potential as well.

1. SAMPLES AND TECHNIQUES

1.1. Samples

The Sr2.4Ca1.6Bi2Ox bismuthite was prepared by a
technique described elsewhere [6] (annealing of a mix-
ture of the starting reagents at 850°C). The X-ray dif-
fraction pattern of the sample was identical with the
reference [6], thus indicating it to be single phase.

The powder was pressed into a cylinder 3 mm thick
and 10 mm in diameter. The samples were strengthened
by annealing for several hours in air at 850°C with sub-
sequent rapid cooling. Next, the pellets were annealed
for 4 hours in chemically pure oxygen at 700°C and a
000 MAIK “Nauka/Interperiodica”
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pressure of 0.21 atm, followed by rapid cooling. The
samples thus obtained were porous. The isotope
exchange in such objects was found to proceed with the
same kinetics in crystallites on the outer surface of the
samples and at a depth of tens of microns, which
implies that gaseous oxygen penetrated freely into the
intergrain space in the course of annealing.

The concentrations of the metallic components in
samples were not monitored and were estimated from
the weights of the starting powders. Following the rec-
ommendations of [6], the oxygen content in the
Sr2.4Ca1.6Bi2Ox samples was refined. It was found to be
x = 8.8. The measurements were made by the nuclear
microanalysis method (see Section 1.3).

1.2. Isochronous and Isothermal Anneals

Diffusion anneals were carried out in a quartz tube
at a pressure of 0.21 atm in an oxygen atmosphere
enriched in the 18O isotope to 80%. The isotope compo-
sition of the gas phase was constant for the duration of
annealing.

Isochronous anneals were carried out in the follow-
ing way. The samples were kept at the same tempera-
ture for 2 h, and the temperature of each subsequent
anneal was higher by 20°C than that of the preceding
one. In all, 28 isothermal anneals were carried out in the
400–940°C temperature range. After each anneal, the
sample was cooled down to room temperature, and the
concentration profiles of the oxygen isotopes were
measured. The time taken to reach a constant tempera-
ture did not exceed 10 min, and the cooling time was
approximately 1 min.

The isothermal anneals performed at temperatures
from 340 to 450°C and aimed at measuring the diffu-
sion coefficients made up a separate series. These
anneals lasted from 20 min to 5 h, and the other condi-
tions were the same as in the isotope exchange kinetics
studies.

The temperature was measured to within ±1°C with
a chromel–alumel thermocouple. The quartz tube used
in the anneals was placed inside a massive metal cylin-
der. As a result, there was no temperature gradient
within the above accuracy at the sample location.

1.3. Concentration Profile Measurements

The concentration profiles of the 16O and 18O iso-
topes were measured down to a depth of 1 µm by the
nondestructive technique of nuclear microanalysis.
This technique makes use of the 16O(d, p)17O* and
18O(p, α)15N reactions at primary-beam particle ener-
gies of 900 and 762 keV, respectively. The diameter of
the primary proton and deuteron beams was 1 mm, so
that a concentration measurement was actually an aver-
age over a large number of grains. The plane surface of
the samples was set at right angles to the axis of the pri-
mary beam, and the nuclear-reaction products were
P

detected at 160°. The energy spectra of protons and α
particles were measured with a silicon surface-barrier
detector with a diameter of about 10 mm and an energy
resolution of 20 keV. To absorb the back-scattered deu-
terons and protons, Dacron films 16 and 10 µm thick,
respectively, were placed in front of the detector. The
deuteron and proton beam currents during a spectrum
measurement were determined to within 0.6% with a
secondary monitor. The rms errors were less than 10%
for the lowest isotope concentrations, and 1% for the
high ones. The concentration profiles of the oxygen iso-
topes were derived from the spectra of the reaction
products using data on the stopping powers of the sys-
tem under study. These data were calculated with the
use of tabulated information on the pure components
and Bragg’s additivity rule [9]. More details on the con-
centration profile calculation can be found in [10, 11].

After the annealing, we systematically recorded
Rutherford backscattering spectra of deuterons at a
900-keV primary beam energy. The quality of these
measurements was not high enough to determine, with
an acceptable degree of accuracy, the content of all
metallic components. These measurements reliably
showed, however, that the average bismuth and stron-
tium concentrations in the grain surface layers (down to
a depth of ~1 µm) did not change to within an error of
1%.

2. RESULTS AND DISCUSSION

2.1. Isotope Exchange Kinetics in Isochronous Anneals

Figure 1 presents the oxygen isotope concentrations
measured in a Sr2.4Ca1.6Bi2O8.8 sample after isochro-
nous anneals. The relative 18O concentration A (at. %)
in the oxygen subsystem is reduced to the gaseous
phase enrichment factor by the 18O isotope taken as
100%, i.e.,

(1)

where c16 and c18 are the 16O and 18O concentrations in
the sample, respectively, and α = 0.8 is the 18O isotope
enrichment factor for the gaseous phase in the experi-
ments. The data relate to the sample surface. Above
550°C, the 18O isotope concentration did not practically
depend on depth. Thus, the results displayed in Fig. 1
characterize the whole depth range studied in the sam-
ple for T > 500°C.

The total oxygen concentration (c16 + c18) was
depth-independent in all experiments. At the same
time, the oxygen index of the Sr2.4Ca1.6Bi2Ox oxide var-
ied with increasing temperature, with x = 8.8 at 740°C
and x = 8.0 for the 760–880°C range. As the tempera-
ture was further increased, the value of x decreased
continuously. X-ray diffraction measurements detected
a structural rearrangement above 880°C, which was
accompanied by a change in the sample color. There-

A 100/α( )c18/ c16 c18+( ),=
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fore, our attention was subsequently focused on the
results obtained in anneals below 880°C.

The dependence of the ∂A/∂T function on tempera-
ture is presented graphically in Fig. 2. One readily sees
seven distinct peaks of isochronous annealing. Thus,
we have established a discrete character of the energy
spectrum, both for the equilibrium oxygen-atom states
and for the heights of the barriers separating the equi-
librium sites of various types. The spectrum in Fig. 2 is
close in its main characteristics (the peak heights,
widths, and spacing) to that obtained earlier for the
HTSC 123 yttrium oxide. This may indicate that the
oxygen subsystem of the compound under study con-
tains several types of geometrically and energetically
inequivalent sites, as is the case, for instance, with
HTSC oxides. Alternatively, the observed effect in a
solid solution could originate from differences in the
metal atom environments of the geometrically equiva-
lent sites occupied by oxygen atoms. In the first case,
the density of oxygen distribution over the sites is
determined only by the lattice structure of the com-
pound under study, and in the second, by metal atom
concentrations and the extent of long- or short-range

100

80

60

40

20

0
400 500 600 700 800 900 1000

T, °C

A, at%

Fig. 1. Relative 18O concentration in Sr2.4Ca1.6Bi2O8.8 vs
isochronous annealing temperature.
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order in the metal subsystem. These distributions can
be expected to be essentially different. Therefore, we
are going to analyze in what follows the concentrations
Ai of the 18O atoms reached at the moment of comple-
tion of each ith peak; these data are listed in the table.
Also shown for comparison are a scheme of 18O substi-
tutions for the 16O atoms in an HTSC oxide

Bi2Sr2CaCu2O8 + δ and the concentrations  calcu-
lated using this scheme for the compound. The table

also contains the temperatures  corresponding to
the maxima of the ∂A/∂T function for the ith peak, and
the activation energies Ei for the corresponding isotopic
exchange stages.

As seen from the table, the experimental and calcu-

lated values of Ai and  are in almost perfect agree-
ment. Some differences between the first and seventh
peaks appear insignificant. As already mentioned, the
last peak forms at the destruction of the lattice. More-
over, one cannot exclude the presence in the samples of
foreign phases in amounts of a few percent. As for the

Ai
cal

Tm
i( )

Ai
cal

1.0

0.8

0.6
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–0.2
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T, °C

∂A/∂T, at%(°C)

Fig. 2. Isochronous annealing peaks.
Characteristics of isochronous annealing peaks 

Peak no., i Ai, at % , at %
Planes and sites in the Bi2Sr2CaCu2O8 + δ 

lattice entered by 18O atoms in peak i , K Ei, eV

1 13.3 ± 0.5 15.90 Bi–O + δ/2 plane 708 –

2 20.9 ± 0.6 20.45 δ/2 763 2.3

3 31.7 ± 0.6 31.81 Bi–O plane 833 2.5

4 43.3 ± 0.8 43.17 SrO plane 903 2.7

5 50.8 ± 1.0 50.00 '' 988 3.0

6 75.0 ± 1.5 75.00 Two CuO2 planes, half of the sites 1063 3.2

7 94.6 ± 2.0 100.00 '' 1133 3.4

Ai
cal Tm

i( )
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first peak, the kinetics of its formation have a complex
pattern because of the influence of a surface energy bar-
rier (for more details, see Section 2.2), and the A1 con-
centration could be lowered for kinetic reasons.

Consider now the relation between the substitution
scheme proposed for the Bi2Sr2CaCu2O8 + δ compound
in the table and the isotope exchange kinetics in the
subject under study. The fast oxygen diffusion in HTSC
oxides is usually related with a modulation of the struc-
ture in the double Bi2O2 bismuth layers [12]. Taking
into account the absence in the compound under study
of CuO2 planes and the presence in it of bismuth in the
same compositional ratio with the other metal compo-
nents as in the HTSC lattices, it appears reasonable to
conjecture that, in the Sr2.4Ca1.6Bi2O8.8 compound, the
oxygen atoms also have the highest mobility on the
Bi−O planes. Judging from its position on the tempera-
ture scale, it is peak 1 that should be identified with this
mobile oxygen. If this is so, then Fig. 2 and the table
(peaks 1, 3) suggest that the oxygen atoms can occupy,
on the Bi–O planes of the compound under study, ener-
getically inequivalent sites of two types. This result is
in accord with the data [13, 14] showing that the bis-
muth and oxygen atoms in Bi2O2 layers of HTSC
oxides are distributed statistically between two closely
spaced sites. One also cannot rule out that the differ-

ence between the values of A1 and  in the table is
not due to kinetic reasons, but rather to the correspond-
ing statistical distribution of oxygen atoms between
two closely spaced sites.

An analysis of isotopic exchange data obtained for
the excess oxygen δ also proves the existence of simi-
larities between the bismuth HTSC oxides and the sys-
tem under study. As seen from the data obtained, the
sites occupied by the excess oxygen (peaks 1 and 2) are
replaced in isochronous anneals in the same tempera-
ture range as those in the Bi2O2 layer (peaks 1 and 3).
These findings obviously imply the geometrical close-
ness of the two sites in the oxygen sublattice.

We note in this connection that the excess oxygen
was shown by neutron-diffraction studies to be located
in the Bi2O2 layers in bismuth-containing cuprates as
well (Bi2Sr2CaCu2O8 + δ, Bi2SrCa2Cu2O8 + δ and some
others [15]). As already mentioned, Sr2.4Ca1.6Bi2Ox

undergoes at 760°C a discontinuous decrease of the
oxygen concentration in a sample down to x = 8. Two
observations suggest that the sample loses excess oxy-
gen at this temperature. First, starting from 760°C, the
chemical formula of the solid solution is
Sr2.4Ca1.6Bi2O8. Second, the measurements revealed a
decrease at 760°C of the concentration of the 18O,
rather than of the 16O isotope. This becomes manifest in
the negative derivative ∂A/∂T at the completion of peak 5
(Fig. 2).

The interpretation of the isochronous anneal peaks
4–7 appears obvious. Peaks 4 and 5 correspond to the

A1
cal
P

18O atoms occupying the sites on the SrO-type planes.
The presence of two peaks (rather than one) is most
likely associated with the oxygen atoms jumping to
energetically equivalent final positions from inequiva-
lent starting sites; in other words, oxygen atoms reach
the same structural fragments (SrO-type planes) from
Bi2O2 layers characterized by two different oxygen
states. The two-stage substitution on two CuO2-type
planes (peaks 6, 7) is explained by the existence in the
corresponding plane of sites of two types for the oxy-
gens. Studies of the site-plane effect revealed the corre-
sponding feature of the CuO2 planes in yttrium-based
HTSC oxides [8]. It is associated most likely with
unequalness of the lattice parameters a and b in the
oxide basal plane.

The above analysis permits a conclusion that the
oxygen distribution density over sites in the compound
under study is governed by the structure of its lattice
rather than by differences in the environment of the
geometrically equivalent oxygen positions in a disor-
dered system. The potential barrier distribution estab-
lished here does not fit into traditional concepts of the
barrier shape in systems with compositional disorder.
For a given composition, such distributions typically
have a maximum and drop rapidly at the edges (see,
e.g., [16]). For these reasons, the observed isotope
exchange kinetics can be treated as a site-plane effect,
in which each isochronous anneal peak corresponds to
substitutions by 18O atoms on certain planes or sites on
the oxygen sublattice.

The results obtained here do not contradict, even in
details, the assumption that the structure of the oxygen
sublattice of the compound under study is of the same
type as that of the 2212 bismuth-containing HTSC
oxide. Both sublattices are made up of four structural
formations containing one oxygen atom for each metal
atom, and two formations with two oxygen atoms per
metal atom, which alternate in the same way. In the
HTSC oxide, these are double Bi2O2 bismuth layers
with sites of two types for oxygen atoms, SrO planes
with sites of one type, and CuO2 planes with inequiva-
lent sites of two types. Both sublattices each have one
structural formation, which accounts for fast in-plane
diffusion of oxygen atoms. There are sites for the
excess oxygen in this formation or near it (in bismuth-
containing HTSC oxides, it is the Bi2O2 layer). Never-
theless, the above considerations cannot be accepted as
firm enough to conclude that the above sublattices are
equivalent, because there is no one-to-one correspon-
dence between the isotope exchange kinetics and the
crystal lattice structure.

As seen from Fig. 2, the maximum isotopic
exchange rate in each annealing stage occurs without
any noticeable changes in the filling by 18O atoms of the
remaining layers, where the isotopic exchange has
practically come to an end or has not yet started. Also,
the absence in the sample of a concentration gradient of
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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the 18O and 16O isotopes at temperatures above 500°C
suggests that the formation of peaks 2–7 is not con-
nected with conventional diffusion. In all probability,
one could assume here jumps over an interatomic dis-
tance. This can be used to determine the activation
energies Ei of individual annealing stages based only on

the temperatures  (see the table) at which one
observes maxima in the ∂A/∂T curves. We used for the
estimates the equation of first-order solid-phase reac-

tions, which relates the quantities Ei and  in the case
of constant-rate sample heating [17]:

(2)

where kB is the Boltzmann constant and νi is the prefac-
tor, which is actually the oxygen jump frequency for
the ith peak. The values of Ei listed in the table were
obtained for νi = 1012 s–1. This value agrees in order of
magnitude with the characteristic vibrational frequen-
cies of oxygen atoms in oxides. If oxygen jumps
involve structural vacancies, the jump frequencies νi

may deviate strongly from the above value (by several
orders of magnitude). According to (2), a change of νi

by an order of magnitude brings about a change of Ei in
the temperature range considered by 0.15–0.2 eV.
Thus, one can maintain that, for some oxygen jump fre-
quencies in the compound under study, the activation
energies noticeably exceed 1 eV even in the presence of
structural vacancies.

2.2. Diffusion of Oxygen Tracer Atoms

Superanisotropic HTSC oxides are characterized by
anomalously fast oxygen-tracer diffusion in the basal
planes (CuO1 – δ in the 123 yttrium HTSC oxide and
double Bi2O2 bismuth layers in the 2212 and 2201
oxides). Studies of diffusion in polycrystals provide a
certain idea of the diffusion parameters in the basal
plane. If the following condition for the diffusion-coef-
ficient tensor components

(3)

is met, then the diffusion coefficient in a polycrystal,
Dpoly, is related to Dij through Dpoly = (2/3)Dxx, provided
that the crystallite distribution is not textured [3].

The mere fact of observation of the site-plane effect
is evidence of a strong anisotropy of the diffusion coef-
ficients. Considered from this standpoint, the results
obtained in Section 2.1 are in agreement with (3). At the
same time, we do not have any information at our dis-
posal on the relative magnitude of the Dxx and Dyy coef-
ficients for the compound under study.1 However, even

1 Note that, as far as we know, there is no such information on the
HTSC oxides either.

Tm
i( )

Tm
i( )

Ei kB Tm
i( )( )2ν1 Ei/ kBTm

i( )( )–{ } ,exp=

Dxx Dyy @ Dzz,=
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with such an uncertainty, the inequality Dpoly < Dxx does
hold. As a result, by measuring the diffusion coefficient
in polycrystals, one can find the lower limit of Dxx for
the Sr2.4Ca1.6Bi2O8.8 oxide.

The corresponding values of Dpoly were derived
from the concentration profiles c(x, t) of 18O in the sam-
ples which were subjected to diffusion annealing in a
18O-enriched oxygen atmosphere. The diffusion
anneals were carried out in conditions that were only
favorable for the processes responsible for the first (dif-
fusion) peak in the isochronous annealing plots. We
have succeeded in measuring Dpoly only within a narrow
temperature interval from 340 to 450°C.

Figure 3 displays a typical concentration profile. At
large depths x, the concentration c1 is seen to be practi-
cally constant. Its values are several times as high as the
original concentration of the 18O isotope in the samples,
which is determined by the natural oxygen-isotope
abundance. The 18O concentrations at the surface, cs,
were found to be lower than the value corresponding to
sites of the first type in the Bi–O planes completely
filled by 18O. Both cs and c1 increased with increasing
annealing time t.

The above features in the concentration profiles
were observed by us earlier when studying oxygen dif-
fusion in polycrystalline yttrium- and bismuth-based
HTSC oxides. An analysis showed that the time depen-
dence of cs is primarily due to the existence of a surface
energy barrier for oxygen atoms. The behavior of c1

should be assigned most likely to free penetration of
oxygen between the grains and subsequent 18O migra-
tion in the directions of enhanced diffusion. Therefore,
the concentration profiles were fitted by the following

0.8
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0.4
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0 0.5 1.0 1.5
x, µm

c, at%
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c1

Fig. 3. Concentration profile of the 18O isotope after anneal-
ing a polycrystalline Sr2.4Ca1.6Bi2O8.8 sample at 430°C for
0.5 h.
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0
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asymptotic expression for a semi-infinite sample [5]:

(4)

where c0 is the equilibrium concentration of 18O atoms
at the crystal–gas interface, a is the characteristic jump
distance in the direction of the diffusion axis, τ is the
time between oxygen atom jumps in the direction of
fast diffusion, and τb is a time parameter characterizing
the potential barrier for oxygen at the crystal–gas inter-
face.

As seen from Fig. 3, the experimental points fit sat-
isfactorily into the c(x, t) curve calculated using (4).
The statistical margin of error in diffusion coefficient
measurements was 10%.

The temperature dependence of Dpoly is presented
graphically in Fig. 4, with experimental data on Dxx

obtained on the bismuth-containing Bi2Sr2CuOx and
Bi2Sr2CaCu2Ox HTSC oxides [2, 3] shown also for
comparison. The values of Dpoly were found to be very
high, which suggests fast diffusion of the oxygen tracer
atoms in Sr2.4Ca1.6Bi2O8.8. Considered on diffusion
scales, the differences between the data for the HTSC
oxides and the copper-free Sr2.4Ca1.6Bi2O8.8 oxide are
not large. The corresponding diffusion activation ener-
gies for the above oxides are 0.9 eV for
Sr2.4Ca1.6Bi2O8.8 and 1.01 and 0.93 eV for the HTSC
oxides. The diffusion activation energy found and the

c x t,( ) c1–[ ] /c0 erfc Z( ) η η i 2η–( ) 1–

i 1=

2

∑+=

× η i x/a η it/τ+[ ]{ } erfc Z η i t/τ( )1/2+{ } ,exp

Z x/ 4Dpolyt( )1/2, η τ /τb ! 1,= =

η1 2, 1 1 4η–( )1/2±[ ] /2,=

10–11

10–12

10–13

0
0.0014 0.0015 0.0016

l/T, K–1
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Bi2Sr2CuOx

Bi2Sr2CaCu2Ox

Fig. 4. Temperature dependence of the oxygen tracer diffu-
sion coefficients in polycrystalline Sr2.4Ca1.6Bi2O8.8. The
plots for Bi2Sr2CuOx [2] and Bi2Sr2CaCu2Ox [3] are tem-
perature dependences of the diffusion coefficients measured
in the basal plane of the single crystals.
P

earlier isotope-exchange results (see table) show that
diffusion in the compound under study and in the
HTSC oxides proceeds in similar ways. The activation
energy of oxygen tracer diffusion in the basal planes of
the latter is close to 1 eV, and, in the perpendicular
direction, is in excess of 2 eV [2, 3].

Thus, it has been shown that the oxygen subsystem
of the Sr2.4Ca1.6Bi2O8.8 oxide is an analog of the corre-
sponding subsystems of the yttrium- and bismuth-con-
taining HTSC oxides from the standpoint of diffusion.
This manifests itself in the fast diffusion in all these
compounds and the existence of the site-plane effect in
isochronous annealing, which is equivalent to the
observation of a strong anisotropy in diffusion. Note
that the characteristics of diffusion in the yttrium- and
bismuth-containing HTSC oxides and in
Sr2.4Ca1.6Bi2O8.8, i.e., all presently known diffusionally
superanisotropic objects, are similar. The superaniso-
tropic diffusion in these systems is not connected with
the high-temperature superconductivity and the pres-
ence of CuO2 layers in the oxides. The necessary con-
dition for its existence is the quasiplanar pattern of the
structure, which includes planes with strongly differing
concentrations of structural “defects” responsible for
the diffusion characteristics. The role of the planes with
high concentrations of these defects is played by the
CuO1 – δ planes with structural vacancies (for instance,
in the yttrium-containing HTSC oxide), and by the dou-
ble bismuth layers in modulated structures of bismuth-
containing HTSC oxides, as well as probably in the
copper-free Sr2.4Ca1.6Bi2O8.8 system.
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Abstract—This paper reports on a calculation of the spatial electric-current distribution in a superconducting
film coated with a ferromagnetic material with one-dimensional surface roughness. It is shown that using coat-
ings with a high magnetic susceptibility permits one to create substantial current nonuniformities in the super-
conducting-film plane and an anisotropic dependence of the current distribution on its direction relative to that
of the nonuniformity. © 2000 MAIK “Nauka/Interperiodica”.
The discovery of high-temperature superconductiv-
ity and progress in the nanostructure technology have
intensified the investigation of systems containing
superconducting and magnetic components. It was
shown that structures with the ferromagnet spin sub-
system exchange-coupled with the conduction elec-
trons of a superconductor can have spatially nonuni-
form states [1–3] similar to the cryptoferromagnetic
state in ferromagnetic superconductors [4, 5]. In lay-
ered structures with localized magnet spins interacting
electromagnetically with the paired electrons of a
superconductor, magnetic domains may be suppressed
if the ferromagnetic film has a less than critical thick-
ness [6–11]. The effects associated with the formation
of weak bonds through the domain scattering fields in a
ferromagnet [9, 12], artificial pinning of Abrikosov vor-
tices by means of magnetic coatings [13, 14], and their
depinning by reducing the vortex dissipation fields
using magnetic materials with a high static magnetic
susceptibility [15, 16] have a considerable application
potential.

When analyzing the effect of magnetic inclusions
and magnetic coatings on vortex pinning, one usually
ignores the action of the transport current on magneti-
zation and the reverse influence of a change in magne-
tization on the transport current distribution in super-
conducting films. While in many cases this is justified,
in certain situations, for example in the case where the
external magnetic field is close to the field of a reorien-
tation phase transition in a magnet, the static suscepti-
bility of the magnet is high, so that the problem of an
electric current flowing through a superconductor and
of the magnetization distribution in a magnet should be
solved in a self-consistent way. This work considers
several systems in which the closeness of a supercon-
ductor to a ferromagnet results in a substantial redistri-
1063-7834/00/4204- $20.00 © 20616
bution of the transport current in the superconducting
film.

1. Calculate the spatial distribution of a supercon-
ducting current near a plane surface y = 0 of a bulk
type-II superconductor (R  ∞) adjacent to a uniaxial
ferromagnet (Fig. 1). We shall assume the easy-magne-
tization axis nA of the ferromagnet and the current den-
sity j(r) to be parallel to the superconductor surface
(nA ||j ||nz). We neglect the effect of nonuniform
exchange and the possible spin pinning at the magnet
surface by assuming the characteristic spatial scale of
magnetization variation Λ @ α1/2 (α is the nonuniform
exchange constant).

The magnetic field H in the system is the sum of the
field H0 associated with the transport current in the
absence of the magnet and of the dipole field HD cre-
ated by the magnetization M

(1)

The total field H and the total current density j in a

H H0 HD.+=

I

II

R

0

n

j

x

y

ys(x)

Fig. 1. Geometry of the structure made up of a supercon-
ducting film (I) and a ferromagnetic coating with a rough
surface (II).
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superconductor satisfy the London equation and the
magnetostatics equations

(2)

where λ is the London magnetic-field penetration depth
and c is the velocity of light in vacuum. There is no
electric current outside the superconductor, and the dis-
tributions of the field H and the magnetization M are
described by the equation of state

(3)

and the Laplace and Poisson equations for the scalar
potentials Ψ0 and ΨD of the magnetic fields H0 = —Ψ0,
HD = —ΨD

(4)

At the interfaces separating the media, the standard
electrodynamic continuity conditions for the tangential
components of the magnetic field H and the normal
component of the magnetic induction B = H + 4πM are
met. The static state of the system in a field H0 playing
the part of an external field corresponds to the mini-
mum of the Gibbs potential G defined as

(5)

where β > 0 is the uniaxial anisotropy constant of the
ferromagnet and V, Vf , Vs are the volumes of the sys-
tem, ferromagnet, and superconductor, respectively.

Let the lower surface of the ferromagnet be rough,
so that its coordinates will be given by the equation
y = ys(x), and its inward normal n will be

(6)

Consider first the case of a small and smooth periodic
nonuniformity

(7)

where a ! L, ak ! 1. We are going to look for the
expressions for the field and current density in the form
of expansions in powers of the amplitude of the rough-
ness a to first order in a inclusive.

In a zeroth approximation, the superconducting cur-
rent density j0(r) depends on the coordinate y only:

(8)

H λ2——H+ 0, —H 4π/c( ) j, —H 0,= = =

M H0 HD+( )[ ] 0=

∆Ψ0 0, ∆ΨD 4π —M( ).–= =

G
1

8π
------ ν H H0–( )2d

V

∫=

– ν H0M
β
2
---Mz

2+ 
 d

V f

∫ λ2

8π
------ ν —H( )2,d

Vs

∫+

n
ny dys/dx( )nx–

1 dys/dx( )2+
--------------------------------------.=

ys x( ) L– a kx,cos= =

j0 nzJ0 y/λ–( ),exp–=
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and the magnetic field H0(y) is described by the expres-
sion

(9)

The magnetization M0 is parallel to the superconductor
surface, and its components M0x, z are related to the total
current I0 = λJ0 per unit width of the system along the
nx axis through

(10)

where M0 is the saturation magnetization of the ferro-
magnet.

The first approximation in the roughness amplitude
a for the current density j1 and magnetic field H1 in the
superconductor can be written as

(11)

(12)

and the dipole-field potential in the ferromagnet ΨD1 is

(13)

where

(14)

µxx = 1 + (4π/β)cos2ϑ0 and µyy = 1 + 4π/β are the com-
ponents of the magnetic permeability tensor µ of the
ferromagnet.

The maximum relative change in the transport cur-
rent density induced by the reverse influence of magne-
tization, ε = j1(x = 0, y = 0)/J0, for a thin ferromagnet,
qL ∝ kL ! 1, can be presented in the form

(15)

In the opposite case of qL ∝ kL @ 1, we have

(16)

According to (16), for thick magnetic coatings, the
effect of their surface roughness on the transport-cur-
rent distribution is exponentially small. However, for
relatively thin coatings (15) with a weak anisotropy,
β ! 4π, kLµxx ≤ 1, ε may be appreciable, as a result of
which the approximate method of calculation
employed by us becomes invalid.

H0 nx

4π/c( )λ J0 y/λ–( )exp , y 0,>
4π/c( )λ J0, y 0.<




=

M0x M0 ϑ 0, M0zsin M0 ϑ 0,cos= =

ϑ 0sin 4πI0/ cβM0( ),=

J1 nz kc/4πλ2τ( )A1 kx( ) τy–( ),expcos=

H1 kA1 nx kxcos ny k/τ( ) kx( )sin–[ ] τy–( ),exp=

ΨD1 A1 qy( )cosh[=

– k2/qτµyy( ) qy( )sinh ] kx( ),sin

A1 4πakM0x k qL( )cosh qµyy qL( )sinh+[=

+ k2/qτµyy( ) k qL( )sinh qµyy qL( )cosh+( ) ] 1–
,

q2 k2µxx/µyy, τ2 k2 λ 2– ,+= =

ε 4πak
βλτ 1 kτ µxxkL+ +( )
--------------------------------------------------.=

ε 8πka
β

-------------
kqµyy

λ k qµyy+( ) k2 qτµyy+( )
---------------------------------------------------------- qL–( ).exp≅
0
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For an isolated superconductor of thickness R, the
distributions of the transport current and of the internal
magnetic field generated by it have the form

(17)

and the magnetic-field components in the superconduc-
tor, considered in a first approximation in the small
parameter a, are equal to

(18)

The quantity A1 is described by (14) as before, provided
that one makes in it the following replacement:

(19)

As follows from (17)–(19), ε decreases with a decrease in
thickness of the superconducting film. In the case of thin
magnetic and superconducting layers (R ! λ, qL ! 1),

(20)

As λ increases, ε falls off monotonically in absolute
magnitude, which justifies our restricting ourselves in
what follows to an analysis of the limiting case of
λ  0.

j0 nzJ0 y R/2–( )/λ[ ] / R/ 2λ( )[ ] ,coshcosh–=

H0 nx 4πλ J0/c( )=

× R/2 y–( )/λ[ ] / R/ 2λ( )[ ] ,coshsinh

H1x B1 τycosh C1 τysinh+( ) kx,cos=

H1y k/τ( ) B1 τysinh C1 τycosh+( ) kx,sin=

B1 kA1, C1 kA1 τ τRcosh(–= =

+ k τRsinh )/ τ τRsinh k τRcosh+( ).

k2/ τqµyy( )[ ] k2/ τqµyy( )[ ] ,

τ τRcosh k τRsinh+( )/ τ τRsinh k τRcosh+( ).

ε πaR/ βλ2( ).≅

R

0

y

j

D/2–D/2
–L

y

R

0

–L
D/2

–T
x

x

j

(a)

(b)

T

Fig. 2. (a) Superconducting film–ferromagnetic strip sys-
tem; the arrow shows the projection of the magnetization on
the x, y plane; (b) a system made up of a superconducting
film and a periodic ferromagnetic-strip array.
P

2. Let us now determine the change in the distribu-
tion of surface transport current in a semi-infinite
superconductor, induced by a ferromagnetic strip of
thickness L and width D (Fig. 2a), and by an array of
such strips with a period T (Fig. 2b). We shall use the
variational technique to find the current, magnetic field,
and magnetization in the system. We shall look for the
minimum of the Gibbs potential G (12) of the system,
which, in the conditions specified reduces to an integral
over the volume of the magnetic material,

(21)

assuming the magnetization in the strip to be uniform
and parallel to the x, z plane. The magnetic field H0 of
the unperturbed transport current in (21) is given by (9),
and the potential ΨD of the dipole field HD satisfies the
equation

(22)

where

We shall subsequently need only the dipole field com-
ponent

(23)

Taking into account (23), the Gibbs energy of a unit
length of the strip g becomes

(24)

where βeff = β +  is the effective-anisotropy constant

(25)

Minimization of (24) yields

(26)

Substituting (26) into (23) results in the following
expression for ε:

(27)

G v MH0
1
2
---MHD

β
2
---Mz

2+ + 
  ,d

V f

∫–=

∆ΨD 2π δ x D/2+( ) δ x D/2–( )–[ ]–=

× θ y L+( ) θ y L–( )–[ ] Mx,

θ y( )
1, y 0,>
0, y 0.<




=

HDx Mx
L y+

D/2 x+
------------------arctan

L y–
D/2 x–
------------------arctan+

–=

+ L y–
D/2 x+
------------------arctan L y+

D/2 x–
------------------arctan+ 

 .

g 2DL –H0Mx βeff/2( )Mx
2+( ),=

β̃

β̃ 1/ν( ) f ν( ),=

f ν( ) 4ν νarccot 2 νln+[=

+ 1 ν2–( ) 1 1/ν2+( )ln ] ,

ν D/ 2L( ).=

Mx H0/βeff .=

ε 4/βeff( ) ν .arccot=
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For the case of a thin strip, ν @ 1, we have

(28)

In cubic ferro- and ferrimagnets, the crystallographic
anisotropy is, as a rule, small. To obtain a qualitative
estimate of the anisotropy field, take the first cubic-
anisotropy constant. For a temperature t = 300 K, we
have K1 = 4.72 × 105 erg/cm3 for iron [17], and K1 =
−5.7 × 104 erg/cm3 for nickel [18], where, in order of
magnitude, β ∝  0.1. The values of K1 for these sub-
stances vary little with decreasing temperature, because
their Curie temperature is high [19]. For the yttrium–
iron garnet, K1 ≅  1.5 × 105 erg/cm3 at t = 100 K, and
K1 ≅ 2.5 × 105 erg/cm3 at t ≅  0 K [19], which yields
β ∝  1. According to (26), |ε| ∝  1 up to ν ∝ 102 for iron
and nickel, and up to ν ∝  10 for the YIG.

If the system is additionally placed in an external
magnetic field He = Henz , He < Hc1 (Hc1 is the lower crit-
ical field of a superconductor), then a term

−2DLHe  should be added to the energy
(24).

For a structure made up of a superconductor and a
periodic magnetic strip array (Fig. 2b), the dipole field
component HDx in magnets and in vacuum has the form

(29)

where xn = x + nT and the energy of the system per unit
strip length is given by equation (24), if we set in it

(30)

The appearance in (30) of the  term is associated with
the dipole interaction of the strip magnetic moments.
This interaction reduced somewhat the change of the
transport current under the strips, while at the same
time increasing its change on the free surface of the
superconductor. For ν @ 1, δ @ 1, and δ – ν @ 1, we
obtain

(31)

β̃ 3 2 νln+( )/ν , ε 4/ βν 3 2 νln+ +( ).≅ ≅

M0
2 Mx

2–( )1/2

HDx Mx
L y+
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+ L y–
D/2 xn+
--------------------arctan

L y+
D/2 xn–
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βeff β β̃ β̃̃,+ +=

β̃̃ 1/ν( ) f nδ ν+( ) f nδ ν–( ) 2 f nδ( )–+[ ] ,
n 1=

∞

∑=

δ T /2L.=

β̃̃

β̃̃ 1
ν
--- 1

3δ2
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π2

6
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2ν2
--------– π2

2 πν/δ( )sin
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+ 2 πν/δ( )sin
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As seen from (29), the dipole field and the associated
effect of the magnetic material on transport current dis-
appear if the gap between the adjacent strips tends to
zero.

The assumption of uniform magnetization does not
apply to the regions in the bulk spaced from the strip
edges by a distance of the order of the strip thickness
(see, e.g., [20]). As for estimates of the current and
magnetic field near the strip center, they remain correct
as long as ν @ 1, i.e., under the condition that the total
volume of these regions is small compared to that of the
magnetic material.

If the current flows along the direction of the non-
uniformity ( j ||nx), it does not change the state of the
magnetic subsystem and remains uniform in the x, z
plane, provided that the field H0 coincides in the direc-
tion of the magnetization in the magnetic coating. If,
however, the field H0 is antiparallel to the magnetiza-
tion, its increase may initiate a first-order phase transi-
tion involving magnetization reorientation along the
field H0.

Thus, the distribution of the electric current and
magnetic field in structures of the type under study
depends substantially on its direction with respect to
the symmetry axis of the system. Because a change in
the current structure affects the conditions of formation
and pinning of fluxons, hybrid systems should exhibit
an anisotropy of the critical current as well, provided
that the intrinsic vortex pinning in the superconducting
film is small enough.

In our analysis of the ground state of the system, we
did not touch on the role played by the domain structure
in magnets. It is known, however, that the effective
static susceptibility of magnetically soft materials in
the domain phase is also high (see, e.g., [19]). If the
domain dimensions are small compared to the width of
the magnetic strips, one can derive an order-of-magni-
tude estimate of the effect in the presence of a domain
structure from the equations presented in the first part
of this work by replacing the tensor components of the
ferromagnet permeability µ by those of the effective
permeability in the inhomogeneous phase.
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Abstract—The method of emission Mössbauer spectroscopy on the 67Cu(67Zn) isotope is used for determining
the parameters of nuclear quadrupole interaction at copper sites of the Y2Ba4Cu7O15 lattice. The tensor of crys-
tal electric field gradient at all the sites of the lattice is calculated using the model of point charges. A compar-
ison of experimental and calculated parameters leads to the conclusion that holes in the Y2Ba4Cu7O15 lattice
are localized predominantly at positions of chain oxygen. © 2000 MAIK “Nauka/Interperiodica”.
A comparison of experimentally determined and
calculated parameters of nuclear quadrupole interac-
tion makes it possible to determine the spatial distribu-
tion of defect electrons in the crystal lattice. The most
reliable results are obtained when such a comparison is
carried out for “crystalline” probes (the electric field
gradient (EFG) at the nuclei of such probes is created
by ions of the crystal lattice). We proposed and imple-
mented the method of emission Mössbauer spectros-
copy (EMS) on 67Cu(67Zn) for the experimental deter-
mination of the parameters of nuclear quadrupole inter-
action at copper lattice sites of high-Tc

superconductors. In this case, a 67Zn2+ “crystalline”
probe is formed as a result of the decay of the parent
isotope 67Cu, and the EFG can be calculated for it by
using the point charge model [1, 2].

This research aims to experimentally determine the
nuclear quadrupole interaction parameters at copper
sites of the Y2Ba4Cu7O15 lattice by the EMS method on
67Cu(67Zn), to calculate the crystal EFG tensor at these
sites, and to obtain information on the spatial distribu-
tion of defect electrons in this lattice from a comparison
of experimental and calculated parameters. Note that
the compound Y2Ba4Cu7O15 was investigated earlier by
nuclear quadrupole resonance (NQR) and nuclear mag-
netic resonance (NMR) methods on 63Cu [3] and 137Ba
[4] isotopes. This allows one to extend the experimental
substantiation of the proposed interpretation of the
results of emission Mössbauer spectroscopy on the
67Cu(67Zn) isotope.

1. EXPERIMENTAL TECHNIQUE

The experiments were made on ceramic samples hav-
ing the composition Y2Ba4Cu7O15 – x. The 67Cu isotope
was introduced into the ceramic through diffusion dop-
ing in an oxygen atmosphere at 700°C for two hours.
1063-7834/00/4204- $20.00 © 20621
A similar procedure with the compounds
YBa2Cu3O7 and YBa2Cu4O8 ensures the intrusion of
67Cu atoms at copper sites in accordance with their nat-
ural population density [1,2]. Note that a test annealing
of the Y2Ba4Cu7O15 sample under similar conditions
did not result in a change in Tc ~ 60 K. The Mössbauer
spectra on 67Cu(67Zn) were recorded at 4.2 K with
67ZnS as an absorber.
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Fig. 1. 67Cu(67Zn) emission Mössbauer spectrum of the
compound Y2Ba4Cu7O15 at 4.2 K. The positions of the
components of quadrupole triplets corresponding to the
67Zn2+ probe at Cu(1), Cu(2), Cu(3), and Cu(4) sites are
indicated.
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2. EXPERIMENTAL RESULTS

The spectra on 67Cu(67Zn) were formed by a set of
several lines of different intensity and width (Fig. 1).
Since there are four nonequivalent positions of copper
in the structure of Y2Ba4Cu7O15 (Fig. 2) [5], the exper-
imental spectra were decomposed into four quadrupole
triplets. The choice of the decomposition version for
the experimental spectra into triplets and the identifica-
tion of triplets with 67Zn2+ centers at Cu(1), Cu(2),
Cu(3), and Cu(4) sites were determined by the fact that
the surroundings of Cu(2) and Cu(3) in Y2Ba4Cu7O15
are similar to the surroundings of Cu(2) in YBa2Cu3O7
and YBa2Cu4O8. It was therefore natural to require that
the asymmetry parameter of the EFG tensor for sites
Cu(2) and Cu(3) in Y2Ba4Cu7O15 be close to zero, as
with the Cu(2) lattice sites in YBa2Cu3O7 [1] and
YBa2Cu4O8 [2]. In addition, we took into account the

70

60

50

40

30
10 12 14 16 18 20

C(Zn), MHz

C
(C

u)
, M

H
z

1
6

8
4

7
2

5 3

Cu(4), O(7)

Ba(2), O(6)

Cu(3), O(4), O(5)
Y

Cu(2), O(2), O(3)

Ba(1), O(1)

Cu(1), O(8)[O(9)]

c
b

a

Fig. 2. A fragment of the unit cell of Y2Ba4Cu7O15 [5].

Fig. 3. C(Cu) vs. C(Zn) diagram for copper metaloxides.
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Cu(2), Cu(3), and Cu(4) sites in Y2Ba4Cu7O15. The 63Cu
NMR data are borrowed from [3]. Points 5 and 6 correspond
to Cu(1) and Cu(2) sites in YBa2Cu3O7 [1], and points 7 and
8 correspond to Cu(1) and Cu(2) sites in YBa2Cu4O8 [2].
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population densities of sites Cu(1), Cu(2), Cu(3), and
Cu(4) in Y2Ba4Cu7O15. It was found that these require-
ments are met by the decomposition presented in
Fig. 1. The parameters of nuclear quadrupole interac-
tion for the 67Zn2+ centers at the sites Cu(1), Cu(2),
Cu(3), and Cu(4) are shown in Fig. 3.

3. DISCUSSION OF EXPERIMENTAL RESULTS

At the present time, the NMR and NQR experimen-
tal data obtained at 17O, 63Cu, and 137Ba isotopes for the
compounds YBa2Cu3O6, YBa2Cu3O7, and YBa2Cu4O8
are often interpreted by using the results of calculating
the EFG tensor by the quantum-mechanical method of
plane waves in the local-density approximation [6–10].
However, this method is invalid for calculating the EFG
tensor at Cu(2) lattice sites (the theoretical and experi-
mental values for the above-mentioned compounds dif-
fer by more than a factor of two). Moreover, this
method is inapplicable for calculating the EFG at the
nuclei of impurity atom probes. For this reason, we
used the results of EFG analysis for interpreting
67Cu(67Zn) EMS data on the basis of the point charge
model.

The measured value of the quadrupole interaction
constant C is the sum of two terms, i.e.,

(1)

where Vzz, Wzz, and Uzz are the principal tensor compo-
nents of the crystal EFG (created by the ions of the
crystal lattice), the valence EFG (created by nonspher-
ical valence electrons of the probe atom), and the total
EFG, respectively and where γ and R0 are the Sternhe-
imer coefficients for the probe atom.

For the 67Zn2+ probe, the contribution to the total
EFG tensor from valence electrons can be neglected,
which gives

(2)

The crystal EFG tensor was calculated in the point
charge model. The components of the crystal EFG ten-
sor were calculated by the formulas

(3)

where k is the index of summation over sublattices, i is
the index of summation over sublattice sites, q and p are
Cartesian coordinates,  are the atomic charges in the
kth sublattice, and rki is the separation between the kith
ion and the lattice site under investigation.

The lattice sums Gppk and Gpqk were calculated on a
computer. We used the structural data obtained in [10]

C eQUzz eQ 1 γ–( )Vzz eQ 1 R0–( )Wzz,+= =

C Zn( ) eQ 1 γ–( )Vzz.≈

V pp ek* 1/rki
3( ) 3 pki

2 /rki
2 1–( )

i

∑
k

∑ ek*Gppk,
k

∑= =

V pq ek* 3 pkiqki/rki
5( ) 2

i

∑
k

∑ ek*Gpqk,
k

∑= =

ek*
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and presented the lattice in the form Y2Ba(1)2Ba(2)2
Cu(1)Cu(2)2Cu(3)2Cu(4)2O(1)2O(2)2O(3)2O(4)2O(5)2
O(6)2O(7)2O(8)1 – xO(9)x, where 0 ≤ x ≤ 1. The notation
of atomic sites corresponds to the results obtained by
Hewat et al. [5] and is shown in Fig. 2. The index k of
summation over sublattices in (3) was ascribed the fol-
lowing values:

The charges of atoms of the Y2Ba4Cu7O15 lattice
were determined from the 67Cu(67Zn) EMS data on the
basis of a system of eight equations: three equations for
the ratio of the quadrupole interaction constants for
67Zn2+ centers at copper sites, set up for the three pairs
of sites Cu(1) and Cu(2), Cu(1) and Cu(3), and Cu(1)
and Cu(4),

(4)

four equations for the asymmetry parameters η of the
EFG tensor at the sites Cu(1), Cu(2), Cu(3), and Cu(4),

(5)

(6)

and the electroneutrality equation

(7)

where indices 1 and m label copper sites for which the
67Cu(67Zn) EMS data were obtained and which can

k = 1 2 3 4 5 6 7 8

atom Y Ba(1) Ba(2) Cu(1) Cu(2) Cu(3) Cu(4) O(1)

k = 9 10 11 12 13 14 15 16

atom O(2) O(3) O(4) O(5) O(6) O(7) O(8) O(9).

ek* Gzzkl PlmGzzkm–[ ]
k

∑ 0,=

ek* Gxxkl Gyykl– η zzkl–[ ]
k

∑ 0,=

ek* Gxxkm Gyykm ηmGzzkm––[ ]
k

∑ 0,=

2e1* 2e2* 2e3* e4* 2e5* 2e6* 2e7* 2e8*+ + + + + + +

+ 2e9* 2e10* 2e11* 2e12* 2e13* 2e14*+ + + + +

+ 1 x–( )e15* xe16*+ 0,=
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assume the values 4 and 5, 4 and 6, and 4 and 7, respec-
tively, for the above-mentioned pairs of sites; ηm and η1
are the experimental values of the asymmetry parame-
ters of the EFG tensor; and P1m = eQUzzm/eQUzzl is the
ratio of the experimental quadrupole interaction con-
stants for 67Zn2+ at the corresponding sites.

Equations (4)–(7) are all homogeneous, and hence
the system comprising them can be used for determin-
ing atomic charges only in terms of one of them. It is
convenient to choose for this purpose the charge of Y
ions, which should be expected to be close to their for-
mal chemical charge (+3e) [1, 2].

Equations (4)–(7) are insufficient for determining
the atomic charges of fifteen sublattices. If, however,
we take into account the fact that the coefficients of the
anion charges are an order of magnitude larger than the
coefficients of cation charges, the system (4)–(7) makes
it possible to determine anion charges to within small
corrections determined by cation charges. We disre-
garded the solutions for which a negative cation or a
positive anion charge was obtained as deprived of any
physical meaning.

Proceeding from the symmetry of the local sur-
roundings, we see that the axes z of the crystal EFG ten-
sors for the Cu(2) and Cu(3) sites must coincide with
the c axis; and that Vzz5 > 0 and Vzz6 > 0 according to our
measurements. For the sites Cu(1) and Cu(4), if only
the positions O(8) are populated, we can single out four
regions of solutions in which the experimental condi-
tions η4 ~ 0.95, Vzz4 > 0 and η7 ~ 0.70, Vzz7 > 0 are sat-
isfied: region AA, where |Vbb4| < |Vcc4| and |Vbb7| < |Vcc7|;
region AB, where |Vbb4| > |Vcc4| and |Vbb7| > |Vcc7|; region
BA, where |Vbb4| > |Vcc4| and |Vbb7| < |Vcc7|; and region
BB, where |Vbb4| > |Vcc4| and |Vbb7| > |Vcc7|. However, in
all the regions, the axes z of the crystal EFG tensors for
the sites Cu(1) and Cu(4) coincide with the crystallo-
graphic axis a. If only the position O(9) is populated,
the situation does not change radically, but the axes z of
the crystal EFG tensors coincide with the crystallo-
graphic axis b for the Cu(1) site and with the crystallo-
graphic axis a for the Cu(4) site. This remark will be
taken into account in the subsequent discussion of the
results obtained in the case of population of the position
O(8) only.
Charges of oxygen atoms in Y2Ba4Cu7O15 lattice

Model
Lattice site

O(1) O(2) O(3) O(4) O(5) O(6) O(7) O(8)

AA –1.98 –1.98 –1.96 –1.99 –2.00 –1.99 –1.39 –1.44

BB –1.46 –2.07 –2.04 –1.94 –1.92 –0.55 –2.40 –3.24

AB –2.37 –2.13 –2.11 –1.90 –1.88 –0.47 –2.33 –1.64

BA –1.17 –1.93 –1.90 –2.03 –2.03 –2.10 –1.42 –2.85

Note: The charges were obtained from the solution of the system of equations (4)–(6) under the assumption that the charges of Y, Ba, and
Cu atoms are equal to +3, +2, and +2 respectively; models  AA, BB, AB, and BA are described in the text.
0
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In accordance with the presence of the four regions,
there must exist four sets of  (for regions AA, AB, BA,
and BB) consistent with the experimental values of P45,
P46, P47, η4, η5, η6, and η7. The charges of oxygen
atoms obtained under the assumption of standard
valences of the Y, Ba, and Cu atoms (  = 3,  =  = 2,

 =  =  =  = 2) are given in the table.

The correlation dependences established between
the 67Cu(67Zn) EMS and 63Cu NMR data for copper
sites in the copper metaloxide lattices can be used as

ek*
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Fig. 4. C(Cu) vs. Vzz diagram for copper metaloxides. The
notation of points is the same as in Fig. 3. Indices AA and
BB denote the charge distribution models used for calculat-
ing Vzz for copper sites in the Y2Ba4Cu7O15 lattice.

Fig. 5. |w| vs. |W| diagram for barium sites. Notation: 1 and
2 correspond to the Ba(1) and Ba(2) sites, respectively, in
Y2Ba4Cu7O15; 3, 4, and 5 are Ba sites in YBa2Cu3O6,

YBa2Cu3O7, and YBa2Cu4O8, respectively. The 137Ba
NQR data are borrowed from [4]. 
P

criteria of the choice among the solutions. It was shown
earlier [11] that the quantities C(Cu) (quadrupole inter-
action constant for a 63Cu probe at copper sites) and
C(Zn) (quadrupole interaction constant for a 67Zn probe
at copper sites) obey the relation

(8)

(here, C(Cu) and C(Zn) are given in MHz), and the
main reason behind the deviation from the straight line
described by (8) is different orientations of the princi-
pal axes of the total and the valence EFG tensors. This
is observed, for example, for Cu(1) sites in YBa2Cu3O7
(Fig. 3) [1].

Moreover, it was proved in [11], that the quantities
C(Cu) and Vzz satisfy the following relation:

(9)

and that the main reason behind the deviation from the
straight line described by (9) is the inaccurate calcula-
tion of the crystal EFG tensor in view of the inferior
choice of atomic charges. Consequently, the position of
points on the C(Cu) vs. C(Zn) diagrams (Fig. 3) and
C(Cu) vs. Vzz diagrams (Fig. 4), corresponding to the
same position of copper, can be used for selecting pos-
sible versions of the charge distribution in the lattice.

Figure 3 shows the lattice sites Cu(1), Cu(2), Cu(3),
and Cu(4) in Y2Ba4Cu7O15. It can be seen that the points
Cu(2), Cu(3), and Cu(4) satisfactorily fit the straight
line (8), thus confirming the bivalence of copper at the
corresponding lattice sites. The point Cu(1) obviously
deviates from the straight line (8), and we can assume,
in analogy with the point Cu(1) for YBa2Cu3O7, that
this is due to different orientations of the principal axes
of the total and the valence EFG tensors.

The points Cu(2), Cu(3), and Cu(4), for which Vzz
are calculated for model AA, lie close to the straight line
(9) shown in Fig. 4, while the calculations made for
model BB, as well as for models AB and BA, lead to
considerable deviations in all three points from the
straight line (9). This fact can obviously confirm the
validity of the model AA.

The advantage of an AA-type model also follows
from an analysis of the 137Ba NQR data for a series
of compounds YBa2Cu3O6–YBa2Cu3O7–YBa2Cu4O8–
Y2Ba4Cu7O15. It should be noted that a 137Ba2+ probe is
crystalline. Lombardi et al. [4] used the NQR method
to measure the values of W = (1/2)C(1 + η2/3)1/2 for this
probe in the above series (here, C is the quadrupole
interaction constant for the 137Ba probe at the Ba(1) and
Ba(2) sites). These experimental values can be com-
pared with the calculated values of w = (1/2)Vzz(1 +

/3)1/2, where ηcr is the asymmetry parameter of the
crystal EFG tensor. Figure 5 shows the |W| vs. |w|
dependence for barium sites in the above-mentioned
compounds. It can be seen that the data obtained for
Ba(1) and Ba(2) sites of the Y2Ba4Cu7O15 lattice satis-

C Cu( ) 197 11.3C Zn( )–=

C Cu( ) 179 191.4Vzz,–=

ηcr
2
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factorily fit to the linear dependence only for values of
w calculated in the AA model.

Thus, the NMR and NQR data obtained on 63Cu and
137Ba isotopes agree with the proposed model of spatial
localization of defect electrons.
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Abstract—An analytic description of stationary chains of Abrikosov–Josephson (AJ) vortices is provided for
a Josephson junction (JJ) between two finite-thickness superconductors. The current–voltage characteristic
(IVC) determined by the finite conductance and Cerenkov losses is obtained for a JJ with a moving chain of AJ
vortices. The law of motion for a solitary vortex is established. © 2000 MAIK “Nauka/Interperiodica”.
1. The paper by Mints and Snapiro [1] stimulated
interest in the study of the influence of Cerenkov radi-
ation in Josephson junctions (JJ) on current–voltage
characteristics (IVC). At the same time, this publication
posed a number of questions, including the possibility
of analyzing the Cerenkov emission of short Swihart
waves by a vortex (or vortex structure) whose small-
scale description is constructed using the traditional
sine-Gordon equation, which gives a knowingly incor-
rect description of the internal structure of the vortex
and rules out the Cerenkov radiation [1]. Our theory of
Cerenkov radiation presented in [2– 4], where we con-
sidered the decelerating effect of Cerenkov losses on
the motion of an individual vortex in a vortex chain of
the JJ between bulk superconductors, is free of this
drawback. We also obtained IVCs taking into account
the effect of conductance in the contact transition layer,
as well as the effect of normal electrons in supercon-
ductors (cf. [5]). However, the theory developed in [2–
4] pertains to a JJ with a large critical current density,
which does not allow us to formally go over to the limit
[1] corresponding to a low Josephson critical current
density jc. In the present work, in contrast to [2–4], we
consider the Cerenkov radiation in the JJ between two
superconductors of finite thickness ds. Apart from being
of interest as such, this structure makes possible a for-
mal transition to a theory differing only slightly from
that based on the sine-Gordon equation. Among other
things, this allows us to determine the extent of accu-
racy of the approach used in [1] and associated with the
theory of a JJ between bulk superconductors.

Our description of the Cerenkov emission of gener-
alized Swihart waves in JJ structures of the sandwich
type described below has made it possible to determine
the field of Cerenkov radiation emitted by an infinite
moving train of vortices (Section 2). The analysis is
based on the equation for the phase difference ϕ of
Cooper pairs located on different sides of the JJ, which
was derived by Alfimov and Popkov [6]. In this work,
1063-7834/00/4204- $20.00 © 20626
the results of the theory of dislocations [7] are used for
the first time to write static solutions for infinite trains
of Abrikosov–Josephson (AJ) vortices for a sandwich-
type JJ. The steady-state solution corresponding to a
nonzero magnetic field is used to determine the field of
Cerenkov radiation accompanying the train during its
motion. This allowed us to construct the IVC for a
sandwich-type JJ with a moving train of vortices in it.
Section 3 is devoted to several simple corollaries of the
general relation determining the IVC. In Section 4, the
law of motion of a solitary vortex exciting Cerenkov
radiation in the JJ is considered. The obtained results
are discussed in Section 5.

2. In this paper, we use the following equation for
the phase difference ϕ for Cooper pairs on different
sides of a JJ between infinitely long planar supercon-
ductors of thickness ds [6, 8]:

(1)

Here we use the following notation:

where e is the electron charge; jc is the critical density
of the Josephson current; ωj and λj are the Josephson
frequency and length, respectively; β and τ characterize
dissipation; σ and ε are the conductivity and dielectric
constant, respectively, of the substance of the nonsuper-
conducting contact layer of thickness 2d separating the
superconductors; λ is the London penetration depth; nn
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and ns are the concentrations of normal and supercon-
ducting electrons in the superconductor; and τf is the
effective mean free time for a normal electron in the
superconductor. In equation (1), we assume that d ! λ.

Let us construct the IVC for a sandwich-type JJ with
a moving train of vortices. First of all, we give here
steady-state solutions of equation (1), which can be
written using the results of the theory of dislocations
[7]. The first solution is

(2)

where 0 < (ds/B) < K'(k) and B is defined by the equa-
tion

(3)

Here dn(x, k), sn(x, k), and cn(x, k) denote Jacobian
elliptical functions with an argument x, and a modulus

k (0 ≤ k ≤ 1), k' ≡ , K'(k) ≡ K(k'), and K(k) is the
total elliptical integral of the first kind (see, for exam-
ple, [7]). The second solution is

(4)

where 0 < (ds/C) < K'(k) and C is defined by the equa-
tion

(5)

One can easily verify that expression (2), for example,
is a steady-state solution of equation (1) by using the
expansion into the Fourier series (see Appendix).

The vortex structure (4) corresponds to zero mean
magnetic field. Such a structure in a JJ is usually unsta-
ble [9]. For this reason, we consider the vortex structure
(2) corresponding to a nonzero mean magnetic field

 = (Φ0/4πλL). Here and below, we use the notation
2πL ≡ 2BK(k) for the period of the structure described
by (2). By virtue of this relation, the limit of the infi-
nitely long period of the structure (L  ∞) and of the
finite thickness ds of the superconductors corresponds
to k = 1, because K(k  1)  ∞. In this limit, for-
mula (2) reduces to the relation describing a solitary
vortex in a sandwich-type JJ [6]. In the opposite limit,
i.e., for infinitely thick superconducting electrodes
(ds  ∞) and a finite period L of the structure, for-
mula (2), with the notation α = 2(K'(k) – ds/B), is trans-
formed into ϕ0 = π + 2arctan[tan(z/2L)/tanh(α /2)],
with sinhα = (l/L). The latter expression is a well-
known solution of nonlocal Josephson electrodynam-
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ics, which was used, for example, in [3] and [4] in con-
structing the theory of the IVC for a JJ between bulk
superconductors.

In order to find the IVC for a JJ with a vortex train
(2), we write the solution of equation (1) in the form

(6)

where s = z – vt and ϕ0(s) describes the structure (2)
moving at a velocity v, which leads to the emergence of
perturbation ϕ1(s). This gives the following equation
for ϕ1(s):

(7)

where q = exp(–πK'(k)/K(k)). Considering the Ceren-
kov excitation of short waves and neglecting the differ-
ence between cosϕ0 and unity (cf. [3]), we immediately
obtain a solution of equation (7):

(8)

Here a0 = (βv/ L),

(9)
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(11)

Presuming the smallness of dissipation, we obtain
the following condition for the Cerenkov resonance:

(12)

which is satisfied when the velocity of the vortex struc-
ture is v = vr , for the term of series (8) with the number
n = nr (it will henceforth be referred to as the resonance
term). For small velocities v, the number of the reso-
nance term is large. Moreover, we will assume that

(13)

Then the Cerenkov resonance condition leads to

(14)

The fulfillment of conditions (13) in this case indicates
that the following condition is satisfied for the reso-
nance velocity vr:

(15)

Note that conditions (13) impose the condition nr @ 1
on the number nr of the Cerenkov resonance, provided
that

(16)

If v = vr , the resonance term in (8) with the number
n = nr has the form

(17)

In the vicinity of resonance, when

(18)

the resonance term can be written in the form

(19)

The most important difference between this result and
the one obtained in the theory of a JJ between bulk
superconductors lies in the exponent reflecting the
effect of the finite thickness of superconducting elec-
trodes.

The possibility to keep only one resonance term in
sum (8) is ensured by the fulfillment of the inequality
(see [3])

(20)
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This inequality can be reduced to the condition

(21)

Finally, the condition of the smallness of ϕr relative to
ϕ0 is ensured by the condition

(22)

Taking into account formula (14) for nr and condition
(15) imposed on the velocity, we can easily verify that

ϕr satisfies the inequality |(v2/ )(d2ϕr/ds2)| @ |ϕr |
justifying the substitution cosϕ0  1 in (7) in the cal-
culation of the resonance term.

Having established the possibility of describing the
Cerenkov radiation field with the help of expression
(19), we use this result for determining IVC. For this
purpose, we write the balance equation for the work
done by the current of density jc flowing through the JJ
and the energy loss in the vortex chain due to Cerenkov
radiation (cf. [3, 4]):

(23)

After the substitution ϕ = ϕ0 + ϕr , we obtain the follow-
ing velocity dependence of the current density:

(24)

where  = β + τ(lωj /v)2, w ≡ (ds/B) < K'(k), and
the following notation have been used:
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are total elliptic integrals of the second and third kind,
respectively. By virtue of relation (3), w can be deter-
mined from the equation

(26)

Finally, the modulus k of Jacobian elliptic functions is
defined by the equation

(27)

The constant potential difference across a Josephson
junction containing the vortex structure (2) moving at a
constant velocity is defined as

(28)

where the angle brackets denote averaging over the
period 2πL. Therefore, relations (24)–(27) define the
sought IVC. In the limit of bulk superconducting elec-
trodes forming a sandwich, for which ds = ∞, relations
(24)–(27) lead to the expression for the IVC from [4].

3. Let us consider some consequences of the general
relations (24)–(27) for the IVC of a Josephson junction
with a moving chain of vortices. We focus on the case
of a large separation L between vortices constituting the
chain (much greater than unity). In this case,

(29)

If equation (26) is written in the form [10]

(30)

then, taking into account the fact that K'(k) ≈ π/2 and
bearing in mind the estimate of the series

(31)

we can neglect the contribution from this series, pro-
vided that
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In this case, equation (26) assumes the following sim-
ple form:

(33)

corresponding to equation (29) in [6] for an individual
vortex. Using (33), we can obtain explicit conditions
imposed on the separation between vortices. For exam-

ple, if l @ ds, we have B1 ≈  and w0 = ds/B1 = .
If, however, l ≤ ds, we have B1 ≈ ds  and w0 ≈ 1. Conse-
quently, inequalities (32) and (29) determining the pos-
sibility of application of (33) instead of (26) are
reduced to the following inequality:

(34)

Under these conditions, the IVC (24) assumes the form

(35)

where

(36)

(37)

Here, in the limiting transition from (24) to (35), we
have used the fact that

for k' ! 1 [10]. The dependence of the coefficients
Φβ(w0) and Φτ(w0) on the ratio (l/ds) is plotted in Fig. 1.

In the limit l @ ds of thin electrodes, the IVC (35)
assumes the form

(38)

where we have introduced the notation vs, eff = ωj .
The only difference between the term linear in v in the
IVC (38) and the term emerging in the energy balance
equation for a solitary Josephson vortex in the local the-
ory is the presence of vs, eff instead of the ordinary Swi-
hart velocity vs = ωjλj (cf. [11]). The last resonance
term in the IVC (38), which cannot appear in the local
theory, is associated with the excitation of Cerenkov
waves by a vortex.
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Let us assess the JJ conductivity σ in which the res-
onance term in the IVC (38) will manifest itself in the
case of relatively low temperatures, where we can
neglect the effect of normal electrons (τ = 0). (The
effect of normal electrons on IVC is studied in detail in
[4].) The resonance term in (38) will be larger than the
term linear in v if

(39)

If we put l/ds = 5, L/l = 10, vs, eff /v = 3, l/d = 102, and

ε = 10, we obtain λµm ≤ 10–1, where  is the JJ

conductivity in inverse seconds and λµm is the London
penetration depth in micrometers. This estimate corre-
sponds to relatively low conductivities of JJ. Thus, in
the limit of very thin electrodes, which is similar in
many respects to the limit of the local Josephson theory,
the resonance term in the IVC (38) for low velocities
(15) is manifested for relatively low JJ conductivities.

By way of an illustration of the dependence of the
IVC shape on the ratio (l/ds) for somewhat thick super-
conducting electrodes, Fig. 2 shows the envelope (the
curve passing through resonance peaks) of the IVC (35)
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Fig. 1. Dependence of the coefficients Φβ(w0) (curve I) and
Φτ(w0) (curve II) on the ratio (l/ds); curves 1 and 2 are

described by the functions (4π)  and (8/3π)  cor-

responding to the asymptotic forms of the coefficients Φβ
and Φτ, respectively, for l @ ds.

l/ds l/ds
P

for σ ~ 108 s–1 and τ = 0, which has the form

(40)

where Rs = (2d/σ), V0 = ("lωj /2|e |L), j1 = jc(l/L)3/2. It
follows from Fig. 2 that the slope of the linear segment
of the IVC increases with decreasing ds and the devia-
tion from linearity occurs at lower voltages.

4. It should be noted that, in the limit L = ∞, formula
(2) is reduced to one describing a solitary vortex in a JJ:

(41)

In this case, (ds/B1) ≡ w0 is determined by (33). Using
(41) as a source of perturbation in equation (7) and pro-
ceeding in analogy with [2], we obtain the following
field of Cerenkov radiation emitted by a solitary vortex:

(42)

where θ(x) = 1, x > 0, θ(x) = 0 for x < 0, and γ = β +
(τl2 /v2). Expression (42) is written under the
assumption of weak attenuation of a Cerenkov wave
over the length of the vortex, i.e., v @ (β +

τl2 /v2)min(l, ), and the smallness of expres-
sion (42) relative to ϕ0 in (41) is ensured by the small-
ness of velocity (15). Using the field (42) and disregard-
ing the attenuation of the Cerenkov wave (γ  +0), we
can easily find the energy flux behind the vortex and the
corresponding frictional force decelerating the vortex
(see [1, 2]). For a current of constant density j flowing
from an external source through the JJ and accelerating
the vortex through the Lorentz force fL = Φ0 j/c ≡
(π"j/ |e |), we write the balance equation for the force of
friction and the Lorentz force and obtain the following
dependence of the current density on the vortex veloc-
ity:

(43)

In the limit of bulk electrodes, ds @ l, expression (43)
coincides with that given in [2]. In the limit of thin film-
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type superconductors with ds ! l, formula (43) is trans-
formed into

(44)

where we have introduced the notation λj, eff ≡ . It
can easily be verified that the limit ds ! l is similar to
the limit of local Josephson electrodynamics [11]. For
example, equation (1) in this limit is transformed into
the sine-Gordon equation with dissipation, while
expression (41) describing a solitary vortex in a JJ is
transformed into the formula for a conventional Joseph-
son vortex:

(45)

where the role of the Josephson length is played by

λj, eff ≡ .

Taking into account the above remark, we can state
that the dependence (44) of the current density on
velocity corresponds to the local limit of (1). Conse-
quently, we could consider the application of the
approach developed in [1] for deriving formula (44), in
which, during the linearization of equation (1), the
approximate expression (45) is substituted instead of
the exact expression for ϕ0 given by (41). It can be eas-
ily verified, however, that the approach used in [1] leads
to a considerably larger preexponential factor in formu-
las (42) and (44). This is due to the inaccuracy of solu-
tion (45) just in the range of small distances corre-
sponding to short waves we are interested in, which is
manifested directly in the linearization of equation (1),
when instead of (7) we have an equation with a right-
hand side that does not vanish for v = 0. Consequently,

formula (44) with the substitution  ≡ λj, eff  λj

correctly describes the relation between the current and
the velocity of a conventional Josephson vortex.

5. Let us summarize the obtained results. The appli-
cation of solution (41) has made it possible to derive
expression (43) relating the velocity of a vortex to the
current density through a sandwich-type JJ, inducing
the vortex motion.

Among other things, formula (44) that we derived
for the local limit proved that the application in [1] of
the approximate expression (45) for a vortex source
exciting Cerenkov waves during its motion, instead of
the exact expression (41) used in this paper, does not
lead to the correct preexponential factor in (44).

In order to construct the theory of the IVC for a
sandwich-type JJ on the basis of the mathematical the-
ory of dislocations [7], we determined the coordinate
dependence of the phase difference for Cooper pairs
situated on different sides of the JJ for an infinitely long
stationary chain of vortices with a nonzero mean mag-
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netic field (2). Similar expressions were found for a
chain of vortices with zero magnetic field (4). Expres-
sion (2) was used for deriving a general relation deter-
mining the IVC for the JJ under investigation. Ceren-
kov losses for emission of generalized Swihart waves
determine the IVC for small ohmic losses. Since nor-
mal electrons are virtually absent in the superconduct-
ing electrodes of a sandwich at low temperatures, the
effect of Cerenkov radiation on IVC should be sought
at just such temperatures.

