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On the 70th Anniversary 
of Academician Jaures Ivanovich Alferov, 

Vice-President of the Russian Academy of Sciences
Jaures Ivanovich Alferov turned 70 on March 15,
2000

The Editorial Board of Physics of the Solid State
heartily congratulate Academician Alferov on this
occasion. We apologize for the long delay, for which
there is no good excuse. We are just late. When we met,
the stream of journal issues had already passed. Every-
thing should be done in due time, especially in such a
dynamic business as publishing periodicals.

We shall not list in this brief tribute all his ranks,
awards, prizes, high posts, and memberships of many
academies and scientific societies all over the world.
This was also avoided when outstanding physicists
such as Petr Leonidovich Kapitza or Lev Davidovich
Landau were congratulated because the made names
for themselves through their contribution to science,
not through a collection of titles or memberships.

The name of Jaures Alferov is familiar to a very
broad circle of scientists due to his famous works on the
development of the first heterolasers on semiconduct-
ing crystals. The social and political activity of Acade-
mician Alferov, who is a member of the Russian parlia-
ment, has brought him recognition in still wider circles
of society.

In the 1960s, a tremendous amount of foresight and
courage were required to leave the well-trodden route
of the physics of semiconducting homojunctions to turn
to the unbeaten track of heterojunctions, on which
nothing remarkable had been discovered before Alfe-
rov’s investigations.

The first double-heterostructure laser, continuously
operating at room temperature, was designed by Alf-
erov and his young collaborators on the basis of the
well-known semiconducting couple GaAs–GaAlAs.
The discovery of this couple paved the way for the
1063-7834/00/4205- $20.00 © 20787
development of ultrahigh technologies for obtaining
quantum-dimensional semiconducting structures. An
ensemble of quantum dots (quasi-atoms) is a material
“speck of dust” which is capable, however, of emitting
luminous flux having a power of tens of watts and even
higher. The amazing thing is that, as well as the fact that
in spite of all difficulties encountered in the evolution
of science in our country (especially in recent years),
Alferov succeeded in establishing a supreme research
and technological base at the Ioffe Physicotechnical
Institute for developing heterolasers and continued
obtaining record-high results in this rapidly progress-
ing branch of optoelectronics, which opened immense
prospects for the application of various-range lasers in
diversified fields of technology from medical to mili-
tary engineering.

The personality of Jaures Alferov is extremely mul-
tifaceted. It is difficult to mention many things in a
short greeting communication, but we must mention
the creation of the Scientific and Educational Center at
the Physicotechnical Institute. At this center, school-
age pupils become university students, and students are
converted into young scientists. The exuberant energy
and precise mind of Jaures Ivanovich have been mani-
fested most brilliantly during the construction of the
center. The scale of this institution constructed in recent
years in a “blank space” by the efforts of a lone scien-
tist—not an oil magnate—impresses our foreign
guests, town governors, and even businessmen.

We sincerely wish our colleague and outstanding
person Jaures Ivanovich Alferov preservation good
spirits, health, and success for many years.

Editorial Board
000 MAIK “Nauka/Interperiodica”
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Abstract—The current state of theoretical and experimental studies on the electronic structure of high-Tc
superconductors is analyzed. The agreement between the theory and experimental spectroscopic data is shown
to be rather poor in certain cases. The reason is that the X-ray and electronic spectra reveal strong electron cor-
relations. At the same time, no realistic model has been developed up to now in which both one-electron and
multielectron mechanisms of the formation of the spectra could be described in a unified way in compounds
containing transition and rare-earth elements. In this paper, particular attention is paid to a sudden-perturbation
model, by which it has been possible to describe or interpret some X-ray and electronic spectra, including both
one-electron and multielectron effects. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It can now be confidently said that the discovery of
high-Tc superconductivity (HTSC) has given vigorous
impetus to the development of many areas of both
experimental and theoretical physics. Particularly strik-
ing is the development of high-resolution electron
spectroscopy and the theory of strong electron correla-
tions. The first attempts to elucidate the features of the
electronic structure of high-Tc superconductors and to
correlate them with the nature of the HTSC were made
almost immediately after the discovery of these com-
pounds [1]. It became clear that the spectral data
obtained by X-ray and electron spectroscopy methods
could not be unambiguously interpreted. The reason
was that the atomic and electronic band structures of
the HTSC materials were complicated and also that the
spectra showed the effects of strong electron correla-
tions [2–4].

Detailed analysis of the literature concerned with
experimental and theoretical studies on high-Tc super-
conductors shows that a great deal of information on
their electronic structure has been accumulated to date.
This information was obtained mainly by experimental
methods, namely, by X-ray electron and photoelectron
spectroscopy, X-ray spectroscopy, X-ray emission
spectroscopy, X-ray absorption spectroscopy, and opti-
cal spectroscopy.

Photoelectron spectroscopy of core electron states
allowed one to obtain some information about more
general characteristics of the electronic structure, such
as the oxidation levels of copper and the occupancies of
multielectron configurations due to strong electron cor-
1063-7834/00/4205- $20.00 © 20788
relations. The X-ray absorption spectra (XASs) also
suggest that strong electron correlations affect the elec-
tronic structures of high-Tc superconductors, in partic-
ular, the structure of unoccupied electronic states in
them.

Also, theoretical one-electron calculations of the
electronic structure of key objects were made, which
were not accompanied, as a rule, by the theoretical
modeling of relevant spectroscopic experiments. Only
some features of physical experiments, predominantly
of those on metallic phases, were adequately described
in terms of the theoretical one-electron models devel-
oped thus far.

On the other hand, multielectron models of HTSC
(the Anderson model, several versions of the Hubbard
model, the t–J model, etc.) undoubtedly gave some
insight into the role of strong electron correlations.
However, one-electron excitations of a system were not
theoretically treated in these models, which does not
allow one to directly compare the theory with the great
bulk of the experimental data.

In fact, the view of the electronic structure of high-
Tc superconductors has been fragmentary up to now;
some effects have been investigated only in one-elec-
tron models and others only in multielectron ones. No
realistic model was developed, in terms of which one
could interpret a great body of experimental data
revealing both one-electron and multielectron effects
(for example, X-ray absorption spectra and various
electronic spectra).
000 MAIK “Nauka/Interperiodica”
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1. BASIC DATA ON THE ELECTRONIC 
STRUCTURE OF HIGH-Tc SUPERCONDUCTORS

1.1. Electronic Spectra of Superconductors

Analysis of the literature [3, 5–13] shows that Cu2p
X-ray photoelectron spectra (Cu2p-XPSs) of copper
were investigated the most, because they can be exper-
imentally measured quite easily. From these spectra,
one can obtain some information about the valence and
charge states of copper in compounds. Figure 1 shows
typical Cu2p-XPSs of compounds CuO, La2 – xSrxCuO4
(x = 0, 0.15), and Cu2O [3, 5]. In the spectra of CuO and
La2 – xSrxCuO4, in contrast to those of Cu2O, there are
two intense peaks, which the authors of [3, 5] associate
with transitions to 3d10 and 3d9 states, respectively. The
3d9 peak has a complex structure due to the Coulomb
interaction of 2p and 3d vacancies in the final state; this
peak is nearly rectangular in shape for “good” samples
(fabricated under certain conditions). In the process of
physical degradation of the samples, the 3d9 peak first
becomes asymmetric and then less intense.

The satellite structure of Cu2p-XPSs was widely
used to estimate the charge distribution in the ground
state [14, 15]. Most of the estimations, made in the
Anderson model (described in [16–22]) using experi-
mental data, show that, in CuO and La2 – xSrxCuO4

oxides, the weight of the 3d9 configuration does not
exceed 50–60% and only a moderate contribution is
observed from the 3d8 configuration.

There are a number of papers in which the Cu2p-
XPSs are misinterpreted. In most of the papers, it was
concluded that the Cu(+3) ions make a considerable
contribution to the chemical bond. Theoretically, we
believe that the spectra of the ions in the NaCuO2 com-
pound [23] (Fig. 2), in which the local structural param-
eters of the environment of the copper ion (CuO4 clus-
ter) are close to those in the HTSC compounds under
study, are of greatest interest. There are two fundamen-
tal distinctions between the Cu2p-XPS of NaCuO2 and
those of La2CuO4 and CuO: a noticeable shift of the
principal peak and its satellite to shorter wavelengths
and the emergence of an additional long-wavelength
satellite at an energy of 937.5 eV.

The presence of a complex satellite structure in all
the X-ray electron spectra mentioned above is an unam-
biguous manifestation of strong valence electron corre-
lations in high-Tc superconductors.

1.2. X-ray Absorption Spectra of High-Tc 
Superconducting Compounds

The best understood X-ray absorption (XAFS)
spectra of HTSC compounds are CuK spectra. They are
observed when X-rays induce transitions of 1s elec-
trons of copper to unoccupied Cup orbitals. In copper
oxides, there are no vacant Cup states up to the ioniza-
tion threshold. For this reason, in this energy range,
there are no intense lines in all CuK spectra of HTSC
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
compounds and related oxides. Historically [1], the
CuK absorption spectra were used, first of all, for deter-
mining the oxidation level of copper in high-Tc super-
conductors. In fact, it was on the basis of these spectra
that the erroneous inference was first made that Cu(III)
ions are of considerable importance in forming the
electronic structure of La2CuO4. Later, the nature of the
principal peaks of the near-range fine structure of X-ray
absorption spectra was elucidated on the basis of one-
electron calculations [24–27]. The features of the spec-
tra were identified that are associated with the scatter-
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Fig. 1. Cu2p3/2 X-ray photoelectron spectra [3, 5] of com-
pounds (1) CuO, (2) La1.85Sr0.15CuO4, (3) La2CuO4, and
(4) Cu2O.
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Fig. 2. Cu2p3/2 X-ray photoelectron spectra [23] of com-
pounds (a) CuO, (b) La2CuO4, (c) YBa2Cu3O7, and
(d) NaCuO2. The half-width of the spectral line Γ(eV) is
(a) 3.25, (b) 3.30, (c) 3.20, and (d) 1.60.
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ing of photoelectrons by the atoms of the first coordina-
tion shell [1, 24] and by more distant atoms [25–27].

Noteworthy is the paper by Li et al. [26], in which
the experimental spectrum was compared with theoret-
ical one-electron calculations of polarized CuK spectra
for an extended cluster and the conclusion was drawn
that the peak 7 eV higher than the principal peak in the
z-polarized spectrum has a multielectron nature. How-
ever, this hypothesis was not substantiated in [26], not
even qualitatively. The CuK spectra are well repro-
duced, and hence, their variations with composition
and under different conditions can be determined with
a high degree of accuracy. In the experimental work by
Kosugi et al. [28], owing to this property of CuK spec-
tra, the spectra of two-hole Cup states were first
obtained for doped La2 – xSrxCuO4 and YBa2Cu3O7
compounds. It should be emphasized that work was
very important, because only the method proposed in
[28] made it possible to separate the spectra corre-
sponding to the electronic states produced by doping.

Another experimentally well studied spectrum of
HTSC compounds is the CuL3 spectrum. The CuL3
X-ray absorption spectra are associated with the transi-
tion of an electron, excited by an X-ray quantum, from
the 2p energy level of copper either to a d-type bound
state or to the s or d orbital in the positive-energy range
(after which the electron leaves the system).
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Fig. 3. Experimental CuL3 X-ray absorption spectra [31] of
the YBa2Cu3O7 – δ compound for different values of δ.
P

Up to now, the mechanism of the formation of CuL3
X-ray absorption spectra of high-Tc superconductors
has been studied either by a method based on the one-
electron approximation and multiple-scattering theory
(see, e.g., [2, 27]) or by a multielectron treatment based
on the Anderson model [29]. The former approach
ignores the effects of strong electron correlations,
which are important in forming these spectra, while the
latter gives a very rough picture of X-ray absorption,
reducing the entire spectrum to a single white line and
not allowing one to describe the intricate part of the
spectrum above the ionization threshold. Nevertheless,
some interesting results were obtained using even this
much-simplified multielectron description of the for-
mation of CuL3 X-ray absorption spectra. In [29], the
modeling of the white line (transitions to vacant Cud
bound states from the core Cu2p orbitals) of CuL3
absorption spectra was performed for both one-hole
and two-hole configurations of the CuO4 cluster in
terms of the three-band p–d model. It was shown that
the z-polarized spectrum becomes noticeably more
intense after doping. A comparison between the results
obtained in [29] and [30] shows that the theory agrees
well with the experimental X-ray absorption data;
hence, the conclusion is substantiated that the density
of  states becomes significantly higher after dop-

ing.

Nowadays, there is a great body of experimental
data [29, 31] suggesting that, in copper-containing
HTSC oxides, the mechanisms of the formation of
CuL2, 3 spectra are essentially different from those
described by a one-electron, crystal-field model. First
of all, the experimental spectra indicate that there occur
electron transitions, known as nondiagrammatic, to the
states that cannot be described by this model. These
transitions are associated either with strong electron
correlations or with photoelectron scattering on possi-
ble potential barriers produced by surrounding atoms
and chemical bonds in the compounds under discus-
sion. The discrepancies were best demonstrated in [31]
in the CuL3 spectrum of YBa2Cu3O7 – δ (Fig. 3).

In [31], the fundamental peak A of the white line
was attributed to the transition Cu2p63d9 
Cu2p53d10 for any value of δ, while the peak B for
δ = 0.07–0.30 was ascribed to the transition

Cu2p63d9   Cu2p53d10 , accompanied by strong
electron-correlation effects, which agrees with the the-
oretical results obtained in [32], where X-ray absorp-
tion due to transitions from the core 2p energy level of
copper was investigated in the YBa2Cu3O7 – δ com-
pound using the Anderson model. When δ is increased
(causing the electron vacancy concentration to
decrease), the intensity of the peak B falls to zero and a
peak C appears at a distance of 2.8 eV from it. The peak
C was attributed in [31] (taking into account the posi-
tion of the fundamental peak in the CuL3 spectrum of
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Cu2O [33]) to copper ions with the (+1) oxidation level.
Undoubtedly, this interpretation of the peak C deserves
attention, but the mechanism of the formation of the
CuL3 spectrum of univalent copper was not discussed in
[31] and [33]. Moreover, the absolute values of the
absorption oscillator strengths for the 2p orbital of cop-
per in YBa2Cu3O7 – δ and Cu2O were not presented in
[33], which does not allow one to correctly analyze the
CuL3 spectrum of the complex YBa2Cu3O7 – δ system,
which is a combination of the spectra of copper ions
with +1, +2, and +3 oxidation levels. Thus, it looks as
if, even with allowances made for the multielectron
effects, one cannot explain all features of the CuL3
spectra of copper-containing HTSC materials.

According to [32], in the undoped system (with one
electron vacancy per formula unit), X-rays can induce

only transition 2p6   2p5d10, even though in

the initial state there are two d9 and two d10  configu-
rations, due to the hybridization of the vacant states. In
doped systems (with more than one vacancy per for-
mula unit), there appear contributions from the Cud8,

Cud9 , and Cud10  configurations and, hence, the

multielectron effects are much stronger. For this rea-
son, the CuL3 spectra of dopant-produced electronic
states of doped compounds noticeably differ from the
spectra for undoped ones; in particular, there appear
shakeup satellites near the white line [2, 32, 33].

1.3. X-ray Spectra of Core Energy Levels

Nowadays, there is a great body of spectral data
available in the literature (see, e.g., [34, 35]) on CuKα
X-ray spectra (transitions from the Cu2p to the Cu1s
orbital ionized by an X-ray quantum). In most of the
papers dealing with the theoretical and experimental
investigation of these spectra, some spectral features
are explained in terms of the Anderson model or the
two-band Hubbard model. The mechanisms of the for-
mation of the spectra are commonly discussed for the
one-hole configuration, and no account is taken of the
contribution from the two-hole configuration, for
which the correlation effects are of fundamental impor-
tance.

The authors of papers [36, 37] considered the
energy shift of the principal peak in the CuKα spectra
that is caused by the phase transition from the nonsu-
perconducting to the superconducting state in HTSC
oxides, among them La2 – xSrxCuO4. It was shown that
only in YBa2Cu3O7, the principal peak of the CuKα
spectrum is shifted by 0.35 eV, due to a change of the
leading configuration. Theoretically calculated spectra
of systems with a one-hole configuration were
described in detail in [36, 37]. A low-intensity satellite
was shown to exist which depends on the density of
states of the Cud9 configurations and whose position is
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higher by 0.4 eV than that of the principal peak; the lat-

ter depends on the density of the Cud10  state in the 1s
and 2p hole configurations. It was shown in [37] that
the shift of the Kα line of copper cannot be measured
without separating out the contributions of the satellite
structure. Hence, analysis of these spectra cannot be
performed without resorting to multielectron methods.

1.4. One-Electron Calculations 
of the Electronic Structure of Cuprates

Even the first attempts to describe the electronic
structure of copper-containing HTSC materials by non-
empirical, cluster, and band, one-electron methods
were accompanied, as a rule, by comparing the calcula-
tions and experimental photoelectron and X-ray emis-
sion spectra of these compounds (see, e.g., [1–7, 38–
43]). These calculations gave practically the same pic-
ture of the electronic structure formed by the Cu3d and
O2p orbitals (see Fig. 4 and, e.g., [44, 45]).

However, it immediately became obvious that there
are fundamental limitations to such calculations when
applied to HTSC materials.

(1) First of all, the one-electron calculations give
zero magnetic moment for copper ions, whereas the
experiment shows that all undoped HTSC compounds
are antiferromagnets, with the copper ion magnetic
moment being equal to µ ~ 0.5µB, and although the
high-Tc superconductors themselves possess no long-
range antiferromagnetic order, they show strong spin
fluctuations [46].

(2) The experimental photoelectron spectra are
shifted to lower energies by about 1–2 eV as compared

L

σ∗

Ef

P π (2)
P σ

x2 – y2

3z2 – r2

OCu

E

xy
yz, zx

π

σ

Fig. 4. Schematic diagram of the electronic states of the
Cu3d and O2p orbitals of the CuO2 plane in terms of
the crystal-field theory and its interpretation in terms of the
LCAO–LDA method [44, 45]. The hatching shows the
occupied states; σ(*) and π designate (anti)bonding pdσ
states.
0
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to the band calculations for both La2 – xSrxCuO4 and
YBa2Cu3O7 – δ.

(3) The one-electron calculations predict a metallic
behavior for the ground state of undoped oxides such as
La2CuO4 and YBa2Cu3O6, whereas the experiment
shows that they are insulators.

(4) The one-electron models offer no explanation of
X-ray electron spectra and X-ray spectra of the core
energy levels of copper and oxygen, because they have
a complex satellite structure.

(5) A comparison of the theory and the experiment
showed that a number of features of the X-ray absorp-
tion spectra of copper also cannot be explained in terms
of a simple one-electron model.

In more recent papers [47–49], an attempt has been
made to improve the one-electron approach by intro-
ducing a vacant-state potential correction. In effect,
such a correction to the potential is analogous to the
introduction of the parameter Ud in the Hubbard model,
which will be discussed below.

This improved approach allowed one to qualita-
tively explain the forbidden gap, the shift of the photo-
electron spectra to lower energies, and the magnetic
moment of copper atoms in the ground state of undoped
oxides, such as La2CuO4, CaCuO2, Sr2CuO2Cl2, and
YBa2Cu3O6. The nature of the electronic states of the
top of the valence band and the bottom of the conduc-
tion band was also adequately described and the results
agreed with the most reliable experimental and theoret-
ical data. Unfortunately, in those papers, modeling of
the X-ray and photoelectron spectra was not conducted
and a comparison of the calculations and the experi-
mental data was made only indirectly, which does not
allow one to definitively judge the adequacy of this
approach.

1.5. Strong Electron Correlations

As mentioned above, the one-electron models can-
not describe the features of the electronic structure of
undoped cuprates and some of their physical and spec-
tral properties associated with strong electron correla-
tions. To take these correlations into account, two
methods were used in the literature. One of them is
based on models like the Hubbard or the Anderson
model, and the other is an ab initio approach, such as
the configuration interaction (CI) method or the multi-
configuration self-consistent field (MC SCF) approxi-
mation.

Model calculations are the simplest and physically
most illustrative method for taking strong electron cor-
relations into account. The simplest of them is the tight-
binding model, which describes the electronic structure
of the CuO2 plane and takes into account only the
atomic orbitals of the CuO4 cluster (two occupied px, y

orbitals of oxygens and one half-filled Cud
x

2
y

2–
P

orbital). The corresponding model Hamiltonian has the
form

Here, the summation is carried out over atoms in the
cluster, 〈i, j〉  means that the summation is performed
over its nearest neighbors, and σ is a spin index. In this
model, there are three bands containing five electrons.
In actual practice, however, this Hamiltonian is written
in the hole representation, in which the state
Cu3d102O2p6 is taken as the vacuum state. In the case
of one vacancy, the electronic structure of the CuO2

plane is reduced to one Hubbard band Cu3d92O2p6. As

is customary in this model,  and  are the creation
operators for holes at d and p orbitals, respectively, of
copper and oxygen atoms in the CuO2 plane. The
charge-transfer gap ∆ equals the difference between the
energies of the p and d states of oxygen and copper (∆ ≡
εp – εd) and is positive in the hole representation. The

hopping integrals  and  are parameters of the sys-
tem, determined either from the experimental data or
from some nonempirical calculations. The signs of
these parameters are dictated by the symmetry of the
system, and their absolute values are much less than ∆
( ,  ! ∆).

This model ignores one of the main features of the
strongly localized d orbitals of copper, their strong
Coulomb interaction. The Emery model is not sub-
jected to this drawback. It is a three-band analog of the
one-band Hubbard model,

where  = diσ and  = pjσ are the densities
of Cu3d and O2p holes, respectively. The quantities Ud

and Up are the Hubbard interaction parameters at the
same orbitals for copper and oxygen, respectively, and
Upd characterizes the copper–oxygen interaction. In the
hole representation, these quantities are positive and
correspond to repulsion. The quantity Ud is dominant in
the formation of the electronic structure and because of
this, the transition Cu3d9  Cu3d8 is suppressed.

The limit case where all three Hubbard interaction
parameters are zero (Ud = Up = Upd = 0) corresponds to
one-electron calculations. In this case, the upper σ*
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band (Fig. 4) is twofold degenerate (in terms of this
model) and, hence, half-filled.

As the Hubbard repulsion parameter Ud increases,
the degeneracy of the σ* band is lifted and there appear
the lower (LHB) filled and the upper (UHB) vacant
Hubbard bands [50]. When Ud < ∆, the electronic struc-
ture corresponds to a Mott–Hubbard insulator, with the
filled upper band being composed of the Cud-type
states. When Ud > ∆, we have a charge-transfer insula-
tor. In the latter case, the lower Hubbard band is situ-
ated below the oxygen subband, and a minimal electron
excitation energy is required for the electron charge
transfer to occur from the oxygen sublattice to copper
centers.

Magnetism of individual copper atoms in undoped
cuprates is simply and naturally explained in terms of
the three-band Hubbard model. Indeed, when the cop-
per d band is split into two Hubbard bands, correspond-
ing to the d9  d8 and d10  d9 excitations, the
number of the remaining electrons per formula unit is
even, which explains the insulating behavior of these
compounds. Since the d9 configuration corresponds to
a magnetic ion, it is not surprising that magnetism
occurs [51, 52].

The long-range antiferromagnetic order in such
compounds is due to the spin superexchange between
copper centers having one vacancy. It can be described
by performing a unitary transformation that reduces the
three-band model to the two-dimensional Heisenberg
model [53]

where JCC is the exchange coupling constant and Si is
the spin operator of a copper center. We have

A lower experimental estimate of this constant is
JCC ≅  0.15 eV.

Another evident success of Hubbard-type models in
studying undoped high-Tc superconductors is the fact
that, using this approach, it has been possible to quali-
tatively describe CuKα X-ray spectra and Cu2p X-ray
electron spectra (Cu2p-XPSs) of these compounds
[52, 54–57]. However, in most of those papers, only the
mechanisms of the formation of spectra for a one-hole
configuration were discussed, ignoring the contribution
from two-hole configurations, for which electron corre-
lations are of fundamental importance.

For a two-hole configuration of the structural unit of
a high-Tc superconductor, this problem was first solved
by Zhang and Rice [58]. One would think that, in a
charge-transfer insulator, an extra hole should be situ-
ated in the oxygen subband, which is just below the
upper Hubbard band. However, Zhang and Rice argued
against this point of view. They demonstrated that the

H JCC SiS j 1/4ni
dn j

d–( ),
i j,〈 〉
∑=

JCC 4t pd
4 /∆( ) 1/Ud 2/ 2∆ U p+( )+( ).=
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covalent mixing of atomic states of copper and oxygen
(due to which, in the band theory, the π band is basi-
cally of an oxygen nature, see Fig. 4) leads to the for-
mation of a triplet and a singlet (Zhang–Rice singlet) in
the Cu3d9O2p5 states through Hubbard splitting of
occupied states in the one-electron π band. According
to their calculations, the singlet is the highest of the
occupied states (in the electron representation) and it is
the first to be occupied by an extra vacancy produced in
the process of doping.

In terms of the one-band Hubbard model, this means
that both the Zhang–Rice singlet and the Cu3d10 vac-
uum state are nondegenerate and similar in behavior to
the upper and lower Hubbard bands. Hence, they can be
described in terms of an effective Hubbard model with
a half-filled band,

where niσ = ciσ is the electron density for spin σ and
U ≈ ∆. In addition to the hopping integral t between
nearest neighbors (equal to 430 meV), this model
involves the hopping integral on atoms of the next coor-
dination shell (t' = –70 meV) [53].

In a CuO4 cluster, the single oxygen state that is
mixed with a copper d state is described by the totally

symmetric combination  = (1/2) . The other

three oxygen states  are not binding states. In the
half-filled state, the cluster has one vacancy with spin
down. When one more hole is added (in the process of
doping), we have the problem of two holes for four
states interacting with the copper states.

