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Mixing rules for group velocities in nanocomposite materials with different architecture, including lamellar-
inhomogeneous nanotextures, Maxwell Garnett structures, and one-dimensional photonic crystals, are derived
and analyzed. The group velocity can be controlled for such composite structures by changing nanocrystal sizes
and varying the dielectric properties and the content of the constituent materials. The interference of scattered
waves in structures with a spatial scale of optical inhomogeneities comparable to the radiation wavelength gives
rise to new physical phenomena that cannot be described in terms of the effective-medium approximation. ©
2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Wi; 42.70.Qs
Nanocomposite materials open new unique oppor-
tunities in laser physics and optical technologies. Nan-
opowder materials in particular are at the heart of
lasers [1] and optical frequency converters [2] of a new
architecture. Nano- and mesoporous semiconductor
materials can radically enhance nonlinear-optical
interactions of laser pulses [3]. Photonic-crystal struc-
tures [4, 5] are intensely used to control radiative pro-
cesses and are considered as promising candidates for
the creation of a new generation of components and
devices for telecommunications, laser physics, and
nonlinear optics [6].

Many remarkable properties of nonlinear-optical
interactions in nanocomposite materials are due to the
local-field enhancement [7] and the possibility of tun-
ing the effective refractive index of such materials by
changing the dielectric properties, the content, and the
sizes of nanoinclusions [3]. Recent experiments have
demonstrated that nanocomposite materials offer
much promise for nonlinear-optical frequency conver-
sion of ultrashort pulses [2, 8]. Tunability of the group
velocity is one of the key problems in femtosecond
nanophotonics, which deals with the development of
highly efficient and compact photonic devices for the
control of ultrashort laser pulses based on nanocom-
posite materials. This work suggests strategies to solve
this problem. We will derive and analyze mixing rules
for group velocities in nanocomposite materials with
different architecture, including lamellar nanotextures,
Maxwell Garnett structures, and one-dimensional pho-
tonic crystals.

We start our analysis with a lamellar-inhomoge-
neous nanotexture (see the inset in Fig. 1). Nanocom-
posites of such an architecture consist of parallel
0021-3640/04/7902- $26.00 © 20057
nanosheets of material with a dielectric constant ε1 =

 embedded in a medium with a dielectric constant

ε2 =  (n1 and n2 are the refractive indices of the con-
stituent materials). Optical properties of such a structure
have been analyzed in the literature since the 19th cen-
tury. Lord Rayleigh, in particular, has highlighted [9]
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Fig. 1. The weight factors  (curves 1 and 3) and 

(curves 2 and 4) for an ordinary wave in a lamellar-inhomo-
geneous nanocomposite material as functions of the ratio of
layer thicknesses b/a. The ratio of the refractive indices of
the layers forming the structure is n2/n1 = 1.5 (1, 2) and 3.0
(3, 4). The insets show different architectures of nanocom-
posite materials: a lamellar-inhomogeneous nanotexture
(right) and a Maxwell Garnett nanocomposite (left).
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a form birefringence of such a layered structure. As
understood later, this form birefringence can be used to
radically enhance nonlinear-optical processes in nano-
structured materials [10] and multilayer waveguides
[11] due to improved phase matching between the
pump field and the nonlinear signal.

Assuming that ωn1a/c, ωn2b/c ! 1, where ω is the
radiation frequency and a and b are the thicknesses of
alternating layers of isotropic materials with refractive
indices n1 and n2, respectively, we can represent the
effective refractive indices for ordinary and extraordi-
nary waves in a periodic layered nanotexture shown in
the inset to Fig. 1 as [12]

(1)

(2)

where d = a + b. Formulas (1) and (2) define the mixing
rules for the refractive indices of the constituent mate-
rials in the case of ordinary and extraordinary waves in
lamellar-inhomogeneous nanocomposites. To find the
corresponding mixing rules for the group velocities of
light pulses in such a nanostructure, we differentiate
Eqs. (1) and (2) with respect to frequency. This opera-
tion yields
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Fig. 2. The weight factors  (curves 1 and 3) and 

(curves 2 and 4) for an extraordinary wave in a lamellar-
inhomogeneous nanocomposite material as functions of the
ratio of layer thicknesses b/a. The ratio of the refractive
indices of the layers forming the structure is n2/n1 = 1.5
(1, 2) and 3.0 (3, 4).
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where v i = (∂ki/∂ω)–1 are the group velocities in the
constituent materials (i = 1, 2).

In the limiting case of n1 = n2 and v 1 = v 2 = v,
Eqs. (3) and (4) are reduced to the expressions for the
group velocity of light in an isotropic medium: v o =
v e = v. Generally, the group-velocity mixing rules for
ordinary and extraordinary waves in a lamellar-inho-
mogeneous medium, as follows from Eqs. (3) and (4),
can be written as

(5)

The weight factors  (i = 1, 2) in Eq. (5) depend
only on the ratio b/a of layer thicknesses and the ratio
n2/n1 of the refractive indices of the constituent materi-
als. Figures 1 and 2 display the dependences of the

weight factors  for the ordinary and extraordinary
waves in a lamellar-inhomogeneous material on the
ratio b/a of layer thicknesses. For the ordinary wave

(Fig. 1), the weight factors  are monotonic functions
of the ratio b/a. The contribution of each of the materi-
als to the group velocity of light in a nanocomposite
monotonically decreases as the content of this material
is reduced. In the case of the extraordinary wave

(Fig. 2), the weight factors  may nonmonotonically
depend on the ratio b/a. Analysis of Eqs. (4) and (5)

shows that the factor  is a monotonic function of b/a

for  < 3 (curve 1 in Fig. 2). With  > 3, this
factor reaches its maximum (curve 3 in Fig. 2) at the
following value of the ratio b/a:

(6)

Thus, we found that the inverse effective group
velocity in a nanotextured material can be represented
as a sum of inverse group velocities in each of the mate-
rials, taken with weight factors controlled by the optical
properties of materials forming the nanostructure and
by the nanocomposite architecture. Such a mixing rule
for group velocities is characteristic of effective-
medium models. Strong coupling and interference of
scattered waves, as will be shown below, lead to devia-
tions from this mixing rule.

The Maxwell Garnett model [13] gives an effective
dielectric constant of a nanocomposite structure (inset
in Fig. 1) consisting of a material with dielectric con-

stant ε1 =  with nanoscale spherical inclusions of a

material with dielectric constant ε2 =  and volume
filling fraction p. This model assumes that the distance
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R between the nanoinclusions is much larger than their
radius r, R @ r (see inset in Fig. 1). The Maxwell Gar-
nett mixing rule for the dielectric constants in a nano-
composite material is written as

(7)

Differentiating Eq. (7) with respect to frequency, we
arrive at the following mixing rule for the group veloc-
ities in the Maxwell Garnett model:

(8)

Thus, similar to the case of a lamellar-inhomoge-
neous nanotexture, the inverse effective group veloc-
ity can be represented, within the framework of the
Maxwell Garnett model, as a sum of weighted inverse
group velocities of individual materials forming a
nanostructure:

(9)

The ratio of weight factors in Eq. (9), FMG(p, n2/n1) =

, is written as

(10)

Since p is small, the dependence of the factor FMG on
the volume filling fraction of nanoinclusions is close to
a linear function. The dependence of FMG on the ratio
n2/n1 of refractive indices is nonmonotonic. For small
n2/n1, the factor FMG linearly increases with the growth
in the ratio of refractive indices. The maximum value of
FMG is achieved, independently of p, at n2/n1 = (2/3)1/2.
For large ratios n2/n1, the refractive index and the group
velocity in a nanocomposite material of this class tend
to the following limiting values: n = n1(1 + 3p)1/2 and
v  = v 1(1 + 3p)–1/2.

Photonic crystals [4–6] are materials where the
refractive index is periodically modulated in one, two,
or three dimensions on a characteristic spatial scale
providing strong coupling of scattered electromagnetic
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waves. The electromagnetic radiation field has the form
of Bloch waves in such structures. In the elementary
case of an ideal one-dimensional photonic crystal
equivalent to an infinite periodic stack of layers with
refractive indices n1 and n2 and thicknesses a and b (see
inset in Fig. 1), the Bloch wave number K meets the fol-
lowing dispersion relation:

(11)

where ∆ = (  + )/2n1n2. Differentiating Eq. (11)
with respect to frequency, we derive the mixing rule for
group velocities in a one-dimensional photonic crystal:

(12)

where

(13)
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In the limiting case of ωn1a/c, ωn2a/c ! 1,
Eqs. (12)–(14) yield formulas (1) and (2) for the effec-
tive group velocity in a lamellar-inhomogeneous
medium. Generally, however, the mixing rule for
group velocities in a photonic crystal, as follows from
the comparison of Eqs. (1), (2) and (12)–(14), qualita-
tively differs from the mixing rules for group veloci-
ties in a lamellar-inhomogeneous nanotexture or a
Maxwell Garnett nanocomposite. In contrast to effec-
tive-medium models corresponding to the electro-
static approximation, the mixing rule for group veloc-
ities in a one-dimensional photonic crystal explicitly
involves the dependence on the radiation frequency
(Fig. 3). The group velocity in a photonic crystal is
controlled not only by the dispersion properties of
each of the materials constituting the photonic crystal
and the morphology of the nanostructure but also the
dispersion of Bloch waves (inset in Fig. 3), which may
radically differ from the dispersion of each of the con-
stituent materials.
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Physically, the difference between the mixing rules
for group velocities in nanocomposite materials
described in terms of the electrostatic effective-medium
approximation and the mixing rules for photonic crys-
tals originates from the interference of light waves scat-
tered from refractive-index inhomogeneities. Such
interference phenomena are especially pronounced

Fig. 3. The weight factors  (curves 1 and 3) and 

(curves 2 and 4) as functions of the dimensionless fre-
quency k0d (k0 = ω/c) in a one-dimensional photonic crystal
with layer thicknesses a = b = 100 nm and refractive indices
n1 = 1.5 and n2 = 2 (1, 2) and 1.5 (3, 4). The inset shows the
dispersion of a one-dimensional photonic crystal consisting
of periodically alternating layers with equal thicknesses,
a = b, and the ratio of refractive indices n2/n1 = 1 (1), 2 (2),
and 3 (3).
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Fig. 4. The weight factors  (curves 1 and 3) and 

(curves 2 and 4) in a one-dimensional photonic crystal as
functions of the ratio of layer thicknesses b/a for a periodic
multilayer structure with a = 100 nm, n1 = 1.5, and n2 = 2.25
(1, 2) and 3.375 (3, 4).
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around photonic band gaps of periodic structures, i.e.,
in the frequency ranges where the scattered waves are
strongly coupled to the forward wave (inset in Fig. 3).
One of the most prominent effects observed under these
conditions is the lowering of the group velocity. Near
the edges of photonic band gaps, at Kd  π, we have
vPBG  0 (Figs. 3, 4). The group velocity in this
regime is much lower than the group velocities in each
of the materials. Such phenomena are never observed in
lamellar-inhomogeneous media, where the spatial scale
of refractive-index modulation is much lower than the
radiation wavelength (cf. Figs. 1, 2, 4). The role of
interference phenomena is insignificant in such materi-
als, and their dispersion can be adequately described
within the framework of effective-medium models
(Eqs. (1), (2)). Inside photonic band gaps, the proce-
dure of group-velocity calculation should be care-
fully modified. A comprehensive, methodologically
consistent analysis of this issue is provided by Yariv
and Yeh [12].

We have derived and analyzed the mixing rules for
group velocities in nanocomposite materials with dif-
ferent architecture, including lamellar-inhomogeneous
nanotextures, Maxwell Garnett structures, and one-
dimensional photonic crystals. We have shown that the
group velocity can be controlled for such nanocompos-
ite structures by changing nanocrystal sizes and varying
the dielectric properties and the content of the constitu-
ent materials. The interference of scattered waves in
structures with a spatial scale of optical inhomogene-
ities comparable with the radiation wavelength gives
rise to new physical phenomena that cannot be
described in terms of the effective-medium approxima-
tion. Energy exchange between strongly coupled for-
ward and reflected waves in photonic crystals may sub-
stantially lower the group velocity of electromagnetic
radiation, giving rise to a strong local-field enhance-
ment of nonlinear-optical interactions.
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The spatial structure of light fields in a metallized cone filled with a medium with complex dielectric function
was studied on the basis of the exact solution of the eigenwave problem. It is suggested that silicon can be used
as a core of optical probe in the visible spectral region. It is shown that the density of light energy at the output
of optical probe can be drastically increased if silicon is used instead of glass fiber. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 42.81.Qb; 42.81.Dp
The generation of highly localized light fields has
provided the basis for optical studies with subwave-
length resolution and for local action on the matter.
Using the light concentrated on the subwavelength
scale, it has been possible to go far beyond the classical
diffraction restrictions in many directions of the optical
experiment [1–7].

The use of a tapered metal-coated glass fiber is the
most popular way of producing highly localized fields
(see [8] and literature cited therein). Another type of
optical probe is based on the scattering of an external
radiation by metallic needle (see, e.g., [9]). A drawback
of the scattering probe consists in a high level of the
background light. On the other hand, the output radia-
tion intensity in the case of glass fiber is not sufficiently
high (because of the low probe transmittance).

Much work has been devoted to improving the
transmittance of tapered optical waveguides (see, e.g.,
[10–16]). Several approaches to the solution of this
problem have been proposed. It was suggested, e.g.,
that the waveguide fields should be transformed into
surface plasmon modes more efficiently, that the taper
angles should be increased, and that the profile of the
probe should be optimized near its apex. Recently, the
tendency to use probe materials with a high refractive
index has been envisaged. In this respect, silicon
attracts particular attention. The merits (compared to
glass) of using silicon (having a high refractive index)
in the infrared region were pointed out in [14]. Experi-
mental works [15, 16] with silicon were also made only
in the infrared spectral region.

The possibility of using silicon in the visible region
has not even been discussed to date. The problem is
that the absorption is strong in this spectral region.
However, it is not clear, in advance, whether it is pos-
0021-3640/04/7902- $26.00 © 20062
sible to obtain high output intensity in the presence of
strong absorption in a medium with high refractive
index or not. The purpose of this work is to answer this
question.

Let us consider a cone with ideally reflecting walls.
The dielectric function of a medium in the cone is ε =
ε' + iε'' and its magnetic permeability is µ = 1. In the
calculations, we will use material constants corre-
sponding to silicon. For the case of a real dielectric con-
stant, the expressions for the cone eigenwaves of the
electric and magnetic types with arbitrary mode indices
are given in [12]; the corresponding bibliography is
also given in that work. In the case of complex dielec-
tric function, we restrict ourselves only to the azimuth-
ally symmetric electric wave. A monochromatic wave
with frequency ω = 2πc/λ is considered, where c is the
speed of light and λ is the wavelength in vacuum. In the
spherical system of coordinates (r is the distance from
the cone apex and θ and ϕ are the polar and azimuthal
angles, respectively), the solution to the Maxwell equa-
tions for the TM wave, i.e., for the electric wave, in the
case of ∂/∂ϕ = 0 has only three nonzero components Er,
Eθ, and Hϕ:
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Here, Pν(cosθ) is the ν-degree Legendre function of the
first kind. The radial dependence of fields is described
by the function

(3)

where C is an arbitrary constant, jν(z) is the Bessel
spherical function of the first kind with complex argu-
ment z and noninteger index ν, and k is the wavenumber

(4)

The boundary condition at the cone walls is Pν(cosθ0) =
0, where 2θ0 is the cone angle. This condition defines
the set of eigenvalues νs(θ0) (s = 1, 2, …); we consider
below the wave corresponding to the lowest eigenvalue.
The Bessel function of the first kind is chosen in Eq. (3)
because the field is almost totally reflected from the
aperture of subwavelength size. For this reason, the
solution for a closed cone describes, with a good accu-
racy, the field structure in a frustrum of a cone tapered
to subwavelength sizes [12].

The formulas for field components (1) and (2) can
be used to calculate the time-averaged energy density
for each component; the corresponding values are given
by the expressions [17]

(5)

where ε' = Re{ε} and µ' = Re{µ}. To determine the
transmittance for a tapered optical waveguide, one
should evaluate the integrals of wr, wθ, and wϕ over the
sphere surface area 2πr2sinθdθ with radius r inside the
cone (0 ≤ θ ≤ θ0, 0 ≤ ϕ ≤ 2π). The resulting expressions
for the integrated electric Wel = Wr + Wθ and magnetic
Wm = Wϕ energy densities are given by
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with  = ν(ν + 1) . By summing expressions (6)
and (7), one can obtain the total integrated field energy
density Wtot = Wel + Wm inside the cone.