APPENDIX

Let us verify that expression (2) is a steady-state
solution of equation (1). For this purpose, we use the
following expansion into Fourier series [10]:

(46)
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Fig. 2. Current–voltage characteristic for a JJ with a high crit-
ical current density for τ = 0, (l/L) = 10–2 and ( j1Rs/V0) = 104

(σ ~ 108 s–1) for different values of the ratio l/ds: 0.1 (curve 1),
1 (curve 2), and 2 (curve 3).
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(47)

We now use the transformations

(48)

where 2πL ≡ 2BK(k) is the period of the vortex structure
(2). Then condition (3) emerges from equation (1) as a
condition for its solvability.

This confirms the fact that (2) is a solution of equa-
tion (1). Similarly, we can verify the validity of solution
(4).

ACKNOWLEDGMENTS
This research was supported by Scientific Council of

HTSC (project no. 99002) and the State Program sup-
porting leading scientific schools (grant no. 96-15-
96750).

=  
dn ids/B k,( )

k2 sn ids/B k,( ) cn ids/B k,( )
----------------------------------------------------------------- dn

z ids–
B

--------------- 
 –

– dn
z ids+

B
--------------- 

  dn ds/B k',( ) cn ds/B k',( )
k2 sn ds/B k',( )

----------------------------------------------------------–=

× 4π
K
------ qn

1 q2n+
---------------- πnz

BK
--------- 

  πnds

BK
----------- 

  .coshsin
n 1=

∞

∑

1
2ds

-------- z'd
π z' z–( )/2ds[ ]sinh

---------------------------------------------
nz'/L( )cos

nz'/L( )sin 
 
 

∞–

+∞

∫

=  
nds

L
-------- 

  nz/L( )sin–

nz/L( )cos 
 
 

,tanh
PH
REFERENCES

1. R. G. Mints and I. B. Snapiro, Phys. Rev. B 52, 9691
(1995).

2. V. P. Silin and A. V. Studenov, Fiz. Tverd. Tela (St.
Petersburg) 39, 444 (1997) [Phys. Solid State 39, 384
(1997)].

3. V. P. Silin and A. V. Studenov, Zh. Éksp. Teor. Fiz. 113,
2148 (1998) [JETP 86, 1177 (1998)].

4. V. P. Silin and A. V. Studenov, Fiz. Tverd. Tela (St.
Petersburg) 41, 582 (1999) [Phys. Solid State 41, 521
(1999)].

5. Zh. D. Genchev and V. I. Vas’kivskiœ, Zh. Éksp. Teor. Fiz.
113, 955 (1998) [JETP 86, 521 (1998)].

6. G. L. Alfimov and A. F. Popkov, Phys. Rev. B 52, 4503
(1995).

7. A. Seeger, Theorie der Gittefehlstellen (Handbuch der
Physik), Kristallphysik (Springer, Berlin, 1955), Vol. 17,
Part 1.

8. A. S. Malishevskiœ, V. P. Silin, and S. A. Uryupin, Fiz.
Tverd. Tela (St. Petersburg) 41, 1154 (1999) [Phys. Solid
State 41, 1055 (1999)].

9. G. L. Alfimov and V. P. Silin, Zh. Éksp. Teor. Fiz. 108,
1668 (1995) [JETP 81, 915 (1995)].

10. I. S. Gradshteœn and I. M. Ryzhik, Tables of Integrals,
Sums, Series, and Products (Nauka, Moscow, 1971).

11. Yu. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61
(4), 763 (1989).

Translated by N. Wadhwa
YSICS OF THE SOLID STATE      Vol. 42      No. 4      2000



  

Physics of the Solid State, Vol. 42, No. 4, 2000, pp. 633–637. Translated from Fizika Tverdogo Tela, Vol. 42, No. 4, 2000, pp. 618–622.
Original Russian Text Copyright © 2000 by Vodop’yanov, Kozyrev, Mel’nik.

                                                                     

SEMICONDUCTORS 
AND DIELECTRICS
Vibrational Spectroscopy of the Ga1 – xAlxP Epitaxial Layers 
Grown on GaP(111) Substrate 

by the Liquid-Phase Epitaxial Technique
L. K. Vodop’yanov, S. P. Kozyrev, and N. N. Mel’nik

Lebedev Institute of Physics, Russian Academy of Sciences, Leninskiœ pr. 53, Moscow, 117924 Russia
e-mail: vodopian@sci.lebedev.ru

Received June 30, 1999

Abstract—The paper reports the results of measurements of the lattice IR reflection and Raman scattering
spectra for the Ga1 – xAlxP (x = 0–0.8) films grown on the GaP(111) substrate by the liquid-phase epitaxy tech-
nique. The dispersion analysis of the experimental spectra has demonstrated that, for the studied system of the
Ga1 – xAlxP alloy, the vibrational spectra of the alloys with different compositions exhibit three modes of the
Ga–P vibrations and one mode of the Al–P vibrations. The frequencies of modes only slightly depend on the
composition x of the Ga1 – xAlxP alloy, but the composition considerably affects the oscillator strengths of these
modes. © 2000 MAIK “Nauka/Interperiodica”.
Recent renewed interest in semiconducting alloys
(solid solutions) is explained by their extensive use in
constructing quantum-size electronic structures
obtained by the epitaxial growth method. Alloys of III–
V semiconducting compounds are very promising
materials for these purposes. The vibrational properties
of alloys in this system have been studied in detail, for
example, in the compounds (GaAl)As [1], Ga(AsP) [2],
etc. However, the transformations of the phonon spec-
tra due to variations in the alloy composition have not
been adequately investigated for some of these com-
pounds, in particular, (GaAl)P. The lattice IR reflection
spectra of the Ga1 – xAlxP bulk crystals were analyzed
by Lucovsky et al. [3]. Moreover, mention should be
made of two works [4, 5] concerned with the investi-
gation of the Raman light scattering in these alloys.
Baœramov et al. [4] measured the Raman spectra in the
narrow range of compositions at x < 0.23. Armelles et
al. [5] studied the Raman spectra excited at right angles
to the surface of thin films grown by the MCVD
method on the surface of GaP substrate. Since thin
films of the alloy were partially transparent for the
exciting lines of a Kr laser, the spectra contained, for
the most part, very intense bands of the GaP substrate.
This made difficult observation of the fine features
associated with the composition transformation of the
phonon spectrum.

As far as we know, research works dealing with the
lattice IR reflection in the (GaAl)P thin films have
never been published. However, this alloy is of particu-
lar interest for both investigations into the crystal lattice
dynamics and the corresponding model calculations,
because the lattice parameters of the terminal binary
compounds in this alloy are virtually coincident with
each other (∆a/a = 0.003). This implies that the compo-
1063-7834/00/4204- $20.00 © 20633
sition transformation of the phonon spectrum can be
observed in the pure form free from the predominant
effect of elastic stresses brought about by the difference
in lattice parameters.

The present paper has reported the results of the per-
formed measurements of the lattice IR reflection and
Raman light scattering spectra for the Ga1 – xAlxP epi-
taxial films grown on the GaP substrate by the liquid-
phase epitaxial technique. The dispersion analysis of
the experimental lattice reflection spectra revealed that,
for all the studied compositions, their vibrational spec-
tra exhibit modes of the Ga–P and Al–P vibrations,
namely, three modes of the Ga–P vibrations and one
mode of the Al–P vibrations. The frequencies of modes
only slightly depend on the composition x; however, the
composition appreciably affects the oscillator strengths
of these modes. The results of IR measurements were
confirmed by the data obtained from the analysis of the
Raman spectra. The Raman scattering technique pro-
vides the direct measurements of the characteristics of
the TO- and LO-phonons and, thus, makes it possible to
determine the type of transformation of the vibrational
spectrum. It was found that AlP-like vibrations mani-
fest themselves in one mode, whereas the GaP-like
vibrations are characterized by more complex depen-
dences outside the province of classical concepts.
These anomalies can be explained in the framework of
the quasi-molecular crystal lattice model of the alloy
[6, 7].

1. GROWTH OF FILMS AND MEASUREMENTS

The Ga1 – xAlxP epitaxial films with the AlP content
varying in the range x = 0–0.8 were grown on the
GaP(111) substrate by the liquid-phase epitaxial tech-
000 MAIK “Nauka/Interperiodica”



 

634

        

VODOP’YANOV 

 

et al

 

.

                                                                                        
nique from the Ga-enriched melt (GIREDMET). The
thickness of the grown layers was 6–10 µm. No addi-
tional surface treatment of the films was made to per-
form the IR and Raman measurements, except the films
with composition x = 0.8. The films of this composition
were coated with a thin organic film to ensure protec-
tion against hydrolysis in an air atmosphere.

The chemical composition of the Ga1 – xAlxP films
was specified by the composition of the GaP / AlP mix-
ture in the liquid phase. According to Sonomura et al.
[8], the composition of epitaxial layers in the GaP–AlP
system virtually coincides with the composition of the
initial mixture in the liquid phase. Moreover, these
authors compared the film compositions determined by
the electron microprobe analysis and the results of
measurements of the cathodoluminescence spectra for
the same samples and revealed that the location of the
cathodoluminescence peak varies linearly with respect
to the frequency as the mole fraction of AlP changes in
the Ga1 – xAlxP alloy [8]. For this reason, the electron
microprobe analysis was carried out for the samples
with compositions x = 0 and x ≈ 0.5, whereas the molar
composition of the other films was evaluated from the
cathodoluminescence data.

The long-wavelength IR reflection spectra were
recorded at room temperature on a laboratory vacuum
diffraction IR spectrometer with an OAP-5 optico-
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Fig. 1. The lattice reflection spectra of the Ga1 – xAlxP films
on the GaP substrate. Points are the experimental spectra
and the solid lines correspond to the calculations.
P

acoustic receiver as an infrared detector with a spectral
resolution of no worse than 1 cm–1.

The Raman scattering spectra were excited with the
4880 Å line of an argon laser and then were recorded
on a double monochromator of an U-1000 spectrometer
with a resolution of 1 cm–1. The measurements were
performed at room temperature in the backscattering
geometry. The preliminary measurements of the
Raman spectra with a normal incidence of the exciting
beam onto the film surface showed that the TO- and
LO-phonon bands of the GaP substrate predominate in
the spectrum (it is known that gallium phosphide exhib-
its a very high Raman scattering efficiency). Hence, in
order to tune away from the lines of a substrate, the
Raman scattering spectra were excited from the end
face of the epitaxial film. For this purpose, we used a
microattachment to accomplish the focusing of the
laser radiation onto a spot of diameter from 2 to 3 µm.
This method of excitation made it possible to obtain the
Raman spectra characterizing a thin layer of the GaP
alloy.

2. RESULTS AND DISCUSSION

Figure 1 displays the IR reflection spectra in the
range of lattice vibrations for the Ga1 – xAlxP films on
the GaP(111) substrate with compositions x = 0.15,
0.25, 0.40, 0.50, 0.58, and 0.80 at a temperature of
300 K. The experimental and calculated spectra are
shown by points and solid lines, respectively.

Earlier [9], we discussed the features of IR reflec-
tion spectra in the range of lattice vibrations for the
film–substrate structures with a film thickness of
1−2 µm by the example of the Zn1 – xCdxSe/GaAs struc-
tures. The reflection spectra of these films are rather
simple in shape. Compared to the reflection spectrum
of the substrate in the range of its transparency, the
former spectra resemble the absorption curve of the
film and are readily amenable to the mathematical
treatment with the use of dispersion analysis.

In the case of the film–substrate structures with a
film thickness of 6–10 µm, the specific feature of the
reflection spectra under consideration (Fig. 1) resides
in the fact that the reflection spectrum of a film almost
coincides with the reflection spectrum of the bulk mate-
rial due to strong absorption in the film in the range of
lattice vibrations. The skin depth for IR radiation in the
range of lattice vibrations turns out to be less than the
film thickness. For comparison, Fig. 2 demonstrates the
lattice reflection spectra of the Ga1 – xAlxP (x = 0.25)
film on the GaP substrate (shown by points) and the
Ga1 – xAlxP (x = 0.23) bulk material [3] (displayed by
the heavy solid line). The structures and intensities of
the reflection bands almost coincide with each other,
respectively. The differences in the spectra are
observed only in the range of a relative transparency of
the film (i.e., between the bands of “residual beams”
corresponding to the GaP- and AlP-like vibrations),
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000



        

VIBRATIONAL SPECTROSCOPY OF THE

 

 

 

Ga

 

1 – 

 

x

 

Al

 

x

 

P

 

 

 

EPITAXIAL LAYERS 635

                                                    
where the spectrum of the film on the substrate shows
an interference peak near the frequency of the LO-
mode of the GaP substrate (ωLO ≈ 401 cm–1). An inter-
ference effect of this type was observed earlier by Ger-
baux and Gadni [10] in the IR reflection spectra of
CdTe. In the vicinity of the LO-mode, the substrate is
characterized by a strong anomalous dispersion of the
refractive index, and, in the case of transparent film, the
interference increases at the expense of a multiple
reflection in the film.

For interpretation of the lattice reflection spectra
measured in this work (Fig. 1), we consider the model
structure formed by a thin film on the bulk (semi-infi-
nite) substrate under the assumption that the film is uni-
form in thickness. In the framework of this model struc-
ture for a film of thickness L with the dielectric function
εf (ω) and a substrate with the dielectric function εs(ω)
at a normal incidence of light, the amplitude reflectivity
(without regard for multiple reflection in the film) has
the form [11]

where

Here, λ = 104/ω is the wavelength. The reflectivity is
defined as R(ω) = [r1fs(ω)]2. The special features in the
interpretation of the reflection spectra of films on the
substrate in the range of lattice vibrations were dis-
cussed earlier in [9, 12]. Consideration of the multiple
reflection in the film at the film–substrate and film–vac-
uum interfaces leads to a very awkward expression for
the reflectivity (see, for example, [13]) and does not
provide additional information regarding the lattice
vibrations in the film; the sole exception is the demon-
stration of the complete coincidence between the
experimental and calculated spectra even in the range
of manifestation of the interference effect.

The dielectric function εf (ω) of a film was consid-
ered in the classical additive form

In calculations of the reflectivity R(ω), we varied the
following parameters in the formula for εf (ω): the fre-
quency ωtj of the jth TO-mode, the oscillator strength Sj

of the jth TO-mode, and the damping parameter γj. The
calculated reflection spectra are shown in Fig. 1 by
solid lines. Except for the range of manifestation of the
interference effect in the vicinity of the frequency
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ωLO ≈ 401 cm–1 (LO-modes of the GaP substrate), the
experimental and calculated R(ω) spectra are in good
agreement.

The dependences of the frequency of TO-mode on
the composition of the Ga1 – xAlxP films are displayed in
Fig. 3. The spectra exhibit one mode of the Al–P vibra-

tions (  ≈ 442 cm–1) and three modes of the Ga–P

vibrations (  ≈ 365, 355, and 377 cm–1). The fre-
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Fig. 2. Comparison of the lattice reflection spectra for the
Ga1 – xAlxP film (x = 0.25) (shown by points) and the bulk
crystal of about the same composition (x = 0.23) (displayed
by the heavy solid line).
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quencies of these modes weakly depend on the compo-
sition of the Ga1 – xAlxP film, whereas the transforma-
tion of the phonon spectrum with a change in the com-
position is governed by the oscillator strengths of these
modes.

Let us now consider the results obtained by another
independent optical method, namely, the Raman scat-
tering technique. Figure 4 depicts typical Raman spec-
tra measured for Ga1 – xAlxP alloys of different compo-
sitions x = 0.15, 0.4, 0.6, and 0.8 upon excitation with
the 4880 Å line of an argon laser. In the high-frequency
range, the spectrum contains two bands attributed to
AlP-like vibrations. As the GaP content increases, the
intensity of a band at ≈ 440 cm–1 increases, whereas its
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Fig. 4. The first-order Raman spectra for the Ga1 – xAlxP
epitaxial films of different compositions upon excitation
with the 4880 Å line of an argon laser.
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Fig. 5. Raman spectrum for a film of the Al0.25Ga0.75P alloy
upon excitation with the 4880 Å line.
P

frequency location remains virtually unchanged. The
second band shifts toward the high-energy range with
an increase in x. A more intricate pattern is observed in
the low-frequency range of the spectrum, which is char-
acterized by the manifestation of the GaP-like vibra-
tions. There appears a number of bands (not always
clearly resolved in frequency) whose intensity changes
with a change in x. Figure 5 shows the spectrum of the
alloy with x = 0.25 in a narrower spectral range. It can
be seen that many Raman scattering bands manifest
themselves in a veiled form as a shoulder on the slope
of a more intense peak or at the background of the
noise. The true parameters of these bands were deter-
mined with the computer program for contour separa-
tion.

In order to interpret the Raman bands observed
experimentally, it was necessary to elucidate their
nature (longitudinal or transverse). For this purpose, we
carried out the polarization measurements. The tensors
of effective Raman scattering cross-sections for the
polar cubic crystals with a structure of zinc blende were
calculated by Loudon [14]. In accord with the selection
rules following from consideration of these tensors,
upon excitation in the [111] direction, the polarized
spectra (parallel polarization of the exciting and scat-
tering light) should manifest only longitudinal
phonons. The depolarized spectra (crossed polariza-
tions) can exhibit both longitudinal and transverse
phonons. As an example, Fig. 6 displays the polarization
spectrum of the alloy with composition x = 0.5. It is seen
that the intensity of bands at ≈ 405 and ≈ 480 cm–1 dras-
tically decreases, which makes possible the assignment
of these bands to the LO-phonons.

The dependences of the frequency of TO- and LO-
phonons on the alloy composition x (Fig. 7) were
obtained from the analysis of the experimental spectra
of the Ga1 – xAlxP films. As can be seen, the AlP-like
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Fig. 6. Polarization spectra for a film of the Al0.5Ga0.5P

alloy. Polarization: (1) Z(x, x)  and (2) Z(x, y) .Z Z
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vibrations (two upper curves) follow the classical two-
mode scheme of transformations of the phonon spec-
trum. At a low aluminum concentration, the TO- and
LO-branches converge to a common point at the fre-
quency of the local vibration of aluminum replacing
phosphorus in the GaP lattice (≈ 440 cm–1), which is in
close agreement with the experimental value of this fre-
quency equal to 438 cm–1 [15]. Three TO-branches and
one LO-branch are observed for the GaP-like vibra-
tions. It is characteristic that, as the gallium concentra-
tion decreases, the TO- and LO-branches do not con-
verge to a common point corresponding to the energy-
gap mode of gallium in the AlP lattice. A possible rea-
son for such behavior is the absence of AN energy gap
between the allowed energy bands of acoustic and opti-
cal vibrations in the AlP lattice. Unfortunately, the
phonon spectrum of this compound is not clearly under-
stood. The origin of the branch segment at ≈ 393 cm–1 in
the range of compositions x = 0.15–0.25 remains
unknown. It should be noted that the concentration
dependences of the TO-branches obtained by the
Raman scattering and IR spectroscopic techniques
agree closely with each other. Thus, the presence of
three branches of transverse optical phonons in the
spectra of alloys in the (GaAl)P system was demon-
strated by two independent optical methods.

A similar transformation of the phonon spectrum
was observed earlier in the thoroughly studied system
of the Hg1 – xCdxTe alloy [6, 7] and explained within the
quasi-molecular mode. According to this model, the
crystal structure of the alloy is treated as formed from
five tetrahedral elementary cells with a common anion
at the center of a tetrahedron and various combinations
of cations in vertices of the tetrahedron. For each of the
Hg–Te and Cd–Te vibrations, four vibrational modes
are possible depending on the type of elementary cell.
It is assumed that the elementary cells do not interact
with each other (by virtue of the domination of the
short-range covalent bonding in tetrahedral com-
pounds). Therefore, the frequency of these modes are
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Fig. 7. Dependences of the frequency of TO- and
LO-phonons on the aluminum content in films of the
Ga1 − xAlxP alloy.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
independent of the alloy composition, and a change in
the vibrational spectrum of the crystal with a change in
the composition is governed by the concentration ratio
of different elementary cells. Note that not all modes
can be resolved upon measurements of the vibrational
spectrum, because the splitting of modes for different
elementary cells depends to a large measure on both the
ratio of cationic masses and the ratio between masses of
the cation and the anion for each pair. This likely
explains the fact that, for the system of the Ga1 – xAlxP
alloy, the vibrational spectra measured in this work
exhibit one mode of the Al–P vibrations and three
modes of Ga–P-like vibrations.

ACKNOWLEDGMENTS

We are grateful to A.A. Shlenskiœ and L.V. Druzhi-
nina (GIREDMET) for growing the (GaAl)P films.

This work was supported by the Russian Foundation
for Basic Research (project no. 97-02-16791) and the
State Scientific and Technical Program “Physics of
Quantum and Wave Processes” (“Fundamental Spec-
troscopy,” project no. 0.8.02.73).

REFERENCES

1. M. Bernasconi, L. Colombo, L. Miglio, et al., Phys. Rev.
B 43, 14 447 (1991).

2. M. Teicher, R. Beserman, M. V. Klein, et al., Phys. Rev.
B 29, 4652 (1984).

3. G. Lucovsky, R. D. Burnham, and A. S. Alimonda, Phys.
Rev. B 14, 2503 (1976).

4. B. Kh. Baœramov, V. N. Bessolov, É. Yane, et al., Pis’ma
Zh. Tekh. Fiz. 6, 1432 (1980) [Sov. Tech. Phys. Lett. 6,
618 (1980)].

5. G. Armelles, J. M. Calleja, and E. Munoz, Solid State
Commun. 65, 779 (1988).

6. S. P. Kozyrev, V. N. Pyrkov, and L. K. Vodop’yanov, Fiz.
Tverd. Tela (Leningrad) 34, 3695 (1992) [Sov. Phys.
Solid State 34, 1978 (1992)].

7. S. P. Kozyrev, L. K. Vodop’yanov, and R. Triboulet,
Phys. Rev. B 58, 1374 (1998).

8. H. Sonomura, T. Nanmori, and T. Miyauchi, Appl. Phys.
Lett. 24, 77 (1974).

9. L. K. Vodop’yanov, S. P. Kozyrev, and Yu. G. Sadof’ev,
Fiz. Tverd. Tela (S.-Peterburg) 41, 982 (1999) [Phys.
Solid State 41, 893 (1999)].

10. X. Gerbaux and A. Gadni, Int. Conf. Infrared Millimeter
Waves 2, 83 (1981).

11. H. W. Verleur, J. Opt. Soc. Am. 58, 1356 (1968).
12. S. P. Kozyrev, Fiz. Tverd. Tela (S.-Peterburg) 36, 3008

(1994) [Phys. Solid State 36, 1601 (1994)].
13. B. Harbecke, Appl. Phys. B 39, 165 (1986).
14. R. Loudon, Adv. Phys. 13, 423 (1964).
15. D. Hon, W. Fost, W. G. Spitzer, et al., Phys. Rev. Lett. 25,

1184 (1970).

Translated by O. Borovik-Romanova
0



  

Physics of the Solid State, Vol. 42, No. 4, 2000, pp. 638–640. Translated from Fizika Tverdogo Tela, Vol. 42, No. 4, 2000, pp. 623–625.
Original Russian Text Copyright © 2000 by Nemov, Musikhin, Osipov, Proshin.

                                                                                                                                                                                

SEMICONDUCTORS 
AND DIELECTRICS
Energy Spectrum of (Sn0.65Pb0.35)0.95Ge0.05Te Solid Solutions
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Abstract—The paper reports the study on the resistivity ρ and thermoemf S of the (Sn0.65Pb0.35)0.95Ge0.05Te
solid solution layers. The dependences of ρ and S on the hole concentrations in the range 3 × 1019–2 × 1021 cm–3

exhibit jumps in the resistivity and thermoemf minima at close hole concentrations p1 ≈ 9 × 1019 cm–3, p2 ≈
2.5 × 1020 cm–3, and p3 ≈ 4.5 × 1020 cm–3. The observed jumps and minima suggest a complex structure of the
valence band and the presence of critical points in the energy spectrum of holes. According to the data for SnTe,
the critical points in the energy spectrum at the given hole concentrations are identified as the Σ-extremum, sad-
dle point LΣ, and ∆-extremum, respectively. © 2000 MAIK “Nauka/Interperiodica”.
A specific feature of solid solutions based on tin,
germanium, and lead tellurides is the crystallization
with a noticeable deviation from the stoichiometry in
the direction of excess chalcogen (~ 1 at. % and more).
The vacancies formed in the metallic sublattice as a
result of this deviation are electrically active. At high
concentrations of electrically active defects, the typical
concentrations of holes in SnTe and SnTe-based solid
solutions can reach p ~ 1020–1021 cm–3 [1]. In this case,
the control over the electrophysical properties of the
solid solutions with the help of doping becomes ineffi-
cient because of very high concentrations of charge car-
riers and intrinsic defects. The exception is the indium
impurity, whose solubility in Sn1 – xPbxTe is of about
10–20 mol % InTe [2–5]. An interesting feature of
Sn1 − xPbxTe bulk samples doped with indium impurity is
the bulk superconductivity through the indium impurity
states. In particular, the samples containing 16–20 mol %
InTe are characterized by the critical temperature
TC ≈ 4K. The solid solutions based on SnTe : In with
high critical temperatures are promising materials for
the production of superconducting bolometers operat-
ing at helium temperatures. However, the lack of data
on the band structure of the Sn1 – xPbxTe solid solution
over a wide energy range makes difficult the interpreta-
tion of experimental data and the determination of the
In impurity contribution to the transport phenomena. In
this respect, the present work is an attempt to investi-
gate the band spectrum of the (Sn0.65Pb0.35)0.95Ge0.05Te
solid solution over a wide range of charge carrier con-
centrations (p ~ 3 × 1019–6 × 1021 cm–3).

1. SAMPLES UNDER STUDY

Possible practical applications of SnTe : In-based
solid solutions are connected with preparation of thin
layers. In this work, we studied the layers prepared
from a batch that was obtained from bulk samples [4]
1063-7834/00/4204- $20.00 © 20638
of composition [(Sn0.65Pb0.35)0.95Ge0.05]1 – xInxTe with
indium content x = 0.05–0.20 in the batch. The samples
were fabricated by the metal-powder method. The
ingots were synthesized under vacuum by melting the
initial components of semiconductor purity. After
grinding of the ingots (the mean grain size d ≈ 0.1 mm),
the hot pressing was carried out at a temperature of
350°C. Then, the samples were annealed under vacuum
at a temperature of 600°C for 120 h. The X-ray
microanalysis did not reveal the second phase in the
samples.

The layers studied were produced by the pulsed
laser deposition method with the use of ceramic sam-
ples as targets. The pulsed laser deposition, as a rule,
provides a congruent evaporation of many-element tar-
gets and makes it possible to obtain films whose com-
position differs only slightly from the batch composi-
tion. However, upon deposition of the Sn1 − xPbxTe : In
solid solution, the distribution of indium over the film
thickness turns out to be nonuniform. It was established
earlier that the uniformity of the indium distribution
over the thickness of the Sn1 - xPbxTe layers can be
increased by addition of germanium to the solid solu-
tion [6, 7]. This provides an explanation for the choice
of the composition of the target material.

A change in the hole concentration in the films and,
correspondingly, the shift of the Fermi level in the
energy spectrum were accomplished by the variation in
deposition conditions (in particular, the substrate tem-
perature, the energy of laser pulse, and the steepness of
its leading edge) and indium content in the batch.

The positive signs of the thermoelectric coefficient
(S) and Hall coefficient (R) in the thin layers studied
indicate the hole-type conduction in the samples. The
small values of S and R suggest high concentrations of
charge carriers and a strong degeneracy of the hole gas.
In this work, the hole concentration in layers was deter-
mined from the data on the Hall effect according to the
000 MAIK “Nauka/Interperiodica”
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formula p = (eR)–1. Since we studied the sufficiently
thick films (thickness, 110–190 nm) with a high hole
concentration (in the range 3 × 1019–6 × 1021 cm–3), no
effects due to the size quantization manifested them-
selves in the films, and the electrophysical parameters
of the films and bulk samples at the same hole concen-
trations were close to each other.

2. RESULTS AND DISCUSSION

The temperature dependences of the resistivity (ρ),
Hall coefficient (R), and Seebeck coefficient (S) were
measured in the temperature range 77–400 K. These
dependences are similar to those studied earlier for
SnTe [9]. Since distinctive features are not observed in
the temperature dependences of the kinetic coefficients,
we consider their concentration dependences. Let us
take up first the data on the resistivity (see Fig. 1a). It is
seen that, as expected, the resistivity of layers, on aver-
age, decreases with an increase in the hole concentra-
tion. Moreover, the ρ(p) curve shows several abrupt

jumps in the resistivity at the hole concentrations  =

9 × 1019,  = 3 × 1020, and  = 4.5 × 1020 cm–3,
respectively.

The observed jumps in the resistivity indicate a
complex structure of the valence band of the solid solu-
tion and also the presence of critical points in the
energy spectrum of holes. The resistivity jump is
caused by the transition of the Fermi level through a
singular point of the energy spectrum. This is accompa-
nied by the appearance of a kink in the energy depen-
dence of the relaxation time, which, in turn, should give
rise to a minimum in the thermoemf [as is known, in the
case of strong degeneracy, the thermoelectric coeffi-

cient S ~ ]. Therefore, the experimental

data on the thermoemf can serve as an additional evi-
dence for the presence of critical points in the energy
spectrum.

As is seen from Fig. 1b, the dependence of the ther-
moelectric coefficient on the hole concentration S(p)
also exhibits complex nonmonotonic behavior and
shows several clear minima at the critical hole concen-

trations  = 9 × 1019,  = 2.5 × 1020, and  = 4.5 ×
1020 cm–3, respectively. It is worth noting that the afore-
mentioned features are observed both at low tempera-
tures T ~ 120 K and at room temperature. A comparison
of the data on ρ and S (see Figs. 1a, 1b) reveals a clearly
pronounced correlation. The jumps in the electrical
resistivity of layers and dips (minima) of the ther-
moemf in the isotherms of the dependences of ρ and S
on the Hall concentrations of holes are observed at
close values of the Fermi energy.

The identification of critical points requires infor-
mation on the valence band structure of the solid solu-
tion. Unfortunately, these data for the solid solution
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studied are not available in the literature. However,
with due regard for the structural similarity of the
valence bands of A4B6 compounds, one can expect that
the energy spectra of solid solutions based on SnTe and
tin telluride will be similar to each other. The calcula-
tions of the band structure for A4B6 compounds with a
cubic lattice demonstrate that the main extremum of the
valence band is located at the L points of the Brillouin
zone. Moreover, the valence band is characterized by
two groups of singular points of the spectrum, which
are situated at the Σ and ∆ points on the twofold and
fourfold axes, respectively. These axes are character-
ized by the large effective hole masses (larger than the
mass of a free electron). Depending on the sign of
heavy masses, these points can be either points of an
extremum (the 2nd and 3rd extrema of the valence
band), or the saddle points. From the band structure cal-
culations and topological reasons it follows that, if the
extrema of valence band are located at the Σ points, one

0.05

0.04

0.03

0.02

0.01

T = 300K
(a)

ρ,
 Ω

 c
m

200

150

100

50

S,
 µ

V
/K

T = 120K
T = 300K

(b)

~~

20

15

10

5

0
3 × 1019 1020 1021

p, cm–3

g,
 1

021
eV

–
1 cm

–
3

L Σ

LΣ
∆

(c)

Fig. 1. Isotherms of concentration dependences of (a) the
resistivity and (b) the thermoelectric coefficient for the
(Sn0.65Pb0.35)0.95Ge0.05Te : In solid solution. (c) The
energy spectrum of SnTe (according to the data taken from
[8]).
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more group of saddle points arises in the LΣ direction.
According to [8], the critical points of the spectrum on
the twofold Σ and fourfold ∆ axes in SnTe are the points
of extrema. In this case, as mentioned above, the saddle
points appear in the LΣ direction (see Fig. 1c).

A comparison of the critical hole concentrations in
the (Sn0.65Pb0.35)0.95Ge0.05Te : In solid solution in SnTe
(according to the data obtained in [8]) reveals their
closeness (see Fig. 1c). This allows us to identify the
critical points of the energy spectrum at the hole con-
centrations p1 = 9 × 1019, p2 = 3 × 1020, and p3 = 4.5 ×
1020 cm–3 as the Σ-extremum (~ 9 × 1019 cm–3 in SnTe),
the saddle point LΣ (~ 2.5 × 1020 cm–3 in SnTe) and the
∆-extremum (~ 7 × 1020 cm–3 in SnTe), respectively. A
slight discrepancy between the critical hole concentra-
tions in the solid solution and in SnTe is likely due to
the fact that the location of critical points in the spec-
trum depends on the ratio between components in the
solid solution.
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Abstract—Measurements are reported of the transverse magnetoresistance MR and of the thermopower S, car-
ried out at high pressures P on Te single crystals in synthetic-diamond chambers. The MR is found to increase
with decreasing gas width under a pressure up to 4 GPa as one approaches the semiconductor–metal phase-tran-
sition point, to fall off subsequently in the high-pressure metallic phase. The behavior of S(P) correlates with
the pressure dependences of the measured MR. A negative MR at T = 77 K was found within a narrow interval
P = 1.5–2 GPa, where the valence band of Te is assumed to undergo rearrangement. Above the point of the phase
transition to the β-Po structure, MR is established to increase with pressure for P > 12 GPa. The MR data are
used to estimate the hole mobility µ for various Te phases. A comparison is made of the mobilities in Te, Se,
and high-pressure phases of mercury chalcogenides, which are their structural and electronic analogs, for pres-
sures of up to 30 GPa. © 2000 MAIK “Nauka/Interperiodica”.
The thermopower (Seebeck coefficient) S and the
transverse magnetoresistance MR characterize the gap
width εg, concentration, and mobility µ of carriers in
semiconductors, and, therefore, investigation of these
effects provides information on the character of varia-
tion of the electronic structure of both the original and
high-pressure phases [1–7]. When deriving µ data from
the Hall effect and conductivity, the experimental val-
ues can be distorted by the carrier concentration being
spatially inhomogeneous. For instance, the room-tem-
perature hole mobility µ in Se obtained from such mea-
surements is less than 1 cm2/Vs, while MR data yield
µ ≈ 50 cm2/Vs [5]. Studies of the influence of plastic
deformation on the electric properties of Se indicate the
existence of potential barriers, which originate from
lattice defects and result in spatial concentration inho-
mogeneities [5]. The conductivity of selenium is deter-
mined by the low concentration of holes in depleted
zones, while the Hall effect and S are accounted for by
the high hole concentration in other regions [5]. In con-
trast to the Hall effect, magnetoresistance permits one
to perform direct measurements of µ in selenium, and
it does not depend on carrier concentration [5]. The
behavior of MR permits certain conclusions on the vari-
ation of the mobility and other carrier characteristics
under a monotonic variation of the parameters of the
electron spectrum and in phase transitions in the elec-
tron system.

The most convenient chambers for electrical mea-
surements at pressures of up to 50 GPa are those made
of synthetic diamond [6, 7]. The technique employed in
MR and S studies at P of up to 30 GPa in such chambers
[8, 9] was used to investigate the high-pressure phases
of Hg, Cd, Zn chalcogenides and such elemental semi-
conductors as Se and I2 [9–11]. Some materials (CdTe,
1063-7834/00/4204- $20.00 © 20641
CdSe, CdS, ZnSe, ZnS, and I2 [9]) exhibited a negative
MR, whereas in the chalcogenides of mercury and Se,
one observed MR sign reversal in direct and reverse
structural phase transformations [9, 10]. The sign rever-
sal of S and MR reflects changes in the type of the
majority carriers and their scattering mechanisms,
which occur as a result of an electron structure rear-
rangement [3, 4, 9, 10].

This paper reports on measurements of S and MR
carried out on Te single crystals at quasihydrostatic
pressures of up to 30 GPa. In this pressure region, a
semiconductor–metal transition has been revealed [6,
7, 12], and structural changes with increasing lattice
symmetry and the coordination number have been
found to take place in the following order: trigonal
phase I  monoclinic II (4 GPa)  orthorhombic
III (6.8 GPa)  rhombohedral IV (10.6 GPa)  bcc
V (27 GPa) [13]. This work aimed to study the changes
in the electron structure of Te accompanying the pres-
sure-induced lattice transformation by measuring MR
and S.

1. EXPERIMENTAL

The pressure dependences of S and MR were studied
in two high-pressure chambers, whose anvils made of
synthetic diamond had operating diameters of 0.8 and
0.6 mm [8, 9]. For measurements in the pressure region
of up to 10 GPa, Toroid-type chambers [14] of a VK6
hard alloy were employed. Catlinite was used as a pres-
sure-transmitting medium. The magnitude of pressure
was estimated to within 10% from the calibration
graphs relating P to the compressive force and con-
structed for each chamber with the use of the known
000 MAIK “Nauka/Interperiodica”
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Fig. 1. The thermopower S vs. pressure P dependences
obtained at T = 300 K on Te samples in chambers of tung-
sten carbide (circles) and synthetic diamond (triangles).
Inset: an enlarged fragment of the plot.

Fig. 2. Temperature dependences of the resistivity of a Te
sample obtained in a tungsten-carbide chamber at fixed
pressures P (GPa): (1) 1.6, (2) 2.9, (3) 3.4, (4) 4.1, (5) 5.2,
(6) 6, (7) 6.9, (8) 7.7, (9) 8.1, and (10) 8.5.
P

phase transitions in such reference substances as Bi,
GaP, etc. [4, 6–9].

The samples in the diamond chambers measured
typically 0.2 × 0.2 × 0.05 mm, and, in the hard-alloy
one, 0.4 × 0.4 × 0.2 mm.

The electrical resistivity ρ, S, and MR were mea-
sured by the techniques described in [9, 10]. The elec-
tric leads pressed to the samples were made of a 5 µm-
thick Pt–Ag ribbon, and the high-conductivity diamond
anvils served as current contacts [9, 10]. The tempera-
ture dependences of ρ of the samples were obtained in
the range from 77 to 300 K at fixed pressures. The pres-
sure and temperature dependences of ρ were measured
under the reversal of the current through the sample.
The diamond anvils, whose temperature was monitored
by thermocouples, served as a heater and a cooler in
thermoelectric measurements [4, 9, 10]. The calculated
temperature distribution in the diamond chambers [15]
permitted an estimate of the error in determination of
the temperature drop across the sample. The relative
error of ρ and S measurement was 3 and 20%, respec-
tively.

The MR effect was measured by switching the cur-
rent flow through the sample and the magnetic field B.
The MR geometric factor of samples [3] (which was
approximately the same for all P) was disregarded. For
small MR, the output of the sample potential probes
was amplified after compensation. The setup permitted
MR measurements starting with 0.01%. Control mea-
surements showed no MR effect with the diamond
anvils shorted [9]. The previous MR measurements
made in diamond chambers on HgSe, HgSeS, and Se
crystals [9–11] agree with the data obtained on large
samples of a standard shape at atmospheric [5] and
hydrostatic pressures of up to 2 GPa [9, 11]. The total
time taken by measurements on each sample of the
temperature and field dependences of ρ under pressure
was two to three weeks. After each change of pressure,
the samples were maintained for 8–12 h to stabilize the
resistivity before starting temperature and magnetic
measurements [6].

The studies were performed on single crystals of
undoped Te. The samples were characterized at atmo-
spheric pressure using the Hall effect and resistivity
measurements made in magnetic fields of up to 14 T at
temperatures of 4.2–350 K by means of an Oxford
Instruments setup. The impurity concentration was
estimated as ~2 × 1016 cm–3. At all temperatures, the
Hall constant was positive.

2. RESULTS

The resistivity and the thermopower of tellurium
decreased (Fig. 1), and the temperature dependences of
ρ changed their slope (Fig. 2) with increasing pressure.
This agrees with the earlier electrical [1, 4, 6, 9, 12, 16]
and optical [17] studies. However, at a fixed pressure of
1.5–2 GPa, ρ increased irreversibly as the sample was
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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∆ρ/ρ
cooled (curve 1 in Fig. 2). No such irreversible changes
in ρ were observed to occur at higher P. The resistivity
was also observed to increase after subjecting Te crys-
tals to a hydrostatic pressure of up to 1.2 GPa in [16],
where this effect was attributed to an increase of the
concentration of defects (dislocations) strongly affect-
ing the electrical properties of Te and Se [5]. At such
pressures, Te was reported [18] to transfer from the
chain to a Sb-type layered structure (without any
change in the volume), but this observation was not
confirmed in later studies [19, 20].

The magnetoresistance of Te in fields of up to 2 T
was approximated by a parabolic dependence on B for
all P (Figs. 3 and 4). We used the expression for the MR
of a parabolic-band semiconductor, ∆ρ/ρ = ar(µB)2, to
estimate, assuming the coefficient ar = 1, the hole
mobility µ for various Te phases (Fig. 5). The MR
increased with P increasing to 4–6 GPa. The values of
MR and µ agree with the data of [16] obtained under
hydrostatic pressures of up to 1.2 GPa on samples with
similar hole concentrations. The pressure dependences
of MR and µ measured in the hard-alloy (Fig. 3) and
diamond chambers (Figs. 4 and 5) coincided. The
increase of MR and µ and the decrease of S with pres-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
sure up to 4 GPa should apparently be attributed to the
decreasing gap width εg [16, 17, 21].

At pressures of 1.5–2 GPa corresponding to the
above-mentioned anomaly of ρ, one observed a nega-
tive MR at T = 77 K in different chambers (Figs. 3 and
4). In weak fields, the negative and positive (extrapo-
lated to B = 0) MR branches could be fitted by approx-
imately the same parabolic dependence on B. The high-
temperature MR for these pressures remained positive
and increased with increasing P (see Fig. 3).

The MR effect decreased rapidly above the pressure
where the temperature coefficient of ρ reverses its sign
(see Fig. 2). In samples maintained for a long time
under a load, the transition to metallic conduction in
our experiments occurred at P > 4–6 GPa [6, 7, 12]. It
should be borne in mind that structural defects emerg-
ing even under the hydrostatic pressure P strongly
affect the electrical properties of Te and Se [16, 21]. In
high-pressure metallic phases, the MR effect remains
positive (Figs. 3 and 4). The structural transformations
occurring at high pressures [13] affect the electrical
properties of Te [6, 7, 12, 20]. The pressure dependence
of S reveals anomalies at P ≈ 6 and 10 GPa (Fig. 1),
which can be identified with transitions from the mon-
0
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Fig. 5. Hole mobility derived from magnetoresistance for Te
samples and presented as a function of pressure for T = 77
(open symbols) and 300 K (filled symbols). The data
obtained in the hard-alloy chamber are identified with trian-
gles, and those in the diamond chambers, with circles and
squares. The straight line is a fit with an exponential (see
text).
oclinic to orthorhombic to rhombohedral phase with
the β-Po structure [13]. The magnitude of the MR effect
increases with pressure above 12 GPa (Fig. 4).

3. DISCUSSION OF RESULTS

Calculations of the electron structure of Te and Se
under pressure [21, 22], as well as preliminary electri-
cal and optical experiments [1, 4, 7, 12, 16, 17] indicate
a strong decrease of the direct energy gap εg in the elec-
tron spectrum with increasing P. Experimental data for
Te (see Figs. 1–5) and Se [10] demonstrate, in accor-
dance with these calculations, a drop in S and an
increase of MR and µ caused by the pressure-induced
decrease of εg.

As a result of Te having a complex valence-band
structure, several groups of carriers contribute to con-
duction [16, 17, 21]. To describe the Hall effect and MR
in strong magnetic fields from 8 to 14 T, two types of
holes with different mobilities µ = (eτ/mp) were
invoked [16], where e is the electron charge, τ is the
momentum relaxation time, and mp is the hole effective
mass [3]. For fields below 2 T, we approximated the
positive MR with a single-band model, because the con-
tribution of heavy holes is believed [16] to be noticeable
for B > 2 T. The negative MR effect (Figs. 3 and 4),
which is tentatively assigned to a pressure-induced
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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change of the valence-band structure [16, 17, 21], is an
exception. It will be considered below.

The light-hole mobility in Te at hydrostatic pres-
sures of up to 1.2 GPa was approximated [16, 21] by the
µ(P) = µ(0)exp(γP) relation, where the coefficient γ =
0.5–0.7 GPa–1. This relation is a consequence of the
decrease of the gap width εg and of the hole effective mass
mp ~ εg according to the same law with γ = 0.5 GPa−1

[16, 17, 21]. The pressure dependences of the hole
mobilities for the semiconducting phases of Te (Fig. 5)
and Se [10] are fitted satisfactorily by the above expo-
nential function. The coefficient γ for Te up to 4 GPa
and for Se within the 6–25 GPa region [10] is, accord-
ingly, 0.5–1 and 0.2–0.3 GPa–1. The strong pressure
dependence of µ is accounted for by the fact that εg of
Te and Se decreases with increasing P much faster than
it does for other semiconductors [1], to vanish at 4 and
15–25 GPa, respectively [1, 7, 16, 17, 21]. The trigonal
lattices of Te and Se consist of helical chains extended
along the c axis, which are forced close to one another
by the pressure. This results in a broadening of the elec-
tron bands and a considerable decrease of εg at the H
point of the Brillouin zone [21, 22].

The strong decrease of MR after the transition to the
metallic state (Figs. 3 and 4) is accounted for by an
electron structure rearrangement [23–25], so that the
hole effective mass should obviously increase com-
pared to mp of the trigonal phase for εg  0. Because
the hole gas in metallic phases becomes degenerate, a
factor (kT/Ef)2 ! 1 will appear in the expression for MR
[3]. Here Ef is the Fermi energy, and k is the Boltzmann
constant.

While the metallic phases of Te have different types
of bonding, they still exhibit a certain similarity, which
suggests a similarity among their electronic properties
[23–25]. The monoclinic phase (II) forms of the trigo-
nal one (I) through rotation of chain segments, which
make up weakly bonded, corrugated layers [25]. It is an
anisotropic metal, because, along the Γ–X direction in
the Brillouin zone, the Fermi level crosses the electron
bands, and, along Γ–Y and Γ–Z, it lies in the gap [26].
The orthorhombic lattice (III) forms of the monoclinic
one (II) when the angle α = 92.7° decreases down to
90° and the bond lengths in the layers become identical
[24]. Phases II and III have corrugated layers, where the
conduction along the a axis is metallic, and, along the
b, c plane, which is parallel to the zigzag-shaped cova-
lent chains, it is semiconducting [13, 24]. This structure
accounts for the noticeable MR effect preserved in
these phases (Figs. 3 and 4). The electron structures and
properties of phases II and III are identical [13, 25], an
assumption confirmed by the measurements of S and
MR in this work (Figs. 1 and 5). The rhombohedral lat-
tice of the β-Po (IV) type is a specific case of the orthor-
hombic one (III), where the compression makes the
interatomic distances in a layer equal to the layer sepa-
ration [25]. Therefore, the transition from lattice III to
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
the more symmetrical structure IV [13, 23] is capable
of resulting in the observed increase of MR and of hole
mobility µ for P > 12 GPa (see Figs. 3 and 4). The
three-dimensional semiconducting structures, i.e., IV
and the bcc V, are isotropic metals [13, 25].

The crystal structures of group V–VII elements with
an unfilled p-shell, including Te, Se, and iodine, are
obtained, in the tight-binding approximation, through
the Peierls distortion of a simple cubic lattice [26, 27].
The p-electrons play a dominant role in the binding of
these crystals [26]. The energy spectrum of the hypo-
thetical cubic phases consists of three overlapping
bands px, py, and pz, which are partially filled. The lin-
ear atomic chains reduce their energy under the Peierls
distortion of the lattice, thus creating a gap at the Fermi
level. Because the pz band of Te and Se is filled to two
thirds of its capacity, the spectrum undergoes dielectri-
zation through tripling of the unit cell [26, 27]. The
deformation stabilizing the structure of the linear Te
and Se chains along each coordinate direction at nor-
mal pressure P forms helical chains of divalent atoms
[26]. In iodine, whose p-band is 5/6-filled, the spectrum
dielectrization is produced by a sixfold increase of the
cell volume, which corresponds to one short (covalent)
bond and five long (Van der Waals) bonds [26]. A
molecular crystal forms with the iodine atom having
one neighbor only [26]. It was suggested [27] that the
spectrum of mercury chalcogenides undergoes dielec-
trization similar to that for Te and Se, i.e., through a six-
fold increase of the unit cell of the cubic praphase.
Indeed, the unit cell of the high-pressure HgTe and
HgSe semiconducting phases with the cinnabar struc-
ture (α-HgS) is actually doubled along the c axis com-
pared to Te and Se [28]. The gap in the spectrum of
these phases at the Fermi level emerges apparently
from states connected genetically with the p-level of
chalcogens [29, 30]. They are structural and electron
analogs of Te and Se [4, 28].

Peierls structures have a lower density than unper-
turbed lattices [26]. When the crystal volume
decreases, the atomic core repulsion precludes distor-
tion which becomes energetically disadvantageous
starting from a certain pressure [26]. Within this
approach, the pressure-induced metallization of Te, Se,
halogens (iodine) [1, 6, 7, 21], and mercury chalco-
genides [4, 9, 10] is made possible by the removal of
the Peierls distortion [26]. However, as follows from
calculations made for Te [25] and from structural mea-
surements [13, 19], a simple cubic lattice is unstable for
any pressure. The magnitudes of ρ and S of the semi-
conducting phases of Te, Se, iodine, and mercury chal-
cogenides decrease with increasing P because of the
decreasing εg [4, 9, 10]. However, the behavior of MR
for εg  0 is essentially different [9, 10]. In the cova-
lent Te and Se, the magnetoresistance and µ of holes
increase exponentially with pressure (see Fig. 5 and
[10]), whereas the electron mobility in the high-pres-
sure semiconducting phases of mercury chalcogenides
0
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is very low (µ < 50 cm2/Vs [9]) because of the ionic
bonding in the chains. The hole mobility µ of holes in
the molecular phase of iodine is as low as in amorphous
Se, which is accounted for by the smallness of the
wave-function overlap integral for neighboring atoms,
which determines the electron tunneling rate [31].
These materials with low carrier mobilities exhibit a
weak negative MR [9, 10], which is probably due to an
impurity-band rearrangement in the magnetic field
[32].

By contrast, a negative MR in Te (Figs. 3, 4) is
observed with a high hole mobility. The fact of its
appearing at pressures where calculations predict a
change in the valence-band shape [16, 17, 21, 33]
allows a conjecture that these phenomena are con-
nected. The dispersion relation for the upper valence
band of Te near the H point of the Brillouin zone has the

form E(k) = –A  – B  + (∆2 + C2 )1/2, where kz and
k⊥  are wave-vector components along and perpendicu-
lar to the trigonal axis, ∆ is the valence-band separa-
tion, and the A, B, and C parameters and their variation
with P were derived from optical and galvanomagnetic
measurements up to 1.2 GPa [16, 17, 21]. Along the kz

direction, the valence band has two extrema at ±kzm; the
extremum along k⊥  lies at k⊥  = 0 and is lower in energy
by ∆ε = 2.3 meV [16, 17, 21]. The existence of a saddle
point at kz = 0 (and k⊥  = 0) [33, 34] is responsible for a
number of effects, including a change in the Fermi sur-
face shape with increasing band occupancy [34] and
intraband magnetic breakdown in fields B > 2 T (for
concentrations 4 × 1016 cm–3) [21, 35]. As P increases,
∆ε and kzm decrease; i.e., the extrema become closer.
Anzin et al. [33] were the first to indicate the possibility
of a rearrangement of the hole Fermi surface structure
at pressures above 1.6 GPa. By the later calculations
discussed in [16, 17, 21], extrapolation of the spectrum
suggests that the saddle point vanishes in the 1.5–3 GPa
interval, where one could expect nontrivial behavior
from mp and µ along the kz axis, and where our experi-
ments reveal a negative MR (see Figs. 3 and 4).

The most probable of all mechanisms capable of
creating a negative MR at high temperatures are the
effects caused by carrier heating by an electric field E,
where the drift mobility µd of “warm” carriers becomes
a function of the field, µd = µ(1 + βE2) [3]. If τ ~ (ε)r is
a decreasing function of energy ε (which corresponds
to scattering from acoustic phonons, r = –1/2), then
β < 0, and µd decreases with increasing ε [3]. By
deflecting the carriers from the drift direction, the mag-
netic field reduces the energy gained by the carriers
and, hence, increases µd. The Hall field generated in the
sample changes the direction of the resultant electric
field, which also affects mp, and, hence, µd. In weak
fields, this results in a quadratic negative MR, ∆ρ/ρ =
−cr(µB)2, where cr ~ 10–2 [3]. In the case of two
closely lying extrema with different effective masses,

kz
2 k ⊥

2 kz
2

P

the expression for MR in weak fields acquires the form
∆ρ/ρ = 9π/16(µpB)2[(1 + ηb2)/(1 + ηb) – π/4(1 +
ηb2)2/(1 + ηb)2], where b and η are the ratios of the hole
mobilities and concentrations, respectively, and µp is
the mobility of light holes [3]. As seen from this expres-
sion, a slight decrease in their concentration resulting
from a transition between the extrema (for instance,
because of cooling of the “warm” carriers) will make
the MR negative. It can be conjectured that this mecha-
nism is operative in Te close to the vanishing of the sad-
dle point; i.e., in the case where the extrema are the
closest to one another and the warming field (in which
the carriers gain the energy required for the transition
between the extrema) is the lowest [2, 3]. The lower
extremum of the valence band can be identified with the
region of the spectrum near the saddle point, where this
band passes through a local maximum along the k⊥
direction [16, 17, 21, 33].
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Abstract—The complete set of optical fundamental functions is determined for diamond in the range from 4
to 32 eV. The features of the bulk and surface characteristic energy loss spectra are elucidated and the functions
neff(E) and εeff(E) are calculated. The energies of volume and surface plasmons are established. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The plasmons hold a unique position among quasi-
particles of a solid because of their special features [1].
The spectra of volume and surface plasmons are
described by the functions –Imε–1 and –Im(1 + ε)–1,
respectively. Experimentally, they are determined by
measuring the characteristic electron energy losses
(CEELs) W. In the general case, the function W has an
intricate form because of the superimposition of vari-
ous effects, among them the excitation of plasmons,
interband transitions, and metastable excitons.

It is a complicated problem to extract the functions
−Imε–1 and –Im(1 + ε)–1 from W. For this purpose, vari-
ous simplifications, approximations, and calibrations are
made. The half-width of the principal peak of W typi-
cally exceeds 5.5 eV. The intensity of peaks of W criti-
cally depends on the orientation of the sample and the
energy of the electron beam, their resolution being not
finer than 0.5 eV. This severely hampers the determina-
tion of the true spectra of plasmons and their energies.
For this reason, even for the simplest crystals, such as
diamond, the experimental data on the CEEL spectra are
highly contradictory as far as the nature and the energies
of plasmons of both the types are concerned [2–4]. Of
great interest, in this connection, is a calculation proce-
dure in which the experimental data on the reflection
spectra and the Kramers–Kronig integral relations are
used to determine the plasmon spectra [5].

The objective of this paper is to calculate the spectra
of plasmons of both types from experimental data and
to correlate the results with the known data on the
CEEL spectra for diamond. We also determine the
energies of volume and surface plasmons in diamond of
the I and IIa types.
1063-7834/00/4204- $20.00 © 20648
1. THE CALCULATION PROCEDURE

The functions for plasmons can be expressed in
terms of the ε1 and ε2 or of the n and k pair of functions
by the formula

(1a)

(1b)

The complete set of optical fundamental functions,
among them ε1 and ε2 (or n and k) is commonly calcu-
lated from the Kramers–Kronig integral relations and
the experimental reflection spectrum in a wide energy
range. The calculation procedure we use here for deter-
mining the set of optical functions for diamond has
been substantiated and employed in many papers [5–8].

2. RESULTS OF CALCULATIONS

The reflection spectra of diamond in the range from
zero to 32 eV were measured on three different samples;
two of them (1 and 2) were mechanically polished [9, 10],
while the third (3) was cleaved [10]. From these spectra,
we have calculated the complete set of optical fundamen-
tal functions, among them –Imε–1, –Im(1 + ε)−1, neff(E),
and εeff(E) (see Fig. 1).

The most intense peaks in these reflection spectra
are situated at 12.85, 12.55, and 12.77 eV for samples
1, 2, and 3, respectively. On the long-wavelength side,
weak peaks are positioned at about 7.25, 7,15, and
7.10 eV for samples 1, 2, and 3, respectively. For sam-
ples 2 and 3, these weak peaks have short-wavelength
components at about 7.62 and 7.67 eV, respectively.
Generously overlapping broad bands are observed in
the high energy ranges E ≈ (15–22) eV and (22–35) eV,

Imε 1–– ε2 ε1
2 ε2

2+( ) 1–
2nk n2 k2+( ) 2–

,= =

Im 1 ε+( ) 1–– ε2 ε1 1+( )2 ε2
2+[ ] 1–

=

=  2nk n2 k2+( )2
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2
–( ) 1+ +[ ]
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.
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Fig. 1. (a) Experimental reflection spectra R(E); calculated spectra (b) of –Imε–1, (c) –Im(1 + ε)–1, (d) neff, and (e) εeff for three
samples of diamond (curves 1, 2, and 3, respectively).
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0

with their maxima estimated very roughly to be at
~18 and 26 eV, respectively.

The spectra of ε2(E), which we calculated from the
reflection spectra, have a very intense peak at about
11.8 eV, feebly marked peaks at about 7.5 eV (sample 1),
7.3 and 7.75 eV (sample 2), and 7.3 and 7.9 eV (sam-
ple 3), and a very weak, broad band at about 23.5 eV.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
It is interesting to note that the very broad, intense
reflection band in the range from 15 to 22 eV does not
manifest itself in the spectra of ε2(E) for the three sam-
ples of diamond.

The calculated spectra of the bulk CEELs, described
by –Imε–1, have the most intense peaks situated at about
31.5, 30.6, and 32.0 eV for samples 1, 2, and 3, respec-
0
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2

5

tively (see Fig. 1b). Earlier, these peaks were deter-
mined to be at about 32 (sample 1) [9], 29 (sample 2),
and 29.7 eV (sample 3) [10]. The peak of the CEELs
(−Imε–1) is situated near the short-wavelength limit of
P

the reflection spectra, which is equal to 35 [9], or
31.5 eV [10]. Using the R(E) spectrum extending to
40 eV allowed us to determine the position of the prin-
cipal peak of bulk CEELs more correctly than in [9,
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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10]; the energy of volume plasmons in diamond Epv is
found to be 31.2 ± 0.6 eV. This value agrees with the
theoretically predicted Epv to be about 31 eV [1].

The experimental CEEL spectra were studied by
reflection electron diffraction with energy E0 = 1150 [2],
700, 1500 [3], and 200–1200 eV [4] and a resolution of
1–2 eV. It was found in these three papers, that the ener-
gies of volume plasmons lie in the range 31–34 eV.

The surface energy loss spectra, given by –Im(1 + ε)−1,
is first calculated in this paper (Fig. 1c). The principal
peak is found to be at about 21.1 (sample 1), 20.8 (sam-
ple 2), and 21.6 eV (sample 3). According to our esti-
mates, the energy of surface plasmons for diamond, Eps, is
equal to 21.2 ± 0.3 eV. From the experimental data on the
CEELs, the quantity Eps was estimated to be 23–25 eV [2–
4]. The reasons for the discordance between our calcu-
lated values of Eps and Epv and the experimental data
[2–4] may be as follows: The positions of the most
intense peaks in the spectra of –Imε–1 and –Im(1 + ε)–1

are commonly believed [1, 5, 6] to correspond to the
plasmon energies, and our calculations of Eps and Epv

are based on this correspondence. The determination of
the spectra of these two optical functions from the
experimental data on CEELs is an intricate problem,
whose solution requires making various simplifica-
tions, approximations, and calibrations. In [2–4], the
spectra of –Imε–1 and –Im(1 + ε)–1 were not extracted;
instead, the energies Eps and Epv were determined
YSICS OF THE SOLID STATE      Vol. 42      No. 4      200
directly from the experimentally measured CEELs W.
This inevitably introduced some errors into the values
of Eps and Epv obtained by this method. Therefore, our
data on the energies of volume and surface plasmons
for diamond are likely to be more correct.

Let us briefly consider other features of the CEEL
spectra. The longest-wavelength doublet in ε2 at about
7.5 eV is also observed in the spectra of –Imε–1 and
−Im(1 + ε)–1, but here it is shifted to a higher energy by
~(0.05–0.1) eV. The transitions occur upon transverse
excitation in ε2(E) and upon longitudinal excitation in
the CEEL spectra. Hence, the difference in the position
of the doublet between the spectra indicated above sug-
gests that there is a longitudinal–transverse splitting of
transitions in diamond, equal to ∆E ≈ 0.05–0.1 eV.

Instead of the most intense, very broad peak at about
11.8 eV in ε2(E), a very wide, weak plateau is observed
in the range 8–12 eV in both the CEEL spectra. At the
same time, the very weak band at about 23.5 eV in
ε2(E) manifests itself as an intense peak at about 22.4 eV
in the spectrum of –Imε–1. The specific nature of these
spectrum features can be discussed in terms of band
models and metastable excitons [11–13]. This will be
done in another paper, where the fine structure of the
ε2(E) spectrum will be considered.

From the reflection spectra for the three samples of
diamond, we calculated, for the first time, the number
of valence electrons neff(E) involved in transitions up to
0
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the given energy E, and the spectra of εeff(E) (Figs. 1d,
1e).

Long-wavelength absorption in diamond is due to
indirect and direct transitions with Egi = 5.47 and Egd =
7.02 eV, respectively, at 295 K [6]. The quantity neff(E)
steeply increases, starting from 7 eV, and becomes
equal to about 1.5 at 11.8 eV (the position of the prin-
cipal peak of ε2); then it increases slowly to a value of
2.5–3 at 30 eV.

The spectrum of εeff(E) is similar in shape to that of
neff(E). At E < 7 eV, εeff is equal to unity, then it steeply
rises to about 2.8 at ~13 eV, and then it increases to
about 3.3 at 30 eV, showing no saturation. According to
the definition of εeff(E), the permittivity for very long
wavelengths, ε0, should be roughly equal to εeff for very
high energies.

In [14], the reflection spectrum of diamond was
measured in the range 200–610 eV and neff(E) was
crudely estimated from this spectrum in the range from
zero to 900 eV. According to [14], all valence electrons
(neff = 4) will be involved in transitions when the energy
E exceeds 200 eV. This correlates well with our result
that neff(E) and εeff(E) reach their saturation values at
energies much higher than the limiting value of the
energy (~40 eV) for which our calculations are per-
formed.

CONCLUSION

In this paper, we more correctly determined the bulk
and surface characteristic electron energy loss spectra
in the range from 7 to 40 eV, as well as the spectra of
the effective number of valence electrons involved in
transitions. Also, more correct values of the energies of
volume and surface plasmons were obtained.
PH
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Abstract—The two-frequency nuclear quadrupole resonance method is used to determine the relaxation time
for all single-quantum transitions in a quadrupole spin system with many energy levels from the results obtained
for a single transition, which is impossible in a one-frequency method. The accuracy is the same as in the mea-
surement of relaxation time in the case of one-frequency pumping of the transition chosen as the “basis.” The
results of measurements are presented and determination of relaxation constants for KReO4 and NaReO4 as
well as SbCl3 and SbBr3 and their complexes at various temperatures with the help of the two-frequency NQR
method. © 2000 MAIK “Nauka/Interperiodica”.
The study of relaxation processes in a quadrupole
spin system with many energy levels by a one-fre-
quency NQR method presumes separate pumping of
each transition and determination of relaxation con-
stants. This is a difficult technical and analytic problem
involving the recording and analysis of all the curves
described by multi-exponential functions.

In this paper, we consider the possibility of deter-
mining the relaxation constants for all single-quantum
transitions in a multilevel spin system under two-fre-
quency pumping.

In the case of separate one-frequency pumping of
each transition in a multilevel spin system, the time
T2ρ(one) of transverse relaxation in a rotating reference
frame (RRF) is determined as in [1]:

(1)

where i = a, b, … is the number of a transition being

pumped, and  and  are the transverse and longi-
tudinal relaxation times of this transition, respectively.

In the case of two-frequency pumping (see Fig. 1) of
two adjacent transitions in a multilevel spin system, the
envelope of the echo signal, which is obtained by vary-
ing the time interval τ2, decreases with the time con-

stant  of transverse relaxation in the RRF.

Let us consider two cases: (1) The pumping pulse is
supplied at the lower transition, and the observation of
the echo signal amplitude is carried out at the upper
transition (Fig. 1a). (2) The pumping pulse is supplied
at the upper transition, and the observation of the echo
signal amplitude is carried out at the lower transition
(Fig. 1b).

T2ρ one( )
i( ) 2T2

i( )T1
i( )

T2
i( ) T1

i( )+
----------------------,=

T2
i( ) T1

i( )

T2ρ two( )
i( )
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The duration tw of the pumping pulse is associated
with transition saturation and detuning required for
observing an echo signal in the RRF in the case of two-
frequency pumping of a multilevel spin system. In this
case, H1tw is constant and has a definite value for each
transition in a specific multilevel spin system.

The transverse relaxation time in the RRF at the
upper transition, in the case of two-frequency pumping

Fig. 1. Pulse program of two-frequency pumping of a mul-
tilevel spin system: (a) pumping pulse at the lower transi-
tion, observation of the echo signal at the upper transition,
and (b) pumping pulse at the upper transition, observation of
the echo signal at the lower transition. 
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Table 1.  Results of measurements and calculation of relaxation constants for 185, 187Re nuclei in KReO4 by the two-frequency
NQR spin-echo method

Isotope Transition Frequency, 
MHz

Temperature, 
K T2ρ(two), µs T2ρ(one), µs T2(one), µs T1(one), µs

185Re
1/2–3/2 28.312 296 144 105 66 260

3/2–5/2 56.600 296 104 143 100 250

185Re
1/2–3/2 29.386 77 1063 378 200 3400

3/2–5/2 58.746 77 380 1080 630 3800

187Re
1/2–3/2 26.825 296 185 115 70 320

3/2–5/2 53.626 296 115 184 130 315

187Re
1/2–3/2 27.839 77 715 215 110 4300

3/2–5/2 55.651 77 215 722 390 4900

Table 2.  Results of measurements and calculation of relaxation constants for 185, 187Re nuclei in NaReO4 by the two-fre-
quency NQR spin-echo method

Isotope Transition Frequency, 
MHz

Temperature, 
K T2ρ(two), µs T2ρ(one), µs T2(one), µs T1(one), µs

185Re
1/2–3/2 44.997 296 99 78 50 180

3/2–5/2 89.949 296 77 96 68 168

185Re
1/2–3/2 48.628 77 562 175 90 3000

3/2–5/2 97.207 77 175 568 310 3400

187Re
1/2–3/2 42.600 296 100 72 45 180

3/2–5/2 85.167 296 73 104 70 200

187Re
1/2–3/2 46.024 77 648 323 170 3300

3/2–5/2 92.010 77 318 630 360 2500

Table 3.  Results of measurements and calculation of relaxation constants for 121, 123Sb nuclei in SbCl3 by the two-frequency
NQR spin-echo method

Isotope Transition Frequency, 
MHz

Temperature, 
K T2ρ(two), µs T2ρ(one), µs T2(one), µs T1(one), µs

121Sb
1/2–3/2 58.162 294 725 441 270 1.2

3/2–5/2 112.60 294 437 716 520 1.15

121Sb
1/2–3/2 59.730 77 1633 861 440 21.0

3/2–5/2 114.34 77 856 1614 850 16.0

123Sb
1/2–3/2 37.415 294 576 376 220 1.30

3/2–5/2 67.776 294 373 569 370 1.23

123Sb
3/2–5/2 67.776 294 806 569 370 1.23

5/2–7/2 102.78 294 573 815 600 1.27

123Sb
1/2–3/2 39.093 77 2189 1341 700 16.0

3/2–5/2 68.640 77 1328 2155 1175 13.0

123Sb
3/2–5/2 68.640 77 3315 2155 1175 13.0

5/2–7/2 104.46 77 2140 3280 1900 12.0
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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according to the program depicted in Fig. 1a, is given
by

(2)

while at the lower transition (according to the program
in Fig. 1b) this time is

(3)

The transverse relaxation times in the RRF under
one-frequency and two-pumping of a multilevel spin
system satisfy the conditions

(4)

Taking into account expressions (1), (2), and (4), we
can write

(5)

while taking into account expressions (1), (3), and (4),
we obtain

(6)

The transverse relaxation times  and

 in the rotating reference frame in the case of
one-frequency pumping are determined from the
known data on the basis of formula (1), while for two-

frequency pumping, the times  and  are
measured experimentally.

Tables 1–9 contain the results of measurement and
calculation of relaxation constants for KReO4 and
NaReO4 as well as SbCl3 and SbBr3 and their com-
plexes at various temperatures by using the two-fre-
quency NQR method.