Thus, we have the following five configurations
(basis wave functions): the Cud8O2p6 configuration,

represented by the state | 〉; the Cud10O2p4 con-

figuration, represented by | 〉; the Cud9O2p5

configurations of the first type represented by the sin-

glet |S〉  = (| 〉 + | 〉)/  and the triplet

|T 〉  = (| 〉 – | 〉)/ . The Cud9O2p5 con-
figurations of the second type are represented by the
states involving the nonbinding oxygen states, such as

| 〉 .
The Hamiltonian of this model is not difficult to

diagonalize. In the case of a charge-transfer insulator,
the ground state is found to be the Zhang–Rice singlet,
whereas the triplet is 2–4 eV higher and plays no part
in the phenomenon in question at low temperatures. In
this model, the Zhang–Rice singlet represents an effec-
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tive spinless hole (in the doubly occupied-state
subspace) moving through the two-dimensional spin
lattice.

The other approach that allows one to consider
strong electron correlations is multiconfiguration ab
initio calculations (CI method and MC SCF approxi-
mation). For Cu(II) oxide systems, these calculations
demonstrate strong localization of valence band top
electrons (see, e.g., [59, 60]), which substantiates the
applicability of Hubbard-type models. The most
detailed study, in our opinion, was carried out in [60],
where it was shown that the process of ionization of
both core and valence orbitals is accompanied by a
strong screening effect, which leads to the emergence
of multielectron shakedown satellites in electronic
spectra associated with the charge transfer from the
occupied O2p to vacant Cu3dσ orbitals.

Of the papers in which the ab initio MC SCF
method was used to investigate doped copper oxide
[formally, Cu(III)] systems, of special note is that by
Eto and Kamimura [61]. In that paper, the electronic
structures of compounds La–Se–Cu–O and Nd–Ce–
Cu–O were calculated by a multiconfiguration varia-
tional method in a cluster approximation. Calculations
were performed for the CuO6, CuO4, Cu2O11, and
Cu2O7 clusters. It was shown that, at the hole concen-
tration close to the superconducting value, the ground
state of the hole-doped CuO6 cluster changes over from
1A1g to 3B1g when the copper–apical-oxygen internu-
clear distance is varied. The ground state of the elec-
tron-doped CuO4 cluster was shown to be 3B1g and the
dopant electron was at the Cu4s orbital. Eto and
Kamimura also adequately described the antiferromag-
netic ordering in the Cu2O11 and Cu2O7 clusters and
showed that doping suppresses antiferromagnetism in
both p-type (Cu2O11 cluster) and n-type (Cu2O7 cluster)
systems, though the mechanisms of these processes are
different.

1.6. A multielectron Model for the CuO2 Plane

In a multielectron approach, the Hamiltonian of the
multi-band p–d model, describing the valence state of
copper and oxygen, can be written in the hole represen-
tation as [62–64]

H Hd H p H pp H pd,+ + +=

Hd Hd r( ),
r

∑=

Hd r( ) εdλ µ–( )drλσ
+ drλσ 1/2( )Udnrλ

σ nrλ
σ–+[ ]

λσ
∑=

+ Vdnr1
σ nr2

σ' Jddr1σ
+ dr1σdr2σ'

+ dr2σ–( ),
σσ'

∑

P

(1)

where εpα and εdλ are the one-particle energies of p- and
d-hole orbitals α and λ, respectively; Up and Ud are the
Hubbard correlation parameters; Vp and Vd are the
matrix elements of the intraatomic Coulomb repulsion
at the same and different orbitals of oxygen and copper;
Jp and Jd are the Hund exchange integrals at oxygen and
copper atoms, respectively; Tλα and tλα are the matrix
elements of p–d and p–p hopping, respectively,
between their nearest neighbors; Vλα and Jλα are the
matrix elements of the Coulomb and exchange interac-
tions, respectively, between nearest copper–oxygen
neighbors; and µ is the self-consistently calculated
chemical potential, situated in the insulator energy gap
of the undoped system. Obviously, the correctness of
the results obtained in this model depends on the basis
functions chosen for calculations. For this reason, one
should include at least the  and  orbitals of

copper, as well as the px and py orbitals for all oxygen
atoms. The energy of the  orbital was taken to be

εd, the energy of the  orbital was (εd + ∆d), and the

energy of the px, y orbitals was εp.
In (1), the first two terms describe intraatomic inter-

actions, including the Hubbard correlations Up and Ud,
the Coulomb interaction between holes at different
orbitals and the Hund exchange. The last two terms in
(1) correspond to interatomic p–p and p–d hopping and
Coulomb interaction. The values of the parameters of
the Hamiltonian (1) are taken from the experiment;
they were determined by matching the electronic struc-
ture of the ground state of La2CuO4 to the optical and
magnetic data [65]

H p H p i( ),
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The dependence of the results on the choice of Up

and Ud is discussed below. The parameters Up and Ud

are assumed to be infinite, unless otherwise specified.

1.7. The Ground State of the CuO4 Cluster

Let us consider localized states with no hopping
between unit cells. Figure 5 shows the local bases for
(a) the Hubbard model and (b) a multi-band p–d model;
in the latter case, only several excited states with n = 1
and n = 2 [65, 66] are shown for a particular unit cell in
which a quasiparticle is created. In the hole representa-
tion of the Hubbard model (Fig. 5a), the top of the
valence band consists only of two quasiparticles [67]
(in terms of the multielectron approach), corresponding
to the upper and lower Hubbard bands with energies

and

where E0(0), E0(1), and E0(2, S) are the energies of the
ground states of the cluster in the zero-, one-, and two-
particle subspaces of the Hilbert space. The S = 1/2
state with the energy E0(1) is degenerate due to spin,
whereas the state with E0(2, S) may be a singlet (S = 0)
or a triplet (S = 1). Dispersion in the system [ΩS 
ΩS(k)] is associated with intercluster hopping. The dis-
persion relation varies with different values of S; hence,
the X-ray spectra will be different for systems differing
in spin.

In a many-band model, the number of different tran-
sitions between states in which the numbers of elec-
trons (or holes) differ by unity is much larger (Fig. 5b).
It is much more convenient to describe the localized
particles, introduced in these models, in terms of the
Hubbard operators

which are constructed for a complete set of localized
multielectron states. Here, as indicated above, the states
of one unit cell, that is, multielectron molecular orbit-
als, are implied.

In terms of the three-band p–d model, in the case
where Tλα ! ∆, Up, Ud (Tλα is the p–d hopping param-
eter and ∆ = εd – εp is the charge-transfer energy), the
effective exchange integral JCu–O can be written as [53]

J p Jd 0.5 eV,= =

Tλα 1.5 eV, tλα 0.2 eV,= =

Vλα 0.6 eV, Jλα 0.2 eV,= =

εd 0, ∆d 1.5 eV,    ε3 2 eV.= = =

Ω+ E0 2 S,( ) E0 1( )– E0 1( ) U+= =

Ω– E0 1( ) E0 0( )– E0 1( ),= =

X pq p| 〉 q| 〉 ,=

JCu–O 8Tλα
2 1/ ∆ U p+( ) 1/ Dd ∆–( )+( ).=
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In the limit of Up = Ud = ∞, the exchange integral JCu–O
is zero and the singlet and triplet are degenerate. How-
ever, at finite Up and Ud, the value of JCu–O becomes
large; for typical values of parameters Ud = 10 eV, Up =
6 eV, Tλα = 1–1.5 eV, and ∆ = 2–3 eV, we have JCu–O =
2 eV. Therefore, in order to correctly evaluate the effec-
tive exchange integral, one should take into account the
finiteness of the intraatomic Coulomb repulsion param-
eters Up and Ud.

The state of two holes in the CuO4 unit cell may be
a Zhang–Rice singlet [58] or a triplet [68]. When calcu-
lating the spectra, the energies of the singlet (εS) and the
triplet (εT) were determined by exactly diagonalizing
the Hamiltonian of the CuO4 cluster at Up = Ud = ∞.
Relatively small variations in the values of parameters
may result in the crossover between the singlet and trip-
let, that is, in the change of sign of the level splitting
∆ε = εT – εS. In our case, at ∆ = εp – εd = 2 eV, the
ground state of two holes is a triplet (εT = –0.93 and
εS = –0.82), while at ∆ = 1.5 eV, the ground state is a
singlet (εT = −1.52 and εS = –1.54).

When the values of the Hubbard repulsion parame-
ters are finite, the picture becomes somewhat different.
Figure 6 shows calculated level splitting [69] in the
multiband p–d model for Ud = 12 eV, Up = 8 eV, Tλα =
1.5 eV, and ∆ = 3 eV (curve 1). This curve corresponds
to a minimal set of parameters, which is arbitrarily
called “three-band model plus  orbital,” because all

parameters that are not involved in the three-band
model are taken to be zero. The calculations for this set
explicitly show the effect of the  orbital when its

energy is lowered to its actual values.
As ∆d is decreased, the effect of the Coulomb inter-

action between orbitals increases, as seen from curve 2,
for which we have taken Vd = 4.5 eV. Curve 3 corre-
sponds to the case where all the parameters we used to
completely calculate the CuO2 layer are taken to be
nonzero.

It is seen from Fig. 6 that the exchange splitting ∆ε
decreases as the energies of the  and  orbitals
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6 4
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Fig. 5. Local bases of (a) the one-band Hubbard model and
(b) the multiband p–d model. Only some of the excited
terms are shown in the one-hole and two-hole subspaces of
the Hilbert space in the multiband model. Arrows show the
processes of quasiparticle annihilation.
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approach each other. Virtual transitions to orbitally
nondegenerate states lead to antiferromagnetic
exchange and stabilize the singlet, whereas virtual tran-
sitions to degenerate states lead to ferromagnetic

1
2

3

2

1

0 2 4 6 8 10
∆d, eV

∆ε, eV

Fig. 6. Dependence of the triplet–singlet splitting energy
∆ε = εT – εS for the two-hole states of the CuO4 cluster on

the crystal-field parameter ∆d = ε  – ε . The model

parameters are (eV): (1) Ud = 12, Up = 8, ∆ = 3, Tλα  = 1.5,
and other parameters are zero; (2) Vd = 4.5 and the other
parameters as for curve 1; and (3) Ud = 12, Up = 8, ∆ = 2,
Tλα  = 1.5, tαβ = 0.2, Vd = 4.5, Vp = 3, Vpd = 0.6, Jp = Jd =
0.5, and Jpd = 0.2.
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exchange and stabilize the triplet. The latter is due to
the fact that, according to the Stoner criterion, the den-
sity of states at the Fermi surface increases in propor-
tion to the degeneracy.

Thus, the transition from the three-band to the
multiband p–d model with finite values of the Hubbard
correlation parameters leads to a decrease in ∆ε, from
2–4 eV in the former case to 0.1 eV in the latter. The
introduction of other small parameters into the many-
band model may lead to the inversion of the singlet and
triplet states. For instance, these may be oxygen–oxy-
gen hopping parameters tλα [68], interatomic Coulomb
and exchange p–d integrals Vpd and Jpd, or the contribu-
tion from apical oxygen atoms.

1.8. General Characterization of the Electronic 
Structure of the HTSC Oxides

Thus, on the basis of the data obtained by various
experimental and theoretical methods and presented
above, the following current view of the electronic
structure of high-Tc superconductors was formed [53].

The Hubbard repulsion removes the degeneracy of
the upper half-filled one-electron band σ* (Figs. 4, 7a),
splitting it into the lower and upper Hubbard bands
(LHB and UHB, respectively) depending on the rela-
tive values of the parameters tpp, tpd, Ud, and ∆ (Figs. 7b,
7c). According to the classification by Zaanen,
Sawatzky, and Allen [50], there are three types of elec-
tronic structures (Fig. 7): (a) d-type metal, correspond-
ing to Ud = 0 (this case was discussed in Subsection
1.4); (b) the Mott–Hubbard insulator, where tpp , tpd <
UHBLHB

LHB UHBUHB

AB

NB

NB

B

E E

EE

(a) (b)

(c) (d)

T

Ud

UdUd

ZRS

ECTECT

εp εd

d9→ d8 d9→ d10 d9→ d10

Fig. 7. (a–c) Zaanen–Sawatzky–Allen classification [50] of the one-particle spectra of transition-metal compounds: (a) metal,
(b) Mott–Hubbard insulator, and (c) charge-transfer insulator (CTI); and (d) CTI with Zhang–Rice singlet–triplet splitting. Shaded
regions indicate occupied states, (N)[A]B are (non)[anti]bonding states, L(U)HB are lower (upper) Hubbard bands, ZRS is the
Zhang–Rice singlet, T is the triplet, ECT is the renormalized charge-transfer gap, and E is the energy.
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Ud ! ∆ and (c) the charge-transfer insulator, where tpp ,
tpd < ∆ < Ud.

The experimental resonance photoelectron spec-
troscopy data, which allow one to determine the partial
contributions from the O2p and Cu3d states, suggest
that the electronic structure of high-Tc superconductors
corresponds to a charge-transfer insulator. Measure-
ments showed [70–72] that, in the La2 – xSrxCuO4,
YBa2Cu3O7 – δ, and Nd2 – xCexCuO4 compounds, the
parameter Ud of the three-band Hubbard model is much
larger than ∆. It was found, while making a comparison
of the experimental data and cluster calculations [70–
72], that Ud ranged in magnitude from 7.3 to 10.5 eV.

In the one-electron π subsystem, the Hubbard repul-
sion manifests itself in the same way, splitting it into a
triplet and a singlet state. According to [58], among the
occupied states in undoped high-Tc superconductors,
the singlet has the highest energy and, in terms of the
Hubbard model, it is an analog of the UHB, whereas the
triplet has a lower energy and corresponds to the LHB.

This last case of the electronic structure calculated
for the undoped superconductors in the Hubbard model
is shown in Fig. 7d. The ZRS peak corresponds to the
Zhang–Rice singlet, which is the ground state among
the two-hole states [58].

2. A SUDDEN-PERTURBATION (SP) MODEL 
AND A SCHEME FOR CALCULATING 

SPECTRAL CHARACTERISTICS

2.1. The Theoretical Fundamentals of X-ray 
Spectroscopy (Sudden-Perturbation Model)

The formation of X-ray (absorption and emission)
spectra and of X-ray electron spectra is associated with
a one-electron and a one-photon process; that is, the
electronic system interacts with one X-ray quantum,
and one electron makes a transition from some core or
valence orbital to a highly excited state. Other (say,
Auger) processes that accompany or follow this pro-
cess noticeably differ in transition energy (which
allows one to resolve them) and, in addition, the parti-
cles emitted or absorbed in them differ in nature. The
processes of the interaction of X-rays with the matter
we consider here obey the energy conservation law, and
all channels of excitation and decay of highly excited
states in these processes are known.

Since the early 1930s, the theory of the interaction
of X-rays with matter has been based on the sudden-
perturbation (SP) approximation, which was success-
fully employed to treat the processes in the electron
shell of an atom that accompany the α, β–, and β+ decay
of nuclei, K-capture, and multiple ionization of atoms
[73–77]. Later, this approximation was extended to all
cases of inelastic interaction of X-rays with matter.

The SP model is based on the assumption that, due
to some interaction, the Hamiltonian of the system is
suddenly changed [78, 79] as compared with the over-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
all duration of the corresponding process or the lifetime
of the system. This is true in the case of K-capture or β
decay. Indeed, the lifetime of the excited state of the
electronic system with a vacancy at the 1s orbital (from
which an electron has fallen on the nucleus), as evalu-
ated from the experimental X-ray line widths (∆E = Γ ≈
1 eV) and the Heisenberg uncertainty relation, is of the
order of τ* = ∆t > "/∆E ≈ 10–15 s. At the same time, the
time τK it takes for the electron to “fall” on the nucleus
can be estimated as the ratio of the effective orbit radius
R1s (~0.1 au) to the effective velocity ν1s of an electron
moving in this orbit. The latter can be evaluated from
the virial theorem (the kinetic electron energy is
obtained to be about 103–104 eV) and, hence, the time
τK is of the order of ~10–19–10–18 s, which is far shorter
than the lifetime (10–15 s) of the ionized excited state of
the atom with the charge of its nucleus changed by
unity. Thus, in the case of the K-capture, one can
assume that the Hamiltonian of the system suddenly
changes in comparison with the lifetime of the final
highly excited state with an electron vacancy at the 1s
orbital. In the case of the β decay, the change in the
charge of the nucleus occurs even more quickly,
because the radius of the atomic nucleus is much
smaller than that of the electron shells.

The applicability of the SP model is also well
founded for the X-ray spectroscopy of inner shells. For
example, it can be used to describe Kα spectra, which
are associated with transitions from 2p states to the ion-
ized 1s state (the transition energy is of the order of
104 eV for elements in the middle of the periodic sys-
tem). Such spectra are commonly measured for excita-
tion energies 3–5 times higher than the K-shell energy
EK, because in this case the line strength ceases to
depend on the excitation energy, which is due to the
nature of vacant states with energies of the order of
104 eV (above the ionization threshold). Hence, one
can take the energy of an exciting photon to be "  @
EK. In the SP model, it is assumed that an 1s electron is
so quickly removed that the potential for 2p electrons
changes suddenly. Hence, the time it takes for the 1s
electron to go out of the L shell should be small in com-
parison with the revolution period of 2p electrons,

here, r2p is the orbit radius of 2p electrons (0.25 au for
copper). Taking the excitation energy to be ~104–105 eV
and using the virial theorem, one obtains ν1s ~ 3 × 109–
1010 cm/s and ν2p ~ 5 × 107–108 cm/s for elements in the
middle of the periodic table. Thus, the condition for
suddenness is fulfilled and mixing of the 1s electron
with the 2p shell does not occur.

However, a more detailed consideration of the for-
mation of even these high-energy X-ray spectra, asso-
ciated with inner shells, raises some questions.
Undoubtedly, the effective nucleus charge, as it does
for the 2p shell, Z2p, changes suddenly, but the 2p shell

ω

r2 p/ν1s ! 2πr2 p/ν2 p,
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Fig. 8. Process of excitation of the electron system by an X-ray quantum (schematic): (a) the ground state of the system before
absorption of an X-ray quantum "ω; (b) the final state of the electron system in the frozen-orbital approximation (FOA), described

by the wave function  and energy , with a hole at the core energy level, a photoelectron in the continuum, and with the unre-

laxed valence band; and (c) the final quasi-stationary state of the relaxed electron system with the X-ray hole, described by the wave
function Ψ* and energy Ε*.
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itself will be affected by the electron going through and
out of the electron system (a distance of roughly 2 au).
This increases the duration of the system perturbation
by at least an order of magnitude (up to 10–17–10–18 s)
and becomes comparable to the revolution period of 2p
electrons (about 10–17 s). Furthermore, considering this
process formally, we should add a time-dependent per-
turbation term to the initial Hamiltonian of the system.1

Therefore, in terms of quantum mechanics, the energy
is not conserved in this process.

It is here that a hidden paradox arises when one dis-
cusses the applicability of the SP model in the context
of X-ray spectroscopy theory. On the one hand, the pro-
cess of the electron going out of the system causes a
perturbation finite in time, which must lead to the vio-
lation of the energy conservation. On the other hand, no
other particles (quanta or electrons) are emitted or
absorbed, and they are not involved directly in the for-
mation or decay of highly excited states; hence, energy
must be strictly conserved.

For the valence shell, the revolution period of elec-
trons, as evaluated from the effective radius (Rνs ≈ 3 au)
and their energy (Eνs ≈ 5 eV), is of the order of 5 × 10−16 s,
which is close to the lifetime (10–15 s) of a highly
excited state. Hence, the valence electrons have no time
to make a sufficient number of revolutions about the
nucleus during the lifetime of the excited state. Due to

1 In fact, the photoelectron no longer belongs to the system in ques-
tion and, hence, its exit from the system affects the latter, giving
rise to a time-dependent perturbation or, in terms of X-ray spec-
troscopy, to the time-dependent process of “relaxation” of the
electron energy levels.
P

this fact, it is commonly assumed in X-ray spectros-
copy [80] that the transition of an electron system,
induced by an X-ray quantum, from the ground state
with a wave function ΨGS(N) and an energy EGS(N) to a
final quasi-stationary highly excited state with an X-ray
hole at a core orbital [with a wave function ΨF(N – 1)
and an energy EF(N – 1)], proceeds via a transient,
“unrelaxed,” highly excited state ΨGS(N – 1) with an
energy of EGS(N – 1). In this transient state, the hole is
already created at a core orbital, but the other part of the
electron system has not yet adapted itself to it (has not
relaxed, in terms of X-ray spectroscopy, see Fig. 8). In
this scheme, it is assumed that the rearrangement time
of the valence shell τr is longer than the duration of the
perturbation or, what is the same, longer than the time
it takes for the electron to leave the core, τc = a/v ≈
a/ , where a is the effective distance the elec-
tron travels before it leaves the system (which is
roughly 2–3 au), v is the velocity of the electron at
which it goes out of the system, and "  is the energy
of the absorbed quantum.

The currently available methods for studying matter
that are based on the excitation by X-rays are used, first
of all, to investigate the valence shell of the electron
structure, the effective radius of which is 2–5 au. In
these methods (X-ray absorption spectroscopy, X-ray
emission spectroscopy, and some other techniques, by
which the specified channels of the creation and decay
of highly excited X-ray states are investigated), signifi-
cantly lower excitation energies are used, 103–102 eV,
which are often close to the ionization thresholds of

2"ω/me

ω
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core states. Let us evaluate the time it takes for an elec-
tron to leave the system and travel a distance (about
10 au) at which the photoelectron no longer affects the
electronic structure of the X-ray cation. We will take
the energy Ei of the core state from which an electron is
knocked to be 1000 eV (2p state of copper) and the
energy of exciting radiation "  to be equal to the ion-
ization threshold (also 1000 eV).

For the core state before the absorption of an X-ray
quantum, the virial theorem holds; hence, Ei = Ti + V
and Ei = –Ti. Immediately after the absorption (the ini-
tial instant), the potential energy of the system is not
changed (because the nucleus charge and the electron
charge distribution remain the same), but the total
energy of the electron at the initial instant Ef(t = 0)
becomes equal to (Ei + " ). Under these conditions,
the kinetic energy of the photoelectron at the initial
instant is Tf(t = 0) = –2Ei and at the infinitely long time
t  ∞, it is equal to zero. Therefore, we can evaluate
the effective velocity of the photoelectron; it is obtained
as (νp(t0) = 2.5 × 108 cm/s at the initial instant and
νp(t∞) = 0 at the final instant. Accordingly, the average
velocity is 108 cm/s, whereas the time it takes for the
photoelectron to move a distance of 10 au (5 × 10–8 cm)
is τp = 5 × 10–16 s.

At the present time, X-ray methods are being devel-
oped in which the effective time it takes for an electron
to leave the system can be longer by several orders of
magnitude than the estimate made above. For example,
in X-ray absorption spectroscopy, the case is rather
common where many-center scattering of a photoelec-
tron occurs by nearest-neighbor atoms (XANES range
of X-ray absorption spectra); or a photoelectron resides
near the absorbing atom for an anomalously long time,
because around this atom there is a high positive barrier
due to vacant electron states with a large l (giant-reso-
nance spectra in lanthanides and actinides); or a photo-
electron, being several atomic units away from the pos-
itively charged X-ray hole, is attracted to it (X-ray exci-
tons).

Thus, it is seen that the lifetime of highly excited
X-ray states and the time it takes for a photoelectron to
leave the system, as well as the revolution period of
valence shell electrons, are of the same order of magni-
tude in the case of the formation of spectra associated
with the structure of valence states.

In spite of this, the SP model adequately describes
X-ray processes of various types. In the process of
absorption of an X-ray quantum, the total energy of the
system is changed by the quantum energy "  and the
final energy of the highly excited state is Ef = (Ei + " ) =
const. Thus, it is seen that the energy conservation law
is strictly obeyed in the process of interaction of X-ray
quanta with matter.

Taking into account that Ef = (Ei + " ) = const, we
can write the wave function of the final state in the form

ω

ω

ω
ω

ω
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which is a solution to the time-dependent Schrödinger
equation

where H is the Hamiltonian of the system. Analo-
gously, the initial (ground) state of the system can be
written as

According to quantum mechanics, the probability of
the dipole transition from the initial to the final state is
given by the formula

The total energies of the initial and final states are very
large; for individual atoms and molecules, we have

EGS ≈  ≈ 104–105 eV, while for a solid, in which the
effective volume in which the interaction of an electro-
magnetic quantum with matter takes place may comprise

as many as 10 atoms, we have EGS ≈  ≈ 105–106 eV.
At the initial instant, the time-dependent factors in both
the initial and final states are equal to unity and, in addi-
tion, the continuity condition for the wave function is
fulfilled

Therefore, for the probability of dipole transitions,
we have a conventional formula

Thus, the only process that is associated with the
formation of X-ray spectra and proceeds “in a moment”
is the interaction of the X-ray quantum with a core elec-
tron. Therefore, in the SP model, the Hamiltonian of the
system in a highly excited X-ray state can be written as

(2)
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where H0 is the Hamiltonian of the unperturbed system
(1) and Hc, d is the term describing the interaction of a
core hole with the other part of the electron system,

where nc =  is the number operator of X-ray-
produced vacancies at a core orbital.

It follows from the above consideration that the state
with ΨGS(N – 1) and EGS(N – 1) does not occur; instead,
an X-ray quantum induces the transition of the system
from the stationary ground state (ΨGS, EGS) to the final
(for the process in question) quasi-stationary state
(ΦF, EF) with the lifetime τ* via the transient state
[ΦT(N, t)ET(N, t)], the lifetime of which is equal to τc

(the time it takes for the core electron to leave the sys-
tem); hence, the duration of the rearrangement of the
electron system is τr = τc. The change in energy of the
electron shells in the process of relaxation associated
with the X-ray-created hole is of the order of 1–10 eV,
whereas the total excitation energy of the system is
"  ~ 1000 eV; that is, the change in energy associated
with the relaxation of the valence shell during X-ray
processes is a small perturbation of the system.