Let us consider the spatial distribution of electro-
magnetic energy inside a silicon conical waveguide. In
Fig. 1, the calculated energy densities of (solid line)
electric 〈wel〉  and (dashed line) magnetic 〈wm〉  field
components are shown as functions of the radial coor-
dinate r for λ = 488 nm. The results are averaged over
the polar angle θ and calculated for a cone with apex
angle 2θ0 = π/2 (ν = 2.548). One can see in Fig. 1 that
the energy densities of the electric and magnetic field
components show oscillatory behavior at distances r
larger than the light wavelength λSi = λ/nSi in Si (nSi =
4.37 for λ = 488 nm) and are in antiphase. In the region
r ! λSi, both 〈wel〉  and 〈wm〉  decrease rapidly as the cone
apex is approached, but the energy density of electric
field decreases considerably slower than for the mag-
netic field. Figure 1 also shows the radial dependence of
the θ-averaged total energy density 〈wtot〉 = 〈wel〉 + 〈wm〉
of the electric and magnetic fields (dotted line). One
can see that 〈wtot 〉  has a sharp peak as a function of r
before decreasing near the cone apex; i.e., light energy
is strongly concentrated.

Let us now consider the transmittance T of a silicon
waveguide. The transmission will be determined from
the field in near zone. In our case, the transmittance is

defined by the ratio T = /  of the field energy
density (integrated over the plane surface of an aperture

with radius a)  ≡ Wtot(z0) at the output z = z0 of the
frustrum of the cone,

(9)

(ν
2( ) (ν

1( )

W tot
out W tot

in

W tot
out

W tot
out 2π wtot ρ z0,( )ρ ρ, ad

0

a

∫ z0 θ0,tan= =

Fig. 1. Polar-angle-averaged field energy density as a func-
tion of coordinate r in a Si cone with the apex angle 2θ0 =
π/2. The solid and dashed curves are, respectively, the con-
tributions from the electric 〈wel〉  and magnetic 〈wm〉  ener-
gies of the lowest-index TM wave at λ = 488 nm. The dotted
curve is the total energy density 〈wtot〉 = 〈wel〉 + 〈wm〉 .
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to the total integrated energy density  at the
waveguide input

(10)

W tot
in

W tot
in α2πr

2
wtot θ θ,dsin

0

θ0

∫=

α 1
1 4κωrin/c–( )exp+
-------------------------------------------------.=

Fig. 2. Spectral dependences for the ratio T = /  of

the integrated energy density of the lowest-index TM wave
at the output (Eq. 9) of a conical Si waveguide to the corre-
sponding value at its input (Eq. 10). Panels (a), (b), and (c)
correspond, respectively, to the distances rin = 2, 5, and
10 µm from the cone apex with the angle 2θ0 = π/2 to the
waveguide input. Curves 1, 2, 3, and 4 correspond, respec-
tively, to the diameter d = 100, 70, 50, and 25 nm of the out-
put aperture.

W tot
out

W tot
in
Integration in Eq. (10) goes over the section of spheri-
cal surface inside the cone (0 ≤ θ ≤ θ0, 0 ≤ ϕ ≤ 2π) at
r = rin (rin is the distance from the cone apex to the
waveguide input). The factor α allows for the fact that
the input field is a superposition of two counterpropa-
gating traveling waves with amplitudes whose ratio at
large distances r @ 1/|k| from the apex is exp(–2κωr/c).
The factor α (1/2 ≤ α ≤ 1) takes into account the frac-
tion corresponding to the incident wave in the inte-
grated energy density Wtot(rin) and eliminates the con-
tribution from the reflected wave.

The calculated T(λ) dependences are shown in
Fig. 2 for rin = 2, 5, and 10 µm in a Si cone with the apex
angle 2θ0 = π/2. Curves 1, 2, 3, and 4 correspond,
respectively, to the diameters d = 100, 70, 50, and
25 nm of the output aperture. According to [18], the
refractive index n of light in Si increases monotonically
from 3.67 to 5.57 for the wavelengths λ varying from
830 to 400 nm, while the damping coefficient κ
increases from 0.005 to 0.387. Therefore, light absorp-
tion in Si is rather weak in the near-infrared region.
However, it becomes significant in the short-wave-
length part of the visible spectrum and results in a dras-
tic decrease in the light transmittance at small λ.

The comparison of Figs. 2a, 2b, and 2c for each
value of λ indicates that the transmittance T(λ) in a Si
cone decreases with increasing the waveguide length rin
(contrary to glass fiber [12]). This dependence is rela-
tively weak in the IR region and becomes rather sharp
in the short-wavelength part of the visible spectrum.
For instance, the transmittance at λ < 500 nm is reduced
by several orders of magnitude upon increasing the
waveguide length rin from 2 to 10 µm.

One can conclude from the analysis of the above
results that the transmittance of a Si optical waveguide
is high in both the near IR and visible spectral regions
(provided that the waveguide length rin is not too large).
For example, one has for λ = 830 nm, taper angle 2θ0 =
π/2, and rin = 2 µm, T = 2.9 × 10–4, 9.3 × 10–3, and 4.7 ×
10–2 for the diameter of output aperture d = 25, 50, and
70 nm, respectively. Note that the values T ~ 10–2

obtained for d = 50–70 nm are in fair agreement with
recent measurements [16] of the transmittance of a met-
allized Si waveguide at λ = 830 nm. In the visible
region at a He–Ne laser wavelength (λ = 633 nm), the
transmittance increases by one or two orders of magni-
tude compared to glass fiber; T = 9.2 × 10–4, 2.7 × 10–2,
and 1.2 × 10–1 for the diameters d = 25, 50, and 70 nm,
respectively, and for the same angle θ0 and waveguide
length rin. For the Ar+ laser wavelength (λ = 488 nm),
one obtains, in spite of a drastic increase in light absorp-
tion in Si, T = 1.8 × 10–4, 4.2 × 10–3, and 1.5 × 10–2,
respectively, for the same d values. It is significant that
all these values sizably exceed the corresponding val-
ues of T for a metal-coated tapered glass fiber
waveguide.
JETP LETTERS      Vol. 79      No. 2      2004
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The results obtained suggest that the use of silicon
as a probe material is favorable for obtaining high
transmittance not only in the IR but also in the visible
spectral region. In particular, the transmittance maxi-
mum for a probe length of 2 µm occurs not in the IR
region but near λ = 600 nm.

The properties of waveguides with the silicon core
are determined by the competition between two oppo-
site tendencies. A high refractive index reduces the
potential barrier for the light wave and favors field leak-
age through the narrow waveguide section near the out-
put. At the same time, the absorption weakens the field
at the input section and, hence, reduces the overall
transmittance. Due to the strong spectral dependence of
the absorption coefficient and refractive index, the situ-
ation becomes different in different wavelength
regions. For instance, light absorption in the near-IR
region only weakly affects the transmittance of a
tapered waveguide, so that, when used in probes, sili-
con invariably offers an advantage over glass.

In the visible spectral region, the results prove to be
highly sensitive to the length of the Si waveguide. For
short lengths, the benefits of using silicon become obvi-
ous. For example, if the waveguide length does not
exceed 2 µm and the diameter of the output aperture is
d = 50 nm, the transmittance at λ = 633 nm increases by
a factor of 45 as compared to glass fiber.

The main conclusion of this work is that the role of
refraction dominates over the absorption in the case of
appropriate (and, what is important, realistic) geomet-
ric parameters. The use of Si as a core of a waveguide
used in near-field microscopy allows simultaneous
achievement of high transmittance in visible region and
high spatial resolution.
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sion. This work was supported by the scientific pro-
gram “Optical Spectroscopy and Frequency Standards”
of the Russian Academy of Sciences and by the Russian
Foundation for Basic Research, project no. 02-02-
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1. Coherent population trapping (CPT) in the atomic
interaction with a resonant external field is a well-
known phenomenon (see review [1] and literature cited
therein). It is widely used in various fields of atomic
and laser physics, such as ultrahigh-resolution spec-
troscopy [2], nonlinear optics of resonant media [3, 4],
laser cooling [5], and atomic optics and interference
[6]. For the resonant excitation from the atomic ground
state with angular-momentum degeneracy, general con-
ditions for the occurrence of CPT and the explicit form
of dark light-nonscattering states were established in
our works [7]. The external field was assumed to be
coherent, and the atomic state was taken in the form of
c-numeral amplitudes of wave-function expansion in
the basis of magnetic sublevels.

It was shown in [8] that the laser-field fluctuations of
a certain type destruct the dark state, and the CPT effect
disappears. This rule, however, is not general. For
instance, we have found in [9] that the dark state can
arise upon the interaction with an arbitrarily fluctuating
monochromatic radiation field. In particular, it has been
shown that, for an atom with the ground-state angular
momentum Jg = 1 and Je = 1 in the excited state, the
CPT effect occurs even if the photon spin coherence is
fully absent (unpolarized light).

Recent remarkable theoretical works on the problem
of dark polariton [10, 11] and the experimental demon-
stration of the fact that light-carried information is
stored in an atomic medium [12] have rekindled our
interest in the problem of the general form of dark state
in the system atoms + field. It should be noted that the
experimental results obtained in [12] seem to be highly
important because of their possible extension to the
storage of essentially quantum information coded in the
nonclassical states of electromagnetic field. In this con-
nection, the following statement of the problem seems
0021-3640/04/7902- $26.00 © 20066
to be quite appropriate: how do the conditions for the
existence and the form of dark states change [7] if the
resonant field is described not by c-numeral amplitudes
but by the creation and annihilation operators? From
this point of view, dark polaritons [11] should represent
a special case of the general solution for which one field
polarization mode is classical (i.e., is in the coherent
state), while another is quantal. Moreover, it is quite
possible that, for the long-term storage of quantum
information in an atomic medium, it will be necessary
to use ultracold atomic ensembles (Bose–Einstein con-
densates) [13]. In this case, atoms can conveniently be
described by the secondary quantized amplitudes—
Bose-type creation and annihilation operators [14].

Although we do not intend to solve this problem in
the general form, we present in this work three new
classes of dark states in a system “Bose atoms + quan-
tized field.”

2. Let us consider an ensemble of Bose atoms hav-
ing two degenerate energy levels with the total angular
momenta Jg in the ground state and Je in the excited
state and interacting resonantly with the quantized
mode of a monochromatic electromagnetic field. The
field spatial distribution in the mode is assumed to be
independent of the field polarization (e.g., plane travel-
ing wave); i.e., the field operator can be written in the
form

(1)

where ϕ(r) is the field distribution in the mode and 
is the photon annihilation operator in a mode with

polarization es (  = δss').

Ê r( ) ϕ r( )â h.c.; â+ âses,
s 1±=

∑= =

âs

âs âs'
†,[ ]
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Atoms will be described within the framework of
the secondary quantization method by the creation

(pn) and annihilation (pn) Bose operators for
an atom in the state with energy En(pn), angular
momentum Jn, and its projection µn, where n = e, g. As
in the case of field, it is assumed that the wave functions

(r) describe the spatial distribution of the probabil-
ity amplitude in a stationary state with energy En(pn)
and do not depend on the projection µn of angular
momentum. Thus, we are dealing, e.g., with atoms in a
free space (in this case, pn corresponds to the atomic
momentum) or with atoms in an isotropic nonresonant
optical potential (in this case, the numbers pn label
energy levels) but not with atoms in a magnetic trap.

The excited atomic state is radiatively unstable
because of its interaction with the field vacuum modes.
The problem is to determine a nontrivial superposition
that describes the ground-state atoms and the field-
mode excitations and turns to zero the operator (1) of
resonant interaction with field at every instant t. For-
mally, these conditions can be written as

(2)

i.e., the dark state is simultaneously an eigenvector with
zero eigenvalue for two operators: the operator of the
number of excited atoms,

, (3)

and the operator of resonant interaction in the Dirac
picture,

(4)

Here, the overlap integral R(pe, pg) =

 describes the photon-absorp-

tion recoil effect; 〈Je||d||Jg〉  is the reduced matrix ele-

ment of the dipole moment operator; and  are
the Clebsch–Gordan coefficients [15].

For a more compact invariant presentation of the
results, it is convenient to discard (for a while) the con-
dition that photons are transverse, i.e., extend the sum-
mation over polarizations to three components (µ = 0,

b̂Jnµn

†
b̂Jnµn

ψpn

1̂e NC| 〉 0, ĤA F– NC| 〉 0;= =

1̂e b̂Jeµe

†
pe( )b̂Jeµe

pe( )
pe µe,
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ĤA F– t( )

=  iωt– i Ee pe( ) Eg pg( )–[ ] t/"+{ } R pe pg,( )exp
pe pg,
∑

× Je〈 | d Jg| 〉 CJgµg1s
Jeµe b̂Jeµe

†
pe( )âsb̂Jgµg

pg( ) h.c.+
µg µe s, ,
∑

ψpe
* r( )ϕ r( )ϕ pg

r( )d3r∫

CJgµg1µ
Jeµe
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±1), omit, for brevity, the indices pe and pg, and pass to
the effective spin Hamiltonian

(5)

where κ is the effective coupling constant (one-photon
Rabi frequency). In so doing, one should bear in mind
that the solutions obtained below to problem (2) are
independent of pe and have the same form for any pg

(i.e., they are not selective to the translational degrees
of freedom). It is worth noting that the spin model cor-
responding to Hamiltonian (5) is also of importance
because, in particular, it is isomorphic, in the resonant
approximation, with some interaction models describ-
ing the nondegenerate n-level atomic systems with a
multifrequency radiation field.

3. So, we seek the generalized dark states that repre-
sent the nontrivial solutions to problem (2) with the
interaction Hamiltonian (5). The first class of such
states corresponds to the J  J (J is an integer) and
J  J – 1 transitions and is a direct generalization of
the dark states in a classical external field [7]. To
describe it, we introduce the creation operator for an
atom in the dark state

(6)

where the operator coefficients  (components
of the irreducible tensor of rank Jg) are the solutions to
the system of equations

(7)

Here, the standard notation from [15] is used for the
irreducible tensor product. Since the system of Eqs. (7)
does not contain noncommuting operators, its solutions
can be found by the methods developed in [7]. For the
two aforementioned types of transitions, the nontrivial
solutions have the form of homogeneous polynomials
in the photon annihilation operators . Namely, for the
J  J transitions (J is an integer), the solution has the
form of a polynomial of (minimal) degree J:

(8)

For the J  J – 1 transitions, the minimal degree is
(2J – 1) (we assume that, in the general case, all three
components of the operator  are nonzero). The solu-
tion has the form of superposition

(9)

where the summation goes over the even or odd L,
depending on whether J is a half-integer number or an

ĤA F– "κ CJgµg1µ
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†
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integer;1 QJ is an arbitrary c-numeral irreducible tensor
of rank J; and the coefficients are

Polynomials (9) form a two-dimensional linear space in
the following sense: two linearly independent tensors

 and  give two linearly independent solutions

 and ; any three solutions , , and 
are linearly dependent. This is a direct consequence of
the fact that the subspace of dark states for the J 
J – 1 transitions is two-dimensional in the classical
case [7].

The basis state in the first class can be parameterized
by two arbitrary functions f and F:

(10)

where |vac〉  is the vacuum state without atoms and pho-
tons. One can verify, after the direct substitution, that
Eq. (10) is the solution to problem (2) if  satisfies

Eq. (7). Note that, if the function F depends only on 

and , the condition that photons are transverse will
automatically be fulfilled. Evidently, any superposition
and incoherent combination of states (10) are also solu-
tions to problem (2); i.e., they are the dark states.

Let us take the simplest example to follow how a
singly excited state of a dark polariton [11] arises in our

approach. Consider the 1  1 transition; i.e.,  =

 +  + . The function  is defined

as F = exp[–|z|2/2 + ] . When acting on the vac-
uum state, F generates a coherent state with amplitude
z in the mode with circular polarization (+1) and a sin-
gle photon in the mode with circular polarization (–1).
Assume that the number of atoms is fixed and equal to
N; then, the function f is determined unambiguously:

f  = / . The direct calculations by formula
(10) yield the result that coincides (except for notation)
with |D, 1〉  in [11]:

where only those occupation numbers are indicated that

change in the course of interaction;  is the num-
ber N of atoms in the state |Jg, µg = +1〉; etc. The choice

1 We do not rigorously associate the angular momentum with the
atomic statistics, with an eye to various circumstances, in particu-
lar, to the aforementioned isomorphism of the considered spin
models with the models for nondegenerate states.
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† â 1–

†
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a( ) 0{ } 1–
ph( ), ,| 〉 )/ z 2 N+ ,

N{ } +1
a( )
F = exp[–|z|2/2 + ]( )m/  leads to the m-fold
excited states |D, m〉  of a dark polariton [11].