Let us consider the results obtained for one of the
samples in greater detail. We assume that no echo sig-
nal is observed under one-frequency pumping at the
1/2–3/2 transition in KReO4 (resonance 185Re, ν1 =
28.312 MHz, J = 5/2, T = 296 K). We need to determine

the transverse relaxation time , the longitudinal
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Table 4.  Results of measurements and calculation of relax-
ation constants for 121, 123Sb nuclei in SbBr3-α at 77 K by the
two-frequency NQR spin-echo method

Iso-
tope

Transi-
tion

Frequency, 
MHz

T2ρ(two),
 µs

T2ρ(one),
 µs

T2(one),
 µs

T1(one),
 µs

121Sb
1/2–3/2 50.263 850 318 160 24.7

3/2–5/2 99.416 316 849 440 12.0

123Sb
1/2–3/2 31.200 1165 416 220 20.0

3/2–5/2 60.143 421 1070 600 5.0

123Sb
3/2–5/2 60.143 1438 1070 600 5.0

5/2–7/2 90.583 1043 1388 840 4.0

Table 5.  Results of measurements and calculation of relax-
ation constants for 121, 123Sb nuclei in SbBr3-β at 77 K by the
two-frequency NQR spin-echo method

Iso-
tope

Transi-
tion

Frequency, 
MHz

T2ρ(two), 
µs

T2ρ(one), 
µs

T2(one), 
µs

T1(one), 
µs

121Sb
1/2–3/2 49.302 690 671 340 25.0

3/2–5/2 94.944 661 680 350 12.0

123Sb
1/2–3/2 31.989 899 649 330 20.0

3/2–5/2 57.085 646 894 460 16.0

123Sb
3/2–5/2 57.085 1196 894 460 16.0

5/2–7/2 86.723 880 1096 580 10.0

Table 6.  Results of measurements and calculation of relaxation
constants for 121, 123Sb nuclei in 2SbCl3 · C6H6 at 77 K by the
two-frequency NQR spin-echo method

Iso-
tope

Transi-
tion

Frequency, 
MHz

T2ρ(two), 
µs

T2ρ(one), 
µs

T2(one), 
µs

T1(one), 
µs

121Sb
1/2–3/2 59.604 710 417 210 26.0

3/2–5/2 117.60 411 695 360 10.0

121Sb
1/2–3/2 60.008 635 418 210 37.0

3/2–5/2 116.24 413 633 320 12.0

123Sb
1/2–3/2 37.113 1712 358 180 31.0

3/2–5/2 71.122 358 1163 880 15.0

123Sb
3/2–5/2 71.122 2393 1163 880 15.0

5/2–7/2 107.20 1570 2206 1300 7.3

123Sb
1/2–3/2 38.563 1222 299 150 43.0

3/2–5/2 69.980 299 1215 620 30.0

123Sb
3/2–5/2 69.980 1746 1215 620 30.0

5/2–7/2 106.11 1139 1595 900 7.0
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Table 7.  Results of measurements and calculation of relax-
ation constants for 121, 123Sb nuclei in 2SbCl3 · C10H8 at 77 K
by the two-frequency NQR spin-echo method

Iso-
tope

Transi-
tion

Frequency, 
MHz

T2ρ(two), 
µs

T2ρ(one), 
µs

T2(one), 
µs

T1(one), 
µs

121Sb
1/2–3/2 59.460 1558 358 180 30.0

3/2–5/2 118.94 350 1412 800 6.0

123Sb
1/2–3/2 36.099 3897 691 350 27.0

3/2–5/2 72.176 689 3834 2100 22.0

123Sb
3/2–5/2 72.176 3174 3834 2100 22.0

5/2–7/2 108.26 3498 2940 1900 6.5

Table 8.  Results of measurements and calculation of relax-
ation constants for 121, 123Sb nuclei in 2SbBr3 · C6H6 at 77 K
by the two-frequency NQR spin-echo method

Iso-
tope

Transi-
tion

Frequency, 
MHz

T2ρ(two), 
µs

T2ρ(one), 
µs

T2(one), 
µs

T1(one), 
µs

121Sb
1/2–3/2 50.730 594 318 160 30.0

3/2–5/2 96.441 315 581 300 9.0

123Sb
1/2–3/2 33.562 710 456 230 26.0

3/2–5/2 57.810 454 705 360 17.0

123Sb
3/2–5/2 57.810 1084 705 360 17.0

5/2–7/2 86.162 703 1080 560 15.0

Table 9.  Results of measurements and calculation of relax-
ation constants for 121, 123Sb nuclei in 2SbBr3 · C10H8 at 77 K
by the two-frequency NQR spin-echo method

Iso-
tope

Transi-
tion

Frequency, 
MHz

T2ρ(two), 
µs

T2ρ(one), 
µs

T2(one), 
µs

T1(one), 
µs

121Sb
1/2–3/2 50.136 877 317 160 17.0

3/2–5/2 100.45 316 872 450 14.0

123Sb
1/2–3/2 30.650 1548 456 230 24.0

3/2–5/2 60.945 451 1500 800 12.0

123Sb
3/2–5/2 60.945 1441 1500 800 12.0

5/2–7/2 91.478 1500 1411 800 6.0
P

relaxation time , and the transverse relaxation time

 of this transition in the RRF from the data
obtained for the 3/2–5/2 transition (resonance 185Re,
ν2 = 56.600 MHz).

Using formulas (2), (4), and (5), we obtain  =

65,  = 251, and  = 105 µs.

Let us now suppose that no echo signal is observed
in the case of one-frequency pumping at the 3/2–5/2
transition (resonance 185Re, ν2 = 56.600 MHz). In this

case, we can determine , , and  for this
transition from the data obtained for the 1/2–3/2 transi-
tion (resonance 185Re, ν1 = 28.312 MHz).

Using formulas (3), (4), and (6), we obtain  =

100,  = 250, and  = 143 µs.

Thus, the formation of quadrupole spin echo in the
rotating reference frame under two-frequency pumping
of two adjacent transitions makes it possible to deter-
mine the relaxation times for all single-quantum transi-
tions in a multilevel spin system. The results obtained
for one transition can be used to determine the relax-
ation parameters of all the remaining single-quantum
transitions. The accuracy of the determination depends
on the accuracy of measurement of the relaxation time
of the transition used as the “basis.”
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Abstract—A study is reported of photo- and thermally induced changes in the optical absorption and photo-
conductivity spectra of Bi12SiO20 crystals in the 0.5–3.5 eV spectral interval, and of the temperature depen-
dence of optical absorption for temperatures from 80 to 600 K. An analysis is made of the electron redistribution
processes between the shallow and the deep donor and acceptor levels by invoking the configurational coordi-
nate model. © 2000 MAIK “Nauka/Interperiodica”.
Photorefractive crystals of the Bi12MO20 sillenite
family (BMO, M = Si, Ge, Ti) exhibit optically or ther-
mally induced effects associated with changes in opti-
cal absorption and photoconductivity.

The BMO response in the 0.5–3.4-eV spectral range
can be conveniently characterized by dividing the pho-
ton energy range into two regions, E1 ≈ 2–3.4 eV (A)
and E2 ≈ 0.5–2 eV (B). Illumination in the A region
induces the photochromic (PC) effect, i.e., the appear-
ance of additional-absorption bands [1–6] and the onset
of impurity photoconduction (IPC) [1, 7–9]. Light in
the B region causes a partial suppression of the PC
effect [1, 2], a short-term quenching of the photocon-
duction, and an increase of the diffraction efficiency
when recording holograms in the A region [10, 11].
Heating to ~500 K results in the total suppression of the
PC effect [1–7] and of (IPC) [1, 11], and for T < 300 K,
one observes activation and quenching of photocon-
ductivity in the A region [11, 12].

The common features in the conditions for photoex-
citation and for the optical and thermal suppression of
IPC and the PC effect, suggest that these phenomena
are inextricably linked. It may be conjectured that they
are accounted for by the same electronic transitions and
charge transfer processes, for instance, by those of the
type deep level–conduction-band–deep level. It does
not, however, appear possible to get a clear understand-
ing of the problem from the incomplete available data
on the PC effect and IPC obtained in different experi-
mental conditions.

The centers making up a deep level are usually asso-
ciated with BiO7 complex ions bound to M-cation
vacancies [1] or with an antisite Bi substituting for the
M cations in the oxygen tetrahedra [2–4, 13]. Accord-
ingly, there is no consensus on the nature of the PC
effect. It is believed that it is induced by the transition
of the BiO7 ions to a metastable state (through many-
phonon nonradiative recombination transitions) [1] or
by a change in the charge state of the Bi ions [2–4].
1063-7834/00/4204- $20.00 © 20657
Impurity photoconduction is associated with a change
in the population of the gap levels [1, 7] and the redis-
tribution of recombination flows between fast and slow
recombination centers [11].

One should take into account that the PC effect and
impurity photoconduction can involve deep levels with

essentially different thermal ( ) and optical ( )
activation energies characteristic of Bi12SiO20 (BSO)

crystals [14–16]. The difference between the  and

 is due to the electron–phonon coupling, whose
high efficiency in sillenites was demonstrated in studies
of Raman scattering [17], photoluminescence [18], and
edge optical absorption [19, 20]. Information on these
centers can be obtained by investigating the “response”
of the optical and photoelectric properties of sillenites
to thermal action. While the temperature dependences
of the optical absorption of sillenites have recently been
attracting interest [5, 6, 17, 21–24], they still remain
poorly studied.

In this work, we study the optical and thermal effect
on the optical absorption and photoconductivity of
BSO crystals and put forward an interpretation for the
induced phenomena within a common phenomenolog-
ical model.

1. EXPERIMENTAL

We studied BSO crystals grown by the Czochralski
technique. The total content of the residual impurity did
not exceed 10–3 wt %. The samples prepared for optical
measurements were polished plates d = 5 and 0.2 mm
thick with (001)-oriented large faces, and the photocon-
ductivity was studied on planar samples with 0.7–1-mm
spaced Ag electrodes fired at 780 K into the (001) sur-
face in vacuum.

The spectra of optical absorption α(E) and photo-
conductivity ∆σ(E) were obtained within the photon
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energy region E = 0.5–3.5 eV. The optical transmission
t(E) was measured with a Specord M40 and Specord
NIR61 spectrophotometers with 5–10-K steps within
the T = 85–600 K range. The photoconductivity mea-
surement technique is described elsewhere [11]. The
∆σ(E) dependences were obtained at T = 90, 150, 290,
and 360 K. The absorption spectra were corrected for
reflection in the way this was done in [23].

The PC effects and impurity photoconduction were
excited with a 400-W xenon lamp provided with an
Emax = 2.9-eV interference color filter, and the duration
of illumination was 300 s, because this time was long
enough for the PC effects to saturate.

Prior to measurements, the samples were heated in
the dark in air up to ~800 K. All operations with the
samples were carried out in weak red light to reduce
uncontrollable photoexcitation to a minimum.

2. RESULTS AND DISCUSSION

2.1. Stationary Spectral Characteristics

The B region is characterized by a fairly good corre-
lation between the positions of the peaks and thresholds
in the optical absorption α(E) and stationary photocon-
ductivity ∆σ(E) spectra. Given that the BSO-crystal
photoconductivity is n type, we believe that these posi-

tions identify the energy of optical activation  of
photoactive optical transitions from donor-type local
levels. In the A region, the absorption maximum at the

shoulder (  = 2.9 eV) adjoining the fundamental
absorption edge and the broad peak of the impurity

photosensitivity (  = 2.5 eV) do not coincide, thus
implying the existence of nonphotoactive optical tran-

sitions (Fig. 1). The values of , both new and agree-
ing with the data found by other authors, are presented
in [11].

The ∆σ(E) and α(E) spectra respond to an increase
of temperature in somewhat different ways. Within the
85–280-K interval, the photoconductivity and absorp-
tion, on the whole, increase, except for the E ≤ 1.0 eV
region, where the photoresponse decreases. The com-
ponents of the ∆σ(E) spectra undergo an intensity
redistribution to make the broad impurity photoconduc-

tivity peak at  ≈ 2.5 eV dominant. The α(E) spectra
retain their shape, but the structure E < 1.5 eV levels
off. Within the T = 280–300-K interval, the α(E) spec-
tra exhibit a transformation, namely, the absorption in
the E ≤ 2.5-eV region drops dramatically while increas-
ing for E > 2.5 eV, with the photoresponse decreasing
throughout the spectral range studied (Fig. 1). Further
increase of temperature is accompanied by a growth of
near-edge absorption and a drop in the photosensitivity.
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2.2. Induced Absorption and Photoconductivity

The spectra of the PC effect, ∆αPh(E) = [αPh(E) –
α(E)]/α(E), and of the impurity photoconduction,
[∆σPh(E) = [∆σPh(E) – ∆σ(E)]/∆σ(E), normalized
against the initial, stationary spectra, exhibit the follow-
ing features. The maximum values of ∆αPh(E) are
observed to occur in the region of the broad peak of sta-
tionary impurity photosensitivity, where the increase of
the induced photoconductivity is smallest (Fig. 2a). At
the same time, the IPC is the largest either in the B
region (low temperatures) or near the long- and short-
wavelength absorption edges (T > 280 K). One clearly
sees here a level structure  the values of which are
in agreement with those derived from stationary photo-
conductivity spectra (Fig. 2b). At room temperature,
one observes a substantial photoconductivity growth
near the absorption edge.

Spectra of thermally induced absorption ∆αTh(E) =
(αTh(E) – α(E))/α(E), normalized against the absorp-
tion at T = 85 K, are different in the temperature regions
T1 ≤ 280 K and T2 > 280 K. In the T1 region, they com-
bine the features characteristic of the ∆αPh(E) and
∆σPh(E) spectra. In the T2 region, the thermally induced
edge-absorption band is similar in position and struc-
ture to the IPC band, and the thermal bleaching band
coincides in position with the photochromic band in the
∆αPh(E) spectrum (Fig. 2c).

Interestingly, the spectra of photo- and thermally
induced increments of optical absorption coincide to
the smallest of margins (below T ≤ 300 K), and the
near-edge IPC spectra correlate with the spectra of
near-edge thermally induced absorption for T > 300 K
(Fig. 2). We also note that ∆αPh(E), ∆σPh(E), and
∆αTh(E) spectra have no bands characterizing new opti-
cally or photoelectrically active centers, with thermal
and optical external action affecting only the relative
contribution of the available centers to the resultant
spectra.

2.3. Temperature Dependences of Optical Absorption

The α(T) dependences measured in the A and B
spectral regions are slightly different. On separating
three temperature intervals ∆T1 ≈ 80–(280–300) K,
∆T2 ≈ 300–400 K, and ∆T3 ≈ 400–500 K, we note that,
as the temperature is increased, the slow growth of
absorption in the A region alternates with its sharp step-
wise falloff, while in the B region the absorption grows
in steps (Fig. 3a).

The temperature spectra dα/dT(T) obtained by dif-
ferentiating the α(T) dependences stress certain fea-
tures in the thermally induced change of absorption. We
note, in particular, that the α(T) dependences obtained
for the boundary photon energies (E ~ 2 eV) in the ∆T1
interval are similar to those for the A region of the spec-
trum, and in the ∆T2 and ∆T3 intervals, to those for the
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B region. It also appears of interest that the extrema in
the dα/dT(T) dependences (Fig. 3b) coincide in posi-
tion with the maxima of the thermally stimulated cur-
rents [1, 25–27]. Impurity absorption is determined by
the electron population of the local levels nt and the
cross section of their photoionization ζ, namely, α(T) ~
ζ(T)nt(T). Hence, this correlation implies that the ther-
mally induced population variation of nt(T) determin-
ing the ejection of free carriers into the conduction (or
valence) band plays a major part in the formation of the
α(T) and dα/dT(T) dependences.

3. APPROXIMATION OF THE TEMPERATURE 
DEPENDENCES OF OPTICAL ABSORPTION

The α(T) and dα/dT(T) dependences for deep levels
in the A spectral region can be described based on the
observation that cooling a BSO crystal to ~80 K is
accompanied primarily by the filling of relatively shal-
low trapping levels by electrons, while the deep levels
considered here (donor levels with a thermal activation
energy  < ) are empty (Figs. 1a, 1b). As the
crystal is heated, the shallow levels empty, the retrap-
ping of free electrons by the deep levels gives rise to an
increase of absorption in the corresponding α(T) band,
and the subsequent incremental drop in absorption is
caused by the thermally induced emptying of the deep
levels.

To approximate the α(T) dependence, we use the
solutions to the coupled kinetic equations for the free
electron concentration in quasi-steady-state conditions
[28]:

(1)

(2)

where Nc is the density of states in the conduction band;
Nti is the concentration of ith shallow donor centers; nti0

and  are the initial electron concentration and ther-
mal activation energy, respectively, of the ith shallow

donor levels; nt0 and  are those of the deep levels in
question with concentration Nt and trapping cross sec-
tion St; Sr and τr are the recombination cross section and
recombination time, respectively, of the centers with
concentration Mt; β is the heating rate; vT is the electron
thermal velocity; and τt and ωt are the trapping time and
trapping rate coefficient, respectively, of free electrons
on deep levels.
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The n1(T) dependence describes the free electron
concentration in the course of the emptying of shallow
levels with different values of  under bimolecular-
recombination and intense-retrapping conditions. The
existence of bimolecular recombination in the ∆T1
interval is evidenced by studies of the temperature
dependences of photoconductivity [11, 12] and of its
relaxation time [29]. The n2(T) dependences character-
ize electron ejection into the conduction band from

deep levels with one value of ; this ejection occurs
within a narrow temperature interval and the recombi-
nation time remains practically constant (monomolec-
ular mechanism of recombination).

Further, we assume that, in the course of the empty-
ing of shallow levels, the kinetics of electron concentra-
tion variation at deep centers is dominated by the
retrapping of free carriers and can be described by the
relation

(3)

where τt = 1/(Nt – nt)StvT ≈ 1/(NtStvT), because the fill-
ing of the deep levels proceeds slowly and nt ! Nt. The
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Fig. 1. Stationary spectra of (a) photoconductivity, log∆σ(E),
and (b) optical absorption, lnα(E), of Bi12SiO20 crystals mea-
sured at T = 85 K (a, 1; b, 1) and 280 K (a, 2; b, 2).
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solution to equation (3) for linear heating, T = T01 + βt,
can be written as

(4)

where we set  = ; i = 1, 2, 3, 4;  = 0.2,

0.36, 0.4, and 0.46 eV (in accordance with [1, 11, 12]);
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Fig. 2. Normalized spectra of (a) photoinduced photocon-
ductivity, ∆σPh/∆σ(E), (b) photoinduced absorption,
∆αPh/α(E), and (c) thermally induced absorption,
∆αTh/α(E), of Bi12SiO20 crystals measured at T = 85 K (a,
1; b, 1) and 280 K (a, 2; b, 2), and after a heating to 200 K
(c, 1) and 350 K (c, 2).
P

 ≈ const = 0.22; A = 0.134, T01 = 100 K, and

 ≈ 10.

In the stage of thermally induced emptying of deep
levels, the concentrations of the electrons trapped by
them and of the free electrons are related through [28]

(5)

Taking relation (2) for n2(T), we set T02 = 160 K and
ωtτt/βτr = 10–2 (the latter equality is valid in the case of
slow recombination, τr @ τt). The experimentally
observed peak in the temperature dependence of the
photoconductivity relaxation time in BSO [29] implies
a considerable increase of the recombination time near
300 K.

By combining (5) with (4), we come to the temper-
ature dependences of nt(T) = 1nt(T) + 2nt(T) normalized
against the initial deep-level filling nt0, which correlate
with the experimental dependences α(T) obtained for
the deep levels with an optical activation energy  ≤
1.7 eV (Fig. 3a). In an early stage of heating, the corre-
lation can be improved by using in (3) the expression

(6)

which is valid for bimolecular recombination in the
case of weak trapping on shallow levels. Weak trapping
is well founded for the high degree of initial shallow-
level filling considered here. For deep levels with

 > 1.7 eV, the correlation between the approximat-
ing and experimental α(T) relations can be improved
by taking into account the temperature dependence of
the photoionization cross section ζ(T) ~ T–0.5 (Fig. 3a).

The α(T) dependences in the B spectral region are
dominated by photoionization of the acceptors that com-
pensate the donor levels. The approximating expressions
for this case are similar to those derived in [22, 23].

4. CONFIGURATIONAL COORDINATE 
DIAGRAM

The relation between the photo- and thermally
induced effects can be interpreted by taking into
account the strong coupling of electronic transitions
with phonons by means of the configurational-coordi-
nate diagram (Fig. 4). In Mott’s adiabatic approach,
these coordinates Q denote the radius of a defect pro-
ducing local lattice distortions, as well as the potential
energy E(Q) of the crystal–defect–electron system. The
diagram is based on the Franck–Condon principle and
on the concept of the equilibrium state of a system,
reached under strong electron–phonon coupling, where
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vibrational quanta are imparted to the lattice faster
than the energy obtained under photoexcitation can be
reemitted [30, 31].

The energy of a system with an electron in the con-
duction or valence band is represented by parabolas
Ev(Q) and Ec(Q). Both bands are centered at Q = Q0 = 0,
because in these states the electrons are delocalized and
are described by Bloch functions. Next, we introduce
two types of centers: relatively shallow, with energies
E1(Q) and E2(Q), and deeper ones with E3(Q). The lat-
ter can also reside in metastable states E8(Q) and,
besides, they can exist in their own excited localized
[E4(Q) and E5(Q)], [E9(Q) and E10(Q)] and delocalized
[E6(Q)] states. The presence of ionized acceptors is
taken into account by the E7(Q) curve.

The diagram is constructed by the following rules:
(1) The shift of the minima in the Ei(Q) potential curves
(i = 3, 4, 5, and 10) along the E axis, is in direct relation
to the electron binding energy with the shallow, deep,
and acceptor centers, i.e., its decrease indicates a weak-
ening of the electron–phonon coupling and an increase
of the extent of electron delocalization. (2) The optical
absorption band width is proportional to the distance
along the Q axis between the minima in the Ei(Q)
curves between which transitions occur. The energies
of the optical and thermal activation of the shallow and
deep centers (  and ) and the thermal activation

energy  for the trapping cross section (thermal-acti-
vation barrier for nonradiative transitions) are defined
as this is done in [16]. The electron–phonon coupling
constant S (the Huang–Rhys factor) for center-bound
electrons is determined by the magnitude of the Stokes

shift ∆EF–C = 0.5(  – ) = S"ω, where "ω is the
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vibrational energy quantum. We use photolumines-
cence data [1, 32] to set ∆EF–C ≈ 0.9–2.0 eV. Turning
now to deep centers associated either with Bi ions sub-
stituting for Si in the oxygen tetrahedra or with the
BiO7 molecular ions, we take the LO phonon energies
of the BSO phonon spectrum, because they correspond
to the vibrations of these structural elements [33]. We
come to the estimate S ≈ 6.7–10.2, which slightly
exceeds the value of S obtained for such semiconduc-
tors as GaAs, ZnS, and ZnSe [31, 34, 35].

This diagram permits a general description of opti-
cal absorption and photoconductivity spectra, as well as
of their photo- and thermally induced variations. For
instance, at T = 80 K, the α(T) dependence displayed in
Fig. 1 by curve 1 derives from transitions (shown by
arrows in Fig. 4b) from shallow and deep centers and
ionized acceptors to the conduction band, intracenter
transitions in the centers responsible for the deep levels,
and transitions from the density-of-states tails of ion-
ized acceptors (curve 1 in Fig. 4c). Increasing the tem-
perature to T1max = 100 K and T2max = 200 K, which cor-
respond to the maxima of a thermally stimulated cur-
rent, results in a depletion of the shallow centers with

thermal activation energies  ~ T1max and  ~ T2max

(Fig. 4a). This entails an electron transfer to deeper
centers and, accordingly, to a thermally induced color-
ing of BSO crystals (see Fig. 2c, curve 1). At the higher
temperature T3max corresponding to the peak of the ther-
mally stimulated current, deep levels with a thermal

activation energy  ~ T3max = 300 K start to eject
electrons. This corresponds to the thermal bleaching of
BSO crystals (curve 2 in Fig. 2c). The same processes
govern the α(T) and dα/dT(T) dependences (Fig. 3).

The photoconductivity spectrum ∆σ(E) in the B
region correlates with the α(E) spectrum, whereas in
the A region, only photoactive transitions from the deep
center to the delocalized excited state E6(Q) contribute
to ∆σ(E) (Figs. 4b, 4c). As the temperature increases,
the photoconductivity varies in a more complex way
than the absorption does, because, in addition to the
change in the filling of the shallow and deep centers, the
temperature dependence of the recombination time has
an effect in this case [11]. Therefore, one could hardly
expect the responses of the ∆σPh(E) and α(E) spectra to
an increase in temperature to correlate. We note only
that for T > T3max the increase in optical transmission of
a crystal is accompanied by a drop in its photosensitiv-
ity (Figs. 2a, 2c).

Photoexcitation in the B region gives rise not only to
an additional filling of both shallow and deep centers
[curves E1(Q) and E2(Q) in Fig. 4b], but it also transfers
the deep centers to a metastable, nonphotoactive state
[curve E8(Q)]. This accounts for the difference in posi-
tion between the main maxima of the normalized spec-
tra ∆σPh(E) (impurity photoconductivity) and ∆α(E)
(photochromic effect) (Fig. 4c). At T = 300 K, photoex-

Ea1
Th Ea2

Th

Ea3
Th
P

citation does not transfer the emptied deep centers to
the metastable state, and the IPC and PC spectra exhibit
only the contributions due to the additional filling of the
thermally emptied levels (Fig. 2a).

The photochromic effect in BSO crystals is thermally
suppressed by thermal ionization, at T = T3max, of the
filled ground-state deep centers and thermalization of

electrons (with an activation energy ) from the meta-
stable state of the deep centers, a process that increases
the degree of ionization of the acceptors (the temperature
steps in the rise of absorption of the type of ionized
acceptor–conduction band correlate with those of the
absorption decay in the A spectral region, Fig. 3a).

Thus, the totality of the results obtained can be
accounted for by using the configurational diagram
proposed in this work and taking into account the con-
siderable difference between the thermal and optical
activation energies (the large electron–phonon cou-
pling), the existence of ground and metastable deep-
center states, as well as the intracenter optical transi-
tions. The above configurational diagram also allows
another important conclusion, namely, that the models
of the local gap-level energy structure (similar to those
proposed in [1]), which were obtained by a straightfor-
ward combination of activation energies found by ther-
mal-activation and optical spectroscopy, are apparently
not appropriate for the sillenites.
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Abstract—Mechanically polished plates of natural diamond of the IIa and Ia types were investigated by the
microwave photoconductivity (MW PC), conventional (direct-current or, more precisely, low-frequency) pho-
toconductivity (LF PC), and optical-absorption techniques. It is shown that the polycrystalline structure of the
samples and high spatial inhomogeneity of the impurity defect distribution provide differences in MW PC and
LF PC spectra. It is assumed that nonequilibrium holes in the illuminated diamond are trapped by the crystallite
boundaries, while free electrons “oscillate” within the crystallites during their lifetime. The influence of chem-
ical and mechanical treatment on the LF and MW PC is demonstrated. © 2000 MAIK “Nauka/Interperiodica”.
Conventional (virtually low-frequency) photocon-
ductivity (LF PC) provides one of the most important
tools for the investigation of defects in semiconductors
and dielectrics [1, 2]. The approach, unfortunately,
demonstrates significant disadvantages when it is
applied to the research of diamond. First of all, no tech-
nique of the ohmic contact formation has been devel-
oped for crystals with the i- and n-type conductivity up
to now. Another drawback originates from the sensitiv-
ity of the LF PC spectra to the applied voltage [3].
Therefore, the investigation of photoconductivity in
diamond calls for contact-free, non-destructive meth-
ods, one of which, for instance, implies using micro-
waves [4].

The present work is aimed at revealing the depen-
dence of MW PC spectra in the wavelength range
λ ≈ 200–250 nm on the mechanical treatment of the
diamond surface and on impurity defects in the crystal.

1. EXPERIMENTAL TECHNIQUE

The samples tested in our experiments were
mechanically polished plates of diamond of the IIa and
Ia types. The first contained nitrogen in the A form with
a concentration of NA ≈ 3 × 1018 cm–3, the second con-
tained the same concentration of the A form and, addi-
tionally, the B1 form of nitrogen (NB1 ≈ 3 × 1019 cm–3).
The samples weighed 0.09–0.11 carats and had dimen-
sions 8 × 5 × 0.5 mm. Prior to the measurements, the
plates were etched in a mixture of K2Cr2O7 + H2SO4 +
H2O, then cleaned in boiled distilled water and dried in
air. The experiments were conducted at room tempera-
ture.

To measure MW PC, the samples were positioned in
a potential antinode of the electric field of a wave
1063-7834/00/4204- $20.00 © 20664
E0exp(–iωt) with a frequency of f = ω/2π = 9.6 GHz,
which corresponded to the central position in a rectan-
gular cavity of the H101 type. The amplitude of the elec-
tric field in the empty cavity E0 ≈ 100 V/cm was esti-
mated from the experimentally found value of the qual-
ity Q ≈ 1100 and the feeding MW power P = 26 mW,

using the equation E0 =  [5]. Here,
V ≈ 1 cm3 is the portion of the cavity volume that con-
tains the bulk of the electric component of the MW field
and ε0 = 8.85 pF/m is the permittivity of vacuum. The
nonequilibrium charge carriers were excited by the
light of a xenon arc lamp (1 kW power) transmitted
through a MDR-12 monochromator and modulated
with a frequency of 300 Hz. The sample plates were
exposed to the exciting light alternately from both
sides. The intensity of photoexcitation was kept at a
level that allowed us to neglect the skin-effect and the
reflection of MW radiation from the free carrier plasma
in the sample. The reciprocal quality value for the cav-
ity with a sample, when the illumination was out, was
taken as zero level of the MW PC signal. The MW PC
signals were recorded in the synchronous detection
mode. The amplitude of the electric field inside the
sample is given by the ratio E0/εr, where εr = 5.7 is the
dielectric constant of diamond. The microwave radia-
tion power Pa absorbed in the cavity, when the sample
volume Va is exposed to the exciting light, is given by

(1)

where Reσ(r) is the real part of the local photoconduc-
tivity, A is the illuminated area of the sample, 1/α(λ) is
the depth of free-carrier excitation for the wavelength λ
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Fig. 1. Typical photoconductivity and transmission spectra measured (a) in the type IIa diamond (NA ≈ 3 × 1018 cm–3) and (b) in

the type Ia diamond (NA ≈ 3 × 1018 cm–3, NB1 ≈ 3 × 1019 cm–3). Curves 1 and 2 are MW PC spectra obtained in a diamond plate
with both sides illuminated (spectral resolution ∆λ = 2.4 nm); here and below, the MW PC spectra are normalized to the number of
exciting quanta; curve 3 is the transmission spectrum (∆λ = 0.3 nm); and curve 4 is the LF PC spectrum in arbitrary units.

Fig. 2. MW PC spectra of a type IIa diamond sample prior (1) and after (2) the chemical etching in K2Cr2O7 + H2SO4 + H2O and
subsequent surface polishing with the corundum powder (14 µm grain diameter). The spectral resolution is ∆λ = 1.2 nm for curve 1 and
∆λ = 0.5 nm for curve 2. Curve 3 represents the scaled up spectrum 1.

100

50
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corresponding to the fundamental absorption in dia-
mond, Reσ is the average of the real part of the conduc-
tivity induced by exciting light with the absorption con-
stant α(λ).

The LF PC was measured using a 25 W deuterium
lamp. The external voltage applied to aquadag elec-
trodes on a diamond sample amounted to 50 V (Edc ≈
100 V/cm).
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The absorption (transmission) spectra in the sam-
ples were measured by a spectrophotometer
(SPECORD-M40).

2. EXPERIMENTAL RESULTS AND DISCUSSION

2.1. The typical photoconductivity and absorption
spectra are shown in Figs. 1 and 2. As is seen, the MW
0
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PC and the LF PC spectra differ drastically in the spec-
tral range 200–250 nm.

(1) The LF PC spectra of natural diamond of types
Ia and IIa do not look the same, but are typical of these
materials [6, 7], while their MW PC spectral depen-
dences are almost identical.

(2) The LF PC decreases with the exciting light
wavelength in the range λ ≈ 223–220 nm, while the
MW PC increases in the same range (see Figs. 1a, 1b).

(3) Chemical etching of diamond samples in
K2Cr2O7 + H2SO4 + H2O, mechanical polishing with
corundum powder (14 µm), consequent cleaning in
boiling water and drying in air result in an increase of
MW PC by more than one order of magnitude (Fig. 2).
However, the same treatment of the surface of a dia-
mond sample causes a short circuit during LF PC mea-
surements, either immediately after connection of con-
tacts, or when the exciting light wavelength reaches the
range 225–235 nm (in a sweep from longer wave-
lengths to shorter ones).

2.2. Let us consider the first peculiarity mentioned
in Subsection 2.1. It is known that natural diamond is
an extremely inhomogeneous material [7, 8]. More-
over, the structure of type II crystals (and of other dia-
mond crystals close to this type) is build of grains. The
sizes of these grains (crystallites) L typically belong to
the range 1–100 µm, and their orientation mismatch
angles may be as large as 1° [8]. Let us discuss the
effect of the factors mentioned above on the MW and
low-frequency PC.

It was experimentally shown that the exposure of a
semiconductor crystal to high-energy particles creates
intrinsic radiation defects, which results in a shift of the
Fermi level in the band gap to an energy  indepen-
dent of impurities and irradiation conditions [9].
According to calculations [9], the Fermi level position
in diamond is limited by  ≈ 0.4Eg (with respect to
the top of the valence band), where Eg ≈ 5.5 eV is the
gap width in diamond at a temperature of 300 K.

Let us assume that at the boundary between two
crystallites the Fermi level position  is determined
by defects of the same type, as in the case of the severe
high-energy particle exposure. At the same time, in the
bulk of an undoped diamond crystal, the Fermi level is
close to the middle of the gap. Therefore, the surface
states at the boundaries will be charged positively,
while the bulk of a crystallite will be charged nega-
tively. Such a double electrical layer creates an energy
barrier for the conduction band electrons [10]. The
height of the barrier at the crystallite boundary is
≈0.1Eg, which is much higher than the average thermal
energy of electrons 3kBT / 2. Illumination of the sample
in the photoconductivity experiments creates nonequi-
librium holes, some of which are trapped at the bound-
ary of a crystallite, and the same number of free elec-
trons is “locked” inside the crystallite and oscillates

EF*

EF*

EF*
P

during their lifetime, which resembles oscillations of
an electron within the F-center in the lattice of NaCl.

Let us describe the conductivity of a single crystal-
lite in terms of the Drude and Lorentz models and then
consider the MW PC in polycrystalline diamond [1, 2,
11, 12]. We assume that the mean free path of an elec-
tron is much shorter than the crystallite size L and the
lifetime τn is much longer than the quasi-momentum
relaxation time τc.

According to the Drude model, the real part of the
conductivity of a crystallite depends on the MW fre-
quency ω = 2πf as [11]

(2)

where σdc = e2nτc/mc is the DC conductivity, e is the
absolute value of the electron charge, mc ≈ 0.48m0 is the
effective mass of an electron in the conduction band of
diamond, n is the concentration of nonequilibrium con-
duction electrons in an “average” crystallite, τc =
µnmc/e ≈ 10–12 s is the average quasi-momentum relax-
ation time of conduction electrons in a crystallite, µn ≈
2000 cm2/ (V s) [13] is the electron mobility at a tem-
perature of T ≈ 300 K (we keep in mind that the MW

field Eac = E0/(εr ) ≈ 13 V/cm does not heat elec-
trons).

According to the Lorentz model, the equation of
motion of a conduction electron within a crystallite
under the action of the MW field is given by

(3)

where x(t) is the displacement of the electron with
respect to the center of the crystallite along the electric
component of the MW field, ω0 is the natural frequency
of oscillations of the nonequilibrium electron in the
crystallite before its recombination with a hole at the
boundary.

The frequency ω0 can be estimated using an oscilla-
tor model in which the quasi-elastic force applied to the
electron in the direction to the center of the crystallite
is proportional to the displacement of the electron from
its equilibrium position and to the elastic constant k;

thus, we have ω0 = . We assume the displace-
ment amplitude to be L/2, which means that the elec-
tron either reflects from the crystallite boundary or
recombines with a hole. Applying the virial theorem
[14] to the harmonic oscillator, which states that the
average potential energy and the average kinetic energy
are equal, we obtain k(L/2)2 = 3kBT. Hence, ω0 =

(2/L) .

Solving equation (3) gives the current density
endx/dt and the real part of the conductivity for the
crystallite, according to the Lorentz model [12],

ReσD
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(4)

Substituting ReσD and ReσL into (1), we arrive at
the conclusion that, at a frequency of f = 9.6 GHz, small
crystallites (L ≤ 1.5 µm) do not contribute to the MW
PC (see Fig. 3). As is seen, the MW absorption by non-
equilibrium electrons in the crystallite (Pa) does not
practically depend on the frequency f at L > 7 µm. At
the same time, the Drude model predicts the indepen-
dence of the MW absorption on the crystallite size L in
the frequency range 0.3–300 GHz (with the proviso
that the average crystallite size L is much larger than the
mean free path).

It is worth mentioning that the observed peculiari-
ties of the MW PC look similar to the size effect [15],
but, in our case, they are of another nature. The size
effect arises when the doubled amplitude of conduction
electron oscillations 2a = µnEac/f in the electric field
alternating with a frequency f exceeds the crystallite
size L, so the electron trajectory does not fit the room
available, 2a/L ≥ 1. If transitions of the conduction
electrons between crystallites are hampered due to
interface barriers, the electrons spend a portion of the
oscillation period squeezed to the crystalline bound-
aries and absorb no energy from the MW field. As a
result, the power density of MW radiation absorbed in
the sample decreases and turns out to be lower than that

predicted by the Drude model, σdc /(2 ) =

σdc / . The condition fL ≤ µnEac gives that, in the
case of our MW PC measurements, the size effect can
only be observed for the crystallite sizes L ≤ 0.03 µm.

The crystalline boundaries do not manifest them-
selves if L > 7 µm. The MW PC values and spectra,
according to the Lorentz model, turn out to be the same
as for a monocrystal sample. In LF PC measurements,
the presence of crystallites gives rise to the polarization
of diamond. The polarization level depends on the posi-
tion of the electrodes and the relationship between the
bulk conductivity and the conductivity in the bound-
aries between crystallites [16].

Experimental data we obtained for the mechanically
polished natural-diamond plates and epitaxial diamond
films substantiate the proposed model. We correlated
the level of the MW PC in the samples illuminated in
the spectral range above the fundamental absorption
edge and the spectra of cathodoluminescence (the elec-
tron beam diameter ≈1 mm, the acceleration voltage
10 kV, the current 6 µA). We found, that specimens
demonstrating free exciton luminescence in the spec-
tral band near 235 nm showed the maximum level of
the MW PC. At the same time, a number of samples
demonstrating a maximum MW PC signal did not
reveal any free-exciton luminescence. This can be
explained in terms of the theory of the internal photoef-
fect [1, 2]. It says that nonequilibrium carriers of the

ReσL σdc

ω/τc( )2

ω0
2 ω2–( )2 ω/τc( )2+

-------------------------------------------------.=

E0
2 εr

2

Eac
2 εr

2
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opposite charge are spatially separated at the crystalline
boundaries, which excludes the creation of excitons.

Contrary to the data obtained for natural diamond,
we found that polycrystalline diamond films reveal no
MW PC signal when band-to-band light absorption
occurs, even if the free-exciton luminescence is intense
compared to that for natural diamond specimens. The
theory of the internal photoeffect [1, 2] fails to explain
this fact. At the same time, according to estimations
derived from (1), (2), and (4), the observations men-
tioned above may be explained by the fact that the aver-
age crystallite size L does not exceed 1.5 µm. Indeed,
the natural frequency of oscillations of nonequilibrium

electrons inside the crystallite ω0 = (2/L)
exceeds ω = 2πf ≈ 60.3 GHz in the case of L ≤ 1.5 µm
and the absorption of MW radiation does not occur.

The results of [17] indirectly confirm the proposed
model. In [17], a growth of the conductivity in poly-
crystalline diamond films (L ≈ 10 µm, aquadag elec-
trodes) was observed at T ≈ 300 K with an increase of the
electric field frequency according to the law Reσ ∝  f s,
where s ≈ 0.6, in the range f = 102–104 Hz. This result
agrees with estimations of ReσL from (4) (see also the
graphs in Fig. 3).

Let us compare data presented in Figs. 1a and 1b,
taking into account high spatial inhomogeneity of
impurity defects in natural diamond [7, 8]. The cathod-
oluminescence research using defocused electron
beams revealed highly inhomogeneous spatial distribu-
tion of B1 defects in type Ia diamond. The B1 defects
are platelet structures parallel to the (111) plane. They
contain nitrogen and show IR absorption in the spectral
bands centered at 7.5, 8.5, 9.1, 9.9, and 12.8 µm. The
local lifetime of nonequilibrium electrons τn and their
mobility (quasi-momentum relaxation time τc) are also
inhomogeneous, they are lower in regions containing
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Fig. 3. Absorption of MW power by conduction electrons in
a diamond sample (Pa) calculated using equation (1). Curve 1
shows the result of Re σD/σdc calculations according to the

Drude model for τ ≈ 5 × 10–12 s; curves 2 and 3 are data for
Re σL/σdc obtained by the Lorentz model for polycrystalline
diamond (L ≈ 7 and ≈1.5 µm for curves 2 and 3, respec-
tively).
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B1 defects compared to domains with the perfect crys-
tal structure.

If the excitation depth in diamond 1 / α(λ) is much
more then the average crystallite size L, then the homo-
geneous illumination of a plate results in different con-
tributions to the MW PC from crystallites without B1
defects (index 1) and crystallites with B1 defects (index
2), their ratio being equal to [18]

(5)

where µn1, µn2, τn1, τn2 are the mobilities and stationary
lifetimes of nonequilibrium electrons in the two kinds
of crystallite; V1j and V2l are the volumes of crystallites;
and coefficients Kj and Kl take into account the contri-
butions from crystallites j and l, respectively, to the
MW PC according to equation (4); their contributions
are different depending on the crystallite size along the
direction of the electric MW field. At T ≈ 300 K, we
have Kj = 0 if Lj < 1.5 µm, Kj = 1 if Lj ≥ 7 µm, and 0 <
Kj < 1 if 1.5 < Lj < 7 µm.

It follows from (5), that crystallites with a more per-
fect structure (index 1) dominate in the resulting MW
PC disregarding their location. If Pa @ Pa2, the MW PC
values become the same as in crystals free from B1
defects, i.e., as in the type IIa crystals (compare Figs. 1a,
1b).

The processes associated with the charge carrier
transport from one electric contact to the other affect
the results of LF PC measurements on diamond sam-
ples with B1 defects. The resulting photocurrent
depends on the mobility and carrier concentration
everywhere in the region between the electrodes; more-
over, it is influenced by the particular location of
domains of different photoconductivity and by the pres-
ence of boundaries between crystallites. The graphs in
Fig. 1b, for instance, illustrate the case of a series
arrangement of domains with and without B1 defects in
the resulting LF PC circuit.

Thus, the first of the differences between the LF and
MW PC spectra indicated in Subsection 2.1 can be
explained by the inhomogeneity and polycrystalline
structure of type II natural diamond (and other materi-
als close to this type) and to the absence of polarization
effects in MW PC measurements for crystallite sizes
L > 7 µm.

2.3. Let us consider the second and the third distinc-
tions between the MW and LF photoconductivity spec-
tra indicated in Subsection 2.1. They are: a growth of
the MW PC level (by one order of magnitude) after pol-
ishing of diamond with the corundum powder (see
Fig. 2), and the impossibility to observe LF PC signals

Pa1

Pa2
--------

KV1µn1τn1( ) j
j

∑

KV2µn2τn2( )
l

∑
----------------------------------------,=
PH
in the same diamond samples after the same surface
treatment.

To elucidate the nature of these distinctions, we also
applied some other methods of the diamond surface
treatment preceding MW PC measurements [19–22].
They were: chemical etching, thermal treatment in air
(200–500°C, 1 h), and ion etching. All the treatments
did not lead to an increase in the MW PC signal. The
etching with Ar+ ions (1 keV, 1 min), in particular, not
only reduced the signal level but also resulted in an irre-
versible change in the MW PC spectrum. Such a result
of the treatment could be caused by the precipitation of
components of the etching solutions and etching prod-
ucts on the sample surface [20, 21] (in the case of
chemical and thermal treatment), or could be attributed
to an increased number of defects (in the case of ion
etching). These peculiarities of the MW PC could also
origin from the negative affinity of the diamond surface
to electron (electron absorbs the energy of the MW PC
field being either inside or above the sample).

Thus, we come to the conclusion that the second and
third differences of the MW and LF photoconductivity
spectra indicated in Subsection 2.1 can be explained by
different sensitivity of these two techniques to the con-
dition of the sample surface.

To sum up the results described, we note that the
investigation of the same diamond plates by MW PC
and LF PC methods results in different photoexcitation
spectra in the wavelength range λ = 200–250 nm. The
difference in the MW and LF photoconductivity of type
Ia and type IIa diamond crystals was explained in terms
of a model of the MW PC taking into account peculiar-
ities of the motion of nonequilibrium electrons in poly-
crystalline samples. It follows from the model devel-
oped in this paper, that at T ≈ 300 K the presence of
crystallites of a size L exceeding 7 µm does not influ-
ence the results of MW PC measurements ( f ≈
9.6 GHz), while the crystallites sized below 1.5 µm do
not contribute to the MW PC. The chemical and
mechanical surface treatment was demonstrated to be
crucial for the results of MW and LF photoconductivity
spectroscopy in diamond. 
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Abstract—The metastable optical absorption in additively colored BeO crystals is studied. It is found that the
optical absorption is induced by transitions between the excited triplet and singlet states of an F-center. © 2000
MAIK “Nauka/Interperiodica”.
The formation of F-centers in BeO crystals under
chemical heat treatment in beryllium vapor (additive
coloring) was proved in our earlier work [1]. Detailed
studies of the optical characteristics of an absorption
band at 6.5 eV and luminescence bands at 4.9 and
3.4 eV allowed us to establish their relation to the sin-
glet–singlet and triplet–singlet transitions in an F-cen-
ter [2]. The optical anisotropy of absorption and lumi-
nescence of F-centers in hexagonal BeO crystals [2]
was explained by the splitting of excited states in the
crystal field of the C3v symmetry.

In this work, the data on the metastable optical
absorption in wide-gap oxides are obtained for the first
time. The metastable optical absorption arises upon
optical transitions of an electron that relaxes into the
lowest-lying excited triplet state of the F-center.

The experiments were carried out with BeO single
crystals, which were grown from a solution of beryl-
lium oxide in the sodium tungstate melt by V.A. Maslov
and were then additively colored in beryllium vapor at
T = 2200 K according to the procedure described in [1].
Optical measurements in the range 1–5 eV were per-
formed at temperatures of 80–600 K on a setup of
pulsed adsorption spectroscopy with a nanosecond tem-
poral resolution (7 ns) [3]. The excitation was achieved
using a GIN-600 pulsed electron accelerator with the fol-
lowing parameters of electron beam: E = 0.2 MeV,
W = 0.02–0.25 J/cm2, and timp = 10–8 s. Additional stud-
ies of the optical absorption in the polarized light were
accomplished with the help of a Rochon silica prism.

At 80 K, the kinetics of optical absorption decay in
additively colored BeO crystals at about 3.8 eV in the
time interval t > 50 ms can be described by the super-
position of two exponential dependences. The first
dominating component has the characteristic decay
time τ1 = 740 ± 40 ms, which is identical to the decay
time of the luminescence at 3.4 eV due to spin-forbid-
den transitions from the triplet excited state of F-cen-
ters. The second component of the decay kinetics of the
1063-7834/00/4204- $20.00 © 20670
metastable optical absorption has the characteristic
time τ2 > 5 s, which strongly depends on the intensity
of the probing light. These trapping centers unstable
toward the light are likely associated with shallow traps
formed by impurities or defects.

In order to elucidate the nature of the first compo-
nent of the metastable optical absorption decay, we
compared the temperature dependences of the ampli-
tude and relaxation time of the optical density of this
component and the temperature dependences of the
intensity and decay time of the luminescence at 3.4 eV
of F-centers (Fig. 1). It is seen that the temperature
behavior of the intensity of the first optical absorption
component (curve 4 in Fig. 1) agrees well with the tem-
perature behavior of the intensity of the stationary
X-ray luminescence at 3.4 eV (curve 3 in Fig. 1) for the
additively colored BeO crystals. The symbate quench-
ing of the luminescence at 4.9 eV due to the singlet–
singlet transitions in an F-center and the luminescence
at 3.4 eV upon photon excitation within the F-absorp-
tion band (curves 1 and 2 in Fig. 1, respectively) reflects
the processes of radiationless filling of the triplet state
from the higher-lying singlet state. Therefore, a
decrease in the amplitude of the first metastable optical
absorption component and a decrease in the intensity of
X-ray luminescence at 3.4 eV in the range 100–200 K
are brought about by the radiationless transitions from
the singlet state of the F-center. A similar increase in
the F-luminescence yield and in the optical density
amplitude of the first induced-absorption component at
T > 200 K is caused by an increase in the number of
excited F-centers due to the energy transfer to the
F-centers through the thermoactivated migration of the
autolocalized electronic excitations in BeO [4].

Moreover, the investigation into the temperature–
time characteristics of the relaxation processes of the
luminescence at 3.4 eV and optical absorption revealed
a number of insignificant differences (curves 5 and 6 in
Fig. 1, respectively). A decrease in the decay of the first
000 MAIK “Nauka/Interperiodica”



        

METASTABLE OPTICAL ABSORPTION 671

                                                                                               
1.0

0.5

0 100 200 300 400 500 600 T, K

In
te

ns
ity

, a
rb

. u
ni

ts

800

400

0 200 400 600

5

6

1

2

3

4

T, K

τ, ms

0.5

0.4

0.3

0.2

0.1

0
3.0 3.5 4.0 4.5 5.0

E, eV

O
pt

ic
al

 d
en

si
ty

, a
rb

. u
ni

ts

1

2

Fig. 1. Temperature dependences of the intensity of (1) luminescence at 4.9 eV, (2, 3) luminescence at 3.4 eV, and (4) metastable
optical absorption of additively colored BeO crystals under excitation with (1, 2) the light within the F-absorption band, (3) X-ray
radiation, and (4) electron beam. The inset shows the temperature dependences of the decay time of (5) luminescence at 3.4 eV and
(6) metastable optical absorption.

Fig. 2. The spectra of metastable optical absorption of the excited F-centers at 80 K for the light polarized at (1) E ⊥  C and (2) E || C.
Solid and dashed lines show the resolution into the Gaussian components.
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component of the induced optical absorption begins at
T > 350 K and occurs with the activation energy Ea =
0.8 eV. At the same time, a decrease in the decay time
of the luminescence at 3.4 eV is observed at T > 380 K
and proceeds with the activation energy Ea = 0.53 eV.
These differences can be caused by the probing light,
which contributes to an additional decrease in the pop-
ulation of the triplet excited state of the F-center upon
optical transitions.

Thus, the results obtained indicate the metastable
optical absorption of the excited F-centers formed upon
exposure of additively colored BeO crystals to electron
beam. To interpret the optical transitions in the excited
F-centers, we measured the metastable optical absorp-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
tion spectra with a temporal resolution in the polarized
light at 80 K. As is seen from Fig. 2, the spectrum of the
component with a characteristic time of 740 ms con-
sists of two isotropic bands with maxima at 3.8 and
4.3 eV and half-widths of 0.55 and 0.29 eV, respec-
tively. The decay time of this absorption suggests that
the optical transitions occur from the triplet excited
state of the F-center in BeO. We assumed that these
transitions are realized to the higher-lying singlet
excited states of the F-center. In the study of the anisot-
ropy of F-absorption band in BeO [2], it was revealed
that the singlet excited state of the 1P-type is split into
the 1A1 and 1E components in the crystal field of the C3v

symmetry. The found splitting is equal to 0.3 eV. This
0
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value is somewhat less than the separation between the
maxima of two bands of the metastable optical absorp-
tion (0.5 eV).

The optical transitions 3P  1P between the states
with the different multiplicity are forbidden. This for-
bidding can be partially removed through the spin-orbit
interaction resulting in the mixing of singlet and triplet
states. However, only the states with a certain symme-
try can be mixed. On the basis of the group-theoretic
analysis of the spin-orbit interaction, we earlier consid-
ered the selection rules for radiative transitions from
the triplet excited state—this state is split into the 3E
and 3A1 components in the crystal field of the C3v sym-
metry—to the ground 1A1 state of the F-center in BeO
[2]. A slight anisotropy of the F-luminescence at 3.4 eV
was explained in [2] by the 3E  1A1 transitions,
because the 1E state can be mixed with the 1E and 1A1
states. The observed isotropy of the bands of metastable
P

optical absorption confirms its origin from the 3E  1A1

and 3E  1E transitions between the excited triplet
and singlet states of the F-center in BeO.
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Abstract—The restricted Hartree–Fock–Roothaan method with closed and open electronic shells projected by
electron density matrices and the quasi-molecular large-unit-cell (LUC) model have been applied to calculate
the electronic structure of monovacancy and semivacancy in the neutral charge state in the totally symmetric
atomic configuration with relaxation and symmetry-lowering distortions. The difference in the energies of
states with total spins of 1 and 3/2 for a neutral monovacancy is determined within the ∆SCF approximation.
© 2000 MAIK “Nauka/Interperiodica”.
At present, the quantitative description of a vacancy
in silicon and diamond in the framework of the many-
electron theory has been obtained by the methods
including correlation effects in the self-consistency
cycle. As a rule, preference is given to the local-den-
sity-functional and pseudopotential calculations [1–3].
The quantum-chemical schemes based on the self-con-
sistent molecular orbital (MO) method were employed
within different approximations for the electron corre-
lation, for example, such as, the Xα exchange interac-
tion [4], the perturbation theory for configuration inter-
action (CI) [5], and generalized valence bond method
[6]. For an adequate description of the properties of a
vacancy in silicon, diamond, and other covalent semi-
conductors with the use of the MO method, it is essen-
tial to calculate the multiplet structures of open-shell
highly symmetric atomic configurations, because the
joint inclusion of the electron correlation in the
vibronic coupling is of crucial importance for the above
systems [7, 8].

A nonreconstructed vacancy has the Td atomic con-
figuration, whereas a reconstructed vacancy adopts the
D2d or C3v configuration. For brevity, these atomic con-
figurations will be referred to as the monovacancy. The
saddle point of the vacancy migration is characterized
by the D3d symmetry, and this atomic configuration will
be designated the split configuration or the semiva-
cancy. The calculation of these atomic configurations
with an open electronic shell requires the employment
of the MO method that goes beyond the single-determi-
nant Hartree–Fock level: it is necessary to obtain self-
consistent spectroscopic combinations of the Slater
determinants for the open-shell terms. Only with this
constraint, there are grounds to obtain the reliable CI
corrections for the electron correlation, because the
configuration interaction for non-self-consistent MOs
1063-7834/00/4204- $20.00 © 20673
possesses a considerable uncertainty and depends
essentially on the parameters [9].

In this work, we used the restricted open-shell Har-
tree–Fock–Roothaan molecular orbital (ROHF)
method, which allows calculations of the multiplet
structure composed of self-consistent non-single-deter-
minant terms. Note that self-consistent calculations of
determinant combinations in the framework of the
ROHF method introduce the correction to the intracon-
figurational interaction for the electron correlation. The
required spatial symmetry of terms is determined using
the group-theoretic analysis of the ROHF coefficients
describing the contribution of open-shell MOs to the
direct and exchange electron–electron interactions. The
restricted method, as applied to these calculations,
ensures the spin symmetry of the terms.

The restricted single-determinant closed-shell MO
Hartree–Fock (RHF) method cannot be used at all to
calculate the totally symmetric atomic configurations
of a monovacancy and a semivacancy: the computa-
tions at the RHF level make it possible only to estimate
one of the terms in the multiplet structure by introduc-
ing a small distortion. For vacancies in silicon and dia-
mond, this approach leads to an appreciable error that
can be eliminated by the ROHF method.

It should be noted that the quantum-chemical ROHF
method is a complementary tool to the density-func-
tional approach. First, unlike the empirical local-
exchange-functional method, the electron correlation
in the ROHF method is included in ab initio calcula-
tions as a nonlocal exchange interaction—the intracon-
figurational interaction at the self-consistency stage
and the interconfigurational interaction in the CI
approximation. Second, the multiplet terms in the
ROHF method can be determined not only by a unified
self-consistency procedure, but, in a number of cases,
with the use of more precise separate self-consistent
000 MAIK “Nauka/Interperiodica”
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computations (even though not always for all the
terms). Third, on the basis of the known experimental
properties, the ROHF multiplet structure provides a
means of evaluating the ratio of the correlation correc-
tions for certain terms.

The aim of the present work was to comparatively
evaluate the correlation energies of different multiplet
terms for a neutral vacancy from their (terms) behavior
at different distortions in the case when the filling of an
open shell changes in character. The results obtained for
the correlation energy and other energy parameters asso-
ciated with the Jahn–Teller effect are in good agreement
with a great number of theoretical and experimental data
for silicon and diamond and can be characterized as
obtained within the one-open-shell approximation. The
ROHF method allows the extension to a larger number of
open shells [10], but this requires a substantial increase
in the computational power.

1. SELF-CONSISTENT OPEN-SHELL 
CALCULATIONS

The self-consistent restricted open-shell MO
method (ROHF) based on a universal technique of pro-
jection by electronic-shell density matrices for crystal-
line systems [10] was realized and described earlier in
[11]. Since the computational details are not essential
for the understanding of the present work, only the
ROHF coefficients required for the calculations are
explained below. Similar to the open-shell multiplet,
these coefficients are obtained from the group-theoretic
analysis.

In the model, Ne electrons are distributed among a
closed shell consisting of na MOs designated as a' and
an open shell composed of nb MOs denoted by b', so
that the Roothaan occupation number for an open shell
of a given configuration is equal to

The ROHF method makes it possible to self-consis-
tently calculate either the energy of the term or the
Slater diagonal sum of terms [12, 13]. This energy
involves two terms formed according to the Slater rule
from the matrix elements of the one-electron part h and
two-electron part g of the Hamiltonian.

The first term in the total energy does not depend on
the distribution of electrons over the open shell, is iden-
tically written for all terms and diagonal sums of the
given configuration, and is equal to the closed-shell
energy plus one-electron open-shell energy and the
energy of interaction between all the closed-shell MOs
and all the open-shell MOs (the last two energies are
proportional to the occupation number f).

The second term in the total energy is the interaction
energy in the open shell and depends on a specific distri-
bution of electrons over the open-shell MOs in determi-

f
Ne 2na–

2nb

-------------------- 1.<=
P

nants involved in the spectroscopic sum (term), that is,

(1)

The essence of the ROHF method is that the self-
consistent calculation can be carried out only when the
interaction energy (1) takes the form similar to that of
the part describing the closed shell, which is possible if
the coefficient AI is equal to zero. Therefore, after the
symmetry selection of determinants into the term, it is
necessary to find its interaction energy (1) according to
the Slater rules and to calculate the AI, AJ, and AK ROHF
coefficients. If AI = 0 for the given term, its energy can
be calculated by a self-consistency procedure. Other-
wise, this term should be included in the Slater diago-
nal sum (several sums are possible) with AI = 0. The
energy of each term entering into the diagonal sum can
be derived by using MOs of the diagonal sum and the
ROHF coefficients of the given term.

According to the variational principle in the pres-
ence of an open shell, two electron density matrices
constructed on the LCAO coefficients of closed and
open electronic shells should be computed in each self-
consistency cycle. The Fock matrix in each self-consis-
tency cycle is calculated by the density-matrix projec-
tion with allowance made for the ROHF coefficients
determined for the calculated term or diagonal sum
[11]. The eigenvalue problem for the Fock matrix is
solved in each self-consistency cycle, and the total
energy of the term or Slater diagonal sum can be found
upon reaching the specified convergence level.

It should be remarked that the radical difference
from the closed-shell case is not energy modification
(1) with the ROHF coefficients, but the Fock matrix
projection providing an orthogonal set of MOs for all
shells [10]. The projection procedure takes a larger part
of the computer time and considerably increases the
computation time as compared to the closed-shell case.
However, the open-shell computational schemes with-
out projection lead to a nonorthogonal set of MOs,
which complicates the calculations of observables and
requires the elaboration of a special approach to the
determination of the multiplet structure.

2. MULTIPLET STRUCTURES 
AND VACANCY DISTORTIONS

An open shell of a vacancy consists of either orbital
triplet, or orbital doublet, or one orbital depending on
the atomic configuration. The group-theoretic analysis
of the Slater determinant combinations is required only
in the first two cases. The results of the analysis per-
formed are presented in the table. The designations of
the terms are obtained by adding the left superscript of

g b( ) 2AJ b'b'' g b'b''〈 〉 AK b'b'' g b'b''〈 〉–[ ]
b''

nb

∑
b'

nb

∑=

+ AI b'b' g b'b'〈 〉 .
b'

nb

∑
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Multiplet structure and ROHF coefficients for the neutral vacancy in open-shell states with orbital degeneracy

V0 configuration t2 AJ AK AI

(Td) s2p2

1A1 (j, jj) 1S (t't' + t''t'' + t'''t''')αβ 0 –3 0

1E (j) 1D (2t't' – t''t'' – t'''t''')αβ; (t''t'' – t'''t''')αβ; 0

1T2 (h) 1D t't''(αβ – βα); + CR –3

3T1 (h, hh) 3P t't''(αβ + βα); t't''αα ; t't''ββ; + CR 0

(hj) (1A1 + 2  · 1E + 3 · 1T2) 0

(jh) (1A1 + 2 · 1E + 3 · 1T2 + 3 · 3T1) 0 0

V0 configuration e2 

(D3d) e2 (C3v) e2 (D2d)

3A2g (hh) 3A2 (hh) 3A2 (hh) e'e''(αβ + βα); e'e''αα ; e'e''ββ; 1 2 0

1B1 (h) e'e''(αβ – βα) 1 –2 –4

1A1g (jj) 1A1 (jj) 1A1 (j, jj) (e'e' + e''e'')αβ 0 –2 0

1B2 (j) (e'e' – e''e'')αβ 0 2 4

1Eg (jh) 1E (jh) [(e'e' – e''e'')αβ ± e'e''(αβ – βα)] 0 0

(jh) (1B1 + 1A1 + 1B2) 0

(1B1 + 1A1 + 1B2 + 1 · 3A2) 0 0

(1B1 + 1A1 + 1B2 + 3 · 3A2) 0

Note: t', t'', t''' and e' and e'' in the Slater determinants are the radial parts of MOs (components of triplet and doublet representations) in the
configurations; α and β are the basis spin functions. CR indicates that the triplet terms contain the determinant combinations
obtained from the given combination by the cyclic rearrangement of the orbital functions. The terms of the s2p2 dominant valence
atomic configuration are presented.
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the spin multiplicity to the symbol [7] involved in the
irreducible representation of the spatial part of MOs.
Here, the determinants are written in the short form as
products of their constituent MOs. Note that the closed-
shell orbitals (the same set for all the terms of a specific
configuration) are omitted, and the orbital and spin MO
components are separated. In addition to the terms, the
table also lists the Slater diagonal sums of the terms,
which have the ROHF coefficients AI = 0 and, hence,
can be obtained by the self-consistent method. The reli-
ability of the results can be improved with several
Slater sums by extracting individual terms with the use
of their ROHF coefficients.

Distortions—atomic displacements leading to the
lowering of the symmetry of an atomic configuration—
are classified by the Td group representations for a
monovacancy and the D3d group representations for a
semivacancy. An arbitrary displacement of the nearest
neighbor separated from the monovacancy by the

 distance is expanded in normal modes in the

form [8]

(2)

where the dimensionless nonnormalized modes are
enclosed in parentheses. The first mode—the relax-
ation—is the normal mode corresponding to identical
displacements of the nearest atoms along the 〈111〉
directions, which does not lead to the symmetry lower-
ing. The relaxation (A1) for a monovacancy was simu-
lated by the displacement of its four nearest neighbors
toward an empty lattice site, and the relaxation (A1g) for
a semivacancy was modeled by the displacement of the
six nearest neighbors toward two empty lattice sites.

In accord with the vibronic-coupling theory of
orbital electronic MO triplet with modes identified by
two-dimensional and three-dimensional irreducible
representations [8], the minima of the adiabatic elec-
tronic energy are matched by two possible distortions
(with the appropriate removal of MO degeneracy):

(i) the tetragonal distortion with the 〈001〉  axis

(3)

(ii) the trigonal distortion with the 〈111〉  axis

(4)

1
4
---1

4
---1

4
---

A1( ) 111[ ] E 1,( ) 112[ ] E 2,( ) 110[ ]+ +

+ T2 1,( ) 101[ ] T2 2,( ) 011[ ] T2 3,( ) 110[ ] ,+ +

q E 1,( ) 0,≠=

E 2,( ) T2 1,( ) T2 2,( ) T2 3,( ) 0,= = = =

Td D2d, t2 e b2,+

2q T2 1,( ) T2 2,( )– T2 3,( )– 0,≠= = =

E 1,( ) E 2,( ) 0,= =

Td C3v , t2 e a1.+
P

It is these displacements determined by the relax-
ation and the sole dimensionless parameter q that were
used in the present work. The q parameter measured
from the distortion axis is the argument in Fig. 1.

In addition to the open-shell states given in the table,
there are the closed-shell configurations in the states
with a lowered symmetry. For example, tetragonal
distortion (3) splits the MO triplet, and the neutral
vacancy, except the e2 configuration (see table), can

also adopt the closed-shell configuration  with a sin-
gle 1A1 term. This term can be self-consistently deter-
mined by the closed-shell RHF method [14, 15]; how-
ever, the subsequent use of the CI calculation [5] can
appear to be inefficient, because the closed-shell con-
figuration is not treated as a ground configuration
within the Hartree–Fock approximation. As follows
from the performed calculation (see Fig. 1 and the dis-
cussion given below), the 1B1 term of the open-shell
configuration e2 has a lower energy, and just this term
should be primarily taken into consideration in the CI
calculations.

The states with one open shell are given in the table.
For states with two open shells, e.g., for the 5A2(Td)
excited state experimentally observed for the neutral
vacancy in diamond, the ROHF method, even if appli-
cable, requires calculations that are too large (Fock’s
matrices should be projected by three, rather than two,
density matrices). However, it is possible to use the
non-self-consistent approximation known in quantum
chemistry as the ∆SCF method [10] when the state
sought is constructed as a superposition of the determi-
nants formed by one-electron excitations of the self-
consistent ground state. The Hamiltonian is not diago-
nal for the determinants involved in the superposition,
and the mean energy of the state sought is determined
by the minimization, which is equivalent to the solution
of the eigenvalue problem. Omitting the formulas used
in the formulation of the Hamiltonian matrix, we note
that the matrix elements are written similarly to the ele-
ments defined by relationship (1), but with contribu-
tions from both open shells (each contribution is char-
acterized by its own occupation number f and ROHF
coefficients) and also with the contribution from the
interaction between open shells. For numerical calcula-
tions according to the described scheme, the ∆SCF
matrix was formalized by two occupation numbers, six
ROHF coefficients for both open shells, and two ROHF
coefficients for the open-shell crossing energy terms,
which were introduced into the program on the basis of
group-theoretic analysis.

3. INDO PARAMETRIZATION 
AND QUASI-MOLECULAR LUC MODEL

The ROHF method, as applied to crystalline sys-
tems, has been realized on the basis of the quantum-
chemical semiempirical (INDO) program for closed
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Fig. 1 Multiplet structure of the neutral vacancy in (a) silicon and (b) diamond. The dimensionless parameter q is measured from
the D2d tetragonal (3) and C3v trigonal (4) distortion axes. All the levels near the Td axis correspond to the atomic configuration
of the monovacancy without distortion, and the level marked by asterisk matches the atomic configuration without relaxation. The
D3d axis corresponds to the semivacancy.
shells and the quasi-molecular large-unit-cell (LUC)
model [11, 14, 16]. The choice of the parametrization
procedure was dictated by the computational capability
and experience gained in calculations of the systems
consisting of Si and C atoms. The ROHF method, as
such, in no way involves the parametrization proce-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
dure, and the programs implementing this procedure
can be employed in any method, including ab initio cal-
culations.

The parametrization procedure and computational
features, such as the inclusion of the interaction
between valence electrons and cores and also the cutoff
0
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of direct and exchange integrals upon summation over
the extended Bravais lattice in the quasi-molecular
LUC model, were chosen identical to those used by
Shluger and co-workers in the CLUSTER program
[17]. The lattice sums of the direct Coulomb integrals
and the Hartree sums were calculated with a large cut-
off radius, so that its further increase led to small vari-
ations. Although the calculation of the Hartree sums
outside the cutoff radius can be refined by introducing
the Madelung correction for the periodic atomic poten-
tial [13], this would be an unjustified increase in the
accuracy for the nonpolar crystals under consideration,
especially, in view of the semiempirical parametriza-
tion level and the restrictions imposed on the model
size and on the number of displaced atoms near the
defect. In accord with the recommendations following
from analysis of the exchange interaction for this crys-
tal model [19], the cutoff radius for the exchange lattice
sum was chosen to be equal to approximately one-half
the quasi-molecular LUC translational vector. The adi-
abatic dependence of the energy on the atomic dis-
placement was calculated with the constant number of
terms in the direct and reciprocal lattice sums.

The Slater valence AOs of the Si and C atoms were
optimized using the parameters (lattice constant, bind-
ing energy, bulk modulus, and valence band structure)
for silicon, diamond, cubic silicon carbide, and graph-
ite crystals. The optimization technique and the physi-
cal meaning of parameters were described earlier in
[16]. Since that time, the parameters were somewhat
refined and included in a large number of calculations
of defects and surfaces with broken bonds in the sys-
tems consisting of silicon and carbon atoms.