2.2. The Influence of Strong Electron Correlations
on the Spectrum Structure

When studying the X-ray and electron spectra of
copper oxide high-Tc superconductors, one should take
multielectron states into account, because the core hole
strongly interacts with Cu3d electrons. Let us consider
the absorption spectrum in the case where an inner-
shell 1s or 2p hole is created. In one-electron calcula-
tions, the SP approximation in this case is better known
as the Larson model [81–84]. The interaction of vacant
electron states with X-ray-produced core 2p and 1s
vacancies is described by the Coulomb matrix elements

 = 7.5 eV and  = 7 eV, respectively.

It should be noted that, in the formation of X-ray
absorption spectra, the final states may have no holes at
copper atoms (transitions 2p  d10, d10 , d10 s(ε),
d10 s(ε) and 1s  d10 , d10 ), one hole (transi-

tions 2p  d9s(ε), d9 s(ε), d9 and 1s  d9, d9 ),
or two holes at copper atoms (transitions 2p  d8s(ε)
and 1s  d8).

Before the creation of a hole at a core orbital of cop-
per, the multielectron wave function of the system can
be written as

(3)

where  is the wave function of the core electron, n is

the occupation number of the core orbital, and  is

Hc d, Vc h, drλσ
+ drλσnc,∑=

ncσσ∑

ω

Vc d,
p Vc d,

s

L L
LL L LL

L L

ψin ϕc
nψin 0,

pd( ),=

ϕc
n

ψin 0,
pd( )
P

the wave function of the ground state of the valence
electron system of copper and oxygen with the energy

, described by the Hamiltonian (1) under the con-
dition nd + np = nh = const, where nd and np are the con-
centrations of holes in d states of copper and p states of
oxygen, respectively, and nh is the number of holes in a
unit cell, being equal to 1 or 2, depending on the dop-
ing.

The wave function of the system in the final state
with the unchanged number of vacancies in the valence
shell (excluding the process of formation of the white
line of the CuL3 spectrum, in which the number of
Cu3d vacancies is decreased by unity) and with one
photoelectron in the s, p, or d continuum far beyond the
ionization threshold can be written in the form

(4)

where ϕl is the wave function of the photoelectron in
the l state with an energy εl, to which this electron

makes a transition after excitation, and  is the
wave function of the mth term of the system of p and d

electrons in the final state with the energy . The
index m enumerates all eigenstates of the Hamiltonian
(1 + 2)H + Hc, d [given by (1) and (2)] that have a
vacancy at a core orbital.

The energies of the initial and final states are

(5)

respectively, where  is the energy of the mth term
of the final highly excited state. In the approximation
where strong electron correlations and the formation of
the white line of the CuL3 spectrum are ignored, the
energy of the absorbed X-ray quantum equals

(6)

When strong electron correlations are taken into
account, the energy of the absorbed X-ray quantum is

(6a)

Thus, in the one-electron approximation, we can write
the energy of this quantum as "ω0 = "ω – ∆Em.

X-ray absorption is described by the Hamiltonian

where I(0, k) = |〈ϕc|er|ϕk〉|2 is the one-electron dipole
matrix element, c+ is the creation operator of a hole at a
core orbital, and lk is the annihilation operator of a hole
in the valence shell or in the continuum. In the case
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where the number of d holes remains unchanged (tran-
sitions to s or p orbitals), the intensity of an X-ray-
induced transition is

(7)

In the absence of strong Coulomb interaction
between the hole at an inner-shell orbital and valence

vacancies (Vc, d = 0), the functions ( ) and

( ) are mutually orthogonal and, hence, the
last factor in (7), I(c, m)(∆Em) =

|〈 ( )| ( )〉|2, is equal to δm, 0. In this
case, the transition probability is determined only by
the matrix element I(0, l)("ω0) = 〈ϕ c(εc)|er|ϕl(εl)〉 , which
is calculated in the one-electron approximation.

If the Coulomb interaction (2) is not ignored, the
states of valence p and d electrons (holes) before and
after photoionization cease to be orthogonal and, there-
fore, both the ground term and various excited terms of
the final state contribute to the absorption spectrum.

The formation of the white line of the CuL2, 3 spec-
trum is more difficult to analyze, because the number of
holes in the d shell decreases. The wave function in this
process can be written in the form

(8)

where (nh – 1) is the multielectron function in the
(nh – 1)-particle subspace of the Hilbert space. The
energy of the final state is equal to

(9)

while the energy of the absorbed X-ray quantum is

(10)

The one-electron energies εd of the d orbitals of the
initial and final states are included in the multielectron

energies  and ; their values, as obtained by
Xα calculations and used in treating the processes of
this type, are roughly –2 to –3 eV.

In the absence of the strong Coulomb interaction
with the X-ray hole (and, hence, in the absence of the
relaxation of the electron system associated with the
creation of this hole), the energies of the initial and final

states of the d shells can be written as  = nεc + (10 –

nh)εd and  = (n – 1)εc + (10 – nh + 1)εd, respectively.
In this case, the one-electron transition energy is

and, in addition,
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Therefore, the intensity of the white line (associated
with a decrease of the number of d holes by unity) can
be written in the form

(11)

As in (7), we designate the one-electron contribu-
tion as I(c, m)(∆Em) and the multielectron one as
I(0, l)("ω0).

Summing (7) and (11) over multielectron transi-
tions, we obtain an expression describing the whole
spectrum,

(12)

Thus, the total absorption spectrum I("ω) consists
of a set of one-electron spectra, the intensity of the prin-
cipal line of which is proportional to the multielectron
factor I(c, m)(∆Em) with m = 0, given by (7) and (11), and
satellites, separated from the principal line by ∆Em =

 =  and having an intensity determined by
multielectron factors (7) and (11) with m ≠ 0. As is
seen, the X-ray absorption spectrum of the strongly
correlated electron system is the discrete convolution of
two spectra: the discrete spectrum I(c, m)(∆Em) of transi-
tions between p and d states of electrons (holes) and the

one-electron spectrum I(0, l)("ω – ∆ ) of transitions
from 1s and 2p core orbitals to vacant electron states
situated both below and above the ionization threshold.

2.3. A One-Electron Model for Calculating X-ray 
Absorption Spectra

The problem of choosing a cluster for calculating
the one-electron structure and spectra of high-Tc super-
conductors has long been solved [27]. The one-electron
profiles of X-ray absorption spectra both below and
above the ionization threshold were calculated in the
self-consistent-field approximation for Xα scattered
waves (SCF XαSW) [85]. By now, the range of applica-
bility of this approximation is well known. In this

paper, the electronic structure of clusters Cu  and

Cu  (La2 – xSrxCuO4), corresponding to the (+2) and
(+3) formal copper states, was calculated employing
the Xα-OMEGA program complex [86], while the cal-
culations of the electronic wave functions and one-elec-
tron X-ray dipole transition intensities in all energy
range were performed using the Xα-CONTINUOUS
program [87]. The cluster parameters were chosen
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in  accord with the internuclear spacing presented in
[88, 89].

2.4. The Structure of the Final Spectra

The final spectra include both the effects of the den-
sity of vacant one-electron states and the doping of the
La2 – xSrxCuO4 compound and the effects of strong cor-
relations in doped and undoped unit cells. These spec-
tra are obtained by summing the one-electron spectra in
accordance with (12). The xy-polarized CuL3 spectrum
of undoped La2CuO4 represents the (only possible)
one-electron transition from the Cud9 to the Cud10 con-
figuration with an intensity of 0.3428 and an energy of
2.03 eV; the profile of the spectral line is obtained using
the calculated profiles of one-electron spectral lines of

the Cu  cluster by the SCF-XαSW method. The
polarized spectra of unit cells with two vacancies in the
triplet ground state are more complex; for instance, the
xy component is formed by transitions from the ground
two-hole state to four configurations of the final state
with a vacancy at the Cu2p core orbital (in the one-hole
subspace) with weighting factors 0.0560, 0.2241,
0.0037, and 0.0285, while the z component is formed
by the same transitions with weights of 0.2238, 0.0000,
0.0148, and 0.0000. The energies of these four config-
urations are 1.9405, 2.1424, 9.8151, and 10.3131 eV,
respectively. The profiles of these spectral lines are cal-

culated by the SCF-XαSW method for the Cu  clus-
ter, which corresponds to the (+3) copper state in the
one-electron approximation. The integrated intensity of
the polarized lines below the ionization threshold
depends only on the occupancies of the corresponding
(in accord with the ∆m selection rules) vacant d orbitals
(x2 – y2 or z2) in the initial state, whereas the number of
multielectron transitions depends on the number of
configurations in the final state. In our model, the
orthorhombic distortion of the CuO plane is not taken
into account, which leads to the absence of the white
line in the z component of the spectra of the undoped
compound, because the  orbital makes no contribu-

tion to the initial state; the emergence of the white line
in the spectra of the doped compound is due to the mix-
ing of the states d8(  + ) and d9L( ) with

weights (0.38)2 and (–0.46)2, respectively.

The CuL3 spectra of the singlet state are found by
the same procedure. In the xy-polarized spectrum, the
intensities of transitions to the final configurations are
0.222, 0.001, 0.042, and 0.000, whereas in the z-polar-
ized spectrum, they are 0.000, 0.005, 0.000, and 0.002,
with the energies of the configurations being 2.139,
2.280, 10.363, and 10.956 eV, respectively. Thus, in the
singlet state, as is seen from these data, the density of
vacant bound  states is practically zero.
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The CuK spectra are also calculated from (7) and
(12). For example, the spectrum of undoped La2CuO4 is
formed from the one-electron spectrum of the Cud10

configuration with a weighting factor of 0.765 and an
energy of 2.7 eV and the one-electron spectrum of the
Cud9 configuration with a weight of 0.235 and an
energy of 10.6 eV. The spectrum of LaSrCuO4 with the
singlet two-hole ground state is also formed from the
spectra of two configurations: Cud10  with a weight

of 0.849 and an energy of 2.3 eV and Cud9  with a
weight of 0.144 and an energy of 12.1 eV. The spectrum
of LaSrCuO4 with the triplet two-hole ground state is
formed from the spectra of three configurations:
Cud10  with a weight of 0.630 and an energy of

3.425 eV, Cud9  (of an x2 – y2 character) with a weight
of 0.151 and an energy of 11.7 eV, and a combination
of Cud9  (of a z2 character) and Cud8, with a weight of
0.219 and an energy of 16.5 eV.

2.5. Low-Concentration Approximation
(Independent-Center Model)

In a doped La2 – xSrxCuO4 crystal, one part of the
unit cells has a single hole, while the other part has two
holes. The spectra of these partly doped superconduc-
tors are calculated under the assumption that the highly
correlated two-hole states produced by dopant atoms
do not interact with each other, because their concentra-
tion is low. In this case, the weighting factors of the
one-and two-hole components of the spectra of com-
pounds La2 – xSrxCuO4 (x = 0.2) are taken in accordance
with the degree of doping. For example, the spectrum
of La1.8Sr0.2CuO4 is formed from the spectrum of
La2CuO4 with a weight of 0.8 and the spectrum of (sin-
glet or triplet) LaSrCuO4 with a weight of 0.2. The half-
widths of the Lorentzian and Gaussian broadening of
the CuKα- and Cu2p-XPS spectra are taken to be
0.3 eV.

3. MANIFESTATION OF THE EFFECTS
OF STRONG ELECTRON CORRELATIONS

IN X-RAY AND ELECTRON SPECTRA

3.1. The Cu2p X-ray Photoelectron Spectra 
of La2CuO4-Type Compounds

As indicated in Section 1, the multiplet structure of
the spectra of copper oxides with the Cud9 configura-
tion is well understood in terms of the multielectron
Anderson model and described in detail (see, e.g.,
[58]). Nonetheless, we would like to cite the typical
experimental Cu2p-XPS spectra of compounds Cu2O,
CuO, La2CuO4, La1.85Sr0.15CuO4 (Fig. 1) [3, 5], and
NaCuO2 (Fig. 2) [23].

Figure 9 shows the Cu2p-XPS spectra of (a) the
one-hole configuration and (b) two-hole configuration
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L
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L

L
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calculated in the extended p–d model. According to the
calculations, the principal peaks of these two spectra
correspond to Cu+1. For example, in the one-hole con-
figuration (Fig. 9a), the occupancy of the Cud10  con-
figuration is (0.91)2, and that of Cud9 is (0.42)2. In the
two-hole configuration, the occupancy of Cud10  is

even somewhat higher, (0.92)2; the weight factor of the
Cud8 configuration is negligible, at (0.05)2, while the
weights of the two Cud9  configurations are (0.37)2

and (0.11)2.

It is seen from Fig. 9 that the addition of one more
hole leads to the appearance of an extra short-wave-
length satellite near 18 eV, associated with transitions
to the two Cud9  configurations with weights (0.12)2

and (0.81)2 and the Cud8 configurations with a weight
of (0.56)2. Thus, these calculations qualitatively sup-
port both a growth of the short-wavelength part of the
3d9 peak with a doping of La2CuO4 and the appearance
of an extra satellite in the spectrum of the NaCuO2

compound. The significant differences in the positions
of the peaks in NaCuO2 are likely to be due to the fact
that the Cud8 configurations are practically absent in
NaCuO2 [90] and only the Cud9  configuration is
responsible for the formation of the principal peak;
hence, copper is in the bivalent state in this compound.
As for the energy spacing between these two satellites
in La2CuO4, its overestimation by roughly 3 eV is due,
in our opinion, to the rather inexact determination of
the p–d-model parameters.

If the spin–orbit splitting of the core 2p energy level
and the effect of doping on the spectra in the indepen-
dent-center approximation (Fig. 10) are taken into
account, then, in the spectrum of La1.8Sr0.2CuO4, the
principal peak depending on the occupancy of the
Cud10  configuration has a feebly marked (in propor-
tion to the degree of doping) asymmetric short-wave-
length structure (with a peak at 17 eV) associated with
the energy separation of the Cud10  and Cud10

cluster configurations with the formal (+2) and (+3)
oxidation levels of copper. In our opinion, a compari-
son of our results and the experimental spectrum [3]
(Figs. 1, 2) lends credence to this prediction.

For the most part, the results we obtained are similar
to the calculations of the Cu2p XPS in [58], with the
essential difference being that the high-energy satellite
separated by 14 eV from the principal line is absent in
[58], which is due, in our opinion, to the fact that we
perform the complete diagonalization of the Hamilto-
nian, including all two-particle states, whereas in [58],
the diagonalization is carried out numerically in a
given, less complete, basis.
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3.2. The CuKα Spectra of La2CuO4-Type Compounds

As mentioned in Section 1, the theoretical spectra of
systems with one hole are described in detail in [36,
37]. In these spectra, there is a faint satellite depending
on the density of the Cud9 configurations and lying
0.4 eV above the principal peak, which depends on the
density of Cud10  state in the 1s- and 2p-hole configu-
rations. As shown in [37], the shift of the Kα line of cop-
per cannot be measured, using the Larson model, with-
out separating the satellite structure configurations.

In our case, the addition of one more hole to the
cluster leads to the change in the nature of the principal
peak (Fig. 11), which now depends, for the most part,
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Fig. 9. Theoretical Cu2p X-ray photoelectron spectra of
compounds (a) La2CuO4 and (b) LaSrCuO4 without spin–
orbit splitting of the Cu2p orbital.
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Fig. 10. Theoretical Cu2p X-ray photoelectron spectrum of
the La1.8Sr0.2CuO4 compound (including the spin–orbit
splitting of the 2p orbital of copper, ∆ε = 20 eV), calculated
in the independent-center approximation.
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on the density of the Cud10  configurations of the

ground, intermediate, and final 1s and 2p hole states.
The faint satellite lying 0.4 eV above the principal peak
now reflects the density of the Cud9  configurations,
while the new short-wavelength intense satellite at 1 eV
is due to the two Cud9  configurations and the one

Cud8 configuration with a weight of (0.56)2 + (0.57)2.
When the spin–orbit splitting of the core 2p orbital of
copper and the superposition of the two-hole and one-
hole spectra (in the independent-center model) are
taken into account, there appear asymmetry and a faint
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Fig. 11. Theoretical CuKα spectrum of the two-hole config-
uration corresponding to the LaSrCuO4 compound.

In
te

ns
ity

, a
rb

. u
ni

ts

0 20 40 E, eV

A + O'

O

A

B

D

E
D'

E'

B'C

B + A 1

2

3

Fig. 12. Experimental [28] (1), theoretical CuK (including
multielectron effects) (2), and theoretical one-electron (3)
absorption spectra of La2CuO4. Peaks O, A, B, D, and E cor-

respond to the principal spectral line (configuration d10 ),
while peaks O', A', B', D', and E' correspond to the shake-up
satellite (configuration d9), separated from the principal line
by 7.8 eV.
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shoulder on the short-wavelength side of the principal
peak.

3.3. The Ground Terms of the Initial and Final X-ray 
States of the CuO4 Cluster

The weights of the d9 and d10  configurations of the
undoped CuO4 unit cell in La2CuO4 are 69 and 31%,
respectively. Thus, the copper ion in this cell is basi-
cally in the common Cu+2 oxidation state. Doping does
not change this picture; the dominant configuration of
the CuO4 unit cell of the completely doped LaSrCuO4

compound is the d9  configuration with a weight of
57% (the contribution from the  state is 36% and

that from the  state is 21%), while the weight of the

d9  configuration is 28% and that of d8 is 14%.

The creation of an X-ray core (1s or 2p) hole leads
to a dramatic rearrangement of the electronic structure
of both doped and undoped unit cells. In this case, the
weights of the d9 and d10  configurations of the
undoped CuO4 unit cell of La2CuO4 are 18 and 82%,
respectively. Thus, the oxidation level of copper is
changed and equals +1. The same picture takes place in
doped CuO4 unit cells, in which the weight of the
d10  configuration is 85%, while that of d9  is 15%

(14% of  and 1% of ). The weight of the d8

configuration is negligible, only 0.3%.

3.4. The CuK Absorption Spectra of La2 – xSrxCuO4

There is some direct experimental evidence that
strong electron correlations affect the CuK X-ray
absorption spectra of La2CuO4 [91]. The mechanism of
the formation of these spectra was investigated in detail
by using various versions of the nonempirical one-elec-
tron multiple-scattering method [24–27], and all fea-
tures were adequately described, except for the peak C,
which lies 7 eV above the principal peak. The former
peak appeared only in the xy-polarized spectra when
the cluster size was as large as 50–60 atoms [25–27],
whereas, experimentally, this feature is also observed
in the z polarization [91].

When one more vacancy per unit cell is added by
doping, contributions from the Cud8, Cud9 , and the
Cud10  configurations appear. This leads to signifi-

cantly more complicated CuK absorption spectra asso-
ciated with the electronic states produced by doping of
HTSC compounds [28].

In order to study the effect of strong electron corre-
lations on the CuK X-ray absorption spectra, we com-
pletely diagonalize the multiband p–d-model Hamilto-
nian of the CuO4 cluster in the sudden-perturbation
approximation described in Section 2. The matrix ele-

L

L
d

x
2

y
2–

d
z

2

LL

L

LL L

d
x

2
y

2–
d

z
2

L
LL
YSICS OF THE SOLID STATE      Vol. 42      No. 5      2000



EFFECTS OF STRONG ELECTRON CORRELATIONS 805
ments of X-ray-induced transitions 1s  p(ε) are cal-

culated for the Cu  and Cu  clusters by the non-
empirical SCF-XαSW method. The final spectra are
constructed using the spectral line profiles as calculated
by the one-electron method and the weight factors and
energies of configurations as calculated in the many-
band p–d model. The spectrum of completely doped
LaSrCuO4 is calculated for both the singlet and triplet
two-hole states.

3.5. Discussion of Results

Figure 12 shows the experimental [28] and theoret-
ical one-electron CuK spectra of La2CuO4. It is seen
that both the positions and the relative intensities of the
peaks of the calculated spectrum, including multielec-
tron effects, correlate well with those of the experimen-
tal spectrum, excepting perhaps the long-wavelength
range of the spectra near peak A. It has been pointed out
in the literature that some discrepancy in this range is

due to the small size of the Cu  cluster for which
the theoretical peak A was calculated [25–27].

The calculations showed that the principal spectral
line in the CuK spectrum corresponds to the d10  con-
figuration with a weight of (0.88)2 (peaks O, A, B, D,
and E), whereas the single intense short-wavelength
shake-up satellite (peak C in the experimental spectrum
and peak B' in the theoretical one in Fig. 12), separated
by an energy of 7.8 eV from the principal peak, is asso-
ciated with the d 9 configuration (peaks O', A', B', D',
and E'). Therefore, the experimental peak C should be
correlated with the theoretical peak B'. This peak is due
to photoelectron scattering by surrounding atoms in
La2CuO4, as is indicated in the literature [25–27], and
is also associated with the Cud9 configuration in this
compound.

The shape of the experimental CuK spectrum of
dopant-produced states in LaSrCuO4 (“trivalent cop-
per”) is significantly more complex [28] (Fig. 13). A
comparison of the experimental [28] (curve 1) and the-
oretical CuK spectra of LaSrCuO4 with the singlet
(curve 3) and triplet (curve 2) ground states shows that
the two-hole ground state of LaSrCuO4 in the doped
La2 – xSrxCuO4 system is the triplet. The principal line
in this spectrum (peaks O, A, B, D, and E) is associated
with the d10  configuration with a weight of (0.91)2

mixed with small amounts of states d9  (x2 – y2, with
a weight of (0.39)2, and z2 with a weight of (0.12)2). The
first satellite (peaks O', A', B', D', and E') is principally
associated with the d9  state of an x2 – y2 character
with a weight of (0.90)2, mixed with a small amount of
d10  (with a weight of (0.39)2). The second satellite

(peaks O'', A'', B'', D'', and E '') depends on the density
of configurations d9 (z2), having a weight of (0.81)2,
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and d8, having a weight of (0.57)2, mixed with a small
amount of d9 (x2 – y2) with a weight of (0.12)2. The
symbols above the experimental curve in Fig. 13 indi-
cate the correspondence between peaks and configura-
tions. Some discrepancies observed for the relative
intensities and positions of peaks A' and B' are associ-
ated with the overestimation of the relative intensity of
peak A in the one-electron calculation, which leads to
some distortion of the final spectrum.

3.6. The Influence of Strong Electron Correlations of 
the CuL3 X-ray Absorption Spectra of La2 – xSrxCuO4

The scheme for calculating the CuL3 absorption
spectra was described in detail in Section 2. In the
La2 − xSrxCuO4 system with x = 0 (with one electron
vacancy per formula unit), as was shown in [32], there

occurs only one X-ray-induced transition, 2p6  

2p5d10, although the initial state consists of two d9-type
and two d10 -type configurations by virtue of the
hybridization of vacant states. In the case of x > 0, there
appear contributions from the Cud8, Cud9 , and
Cud10  configurations, due to which the multielec-
tron effects become much stronger and the CuL3 spec-
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Fig. 13. Experimental [28] (1) and theoretical CuK X-ray
absorption spectra for dopant-produced two-hole states with
the triplet (2) and singlet (3) ground states. Peaks O, A, B,
D, and E correspond to the principal spectral line (the
d10  state); peaks O', A', B', D', and E' correspond to the
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hole state is the singlet; E || ab.
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P

tra of dopant-produced electronic states of doped com-
pounds differ noticeably from those of undoped ones
(in particular, shake-up satellites appear near the white
line [2, 32, 33]).

Figure 14a presents the experimental CuL3 spectra
of La2CuO4 and La1.92Sr0.08CuO4 [2] for the xy polariza-
tion, while the theoretical xy-polarized spectra of the
La2CuO4, LaSrCuO4, and La1.92Sr0.08CuO4 compounds
are shown in Fig. 14b for when the two-hole ground
state is the triplet, and in Fig. 14c for when this state is
the singlet.
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Figure 15a presents the experimental CuL3 spectra
of La2CuO4 and La1.92Sr0.08CuO4 [2] for the z polariza-
tion, while the theoretical z-polarized spectra of the
La2CuO4, LaSrCuO4, and La1.92Sr0.08CuO4 compounds
are shown in Fig. 15b for the case where the two-hole
ground state is the triplet and in Fig. 15c for the case
where this state is the singlet.

In both the experimental and theoretical xy-polar-
ized spectra of the undoped La2CuO4 compound
(Fig. 14), there are no nondiagram spectral lines (the
electronic transitions that cannot be described in terms
of the crystal-field theory in the first approximation)
below the ionization threshold. However, in the experi-
mental z-polarized spectrum (Fig. 15), a fairly intense
white line is observed, which is absent in the corre-
sponding theoretical spectrum. This difference is due to
the fact that, in this paper, no account is taken of the
orthorhombic distortion of the CuO2 plane, which, as
was shown in [92], is responsible for this effect. The
shape of the line above the ionization threshold in both
the z- and xy-polarized spectra is described adequately,
as in the case of the spectra calculated in the one-elec-
tron approximation [27].

The principal difference between the experimental
spectra of doped and undoped compounds is that, in the
former case, the intensity of the white line becomes
much higher in the z polarization (Fig. 15). The absence
of the white line in the theoretical z-polarized spectrum
of a doped compound with the singlet ground state and
its presence in the case of the triplet ground state
(Fig. 15) suggests that, in the unit cell with two electron
vacancies, the ground state is the triplet. In this case, the
white line is associated with transitions from the
ground state to a final state with a Cu2p vacancy and
with appreciably populated  states of the d8(  +

) and d9 ( ) orbitals (with weights of (0.38)2 and

(–0.46)2, respectively) with a transition energy of
1.94 eV and an intensity of 0.2238. The transition
intensity of the white line with the z polarization for the
configuration being next in energy is equal to zero.