4. One can see from Eq. (5) that there is a certain
symmetry between field and atoms. Indeed, two spinor
Bose fields of ranks Jg and 1 are combined into a spinor
Bose field of rank Je. The physical nature of the com-
bined fields is to some extent immaterial in our model.
These considerations lead to the second class of dark
solutions. The corresponding algebra is similar to the
manipulations used above, but with interchanging
ground-state atoms and photons. Let us introduce the
photon creation operator in the dark state:

(11)

Here, the operator coefficients  (components of

the vector ) satisfy the system of equations

(12)

which has nontrivial solutions if Je < 1 and Jg = Je = 1,
i.e., only for four transitions. Below, we give the
explicit form of these solutions. For the 1  0 and
1  1 transitions, the vector  is linear with respect

to the vector  ≡ :

(13)

where c is an arbitrary c-number vector. For the 1/2 
1/2 and 3/2  1/2 transitions,  depends quadrati-

cally on :

(14)

Further, by analogy with Eq. (10), the main representa-
tive of the second class of dark states is parameterized
by arbitrary functions φ and Φ:

(15)

It should be pointed out that, for a certain choice of
functions f and F in Eq. (10) and functions φ and Φ in
Eq. (15), the dark states |NC(f, F)〉  and |NC(φ, Φ)〉  may
coincide; i.e., the first and second classes intersect
along a certain set of elements. However, the second
class also contains elements that do not enter the first
class. This becomes most evident for the 1/2  1/2
transition, where there are no dark states of the first
class. Consider this case in more detail. We take the
function Φ in the form Φ = exp[–|z+|2/2 +

]( )2/ , which corresponds to the Bose
condensate of atoms with spin projection (+1/2)
(described by the complex order parameter z+) and two
atoms with opposite projections. For simplicity, we

choose the function φ in the linear form φ =  =

zâ+1
† â 1–
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ŵ
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 +  + . The result-
ing dark state is the superposition

whose coefficients are controlled by the parameter z+.
Such states describe the essentially quantum entangle-
ment of two subsystems (atoms and field) [16]. In the
case considered, quantum entanglement is an addi-
tional factor that gives rise to the nontrivial dark states.

Turning back to the initial formulation of the prob-
lem with a given spatial field distribution (1), one real-
izes that this photon superposition of all three polariza-
tion states, generally speaking, is contradictory to the
condition that electromagnetic waves are transverse.
However, this problem does not arise for a nondegener-
ate model of a four-level atom interacting with a three-

frequency field. In this case, the operators  create
photons with different frequencies (ω0 and ω0 ± Ω).

5. It is not evident from general considerations that
the first and second classes encompass all possible dark
states of our system, thereby motivating a search for the
dark states that are different from those considered
above. We will seek these solutions in the form

(16)

It is also assumed that the number N of atoms and the
number m of photons are specified; then,

(17)

where the coefficients -(µ), (s) are symmetric about the per-
mutation of any pair of indices µi  µj and sk  sl.
In addition, due to Eq. (2), the coefficients -(µ), (s) must
satisfy the system of equations

(18)

It should be emphasized that the c-number coefficients
χ(µ), (s) must turn Eq. (18) to the operator identity.

Clearly, the representatives of the first and second
classes of dark states can have the form (16), (17) if the
functions (f, F) or (φ, Φ) are appropriately chosen. To
make sure that the form (16), (17) can also describe the
dark states that do not belong to the first and second
classes, we consider the bright J  J + 1 transitions,
for which there are no dark states of the first two
classes. The estimation of the number of unknown
coefficients -(µ), (s) and the number of linear equations
for these coefficients shows that the nontrivial solutions
to this problem necessarily exist for {N = 1, J + 1 > m}
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and {
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 = 2, 

 

m

 

 = 1, 

 

J

 

 > 0)}. Since the number of atoms
and photons is quite limited in all the cases, we call the
dark states of the third class the ultraquantum states.

Let us clarify the structure of these states. In the case
of 

 

N

 

 = 1, 

 

J

 

 + 1 > 

 

m

 

, the dark state of the third class can
be written as

(19)

where 

 

Q

 

L

 

 is an arbitrary tensor of rank 

 

L

 

 = 

 

J

 

 – 

 

m

 

 + 1 or

 

L

 

 = 

 

J

 

 – 

 

m

 

, and the total number of components of these
two tensors corresponds to 4(

 

J

 

 + 1 – 

 

m

 

) linearly inde-
pendent solutions. Note that, by choosing the appropri-
ate linear combination of states (19), one can satisfy
(for 

 

J

 

 

 

≥

 

 

 

m

 

) the condition that the photon polarization is
transverse. In this case, the number of linearly indepen-
dent solutions is equal to (2

 

J

 

 + 1 – 2

 

m

 

). As an example,
we consider the 1  2 transition for 

 

m

 

 = 1,

 

 L

 

 = 1, and

 

Q

 

1

 

 = 

 

e

 

0

 

 (one of the cyclic unit vectors); then,

In the case of 

 

N

 

 = 2, 

 

m

 

 = 1, and 

 

J

 

 > 0, the number of
linearly independent states of the third class equals

 

J

 

(2

 

J

 

 + 1). We present only one example of the 1/2 
3/2 transition, for which there is only a single solution

(20)

 

6.

 

 Thus, the results presented in this work apprecia-
bly extend the family of dark states accounting for the
CPT effect in a quantum system of resonantly coupled
atoms and field, which is of fundamental importance in
quantum optics. In addition, these results can become
useful in the statement of experiments with atomic
Bose condensates interacting with external fields and
also in quantum information science.

We have also found dark states of all three classes in
an ensemble of distinguishable atoms and in a fermi-
onic ensemble. The corresponding results will be pub-
lished elsewhere.
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A scheme of nuclear excitation by the ionic X-ray lines in laser plasma using two femtosecond laser pulses is
proposed. The first pulse produces plasma with a given degree of ionization, allowing the X-ray line energies
of the target ions to be tuned to resonance with the nuclear transition, while the second pulse generates hot elec-
trons that are necessary for X-ray generation. © 2004 MAIK “Nauka/Interperiodica”.
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1. Photoexcitation by plasma intrinsic bremsstrahl-
ung and recombination X-radiation is the main channel
for exciting low-lying nuclear states with energies ~1–
20 keV in a hot dense plasma produced by a femtosec-
ond laser pulse (femtosecond laser plasma (FLP)) with
an intensity of 1016–1017 W/cm2 [1]. In such plasma, the
overwhelming contribution to the output of nuclei
excited to energies of 1–20 keV is provided by the
X-radiation of a hot electronic component [2] which is
generated with an efficiency that reaches, for the afore-
mentioned pulse intensities, a few percent [3]. Hot elec-
trons in FLP also induce efficient X-ray fluorescence of
the target neutral atoms and ions [4, 5]. The corre-
sponding power spectral density of the characteristic
lines can exceed the power density of plasma
bremsstrahlung and recombination radiation by several
orders of magnitude. In early works [6, 7], it was sug-
gested that nuclei be excited by the X-ray lines of neu-
tral atoms; however, analysis shows that, as a rule, no
exact resonance can be obtained for the X-ray line and
the nuclear transition in this case.

In this work, it is proposed that the X-ray emission
line can be tuned to resonance with the nuclear transi-
tion by controlling the degree of laser plasma ionization
and, hence, the X-ray line energy [4]. Based on the fact
that the plasma ionization state is determined primarily
by the thermal electronic component, while an ionic
X-ray line emission with an energy higher than 1 keV
is induced by the hot electronic component, we suggest
the nuclear excitation scheme with two ultrashort laser
pulses, taking 201Hg80 nucleus and quasi-resonance Kα
radiation of aluminum ion Al+9 as an example. The first
pulse produces laser plasma that contains the maximal,
in time and space, number of ions with the desired
degree of ionization, while the second pulse generates
hot electrons that are necessary for generating X-ray
lines at the instant the fraction of ions with a certain
0021-3640/04/7902- $26.00 © 20071
degree of ionization reaches its maximum value in
plasma.

2. To compare the excitation efficiencies of low-
lying nuclear states by bremsstrahlung and line emis-
sion of the hot electronic component, one should take
into account the following. First, the nuclear transition
radiative width Γrad equals ~10–13–10–10 eV [8], which
is much smaller than the typical X-ray line width
∆Eline ~ 1–10 eV [9]. In turn, the typical plasma
bremsstrahlung width is on the order of the hot-electron
temperature Th ~ 1–10 keV [10]. Second, the cross sec-

tion σγ0 = /2π for nuclear resonance photoexcita-

tion (  = hc/  is the wavelength of X-ray quantum

resonant with the nuclear transition to energy ) is
much greater than the cross section σx0 for the “proper”
absorption of this quantum by atoms and ions in the
medium. Analysis shows [8, 9] that, for the majority of

λ0*
2

λ0* E0*

E0*

Quasi-resonant nuclear and atomic transitions (  is the
nuclear transition energy, Eline is the X-ray line energy, ∆Eline
is the X-ray linewidth, ∆E is the detuning between the atomic
and nuclear transitions) [8, 9]

Nucleus , eV Atom/ion, 
type of line Eline, eV ∆Eline,

eV
∆E,
eV

201Hg80 1561 Al13 (Kβ1, 3) 1557.5 ~1 ~4

 (Kα1) 1561 ~1 0

205Pb82 2329  (Kα1) 2332 ~1 ~3

181Ta73 6238 Tb65 (Lα2) 6238 ~5 0
57Fe26 14412 Am95 (Lα2) 14412 ~15 0

E0*

E0
*

Al13
+9

S16
+8
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nuclei possessing low-lying states (see table), the ratio
σγ0/σx0 is on the order of 103.

It follows from the above relations that the proper
absorption of resonance plasma radiation can be
ignored; i.e., all X-ray quanta falling within the nuclear
line will be absorbed by the nuclei in the medium. Tak-
ing into account that the nuclear transition width is rel-
atively small, the total number N* of X-ray-excited
plasma nuclei can be estimated as

(1)

where P( ) is the spectral density of resonance pho-
tons in plasma. Therefore, the output of excited nuclei
can be enhanced by increasing the photon density near
the nuclear transition using resonance X-ray lines emit-
ted in laser plasma [4, 5]. The excitation efficiency of
nuclear states, compared to the excitation by hot-elec-
tron bremsstrahlung, can be increased by

(2)

times, where the indices “line” and “brem” correspond
to plasma line emission and bremsstrahlung, respec-
tively, and the index “opt” signifies that the calculations
are carried out for the case of maximal output of reso-
nance photons. In Eq. (2), the quantity ηbrem is the con-
version ratio of laser energy into the hot-electron
bremsstrahlung. According to the results of [10], ηbrem

equals ~10–6–10–5 at Th ~ 5 keV and is determined by
the target material. In the case of nuclear excitation by
plasma bremsstrahlung with the power spectral density
~exp(–E/Th), the maximal output of resonance photons
corresponding to the nuclear transition with energy 

occurs at Th ~ . The quantity ηline is the conversion
ratio of laser energy into the X-ray line emission.
According to the estimates carried out in [5], the maxi-
mal value of ηline for the Kα radiation is ~10–5–10–4.
Therefore, depending on the X-ray line characteristics
and the target material, the use of resonance Kα radia-
tion (∆Eline ~ 1 eV) of laser plasma for the excitation of
low-lying (  ~ 1–10 keV) nuclear states provides a
gain of

(3)

in the number of excited nuclei, as compared to the
bremsstrahlung excitation.

3. Analysis of the literature and the data bases [8, 9]
shows that it is quite difficult to find a pair of elements
of which one has atomic transition in exact resonance
with the nuclear transition of the other element,
because, in most cases, energy detuning exceeds the
X-ray line width ∆Eline. Examples of such coincidences

N* P E0*( )Γ rad,∼

E0*

ε*
Pline

opt E0*( )
Pbrem

opt E0*( )
------------------------

η line

∆Eline
-------------/

ηbrem

Th

-----------≈=

E0*

E0*

E0*

ε*
Pline

opt E0*( )
Pbrem

opt E0*( )
------------------------

η line

ηbrem
-----------

E0*

∆Eline
------------- 104–105≈ ≈=
for the 57Fe26 and 181Ta73 isotopes are presented in the
table. It was suggested in [11] that this detuning can be
compensated using atomic transitions from highly
excited states, because, among the multitude of these
transitions, a resonance with the nuclear transition can
always be found. In actuality, the transitions from
highly excited states have low oscillator strengths and,
as a result, low fluorescence yield. Thus, only the
atomic (and ionic) transitions with relatively high oscil-
lator strengths, namely, the Kα1, 2, Kβ1, 3, and Lα1, 2
lines, among which Kα1, 2 has the maximal (one to three
orders of magnitude higher) fluorescence yield, can be
of practical interest for enhancing photoexcitation effi-
ciency of low-lying nuclear levels.

For the majority of nuclear transitions, neutral
atoms have no X-ray lines that are in exact resonance
with these transitions and belong to intense series.
However, the X-ray quantum energy increases upon
ionization [4]. In addition, the ionic lines in a hot dense
laser plasma have a set of satellites [4, 12] that, in par-
ticular, are due to the transitions from the doubly
excited states and are offset by ~1–10 eV from the main
emission line. Consequently, by controlling the degree
of ionization and the density of laser plasma, one can
accomplish fine tuning of the X-ray line or satellite
energy to the resonance with the nuclear transition.
Thus, both atomic and ionic X-ray lines can serve as
sources for pumping nuclear transition. This apprecia-
bly extends the capabilities of the nuclear excitation
scheme proposed in this work.

It is worth noting that the maximal intensities of the
ionic X-ray lines can be achieved using femtosecond
laser pulses [4]. As was noted above, the presence of a
large fraction of hot electrons in laser plasma produced
by such pulses [5] induces efficient characteristic emis-
sion of ions whose degree of ionization is determined
by the temperature of plasma thermal electrons.

Let us take, for example, a 201Hg80 nucleus. The
energy  = 1561 eV [8] of its first excited state is
close to the energy of the aluminum K series X-ray
quanta (table). In a neutral aluminum atom, the Kβ1, 3
line is detuned by 4 eV, which exceeds the X-ray line
width. However, the aluminum Kα energy, whose
dependence on the degree of ionization is shown in
Fig. 1, increases from 1487 eV in a neutral atom to
~1600 eV in a helium-like ion. We calculated this
dependence by the Dirac–Fock method using the soft-
ware package from [13]. As the aluminum ion charge Z
increases by unity (starting with Z = 5), the Kα quan-
tum energy increases, on average, by 15 eV. The Al+9

Kα quantum energy ~1561 eV is in exact resonance
with the transition energy  of the mercury 201Hg80

nucleus (within the error of calculations and measure-
ments). Therefore, a 201Hg80 nucleus can be excited
most efficiently by the Al+9 Kα resonance emission. An
analogous situation takes place for the other nuclei. In

E0*

E0*
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particular, the Kα emission of the sulfur ion S+8 at
~2332 eV is quasi-resonant with the 205Pb82 nuclear
transition at 2329 eV (table). In the scheme considered,
the nucleus excitation yield is determined by the X-ray-
emission intensity of ions with a vacancy in the inner
shell, which, in turn, is determined by the fraction of
such ions in plasma and by the probability of processes
leading to the line emission at a given plasma density
and temperature.

4. X-ray lines with a quantum energy above 1 keV
are generated in plasma mainly by fast-electron impact
ionization of inner ionic and atomic shells. Conse-
quently, to optimize the line emission yield for an ion
with charge Z, it is necessary that the maximal number
of ions with charge Z – 1 and fast electrons for their
inner-shell ionization simultaneously exist in plasma. It
should be taken into account that the maximal content
of ions with a given degree of ionization can be
observed both at the plasma heating stage and in the
course of plasma cooling.

Let us determine the parameters of a femtosecond
laser pulse for which the Al+8 content in aluminum
plasma is maximal. The ionization of the Al+8 K shell is
followed by the Al+9 Kα emission resonant with the
nuclear transition in 201Hg80. We will also calculate the
instants of time at which the Al+8 content is maximal. In
so doing, we do not consider the satellites caused by the
transitions from the Al+9 excited states, because the
maximal fraction of these ions in a solid laser plasma is
achieved at electron temperatures on the order of 70 eV,
for which the electronic excitation from the ground
state with n = 2 to the state with n ≥ 3 (∆E > 250 eV) is

Fig. 1. Energies of the aluminum ion Kα quanta. (j) Com-
putational results using the Dirac–Fock software package
[13] and (h) results from [4]. The dashed line indicates the
201Hg80 transition energy (1561 eV).

Aluminum

-
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inefficient. In particular, the satellite intensities in the
Kα spectra of the femtosecond aluminum plasma pro-
duced by pulses with I ~ 3 × 1016 W/cm2 (100 fs,
1.5 mJ) [4] did not exceed the intensity of the main Al+9

Kα line.
The laser plasma ionization state was analyzed

using a one-dimensional code [14] that is designed to
calculate the spatiotemporal plasma evolution with
allowance for the ionization, heat conduction, and fluid
dynamics of plasma produced at the solid target surface
by a femtosecond laser pulse of moderate intensity. The
typical spatial distributions calculated using the code
[14] for the concentration and average charge in alumi-
num plasma at t = 1.34 ps after the pulse (I =
1016 W/cm2 and τlaser = 200 fs; time is measured from
the maximum of a Gaussian pulse envelope) are shown
in Fig. 2a. The Al+8 ions of interest exist in two spatial

Fig. 2. (a) Spatial distributions of concentration n and
degree of ionization Z of aluminum laser plasma at t =
1.34 ps after the laser shot (I = 1016 W/cm2, τlaser = 200 fs).
(b) Time dependence of the number N of aluminum ions
with a charge of 7.5 < Z < 8.5 in laser plasma (Elaser = 1 mJ,

I = 4 × 1015 W/cm2, τlaser = 200 fs). The time t = 0 corre-
sponds to the maximum of laser intensity.
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Fig. 3. The yields (Nmax1, Nmax2) and moments (tmax1, tmax2) of Al+8 ion formation as functions of laser fluence at the target surface.
Calculations were carried out for a pulse energy of Elaser = 1 mJ.
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regions: in the region of low plasma concentration at
the leading front of expansion wave and deep within the
target with a near-solid concentration. The time-depen-
dent number of aluminum ions with charge 7.5 < Z <
8.5 in plasma produced by a laser pulse with Elaser =
1 mJ, I = 4 × 1015 W/cm2, and τlaser = 200 fs is shown in
Fig. 2b. One can see that the calculated curve has two
maxima corresponding to the formation of ions of a
given multiplicity at the instants of plasma heating
Nmax1, tmax1 and cooling Nmax2, tmax2. Due to the increase
in the volume of the heated target region, the number of
ions at the cooling stage may become greater than at the
heating stage.