The wavevectors of MOs in the quasi-molecular
LUC model form a set of k points [20], which coincide
with the centers of the narrowed Brillouin zones filling
the crystalline Brillouin zone. All the calculations were
carried out with the symmetrically extended body-cen-
tered quasi-molecular LUC, which contains 32 atoms,
has the k set {Γ + 12Σ + 3X}, and well reproduces the
valence band structure in crystals with diamond and
sphalerite structures [16]. As a whole, the semiempiri-
cal INDO parametrization employed for silicon and
carbon atoms is completely determined by the proper-
ties of the above crystals (including the valence band
levels); i.e., in actual fact, the calculation of defects was
not semiempirical in character.

The point defects form a periodic structure and
interact with each other via the four nearest neighbors
in the 32-atom quasi-molecular LUC model. However,
the interaction is weak for small charges on atoms. In
the case when the defect is charged, the quasi-molecu-
lar LUC charge is translated over the entire crystals,
which brings about the physically meaningless increase
in the energy. In order to avoid this situation, upon sim-
ulation of the charged state of a defect, the charge of
electrons added or removed from the neutral defect
model was taken with opposite sign and uniformly dis-
P

tributed among all cores of the model. For the large
quasi-molecular LUC, this small change in the core
charges is physically equivalent to the shift of the
chemical potential (the Fermi level of semiconductor).

4. RESULTS OF CALCULATIONS
Figure 1 displays the multiplet structure determined

for the neutral vacancy, depending on the relaxation
and distortions. The self-consistent energies (found as
a result of the separate ROHF calculation in each case)
of terms and diagonal sums (see table) are shown by
double squares in the Td axis for the totally symmetric
monovacancy and in the D3d axis for the semivacancy.
Single squares near the axes indicate the energies of
terms extracted from the diagonal sums. The same des-
ignations (single and double squares) are used for the
monovacancies with tetragonal (3) and trigonal (4) dis-
tortions. The triangles correspond to the energies of the

closed-shell configuration , which were calculated at
the RHF level. All the data were obtained at the relax-
ations providing the minimum energy of a given term.
The exception is the 3T1 term marked by asterisk whose
energy, for comparison, was calculated without relax-
ation.

The terms shown in Fig. 1 by open and full symbols
are classified in two types, which are characterized by
the different structure and, as a consequence, by the dif-
ferent nature of the correlation correction to the ROHF
approximation: (i) the covalent terms (full symbols),
for which the open-shell MOs are either doubly occu-
pied or empty, and (ii) the exchange terms (open sym-
bols), for which the open-shell MOs are either singly
occupied or empty.

The formation energy Ef for the vacancy was deter-
mined from the level indicated by the horizontal dashed
line. Since this energy is calculated by subtraction of
the defect-free quasi-molecular LUC energy within the
RHF approximation, the level should also be specified
by the energy of the closed-shell configuration to obtain
the correlation corrections of the same order. The
results involve the systematic error due to a spurious
interaction between vacancies in the periodic quasi-
molecular LUC model.

For diamond, the formation energy for the vacancy
Ef[V0] is equal to 5.0 eV, whereas the ab initio calcula-
tion leads to an energy of 7.2 eV [21], which is in close
agreement with the empirical description of the elec-
tronic properties on the basis of a large number of
experimental data [22].

For silicon, the energy Ef [V 0] = 3.0 eV agrees well
with the experimental data (3.6 ± 0.2 eV [23]).

The systematic error decreases with an increase in
the quasi-molecular LUC size owing to the weakening
of the vacancy–vacancy interaction.

In order to emphasize the importance of the self-
consistency achieved prior to the CI calculations, let us
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compare the self-consistent multiplet structure shown
in Fig. 1 with that obtained within the empirical model
of defect molecule. The parameters of the empirical
model are the matrix elements of the electron–electron
interaction for open-shell MOs of the vacancy. In par-
ticular, the exchange integral K = 〈b'b''|g|b''b'〉  for the
monovacancy in diamond was determined as K =
0.58 eV in [24] and K = U/ 4 = 0.65 eV in [22]. These
values determine the relative energies of terms in the
model of defect molecule. The separate self-consistent
calculations of the terms give different values of the
exchange integral, and the spread in the values is com-
parable to the correlation corrections. Upon self-con-
sistent calculations, the other integrals used in the
empirical approximations also become dependent on
the terms.

The effective exchange integral without correlation
correction can be determined within the ROHF

approach from the splitting of the  multiplet terms for
the monovacancy. The value close to this integral was
obtained using the MOs of diagonal sums. The K value
calculated in the present work is equal to 0.7 eV for dia-
mond and 0.4 eV for silicon. In the framework of the
density-functional method, the quantity referred to as
the singlet–triplet splitting is determined in a similar
way from the terms of the total Slater diagonal sum.
This quantity accounts for the electron correlation (but
contains the error due to the impossibility of separate
self-consistent calculations of the terms) and is found
to be equal to 0.6 eV for diamond [21] and 0.33 [1] and
0.2 eV [21] for silicon.

5. RELAXATION AND RECONSTRUCTION

The main findings characterizing the lattice distor-
tion near the vacancy are as follows.

(1) The relative equilibrium values of relaxation and
distortion for vacancies in diamond and silicon are
approximately identical; i.e., the atomic displacements
near the vacancies in these crystals are geometrically
similar, which renders the dimensionless distortion
parameter q [see relationships (3) and (4)] especially
convenient.

(2) For both the neutral V0 state and the singly
charged V± states, the equilibrium relaxation is directed
inward and amounts to 21–25% (of the bond length) for
the monovacancies (the spread is observed for all the
terms) and about 16% for the semivacancies. Undoubt-
edly, the magnitudes of atomic displacements in differ-
ent crystals differ because of different lattice constants
and are equal to 0.53–0.58 and 0.32–0.37 Å for the
monovacancies in silicon and diamond, respectively.

(3) The distortions are small compared to the relax-
ation. In the dimensionless form (2), the ratio between
the distortion and relaxation enclosed in parentheses is
about 20% for tetragonal distortion (3) and about 10%
for trigonal distortion (4). The corresponding magni-

t2
2

PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
tudes of atomic displacements in the 〈112〉 directions
for the tetragonal distortion are equal to 0.15 Å for sil-
icon and 0.11 Å for diamond. The tetragonal, rather
than trigonal, distortion is energetically more favor-
able, which is observed in the experiment.

For lack of the experimental data, the theoretical
works disagree on the direction of relaxation near the
vacancy, irrespective of the computational method and
the defect-crystal model. The outward relaxation is
interpreted as a tendency for the first threefold-coordi-
nated neighbors of the vacancy to form the sp2 hybrid-
ized flat configurations with the second neighbors. It is
these atomic displacements that were obtained, for
example, by the density-functional method [2] (0.2 Å
for diamond), the MO method at the ab initio RHF level
[5] (the sum of relaxation and distortion is equal to
0.12 Å for silicon), and within the valence bond
approach [6] (0.08 Å for silicon), even though the sizes
of model clusters used in these calculations differed
considerably: hundreds of atoms in the first case, tens
of atoms in the second case, and the first and second
coordination spheres in the third case. By analogy with
the case of divacancy [25], the outward relaxation can
be referred to as resonant in distinction to the pairing
inward relaxation. The latter relaxation is more prefer-
able with respect to the restoration of chemical bonds
between the first neighbors of the vacancy instead of
broken bonds. These inward displacements of atoms
were obtained, for example, by applying different
methods to the same 64-atom quasi-molecular LUC
model: the density-functional method [3] (0.4 Å for sil-
icon—a somewhat lesser value as compared to the
atomic displacement obtained in the present work),
which, in addition, made it possible to reproduce the
experimental energy of formation of the monovacancy
[23], and the semiempirical MO method [26] (0.77–
0.93 Å for diamond—a larger value as compared to that
found in the present work).

The relaxation direction (inward) found in the
present work in the vicinity of the vacancy corresponds
to the pairing relaxation mode and agrees in magnitude
with the calculations performed by different methods
for a similar periodic model. It is quite possible that the
domination of the pairing relaxation over the resonant
relaxation is associated with the limited basis set of
AOs, which are centered on the atoms and poorly repro-
duce the delocalized unoccupied (virtual) one-electron
states of the conduction band. The discrepancy in the
relaxation directions near the vacancy can be caused by
the fact that the model of perfect crystal, in which the
vacancy is introduced, either does not account for the
initial relaxation or does not reproduce the experimen-
tal elastic moduli. In this work, the models of all the
crystals were optimized with particular care in order to
eliminate this error [16]. A similar preliminary optimi-
zation was also performed in other works dealing with
the pairing relaxation of the monovacancy [3]. The
importance of considering the relaxation in the model-
ing of the structure and processes involving the vacancy
0
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follows from the difference between two energies of the
3T1 term shown in Fig. 1. These energies were obtained
for the relaxed and unrelaxed atomic configurations of
the monovacancy (the latter value is marked by asterisk
in Fig. 1). Their difference is the stabilization energy
upon relaxation and covers the entire energy range of
the multiplet structure.

The ROHF method allows the self-consistent calcu-
lation of individual terms and makes it possible to eval-
uate the error of calculations in which the self-consis-
tency is achieved only for the diagonal sum [1, 2, 4].
Single squares to the right and to the left of the Td axis
indicate the term energies extracted from two diagonal
sums  and , which can be obtained for the totally
symmetric monovacancy. By comparing the energy of
the 3T1 term separately determined in a self-consistent
way (double squares in the axis) and the energy
obtained from the diagonal sum (squares to the left of
the axis), the error of the procedure of computing the
energies of terms from the diagonal sum is estimated at
0.25 eV for silicon and at 0.6 eV for diamond. Both
diagonal sums lead to close values for the 1T2 and 1E
terms.

6. ELECTRON CORRELATION 
AND JAHN–TELLER EFFECT

For the central vacancy in silicon and diamond, the
triplet states (3T1 for the totally symmetric monova-
cancy, 3A2 for the monovacancy subjected to distor-
tions, and 3A2g for the semivacancy) calculated within
the ROHF approximation lie below the singlet states, as
in the other MO calculations [4]. From the results of
calculations it follows that, if the ground state was actu-
ally triplet, this state in silicon would be stabilized by
the Jahn–Teller trigonal distortion 3T1(Td)  3A2(C3v)
(Fig. 1a), and, in diamond, the state of the semivacancy,
rather than the monovacancy, would be ground
3T1(Td)  3A2g(D3d) (Fig. 1b).

It is well known from the experiment that the ground
state of the neutral vacancy is singlet in both crystals.
In this respect, the potentialities of the MO method in
the description of the vacancy came under criticism. It
was argued [6] that the CI corrections to the Hartree–
Fock MOs are so large that it is necessary to employ the
valence bond method. This assertion was based on the
calculation of an insufficiently realistic small cluster
model for the totally symmetric monovacancy. More-
over, the authors did not take into account that the dis-
tortion leads to the appearance of such terms in the MO
scheme that can be characterized by smaller correlation
corrections than the corrections applied to the totally
symmetric states (of course, the revelation of this fact
requires the use of the open-shell method).

This situation is actually realized in the case of the
monovacancy (see Fig. 1). The stabilization of the

E1'' E2''
PH
degenerate 1E term for the totally symmetric monova-
cancy due to the Jahn–Teller effect upon tetragonal dis-
tortion is described by the closed-shell configuration

 with a single 1A1 term. It is the adiabatic parabola
formed by triangles, which, in the ROHF approxima-

tion, approaches the level of the (1E) term with a
decrease in the distortion. However, in the ROHF
approximation, the whole of the adiabatic parabola of
the 1B1 term for the open-shell configuration e2 (open

squares) is shifted downward with respect to its (1A1)
counterpart in the Jahn–Teller splitting and does not

reach the (1E) level with a decrease in the distortion.

The discontinuous behavior of the energies of
terms—the components in the splitting of the 1E dou-
blet—is not a computational error, but is the many-
electron effect due to the application of the ROHF
method. Indeed, within the independent electron
approximation, the separation between the e doublet
MOs and the t2 triplet is two times less than the separa-
tion between the b2 singlet and the t2 triplet, and both
separations are continuous with respect to the distor-

tion. Therefore, the  configuration should be energet-
ically more favorable [8] when the distortion direction
corresponds to the b2 low-lying level (to the right of the
D2d axis in Fig. 1). The discontinuity in the separation
of the terms within the ROHF approximation demon-

strates that the correlation energies for the (1E) and

(1A1) covalent terms are identical to each other and
exceed the correlation energy of the e2(1B1) exchange
term. The true totally symmetric ground state 1E

involves other configurations in addition to the 
ground configuration. These configurations consist of
two and more open shells and, unlike the ground con-
figuration, are not purely covalent in character. If the CI
calculations were performed with these configurations,
this would provide such a correlation correction that the
Jahn–Teller splitting would be continuous with respect
to the distortion. Thus, the energy discontinuity
between the covalent totally symmetric term and its
exchange Jahn–Teller component in the ROHF approx-
imation is the correlation energy Ecorr in the one-open-
shell approximation.

The quantum-chemical rule stating that the MO
methods, without applying CI corrections, systemati-
cally underestimate the energies of triplet states as
compared to the energies of the singlet states can be
generalized in the following way: Within the ROHF
approximation, the correlation energies of the
exchange-type (both triplet and singlet) terms, like, for
example, the E2(1B1) term for the neutral monovacancy,
are less than those of the covalent-type terms. There-
fore, the ROHF approximation permits one not only to

b2
2

b2
2

b2
2

t2
2

b2
2

t2
2

b2
2

t2
2
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independently determine single terms of the multiplet
structure in a self-consistent way, but also to evaluate
the correlation corrections from the behavior of the
terms with a lowering of the symmetry. In the one-
open-shell approximation, the correlation energy of the
1E ground state in the totally symmetric neutral mono-
vacancy is determined by the difference between the
ROHF energies of the covalent and exchange compo-
nents of the Jahn–Teller splitting (Ecorr ≈ 0.5 eV for sil-
icon and 0.7 eV for diamond). This energy for diamond
is in satisfactory agreement with the empirical CI cor-
rection equal to 0.63 eV for the 1E term [22].

In the ROHF approximation, the energy of the zero-
phonon dipole-allowed optical electron transition, ∆E,
which was determined from the terms of the totally
symmetric monovacancy as 1E  1T2 [8, 22], is
underestimated because of the difference between the
correlation corrections of the covalent and exchange
terms, as discussed above. In the one-open-shell
approximation, the ∆E value is determined by the terms
of the e2 configuration with the tetragonal distortion as
the energy difference 1B1 – 1B2. This difference is
shown by the vertical line in Fig. 1 and has the follow-
ing values.

For diamond, ∆E ≈ 1.8 eV. A good agreement with
the experimental data is illustrated in Fig. 1b by the ver-
tical segment (along which the ∆E energy is deter-
mined) whose length is taken to be equal to the energy
(1.673 eV) of the corresponding GR1 band in the opti-
cal spectrum [8].

For silicon, ∆E ≈ 1.0 eV. Within the accuracy of the
ROHF approximation, this value coincides with the
experimental band gap and agrees with the result
obtained by the valence bond method, i.e., ∆E = 1.32 ±
0.54 eV [6], which gave grounds to conclude that the
optical spectrum of the vacancy in silicon is not observed
because of the overlap with interband transitions.

7. EXCITED STATE WITH SPIN 3/2

The non-self-consistent ∆SCF approximation was
used for the states with two open shells. In order to
employ this method in calculating the energy of the
5A2(Td) excited state experimentally observed by the
electron paramagnetic resonance (EPR) technique [27]
for the neutral vacancy in diamond, let us choose the
3T1 term with appropriate single excitations (see table).
The single excitations of required spatial and spin sym-
metry can be obtained by the transfer of one electron
from the a1 MOs of the closed shell to the MOs of the
open-shell triplet

(5)

As in the table, we represent the Slater determinants
in the short form by indicating only the MOs involved
in their construction and omitting all the closed-shell

t2' t2''αα( ) a1α( ) t2' t2''t3'''ααα( )Ca1
.

a1

∑
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MOs. Specifically, in the left-hand side of relationship
(5), we omit all the doubly occupied MOs (a1a1αβ),
which participate in the formation of the second open
shell in the right-hand side (there are the five thus occu-
pied MOs in the 32-atom quasi-molecular LUC
vacancy model). The components of irreducible repre-
sentations are numbered by primes, and the α and β
spin parts of MOs are separated from spatial parts.

The minimum eigenvalue of the Hamiltonian matrix
with determinants of the right-hand side of relationship
(5) is the energy of the 5A2 state, and the corresponding
eigenvector of the  coefficients describes the con-
figuration mixture within the ∆SCF approximation.
With this method, we determined the difference in the
energies of the states with spins S = 1 and 3/2 for the
neutral monovacancy.

For diamond, the difference in the energies of the
5A2 and 3T1 states is equal to 0.8 eV, which agrees with
the empirical estimate (about 1 eV [27]) made from the
shift of the g factor in the EPR spectrum and with the
theoretical value (0.87 eV [6]) obtained by the valence
bond method. The discrepancy between the aforemen-
tioned data and the empirical estimate (1.6 eV [22]) is
possibly caused by the fact that the latter estimate was
made without invoking the experimental data on the
states with nonzero spin and all the terms were calcu-
lated with the same values of two-electron integrals
(non-self-consistent CI).

The difference in the energies of the 5A2 and 3T1
states for silicon is equal to 0.7 eV, which, unlike dia-
mond, agrees not so well with a similar value (0.42 eV
[6]) found by the valence bond method. This disagree-
ment is likely explained by the difference between dia-
mond and silicon in the location of the a1 resonance
states of the vacancy in the valence band and its local-
ization, which cannot be taken into consideration in the
framework of the small cluster model used in [6]. The
location of the vacancy resonance a1 can be evaluated
from the energies of MOs whose excitations predomi-
nantly contribute to configuration sum (5), i.e., from the
maximum ∆SCF coefficients. The squares of these
coefficients (indicating the contribution of the configu-
rations to the 5A2 term in the order of the “deepening”
of the a1 MO orbital energies into the valence band) and
the estimates for the energies of the resonance state of
the vacancy (measured from the top of the valence
band) were determined from the two most important
configurations and have the following values:

Ca1

Ca1

2 53 38 6 3 1%, , , ,
29 58 8 4 0%, , , ,




,=

a1

Ev 3.9–4.8( ) eV for diamond–

Ev 2.3–3.0( ) eV for silicon–



,=
0
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which can indicate the larger contribution of crystalline
states to the vacancy resonance in silicon as compared
to diamond.

Therefore, the ROHF method made it possible to
calculate the multiplet structures of highly symmetric
atomic configurations of the neutral vacancy in silicon
and diamond, which is the necessary condition for ana-
lyzing the electron correlation and the vibronic cou-
pling with the use of configuration interaction. The
ROHF correlation corrections for the intraconfigura-
tional interaction differ in the order of magnitude,
depending on the type of filling of the open-shell MOs.
When the splitting of the highly symmetric term due to
the Jahn–Teller effect is accompanied by the appear-
ance of the configuration with a different occupation
type, the discontinuity arises in the ROHF multiplet
structure: the adiabatic energy of the split-off term does
not approach the energy of the totally symmetric term
with a decrease in the lattice distortion. The energy dis-
continuity is the correlation energy in the one-open-
shell approximation used in the present work, even
though the method can be extended to a larger number
of open shells.

The difference in the energies of states with spins
S = 1 and 3/2 for the neutral monovacancy is deter-
mined within the ∆SCF approximation. These triplet
and quintet states being the low-lying excitations play
an important part in the general pattern of physical
properties of the vacancy (the quintet state in diamond
is observed in the EPR spectrum).
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Abstract—It has been shown that in crystals, near the Fermi resonance of optical excitons, in addition to the
solitons discovered before, such as multi-exciton bound complexes of cusp-, crater-, and dark-type possessing
a single carrier frequency, amplitude, and envelope, there are nonlinear soliton excitations of a crucially new,
breather-type. Such periodic soliton oscillations exhibit slowly pulsing amplitudes of high-frequency oscilla-
tions, with the carrier frequency being a multiple of the frequency of pulsations. In accordance with the multi-
plicity, the depth of pulsations defines a series of the carrier frequencies, which are condensed near the basic
frequency of optical oscillations. The spatial dependence of the two envelopes of new solitons of the cusp type
is determined. With the increase in multiplicity, the sharpness of the space envelope of a soliton decreases, while
the localization radius increases. Some other features of the solitons of new type are listed. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

At present, the experimental and theoretical studies
of nonlinear optical excitations of high-energy and
amplitude—solitons—are performed. Such excitations
consist of bound multi-exciton complexes, which are
formed due to the Fermi resonance (FR) of oscillations,
which gives rise to exciton–exciton interaction of the
third order. When the energy "ωC of excitons of one
type (C) is close to the total energy 2"ωB of two exci-
tons of another type (B), and the BB  C interaction
takes place, the FR causes a series of features in the
vibration spectra of ionic, molecular, and other crystals
of different structures and dimensions [1]. A typical
value of the vibration energy in the FR is equal to
300 meV for NH4Cl ionic crystals, 350 meV for
LiNbO3, etc. Recently, nonlinear optical oscillations
have been investigated in superlattices of different
types with a predetermined order of monomer layers
(e.g., of organic molecules in PTCDA and NTCDA
superlattices with exciton energies of ≈2 meV [2]), and
concurrently, new technologies for multilayer lattice
formation are elaborated. Such multilayer lattices hold
much promise for nonlinear devices that are meant for
use in optic computers in the future [2–4]. In [5–7],
attention was called to the important role of the spatial
FR of optical vibrations in adjacent crystal planes,
when the exciton energy "ωC in one of the planes is
close to the total energy 2"ωB of two excitons in the
neighboring plane of the interface. In [7], it was shown
that, in some systems such as superlattices, due to the
FR leading to the nonlinear third-order exciton–exciton
interaction, specific mixed BB + C exciton excita-
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tions—Fermi resonance interface modes (FRIMs)—
may propagate along the interface. Quantum and clas-
sical FRIMs are responsible for the effect of bistability
[8]. In [9–11], it was shown that it is possible to gener-
ate nonlinear soliton excitations of high energy that are
bound complexes of FRIM excitations. In [12–14], it
was shown that the solitons examined in [9–11] are the
only elements of the whole class of soliton excitations
that possess symmetric [12] or antisymmetric [13]
envelopes of different types (cusp, crater, dark). In [14],
it was shown that the solitons studied in [12, 13] may
exist not only in one- or two-dimensional crystal lat-
tices, for example, on the superlattice interfaces, but
also in three-dimensional crystals. Various nonlinear
optical effects associated with the generation of the
solitons found in [9–14] were discussed in later works
[15, 16]. It should be noted that the FR may signifi-
cantly affect the spectra of optical and acoustic mul-
tiphonon vibrations in light-weight metals, such as
beryllium, which are widely used in technology [17].
The investigation of the soliton energy transfer
(~0.5 eV) in biological albumen structures is also of
importance [1].

We note that all FRIM solitons investigated earlier
have the same fundamental feature, namely, they are
excitations of the single-frequency type, in which the
intercoupled carrier frequency and the amplitude of
oscillations at this frequency, together with the FR
anharmonism constant, are the only basis parameters
even in the isolated pair of B and C monomers. These
parameters determine the space dependence of the indi-
vidual envelopes of various solitons in a crystal.
000 MAIK “Nauka/Interperiodica”
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In this work, it has been shown that, near the FR in
crystals, soliton periodic oscillations of a crucially new
type may be generated with the amplitude–frequency
characteristics being essentially different from those of
the previously described type. These oscillations refer
to breather-type solitons with amplitudes (correspond-
ing to the carrier frequency) pulsing periodically in a
certain interval of values and with high carrier frequen-
cies that are multiples of the low frequency of the
amplitude modulation. The breathers are solitons with
a more complex space–time dependence (“breath”)
than in [9, 10] (in continual approximation); they are
intensively investigated in very different fields of phys-
ics. It is of some interest to study the question of exist-
ence of these breather-type solitons in the FRIM–type
oscillations. In the appropriate temporal Fourier-repre-
sentation, the periodic nonlinear oscillations of such a
type have an infinite set of frequencies. However, in
what follows, we will use, rather than the Fourier trans-
formation, the exact solutions of the corresponding
nonlinear equations. It is a feature of these nonlinear
oscillations that, at a fixed modulation depth, which
determines the frequency of the pulsations, there is a
series of carrier frequencies condensing near the basic
monomer frequency 

 

ω

 

C

 

 

 

≅

 

 2

 

ω

 

B

 

. The interaction of
monomers (nonlinear oscillators) causes the formation
of new-type solitons in a crystal, which, unlike the soli-
tons discovered earlier, are characterized by the same
feature, namely, the presence of low-frequency pulsa-
tions of the amplitude of oscillations with the carrier
(high) frequency, the latter being a multiple of the fre-
quency of pulsations. In a crystal, this results in a space
distribution of the pulsation amplitude and of the pulsa-
tion depth in the soliton tails with the corresponding
space dependence of already two envelopes for an indi-
vidual soliton. In this case, a number of features arise
that are associated with the character of oscillations in
the breather soliton. Among them is the fact that in the
soliton tails the envelope steepness decreases as the
corresponding multiplicity increases; that is, the radius
of the localization of excitations in the soliton
increases.

In what follows, we investigate the oscillations of
this new type, which, according to the shape of their
envelope, should be classified as cusp-type solitons
with the finite negative derivative of the soliton enve-
lope in its center. The investigation of the problem of
crater- and dark-type soliton existence [12–14] is now
faced with serious difficulties due to dramatic compli-
cations in the analytical description of such a type of
oscillations. There is no question that, as a development
of the present work, the solution of this problem would
be of a certain interest. In the future, as the first step in
this direction, it seems to be necessary to study the non-
linear effects (studied earlier [9–16] for the old-type
FRIM solitons) associated with the new type of solitons
discovered in our work.

  
P

FORMULATION OF THE PROBLEM 
AND BASIC EQUATIONS

In the case of the optical FR in a crystal system of
monomers, for example, of molecules in organic super-
lattices, in the site representation of secondary quanti-
zation, the Hamiltonian H of the crystal system takes
the form

(1)

In (1), ,  and 

 

b

 

n

 

, 

 

c

 

n

 

 are the creation and annihila-
tion boson operators of 

 

B

 

- and 

 

C

 

-type excitonic excita-
tions at the 

 

n

 

th site, e.g., for a pair of 

 

B

 

 and 

 

C

 

 molecules

on both sides of the interface;  are the matrix ele-
ments of the intermolecular interaction operator
describing the translation of excitons. In the term of the
Hamiltonian responsible for the FR of oscillations, the
constant 

 

Γ

 

 determines the energy of the anharmonic
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BB

 

 interaction of the third order, and this energy
may be as large as 

 

≈

 

1000 cm

 

–1

 

. The detailed discussion
of Hamiltonian of this type is given in [7].

The Heisenberg equations for the operators  b 
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  and  c 
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(2)

in the case of the nearest-neighbor interaction,  =
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, take the form

(3)

Usually, to describe intense nonlinear oscillations in
the case of large occupation numbers at high laser
pumping, a quasi-classical approach is used, in which
all operators in (3) are replaced by their average values
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 and 

 

C

 

n

 

 are the correspond-
ing displacements. In this case, equations (3) for aver-
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aged values become [9, 10]

(4)

TWO-FREQUENCY SOLUTIONS

In [9–16], standing-soliton solutions, i.e., non-shift-
ing solitons, were sought in a one-frequency (simplest,
as it has become clear now) form

(5)

The substitution of Bn(t) and Cn(t) having the time
dependence (5) into (4) and a subsequent analysis of
the nonlinear equations for the Bn and Cn amplitudes
gave the corresponding form for the envelope that had
a one-to-one relationship to the carrier frequency Ω .
The basic form of this relation is seen just from the
dependence of the amplitudes B0 and C0 on Ω for an
isolated pair

(6)

which can be easily obtained from (4).

It is clear that the solutions of the system (4) depend
on the parameter Γ/" as on a scale factor, and, that is
why it is natural to introduce the variables bn = (Γ/")Bn,
cn = (Γ/")Cn, which have the dimensions of frequency.

As will be shown later, the nonlinear equations (4)
have another, also periodic, but much more complex
solution describing an isolated B, C pair. For brevity,
we will show here only the structural solving scheme
and the final result, without the full analytical proce-
dure. We present equations (4) for an isolated pair in

terms of quantities , c0 in the form

(7)

and seek a solution to the first of the equations in the
form

(8)

separating the time-dependent modulus and phase of

the quantity . Substituting (8) in the first equation in
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(7), we obtain the dependence of c0 on ρ and ϕ

(9)

To simplify the fairly cumbersome calculations, we
will assume the FR to be absolute, i.e., ωC = 2ωB

exactly, though, as it is seen from the solution, it is not
crucial. The substitution of (9) into the second equation
in (8) and separation of the real and imaginary parts
lead to two coupled second-order nonlinear differential
equations for ρ and ϕ, which, through the proper proce-
dures, are reduced to the first-order differential equa-
tions for ρ and ϕ

(10a)

(10b)

In (10a), two signs (upper and lower) result from the
associated square equation solution, the quantities ρ1,
ρ2 are the integration constants, which specify the lim-
its of ρ(t) pulsations: ρ2 ≤ ρ ≤ ρ1. The solution of (10a),
in the form t = t(ρ), is

(11a)

(11b)

where F(ψ, k) is the elliptic integral of the first kind of
the modulus k. The constant q, modulus k, and the pul-
sation period T are defined by the ρ1 and ρ2 values:

(12)

where K(k) is the full elliptic integral of the first kind.
In (11), the function ψ(ρ) is of the following form:

(13)

The time reference is chosen so that at t = 0, the quan-
tity ρ = ρ2 is minimal and ψ = 0, while at t = T/2, the
quantity ρ = ρ1 is maximal; at the end of the period
(t = T), the values of ρ repeat those at t = 0. We note that
in the first half-period, t(ρ) in (11a) is taken with the
plus sign, while in the second one, with the minus sign.
In its turn, using (10a) and taking the periodic nature of
ρ into account, the phase ϕ(t) is determined from equa-
tion (10b) after integrating with respect to ρ as follows:
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(14a)

(14b)
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ϕ ρ( ) ωCt J
2 2ρ1 ρ2+( )Π n ψ ρ( ) k, ,( ) ρ1 ρ2+( )F ψ ρ( ) k,( )–[ ]

ρ1 ρ1 2ρ2+( )
---------------------------------------------------------------------------------------------------------------------------– , T /2– t T .≤ ≤=
In (14), the first relation defines the phase growth with
ρ increase, while the second one, with ρ decrease. The
function Π(n, ψ, k) is a known tabulated special func-
tion as well, namely, the elliptic integral of the third
kind of the parameter n. This parameter and the quan-
tity J take the following values:

(15)

The periodic continuation of (14) over the further peri-
ods shows that the phase has a component linear in t,
which is coupled not only with ωC, but also with J,
there with the opposite sign, and, thus, the linear phase
growth takes place during each period T. Therefore, the
carrier frequency Ω , which determines the full phase
growth after each period of pulsations of the frequency
ω = 2π/T, is equal to

(16)

where J and T are specified by (15) and (12), respec-
tively. The complex functional dependencies t(ρ), or,
inversely, ρ(t) and ϕ(t), given by (11) and (14), may be
significantly simplified in the limit of similar ρ1 and ρ2
values. At the condition ρ1 – ρ2 ! (ρ1 + ρ2)/2, when
F(ψ) ≈ Π(ψ), the feature parameters take the values

n = 0, k = 0, J = 2π/ , T = π , and the
time dependence of the modulus and phase take the fol-
lowing, more simple, form:

(17)

They give us an idea about the character of the nonlin-
ear oscillations under consideration. We note that it is
the phase oscillating character that is the distinctive
feature of the nonlinear oscillations, in contrast with
usual harmonic beats.

The purely periodic oscillating process takes place
only when the low-frequency pulsation period T is a
multiple of the period 2π/Ω of the oscillations of the
carrier frequency Ω

n
ρ1 ρ2–

ρ1 2ρ2+
--------------------,=

J
4 2ρ1 ρ2+( )Π n π/2 k, ,( ) ρ1 ρ2+( )K k( )–[ ]

ρ1 ρ1 2ρ2+( )
--------------------------------------------------------------------------------------------------------.=

Ω ωC
J
T
---,–=

3 2/ 3 ρ1 ρ2+( )( )

ρ t( )
ρ1 ρ2+

2
-----------------

ρ1 ρ2–
2

---------------- ωt( ),cos–=

ϕ t( ) Ωt
ρ1 ρ2–

ρ1 ρ2+( ) 3
----------------------------- ωt( ).sin–=
PH
(18)

The substitution of (18) into (16), after simple manipu-
lations, reveals Ω and ω dependencies upon the multi-
plicity m, namely,

(19)

where Ω = Ωm are the carrier frequencies, and the quan-
tities ωm arbitrarily specify the frequencies ω of pulsa-
tions (14). It is clear that Ωm represents the series of
terms Ω1 < Ω2 < … < ωC, which concentrate near ωC

similarly to the series of atomic levels of hydrogen. The
fact Ωm < ωC associates with the choice of the integra-
tion constants. A preliminary analysis had shown that at
other values of these constants, at the same time, there
is a similar high-frequency series Ωj > ωC, but the time
dependence of the module ρ(t) differs from (11). There
is no question that henceforth, a comprehensive study
of this fact is necessary. Detail analysis of the presented
relations shows that the multiplicity m, the quantity
x ≡ ρ2/ρ1 as a depth of pulsations, and, naturally, ωC are
the basic parameters of the nonlinear oscillations under
consideration. With fixed m and x, by use of (11), (15),
and (19), the quantities k, n, J, ρ1, ρ2, T, Ωm, ωm can be
determined, and then, through the inverse function
t = t(ρ), the functions ρ(t), ϕ(t), and c(t). Immediately
from (14), with use of the known elliptic Jacobi func-
tions sn and cn, the direct representation of the function
ρ = ρ(t) is also possible, but its analytical form is not
presented here for brevity. It is the outlined algorithm
that was used in our numeric calculations for determi-
nation of t(ρ), ϕ(ρ), c(ρ) with the consequent direct
graphic presentation of ρ = ρ(t) and other time depen-
dencies.

DETAILS OF CALCULATIONS 
AND NUMERICAL RESULTS

The above-described oscillations are naturally col-
lectivized. For their investigation, we will use the pro-
cedure that was used before in investigations of the
cusp-, crater-, and dark-type solitons [12–14]. As the
first step, let us consider a one-dimensional crystal
chain of BC-molecule pairs, and, in the same way as in
[12], let us study only symmetric standing soliton solu-

m
2π
Ω
------ T , m 1 2 3 …., , ,= =

Ωm ωC 1 1
1 m 2π/J( )+
------------------------------– 

  ,=

ωm ωC
1

m J /2π( )+
---------------------------,=
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tions. The generalization of the solving procedure for
the case of an antisymmetric solution, and for two- and
three-dimensional crystals, seems to meet no major dif-
ficulties [13, 14]. As in [12–14], to reduce the number
of parameters in use, we will suppose that VC = VB = "v
and that the ratio α ≡ |v |/ωC is small, as it takes place
for Frenkel excitons in molecular crystals, where "ωC ≈
2 × 104 cm–1, and |"v | ≈ 102 cm–1. At small α ≈ 10–2, the
above-mentioned procedure of a one-frequency solu-
tion search for equation (4), for the case of symmetric
states of the chain of 2N – 1 BC-molecule pairs, led to
a set of N coupled nonlinear equations. In the process,
at small α and large N, for cusp, crater, and dark soli-
tons, it makes no difference whether the chain being
closed or unclosed due to a steep decline of the space
envelope in the soliton tails. At N = 2, 3, 4, the corre-
sponding equations were solved analytically, and the
solutions thus obtained showed the possibility of cusp,
crater, and dark solitons existing. Then, these solitons
were used as input data for the computer calculation of
soliton envelopes for large N. In doing so, due to small
α, which caused a dramatic reduction in the size of the
envelopes in the tails of cusp solitons, the results of
exact calculations might be analytically approximated
using the model of pair of nonlinear BC oscillators suc-
cessively interacting with each other (with the energy
V) without feedback. Such oscillators were assumed to
be of large oscillation amplitudes b0, c0 at the site n = 0
and of small amplitudes bn, cn ≈ αbn – 1, αcn – 1, at the nth
sites in the tails. Because the amplitudes are small in
the tails, nonlinearity is of no significance there, and the
oscillations may be considered as harmonics in these
nodes.

Because the time dependence of nonlinear oscilla-
tions considered in this work is very complex and even
at N = 2 causes significant difficulties in the analytical
and computer only solving of the problem, at first, the
above procedure was used for the closed chain with the
nonlinear oscillator located at the center, at the site n =
0, and forced oscillators driving without feedback in
the sequence n  0  1  2…. The last assump-
tion referred to the negligibility of the small terms of
order α2 in comparison with terms of order α. In so
doing, the sequence of decreasing amplitudes bn, cn

associated with the space envelope of the breather soli-
ton of the new type was determined. To calculate the
solution of (4) more precisely, the foregoing procedure
was employed as the first step. Further, the calculated
space–time solutions were used in solving (4) by means
of a recurrent correction procedure, which was
employed up to the acceptable reproduction of the
results.

The results of calculations, obtained by a PC Pen-
tium using MATHCAD, are shown in Figs. 1 and 2. The
values of parameters used are: m = 8, x = 0.7, α = 0.01.
In Fig. 1, the functions Re(c0(t)) (curve 1), Im(c1(t))

(curve 2), and B0(t) = , wheref t( )( ) f t( )sgn
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Fig. 1. Nonlinear high-frequency oscillations and low-fre-
quency pulsations of the amplitudes of the new-type breath-
ers near the Fermi resonance of optical excitations.

Fig. 2. Binary space envelopes of the new-type breathers.
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f(t) ≡ ρ(t)cos(ϕ(t)) (curve 3), are presented in the time
interval 0 ≤ t ≤ T. They display the oscillations of the
carrier high frequency Ω accompanied by the low-fre-
quency pulsations of the amplitudes. These functions
give you an example of B- and C-oscillations in the cen-
tral site and in those nearest to the center. For f(t), the
root dependence was chosen in order to separate curves
2 and 3, the last represents the modulus time depen-
dence of B-type oscillations with the time-dependent
phase ϕ(t)/2, naturally. It should be emphasized that, in
this case, we do not observe the usual harmonic two-
frequency beats, but nonlinear oscillations with the
pulsing phase, which produces an infinite series of fre-
quencies in the Fourier-transform. The time dependen-
cies of the real and imaginary parts of cn(t), bn(t), which
are not shown here, have mainly the same form as in
Fig. 1. Their amplitudes decrease with n growth, as is
seen from comparing curves 1 and 2. Some discontinu-
ities in the slope of the curves are caused by the techni-
cal possibilities of the plotter. The curves of Fig. 1 were
plotted using 100 points that were chosen from 200 points
calculated by MATHCAD. The last ones depicted the
absolutely smooth curves. The results of calculations
and respective curves for n = 2, 3, ..., 8 (n = 8 is the lim-
iting value from the standpoint of computer resources)
provided support for the assumption of the existence of
the discussed type of soliton solution and allowed us to
clear up the space form of the corresponding envelopes,
but these results are not presented here for brevity. In
Fig. 2, the space forms of two envelopes are shown,
namely, max|cn| (curve 1) and min |cn| (curve 2), which
are drawn through minimal and maximal values of the
modulus of cn(t). It is seen that the amplitude decrease
associated with n growth is not of the first order in α,
but is slower, which is connected with the value of the
multiplicity parameter m. As numerical calculations
and analytical estimations indicated, the larger m is
associated with slower decay of an envelope and with
larger localization radius of soliton excitations. The
investigations of all details of soliton oscillations of the
type considered here, which are related to this, as well
as other effects, is of further interest.
P
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Abstract—A study is reported of the temperature and frequency dependences of the permittivity and losses in
Cr-doped Bi12SiO20 crystals at sonic frequencies and in the range 300–800 K. A number of dielectric anomalies
and a close-to-linear Cole–Cole diagram have been observed. The results are discussed by invoking the con-
cepts of electron hopping and screening of the induced polarization through the relaxation of local lattice dis-
tortions. © 2000 MAIK “Nauka/Interperiodica”.
A large number of studies of Bi12MO20 crystals
(BMO, where M = Si, Ge, or Ti) have paid only scant
attention to their interesting dielectric properties. Some
authors reported the high room-temperature permittiv-
ity ε = 30–160 [1–4] and a strong dependence of ε on
the growth factors governing the content of intrinsic
defects in these crystals [2–4]. An increase in ε
observed in a number of bismuth oxide crystalline com-
pounds is associated with an increase in the Bi2O3 con-
tent [4]. The BMO crystals were shown to be promising
for microwave technologies [5].

The temperature and frequency dependences of
ε(ν, T) and loss tangent tanδ(ν, T) at the frequency ν =
102–104 Hz and in the microwave range reveal anoma-
lies near 4.2 K, which are characteristic of “virtual” fer-
roelectrics [4–6]. The anomalies are assigned to relax-
ation processes involving a low relaxator potential bar-
rier Ea . 0.05 eV [5]. This value of Ea agrees with the
estimated activation energy Ea = 0.044 eV for “dipole”
impurities, which are responsible for the relaxation
maximum in ε(T) and tanδ(T) in the range T = 20–40 K
at sonic frequencies [6]. The relaxation “strength” of
these impurities and the intensity of yellow coloring of
the Bi12GeO20 (BGO) crystals were found to be corre-
lated [6]. In the same temperature range, the ultrasound
damping was observed in BGO and Bi12SiO20 (BSO)
crystals, which increased with introduction of Cr [7]
and decreased under Ga and Al doping [8].

The features in ε(ν, T) and tanδ(ν, T), which are
characteristic of the relaxation polarization, have been
observed also near room temperature (BSO crystals,
sonic frequencies [9]). Consideration was given to the
mutually correlating anomalies in the internal friction
Q–1(T) and ε(T) at temperatures T = 500–700 K (ν =
103 Hz), which depend on the actual impurity species
(Al or Cr) and annealing of BSO crystals under vacuum
[10]. They are believed to originate from impurity–
vacancy-type dipoles with a trigonal lattice-site sym-
metry.
1063-7834/00/4204- $20.00 © 20689
Studies of static thermally stimulated polarization
and depolarization of BSO crystals revealed participa-
tion of the quasi-dipoles in the formation or destruction
of the thermoelectret state. In this case, the contribution
of the quasi-dipole mechanism of polarization
increases upon doping BSO crystals by Al, Ga, Cr, and
Mn ions [11, 12]. The thermoelectret state of BSO : Al
and BSO : Ga crystals also exhibits a substantial
enhancement of the anomalies in ε(ν, T) and tanδ(ν, T)
at temperatures T = 400–800 K [13].

Thus, defects in BMO crystals manifest themselves
over a wide range of temperatures T = 4–800 K in the
relaxation processes, which can be identified with
quasi-dipole polarization. Further investigation of the
nature of these processes and the possibilities of their
control through doping appear to be of interest. Of par-
ticular importance are the iron-group transition metals
forming multiply charged impurity ions, which pro-
duce deep strong-localization centers capable of effi-
ciently interacting with the strongly polarizable BMO
lattice.

This work presents the results of our investigation of
dielectric relaxation processes in BSO : Cr crystals
transferred to the thermoelectret state.

1. EXPERIMENTAL

The optically homogeneous BSO : Cr crystals were
grown by the Czochralski method. The Cr content was
varied from 0.0004 to 0.02 wt %, and the total content
of residual impurities did not exceed 10–3 wt %. The
samples were polished bars (0.5–1.5) × 3 × 7 mm in
size. Pt electrodes were deposited by cathode sputter-
ing under vacuum on the 3 × 7 sides cut in the (001)
plane. To bring the electronic subsystem to the initial
equilibrium state, the samples were heated in air before
measurements up to 800 K with subsequent slow
(~2 days) cooling to room temperature.

The dependences ε(ν, T) and tanδ(ν, T) were stud-
ied in the frequency range ν = 102–105 Hz at tempera-
tures T = 300–800 K by means of an E8-2 bridge,
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature dependences of (a, c) the permittivity ε'(T) and (b, d) loss tangent tanδ(T) of BSO : Cr crystals (0.03 wt % Cr,
d = 0.9 mm): (a, b) for the same conditions of prepolarization Up = 100 V, Tp = 300 K, and different measuring-field frequencies

ν = (a, 1; b, 1, 1') 5 × 102, (a, 2; b, 2, 2') 103, and (a, 3; b, 3, 3') 3 × 103 Hz; and (c, d) for fixed frequency ν = 5 × 102 Hz and different
prepolarization conditions: (c, 1; d, 1, 1') Up = 300 V, Tp = 370 K; (c, 2; d, 2) Up = 100 V, Tp = 420 K; (c, 3; d, 3, 3') Up = 300 V,
Tp = 300 K; and (c, 4; d, 4, 4') Up = 100 V, Tp = 520 K. Inset shows the low-temperature peak in ε'(T) isolated from curve a, 2. The
right-hand axes are appropriate for curves 1', 2', 3', and 4', and the left-hand ones, to the remaining curves.
a G3-118 external sine-voltage generator, and an S1-
64A oscillograph as a null indicator. The measurements
were conducted in a computer-programmed linear heat-
ing mode at a rate of 0.16 K s–1. We studied the original
(unpolarized) and polarized samples. The polarization
conditions were varied in the following ranges: polariz-
ing voltage Up = 10–103 V (electric field E = 2 × 102–
2 × 104 V cm–1), polarization temperature Tp = 300–
600 K, and the polarization duration of 30 min was
fixed. These conditions provide the thermoelectret state
in BSO : Cr crystals [12].

2. RESULTS AND DISCUSSION

The temperature dependences of the real part of the
complex permittivity ε'(T) and tanδ(T) are essentially
different from those observed for undoped BSO [4, 9,
13]. They exhibit clearly pronounced features charac-
teristic of the Debye-type relaxation processes involv-
P

ing many relaxators throughout the temperature range
studied (Figs. 1a, 1b). In the range T1 = 400–600 K, one
can see a broad, low-intensity peak of ε'(T) with steep
low-temperature and smooth, structured high-tempera-
ture sides, and a group of peaks in tanδ(T). For T > T1,
one observes a region of an intense, close-to-exponen-
tial rise in ε'(T), with kinks in ε(T) superposed on it vis-
ible up to T ~ 700 K and maxima in tanδ(T) detected in
the same range.

The locations of the maxima in ε'(T), which were
isolated by subtracting the highest-temperature expo-
nential falloff (with Ea = 0.9 eV) from the ε'(T) curve,
lie close to those of tanδ(T). As the field frequency
increases, the peaks of tanδ(T) and ε'(T) shift to higher
temperatures, as expected, and ε' and tanδ drop in mag-
nitude. The shift was used to calculate the relaxator
activation barriers

(1)Ea kTmax1Tmax2/ Tmax2 Tmax1–( ){ } ν1/ν2( ),ln=
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000



DIELECTRIC RELAXATION IN Bi12SiO20 : Cr CRYSTALS 691

 
Parameters of relaxators in silico- and germanosillenite crystals

Parameters derived from the dependences ε'(ν, T) and tanδ(ν, T) Parameters derived from the dependences σ~(T) and 
σ~(ω) and equation (3)

No. Ti max, K 1Eai, eV 2Eai, eV ν0, s–1 T, K
σEa, eV, crystal, 

reference n, crystal, reference

1 395 0.69 0.67 1011 ~300 0.8, *BGO, [14]

2 480 0.72 0.72 2 × 1010 ~300 0.7, *BGO : Cr, [14]

3 550 0.77 0.78 1010 ~300 0.6, *BSO, [15]

4 595 0.8 0.81 3.2 × 109 ~300 0.42, **BSO : Cr

5 635 0.81 0.84 109 600–800 0.83, BGO : Cr, [15] 

6 680 0.92 0.94 2.5 × 109 600–800 1.0, BGO, [15] 

Note: i = 1, 2, …, 6 are numbers of peaks in the ε'(ν, T) and tanδ (ν, T) spectra; Ti max are the temperatures of the corresponding maxima

at ν = 500 Hz; 1Eai and 2Eai are the activation energies calculated from the shifts of the peaks in the ε'(ν, T) and tanδ (ν, T) spectra,

respectively; and σEa is the activation energy of ac electric conduction for the σ~(ν, T) dependences. * The exponents n for the σ~(ω)
dependences. ** The value of n derived in this work from relationship (3) at T = 300 K.
where k is the Boltzmann constant, Tmax1 and Tmax2 are
the temperatures of the maxima, and ν1 and ν2 are the
corresponding measuring frequencies (see table). From
the temperature dependences of the relaxation time τ =
τ0exp(E0/kT) for the peaks of the tanδ(T) spectra, we
derived the attempt frequencies of the normal relaxator
vibrations ν0 = 1/τ0 = 1011 – 2.5 × 109 s–1, which are
substantially lower than the limiting lattice-vibration
frequencies (see table).

Subtraction of the high-temperature exponential
contribution from the ε'(T) spectra permitted us also to
isolate the first low-temperature peak (see inset in
Fig. 1c). Its steep low-temperature falloff does not
allow a straightforward analytical description, and the
high-temperature falloff can be fitted by the expression
ε'(T) ~ ε∞ + K/T, where the Curie constant K = 8 × 103 K,
and ε∞ = 13 is the high-frequency permittivity charac-
terizing the elastic forms of polarization of the crystals
under study.

Within the temperature range T ≥ 350 K, where
anomalies in ε'(T) and tanδ(T) occur, we have failed to
obtain a Cole–Cole diagram in the form of simple
monotonic dependences of the imaginary part of com-
plex permittivity on the real part ε''(ε'), which appar-
ently should be due to a considerable difference in the
parameters of a large set of relaxators.

The relaxators in BSO : Cr crystals could be Cr-
containing impurity–vacancy-type quasi-dipoles. They
are believed [10] to be responsible for the internal-fric-
tion peaks in the temperature range T = 400–700 K.
Quasi-dipoles similar to those considered in [10] form
when the Cr3+ ions substitute for M cations at the cen-
ters of the oxygen tetrahedra, which requires (by the
charge-neutrality condition) the presence of an oxygen

vacancy with a captured electron  at one of the sites.

The hopping of the  vacancy in the field of the

VO
–

VO
–
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multi-well potential produced by distorted oxygen tet-
rahedra is responsible for the participation of the Cr3+–

 quasi-dipoles in thermally oriented polarization.
Other scenarios are also conceivable, because Cr exists
in several charge states and can also be localized by
substituting Bi in the distorted octahedra [16].

Taking into account that  hopping takes place in
the strongly polarizable BSO crystal lattice, we believe
that the efficient coupling of such quasi-dipoles medi-
ated by the lattice considerably complicates the pattern
of the ε''(ε') diagrams. However, this aspect of the prob-
lem requires additional studies.

The shape of the ε'(T) and tanδ(T) spectra depends
on the actual prepolarization conditions. A slight
increase in the polarizing voltage and in the polariza-
tion temperature (up to Up ~ 300 V, Tp ~ 400 K) shifts
the first low-temperature peak (the peak isolated above,
with Ea1) toward lower temperatures, with some of the
other peaks becoming suppressed. As the values of Up

and Tp increase still more, the remaining low-tempera-
ture peaks become better resolved, after which the
peaks in the ε'(T) and tanδ(T) spectra are suppressed
throughout the temperature range studied, and ε' and
tanδ decrease in magnitude. The low-temperature shift
of the first peak in ε'(T) and tanδ(T) can be associated
with an increase in the internal field of the residual ther-
moelectret polarization [17]. The behavior of the other
peaks remains unclear; we note only that their temper-
ature location does not depend on the polarization con-
ditions (Figs. 1c, 1d).

Close to room temperature (T < 350 K), the Cole–
Cole diagrams were found to be monotonic. However,
the ε''(ε') dependences constructed on a complex plane
(where ε'' is the imaginary part of the permittivity) do
not resemble the classical Cole–Cole semicircle
(Fig. 2). In their major part, they are close to linear or

VO
–

VO
–

0
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can be approximated with a lemniscate-like arc
described by the expression

(2)

where ω is the circular frequency, and the parameter γ
~ 0.3 (Fig. 2).

Lemniscates of type (2) are conventionally used to
describe strongly distorted Debye dispersion spectra of
the complex permittivity ε* [14]. The experimental
data obeying equation (2) are scanty, and they relate
primarily to polymers, with the γ quantity interpreted as
a measure of interaction between dipole structural units
[17].

The shift or distortion of the Debye semicircles are
characterized in various models (Cole–Cole, David-
son–Cole, Fuoss–Kirkwood, Fröhlich, Gavriliak–Nag-
ami) by a parameter similar to γ, which either relates to
the distribution of the relaxation times τ or represents
the measure of relaxator coupling. Note, however, that
the above models are not based on a specific micro-
scopic polarization mechanism, and, therefore, the
physical nature of the τ distribution, as well as the
mechanism of relaxator interaction, remain unclear.

We believe it appropriate now to describe the close-
to-linear ε''(ε') relationship obtained here in terms of
the Jonscher law, which is based on an energy approach
and is applicable to all dielectrics [18]. The Jonscher
model relates the polarization to the hopping of ions or
electrons over long or short chains. The discrete dis-
placement of charges is accompanied by the screening
of the polarization thus created through lattice relax-
ation. One can write the following relation

(3)

ε*( ) 1– 1 iωτ+( )γ,=

χ'' ω( )
χ' ω( )
--------------

W1

W2
-------

nπ
2

------ 
 cot const,= = =

2.0
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Fig. 2. The Cole–Cole diagram for BSO : Cr crystals: (1)
the experimental data and the fitting with (2) lemniscate and
(3) linear relation.

ε'
P

where χ'(ω) and χ''(ω) are the real and imaginary parts
of the permittivity, W1 is the energy lost per period, W2
is the energy gained per period, and n is a constant
determined by the slope of the ε''(ε') plot with respect
to the ε'' axis (Fig. 2). By this model, n is the exponent
characterizing the frequency dependence of the ac con-
ductivity presented in the form

(4)

where ω is the circular frequency, provided 0 < n < 1.
Such relations are associated with the hopping mecha-
nism of conduction involving the hopping of electrons
(holes) over localized energy states near the Fermi
level. The value of n depends on the spatial and energy
distribution of these states and the localization length of
their wave functions and differs for different multiplic-
ities, i.e. the number of links in a hopping chain [19,
20].

The literature data argue for the hopping mechanism
of electric conductivity in BGO [14, 21], BSO [15], and
Cr-doped BGO [14] crystals, and, therefore, it appeared
of interest to compare some relevant quantitative char-
acteristics (based on [22], we assume the ionic trans-
port in the crystals under study to be insignificant).

We note, first of all, that the values of n, which is the
exponent in the frequency dependence of electric con-
ductivity (4) and enters into expression (3), are fairly
close at temperatures T ≤ T1. The trend of the value of
n decreasing as one crosses over from BGO to BSO
crystals, and from undoped BGO or BSO to Cr-doped
crystals, is also retained (see table). A decrease in n is
associated with an increase in the hopping multiplicity
(at n = 8, hops between pairs of localized states occur
[19]). This provides a support for the validity of the
model chosen by us and an indication that the hops
have a higher than pair multiplicity.

Interestingly, the imaginary part of electric conduc-
tivity of BGO : Cr crystals was observed to be larger
near room temperature than the real part by 1.5–2
orders of magnitude [14]. This is believed [19, 20] to
indicate a weak wave-function overlap and strong elec-
tron localization. This situation provides favorable con-
ditions for the realization of the hopping mechanism of
electric conduction and can account for the ε''(ε') dia-
grams of the type under study here [18].

A certain deviation of the ε''(ε') diagram obtained
here from a linear relation (Fig. 2) suggests that addi-
tional polarization mechanisms, which also affect the
formation of the thermoelectret state in BMO crystals,
are operative here.

In the range T > T1, where σ~ of BGO : Cr crystals
grows exponentially with temperature and depends
only weakly on frequency, we observe a correlation
between the thermal activation energy σEa of the ac
electric conductivity σ~ and the activation barriers Ea5
and Ea6 for the relaxators observed by us in the given
range (see table). On the strength of these observations,

σ~ ω( ) ωn,∼
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as well as bearing in mind that Cr ions create in BSO,
as in BGO, acceptor levels increasing the compensation
of the dc electric conductivity (by about 20%), one can
assume, following [14], that the high-temperature
range is dominated by carrier hops over long chains
connecting localized states near the valence band. This
situation manifests itself in a strong increase in the per-
mittivity with an increase in temperature.
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Abstract—The contribution of cluster mobility to the low-temperature diffusion coefficient in a system of light
interstitial impurities has been studied by computer simulation. It is shown that the magnitude of this contribu-
tion is dominated by the parameters of the impurity interaction potential, and the nonmonotonic character of its
temperature behavior is related to a variation of cluster shape or freezing-out of one of several mobility mech-
anisms. © 2000 MAIK “Nauka/Interperiodica”.
It was shown by us earlier [1, 2], that the alternating
pattern of long-range interaction (elastic and through
Friedel electron-density oscillations) generates a large
number of bound states for any pair of point defects in
a metal (as well as for a pair of neutral defects in an
insulator), irrespective of the actual form of the short-
range part of the pairwise interaction. Therefore, a
decrease of temperature inevitably gives rise to cluster-
ing of mobile defects.

Clustering in the low-temperature domain should
initiate separation into phases with a high and a low
defect concentration. However, at low defect concen-
trations, large-scale phase separation is replaced with
decreasing temperature by a transition of the system
into one of the metastable states, which are character-
ized by a large number of small clusters. These states
turn out to be long lived, because clustering dramati-
cally reduces the impurity mobility. Metastable states
differ from one another in the mutual location, number,
and shape of the clusters.

This situation is realized in the hydrides of group-III
metals, MHx, with relative hydrogen concentrations x &
0.01–0.1 (see review [2] and references therein).

Clustering of interstitial impurities results in a sharp
decrease of their diffusion coefficient, which precludes
observation of the quantum diffusion of hydrogen iso-
topes at low temperatures [3]. For temperatures T < Tcl
(Tcl is the clustering temperature), two major diffusion
mechanisms are operative: (i) via single impurities,
which separate from the clusters for a certain time
(“evaporation”), to be subsequently trapped again by
the latter (“condensation”) (the fraction of such impu-
rities decreases exponentially with temperature), and
(ii) through the mobility of the clusters themselves. The
mobility may be determined by either impurity diffu-
sion over the cluster periphery [4, 5], or the diffusion of
1063-7834/00/4204- $20.00 © 20694
excitations (vacancies [4, 5] and dislocations [6, 7])
through the cluster itself.

The relative contribution of the processes of the sec-
ond type should, in principle, grow with decreasing
temperature, because the activation energy of these pro-
cesses is, as a rule, lower than that for the evaporation
mechanisms.

This work deals with a study of the temperature
dependence of the relative contribution of cluster
mobility to the coefficient of low-temperature (T < Tcl)
diffusion of light interstitial impurities in the bulk of a
crystal, i.e., with an investigation of the diffusion mech-
anism.

A number of publications on adatom diffusion over
the crystal surface have appeared recently [4–9]. The
interest in surface diffusion is associated with the pos-
sibility of a direct observation of the cluster behavior.
No such problems have thus far been studied for bulk
diffusion. Besides, the diffusion was studied at T ! Tcl
temperatures, whereas we have focused our attention
on a transition region T & Tcl.

The first part of the work deals with a description of
the model, and the second one, with the results
obtained.

1. DESCRIPTION OF THE MODEL

We assume that the impurities can occupy the sites
of a simple cubic interstice lattice corresponding to tet-
rahedral pores in a fcc crystal. The position of an impu-
rity is specified by three integer coordinates (expressed
in lattice constants).

The short-range part of the model interaction poten-
tial coupling the impurities characterizes repulsion and
precludes occupation by two impurities of the same lat-
tice site. The long-range part of the pairwise interaction
energy has the form [3]
000 MAIK “Nauka/Interperiodica”
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(1)Wij
b 3/5 X/ρ( )4– Y /ρ( )4– Z/ρ( )4–[ ] 1 b–( ) γρ( )cos+

ρ3
------------------------------------------------------------------------------------------------------------------------------,=
where the first term corresponds to elastic interaction in
a cubic crystal with a weak anisotropy [10], and the
second, to interaction through the Friedel electron-den-
sity oscillations. The constant b < 1 specifies the rela-
tive magnitude of these contributions. The vector r =
(X, Y, Z) with integer coordinates connects two interact-
ing impurities (the axes of the coordinate frame coin-
cide with the crystallographic axes of the crystal). The
constant γ = 2kFd, where kF is the Fermi wave vector of
the conduction electrons, and d is the interstice lattice
constant.

With the potential chosen in this way, the tempera-
ture is reduced to the characteristic interaction energy
of impurities occupying neighboring lattice sites [3].

The simulation was performed for a cube with 30 ×
30 × 30 interstices, which is continued periodically to
eliminate boundary effects. The number of the impuri-
ties was set equal to 30 (x = 1.1 × 10–3 per interstice and
2.2 × 10–3 per host atom).

The dynamics of the impurity system was studied
by the Metropolis Monte Carlo algorithm [11]. The
probability wij for a randomly chosen impurity to jump
from interstice i to an as randomly chosen neighboring
interstice j was determined by the energy difference
ξij = ξj – ξi, where ξi is the energy of the impurity at
interstice i, which is equal to the sum of the pairwise
interaction energies

(2)wij

1, ξ ij 0≤
ξ ij/T–( ), ξ ij 0.>exp
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Fig. 1. Temperature dependences of the diffusion coefficient
and of the contribution to the latter due to cluster “creep”
plotted for b = 0.5 and γ = 0.75.
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It was shown [3] that the choice of wij in this manner
reproduces adequately the behavior of quantum inter-
stitial impurities in a metal matrix; however, the simu-
lation gives not the diffusion coefficient D but the quan-
tity D/D0, where D0 is the diffusion coefficient of a sys-
tem of noninteracting impurities.

To find the quantity D/D0, one made use of the Ein-
stein relation D = Tµ, where µ is the impurity mobility.
One generated a weak potential gradient along one of
the crystallographic axes. The impurity distribution
was found by simulation annealing from the high-tem-
perature region [3]. After this, one determined the
impurity flux generated by a constant force. The ratio of
the flux to the force yielded the value of µ.

If both the initial and the final impurity positions
were found to be separated by a distance shorter than
the critical distance a from any other impurity, the jump
process was classed among processes of the second
type, and, in the opposite case, among those of the first
type.

2. DISCUSSION OF RESULTS

The temperature dependences of D/D0, as well as of

the quantity , the relative cluster-mobility contribu-
tion to the diffusion coefficient, are presented graphi-
cally in Figs. 1 and 2.

The results of the simulation reveal a fast drop of
D/D0 for T < Tcl for all the values of b and γ character-
izing the impurity pairwise interaction potential stud-
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Fig. 2. Same as in Fig. 1 or b = 0.5 and γ = 1.2.
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ied, whereas the behavior of  was found to depend
substantially on the parameters b and γ.

For b = 0.8, i.e., for the case where elastic interac-
tion dominates in the long-range pairwise potential,
annealing generates a sudden formation at T = Tcl in the
(001) or equivalent plane of a plane cluster, in which
impurities occupy neighboring lattice sites. For two
values of γ studied, 0.75 and 1.2, particle transport
occurred only through evaporation and condensation
down to the temperature T = 0.4 Tcl. At lower tempera-
tures, the impurity mobility is so low that accumulation
of reasonable statistics with the PCs employed for the
study would require too long a time.

The negligible cluster mobility at b = 0.8 is associ-
ated with the anisotropy of the elastic interaction. An
impurity migrating over the periphery of a cluster has
to overcome a fairly high potential barrier. The proba-
bility of this process is lower than that of the “evapora-
tion.” At the same time, the formation of a vacancy or
dislocation in the closely packed cluster structure is
also unlikely.

However, if b = 0.5, then for γ = 0.75 a plane cluster
formed gradually in the (001) plane as the temperature
dropped below Tcl = 0.009, with the impurities making
up a square lattice with a spacing of 2 (in units of d).

The (T) and D(T)/D0(T) dependences are plotted in

Fig. 1. The nonmonotonic behavior of the (T) relation
is accounted for by cluster rearrangement. While for
T < 0.0075, it is planar, in the 0.0075 < T < Tcl interval,
the cluster consists of two parallel plane fragments
spaced by 3 (in units of d).

Now if b = 0.5 and γ = 1.2, then for T < Tcl one also
observes a plane cluster to form in the (001) plane, but
the period of the corresponding square impurity lattice
is unity. In contrast to the γ = 0.75 case, the formation
(breakup) of such a cluster occurs not gradually but
practically in a jump at Tcl = 0.04. This accounts for the

jump in the (T) plot (Fig. 2). For T > Tcl, we have

(T) ≠ 0, because randomly spaced impurities form a
certain number of small clusters consisting of two to
three impurities at high temperatures as well.

The peak in (T) at T = 0.0335 is not connected
with a noticeable cluster rearrangement. The nonmono-

tonic behavior of the (T) relation may be caused by a
freezing-out of one of the diffusion mechanisms in the
clusters. For instance, the contribution of particle diffu-
sion in a plane parallel to the cluster plane (in the case
of adatoms on a crystal surface, this mechanism is

Z̃

Z̃

Z̃

Z̃

Z̃

Z̃

Z̃

P

called terrace diffusion [4, 5]) may become much less
than that of in-plane diffusion along the cluster perim-
eter.

Thus, the shape and mobility of the clusters forming
in the clustering of mobile impurities depend substan-
tially on the parameters of the impurity pairwise inter-
action potential.

In a number of cases, cluster mobility plays an
essential part already at T = Tcl, where a sizable fraction
of impurities combine to form clusters. The relative

contribution (T) of cluster “creep” to the diffusion
process becomes dominant at temperatures T = (0.6–
0.75)Tcl.

The nonmonotonic character of the (T) depen-
dence can be due either to cluster rearrangement or to
freezing-out of one of several impurity diffusion mech-
anisms responsible for the cluster mobility.
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Abstract—The results of precision measurements of creep in Co-based metallic glass are presented. It is shown
that, in spite of generally accepted concepts, plastic flow at low stresses under intense structural relaxation
conditions is of a non-Newtonian type. Consequences of this fact are considered. © 2000 MAIK “Nauka/Inter-
periodica”.
Rheological properties of metallic glasses (MGs)
are interesting from purely scientific, as well as
applied, points of view. Attempts to find out whether
the plastic flow is of a linear Newtonian or a nonlinear
type were made soon after the discovery of metallic
glasses [1, 2]. In the former case, the rate  of plastic
shear strain is directly proportional to the applied shear
stress σs, while in the latter case the dependence of the
strain rate on stress is nonlinear.

The σs vs.  dependence can be described in terms
of shear viscosity, which is defined as

(1)

where σ and  are the tensile stress and the rate of lon-
gitudinal strain, respectively. On the other hand, the
same dependence can be characterized by the so-called
strain-rate sensitivity defined as

(2)

If the viscosity defined as (1) is independent of
stress, plastic flow is Newtonian and m = 1. Otherwise
(η = f(σs)), the σs vs.  dependence is nonlinear, and
m > 1.

First experiments [1–4] made with MGs at temper-
atures T > 300 K and low shear stresses proved that
plastic deformation is Newtonian, while measurements
at relatively high stresses (exceeding 200–400 MPa
depending on the temperature, thermal previous his-
tory, and chemical composition of an MG) indicated a
nonlinear type of the flow with 1 < m < 12 [5–9].

At the present time, it is generally accepted that
such behavior is typical of MGs. However, our recent
precision measurements of creep [10] proved that the

ε̇s

ε̇s

η σs/ε̇s σ/3ε̇,= =

ε̇

m
∂ ε̇sln
∂ σsln
-------------- 1
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η
----- ∂η

∂σs

--------.–= =

ε̇s
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plastic flow of nickel-based glass is non-Newtonian at
low tensile stresses, and accordingly viscosity (1) is a
function of stress. It would be interesting to find the
extent to which the nonlinearity of plastic flow is typi-
cal of metallic glasses. In order to solve this problem,
we studied a magnetically soft MG with a standard
chemical composition.

1. EXPERIMENTAL TECHNIQUE

We investigated industrial MG Co70Fe5Si15B10 (at. %)
obtained by spinning in the form of a strip, having a
thickness of 48 ± 5 µm and width d = 21 mm. The non-
crystallinity of the structure was controlled by x-ray
analysis. According to the results of differential scan-
ning calorimetry (on a Rigaku-Denki calorimeter DSC-
8230), the temperature corresponding to the onset of
crystallization was 762 K at a heating rate of 3.3 K/min.
The creep was measured in the argon flow under a ten-
sile stress on a thermomechanical analyzer Setaram
TMA92 with an absolute resolution of approximately
10 nm. The samples had the shape of a double blade
and were prepared by the mechanical grinding of a part
of the strip in a special mount. The sample length was
l0 = 15 mm and the working width was 1.2 mm. The
temperature of the experiment was chosen to be 675 K,
which was dictated, on the one hand, by the tendency to
carry out measurements at the maximum possible tem-
perature for increasing the creep rate (and accordingly
for reducing the errors in calculating the strain rate at
low stresses) and, on the other hand, by the tendency to
avoid crystallization as a result of prolonged isothermal
holding. The sample was heated to the experimental
temperature (which was subsequently maintained to
within ±0.2 K) at a rate of 10 K/min without overheat-
ing, annealed at this temperature during the time τ =
288 ± 3 s, and loaded by a tensile stress (determined
000 MAIK “Nauka/Interperiodica”
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approximately to within 15%), after which the sample
elongation ∆l was measured automatically with the
help of a computer, and the strain ε = ∆l/l0 was calcu-
lated. The interval between measurements was 0.8 s
immediately after loading and then increased in propor-
tion to the logarithm of time. X-ray tests of the samples
under investigation did not reveal any traces of crystal-
lization.