Our model adequately describes the faint long-
wavelength satellite in the xy polarization, which is
associated with the lowest energy configuration of the
final state with a core 2p vacancy (the transition inten-
sity 0.0560) and is situated 0.4 eV below the white line
in the experimental spectrum (Fig. 14) [2]. The xy-
polarized white line for the triplet state is associated
with the configuration that is next in energy and for
which the transition energy is 2.14 eV and the intensity
is 0.2241. The transition intensities to the next two
high-energy configurations (for which the transition
energies are 9.82 and 10.31 eV, respectively) are virtu-
ally zero in these spectra, and the corresponding white
lines are practically absent above the ionization thresh-
old. In the range above the threshold, the spectra are
largely composed of the lines due to the first two con-
figurations. The small energy separation between these
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spectral lines and the large (compared to that of the
white line) half-widths of the features lead to some flat-
tening of the spectra in the positive energy range. In our
calculations, in contrast to those in [30], the peak cor-
responding to the s states (at about 8 eV) in the range
above the ionization threshold has a noticeable inten-
sity, which is due, in our opinion, to the cluster effect.

CONCLUSIONS

Analysis of the literature showed that a great body
of experimental data give evidence of the rather dra-
matic effect of strong electron correlations on the elec-
tronic structure of high-Tc superconductors and, in par-
ticular, on the structure of vacant electronic states. For
example, the investigation of the X-ray absorption
spectra allowed one to separate out two-particle contri-
butions due to doping, and it was shown that one dopant
atom interacts with two copper centers and produces
vacant electronic states of a Cu  character.

Theoretical one-electron and multielectron calcula-
tions of the electronic structure of the key objects were
performed, but, as a rule, they were not accompanied
by theoretical modeling of the available spectroscopic
measurements. It became clear that most of the experi-
mental X-ray and electron spectra could not be directly
and unambiguously interpreted. This was due to the
fact that the principal features of the electronic struc-
ture of high-Tc superconductors are determined by
strong electron correlations. Only some experimental
data have been adequately described in terms of the
current theoretical models. These data were obtained,
for the most part, for insulating phases, whereas no
spectra of dopant-produced two-hole states have been
theoretically investigated up to now. For treating the
spectral properties of a material with a strongly corre-
lated electron system, a multielectron theory of X-ray
and X-ray electron spectra has been developed on the
basis of the sudden-perturbation model. This theory
allowed one to describe a number of key spectral char-
acteristics of the compounds in question in a unified
way. The X-ray and electronic spectra were represented
in the form of convolution of the spectrum of one-elec-
tron transitions to vacant orbitals both below and above
the ionization threshold and the spectrum of multielec-
tron transitions within the system of valence electrons.

In all the spectra investigated (except for the CuL3
absorption spectrum), the principal spectral lines corre-
spond either to the Cud10  (for the undoped unit cell)
or to the Cud10  (for the doped unit cell) configura-

tion. In the spectra of undoped centers, the satellite
structures are determined by the contributions from the
Cud9 configurations. Doping leads to more compli-
cated spectra, which contain satellites depending on the
density of the Cud9  configurations. In all cases con-
sidered, the contribution from the Cud8 two-hole con-
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figurations is small. The white line of the CuL3 spec-
trum of undoped and doped unit cells corresponds to
the Cud9 and Cud9  configurations, respectively. Dop-
ing leads to an increase in the occupancy of the Cu

orbitals, which in turn results in an increase of the
intensity of the z-polarized CuL3 spectrum.
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Abstract—Composites simulating a network of weak metallic links and consisting of a classic 1–2–3 HTSC
and a BaPbO3 metal oxide with incorporated Sn, Ni, and Fe impurities have been prepared. Experimental resis-
tivity, magnetic, and Mössbauer studies of the BaPb0.9Met0.1O3 nonsuperconducting components are presented.
The transport properties of the HTSC + BaPb0.9Met0.1O3 composites have been investigated. The superconduct-
ing properties of the composites are observed to be suppressed, both when the carrier mean free path in nonsu-
perconducting components with tin impurities decreases, and as a result of an additional interaction of the mag-
netic moments of (Fe, Ni) impurities with the spins of supercurrent carriers. The experimental temperature
dependences of the composite critical current are analyzed in terms of the de Gennes theory for the supercon-
ductor–normal metal–superconductor structures. © 2000 MAIK “Nauka/Interperiodica”.
As shown in our earlier experimental study [1],
HTSC + BaPbO3 composites are equivalent to an S–N–
S weak-link network (S stands here for a superconduc-
tor, and N, for a normal metal) in the “clean” limit.
Indeed, the mean free path l in BaPbO3 is substantially
longer than the coherence length ξ0 in HTSCs, and this
accounts for the fact that the theory [2], including in the
clean limit the tunneling, the proximity effect, and
Andreev scattering, provides a good description of the
transport properties of these composites. The part
played by weak links in an S–N–S structure can, how-
ever, be varied by properly varying not only the effec-
tive thickness of the N layer (a subject of study in [1,
3]), but the mean free path of carriers in the normal
metal N as well.

The dependence of the critical current of S–N–S
junctions on the thickness of the N layer, as well as on
the carrier mean free path in it, was studied comprehen-
sively for low-temperature superconductors [4]. The
mean free path and the nature of interaction of impuri-
ties with Cooper pairs were varied by introducing
impurities, both nonmagnetic and paramagnetic, into
the N metal. The BCS-based theory was found to agree
with the experiment; however, one did not measure and,
hence, analyze the temperature dependences of the crit-
ical current.

By analogy with [4], we have made an attempt to
carry out a similar study on HTSC-based S–N–S struc-
tures. Unfortunately, the absence of a reproducible
technology of manufacturing single junctions forced us
to study HTSC + normal metal composites. As already
mentioned, such composites are equivalent to a weak-
link network characterized by some distribution func-
1063-7834/00/4205- $20.00 © 20810
tion of the S–N–S junctions (links) in this network in
their geometrical parameters. However, if the technol-
ogy of composite preparation is followed with a good
enough reproducibility, it appears logical to expect the
distribution function to be reproducible and to associate
all variations in the transport properties with the inter-
action of supercurrent carriers tunneling through a
metal with various impurities.

The specific difficulties involved in the preparation
of HTSC-based composites are considered partially in
[1, 3]. One of them, namely, the oxidation of the N
metal, was overcome by using the BaPbO3 metal oxide,
which exhibits only a weak chemical interaction with
1–2–3 HTSCs [1, 3]. Our preliminary experiments [5]
showed that incorporating impurities in BaPbO3 brings
about a noticeable additional degradation of the super-
conducting properties of the S–N–S weak-link network
in HTSC + BaPbO3 composites.

This work presents detailed experimental data on a
study of the effect of magnetic (Fe, Ni) and nonmag-
netic (Sn) impurities introduced into BaPbO3 on the
transport properties of HTSC + Ba(Pb, Met)O3 com-
posites.

1. PREPARATION AND PHYSICAL PROPERTIES 
OF NONSUPERCONDUCTING COMPONENTS

The nonsuperconducting components of the com-

posites were prepared of the BaO2, PbO, NiO, O3,
and Sn119O2 oxides at 880°C by ceramic technology.
Using the hematite enriched in the Fe57 isotope to 90%

Fe2
57
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made monitoring the solubility of iron in BaPbO3 by
Mössbauer spectroscopy (Fig. 1) possible. Annealing
for two weeks, alternating with grinding, is seen to
result in the disappearance of the six-line spectrum of

the O3 hematite, which is evidence of its “dissolu-
tion” in BaPbO3. To increase the reliability still further,
the synthesis was prolonged for one more week. The
BaPb0.9Ni0.1O3 and BaPb0.9Sn0.1O3 sample were pre-
pared by the technique used to synthesize the iron-con-
taining BaPbO3. The “dissolution” of tin in BaPbO3

was also checked by Sn119 Mössbauer spectroscopy.
The absence of a spectrum characteristic of SnO2
argues for complete “dissolution” of tin in BaPbO3.
There is nothing strange in this, because Sn4+ is an elec-
tronic analog of Pb4+. X-ray diffraction analysis per-
formed on BaPb0.9Met0.1O3 samples revealed the
BaPbO3 perovskite phase, with no foreign reflections
evident within the analytical accuracy.

Figure 2 presents temperature dependences of the
electrical resistivity ρ(T) of BaPb0.9Met0.1O3 and
BaPbO3 samples measured by the four-point probe
method. Partial substitution of lead makes the ρ(T)
curves only weakly dependent on temperature (with a
slight increase of ρ, with decreasing temperature
observed for the BaPb0.9Fe0.1O3 sample), and results in
an increase of ρ in an absolute magnitude, it being the
largest for the iron impurities (see the table). This is not
at odds with the classical mechanism of carrier interac-
tion with magnetic and nonmagnetic impurities [6].

Figure 3 illustrates magnetic measurements made
on samples with Ni and Fe impurities. The measure-
ments were carried out on a vibrating-sample magne-
tometer [7]. A comparison of the experimental magne-
tization curve M(H) with the Brillouin function permit-
ted determination of the magnetic moments per
impurity atom. The best-fit figures are 3.6 µB for Fe
and 0.13 µB for Ni ions (µB is the Bohr magneton). The
value for the iron ions is slightly smaller than the nom-
inal value for Fe4+ [8], if one assumes that the cations
of iron to substitute for those of lead in the BaPbO3
structure. As for nickel, one may conjecture Ni to also
occupy the lead sites in BaPbO3, which makes +4 its
formal valence state. In this case, the electronic config-
uration of the Ni4+ cation should be 3d6. Assuming this
configuration, the low-spin state (no high-spin state
was ever observed for Ni4+ [9]) yields zero spin mag-
netic moment. By contrast, the experimental value is
0.13 µB. A possible reason for the nonzero magnetic
moment of Ni could be a covalent admixture to the
nickel 3d levels. Thus, the magnetic moment for both
the iron and nickel in the metal oxide is seen to deviate
from the nominal value, which is in marked contrast
with the behavior of magnetodielectrics, where this
agreement is much better [8].

The magnetization of the samples drops with
increasing temperature by the 1/T law, which argues for

Fe2
57
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Fig. 1. Mössbauer spectra of BaPb0.9 O3. (a) After one

weak of synthesis, (b) after two weeks, (c) after three weeks.
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Fig. 2. Experimental ρ(T) relations for the nonsuper-
conducting components of the composites plotted on a
semilogarithmic scale. (1) BaPbO3, (2) BaPb0.9Sn0.1O3,
(3) BaPb0.9Ni0.1O3, (4) BaPb0.9Fe0.1O3.
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the compounds being paramagnetic (see Fig. 3). The
absence of a hysteresis in the field dependences bears
out this assumption. The deviation of the M–1 = f(T)
relation from a linear course in the low-temperature
domain suggests that one should take into account pair-
wise exchange interactions; however, this work does
not deal with a study of the various aspects of the mag-
netism of these compounds, but rather of the effect of
magnetic scattering centers on the transport properties
of composites containing them.
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Fig. 3. Magnetic measurements on nonsuperconducting
components of the composites (1') BaPb0.9Fe0.1O3 (m =
96 mg) and (2') BaPb0.9Ni0.1O3 (m = 112 mg). (a) Field
dependences (for T = 4.2 K), (b) temperature dependences
(for H = 3 kOe) of the magnetization M. Solid curves repre-
sent calculations made using the Brillouin function with (1)
J = 1 for BaPb0.9Fe0.1O3 and (2) J = 2 for BaPb0.9Ni0.1O3.
P

2. PREPARATION AND TRANSPORT 
PROPERTIES OF THE HTSC + Ba(Pb, Met)O3 

COMPOSITES

The superconducting component of the composites,
Y0.75Lu0.25Ba2Cu3O7, was prepared by the standard
ceramic technology. The composites were synthesized
by fast sintering [1, 3]. The composite components,
mixed thoroughly in the ratio 85 vol % HTSC with
15 vol % BaPb0.9Met0.1O3 (Met = Sn, Ni, Fe), were
pressed into pellets, placed onto preheated boats, and
introduced for five minutes into a furnace heated to
950°C. Because a 1–2–3 HTSC inevitably loses oxy-
gen at this temperature, the composite samples were
transferred from this high-temperature furnace to
another furnace maintained at 400°C in order to
restore the oxygen stoichiometry, where they were
kept for six hours, which is long enough to reach oxy-
gen saturation [1].

To learn the effect of various impurities present in
the nonsuperconducting component on the transport
properties of the composites, the results obtained were
compared with the data for a reference composite that
did not contain impurities in BaPbO3.

X-ray diffraction analysis of the composites
revealed the presence of two phases only, the 1–2–3
HTSC and the perovskite. No other reflections were
detected within the analytical errors.

Denote the composite samples by S + 15N, S +
15N(Sn10), S + 15N(Ni10), and S + 15N(Fe10). Here S
stands for the superconductor, N, for the impurity-free
BaPbO3, and N(Sn10), N(Ni10), N(Fe10), for
BaPb0.9Met0.1O3 with Met = Sn, Ni, and Fe, respec-
tively.

The temperature dependences of the composite
magnetization, M(T), measured in a field of 200 Oe,
showed the presence of one superconducting phase at
temperatures below 93.5 K. The M(T) relations are sim-
ilar in pattern to those quoted in [10] for the HTSC +
BaPbO3 composites.

Figure 4 illustrates the effect of the various impuri-
ties in BaPbO3 on the I–V characteristics of the com-
posites at T = 4.2 K. The I–V relations were measured
by the four-point probe technique, with the sample
placed directly into a helium bath for efficient heat
Some parameters of the composite nonsuperconducting components

N-metal µ, µ0 ρ(5 K), Ω cm RN , Ω cm l, Å Tpb , K

BaPbO3 – 0.0005 0.0022 >100 0

BaPb0.9Sn0.1O3 – 0.019 0.0089 4.4 ± 1.0 0

BaPb0.9Ni0.1O3 0.13 0.026 0.0098 4.0 ± 0.5 20 ± 5

BaPb0.9Fe0.1O3 3.6 3.0 0.0524 4.0 ± 0.5 50 ± 5

Note: µ is the magnetic moment per impurity atom, ρ is the electrical resistivity, RN is the normal resistance of composites with the cor-
responding components at T = 4.2 K. The values of l and Tpb were derived from the best fit of the experimental Jc(T) relations for
the composites to the de Gennes theory (see Sect. 3).
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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removal (for more details, see [11, 12]). The I–V char-
acteristics shown in Fig. 4 exhibit an extra current,
which is typical of S–N–S structures [13]. The table
lists the normal resistances RN of the composites,
derived from the linear part of the I–V characteristics at
T = 4.2 K. The values of ρ of the components correlate
clearly with RN.

Figure 5 presents normalized temperature depen-
dences of the electrical resistance R(T) of the compos-
ites, measured by the four-point probe technique for a
transport current of ~0.01 × Jc(5 K) [Jc(5 K) is the crit-
ical current at 5 K]. The jump in the electrical resistance
at 93.5 K corresponds to the HTSC grains undergoing
the superconducting transition in the composite. The
fact that this temperature is the same for all the compos-
ite samples argues against diffusion of chemical ele-
ments from the nonsuperconducting components into
the HTSC grains. The smooth tail in the R(T) relations
seen below 93.5 K is due to the weak links [1, 3, 10,
14−16]. The characteristic temperature at which the
resistance of a composite sample becomes zero
depends on the nature of the impurity introduced in
BaPbO3 (see Fig. 5). The R(T) curve for the composites
containing magnetic impurities has a segment below
the Tc of the HTSC grains, extended in temperature,
within which the resistance varies only weakly, with a
subsequent transition to the superconducting state.
Such R(T) behavior was observed in
YBa2Cu3O7/Pr0.7Sr0.3MnO3/Ag and
YBa2Cu3O7/Pr0.7Sr0.3MnO3/YBa2Cu3O7 sandwiches
with a ferromagnetic interlayer [14], as well as in
HTSC + CuO-insulator composites with magnetic scat-
tering centers (Ni) [15]. This behavior is apparently
accounted for by the interaction of carrier pairs with
magnetic moments in the interlayers.

The temperature dependences of the critical current
density Jc(T) of the composites measured by the four-
point probe technique based on a standard 1 µV/cm cri-
terion [17] (with the method employed described in
detail in [1, 10]) are displayed in Fig. 6. Note certain
features in the experimental Jc(T) relations. Although
the curves follow the same pattern for all the samples,
the absolute values of Jc(5 K) for the composites
depend strongly on the character of the impurity (Sn,
Ni, Fe) and correlate with the electrical resistance data.
For high temperatures, the experimental values of Jc(T)
become extremely small, and at a finite measuring-cur-
rent density [~0.01 × Jc(5 K)] a nonzero voltage drop
appears (Figs. 5, 6).

3. ANALYSIS OF THE TEMPERATURE 
BEHAVIOR OF CRITICAL CURRENT 

FOR THE HTSC + Ba(Pb, Met)O3 COMPOSITES

As shown by an analysis of the Jc(T) relations for the
HTSC + BaPbO3 composites [1, 10], a composite sam-
ple can be characterized by an average geometrical
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
weak-link length d. For the 15 vol % BaPbO3 samples,
this value, estimated by the theory of [2], was found to
be ~100 Å. It was natural to expect that the value of d
for the composites with impurities in BaPbO3, prepared
by the same technology and with the same content of
the nonsuperconducting component, would be the
same.

Unfortunately, there is presently no microscopic
theory applicable to the temperature dependence of the
critical current for the crossover from the “clean” limit
(l > deff, where deff is the effective weak-link length
[18]) to the “dirty” one (l ! deff [18]), like this was done
for the I–V characteristics of S–N–S junctions [19, 20].
Therefore we are going to present here the results of a
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Fig. 4. Experimental I–V characteristics of composite sam-
ples obtained at T = 4.2 K. (1) S + 15N, (2) S + 15N(Sn10),
(3) S + 15N(Ni10), (4) S + 15N(Fe10).

Fig. 5. Experimental temperature dependences of the elec-
trical resistance of the samples. (1) S + 15N, (2) S +
15N(Sn10), (3) S + 15N(Ni10), (4) S + 15N(Fe10).
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treatment of the experimental Jc(T) relations made on
the basis of the de Gennes proximity theory [21].

At temperatures not too far from Tc, the de Gennes
theory yields for the critical current of a S–N–S junction
[17, 22, 23]

(1)Jc T( ) C 1 T /Tc–( )2 d/ξN
d/ξN( )sinh

----------------------------,=

Jc, A/cm2
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Fig. 6. Experimental temperature dependences of the criti-
cal current density of composites drawn on a semilogarith-
mic scale. (1) S + 15N, (2) S + 15N(Sn10), (3) S +
15N(Ni10), (4) S + 15N(Fe10).
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Fig. 7. Temperature dependences of the critical current.
(1) S + 15N, (2) S + 15N(Sn10), (3) S + 15N(Ni10), (4) S +
15N(Fe10). Solid curves are fits plotted by the de Gennes
theory (see text and the table).
P

where C is a constant that depends on the contact geom-
etry, which for a three-dimensional network of Joseph-
son junctions with some distribution function for the
geometric parameters plays the part of a normalization
factor, d is the geometric width of the N interlayer,
which is an effective quantity for composites, and ξN is
the coherence length in the N metal or the pair penetra-
tion depth into the N metal, which for a “dirty” N metal
is defined as [17, 22]

(2)

where " is the Planck constant, kB is the Boltzmann
constant, and Vf is the Fermi velocity in the N metal. If
the N interlayer is not a “clean” metal, ξN does not
depend on the mean free path and is defined as [22]

(3)

The fitting parameters for experimental Jc(T) curves are
d and l; besides, one should also know Vf. The best fit
of the theory to the experiment was reached for Vf ≈
1.8 × 107 cm/s, the value derived from the relation Vf =
" × 31/3π2/3 n1/3 m–1 (m is the electron mass) for n = 1.4 ×
1020 cm–3 quoted in [24] for BaPbO3.

1 
The best-fit curve for the experimental Jc(T) relation

obtained for the S + 15N sample (curve 1 in Fig. 7)
within the 55–80-K temperature interval was calculated
using (3) and (1) for d = 100 Å.

The curve for the case of nonmagnetic impurities
was calculated from (2) and (1). We tried to fit the
experimental data for the sample S + 15N(Sn10) (curve
2 in Fig. 7) to the theory in the high-temperature region
[15–20 K below the temperature at which Jc(T)
becomes practically zero] by varying the mean free
path in (2). The best fit was reached at a surprisingly
small value of 4.4 ± 1 Å. At the same time, straightfor-
ward calculations show that at a tin concentration x =
0.125, the most probable distance between scattering
centers (Sn atoms) in BaPbl × xSnxO3 is equal to the lat-
tice constant 4.268 Å; for x = 0.1, it is 4.6 Å, which is
close to the estimate of l obtained here.

While the de Gennes theory could formally be used
to treat the Jc(T) curves for samples with magnetic
impurities in BaPbO3 (in Fig. 7, these relations extend
to lower temperatures), and the mean free paths thus
obtained would obviously be substantially less than the
lattice constant, which is an unphysical result. This is a
consequence of the fact that the de Gennes theory does
not include the mechanism of Cooper pair interaction
with the magnetic moments of the N interlayer. In our
opinion, an original way out of this problem was pro-

1 In the case of the Sn  Pb substitution, there are no grounds to
expect n to change, because tin has the same electronic configura-
tion as lead. The change in n caused by a nickel and iron substitu-
tion should not apparently be larger than that for BaPb1 – xBiO3
[24–26] and, because of the Vf(n) ~ n1/3 dependence being weak,
should only slightly affect the results of the fitting given in the
table.

ξN "V f l/6πkBT( )1/2,=

ξN "V f /2πkBT .=
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posed in [22], where the mean lifetime τ of a pair inside
the N interlayer is modified to become

(4)

(we are using here the notation accepted in [22]). The
effect of this mechanism on the critical current consists
in substituting T + Tpb for T in (3). Curves 3 and 4 in
Fig. 7, which are the best fits to Jc(T) for the samples
S + 15N(Ni10) and S + 15N(Fe10), were calculated
using expressions (1), (2), and (4) with the parameters
given in the table.

At low temperatures, one observes a noticeable dis-
crepancy between the experiment and the de Gennes
theory, which is illustrated in Fig. 7 for the S +
15N(Fe10) sample. Similar cases were reported by
other authors as well [22, 23], which is hardly surpris-
ing, because, as already pointed out above, the theory
of the proximity effect was developed for the high-tem-
perature domain [21, 22].

Summing up the results obtained in this work, we
note that magnetic impurities degrade the transport
properties of composites more strongly than nonmag-
netic ones do. This degradation is more pronounced in
the case where the impurity is the iron atoms, whose
magnetic moment is substantially higher than that of the
nickel atoms. The degradation of superconductivity in
BaPbO3 having a tin impurity can be associated only
with a decrease of the carrier mean free path in the N
layer. In the case of composites with BaPbO3 containing
magnetic impurities, this degradation of the supercon-
ducting properties can be related to one more mecha-
nism of Cooper pair breaking, namely, through the
exchange interaction at impurity magnetic moments [4].

This Cooper-pair breaking by impurities can be con-
nected with inelastic processes, such as magnetic scat-
tering in conventional s-type superconductors. In
d-type superconductors, however, strong elastic scat-
tering can also bring about pair breaking, as this was
pointed out in [23].
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Abstract—A study is reported of the effect of temperature (4.2 K ≤ T ≤ 150 K), the content of weakly bonded
oxygen [6.1 ≤ (7 – δ) ≤ 6.9], illumination [Eexc = 3.4 eV, (Φt)max ~ 1.5 × 1020 photon cm–2, and substitution
(Cu  Ag, Cr, Fe, Mn) on the luminescence spectra of the high-Tc superconductor YBa2Cu3O7 – δ. Only two
bands with Elum ~ 2.4 and ~2.8 eV were observed in the luminescence spectra in all these cases. A clearly pro-
nounced correlation between the electronic and structural changes in YBa2Cu3O7 – δ, caused by the influence of
temperature, illumination, doping with oxygen or metal ions, and the spectral parameters (peak position Elum,
width ∆λlum, and intensity Ilum of the luminescence bands), has been established. It is shown that luminescence
spectra of HTSCs can be employed as a fairly reliable optical probe to study the electronic processes occurring
in these substances, in particular, the electron (hole) transfer between the CuO2 plane and the CuO1 – δ chain
plane serving as a charge reservoir. © 2000 MAIK “Nauka/Interperiodica”.
Right now, it has been reliably established that the
luminescence spectra (LS) of high-temperature super-
conductors (HTSC) YBa2Cu3O7 – δ, Bi2Sr2CaCu2O8 ± δ,
Bi2Sr2Ca2Cu3O10 ± δ, YBa2Cu4O8 ± δ and others are char-
acterized by the presence of two principal bands peak-
ing at Elum ~ 2.4 and ~2.8 eV [1–10]. The intensity ratio
of these bands (Ilum = I~2.8 eV/I~2.4 eV) and their spectral
position (Elum) depend on the specific features of the
HTSC crystal structure. Interestingly, the intense lumi-
nescence band with Elum ~ 2.8 eV is typically observed
in the HTSCs whose lattice contains a CuO1 – δ chain
plane (YBa2Cu3O7 – δ, YBa2Cu4O8 ± δ) or a BiO1 ± δ
plane with an excess oxygen ion (Bi2Sr2CaCu2O8 ± δ,
Bi2Sr2Ca2Cu3O10 ± δ) [1, 2]. On the other hand, the
luminescence spectra of the La2Cu4 HTSC, whose lat-
tice contains copper ions only in the CuO2 planes, does
not have the Elum ~ 2.8 eV band [1].