The dependences of yields Nmax1, Nmax2 and instants
tmax1, tmax2 of Al+8 formation on the laser fluence J at the
surface of the solid target were determined by varying
the pulse parameters (Fig. 3). It was found that, for a
laser pulse of duration τlaser ~100–500 fs, the threshold
of laser fluence J corresponding to the formation of alu-
minum ions Al+8 is 100–200 J/cm2. The values of Nmax1

and Nmax2 reach their maxima of ~1011–1012 ion/shot at
fluences J ~ 300 J/cm2 and decrease upon further
increase in J. The value of tmax1 and the lifetime (both
normalized to the pulse duration τlaser) of Al+8 ions
formed at the plasma ionization stage decrease with
increasing laser fluence J, because the plasma ioniza-
tion rate increases. The plasma lifetime, the value of
tmax2, and the total lifetime of Al+8 ions formed during
the course of plasma cooling also increase with increas-
ing fluence J.

It follows from these results that the maximum
attainable amounts of Al+8 ions formed at the plasma
ionization and cooling stages have the same order of
magnitude. To generate the Al+9 Kα line quasi-resonant
with the nuclear transition in 201Hg80, one must ionize
the Al+8 K shell, which can be accomplished only by the
hot electrons of laser plasma [4, 5]. It is known that the
hot electronic component is formed mainly near the
maximum of laser intensity [3, 10]. Therefore, one
should provide conditions at which tmax1 coincides with
the instant tmax1 = 0 of maximal pulse intensity; this is
achieved for J ~ 500 J/cm2 (Fig. 3). It follows from [4,
5] that the Kα radiation is generated in laser plasma if
the temperature of hot electrons reaches Th ~ 6Eline,
which corresponds to Th ~ 9 keV for the aluminum Kα
line. To reach this temperature for hot electrons, it is
necessary that the pulse intensity be ~1017 W/cm2 [3],
which corresponds to a pulse duration of ~5–10 fs for a
fluence of J ~ 500 J/cm2.

Although modern femtosecond laser technology can
provide such radiation characteristics [15], the regime
of plasma formation at the surface of a solid target by a
JETP LETTERS      Vol. 79      No. 2      2004
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pulse as short as that is essentially different and nona-
diabatic. In particular, the temperature of thermal elec-
trons, the degree of ionization, etc., become apprecia-
bly lower. At the same time, the hot-electron generation
by a pulse of a duration shorter than 10 fs may become
as efficient as in the case of longer pulses. For this rea-
son, it is necessary to use a two-pulse scheme with
coinciding pulse-intensity maxima and appreciably dif-
ferent pulse durations; the “long” pulse (100–500 fs)
produces plasma with a given degree of ionization,
while the “short” pulse generates hot electrons at the
instant of time tmax 1.

A different situation occurs at the plasma cooling
stage; the Al+8 lifetime is of the order of a few picosec-
onds. This also allows efficient Al+9 Kα radiation in a
two-pulse scheme, where the first pulse is used to form
laser plasma, while the second serves for the efficient
hot-electron generation at the instant the amount of Al+8

ions reaches its maximum at the plasma cooling stage.
Note also that the optimal Al+9 Kα radiation can be
achieved by changing the energy and delay time of the
second pulse, while the pulse duration is of little signif-
icance in this case.

5. Thus, high luminosity of the characteristic X-ray
radiation allows the excitation efficiency of low-lying
nuclear states to be increased by four to five orders of
magnitude. High intensities of X-ray lines emitted by
femtosecond laser plasma render it one of the most
promising X-ray sources for nuclear excitation. The
possibility of controlling the degree of laser-plasma
ionization allows the use of X-ray lines from both neu-
tral target atoms and various ions for these purposes. By
controlling the degree of ionization, one can tune the
ionic X-ray lines to the exact resonance with the
nuclear transition energy and, thereby, greatly extend
the potentialities of this method. In our opinion, the
method with the use of two laser pulses is most prom-
ising—the heating pulse produces plasma with a given
degree of ionization, while the ultrashort pulse gener-
ates hot electrons that create vacancies in the ion elec-
tronic shells; the latter are subsequently filled to emit
X-ray quanta.

Note in conclusion that porous aluminum with mer-
cury particles in its pores, a mercury–aluminum alloy in
the form of amalgam, or the aluminum film applied to a
substrate made of a material with a rather high mercury
content can serve as targets in the experiments on the
JETP LETTERS      Vol. 79      No. 2      2004
excitation of mercury nucleus 201Hg80 by the Kα radia-
tion of aluminum laser plasma. Estimates show that, for
an energy of ~20 mJ (J ~ 500 J/cm2) of the heating pulse
and an energy of ~1 J of the pulse generating hot elec-
trons, the number of mercury 201Hg80 nuclei excited by
the Al+9 Kα radiation is equal to ~102–103 nucleus/shot.

This work was supported by the ISTC–EOARD
grant, no. 2651p.

REFERENCES
1. A. V. Andreev, V. M. Gordienko, and A. B. Savel’ev,

Kvantovaya Élektron. (Moscow) 31, 941 (2001).
2. A. V. Andreev, O. V. Chutko, A. M. Dykhne, et al.,

Hyperfine Interact. 143, 23 (2003).
3. A. Varanavichyus, T. V. Vlasov, R. V. Volkov, et al.,

Kvantovaya Élektron. (Moscow) 30, 523 (2000).
4. A. Rousse, P. Audebert, J. P. Geindre, et al., Phys. Rev.

E 50, 2200 (1994).
5. D. Salzmann, Ch. Reish, I. Uschmann, et al., Phys. Rev.

E 65, 036402 (2002).
6. V. S. Letokhov, Kvantovaya Élektron. (Moscow) 4, 125

(1973).
7. V. S. Letokhov and E. A. Yukov, Laser Phys. 4, 382

(1994).
8. Nucl. Data Sheets 85, 415 (1998); Nucl. Data Sheets 62,

101 (1991); Nucl. Data Sheets 71, 421 (1994); Nucl.
Data Sheets 69, 679 (1993).

9. M. A. Blokhin and I. G. Shveœtser, X-ray Spectral Hand-
book (Nauka, Moscow, 1982).

10. R. V. Volkov, V. M. Gordienko, P. M. Mikheev, and
A. B. Savel’ev, Kvantovaya Élektron. (Moscow) 30, 896
(2000).

11. A. A. Andreev, A. V. Charukchev, and V. E. Yashin, Proc.
SPIE 4352, 102 (2001).

12. G. C. Junkel-Vives, J. Abdallah, Jr., T. Auguste, et al.,
Phys. Rev. E 65, 036410 (2002).

13. I. M. Band and V. I. Fomichev, Preprint No. 498, LIYaF
AN SSSR (Leningrad Inst. of Nuclear Physics, USSR
Academy of Sciences, 1979).

14. V. M. Gordienko, M. A. Joukov, and A. B. Savel’ev,
Application of High Field and Short Wavelength
Sources, Ed. by L. DiMauro, M. Murnane, and
A. H’Huiller (Plenum, New York, 1998), p. 155.

15. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545
(2000).

Translated by V. Sakun



  

JETP Letters, Vol. 79, No. 2, 2004, pp. 76–80. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 79, No. 2, 2004, pp. 86–91.
Original Russian Text Copyright © 2004 by Lozovik, Ovchinnikov.

                                                                                                                                        
BCS Instability of a Two-Layer System 
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Pairing instability is considered for a two-layer electron system in a strong magnetic field with an even-frac-
tional filling ν = 1/(2m) (m is an integer) of the lowest Landau level in each of the layers. The limit of large
distance d between the layers is analyzed. Microscopic analysis is carried out in the eikonal approximation in
the composite-fermion formalism. It is found that the condition for pairing instability in this model is indepen-
dent of d. Due to the marginal character of the composite-fermion system, pairing instability in the particle–
particle (BCS) channel arises only for η < 2 or η = 2, but Mv0 > 43, where η and v0 are the parameters of the
assumed electron–electron interaction, v  ∝  v0/rη, and M is the band electron mass. In the particle–hole (isospin
density wave) channel, instability is not observed. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.Ac; 73.43.-f
Two-layer systems under the conditions of frac-
tional Hall effect have attracted considerable attention
in the last decade [1, 2]. Such systems have much in
common with a two-layer electron–hole system, in par-
ticular, in strong magnetic fields, for which superfluid-
ity, the Josephson effect, and other phenomena were
predicted (see [3] and the literature cited therein). The
recent experimental observation of effects resembling
the Josephson effect in a two-layer electron system [4]
has additionally stimulated theoretical investigations in
this field [5, 6].

The ground state of the system depends on the dis-
tance d between the layers and on tunneling between
them, which can be characterized by the splitting ∆sas of
symmetric and antisymmetric one-particle states in the
layers. The ground state of the system is clear in two
limiting cases. For large values of ∆sas, electrons occupy
the lowest symmetric state, and the two layers behave
as a single layer in the filling regime ν = m–1. In the
absence of tunneling and for small values of d (d ! lb,

where lb =  is the cyclotron radius), the Halp-
erin state (m, m, m) plays the role of the ground state.

In actual situations, the value of ∆sas decreases expo-
nentially with increasing d. At present, the ground-state
evolution with increasing d (without allowance for ∆sas)
is a matter of disagreement. Namely, it is not clear
whether an increase in d causes a quantum transition
from the Halperin (m, m, m) state to the Halperin
(2m, 2m, 0) state that is a state of uncorrelated layers
each in the ν = 1/2m regime. In terms of composite fer-
mions, such a transition would indicate the existence of
a BCS instability at d < dc, where dc is a certain critical
distance between the layers, and the absence of insta-

"c/eH
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bility at d > dc. To answer this question, we will study
in this work the instability of the (2m, 2m, 0) state to
pairing of composite fermions from different layers
with a large distance d between them. The main diffi-
culty in the analysis of pairing of the two systems of
composite fermions is that an individual layer of com-
posite fermions is not normal but marginal Fermi liq-
uid. This means that the decay of quasiparticles at the
Fermi surface is on the same order of magnitude as the
quasiparticle energy, which may prevent pairing. In the
case of normal Fermi liquids, such a problem does not
arise since a bound state always exists in the presence
of an indefinitely weak attraction between two quasi-
particles at the Fermi surface; at zero temperature, the
system is always unstable to pairing.

It will be shown below that, in the long-wavelength
limit, pairing and marginal corrections are determined
by the same gauge-field propagator, which necessitates
the inclusion of both of them in calculations. In addi-
tion, it is necessary to make allowance for the so-called
“most intersecting” diagrams, which are most signifi-
cant in this problem [7]. Both requirements can be
taken into account by using the eikonal approximation
[8] that was developed for 2D systems with a singular
interaction of the current–current type [9].

Let us consider the ground state of a 2D electron
system in a transverse magnetic field with filling ν =
1/2m in each layer. We disregard tunneling and assume
that both layers have the same density ρ, electron mass
M, and, hence, chemical potential µ. After the addition
of 2m flux quanta to each electron, we arrive at the
004 MAIK “Nauka/Interperiodica”
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Lagrangian density for composite fermions that are
associated with the Chern–Simons gauge field [10]

Here, the Greek indices, over which the summation is
assumed, label the levels (α, β = 1, 2); ζ = 1/4πm;

 are the gauge fields in the layers;  =

i∂0 –  + µ;  = –i∂ – a(α); and the second term
on the right-hand side is the Chern–Simons term in the
radiation gauge, ∂a(α = 0, which we use. The electron–
electron interaction potential has the form v (αβ)(r) ∝
v 0/(r2 + d2(1 – δα, β))η/2, where η ≥ 1 (the cases η = 1 and
η ≥ 2 correspond to the Coulomb and short-range inter-
action, respectively). The Fourier components of the

potentials have the form v (αβ) = /q2 – η.

To find the gauge-field propagator, we will use the
results obtained for a one-layer composite-fermion sys-
tem1 for ν = 1/(2m). In the low-frequency and long-
wavelength limit, the time-like gauge-field component
is screened and the behavior of the system is only deter-
mined by the transverse component, whose polariza-
tion operator is given by [12] Π = –γ(i |q0|/q) + χ0q2,

where γ = 2ρ/kF; kF =  and vF = kF/M are the
Fermi momentum and (nonrenormalized) velocity,
respectively; and χ0 = (24πM)–1 is the diamagnetic sus-
ceptibility of a 2D Fermi liquid. The propagator of the
transverse part of gauge field has the following long-
wavelength asymptotic form:

(1)

where D0 is the “bare” field propagator:  =
−ζ2q2v (q) ≡ –χqη, χ = ζ2v 0. Hereinafter, when defining
the transverse gauge-field propagators, we imply the
presence of a factor ∆ij(q) = δij – qiqj/q2 reflecting the
transverse nature of the gauge field, where indices i and
j label the spatial coordinates .

In a two-layer system, however, the transverse
gauge-field propagator becomes a matrix relative to the

layer indices (α, β), D   ≡ D(αβ). The bare propa-

gator has the form  = –ζ2q2v (αβ)(q). The polariza-
tion operator is diagonal relative to the layer indices,

1 A one-layer system of 2D composite fermions interacting with
the gauge field belongs to the class of Fermi systems with a
strong forward scattering (see, for example, the review [11]).
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 = , where  is a unit 2 × 2 matrix. Thus, the
transverse field propagator has the form

The diagonal elements in both terms are responsible for
singular self-energy corrections, i.e., for the marginal
character of Fermi liquid in both layers. The nondiago-
nal elements are responsible for the interlayer interac-
tions between composite fermions. The nondiagonal
elements of the first and second terms differ in sign and,
accordingly, account for the repulsion and attraction
between the composite fermions from different layers,
which is associated with the in-phase and antiphase
fluctuations of the fermion density.

The distance d between the layers is a natural scale
of the system. In the limit qd @ 1, the pattern of two
noninteracting layers is restored, each layer being con-
nected with its own gauge field,

(2)

with D from relation (1). These “fast” degrees of free-
dom (q > d–1) in two “noninteracting” layers can be
integrated; this preserves the layers as normal Fermi
liquids but renormalizes the Fermi velocities and/or the
coupling constant. It will be shown below that this
short-wavelength renormalization does not affect our
analysis; for this reason, we do not introduce additional
notation for the renormalized Fermi velocity vF.

It remains to make allowance for the gauge-field
modes belonging to the opposite limit (qd ! 1). In this
case, the main singular part of the propagator depends
on parameter η,

(3)
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where χ' = χ0 for η > 1 and χ' = χ0 + dχ for η = 1, while
the propagator D in the last line is defined by relation (1).
It can be seen that, in contrast to the long-range interac-
tion (η < 2), not only the term responsible for the inter-
layer attraction but also the term responsible for the
interlayer repulsion is retained in the case of short-
range interaction (η = 2). Consequently, the instability
condition in this case may depend on the ratio of these
terms, i.e., on the parameter χ/χ0 ∝  Mv 0 (see condi-
tion (8) below). In the case of η > 2, the pattern of non-
interacting layers is restored. In the latter systems, the
BCS instability cannot arise and we will no longer con-
sider this case.

For a fermion existing near a certain point kFe of the
Fermi surface (e is a unit vector), we can linearize dis-
persion ξ(p) = p2/2m – µ ≈ n(p – kFe), where n ≡ vFe.
We also shift the origin of fermion momentum p to this
point of the Fermi surface, so that ξ(p) = np and p/kF !
1. Henceforth, fermion momenta will be measured
from the point of the Fermi surface near which a given
fermion lives.

We are interested in the particle–particle and parti-
cle–hole channels. Instability (if it exists) must arise in
one-time correlators with zero momentum transfer:

Here and below, the signs ± correspond to the particle–
particle and particle–hole channels, while the primed
and unprimed variables correspond to a particle in the
first layer and a particle or a hole in the second layer,
respectively.

It was mentioned above that we will use the eikonal
approximation, which was developed in [8] for 2D fer-
mion systems associated with the gauge field. This
approach is similar to the one developed by Svidzinsky
[13], who used the Fock method of intrinsic time to
exactly solve the Bloch–Nordsieck model.