2. EXPERIMENTAL RESULTS

Preliminary experiments demonstrated the lack of
admissible reproducibility of the results for samples
prepared from different segments corresponding to an
arbitrary coordinate X along the strip width. Creep
measurements for samples prepared from seven seg-
ments with different coordinates 0 ≤ X ≤ d proved that
the reason is the inhomogeneity in the strip’s proper-
ties. As a result, the rate of viscosity growth at the
experimental temperature, which characterizes the rate
of structural relaxation and, accordingly, the structural

0

6

5

4

3

2

1

5 10 15 20
Time, 103 s

11 MPa
21 MPa
30 MPa
40 MPa
55 MPa
72 MPa

Co70Fe5Si15B10
T = 675 K, τ = 288 s

T
en

si
le

 s
tr

ai
n,

 1
0–

3

Fig. 1. Creep kinetics of the Co70Fe5Si15B10 metallic glass
at T = 675 K under different stresses.

To the determination of the strain rate sensitivity from the
data presented in Fig. 2

t, s m R S

500 1.11 0.995 0.04

100 1.12 0.995 0.04

2500 1.19 0.995 0.04

5000 1.17 0.994 0.04

10 000 1.21 0.997 0.03
P

state of the strip, can vary (other conditions being
equal) by 40–50%, depending on X. Taking this into
account, all subsequent experiments were carried out
using the samples corresponding to a constant X coor-
dinate along the strip width.

Figure 1 shows the creep curves obtained for vari-
ous stresses 11 MPa ≤ σ ≤ 72 MPa. As usual, the creep
rate increases significantly with the applied load.

The standard way to find out whether a flow is New-
tonian is to calculate the strain-rate sensitivity accord-
ing to equation (2). For this purpose, the ε(t) depen-
dence was differentiated numerically through calculat-
ing the average slope between the ith point (εi(ti)),
the next point (εi + 1(ti + 1)), and the previous point
(εi − 1(ti – 1)). Using the cross sections of the obtained
strain rate vs. time graphs, we calculated the stress
dependences of the strain rate for various instants t.
Figure 2 shows such dependences for t = 500, 1000,
2500, 5000, and 10000 s in logarithmic coordinates. It
can be seen that a close linear approximation is possible
in all cases. This approximation was carried out by the
least-squares method, and then we calculated the
strain-rate sensitivity m, the pair correlation coefficient
R characterizing the extent of deviation of the lnσ vs.
ln  dependence from linearity, and the standard devia-
tion S. The values of these are given in the table, which
shows that the ln  vs. lnσ dependences are linear with
the pair correlation coefficient R ≈ 0.995 (R = 1 for a
straight line) and the standard deviation S ≈ 0.04. The
mean value of m = 1.16, which indicates the non-New-
tonian nature of the plastic flow. However, this conclu-
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Fig. 2. Dependence of strain rate on tensile stress for indi-
cated instants of time.
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sion requires additional substantiation in view of the
smallness of the deviation.

On the other hand, it is clear that, in the presence of
even an insignificant nonlinearity, it is more convenient
to analyze the kinetics of viscosity defined by equation
(1) than the ln (lnσ) dependences. Indeed, in this case,
the viscosity is a function of stress, and the difference
in the viscosities of samples loaded by different stresses
will build up with time, which makes it possible to
identify a non-Newtonian flow, even with an insignifi-
cant nonlinearity, more reliably.

In order to accomplish this approach, we calculated
the kinetics of viscosity growth under various stresses.
It was found that, in accordance with numerous avail-
able data (see, for example, [11, 12]), viscosity
increases linearly with time except in initial measure-
ments during a few hundred seconds, when the viscos-
ity growth rate is higher.1 The dependence of the vis-
cosity growth rate dη/dt on the stress is depicted in
Fig. 3 (the initial nonlinear segment of the η(t) curve
was disregarded in calculations). The same figure
shows the results of calculation of the pair correlation
coefficient R. The main conclusion that can be drawn
from Fig. 3 is obvious: the kinetics of viscosity growth
is determined by stress. This means that plastic defor-
mation is non-Newtonian in the entire range of stresses.
The decrease in the standard deviation in determining
dη/dt and the increase in R with the stress reflect the
decrease in the error of calculation of strain rate due to
the general increase in the creep strain.

3. DISCUSSION OF RESULTS

The creep of MGs in the initial state at temperatures
T ≥ 400 K can be interpreted as a structural relaxation
oriented by the applied stress [14, 16, 17]. We can
assume that the observed nonlinearity is a typical fea-
ture of structural relaxation in MGs. Indeed, as men-
tioned above, the standard method of analysis of the
stress dependence of plastic strain rate is based on plot-
ting the ln (lnσ) curve. The example considered above
shows that such an analysis may lead to a unconvincing
result in the case of insignificant nonlinearity. The iden-
tification of nonlinearity requires an analysis of the data
of the kinetics of viscosity obtained for different
stresses.

It should also be noted that, apart from the small
nonlinearity observed in [10], some indications of non-
linearity were also obtained by Deng et al. [18]. An
analysis of creep in the Pd40Ni40P20 metallic glass
proved that the kinetics of viscosity at temperatures
453 K ≤ T ≤ 568 K under very low (1.6–6.6 MPa) and
moderate (60–100 MPa) stresses exhibits a clearly pro-
nounced dependence on the load (see Fig. 7 in [18]).
Deng et al. [18] calculated the strain rate sensitivity to

1 Similar anomalies were also observed by us earlier for some other
MGs [13–15].

ε̇

ε̇
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be 1.1 ≤ m ≤ 1.5, depending on the experimental tem-
perature. This fact, however, was not discussed in [18]
at all.

According to the concepts developed in [14, 16, 17],
the plastic shear strain rate for long periods of time
(t @ τ, where τ is the time of preliminary annealing at
the experimental temperature T) can be presented in the
form

(3)

where k is the Boltzmann constant, N0 is the volume
density of active relaxation centers per unit interval of
activation energy, Ω is the volume involved in an ele-
mentary act of structural relaxation, and C is a parame-
ter characterizing the orienting effect of external stress
on elementary acts of structural relaxation. If none of
the quantities N0, Ω , and C is a function of stress, equa-
tion (3) describes a Newtonian flow with m = 1. An
increase in at least one of these quantities with stress
causes a nonlinear deformation with the strain-rate sen-
sitivity

(4)

This formula leads to the following expression for the
product N0ΩC in the case of a nonlinear deformation:

(5)

where lnA is the integration constant. The value m ≈
1.16 we determined here indicates that the product
N0ΩC increases, in accordance with formula (5), upon
an increase in stress from σ1 = 11 MPa to σ2 = 72 MPa
by a factor of (σ2/σ1)m – 1 ≈ 1.35.

ε̇s σskT N0ΩC/t,=

m 1 ∂ N0ΩC/∂ σs 1.>lnln+=

N0ΩC Aσs
m 1– ,=

dη/dt
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Fig. 3. Shear viscosity growth rate and pair correlation coef-
ficients as functions of stress. The solid curve corresponds
to the power law of creep (6) for m = 1.16.
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Using formulas (3)–(5), we obtain expressions for
the strain rate

(6)

and the viscosity growth rate at a constant temperature:

(7)

It follows from (7) that, in accord with the experiment,
viscosity increases linearly with time, while its growth
rate decreases with increasing stress. The functional
dependence of the form σ1 – m for m = 1.16 is shown by
the solid curve in Fig. 3, indicating that relation (7) cor-
rectly describes (to within the experimental error) the
dependence of  on stress. It should also be noted that
formula (6) is just the so-called power law often used
for interpreting experiments on plastic flow of MGs
(see, for example, [19]). In the case of a Newtonian
flow, formulas (3) and (6) are equivalent and A = N0Ω .

Nonlinearity of a plastic flow must directly affect
the low-frequency (f < 0.1–1 Hz) internal friction asso-
ciated with structural relaxation of the MG. Using (3),
we can prove that in this case, internal friction is of the
viscoplastic type and can be described using the simple
Maxwell two-element rheological model [20–22]

(8)

where G is the unrelaxed shear modulus, ω is the cyclic
frequency, and the time-dependent viscosity is deter-
mined from the relation

(9)

Equations (5), (8), and (9) show that, in the case of a
non-Newtonian flow, internal friction must be indepen-
dent of the amplitude of the applied stress (strain). Oth-
erwise, the nonlinearity of plastic deformation, emerg-
ing when N0ΩC = f (σs), causes an amplitude-depen-
dent internal friction.

Thus, we can predict that the low-frequency internal
friction associated with structural relaxation of an MG
under nonlinear plastic-flow conditions is a function of
the stress amplitude. It should be emphasized that this
question has not been investigated experimentally as yet.

The main conclusions of the present communication
can be formulated as follows.

(1) The plastic flow of the metallic glass
Co70Fe5Si15B10 under low stresses is non-Newtonian
with the strain-rate sensitivity m ≈ 1.16. This fact can be
interpreted as the result of the stress dependence of the
structural relaxation parameters N0, Ω , and/or C deter-
mining the kinetics of plastic flow in accordance with
equation (3).

(2) Structural relaxation of non-Newtonian metallic
glasses at low frequencies of loading must lead to an
amplitude-dependent viscoplastic internal friction.

ε̇s
kTA

t
----------σs

m=

η̇ 1
kTA
----------σs

1 m– .=

η̇

Q 1– G/ηω,=

η 1– kT N0ΩC/t.=
P
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Abstract—The results of investigation of the residual photomechanical effect (PME) in a monocrystalline
n-Si sample at various temperatures by the method of microindentation following exposure to light are con-
sidered. It is shown that a decrease in the residual PME is an exponential function of time and temperature.
© 2000 MAIK “Nauka/Interperiodica”.
In our previous publication [1], we reported that the
depth of imprints on Si samples in experiments on pho-
tomechanical effect (PME) [2] (effect of light on
microhardness (MH)) was a function of the time during
which the sample was loaded after its exposure to light.
In particular, the longer the action of the indentor was,
the larger the imprint depth; after a certain time, the
indentation was the same as during MH measurements
in the dark. In order to explain this effect, we proposed
a mechanism that can be briefly described as follows
[1]. After the exposure of the crystal to light, nonequi-
librium charge carriers in it experience rapid recombi-
nation, but some of these carriers in the surface layer
remain at corresponding minima separated in space and
formed due to nonuniform bending of energy bands in
this layer of Si (see Fig. 1b in [1]). The recombination
of such carriers can take place after the surmounting of
the corresponding barrier, i.e., in an activation manner.
For this reason, the surface layer of the crystal sub-
jected to illumination preserves softening for a certain
time (residual PME). It was proved earlier [1, 3, 4], that
crystal softening is due to nonequilibrium electrons and
holes referred to as anticoupling quasiparticles.

The above considerations concerning the physical
origin of the residual PME lead to the conclusion that
an increase in the sample temperature must lead to an
exponential decrease in the magnitude of residual PME
as well as its lifetime due to an increase in the rate of
expulsion of electrons and holes from the correspond-
ing minima, and, hence, an increase in the rate of their
recombination. For this reason, it was interesting to
investigate this effect at various temperatures.

In this communication, we consider the results of
investigation of the residual PME at various tempera-
tures by the method of microindentation of the sample
after its illumination.

The experiments were made on the (100) face of a
dislocation-free Si single crystal exhibiting n-type con-
ductivity and having a resistivity of 200 Ωcm. The sur-
faces of the experimental samples were ground and pol-
1063-7834/00/4204- $20.00 © 20701
ished mechanically and then subjected to chemical
cleaning followed by etching in a H2SO4 + H2O2 mix-
ture (in the 4 : 1 ratio) at a temperature of 40°C for 30 s.
The method of MH measurements in the dark and
under illumination is described in [1]. The load was
chosen equal to 25 g, and the main diagonal of the
Knoop pyramid used in the experiment always coin-
cided with a 〈100〉 direction in the (100) plane under
investigation for anisotropy being taken into account [5].

The experiments were made as follows. First, the
surface of the sample under investigation was illumi-
nated for 10 s (which ensured complete saturation of
the value of residual microhardness associated with
illumination). Then, imprints were impressed with an
indentor in certain time intervals. The experiments
were repeated at various temperatures of the sample.

Figure 1 shows that a decrease in the residual PME
is an exponential function of time (Fig. 1a) and temper-
ature (Fig. 1b). For convenience of graphic representa-
tion, the change in the residual PME is measured in rel-
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Fig. 1. Residual PME as a function of (a) time at 298 (curve
1), 325 (curve 2), and 348 K (curve 3), and (b) temperature.
Indentation started immediately after the switching off the
illumination. 
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ative units ∆H/H (where ∆H = H – Hi is the value of
MH measured in the dark at a given temperature and Hi

is the residual MH under illumination, corresponding
to a certain ith instant of time after illumination at the
same temperature). It was found that the maximum
time during which the residual PME could be deter-
mined in our experiments was also an exponential func-
tion of temperature.

In order to estimate the average height of the barrier
that should be surmounted for the charge carrier recom-
bination to occur in the surface layer, we can use the
well-known expression [6] for lifetime τ =
τ0exp(∆/kT), where ∆ is the barrier height, τ0 is the life-
time in the bulk, k is Boltzmann’s constant, and T is the
temperature. Proceeding from the established correla-
tion between the magnitude of PME and the corre-
sponding concentration of anticoupling quasiparticles
[1], it is natural to assume that the longer τ, the larger
the magnitude of residual PME, i.e., ∆H/H ~ τ. In this
case, ∆H/H ~ exp(∆/kT), and we can write a simple
relation ∆H /H = α exp(∆ /kT), where α is a coefficient,
which can be regarded as constant in the time and tem-
perature intervals under investigation. In order to deter-
mine ∆, it is convenient to write the latter equation in
the form ln(∆H /H) = lnα + (∆/k)(1/T). The value of ∆
estimated from a graph plotted according to this expres-
sion proved to be 0.3 eV.
PH
It should be noted that the value of ∆ we estimated
here is of illustrative nature since it corresponds only to
our samples with an appropriate treatment of their sur-
faces and is not a physical parameter of the material
under investigation since the microhardness itself is
determined by experimental conditions to a consider-
able extent.
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Abstract—Plastic-strain regions near the tips of cracks are investigated. Possible mechanisms of self-healing
of cracks are considered. It is shown that heating and exposure to visible light affect the evolution of microplas-
tic shear strains at the crack tip. It is found that the dislocation density at the tips of cracks depends exponen-
tially on temperature and time of exposure to light. © 2000 MAIK “Nauka/Interperiodica”.
In an asymmetric cleaving of a crystal with cleav-
age, the probability that a narrower part of the sample
splits off due to the transition of the crack from the
(100) plane to the orthogonal plane (001) is quite high
[1]. In this case, the crack remaining in the crystal after
splitting off exhibits self-healing [2].

This communication is devoted to an analysis of the
morphology of plastic-strain regions formed near the
tip of an arrested crack and to the establishment of
the mechanism of spontaneous healing of cracks and
the effect of heating and visible-range radiation on this
process.

The experiments were made on alkali-halide crys-
tals (AHCs) of LiF, NaCl, KCl, and on CaCO3. The
impurity concentration in the crystals did not exceed
~10–3. The samples having a size of 15 × 30 × 2 mm
were cleaved along the (100) plane at a certain distance
S1 from the symmetry axis of the crystal (see inset to
Fig. 2). The asymmetry of the cleavage was character-
ized by the ratio of S1 to the sample half-width S2/2.
The cleavage was made by a calibrated blow with an
energy of ~17 mJ. Then, the crystal was additionally
split into two parts along the (010) plane to obtain the
reference and the experimental sample.

Some samples were heated in a furnace from 300 to
365 K. An other part of samples was subjected to radi-
ation emitted by a 100-W tungsten incandescent lamp
with emission spectrum peak corresponding to the
wavelength λ = 1 µm (E = 1.24 eV), which simulta-
neously heated the samples to ~355 K. The exposure
time varied from 2 to 1400 hours. The illuminance of
the sample surface amounted to ~15 klx.

It was established experimentally that, after the
arrest of the initial crack, the lateral cleavage in an AHC
occurs predominantly along the (001) plane (~73%)
and, with a lower probability (~22%), along the (101)
plane. The lateral cleavage in calcite takes place only
along the (001) plane. A rectangular cleft is generated,
1063-7834/00/4204- $20.00 © 20703
as a rule, at a distance of 2–5 mm from the tip of the ini-
tial crack. The cleavage at an angle of 45° evolves,
however, directly from the tip of the arrested crack. The
crack remaining in the crystal after cleavage and
unloading of the sample is self-healed in most cases.

The length of the healed segment of a crack
decreases with increasing asymmetry of the cleavage.
Unhealed cracks were also observed. At the tips of such
cracks, microplasticity is significant. Plastic opening

δ = (nb )/2 exceeded 40 nm for these cracks (b is the
Burgers vector for [100]{101} dislocations and n is the
number of dislocations in the slip band). No microplas-
ticity was detected at the tips of cracks in CaCO3. In
individual cases, no dislocation “rosettes” were
observed at the tip of cracks in AHCs as well as in
CaCO3.

With increasing asymmetry of the cleavage, AHCs
exhibit a tendency to lowering the symmetry of etch
patterns relative to the plane of cracks. The number of
rays decreases, and their length changes together with
the relative size of the rays on different sides of the
crack plane. It was also noted that the dislocation den-
sity near the tip of a crack changes from 1010 m–2 for the
asymmetry ratio 0.2 to 3 × 1010 m–2 for the asymmetry
ratio 0.8. The dislocation density at the rays of
“rosettes” decreases exponentially with increasing dis-
tance from the tip of the crack. In the immediate vicin-
ity of the crack tip, there is a bounded region free of dis-
locations.

Annealing or prolonged holding at room tempera-
ture does not affect the length of the healed segment,
but significantly changes the dislocation pattern near
the crack tip.

The same result is also obtained after simultaneous
annealing and exposure to visible light (Fig. 1), but the
dislocation structure changes more intensely in this
case (Fig. 2).
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Analyzing the deformation of fragments of the crys-
tal being destroyed in the beam approximation, we can
state that the narrower part of the crystal is subjected to
stronger deformation and, hence, is preferential for
cleavage. Cleavage cracks can originate at various
defects of the type of cleavage steps or sub-boundaries.
Intense stress relaxation at the tips of cracks can occur
due to slip along the (101) planes. The cleavage at 45°

(‡)

(b)

25 µm

25 µm

(101)
(100)

(110)

(100)

(101)

(110)

Fig. 1. Dislocation structure near the tips of cleavage cracks
in LiF crystals: (a) a reference crystal at room temperature
and (b) a crystal exposed to radiation in the optical range,
E = 1.24 eV, T = 355 K, 15 klx, 20 hours.
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Fig. 2. Relative variation of the number of dislocations near
the crack tip (∆N/N) as a function of time of action (t): T =
263 K (curve 1), 288 K (curve 2), 325 K (curve 3), and
365 K (curve 4); curve 5 corresponds to simultaneous illu-
mination and heating. The inset schematically shows the
cleavage of crystals.
P

becomes possible in this case due to embrittlement of
the material in the slip band.

The nonuniform distribution of stresses in the vicin-
ity of the crack tip affects the evolution of microplastic
shear strains in this region. An increase in the cleavage
asymmetry and, hence, in the nonuniformity of the
stress field is accompanied by a change in the etch pat-
tern at the crack tip from symmetric to asymmetric pat-
terns containing predominantly one of slip systems.

The mechanism of crack healing can be visualized
as follows.

As a result of lateral cleavage, the sample is
unloaded and the initial crack becomes arrested. As
long as the sample loading differs from zero, a notice-
able emission of dislocations takes place at the crack tip
[3]. Depending on the number of dislocations and the
slip geometry, the plastic opening δ of the crack can
assume different values. Some of the possible shapes of
the tips of such cracks are shown in Fig. 3.

At a certain instant, emission of dislocations ceases,
and a further decrease in loading initiates the first
“rapid” stage of healing, i.e., plastic closing of the
crack. It can develop both as a result of reversible dis-
charge of emitted dislocations into the crack, and due to
the motion of new dislocations of the opposite polarity
along neighboring parallel slip planes or the planes per-
pendicular to them (which is observed much less fre-
quently) if the motion of dislocations in the primary
slip band is hampered. The former is due to the action
of repulsive forces among dislocations lying in the
same slip plane and image forces, while the latter is due
to the action of elastic stresses in the sample (Fig. 3). If

1

2

1

2

(a) (b)

Fig. 3. Schematic diagrams illustrating the shape of tips of
self-healing cracks: (a) without a relative displacement of
crack surfaces and (b) with a relative shift; the tip of plastic
opening of cracks (1) and the tip of a crack after the first
stage of “rapid healing” (2).
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the resultant (ultimate) opening δ is quite small (δ <
40 nm), the parts of the crystal moving towards each
other by inertia come into contact. Since the process
develops quite rapidly, most of the crack surface
remains juvenile, which also facilitates the restoration
of ionic bonds. The perfection of healing is obviously
determined by the difference in the number of emitted
and “new” dislocations (and their slip geometry). When
these values are comparable, a microvoid in the shape
of a narrow channel is preserved at the front of the
arrested tip of the crack (position 2 in Fig. 3a). The size
of this channel can be reduced at a later stage (second
stage of healing) if a fraction of remaining dislocations
is absorbed in it as a result of an external factor. In our
experiments, such stimulating factors were sample
heating and exposure to radiation in the optical wave-
length range, which affect the mobility of dislocations
and the resistance offered to their motion.

In the “rapid” healing stage, an important factor is
obviously the matching of the reliefs of the surfaces
coming into contact, which can be perfect.

In the case of considerable plasticity at the tip of the
crack, its opening δ is quite large (δ > 40 nm), and only
partial convergence of the opening banks is possible
due to the processes described above. An external force
action is required for the convergence of the surfaces
that are not juvenile any longer. After they come in con-
tact, rows of conventional and reanimating dislocations
can be seen on the surface of observation [4–6].

The presence of regions free of dislocations in front
of the crack tip is ensured by the relation between the
friction forces confining dislocations to the slip band,
repulsive forces, and image forces.

Sample annealing activates healing processes due to
increasing mobility of dislocations associated with the
temperature dependence of friction stress.

On the other hand, the exposure to radiation in the
visible range leads to a change in the energy state of
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
dislocations and stoppers and in the photomobility of
dislocations [7, 8]. The latter is a function of radiation
intensity and the spectral composition of incident light.
The simultaneous action of radiation and heating
enhances the healing effect.

ACKNOWLEDGMENTS

This research was supported financially by the Rus-
sian Foundation for Basic Research (project no. 98-01-
00617) and by the Ministry of General and Professional
Education (grant for fundamental research in natural
science no. 97-0-4.3-185).

REFERENCES

1. J. J. Gilman, Cleavage, Plasticity, and Viscosity of Crys-
tals: Atomic Mechanism of Fracture (Metallurgiya,
Moscow, 1993).

2. V. A. Fedorov, I. V. Ushakov, and T. N. Pluzhnikova,
Vestn. Tambov. Univ. 2, 291 (1997).

3. N. V. Dorokhova, Ph.D. thesis (1994).
4. V. M. Finkel’ and B. B. Konkin, Fiz. Tverd. Tela (Lenin-

grad) 25, 1553 (1983) [Sov. Phys. Solid State 25, 896
(1983)].

5. V. M. Finkel’, O. G. Sergeeva, and V. V. Shegaœ, Kristal-
lografiya 36, 170 (1991).

6. V. M. Finkel’ and O. G. Sergeeva, Fiz. Tverd. Tela (Len-
ingrad) 29, 857 (1987) [Sov. Phys. Solid State 29, 489
(1987)].

7. G. A. Ermakov and É. M. Nadgornyœ, Dokl. Akad. Nauk
SSSR 181, 76 (1968).

8. S. I. Bredikhin, Yu. A. Osip’yan, and S. Z. Shmurak,
Zh. Éksp. Teor. Fiz. 68, 750 (1975) [Sov. Phys. JETP 41,
373 (1975)].

Translated by N. Wadhwa
0



  

Physics of the Solid State, Vol. 42, No. 4, 2000, pp. 706–711. Translated from Fizika Tverdogo Tela, Vol. 42, No. 4, 2000, pp. 688–693.
Original Russian Text Copyright © 2000 by Malygin.

                                                 

DEFECTS, DISLOCATIONS, 
AND PHYSICS OF STRENGTH
Amplitude-Dependent Internal Friction and Similarity
of Temperature Dependences of Microflow 

and Macroflow Stresses of a Crystal
G. A. Malygin

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 
ul. Politekhnicheskaya 26, St. Petersburg, 194021 Russia

e-mail: malygin.ga@pop.ioffe.rssi.ru
Received October 14, 1999

Abstract—A dislocation-kinetic mechanism is discussed of amplitude-dependent internal friction and of the
similar temperature dependences of the microflow and yield stresses of a crystal. The similarity of these depen-
dences is shown to be due to the similarity of strain- (dislocation-) strengthening curves of the crystal in the
microplastic- and macroplastic-strain ranges, respectively. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In experiments on amplitude-dependent internal
friction (ADIF), it was established that, for microplas-
tic strains ε ~ 10–9–10–5, the temperature dependences
of oscillatory stresses are identical to those of the yields
at ε ~ 10–4–10–3 for the same crystals [1–5]. The micro-
flow and macroflow stresses differ greatly in magnitude
(by one or two orders) in the same crystal, and the sim-
ilarity of their temperature dependences is very difficult
to interpret in terms of the models in which ADIF is
associated with dislocation hysteresis.

The best known of them is the Granato–Lücke
model, according to which dislocations break away
from their pinning points and then are again pinned at
the same points when the oscillatory stress becomes
lower during a cycle [6]. However, it has been clearly
demonstrated [4, 7, 8] that this model is only of limited
usefulness. There is another (friction stress) model of
ADIF [7, 8], which agrees better with the experimental
data. In this model, dissipation of the energy of vibra-
tions is associated with the movement of dislocations
through large distances and their interaction with a
great number of point obstacles.

However, the friction stress model also fails to
explain the similarity of the temperature dependences
of the microflow and macroflow stresses. Indeed, it is
almost unbelievable that, in one crystal, there are two
friction stresses (initial micro- and macroflow stresses)
having identical temperature dependences. Besides,
according to this model, internal friction should
increase with the concentration of impurity atoms in
the crystal, whereas, experimentally, ADIF decreases
with increasing impurity concentration [9].

In this paper, we propose a possible mechanism for
ADIF, using a fairly simple dislocation-kinetic model.
In terms of this mechanism, we explain the temperature
1063-7834/00/4204- $20.00 © 20706
and impurity concentration dependences of ADIF and
the similarity of the temperature dependences of the
microflow and macroflow stresses of a crystal.

1. THE PHENOMENOLOGICAL MODEL OF ADIF

The hypothesis that ADIF is associated with micro-
plastic deformation of the crystal had been put forward
by Davidenkov [10] even before the concept of a dislo-
cation came into wide use in treating the plastic proper-
ties of crystalline materials. In this approach, the
applied stress σ is commonly assumed [1–5] to be a
power low function of the microplastic dislocation
strain εd,

(1)

where χd and m are strain-independent parameters.
Substituting (1) into a general expression for the coef-
ficient of hysteretic internal friction [8]

, (2a)

we find the amplitude dependence of ADIF

(2b)

where ε0 = σ0/E, and σ0 is the amplitude of oscillatory
stresses. The modulus defect (∆E/E ! 1) is given by
the expression

(3)

σ χdεd
1/m,=

δh
2E

σ0
2

------- σ0εd 2σ0( ) εd σ( ) σd

0

2σ0

∫–=

δh ε0( ) 2m 1+ m 1–
m 1+
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χd
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  m

ε0
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Therefore, δh is proportional to ∆E/E [4],

, (4)

where the coefficient of proportionality r is dependent
only on the exponent in (1). Relations (2b)–(4) form the
basis of currently available phenomenological models
of ADIF and the modulus defect, which are consistent
with the experimental data [1–5].

Combining (2b), (3), and the relation εd = r–1δhε0 =
(σ0/χd)m, one obtains

(5)

Hence, the phenomenological model predicts that the
temperature dependences of the decrement in (2b) and
the microflow stress (5) are dictated by the temperature
dependences of the parameters χd and m. Experiment
shows that, in most cases, the exponent m in expression
(2b) for the internal friction coefficient is temperature
independent in a wide temperature range [1–5]; hence,
the temperature dependences of δh and σ0 in the same
crystal are controlled by that of the parameter χd. In a
number of cases, as was shown in [1–4], the tempera-
ture dependence of σ0 can be approximated by an expo-
nential function

(6)

where χd(0) is the value of χd at zero temperature and B
is a constant.

At the initial stage of macroplastic deformation of a
crystal, the stress σp is also a power-low function of the
strain εp (see below),

(7)

Therefore, the temperature independence of the ratio
between the macroplastic and microplastic stresses

(8)

is due to the similarity of the temperature dependences
of the coefficients χd and χp, entering the phenomeno-
logical relations (5) and (7), respectively.

2. A MICROSCOPICAL MECHANISM OF ADIF

A microscopic (dislocation) model of hysteretic
internal friction and the yield should elucidate the ori-
gin of relations (1) and (7) with typical values of the
exponents equal to m = 2–4 [4] and explain the temper-
ature dependences of oscillatory stresses (6) and ADIF
decreasing in doped samples.

We will assume that the generation of dislocations
by their sources and multiplication of dislocations
through the mechanism of double cross glide (DCG) of
screw dislocations occur even in the range of micro-

r δh/ ∆E/E( ) 2m 1+ m 1–
m 1+
-------------= =

σ0 χdεd
1/m.=

σ0 T( ) χd 0( ) BT–( )εd
1/m,exp=

σp χ pεp
1/ p.=

Π
σp

σ0
------

χ p

χd

----- 
  εp

1/ p

εd
1/m

--------= =
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plastic deformations. In this case, the rate of increase of
the density of mobile dislocations ρ is given by the
kinetic equation [11]

(9a)

where t is the time, u is the velocity of dislocations, ns

is the density of dislocation sources per unit area of a
glide plane, lF is the critical length for the operation of
a dislocation source of the Frank–Read type, and λs is
the path that dislocations travel between successive acts
of dislocation multiplication by the DCG mechanism.

With the left-hand side of (9a) written as dρ/dt =
(dρ/dε) , where  = bρu is the plastic strain rate and b
is the Burgers vector, equation (9a) becomes

(9b)

At the very initial stage of crystal deformation, the
increase of the density of dislocations is due to their
generation from dislocation sources. Keeping only the
first term in the right-hand side of (9b) and integrating
the equation, we obtain the dislocation density as a
function of the amount of plastic strain ε,

(10)

But if the density of sources is low and multiplication
of dislocations by the DCG mechanism is dominant in
(9b), we have

(11)

Under single-glide conditions, the flow stress due to
the Taylor interaction between dislocations opposite in
sign on adjacent glide planes is equal to σ = αµbρ1/2,
where α is the dislocation interaction constant and µ is
the shear modulus. Substituting (10) and (11), we
obtain expressions (5) and (7), respectively, for the
stress as a function of strain,

(12a)

(12b)

The strain dependences of the dislocation density and
stress, similar to (10)–(12), were observed [11, 12] at
the initial stage of crystal deformation. The exponents
intermediate between (12a) and (12b) (σ ~ ε1/3) were
observed in the single copper crystals for strain
amounts ε = 10–5–10–3 [13]. A dislocation model
describing such a strain dependence of the stress was
proposed in [14].
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A power dependence similar to (5) and (7) was also
observed in the case of cyclic plastic deformation in
experiments on the mechanical fatigue of crystals for
cyclic-strain amplitudes ε = 10–5–10–2; the exponent in
the fatigue strengthening law σ ~ εs was measured to be
s = 0.2–0.3 [15, 16]. It is of interest that small values of
s were observed when the oscillatory stress applied to a
crystal had no constant component. When the latter was
nonzero, the exponent increased and was as large as 0.5
[16]. In terms of the kinetic model proposed in this
paper for the initial stage of plastic deformation of crys-
tals, this means that, in the case where the constant
component of the oscillatory stress is absent, the paths
traveled by dislocations generated by dislocation
sources are not large enough for the dislocation multi-
plication to occur through the DCG mechanism. In the
presence of a constant stress component, the paths of
dislocations become larger and, hence, more favorable
to the operation of the DCG mechanism.

Thus, the power dependences of oscillatory-stress
amplitudes on dislocation strain [relation (1)] observed
in experiments on ADIF are not of the nature typical for
this type of crystal loading. The same power depen-
dences with exponents between 0.2 and 0.5 take place
under fatigue conditions and in the usual case of
deforming with a constant strain rate at the initial stage
of plastic deformation. Therefore, in order to develop a
microscopic model of ADIF, one should refine some of
the assumptions forming the basis for the dislocation
models proposed earlier for hysteretic internal friction.

The first assumption is that no new dislocations are
generated in the process of ADIF, and, hence, dissipa-
tion of the energy of vibrations is associated with the
movement of the dislocations already existing in the
crystal at the instant the oscillatory stress is applied.
This is suggested by the fact that, if the stress amplitude
does not exceed a certain critical value, the amplitude
dependence of the decrement shows no hysteresis and
the amplitude-independent component of internal fric-
tion remains unchanged after cyclic loading of the
crystal.

The second assumption is about the shape of dislo-
cations that perform reciprocating motion under the
action of oscillatory stresses. It is commonly assumed
that they are straight lines and their number remains
constant during a loading cycle. When the stress
changes its sign, the dislocations reverse their direction
of motion and displace in the opposite direction with
respect to their initial equilibrium positions.

Both assumptions provide no explanation for the
nonlinear, power-low dependence of the stress ampli-
tude on the amount of plastic strain [relation (5)]. This
dependence can be explained in terms of the kinetic
model based on (9)–(12). According to this model, the
application to a crystal of oscillatory stresses of even a
very small amplitude causes the generation of disloca-
tion loops from a number of efficient sources. The dis-
location loops expand to a certain size and then, as the
P

oscillatory stress falls to zero, they contract (under the
action of the line tension) to a size depending on the
magnitude of the friction stress. When the applied
stress changes its sign, the dislocation loops collapse
(to zero radius) and then they are again generated dur-
ing the negative stress half-cycle. The cyclic dynamic
process of the expansion and contraction of dislocation
loops in the crystal and their interaction with each other
leads to hysteresis in stress–strain curves, which mani-
fests itself either in the form of a Davidenkov hysteresis
loop [10] (in the presence of a restoring force due to the
line tension of dislocations) or in another form (in the
absence of a restoring force) [4] if the friction stress far
exceeds the stress due to the dislocation line tension.

Since this dynamic process is not accompanied by
irreversible accumulation of dislocations in the crystal,
it does not give rise to hysteresis in the amplitude
dependence of internal friction. However, when the
amplitude of oscillatory stress becomes large enough
for the dislocation multiplication to occur through the
DCG mechanism during the expansion of dislocation
loops [17], dislocations will be accumulated in the form
of immobile dislocation dipoles, which will not take
part in the dissipation of the energy of vibrations. The
density of mobile dislocations also increases in this
case, but the increase is not large enough to give rise to
a noticeable hysteresis in the amplitude dependence of
the decrement of vibrations, because the magnitude of
the applied stress is small. The situation is reversed for
large amplitudes of vibration, corresponding to the
yield of the crystal, where large-scale multiplication of
dislocations occur in the form of broadening slip bands
[17, 18].

In the experiments on ADIF, dislocations travel
large distances during a cycle of vibration. This was
demonstrated in [19] in experiments on internal friction
in polycrystalline copper, where it was established that
the decrement becomes sensitive to the size of crystal-
lites when the latter is less than 80 µm. The microflow
stress increases with decreasing grain size, whereas
internal friction, on the contrary, decreases. This agrees
well with the kinetic model, according to which, if the
paths of dislocations are restricted to the grain size d
[i.e., λs = d in (12b)], we have χs ~ d–1/2 and, hence, σ0 ~
d–1/2 [20] (Hall–Petch relationship) and δh = dm/2. Tak-
ing the paths of dislocations to be of the order of 80 µm
and the Burgers vector to be 0.3 nm, we obtain that the
density of dislocations corresponding to the microplas-
tic strain εd ≈ 10–10–10–8 in experiments on internal fric-
tion should be equal to ρ = εd/bλs ≈ 1 – 102 cm–2, which
is far less than, for instance, the density of growth dis-
locations in copper, ρ0 = 104–106 cm–2 [21]. This means
that, under ADIF conditions, only a small proportion of
all dislocations and, hence, a small fraction of the crystal
volume are involved in the process of dissipation of the
vibration energy. At the values of the microplastic strain
indicated above and frequencies ω = (10–100) kHz, the
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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average microplastic strain rate  = ωεd is of the same
order 10–6–10–3 s–1 as under conditions of macroplastic
strain. These results should be taken into account in
quantitative evaluations of the absolute magnitudes of
ADIF and microplastic stresses.

3. THE SIMILARITY LAW 
OF THE TEMPERATURE DEPENDENCES

OF STRESSES

As indicated above, the temperature dependences of
the decrement δh and microplastic stresses σ0 are dic-
tated by the temperature dependence of the parameter
χd or, according to the microscopic model of ADIF
under consideration, by the temperature dependences
of the parameters lF and λs in expressions (12a) and
(12b). Substituting (12a) and (12b) into (2b), we obtain,
respectively,

(13a)

(13b)

where β is the fraction of the crystal volume involved
in the process of dissipation of the energy of vibration.

In experiments on alkali halide crystals, it was
found [17] that the coefficient of dislocation multiplica-
tion by the DCG mechanism (bλs)–1 increases linearly
with the friction stress σf = σ* + σC, where σ* is the
friction stress component due to thermally activated
motion of dislocations (dependent on the temperature
and strain rate) and σC is the friction stress component
associated with the presence of athermic obstacles to
the motion of dislocations. One can write an empirical
relationship between λs and σf in the form

(14)

where gs ≈ (1–2) × 102. As for the temperature depen-
dence of the critical length for the operation of a Frank–
Read source lF, it was found, by modeling the operation
of a dislocation source in the field of thermally acti-
vated obstacles and athermal ones [22], that the time
length for the operation of a source is temperature
dependent. Therefore, the stress and the critical length
for the operation of a source also depend on the temper-
ature, and one can write

(15)

where gF ≈ 3–5.
Thus, according to our model, the dependences of

ADIF and vibration amplitudes on the temperature,
strain rate, and concentration of obstacles are deter-

ε̇d

δh ε0( ) 12β
5α4
---------

lF

b3ns

---------- 
  ε0

3,=

δh ε0( ) 2β
3α2
---------

λ s

b
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λ s gs
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σ f
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lF gF
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σ f

-----b,=
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mined by the dependence of the friction stress σf on the
temperature, strain rate, and concentrations of thermic
(c) and athermic (C) obstacles to the dislocation motion
(σf ~ cn and σf ~ Cn with n = 0.5–1 [23]). Therefore, if
the mechanisms of microflow and macroflow of a crys-
tal are identical (generation of dislocations from
sources or multiplication of dislocations through the
DCG mechanism), the coefficient Π, defined in (8), will
be temperature independent,

(16)

and the similarity law of the microflow and macroflow
stresses will take place. Otherwise we will have p ≠ m
in (8) and, as is seen from (12), the similarity of the
stresses will be absent. Experimentally, both the situa-
tions occur [1].

As for the temperature dependence of the friction
stress and of the microflow and macroflow stresses in
the form of (6), σ ~ exp(–BT), it is of importance to elu-
cidate the origin of this non-Arrhenius dependence,
because, in the cases where experimental data are
closely approximated by a dependence of this type, the
fairly radical inference is made that the dislocation
movement in crystals is due to thermal vibrations of
atoms, rather than to thermal fluctuations [24].

This form of the temperature dependence of the
microflow and macroflow stresses is the consequence
of the approximation of the stress dependence of the
plastic strain rate by a power-low function

(17a)

where mc = Hc/kT, Hc is a constant with dimensions of
energy, k is the Boltzmann constant, and σC is the criti-
cal stress above which the plastic deformation begins.
Indeed, it follows from (17a), that

(17b)

(17c)

Although logarithmic dependences of the activation
energy H on the stress occur in theory of thermally acti-
vated motion of dislocations, they refer to special cases
and cannot be associated with empirical relations (17),
universal in some sense.

As indicated in [25], this universality is due to the
fact that, in the cases where dislocations have to over-
come fairly high athermal barriers for their thermally
activated movement to begin (as, for example, in the
Orowan process of pushing dislocations through a sys-
tem of particles or precipitates), the stress dependence
of the activation energy has the form H(σ) = H(σ – σC),
where σC is the critical stress for overcoming the barri-
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ers. This expression can be represented in a more gen-
eral form [25]

(18)H Hc 1
σ σC–

σc

--------------- 
 

p

–
q

,=

10–3

10–5

10–7

10–2 10–1 1

1 2

ε, s–1.

σ/σc

Fig. 1. Stress dependence of the plastic strain rate in the
absence (curve 1) and presence (curve 2) of athermic obsta-
cles to thermally activated motion of dislocations.
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Fig. 2. (a) Temperature dependences of the microflow and
macroflow stresses as given by (12a) (curve 1) and (12b)
(curve 2) and (b) the same dependences at the semilogarith-
mic scale. 
P

where 0 < p < 1 and 1 < q < 2. Substituting (18) into the
Arrhenius equation for the plastic strain rate, we obtain

(19)

Figure 1 presents log–log plots of the (σ) depen-
dence given by (19) for the athermal stress σC equal to
zero (curve 1) and for σC = 0.1σc (curve 2). The calcu-
lation is performed for the parameters Hc/kT = 40,  =
107 s–1, p = 1/2, and q = 3/2. It is seen that, in the case
of a nonzero critical stress, a log –logσ curve can be
closely approximated by a straight line; hence, it is
described by the power law of (17a), even though the
dislocation movement is determined by the Arrhenius
law (19).

It follows from (18) and (19), that the temperature
dependence of the friction stress has the form

(20)

Substituting this expression for σf into (14) and (15)
and the results into (12a) and (12b), respectively, we
obtain the temperature dependences of the microflow
and macroflow stresses of the crystal. Figure 2a shows
these dependences for the stresses normalized to their
value σ(0) at T = 0 and for the values of parameters
p = 1/2, q = 3/2, and σC/σc = 0.04. Figure 2b shows
logσ–T plots of the same dependences. It is seen that
the curves can be approximated by the exponential
dependence (17c), which is often done for experimental
data. Clearly, the possibility of such an approximation
does not necessarily mean that the mechanism of dislo-
cations overcoming barriers has nothing to do with
thermal fluctuations [24].

Substituting (14) and (15) into (13b) and (13a),
respectively, we arrive at the result that the coefficient
of internal friction varies in inverse proportion to the
friction stress,

(21a)

(21b)

Therefore, the temperature and concentration depen-
dences of ADIF are dictated by the corresponding
dependences of the friction stress (20). Hence, the
internal friction coefficient decreases with increasing
concentration of impurity atoms, in accordance
with [9].

CONCLUSION

Thus, we have shown that, if the physical mecha-
nisms of dislocation strengthening in the process of
microflow and macroflow of a crystal are identical, the
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similarity of the temperature dependences of the corre-
sponding stresses will be observed. In this case, the
scaling factor (8) is determined by the amount of strain.
For instance, at εp/εd = 104 and p = m = 2–4, we have
Π = 10–102. The absence of the similarity does not
imply that the physical mechanisms of micro- and mac-
roflow of the crystal are radically different, but it
merely means that, at a given crystal structure, different
mechanisms of multiplication or interaction of disloca-
tions operate in the processes of microflow and macro-
flow. The dislocation-kinetic model considered in this
paper allows one to consistently explain this fact and
the effect of factors determining the magnitude of
ADIF.
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Abstract—Necessary conditions are determined under which elastic surface shear waves can exist in a crystal
with magnetic long-range order, even if no account is taken of the magnetic dipole–dipole interaction, in both
the case of the mechanically free surface of the crystal and the case of an acoustically continuous interface
between the magnetic crystal and a nonmagnetic medium. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is well known that, in terms of both the crystal-lat-
tice dynamics and the elastic-continuum theory, the
mechanically free surface of a half-space of an elastic
medium can be considered as a local distortion of an
infinite perfect medium [1]. In this case, a surface
acoustic wave (SAW) propagating along the crystal
boundary can be treated as a localized vibration mode
of an infinite crystal with a planar defect [2]. The prob-
lem of existence and uniqueness of solutions to the
equations of the elasticity theory in the form of SAWs
has been analytically solved for a mechanically free
surface [3–5], as well as for a loaded boundary of a
nonmagnetic crystal [6]. In particular, it was shown
that, in the case of the mechanically free crystal sur-
face, a SAW can propagate in any direction except a
few certain ones. For the latter directions, the boundary
conditions are fulfilled for a pure shear bulk wave, and
the problem of existence of SAWs should be solved
separately in this geometry; the bulk elastic wave is
unstable and transforms into a SAW even when the
boundary conditions are varied only slightly. An exam-
ple is the formation of a wave of the Bleustein–Gulyaev
type when allowances are made for the piezoelectric [7,
8] or the piezomagnetic [9, 10] interaction in the crys-
tal, or the formation of a Love wave in the case where
the surface of a semi-infinite crystal (medium 1) is in
hard acoustic contact with the surface of a layer
(medium 2) and the elastic constants of the media sat-
isfy the condition

(1)

where s1 and s2 are the velocities of an elastic shear
wave in unbounded media 1 and 2, respectively. If the
inequality opposite to (1) takes place, only the
Bleustein–Gulyaev mechanism will govern the for-
mation of an elastic shear wave, with its wave vector

s1 s2,>
1063-7834/00/4204- $20.00 © 20712
k || x and particle displacements u || z, propagating near
the mechanically free surface of a semi-infinite
medium or near the acoustically continuous interface
between media 1 and 2 (no matter how thick the layer
of the nonpiezoelectric insulating medium is) when an
external electric field E || z is applied along the z axis
parallel to the interface. (The coordinate system is set
with the y axis along the normal n || y to the surface of
semi-infinite medium 1.)

This is also true in the case of the mechanically free
boundary of a magnetic medium, or the acoustically
continuous interface between a magnetic and a non-
magnetic insulating medium, if the temperature T is
higher than the Curie temperature TC, an external mag-
netic field H is applied along the z axis parallel to the
interface, and, in addition, k || x, u || z || H, and n || y. At
T < TC, the magnetic long-range order significantly
affects the spectrum of surface shear waves in the mag-
net as compared to the spectrum at T > TC. This was first
shown by Parekh in [11], where the formation of shear
SAWs was studied in a half-space of a ferromagnetic
medium with a mechanically free surface in the case of
k || x, u || z || H || M, and n || y, H, and M along the z axis
(here, M = M0 is the saturation magnetization). The
Parekh SAW, as well as the Bleustein–Gulyaev wave at
T > TC, is a combination of two partial waves when the
magnetic dipole–dipole interaction and the magne-
toelastic coupling are taken into account. However, in a
ferromagnet with Mz ≠ 0 (M ⊥  k⊥ ; M ⊥  n), the disper-
sion relation for the Parekh wave ω(k⊥ ) (M ⊥  k⊥ ) has
several branches and ω(k⊥ ) ≠ ω(–k⊥ ); that is, there is no
reciprocity with respect to the inversion of the propaga-
tion direction.

To elucidate the mechanisms of the formation of the
Parekh SAW, let us consider the basic relations [12]
000 MAIK “Nauka/Interperiodica”
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determining the spectrum and spatial structure of this
wave

(2)

(3)

Here, ωDE = (2ω0 + ωM)/2, s ≡ k⊥ / |k⊥ |, ω0 = ωa + ωH +
ωme, ωa is the “activation frequency” for the FMR spec-
trum due to uniaxial magnetic anisotropy, ωH = gH, ωme
is the magnetoelastic gap, ωM = 4gπM0, g is the gyro-
magnetic ratio, M0 is the saturation magnetization, and
st is the phase velocity of an elastic shear (SH) wave in
the unbounded medium at T > TC.

The structure of the amplitude of the magnetostatic
potential in nonmagnetic medium 1 (y < 0) and mag-
netic medium 2 (y > 0) is presented as 

(4)

In (4), we have α1 = –1 and β1 = B1 = 0 for y > 0, and
β2 = 1 and α2 = α is determined from (2) for y < 0.
Analysis of (2)–(4) shows that the elastic surface shear
wave calculated by Parekh in [11] differs in properties
from the Bleustein–Gulyaev wave at T > TC. Indeed, in
the paramagnetic phase (T > TC), the formation of the
Parekh wave at Hz ≠ 0 is due to the hybridization of the
magnetic dipolar and magnetoelastic interactions in the
vicinity of the planar crystal surface, whereas at T < TC,
this wave is not delocalized (α ≠ 0) even when the mag-
netic dipolar interaction is absent, as is seen from (2)–
(4), in which we should formally put 4π equal to zero
in order to go to this limit. At the same time, going to
the analogous limit in relations for the spectrum of the
Bleustein–Gulyaev wave leads to the delocalization of
this surface wave (α  0) at T > TC and in the same
geometry (H || z, k⊥  || x, and n || y).

Let us elucidate why the spontaneous magnetization
of a crystal M || H || z leads to the formation of a SAW
(n ⊥  u || H ⊥  k⊥ ) on the mechanically free surface of the
magnet even if the magnetic dipole–dipole interaction
is not taken into account. For the geometry indicated
above, we can write the following system of dynamic
equations [12] describing the propagation of an elastic
shear wave u || z of a frequency ω, coupled with a spin
wave, in a ferromagnet in the magnetostatic approxi-
mation (B44 is the magnetostriction constant and c44 is
the elastic constant):

α
ωme ω sω+–( ) ω sω–+( )

ωDE sω–( ) ω2 ω0 ω0 ωM ωme–+( )–[ ]
-------------------------------------------------------------------------------------------,=

ω±
ω0 ω0 2ωM+( )[ ]1/2 ω0±

2
---------------------------------------------------------,=

ω2

st
2k ⊥

2
---------- 1 α2–( )

ω0 ω0 ωM+( ) ω2–

ω0 ω0 ωM ωme–+( ) ω2–
-----------------------------------------------------------.=

φ1 2, A1 2, iωt α1 2, k ⊥ y–( )exp[=

+ B1 2, iωt β1 2, k ⊥ y–( ) ] iωt ik ⊥ x–( ),expexp

iωmx ω0my

gB44

M0
-----------

∂uz

∂y
--------

ωM

4π
-------

∂φ2

∂y
--------,++=
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(5)

The boundary conditions at y = 0 have the form (σik is
the elastic stress tensor)

(6)

Analysis of (5) and (6) in the formal limit of 4π  0
shows that a shear SAW is formed on the mechanically
free surface of the ferromagnet even in the absence of
the magnetic dipole–dipole interaction; this is because
the magnetic medium possesses acoustic activity in the
plane of propagation (xy) of the elastic SH wave (in the
geometry under consideration). It is easy to verify that
the spectrum of this surface wave has no symmetry
with respect to the inversion of the propagation direc-
tion [ω(k⊥ ) ≠ ω(–k⊥ )] and consists of several branches
separated by gaps.

Passing to another formal limit as B44  0 in (2)–
(6), that is, neglecting the coupling between the spin
and elastic subsystems, we obtain (for the same mutual
orientation of the vectors n, M, and k⊥ ) the dispersion
relation for the magnetic surface TE-type polariton
(Damon–Eshbach wave) in the magnetostatic approxi-
mation.

Thus, the Parekh two-partial surface acoustic wave
[11] is the result of hybridization between two types of
partial surface excitations in the magnetic gyrotropic
crystal, namely, the magnetic surface TE-type polariton
and the shear surface SH wave (with no magnetic
dipole–dipole interaction). In fact, the Parekh wave [11,
12] is a particular case of the surface phonon–magnon
TE-type polariton that originates from an acoustic,
rather than optical, phonon.

However, the efficiency of this mechanism of the
transverse-phonon localization is rather low in ferro-
magnets because of the relative smallness of the mag-
netoelastic effect as compared to that of the magnetic
dipole–dipole interaction. At the same time, it is well
known [13] that, in antiferromagnets (AFMs), the
exchange interaction enhances the magnetoelastic cou-
pling and weakens the magnetic dipole–dipole interac-
tion, so that the above-mentioned (nonmagnetodipolar)
mechanism of the formation of a shear SAW may be
important in these materials. The conditions under
which the magnetic surface TE polaritons are formed
and propagate in AFMs of the easy-axis type in the
absence of the magnetoelastic coupling were investi-
gated in detail in [14–16] with and without allowances
made for electromagnetic retardation effects.

iωmy ω– 0mx
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There are a lot of papers in which the conditions for
the formation and propagation of shear SAWs in anti-
ferromagnets were analyzed (see, e.g., [12]). However,
in all of them, a number of restrictive assumptions were
made: (1) Only the magnetodipolar mechanism for the
formation of two-partial shear SAWs (Bleustein–
Gulyaev mechanism) was treated in them. (2) The
SAW spectrum was analyzed under the assumption that
the wave frequency ω satisfies the condition

(7)

where ωAFM is the AFMR frequency. Hence, the calcu-
lations are valid for high-temperature AFMs (TN > TD,
where TN and TD are the Néel and Debye temperatures,
respectively [17]) for any value of the wave number k⊥ ,
whereas in the case of low-temperature AFMs (TD > TN
[17]), the results of [11] are true, because of (7), only in
the range of small wave numbers as compared to kmph
(kmph is determined from the conditions for the magne-
toacoustic resonance). (3) The effect of gyrotropy on
the formation of a shear SAW has not been considered
in all of those papers. (4) The case of a mechanically
free surface of the magnet was only investigated.
Finally, (5) calculations were made for the case of a
half-space of a magnetic material rather than for an
actual magnet of a finite size.

In this paper, we neglect the magnetic dipole–dipole
interaction in AFMs, because it is small as compared to
the magnetoelastic coupling, and investigate the local-
ization of transverse phonons due to mechanisms other
than the magnetodipolar one in the vicinity of either the
mechanically free surface of a low-temperature AFM
or the acoustically continuous interface between a low-
temperature AFM and a nonmagnetic medium. We
assume that the elastic parameters of the magnetic and
nonmagnetic media are such that inequality (1) takes
place at T > TN, with medium 1 being nonmagnetic and
medium 2, antiferromagnetic.

In Section 1 of this paper, we present the basic equa-
tions and formulate the corresponding boundary-value
problem. In Section 2, in an exchangeless approxima-
tion (ignoring the nonhomogeneous exchange interac-
tion), we analyze nonmagnetodipolar mechanisms of
the formation of a shear SAW and its dispersion prop-
erties in the case of a semi-infinite low-temperature
AFM in a collinear phase. The dependence on an exter-
nal magnetic field, which is assumed to be applied
along the easy axis parallel to the surface of the AFM is
investigated. We consider both the case of the mechan-
ically free AFM surface and the case where this surface
is in continuous acoustic contact with a nonmagnetic
film of a finite thickness. The effect of the finite sizes of
a magnet and its nonmagnetic cover on the spectrum of
shear SAWs under study is analyzed in Section 3. The
dispersion features of these SAWs associated with the
nonlocal nature of the Heisenberg mechanism of the
spin–spin exchange and with dissipation processes are
also discussed in that section. Finally, in the last sec-

ω ! ωAFM,

tion, we formulate the main conclusions reached in this
paper.

1. THE BASIC EQUATIONS

We consider a two-sublattice AFM of the easy-axis
type with sublattice magnetizations M1 and M2 (|M1| =
|M2| = M0) and with the easy axis being along the z axis.
The magnetoelastic and elastic properties of both the
magnetic and nonmagnetic media are assumed to be
isotropic for simplicity. To describe the AFM, we use a
phenomenological model that takes into account the
coupling between the spin and elastic subsystems but
ignores the nonlocal Heisenberg exchange. In terms of
the ferromagnetism (m) and antiferromagnetism (l)
vectors, the energy density W of the AFM can be writ-
ten in the form [13, 17]

(8)

where uik is the elastic strain tensor; H is an external
magnetic field; δ, α, and γ are the homogeneous
exchange, nonhomogeneous exchange (exchange stiff-
ness), and magnetostriction constants, respectively; λ
and µ are Lamé’s constants; h = H/2M0; and β > 0 is the
uniaxial magnetic anisotropy constant. In what follows,
we assume that

(9)

It can be shown [17] that, under the assumption of
(9), both the linear and nonlinear spin dynamics of the
magnet are described, in the model under consider-
ation, by a closed system of dynamic equations involv-
ing only the antiferromagnetism vector l and the lattice
displacement vector u. In the collinear phase of the
easy-axis AFM with l || H || z, the spectrum of normal
magnetoelastic vibrations with k lying in the xy plane

and u || z has the form (k2 =  + )

(10)

where ωme is the magnetoelastic gap, ω0 is the “activa-
tion frequency” of the spin-wave spectrum due to the
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2
---uii
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2 ;+= =
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uniaxial anisotropy, and ωH = gH (g is the gyromag-
netic ratio).

Since our interest here is with the magnetoelastic
dynamics of a thin magnetic film, the system of
dynamic equations should be supplemented by the cor-
responding boundary conditions. If a film is covered
with a metal layer on both sides and magnetized in its
plane, the spectrum of its surface exchangeless spin
oscillations (magnetostatic surface spin waves) is well
known to be dispersionless [18]. For this reason, we
will consider a metal–magnet interface in what follows.
If the metallic overlayer is very thin (k⊥ D ! 1, where D
is the overlayer thickness), its influence on the elastic
properties of the magnet can be neglected [19] and the
interface can be considered as a mechanically free sur-
face of the magnet. In this case, we have (ξ is the coor-
dinate along a normal to the interface)

(11)

But if the surface of the magnet (medium 2) is in con-
tinuous acoustic contact with a nonmagnetic metal and
the condition k⊥ D ! 1 is not fulfilled, the boundary
conditions at the interface can be written as

(12)

In both the case of the mechanically free surface of the
crystal and the case of the interface between two half-
spaces, the elastic wave will be localized in the vicinity
of this planar defect if, in addition to (11) or (12), the
following condition is met:

(13)

In what follows, we will separately consider the case of
a half-space of a magnetic medium and the case of a
thin magnetic film covered with a nonmagnetic layer on
one or both sides. We shall also analyze the conditions
under which a shear SAW is formed by a nonmagneto-
dipolar mechanism, even in the exchangeless limit
(c  0) in the vicinity of the mechanically free sur-
face of a magnet or near the acoustically continuous
interface between two (magnetic and nonmagnetic)
media.

2. A HALF-SPACE OF A MAGNETIC MEDIUM 
(EXCHANGELESS APPROXIMATION)

From (13), one can obtain an expression for the
component of the wave vector normal to the surface,

q2 ≡ αk⊥  (k2 ≡ (1 – α2)). At n || y and k⊥  || x, we have

(14)

σiknk 0; ξ 0.= =

σik
1( ) σik

2( ); ui
1( ) ui

2( ), ξ 0.= = =

uz ξ ∞±( ) 0.

k ⊥
2

α2 1
ω2

st
2k ⊥

2 µ
-------------- 0.>–=
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Therefore, the wave under study is a partial one in both
the magnetic and nonmagnetic media; in nonmagnetic
medium 1 (y < 0), we have q1 ≡ –k⊥ , while in magnetic
medium 2 (y > 0), q2 is determined from (14). Thus, we
have

(15)

In both the case of the mechanically free surface of a
magnet [with boundary conditions (11) and (13)] and
the case of the interface between two (magnetic and
nonmagnetic) half-spaces with boundary conditions
(12) and (13), the dispersion relation for the transverse
elastic surface wave has the same form,

(16)

However, using (13), for the mechanically free surface
of the magnetic half-space, we obtain

(17)

whereas in the case of the acoustically continuous
interface between the magnetic and nonmagnetic half-
spaces,

(18)

with a ≡ µ1/µ2. The limit case of a mechanically free
surface, given by (17), can be obtained from (18) by
putting the shear modulus of the nonmagnetic medium
µ equal to zero.

Using (16)–(18), the dispersion relation of the shear
SAW under study can be written as k⊥  = k⊥ (ω) for µ1 ≠ 0
and Hz ≠ 0; namely,

(19)

Analysis of (19) shows that, if no account is taken of
the magnetic dipole–dipole interaction, the shear SAW
on the mechanically free surface of a low-temperature
AFM in a collinear phase is delocalized when |H| = 0.
As is seen from (15)–(19), in the case of the magnet
being in continuous acoustic contact with a nonmag-
netic dielectric medium, the shear SAW is formed, in
the geometry under consideration, even in the absence
of a magnetic field H || l || z. The important features of
the spectrum of the SAW [relations (17)–(19)] under
study forming on the magnetic–nonmagnetic medium
interface are as follows: (i) The frequency spectrum
consists of several bands separated by gaps when Hz ≠ 0.
(ii) The spectrum is asymmetric with respect to the
inversion of the propagation direction, ω(k⊥ ) ≠ ω(–k⊥ ),
if Hz ≠ 0. (iii) A dispersion curve of the SAW, described
by (19), has end points k⊥  = k∗  at which α(k∗ ) = 0.

If the acoustic retardation is ignored, (α  1) and
Hz ≠ 0, the SAW under study is dispersionless; that is,
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ω(k⊥ ) = const. The frequencies can be found in an
explicit form to be

(20)

(21)

In the case of the nonmagnetic medium having a finite
thickness t < ∞ and its outer surface being traction-free,
expression (18) for α is replaced by another one, appro-
priate for the case of a finite t,

(22)

The spectrum of the SAW localized on the interface
between the low-temperature AFM and the nonmag-
netic metal layer can be found, as before, from (14)
combined with (22). However, now, the spectrum can-
not be analytically represented in the form k⊥  = k⊥ (ω),
as in (17)–(19), for arbitrary values of the wave num-
ber k⊥ .

In the short-wavelength limit, the dispersion rela-
tion for the SAW under study can be found in an
explicit form from (16) and (22) in the elastostatic
approximation (α  1). The result is

(23)

Thus, even in the case of a magnetic half-space
where both the magnetic dipole–dipole interaction and
acoustic retardation are neglected, the presence of a
nonmagnetic overlayer leads to dispersion of the spec-
trum of the shear SAW under study in the short-wave-
length limit. The dispersion is determined by the mag-
netoelastic and elastic parameters of the acoustically
rigidly bound magnetic and nonmagnetic media.

Now, let us consider the effect of the thickness of the
magnet on the spectrum of the shear SAW. For this pur-
pose, we investigate the propagation of the SAW in the
same geometry (H || u || z, n || y, and k⊥  || x) in a film of
a thickness d of an easy-axis AFM in a collinear phase
(l || H || z) described by expressions (8). The film is
assumed to be covered with a nonmagnetic overlayer
on either one or both sides. As before, the elastic
parameters of the magnetic and nonmagnetic media are
assumed to be such that inequality (1) takes place with
a large margin and, hence, shear elastic waves can be
considered as propagating with an infinite velocity in
the nonmagnetic medium.

3. A MAGNETIC FILM. 
NONHOMOGENEOUS-EXCHANGE EFFECTS

Let us consider a film of a low-temperature AFM
under conditions H || l || z, k⊥  || x, and n || y. On both
sides, the film is covered with nonmagnetic metal over-
layers of thicknesses t and f, respectively, which are in

Ω± ω0 sωH µ1 0=( ),±=

Ω± ω0
2 ωme

2 a
1 a+
------------+ 

 
1/2

sωH µ1 0≠( ).±=

α
a k ⊥ ttanh sµ*+

µ
------------------------------------- 0.>–=

Ω±
2 ω0

2 ωme
2 a k ⊥ t( )tanh

1 a k ⊥ t( )tanh=
-------------------------------------.+=
P

acoustically continuous contact with the film. If both
the outer surfaces of this three-layer structure are trac-
tion-free, one can write the following equation for α,
using (11), (12), and (17):

(24)

Thus, in the case of an AFM film covered with non-
magnetic layers on both sides, the dispersion relation
for the shear SAW is found solving the set of equations
(14) and (24). From (24), it follows that (i) the spectrum
of the shear SAW under study is asymmetric with
respect to the inversion of the direction of propagation
in the case where Hz ≠ 0, µ1 ≠ 0, and t ≠ f, and (ii) the
dispersion curve may have segments with ∂ω/∂k⊥  = 0 at
k⊥  ≠ 0. Expression (22), valid for the case of a magnetic
half-space covered with a nonmagnetic overlayer, is
obtained from (24) by going to the limit as k⊥ d  ∞
and k⊥ f  0.

Analysis of (14) and (24) shows that, when the spec-
trum described by dispersion relation (24) becomes
symmetric (namely, when Hz = 0 at t ≠ f, or Hz ≠ 0 at
t = f), the spectrum of the shear SAW under study has
the following explicit form in the elastostatic approxi-
mation (α  1):

(25)

(26)

Thus, if the surface of the magnetic film is mechan-
ically free or the film is covered with nonmagnetic
overlayers on both sides, the spectrum of elastic shear
surface waves consists of two branches.
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In the case where Hz ≠ 0 and t ≠ f, the spectrum of
the shear SAW can be found from (14) and (24) in the
form k⊥  = k⊥ (ω) in the limit as k⊥ t  ∞ and k⊥ f  0;
namely,

(27)

The structure of the spectrum of the SAW under
study is very sensitive to the elastic boundary condi-
tions at the free surfaces of the nonmagnetic overlayers.
For example, if the outer surface of the nonmagnetic
layer of the thickness t (or f) of the three-layer structure
is rigidly fixed (u = 0) and t ≠ f, l || H || z, k⊥  || x, n || y,
then the expression for α that, in combination with
(17), describes the spectrum of transverse phonons
localized on the magnetic–nonmagnetic layer interface
has the form of (24) with tanh(k⊥ t) and tanh(k⊥ f) being
replaced by coth(k⊥ t) and coth(k⊥ f), respectively.

So far, we have ignored the acoustic retardation in
the magnetic film and the nonmagnetic overlayers. If
we take into account that s1, t < ∞, the dispersion rela-
tion for the shear SAW in the thin magnetic film with
nonmagnetic overlayers on both sides will still have the

form of (24) with  ≡ 1 – ω2/(s1k⊥ )2 and with tanh(k⊥ t)
and tanh(k⊥ f) being replaced by α1tanh(α1k⊥ t) and
α1tanh(α1k⊥ f), respectively, where α2 ≡ 1 – ω2/µ(stk⊥ )2.
It follows from (24) and (29), that acoustic retardation

[due to which 0 < (α2, ) < 1] leads to the occurrence
of end points α(k⊥ ) = 0 at k⊥  = k∗  (for s1 < st) in each of
the two branches of the dispersion curve of the SAW
under study. The position of the end points is indepen-
dent of the relative thicknesses of the magnetic and
nonmagnetic layers (t/d and f/d). Thus, if s1 < st, the
SAW under study exists only at k⊥  > k∗  ≠ 0.

Besides, it follows from (24) and (29), that the
finiteness of the velocity of elastic waves leads to the
change over of the asymptotic form of the spectrum in
the vicinity of the point of condensation k∗  (as com-
pared to the case of α, α1  1) from an exponential
to a power form (as k⊥ d  ∞).

To this point, we have ignored the nonlocal charac-
ter of the Heisenberg spin–spin exchange (nonhomoge-
neous exchange interaction) and considered (16) in the
limit as c  0. Analysis of (14) shows that, at c ≠ 0,
an elastic shear wave with u || z in the magnetic medium
is a combination of three partial waves, and the spatial
dependence of the z component of the elastic displace-
ment vector u in (magnetic) medium 2 has, rather than
(15), the form

(28)

k ⊥
1

2d
------ A 1+

A 1–
-------------, Aln

asµ* µ*
2

+

µ2
--------------------------.= =

α1
2

α1
2

u2 A j q jy–( ) iωt ik ⊥ x–( ),expexp
j 1=

3

∑=
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where  = , and  are the roots of the equation

(29)

with  ≡  + c2 .

Thus, the partial wave with  =  is the shear
SAW under study. Over the ranges of frequencies ω and

wave numbers k⊥  in which we have  < 0 (j = 2, 3),
the nonhomogeneous exchange interaction causes the
SAW under study to be an outgoing wave, for the atten-
dant partial waves in (29) become bulk (sinusoidal)
ones. The latter waves make an oscillatory contribution
to the dispersion relation F(ω, k⊥ ) = 0 that describes the
spectrum of the shear SAW under study including the
effect of the nonhomogeneous exchange. Physically,
these waves are bulk spin exchange waves. In the par-
ticular case of a magnetic film of a thickness d, the
spins are absolutely free at both the surfaces of the film
(∂l/∂ξ = 0 at ξ = 0, d); in the range of small wave vec-
tors (k⊥ d ! πν/d, ν = 1, 2, …), their dispersion law can
be written in an explicit form

(30)

where  ≡  + c2(  + (πν/2d)2. At the same time,
the dispersion relation for the SAW in the long-wave-
length limit is still given by (24) if the outer surfaces of
the nonmagnetic overlayers are mechanically free.