It may be suggested that the band at Elum ~ 2.4 eV
acts in the luminescence spectroscopy of high-temper-
ature superconductors as an optical probe for electronic
processes in the active (charge transfer) CuO2 plane,
whereas that at Elum ~ 2.8 eV, if one considers specifi-
cally the YBa2Cu3O7 – δ HTSC, could serve to optically
probe the electronic processes occurring in the charge
reservoirs [11], i.e., the CuO1 – δ chain planes. In other
words, these two bands belong to two different elec-
tronic and structural subsystems of the YBa2Cu3O7 – δ
HTSC unit cell.

This work was aimed at studying the intensity redis-
tribution between the luminescence bands and the vari-
ation of their spectral characteristics caused by external
1063-7834/00/4205- $20.00 © 20816
or internal factors acting on the electronic and struc-
tural state of YBa2Cu3O7 – δ. With this in mind, we
investigated the evolution of the luminescence spec-
trum of the YBa2Cu3O7 – δ HTSC initiated by chemical
doping, illumination, and temperature.

Because the two electronic and structural sub-
systems are coupled primarily by a charge transfer
between the CuO1 – δ and CuO2 planes, there are
grounds to suggest that such studies could yield infor-
mation on the charge redistribution between these sub-
systems induced by a variation of temperature, chemi-
cal composition, or illumination. Obtaining such infor-
mation would undoubtedly be important for
establishing the nature of high-temperature supercon-
ductivity. We are not aware of any previous investiga-
tions of this kind.

The choice of the YBa2Cu3O7 – δ HTSC as an object
for the study was motivated by the fact that the content
of the so-called weakly bonded oxygen in its O4 and
O5 sites can vary within the largest limits found thus
far, namely, from (7 – δ) ~ 7 (orthorhombic structure
O-I, metallic phase, superconductor with Tc ~ 90 K,
nearly all oxygen sites in the…–Cu1–O4–Cu1–…
chains along the b axis are occupied, almost all O5 sites
in the…–Cu1–O5–Cu1–… chains along the a axis are
vacant) to (7 – δ) ~ 6 (tetragonal structure T, insulator,
the O4 and O5 oxygen sites are vacant), including the
“semiconducting”1 orthorhombic O-II phase [(7 – δ) ~

1 The O-II phase of YBa2Cu3O7 – δ is certainly not semiconducting
in the true sense of the word, and the temperature dependence of
its electrical resistivity ρ takes on an unusual shape close to the
ρ(T) relation for semiconductors only at low temperatures.
000 MAIK “Nauka/Interperiodica”
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6.5] with Tc ~ 60 K. It is essential also that YBa2Cu3O7 – δ
is a very well studied representative of the HTSC class,
and that the nature of the structural changes (as well as
of the critical temperature of the superconducting tran-
sition, critical magnetic fields, and macroscopic prop-
erties) this compound undergoes when subjected to var-
ious internal and external factors is, as a rule, fairly well
known.

This investigation was focused on the following
points: the effect of the content of weakly bonded lat-
tice oxygen within 6.1 ≤ 7 – δ ≤ 6.9 on the lumines-
cence spectra of single crystals YBa2Cu3O7 – δ; the
luminescence of HTSC ceramics with copper being
replaced by atoms of other 3d metals (Me) in the lattice,
(YBa2Cu3O7 – δ  YBa2Cu3 – xMexO7 – δ);

2 the effect
of illumination up to the maximum fluence (Φt)max ~
1.5 × 1020 photon cm–2 (excitation energy Eexc = 3.4 eV)
on the luminescence of YBa2Cu3O7 – δ single crystals;
and the luminescence of the YBa2Cu3O~6.95 single-crys-
tal composition (Tc ~ 92 K) in the temperature range of
4.2–150 K.

Thus, this work takes the specific example of the
YBa2Cu3O7 – δ superconductor to establish whether
there is a correlation between the spectral characteris-
tics (position Elum, peak width ∆λlum, and intensity Ilum
of the luminescence bands) and the evolution of the
electronic energy spectrum induced by a variation of
temperature, doping by oxygen or metal ions, and illu-
mination fluence.

1. EXPERIMENTAL TECHNIQUE

The techniques used to excite and measure HTSC
luminescence spectra were described elsewhere [1].
The luminescence was excited in all experiments by a
DRSh-500 continuously pumping mercury vapor lamp
(with the excitation energy used in the study Eexc =
3.4 eV, the light flux incident on the sample Φ ~
1016 photon cm–2 s–1). Note that the energy Eexc =
3.4 eV corresponds to the maximum of absorption in
the CuO2 plane and is in excess of the optical gap hν ~
2 eV separating in the YBa2Cu3O7 – δ HTSC the valence
band, where the carriers (holes) appear, from the upper
(empty) Hubbard band [3]. Thus, when photons with
Eexc = 3.4 eV excite the luminescence, the electron is
ejected into the upper Hubbard band by transferring
from the oxygen to the copper ion O2–Cu2+  O–Cu+

in the CuO2 plane. Note also that the excitation energy
Eexc = 3.4 eV lies at the right-hand wing of the absorp-
tion band peaking at ~4 eV, which belongs to the
CuO1 – δ chain structure. Therefore, direct chain excita-
tion by 3.4-eV photons is also possible.

2 The use of polycrystalline samples was motivated in this case by
the fact that the YBa2Cu3 – xMexO7 – δ HTSCs cannot, in practice,
be prepared in single-crystal form [12].
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The luminescence was studied in reflection, with the
secondary radiation projected on the slit of an MDR-3
scanning monochromator with a 1200 line/mm grating
providing a wavelength resolution δλlum of not worse
than 2 nm. The luminescence was detected by a liquid-
nitrogen-cooled FEU-79 PM tube operating in the pho-
ton counting mode.

To study the luminescence of the YBa2Cu3O~6.95
HTSC at low temperatures, the samples were placed in
a helium cryostat [13]. The sample temperature in the
cryostat could be maintained in the 4.2–300 K range to
within 0.5 K with an electronic control unit.

The computer-based methods of luminescence
spectra processing used in this work permitted the
determination of the position, width, and integrated
intensity of spectral bands and of the errors of all the
measured quantities by the minimum χ2 fitting [1].

2. RESULTS OF THE STUDY
2. 1. Effect of Oxygen Content 
on the Luminescence Spectra

This part of the work deals with the luminescence
of a series of single crystals cut from the same single-
crystal block of the YBa2Cu3O7 – δ HTSC and subjected
to special heat treatments to obtain samples with dif-
ferent oxygen indices (7 – δ). The samples were cut in
the plane perpendicular to the ab basal plane,3 a geom-
etry that allows one to determine the value of (7 – δ)
from Raman scattering (RS) spectra. The RS line most
sensitive to the oxygen content is at 502 cm–1; it is asso-
ciated with the Ag vibrational mode of the apex oxygen
at the O1 site, and its intensity for the zz component of
the scattering tensor is proportional to (7 – δ) [15].

Within a broad concentration range of the weakly
bound oxygen, 6.1 ≤ (7 – δ) ≤ 6.9, one observes only
two luminescence bands peaking at Elum ~ 2.4 and
~2.8 eV. The shape of the luminescence spectra
depends substantially on the (7 – δ) oxygen parameter,
namely, for (7 – δ)  7 (i.e., in the ortho-I phase), the
band with Elum ~ 2.8 eV is fairly intense for (7 – δ) ~ 6.5
(in the ortho-II phase4), and this band all but disappears
against the background of the band with Elum ~ 2.4 eV;
for (7 – δ)  6 (i.e., in the tetra-phase), the ~2.8-eV
band intensifies again.

3 We are stressing this point, because in the work a clearly pro-
nounced anisotropy of the spectral characteristics has been
observed (we have in mind the anisotropy of Ilum, i.e., of the band
luminescence yield). The dependence of the nature of HTSC
luminescence spectra on single-crystal orientation was apparently
first revealed by Stankevitch et al. [6]. The existence of this effect
is in qualitative agreement with modern concepts of the anisot-
ropy of HTSC optical properties (see, e.g., [14]).

4 Recall that the lattice of the O-II phase of YBa2Cu3O7 – δ differs
from that of the O-I-type in that for an ideal composition, (7 – δ) =
6.5, the copper–oxygen chains …–Cu1–O4–Cu1–… of the
former, aligned with the b axis of the orthorhombic lattice, alter-
nate with the “defective” chains …–Cu1–h–Cu1–…, where h is
the oxygen vacancy.
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Figure 1 presents the energy position of the bands
with Elum ~ 2.4 and ~2.8 eV as a function of the oxygen
index (7 – δ); Fig. 2, the band integrated-intensity ratio,
Ilum = I~2.8 eV/I~2.4 eV.

The dependences of the LS parameters on the con-
tent of weakly bound oxygen (7 – δ) are clearly non-
monotonic, with the bends in the Elum(7 – δ) and
Ilum(7 – δ) curves coinciding approximately in position
with the boundaries separating the O-I, O-II, and T
phases in the (7 – δ)–T diagram at room temperature
[16]. The width of the spectral bands ∆λlum depends
only weakly on the oxygen index.

Depending on the actual doping level in various
parts of the phase diagram, one observes different
trends in the intensity variation of both luminescence
bands:

(i) In the region of the insulating (T) phase, (7 – δ) <
6.5, I~2.8 eV decreases, and I~2.4 eV increases with increas-
ing oxygen doping level, where the holes appearing in
the valence band remain localized.

(ii) In the “semiconducting” O-II phase, where the
holes in the valence band may be already considered to
be itinerant, one observes opposite trends in the varia-
tion of the luminescence bands in intensity (I~2.8 eV
increases, and I~2.4 eV decreases).

(iii) In the metallic O-I phase and under optimum
doping, the intensities of the Elum ~ 2.8 and ~2.4 eV
bands exhibit a trend to saturation.

7.06.86.66.46.26.0
7 – δ

2.2

2.4

2.6

2.8

3.0
Elum, eV

T O-II O-I

Fig. 1. Position of the luminescence bands of YBa2Cu3O7 – δ
HTSC single crystal vs oxygen index (7 – δ).
P

2. 2. Effect of Substitution on the Luminescence Spectra

A study of the influence of copper replacement in
the HTSC lattice by atoms of other elements by the fol-
lowing scheme YBa2Cu3O7 – δ  YBa2Cu3 – xMexO7 – δ
(Me = Mn, Cr, Ag, Fe; xmax ~ 0.3) on LS did not reveal
any qualitative effects; indeed, no new bands appeared
in the spectra, despite the insertion into the lattice of
strongly luminescing ions (for example, of chromium
and manganese ions in different valence states). More-
over, the corresponding change in the LS parameters
(Elum, ∆λlum, and Ilum), if any, was not outside the prob-
able measurement error.5 

It should be stressed that the negative result
obtained here, i.e., the absence of a noticeable effect of
substitution on the LS parameters, is at odds with the
reports [18, 19] on the observation of impurity-ion
luminescence bands in YBa2Cu3O7 – δ at about the same
doping level.

2. 3. Effect of Illumination on the Luminescence 
Spectra

To establish the nature of the effect of illumination
on the luminescence of high-temperature superconduc-

5 Note that the presence of impurity ions in the YBa2Cu3O7 – δ
HTSC lattice was evidenced by a systematic detection of changes
in the lattice parameters and the superconducting transition temper-
ature depending on the species (Me) and concentration (x) of the
substituting ions (see, e.g., [17], where the YBa2Cu3 – xMexO7 – δ
system is studied).

7.06.86.66.46.26.0
2.2

0.2

0.4

0.6

0.8

1.0
Ilum = I~ 2.8 eV/I~ 2.4 eV

7 – δ

T O-II O-I

Fig. 2. Luminescence band intensity ratio Ilum(T) =
I~2.8 eV/I~2.4 eV of YBa2Cu3O7 – δ HTSC single crystal vs
oxygen index (7 – δ).
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tors, we repeatedly measured the luminescence spectra
from the surface of YBa2Cu3O7 – δ HTSC single crystals
in different electronic and structural states [we used
samples with the values of (7 – δ), respectively, 6.1 (the
T phase), 6.41 (the O-II phase), and 6.9 (the O-I phase),
see 2. 1]. The maximum illumination fluence accumu-
lated in 30 cycles can be estimated as (Φt)max ~ 1.5 ×
1020 photon cm–2.

The LS parameters were determined for each illumi-
nation cycle.6 The spectral position of the lumines-
cence bands Elum and their relative intensity Ilum(T) =
I~2.8 eV/I~2.4 eV for the YBa2Cu3O7 – δ samples in the insu-
lator T or the metallic O-I phase (Tc ~ 90 K) virtually do
not depend on illumination.

The pattern is different for the YBa2Cu3O6.41 sample
(the “semiconducting” O-II phase at the insulator–
metal transition) (Figs. 3, 4). Illumination produces
weak, but statistically significant effects in the LS evo-
lution; indeed, illumination in up to ~15–20 cycles
(a fairly rough estimate of Φt yields 6 × 1019 photon cm–2)
exhibits a trend pointing to a decrease in Elum of both
bands, while the band intensity ratio Ilum(T) =
I~2.8 eV/I~2.4 eV remains practically constant; for Φt * 6
× 1019 photon cm–2, one observes a trend to an increase

6 The accuracy of determination of the LS parameters (Elum, ∆λlum,
and Ilum) for any one spectrum is naturally lower than that of
averaged spectra, which are obtained, as a rule, by repeated scan-
ning in λlum.
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Fig. 3. Position of the luminescence bands of
YBa2Cu3O~6.41 HTSC single crystal vs the number of scans
and illumination fluence.
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in Elum of both bands; the magnitude of Ilum increases
sharply and substantially. We note immediately that a
comparison of Figs. 3 and 4 with Figs. 1 and 2 shows
the LS parameters undergoing the same changes with
increasing content of weakly bound oxygen, from the
“starting” value (7 – δ) = 6.41 to (7 – δ)max ~ 6.9.

Thus, as the pumping dose and, hence, the number
of electrons injected into the conduction band
increase, the behavior of the luminescence bands as to
intensity and position in weakly doped samples
approximately follows a scenario close to the metalli-
zation of the spectrum through chemical doping, i.e.,
an increase of the content of weakly bonded oxygen in
the …–Cu1–O4–Cu1–… chains (see Subsection 2.1).
The threshold for the light-induced metallization
effects to appear in samples with (7 – δ) = 6.41 is a flu-
ence of ~6 × 1019 photon cm–2.

2. 4. Effect of Temperature on the Luminescence 
Spectra

The sample studied in this part of the work was a
YBa2Cu3O~6.95 single crystal with Tc ~ 92 K cut along
the ab basal plane. The luminescence spectra measured
throughout the temperature range covered, 4.2 to
150 K, contained only the bands with Elum ~ 2.4 and
~2.8 eV, i.e., the same as at room temperature.

Figures 5 and 6 illustrate the determination of the
position of the Elum centers and of the luminescence-
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Fig. 4. Luminescence band intensity ratio Ilum(T) =
I~2.8 eV/I~2.4 eV of YBa2Cu3O~6.41 HTSC single crystal vs
the number of scans and illumination fluence.
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band intensities [Fig. 6a presents the temperature
dependences of the absolute band intensities, I~2.8 eV(T)
and I~2.4 eV(T), and Fig. 6, the ratio of the integrated
intensities of these bands, Ilum(T) = I~2.8 eV/I~2.4 eV .7

For T > Tc, the relative intensity of the band with
Elum ~ 2.8 eV is observed to decrease with the temper-
ature. The band with Elum ~ 2.4 eV varies little in terms
of absolute intensity. As the temperature decreases in
the region of the existence of the normal phase, the ratio
Ilum(T) = I~2.8 eV/I~2.4 eV decreases because of the varia-
tion in intensity of the band with Elum ~ 2.8 eV.

Near Tc, both the absolute and relative lumines-
cence-band intensities become sensitive to the super-
conducting transition. For T < Tc, even the half-width of
the bands varied, namely, the band with Elum ~ 2.4 eV
became narrower, while that with Elum ~ 2.8 eV broad-
ened. Below Tc, the intensity of the luminescence band
with Elum ~ 2.4 eV follows a temperature-dependent
pattern, whereas the integrated intensity of the band
with Elum ~ 2.8 eV is practically independent of temper-
ature for T < Tc. At the superconducting transition tem-
perature, the relative intensity Ilum(T) = I~2.8 eV/I~2.4 eV
increases.

In short, while in the case of oxygen doping the
break of the Ilum(7 – δ) curve was the point of the con-
centration-driven insulator–metal phase transition, this

7 The data relate to two series of measurements denoted in Figs. 5
and 6 by different symbols.
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Fig. 5. Temperature dependence of the position of the lumi-
nescence bands of YBa2Cu3O~6.95 HTSC single crystal
(Tc ~ 92 K).
PH
singular point in the temperature dependence of Ilum
coincides with the superconducting transition tempera-
ture. Note that the sensitivity of luminescence spectra
to the superconducting transition was first revealed in
[20].

The decrease of Elum for T < Tc is observed in both
luminescence bands.

It should be stressed that while the errors of individ-
ual measurements of the spectral characteristics are
fairly large (in the figures, they are shown by bars), the
change of the pattern of their temperature dependence
in the vicinity of Tc is statistically significant. Indeed,
accepting the rough approximation of the photon
energy in the band with Elum ~ 2.8 eV depending lin-
early on temperature, i.e.,

,

we have Elum(0) = 2.918 ± 0.029 eV, dElum/dT =
−(10.90 ± 2.46) × 10–4 eV/K for T > Tc, and Elum(0) =
2.736 ± 0.019 eV, dElum/dT = (7.60 ± 3.37) × 10–4 eV/K
for T < Tc.

3. DISCUSSION OF RESULTS

Consider the results obtained from the standpoint of
the concept postulating charge redistribution between
the CuO2 charge-transfer plane and the CuO1 – δ chain
plane, the “charge reservoir.” It is known (see, e.g., [2,
3, 21–23]) that insertion in chemical doping of an extra
oxygen in the …–Cu1–O4–Cu1–… chains (to be pre-
cise, in the “defective” chains of the type …–Cu1–h–
Cu1–O4–Cu1–…) brings about the trapping of an elec-
tron from the CuO2 plane to leave a hole there. The
holes forming in the CuO2 plane in the insulator T
phase for (1 – δ) < 0.4 are localized, because the Fermi
level remains above the hole mobility edge [23]. For
(1 – δ) ~ 0.4, the Fermi level crosses the mobility edge,
and YBa2Cu3O7 – δ transfers to the conducting state.
This opens the channel for the transfer of normal elec-
trons through the apex oxygen ion at the O1 site from
the Fermi level of CuO2 to the CuO1 – δ chain plane,
which increases the number of mobile holes. In the
“metallic” state [(1 – δ)  1], when the doping level
increases, the width of the hole band of mobile carriers
is ~0.1 eV [23].

Accepting the traditional reasoning, the lumines-
cence band with Elum ~ 2.4 eV belonging to the CuO2
plane can be assigned in the insulating phase to the
recombination luminescence of electrons from the
upper band with localized holes. As for the appearance
of the luminescence band with Elum ~ 2.8 eV in the insu-
lating (T), “semiconducting” (O-II), and metallic (O-I)
phases, it is related to the luminescence of the F centers
forming in the CuO1 – δ chain planes at oxygen vacan-
cies [1]. These F centers can become populated through
the transfer of both the normal electrons from the CuO2
planes and excited electrons to the Hubbard band.

Elum T( ) Elum 0( ) dElum/dT T×+=
YSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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The increase in the relative intensity of the lumines-
cence band with Elum ~ 2.4 eV, with increasing doping
level in the observed regions where the insulating phase
exists, implies that the intensity of recombination lumi-
nescence in the CuO2 plane grows with the increasing
number of localized holes. At the same time, the F-cen-
ter luminescence intensity decreasing natural way as a
result of the decrease of the number of oxygen vacan-
cies in the …–Cu1–O4–Cu1–… chains with increasing
concentration of the weakly bound oxygen. When the
metallic phase forms, i.e., when mobile holes appear,
one observes a distinct break of the I~2.8 eV/I~2.4 eV(7 – δ)
dependence (see Fig. 2), and as the doping index (7 – δ)
increases, the intensity of the band with Elum ~ 2.8 eV
begins to increase, and that of the band with Elum ~ 2.4 eV,
to decrease. This behavior of the I~2.8 eV/I~2.4 eV(7 – δ)
relation suggests a sharp decrease in the recombination
in the CuO2 plane, i.e., a strong decrease in the proba-
bility of radiative recombination luminescence
between an electron (in the upper band) and a mobile
hole.

In this connection, note the following two points.
(i) Metallization creates density-of-states tails in the

optical gap separating the two bands, thus increasing
the probability of nonradiative recombination of the
electron and the hole.

(ii) The decrease in the probability of recombination
luminescence occurring can also be connected with
selection rules in the wave vector k for mobile holes in
the valence band.

The saturation of the Ilum(7 – δ) dependence for (7 –
δ)  7 is apparently due to the saturation of the num-
ber of holes and the completion of the formation of the
hole band.

The change in the luminescence intensity of the
Elum ~ 2.8-eV band observed when doping in the region
where the metallic O-I phase exists should obviously be
insignificant, which is in full agreement with the exper-
imental data (Fig. 2). As seen from Fig. 1, when the
doping index (7 – δ) is increased in the insulating
phase, the band with Elum ~ 2.4 eV is redshifted. Gener-
ally speaking, this indicates a shift of the mobility edge
in the CuO2 plane, at which the excited electron and
hole recombine. The redshift implies that the separation
between the upper band and the mobility edge
decreases upon doping, i.e., the Fermi level and the
mobility edge come closer.

Experiments involving light-induced doping of a
sample with the oxygen index (7 – δ) = 6.41 (Figs. 3,
4), i.e., of a sample close to the insulator–metal transi-
tion, reveal the formation of an illumination threshold
Φt ~ 6 × 1019 photon cm–2, above which the dependence
of Ilum = I~2.8 eV/I~2.4 eV on illumination fluence behaves
similar to that on the oxygen index in the region of met-
allization obtained under chemical doping (Figs. 1, 2).
Thus, illumination to fluences higher than the threshold
may be classed among the light-induced doping phe-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
nomena. Considered in terms of the charge transfer
between the CuO2 and CuO1 – δ planes, this means that
photoexcitation to a threshold fluence gives rise to
changes in the chain structure, which opens the metal-
lization channel through the transfer of normal elec-
trons to the CuO1 – δ chain plane. This channel becomes
open as a result of a buildup of the illumination fluence,
which requires invoking an analysis of electron-stimu-
lated chain-lengthening processes. Recall that metalli-
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Fig. 6. Temperature dependence of the luminescence band
intensity of YBa2Cu3O~6.95 HTSC single crystal. (a) Tem-
perature dependences of the absolute band intensities;
(b) temperature dependence of the luminescence band
intensity ratio Ilum(T) = I~2.8 eV/I~2.4 eV.
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zation is accompanied by an increase in chain length
[21]. Because the chain lengthening is connected with
oxygen attaching to Cu–O dangling bonds, the elec-
tron-stimulated chain lengthening is equivalent to the
electron-stimulated diffusion of weakly bound oxygen.
It may be conjectured that the energy of an excited elec-
tron released in a chain in its localization favors over-
coming the oxygen-diffusion barrier, which is about
1 eV [11].

The very large change of the Ilum = I~2.8 eV/I~2.4 eV
ratio under light-induced doping (by nearly a factor
two) is comparable to the effect of chemical doping,
where (7 – δ) changes from 6.5 to 6.9. In a very rough
approximation, this may mean that illumination of an
HTSC with a composition YBa2Cu3O~6.41 to a fluence
Φt ~ 6 × 1019 photon cm–2 with a photon energy Eexc ~
3.4 eV is equivalent to a transfer of a negative charge of
0.5 atomic units from a CuO2 plane to a CuO1 – δ chain.
Calculating the number of unit cells in the illuminated
HTSC volume (the depth of light penetration into
YBa2Cu3O7 – δ was measured in [24] to be ~700 Å)
shows that this charge transfer corresponds approxi-
mately to an illumination fluence of ~1 photon/unit cell
(similar estimates were obtained in [21]).

Thus, the totality of the results obtained in the work
suggests a clearly pronounced relationship between the
evolution of the crystalline structure [the concentra-
tion-driven transformations T  O-II  O-I, the
intensification of rhombic distortions (b – a)/(b + a),
etc.; see, e.g., [25, 26] (the effect of the oxygen index
and illumination)], metallization of the electron energy
spectrum (the concentration-driven insulator  semi-
conductor  metal transitions, the increase in the
electrical conductivity in the normal state, the growth
of the superconducting transition temperature, etc.),
and the exolution of the luminescence spectrum with an
increasing content of the weakly bound oxygen or other
factors resulting in the formation and enhanced stabil-
ity of the …–Cu1–O4–Cu1–… chains [11], which act
as charge reservoirs.8

Let us turn now to the temperature dependences of
the LS parameters obtained for the samples with opti-
mum doping at illuminations below the threshold flu-
ence. As seen from Figs. 6a and 6b, above Tc the inte-
grated intensity of the Elum ~ 2.4-eV band remains prac-
tically constant, whereas that of the band with Elum ~
2.8 eV varies strongly, and this accounts for the temper-
ature behavior of the relative intensity of these bands.
The absence of any intensity redistribution between the
luminescence bands indicates that there is no redistri-
bution of normal electrons (holes) between the CuO2
and CuO1 – δ sublattices with decreasing temperature.
Thus, temperature-induced doping on the CuO2 plane
does not occur at low temperatures, which, in its turn,

8 The acting factor in this work is illumination and, naturally, the
superconducting transition, but (despite the negative result
obtained here) one cannot rule out the influence of substitution.
P

implies that the thermally stimulated transfer of normal
electrons from the CuO2 plane is hindered. This conclu-
sion appears very significant in connection with the dis-
cussion of a probable existence of a strong thermally
stimulated doping channel for the CuO2 plane in
HTSCs, which opens with decreasing temperature. In
particular, some theories [27] suggest that a decrease of
temperature may give rise to a noticeable electron
transfer from the CuO2 plane to the CuO1 – δ chain
structure. Our result is the only evidence of the weak
influence of temperature on the number of holes in the
CuO2 plane.