The expressions for the required correlators in the
eikonal approximation with the notation introduced
above have the form

(4)

Here, the asterisk denotes complex conjugation, inte-
gration with respect to additional variable r ensured

Lp p',
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ψ̂1 p, t( )ψ̂2 p', t( )ψ̂1 p,
† 0( )ψ̂2 p, '
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† t( )ψ̂1 p,
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– i Tr D̂ t1' t1–( )ŜΘ̂( )
q; t1t1'

∫ 



,∫

Θ̂αβ
Diag θ n p q–( )( ); θ n' p' q+−( )±( ){ } ,=

Ŝ
αβ ∆ij q( )ai

α t1'( )a j
β t1( )*,=

ai
α t( ) nie

inqt; ni'e
in'qteiqr±[ ] .=
zero momentum transfer, the trace symbol refers to the
layer indices, and t > t1 >  > 0.

Following [14], we note that the fermion propagator
with a linearized fermion dispersion is independent of
the momentum-transfer component q⊥  perpendicular to
n. Thus, q⊥  appears only via the propagator of virtual
gauge-field quanta, and we can independently integrate
all such propagators with respect to q⊥ . Introduce

(5)

where C = γ–ξχ' –(1 – ξ)(1 – ξ)/2sin(πξ),  =

Csin Γ(1 – ξ)/π, and parameter ξ =

/  = 1/3 is introduced for convenience
(  is the power with which q appears in D definition
(3); i.e.,  ≡ 2 (  differs from the parameter η of the
initial interaction between electrons)).2 The averaged
propagator can be written in the form

(6)

Here, α = 0 and α = (1 + 2χ/χ0)–(1 – ξ) for the systems
with long-range and short-range interactions, respec-
tively. The use of the averaged propagator effectively
reduces the problem to the 1D case; henceforth, we
assume that all fermion momenta are one-dimensional
(p ≡ p||).

In the particle–particle (+) and particle–hole (–)
channels, we must set n = , respectively. Using rela-
tions (4) and (6), we obtain the following expression for
correlators:

(7)

where function φ is defined by the expression

2 The case of  ≠ 2 does not correspond to any physical system;
however, for generality, we retain parameters  and/or ξ instead
of their numerical values.
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with  from (5) (we also substituted r/vF  r). This
relation consists of two terms. The term independent of
r corresponds to the diagonal elements of propagator;
i.e., this term takes into account the marginal correc-
tions caused by the virtual gauge-field quanta that begin
and end at the same fermion line. The second term cor-
responds to the nondiagonal elements of gauge-field
propagator; i.e., this term takes into account the
exchange of quanta between fermion lines.

In order to reveal instability, it is sufficient to con-
sider particles located directly at the Fermi surfaces,

i.e., the case p, p'  0 (φ±(t, r) ≡ (t, r)):

Here,  = /2π and 2F1(x) is a hypergeometric
function.

Instability arises if the real part of function φ tends
to +∞ at t  +∞ for at least one value of ratio r/t. In
this case, expression (7) exponentially diverges as t 
+∞. This criterion can be written in the form

The correctness of the equality sign in this expression
(i.e., the fact that function ReF±(x) assumes its maximal
value at x = 1) can be directly seen from Fig. 1. One can
see from the figure that the results of this work can be
formulated as follows:

(i) a particle–particle (BCS) channel contains insta-
bility in the case of long-range interaction (  = 2 <

 ≈ 2.1988, α = 0), as well as in the case of short-

range interaction (  = 2 <  ≈ 2.1988, α > 0) but at
α > α0 ≈ 0.083 or, which is the same, at

(8)

(ii) a particle–hole channel (spin-density wave) does
not contain instability.

The fact that the instability condition is independent
of distance d between the layers is quite natural. The
attraction between composite fermions from different
layers is determined by the asymmetric density fluctu-
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ations and appears only at lateral distances consider-
ably exceeding d. At such distances, the electron–elec-
tron interaction “does not distinguish” between the lay-
ers; consequently, the instability condition should be
independent of d.

The gap appearing due to pairing must decrease
with increasing d [5]. In normal Fermi liquid, the gap
can collapse (analogously to other two-layer Fermi sys-
tems; see, for example, [3] and the literature cited
therein) in the presence of a disorder asymmetric rela-
tive to the layers. The gap can also collapse [15] due to
the difference in the shapes of Fermi surfaces in the lay-
ers (e.g., due to anisotropy of the mass tensor [16]).
Clearly, the pairing between two marginal Fermi liq-
uids is even more fragile. Thus, in actual systems, the
instability should disappear when d reaches a certain
critical value dc.

For η = 2, Mv 0 < 43, or at η > 2, a marginal liquid
of composite fermions removes pairing instability of a
two-layer system at large values of d. In particular,

Fig. 1. (a) Long-range interaction (α = 0). Function
ReF+(x) for  = 1.8, 2, 2.2, 2.4, and 2.6. (b) ReF+ (1) as a

function of ; Re F+(1) > 0 for  <  ≈ 2.1988. (c) Short-

range interaction (  = 2, α > 0); ReF+(1) as a function of

α > 0; ReF+(1) > 0 for α < α0 ≈ 0.083. (d) Function

ReF−(x) for  = 2, 2.5, 3, 3.5, and 10. (e) ReF–(1) as a

function of .

η̃
η̃ η̃ η̃0

η̃

η̃
η̃
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instability must be absent in systems located close to
metal surfaces, where, due to image forces, the effec-
tive electron–electron interaction becomes dipole–
dipole interaction (η = 3). In such systems, at large
interlayer distances, the (2m, 2m, 0) state is stable (for
this reason, the quantum transition (2m, 2m, 0) 
(m, m, m) must occur at intermediate distances).

This study was supported by the Russian Founda-
tion for Basic Research and INTAS.
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Nature of the Magnetic Excitation Spectrum in (Sm,Y)S: 
CEF Effects or an Exciton?
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The dynamic magnetic susceptibility spectrum in a single-crystal sample of the intermediate-valence com-
pound Sm0.67Y0.33S is studied by inelastic neutron scattering with neutron momentum transfer and sample tem-
peratures varying over wide ranges. Two coupled collective modes have been found in the spectrum. Unlike the
higher energy mode, whose intensity approximately follows the form factor of Sm2+, the lower energy mode
exhibits a stronger angular dependence than could be expected from the form factor for the localized f electrons.
The total intensity of the inelastic component of the magnetic response decreases with increasing temperature;
this is accompanied by the appearance of a broad quasi-elastic signal of a magnetic nature at significantly lower
temperatures than follows from the calculated intensities of the transitions within the excited multiplet of the
Sm2+ ion. An analysis of the observed features allows the suggestion to be made that the fine structure of the
magnetic excitation spectrum in (Sm,Y)S is associated with the formation of an exciton-like intermediate-
valence state on Sm ions rather than with the crystal-electric-field effects. © 2004 MAIK “Nauka/Interperiod-
ica”.

PACS numbers: 75.30.Cr; 75.40.Gb; 61.12.Ex
Samarium sulfide SmS is a semiconductor-type
compound that undergoes an isomorphic electronic
phase transition either upon applying an external pres-
sure (≥0.6 GPa) or due to the substitution of Y for Sm
(so-called chemical pressure). In this case, a Sm f elec-
tron becomes partially delocalized; that is, the system
passes from an integral valence state to an intermediate-
valence (IV) state. One of the dispersion magnetic
modes associated with the intermultiplet spin–orbit
(SO) J = 0  J = 1 transition of Sm2+ was detected in
the energy range E = 10–45 meV in the magnetic exci-
tation spectrum of a single-crystal SmS compound at
normal pressure and low temperature by inelastic neu-
tron scattering [1]. The presence of the dispersion is
explained by the fact that the magnetic excitation spec-
trum is formed under the conditions of indirect
exchange interaction between the magnetic moments of
rare-earth ions through the d band.

Until recent work [2], detailed studies of the mag-
netic excitation spectrum in the IV phase of single-
crystal (Sm,Y)S samples had not been carried out. The
first results have shown that even a small chemical pres-
sure leads to a qualitative rearrangement of the mag-
netic excitation spectrum of SmS. Thus, along with the
excitation close to the intermultiplet SO transition
(observed in stoichiometric SmS), a second magnetic
mode is observed in the spectrum of a Sm0.83Y0.17S sin-
0021-3640/04/7902- $26.00 © 20081
gle crystal [2]. This mode is also of the dispersion type
but with a lower energy. The intensities of both mag-
netic modes depend strongly and in the opposite way on
the wave vector. As the wave vector increases within
the Brillouin zone, the modes exchange their intensi-
ties, evidencing their interaction.

At present, there exist two approaches to the expla-
nation of the nature of the additional mode in an
Y-diluted compound. The authors of [3] consider the
occurrence of two peaks in the spectrum as the appear-
ance of fine structure as a result of a change in the initial
potential of the crystal electric field (CEF). In this
work, it is suggested that the partial substitution of Y3+

for Sm2+ in the rare-earth sublattice leads to a change
(reduction) in the local symmetry of the nearest envi-
ronment of the Sm ion. As a result, a tetragonal compo-
nent arises in the potential of the initially cubic CEF,
leading to a noticeable splitting of the first excited state
of the Sm2+ ion (J = 1) into a singlet and a doublet and,
correspondingly, to the appearance of two peaks in the
spectrum of intermultiplet magnetic transitions. Hence,
both peaks detected in Sm0.83Y0.17S are of the same
nature and result from the CEF effects.

However, at the same time, it is known that even a
small substitution of yttrium ions for Sm in SmS leads
to a change of the valence state of Sm ions, and the
valence in the Sm0.83Y0.17S compound deviates from the
004 MAIK “Nauka/Interperiodica”
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integral value (~2.2 at T = 10–300 K [4]). The fact that
Sm in Sm0.83Y0.17S is in the IV state can affect the mag-
netic excitation spectrum of f electrons. Actually, the
double-peak structure of the spectrum was described in
[2] on the basis of an exciton model that implies the
occurrence of a quantum-mechanically mixed elec-
tronic configuration (f 6 + a weakly bound state of a hole
with the f 5 configuration and an f electron in the con-
duction band) in each ion. This approach was devel-
oped in [5] for the description of a homogeneous IV
state of Sm in the SmB6 compound. The main features
of its magnetic and lattice excitation spectra, as well as
the known phonon anomalies in (Sm,Y)S and SmS
under pressure, were explained within this approach
[6]. In [2], it was suggested that the mode with the
higher energy was associated with an SO transition for
the initial electronic configuration of the Sm2+ state in
Sm0.83Y0.17S, and the mode with the lower energy was
due to excitation from the new, exciton-like intermedi-
ate-valence ground state. Thus, this representation
treats the experimental data as a result of the appear-
ance of a qualitatively new mode differing from the sin-
gle-ion SO excitation.

In order to answer the principal question as to
whether the double-peak structure of the magnetic exci-
tation spectrum in (Sm,Y)S is a result of the splitting of
the state with J = 1 upon the reduction of the local sym-
metry of the nearest environment of Sm ions or a result
of the formation of a new ground state of samarium
with its specific excitation spectrum, new experimental
facts are necessary.

In order to answer this question, one may try to
increase the valence of the Sm ions by changing the
concentration of Y in the Sm1 – xYxS compound and,
thus, enhance both the structural disorder and the
valence instability effects. In particular, at low temper-

Fig. 1. Magnetic components in the spectra of Sm0.67Y0.33S
for Q = (1.35, 1.35, 1.35) (d) and SmS [7] for Q = (1.4, 1.4,
1.4) (s) obtained at T = 15 K. Lines correspond to fitting the
Sm0.67Y0.33S spectrum by two peaks.
ature, the valence of the Sm ions in Sm0.67Y0.33S consid-
erably differs from an integral value (~2.34), and an
additional increase in the valence up to a value of ~2.4
is observed with increasing temperature (T > 200 K).
On the one hand, the enhancement of valence instabil-
ity can change the magnetic excitation spectrum. On
the other hand, if the excitation spectrum is determined
by the CEF effects, one should evidently expect the
total suppression of any pronounced structure (or the
appearance of a multiple-peak structure) in the spec-
trum because of an increase in the number of variants
of various charge configurations in the environment of
Sm ions.

In this work, the magnetic excitation spectrum of a
Sm0.67Y0.33S single crystal was studied in detail over a
wide range of momentum transfer Q and temperatures.

A Sm0.67Y0.33S single-crystal sample (NaCl-type
structure) with a volume of ~0.17 cm3 was grown by the
Bridgeman method using isotopically enriched 154Sm
(98.6%). The single-crystal mosaic structure was no
worse than 1°. The inelastic neutron scattering mea-
surements were carried out in the Laboratoire Leon
Brillouin on a 2T1 triple-axis spectrometer using a
Cu(111) monochromator (a (002) pyrographite mono-
chromator was used in measurements of a quasi-elastic
signal), a (002) pyrographite analyzer, and a graphite
filter for the suppression of higher order reflections.
The inelastic neutron scattering spectra were obtained
in the temperature range T = 12–200 K at a fixed energy
of scattered neutrons Ef = 30.5 meV (in the case of the
pyrographite monochromator, Ef = 14.7 meV) with a
resolution of ~2 meV for the elastic line.

The magnetic excitation spectrum of Sm0.67Y0.33S
measured for the [111] direction is presented in Fig. 1.
As in Sm0.83Y0.17S, the spectrum of Sm0.67Y0.33S exhib-
its two peaks of magnetic nature (M1 and M2). These
magnetic excitations demonstrate the presence of dis-
persion of the energies of peak maxima (Figs. 2a, 2b).
Moreover, the intensities of these peaks depend sub-
stantially on the reduced wave vector. The peaks
exchange their intensities as the wave vector advances
from the center to the boundary of the Brillouin zone
(Figs. 2c, 2d). However, two distinctive features of the
Sm0.67Y0.33S spectrum can be noted in comparison with
Sm0.83Y0.17S (the valences are ≈2.34 and 2.2, respec-
tively). The energy dispersion of both magnetic excita-
tions noticeably decreases, and its character changes.
The dispersion minimum shifts from the center of Bril-
louin zone, which is possibly due to the enhancement of
the antiferromagnetic component in the exchange cou-
pling parameters. On the average, the difference in
energy between the peaks increases with respect to the
analogous data for Sm0.83Y0.17S (≈2.5 meV) and equals
≈5 meV. Moreover, low-energy magnetic peak M2
becomes more pronounced and dominates almost in the
entire Brillouin zone (Figs. 2c, 2d). At the same time,
the peak widths in Sm0.67Y0.33S increased only slightly.
JETP LETTERS      Vol. 79      No. 2      2004
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Figure 3 shows the Q dependences of the intensities
of each magnetic excitation and the total intensity of the
two peaks reduced to the Q dependence of the form fac-
tor for the J = 0  J = 1 transition of the Sm2+ ion at
the maximum measured value of Q (inset in Fig. 3). The
partial intensities exhibit oscillatory behavior with a
period equal to the size of the Brillouin zone. Unlike the
intensity of high-energy excitation M1, the intensity of
low-energy magnetic peak M2 exhibits, on the average,
a sharper Q dependence compared to the normal form
factor for the J = 0  J = 1 transition of the Sm2+ ion.
This leads to a situation where the total intensity also
decreases with increasing Q more sharply than the nor-
mal form factor (inset in Fig. 3).

The temperature dependence of the total intensity of
magnetic peaks for Sm0.67Y0.33S also proved to be non-
trivial. First, the intensity of the inelastic (M1 + M2)
component of the Sm0.67Y0.33S spectrum does not fol-
low the temperature population factor in the energy
level diagram for Sm2+ (the populations of the J0, J1,
and J2 multiplets are taken into account for the Sm2+

ion) but decreases much more rapidly with decreasing
temperature (Fig. 4a). This cannot be explained on the
basis of the formation of the excitation spectrum with
regard to only the interaction with the CEF. Second, as
the temperature increases, rather broad quasi-elastic
scattering of the magnetic nature appears in the spec-
trum at a significantly lower temperature than might be
expected from the calculation of the temperature popu-

Fig. 2. Dispersion curves for the energies of the magnetic
peak maxima for (a) Sm0.67Y0.33S and (b) Sm0.83Y0.17S [2]
and the relative intensities of these peaks for (c)
Sm0.67Y0.33S and (d) Sm0.83Y0.17S [2] in the [111] direc-
tion at T = 15 K.
JETP LETTERS      Vol. 79      No. 2      2004
lation of multiplet levels for Sm2+ (Fig. 4b). It should be
noted that an increase in temperature to 100 K still does
not lead to the appearance of a quasi-elastic signal in
divalent SmS. The halfwidth of the quasi-elastic peak in
Sm0.67Y0.33S is Γ/2 ~ 6 meV at T = 70 K. On the order
of magnitude, this corresponds to the characteristic
temperature T0 of valence-unstable systems [8]. The
appearance of the quasi-elastic component at a suffi-
ciently low temperature can be explained by spin fluc-
tuations that are characteristic for the new IV state of
Sm.