A comparison of (30) and (24) shows that these
spectra have degeneracy points at Ω± > min(Ω2ν, Ω3ν)
and k⊥  ≠ 0, in the vicinity of which repulsion between
the dispersion curves occur and frequency gaps arise.
The physical picture described above is qualitatively
similar to that observed in the case of nonhomogeneous
spin–spin resonance between a Damon–Eshbach mag-
netostatic surface wave and bulk spin waves (see, e.g.,
reviews [20, 21]). Calculations show that the analogy
takes place even if dissipation is included. In particular,
the line width of the SAW under study may oscillate as
the wave number k⊥  is varied.

CONCLUSION

Thus, the investigation performed in this paper
shows that, at T < TN, in contrast to the case of T > TN,
the formation of a shear one-partial SAW near the
surface of a magnetic medium is governed by nondi-
polar mechanisms owing to the presence of the long-
range order in the magnet. In particular, it is found that
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(i) a one-partial SAW is formed on the mechanically
free surface of a magnet, as well as on the acoustically
continuous interface between a magnet and a nonmag-
netic medium, if an external magnetic field is applied
along the normal to the plane of propagation of the elas-
tic shear wave with u || H ⊥  n (acoustically active crys-
tal), and (ii) a one-partial shear SAW with u ⊥  n and
u ⊥  k⊥  is formed on the interface between a magnet and
a nonmagnetic medium rigidly bonded to each other if
|H| = 0. In the latter case, the shear modulus of the non-
magnetic medium (µ1) should be nonzero.

Thus, under the conditions indicated above, addi-
tional types of a one-partial shear SAW can be formed
on the mechanically free surface of a magnetically
ordered crystal even if the magnetic dipole–dipole
interaction is ignored.

The effect of the nonlocality of the Heisenberg
mechanism of the spin–spin exchange (nonhomoge-
neous exchange interaction) on the spectrum of the
one-partial shear SAW investigated in this paper, as
well as the influence of dissipation in the spin sub-
system of the magnet, is qualitatively similar to that for
the Damon–Eshbach magnetostatic surface spin wave.

It should be noted that there is a close analogy
between the conditions for the formation of surface
polaritons of the TE (or TM) type and those of the one-
partial shear SAWs considered in this paper.

In order to show this, it is convenient to consider an
infinite magnetic crystal in terms of the Green’s func-
tions. At TN > TD, the effect of the spin subsystem of the
crystal on its elastic properties can be taken into
account by introducing a set of effective elastic moduli,
which will possess spatial and temporal dispersion and
characterize a certain effective elastic medium. If one
compares the equation of motion describing the propa-
gation of the shear SH wave in this elastic medium with
the equation determining the spectrum of the bulk TE
(or TM) polariton propagating in the infinite crystal
[22], it will be seen that, in certain geometries of the
wave propagation, there is a one-to-one correspon-
dence between the effective elastic moduli involved in
the equation for the normal shear SH wave in the infi-
nite crystal, on one hand, and the components of the
permittivity (permeability) tensor, on the other. In this
way, considering elastic shear waves propagating along
the surface of a magnet, one can find analogs of the sur-
face, as well as bulk, polaritons of the TE (TM) type.

In particular, if a crystal has no acoustic activity, i.e.,
(H · l) = 0, the shear SAW arising on the acoustically
continuous magnetic–nonmagnetic medium interface
and characterized by dispersion relation (19) is an ana-
log of the surface phonon polariton [22]. A new type of
a two-partial shear SAW arising in the presence of the
nonhomogeneous exchange interaction (investigated in
[23]) is analogous to the surface excitonic polariton [22].

The effect of the magnetic dipole–dipole interaction
(magnetic surface TE polaritons) on the spectrum of the
one-partial shear SAWs investigated here and on the
P

conditions for their formation on the surface between a
low-temperature AFM and a nonmagnetic medium will
be considered elsewhere.
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Abstract—The problem of localized superconductivity has motivated the preparation of Mg1 – xCuxO solid
solutions with NaCl structure and 0.01 ≤ x ≤ 0.20, as well as a study of the magnetization and magnetic suscep-
tibility χ in the 2–400 K temperature range and in magnetic fields of up to 5 T. The temperature dependence of
χ is described for all compositions by the Curie–Weiss law, χ = C/(T – θ), where the constant C is close to the
value calculated for each composition for µeff = 1.7–1.9µB, and θ is close to zero. For T < 30 K, χ(T) deviates
for all compositions toward lower χ, which can be attributed to magnetic ordering of exchange-coupled clusters
in the solid solution. At T ~ 320–330 K, an anomaly of a diamagnetic type, i.e., a decrease of χ by 6–30% of
its paramagnetic value, has been observed for all compositions against the background of the generally para-
magnetic χ(T). A discussion is presented of alternative reasons for this anomaly and of its possible connection
with localized superconductivity. © 2000 MAIK “Nauka/Interperiodica”.
Studies of localized (impurity) superconductivity are
of a certain interest as a possible way to increase the Tc

temperature of high-temperature superconductors [1].
This superconductivity with Tc as high as 200–300 K is
quite frequently observed not only in the well-known
cuprate superconductors [2], but in a number of other
transition-metal compounds, in particular, in copper
monoxide-based heterophase systems [3–5]. It was
shown, for instance, that the Cu–Mg1 – xCuxO hetero-
structure exhibits for x = 0.15 and 0.20 magnetic
screening [5], which is possibly related to the interface-
type superconductivity. The magnetic screening setting
in under cooling near 320–330 K coincides with the
onset of a magnetic anomaly (of the diamagnetic type)
for the same compositions. The present study was per-
formed over broader temperature and magnetic-field
ranges with the purpose of obtaining more complete
and detailed information on this anomaly and on the
specific magnetic properties of the Mg1 – xCuxO solid
solutions with the NaCl structure favorable for high-
temperature superconductivity.

1. SAMPLES AND MEASUREMENT 
TECHNIQUES

Polycrystalline samples of Mg1 – xCuxO solid solu-
tions were prepared by solid-phase reactions in the
0.01 ≤ x ≤ 0.20 composition region (for more details,
see [5]). The starting components and solid solutions
were subjected to x-ray structural and phase analyses,
and one also studied their EPR spectra to reveal the
1063-7834/00/4204- $20.00 © 20719
presence of possible magnetic impurities. The x-ray
diffraction analyses showed the samples to be single
phase, and the parameter of their NaCl-type crystal lat-
tice to increase linearly with x from 4.212 ± 0.001 Å for
x = 0 to 4.218 ± 0.001 Å for x = 0.20. EPR measure-
ments made at 300 K, as well as low-temperature mag-
netic-susceptibility studies revealed in MgO, which
was used to prepare the Mg1 – xCuxO solid solutions,
showed the presence of a small amount of the impurity
ions Cu2+, Mn2+, and Cr3+ (≤0.1%). The measurements of
magnetic susceptibility were carried out on two setups,
namely, with a SQUID magnetometer in the 2–400 K
range and in magnetic fields of up to 5 T, and on a Fara-
day magnetic balance within the 50–600 K region and
at H of up to 1.5 T. Both setups have about the same
sensitivity, 5 × 10–8 cm3/g.

2. RESULTS

It was shown [5] that the temperature dependences
of the magnetic susceptibility of the Mg1 – xCuxO solid
solutions, χ(T) and χ–1(T), follow the paramagnetic
behavior and obey the Curie–Weiss law χ = C/(T – θ)
with θ close to zero. However, a more careful consider-
ation of these relationships leads to the conclusion that
the paramagnetic χ(T) relations have anomalies of a
“diamagnetic” character. To more clearly reveal these
anomalies, it is more reasonable to consider the exper-
imental data in the χT = f(T) coordinates. If χ(T) fol-
lows a pure paramagnetic course with θ = 0, the exper-
imental points should fit in this case on a temperature-
000 MAIK “Nauka/Interperiodica”
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Temperature dependence of the Curie constant C = χT for the Mg0.85Cu0.15O solid solution in a magnetic field of 1 T.
independent line with the intercept on the vertical axis
equal to the constant of the Curie law χ = C(T). The fig-
ure presents a χT = f(T) plot typical of all the solid solu-
tions with x = 0.15 studied. Above 320–330 K, the
experimental points are seen to fit closely to a tem-
perature-independent straight line with C = 1.27 ×
10−3 cm3K/g calculated for the x = 0.15 composition.
Below 320–330 K, the experimental points lie below
the calculated value of C. A similar result was obtained
also for other compositions with x = 0.04, 0.05, 0.10,
and 0.20. The relative magnitude of the ∆χ /χ anomaly
is ~6% for x = 0.15 and lies within 20–30% for the
compositions with x = 0.05 and 0.10.

The figure shows that, as the temperature decreases
to 20 K, the experimental values of χ approach the C
line, to subsequently fall rapidly off with temperature
down to 2 K. A similar result for the low-temperature
part of the χT = f(T) plot was found with the other com-
positions studied, but the temperature T at which χT
starts to decrease was approximately proportional to x,
i.e., to the content of Cu2+ ions in the solution. For
instance, we found T ' = 30 K for x = 0.20 and T ' = 14 K
for x = 0.10.

It should be pointed out that the temperature depen-
dences χ(T) were measured in magnetic fields H = 0.5
and 1 T, and for some samples, at 4.5 T. The results
obtained in all these fields were practically identical.
No noticeable dependence of the magnitude of the
anomaly on H was observed. An attempt was also made
to reveal hysteretic phenomena in the “diamagnetic”
susceptibility, which are characteristic of type-II hard
superconductors. With this purpose in mind, the sample
was cooled in a zero field (the ZFC regime) and in a
magnetic field H = 80 Oe (FC) below 320–330 K. The
ZFC and FC temperature dependences of the magneti-
zation coincided within experimental error, which can
be assigned either to a low diamagnetic susceptibility
of the localized superconductivity regions, or to a
P

reversible nature of the M(H) magnetization curves
because of a weak magnetic-vortex pinning.

One also measured the field dependences of the
magnetization of the solid solutions at fixed tempera-
tures of 2, 100, and 300 K. The M(H) plots obtained at
T = 100 and 300 K were practically linear. The M(H)
relation obtained at 2 K for the x = 0.2 composition is
satisfactorily reproduced by a Brillouin function, but
with an effective magnetic moment substantially
smaller than the theoretical value of 1.73µB derived for
the Cu2+ ion with spin 1/2. This decrease of M is appar-
ently associated with the existence at low temperatures
of some antiferromagnetically coupled complexes of
Cu2+ ions.

3. DISCUSSION

The results presented here are evidence of the exist-
ence of an anomaly of a “diamagnetic” nature at T ≤
320–330 K, superposed on a paramagnetic temperature
dependence of the magnetic susceptibility of the
Mg1 − xCuxO solid solutions (0.01 ≤ x ≤ 0.20). The
absence of a detectable difference between the ZFC and
FC magnetizations M(T) may be due to the localized
superconductivity regions having a small volume and
to the specific features of the process of their magneti-
zation in this case. Therefore, one cannot rule out the
possibility of formation of regions with localized
superconductivity in Mg1 – xCuxO solid solutions (x ≤
0.20). It is the relatively small fraction of the regions
(fragments) with localized superconductivity in the
total volume of the paramagnetic phase that underlies
certain difficulties met in studies of this phenomenon
(see [1]). The main argument for the conjecture of the
observed anomaly being of the superconducting nature
is the coincidence in temperature of the beginning of
this anomaly (under cooling) at 320–330 K with the
onset of the magnetic screening observed earlier on the
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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same solid-solution samples (see [5]). An analysis of
this effect suggests that its nature is related to the inter-
face-type localized superconductivity [3–5]. It should
be also pointed out that the observed anomalies exhibit
a metastable character, which is typical of localized
(impurity) superconductivity with a high critical tem-
perature [2].

The assumption of the observed χ(T) anomaly being
due to magnetic impurities appears less likely. If one
accepted this assumption, some ferro- or antiferromag-
netic uncontrollable impurities would create an anom-
aly opposite in sign to the observed “diamagnetic” one,
i.e., their presence would have increased rather than
reduced χ against the background of the paramagnetic
χ(T) under cooling. No such situation was seen to occur
in our experiments. The anomaly was “diamagnetic” in
all cases and for all samples of the solid solutions,
including those prepared from different Mg2+ and Cu2+

oxides and salts. Thus, the assumption of the magnetic
anomaly observed in the solid solutions studied being
of a superconducting nature appears most probable.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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Low-Temperature Relaxation of Metastable States and Quantum 
Tunneling in Antiferromagnets with Ising Rare-Earth Ions: 
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Abstract—The paper reports the first observation of a magnetic relaxation of metastable states in an antiferro-
magnet (dysprosium orthoaluminate DyAlO3) at low temperatures in zero magnetic field made by magneto-
striction measurements. The metastable states were excited with the heat shock at the transition through the λ
point of liquid helium in the course of thermal cycling. A possible mesoscopic mechanism of thermally acti-
vated and quantum magnetic relaxation is discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. Magnetic relaxation phenomena exhibiting quan-
tum saturation at helium temperatures were observed to
occur in amorphous and single-crystal, film, and bulk
magnets [1–3]. Metastable states form here usually in a
remagnetizing magnetic field, the strength of which
does not exceed the coercive force of the material, and
one measures the sample magnetization. Magnetic
relaxation occurs in this case primarily by thermally
activated and quantum creep of domain walls [4–7].
The highest temperature of the transition from the ther-
mally activated to quantum mode and the highest quan-
tum-tunneling frequency for the same volume are
observed in antiferromagnetic materials [8–12]. How-
ever, the use of a magnetic field to create metastable
states in a pure antiferromagnet meets with difficulties,
because Zeeman interaction is compensated and the
sample magnetization is zero in the fields traditionally
employed for observation (H < 100 Oe).

2. This paper reports the first observation in antifer-
romagnetic single crystals (dysprosium orthoalumi-
nate) of magnetic relaxation of metastable states
induced by a strong thermal excitation of magnetic
crystals immersed in liquid helium at a temperature
close to the superfluidity point, at which the heat con-
ductivity of helium undergoes a jump. The dramatic
decrease (down to 10–7) of heat removal occurring in
the crossover through the λ phase-transition point dur-
ing the reverse temperature run in thermal cycling cre-
ated a heat shock, which was due to the release of Joule
heat in the strain gauge attached to the sample, and the
single crystal was driven to an excited state [13, 14].

A new method is proposed for studying the relax-
ation of this state, which consists in measuring the
magnetostriction in metamagnetic transitions. The
sample used in the experiment was a single crystal of
1063-7834/00/4204- $20.00 © 20722
dysprosium orthoaluminate DyAlO3 measuring 4 × 4 ×
1 mm, which was grown by spontaneous crystallization
from a melt solution. The magnetostriction was mea-
sured with a tensometric dilatometer (with a relative
strain sensitivity of 5 × 10–7) in fields of up to 4.2 T gen-
erated by a superconducting coil within a temperature
interval from 4.2 to 1.57 K. The magnetic field was
applied along the a axis, and the strain was measured
along the [110] direction. Below the Néel temperature
(TN = 3.52 K [15]), a metamagnetic transition with an
AyGx  AxGy magnetic-structure rearrangement (by
the notation of Wollan–Koehler [16]) is observed in
DyAlO3 in this experiment geometry. We have found
that the metamagnetic transition is accompanied by an
anomaly in magnetostriction, and it is the latter that
serves in this study as an indicator of the state of the
rare-earth subsystem. The experiment was conducted
as follows. In the first stage, we measured magneto-
striction curves as the sample temperature was lowered
from 4.2 down to 1.57 K (with the sample residing in
an equilibrium state). For illustration, Figs. 1 and 2
present magnetostriction isotherms of DyAlO3 obtai-
ned at T1 = 2.3 K and T2 = 2.9 K. The curves are seen to
have a characteristic cupola-shaped anomaly caused by
the metamagnetic transition. Curves 1 correspond, in
these figures, to the equilibrium state. On attaining the
lowest temperature T = 1.5 K reached in this experi-
ment, the sample temperature starts to increase. As the
liquid-helium bath temperature passes through the λ
point, the sample is subjected to a short heat shock
(because of the experimental conditions crossing over
from isothermal to adiabatic), which excites the crystal.
With the sample in this state, the second stage of the
experiment begins. The sample temperature is fixed, for
instance, at T = 2.3 K, and we start to study the tempo-
000 MAIK “Nauka/Interperiodica”
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ral behavior of the magnetostriction anomaly at the
metamagnetic transition by successively obtaining
magnetostriction isotherms with a time step ∆t = 240 s
(curves 2–6 in Figs. 1 and 2). The subsequent treatment
of the results of measurements consists in calculating,
for each curve, the ratio of the anomaly amplitude An

(in the metastable state) to the amplitude A0 (in the
equilibrium state), and in plotting the dependence of
ln(An/A0) on the time of measurement for the given
temperature. Fig. 3 presents such plots obtained at T1 =
2.3 K and T2 = 2.9 K. These plots were used to derive
the relaxation constants Γ for the given temperatures
(Γ1 = 1.24 × 10–4 s–1 and Γ2 = 1.53 × 10−4 s–1). It should
be stressed that the values of Γ we determined are in
good agreement with those obtained [3] in a study of
the low-temperature relaxation in an isomorphous sin-
gle crystal of terbium orthoferrite TbFeO3 by tradi-
tional magnetization measurements. Our experiment
differs radically in that it studies the relaxation of meta-
stable states of strongly anisotropic rare-earth ions,
which possess large J (for the dysprosium ion Dy3+, we
have MJ = ±15/2) and are characterized by pseudo-
Ising properties, whereas the authors of [3] dealt with
an investigation of the relaxation of the magnetic sub-
system formed by Fe3+ ions (S = 5/2), which represent
a classical example of weakly anisotropic ions.

3. Let us now discuss possible mechanisms of ther-
mally activated relaxation and quantum relaxation in
the magnetic subsystem of the antiferromagnet under
study. One of them could be associated with the forma-
tion of domains of a metastable antiferromagnetic
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Fig. 1. Magnetostriction isotherms of a DyAlO3 single crys-
tal along the a axis at T = 2.3 K: (1) sample in an equilibrium
state and (2–6) temporal dependence in the metastable state,
t (s): (2) 0, (3) 280, (4) 1120, (5) 1680, and (6) 2240.
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phase, which relax through domain wall displacement.
Consider this mechanism in more detail. The rare-earth
(RE) orthoaluminate DyAlO3 has a distorted perovskite

structure described by the space group . It is char-
acterized by the existence of two nonequivalent sites
for rare-earth ions, to which two Ising axes correspond
lying in the ab plane of the crystal at an angle to one
another, and by four pairwise-coupled antiferromag-
netic sublattices, whose magnetizations are directed
along the Ising axes [17]. Denoting by mi (i = 1, 2, 3, 4)
the sublattice magnetizations, the energy of the antifer-
romagnet in a magnetic field can be presented in the
form

(1)

where Hx and Hy are the magnetic-field components
along the a and b axes, respectively; λij are the
exchange constants; and α0 is the angle between the
Ising axes and the a axis. By minimizing the energy (1)
in zero magnetic field, one obtains two twofold-degen-
erate antiferromagnetic phases [17]: the (AyGx) phase,
in which m1 = m3 = –m2 = –m4 = ±m, and the (AxGy)
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Fig. 2. Magnetostriction isotherms of a DyAlO3 single crys-
tal along the a axis at T = 2.9 K: (1) sample in an equilibrium
state and (2–6) temporal dependence in the metastable state,
t (s): (2) 0, (3) 840, (4) 1400, (5) 3080, and (6) 3920.
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phase with m1 = m4 = –m2 = –m3 = ±m. The energies of
these phases can be written, respectively, as

(2)

(3)

One of these phases is metastable and will transfer to a
more stable one by the thermally activated or quantum
relaxation mechanism owing to the difference between
their specific energies ∆E = E(AyGx) – E(AxGy) =
[−λ13 + λ14]m2. The phase transformation can occur by
a local displacement of the interface, which represents,
in the case of a strong (Ising) anisotropy in question,
two adjacent sublattice layers of rare-earth ions with a
compensated antiferromagnetic exchange field gener-
ated by the neighboring layers. We will arbitrarily call
the states of magnetic ions in these boundary layer the
“±” states. Because of the Ising character of the RE ion
anisotropy, a boundary ion crossing over from the “+”
to “–” state has to overcome an energy barrier caused
by the ferromagnetic interaction in the sublattice

boundary layer, ∆E± = λ11mµ, where µ is the ion mag-

netic moment. This barrier can be overcome by thermal
activation at a finite temperature. Because the Ising
properties of the Kramers RE ions in the orthoalumi-
nate are not ideal, i.e., there exists a finite, though
strong g-factor anisotropy destroying the axial local
crystal-field symmetry, quantum tunneling is also not
forbidden in the system under study (in a system of
non-Kramers Ising ions, this mechanism was consid-
ered in [18]). Let us estimate the possible number of

E AyGx( ) 1
2
--- –λ11 λ12 λ13– λ14+ +[ ]m2,=

E AxGy( ) 1
2
--- –λ11 λ12 λ13 λ14–+ +[ ]m2.=

1
2
---
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Fig. 3. Time dependence of the logarithmic ratio of the mag-
netostriction amplitude of the metamagnetic transition in a
metastable state, An, to the amplitude in an equilibrium
state, A0, for DyAlO3 measured at (1) T1 = 2.3 K and (2) T2
= 2.9 K.
P

ions taking part in boundary phase-transformation
events. From the relaxation constant Γ(T) =
ωexp(−∆U/kBT) measured at two temperatures (T1 =
2.3 K and T2 = 2.9 K), we obtain ∆U = [kBT1T2/(T1 –
T2)]ln(Γ1/Γ2) ~ 3.2 × 10–16 erg. On the other hand,

∆E± = λ11mµ = H11exchµ, where µ is the rare-earth

ion magnetic moment, so that ∆E± ~ 1.67 × 10–17 erg, in
full accord with the data [19] obtained for DyAlO3.
A comparison of the two energies shows that a bound-
ary region displacement event involves ~101–102 ions.
Therefore, the possible quantum tunneling described
here is a mesoscopic process in this case. It should be
noted that expansion of the metastable phase in the
direction perpendicular to the sublattice antiferromag-
netic planes is energetically preferable to that in the ab
plane of the crystal, because in the latter case, the ion
would also have to overcome the antiferromagnetic
coupling energy required to form the boundary plane.
Therefore, the creation of metastable phase formations
extended along the c axis in each pair of the antiferro-
magnetically coupled sublattices appears more likely.
The overlap of the metastable phases gives rise to the
formation of a stable phase with an oppositely directed
antiferromagnetism vector in both sublattices. The
probability of formation of the above metastable states
is high, because the estimated thermal energy built up
in the crystal is more than sufficient to transfer all of the
crystal to the metastable phase. Indeed, if one takes into
account that the observed short jump of the sample
temperature in the crossover through the λ point is
∆T = 5 K [13, 14], the specific thermal energy will con-
stitute ∆ET = ρc∆T ~ 3.9 × 107 erg/cm3, and the energy
of the metastable phase, ∆E = E(Ay, Gx) – E(Ax, Gy) =
|−H13 + H14|m ~ 3.0 × 106 erg/cm3. Thus, the above esti-
mates are not at odds with the possibility of existence
of the magnetic relaxation mechanism described. The
colossal magnitude of the observed thermal expansion,
as well as the associated frequency shift of the optical
absorption spectrum of DyAlO3 [20] (∆ε = 10–4) fol-
lowing the heat shock, may be due to metastable
changes in the magnetic subsystem of the crystal,
because no such colossal thermal expansion is
observed to occur in the YAlO3 yttrium orthoaluminate,
the nonmagnetic analog of the sample studied. It should
be pointed out that the relative magnitude of the fre-
quency shift of the optical absorption spectrum corre-
lates with the observed colossal thermal expansion
∆ε = 3 × 10–5 [13].

One should also bear in mind that thermal excitation
in a crystal gives rise to a strong elastic distortion of the
lattice, which results in a change of the crystal field and,
as a consequence, in a change of the rare-earth ion
ground state (the energy spectrum, g-tensor compo-
nents, the character of the wave functions). Magneto-
striction measurements permit one to follow the relax-
ation of such distortions in time. To clarify the nature of

1
2
--- 1

2
---
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the observed colossal metastable strain in the crystal,
one has to carry out additional experiments, such as a
study of the antiferromagnetic domain structure using
magneto-optic methods.

4. This study has revealed an exponential relaxation
of metastable magnetic states in rare-earth orthoalumi-
nates with Ising ions. We propose a new method of its
investigation, namely, by measuring the temperature
and temporal dependences of the magnetoelastic anom-
alies in metamagnetic transitions.
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Abstract—The Faraday rotation of europium organic glass (based on polymethyl methacrylate) in megagauss
fields is investigated experimentally and theoretically. The experiment was performed using an MK-1 magnetic
explosion generator and laser radiation at the wavelength λ = 0.85 µm at T = 30 K. It is found that the depen-
dence of the rotation angle of the polarization plane on the magnetic field is nonlinear. The theoretical results
are compared with the experimental data. The contribution of the orbital angular momentum of europium ions
to the Faraday effect is revealed. The conclusion is drawn that the previously found anomalies of the Faraday
effect for the laser radiation at the wavelength λ = 0.63 µm are brought about by the magnetooptical resonance,
which is induced by the ultrastrong field. © 2000 MAIK “Nauka/Interperiodica”.
Earlier [1], we predicted and theoretically investi-
gated a new phenomenon—the substantial transforma-
tion of the spin and orbital structure of light rare-earth
atoms under the action of ultrastrong (megagauss)
magnetic fields. It is known that the ground state
(ground multiplet) with a small magnitude of the total
angular momentum is realized in light rare-earth ions
due to the spin–orbit interaction (for example, in Eu3+,
J = 0; in Sm3+, J = 5/2; etc.), whereas the multiplets
with large magnitudes of the angular momentum are
the excited ones. In the quasi-classical terminology, the
spin and the orbital  angular momentum can be consid-
ered to be antiparallel to each other in the ground state
and parallel in the highest-lying multiplet of the funda-
mental term. It was demonstrated [1] that the strong
magnetic field, when competing with the spin–orbit
interaction, changes the mutual orientation of the spin
and orbital  angular momentum from the antiparallel
orientation to the parallel one. This mutual reorienta-
tion occurs via series of quantum jumps, rather than
continuously. Investigation of this phenomenon seems
to be promising, because it provides information on
complex many-electron objects such as rare-earth
atoms, actinides, high-spin organic molecules, etc.
Moreover, the observation and investigation of quan-
tum jumps are also of interest for the physics of ultras-
trong magnetic fields, specifically for the development
of measuring techniques employed in these fields, since
these jumps can be considered as the atomic standards
of megagauss fields. The measurement of the Faraday
rotation in ultrastrong magnetic fields in the optical and
1063-7834/00/4204- $20.00 © 0726
ultraviolet ranges is of considerable promise for the
study of quantum reorientation of magnetic moments.
This is explained by the fact that, according to [1–5],
the Faraday effect brought about by ions with the non-
zero orbital angular momentum responds to only the
orbital  angular momentum of the ion rather than the
total magnetic moment (excluding the narrow spectral
regions adjacent to the resonant frequencies of the for-
bidden f–f transitions).

Traditionally, investigations into the magnetic and
magnetooptical properties of rare-earth materials are
reduced to consideration of only the ground multiplet
of rare-earth ions [5, 6]. In this case, the average orbital
angular momentum is proportional to the total mag-
netic moment of the ion (J ≠ 0). The inclusion of the
multiplet mixing (J–J mixing) results in an additional
contribution to the orbital  angular momentum and,
consequently, to the Faraday rotation, which, in rela-
tively weak fields, linearly depends on the magnetic
field [2–5]. In ultrastrong magnetic fields, when the
splitting of the levels in the ion becomes comparable to
the spin–orbit interaction, the dependence of the aver-
age orbital angular momentum on the magnetic field
becomes substantially nonlinear [1]. Among the rare-
earth ions, the Eu3+ ions (L = 3, S = 3) are of special
interest. The ground state of these ions is the singlet
with zero total angular momentum. For this reason,
the paramagnetic contribution to the Faraday rotation
due to the difference in populations of the levels of the
ground multiplet split by the magnetic field is not
observed.
2000 MAIK “Nauka/Interperiodica”
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In [7], the Faraday effect was measured in the
organic glass containing the Eu3+ ions in magnetic
fields up to 11 MOe with the use of laser radiation at
the wavelength λ = 0.63 µm, which is rather close to
the absorption line for this ion [8]. The latter circum-
stance considerably complicates the interpretation of
the experimental results, because, in this case, it needs
to take into account the resonance contribution to the
Faraday effect.

In order to investigate the phenomenon of rotation
of the angular momenta of the Eu3+ ion, it is necessary
to examine the Faraday effect of europium-containing
media with the use of the radiation at a frequency well
apart from resonant frequencies, which was accom-
plished in the present work.

1. EXPERIMENT
The Faraday rotation of the organic glass (based on

polymethyl methacrylate) containing 5 wt % Eu3+ ions
was measured in magnetic fields up to 6 MOe at T ~
30 K. The schematic diagram of the experiment is pre-
sented in Fig. 1a. A sample of the organic glass 18 mm
thick was placed in a flow-type helium cryostat
(Fig. 1b). The Faraday effect was measured using the
laser radiation at the wavelength λ = 0.85 µm. The light
passed through a polarizer, the sample, analyzers, and
two photomultipliers. One of the photomultipliers
recorded the Faraday rotation, and the second photo-
multiplier measured the dependence of absorption on
the magnetic field. The absorption of the sample was
constant over the entire range of magnetic fields. The
ultrastrong magnetic fields were produced by an MK-1
magnetic explosion generator [9]. The error in the mea-
surement of the field was no more 5%. The experimen-
tal dependence of the Faraday rotation of the sample is
shown in Fig. 2a. It is worth noting that the obtained
curve differs drastically from the corresponding depen-
dence, which was observed under radiation at the wave-
length λ = 0.63 µm [7]. Note also the fact that, despite
the low content of europium ions in the sample, the
dependence of the Faraday rotation on the magnetic
field is essentially nonlinear.

2. THEORY
The magnitude of the Faraday effect in the system

under investigation is the sum of contributions from the
matrix (organic glass) and optical transitions in the
Eu3+ ions. The contribution from the matrix is of dia-
magnetic character and linearly depends on the mag-
netic field up to fields of about 102 MOe [10].

The specific rotation of the polarization plane (the
Faraday effect) can be represented by the following for-
mula (see, for example, [5, 6]):

αF
πNe2L

mcn
---------------- ρa

f ab
+ f ab

––
ωab

---------------------ϕ ω ωab,( ),
a b,
∑=
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where

are the oscillator strengths, |a〉  and |b〉  are the ground

and excited states, ωab = (Eb – Ea) is the population of

the ground state, L = [(n2 + 2)/3]2, n is the refractive
index of the medium, N is the number of ions,

and Γab is the half-width of the a–b transition.
Let us consider in greater detail the contribution

from the Eu3+ ions to the Faraday effect. The ground
state of Eu3+ is the singlet 7F0 with J = 0, and the ener-
gies of excited multiplets are as follows: E(7F1) =
310 cm–1, E(7F2) = 925 cm–1, and E(7F3) = 2 × 103 cm–1.
In the general case, the contribution of magnetic ions to
the Faraday effect is comprised of the frequent-inde-
pendent gyromagnetic rotation of polarization plane,
which is proportional to the magnetization of ions

 = CMM, and the gyroelectric rotation, which
depends on the frequency of the incident wave. The
rotation angle of polarization plane in the visible and
ultraviolet spectral ranges is predominantly determined
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Fig. 1. (a) Schematic diagram for measuring the Faraday
rotation in ultrastrong magnetic fields produced by mag-
netic explosion generator: (1) cryostat and sample, (2) inter-
ference filter (λ = 0.85 µm), (3) analyzer, (4) polarizer,
(5) laser (λ = 0.85 µm), and (6) photoelectric multipliers.
(b) Schematic diagram of the flow-type helium cryostat:
(1) helium inlet, (2) optical sensor for measuring the Fara-
day rotation, (3) glass pipe, (4) temperature-sensitive ele-
ment, (5) plastic flanges, (6) internal cascade of the MK
generator, and (7) helium outlet.
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by the gyroelectric contribution due to the electric sus-
ceptibility of the medium. For rare-earth ions, which
occur in dielectric media, the gyroelectric Faraday
effect is formed, for the most part, by the 4f N – 4f N –

 15d electric dipole transitions, except the narrow spec-
tral regions close to the resonant frequencies of the for-
bidden f–f transitions. It was demonstrated [2, 4] (see
also [5]) that the contribution to the Faraday effect from
the 4f N – 4f N – 15d transitions for the magnetic ions
with the nonzero orbital angular momentum is equal to

(1)

The first term is the combination of the paramagnetic
contribution and mixing contribution, i.e., the contribu-
tion due to the multiplet interaction (J–J mixing), and
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Fig. 2. (a) Dependence of the Faraday rotation angle of the
organic glass containing europium ions (5 wt %) on the
magnetic field at T = 30 K. Crosses correspond to the exper-
imental data obtained under laser radiation at the wave-
length λ = 0.85 µm, and the solid line is the linear approxi-
mation of the dependence of the Faraday rotation on the
magnetic field. (b) Dependence of the mixing contribution
(J–J mixing) to the Faraday effect of europium ions on the
magnetic field. Crosses correspond to the processing of the
experimental data, and the solid line is the calculated field
dependence of the average orbital  angular momentum for
europium ions at T = 30 K.
P

the second term is the diamagnetic contribution. In this
case, the Faraday effect in the organic glass containing
the Eu3+ ions can be analyzed with expression (1), in
which the second term is the combination of diamag-
netic contributions of europium ions and the matrix. It
is important that the deviation of the Faraday rotation
from the linear dependence with an increase in the
external magnetic field H is determined solely by the
nonlinear behavior of the average orbital  angular
momentum of the Eu3+ ion as a function of H.

In this work, the average orbital  angular momentum
〈LZ〉  of the Eu3+ ion in ultrastrong magnetic fields at
T = 30 K was calculated, and the experimental depen-
dence αF(H) obtained at λ = 0.85 µm was compared
with the theoretical curve described by formula (1). It
is seen from Fig. 2a that the theoretical results, which
were obtained at VD = 3.14 × 104 deg/(cm Oe) and
a = 75.67 deg/cm, are in good agreement with the
experimental data. In order to determine the contribu-
tion from the orbital  angular momentum of europium
ions to the Faraday effect, we subtracted the diamag-
netic term (VD), which linearly depends on the mag-
netic field, from αF and, thus, determined the depen-
dence of the mixing contribution (J–J mixing) on the
magnetic field. Then, this dependence was compared
with the field dependence of the average orbital  angu-
lar momentum of europium ions, which was also calcu-
lated in the present work (Fig. 2b). It is seen that the
theoretical results, as a whole, are in reasonable agree-
ment with the experimental data. Note that such a treat-
ment of the results requires the high accuracy of the
measurements of H and αF at a low concentration of the
Eu3+ ions. For δ = ∆h/h = ∆αF/αF = 2%, the 〈LZ〉  values
obtained from the treatment of the experimental results
(Fig. 2b) and the calculated data coincide within the
limits of error.

Now, we describe the Faraday effect in ultrastrong
magnetic fields in the vicinity of the resonant frequen-
cies of the forbidden f–f transitions. This situation is
apparently realized under laser radiation at the wave-
length λ = 0.63 µm. To accomplish this, it is necessary
to add the contribution of the adjacent forbidden
absorption line αR to expression (1). Then,

(2)

The resonant frequency ω0 of the actual forbidden
optical transition depends on the magnetic field
strength H and, in a certain field, can achieve the fre-
quency of the laser radiation used. In other words, we
believe that the optical resonance induced by the mag-
netic field takes place in this case. For the qualitative
description of the contribution of the field-induced
optical resonance to the Faraday rotation, let us use the
linear approximation of the dependence of the resonant
frequency on the magnetic field ω(h) = ω0 + γH, where
γ is the rate of frequency change. In this case, it follows

αF a LZ〈 〉 VDH α R H( ).+ +=
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from formula (1) that

(3)

where

(4)

Here, Γ is the width of the forbidden line (for rare-earth
ions, the spectral lines are very narrow Γ ~ 1013 s–1), ω1
is the frequency of the laser radiation (for the radiation
at the wavelength λ = 0.63 µm, ω1 = 3 × 1015 s–1), and
C is the coefficient proportional to the oscillator
strength for this transition. Parameters γ and ∆ω = ω0 – ω1
can be expressed through the magnitudes of the fields
H1 and H2 [where H1 is the field at which f(H) = 0
(according to [7], H1 = 10 MOe), and H2 is the field at
which f(H) reaches the maximum value (according to
[8], H2 = 9 MOe)], as follows:

Then, f(H) [see (4)] takes the form

(5)

where A = Cω0/4Γ.
Expressions (2)–(5) permit us to describe the experi-

mental field dependence of the contribution of the Eu3+

ions to the Faraday rotation. Figure 3 shows the compari-
son between the experimental data obtained in [7] and the
results of calculations at H1 = 8.8 MOe, H2 = 10.2 MOe,
a = 55, A = 74 deg/cm, and VD = 13 deg/(cm MOe).

α R H( ) f H( ) f H–( ),–=

f H( )
C ω0

2 H( ) ω1
2

– Γ2–( )ω1
2

ω0
2 H( ) ω1

2– Γ2+( )2
4ω1

2Γ2+
---------------------------------------------------------------------.=

∆ω Γ H1/ H1 H2–( ),=

γ Γ / H1 H2–( ).=

f H( ) A
2 H1 H2–( ) H1 H–( )
H1 H–( )2 H1 H2–( )2+

--------------------------------------------------------,=

120

80

40

0

–40

4 8 12
H, MOe

αF(Eu3 +), deg

Fig. 3. Dependence of the Faraday rotation of europium ions
on the magnetic field at room temperature. Points corre-
spond to the experimental data obtained in [7] under laser
radiation at the wavelength λ = 0.63 µm, and the solid line
is the result of calculations by formulas (2)–(5) at H1 =
8.8 MOe, H2 = 10.2 MOe, a = 55, A = 74 deg/cm, and VD =
13 deg/(cm MOe).
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Thus, the anomalies of αF, which were found in [7]
with the use of the laser radiation at the wavelength
λ = 0.63 µm, are most likely due to the magnetooptical
resonance induced by the ultrastrong field.

Investigations into similar optical resonances that
are induced by the magnetic field are of interest in
determining reference points on the scale of magnetic
fields. These points are necessary for grade-up of the
technique for measuring the megagauss fields.

The significant result of this work is that the contri-
bution from the average orbital  angular momentum of
Eu3+ ions to the Faraday effect is uniquely determined
for the first time. This is an important step toward the
experimental revelation of quantum magnetooptical
jumps, which are caused by magnetic field-induced
reorientation of the orbital angular momentum and the
spin of the Eu3+ ion from the antiparallel to parallel
mutual alignment.
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Abstract—The correlation between the magnetic and electrical properties of the (VS)x(Fe2O3)2 – x (0.9 < x <
1.25) oxysulfide solid solutions has been studied. The crossover of conductivity from the semimetallic to semi-
conducting type is accompanied by changes in the magnetic susceptibility, which are characteristic of the tran-
sition from delocalized to localized electrons. For x = 1.25, a region of the ferromagnetic ordering has been
established in the temperature range 90–120 K. © 2000 MAIK “Nauka/Interperiodica”.
The observation of a colossal magnetoresistance in
La1 – xCaxMnO3 doped manganites has raised interest in
other magnetically ordered materials, in which a
change in the magnetic properties is accompanied by
changes in the electrical ones, namely, by a reversal of
the conductivity type and a sharp increase in the mag-
netoresistance.

The magnetically ordered mixed 3d-metal com-
pounds, among which are the MeIMeIIA and MeAIAII

doped chalcogenides (Me is 3d metal, and A = S or Se),
chalcogenide spinels, e.g., M1 – xCuxCr2Se4 (M = Zn,
Ca, or Hg), and the (MeO)x(MeA)1 – x-type compounds,
exhibit a broad spectrum of exchange interactions and
electrical properties [1]. By varying the composition of
these compounds, as well as by properly changing
external factors (temperature, electric and magnetic
fields, irradiation, etc.), one can tailor new materials to
the desired physicotechnical requirements, as well as
make possible such phenomena as the photomagnetic
effect, the metal–insulator transition, the onset of the
ferromagnetic state in an antiferromagnetic phase, etc.
In view of the specific features of their electronic and
magnetic states, these mixed magnetically ordered 3d-
metal compounds deserve comprehensive experimental
and theoretical investigations.

This work reports the results of investigations into
structural, thermal, electrical, and magnetic properties
of the (VS)x(Fe2O3)2 – x oxysulfide system with a spinel
structure of the Fe3O4 magnetite type.

1. SAMPLE PREPARATION

Polycrystalline samples of the (VS)x(Fe2O3)2 – x
oxysulfide system with compositions in the range 0.9 <
x < 1.25 were prepared by sintering the appropriate
amounts of vanadium monosulfide VS and oxide
1063-7834/00/4204- $20.00 © 20730
α-Fe2O3 in evacuated silica tubes at 1100 K for three
days, with subsequent cooling at a rate of 40 K/h.

The vanadium monosulfide VS was prepared by
annealing of pure, electrolytically produced vanadium
metal and 99.999%-pure sulfur in evacuated silica
tubes at 1200 K for three days. The monosulfide thus
obtained had at 300 K the β-VS structure (MnP type,

Pmcn, ).

The finely dispersed powder of α-Fe2O3 hematite
was prepared as the final product of the dehydration of
synthesized iron α-hydroxide (α-FeOOH-goethite) by
calcination at 558 K. The α-Fe2O3 thus obtained had an

Al2O3-type structure ( , R3C) with the unit cell
parameters corresponding to the tabulated values for
the α-Fe2O3 hematite at 300 K. The dehydration tem-
perature of α-FeOOH was derived from the differential
thermal analysis (DTA) data. Besides, the Mössbauer
spectra of our α-Fe2O3 hematite yielded the estimate
Heff = 515.5 kOe, which likewise is in agreement with
the tabulated value for α-Fe2O3 at 300 K.

2. EXPERIMENTAL TECHNIQUE

The X-ray diffraction patterns of the samples were
recorded on a DRON-3 diffractometer with CuKα radi-
ation at 300 K. The X-ray diffraction pattern of the
sample with x = 1.25 was also obtained at 120 K.

DTA curves were measured with a MOM derivato-
graph in the range 300–1400 K at a rate of 10 deg/min.
The powder samples of the oxysulfides under study
were placed in specially-shaped evacuated silica tubes.
For each composition, the DTA curves were obtained in
three to five heating–cooling runs.

D2h
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D3d
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The electrical resistivity ρ was measured by the
four-probe dc potentiometric method in the range 77–
300 K. The parallelepiped-shaped pressed-powder
samples 10 × 5 × 3 mm in size were annealed in evacu-
ated silica tubes at 1300 K for 1 h.

The temperature behavior of the real part of the ini-
tial magnetic susceptibility χ' was studied on a setup
comprising an inductance bridge and a phase-sensitive
detector in the range 77–300 K. The measurements of
χ' were carried out on oxysulfide powders placed in a
special container 2 mm in diameter and 15 mm long.
The powders used in the χ'(T) measurements were then
pressed into the samples for the ρ(T) studies.

3. RESULTS
3.1. X-ray diffraction analysis. X-ray diffraction

analysis of the (VS)x(Fe2O3)2 – x system with composi-
tions x = 0.9, 1.1, and 1.25 showed that at 300 K the
samples have a 90–95% spinel structure of the FeO ·

Fe2O3 magnetite type (H1; –Fd3m) with a similar
cubic-lattice parameter (a ~ 8.39 Å [2]). No additional
clearly pronounced phases were revealed. The earlier
measurement [3] made for x = 1.0 showed a sulfospinel
phase with a Fe3O4-type structure that constituted up to
80%. It was found that the cooling of the sample with
x = 1.25 from 300 to 120 K is accompanied by struc-
tural changes with a lowering of the symmetry. Note
that the electronic transition in Fe3O4 (the Verwey tran-
sition at Tv = 119 K) with a decrease in the temperature
T < Tv is accompanied by a small orthorhombic lattice
distortion of ~0.05% [2]. Above Tv, the Fe2+ and Fe3+

ions randomly occupy the octahedral sites, and below
Tv, they are ordered.

3.2. Differential thermal analysis. The DTA
curves revealed a reversible endothermic effect for all
the compositions at T ~ 880 K, which, by analogy with
the DTA curves obtained for the Fe3O4 magnetite and
FeS · Fe2O3 sulfomagnetite (the endothermic effects at
830 and 850 K correspond to the Curie temperatures
Tc), can be identified with the Curie points of the vana-
dium oxysulfides. Besides, the Tc temperature for the
(VS)1.0(Fe2O3)1.0 composition prepared by sintering
equimolar amounts of the monosulfide and oxide,
which was derived earlier from magnetic measure-
ments and the corresponding DTA endothermic peak, is
approximately 870 K [3].

The DTA curves of the compositions studied
yielded a melting temperature of 1340 K for x = 0.9,
which increases to 1370 K for x = 1.25.

3.3. Electrical properties. Figure 1 presents the
logarithm of the resistivity as a function of temperature,
log[ρ(T)], plotted for the compositions x = 0.9, 1.1, and
1.25 in the range 77–300 K. One can readily see that the
log[ρ(T)] dependences for x = 0.9 and 1.1 at tempera-
tures from 80 to 240 K have semiconducting character,
and at T > 240 K, the oxysulfide with x = 0.9 undergoes

Oh
7
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a smooth crossover from the semiconducting to semi-
metallic type of conductivity. The composition with x =
1.1 in the range 240–280 K exhibits a decrease in the
resistivity by about an order of magnitude with the acti-
vated character of conductivity retained up to 300 K.
Earlier measurements for the composition with x = 1.0
revealed a decrease in ρ by a factor of seven or eight in
the range 280–330 K, with activated conductivity per-
sisting above 350 K [3].

It is also seen from Fig. 1 that the temperature
behavior ρ(T) for samples with x = 0.9 and 1.1 has an
activated character in the range 160–240 K, whereas for
x = 1.25, the conductivity is semimetallic. According to
[4], such a concentration behavior of the curves for the
oxysulfide system under study is characteristic of dis-
ordered systems with a concentration-driven Anderson-
type metal–insulator transition at a critical concentra-
tion xc. Note that the concentration xc = 1.25 is critical
for the (VS)x(Fe2O3)2 – x system, because it is at this
concentration that the conductivity crosses over from
the semiconducting to semimetallic type.

As the monosulfide concentration x in the vanadium
oxysulfide system increases, the drop in ρ within the
range 77–300 K increases from 1.5 orders of magnitude
for x = 0.9 to nine orders for x = 1.25.

The oxysulfide with x = 1.25 in the range 150–180 K
undergoes a change in the conductivity type from the
semiconductor to the semimetal with a change in the
electrical resistivity from 108 to 10–1 Ωcm.

3.4. Magnetic properties. Figure 2 shows tempera-
ture dependences of the real component of the initial
magnetic susceptibility for the (VS)x(Fe2O3)2 – x system
with compositions x = 0.9 and 1.1. The composition
with x = 0.9 was found to have an anomaly in the χ'(T)
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Fig. 1. Temperature dependences of the electrical resistivity
of the (VS)x(Fe2O3)2 – x system: x = (1) 0.9, (2) 1.1, and
(3) 1.25.
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curve in the range 80–210, which peaks at 125 K. In the
range 210–280 K, the χ'(T) curve is temperature inde-
pendent, with subsequent increase in the susceptibility
as one approaches 300 K. The composition with x = 1.1
exhibits two broad peaks in the χ'(T) curve at 145 and
298 K.

Figure 3 displays the χ'(T) curve for the composi-
tion with x = 1.25. As is seen from the temperature
dependence of the magnetic susceptibility, this compo-
sition reveals the magnetization within a limited tem-
perature range from 90 to 120 K with a peak at 115 K
and two magnetic transformation points at 90 and
120 K.

The present experimental studies of the physical
properties of the (VS)x(Fe2O3)2 – x oxysulfide system
with compositions in the range 0.9 < x < 1.25 allow the
following conclusions on the correlation between the
electrical and magnetic characteristics.

(1) As the sulfide concentration x in samples of the
system increases, one has observed (i) a concentration-
driven semiconductor–semimetal transition at xc =
1.25; and (ii) an anomaly in the magnetic susceptibility
in the range 80–210 K for compositions with x = 0.9
and 1.1, followed by an increase in the susceptibility,
which is replaced by the onset of magnetization within
the limited temperature range 90–120 K for x = 1.25.

(2) Measurements of the temperature behavior of
the electrical resistivity and susceptibility showed that
(i) for the composition with x = 0.9, a monotonic
change in the conductivity type at T > 240 K is accom-
panied by a change in the χ'(T) curve from a tempera-
ture-dependent to temperature-independent character
in the range 210 < T < 290 K; and (ii) for the composi-
tion with x = 1.1, similar to x = 1.0 [3], the change in ρ
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Fig. 2. Temperature dependences of the magnetic suscepti-
bility of the (VS)x(Fe2O3)2 – x system. x: (1) 0.9 and (2) 1.1.
P

by an order of magnitude at 240–300 K is accompanied
by the appearance of a peak in the χ'(T) curve at 298 K.

(3) The results obtained for the composition with
x = 1.25 appear interesting. The semiconductor–semi-
metal crossover in the conductivity type entailing a
change in ρ by nine orders of magnitude in the range
160–180 K is accompanied by structural changes and a
symmetry lowering. One has also observed the exist-
ence of magnetization at 90–120 K with a peak at
115 K in the χ'(T) curve and two magnetic-transition
points.

4. DISCUSSION

The electronic structure of the FeS · Fe2O3 oxysul-
fides has recently been discussed [3] in terms of the
band structure of the Fe3O4 magnetite. Both com-
pounds are characterized by ferrimagnetic ordering of
the iron ions. Below the Verwey point, the formula of
the iron oxysulfide can be presented in the form

. The current carriers are the t2g

electrons in the B sublattice moving in a narrow d band
characterized by strong electron correlations. Based on
the data obtained for FeS · Fe2O3, and assuming the
spinel lattice is retained, one can propose the formula

 for the VS · Fe2O3 compound. The
V3+ ion occupying a tetrahedral site has two d electrons
in the eg orbitals; the eg band formed by these electrons
is half-filled and also experiences the effects of strong
electron correlations. The correlations make the vana-
dium eg band split into a lower and upper Hubbard sub-
bands with the Fermi level falling in the Mott–Hubbard
gap for x = 1. In compositions with x = 1, the eg band is
filled less than one half for x < 1, and above one half for

FeA
3+S2–FeB

2+FeB
3+O3

2–

VA
3+S2–FeB

2+FeB
3+O3
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T, K
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Fig. 3. Temperature dependence of the magnetic suscepti-
bility of the (VS)1.25(Fe2O3)0.75 composition.
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x > 1. Electron transfer from the vanadium to iron
bands, and electron collectivization to form narrow d
bands, complicates the pattern of the electronic struc-
ture. Nonetheless, there is no question that the carriers
in the compounds under study are strongly correlated
electrons from the narrow d bands, for which transi-
tions between localized and delocalized states induced
by slight variations of external parameters (tempera-
ture, composition, etc.) are typical [4]. One can thus
visualize various modes of behavior, which should
affect both the electrical and magnetic properties.

Because V3+ has S = 1, the (VS)x(Fe2O3)2 – x system
should be ferrimagnetic. A comparison of curves 1 and
2 in Figs. 1 and 2 shows that, in the region of semime-
tallic conductivity, the susceptibility follows the Pauli-
type temperature dependence, which implies that the d
electrons are delocalized. As the temperature decreases
to the level where the conductivity is activated, the tem-
perature dependence of the susceptibility takes on the
form characteristic of localized electrons. Thus, the
changes in the temperature behavior of the electrical
and magnetic properties for compositions with x = 0.9
and 1.1 are correlated.

For the composition with x = 1.25, the situation is
more complex. Here, the ferromagnetic region existing
in a narrow temperature range appears below T = 160 K,
where the conductivity crosses over from the semime-
tallic to semiconducting character. Magnetic phases of
this type were predicted in [1] as the result of the tem-
perature-induced exchange in the system of band carri-
ers, whose concentration in the semiconducting phase
increases with a rise in the temperature. Another possi-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
ble reason may be that the ferron states becoming sta-
bilized [5] inside the two-sublattice matrix, ferrimag-
netic in our case. A similar temperature dependence of
the magnetization with a narrow peak near 473–533 K
is known to occur in the FeSx iron sulfide system with
x = 1.11 [6, 7].
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Abstract—An experimental study is reported of the nonlinear magnetoelectric effect in the metastable orthor-
hombic ferroelectric ferroelastic paramagnetic β' phase of Gd2(MoO4)3 in magnetic fields of up to 20 T and at
temperatures of 4.2 and 0.4 K. It is shown that the present models of the paramagnetoelectric effect can be rec-
onciled with experiments only for low magnetic fields. A new approach to the description of the magneto-
electric effect in rare-earth molybdates is proposed, which is based on a model of single-ion magnetostriction.
© 2000 MAIK “Nauka/Interperiodica”.
The metastable orthorhombic ferroelectric β' phase
of Gd2(MoO4)3 (gadolinium molybdate) exists at tem-
peratures below 159°C [1]. Gadolinium molybdate
crystallizes at 1165°C in a tetragonal β phase, which

belongs to the space group P 2m. Further cooling
transforms it from the tetragonal β to a monoclinic α
phase. The β–α phase-transition point for Gd2(MoO4)3

is 857°C. However, this transformation proceeds very
slowly, and the high-temperature phase can be pre-
served by fast cooling. If the thermodynamically meta-
stable tetragonal β phase of Gd2(MoO4)3 is cooled still
more, it undergoes a second phase transformation at
159°C. This transformation produces the ferroelastic
ferroelectric orthorhombic β' phase with a lower sym-
metry Pba2. While this phase is also thermodynami-
cally metastable, it is very stable kinetically.

Rare-earth ions in rare-earth molybdates are triva-
lent and have large magnetic moments. The magnetic
moment of a Gd3+ ion in gadolinium molybdate is MS =
7µB. A magnetic-field-induced change in the orienta-
tion of the magnetic moment of a rare-earth ion should
give rise to a perturbation of the molybdate lattice,
which cannot but affect the electric polarization of the
ferroelectric lattice. This accounts for the interest in the
possible existence of the magnetoelectric effect in rare-
earth molybdates. The first member of the family of
rare-earth molybdates where the magnetoelectric effect
was observed is Tb2(MoO4)3 [2]. It was explained as
being due to the electric polarization of the ferroelectric
subsystem in Tb2(MoO4)3 being affected by the single-
ion magnetostriction of the Tb3+ ions. This interpreta-
tion was confirmed by measurements of the magneto-
electric effect in Tb2(MoO4)3 [3]. It was also shown
experimentally that at T = 77 K, the magnetically
induced electric polarization in Gd2(MoO4)3 in a field

4
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H = 11 T is P ≤ 10–10 C/cm2. This is several orders of
magnitude lower than the value for Tb2(MoO4)3. The
magnetoelectric effect in Gd2(MoO4)3 was measured at
temperatures ranging from 300 to 5 K and in magnetic
fields of up to 19 T oriented along the [100] and [010]
axes [4]. The P(H) isotherms had a hysteresis induced
by the drift of the electric polarization. A paramagnet-
ism–antiferromagnetism magnetic phase transition was
reported [5] to occur at T ≈ 0.3 K.

This work presents the results of measurements of
the magnetoelectric effect in Gd2(MoO4)3 made at tem-
peratures of 4.2 and 0.4 K and magnetic fields of up to
20 T for various magnetic-field directions in the (001)
plane. It is shown that the field dependences undergo a
qualitative change in pattern as the temperature is low-
ered from 4.2 to 0.4 K. This is not accompanied by any
change in the character of the angular dependences.
Electric polarization vs. induced magnetization plots
P(m) have been constructed. It is shown that calcula-
tions based on the frequently employed approximation
P ~ m2 very strongly differ from the experiment. On the
other hand, calculations making use of the theory of
single-ion magnetostriction agree much better with the
experiment.

1. SAMPLES AND EXPERIMENT

Gd2(MoO4)3 single crystals were grown by the Czo-
chralski technique [6]. The sample was a rectangular
parallelepiped measuring 7 × 7 × 1 mm. The large faces
were parallel to the (001) plane. Prior to the measure-
ments, the sample was made a single domain. The
details of the corresponding technique can be found in
[7–9]. The magnetoelectric effect measurements in a
constant magnetic field are described in [10, 11]. Cool-
ing the sample to 0.4 K was achieved by 3He pumping.
2000 MAIK “Nauka/Interperiodica”
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The electric polarization was determined by the dc
technique. The potential difference V between the elec-
trodes deposited on the (001) sample faces was mea-
sured with a Keithley-617 electrometer. The electrom-
eter input capacitance was Cem = 435.5 pF. The sample
capacitance was Csample = 3.76 pF. An additional capac-
itor Cadd = 291 pF was connected parallel to the sample
to achieve an electrometer-input time constant long
enough to enable prolonged measurements in a dc mag-
netic field. The input circuit time constant was several
hours long. Measurement of a magnetoelectric-effect
isotherm P(H) took 10 min. The measurement error
was ~5%.

The magnetically induced electric polarization P(H)
was measured along the [001] axis. The magnetic field
was applied in the (001) plane. The angle ϕ between the
[010] axis and the magnetic field was varied from 0 to
90°. The measurements were carried out in magnetic
fields of up to 20 T. When obtaining a P(H) isotherm,
the magnetic field was increased from zero to the max-
imum magnitude of 20 T for 5 min. The maximum field
was maintained for approximately 30 s, after which it
was brought down for 5 min. The magnetic field H and
the potential difference V between the (001) sample
faces were recorded automatically in 1-s increments.

The experimental plots exhibited a hysteresis. The
electric polarization grew noticeably in magnitude at a
constant magnetic field. This was considered an unam-
biguous indication of a drift of the sample electric
polarization in time. The correction for the drift was
determined in the following way. Measurements of the
drift rate were repeated three times for each P(H) iso-
therm: in a zero field directly before beginning an iso-
therm measurement, at the maximum field, and imme-
diately after the field reached zero. The differences
between the three values of the drift rate for the same
isotherm were not large, about 10%, but for different
isotherms they could differ by several times. The drift
rate for each given isotherm was assumed to be time
independent. It was determined by averaging these
three values. After finding the drift rate for each iso-
therm, its dependence on time was calculated. It was
subtracted from the experimental time dependence of
the polarization. The time was eliminated between the
P(t) and H(t) dependences, and in this way we obtained
P(H) isotherms corrected for the drift of the electric
polarization. The correction varied from 5 to 25% for
different isotherms. The isotherms P(H) corrected for
the drift showed practically no hysteresis at all. The
direction of the drift did not change when the magnetic-
field derivative with respect to time reversed its sign,
but did change under the sign reversal of the magneto-
electric effect. The drift always occurred in the direc-
tion of increasing absolute value of the electric polar-
ization.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
2. RESULTS

Figure 1 presents P(H) plots obtained on gadolin-
ium molybdate at a temperature of 4.2 K and various
values of ϕ. The P(H) plots are nonlinear. In weak
fields, below approximately 1 T, the field dependences
of polarization are quadratic to within δP/P < 8%.
Above 5 T, a trend to saturation is seen, but the growth
of polarization does not stop at the maximum field H =
20 T. Curve 1 in Fig. 1 is obtained at ϕ = 6.2°. At H =
20 T, the magnetically induced electric polarization is
P ≈ 0.3 × 10–9 C/cm2 = 0.0014Ps. As ϕ increases,
the polarization decreases, and at ϕ ≈ 45° the sign of the
effect is reversed. Within the 45° < ϕ < 90° interval, the
P(H) dependences differ from those for 0° < ϕ < 45°
only in the sign.

Figure 2 shows P(H) plots obtained at 0.4 K for dif-
ferent ϕ. They qualitatively differ from those measured
at 4.2 K. In weak fields H < 1T, a comparatively fast
growth of the electric polarization is observed. For
H > 1T, the growth rate slows down considerably, and
subsequently remains practically constant up to H = 20T.

Curve 1 in Fig. 2 was obtained at ϕ = 6.2°. At
H ≈ 1 T, the electric polarization on this curve reaches
P ≈ 0.2 × 10–9 C/cm2. At H = 20 T, the electric polariza-
tion reaches P ≈ 0.3 × 10–9 C/cm2.

Figure 3 displays pred(ϕ) = P(ϕ)/P0 reduced relations
taken at H = 20 T at the temperatures of 4.2 K (circles)
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Fig. 1. Electric polarization in Gd2(MoO4)3 along the [001]
axis induced by a magnetic field applied in the (001) plane.
The measurements were performed at T = 4.2 K at different
angles ϕ between the field and the [010] axis. ϕ (deg):
(1) 6.2°, (2) 10.6°, (3) 19.5°, (4) 28.4°, (5) 37.3°, (6) 43.9°,
(7) 48.4°, (8) 50.6°, (9) 59.5°, (10) 68.4°, (11) 77.2°, and
(12) 95°.
0
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and 0.4 K (triangles). The values of P0 were obtained by
least-squares fitting the angular dependences P(ϕ)
measured at H = 20 T by the function P(ϕ, H) =
P0(H)cos(2ϕ). They are P0(4.2 K) ≈ P0(0.4 K) ≈ 0.29 ×
10–9 C/cm2. The curve in Fig. 3 is a plot of the expres-
sion pred(ϕ) = cos2ϕ. One readily sees that the experi-
mental angular dependences of the electric polarization
presented here for the above two temperatures do not
practically differ from one another and are satisfacto-
rily fitted by this expression.

Figure 4 plots the magnetically induced electric
polarization as a function of reduced magnetization
P(m) = P(M/MS). They were obtained by eliminating
the magnetic field H between the experimental field
dependences of the magnetization, M(H), and elec-
tric polarization, P(H). The magnetization data for
Gd2(MoO4)3 were taken from [10] for the temperature
of 4.2 K, and from [12, 13] for 0.4 K. The character of
the P(m) relation undergoes qualitative changes as the
temperature is lowered from 4.2 to 0.4 K. This appears
only natural, because by [5], a magnetic phase transi-
tion from the paramagnetic to antiferromagnetic state
takes place near 0.3 K. At m = 1, the P(m) dependences
exhibit a strong anomaly at both temperatures. The
lines through the plots 1 and 3 measured at 0.4 K are
drawn to aid the eye. The lines approximating relations
2 and 4 measured at 4.2 K were calculated using the
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Fig. 2. Same as in Fig. 1, but for T = 0.4 K. ϕ (deg): (1) 6.2,
(2) 15.1, (3) 19.5, (4) 28.4, (5) 41.7, (6) 46.2, (7) 55.0,
(8) 63.9, (9) 72.8, (10) 77.3, and (11) 90.6.
P

expressions of the theory of single-ion magnetostric-
tion [14].

3. DISCUSSION

The theory of the paramagnetoelectric effect treated
in [15] proposes the following expression for the mag-
netically induced electric polarization

(1)

Here, ϕ is the angle between the tetragonal axis c and
the magnetic field. The experimental angular depen-
dences of the magnetoelectric effect in Gd2(MoO4)3, as
seen from Fig. 3, are fitted satisfactorily by an equation
of type (1). This does not apply, however, to the field
dependences. When fitted to Gd2(MoO4)3 at 4.2 K and
for sufficiently weak fields, equation (1) describes the
field dependences of the magnetoelectric effect with a
constant ξ ≈ 5 × 10–11 C cm–2 T–2. The field interval
within which equation (1) is valid is very narrow. At
H = 1 T, the error is 8%, while at H = 2 T it is already
as high as 40%.

The author of [16] proposes the following expres-
sion for the magnetically induced electric polarization

(2)

P H( ) 1/2( )ξH2 2ϕ .sin–=

P m( ) Γ1mx
2 Γ2my

2
.+=

1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

0 15 30 45 60 75 90
ϕ°

pred

Fig. 3. Reduced electric polarization pred(ϕ) = P(ϕ)/P0 in
Gd2(MoO4)3 as a function of the angle ϕ between the [010]
axis and the magnetic-field direction. Magnetic field  H = 20T.
The temperature: 4.2 K (circles) and 0.4 K (triangles).
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Here, mx, y = Mx, y/MS, and Γ1 and Γ2 are constants of the
theory. The experimental P(m) relations obtained for
Gd2(MoO4)3 at 4.2 K are fitted satisfactorily by a qua-
dratic equation of type (2) only in weak fields. For m =
0.4 (H = 1 T), the deviation of the experimental P(m)
relation from a quadratic law is δP/P = 0.07, and for
m = 0.7 it is 0.2. The deviation of the calculations from
the experiment has a systematic character. The scatter
of the experimental values is an order of magnitude less
than this systematic discrepancy. Thus, the quadratic
dependence of the electric polarization on magnetiza-
tion frequently used in the literature has a very narrow
region of applicability in this case. At T = 0.4 K, rela-
tions (1) and (2) deviate from the experimental P(m)
dependences still stronger than at T = 4.2 K.

It was shown experimentally [3] that the magnetic
field-induced variation of the electric polarization mea-
sured in terbium molybdate at T = 77–290 K, i.e., for
small m, depends linearly on the single-ion magneto-
striction of Tb3+ ions. Assuming the electric polariza-
tion in gadolinium molybdate also to depend linearly
on magnetostriction, and the latter to be described by
the theory of single-ion magnetostriction [14], one
readily obtains an expression describing the depen-
dence of the electric polarization on reduced magneti-
zation

(3)

Here, P0 is a coefficient, (x) is the lth order
reduced hyperbolic Bessel function:

(4)

(5)

Pl(y) is the Legendre polynomial, and L–1(m) is the
inverse Langevin function of reduced magnetization.
The order l = 2 of the reduced hyperbolic Bessel func-
tion is determined by the twofold symmetry of the P(ϕ)
plot in Fig. 3. For l = 2, the reduced hyperbolic Bessel
function has the form

(6)

The results of the calculations made using (3)–(6) are
shown in Fig. 4 by solid lines 2 and 4. The values of the
coefficient P0 for the [100] and [010] directions are,
respectively, 0.18 × 10–9 and 0.17 × 10–9 C/cm2. They
were chosen so as to match the calculated to experi-
mental values at m = 0.8. These coefficients provide the
best fit of the calculation to the experimental data
within the 0 < m < 0.8 interval. In this interval, the error
does not exceed 2%. This error has a random character.
For m > 0.8, the calculation is seen to deviate systemat-

P m( ) P0 Î l 1/2+ L 1– m( )[ ] .=

Î l 1/2+

Î l 1/2+ x( )
Il 1/2+ x( )
I1/2 x( )

--------------------;=

Il 1/2+ x( ) Pl y( ) xy( )exp y;d

1–
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∫=

Î5/2 x( ) 1 3

x2
-----

3
x
--- x.coth–+=

ically from the experiment. Thus, the theory of single-
ion magnetostriction agrees with the experiment much
better than the quadratic relations (1) and (2) do. The
agreement of the calculation with the experiment
observed for m < 0.8 indicates that the proposed
approach offers a correct interpretation of the main fea-
tures of the magnetoelectric effect in paramagnetic
gadolinium molybdate at the temperature of 4.2 K.

The experimental P(m) dependences obtained at T =
0.4 K fit neither of these theories. These relations qual-
itatively differ in character from relations (1), (2), and
(3). This is apparently associated with the closeness of
the magnetic phase transition at T = 0.3 K. The theory
of single-ion magnetostriction [14] considers a one-
sublattice magnet, which can be in the paramagnetic or
the ferromagnetic state, depending on the temperature.
In the paramagnetic temperature region, the relations
derived in this theory turn out to be applicable to a
description of the magnetoelectric effect in gadolinium
molybdate within a substantial part of the interval of
reduced magnetizations m. However, as the tempera-
ture is reduced to below 0.3 K, gadolinium molybdate
undergoes antiferromagnetic rather than ferromagnetic
ordering [5], which was not treated by the single-ion
magnetostriction theory [14]. Therefore, the relations
derived in terms of the single-ion magnetostriction the-
ory in its present form cannot reproduce the behavior of
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Fig. 4. Electric polarization in Gd2(MoO4)3 along the [001]
axis as a function of reduced magnetization m = M/Ms mea-
sured at different temperatures and magnetic-field direc-
tions. The field along the [010] axis: (1) T = 0.4 K and
(2) 4.2 K. The field along the [100] axis: (3) T = 0.4 K and
(4) 4.2 K.
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the magnetoelectric effect in gadolinium molybdate for
T < 0.3 K, as well as at temperatures close to 0.3 K.

An important result obtained in this study is estab-
lishing the existence of anomalies in the experimental
P(m) relations near m = 1. These anomalies are
observed at both temperatures studied. The existence of
these anomalies is the only feature common for the
P(m) relations measured at 0.4 and 4.2 K. None of the
(1)–(3) expressions reproduces these anomalies. The
physical meaning of the anomalies consists in that at
certain magnetic fields, the magnetization m saturates
and practically does not grow with increasing field,
whereas the electric polarization P continues to
increase in this field interval. At T = 4.2 K and in a field
H = 7.5 T, the experimental m(H) dependence reaches
m = 0.98. As the field continues to increase from 7.5 to
20 T, the relative growth of the magnetization is
∆m/m ≈ 0.02 [10]. The relative increase of the electric
polarization in this field interval is, as evident from
Fig. 1, ∆P/P ≈ 0.4. This accounts for the steep increase
of the P/m derivative in the vicinity of m = 1.