The temperature dependence of the Elum ~ 2.8-eV
band intensity for T < Tc is governed by the processes
taking place on the CuO1 – δ chain plane itself and is
related to the temperature-induced variation of the
extent to which the competing channels of radiative and
nonradiative deexcitation are operating. As seen from
Fig. 6, below Tc the temperature dependences of the
intensities of these bands change their pattern, namely,
the intensity of the band at Elum ~ 2.4 eV becomes tem-
perature dependent, while that at Elum ~ 2.8 eV no
longer depends on temperature. The decrease of the
integrated intensity of the band at Elum ~ 2.4 eV for T <
Tc coincides with its weakening under metallization of
the spectrum. In other words, below the superconduct-
ing transition temperature, recombination of an excited
electron with the superconducting condensate is hin-
dered, which may be assigned to the most distinct man-
ifestation of the selection rule in the wave vector k, the
conditions where recombination with band holes is less
efficient than that with the localized ones.

As follows from the above results, with
YBa2Cu3O7 – δ acted upon by different factors (an
increase of oxygen content in the regions of existence
of the O-II and O-I phases, under illumination of the
sample in the O-II phase), one observes the same, qual-
itatively identical effect in the evolution of the emission
spectrum. We have in mind a noticeable growth of the
relative intensity of the band at Elum ~ 2.8 eV and a
change in intensity of the Elum ~ 2.4-eV band, which
gives one grounds to maintain that the charge transfer
between the sublattices has the same nature, which
accounts for the associated integrated intensity redistri-
bution between the bands at Elum ~ 2.4 and ~2.8 eV.

The absence of any pronounced effects in the lumi-
nescence spectra of YBa2Cu3O7 – δ under the Cu 
Me substitution (see Subsect. 2. 2) is accounted for by
the fact that these substitutions do not affect the struc-
ture of the …Cu1–O4–Cu1… chains strongly enough,
nor, correspondingly, the probability of the processes
occurring in these chains, as well as the electron
exchange between the CuO1 – δ chain and CuO2 charge-
transfer planes.

Thus, an analysis of the results obtained in this work
argues convincingly for the existence of a distinct cor-
relation between the structural changes in the
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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YBa2Cu3O7 – δ high-Tc superconductor, which are
induced by internal or external factors acting on its
crystal lattice and the parameters of luminescence spec-
tra (the spectral position Elum, width ∆λlum, and inten-
sity Ilum of the luminescence bands). We have in mind
here not only the differences between the LS parame-
ters of the various structural modifications of
YBa2Cu3O7 – δ (O-I, O-II, and T), but some finer effects
of a correlated variation of Ilum, Elum, and (partially)
∆λlum, on the one hand, and of the extent of metalliza-
tion (including the onset of the superconducting transi-
tion) of the YBa2Cu3O7 – δ electronic spectrum, on the
other.

It should be stressed that the redistribution of inte-
grated intensity of the luminescence bands originating
from different electronic and structural subsystems (the
CuO2 charge-transfer and CuO1 – δ chain planes) per-
mits one to investigate the processes governing charge
transfer between the subsystems, and the temperature
dependences of the parameters of these bands offer the
possibility of studying localization and delocalization
in each of these subsystems.

The establishment of a correlation between the elec-
tronic and structural properties, on the one hand, and
the optical parameters of YBa2Cu3O7 – δ, on the other
hand, paves the way for using the luminescence spectra
of high-Tc superconductors as an efficient optical probe
of electronic processes occurring in these substances.
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Abstract—The analysis of hopping conductivity requires a complete quantum-statistical description of a pair
of sites between which an electron jump takes place. This description includes a double-charged energy level,
the energy being increased by the Coulomb repulsion of the charges. The inclusion of this level changes the
occupation numbers of single-charge states essential for hopping conductivity. Such an indirect influence of
Coulomb repulsion is referred to as Coulomb correlation. It leads to a modification of Mott’s law in the case of
conductivity with variable range hopping. The concept of a Coulomb gap is not required for the characterization
of this modification. © 2000 MAIK “Nauka/Interperiodica”.
In compensated semiconductors at low tempera-
tures, conduction takes place through electron jumps
from filled donors to empty ones, the number of which
is equal to the number of acceptors. These jumps are
not classical ones of a particle from one potential well
to another, but proceed by quantum tunneling between
two states of a pair of donors containing one electron.
The energies of electrons located at donors having
coordinates ri and rj are characterized by a random
spread over a wide range and generally do not coincide
(εi ≠ εj); hence, electron tunneling is impossible without
the participation of phonons, whose energy must com-
pensate the difference in the electron energies. A quan-
tum-mechanical description of the hopping process is
given in the well-known paper by Miller and Abrahams
[1], which is a starting point for all the theories of hop-
ping conductivity. In that paper, the hopping conductiv-
ity was calculated, which exhibited a natural exponen-
tial dependence on the distance noticeably exceeding
the electron localization radius a at a donor: 

(1)

where rij = |ri – rj|.
The probability w is proportional to the square of the

overlap integral Jij = J0exp(–rij/a).

However, the statistical description given in [1] for
a pair of energy levels between which the hopping
occurs is not quite satisfactory, and the present paper
aims to correct this drawback. The presence of the over-
lap integral of a pair of donors leads to the collectiviza-
tion of one-electron levels with energies εi and εj, as a
result of which the energies assume the values

(2)
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According to Shklovskiœ and Éfros [2], this two-center
system has, in addition to one-electron levels, two more
energy levels: a level without electrons with zero
energy, and a two-electron level with the energy

(3)

Here, e is the electron charge and k is the static permit-
tivity of the semiconductor. All four levels should be
taken into account in a statistical description of the fill-
ing of the states in the two-center system, and this sta-
tistics differs significantly from the Fermi statistics.
Proceeding from the conventional equilibrium expo-
nential expression for the probability of level filling and
from the probability normalization requirement, we
obtain the following expression for the equilibrium
occupation numbers:

(4)

The normalization factor A is given by

(5)

Here, T is the temperature in energy units. Note that, for
the states with E1 and E2, in which there is only one
electron and a Coulomb repulsion is ruled out, the
occupation numbers have higher values (in view of the
normalization condition) than in the hypothetical case
of electrons having zero electric charge. This is just the
Coulomb correlation discovered in [2]. The chemical
potential µ is determined by solving the averaged prob-
lem and is an independent parameter for an isolated
pair of energy levels.

Let us consider justifying the inclusion of the Cou-
lomb repulsion energy to the energy of the third two-
electron level, although the energies of an electron at
the ith site are self-consistently determined, taking into
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account the action exerted by electrons located at all the
remaining sites. Naturally, this can be done in the amor-
phous semiconductor model, where random energy
values εi are due to fluctuations of the atomic arrange-
ment at lattice sites, as well as valence forces of a non-
Coulomb origin. However, one can assume that expres-
sion (3) for the energy of a two-electron level also holds
in the model of a classical impurity band, where ran-
dom values εi are determined just by the Coulomb
interactions with all the charges of the semiconductor,
and the application of this expression does not take into
account the Coulomb interaction between the electrons
at sites i and j twice. All calculations are carried out in
the thermodynamic limit, where the total volume of the
semiconductor, as well as the number of any impurities,
tends to infinity, while their ratio, i.e., impurity concen-
tration, is assumed to be finite. In this case, the contri-
bution of an individual impurity j to the quantity εi is
negligibly small. Mathematically, this is reflected in the
fact that a finite contribution to εi comes from the inte-
gral of the concentration of all the impurities, in which
the contribution of the given impurity is an infinitely
small quantity. On the contrary, the contribution of the
Coulomb repulsion to the energy of two individual
impurities is finite.

The hopping process can be described as the bal-
ance of transitions between the energy levels E1 and E2,
accompanied by the emission (we) or absorption (wa) of
a phonon:

(6)

Here, N(E) is the Planck equilibrium distribution func-
tion for phonons.

Further discussion follows the scheme of paper [1],
modified to use the pair statistics. The current Iij

includes the difference of the numbers of transitions
between the levels E1 and E2:

(7)

In equilibrium, the current is zero as expected. In the
presence of an electric field E, two changes should be
introduced into expression (6) for the current. First, the
electron energy at a site in the expressions for the prob-
abilities acquires a correction

(8)

where Kis is an interaction function, taking into account
the effect of the one-particle distribution function on
the energy level, and δfs is the change in the equilibrium
one-particle distribution function. Second, equilibrium
pair distribution functions should be replaced by the
corresponding nonequilibrium functions. However, the
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nonequilibrium pair distribution function for an inde-
pendent pair of donors in the electric field would be
reduced to the equilibrium function, depending on
modified energies. The total current in this case would
remain equal to zero. Apart from the change in the
energy at a site, for the system of interacting pairs, one
has to introduce a change in the energies E1, 2 in the
form of local voltages Uij:

(9)

These local voltages should be calculated for the com-
plete system of all pairs, taking into account the bound-
ary condition according to which the total voltage drop
across the entire system is equal to the potential differ-
ence applied to the entire sample.

Considering the current linear in the electric field,
we can solve the problem of the network of random
resistances in the field of random potential differences:

(10)

Here, 

(11)

At low temperatures, the Planck distribution function is
transformed into the Wien distribution function and,
besides, we can neglect the third term in the normaliza-
tion factor, i.e.,

(12)

The currents in the resistor network must be summed
over all energy values at the sites and over the distances
between the sites. Since the pairs mainly have large
energies, in the expressions for energies we can neglect
the overlap integral, i.e.,

(13)

Nevertheless, we do not arrive at the Miller–Abrahams
expressions just in view of the difference between the
pair statistics and the Fermi statistics. Following [1],
we write the expression for the resistance at extremely
low temperatures in an equivalent form:
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(15)

Pay attention to the case when the two energies εi and

εj belong to the interval between µ and µ – ; in this

case, the activation energy is equal to |εi – εj |. This case
is not encountered in the Miller–Abrahams network.

If we disregard the Coulomb repulsion energy
e2/krij, expression (15) is transformed into the Miller–
Abrahams formula.

The random resistor network used for solving vari-
ous problems in the percolation theory for the conduc-
tivity with a constant jump length (nearest neighbor
hopping, NNH), as well as for the conductivity with a
variable jump length (variable range hopping, VRH)
[3]. The modification of the Miller–Abrahams network
makes it possible to take into account the influence of
the Coulomb interaction on all types of hopping con-
ductivity. Shklovskiœ and Efros [3] believed that this
effect must be taken into consideration by proceeding
from the ideas concerning the presence of a “soft” Cou-
lomb gap in the spectrum of one-particle states. How-
ever, the Coulomb gap has nothing to do with problems
of collective processes, including the problem of con-
duction. The entire interaction is taken into account in
formula (15).

According to Ambegaokar et al. [4], for the percola-
tion problem in which the conductivity should be deter-
mined, the connectivity condition has the form

(16)

where the quantity ξ defines the magnitude of the expo-
nent in the electrical conductivity. Going over to an
analysis of VRH, we introduce dimensionless variables

xij = 2  and yi = , for which the percolation prob-

lem is formulated in a dimensionless form with the unit
connectivity condition. The percolation criterion for
this problem is

(17)

Here, g is the (constant) density of states and the num-
ber nc is known from the literature [3]. The conven-
tional solution of the Mott problem corresponds to the
equality sign in formula (17), which defines the quan-

tity ξc = .

While solving this problem, we simplified expres-
sion (15) for the activation energy, neglecting the Cou-
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lomb repulsion energy in it. This could be done only
provided that

(18)

Condition (18) sets a limit on the application of Mott’s
law at low temperatures:

(19)

As the temperature decreases further, Mott’s law for
VRH becomes inapplicable. We must now use inequal-
ity (18) and the inequality opposite to (19). We choose
the activation energy in the Coulomb energy range
specified above; for this purpose, we use the equality
sign in formula (18). With this choice, inequality (17)
is equivalent to the inequality opposite to (19), which
confirms the applicability of the new law just in the
temperature range in which Mott’s law is not valid.
Thus, the Coulomb activation energy has led to the
well-known law for the electrical conductivity:

(20)

This law is thought to be associated with the Coulomb
gap in the one-particle density of states [3]. However,
the Coulomb gap has nothing in common with the con-
duction process involving two-particle states subject to
the two-particle statistics (4), (5), which just deter-
mines the law (20).

The VRH process can occur only under the condi-

tion when the average hopping range  is much

larger than the average hopping range r0 in the NNH
process, which is approximately equal to the average
separation N–1/3 between majority impurities, where N
is the concentration of majority impurities. This leads
to the following criterion for the applicability of Mott’s
law:

(21)

while the applicability of dependence (20) is deter-
mined by the inequality

(22)

These inequalities set the upper limit on the tempera-
ture at which the VRH conductivity laws are observed;
this agrees with the experimental results at low temper-
atures. It should be recalled, however, that, in accor-
dance with (19), the temperature at which Mott’s law
holds is also limited from below; i.e., Mott’s law is
observed in a certain temperature range.
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Inequalities (18)–(22) determine what we shall refer
to as a “phase diagram,” i.e., the ranges of temperatures
and concentrations of majority and minority impurities
in which different temperature dependences of conduc-
tivity are observed. The change of the inequalities for
the corresponding equalities determines the boundaries
of these regions. The boundary separating the regions
where Mott’s law and equality (20) are satisfied is
determined by the equation

(23)

while the boundary separating the regions of applica-
bility of Mott’s law and the NNH law is defined as

(24)

and the boundary between the regions where law (20)
and the NNH law are satisfied can be described as

(25)

Unfortunately, we are not in a position to determine the
constants in these equalities, and our phase diagram
only shows the general form of the regions, rather than
their exact boundaries. It should be recalled that the
density of states is proportional to the concentration n
of minority impurities, i.e.,

(26)

where A is the characteristic spread of random energies.
The difficulty lies in that the phase diagram depends on
two concentrations, namely, on those of the majority
and minority carriers.

Figures 1a–1c depict phase diagrams in the space of
temperatures T and the minority carrier concentrations
n for a given concentration of majority carriers. The law
(20) is observed in region I, Mott’s law in region II, and
the exponential temperature dependence of the NNH
conductivity in region III. Figure 1a corresponds to a
special degenerate case which is possible only for an
accidental relation between the constants appearing in
the equations that define the boundaries of the regions:

(27)

The characteristic feature of all the diagrams is the
existence of a critical concentration of minority carriers
above which Mott’s law is not observed.

Figures 2a–2c show phase diagrams in the space of
temperatures T and concentrations of majority carriers
N for a fixed concentration of minority carriers. Finally,
Figs. 3a–3c show phase diagrams in the space of tem-
peratures T and concentrations of majority carriers N
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for a fixed degree of compensation K = . Figures 2a

and 3a correspond to the accidental relation (27). All
the diagrams demonstrate the existence of the critical
concentration of carriers above which Mott’s law does
not hold.

On the side of high temperatures, the phase diagram
of hopping conductivity should be supplemented by a
region corresponding to conduction through delocal-
ized states, which can considerably reduce the range of
the NNH conductivity. This effect is apparently mani-
fested in experiments with doped germanium [5].

Let us consider the problem on VRH in a strong
magnetic field of strength H, in which the magnetic

length λ =  is smaller than the localization radius.

In this case, the wave function of the localized state
falls off along the magnetic field in the distance aH =
aln(H/H0), which differs from a only slightly, while

n
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Fig. 1. Temperature and concentration regions for minority
carriers, in which different laws of electrical conductivity
are observed for a fixed concentration of majority carriers.
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carriers, in which different laws of electrical conductivity
are observed for a fixed concentration of minority carriers. 
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Fig. 3. Temperature and concentration regions for majority
carriers, in which different laws of electrical conductivity
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across the magnetic field it falls of in a much smaller
distance λ. Consequently, we must replace inequality
(17) by the inequality

(28)

and inequality (18) by the inequality

(29)

In (29), the term with λ can be neglected, after which
this inequality coincides with (18). Having determined
now the activation energy from this condition, we find
that it does not depend on the magnetic field. The mag-
netic field determines the range of low temperatures
defined by inequality (28), in which the law (20) is
observed. Consequently, a strong magnetic field con-
siderably modifies Mott’s law, but does not affect the
law (20). This conclusion basically differs from that
associating the law (20) with the Coulomb gap; accord-
ing to this law, a strong dependence on the magnetic
field takes place (ξc is proportional to H1/5) [3].

The pair statistics was used for describing transport
phenomena in rf fields [2]. The main idea of the present
paper is that the same statistics should be used for
describing transport phenomena in a static field. How-
ever, this necessitates considerable changes in the the-
ory, namely, a modification of the random resistor net-

gλ2aHTξ4 nc,≥

Tξ 2
e2

k aH
2 2λ2ξ+

-------------------------------β.≥
P

work. We have demonstrated some consequences of
such a modification. It is likely that all the effects
emerging as a result of electrons hopping between
localized states in a semiconductor must be revised on
the basis of the two-particle statistics and the modified
random resistor network.
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Abstract—The infrared luminescence of Er3+ ions has been studied in bulk crystals of silicon carbide 6H-SiC
doped with erbium in the process of their growth. The erbium centers of different symmetry in the crystals are
revealed by the EPR technique. A number of intense luminescence bands of erbium ions are observed at a wave-
length of about 1.54 µm. The luminescence can be excited by the light with quantum energies above and below
the band gap of SiC. It is found that the luminescence exhibits unusual temperature behavior: as the temperature
increases, the luminescence intensity abruptly rises starting with 77 K, passes through a maximum at ~240 K,
and, in the vicinity of ~400 K, decreases down to the values observed at 77 K. The activation energies for the
flare-up and quenching of the Er3+ luminescence are estimated at EA ≈130 and ≈350 meV, respectively. The
mechanisms of the flare-up and quenching of the Er3+ luminescence in SiC are discussed. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, the search for new semiconducting
materials doped with rare-earth elements and their
studies have been actively pursued with the aim of cre-
ating new optoelectronic devices. Of special interest
are the Er3+ erbium ions, because the 4I13/2  4I15/2
transition observed within the 4f shell of these ions at a
wavelength of about 1.54 µm corresponds to the mini-
mum absorption of silica-based optical fiber systems.
Since the infrared (IR) luminescence in the range of
1.54 µm is due to the transitions within the 4f shell,
which is efficiently shielded by outer filled shells, the
interaction between the erbium ion and the surrounding
matrix is weakened, and the luminescence wavelength
is virtually independent of the semiconductor material.
It is expected that the semiconductor laser diodes and
optical amplifiers operating at the 4I13/2  4I15/2 tran-
sition of the Er3+ ions will be less sensitive to tempera-
ture variations as compared to the devices based on the
band-to-band recombination. There are many works
concerned with the investigation into the luminescence
properties of rare-earth elements in the A3B5 systems
and silicon [1–3]. The main impediment to the use of
these materials in optoelectronic devices is a rather low
luminescence yield at room temperature. The tempera-
ture quenching of IR luminescence of erbium decreases
with an increase in the energy gap of a semiconductor
[4]. In this respect, it is supposed that silicon carbide
SiC as a wide-gap semiconductor is a promising mate-
rial for the excitation of an intense high-temperature
luminescence of Er3+ ions. On the other hand, it seems
likely that silicon carbide can be directly used in silicon
1063-7834/00/4205- $20.00 © 20829
microelectronics. Moreover, at present, semiconductor
devices based on SiC are finding expanding applica-
tions.

The erbium luminescence in SiC at a wavelength of
about 1.54 µm was first observed in ion-implanted lay-
ers [5]. The main problem arising in the ion implanta-
tion is the radiation damage of semiconductors upon
exposure to large doses of accelerated ions penetrating
to a rather small depth. In the limiting case, this can
lead to the loss of crystallinity (amorphization) of a
material. For the SiC-type crystals capable of crystal-
lizing in different polytypes, a change in the polytype is
also possible. The electron paramagnetic resonance
(EPR) technique is the most informative method for
determining the structure of impurity centers in semi-
conductors. However, the maximum depth of erbium
penetration into the SiC ion-implanted layers was very
small (~0.3 µm), and the Er3+ ions was not revealed by
the EPR technique. As a consequence, the structure of
erbium centers was not determined. Therefore, it was
necessary to devise a method providing the introduc-
tion of Er3+ ions into the SiC bulk crystals.

The problem of introducing the Er3+ ions into the
SiC bulk crystals in the course of their growth was
solved in [6]. For these crystals, the intense EPR sig-
nals of different-type Er3+ centers were recorded for the
first time [6], and the IR photoluminescence was
observed at a wavelength of 1.54 µm [7]. According to
the preliminary analysis, the temperature behavior of
this luminescence substantially differs from that of the
luminescence observed in the SiC ion-implanted layers
000 MAIK “Nauka/Interperiodica”



 

830

        

BABUNTS 

 

et al

 

.

                                                                                                              
[5], which is apparently due to the structural difference
of defects in ion-implanted layers and bulk materials.

The present paper reports the results of investiga-
tions into the properties of the IR luminescence at a
wavelength of 1.54 µm in the SiC bulk crystals whose
photoluminescence spectra exhibit the EPR signals of
the Er3+ centers characterized by the different local
symmetry.
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Fig. 1. Photoluminescence spectra of the 6H-SiC : Er crystal
and the EPR signals of the Er3+ ions. (a) Spectra in the range
1.1–1.7 µm at temperatures of 77, 210, and 300 K. Photolu-
minescence was excited by the visible light of a mercury
lamp (400–650 nm). (b) The photoluminescence spectrum
of Er3+ ions on an enlarged scale. Vertical marks indicate
selected bands. The vertical dashed line conventionally sep-
arates the transitions from the low-lying Stark level of the
excited term 4I13/2.
PH
2. EXPERIMENTAL TECHNIQUE

The 6H-SiC bulk crystals were grown by the subli-
mation sandwich technique [8] under vacuum at tem-
peratures of 1850–1900°C and doped with erbium in
the course of their growth. Metallic erbium placed in a
tantalum crucible was used as a dopant source. The
grown crystals possessed the n-type conductivity due to
the presence of nitrogen donors. The employment of
the tantalum crucible made it possible to reduce the
concentration of nitrogen donors down to 1016 cm–3. In
order to prepare the p-type crystals, a number of the
6H-SiC : Er samples were doped with boron through
diffusion at a temperature of 2200°C.

The samples were obtained in the form of plates 3 ×
4 mm in size and about 0.5 mm in thickness with the
plane perpendicular to the hexagonal crystal axis c. The
luminescence was excited by argon (488 and 514 nm)
and krypton (647.1 nm) lasers and also by mercury and
xenon lamps. Photoluminescence signals were
recorded using a Hamamatsu InGaAs p–i–n diode
(IR range) and a photoelectric multiplier. The lumines-
cence was studied at temperatures in the range from
77 to 400 K.

The EPR spectra were taken on a Jeol production-
type spectrometer operating in the X band (9.3 GHz) in
the temperature range 4–300 K.

3. RESULTS

The luminescence at a wavelength of about 1.54 µm
was revealed in the 6H-SiC : Er crystals, which showed
the EPR spectra for several types of Er3+ centers with
different local symmetry [6, 7]. The EPR signals for at
least seven Er3+ centers (designated as Ax1–Ax7 [6, 7])
with an axial symmetry relative to the hexagonal crys-
tal axis c were recorded in these crystals. In addition to
the axial centers, the EPR spectra displayed signals of
the Er3+ ions (denoted as LS1, LS2, and LS3 [6, 7]) char-
acterized by an orthorhombic symmetry. For the cen-
ters with the orthorhombic symmetry, the local z-axis
coincides with one of six directions of the Si–C bonds
forming an angle of ~70° with the c-axis. For the
orthorhombic centers and a number of axial centers, the
EPR spectra showed a hyperfine structure owing to the
interaction with the 167Er nucleus, which made it possi-
ble to directly identify the erbium ions and, further-
more, to establish that the structure of each center
involves only one erbium ion.

Figure 1a displays the photoluminescence spectra of
the 6H-SiC : Er crystal in the wavelength range 1.1–
1.7 µm at three temperatures (77, 210, and 300 K). It is
seen that the photoluminescence spectra exhibit the
EPR signals of the Er3+ ions. The photoluminescence
was excited by the visible light (400–650 nm) of a mer-
cury lamp. The spectrum in the range of 1.54 µm is typ-
ical of the 4I13/2  4I15/2 transition within the 4f shell
of the Er3+ ions. The photoluminescence spectrum in
YSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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the range of 1.54 µm at a temperature of 300 K is
depicted on an enlarged scale in Fig. 1b. About 20 pho-
toluminescence bands can be separated in this spec-
trum, and the most intense bands are located at wave-
lengths of about 1.53 and 1.56 µm. The erbium photo-
luminescence can be excited over a wide range of
wavelengths from 320 to 600 nm; in this case, no sub-
stantial changes in the relative intensities of particular
photoluminescence bands of the Er3+ ions were
observed in the range of 1.54 µm.

In the range 1.3–1.4 µm, three luminescence bands
correspond in location to the luminescence bands of the
vanadium ions V4+ in the 6H-SiC crystal [9]. Vanadium
is a typical uncontrollable impurity in silicon carbide.