The obtained experimental results indicate that the
Sm transition to the IV state as a result of chemical
pressure changes the magnetic excitation spectrum
qualitatively; an additional collective low-energy mag-
netic mode appears in the spectrum. The properties of
this mode (stronger temperature dependence of the
intensity and the momentum transfer) and the appear-
ance of the quasi-elastic component at temperatures
considerably lower than might be expected from the
calculation of the temperature population factor of sin-
gle-ion states suggest that this additional low-energy
mode in the excitation spectrum of (Sm,Y)S is associ-
ated with the excitation of electronic states that are
delocalized more strongly than is typical of f electrons.
Moreover, as the yttrium concentration increases
(Sm0.83Y0.17S  Sm0.67Y0.33S), the intensity of high-
energy excitation associated with an intermultiplet
transition for the initial (partial) f 6 state of Sm2+

Fig. 3. Q dependence of the intensities of magnetic peaks
for Sm0.67Y0.33S (n is M1, and s is M2) in the [111] direc-
tion at T = 15 K. The solid line corresponds to the form fac-
tor calculated for the J = 0  J = 1 transition of the Sm2+

ion. The experimental intensities are reduced to the calcu-
lated form factor at Q = 2.66 Å–1. The dashed lines are
guides to the eye. Γ and BZ designate the center and bound-
aries of the Brillouin zone, respectively. The inset demon-
strates the Q dependence of the total intensity of two mag-
netic peaks reduced to the Q dependence of the form factor
for the maximum measured value of Q.

Q (Å–1)

Q (Å–1)
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decreases and, simultaneously, the intensity of the low-
energy excitation increases. This fact implies that the
role of the exciton-like state in the formation of ground-
state properties becomes more important as the valence
increases. An increase in the Y concentration also
enhances the disturbance of the regularity in the
arrangement of rare-earth ions; however, this circum-
stance led only to a certain broadening of the peaks.
The double-peak shape of the spectrum was retained,
which is difficult to reconcile with the description of the
excitation spectrum on the basis of the CEF effects. It
should also be noted that the CEF effects are, as a rule,

Fig. 4. Temperature dependence of the intensity of (a) inte-
grated inelastic component of the magnetic excitation spec-
trum (h) and (b) quasi-elastic signal (d) for Sm0.67Y0.33S.
Lines correspond to the calculated temperature dependence
of the intensity for the multiplet energy levels of Sm2+ with
regard to the change in valence. The experimental data are
reduced to those calculated at T = 12 K in (a) and at T =
200 K in (b).
not observed at all in the systems in which the rare-
earth ion is in an intermediate-valence state [8].

Thus, the intermediate-valence state of Sm ions in
(Sm,Y)S can be presented as an exciton-like state sim-
ilar to the state detected previously in intermediate-
valence SmB6. However, contrary to SmB6, in which a
local (on each Sm ion) IV state is formed through the
hybridization of the f states of Sm ions with the p orbit-
als of the nearest boron atoms [5], a basically (qualita-
tively) new IV state has been detected in (Sm,Y)S. The
IV state in (Sm,Y)S is formed under conditions of a
rather strong interaction between Sm ions. Contrary to
SmB6, the Sm f electrons in (Sm,Y)S are hybridized
with the d orbitals of the nearest Sm atoms; that is, a
collective exciton mode is observed in (Sm,Y)S.
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It is shown that a model recently proposed by R.H. Doremus for the viscosity of oxide melts correctly repro-
duces a two-exponential expression for viscosity, which is observed experimentally. For both low and high tem-
peratures, the temperature dependence of viscosity is of the Arrhenius type. The viscosity activation energy at
low temperatures is high and equal to the sum of enthalpies of defect formation and their motion. The temper-
ature of transition from high to low viscosity-activation energies is determined by the enthalpy and entropy of
defect formation and is not associated with configurational changes. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 66.20.+d; 66.30.Lw
A mechanism of a viscous flow in oxide melts con-
cerns not only industrial processes such as glass pro-
duction but also changes in the Earth’s depths such as
magma flow and movements of continents, as well as
the safety of the disposal of radioactive waste and the
structure of emulsions [1–6]. At the same time, the tem-
perature dependence of the viscosity of oxide melts is
not completely clear. The viscosity of oxide melts is of
the activation or Arrhenius type. However, the activa-
tion energy is constant only at low and high tempera-
tures. With an increase in temperature, the viscosity
activation energy decreases in the technologically most
interesting temperature range. The formula most exten-
sively used to describe the viscosity of oxide melts in
this range is the Vogel–Tammann–Fulcher empirical
formula that describes the temperature dependence of
the activation energy and involves three parameters
determined by fitting to the experimental data [1, 2].
However, although this formula is meant for the
description of experimental data, it, first, does not pro-
vide the correct asymptotic behavior of viscosity and,
second, involves nonphysical parameters varying
unpredictably and inexplicably from one melt to
another.

Recently, Doremus [7] critically analyzed the avail-
able models of oxide viscosity and showed that none of
the available theoretical approaches satisfactorily
explains the temperature dependence of viscosity.
Numerous works in this field have not provided consid-
erable advance. The most popular current approaches
use the temperature dependence of the entropy of melts.
However, these models do not provide correct asymp-
totic values for viscosity. Moreover, in contrast to
entropy, viscosity shows no discontinuities near the
transition temperature to the glassy state [7].
0021-3640/04/7902- $26.00 © 20085
It is known that the viscosity of oxide melts is most
exactly described by the two-exponential expression [7,
8]

(1)

where T is temperature; R is the molar gas constant; and
A, B, C, and D are the empirical fitting parameters. The
constant B and the sum B + D are the viscosity activa-
tion energies at high and low temperatures, respec-
tively. For oxide melts, B = 80–300 kJ/mol for  <
3 and B + D = 400–800 kJ/mol for  > 10 [8].

Doremus [7] attempted to explain observed empiri-
cal dependence (1) on the basis of the Mott hypothesis
about the forming role of defects in the melt structures.
However, he obtained the temperature dependence of
viscosity with only one exponential term. To explain
observed dependence (1), Doremus assumed the possi-
ble defect condensation at high temperatures with the
formation of more complicated structures similar to
dislocations in crystals, which facilitate the viscous
flow. This work aims to show that the Doremus model
does provide the experimentally observed two-expo-
nential temperature dependence of viscosity given by
Eq. (1).

The viscosity of melts is related to the diffusion
coefficient by the Stokes–Einstein relation η(T) =
kT/6πrD. For this reason, following Doremus, we ana-
lyze the temperature dependence of the diffusion coef-
ficient. The diffusion coefficient of defects with con-
centration Cd in a lattice with concentration C0 is equal
to [9–11]

(2)

η T( ) A
B

RT
------- 

  1 C
D

RT
------- 

 exp+ ,exp=

ηlog
ηlog

D T( ) fαλ 2ν
Cd

C0
------ 

  Sm

R
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  Hm

RT
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where f is the correlation factor (f = 1 for uncorrelated
hopping); α is the lattice parameter (α = 1/6 for the fcc

lattice); λ is the hopping distance (λ =  in the fcc
lattice with edge a); ν is the vibration frequency; and Sm
and Hm are the entropy and enthalpy of defect motion.

According to the Gibbs distribution, the concentra-
tion of defects involved in the diffusion is equal to

(3)

where Hd and Sd are the enthalpy and entropy of defect
formation. The entropy of defect formation is not asso-
ciated with the configuration, but it is a disorder entropy
and is associated with lattice vibrations [9].

Let us define Doremus’ temperature TD as

(4)

If T ! TD, formula (3) is simplified to the expression
that was used by Doremus in [7] and provided the one-
exponential formula for viscosity. Thus, Doremus [7]
obtained the asymptotic formula for viscosity at low
temperatures, where it has high activation energy. The
formula for viscosity in this limit corresponds to low
defect concentrations.

Substituting Eq. (3) into Eq. (2) and using the
Stokes–Einstein relation, we arrive at the following for-
mula for viscosity in the Doremus model for any tem-
peratures:

(5)

where D0 = fαλ 2ν. Comparison of Eq. (5) with Eq. (1)
gives the following expressions for coefficients A, B, C,
and D in empirical formula (1):

(6)

Formula (5) can be simplified at low and high tempera-
tures. For T ! TD, Eq. (5) gives the one-exponential for-
mula derived for viscosity by Doremus. In this limit,
the viscosity activation energy is high and equal to
Hm + Hd. For T @ TD, Eq. (5) also gives a one-exponen-
tial formula for viscosity but with low viscosity activa-
tion energy Hm. The viscosity of oxide melts can be cal-
culated by Eq. (5) over the entire temperature range.
The temperature TD determines the region of transition
from one activation energy to another. Thus, the Dore-

a 3/4
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  , Dexp Hd.= =
mus model of viscosity exactly leads to the empirical
expression for the temperature dependence (1) of vis-
cosity, which properly describes the experimental data.

As is seen, the two-exponential formula for viscos-
ity follows from the Doremus model without allowance
for the defect aggregation into linear structures. Never-
theless, the assumption about the defect condensation
in a melt cannot be completely excluded. Moreover, the
condensation of excitations with the formation of con-
densed excited states has long been known and has
been intensely studied recently in [12–15]. Linear
structures formed by defects can promote a viscous
melt flow, as occurs in crystalline substances upon the
formation of dislocations. Indeed, the defect concentra-
tion in the melt increases at high temperatures. There-
fore, the probability of forming cluster structures con-
sisting of several elementary defects also increases.
However, the stability of such structures cannot
increase with temperature, and the concentration of lin-
ear structures cannot, thereby, increase monotonically
with the melt temperature. In view of this circumstance,
the defect condensation must be analyzed in more
detail.

According to Eqs. (5) and (6), the temperature
dependence of the melt viscosity is determined by the
enthalpy and entropy of formation and motion of the
defects promoting viscous flow. Depending on the
nature of the melt, various structures can play the role
of defects; e.g., these are nonbridged oxygen atoms or
SiO molecules in silicate melts [7]. The main thermo-
dynamic parameters of defects—Hd, Sd, Hm, and Sm—
can be determined from the experimental data on the
temperature dependence of viscosity by using Eqs. (5)
and (6). Note also that the Doremus model describes
the continuity of glass viscosity near the melting tem-
perature, in contrast to the viscosity of crystals. In crys-
tal melting, the Gibbs free energy Gm = Hm – TSm of
defect motion decreases stepwise, which is manifested
by the stepwise decrease in viscosity. In contrast, melt-
ing of glasses is not accompanied by stepwise changes
in Gm, which explains the continuity of viscosity
according to Eq. (5).

I am grateful to R.H. Doremus and W.E. Lee for
valuable remarks and support of this work.
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A simple physical picture of superconductivity is proposed for extremely doped CuO2 planes. It possesses fea-
tures that are observed for HTSC, such as a high superconducting transition temperature, the  symmetry

of order parameter, and the coexistence of a one-electron Fermi surface and the Bose–Einstein condensate of
preformed electron pairs. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.20.-z; 74.78.-w

d
x

2
y

2–
In addition to high superconducting transition tem-
peratures, high-Tc superconductors are distinguished by
the unusual d symmetry of order parameter (see [1])
and the coexistence of a well-defined one-electron
Fermi surface and a pseudogap [2]. The latter phenom-
enon is usually attributed to the presence of preformed
(i.e., in the normal state) electron pairs (in particular,
bipolarons [3–7]).

In this work, we demonstrate the existence of a sim-
ple physical picture of superconductivity for the
extremely doped CuO2 planes (in the vicinity of the
maximum hole-doping level compatible with supercon-
ductivity), which possesses the aforementioned charac-
teristic features of HTSC.

Paired quasiparticles. The key point is the exist-
ence of peculiar “paired” quasiparticles in crystals in
conditions where the tight-binding approximation
applies, i.e., if the energy of electron–electron interac-
tion at a distance on the order of atomic spacing consid-
erably exceeds the electron-tunneling amplitude to
neighboring lattice cites. Quasiparticles of this type
were studied earlier [8] in helium quantum crystals and
recently by Alexandrov and Kornilovitch [6] as a model
of bipolarons in HTSC (see also [9]).

Let us consider two electrons localized at neighbor-
ing (1 and 2 in the figure) copper atoms (to be more pre-
cise, in unit cells containing these atoms) forming a
square lattice in the CuO2 plane. The electron tunneling
from 2 to 4 or 6 does not change the energy of the sys-
tem in view of the crystal lattice symmetry. The same is
true for the electron tunneling from 1 to 3 or 5. Owing
to this type of transitions, an electron pair can move as
a whole over the entire plane, since the 2  4 transition
can be followed by the transition 1  7 or 1  3, and
so on. Since the transitions do not change the energy of
the system, the motion is fully coherent. An electron
pair behaves as a delocalized Bose quasiparticle.
0021-3640/04/7902- $26.00 © 20088
To calculate the quasiparticle spectrum, we consider
the localized states of a pair,

(1)

where  are the electron creation operators at point r
with spin projection α = ↑, ↓  and |0〉  is the electron vac-
uum.

The effective tunneling Hamiltonian Heff is defined
by the matrix elements of the operator

(2)

which correspond to the transitions of one of the elec-
trons to copper atoms that are next-to-nearest neighbors
of the initial atom, in such a way that the energy of the
system of two electrons remains unchanged. Here, t is

r r' αβ, ,| 〉 crα
+ cr'β

+ 0| 〉 ,=

crα
+

H t cr'α
+ crα ,

rr'α
∑=

CuO2 plane: (d) Cu atoms and (×) O atoms.
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the tunneling amplitude, which is known to be positive
(see [1], p. 1004).

Let an (n = x, y) be the square-lattice periods directed
from point 1 to point 2 and from point 1 to point 4,
respectively. We have

(3)

where we used the antisymmetry of quantities (1) with
respect to arguments (r, α) and (r', β). Analogously,

(4)

The complete set of localized states of an electron
pair is determined by the state vectors

(5)

where r labels unit cells of the square lattice.
The problem obviously splits into two independent

problems for singlet and triplet pairs that are character-
ized by quantities (5), respectively, antisymmetric and
symmetric about the spin indices α, β. Assuming that
the required stationary states of a pair are superposi-
tions of localized states,

, (6)

with coefficients  independent of r (this corre-
sponds to a definite quasimomentum k), we obtain

(7)

where the upper or lower sign corresponds to a singlet
or triplet state, respectively. The conditions for the
existence of a nontrivial solution ψ(x), ψ(y) to system (7)
defines the energy e(k) of a paired quasiparticle, mea-
sured from the energy e0 of the initial localized state;
κx = k · ax and κy = k · ay. Everywhere in formulas (7),
we omitted identical spin indices αβ.

The minimal energy em = –4t of a singlet pair is
attained for κx = κy = 0. The same minimal energy of a
triplet pair is attained for a nonzero quasimomentum
(κx = κy = π). This degeneracy is removed by taking into
account the electron exchange in the initial localized
pair. It is well known that this exchange is of an antifer-

Heff r r ax+ αβ, ,| 〉 t r ax ay r ax+ αβ, ,+ +| 〉(=

+ r ax ay–+ r ax+ αβ, ,| 〉

+ r r, ay+ αβ,| 〉 r r ay αβ,–,| 〉 )+

=  t r ax+ r ax ay+ + βα, ,| 〉–(

+ r ax ay–+ r ax αβ,+,| 〉
+ r r, ay+ αβ,| 〉 r ay r βα, ,–| 〉 ) ,–

Heff r r ay αβ,+,| 〉 t r ay+ r ax ay+ + βα, ,| 〉–(=

+ r ax ay+– r ay αβ,+,| 〉
+ r r, ax+ αβ,| 〉 r ax r βα, ,–| 〉 ) .–

r n αβ, ,| 〉 r r an αβ,+,| 〉 ,≡

ψαβ
n( )eikr r n αβ, ,| 〉

r n,
∑

ψαβ
n( )

e k( )ψ x( ) tψ y( ) 1 e
iκ x–

±( ) 1 e
iκ y±( ),=

e k( )ψ y( ) tψ x( ) 1 e
iκ x±( ) 1 e

iκ y–
±( ),=
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romagnetic nature and, hence, singlet pairs possess the
minimal energy.

Thus, solitary Bose quasiparticles can exist in the
CuO2 plane; these particles are characterized by a dou-
bled electric charge and by zero momentum and spin in
the ground state. It can readily be seen from Eqs. (7)
that the effective mass of quasiparticles is m = "2/ta2,
where a = |ax| = |ay|. In addition, quasiparticles possess
a specific quantum number n = x, y, which determines
the orientation of a two-electron “dumbbell.” Substitut-
ing e = em into Eqs. (7), we obtain ψ(x) = –ψ(y) in the
ground state. Since orientations n = x and n = y are
transformed into each other upon the lattice rotation
through an angle of π/2 and upon the reflection in the
diagonal plane passing through points 1 and 3 in the fig-
ure, the ground-state wave function ψ ≡ ψ(x) = –ψ(y) of
quasiparticles transforms in accordance with the 1D
representation (usually denoted by ) of the sym-

metry group of CuO2 plane (see [1]).

Superconductivity. We further assume that all other
two-, three-, etc., electron configurations localized at
distances on the order of atomic spacing are energeti-
cally disadvantageous as compared to the paired con-
figuration considered above. In addition, we assume
that electrons are repulsed at large distances such that
the electron–electron interaction energy is on the order
of the one-electron tunneling amplitude. Under these
conditions, only one-electron Fermi particles and the
paired Bose particles considered above play a signifi-
cant role. The analysis carried out by Alexandrov and
Kornilovitch in [6] shows that the conditions formu-
lated above are likely to be realistic.