One of possible reasons for the existence of this
anomaly could be that it contributes to the magneto-
striction of gadolinium molybdate from the mixing of
the wave functions among different multiplets of the
excited term of the Gd3+ ion. A calculation was made of
the influence of the excited term of the Gd3+ ion on the
field behavior of the Faraday effect in paramagnetic
gallium-gadolinium garnet [17]. It was shown that due
to the excited term, the Faraday rotation contains a con-
tribution depending on the magnetic field only and is
independent of magnetization. This contribution can
result in a strong dependence of the Faraday effect on
the magnetic field within the field interval where the
magnetization is practically field independent due to
paramagnetic saturation. This calculation permitted
one to offer a qualitative interpretation of the experi-
mental field dependence of the Faraday effect obtained
in [17]. One cannot rule out the possibility that the mix-
ing of wave functions belonging to different multiplets
of the Gd3+ excited term provides a similar contribution
to the magnetostriction of gadolinium molybdate. If
this is indeed so, then the strong magnetic field depen-
dence of the electric polarization of gadolinium molyb-
date in the region of magnetic saturation finds an expla-
nation.
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Abstract—An experimental study of electron emission from nominally pure triglycine sulfate crystal sam-
ples of various thicknesses is reported. It is shown that the threshold field of emission, similar to the coercive
field, increases with decreasing sample thickness d in inverse proportion to d. © 2000 MAIK “Nauka/Inter-
periodica”.
The present stage of development of emission elec-
tronics stimulates the search for new emission materials,
with ferroelectrics showing good promise. Indeed, it
turns out that emission is an integral part of relaxation
processes, which accompany practically any change in
macroscopic polarization of ferroelectric materials [1–4].

The most radical and, hence, capable of the maxi-
mum emission effect method of changing the macro-
scopic polarization of a ferroelectric is its reversal [2].
A wealth of experimental material accumulated to date
shows the emission and polarization reversal processes
in ferroelectrics to be related. It was shown, in particu-
lar, that, first, emission is observed, as a rule, only in the
ferroelectric phase, where spontaneous polarization
exists. Second, it appears only when the polarization in
a sample is reversed. If an ac electric field is applied to
a ferroelectric sample, the emission signal is observed
only in the half-period of the external field when a neg-
ative uncompensated electric charge forms near the
emission-active sample surface [5].

An analysis of the totality of the above observations
suggests [1, 6] that this emission is most likely due to
the total uncompensated charge appearing near the sur-
face of the material when the sample polarization is
reversed.

The connection of the reversal with electron emis-
sion from a ferroelectric should manifest itself in a cor-
relation between the main parameters characterizing
these processes. Studies of the relation of reversal
parameters with the emission characteristics [7–9]
revealed the existence of a similar dependence on tem-
perature, defect concentration in a sample, the type of
the ferroelectric (weak or ordinary) for the coercive
field Ec, and the emission threshold field Eth. In partic-
ular, an investigation of the threshold fields in chro-
mium-doped triglycine sulfate showed that an increase
of the impurity concentration, together with a growth of
1063-7834/00/4204- $20.00 © 20739
Ec, results in a corresponding increase of the threshold
field within the 25–49°C temperature interval [7, 8].

A comparative analysis of experimental data on Eth
on the weak ferroelectric lithium heptagermnanate and
the ordinary ferroelectric triglycine sulfate also pro-
vides support for the idea of a correlation between the
threshold and coercive fields [9]. Indeed, in weak ferro-
electrics, the Ec field is very high, 5–25 kV/cm, even
near the Curie point, which exceeds by one to two
orders of magnitude that observed in classical ferro-
electrics. A similar relation was observed experimen-
tally also for the threshold fields Eth measured in weak
and ordinary ferroelectrics in the same conditions.

In view of the fact that the coercive field depends
substantially on the thickness of the materials studied,
it appears natural to assume that the emission threshold
field should likewise depend on the sample thickness. It
is at the checking of this assumption that the present
work was aimed.

1. EXPERIMENTAL TECHNIQUES
AND RESULTS

Similar to our preceding works, the emission cur-
rent density jem was measured here by the standard
technique [10] in a vacuum of 6.5 × 10–3 Pa. All mea-
surements were carried out on 0.4–2 mm-thick polar-
cut samples of a nominally pure triglycine sulfate
(TGS) single crystal with an area of 20–30 mm2. The
electrodes on the samples were of goldleaf. The elec-
tron emission was measured in the gap region near the
electrode closest to a secondary-emission multiplier.
The gap width was about 1 mm. The 50-Hz sinusoidal
electric field applied was 5–5000 V/cm in amplitude.
The studies were carried out in the temperature interval
from 25 to 55°C.
000 MAIK “Nauka/Interperiodica”



 

740

        

SIDORKIN 

 

et al

 

.

                                                                                                             
The results of the measurements can be summed up
as follows.

As in the previous experiments, all the samples pro-
duced electron emission only when in the ferroelectric
phase. The upper limit of the temperature interval
within which electron emission was observed is
approximately equal to the temperature of transition to
the nonpolar state, Tc.

Throughout the temperature range studied, the coer-
cive field of a sample decreases as one approaches the
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Fig. 1. Coercive field Ec as a function of temperature for
samples of pure TGS single-crystal of various thicknesses,
d (mm): (1) 0.45, (2) 1.03, (3) 1.3, and (4) 1.98.
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Fig. 3. Threshold field Eth as a function of thickness of pure
TGS single-crystal samples obtained at T = 25°C.
P

phase-transition temperature and vanishes altogether at
Tc. As is evident from a comparison of the temperature
dependences of the coercive field calculated from the
dielectric hysteresis loops for various sample thick-
nesses (Fig. 1), a decrease in sample thickness brings
about a corresponding growth of the coercive field
within the temperature region studied.

Similar experimental relations were obtained also
for the electron-emission threshold field Eth. As the
coercive field, the emission threshold field is a decreas-
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Fig. 2. Threshold field Eth as a function of temperature for
samples of pure TGS single-crystal of various thicknesses,
d (mm): (1) 0.45, (2) 1.03, (3) 1.3, and (4) 1.98.
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Fig. 4. Coercive field Ec as a function of inverse sample
thickness for pure TGS single-crystal obtained at various
temperatures T (°C): (1) 24, (2) 27, (3) 30, (4) 35, (5) 40, (6)
45, and (7) 48.
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ing function of temperature (Fig. 2). One observes also
a nonlinear increase (Fig. 3) of the emission threshold
field Eth with decreasing sample thickness throughout
the temperature range where the ferroelectric phase
exists. As follows from an analysis of these relations,
the emission threshold field, similar to the coercive
field, increases with decreasing sample thickness d in
inverse proportion to it (Figs. 4 and 5). The threshold
field is observed also to slightly exceed the coercive
field Ec. The numerical value of this difference does not
remain constant for the material under study; it depends
on the dimensions of a sample and, in particular, on its
thickness. This effect manifests itself particularly
strongly for thin (below 1 mm) samples.

2. DISCUSSION OF THE RESULTS

Practically all of the results obtained are in accord
with the above scheme, which relates the onset of emis-
sion at polarization reversal in ferroelectrics to the
release of charges from surface electronic states
induced by the field of uncompensated charge. The sur-
face of a ferroelectric carries a bound surface charge
caused by the discontinuity in the spontaneous polar-
ization vector Ps. In the equilibrium state, the bound-
charge field is balanced at a given temperature by the
free charge flowing to the surface due to the intrinsic
conductivity of ferroelectric materials (which is always
nonzero in real crystals) or of the medium surrounding
them. Violation of this charge balance, which can
occur, for instance, under polarization reversal, creates
an electric field of the net charge in the surface layer,
which sets in during the short time required for the vec-
tor Ps to reverse its direction. When oriented in the
favorable direction, this field is capable of accelerating
electrons and initiating emission.

As already mentioned, polarization reversal is one
of the most efficient methods of creating unbalanced
charge on the surface of a ferroelectric. To reverse the
polarization of a sample, one has to apply an external
field in excess of the coercive one. A change in the coer-
cive field Ec, forming for one reason or other, will also
cause an increase of the emission threshold field.

It is known that the coercive field, rather than being
a universal parameter of a material, depends on a num-
ber of factors, including the sample thickness. Most of
the theoretical models [11] and experiments [12] point
out an inverse proportionality of the coercive field to

sample thickness, Ec(d, T) = (T) + . As seen

from Fig. 4, this relation also fits the data on the trigly-
cine sulfate crystal obtained in the present work. For

room temperature, we obtained  = 200 V/cm and
Ac = 8 V. As the temperature is increased, the values of

 and Ac characterizing the ordinate at the origin and
the slope of the corresponding straight lines decrease.

Ec
0 Ac T( )

d
--------------

Ec
0

Ec
0
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As follows from Fig. 5, the emission threshold field
can be approximated by a similar function, Eth(d, T) =

(T) + . Here,  is the hypothetical thresh-

old field for infinitely thick samples, which is 270–
300  V/cm at room temperature. This value decreases
as  one approaches the phase-transition point, which
should apparently be assigned to a similar dependence
of the corresponding term in the coercive field. The
Ath(T) parameter is 70 V at room temperature, and it
likewise decreases as one approaches the Curie point.
Thus, the behavior of the emission threshold field for
triglycine sulfate samples of various thicknesses is sim-
ilar to that of the coercive field, which implies that the
above quantities are related.

There is nothing strange in that the quantities Ec and
Eth behave somewhat differently, because the develop-
ment of the emission process is governed not just by the
polarization reversal itself, but rather by the reversal-
induced field of the unbalanced charge, which should
be high enough to stimulate emission.
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Abstract—A study is reported on the behavior in time of the electron emission current density from a triglycine
sulfate ferroelectric crystal measured at fixed temperatures. This relation is shown to have an exponential
nature. The characteristic emission relaxation time depends on temperature and decreases as one approaches
the phase-transition point. The magnitude of the relaxation time and its temperature dependence can be
accounted for both within a mechanism in which the emission decay is associated with the emptying of surface
electron states, and in terms of the Maxwellian relaxation process. © 2000 MAIK “Nauka/Interperiodica”.
Electron emission from ferroelectric crystals is a
problem of considerable significance both from the
standpoint of basic research and in terms of the appli-
cation potential involved. The kinetics of the emission
occupy an important place among various aspects of
this process. The characteristic emission-current decay
times suggest that ferroelectrics are promising materi-
als for fabricating cold emitters. On the other hand,
studying the kinetics of emission processes in ferro-
electrics in more detail could provide a better under-
standing of the basic emission mechanisms in these
crystals.

Our earlier studies [1, 2] of the emission kinetics in
ferroelectric materials, in particular, in crystalline trig-
lycine sulfate, determined the relaxation time of the
emission current after the stabilization of the polarized
state, which was created by preliminary polarization of
the sample in an electric field [2] or by properly varying
its temperature [1]. In both cases, all measurements
were carried out at one fixed temperature. This work
was aimed at an investigation of the dependence of the
relaxation processes in thermally stimulated emission
on the material temperature.

The electron emission current density jem was mea-
sured by the standard technique [3] in a vacuum of
6.5 × 10–3 Pa. The samples used for the study were
Y-cuts of a triglycine sulfate crystal, 20 mm2 in area and
1 mm thick. The sample temperature was measured
with a copper–constantan thermocouple and checked
by simultaneously measuring the capacitance of
another TGS sample. The error in temperature mea-
surements was 5%. The temperature of the samples
used in various experiments varied from +20 to +48°C.

The measurements yielded the following results. As
seen from the experimental plot displayed in Fig. 1,
thermionic emission from a TGS ferroelectric crystal is
observed only at the instant of a change of the macro-
scopic polarization. After the temperature has stabi-
lized at a distance from the Curie point, one observes a
1063-7834/00/4204- $20.00 © 20743
characteristic exponential decay of the emission cur-
rent density. The characteristic relaxation time of this
current (within the temperature region studied it is a
few minutes long) decreases as one approaches the
phase-transition point, from ≈10 min at 37°C to ≈4 min
at 48°C. As seen from Fig. 2, in some cases (see, e.g.,
curve 2) the same process may evolve over more than
one relaxation time. Note that, as this should be in the
approximation of small enough perturbations, the
relaxation time of thermally stimulated emission coin-
cides here in order of magnitude with that of the emis-
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Fig. 1. (a) Emission current density vs. time plot for the
given (b) temperature variation with time, measured on
samples of pure TGS single crystal.
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sion current in TGS crystals in the case of electric field-
induced emission [2].

The observed thermionic activity of the ferroelec-
trics under study can be explained as due to field emis-
sion of electrons from surface electron states induced
by the charge screening of the spontaneous polariza-
tion. At equilibrium, the spontaneous polarization
charge field is usually balanced, for instance, by the
charge settling down from the atmosphere, so that the
surface of the ferroelectric does not exhibit electrical
activity. A lack of balance between these fields result-
ing from a decrease of spontaneous polarization as one
approaches the Curie point will bring about develop-
ment of a nonzero net field, whose direction will be
determined now by the field of the balancing charge. It
is this field that is responsible for the ejection of elec-
trons trapped in the surface electron states [4].

Estimate the characteristic time taken by the elec-
tron traps to empty by the field-emission mechanism.
The emission current density [3]

(1)

where n(T) is the surface density of the filled surface
states at the given temperature, and

(2)

is the probability for a surface trap of depth A to
become ionized in a field E. Here, ζ is the width of the
potential well corresponding to the electron trap, and S
is the ferroelectric surface area involved in the emis-
sion.

The field E of the spontaneous-polarization screen-
ing charge can be written as

(3)

where εs is the permittivity of the nonferroelectric sur-
face layer, PS is the saturation polarization, and α and β

jem T( ) en T( )W T( ),=
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Fig. 2. Log emission current density vs. time plot obtained
on a sample of pure TGS single crystal at different temper-
atures T (°C): (1) 37, (2) 43, and (3) 48.
P

are the coefficients of expansion of the thermodynamic
potential for the crystal under study.

Substituting this field into (2), we obtain the charac-
teristic electron trap emptying time

(4)

As seen from (4), the time τ should decrease for T 
Tc, exactly that which is observed in the experiment.
Numerical estimation of the time τ made for the ordi-
nary parameters εs ≈ 5, PS ≈ 104, S ≈ 1, ζ ≈ 10–8 typical
of T ≈ 45°C for the TGS crystal with α0 ≈ 4 × 10–3 and
β ≈ 8 × 10–10 for A ≈ 10–12 yields τ ≈ 103, which like-
wise, is in a good agreement with the value measured in
the experiment.

The emission associated with the Maxwellian relax-
ation of a screening charge can, in principle, compete in
kinetics with that involving the emptying of surface
electron states. Near the phase-transition temperature,
the electric conductivity of crystalline triglycine sulfate
is 10–12 Ω–1 cm–1, and the permittivity of the ferroelec-
tric material ε ≈ 103, which yields for the Maxwellian
relaxation time τM = ε/4πσ ≈ 103 s. In principle, this
time is also close to the experimentally observed emis-
sion relaxation time, but it follows a radically different
temperature behavior than the relaxation time found
from the experiment. Indeed, the electric conductivity
does not exhibit a critical behavior near the phase-tran-
sition point, and therefore the evolution of the Max-
wellian relaxation time τM will be dominated here by
the behavior of the permittivity, which exhibits an
anomalous growth in the vicinity of Tc.
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Abstract—A new technique is proposed for preparing lead titanate ferroelectric films. The technique involves
a solid-phase reaction in an oxygen environment between titanium and lead layers deposited on a substrate. The
thicknesses of the component films being deposited are chosen based on the stoichiometric ratio in the com-
pound to be synthesized. The composition and structure of the film obtained are checked by x-ray phase anal-
ysis. The films exhibit a dielectric hysteresis loop and a temperature dependence of the permittivity character-
istic of ferroelectrics. A study has been made of the temperature and thickness dependences of the film coercive
field. They also are shown to follow a pattern typical of ferroelectrics. © 2000 MAIK “Nauka/Interperiodica”.
Of the various methods of preparation of ferroelec-
tric materials, thin-film technologies unquestionably
hold the lead. This is due both to the present trends in
applications of ferroelectrics, for example, in micro-
electronics, and to the interest in the basic aspects of the
behavior of a substance in two- and quasi-two-dimen-
sional structures (in our case, in the so-called two-
dimensional ferroelectricity).

Considered from the standpoint of their chemical
composition, ferroelectric films currently enjoying the
widest popularity are still those with a perovskite unit
cell, with lead titanate PbTiO3 films on various sub-
strates also being of considerable interest.

Preparation of new materials by thin-film technolo-
gies has both advantages and drawbacks. In theory,
thin-film techniques have a fundamental merit in that
they allow increasing the reactivity of components
through the use of the excess surface energy of the sys-
tem and, thus, lowering the temperature of the reaction
and its duration. In thin-film systems, the requirements
imposed on the composition and structure of final prod-
ucts by the phase equilibrium conditions specified in
the corresponding phase diagrams are less stringent.
On the one hand, this considerably broadens the exper-
imental potentialities in a specific problem of synthesis,
and, on the other, offers a way to a better understanding
of the nature (mechanism and kinetics) of the processes
involved in the formation and operation of the struc-
tures to be prepared, to specify and study the most
interesting and important metastable states of the sys-
tem, the conditions and limits of their existence, and the
means of their control.

One should, however, point out that the use of thin-
film technologies for the preparation and investigation
of materials of a complex chemical composition, to
1063-7834/00/4204- $20.00 © 20745
which ferroelectrics belong, meets with difficulties of a
purely technological nature.

Lead titanate can be prepared in the form of bulk
single crystals and thin films by a number of techniques
[1–5]. All the known methods of fabricating this mate-
rial involve chemical reactions between the lead and
titanium oxides, PbO and TiO2, synthesized preliminar-
ily, for instance, by the sol–gel technology and taken in
the corresponding stoichiometric ratio. The reaction
can be run both in the original melt and in a solid-phase
process. The optimum conditions of the synthesis [the
charge (melt) composition and thermal-processing
temperature] are determined from the PbO–TiO2 phase
diagram. These data suggest that the optimum lead
oxide-enriched charge compositions, which permit one
to grow crystals of two compounds, are PbTiO3 (PbO–
TiO2) and Pb2TiO4 (2PbO–TiO2).

In our opinion, the main difficulties met in the prep-
aration of both films and bulk crystals consist in that
one employs the already available oxides of lead and
titanium as starting components for the synthesis of
lead titanate in any form. These oxides, particularly
TiO2, are very stable compounds. Their metal–oxygen
bonds are nearly saturated, and therefore the formation
of new bonds required to produce PbTiO3 is a hard pro-
cess. This is why, in order, for example, to grow lead
titanate crystals from melt, one has to enrich the latter
with lead oxides (low-melting components) and oper-
ate at a temperature of 1000°C and higher.

1. PREPARATION OF LEAD TITANATE THIN 
FILMS: STUDY OF THEIR STRUCTURE 

AND PHASE COMPOSITION

This paper proposes a number of novel steps in the
preparation of heterostructures, including PbTiO3 thin
000 MAIK “Nauka/Interperiodica”
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films exhibiting ferroelectric properties. The first of
them involves the use as starting components thin
(~1000 Å) lead and titanium layers produced in a cer-
tain way in the form of heterostructures on various sub-
strates. This approach permits one to fully meet the
requirements of present-day microelectronics and lifts
the constraints imposed on the possibilities of synthesis
in solid-phase reactions specified above. At the same
time, it offers a possibility of producing and studying
individual parts of thin-film structures by comparing
their size with that of the solid-body regions where
their properties (metallic, semiconducting, dielectric,
or ferroelectric) appear and develop. The most essential
of them are the transition layers forming at the inter-
faces between various starting thin-film elements in the
course of their interaction during the synthesis.

1. 1. Preparation of Lead Titanate Films on Single-
Crystal Silicon Substrates

To solve the problems posed in this work, we carried
out several series of experiments using different sub-
strates and different synthesis regimes. In the first
series, the material used for the substrates was KÉF- or
KOB-grade silicon single crystal cut from a [100] plate
measuring 20 × 20 × 1 mm, which was treated prelimi-
narily by standard techniques [6]. Next, layers of metal-
lic lead, and subsequently, of titanium were deposited
by magnetron sputtering on the substrates prepared in
this way. The magnetron sputtering of the metals was
chosen because of its being one of the most promising
methods for producing thin-film structures employed

1
7

4

3

6

5
2

O2

Fig. 1. Block diagram of the experimental setup for the
preparation of lead titanate films. (1) VRT-2 temperature
control unit, (2) sample, (3) quartz holder, (4) resistance fur-
nace, (5) quartz tube for oxygen admission, (6) Chromel–
Alumel thermocouple, and (7) PP-63 potentiometer.
P

widely in microelectronics today. This method permits
one to vary within broad limits the composition and
structure of deposited systems and the conditions of
their interaction with one another and the substrate. The
lead-to-titanium thickness ratio, Pb : Ti = 2 : 1, was
chosen in accordance with the stoichiometry of
PbTiO3. The total thickness of the films thus obtained
(without the substrate) varied from 200 to 450 nm.

To obtain a film of the PbTiO3 complex oxide, the
Si/Pb/Ti structure was thermally annealed in a resis-
tance furnace having an oxygen flow with an average
rate of 40 l/h. The reactor temperature was controlled
by a VRT-2 unit to within 1–2°C. The temperature was
measured by a Chromel–Alumel thermocouple con-
tacting the back side of the sample. The temperature
and duration of the process varied within the 327–
627°C and 30–180 min intervals, respectively. Figure 1
shows the block diagram of the setup.

The temperature was increased in steps, namely, the
sample was placed into the furnace at an initial temper-
ature of 300–350°C and maintained in it for 30–60 min,
after which the temperature was raised to 500–700°C.
In some experiments, the heating was performed in
three stages with intermediate temperature stabili-
zation.

The phase composition of the samples thus obtained
was checked by x-ray diffraction on a DRON-3M
instrument. The x-ray phase analysis revealed phase
transformations occurring in the structures in the
course of the thermal treatment. The diffraction pat-
terns of the starting samples (before the thermal treat-
ment) contained lines of polycrystalline metallic lead
(Fig. 2a) and revealed the presence of amorphous tita-
nium. No silicon (substrate) lines were detected.
Annealing at T = 320°C for 60 min (Fig. 2b) results in
the disappearance of the amorphous titanium, oxidation
of a part of the lead to PbO2, and the onset of formation
of one of the titanium-enriched titanate phases (PbO–
3TiO3). An increase in the annealing time to 90 min
gives rise to the formation of other titanate phases, evi-
denced by the appearance of PbTiO3 and PbTi3O7 lines
with a part of the lead remaining unreacted, and to com-
plete disappearance of the amorphous titanium.
A stepped increase of the annealing temperature from
335°C for 60 min, to 410°C for 30 min, and finally to
600°C for 5 min brings to the end the formation of the
PbTiO3 and PbTi3O7 titanate phases (Fig. 2c).

These results suggest the following. Interaction in
the Pb–Ti thin-film structure on a silicon substrate in an
oxygen environment is essentially different from what
could be expected based on the phase equilibrium dia-
gram for the PbO–TiO2 system.

The presence of a thin amorphous layer of titanium
improves substantially the reactivity of the system. The
transformations involved occur at appreciably lower
temperatures than those in the oxide system (320°C).
Titanium interacts actively with lead and its oxide to
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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form stable TiO2 (which hinders this interaction when
one uses preliminarily synthesized PbO and TiO2
oxides as starting compounds). Also, the enrichment of
the titanate phases in lead oxide to PbTiO3 here is
higher than that found for the bulk samples. Finally, no
reflections due to titanium silicide phases are observed.
Thus, the thin-film structure proposed here permits one
to control the interaction of titanium with Pb, Si, and O
toward the formation of the titanates, including the
PbTiO3 of interest to us here.

1.2. Preparation of Lead Titanate Films 
on Polycrystalline Titanium Substrates

The lead titanate films prepared on Si substrates did
not exhibit clearly pronounced ferroelectric properties.
One of the reasons for this is the difficulties associated
with attaching electrical contacts to high-resistivity sil-
icon samples.

To overcome these difficulties, to simplify the het-
erosystem to be fabricated, and to broaden its func-
tional potential, we have developed the techniques of
preparing PbTiO3 samples on substrates of metallic
titanium. Plates of VT-10-grade titanium measuring
20 × 20 × 2 mm were polished mechanically and rinsed
in distilled water and isopropyl alcohol, after which
layers of lead 100 to ~1000 nm in thickness were
deposited on them by magnetron sputtering. These
structures were annealed isothermally in a quartz reac-
tor in an oxygen environment. Thin (100-nm-thick)
lead films on Ti were annealed in regimes similar to
those used for films deposited on silicon, and thick (up
to 1000 nm) films, at 700–750°C for 5–15 min. A phase
analysis of films on titanium made after the thermal
treatment revealed primarily the PbTiO3 phase, with
inclusions of PbTi3O7 (Fig. 3).

Note that the use of metallic titanium as a substrate
solved also the problem of the second electrode in the
formation and study of ferroelectric structures; indeed,
the ferroelectric forms on the metal, which serves as
one of the starting components of the heterostructure
being fabricated.

The results obtained in the study of the Ti–Pb–Si
structures permitted one to determine the optimum con-
ditions for synthesis of PbTiO3 ferroelectric films on a
titanium substrate, to simplify substantially the synthe-
sis procedure, and to broaden, at the same time, its
functional potentialities. We have succeeded in pur-
posefully changing the interaction of Pb, Ti, and O in
our technique toward preferential formation of the
PbTiO3 film. The lead layer formed on the titanium
plays a specific role here. It permitted the stabilization
of the titanium surface by protecting it against uncon-
trollable transformation to the TiO2 oxide, which hin-
ders the formation of PbTiO3. At the same time, the
interaction of lead with titanium controls the formation
of PbO in the way that favors the optimum lead distri-
bution between the titanium and oxygen for the forma-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
tion of PbTiO3. Lead and titanium in a thin-film struc-
ture interact both with one another and, simultaneously,
with the oxygen, so that we have here the oxidation not
of the pure Pb (to PbO) and Ti (to TiO2), but rather of
an intermediate Pb–Ti composition, which starts to
form at the Pb–Ti interface.

2. DIELECTRIC PROPERTIES 
OF THE SYNTHESIZED FILMS

To prove that the films thus synthesized are indeed
ferroelectric, we subjected them, besides x-ray diffrac-
tion analysis, to measurements of the principal dielec-
tric properties as well. Silver was deposited for this pur-
pose on the surface of the prepared films as the upper
electrode. The deposition was performed through a
mask with holes 1 mm in diameter. In the case of a sil-
icon substrate, the lower contact was provided by
depositing on the latter an indium–gallium eutectic,
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Fig. 2. X-ray diffraction patterns of the Si/Pb/Ti heterostruc-
ture. (a) before the annealing, (b) thermal annealing (T =
320°C, 60 min), and (c) stepped annealing (T1 = 335°C, 60
min; T2 = 410°C, 30 min; T3 = 600°C, 5 min).
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and when titanium was used as a substrate, it served as
the lower electrode.

2.1. Hysteresis Loops

The dielectric hysteresis loops were observed for an
improved Sawyer–Tower circuit with a holder adapted
for operation with thin films. The sample was placed on
a metallic platform serving as one of the contacts. The
second contact was provided with the help of a needle
pressed to the deposited silver. An S1-48B oscillograph
and a G3-56/1 audio-signal generator were employed.
The measurement frequency was 50 Hz, and the volt-
age across the sample monitored by a V7-26 millivolt-
meter was 0.5 V.

Measurements showed that, similar to [7, 8], the
loops observed in films on silicon substrates had a
poorly pronounced, distorted form (Fig. 4a). The loops
were unsaturated and broad, which can probably be
assigned to diffusion occurring at the film–substrate
interface.

The dielectric hysteresis loops observed on compar-
atively thin films prepared on titanium substrates and
slowly annealed, likewise, did not exhibit saturation
and were broad (Fig. 4b). Thin film are known to have
anomalously high coercive fields. Therefore, the above
loop pattern can be accounted for by an excessively
high coercive field, which exceeds the electrical
strength of a film and, hence, would hinder its complete
polarization reversal. The thickness ranges and the tem-
perature and deposition time regimes used to prepare
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Fig. 3. Diffraction patterns of the Pb/Ti structure. The Pb
layer thickness: (a) 100 nm and (b) 1000 nm. Annealing
regime: (a) T1 = 350°C, 30 min and (b) T = 650°C, 15 min. 
P

these films were similar to those employed for the films
on silicon.

A qualitatively different hysteresis loop is observed
in the oscillographic trace of comparatively thick
(1 µm) films prepared by rapid annealing at a high tem-
perature (600–700°C) [9]. The hysteresis loop dis-
played in Fig. 4c has the form typical of ferroelectric
films and, in particular, of lead titanate films prepared by
other techniques. The spontaneous polarization and the
coercive field derived from the loop were 15 µC/cm2 and
18 kV/cm, respectively, which likewise correlates with
the results obtained by other authors.

Figure 4 demonstrates the temperature-induced
variation of the dielectric hysteresis loops of lead titan-
ate films prepared on silicon and titanium substrates

1
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Fig. 4. Temperature variation of the hysteresis loops of films
prepared on various substrates: (a) on silicon (d = 150 nm),
(b) on titanium (d = 150 nm), and (c) on titanium (d = 1000
nm). T (°C): (1) 25, (2) 250, (3) 370, (4) 480.
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(0.2–1 µm). One readily sees that as one approaches the
temperature of transition to the nonpolar phase, both
the spontaneous polarization and the coercive field of
the material decrease. Besides, at temperatures above
the Curie point TC, the hysteretic dependence of polar-
ization on the switching field, P(E), degenerates into a
linear relation. All this argues for the ferroelectric
nature of the synthesized films.

2.2. Temperature Dependence of the Permittivity

The temperature behavior of the permittivity was
measured on a computerized all-purpose setup. The
sample was placed on a cylindrical resistance furnace,
which served at the same time as the lower contact. The
second contact was pressed from the above. The fur-
nace temperature was varied by means of a transformer
and monitored with a chromel–alumel thermocouple
placed in the immediate vicinity of the sample, with its
cold end immersed into a Dewar flask filled with thaw-
ing ice. The thermocouple emf was measured with a
V7-23 digital voltmeter. In the course of an experiment,
one measured the capacitance of the parallel-plate
capacitor thus formed, as well as the film conductivity
and the loss tangent. The measurements were per-
formed with the use of a digital RLC meter, with the
readings of all instruments entered automatically into
the computer memory. The sample heating rate was
10−15 K/min. After the transition through the Curie
point, the sample was cooled at the same rate, and a
reverse run of the ε(T) relation and of the loss tangent
tanδ(T) were measured. The measurement frequency
was 1 kHz.

Figure 5a presents the ε(T) dependence for lead
titanate films on a 1 µm-thick titanium substrate. We
readily see that the films exhibit a characteristic growth
of ε as one approaches the phase-transition temperature
(495°C). Measurements at higher temperatures are
made difficult by film degradation. The film conductiv-
ity measurements are plotted in Fig. 5b.

2.3. Dependence of the Coercive Field of the Films
on Their Thickness

The coercive field of thin ferroelectric materials is
known to increase rapidly with decreasing film thick-
ness [10, 11]. A comparison of the dielectric hysteresis
loops obtained for films of different thickness permits
one to follow the thickness dependence of Ec for the
films that we prepared. The results of study of this
dependence plotted in Fig. 6 also exhibit a clearly pro-
nounced inverse proportionality Ec(d–1) characteristic
of ferroelectrics.

Thus, the above results show that lead titanate films
possessing ferroelectric properties can be obtained by
reacting lead with titanium in the solid phase in an oxy-
gen environment. By precluding the formation of
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
highly stable oxides, this technique permits one to con-
siderably lower the temperature of the synthesis and,
hence, to partially remove the problems arising due to
the substrate material diffusing into the film.
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Abstract—The method of deriving a set of equations describing the first-order phase transitions under different
conditions has been proposed. A set of equations is obtained for a medium in which a decrease in the pressure
leads to the formation of bubbles filled with a dissolved gas. © 2000 MAIK “Nauka/Interperiodica”.
One of the most important problems in the physics
of first-order phase transitions is to devise a method for
deriving a fundamental system of equations represent-
ing these processes in various media under different
conditions.

Discrete kinetic equations for describing the precip-
itation of particles involving atoms of the same sort in
the course of phase transition have long been deduced
[1–4]. Similar equations in a continual form were
derived by Zel’dovich [5].

The equations for first-order phase transitions con-
tain coefficients that depend on the quantities govern-
ing these processes. The determination of these coef-
ficients is the basic problem in the formulation of
closed equations describing phase transitions. Despite
numerous investigations in this field, up to now, there
has been no regular method for determining these
coefficients (specifically for complex systems) with-
out invoking additional assumptions regarding the
possible application of the detailed balancing princi-
ple and a certain equilibrium size distribution of par-
ticles. These assumptions are questionable in the case
when a system is nonequilibrium. In the simplest
cases, these assumptions can be considered as limita-
tions imposed on the relationships applicable to an
equilibrium system.

In these cases, which, as a rule, have already been
treated, the obtained coefficients take the correct form.

The present work is devoted to the formulation of a
method for determining the coefficients of kinetic
equations describing the first-order phase transitions in
the sufficiently general form without invoking the
above assumptions. As an example, we considered the
formation of bubbles of a gas dissolved in a medium
with a decrease in the external pressure.
1063-7834/00/4204- $20.00 © 20751
1. THE BASIC SYSTEM OF EQUATIONS

The evolution of gas bubbles in viscous liquids and
melts at the given instant t is determined by the distri-
bution function f(V, N, t) over the bubble volume V and
the number of gas atoms N per unit volume of a gas
bubble. When deriving the basic system of equations, it
is convenient to introduce the dimensionless quantity
N1 = V/V0, where V0 is the change in the bubble volume

for time δt. Then, f(V, N, t)dV = (N1, N, t)dN1, and

f(V, N, t) = (N1, N, t).

Let δt be sufficiently small so that the change in vol-
ume by V0 leads to the change in the number of gas
atoms by unity. Then, we can write

(1)

Here, IN is the flux in space N;  is the flux in space
N1, and νN, N + 1 is the frequency of transition from state
N to state N + 1. The meaning of the remaining frequen-
cies of transitions is obvious. Since equation (1) is lin-
ear in , and  and f differ only by a constant multi-
plier, hereafter, the bar over f will be omitted.

The flux IN can be represented as

(2)

The flux  has a similar form.

f

V0
1– f

∂ f
∂τ
------ – IN IN 1––( ) IN1

IN1 1––( )– –
∂I
∂N
------- ∂I

∂N1
---------,–= =

IN νN N 1+, f N1 N t, ,( ) νN 1 N,+ f N1 N 1 t,+,( ),–=

IN1
νN1 N1 1+, f N1 N t, ,( ) νN1 1 N1,+ f N1 1 N t, ,+( ).–=

IN1

f f

IN νN N 1+, f N1 N t, ,( )
νN 1 N,+

νN N 1+,
---------------- f N1 1 N t, ,+( )– .=

IN1
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2. CALCULATION OF RATIO 
BETWEEN FREQUENCIES 

OF TRANSITIONS—THE METHOD 
OF VIRTUAL MEDIA

In order to calculate the ratio between the frequency
of liberation of a structural element νN + 1, N and the fre-
quency of absorption νN, N + 1, we employ the method of
equilibrium virtual media [6, 7]. This becomes possible
in the systems for which the notion of a “physical
point” is applicable; i.e., in the case when a system can
be described in terms of local thermodynamic quanti-
ties. Then, the frequency of liberation or absorption of
particles upon growth of a new phase (or upon transfer
from one physical point to another physical point) is, in
the general case, the product of the kinetic factor
responsible for the transfer rate and the probability of a
favorable configuration, which is determined by the
local thermodynamic potential.

This approach implies a rather small variation in the
local thermodynamic potential in the range of a physi-
cal point, which is also determined by the characteristic
length of interaction between particles in a system.
Parameters of the system can depend on external con-
ditions in an arbitrary way, provided that they only
slightly vary over the length of a physical point.

In condensed media, there is a short-range interac-
tion, and the characteristic length of the interaction
between atoms is of the order of interatomic distance.
Under these conditions, a physical point should contain
a sufficiently large number of atoms. Its size should be
less than the least characteristic size determined by the
external conditions of the existence of the system under
consideration.

To calculate the ratios νN + 1, N /νN, N + 1 and
/ , we introduce accessory virtual

media. These media are chosen so that, for a given gas
bubble, they provide the fulfillment of equilibrium con-
ditions (detailed balancing principle) with respect to
any process responsible for its evolution. In our case,
these are the change in bubble size and the change in
amount of a gas in the bubble.

In the calculation of the νN + 1, N /νN, N + 1 ratio, the
virtual medium is in equilibrium with a gas bubble with
respect to the exchange of atoms, i.e., in the chemical
equilibrium. When choosing such a medium, it is
essential that the kinetic coefficient for the frequency of
transfer of a gas atom into a bubble would coincide
with the actual coefficient and the local chemical poten-
tial would be equal to the chemical potential of gas
atoms in the bubble.

For a bubble with µL ≥ µV (where µL is the chemical
potential of a gas atom in a liquid, and µV is the chemi-
cal potential of a gas atom in a bubble with volume V),
this medium is an actual medium in which a fraction of
atoms is frozen (i.e., atoms are assumed to be fixed).
Their interaction with mobile atoms in a medium
remains unchanged. This implies that the environment

νN1 1 N1,+ νN1 N1 1+,
P

of mobile atoms in the course of displacements and
their interaction with the surrounding gas atoms are
identical to those in an actual medium. Correspond-
ingly, the kinetic coefficient for the transfer of a mobile
gas atom into a bubble is the same as in an actual
medium. Naturally, the entropy of mobile atoms is less
than the entropy of all atoms in the medium. The num-
ber of frozen gas atoms in the medium is determined by
the equality between the chemical potentials for mobile
atoms and the chemical potentials for gas atoms in a
bubble with allowance made for their interaction with
frozen gas atoms. (This condition permits one to deter-
mine the number of frozen atoms as may be required.)
The condition for applicability of the above approach
assumes that the transfer of a gas atom from a medium
into a bubble, or from a bubble into a medium, occurs
for the time during which the environment of these
atoms does not undergo substantial changes.

Therefore, for a gas bubble with the specified size
and the given number of atoms, one can find a virtual
medium being in a detailed equilibrium with this bub-
ble, and, hence,

(3)

where  is the equilibrium frequency of the
transfer of gas atoms from a virtual medium into a bub-
ble. Since the bubble size remains constant during the
process, the corresponding variable can be omitted. As
a result, we can write

(4)

This relationship takes into account the fact that,
according to the conditions of construction of the vir-
tual medium, its kinetic coefficient for the transfer of a
gas atom into a bubble is equal to the kinetic coefficient
for the transfer of the gas atom in an actual medium.
These coefficients are cancelled to give the ratio
between the probability of the favorable configuration
for the transfer of a gas atom from the virtual medium

into a bubble  and the probability of the favorable
configuration for its transfer from an actual medium
into the bubble W. Let us now consider the Gibbs
microcanonical distribution for a closed system—an
actual medium, a virtual medium, and a gas bubble.
Then, after the appropriate integration in a usual way,
we obtain the following expressions for the probability
of the transfer of one atom from a virtual medium into

a bubble  and the probability of its transfer from an
actual medium into the bubble W:

νN 1 N,+ ν̃N N 1+, ,=

ν̃N N 1+,

νN 1 N,+

νN N 1+,
----------------

ν̃N N 1+,

νN N 1+,
----------------

W̃
W
-----= =

=  ∆S ∆S̃–( )exp ∆Sn.exp=

W̃

W̃

W̃ E N Ẽ Ñ 1– Ep N p 1+, , , , ,( ) const S E N,( )[exp=

+ S Ẽ Ñ 1–,( ) S Ep N p 1+,( )+ ] Be ∆S– ,=
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Here, N, , Np , E, , and Ep are the mean numbers of
particles in subsystems and their mean energies. From

the ratio W/ , we obtain formula (4). In this formula,

∆Sn = ∆S – ∆  is the change in the total entropy of the
closed system, which consists of the actual subsystem

(∆S) and the virtual subsystem (∆ ). In the general
case, each of these subsystems is in equilibrium by
itself, but not with each other. The deficit of the total
entropy ∆Sn upon transfer of a gas atom from a bubble
(i.e., from an actual medium into a virtual medium) can
be determined by the general relationships.

In the case when the conditions for the transfer are
such that the entropy deficit increases by ∆Sn < 0 as
compared to the equilibrium entropy under the given
conditions, we have

(5)

where Rmin > 0 is the minimum work that should be
done to increase the energy of the system by ∆E > 0
and, thus, to increase the deficit of the total entropy
with respect to the initial total entropy of a metastable
system by ∆Sn < 0 at its constant value. For our case of
the transfer from the virtual medium (in which the
chemical potential of a gas atom is µV) to an actual
medium (the chemical potential of a gas atom is µL), at
µL ≥ µV, we have Rmin = µL – µV > 0.

If the conditions of the transfer are such that the
entropy deficit decreases by ∆Sn > 0 as compared to the
equilibrium entropy under the given conditions, we
obtain

(6)

where |Rmax| > 0 is the maximum work that can be done
by the metastable system to decrease its energy by ∆E < 0
and, thus, to decrease the deficit of the total entropy of
a system by ∆Sn > 0 at its constant value. In our case, at
µL ≤ µV, |Rmax | = |µL – µV | = –(µL – µV) = |Rmin |. Thus,
as follows from equations (5) and (6), at any ratio
between the chemical potentials µL and µV, the quantity
∆Sn can be written as

(7)

B const S E N,( ) S Ẽ Ñ,( ) S Ep N p 1+,( )+ +[ ] ,exp=

∆S̃ S Ẽ Ñ,( ) S Ẽ Ñ 1–,( ),–=

W E N 1– Ẽ Ñ Ep N p 1+, , , , ,( ) Be ∆S– ,=

∆S S E N,( ) S E N 1–,( ).–=

Ñ Ẽ

W̃

S̃

S̃

∆Sn

∆Sn

∆E
---------Rmin–

1
T
---Rmin ,–= =

∆Sn

∆Sn

∆E
---------- Rmax

1
T
--- Rmax

1
T
--- Rmin ,= = =

∆Sn
1
T
---Rmin–

1
T
--- µL µV–( ),–= =
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where Rmin is the minimum work defined above [see
formula (5)]. Note that, as is well known, |Rmax | =
|Rmin |.

As can be seen from formula (4), the ratio between
frequencies is a function rapidly varying with its
parameters. This means that its argument ∆Sn should be
represented as a difference, so that the expansions rap-
idly converge. Hence, we rewrite relationship (7) in the
form

(8)

where F(N, V) is, as will be shown below, the difference
between the free energy of the medium containing a
bubble (with the volume V and the number of gas atoms
N) and the free energy of the medium involving dis-
solved gas without bubble.

Then, the ratio between the transfer frequencies is
given by

(9)

In calculations of the frequencies  and

 for the process attended by changes in the size
of a gas bubble, the virtual medium is the medium
being in a mechanical equilibrium with a given bubble.
The local thermodynamic potential of this medium is
determined by the pressure at the bubble surface pL +
2σ/R, where pL is the pressure in a viscous liquid, R is
the bubble radius, and σ is the surface tension coeffi-
cient at the liquid–vacuum interface (we assume that
the gas in a bubble does not affect the surface tension).
By using the above relationships, we substitute Rmin for
this process into formula (7).

An increase in the volume of virtual medium by the
elementary volume V0 implies a decrease in the bubble
volume, because the bubble is in a detailed equilibrium
with the virtual medium, and the number of elementary
volumes N1 in the bubble decreases by unity. Therefore,
for pV > pL + 2σ/R (where pL is the gas pressure in a vis-
cous liquid), we can write

(10)

In this expression, we took into account that a decrease
in N1 by unity signifies a decrease in the bubble volume
V  V – V0 and an increase in the volume of an actual

∆Sn
1
T
--- µL µV–( )–=

=  
F N 1 V,+( ) F N V,( )–

T
------------------------------------------------------- 1

T
--- δF

δN
-------,=

νN 1 N,+

νN N 1+,
----------------

ν̃N N 1+,

νN N 1+,
----------------

1
T
--- µL µV–( )–exp= =

=  
F N 1 V,+( ) F N V,( )–

T
-------------------------------------------------------.exp

νN1 N1 1+,

νN1 1 N1,+

∆Sn ∆S ∆S̃–
1
T
---Rmin–= =

=  
1
T
--- pV pL– 2σ

R
------– 

  V0 .–
0
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medium by V0. As shown above, formula (10) can be
used at any ratio between pV and pL

(11)

(the modulus sign is omitted). Relationship (11) per-
mits us to obtain the ratio between the transfer frequen-
cies

(12)

Let us reconstruct F(N, V) from its derivatives (8)
and (12)

(13)

Indeed,

(14)

Here, µV is the chemical potential of gas atoms in a bub-
ble with constant volume V upon integration with
respect to N, and ∂µV/∂pV = V ', where V ' is the volume
of a gas bubble (with the volume V and the number of
gas atoms N ') per atom. Since the volume upon integra-
tion with respect to N ' is constant, N 'V ' = V = const, and
this quantity can be factored outside the integral sign.
Therefore, F(V, N) is an analog of the change in the free
energy upon formation of a bubble (with the volume V
and the number of gas atoms N) in the medium.

If the pressure in the medium pL > p (where p is the
saturation gas pressure), under all conditions, we obtain
F(V, N) > 0. When pL < p, at certain parameters, we
have F(V, N) < 0. This implies that the system is meta-
stable and, thus, will break down.

∆Sn
1
T
--- pV pL– 2σ

R
------– 

  V0–=

=  
F N V V0+,( ) F N V,( )–

T
---------------------------------------------------------- 1

T
---δF

δV
-------V0=

νN1 1 N1,+

νN1 N1 1+,
-------------------

ν̃N1 N1 1+,

ν̃N1 N1 1+,
-------------------

1
T
--- pV pL– 2σ

R
------– 

  V0–exp= =

=  
F N V,( ) F N V V0–,( )–

T
----------------------------------------------------------exp 1

T
---exp

δF
δV
-------V0.=

F V N,( ) δF
δV
-------

N 0=
0

V

∫ dV
δF
δN
-------

V
0

N

∫ dN+=

=  V pL pV–( ) N µV µL–( ) 4πR2σ.+ +

δF
δV
-------

N 0=
0

V

∫ dV pL 2σ
R

------+ 
 

0

V

∫ dV pLV 4πR2σ,+= =

pV
N 0= 0,=

δF
δN
-------

V
N'd

0

N

∫ µV µL–( ) N'd

0

N

∫=

=  N µV µL–( ) N'
∂µV

∂pV
---------∂pV

∂N'
--------- N'd

0

N

∫–

=  N µV µL–( ) V pV , F 0 0,( )– 0.=
P

3. CHANGE-OVER TO DIFFERENTIAL 
EQUATION

For macroscopic volumes of gas bubbles at N1 and
N @ 1, relationships (8) and (12) enable us to change-
over from difference equation (1) to the differential
equation. As a result, we obtain

(15)

In the right-hand side of this equation, the first term is
the “hydrodynamic flux,” and the second term is the
diffusion flux in the space of numbers of gas atoms in a
bubble

(16)

For  (as for IN), the expression is similar to formula
(15), that is,

In going to the continuous variable V = N1V0 with
allowance made for the relationship

we obtain

(17)

In formula (17), the first term is the hydrodynamic flux,
and the second term is the diffusion flux in the space of
the bubble volumes. Therefore,

(18)

From relationships (17) and (18), it follows that the dif-
fusion coefficients D(N) and D(V) can be determined if
the rate of hydrodynamic flux is known. This rate can
be found by solving the corresponding problem or from
analysis of the processes proceeding at the boundary of
a new phase.

Then, equation (1) can be rewritten in the form

(19)

IN νN N 1+, F N V,( )/T–( )exp=

× F N V,( )/T( ) f N V t, ,( )exp[
– F N 1+ V,( )/T( ) f N 1+ V t, ,( )exp ]

=  νN N 1+,–
1
T
--- δF

δN
------- f N V t, ,( ) ∂f N V t, ,( )

∂N
---------------------------+ .

D N( ) νN N 1+, ,
dN
dt
------- D N( )1

T
--- δF

δN
-------.–= =

IN1

IN1
νN1 N1 1+,

1
T
---δF

δV
-------V0 f

∂f
∂V
-------V0+ .–=

∂f
∂N1
---------

f
∂V
-------V0,=

IV IN1
V0 νN N 1+, V0

2 1
T
---δF

δV
------- f

∂f
∂V
-------+ ,–= =

∂IV

∂V
--------

∂IN1

∂N1
----------.=

D V( ) νN1 N1 1+, V0
2,

dV
dt
------- D V( )1

T
---δF

δV
-------.–= =

∂f
∂t
----- –

∂IN

∂N
--------

∂IV

∂V
--------,–=
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where

For equation (19), it is necessary to determine the initial
and boundary conditions. Note that equation (19) is rig-
orously applicable when N and V are the macroscopic
quantities; however, in the case when N is of the order
of unity and V is of the order of atomic volume, this
equation leads to a qualitatively correct description of
the process of the gas bubble formation.

4. CALCULATION OF THE RATES 
OF CHANGE IN BUBBLE VOLUME

AND ITS FILLING WITH GAS

Now, in order to calculate dN/dt, we should take into
consideration the fact that, at the initial and transient
stages, gas bubbles do not involve “diffusion clouds” of
gas atoms, even though they can appear at the transient
stage under certain conditions.

Consequently, the boundary kinetics of filling a bub-
ble by gas atoms takes place at these stages. To put it
differently, under these conditions, there is an exchange
of gas atoms between the medium and the bubble.
Then, by assuming that the gas in the bubble is ideal,
we obtain

(20)

(21)

Here, p is the saturation gas pressure responsible for the
gas density in a liquid nL(p), D(N) is determined by
the conditions at the medium–bubble interface, D is
the diffusion coefficient of gas atoms in the medium, α
(0 ≤ α ≤ 1) is the coefficient accounting for an addi-
tional barrier that can exist for the last jump of a gas
atom into the bubble, and l is the length of an elemen-
tary displacement (of the order of interatomic distance
in the liquid) of gas atoms in the medium. Note also that
D/2l2 is the frequency of jumps of gas atoms in a cer-
tain direction, 4πR2l is the volume from which gas
atoms migrate into the bubble, and 4πR2lnL is the num-
ber of gas atoms in this volume (where nL is the density
of gas atoms in the solution). By multiplying these
quantities, we obtain D(N).

The rate of change in the volume or in the size of a
bubble in an incompressible viscous liquid (or a melt)
can be calculated using the Navier–Stokes equation for
incompressible viscous liquids and the continuity equa-

IN
dN
dt
------- f D N( ) ∂f

∂N
-------, IV–

dV
dt
------- f D V( ) ∂f

∂V
-------.–= =

dN
dt
------- –D N( )1

T
--- δF

δN
------- α D

2l
-----4πR2n

1
T
--- µL µV–( ),= =

D N( ) α D
2l
-----4πR2nL νN N 1+, ,= =

1
T
--- δF

δN
-------–

1
T
--- µL µV–( ),

1
T
--- µL µV–( ) p

pV
------.ln= =
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tion. As is known,

(22)

(23)

Here, R is the bubble size; vi is the ith component of the
velocity field in an incompressible liquid, for which
∆ρ/ρ = kpL ! 1 [where k = (1/V)(dV/dp) is the com-
pressibility coefficient of a liquid, and V is the volume
of a liquid]; ρ is the liquid density; η is the dynamic vis-
cosity of a liquid; p is the pressure in a liquid; and σik is
the stress tensor

(24)

where δik is the Kronecker symbol. For a spherical bub-
ble, vi (σik) has only one nonzero component Vr (σrr) in
the spherical coordinate system

For a liquid with sufficiently large viscosity, any
term in the left-hand side of equation (21) is consider-
ably less than any term in the right-hand side.

This implies that, for such a liquid, it is possible to
use the quasi-equilibrium condition at the boundary,
that is,

The conditions of mechanical equilibrium are met at
the bubble surface

(25)

From equation (22), we obtain the velocity field in a
liquid

(26)

Substituting equation (26) into formula (25) gives the
growth rate of a pore dR/dt, that is,

(27)

According to relationship (27), the rate of change in the
volume V can be written as

(28)

∂v i
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1
ρ
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Then, using expression (18), we have

(29)

For a sufficiently viscous liquid, the difference
between the pressure p(R, t) at the bubble boundary and
the pressure pL is small, and, hence, p(R, t) is replaced
by pL in formulas (27) and (28). By integrating expres-
sion (21) from R to infinity and substituting Vr from for-
mula (26) into the integrated expression, we obtain the
equation for determination of p(R, t)

(30)

From relationship (30), it follows that

(31)

Inequality (31) determines the possibility of replac-
ing p(R, t) by pL.

It is evident from expression (31) that the inequality
is fulfilled even at large R and the sufficiently high vis-
cosity η. This also immediately follows from the fact
that the inequality has the second order in the low rate
(dR/dt)2.

By determining dN/dt from equation (20), dV/dt
from formula (28), D(N) from relationship (26), and
D(V) from expression (30), kinetic equation (19) can be
represented as

(32)

where f is normalized to the unit volume, and fdVdN is
the number of bubbles per unit volume. The boundary
and initial conditions will be specified below. Equation
(32) should be complemented by the law of conserva-
tion of gas atoms in bubbles and in the medium
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(33)

where n(p) is the gas density corresponding to the sat-
uration pressure p in a liquid, and p(t) is the saturation
pressure corresponding to the density of gas atoms at a
given instant. In other words, it is the pressure of atoms
of the gas being in equilibrium with the gas dissolved
in a liquid.

The multiplier 1 –  accounts for the

fraction of the free unit volume of the medium after the
formation of gas bubbles (the reciprocal of this quantity
determines the “expansion” of the unit volume, i.e., the
volume occupied by the unit volume of a liquid with
bubbles). This means that the volume of a liquid with
bubbles is given by

(34)

Equations (32) and (33) comprise the complete set
of equations determining f(V, N, t) and nL(t).

5. CHARACTERISTIC TIMES OF ADJUSTING 
THE NUMBER OF GAS ATOMS IN BUBBLE

TO PORE SIZE OR ADJUSTING THE BUBBLE 
SIZE TO AMOUNT OF GAS IN BUBBLE

The finding of the general solution of equations (32)
and (33) is a very complex problem. It is easier to take
the general solution of these equations in the case when
kinetic equation (32) can be reduced, with good accu-
racy, to the one-dimensional equation. To accomplish
this, the parameters of a system should provide a rapid
attainment of an equilibrium with respect to the
exchange of gas atoms between bubbles and the
medium, that is, µL = µV, and the subsequent slow
change in the pore sizes. In the process, the chemical
equilibrium is adjusted to the current bubble size. In
this case, equation (20) rapidly relaxes to zero at a con-
stant bubble size. For an ideal gas in a bubble, equation
(20) takes the form

(35)

Assume that the gas dissolved in a liquid obeys the
Henry law nL = δp/T, where δ is the solubility of the gas
in a liquid, p is the pressure corresponding to the gas
density in liquid n(t) = nL(t), and pV is the pressure in
the bubble of volume V.
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At the nucleation stage, the gas density in liquid
remains virtually constant nL(t) = nL(0) = δp0/T and p =
p0, where p0 is the saturation gas pressure at the initial
instant of time. Then, at   0, we have

(36)

Consequently, in this case, V and N are related by
relationship (36).

The relaxation time required for adjusting the gas
amount to the bubble size can be obtained by the linear-
ization of expression (35) with respect to N in the vicinity
of a given bubble size with the use of relationships (36)

(37)

Hence, it follows that the characteristic time of chemi-
cal relaxation τg (µL = µV) is determined as

(38)

If the gas in a bubble cannot be treated as ideal, it is
necessary to perform the substitution T/V  ∂pV/∂N
with the use of the equation of state pV = pV(N/V, T). In
the case when the bubble sizes vary so fast (at a suffi-
ciently low viscosity of the liquid) that the mechanical
equilibrium between the bubble and the medium has
managed to be maintained, we obtain from relationship
(27) that

(39)

Substitution of pV = NT(4πR3/3)–1 gives the relation-
ship between R and N

(40)

By linearizing relationship (27) in the vicinity of
R(N) and using expression (39), we obtain

(41)

Therefore, the relaxation time required for adjusting
the bubble size to the amount of gas in the bubble N is
written as

(42)
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At small pL, we have 3pL ! 8σ/R(N), and relationship
(42) can be simplified to yield

(43)

where R(N) is specified by equation (40).
Note that expression (43) is more probable for the

initial and transient stages. After the transfer of a con-
siderable part of excess gas into bubbles, and, corre-
spondingly, a sufficient increase in the mean size of
bubbles to  @ 2σ/pL, formula (42) can be rearranged
to give

(44)

Relationship (44) is more probable at the later stage
when bubbles have not already nucleated, their mean
size increases, and the number decreases.

6. REDUCED EQUATIONS
FOR TIME EVOLUTION OF GAS BUBBLES

IN VISCOUS LIQUID

For liquids and melts with rather high viscosities
and solubilities, the following inequalities most likely
should be met:

(45)

or

(46)

Thus, the simplified reduced equations can be
derived from expression (32) for liquids with suffi-
ciently high viscosities when condition (46) is fulfilled.
In this case, the chemical equilibrium (µL = µV) is rap-
idly attained at a constant bubble size. The pressure in
a bubble becomes equal to the equilibrium pressure
corresponding to the pressure p(nL) of the gas dissolved
in the liquid, that is, pV = p(nL(t)), and does not depend
on the bubble volume. This adjustment leads to a con-
siderable decrease in the number of independent vari-
ables. Indeed, at t @ τg, under the assumption that the
gas in bubbles is ideal (pV = NT/V) and with the use of
relationship pV = p, we can obtain the expressions

(47)
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(49)
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the adjustment of the number of gas atoms in a bubble
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to its size. Substitution of formula (47) into equation
(32) and the integration with respect to the adjusting
variable [1] lead to the equation for ϕ(V, t)

(50)

(51)

As follows from relationships (51), the distribution
of bubbles over volumes or sizes also determines the
gas amount in bubbles due to the adjustment of the gas
content to the bubble size. It is quite reasonable that, in
the case when the gas density in a bubble is sufficiently
high, it is necessary to employ the equation for a real
gas

(52)

Here, F and  are the distributions of bubbles over
sizes and amounts of gas, respectively.

In order to write the closed set of equations, the law
of conservation of the number of gas atoms should be
taken into consideration

(53)

where n0 = nL(t = 0) is the initial gas density in a liquid,
and nL(t) is the gas density at a given instant. The third
term is the amount of gas in bubbles per unit volume.

The multiplier 1 –  accounts for the frac-

tion of the unit volume occupied by the liquid. Thus,
the expansion of a liquid or a melt is governed by the
relationship

(54)

where V is the volume of the liquid, and V0 is the initial
volume of the liquid. For low-viscosity liquids, when
τg @ τR, the mechanical equilibrium between the gas
and the bubble is rapidly established; i.e., the bubble
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size is adjusted to the amount of gas in the bubble. Con-
sequently, from the fulfillment of the inequality

(55)

it follows that f(V, N, t)  ψ(N, t)δ(V – V(N)). Corre-
spondingly, as a result of adjustment, when the bubble
volume “follows” the amount of gas in the bubble, we
have

(56)

At the nucleation stage, p(nL) . p(nL(0)) = p0 is the
initial pressure. The R(N) quantity is defined by equa-
tions (40). It is more probable that pL ! 2σ/R; however,
at sufficiently high pressures when pL is maintained in
the liquid by external conditions, it is quite possible that
pL @ 2σ/R. The law of conservation of the number of
gas atoms in this case takes the form

(57)

Under these conditions, (1 – )
–1

is the expansion coefficient of the liquid,  is

the total number of gas atoms in all bubbles per unit
volume, and n0 = nL(0).

7. LIMITING VALUES OF DISTRIBUTION 
FUNCTION AT SMALL VALUES OF VARIABLES

For equations (50) and (56), it is necessary to spec-
ify the boundary and initial conditions. To accomplish
this, let us divide volume V into elementary volumes
V0 = T/P equal to the volume per gas atom in a bubble
[see equation (50)].

According to equation (50), when the bubble
absorbs a gas atom, the bubble volume changes by V0.
This elementary volume will be treated as the minimum
volume of the bubble. Then, the probability that n gas
atoms occupy the volume V0 is determined by the Pois-
son distribution

(58)
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where  = nLV0 = δ, δ = nL/n = nLT/p is the gas solubil-
ity; n is the gas density at pressure p; and nL is the equi-
librium density of dissolved gas, provided that the
Henry law is fulfilled. The probability that a bubble
with one gas atom occurs in the volume V0 is given by

(59)

The total number of these bubbles per unit volume
depends on the gas density in the liquid. Each of the gas
atoms in the liquid can form an elementary bubble of
volume V0

(60)

By going from the variable V0/V to the variable V,
we finally obtain

(61)

Limiting relationship (61) is the sought boundary
condition for the ϕ(V, t) function.

If the fluctuations in the bubble formation are
ignored, the initial condition is defined as

(62)

Therefore, the set of equations for ϕ (50) and nL(t)
(53) becomes closed with boundary condition (61) and
initial condition (62). In the case when τg @ τR, each
atom is the nucleus of the gas bubble. The extension of

n
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the macroscopic approach to the bubbles of atomic
sizes leads to

(63)

By neglecting the fluctuations, the initial condition
is represented by

(64)

Thus, equations (56) and (57) with boundary condi-
tions (63) and initial conditions (64) form the complete
closed set.

The general relationships obtained can be applied to
determine the coefficients in kinetic equations in other
different cases of first-order phase transitions. The
above-derived kinetic equations, as applied to the evo-
lution of the first-order phase transitions in viscous liq-
uids and melts, will be considered in a separate work.
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Abstract—The results of electron-microscopic studies of grain boundaries and the structure of fractures of tita-
nium boride- and nitride-based films obtained by nonreactive magnetron sputtering are considered. The chem-
ical and phase composition of the films is analyzed with the help of Auger electron spectroscopy and micro-
scopic electron diffraction analysis. The structure of boundaries and the presence of amorphous inclusions, dis-
locations, and other structural distortions are discussed and the nature of the deformation under indentation is
considered. © 2000 MAIK “Nauka/Interperiodica”.
In the continuation of our previous research [1], it
was interesting to obtain more detailed information on
the structure of grain boundaries in boride–nitride films
and to study the nature of their fractures. The structure
of boride and nitride films has been investigated by
many authors (see, for example, [2–11] and the review
[12]). Some of them [4–6, 12] noted the possibility of
amorphous phases forming as a result of nonequilib-
rium conditions of deposition. However, the data are
not systematic, and the information on the type of
boundaries, the presence of dislocations, and peculiari-
ties of deformation in films based on interstitial phases
is extremely scarce. This stimulated the present
research using high-resolution transmission and scan-
ning electron microscopy.

1. SAMPLES AND EXPERIMENTAL TECHNIQUE

The method of obtaining films using TiB2–TiN tar-
gets of various compositions was described in [1].
1063-7834/00/4204- $20.00 © 20760
Some of the characteristics of the investigated films
deposited on silicon substrates are given in the table.
The structure was studied with the help of a JEM-3010
microscope with an accelerating voltage of 300 kV. The
experimental foils were prepared from films deposited
on razor blades and thinned by subsequent electrolytic
and ionic polishing. The crystallite size was estimated
on the basis of dark- and light-field images. The phase
composition was determined from x-ray diffraction and
microscopic electron diffraction data. The chemical
and structural composition of the films was estimated
from the Auger electron spectroscopic data (obtained
on a Varian Scanning Auger electron spectrometer).

The microhardness of the films on silicon substrates
was measured by the Vickers hardness test on a PMT-3
instrument using loads of 0.2–0.3 N; on the basis of
5−7 measurements, the value of H0 corresponding to
the hardness of films proper was estimated by the
method [13] that makes it possible to eliminate the
Characteristics of investigated films 

Film
type

Sputtering regime 
(target)

Thick-
ness, µm

Struc-
tural type

Lattice parame-
ters, nm Crystal-

lite size, 
nm

Hardness Hv, GPa, 
under load P, N H0, 

GPa
Composition

a c 0.2 0.3

I DC(TiB2) 1 AlB2 Unknown 2–5 34 24 70–80 Unknown

II HF(TiB2) 1.7 AlB2 0.3048 0.318 3–5 31 21.5 40–49 Ti(B0.92O0.05C0.03)1.61

III HF(50TiB2–50TiN) 0.4 NaCl ~0.428 0.5–3 26 21 47–54 Ti(B0.34N0.49O0.12C0.05)1.49

IV HF(25TiB2–75TiN) 1.3 NaCl ~0.4307 5–15 23 19 42–43 Unknown

Note: DC indicates sputtering under direct current conditions and HF is the high-frequency mode.
000 MAIK “Nauka/Interperiodica”
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effect of the substrate and film thickness on the results
of measurements.

Fractographic measurements were made on a scan-
ning microscope Hitachi S-4000 using a technique
[3, 8] allowing one to observe the behavior of the mate-
rial at the center of deformation. In other words, we
studied the surface of cracks passing through pricks
appearing as a result of microindentation (under loads
of 1–5 N).

Preliminary results concerning the structure and
fractography of films I and IV (see table) were reported
in [8, 14].

2. DISCUSSION OF RESULTS

2.1. Structure and Composition

Figure 1 shows some dark-field images of films that
visually indicate the presence of a nanocrystalline
structure with a crystallite size generally smaller than
5–15 nm (films I, II, and IV). Especially small grains
are observed for films III, deposited by sputtering from
targets of an equimolar composition and having the
smallest thickness.

Figure 2 illustrates several microscopic electron dif-
fraction patterns of the synthesized films. The electron
diffraction pattern obtained from one of the largest
crystallites of film IV (Fig. 2c) confirms the presence of
a structure of the NaCl type. The values of lattice
parameters presented in the table were calculated pre-
dominantly from microscopic diffraction data, and,
hence, their accuracy is not high. In our earlier publica-
tion [1], we discussed the difference between the lattice
parameters and the tabulated data, which is due to the
composition and the presence of a large number of
impurities, as well as to deformation-induced displace-
ments of diffraction maxima. According to Deng et al.
[5], considerable compressive residual stresses can be
expected in nitride–boride films.

A general analysis of x-ray and microscopic elec-
tron diffraction patterns also leads to the conclusion
that, in view of the absence of a visible halo, amor-
phous phases are either absent or scarce.

According to the results of the Auger analysis, the
distribution of elements over the film thickness was
quite uniform except in a thin surface layer (δ ~ 30 nm).
It should be noted that these data correlate well with our
previous results [1] and confirm the formation of a pre-
stoichiometric phase on the basis of titanium diboride
and a superstoichiometric phase on the basis of tita-
nium nitride. As before [1], while writing the structural
composition, we presumed that the film structure con-
tains only one phase (judging from x-ray and electron
diffraction patterns), and all interstitial atoms are in the
nonmetallic sublattice.

We did not observe any difference in the phase com-
position and structure between the films deposited on
silicon and steel substrates.
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2.2. High Resolution

Figure 3 shows some photographs obtained in the
direct resolution mode. It can be seen that, in contrast
to noncrystalline materials prepared by consolidating
ultrafine powders and normally characterized by a cer-
tain number of residual pores [15], film-type nanostruc-
tured objects are virtually free of pores. It can also be
observed that the overwhelming number of grains have
a stripe structure typical of the crystalline state,
although individual regions could be characterized as
amorphous. One such region denoted by A is shown in
Fig. 3c. The number of regions with a blurred image, a
violation of the stripe structure, and an indication of
“amorphism” becomes so significant in the structure of
film III (Fig. 3e) that it creates the impression that crys-
talline grains of size 0.5–2 nm are located in an amor-
phous matrix. It should be noted that the number of
NaCl unit cells (a ~ 0.43 nm) in a crystallite having a
size ~1 nm is just eight, and according to simple esti-
mates, the fraction of boundary regions for crystallites

50 nm
(‡)

10 nm
(b)

Fig. 1. Dark-field electron micrographs: (a) film I and
(b) III.
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of this size can be 50%, and even higher for a boundary
width ~0.3 nm. In the case of film III, whose image dif-
fers in general from those of other films, we are actually
dealing with a sort of crystallite-like clusters displaying
considerable structural distortions, which was also
detected from displacements of diffraction lines.

In all probability, the “amorphous” nature of some
other regions is associated with the effect produced on
the image by numerous boundaries between crystal-
lites, which are not parallel to the electron beam, and by
above-mentioned possible internal stresses in the films.
Besides, the blurring of images is also quite likely for
crystallites having a size < 5 nm, whose number over
the thickness of a foil under investigation (normally
close to 5 nm) can be two or more, so that the interpre-
tation of the presence or absence of amorphous inclu-
sions becomes quite problematic. This looks significant
for films I–III (especially for film III) with fine crystal-

(‡)

001

100
101
002, 110

(b)

1

2
3

(c)

Fig. 2. Microscopic electron diffraction patterns: (a) film II,
(b) III, and (c) IV (single crystal, axis [001]).
P

lites dominating in the structure (see table). Thus, the
absence of amorphous inclusions in films IV, as well as
in films I and II to a considerable extent, appears quite
probable, while the situation with the object having fin-
est grains (film III) is unclear on account of the large
fraction of boundary regions, although the absence of a
visual halo on x-ray and electron diffraction patterns
was noted for all types of the films under investigation
(see above).