The main feature of the observed photolumines-
cence of erbium is the unusual temperature dependence
of its intensity. This dependence for the photolumines-
cence band of erbium at a wavelength of 1.531 µm is
depicted by dark circles in Fig. 2a. As the temperature
increases beginning with 77 K, the intensity of erbium
photoluminescence rapidly increases and reaches a
maximum value at approximately 240 K. With a further
increase in the temperature, the intensity of erbium
photoluminescence decreases and becomes equal to
about 50% of the maximum value at a temperature of
300 K. The photoluminescence is reliably recorded up
to ~400 K. Figure 2a also demonstrates the temperature
dependence of the intensity for the high-energy band of
the luminescence of vanadium (open circles). In this
case, an increase in the temperature starting with 77 K
is accompanied with a drastic decrease in the lumines-
cence intensity. As can be seen from Fig. 2a, an
increase in the intensity of the erbium photolumines-
cence and a decrease in the intensity of the vanadium
luminescence are observed in about the same range of
temperatures. Moreover, it should be mentioned that
the temperature dependence of the intensity of the
donor–acceptor photoluminescence observed in the
visible range for the 6H-SiC : Er crystals has about the
same shape as the corresponding dependence for the IR
photoluminescence of vanadium.

The temperature flare-up and the temperature
quenching of the photoluminescence of erbium can be
described by the known formula

(1)

where EA is the activation energy of the process, I0 is the
intensity of luminescence without quenching (at
~240 K), and A is the constant depending on the prob-
ability of radiative recombination and the constant in
the Boltzmann relation. Formula (1) enables one to
determine the activation energies for the flare-up and
quenching of the luminescence from the slope of the
straight line on the ln(I0/I)–1/T coordinates. The tem-
perature dependences of the photoluminescence inten-
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kT
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--------------------------------------,=
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sity on these coordinates for two temperature ranges
corresponding to the flare-up and quenching of the
erbium photoluminescence are displayed in Fig. 2b.
The activation energies EA for the flare-up and quench-
ing of the Er3+ luminescence are evaluated to be equal
to ≈130 ± 20 and ≈350 ± 20 meV, respectively. The the-
oretical dependences calculated according to formula (1)
with the use of the activation energies given above are
depicted by solid lines in Fig. 2b. In the description of
the above processes, we proceeded from rough esti-
mates and approximated each process by only one
exponent, even though, in principle, it is not improba-
ble that the process is more complex and should be
described by the sum of exponents with several activa-
tion energies; in the latter case, the activation energies
given above correspond to the averaged energies.

Moreover, we investigated the photoluminescence
in the 6H-SiC : Er crystals, which were doped with
boron through high-temperature diffusion. As a result
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Fig. 2. (a) Temperature dependences of the intensity of pho-
toluminescence for the 1531-nm band of erbium and the
high-energy band of vanadium in the 6H-SiC : Er crystals.
(b) Dependences shown in Fig. 2a for erbium but con-
structed on the ln(I0/I – 1)–1/T coordinates for two temper-
ature ranges corresponding to the flare-up and quenching of
the photoluminescence.
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of this doping, the conductivity of the crystals changed
to the p type. After the introduction of boron, the inten-
sity of the EPR spectra of Er3+ ions became virtually
zero, whereas the intensity of the photoluminescence of
these ions did not considerably change. Prior to the
introduction of boron, the 6H-SiC : Er crystals pos-
sessed the n-type conductivity and their EPR spectra
exhibited signals of all the aforementioned erbium cen-
ters. The diffusion of boron brought about certain
changes in the relative intensities of the photolumines-
cence of erbium and vanadium: the relative intensity of
the erbium luminescence in the p-type crystals some-
what decreased. The relative intensities of particular
photoluminescence bands of the Er3+ ions and the tem-
perature dependences of the photoluminescence inten-
sity for these ions virtually do not change.

4. DISCUSSION

As already mentioned, the IR luminescence of the
Er3+ ions was observed in the crystals, which, accord-
ing to the data of our earlier works [6, 7], showed the
EPR spectra for several types of Er3+ centers character-
ized by the different symmetry. As uniquely follows
from the observation of the hyperfine structure of
erbium, the EPR spectra correspond to the single Er3+

ions, which are not involved in the impurity clusters
(for example, the Er–Er pairs). Reasoning from com-
parison between the ionic radius of three-valent erbium

C

Si

Er
def.

c c

c c

(a)

(b)

Fig. 3. Possible structures of different Er3+ centers accord-
ing to the EPR data [6, 7]: (a) axial centers (hexagonal site)
and (b) orthorhombic centers (hexagonal and quasi-cubic
sites).
P

and the ionic radii of silicon and carbon, it was con-
cluded that erbium most likely occupies the silicon sites
in SiC. Figure 3 demonstrates the models proposed for
the erbium centers in 6H-SiC on the basis of the EPR
data [6]. In the axial centers, erbium replaces silicon
and occupies the site in the regular lattice (the hexago-
nal site in the lattice is shown in Fig. 3a). The differ-
ences in the EPR parameters of the three centers are due
to the presence of three possible erbium sites in the 6H-
SiC crystals, namely, the hexagonal and two quasi-
cubic sites. The orthorhombic Er3+ centers have a more
complex structure displayed for the hexagonal and
quasi-cubic sites in Fig. 3b. It seems likely that these
centers involve another defect in the carbon site near
erbium. The presence of three types of these centers is
also explained by the hexagonal and two quasi-cubic
erbium sites in the lattice. It is quite possible that, in the
orthorhombic centers, the Er3+ ion forms the complex
with one oxygen atom or carbon vacancy in such a way
that the line connecting them coincides with one of the
Si–C bonds, making an angle of ~70° with the hexago-
nal axis c. A part of the axial centers can also be asso-
ciated with the complexes whose composition involves
the erbium ions; in this case, the defect (for example,
the oxygen atom or carbon vacancy) is located so that
the line connecting the erbium ion and the defect
coincides with the Si–C bond aligned along the c-axis
(Fig. 3a).

The experimental results obtained in the present
work do not permit us to directly assign the photolumi-
nescence bands to the specific (axial or orthorhombic)
erbium centers, which manifest themselves in the EPR
spectra. It should only be remarked that the photolumi-
nescence was observed solely in the crystals that
showed the EPR spectra of the Er3+ centers (including
the crystals for which the EPR spectra were observed
prior to the introduction of boron). The symmetry of all
the Er3+ centers in the 6H-SiC crystal is lower than the
cubic symmetry. Therefore, all these centers can con-
tribute to the luminescence (in the octahedral complex,
the intracenter luminescence of the Er3+ ions cannot be
observed, because the f–f transitions are parity-forbid-
den). The ground state 4I15/2 in the crystal field of this
symmetry is split into the eight doubly degenerate Stark
levels (Kramers doublets), and, hence, at least eight
luminescence bands should be observed for each
erbium center. Taking into account the fact that, accord-
ing to the EPR data, there are about ten different Er3+

centers, a large number of luminescence bands should
be observed for the 4I13/2  4I15/2 transition in the Er3+

ions. Since all the luminescence bands are located in a
narrow spectral range, their large number apparently
results in considerable widths of the photolumines-
cence bands (Fig. 1) at temperatures above 77 K and the
spectral resolution provided by the instrument
employed. For the symmetry lower than the cubic sym-
metry, the first excited term 4I13/2 is split into seven dou-
bly degenerate energy levels. At sufficiently low tem-
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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peratures (when the thermal energy is less that the split-
ting of energy levels by the crystal field), only the
transitions from the lowest-lying state of the 4I13/2
excited term can occur, and eight photoluminescence
bands should be observed for each erbium center. The
higher-lying states of the 4I13/2 term split by the crystal
field are not involved in the luminescence process at
low temperatures. The higher-lying states of the lumi-
nescent levels can be filled with an increase in the sam-
ple temperature. The filling of these levels should lead
to the appearance of additional photoluminescence
bands on the high-energy side of each band observed at
low temperatures [10]. A number of these bands can be
seen on the high-energy side of the most intense bands
corresponding to the transitions in the Er3+ ions
(Fig. 1b), because a temperature of 77 K is high enough
for the Stark levels of the 4I13/2 term to be filled. These
bands are conventionally separated by the vertical
dashed line in Fig. 1b.

Let us now discuss the possible mechanisms of exci-
tation, temperature flare-up, and temperature quench-
ing of the photoluminescence of erbium ions in SiC.
The luminescence of erbium (and other rare-earth ele-
ment) ions can be excited in semiconductors through a
number of mechanisms. The simplest mechanism
involves the direct optical excitation of the 4f shell, fol-
lowed by the radiative relaxation from the excited state
to the ground state. However, the probability of this
mechanism is low, and it is of no interest for applica-
tions involving the electric excitation of the lumines-
cence. According to our experimental data, the temper-
ature behavior of the erbium photoluminescence virtu-
ally does not depend on the excitation quantum energy,
so that, apparently, the direct excitation is of little
importance in the excitation of the erbium photolumi-
nescence.

Another mechanism explaining the excitation of the
luminescence of a rare-earth ion involves the energy
transfer from the electron–hole pair (excited, for exam-
ple, upon interband absorption of the light) to the ion.
This mechanism can be efficient when an energy level
(or several energy levels), which is related to the rare-
earth ion, occurs in the forbidden gap of a semiconduc-
tor. In the case when the rare-earth ion gives rise to the
energy level in the forbidden gap of the semiconductor,
the excitation of carriers from the valence band (con-
duction band) to this level can produce a bound elec-
tron–hole pair or a bound exciton with the subsequent
transfer of the recombination energy to the 4f shell of
the rare-earth ion. The most probable mechanism of
this energy transfer is the so-called impurity Auger
recombination. The intracenter luminescence corre-
sponds to the transitions between the 4f levels lying
outside the forbidden gap. The 4f electrons are tightly
bound to the ion, and their states can be treated as the
internal states independent of the band structure of the
matrix. In the absence of tight binding, the energy
transfer between electronic states of the crystal and
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
strongly localized states of the 4f electrons is deter-
mined by the Coulomb interaction. The theoretical
treatment of the excitation suggests that the intracenter
Auger process provides the energy transfer to the 4f
electrons through the dipole and exchange interactions.
The efficiency of this process drastically increases if
the state (related to the rare-earth center) in the forbid-
den gap allows the localization of energy in the form of
bound excitons (or bound electron–hole pairs).

In order to elucidate the nature of these levels, we
perform a qualitative analysis of the model according to
which a rare-earth ion replaces the silicon atom in the
SiC crystal. Let us consider the so-called “vacancy”
model, which was elaborated for transition metal ions
in semiconductors [11]. According to this model, the
elimination of a host crystal atom (for example, a sili-
con atom in the Si or SiC crystal) from a semiconductor
lattice leads to the formation of a vacancy with a certain
set of energy levels and wave functions. When an impu-
rity atom occupies this vacancy, the set of energy levels
and wave functions, as a rule, changes but not too
strongly to lose their identity. The impurity atom gives
rise to its intrinsic levels; however, these levels are usu-
ally located below the top of the valence band. A simi-
lar model for rare-earth elements in the crystals A3B5
and silicon was advanced in [12]. As a result of the
removal of an atom from the host semiconductor lat-
tice, the vacancy states characterized by the a1 and t2
symmetries are formed in the forbidden gap of the crys-
tal. The next stage involves the formation of the substi-
tuting rare-earth element center, which can be treated as
the interaction between the rare-earth atom and the
vacancy. The rare-earth atom shows the 4f n6s2 elec-
tronic structure. The ground state of the 4f electrons
can have three groups of energy levels transformed
according to the a2, t1, and t2 irreducible representations
of the Td group, and the 6s shell is characterized by the
a1 symmetry. Therefore, the interaction between the 6s
shell of the rare-earth atom and the a1 state of the
vacancy leads to the formation of the bonding and anti-
bonding states. Note that the lower-lying bounding
state is occupied and most likely occurs in the valence
band, whereas the higher-lying antibonding state
(related to the rare-earth atom) is unoccupied, can lie
near the conduction band, and can serve as an electron
trap. It is assumed that, for erbium in SiC, this state is
almost completely formed by the 6s shell of erbium and
the 2s and 2p valence electrons of carbon. For simplic-
ity, let us consider the set of erbium energy levels in
cubic SiC. The state of the Er3+ ion in SiC corresponds
to the A– state; i.e., it is negatively charged. Hence, it is
necessary to consider the negatively charged silicon
vacancy with five electrons, whereas six electrons are
required for the filling of the t2 state. Reasoning from
the experimentally found charge state of Er3+ in SiC, we
should assume that one of the 4f electrons of erbium
transfers to the t2 level. As a result, we have the com-
pletely occupied level, which is located near the bottom
0
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of the valence band and, apparently, can serve as a spe-
cific hole trap.

The temperature dependence of the photolumines-
cence intensity in the 6H-SiC : Er crystal is character-
ized by two main ranges (Fig. 2). In the low-tempera-
ture range (77–240 K), the efficiency of excitation of
the erbium luminescence increases with an increase in
the temperature. In the high-temperature range (240–
400 K), an increase in the temperature is accompanied
by the quenching of the erbium luminescence. Similar
dependences were also observed for erbium in silicon
but at substantially lower temperatures [13].

The flare-up of the erbium luminescence can be
roughly described by formula (1). The experimentally
observed activation energy EA of luminescence in this
process is equal to ≈130 ± 20 meV. Since this energy
approximately corresponds to the location of donor
nitrogen levels with respect to the conduction band, it
is reasonable to suppose that an increase in the erbium
luminescence is associated with the thermal ionization
of nitrogen donors with the subsequent trapping of
electrons in the deeper erbium-related levels.

A possible scheme of energy levels in the 6H-SiC :
Er crystal is depicted in Fig. 4. We believe that, at low
temperatures, the carriers are more efficiently trapped
in the usual donor levels (most likely, nitrogen donors
in our experiments), followed by the recombination.
This is corroborated by the intense donor–acceptor
luminescence at low temperatures. This luminescence
is quenched in about the same temperature range in

Excitation
transfer

Er-related

1.54 µm

4
13/2

4
15/2

Ec

N

4f shellHost lattice

Ev

Fig. 4. Possible scheme of the energy levels and mecha-
nisms of energy transfer in the 6H-SiC : Er crystals. Single
arrows show thermal release of electrons from the donor
level, retrapping in the erbium-related level, and thermal
detrapping of electrons from the erbium level. Double
arrows demonstrate radiative transitions, and the heavy
arrow indicates the excitation transfer from the erbium-
related level to the 4f shell of Er3+ ion.
P

which the flare-up of the erbium luminescence takes
place. As the temperature increases, the electrons
undergo a thermal release from the donor levels and are
retrapped in the deeper erbium-related levels with the
subsequent transfer of energy to the 4f shell of the Er3+

ion (see scheme in Fig. 4).

Now, let us dwell briefly on the quenching of the
erbium luminescence at high temperatures. First and
foremost, we should note that our results obtained for
the temperature quenching of photoluminescence in the
SiC bulk crystals at high temperatures are in qualitative
agreement with the experimental data on the lumines-
cence in ion-implanted layers [5]. This indicates that
the processes of photoluminescence quenching occur
through similar mechanisms. The quenching of photo-
luminescence is caused by the fact that the excitation of
luminescence is accompanied by competing pro-
cesses—the release of carriers (most likely, electrons)
from the erbium-related levels followed by the nonradi-
ative recombination. The experimentally observed acti-
vation energy for the luminescence quenching EA ≈
350 meV apparently corresponds to the energy of the
erbium-related level. The mechanism of the high-tem-
perature quenching is not conclusively elucidated. It
can be assumed that, after the ionization of the erbium-
related level, the nonradiative recombination at high
temperatures occurs at the expense of the Auger recom-
bination with free carriers. As was noted by a number
of researchers, this process represents the predominant
nonradiative recombination channel for rare-earth
impurities in semiconductors. The merits of wide-gap
semiconductors are evident owing to the presence of
the deeper erbium-related levels and, hence, the higher
temperatures of the luminescence quenching. A similar
approach can also be applied in describing the quench-
ing of the vanadium luminescence and the donor–
acceptor recombination luminescence in the tempera-
ture range 77–240 K with the activation energy EA ~
130 meV. It should be emphasized that, in silicon crys-
tals, the high quantum yield of luminescence was
observed only in the case when the Er3+ ion was in a
strong negative electric field of ligands (for example,
oxygen or fluorine). Moreover, it was noted that this
field plays an essential role in an increase in the optical
activity of Si : Er [14]. It is reasonable that, in the case
of SiC, this role can be played by carbon, because the
SiC crystal possesses a considerable degree of ionicity;
i.e., in actual fact, we are dealing with the Si+C– crystal.
Therefore, the advantages of SiC also reside in the fact
that the Er3+ ion should be surrounded by a negative
ligand field in a natural way. This implies that, unlike
the silicon crystal, there is no need for an additional
doping with oxygen.
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AND DIELECTRICS
Intracenter Luminescence of Mn2+ in Cd1 – xMnxTe 
and Cd1 – x – yMnxMgyTe under Intense Optical Pumping
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Abstract—A comparative analysis of the kinetic properties of intracenter 3d luminescence of Mn2+ ions in the
dilute magnetic superconductors Cd1 – xMnxTe and Cd1 – x – yMnxMgyTe is carried out. The influence of relative
concentrations of the cation components on the position of the intracenter luminescence peak indicates that the
introduction of magnesium enhances crystal field fluctuations. As a result, the processes facilitating nonlinear
quenching of luminescence are suppressed. The kinetics of 3d-luminescence quenching in Cd1 – xMnxTe are
accelerated considerably upon elevation of optical excitation level due to the evolution of cooperative processes
in the system of excited manganese ions. © 2000 MAIK “Nauka/Interperiodica”.
The optical and magnetic properties of semicon-
ducting solid solutions of group II–VI elements with a
magnetic component from the iron group and hetero-
structures on their basis have been studied intensely
during the last two decades (see, for example, [1–3]).
These materials are dilute magnetic semiconductors
(DMS) which attract attention due to their clearly man-
ifested magnetic properties determined by a high con-
centration of ions with a large magnetic moment of the
unfilled 3d electron shell. The ion–ion exchange inter-
action results in a magnetic ordering in pairs and clus-
ters of magnetic ions. The exchange interaction of
holes and electrons with magnetic ions leads to the for-
mation of magnetic polarons. The aligning of the mag-
netic moments of ions in an external field significantly
enhances the magnetic field in the bulk of the sample by
magnetizing free carriers through the exchange mecha-
nism and giving rise to giant magnetooptical effects.

The most thoroughly studied objects are DMS
Cd1 − xMnxTe and heterostructures CdTe/Cd1 – xMnxTe. One
of the most remarkable properties of DMS is the exist-
ence of two mechanisms of excitation and relaxation of
the electron system, i.e., the conventional band mecha-
nism and the intracenter one through the energy levels
of the 3d shell of Mn2+. In Cd1 − xMnxTe, the energy gap
at T = 77 K is Eg(x) = (1.59 + 1.55x) eV, the excitation
threshold for the intracenter transitions being Et = 2.15
eV [the concentration dependence of Et is weaker than
Eg(x)]. Thus, Eg(x) > Et for x > 0.4, and the energy states
of the 3d shell are the lowest-lying excited states. The
absorption spectrum for the 3d shell is due to transi-
tions from the ground state 6A1(S) to the excited states
4T1(G), 4T2(G), 4A1(G), and 4E(G). The broad intrac-
enter luminescence band [transition 4T1(G)–6A1(S)] has
a peak near 2.0 eV, and hence, the Stokes losses are sig-
1063-7834/00/4205- $20.00 © 20836
nificant. This bright luminescence can also be excited
by a nonoptical method through the injection of carri-
ers, which makes the wide-gap Mn-containing crystals
of group II–VI elements applicable in electrolumines-
cence devices [4].

The study of the 3d luminescence of Cd1 – xMnxTe
and other DMS under a strong optical pumping is
important for a comparison with the injection-type sat-
uration of electroluminescence devices. The spectros-
copy of intracenter transitions is also of interest in other
respects. In structures with quantum wells, where
Cd1 − xMnxTe with x > 0.4 is a barrier substance, the bar-
rier-type 3d-luminescence affects the kinetics of radia-
tive relaxation in the quantum well of CdTe. Transitions
in the 3d shell are of the intercombination type, and the
moment of the Mn2+ ion decreases during its excitation
from 5/2 to 3/2, suppressing accordingly the internal
field and exchange interactions. In turn, this leads to a
photo-induced change in magnetic and magnetooptical
properties.

Other aspects of spectroscopic studies of intracenter
processes include the saturation of absorption and opti-
cal bistability in 3d-absorption bands, which are signif-
icant in the case of a strong optical excitation [5], as
well as the properties of nanocrystals of group II–VI
compounds containing Mn [6].

In recent years, considerable attention was paid to
the group belonging to II–VI semiconductors contain-
ing light elements and the heterostructures on their
basis in connection with the interest in the advance to
the short-wavelength spectral range. New multicompo-
nent DMS, like Cd1 – x – yMnxMgyTe [7], have also been
synthesized to be used in heterostructures with various
combinations of magnetic and nonmagnetic quantum
wells and barriers [8]. Trication DMS make it possible
to control independently the value of Eg, which is a
000 MAIK “Nauka/Interperiodica”



        

INTRACENTER LUMINESCENCE 837

                                           
function of x and y [Eg(x, y) = (1.59 + 1.55x + 1.80y) eV
for Cd1 – x – yMnxMgyTe, and the magnetic properties
determined by the value of x. This laid the basis for the
development of superlattices in which the potential
profile appears only in an external magnetic field and
depends on the orientation of spin moments of elec-
trons and holes [9].

Earlier [10], we reported on the concentration and
temperature dependences of saturation in intracenter
3d-luminescence in Cd1 – xMnxTe with an elevated level
of optical pumping. In the present work, we analyzed
the effect of pumping level on the kinetics of the 3d
luminescence in Cd1 – xMnxTe and its features in the tri-
cation DMS Cd1 – x – yMnxMgyTe.

1. EXPERIMENT

Single crystals of Cd1 – xMnxTe (x = 0.4–0.75) and
Cd1 – x – yMnxMgyTe (x = 0.05–0.55, y = 0.25–0.55)
were grown according to the Bridgman–Stockbarger
technique. The integrated intensity of the 2-eV
3d-luminescence band was measured on fresh cleaves
in the dc mode with a time resolution of 100 ns at T = 4
and 77 K. Optical pumping was carried out by the sec-
ond harmonic of the Nd3+ : YAG laser (photon energy,
2.34 eV; pulse duration, 0.15 µs; repetition frequency,
1 kHz; the number of photons per pulse, up to 1013).
The excitation energy density Ie at the pulse peak
reached 9 kW cm–2. In experiments with a weak pump-
ing up to 50 W cm–2, an Ar+ laser was used. The value
of Ie was measured by electrooptical scanning in a mod-
ulator ML-102A. Photoconductivity measurements
were made in pulsed electric fields up to 10 kV cm–1.

2. RESULTS

For the sake of comparison with the results of inves-
tigation of Cd1 – xMnxTe [10], we plotted the lumi-
nescence intensity Il as a function of Ie for the DMS
Cd1 – x – yMnxMgyTe. The integral intensity values were
measured at the peak of the luminescence pulse over a
2-eV band. Figure 1 shows the results obtained for two
samples Cd0.5Mn0.5Te and Cd0.25Mn0.5Mg0.25Te with the
same concentration of Mn. It can be seen that the intro-
duction of Mg significantly suppressed the effect of sat-
uration. The variation of the Mn concentration x over a
wide range from 0.05 to 0.55 does not affect noticeably
the Il(Ie) dependence. A decrease in the nonlinearity of
this dependence for the trication DMS can be due to the
enhancement of crystal field fluctuations in the solid
solution, which should be expected after the introduc-
tion into it of Mg2+ whose ionic radius (0.74 Å) is much
smaller than the ionic radii of Cd2+ (0.99 Å) and Mn2+

(0.91 Å). An increase in the spread of the values of local
fields surrounding Mn2+ ions suppresses the migration
of excitation and makes the linear radiative relaxation
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
in Mn2+ (2-eV band) more probable than possible non-
linear processes.

Figure 2 illustrates the kinetics of attenuation of the
2-eV luminescence band for various pulsed pumping
levels. An increase in Ie strongly changes the attenua-
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Fig. 1. Peak values of luminescence pulses Il in the DMS
Cd0.5Mn0.5Te (solid curve) and Cd0.25Mn0.5Mg0.25Te
(dashed curve) as a function of optical pumping intensity Ie,
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tion rate of intracenter luminescence in Cd0.5Mn0.5Te,
while the attenuation curve for Cd0.25Mn0.5Mg0.25Te at
Ie = 9 kW cm–2 corresponds to the attenuation curve for
Cd0.5Mn0.5Te for smaller values of Ie by an order of
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Fig. 3. Pulses of (a) laser radiation, (b) luminescence, and
(c) photoconduction in the DMS Cd0.5Mn0.5Te, T = 77 K
(the curves are normalized). The inset shows the photocur-
rent Ip as a function of Ie for various instants of recording t
relative to the photoconduction peak (indicated by arrows).
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0.5 (Mn–Cd substitution). The lines are drawn for better
visualization.
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magnitude. This is in accord with the attenuation of
luminescence saturation due to the introduction of
magnesium into the solid solution.

The obtained results demonstrate the evolution of a
certain effective mechanism of nonlinear quenching in
Cd1 – xMnxTe at high levels of Ie, which limits radiative
relaxation, and the suppression of this mechanism as a
result of introduction of magnesium into the solid solu-
tion.

The photocurrent pulse Ip (Fig. 3) was obtained as a
result of pumping of the DMS Cd0.5Mn0.5Te with
Eg(0.5) = 2.38 eV by a light pulse with a photon energy
of 2.34 eV; i.e., the interband transition does not take
place, and the pumping occurs only to the absorption
band of the 3d shell of Mn2+ ions. The inset in Fig. 3
shows the Ip(Ie) dependences for various instants of
recording the photocurrent relative to its maximum
value. This dependence is superlinear for the recording
at the instant of pumping of the crystal by the laser
pulse; i.e., it is typical of the two-photon (two-stage)
formation of free carriers as a result of pumping of the
3d shell.