Finally, we assume that the minimal energy e0 + em

of a paired quasiparticle is such that (1/2)(e0 + em) is
within the one-electron energy band. In this case, upon
an increase in the number of electrons at T = 0 (decrease
in the hole-doping level), only one-electron quasiparti-
cles are present and the system behaves as an ordinary
Fermi liquid until (1/2)(e0 + em) > eF. The condition
(1/2)(e0 + em) = eF determines the minimal hole-doping
level compatible with the state of a normal Fermi liq-
uid. Denote by nc the corresponding electron density n.
Upon a further decrease in the hole-doping level, all
additional n – nc electrons (we everywhere consider the
case of small n – nc values, for which the concentration
of pairs is low and their interaction can be disregarded)
will pass into a Bose–Einstein (BE) condensate of
paired quasiparticles. The system becomes a supercon-
ductor. The superconducting order parameter repre-
sents the boson ground-state wave function ψ ≡ ψ(x)

normalized by the condition |ψ|2 = (n – nc)/2; wave
function ψ transforms in accordance with the 

representation of the symmetry group of CuO2 plane.

Properties of superconductors. It is important to
note the following. In the system ground state (i.e., for
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complete filling of all fermion states with an energy
smaller than eF), the uncertainty in the energy of a
boson quasiparticle with low excitation energy e =
k2/2m, arising due to its collisions with one-electron
Landau quasiparticles, is proportional to e2. As in the
conventional theory of Fermi liquid, this is due, first, to
the fact that the density of fermions, which correspond
to the vicinity on the order of e near eF and with which
the given boson can collide due to energy conservation,
is low. Second, the statistical weight of the final states,
to which fermionic transitions are possible, is small.
The probability of boson decay into two fermions per
unit time is also small as compared to e, because of the
limitations posed by the energy and momentum conser-
vation. Thus, the proposed picture of superconductivity
in the vicinity of maximal doping level remains valid
even for an appreciable density of fermions, if the inter-
action between bosons and fermions is significant. The
critical electron density nc is determined from the con-
dition that the electron chemical potential is equal to
half of the minimal boson energy. In the general case,
the latter is a functional of the distribution function for
one-electron Landau quasiparticles.

In calculating the superconducting transition tem-
perature, the fermion distribution function may be con-
sidered as corresponding to T = 0, since the temperature
corrections (proportional to T2) to the thermodynamic
functions of Fermi liquid are considerably smaller than
the corrections included below.

The density of noncondensed bosons at a finite tem-
perature T < Tc is

(8)

The integral in Eq. (8) diverges at small e, so that it is
cut off at e ~ τ, where τ is a small tunneling amplitude
of an electron pair in the direction perpendicular to the
CuO2 plane.

The excess number n – nc of electrons in the system
is equal to the doubled sum of N' and number N0 of
bosons in the condensate. This leads to the dependence
of the superconducting transition temperature on the
doping level for small values of n – nc

(9)

and the number of pairs in the condensate

(10)

which determines the modulus of order parameter
|ψ|2 = N0 at finite temperatures. The superconducting
transition temperature defined by Eq. (9) is quite high.
To within the logarithmic term, this temperature is on
the order of one-electron tunneling amplitude t at the

N'
2πk kd

2π"( )2
----------------- 1

ee/T 1–
-----------------∫ mT

2π"
2

------------ T
τ
---.ln= =

n nc–
mTc

π"
2

----------
Tc

τ
-----ln=

N0

n nc–
2

------------- 1
T
Tc

----- T /τln
Tc/τln

----------------– 
  ,=
boundary of the applicability region (i.e., for n – nc ~
a−2). The possibility that the superconducting transition
temperature may have such an order of magnitude was
pointed out in the aforementioned paper by Alexandrov
and Kornilovitch [6].

The interaction of fermions with the BE condensate
(effective electron–electron interaction) that is
described by the order parameter ψ creates an effective
potential ∆k acting on fermions as in conventional
superconductors:

(11)

In view of the symmetry of ψ, we have

(12)

where  = k/|k| and V is the invariant interaction con-
stant.

Owing to this interaction, fermions in the supercon-
ducting state considered acquire features typical of an
ordinary superconductor with the  symmetry.

The total number of pairs at T < Tc is independent of
temperature and equal to (n – nc)/2. As the temperature
in the normal state increases (T > Tc), the number of
pairs first decreases in proportion to  at
τ ! T – Tc ! Tc and then increases at Tc ! T ! t in pro-
portion to T.
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The electron spin resonance is studied for noncollinear low-dimensional antiferromagnets RbMnBr3 and
RbFe(MoO4)2 in a wide range of frequencies and fields. Both compounds have incommensurate spin structures
appearing due to a low-symmetry distortion of an ideal hexagonal crystal lattice. Magnetic field applied in the
spin plane induces a first-order transition into the commensurate phase. The low-energy resonance branch cor-
responding to a uniform oscillation of the spin system in the easy plane is observed in the two compounds in
both incommensurate and commensurate phases, with a dramatic change of the spectra taking place near the
transition field. The resonance spectrum of a nearly commensurate spin structure with long-wave modulations
is analyzed in clean and dirty limits in the framework of a hydrodynamic approach. The resonance branch with
steep field dependence in the incommensurate state is attributed to the acoustic mode with the gap resulted from
pinning of local domain walls (discommensurations) on defects of the crystal structure. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 75.50.Ee; 76.50.+g
1. INTRODUCTION 

Helical spin structures with incommensurate long-
wavelength modulations is an interesting type of mag-
netic ordering [1]. They appear, generally, for two rea-
sons: (i) when the symmetry of the crystal structure
allows the Lifshitz invariant (of exchange or relativistic
origin) or (ii) in the case of an “accidental” instability
of a commensurate state due to competing exchange
interactions. The compound RbMnBr3 studied in this
work belongs to the systems of the first type, while the
origin of the low temperature incommensurate state in
RbFe(MoO4)2 is still under debate.

The two materials crystallize into a hexagonal struc-
ture belonging to the same class of the point symmetry

 (D3d), space group P63/mmc  for RbMnBr3

[2] (as for other ABX3 systems) and  for
RbFe(MoO4)2, which undergoes phase transitions into
different low-symmetry states on cooling. The crystal
structure of RbMnBr3 below Tc = 220 K is characterized
by weak orthorhombic distortions with zigzags of mag-
netic ions shifted alternately up and down from the
basal plane (space group Pbca) [3]. An incommensu-
rate helical structure with magnetic Bragg peaks at Q =
(h/8 + ξ, h/8 + ξ, l), where h and l are integers and ξ =
0.0183 ± 0.0004, has been observed in the neutron scat-
tering experiment below TN = 8.5 K in zero magnetic
field [4]. Microscopically, it can be described in terms

¶ This article was submitted by the authors in English.

3m1 D6h
4( )

P3m1 D3d
3( )
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of the row model assuming exchange interaction along
zigzags to be somewhat different from those in other
two in-plane directions [5, 6]. The initial high symme-
try structure of RbFe(MoO4)2 also reveals distortions
below Tc = 180 K [7], but the space group for this struc-
ture is not exactly determined. The ordered magnetic
phase forming at TN = 3.8 K appears to be an incom-
mensurate helix with the wavevector Q = (1/3, 1/3,
0.41) [8]. Presumably, it results from inequality of the
transversal exchange bonds between magnetic ions in
neighboring planes.

Both structures have a strong easy-plane anisotropy
keeping all spins inside the basal plane. Magnetic field
applied in this plane gradually makes the incommensu-
rate structure unfavorable and produces the first-order
transition into the commensurate phase at Hc . 29 kOe
for RbMnBr3 and 39 kOe for RbFe(MoO4)2. The reso-
nance spectra of these multisublattice systems consist
of several branches. Their distinct feature is the behav-
ior of a low-energy acoustic branch, which corresponds
to uniform oscillations of the spin system in the easy
plane. For triangular antiferromagnets, it has a depen-
dence ν ∝  H3 valid until the exchange structure is
weakly distorted by magnetic field. This branch has
been observed in RbMnBr3 only in the commensurate
phase and disappeared below Hc [9]. Such an end point
in ν(H) was explained by the appearance of the Gold-
stone mode related to spontaneous translational sym-
metry breaking in the incommensurate phase [10]. A
similar resonance branch was found in RbFe(MoO4)2
004 MAIK “Nauka/Interperiodica”
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[11]. A finite frequency resonance mode can, however,
be excited at the wavevector of incommensurate modu-
lations. We have performed a search for such a low-
energy mode starting from the frequency of 3 GHz. A
new resonance branch has been found in the incom-
mensurate phase with a very steep increase towards the
transition field Hc. We also present theoretical calcula-
tions for the resonance in the incommensurate phase
and discuss their relation to the observed branch.

2. EXPERIMENT

The Bridgman method was used to grow single
crystals of RbMnBr3. Samples 10–100 mm3 in size
were cut along binary planes (perpendicular to the basal
plane of the crystal), so that one could easily orient
them with respect to the magnetic field. The crystals of
RbFe(MoO4)2 were grown from the flux. The resulting
thin plates of 1–2 mm3 had planes perpendicular to the
C3 axis.

We performed a series of electron spin resonance
(ESR) measurements on single crystals of both com-
pounds in a frequency range from 3.5 to 50 GHz. Three
transmission-type spectrometers with various types of
resonators (toroidal, rectangular, and cylindrical) were
used in the experiment. Magnetic field up to 6 T was
created by a cryomagnet. All experiments were carried
out in a well-ordered antiferromagnetic phase at tem-
peratures of 1.2–2.5 K significantly below the corre-
sponding Néel temperatures.

The typical absorption lines in RbMnBr3 for the
magnetic field applied in the basal plane are shown in
Fig. 1. The records were taken in both directions of the
field sweep. At the lowest resonance line ν = 5.10 GHz
(the low curve), the absorption appears to be almost
without hysteresis, as the main part of the resonance

Fig. 1. Field dependence of the resonance absorption in
RbMnBr3 (T = 1.3 K); (dashed lines) forward field sweep,
(solid lines) backward sweep; ↑  and ↓  mark the transitions
for the forward and backward scans, respectively.
line is far from the transition. On increasing the fre-
quency, we approach the critical field and the hysteresis
becomes more pronounced. The resonance exists below
the transition and then sharply disappears at H >
29 kOe. In the opposite direction, it is restored only at
H < 26.5 kOe, indicating the return to the incommensu-
rate phase. These fields are marked by arrows in Fig. 1.
Obviously, this means that the signal observed in the
frequency range 5–20 GHz corresponds to the low field
phase. Subsequently, this resonance absorption is
replaced by singularities in the transmitted signal at the
critical fields (ν = 24.6 GHz). The resonant signal is
restored at higher frequencies with the inverse hystere-
sis. For example, at the frequency ν = 33.2 GHz, no sig-
nal is observed for a forward field sweep, while a reso-
nance absorption reveals itself on the backward scan.
Further increase in frequency allows one to detect a sig-
nal in both directions, with the hysteresis vanishing
completely above ν = 46 GHz. In contrast to the low
frequency signal, this resonance may obviously be
attributed to the high field (commensurate) phase. This
effect was first described in work [9] and was inter-
preted as an absence of an acoustic resonance mode
until the transition into a commensurate spin structure
[10].

The main difference with the previous results is that
this branch at H > Hc is split into two lines. The splitting
results from orthorhombic distortions of the crystal
structure removing degeneracy of the high symmetry
hexagonal plane. Obviously, there should be three
equivalent directions x1, 2, 3 (domains) of such distor-
tions at an angle of 120° to each other. This weak
anisotropy contributes to the potential energy of the
spin system, thus originating the dependence of the
AFMR frequency on the angles between xi and the
magnetic field. We have studied this effect in more
detail by measuring the dependence of the resonance
line in the large sample (containing all domains in
roughly equal parts) on the direction of the magnetic
field in the easy plane. The sample was initially ori-
ented by one of the basal planes perpendicular to the
field. In this orientation, one of the domains lies in the
rational direction, while the other two deviate by ±60°.
For this reason, two lines are observed with the relative
intensity 1 : 2. Rotating the sample in the easy plane,
one obtains the full picture including all three lines as
shown in Fig. 2. Their angular dependences are shifted
by ±60° to each other, as expected from the domain
structure of the sample. The fits in the inset of Fig. 2 are
harmonic functions with amplitudes determined by the
value of the in-plane anisotropy.

Note that the resonance lines observed at low fre-
quencies (5.10 GHz) demonstrate a strong temperature
dependence most likely associated with the hyperfine
interaction inside Mn2+ ions. The hyperfine interaction
leads to hybridization of nuclear and electron spin res-
onance modes and to the appearance of the gap in the

mixed spectrum ν2 =  + A/T (νe is the initial reso-νe
2
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nance frequency; for similar compounds CsMnBr3 and
CsMnI3, A ~ 50 GHz2 K [12, 13]). On increasing the
temperature by 0.5 K, the maximum of the absorption
slides from 25 to 18 kOe, after which the line strongly
broadens and disappears (see Fig. 3). The resonance at
3.47 and 7.11 GHz demonstrates qualitatively the same
behavior, while, at other frequencies, it becomes almost
temperature-independent in this range.

The low-frequency part of the resonance spectrum
of RbFe(MoO4)2 was studied at T = 1.3 K (well below
TN = 3.8 K). The results obtained in the same frequency
range as for RbMnBr3 are represented in Fig. 4. The

Fig. 2. Resonance absorption at ν = 44.7 GHz for three ori-
entations of the crystal in the magnetic field (T = 1.3 K).
Inset shows the angle dependence of the resonance field for
each of the three domains; solid lines are sinusoidal fits (see
text).

Fig. 3. Temperature dependence of the resonance absorp-
tion (forward field sweep) in RbMnBr3 at ν = 5.10 GHz.
JETP LETTERS      Vol. 79      No. 2      2004
magnetic field was applied perpendicular to the C3 axis.
The spectrum in this frequency range consists of one
low-energy relativistic and one high-energy exchange
branch corresponding to the in-phase (as in RbMnBr3)
and out-of-phase oscillations of the spin planes, respec-
tively. The intensity of the latter mode was very weak
(one of the corresponding peaks is shown in Fig. 4 by
the stroke, the other points are invisible in this scale).

The evolution of the acoustic resonance line on
increasing the frequency is very similar to what has
been observed in RbMnBr3. Namely, there is a hystere-
sis in the absorption depending on the position of the
resonance field at a given scan. At lower frequencies,
the absorption corresponds to the low field phase and
vice versa. In the intermediate range, the signal is
replaced by nonresonance singularities at the transition
fields 39.5 and 37.5 kOe for forward and backward
scans, respectively (indicated by up and down arrows in
Fig. 4). For the details of the high frequency part of the
spectrum, see work [11].