In Figs. 3a and 3c, the boundaries between grains, at
which the crystalline structure of both grains is seen
more or less clearly, can be observed in many regions;
atomic stripes terminate at the boundaries whose struc-
ture is of the crystalline form (arrows in Fig. 3c). The
width of large-angle boundaries constitutes ~0.5 nm or
even less. In some cases, the presence of coherent
boundaries was detected.

Figure 3d shows, under a large magnification, the
lower right corner of the image of film IV depicted in
Fig. 3c, where there is a large grain approximately
20 nm in diameter. The clearly manifested inhomoge-
neous contrast (the focusing varied over distances
shorter than 5 nm) can be attributed to internal stresses
and the difference in composition, but the latter is
unlikely.

Finally, an important point in observing direct-reso-
lution structures is the detection of dislocations and
other structure distortions. Bending of stripes in stripe
patterns is noticeable in many cases (see, for example,
Fig. 3a). We can also distinguish several edge disloca-
tions, which are also seen clearly in the limits of the
large nanocrystal in film IV (see Fig. 3d). In the struc-
ture of hexagonal films (Figs. 3a and 3b), dislocations
are observed less frequently and are mainly located
near boundaries.

It is well known [16, 17] that the presence and
motion of dislocations in small crystalline objects is
limited not only by frictional forces of the lattice
(Peierls–Nabarro stress σPN), but also to a considerable
extent by the so-called image forces emerging at inter-
faces and determining the stability of dislocations. The
estimates obtained by Gryaznov et al. [17] for a number
of metallic nanocrystals (Cu, Al, Ni, and Fe) indicate
that the characteristic linear size for these materials,
below which the existence of edge dislocations is
highly improbable, is 2–24 nm. Unfortunately, the
information on σPN for the refractory compounds under
investigation is extremely scarce. If we use the estimate
of the critical shear stress for TiN (σcr = 3.7 GPa) [18]
and assume, as is usually done for refractory com-
pounds [19], that σPN ~ σcr), then from the expression
Λ = 0.04Gb /σPN [17], where G is the shear modulus
(248 GPa [1, 19]) and b is the Burgers vector
(0.298 nm), we obtain the characteristic linear size, Λ ~
0.8 nm, below which the probability of existence of
edge dislocations in nanocrystals is very low. This
value is in satisfactory agreement with our experimen-
tal results. The approximate nature of the estimates for
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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Fig. 3. Photographs of a film structure made in direct resolution mode: (a) film I, (b) II, (c) IV, (d) IV (one crystallite), and (e) III.
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Λ does not allow us, however, to find the difference
between phases based on TiN and TiB2 nanocrystals.

2.3. Fractography

Figure 4 shows characteristic fractures of films with
a cubic (a–c) and a hexagonal (d, e) structure. Judging
from the plane of imprint and fracture, the deformation
in the former case is more or less homogeneous, while
in the latter case the step formation and localization of
shear strains in the direction of force exerted by an
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
indentor are quite obvious, and the deformation appears
to be nonhomogeneous. When large loads (>1 N) are
applied during indentation, annular and radial cracks
are formed at the imprint surfaces in the case of cubic
films (see Fig. 4b), as is usually observed in the case of
hardness measurements in brittle solids, but no shear
steps were observed in the load range under investiga-
tion (up to 5 N). An analysis of fractures of hexagonal
films shows that the height and width of steps vary from
~100 nm to several hundred nanometers.
0
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(a) (b)

(d)
(c)

(e)

Fig. 4. Fractographs of fractures in (a–c) TiN-based films with a cubic structure and (d, e) TiB2-based films with a hexagonal struc-
ture. (Courtesy of K.Y. Ma and A. Bloyce [27].)
Localized nonhomogeneous deformation is known
to occur in many types of solids: metallic glasses, met-
als and alloys (including single crystals), ionic crystals,
polymers, etc. The nature of this phenomenon is being
discussed widely, although no satisfactory explanation
of this effect have been obtained as yet (see, for exam-
ple, [20–23]). On the other hand, in recent publications
concerning the deformation of nanostructured materi-
P

als (prepared from ultrafine powders of Fe, Fe–Cu, and
ZrO2 + 3%Y2O3), the step formation and localization of
shear strains were also reported [24–26]. In this con-
nection, the nonhomogeneous deformation we detected
for the first time [8] in nanostructured TiB2-based films
with a hexagonal structure is not surprising. However,
it is not clear why TiN-base nanostructured films with
a cubic structure are deformed homogeneously, which
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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can also be confirmed by an analysis of the fractures of
this type of films in [3, 8, 27]. It was proposed [14, 28]
that this is due to different numbers of independent slip
systems in TiB2 (two systems of the type

) and in TiN (five systems of the type
{111} 〈110〉). However, recently information on the
behavior of dislocations in monocrystalline films and
polycrystalline compacts of TiN [18, 29] convincingly
proves the preferred slip along the {110}-type planes in
the same direction 〈110〉  (the number of independent
slip systems is also two in this case).

Peculiarities of the deformation of cubic and hexag-
onal boride–nitride films can also be attributed hypo-
thetically to the difference in the behavior of bound-
aries between columns in these films. In the former
case, a clearly manifested columnar structure is
observed as a rule (see Fig. 4c), and a uniform slip
along columns under the action of the indentor is obvi-
ous. In the latter case, the columnar structure is less
pronounced (see Fig. 4d), and deformation is localized
through step formation, although the mechanism of this
phenomenon (as for other objects listed above [20–26])
remains unclear and requires further investigations.

It is important to note that the objects under investi-
gation are brittle by nature and are characterized by
intercrystallite fracture [28]. Nevertheless, the presence
of intracrystallite dislocations noted above (see Fig. 3d)
facilitates the manifestation of plastic deformation, a
unique example of which is depicted in Fig. 4c. The
residual deformation of a part of “columns” in brittle
TiN after indentation can be seen clearly; hence dislo-
cations in compounds of this type may be not only of
the sessile type, although the destruction pattern is
often of the brittle (cleavage) type.

Note that the microhardness of film I (see table,
reduced values of H0), displaying typically nonhomo-
geneous deformation, is considerably higher than that
of film IV being deformed homogeneously. The differ-
ence in the hardness of hexagonal films (I and II)
obtained under different conditions of magnetron syn-
thesis, which was also observed by other authors (see
[15]), remains unclear.

Thus, the high-resolution transmission and scanning
electron microscopy revealed that amorphous inclu-
sions and interlayers at the boundaries between crystal-
lites are absent for most nanostructured nitride–boride
films under investigation and the boundaries have a pre-
dominantly crystalline structure. For film III, with a
crystallite size 0.5–3 nm, the situation remains unclear
and requires further investigation. The presence of
intracrystallite edge dislocations is confirmed by esti-
mates obtained in [16, 17]. The deformation under
indentation of films can be of a homogeneous or a non-
homogeneous, localized type, which is hypothetically
attributed to the difference in the behavior of the
columnar structure of the films. The proposed possibil-
ity of plastic deformation of “columns” of TiN corre-

1010{ } 1120〈 〉
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lates with the presence of intracrystallite dislocations
revealed experimentally.
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Abstract—A new method is proposed for determining average kinetic parameters of one-dimensional disor-
dered systems. Electron scattering at a one-dimensional chain with structural and composition disorders is
considered. The solution of a finite-difference equation derived for the average resistance shows that the
dependence of the average resistance on the number of scatterers (sample length) for all states of the one-elec-
tron spectrum is a sum of three exponential functions irrespective of the type of random field in the system. It
is proved that, in the case of a mixed disorder, all one-electron states are localized in a chain of δ potentials.
© 2000 MAIK “Nauka/Interperiodica”.
The study of the behavior of a quantum particle (or
a system of particles) in a static external field with sta-
tistically defined parameters is an important problem in
the theory of disordered systems. Such a field is
referred to as a statistical field. A random field appears,
for example, in strongly doped semiconductors due to
a disordered distribution of impurities in the lattice (the
so-called composition disorder) or in amorphous,
glass-like, and liquid semiconductors or metals due to
structural peculiarities of the materials (structural dis-
order).

An analysis of the type of electrical conductivity of
two- and three-dimensional disordered systems
encounters enormous mathematical difficulties. For
this reason, one-dimensional models, which are of
physical and applied interest in themselves, acquire
special importance, for they permit exact solutions and,
at the same time, possess considerable generality from
the physical point of view. The methods of solutions of
one-dimensional problems developed at present (e.g.,
the methods of transfer matrices, determinant method,
and the method of invariant immersion) have made it
possible to solve the problem for special types of ran-
dom potentials, for weak and strong scattering fields, or
for definite values of the electron energy [1–16].

In this paper, we propose a new effective method for
exact calculation of the average resistance for a one-
dimensional system formed by a finite number of ran-
domly arranged scatterers of an arbitrary type, in which
the parameters characterizing the scattering field are
independent random variables.
1063-7834/00/4204- $20.00 © 20767
Let us consider the space of possible realizations of
a random field whose general form is of the type

(1)

where Vn(x – xn) are individual potentials, which do not
overlap and are localized at the points xn. The individ-
ual potentials Vn(x) are random independent functions
with a uniform distribution density P in a certain space
E of possible realizations. For example, the mean field
of an individual potential can be written as

(2)

If Vn(x) is a parametrized potential, the continual
integral (2) reduces to an ordinary integral in which
integration is carried out over the random parameters of
the function Vn(x). In expression (1), the points xn form
a certain chain in which the distances xn – xn – 1 (n = 2,
3,…, N) are determined randomly and independently of
one another and have the same mean value a:

(3)

where ∆xn – 1 = xn – xn – 1 – a, and f(∆xn – 1) is an (even)
distribution function for the random quantity ∆xn – 1,
normalized to unity.

The model of a disordered system with the random
static field (1)–(3) describes a large class of systems

V x( ) Vn x xn–( ),
n 1=

N

∑=

Vn x( )〈 〉 P Vn x( )[ ] Vn x( )DVn x( ).

E

∫=

xn xn 1––〈 〉 a,=

f ∆xn 1–( )∆xn 1– ∆xn 1–d∫ 0,=
000 MAIK “Nauka/Interperiodica”



 

768

        

SEDRAKYAN 

 

et al

 

.

                                                              
with so-called mixed disorder, in which structural dis-
order is combined with composition disorder. For
example, the random parameters ∆xn – 1 characterize the
structural disorder of the system, while the functions
Vn(x) determine the composition disorder. Special cases
of this model, which are important from the physical
point of view, are systems with structural order and
composition disorder, with structural disorder and
composition order, as well as various perfect lattices
defined as systems possessing structural and composi-
tion orders simultaneously.

According to the ergodic hypothesis, a mean physi-
cal quantity pertaining to the system as a whole is cal-
culated as the average over the random field existing in
the bulk of the system. The procedure of averaging of a
physical quantity ΩN over the ensemble of possible
realizations of the random field (1)–(3) can be written
in the form

(4)

Integration in (4) is carried out over the entire range of
the quantities ∆xn – 1 and over the entire space of possi-
ble realizations of the functions Vn(x).

In Section 1, we will obtain the recurrence equation
defining the average resistance 〈ρN〉  of the system. The
dependence of 〈ρN〉  on the parameters of the problem
will be determined in Section 2. In Section 3, we will
analyze a chain of δ potentials with a mixed disorder
and consider a class of exotic disordered systems com-
prising so-called nonreflecting wells.

1. EQUATION FOR AVERAGE RESISTANCE 
OF A SYSTEM WITH MIXED DISORDER

Let us consider the problem of calculating the aver-
age resistance 〈ρN〉  of a system with mixed disorder
(1)–(3). We will use the Landauer formula defining the
resistance of a finite system as the ratio of the reflection
and transmission coefficients for an electron passing
through the potential field of the system [17]:

(5)

where RN and TN are the amplitudes of reflection and
transmission of the electron, respectively.

It was proved by us earlier [18], that the problem of
determining RN and TN for field (1) in the general form
can be reduced to the solution of the following system
of finite-difference equations:

(6a)

(6b)

where DN = 1/TN;  = / ; and rN and tN corre-
spond to the amplitudes of reflection and transmission,

ΩN〈 〉 … ΩN f ∆x1( )…f ∆xN 1–( )P V1 x( )[ ]∫∫=

…P V N x( )[ ]d∆x1…d∆xN DV1 x( )…DV1 x( ).

ρN RN
2/ T N

2,=

DN rN/tN DN 1– e
i2kxN 1/tN DN 1– ,+=

DN rN*/tN*DN 1– e
i2kxN–

1/tN*DN 1– ,+=

DN RN* T N*
PH
respectively, through an individual potential field
VN (x). It should be noted that DN – 1 and  corre-
spond to the first N – 1 potentials of field (1).

Using the law of conservation of the number of par-
ticles (|TN |2 + |RN |2 = 1), we can write the resistance of
the system in the form

(7)

In order to calculate the average resistance 〈ρN〉 , we
introduce the auxiliary function

(8)

Then, we can obtain from (6)–(8) the following sys-
tem of difference equations for ρN and SN:

(9a)

(9b)

where

(10)

It can be seen from (9), that the coefficients of equa-
tions (9a) and (9b) contain scattering parameters only
for the Nth individual potential of field (1) and the dis-
tance ∆xn – 1. Since the quantities ρN – 1 and SN – 1 depend
by definition only on the first N – 1 potentials of the sys-
tem and on the distances ∆xn – 1 (n = 2, 3,…, N –1), all
the coefficients and the variables corresponding to them
are averaged independently in averaging the system of
equations (9) in accordance with (4). For example, we
have

and so on.
Thus, the system of equations (9) averaged over the

random field can be written in the form

(11a)

(11b)

where

(12)

The system of equations (11) allows us to obtain a
finite-difference equation for the average resistance

DN 1–

ρN DN
2 1– DN

2
.= =

SN DN DN*e
2ik xN–

.=

ρN 2α N 1–( )ρN 1– βN*ηN 1–* SN 1–+=

+ βNηN 1– SN 1–* α N 1,–+

SN  = 2γNρN 1– χNηN 1–* SN 1–+

+ δNηN 1– SN 1–* γN ,+

α N 1/ tN
2, β rN/ tN

2, γN rN/tN
2 ,= = =

δN rN
2 /tN

2 , χN 1/tN
2

, ηN 1– e
i2k a ∆xN 1–+( )

.= = =

2α N 1–( )ρN 1–〈 〉 2α N 1–( )〈 〉 ρN 1–〈 〉 .=

ρN〈 〉 2α 1–( ) ρN 1–〈 〉=

+ β*η* SN 1–〈 〉 βη SN 1–*〈 〉 α 1,–+ +

SN〈 〉 = 2γ ρN 1–〈 〉 χη* SN 1–〈 〉 δη SN 1–*〈 〉 γ,+ + +

α α N〈 〉 ,  β βN〈 〉 ,  γ γN〈 〉 ,  δ δN〈 〉 ,= = = =

χ χN〈 〉 , η ηN 1–〈 〉 .= =
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〈ρN〉  of the chain with mixed disorder (1)–(3). It has the
form (see Appendix)

(13)

where

(14)

and

(15)

It can be seen from (13), that the average resistance
〈ρN〉 , as a function of the number of scattering centers
in the system, satisfies a nonhomogeneous linear differ-
ence equation. Equation (13) is the main result of this
section. Let us go over to its solution.

2. SOLUTION OF THE EQUATION 
FOR THE AVERAGE RESISTANCE 〈ρN〉

We seek the solution of equation (13) in the form

(16)

where Lj and L0 are arbitrary constants.

Substituting (16) into (13), we obtain a characteris-
tic equation defining the quantities zj (j = 1, 2, 3), and
an equation for L0:

(17)

(18)

It can be seen from (17), that p = 3. Substituting the
values of A, B, C, and D from (14) and (15) into (18),
we find that L0 = –1/2. Consequently, solution (16) can
be written in the form

(19)

The coefficients Lj in solution (19) can be expressed in
terms of 〈ρ2〉, 〈ρ1〉, 〈ρ0〉, and the roots zj of equation (17)
by solving the system of equations

(20)

ρN〈 〉 A ρN 1–〈 〉 B ρN 2–〈 〉 C ρN 3–〈 〉 D,+ + +=

A 2α 1– θ, B+ 2d ν 2α 1–( )θ,––= =

C 2α 1–( )ν 2u,–=

D α 1–( ) 1 θ– ν+( ) d u–+=

d 2Re βηγ*( ), u 2Re Γηγ*( ),= =

θ 2Re η*χ( ), ν η 2 χ 2 δ 2–( ).= =

ρN〈 〉 L jz j
N L0,+

j 1=

p

∑=

z j
3 Az j

2
– Bz j– C– 0,=

L0 L0 A B C+ +( ) D.+=

ρN〈 〉 L jz j
N 1/2.–

j 1=

3

∑=

L1 L2 L3+ + ρ0〈 〉 1
2
---+=

L1z1 L2z2 L3z3+ + ρ1〈 〉 1
2
---+=

L1z1
2 L2z2

2 L3z3
2+ + ρ2〈 〉 1

2
---.+=
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The quantities 〈ρ2〉 , 〈ρ1〉 , and 〈ρ0〉  can be determined
directly from (4) and (6):

(21)

Then the solution of system (20) gives

(22)

the quantities L2 and L3 can be obtained from (22) by
cyclic permutation of the quantities z1, z2, and z3.

Thus, it has been proved rigorously that the depen-
dence of the average resistance of a one-dimensional
system on its length for all the states of the one-electron
spectrum is a sum of three exponential functions irre-
spective of the type of the random field.

3. A MODEL OF δ SCATTERERS
WITH MIXED DISORDER

By way of example of the application of formulas
derived above, let us consider a chain consisting of δ
potentials

(23)

where Vn are random variables independent of one
another and of the coordinates xn.

In the case of a solitary δ potential, we have

(24)

Using (10) and (24), we obtain from (12) the follow-
ing expressions for the average values α, β, γ, δ, χ, and
η:

(25)

where

are parameters of composition disorder and

is a parameter of structural disorder.

Substituting (25) into (14) and (15), we obtain the
following expressions for the coefficients of the charac-

ρ0〈 〉 0, ρ1〈 〉 α 1,–= =

ρ2〈 〉 2α α 1–( ) d .+=

L1

2d 2α 1–( ) z2 z3 2α– 1–+( )– z2z3+
z2 z1–( ) z3 z1–( )

-------------------------------------------------------------------------------------------;=

V x( ) Vnδ x xn–( ),
n 1=

N

∑=

1
tn

--- 1
iVn

2k
--------,

rn

tn

----+
iVn

2k
--------e

2ik xn.–= =

α 1 p, β+ p iq+( ), γ– p iq,–= = =

δ p, χ– 1 p– 2iq,+= =

η n2 i2ka( ),exp=

p Vn
2〈 〉 /4k2, q Vn〈 〉 /2k= =

n2 i2k∆xN 1–( )exp〈 〉=
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teristic equation (17):

(26)

where

A knowledge of the coefficients A, B, and C allows us
to determine the roots zj of equation (17). Substituting
zj into (22), we can find the coefficients Lj. Using the
expressions for Lj and formula (19), we obtain the
dependence of the average resistance 〈ρN〉  on the sam-
ple length, on the disorder parameters p, q, and n2 of the
system, and on the energy k of an incident electron.

Let us go over to an analysis of the solution (19) for
〈ρN〉  in the case of N  ∞. We will prove that, in this
limit, all the one-electron states are localized irrespec-
tive of the nature of scattering at a solitary δ potential,
i.e., that the localization radius

(27)

is finite and independent of N. For this purpose, we ana-
lyze the roots of the characteristic equation (17) [with
coefficients (26)]. According to Vieta’s theorem, we have

(28)

It follows from this relation, that if all the three roots of
equation (17) are real-valued, either all of them are pos-
itive, or one root is positive and the other two are nega-
tive. If, however, equation (17) has only one real root,
it is positive.

Let us prove that, among the roots of equation (17),
there is always at least one real root greater than unity.

We consider the function

(29)

whose zeros determine the roots of equation (17).
Using (26), we can easily verify that, for all values of
the coefficients A, B, and C, the function G(z) is nega-
tive at points z = ±1, G(z)  ∞ for z  ∞, and G(z)

 −∞ for z  –∞. From the properties listed above
and from the fact that the function G(z) has two
extrema, we can conclude that the maximum root of the
equation G(z) = 0 is always greater than unity. It fol-
lows, hence, that the average Landauer resistance (19)
has the following asymptotic form for N  ∞:

(30)

Here, z1 stands for the root of the characteristic equa-
tion (17); z1 ≥ 1 and 1 ≥ |z2|, |z3|, where z2 and z3 are the
remaining two roots.

A n2 l m+( ) 1 n2–( ) 1 2 p+( ),+=

B n2 l m–( )– n2 1 n2–( ) 1 2 p– 4q2+( ),+=

C n4,=

m 2 p q2–( ) 1 2kacos–( ), l 4 ϕ 1,–cos
2

= =

ϕcos ka q ka.sin+cos=

ζ Na
ρN〈 〉ln

-----------------
N ∞→
lim=

z1z2z3 C n4 0.≥= =

G z( ) z3 Az2– Bz– C,–=

ρN〈 〉 L1z1
N 1/2.–=
P

Substituting (30) into (27), we obtain

(31)

It follows from this expression, that the radius of
localization depends in a complex way on the energy
spectrum of one-electron states and disorder parame-
ters of the system.

It is interesting to consider the case of a weak com-
position (m ! 1) and structural (1 – n2 = s ! 1) disor-
ders for the model under investigation for the energy of
an incident electron corresponding to the allowed band
(cosϕ ≤ 1). In this case, the root of equation (17) deter-
mining the localization radius (31) can be sought in the
form

(32)

and ∆z ! 1. Substituting (32) into (17) and retaining
only the terms linear in ∆z, s, and m, we obtain

(33)

The application of relations (31)–(33) leads to the
formula

(34)

In the particular case of only composition disorder in
the system, in the absence of structural disorder (m ≠ 0,
s = 0), formula (34) is transformed into the correspond-
ing formula derived in [19]. Relation (34) shows that, in
the case of complete order (s = 0, m = 0), the localiza-
tion radius tends to infinity.

The method we developed in this paper makes it pos-
sible to determine the average resistance of a one-dimen-
sional disordered system with arbitrary composition and
structural disorders. In particular, the formulas derived
here can be readily applied to structures with random
rectangular barriers (or wells). The approach developed
can also be used for calculating other average kinetic
parameters of one-dimensional disordered systems and
for studying the problem of self-averaging of ρN.

In conclusion, let us consider a class of disordered
systems comprising so-called random nonreflecting
wells, for which [20]

(35)

for all k and for all realizations of the well field.
In this case, relations (35) and (10) lead to the fol-

lowing expressions for the parameters of equation (13):

(36)

Then it follows from (13), that

(37)

ζ a
z1ln

----------.=

z1 1 ∆z+=

∆z
2m 4q2s+

4 ϕsin
2

-------------------------.=

ζ 4a ϕsin
2

2m 4q2s+
-------------------------.=

r k( ) 0 and t k( ) 1= =

α 1, β 0, γ 0, δ 0,= = = =

χ χN〈 〉 , η ηN 1–〈 〉 .= =

ρN〈 〉 0=
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for any k and N. This result indicates complete delocal-
ization of one-electron states in the one-dimensional
disordered system, which is the distinctive feature of
the model (35) under investigation. A similar result was
obtained by Shalaev [21] by the inverse scattering
method.

APPENDIX

We will write (11a) for 〈ρN – 1〉  and 〈ρN – 2〉  and (11b)
for 〈SN – 1〉 , 〈SN – 2〉 , and 〈SN – 3〉  and their complex conju-
gates. This leads to the following system of difference
equations:

(A.1)

The system of equations (A.1) can be regarded as a
linear nonhomogeneous system of algebraic equations
for the unknown quantities 〈SN – 1〉 , 〈SN – 2〉 , and 〈SN – 3〉
and their complex conjugates. Determining 〈SN – 1〉  and

 from (A.1) and substituting them into (11a),
we obtain an equation for 〈ρN〉 . Indeed, from (A.1) we
obtain

(A.2)

where

,

ρN 1–〈 〉 2α 1–( ) ρN 2–〈 〉=

+ β*η* SN 2–〈 〉 βη SN 2–*( ) α 1,–+ +

ρN 2–〈 〉 2α 1–( ) ρN 3–〈 〉=

+ β*η* SN 3–〈 〉 βη SN 3–*( ) α 1,–+ +

SN 1–〈 〉 2γ ρN 2–〈 〉=

+ χη* SN 2–〈 〉 δη SN 2–*〈 〉 γ,+ +

SN 1–*〈 〉 2γ ρN 2–〈 〉=

+ χη* SN 2–*〈 〉 δη SN 2–〈 〉 γ,+ +

SN 2–〈 〉 2γ ρN 3–〈 〉=

+ χη* SN 3–〈 〉 δη SN 3–*〈 〉 γ,+ +

SN 2–*〈 〉 2γ ρN 3–〈 〉=

+ χη* SN 3–*〈 〉 δη SN 3–〈 〉 γ.+ +

SN 1–*〈 〉

SN 1–〈 〉 F/F1,=

F AN 1– F1 AN 2– F2–=

+ AN 2–* F3 BN 1– F4– BN 2– F5+

F1 η 2 β*Γ βΓ*–( ), F2 η 2 Γ 2,= =
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(A.3)

Substituting (A.2) and (A.3) into (11a), we arrive at
equation (13).
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Abstract—The influence of actual microscopic potential on the characteristics of resonant electron tunneling
from the Γ valley in GaAs through the AlAs barrier with thickness of one lattice constant has been investigated
by the methods of pseudopotential and scattering matrix factorized by the irreducible representations of the
symmetry group of the heterostructure. The transition regions between the potentials of components and the
barrier region are treated as the components of the Ga2Al2As4 superlattice spacing to provide the continuity of
the crystal potential at the boundaries of the matching of wave functions. It is demonstrated that, compared to
the results obtained in the abrupt-interface model, the inclusion of the actual potential in the calculation leads
to changes in the number and location of the Fano resonances, an enhancement in the localization of electron
density within the barrier, and a drastic increase in the tunneling time. © 2000 MAIK “Nauka/Interperiodica”.
At present, the metalloorganic hydride and molecu-
lar-beam epitaxy techniques have been used to produce
heterostructures with thin atomic layers in which the
transition regions of the potentials of adjacent layers
are comparable in size to the layers themselves. The
physical properties of these heterostructures essentially
depend on the nature of the interface region. In this
respect, their electronic states should be described by
the methods accounting for the actual microscopic
potential. However, this circumstance is ignored in
many cases. In the effective-mass method that is widely
accepted in the present time, the potential at interfaces
is usually taken to be discontinuous. This is justified for
structures with sufficiently thick layers and also for the
energy range, in which the mixing of states from differ-
ent valleys is insignificant. 

In other cases, this method can lead to quantitative
discrepancies with the experimental characteristics. For
example, the method gives the underestimated quantum
levels in a narrow quantum well of GaAs inside
Ga1 − xAlxAs [1] and underestimated times of tunneling
through the GaAs/AlAs superlattices with thin barriers
and wells [2]. The discrepancies can be avoided by
smoothing the discontinuous potential with certain
model functions whose form is sufficiently arbitrary [1,
3]. At the same time, consideration of the interface
potential within the envelope wave function method
results in a multiband system of equations with nonlo-
cal interaction [4], which renders its application more
complex and difficult-to-use. In more exact tight-bind-
ing and pseudopotential calculations [5–14], the
absence of translational symmetry along the hetero-
structure axis necessitates the use of the so-called flat-
band approximation, in which the bending of energy
bands near heterointerfaces is neglected, and the poten-
1063-7834/00/4204- $20.00 © 20772
tial in each layer is taken to be equal to the potential of
the corresponding ideal bulk material. In general, the
results of these calculations depend on the choice of
boundaries, along which the wave functions of compo-
nents are matched, and, for structures with thin layers,
this problem becomes especially acute.

On the other hand, the self-consistent calculations
of electronic states in superlattices demonstrate [15,
16] that, in the vicinity of heterointerfaces, there are
regions with thickness of several monolayers, in which
the crystal potentials of adjacent materials are continu-
ously transformed into each other. Generally speaking,
corrections applied to the discontinuous potential are
not smooth functions, have a lower symmetry than the
potentials of components, and, moreover, are nonlocal,
which leads to certain problems of their inclusion in the
description of resonant electron tunneling. 

To our knowledge, only a few attempts have been
made to introduce these corrections in a simplified way.
For example, Cuypers and van Haeringen [10] applied
the corrections to the discontinuous potential by steps
from each side of the interface. Within this approxima-
tion, these corrections lead to a considerable change in
the probability amplitudes of the resonant tunneling of
electrons from GaAs through sufficiently thick AlAs
barriers (~10a0, where a0 is the lattice constant), specif-
ically in the range of mixing of states from the Γ and X
valleys, but almost do not affect the energy location of
resonances. It is obvious that a decrease in the barrier
width brings about an increase in the contribution of the
interface potential, which should be described more
precisely. In the framework of the flat-band approxima-
tion, this can be achieved by division of the structure
into such layers that they contain transition regions as
000 MAIK “Nauka/Interperiodica”



        

ELECTRON TUNNELING THROUGH THIN BARRIER WITH SMOOTH POTENTIAL 773

                                         
components, for example, being the fragments of
superlattices whose potentials at the boundaries of the
matching of wave functions are continuously trans-
formed into each other. 

In the present work, this approach was applied to the
electron tunneling from GaAs through the thin AlAs
barrier with thickness of one lattice constant, for which
the influence of the interface potential is particularly
important. The resonances and antiresonances in the
coefficient of transmission through a single barrier are
associated with the Γ–X intervalley mixing effects. The
pseudopotential and scattering-matrix calculations
demonstrated that inclusion of the actual microscopic
potential near the heterointerfaces is especially impor-
tant for the quantitative description of these resonances,
because this leads not only to a change in their number
and energy, but also to a substantial increase in the col-
lision times and the electron charge density within the
barrier.

1. COMPUTATIONAL TECHNIQUE

As in the earlier works [12–14], the transmission
coefficient of electrons was investigated within the dis-
continuous-potential model, but the barrier built up
from the AlAs layer and adjacent transition layers was
treated as a superlattice spacing. This made it possible
to obtain a small jump of the crystal potential and wave
functions at the matching boundaries. The determina-
tion of electronic states with complex values of the
wave vector in multiatomic superlattices involves con-
siderable computational problems, which can be partly
resolved by invoking the symmetrized wave function
basis set. Hence, in this work, we applied the scatter-
ing-matrix technique to multilayer systems with allow-
ance made for their symmetry. In structures with the
matched lattice constants of components, the G point
symmetry group is the intersection of point groups of
layers and consists of the symmetry elements in the
interface plane. In this case, an additional symmetry
arising at a certain structural configuration is ignored.

Let us consider a structure involving N interfaces
with the zn coordinates along the growth axis z. These
interfaces separate N + 1 media. At the specified ener-
gies and the wave vector component k|| parallel to the
interface, the general solution of the Schrödinger equa-
tion for the nth medium , which is transformed
along the sth row of the fth irreducible representation of
the G group [α ≡ (s, f)], can be written as a superposi-
tion of the specific solutions  corresponding to
the incident (ξ = ν) and reflected (ξ = µ) waves [13]

(1)

Ψk||

αn r( )

Ψk||

αn r( )

Ψk||

αn r( ) Aν
αnΨk||ν

αn r( )
ν
∑ Bµ

αnΨk||µ
αn r( ),

µ
∑+=

Ψk||ξ
αn r( ) U

k||kzξ
n

αn r( ) i k||  ·  r k z ξ 
n + ( )( ) ,exp=

k k|| ezkzξ
n .+=
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Here, ez is the unit vector along the z-axis, ρ is the pro-
jection of the radius vector r onto the interface plane,

and  are the periodic wave functions expanded

in the orthonormal basis set of symmetrized combina-

tions of plane waves (r)

(2)

where  are the three-dimensional reciprocal-lattice
vectors, p is the number of the symmetrized combina-
tion of plane wave, and V is the volume of the block of

crystal periodicity. The projection of (r) onto the
heterointerface plane gives the orthonormal basis set of
symmetrized combinations of surface plane waves

where  are the two-dimensional reciprocal-lattice
vectors, 

 

q

 

 is the number of the symmetrized combina-
tion of surface plane waves, and 

 

S

 

0

 

 is the area of the sur-
face unit cell. The matching conditions at boundaries of

the  wave functions and their first derivatives
are written as

(3)

U
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The order of the  and  matrices is determined
by the number of incident (reflected) waves, which is
equal to the number of symmetrized combinations of
surface plane waves. The matching conditions can be
reduced to the recurrence relations for the factorized

scattering-matrix elements (n) [where i, j = 1, 2 are
the subscripts numbering the incident (1) and reflected
(2) waves] at one interface (n = 1), two interfaces (n =
2), and so on [13]

(4)

where (n) are the elements of the matching matrix

The sought matrix Sα(N) of scattering through N
interfaces is determined by solving these equations at
the initial condition Sα(0) = I, where I is the unit matrix.
The transmission and reflection coefficients of elec-

Cqp
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trons are expressed in terms of the matrix elements

(N) (normalized to fluxes) for open channels. By
using the intermediate matching matrices Jα(n) taken

from (4), it is possible to determine the  and 
coefficients and the wave function of a heterostructure.
The general solutions in layers are conveniently sought
with the use of the same large unit cell of a superlattice
by the complex band structure method with local
pseudopotentials.

In the present work, we studied the transmission of
electrons at the normal incidence (k|| = 0) on the barrier
with the (001) heterointerfaces. In this case, the wave
function of the heterostructure has a maximum symme-
try and can be transformed according to the identical
representation Λ1 of the C2v group of the wave vector
lying on the Λ line of the Brillouin zone of a tetragonal
lattice [17]. The Al2Ga2As4 superlattice spacing was
chosen as the barrier region. This allowed us to take
into account the principal part of the exact microscopic
potential of transition layers in relatively simple calcu-
lations. In these calculations, we applied the pseudopo-
tentials [18] determined from the experimental data and
ab initio calculations of the band spectrum. With the
kinetic-energy cutoff parameters taken from [18], in
the basis set consisting of 243 three-dimensional plane
waves constructed around the Γ reference point of
the superlattice, we formed 98 symmetrized combina-
tions of plane waves, eight symmetrized combinations
of surface plane waves, and also eight incident and
eight reflected waves transformed by the identical rep-
resentation of the C2v group. The inclusion of this num-
ber of waves provides a high accuracy in the descrip-
tion of electronic states in the neighborhood of the con-
duction-band bottom (~1 eV), and the error in the band
energies does not exceed 0.02 eV.

2. RESULTS AND DISCUSSION

The features of resonant electron tunneling in het-
erostructures are governed by the complex band struc-
ture of their components. Note that the dominant role is
played by the states with the least damping decrements.
In the neighborhood of the conduction-band bottom,
these are the states originating from the Γ1, X1, and X3
valleys of the low-lying conduction bands of the GaAs
and AlAs compounds. Figure 1 depicts the fragments of
complex band structures along the Λ line of the tetrag-
onal Brillouin zone (k|| = 0) for these states in
Al2Ga2As4, AlAs, and GaAs. The energies are mea-
sured from the bottom of the conduction band of GaAs.
The imaginary and real parts of kz are located to the left
and to the right of the Γ point, respectively. The Λ
direction of the superlattice is matched by the ∆ line of
the Brillouin zone in sphalerite, and the Γ, X, and
∆(0, 0, 1/2) sphalerite points are equivalent to the Γ
point of the superlattice. The states of the superlattice
with the Λ1 symmetry are connected with the Γ1, Γ3, Z1,

Sq
α

Aν
αn Bµ

αn
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Fig. 1. Complex band structures along the Λ line of the tetragonal Brillouin zone (k|| = 0) for (a) GaAs (heavy lines), AlAs (fine
lines), and (b) the Al2Ga2As4 superlattice.
and Z3 states at the symmetric points by the consistency
relations. The tetragonal component of the crystal
potential in the superlattice leads to the removal of
degeneracy and brings about the mixing of sphalerite
states from the Γ and X valleys of the virtual crystal and
the ∆ line. The extrema of the split states are connected
by loops in the complex region of the wave vector. The
splitting gives rise to new valleys Z1 and Z3 near the lat-
eral point Z with extrema at energies of 0.428 and
0.47 eV in the band spectrum of the superlattice. Even
larger splitting is observed in the region of the intersec-
tion of sphalerite states from the Γ and X valleys. The
gap in the range ~0.6–0.8 eV corresponds to the latter
splitting. Analysis of the overlap integrals of wave
functions for the superlattice and binary compounds
shows that the X1 sphalerite states of GaAs and AlAs
are dominant in the low-lying state of the conduction

band of the superlattice with the symmetry 
(E = 0.3406 eV), whereas the next energy state of the

superlattice  (E = 0.3864 eV) involves the Γ1 states
of GaAs and AlAs and, moreover, is substantially con-
tributed by the states of AlAs from the ∆ line. The mean
value of masses m(X1) = 2.2 (in terms of free electron
mass) in the X1 valley of AlAs and m(∆) ≈ 6 in the ∆
minimum of GaAs corresponds to the effective mass of

the low-lying valley m( ) = 4.4. Along the tetragonal
axis, the wave functions of the superlattice are
smoothly transformed from the GaAs-like states to the
AlAs-like states. The energies of extrema of the con-
duction band in the binary compounds are as follows:

 = 0.4818 eV, (GaAs) = 0.4673 eV, (GaAs) =

0.7955 eV, (AlAs) = 1.0040 eV, (AlAs) =

0.2083 eV, and (AlAs) = 1.0099 eV. These energies
furnish a means of reconstructing the profile of bands
along the axis of the GaAs/Al2Ga2As4/GaAs hetero-
structure. However, owing to the mixing of sphalerite
states not only at heterointerfaces, as in the sharp-
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potential model, but also inside the superlattice, the
connection of lines becomes ambiguous. For an elec-
tron incident from GaAs, the superlattice can be con-
sidered a superposition of the barriers (wells) with dif-
ferent heights (depths) and different effective masses

from the , , Z1, and Z3 valleys, with which the
electron interacts simultaneously, but with different
probabilities proportional to the weights of states from
the Γ1 and Z1 valleys in the wave function of the super-
lattice. In general, from the aforesaid it follows that, for
thin layers, the band discontinuities determined up to
now should be refined and newly interpreted.

In order to analyze the actual microscopic potential
of the heterostructure, we calculated the crystal poten-

tial (averaged over the interface plane,  = 0) of the
superlattice along the z-axis and the difference ∆V
between this potential and the potential in the model
with abrupt interfaces (Fig. 2), which correspond to the
locations of the Asav atoms surrounded by two Ga
atoms and two Al atoms. Here, we took into account the
fact that the arsenic pseudopotentials [18] depend on
the type of the nearest atoms. An increase in the super-
lattice spacing does not essentially affect the ∆V poten-
tial in the vicinity of the barrier, and its form is similar
to the corresponding profiles of nonlocal pseudopoten-
tial components [15, 16]. The main difference between
the actual and discontinuous potentials is observed
within the first four atomic layers near the interfaces
covering the barrier region, where ∆V is a sharply vary-
ing function. It is evident that ∆V is poorly approxi-
mated by a stepwise potential. A similar behavior is
also characteristic of the other Fourier components of
the crystal potential (  ≠ 0). Hence, the matching of
wave functions for the superlattice and GaAs was car-
ried out at the boundaries separated from each other by
the superlattice spacing (2a0) and coinciding with the
location of the As1 atoms (surrounded by the Ga
atoms), at which the difference in the crystal potentials
of GaAs and the superlattice is minimum. The calcula-
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tions were also performed for the matching boundaries
coinciding with the locations of the Ga atoms adjacent
to the As1 atoms. The results obtained in both cases are
close to each other, which indicates the convergence
achieved in the description of the interface potential
with the use of the Al2Ga2As4 superlattice. The ampli-
tude of the ∆V potential is comparable in magnitude to
the band discontinuities. The same order of magnitude
should have corrections to the electronic states calcu-
lated within the discontinuous-potential model. The

0

0.3

0.2

0.1

–0.1

–0.2

–0.3
As1 Ga Asav Al As2 Al Asav As1Ga

∆V
, e

V

Fig. 2. Averaged (over the interface plane) difference
between the crystal potential of the Al2Ga2As4 superlattice
and the potential in the abrupt-interface model. Vertical
dashed lines indicate the locations of abrupt heterointer-
faces.
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Fig. 3. Calculated coefficient of transmission of electrons
from the Γ1 valley to the Γ1 valley of GaAs through the
AlAs (a0) barrier. Solid and dashed lines demonstrate the
results of calculations within the diffuse-interface and
abrupt-interface models, respectively. The dotted line shows
the results of calculations according to formula (5).
P

largest changes can be expected for the quasi-stationary
X states of AlAs, which are localized in the perturbing
potential region.

Figure 3 displays the calculated coefficient for
transmission of electrons from the Γ valley of GaAs
(the Γ1–Γ1 channel) across the AlAs (a0) barrier. Con-
siderable differences between the results of calcula-
tions within the diffuse-interface and abrupt-interface
models are observed over the entire energy range. In
terms of the effective-mass approximation parameters,
these differences are connected with the change in the
band profiles, masses, and intervalley coupling con-
stants at the interfaces. In the low-energy range (E <
0.3 eV), the barrier calculated with due regard for the
actual interface potential is 20% more transparent, pre-
dominantly due to the smaller damping decrement for
the Γ1 wave in the superlattice as compared to that in
AlAs. More appreciable differences are found in the
region of overlapping the profiles of different valleys in
which the Fano resonances arise. These resonances cor-
respond to the quasi-stationary states in the X1 well of

AlAs (E1 = 0.28 eV, E2 = 0.45 eV) and the  well of
the superlattice (E1 = 0.39 eV, E2 = 0.45 eV). The
energy levels calculated within the one valley approxi-
mation for isolated wells are given in parentheses. With
allowance made for the multiband structure, the loca-
tions of these levels change somewhat, and these
changes are more pronounced for the narrower X1 well
of AlAs (the levels are shifted upward). As a result, the
second level in this well becomes higher than the ∆1
minimum of GaAs (E2 = 0.48 eV). Analysis of the wave
function for the heterostructure shows that the state of
the low-lying Fano resonance within the barrier region

is composed of three states originating from the 

(scattering state),  [state with small Im(kz)], and

 [state with large Im(kz)] valleys of the superlattice.
Upon normalization of the periodic parts of the wave
functions to unity, the ratio between the amplitudes

 (or ) of these states is equal to 7 : 3 : 3. Con-
sequently, the low-lying resonance is a hybridized
state, which can be approximately treated as a quasi-

stationary state in the  well. The differences in the
results of two calculations are due to the features in the
behavior of the ∆V correction to the discontinuous
potential, which, on the average, reduces the barrier
height in the region between the Asav and As1 atoms and
raises the bottom of the well in the region between the
Asav atoms. As a consequence, the well for the X-like
states in the superlattice becomes wider, but shallower,
and the effective mass of these states increases by a fac-
tor of two. This leads to an increase in the energy of the
low-lying state in the X1 well of AlAs and a lowering of
the high-lying level below the extremum of a double
humped structure for GaAs. Unlike the first Fano reso-
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Fig. 4. Probability densities (averaged over the heterointerface plane) of states in the vicinity of the (a) first and (b) second Fano
resonances: (1) the states correspond to the peaks of resonances and (2) the states correspond to the dips of resonances. Solid and
dotted lines demonstrate the results of calculations within the diffuse-interface and abrupt-interface models, respectively. Vertical
dashed lines indicate the boundaries of the superlattice period.
nance, the minimum of P(E) for the second resonance
does not become identically equal to zero. Tekman and
Bagwell [19] pointed to the possibility of incomplete
destructive and incomplete constructive interference
between waves owing to the influence of other bands.
In our case, near the second Fano resonance, there are

three interacting states originating from the  (scat-
tering state), Z3 [state with the small imaginary part

Im(kz)], and  [state with the large imaginary part
Im(kz)] valleys of the superlattice. In the wave function
of the heterostructure, the amplitudes of the second
state are the largest, and, hence, the electron predomi-
nantly tunnels across the barrier via the gap state aris-
ing from the splitting of the band spectrum of the super-
lattice at the Brillouin zone edge. Within the abrupt-
interface model, the electron at the same energies pre-
dominantly tunnels via the Γ1 state of AlAs.

An increase in the X potential well size and the
effective mass due to allowance made for the actual
microscopic potential brings about an increase in the
charge density of electronic states corresponding to the
peak (Amax) and the dip (Emin) of the low-lying Fano res-
onance in the AlAs region (Fig. 4). In the calculations
of the density, the wave function of the heterostructure
was normalized according to the condition that the
amplitude of incident wave is equal to unity. The charge
density of states in the vicinity of the peak of low-lying
resonance is maximum within the barrier region. In the
GaAs direction, the charge density of states exponen-
tially [with the decrement corresponding to Im(kz) of
the X1 valley in GaAs] transforms to an oscillating
superposition of incident and reflected waves (on the
left) or to an oscillating passed wave (on the right). For
the states with the energies Emin, the function is
bounded in one direction, which is accompanied by an
increase in the density in the AlAs region. The charge
density of states corresponding to the second Fano res-
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onance is less localized and, for the most part, is located
outside the AlAs layer.

The pole–zero nature of the Fano resonances clearly
manifests itself in the dependence of the real part of the
scattering-matrix element S11 (for the open Γ1–Γ1 chan-
nel) on the imaginary part (Fig. 5). In this diagram, S11
is the vector whose energy evolution is bounded by a
unit circle. In the vicinity of resonances, this vector
most drastically changes, which is convenient for the
simulation of the scattering matrix. Diagrams of a sim-
ilar type (the Argand diagrams [20]) are often used in
interpretation of the structures in optical characteristics
(in the form of dependences of the real and imaginary
parts of permittivity ε1 (ε2), optical constants n(k), etc.
[21]) in terms of the parameters of separate or coupled
oscillators. It can be seen from Fig. 5 that, for the most
part, the trajectories of S11 near both Fano resonances

*
*

Re(S11)

1 0 –1
Im(S11)

Fig. 5. Dependence of the real part of the scattering-matrix
element  on the imaginary part. The arrow indi-

cates the direction of an increase in the energy. Small circles
correspond to the location of real parts of the energies Er at
the poles. Dashed lines are constructed by formula (5).
Crosses represent the centers of circles.

S11( )Γ1Γ1
0



778 GRINYAEV, KARAVAEV
are circles. The circle radius is equal to 0.5 for the low-
lying resonance and is somewhat less than 0.5 for the
second resonance, because the P(E) value correspond-
ing to the dip is nonzero. The parameters of these cir-
cles are related to the poles and zeros of the scattering
matrix in the complex energy region. Since the reso-
nances are sufficiently far apart in energy, their “cou-
pling” can be ignored, and, in the neighborhood of
each resonance, the canonical expansion of the scatter-
ing matrix can be approximately represented in the
form [22]

(5)

where Spot is the term describing the potential scatter-
ing, which slightly depends on the energy; Ep = Er – iΓ
(Γ > 0) is the energy of the pole; En = E0 – iγ is the
energy of zero of the scattering-matrix element in the
complex energy plane; and B is the complex number.
Formula of type (5) was used by Ivchenko et al. [23] in
analysis of the electron transmission through several
AlAs monolayers within the perturbation theory
approximation. For the specific case γ = 0, this formula
was employed by Porod et al. [24] for interpreting the
non-Lorentzian features in the probabilities of electron
tunneling through quantum waveguides with coupled
cavities. This formula also leads to the scattering cross-
section obtained by Fano [25] for resonance states in
atoms and molecules. In the general case, the parame-
ters of formula (5) can be determined from the results
of exact calculations of the minimum [P(Emin)] and
maximum [P(Emax) = 1] transmission coefficients in the
range of the Fano resonance and the extrema of the

phase delay time [26] τ(E) =  (where Θ(E) is

the phase shift of the matrix element S11) at the energies
Er and E0. The energy dependences of the phase shift
Θ(E) and the broadening parameter Γ(E) = "/τ(E) are
displayed in Fig. 6. For the low-lying Fano resonance,
Emin = E0 = 0.3799 (0.348) eV, Emax = 0.3781 (0.343) eV,
γ = 0, and the pole parameters are as follows:

S11 E( ) Spot A/ E Ep–( )+≈ B
E En–( )
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Fig. 6. Energy dependences of the phase shift Θ(E) and the
broadening parameter Γ(E) for the scattering-matrix ele-
ment .S11( )Γ1Γ1
P

Er = 0.3793 (0.3459) eV, Γ = 0.00085 (0.00246) eV,
and τ(Er) = 0.387 (0.134) ps. The parameters calculated
within the discontinuous-potential model are given in
parentheses. Therefore, the consideration of the actual
microscopic potential leads to an increase in the time of
collision between an electron and the barrier in the
range of the first Fano resonance almost by a factor of
three. This change is directly determined by an increase
in the localization of the wave function within the bar-

rier region and a decrease in the Γ1–  intervalley

coupling constant  = 0.03 at the

GaAs/Al2Ga2As4 interface as compared to the Γ1–X1

intervalley coupling constant  = 0.05 at the

abrupt interface GaAs/AlAs. The ratio between the
squares of magnitudes of these constants yields an esti-
mate of the ratio between collision times. A decrease in
the Fano resonance width (and the corresponding
increase in the collision time) with a decrease in the
intervalley coupling constant was observed earlier in
[19]. The influence of interface potential on the tunnel-
ing time also provides an explanation for the results
obtained in [2], in which the experimental times of tun-
neling through the GaAs/AlAs superlattices with thin
barriers and wells proved to be longer than those calcu-
lated by the effective mass method with a stepwise
potential. In [2], this discrepancy was explained by an
additional scattering from phonons and the Coulomb
interaction between electrons and holes. However, the
discrepancies in [2] increase with a decrease in the layer
thickness, which most likely indicates the influence of
the interface. The second Fano resonance is character-
ized by the following parameters: Er = 0.4605 eV, Γ =
0.00126 eV, τ(Er) = 0.261 ps, E0 = 0.45975 eV, Emax =
0.4626 eV, and γ = –0.00022 eV. Since γ is small, Emin ≈
E0, and the trajectory of S11 in the diagram, as can be
easily seen from formula (5), is close to a circle. The
shorter times of a collision between the wave packet
and the barrier correspond to the more weakly localized
states of the second Fano resonance in the AlAs region.

In conclusion, we note that the results of multiband
calculations are well reproduced when the matching

matrices Jα(n) account for only the states from the ,

, Z1, and Z3 low-lying valleys of the superlattice.
Another model that efficiently accounts for the actual
profile of a microscopic potential through the band
parameters of these valleys in the GaAs/AlAs(001)
superstructures will be elaborated in a separate work.
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AND SURFACE PHYSICS
Electron-Stimulated Desorption of Lithium Atoms
from Oxidized Molybdenum Surface
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Abstract—The yield and energy distributions of lithium atoms upon electron-stimulated desorption from lith-
ium layers adsorbed on the molybdenum surface coated with an oxygen monolayer have been measured as
functions of the impact electron energy and lithium coverage. The measurements are performed using the time-
of-flight technique and a surface ionization detector. The threshold of the electron-stimulated desorption of lith-
ium atoms is equal to 25 eV, which is close to the ionization energy of the O 2s level. Above a threshold of
25 eV, the yield of lithium atoms linearly increases with an increase in the lithium coverage. In the coverage
range from 0 to 0.45, an additional threshold is observed at an energy of 55 eV. This threshold can be associated
with the ionization energy of the Li 1s level. At the electron energies above a threshold of 55 eV, as the coverage
increases, the yield of lithium atoms passes through a maximum at a coverage of about 0.1. Additional thresh-
olds for the electron-stimulated desorption of the lithium atoms are observed at electron energies of 40 and
70 eV for the coverages larger than 0.6 and 0.75, respectively. These thresholds correlate with the ionization
energies of the Mo 4s and Mo 4p levels. Relatively broad peaks in the range of these thresholds indicate the
resonance excitation of the bond and can be explained by the excitation of electrons toward the band of free
states above the Fermi level. The mean kinetic energy of the lithium atoms is equal to several tenths of an elec-
tronvolt. At electron energies less than 55 eV, the energy distributions of lithium atoms involve one peak with
a maximum at about 0.18 eV. For the lithium coverages less than 0.45 and electron energies higher than 55 eV,
the second peak with a maximum at 0.25 eV appears in the energy distributions of the lithium atoms. The results
obtained can be interpreted in the framework of the Auger-stimulated desorption model, in which the adsorbed
lithium ions are neutralized after filling holes inside inner shells of the substrate and lithium atoms. © 2000
MAIK “Nauka/Interperiodica”.
The electron-stimulated desorption is widely used
in analysis and modification of adsorbed layers and
film coatings. However, the current state of the art in the
understanding of physical processes underlying this
phenomenon is still not sufficient for its all-round
application. This is primarily due to the fact that only
charged particles have hitherto been recorded in the
majority of works, and the data on the electron-stimu-
lated desorption of neutral particles were obtained by
the indirect method [1].

Earlier [2, 3], we employed a surface ionization
detector for the recording of desorbed neutral particles.
This enabled us to measure the cross-sections and
energy distributions of alkali metal atoms upon elec-
tron-stimulated desorption from layers adsorbed on
oxidized tungsten and to put forward the model of this
process on the basis of the Auger-stimulated desorption
with allowance made for the relaxation of the local sur-
face field. The yields of K, Na, and Cs atoms and their
energy distributions upon electron-stimulated desorp-
tion from the layers adsorbed on the molybdenum sur-
face coated with an oxygen monolayer were measured
in our earlier work [4]. It was demonstrated that the
electron-stimulated desorption can be initiated not only
by the ionization of the O 2s level, but the Mo 4p and
Mo 4s levels as well. Note that, in the latter case, the
1063-7834/00/4204- $20.00 © 20780
ionization is a resonance process and is accompanied
by the extension of the energy distribution of alkali
metal atoms toward the range of very low energies [4].

In the present work, we measured the yield and
energy distributions of lithium atoms upon electron-
stimulated desorption from the lithium layer adsorbed
on the molybdenum surface coated with an oxygen
monolayer. This work is a part of the program con-
cerned with the elucidation of the mechanism for elec-
tron-stimulated desorption of alkali metal atoms from
the surface of transition metal oxides.

1. EXPERIMENTAL TECHNIQUE

The yield and energy distributions of alkali metal
atoms upon electron-stimulated desorption were mea-
sured using the time-of-flight technique with a surface
ionization detector. The procedure of measurements
and an instrument were described in detail earlier in [5].
Here, we only briefly recall their main features. The
measurements were carried out in a heated stainless
steel chamber at a residual gas pressure below 5 ×
10−10 Torr. The desorbed lithium atoms were ionized in
a surface ionization detector consisting of a textured iri-
dium ribbon, which was heated up to T = 1800 K. The
amplitude modulation of an electron beam, followed by
000 MAIK “Nauka/Interperiodica”
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the synchronous detection of a signal at the output of
the detector, made it possible to improve the signal-to-
noise ratio. The energy distributions of the desorbed
lithium atoms were measured by the time-of-flight
technique upon irradiation of a target with electron
pulses of duration 1 µs at a frequency of 1 kHz.

A textured molybdenum ribbon 70 × 2 × 0.01 mm3

in size was used as a target. In order to provide the pref-
erable orientation of the (001) surface, the ribbon was
heated by an alternating current under a high vacuum at
T = 2000 K for 5 h. The ribbon was cleaned from car-
bon by the annealing in an oxygen atmosphere at a
pressure of 1 × 10–6 Torr at T = 1800 K for 3 h. After the
evacuation of oxygen from the chamber, the ribbon was
heated up to T = 2200 K for 3 min in order to desorb
oxygen. The purity of the ribbon was checked by the
Auger electron spectroscopy, work function measure-
ments, and temperature-controlled desorption tech-
nique. A monolayer oxygen coating was produced by
the treatment of the ribbon in oxygen at a pressure of
1 × 10–6 Torr at the temperature T = 1400 K for 10 s.

Lithium was applied on the oxidized surface of a
molybdenum ribbon at T = 300 K from an evaporator,
in which lithium oxide was reduced by aluminum upon
passage of electric current. The concentration of depos-
ited lithium was determined from the deposition time at
a constant flux. The intensity of lithium flux was mea-
sured from the total current of surface ionization on the
ribbon heated to T > 1750 K. The adsorbed-lithium
concentration corresponding to a monolayer coating on
the oxidized Mo(100) face was taken to be equal to 1 ×
1015 at/cm2, because the yield of lithium atoms at this
concentration reached a maximum.

The composition of residual gases and the purity of
lithium atom fluxes was checked with a quadrupole mass
spectrometer. The density of electron current was no
more than 10–6 A/cm2 at an electron energy of 100 eV,
and, hence, the electron bombardment did not lead to
considerable heating of the ribbon.

2. RESULTS

The yield of lithium atoms upon electron-stimulated
desorption from the lithium layer adsorbed on the
molybdenum surface coated with an oxygen monolayer
depends on the energy of bombarding electrons and the
lithium coverage of the surface. Note that, unlike the
electron-stimulated desorption of lithium atoms from
oxidized tungsten, the yield of lithium atoms desorbed
from oxidized molybdenum is not a linear function of
the lithium coverage [4]. Figure 1 displays the yields of
lithium atoms q from the molybdenum surface coated
with an oxygen monolayer as a function of the bom-
barding electron energy for different lithium coverages
at T = 300 K. It can be seen that the threshold of the
electron-stimulated desorption is equal to 25 eV and
does not depend on the lithium coverage. Taking into
account the contact potential difference between an
PHYSICS OF THE SOLID STATE      Vol. 42      No. 4      200
electron emitter and the target, this value of threshold
energy can be treated to be close to the ionization
energy of the O 2s level. At the lithium coverages Θ <
0.45, the dependences of the yield of lithium atoms on
the electron energy exhibit a stepwise increase in the
yield at the electron energy Ee ≈ 55 eV, which corre-
sponds to the ionization energy of the Li 1s level. It is
interesting that the yield of lithium atoms due to this
threshold reaches a maximum at the lithium coverage Θ
≈ 0.1, decreases with a further increase in the coverage,
and becomes negligibly small at Θ > 0.45. An increase
in the lithium coverage above 0.6 leads to the appear-
ance of a broad peak in the q(Ee) curves at Ee ≈ 40 eV,
which correlates with the ionization energy of the Mo
4p level. At the lithium coverage Θ > 0.75, the curves
show the second broad peak at the electron energy Ee ≈
70 eV, which is close to the ionization energy of the Mo
4s level [6]. The location of these features in the elec-
tron energy scale is independent of the lithium cover-
age. As the electron energy increases, the yield of lith-
ium atoms gradually increases and does not reach satu-
ration up to Ee ≈ 160 eV. The shape of the features at Ee

≈ 40 and 70 eV suggests that the resonance excitation
of bonds is responsible for the electron-stimulated des-
orption of lithium atoms in the range of these energies.
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Fig. 1. Dependences of the yield of lithium atoms q on the
bombarding electron energy Ee upon electron-stimulated
desorption from the molybdenum surface coated with an
oxygen monolayer at T = 300 K for different lithium cover-
ages Θ: (1) 0.10, (2) 0.15, (3) 0.25, (4) 0.45, (5) 0.60, and
(6) 0.75.
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Figure 2 depicts the dependences of the yield of lith-
ium atoms q on the lithium coverage Θ of the molybde-
num surface coated with an oxygen monolayer for dif-
ferent energies of bombarding electrons Ee. As can be
seen, at Ee < 50 eV, the yield q of lithium atoms almost
linearly increases with an increase in the lithium cover-
age Θ. At Ee > 50 eV, the yield of lithium atoms in the
coverage range 0 < Θ < 0.45 is not a linear function of
the coverage and passes through a maximum at Θ ~ 0.1.
At Θ > 0.45, the yield q again linearly increases with an
increase in Θ.

The normalized energy distributions of lithium
atoms upon electron-stimulated desorption from the
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Fig. 2. Dependences of the yield of lithium atoms q on the
lithium coverage Θ of the molybdenum surface coated with
an oxygen monolayer at T = 300 K for different energies of
bombarding electrons Ee (eV): (1) 50, (2) 80, and (3) 150.
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Fig. 3. Normalized energy distributions of lithium atoms
upon electron-stimulated desorption from the molybdenum
surface coated with an oxygen monolayer for the lithium
coverages Θ = (1, 2) 0.10 and (3, 4) 0.75 and the electron
energies Ee = (1, 3) 50 and (2, 4) 80 eV.
P

molybdenum surface coated with an oxygen monolayer
are demonstrated in Fig. 3 for two electron energies
Ee = 50 and 80 eV and two lithium coverages Θ = 0.10
and 0.75. At Ee < 50 eV, the energy distribution resem-
bles a Gaussian curve slightly broadened to the high-
energy range. As the lithium coverage increases, the
energy distributions are shifted toward the low-energy
range. At Ee = 80 eV, the energy distributions show a
high-energy peak with a maximum at E = 0.275 eV. At
Θ > 0.45, this peak disappears, and the energy distribu-
tions are broadened toward the low-energy range.

3. DISCUSSION

Alkali metals adsorbed on the surface of transition
metal oxides reduce the work function of the surface. A
decrease in the work function depends on the coverage
and the ionization potential of an alkali metal. At small
coverages, alkali metals are likely adsorbed in the ionic
form. As the coverage increases, the ionic form gradu-
ally converts into the neutral form, because the rate of
decrease in the work function smoothly decreases to
zero at a monolayer coating. This can be explained by
the mutual depolarization of dipoles induced by adja-
cent adsorbed particles. An increase in the coverage
brings about a continuous decrease in the heat of
adsorption of alkali metals due to the repulsion of adja-
cent dipoles, and the bonding between adsorbed parti-
cles and the surface becomes weaker. Correspondingly,
the distance between adsorbed particles and the surface
increases [7].

The main regularities in the electron-stimulated des-
orption of lithium atoms can be interpreted in the
framework of the Auger-stimulated desorption model,
which was advanced earlier for the electron-stimulated
desorption of alkali metal atoms and ions from the lay-
ers adsorbed on the surface of oxidized tungsten [2, 3]
and then was applied to the description of the electron-
stimulated desorption of the Na, K, and Cs atoms from
their layers adsorbed on the surface of oxidized molyb-
denum [8, 9].

Let us assume that a primary electron produces a
hole at the O 2s level whose ionization energy is close
to the threshold of the onset in the electron-stimulated
desorption of lithium atoms (~25 eV). This hole can be
filled with an electron of the higher-lying O 2p level to
initiate the Auger process. An emitted Auger electron
can be captured by an adjacent adsorbed Li+ ion. In the
case when the O+ ion formed in the Auger process
regains its original negative charge by capturing elec-
trons from a substrate more rapidly than the lithium
atom ionizes, the O– ion begins to repel the lithium
atom due to the overlap of their valence shells, and the
lithium atom leaves the surface. The larger the overlap
of the shells, the higher the kinetic energy of the des-
orbed lithium atom. An increase in the lithium coverage
leads to an enhancement in the repulsion between lith-
ium atoms and, correspondingly, to an increase in the
HYSICS OF THE SOLID STATE      Vol. 42      No. 4      2000
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equilibrium distance between Li adatoms and O– ions.
Therefore, the mean kinetic energy of desorbed lithium
atoms decreases with an increase in the coverage. The
difference between the atomic and ionic radii decreases
in going from Cs to Li, and, hence, the mean kinetic
energies of desorbed atoms also decrease [4].

In the case when a primary electron removes an
electron from the 1s level of the Li+ adatom (the ioniza-
tion energy is ~55 eV), the formed Li++ ion begins to
move toward the substrate due to an increase in the
image potential and a decrease in the repulsion between
outer orbitals [10]. The interatomic Auger process
occurs at a certain distance from an O– ion. As a result
of this process, the Li++ ion again transforms into the
Li+ ion, which, in turn, can capture an Auger electron to
be converted into the Li atom. An increase in the lith-
ium coverage brings about an increase in the equilib-
rium distance between lithium adatoms and the sub-
strate. Therefore, the lithium atoms acquire a higher
kinetic energy prior to the turning point, and, corre-
spondingly, the desorbed lithium atoms acquire a
higher kinetic energy as compared to the lithium atoms
leaving the surface from the equilibrium distance after
the ionization of the O 2s level (a high-energy peak
shown in Fig. 3). With an increase in the kinetic energy,
the lithium atoms moving toward the surface come
closer to positive O+ ions, and their ionization potential
decreases under the action of image forces, which
increases the probability of their reionization [11]. As a
consequence, the yield of lithium atoms due to the ion-
ization of the Li 1s level decreases with an increase in
the lithium coverage.

Among alkali metal atoms, the lithium atoms pos-
sess the highest ionization potential and, hence, the
least probability of the reionization during the motion
toward the surface. Hence, it is not surprising that the
electron-stimulated desorption of only the lithium
atoms is observed after the ionization of their core lev-
els. The electron-stimulated desorption of lithium
atoms from oxidized tungsten after the ionization of the
Li 1s level likely is not seen, because of a sharp increase
in the yield of lithium atoms with an increase in the
energy of primary electrons in this case.

Additional features in the q(Ee)curves at electron
energies of 40 and 70 eV can be caused by the reso-
nance ionization of the Mo 4p and Mo 4s levels [6]. The
presence of these features implies that there exist the
Auger processes involving the Mo 4p and Mo 4s levels,
which lead to the neutralization of the adsorbed Li+

ions. These ions cannot be neutralized by the Auger
electrons liberated directly from the valence band after
filling holes at the Mo 4p and Mo 4s levels, because the
energies of these Auger electrons are too high. This is
corroborated by the absence of the yield of alkali metal
atoms upon electron-stimulated desorption from alkali
metal layers adsorbed on the tungsten surface coated
with silicon film [12], for which the least energy of
Auger electrons is equal to about 90 eV. It seems likely
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that the adsorbed Li+ ions can be more efficiently neu-
tralized by way of capturing electrons liberated in the
cascade Auger processes involving the Mo 4p, Mo 4s,
O 2s, and O 2p levels. A peak-like character of the fea-
tures can be explained by assuming that, upon ioniza-
tion of the Mo 4p and Mo 4s levels, electrons transfer
from these levels to the band of free states above the
Fermi level. These electrons decrease the relaxation
time of oxygen ions and, thus, increase the yield of lith-
ium atoms. The density of states in the band of free
states increases with an increase in the lithium coverage
of the surface. It should be noted that, for an isolated
lithium layer, the density of states in the band of free
states is considerably more uniform than that in the cor-
responding Cs, K, and Na layers [13]. As a result, the
features at 40 and 70 eV for the lithium atoms appear at
larger coverages and are less pronounced as compared
to the electron-stimulated desorption of the Cs, K, and
Na atoms [8, 9].

An increase in the energy of a core hole can lead to
an increase in its relaxation time [14] and, correspond-
ingly, to an increase in the probability of the reioniza-
tion of lithium atoms and a decrease in their yield upon
electron-stimulated desorption. For this reason, the fea-
ture at Ee ≈ 40 eV is observed at smaller lithium cover-
ages than the feature at Ee ≈ 70 eV. The features at Ee ≈
40 and 70 eV are not observed in the q(Ee) dependences
for the electron-stimulated desorption from lithium lay-
ers adsorbed on molybdenum oxide. This is likely
explained by the fact that the relaxation of the charge
on positive oxygen ions is too slow in this case.

The low-energy “tails” in the energy distributions of
lithium atoms can be associated either with the reverse
motion of the lithium atoms in the field of positive oxy-
gen ions, or with an incomplete relaxation of the charge
on oxygen ions, and, possibly, with the polarization of
outer orbitals of negative oxygen ions in the filed of
positive molybdenum ions. The lithium atom formed in
the neighborhood of a positive oxygen ion moves
toward this ion. The smaller the spacing between the
atom and the ion, the higher the kinetic energy acquired
by atom after the relaxation of the charge on oxygen.
Therefore, the less the atomic mass, the shorter the low-
energy tail in the energy distributions of the atoms. This
is in agreement with an increase in the tail lengths in
going from Li to Cs [8, 9]. Since the equilibrium dis-
tance between alkali metal ions and the surface
increases with an increase in the coverage, the length of
tails in the energy distributions also increases with an
increase in Θ.

On the other hand, the extension of the energy dis-
tributions of lithium atoms toward the low-energy
range can be caused by the partial relaxation of the
charge on positive oxygen ions, which, nonetheless,
brings about the repulsion of lithium atoms. In this
case, the lithium atoms experience a weaker repulsion
as compared to the complete relaxation of the charge on
oxygen and acquire a lower energy. It is quite probable
0
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that electrons captured in the band of free states are
responsible for the partial relaxation of the charge on
oxygen. Then, the tail length should increase with an
increase in the coverage.

Finally, the polarization of the outer orbitals of neg-
ative oxygen ions in the field of positive molybdenum
ions should lead to a decrease in the density of charge
between oxygen ion and alkali metal atom. This should
result in a weaker repulsion between the oxygen ion
and the alkali metal atom and, correspondingly, in the
appearance of the low-energy tails in the energy distri-
butions of the alkali metal atoms. It is clear that, in this
case, the length of the low-energy tails also should
increase with an increase in the alkali metal coverage of
the surface. Moreover, it is important that the appear-
ance of the low-energy tails should correlate with the
appearance of additional thresholds in the q(Ee) curves,
which is observed in the experiment.
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