3. THEORY

An incommensurate spin structure in a magnetic
system with the Lifshitz invariant can be described by
long-wavelength modulations of a commensurate state
corresponding to a certain wavevector k0. In the case
when a commensurate structure is noncollinear, a pair
of orthogonal vectors l1 and l2 has to be used to describe
both commensurate and incommensurate states:

(1)

The commensurate wavevector k0 = (4π/3a, 0, π/c)
appropriate for both compounds corresponds to a trian-
gular 120° spin structure in the basal plane with antifer-

S l1 k0rcos∼ l2 k0r.sin+

Fig. 4. Field dependence of the resonance absorption in
RbFe(MoO4)2 at T = 1.3 K; (dashed lines) forward field
sweep, (solid lines) backward sweep; ↑  and ↓  mark the tran-
sitions for the forward and backward scans, respectively.
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romagnetically correlated layers giving six sublattices
in total. Strong easy-plane anisotropy confines spins to
the basal plane; hence, slow rotations of l1, l2 can be
parameterized by an in-plane angle ϕ. In RbMnBr3,
such modulations propagate along the a axis, ϕ(x),
while for RbFe(MoO4)2, modulations are along the
c axis, ϕ(z). In the following, we denote the propaga-
tion direction of incommensurate modulations as x and
write the corresponding hydrodynamic energy func-
tional with the Lifshitz term in a general form [14]
which is applicable to many other incommensurate sys-
tems:

(2)

Six sublattice antiferromagnets have a field induced
anisotropy with n = 6 and A ~ H6, while a weekly
incommensurate two-sublattice antiferromagnet would
have n = 2 and A ~ H2. For vanishing anisotropy, the
Lifshitz term stabilizes incommensurate sinusoidal
modulations with ϕ = bx/B. Sufficiently strong anisot-
ropy stabilizes commensurate domains with ϕ =
(π/n)(2m + 1). The transition into the commensurate
state takes place when the energy of a single domain
wall (also called soliton, kink, or discommensuration)
of a width d

(3)

becomes positive. Such a lock-in transition occurs at
the critical anisotropy

(4)

Below the lock-in transition, a static long-wavelength
modulation of the k0 structure satisfies

(5)

and has the form of a soliton lattice ϕ0(x) =
(2/n)am(x/dκ), where am(z) is the elliptic amplitude
and κ is the modulus of the elliptic functions. The dis-
tance between solitons is l = 2dκK(κ), where K(κ)
(E(κ)) denote the complete elliptic integrals of the first
(second) kind. Minimization of the energy of the soli-
ton lattice yields

(6)

which implicitly determines the field dependence of κ.
For small anisotropy A ! Ac, the soliton lattice trans-
forms into a sinusoidal modulation with a period of L =
nl = (2πB/b)(1 + A2B2/2b4), whereas, near Ac, the inter-
soliton distance grows logarithmically, l =

.
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The dynamics of the model Eq. (2) has been studied
in many applications, e.g., for Josephson junctions [15]
and for charge-density waves [16, 17]. The excitation
spectrum is obtained in the linear approximation with
respect to small oscillations ϕ(x, t) = ϕ0(x) + ψ(x, t).
With ψ(x, t) ~ e–iΩt, the equation of motion is reduced
to the Lamé equation

(7)

where z = x/dκ,  = n2A/M is the resonance (q = 0) fre-
quency in the commensurate state for vanishing incom-
mensuration b = 0, and sn(z) is the elliptic sine. The
general solution of the Lamé equation is given by [18]

(8)

where Z(u), H(u), and Θ(u) are the Jacobi functions and
α is an arbitrary parameter. The excitation energy Ω is
related to a constant α as Ω = ωcdn(α)/κ. An effective
potential 2sn2(z) in Eq. (7) has a period of the intersoli-
ton distance in rescaled units l = 2K(κ). Using transla-
tional properties of the Jacobi functions Θ(u + 2K) =
Θ(u) and H(u + 2K) = –H(u), one can show that solution
(8) has the form of a Bloch wave with a quasimomen-
tum

(9)

The condition that propagating states have a real
wavevector q specifies the allowed values for the
parameter: α = iy + K(κ) and α = iy with 0 < y < K ' =

K(κ'), κ' = . The former branch is called the
acoustic or soliton branch; it corresponds to 0 < q <
π/l = π/2K and has Ωs(0) = 0, Ωs(π/l) = ωcκ'/κ. The lat-
ter optic or phason branch corresponds to q > π/l and
has Ω > Ωp(π/l) = ωc/κ. Thus, the spectrum of (7) exhib-
its a jump at the first Brillouin zone boundary, remain-
ing continuous for all other values of q. Using the series
expansions [18]

(10)

with r = exp(–πK'/K), one can calculate spectrum in the
incommensurate state for all values of anisotropy (mag-
netic field). At A = Ac, the soliton branch disappears,
whereas the phason branch merges with the excitation
spectrum in the commensurate state. The edge fre-
quency of the phason branch, being a monotonically

d2ψ
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increasing function of A, exhibits a universal ratio
Ωp(π/l)|A = 0 /Ωp  = 2/π.

A weak uniform homogeneous microwave field
polarized perpendicular to the direction of an applied
field H generates a time-dependent force f(t)cos[nϕ0(x)]
in the equation of motion of the phase variable ψ(x, t).
In the commensurate phase at A > Ac when ϕ0(x) ≡ π/n,
such a force induces a conventional resonance at ωc(A).
Spatial harmonics, which can be excited by a uniform
microwave field in the incommensurate state, are
obtained by a Fourier decomposition of cos[nϕ0(x)] =
1 – 2sn2(z). They correspond to q = 0, 2π/l, …. The
acoustic branch has a Goldstone mode at q = 0 related
to spontaneous breaking of translational symmetry by a
soliton lattice. A finite frequency resonance can occur
at the wavevector of incommensurate modulations
q* = 2π/l. The corresponding frequency Ωp(q*) =
ωcdn(iy*)/κ has been calculated by numerically solving
equation Z(iy*) = iπ/2K. The field dependence of
Ωp(q*) is presented in Fig. 5. It is a monotonously
decreasing function of field, which approaches the
commensurate resonance frequency ωc(Ac) at the lock-
in transition with an infinite slope due to a logarithmic
divergence of the intersoliton distance l. Similar to the
edge frequency, a q = 2π/l mode has a universal ratio
Ωp(q*)|A = 0 /Ωp  = 4/π. The flat behavior of

Ωp(q*) as a function of h in a wide range of magnetic
fields is explained by small deviations on an incom-
mensurate helix from ideal sinusoidal modulations,
which transform into a soliton lattice only in a narrow
region near the lock-in transition. Close to Hc, the cou-
pling strength of a microwave field to the correspond-
ing spatial harmonics becomes, however, vanishingly

small:  . d/l ~ 1/ .

This confirms the conclusion of [10] about an abrupt
termination of the resonance line in the commensurate
state ωc(H) at H = Hc. Away from Hc deep in the incom-
mensurate state, a finite frequency resonance should
reappear again, although an experimental observation
of this line is hindered by its weak field dependence.

Various vacancies and crystal defects, which break
translational symmetry of the lattice, should destroy the
q = 0 Goldstone mode. Here, we propose a simple
model to describe oscillations of individual solitons in
a field of weak pinning potential in the limit H  Hc,
where solitons are well separated from each other. The
profile of a single soliton (3) is written as ϕs(x – x0),
where x0(t) is a time-dependent soliton position. After
taking the time derivative and subsequent spatial inte-
gration, the kinetic energy of a soliton is found to be

(11)

π/l( )
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6ϕ0 x( )[ ] e2πix/l x/ldcos
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We model a weak and local pinning potential by

(12)

where ap ! d is the characteristic spatial extension of
the pinning center. In view of Eq. (5), the other possible
form of the pinning energy as, e.g., ~cos(nϕ) is reduced
to the above expression; however, it is difficult to
exclude a priori presence of higher-order gradient
terms as, e.g., (dϕs/dx)4. Equation (12) is easily trans-
formed into

(13)

The resonance frequency of small oscillations is

(14)

The field dependence of the oscillation frequency is
determined by field variations of the width of a domain
wall and has a faster increase with magnetic field Ωs ~
H9/2 than the commensurate resonance frequency ωc ~

 ~ H3. Due to the spread of characteristic pinning
energies V, which depend on the microscopic structure
of defects, the resonance at Ωs should be observed as a
broad line in the absorption spectrum. Note also that
higher-order gradients in Eq. (12) produce a steeper
increase of the oscillation frequency with magnetic
field.

Finally, the microscopic row model [5, 6, 10] or the
zigzag row model [3] can be used to derive the effective
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Fig. 5. Field dependence of various characteristic frequen-
cies in the incommensurate state. Anisotropy in Eq. (2) is
taken to be A ~ H6. Solid lines are frequencies excited by a
uniform microwave field. Dashed line is the resonance in
the commensurate phase for b = 0. Dot-and-dash lines are
the frequencies of the soliton (lower) and phason branches
at the Brillouin zone boundary q = π/l.
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hydrodynamic functional (2). We modify the previous
analysis by introducing an additional in-plane anisot-
ropy induced by an orthorhombic distortion in the form

. Then, the classical energy is expressed as a
functional of in-plane angle ϕ:

(15)

where χ|| = 2χ⊥  = 1/8J are two principal components of
the susceptibility tensor (J is the exchange constant
inside chains), δ = J'/  – 1 is the relative change of the

interchain exchange interaction,  = 48JJ 'S2 is the
field of a transition into the collinear phase, and

D1Σ Si
x( )2

E
χ||

2γ2
-------- ∂tϕ( )2 3

4
---J'a2S2 ∂xϕ( )2

3J'aS2δ∂xϕ–+=

+
χ⊥

24He
4

------------- H2 Hsf
2±( )3

6ϕ ,cos

J1'

He
2

Fig. 6. Frequency–field diagram ν(H) of (a) RbMnBr3 and
(b) RbFe(MoO4)2 at T = 1.3 K; open and close symbols cor-
respond to the resonance in the incommensurate and com-
mensurate phases, respectively; (squares) the relativistic
branch, (circles) the exchange mode, (×) nonresonant singu-
larities; ( ) resonance field at T = 2.1 K, (solid lines) see
text, (dashed line) ν ∝  H3 as in Fig. 5, (dotted line) a para-
magnet with γ = 2.8 GHz/kOe.
γ = gµB/2π" is the gyromagnetic ratio. Parameter  =
16JD1S2 denotes a field at which the magnetic energy
becomes equal to the in-plane anisotropy energy. Signs
“+” and “–” are chosen for H || x and H ⊥  x, respec-
tively. The transition field of the commensurate–incom-
mensurate transition in RbMnBr3 is found from Eq. (4),

(16)

and the resonance frequency above the transition is
given by the expression

(17)

The value Hsf (and, consequently, D1) can be estimated
from the splitting of the relativistic branch above the
transition. Taking the difference of the resonance fields
at the utmost angles of rotation at a given frequency

(see inset in Fig. 2), one obtains Hsf .  .
7.5 kOe. The value of the small in-plane anisotropy con-
stant is estimated as D1 = (gµBHc)2/16JS2 . 0.02 GHz.

4. DISCUSSION

The results obtained in the experiment are summa-
rized on two frequency–field diagrams (see Fig. 6).
Two branches of the AFMR spectrum (exchange and
relativistic) have been observed in each material in the
experimental frequency range. The observed optic
exchange modes have a different origin in the two com-
pounds. In RbMnBr3, such a mode appears due to the
noncollinear spin structure and softens at the transition
into the collinear phase H = He . 39 kOe [9], while in
RbFe(MoO4)2, an optic branch corresponds to uniform
out-of-phase oscillations of weakly interacting neigh-
boring spin planes [11]. Corresponding field depen-
dences are shown in Fig. 6 by solid lines. Further, we
shall discuss only the behavior of the relativistic
branch.

First of all, one should note that the field depen-
dences of the relativistic branches found in both struc-
tures are quite similar: steep increase of the gap in the
incommensurate phase in the vicinity of the transition
field followed by a jump to a commensurate resonance
frequency. As the observed resonance mode at H > Hc

both in RbMnBr3 and in RbFe(MoO4)2 is associated
with the uniform oscillations of the spin system in the
easy plane, one can also suggest this branch at H < Hc

to have the same nature in both compounds.
We can, however, exclude this interpretation on the

basis of our theoretical calculations of the long-wave
oscillation spectrum in the weakly modulated triangu-
lar spin system with the strong easy-plane anisotropy
(see Fig. 5). The energy of the “phason” branch at the
wavevector q = 2π/l excited by a uniform SHF-field
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decreases in magnetic field and is, in addition, practi-
cally dispersionless except for a small region near Hc. A
similar mode has recently been observed in the col-
linear antiferromagnet CuB2O4 in one of the low-field
phases which has a long-wave modulation of the spin
structure [19]. At the same time, oscillations at q = 0
remain gapless because they correspond to uniform
shifts of the whole soliton lattice at no energy cost.

We suggest a different interpretation of the observed
resonance mode in the incommensurate states of both
compounds. The field-increasing gap of the magnetic
resonance may be attributed to the local domain walls
at various defects of the crystal lattice (vacancies, dis-
locations, etc.). Local oscillations of domain walls have
a characteristic frequency of ν(H) ~ H9/2 instead of a
less steep dependence ~H3 usual for triangular antifer-
romagnets in weak magnetic fields. This is in qualita-
tive agreement with the experimental result obtained
for RbFe(MoO4)2: the guide-to-eye line in Fig. 6b fits
the data by formula ν ~ (H/Hc)4, which agrees well with
the exponent n = 9/2 suggested from the theoretical
study. We find, however, a strong discrepancy with the
experimental behavior of the resonance mode in
RbMnBr3. First, the observed field dependence is much
steeper, ~Hn, with n = 10–12, and second, it has a gap
at H = 0 due to the hyperfine interaction in Mn2+ ions.
Moreover, we have observed a strong temperature evo-
lution of the resonance line in the temperature range
1.3–2.2 K (well below TN = 8.5 K). On heating, the
absorption maximum shifts to lower fields (see Fig. 3),
which is unusual for field-increasing branches in the
presence of a hyperfine gap reduced by temperature.
Thus, the origin of the field and temperature-dependent
gap of the acoustic resonance branch in RbMnBr3
requires further discussion.
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In Co-doped TiO2 – δ oxide films deposited on SrTiO3(100) substrates, a room-temperature ferromagnetism is
found to occur only in a limited charge-carrier concentration interval from 2 × 1018–5 × 1022 cm–3. This indi-
rectly testifies that ferromagnetism in the aforementioned n-type semiconductor is associated with the exchange
interaction of magnetic ions via conduction electrons rather than with the formation of Co clusters in the mate-
rial. The magnetic moment per Co atom is 0.87µB in the TiO cubic phase and 0.57µB in the anatase tetragonal
phase of TiO2. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Ak; 75.50.Pp; 75.60.Ej 
The observation of ferromagnetism (FM) at room
temperature in the anatase phase of Ti1 – xCoxO2 oxide
[1, 2] has excited considerable interest in studying the
properties of this semiconducting material because of
its possible applications in spintronics. Later, a room-
temperature FM was also observed in the rutile phase of
this compound [3–5]. However, the origin of FM rise in
these n-type semiconductors remains unclear. Some
experimental data testify to the exchange mechanism of
FM in a homogeneous material [6, 7], while other data
suggest that the magnetic phase results from the forma-
tion of Co clusters [4, 5, 8, 9]. The revelation of the
nature of FM in these materials is important in connec-
tion with the prospects of obtaining an effective spin
polarization in them.

We studied the structure and magnetic properties of
Ti0.92Co0.08O2 – δ (where 0 ≤ δ ≤ 2) films deposited on
SrTiO3(100) substrates by magnetron sputtering of an
alloyed metal target in an argon–oxygen atmosphere
with different partial oxygen pressures from 2 × 10–6 to
2 × 10–4 mm Hg. The temperature of the substrates dur-
ing the sputtering process was 550°C, the film growth
rate was 0.05–0.09 nm/s, and the film thickness was
0.2–0.3 µm.

The X-ray diffractometry of the resulting films
showed that the films grown with a low partial oxygen
pressure consisted of an amorphous metal phase. As the
oxygen content in the gas mixture increased, polycrys-
talline films with a cubic TiO oxide structure were
formed, and a further increase in the oxygen content led
to the formation of tetragonal TiO2 phases, namely,
anatase and rutile. It is well known that the anatase and
rutile phases are semiconductors with band gaps of
0021-3640/04/7902- $26.00 © 20098
3.2 and 3.0 eV, respectively, and the TiO monoxide is
an ionic crystal with metallic conductivity [10].

The figure shows the changes in the magnetic char-
acteristics of Ti0.92Co0.08O2 – δ films, namely, the coer-
cive force Hc and the remanent magnetization in zero
magnetic field M0 as functions of resistivity. Measure-
ments were performed with a vibrating-coil magnetom-
eter in a magnetic field up to 10 kOe directed along the
film plane. At room temperature, the films exhibit fer-
romagnetic behavior with a pronounced magnetic hys-

Coercive force Hc (r) and remanent magnetization in zero
magnetic field M0 (h) of Ti0.92Co0.08O2 – δ films versus
their resistivity ρ.
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teresis loop that covers a resistivity range of more than
four orders of magnitude. The magnetic moment calcu-
lated from the saturation magnetization is equal to
0.87µB per Co atom in the TiO cubic phase and 0.57µB

in the anatase phase with compositions close to their
stiochiometric values. As to the single-phase rutile
samples, none of them were observed within the afore-
mentioned range. From Hall measurements, we esti-
mated the interval of charge-carrier concentrations
within which the ferromagnetic phase was observed:
the limiting values were found to be 2 × 1018 and 5 ×
1022 cm–3, respectively, for a charge-carrier mobility of
0.3 cm2/(V s).

One should notice a sharp drop of magnetic charac-
teristics to zero at the boundaries of the aforementioned
resistivity range. Ferromagnetism is absent in both
Ti0.92Co0.08 metal films and Ti0.92Co0.08O2 high-resis-
tance semiconductor films. This behavior of magnetic
characteristics testifies to the exchange mechanism of
FM in the material [11] rather than to the FM caused by
the Co magnetic clusters. Indeed, photoelectron spec-
troscopy of the ferromagnetic samples showed that
whole of cobalt was oxidized (the spectral line energy
of Co 2p3/2 is 781.0 ± 0.5 eV). The value obtained for
the magnetic moment per Co atom in the ferromagnetic
films is much smaller than the corresponding value for
metallic cobalt (1.71µB). As a possible mechanism of
the FM rise in an n-type TiO2 – δ:Co semiconductor,
Chambers [11] proposed the exchange interaction of
magnetic Co ions via the conduction electrons corre-
sponding to the excessive oxygen vacancies in the crys-
tal lattice. The absence of FM in the metal phase of Ti–
Co is presumably explained by the amorphization of
the material.
JETP LETTERS      Vol. 79      No. 2      2004
In Ti0.92Co0.08O2 – δ films deposited on a Si(100) sub-
strate, a weak FM was observed only near the resistivity
of 1 Ω cm. In this case, the films were mainly amor-
phous with inclusions of anatase and rutile phases.

We are grateful to Yu.B. Patrikeev for preparing the
targets for magnetron sputtering and to O.P. Sideleva
for testing the film composition by local X-ray spec-
troscopy.
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