The effect of cation substitution on the position of
the peak value Em of the Mn2+ intracenter luminescence
on the energy scale can serve as an indicator of varia-
tion in the crystal field. The measurements made on a
batch of Cd1 – x – yMnxMgyTe samples with various val-
ues of x and y show that the Mn–Cd substitution at a
fixed Mg concentration affects the value of Em only
slightly, but an increase in y under the Mg–Cd and Mg–
Mn substitutions noticeably shifts the value of Em to the
short-wavelength range (Fig. 4). Thus, the assumption
concerning the enhancement of fluctuations of the local
field acting on Mn2+ ions as a result of the introduction
of Mg is confirmed, and this should significantly affect
the nonlinear properties of intracenter luminescence in
Cd1 – x – yMnxMgyTe. An increase in the concentration of
defects accompanying the complication of the solid
solution composition also contributes to the change in
the properties of Mn2+ intracenter luminescence in the
trication DMS. Among other things, the formation of
these defects decreases the quantum yield of lumines-
cence as compared to Cd1 – xMnxTe.

3. DISCUSSION 

In our previous publication [10], we noted that the
nonlinearity of the relation Il(Ie) is determined to a con-
siderable extent by the transfer of excitation from a
Mn2+ ion to a similar excited ion. Such a mechanism of
cooperative quenching, which is presented schemati-
cally in Fig. 5, was used, for example, for crystals acti-
vated by rare-earth ions [11]. The population of
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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excited states of Mn2+ is described by the following
equations:

(1)

where three of the four parameters w1, q1, w21, and w2
are independent.

The quantum hν = 2.34 eV transforms the Mn2+ ion
from state 0 (energy level 6A1) to state 1 (level 4T1).
Level 1 is characterized by the concentration n1, the
rate of linear relaxation w1 to state 0, which has both
radiative and nonradiative components, and the cooper-
ative quenching rate w+ = 2q1n1 (q1 is the coupling con-
stant). The value of w+ is determined by the probability
of the event (1 + 1)  (0 + 2) in which two adjacent
Mn2+ ions occupying the excited state 1 are trans-
formed into a unexcited ion (state 0) and an ion excited
to state 2 (see Fig. 5). The cooperative process is also
determined by the efficiency of migration of Frenkel-
type excitons over Mn2+ ions. In turn, the migration
depends on the manganese concentration, temperature,
crystal field fluctuations, and the rate of the linear relax-
ation 1  0, the introduction of magnesium changing
the two last parameters. Equation (1) also contains the
following quantities: the coefficient of absorption α at
the frequency hν; the pulsed pumping intensity Ie(t);
and the concentration n2 of Mn2+ ions in state 2, which
is determined by the following components: (1) the
cooperative excitation rate w+, (2) the rate w21 of linear
relaxation from state 2 to state 1, and (3) the rate w2 of
linear (radiative and nonradiative) relaxation from state 2
to any state except state 1.

Thus, the contribution of the cooperative process to
nonlinear quenching is determined by the relation
between the rates w1, w2, and w21. In the weak pumping
approximation disregarding quadratic terms, we have
dn1/dt = αIe/hν – w1n1; this relation specifies the linear
relaxation rate, which determines the intensity and
kinetics of the attenuation of the 2-eV intracenter emis-
sion band (transition 1  0). An analysis of the exper-
imental data obtained at T = 77 K gives w1 = 7 × 104 s–1

for the DMS Cd0.5Mn0.5Te (the attenuation time τ1 =
15 µs). As expected, the value of w1 for
Cd0.25Mn0.5Mg0.25Te is larger and amounts to 4 × 105 s–1.

The migration of the excitation corresponding to
state 1 of the Mn2+ ion is enhanced by crystal heating.
Numerous experiments indicate a considerable
decrease in the difference of configuration coordinates
for states 0 and 1 in the temperature range of 80 K and
above [12, 13]. Thus, the elevation of temperature not
only intensifies the processes involving photons, but
also lowers the energy barrier for excitation hopping.
The migration acquires more pronounced “resonant”

dn1/dt G t( ) w1n1– 2q1n1
2– w21n2,+=

dn2/dt q1n1
2 w21n2– w2n2,–=

G t( ) α Ie t( )/hν ,=
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
features, where considerable changes in the ligand
coordinates are not required for the excitation of man-
ganese ion. As regards the dynamics of the cooperative
process, the 1  0 transition is accompanied at low
temperatures by considerable Stokes losses, while the
configuration coordinate in the 1  2 transition
changes insignificantly. This means that the coopera-
tive process even at low temperatures does not require
a considerable vibrational relaxation in the environ-
ment of an already excited Mn2+ ion (state 1) during the
transfer of the second portion of excitation to it.

Linear relaxation from state 2 is described by the
rate w2 and can occur via the following routes: (1) the
transfer of excitation from level 2 of a Mn2+ ion to band
states, followed by the return of excitation from the bot-
tom of the conduction band to level 1 of the Mn2+ ion,
and (2) radiative or nonradiative 2  1 relaxation
within a manganese ion. The probability of self-ioniza-
tion from state 2 to the band should be considerably
higher than the intraionic relaxation probability, since
level 2 is in the region of a high density of states of the
conduction band. The transfer of an electron to the con-
duction band results in its rapid relaxation to the bottom
of the band, which is accompanied by the emission of
optical phonons. This state can be described by the sec-
ond equation from system (1). After this, either the for-
mation of a Wannier exciton and its radiative recombi-
nation at the rate w2 (interband emission) take place, or
the electron returns to the 3d levels of manganese at
rate w21. The ratio w2/w21can be estimated by compar-
ing the intensities of interband and intraionic lumines-
cence, whose ratio depends on the mutual positions of
the bottom of the conduction band and the excitation
threshold for the 3d luminescence of Mn2+. The inter-
band exciton luminescence is known to decrease rap-

Mn2+ Mn2+

w1 w1

11

0 0

2 2

G(t) G(t)

4T1

6A1

w21w+ w– w2

Fig. 5. Three-level diagram of Mn2+ ions in the DMS
Cd0.5Mn0.5Te, illustrating the mechanisms of cooperative
excitation and its relaxation (see text for notation).



840 AGEKYAN et al.
idly upon an increase in x (starting from x = 0.4), and
hence, in the Cd0.5Mn0.5Te sample, it is an order of
magnitude weaker than the intraionic luminescence of
manganese. This mechanism explains the low photo-
sensitivity of CdMnTe and CdMnMgTe crystals. Elec-
trons appear in the conduction band as a result of the
cooperative process and leave it for energy levels of
manganese upon rapid cooling. Under these conditions,

the photocurrent pulse should be proportional to (t).
The results of processing of the n1(t) dependence
(kinetics of intracenter luminescence) and of the photo-
current pulse are in accord with this dependence.

The proposed model correctly describes the experi-
mentally measured kinetics of 2-eV band attenuation for
the pumping levels of Cd0.5Mn0.5Te, which are close to the
minimum and maximum levels for the following param-
eters: w1 = 7 × 104 s–1 (τ = 15 µs), q = 4 × 10–13 s–1 cm3,
w21 = 5 × 104 s–1, and w2 = 2 × 104 s–1.

For the maximum pumping levels, the rate of the

cooperative process is q  = 4 × 105 s–1, which is an
order of magnitude higher than the linear relaxation
rate w1. The maximum pumping corresponds to the fol-
lowing populations of levels 1 and 2: n1 = 9 × 1017 and
n2 = 2 × 1017 cm–3. For moderate pumping levels, the
experimental results are in accord with the model only
for slightly different values of the parameters, which
calls for the refinement of the model.

Another reason behind the nonlinearity of Il(Ie) can
be the two-stage (or two-photon) absorption of the light
in an individual Mn2+ ion. In this case, the equations
determining the kinetics of population of levels 1 and 2
can be written as

where σ is the cross-section of the two-state absorption
0  2 via level 1. In this case, the process can also be
described by four parameters from which three are
independent. An analysis of our experimental results

n1
2

n1
max

dn1/dt G t( ) w1n1– σIe t( )n1– w21n2,+=

dn2/dt σIe t( )n1 w21n2– w2n2,–=

G t( ) α Ie/hν ,=
P

proves that such a mechanism cannot satisfy our data
on the kinetics of the 2-eV band even at the maximum
pumping level. The fundamental difference from the
model of cooperative process lies in that the two-pho-
ton and two-stage mechanisms are limited in time by
the duration of a laser pulse.

Thus, we have analyzed the nonlinearity of intrac-
enter luminescence of Mn2+ ions in DMS Cd0.5Mn0.5Te,
which is associated with cooperative quenching, and
estimated the factors suppressing the nonlinearity as a
result of introduction of the third cationic component
(magnesium) into this DMS.
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Abstract—A study is reported of donor EPR spectra in compensated 6H-SiC crystals with donor concentra-
tions (ND – NA) varied from 8 × 1017 to 5 × 1016 cm–3, performed within a temperature interval from 77 to 170 K
at a frequency of 37 GHz. A second paramagnetic state of nitrogen in silicon carbide has been found to exist,
and it is associated with its excited 1S(E) state becoming paramagnetic after thermal ionization of the donor
electrons from the 1S(A1) to 1S(E) level. The EPR spectrum of nitrogen in the 1S(E) state is a single line with
an anisotropic width because of the unresolved hyperfine structure. A light-induced charge transfer between the
ground, 1S(A1), and excited, 1S(E), nitrogen states has been observed. The valley-orbit splitting and the energy
required to ionize donor electrons from the 1S(E) to higher lying excited states have been determined for the
cubic nitrogen sites. The parameters of a structural defect, characteristic of n-type 6H-SiC compensated crys-
tals, have been established. © 2000 MAIK “Nauka/Interperiodica”.
Our previous study [1] of the EPR spectra of donors
in 6H-SiC with ND – NA varied from 2 × 1018  to 1 ×
1016  cm–3 was performed in a broad temperature range
from 4.2 to 160 K at a frequency of 9 GHz, and at T =
4.2 K at 140 GHz. The high-temperature EPR spectrum
consisted of a single line (INk), while the spectrum
obtained at a low temperature featured two triplets of
hyperfine (HF) EPR lines of nitrogen at two cubic lat-
tice sites (Ik1, Ik2), which coincide in g factor at 9 GHz,
and a single line (Ih) due to nitrogen in the hexagonal
position coinciding with the central line of the triplet at
the frequency of 9 GHz.

The EPR spectrum of nitrogen measured at T = 4.2 K
and a nitrogen concentration (ND – NA) ≈ 3 × 1017 cm–3

saturated, which permitted one to detect, by properly
increasing the microwave power, a single line ID, which
coincided with the central line of the nitrogen triplet at 9
GHz. It was found to be impossible, however, to isolate
the ID line and to perform studies in an intermediate tem-
perature range because of its overlapping with the higher
intensity EPR nitrogen lines. At the same time, when the
nitrogen EPR lines begin to weaken in intensity, a single
line coinciding with ID at 9 GHz appears again in the
EPR spectrum. This permitted the conclusion that the
low-temperature line ID and the high-temperature one INk

belong to the same paramagnetic center responsible for
the second donor state in silicon carbide.

Because the single EPR line INk was observed at
higher temperatures than the nitrogen EPR spectrum, it
1063-7834/00/4205- $20.00 © 20841
was argued that this line belongs to a donor with a
deeper level than that of nitrogen. However, the ioniza-
tion energy derived from the high-temperature falloff
of the INk line, 60 meV, which is lower than the nitrogen
ionization energy, could not be reconciled with the
above conclusion.

To establish the nature of the low-temperature, ID,
and the high-temperature, INk, lines in the donor EPR
spectrum, a study has been carried out of donor EPR
spectra in silicon carbide samples of the 6H polytype,
with donor concentrations ND – NA varying from 8 ×
1017 to 5 × 1016 cm–3 and different compensation ratios,
within a temperature range of 77 to 170 K and at a fre-
quency of 37 GHz. The use of an EPR radio spectrom-
eter with a higher operating frequency of 37 GHz made
it possible to resolve the nitrogen EPR spectra due to
the three inequivalent lattice sites, to determine the
parameters of the ID and INk single lines, and to establish
that the ID line observed at high power levels and the INk

line appearing in the EPR spectrum at high tempera-
tures are of a different nature.

1. SAMPLES AND EXPERIMENTAL TECHNIQUE

A study was made on compensated samples of the
6H-SiC polytype grown by the Lely and sublimation-
sandwich methods at 1900°C, which had an uncompen-
sated donor concentration ND – NA that varied from 8 ×
1017 to 5 × 1016 cm–3.
000 MAIK “Nauka/Interperiodica”



 

842

        

KALABUKHOVA 

 

et al

 

.

                               
The measurements were carried out within a tem-
perature interval of 77 to 170 K on an EPR radiospec-
trometer with an operating frequency of 37 GHz.

The temperature was controlled by means of a resis-
tive heater mounted on the resonator. The sample tem-
perature, measured with a germanium transducer, was
maintained to no less than 0.3 K. The UV light to illu-
minate a sample was supplied from a DRSh-250 lamp
through a UFS-1 color filter. The light was fed into the
resonator through a lightguide, with the sample
attached to its face end.

13170 13180 13190 13200 13210
H, G

ID

Ik1

Ik2

a

b

Fig. 1. EPR spectrum of donors in 6H-SiC with (ND – Na) ≈
4 × 1017 cm–3 obtained at two microwave power levels dif-
fering by 30 dB, Pa < Pb. ν = 37 GHz, T = 77 K, H || c.

EPR spectral parameters of donors in n-type 6H-SiC

Spectra g|| g⊥ A, ∆H, G

Ih 2.0048
± 0.0002

2.0028
± 0.0002

∆H|| = 2.5
∆H⊥  = 1.8

Ik1 2.0040
± 0.0002

2.0026
± 0.0002

11.8

Ik2 2.0037
± 0.0002

2.0030
± 0.0002

12.0

INk 2.0038
± 0.0002

2.0028
± 0.0002

∆H|| = 6.0
∆H⊥  = 4.5

ID 2.0020
± 0.0002

2.0029
± 0.0002

∆H|| = 4.0
∆H⊥  = 3.0
P

2. TEMPERATURE BEHAVIOR 
OF THE EPR SPECTRA OF DONORS

IN 6H-SiC

Figure 1 presents an EPR spectrum of donors in
6H-SiC obtained at a frequency of 37 GHz at T = 77 K
using different power levels. At low power levels, the
EPR spectrum is actually a sum of two spectra, due to
the two nitrogen cubic sites. As the power level
increases, an additional single EPR line, ID, appears,
which can be isolated from the 37-GHz nitrogen spec-
trum and has the parameters listed in the table. As seen
from the table, the anisotropy sign of the g factor of the
additional line (g⊥  > g||) is opposite to that observed
with donor states in silicon carbide, and its width is
anisotropic. This gives one grounds to assign the
observed line with an unresolved HF structure (HFS) to
a structural defect of an acceptor nature.

Figure 2 displays a donor EPR spectrum of 6H-SiC
measured at 37 GHz within the temperature range from
77 to 140 K. As the temperature increases, the nitrogen
EPR line triplets fall in intensity, a process accompa-
nied by a growth of the single line INk at the center of
the EPR spectrum, with parameters different from
those of the ID (see table), which argues for the ID and
INk lines having a different nature.

An analysis of the temperature behavior of the
donor EPR spectra carried out at 37 GHz showed that
not only the intensity and width of the EPR lines, but
also their HF splitting, are sensitive to temperature. As
seen from Fig. 3, as the temperature increases, the EPR
triplet lines due to the nitrogen cubic positions decrease
in intensity and broaden, and their HF splitting
decreases. Note that the HFS remains isotropic. This
process is accompanied by the appearance of a single
broad line INk, which grows in intensity and decreases
in width. On reaching the maximum intensity and min-
imum width, the line begins to behave like that of a con-
ventional paramagnetic center, whose signal broadens
and drops in amplitude with increasing temperature
(see Fig. 2).

A temperature-dependent behavior of the HF split-
ting of nitrogen EPR lines was observed earlier for
nitrogen states with small valley-orbit splittings in
6H-SiC [2] and 3C-SiC [3]. The HF splitting of the
nitrogen triplet was found to decrease at temperatures
from 30 to 60 K in 6H-SiC for the hexagonal nitrogen,
and from 11 to 40 K in 3C-SiC; this was accompanied
by the formation of a single line in the high-tempera-
ture region.

The decrease of the HF splitting was explained as
being due to a thermally induced electron transfer from
the 1S(A1) to the closest excited 1S(E) state separated
by the valley-orbit splitting. The temperature depen-
dences of the hyperfine splittings were used to deter-
mine the valley-orbit splittings between the 1S(A1) and
1S(E) nitrogen states in cubic silicon carbide, and for
the hexagonal position of nitrogen in 6H-SiC.
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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These data served as a basis for the assumption [4]
that the same pattern should also be observed for the
cubic nitrogen positions, but at higher temperatures
because of the substantially higher energies of their
ionization and the valley-orbit splittings. This assump-
tion has not, however, been supported thus far by the
experimental evidence.

The appearance and temperature behavior of the INk

linewidth, as well as the decrease of the hyperfine split-
ting of the nitrogen triplets at cubic lattice sites with
increasing temperature can be interpreted in the follow-
ing way.

Within the temperature interval of 100 to 140 K,
electrons are thermally transferred from the 1S(A1) sin-
glet to the 1S(E) doublet nitrogen state, where the elec-
tron has zero probability of being located near the
nucleus. This results, on the one hand, in a decrease of
the hyperfine splitting of the nitrogen triplets corre-
sponding to the 1S(A1) nitrogen state, and on the other,
in the appearance of single lines with an anisotropic
width that correspond to nitrogen triplets in the 1S(E)
state, with the HFS remaining unresolved because of its
small magnitude. When operating at 37 GHz, the single
lines due to the two cubic nitrogen positions coincide,
and the EPR spectrum features one INk line with a g fac-

Fig. 3. Temperature behavior of the EPR hyperfine structure
of nitrogen occupying cubic lattice sites in 6H-SiC. (ND –

NA) ≈ 4 × 1017 cm–3, ν = 37 GHz, H || c.
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tor intermediate between those corresponding to the
two cubic nitrogen positions in the 1S(A1) ground state
(see table). As the temperature increases, the intensity
of the single INk line increases, while its width and,
hence, the magnitude of the unresolved HFS, reach a
minimum value and the largest anisotropy, where the
donor electrons already reside in the 1S(E) excited
state. The table gives the minimum width of the INk line
for two magnetic-field orientations derived for 6H-SiC
with (ND – NA) ≈ 4 × 1017 cm–3 for a temperature T =
140 K. As the temperature is increased still more, the
INk line broadens and decreases in intensity starting
from 140 K, due to the donor electrons being ionized
from 1S(E) to higher lying excited states or to the con-
duction band.

It should be pointed out that the temperature inter-
vals where the donor electrons are thermally ionized
from the 1S(A1) and 1S(E) states will change, depend-
ing on the compensation ratio of the crystal under
study. For example, as the compensation ratio
increases, the electrons will become ionized at progres-
sively higher temperatures [1].

An analysis of the temperature dependences of the
nitrogen triplet HF splittings in the 1S(A1) and 1S(E)
states and of the INk linewidth permitted one to obtain a

13170 13180 13190 13200 13210 13220

79 K

95 K

105 K

111 K

116 K

122 K

Ik1

Ik2

H, G

Fig. 2. Temperature behavior of a donor EPR spectrum in
6H-SiC. (ND – NA) ≈ 4 × 1017 cm–3, ν = 37 GHz, H || c.
0
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Fig. 4. Temperature dependence of the hyperfine splitting A
of nitrogen at cubic sites of the 6H-SiC lattice. The slope of
the curve is fitted by the exp(–ED/kT) function with ED =
10 meV.

Fig. 5. Temperature dependence of the INk EPR linewidth in
6H-SiC obtained for H || c. The three different slopes of the
curve are fitted by the exp(–ED/kT) function with ED1 = 21,
ED2 = 34, and ED3 = 60 meV.
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Fig. 6. EPR spectrum of donors in n-type 6H-SiC crystals
obtained at T = 77 K after cooling a sample (a) in the dark
and (b) under UV illumination.
P

number of energy characteristics of nitrogen donors, in
both the ground and excited states.

Figure 4 presents the temperature dependence of the
HF splitting of nitrogen occupying cubic lattice sites in
the 1S(A1) state measured in the temperature interval
from 100 to 120 K. The observed decrease in the hyper-
fine splitting can be fitted by the following expression

(1)

with ED = 10 meV, where A0 is the hyperfine splitting of
the 1S(A1) state, and ED is the electron ionization
energy from the 1S(A1) level.

Presented in Fig. 5 is the temperature dependence of
the INk linewidth, which can be divided in three sections
in the region from 100 to 170 K. Within the 100–120 K
interval, the main contribution to this linewidth is due
to the broadening of the nitrogen triplet components in
the 1S(E) state, which becomes manifest in the broad-
ening of the INk line, whereas from 120 to 140 K the
dominant contribution is due to the decrease of the
hyperfine splitting of the nitrogen triplets in the 1S(E)
state, which will bring about a narrowing of the INk line.
The two different slopes of the temperature dependence
of the INk linewidth can be fitted by an exp(–ED/kT)
function with ED = 34 and 21 meV, respectively, which
add up to give the electron ionization energy from the
1S(A1) to the 1S(E) state separated by the valley-orbit
splitting: Ev. –0. = 34 + 21 = 55 meV. This value agrees
with the magnitude of the valley-orbit splitting derived
[1] from the temperature dependences of the EPR line
intensities of nitrogen occupying the cubic lattice sites.

The ionization energy obtained from the slope of the
temperature dependence of the INk linewidth in the 140–
170 K interval, where electrons are ionized from the
1S(E) state to higher lying excited 2p states or to the
conduction band, is 60 meV; this value agrees with the
ionization energies derived [1] from the high-tempera-
ture slope of the temperature dependence of the INk line
intensity in samples with different compensation ratios.

Thus, computer analysis of the temperature behav-
ior of EPR spectra of nitrogen in cubic lattice positions
and of the corresponding energy characteristics permits
the conclusion that, above 120 K, donor electrons are
ionized from the 1S(A1) to the 1S(E) level, and that the
observed high-temperature INk EPR line is due to nitro-
gen atoms in the 1S(E) excited state.

3. LIGHT-INDUCED CHARGE TRANSFER
IN NITROGEN PARAMAGNETIC STATES

The above conclusions can be complemented by a
study of the charge transfer in nitrogen paramagnetic
states in n-type 6H-SiC samples illuminated by light in
the intrinsic absorption region. Figure 6 presents a
donor EPR spectrum obtained on n-type 6H-SiC sam-
ples at T = 77 K after their cooling in the dark and under

A A0 1 e
ED/kT–

–( )=
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UV illumination. One readily sees that crystals cooled
in the dark at T = 77 K produce two triplets of hyperfine
EPR lines due to nitrogen occupying the two cubic
positions. When the samples are cooled under UV illu-
mination, the EPR spectrum obtained at T = 77 K rep-
resents a single line with a g factor coinciding with that
of the INk line. After switching off the UV light at the
low temperature, the EPR spectrum does not change,
and only after the crystal has started to warm up in the
absence of UV illumination does the single line begin
to drop in intensity, with its width varying by the law
characteristic of the INk line (see Fig. 5), to finally dis-
appear above 200 K.

The observed behavior of the donor EPR spectra
obtained on crystals cooled under UV illumination
indicates that the nonequilibrium electrons created by
as interband light at a high temperature (T > 140 K) are
trapped by ionized nitrogen atoms to the 1S(E) level, to
remain frozen-out on this level as the temperature is
lowered still more. This can be explained by the fact
that, for T > 120 K, donor electrons are already capable
of localizing at the 1S(E) level, whereas their trapping
by the 1S(A1) level can only occur at a lower tempera-
ture. The trapping of electrons to the 1S(A1) level can
only take place when they are thermally ionized from
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
the 1S(E) level, but not when the temperature is low-
ered.

Thus UV illumination can be used for optical
recharging of the ground and excited nitrogen states.
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Abstract—A variational method is proposed that allows one to take into account electron–electron correla-
tions. The variational parameters are the coordinates of the center of a one-particle atomic orbital. The displace-
ment introduced in this way also makes it possible to graphically describe the redistribution of the electron den-
sity under an anisotropic external action in terms of a finite initial basis. A generalization of the traditional MO-
LCAO scheme in the framework of the model proposed is considered. © 2000 MAIK “Nauka/Interperiodica”.
The description of electron correlations is a funda-
mental problem in the theory of atoms, molecules, and
solids. This problem is especially important for systems
with a high density of excited states, in which even a
small perturbation may lead to a radical rearrangement
of the energy spectrum, as well as to a modification of
the ground state, in particular, to the formation of a
strongly correlated state. In such a situation, a satisfac-
tory description of the ground state of the system in
terms of the initial unperturbed basis requires a large
number of functions, and hence is difficult to be imple-
mented in practice and not very informative. This also
applies to atomic systems for which a description of
some specific correlation effects in the Hartree–Fock
approximation requires a large number of configura-
tions. A version of the variational method for the search
of the energy and the wave function of the ground state
of the system may serve as an alternative approach in
this case.

In this paper, we consider a direct variational proce-
dure in which the variational parameters are the coordi-
nates of the center of a one-particle atomic orbital as
one such version for a many-electron atom or a cluster.
The displacement introduced in this way provides a
visual interpretation of the change in the electron den-
sity distribution, which allows one to use symmetry
arguments for constructing a trial wave function. In the
traditional MO-LCAO scheme with a limited set of
one-particle functions, displaced electron shells make it
possible to take into account additional multipole–mul-
tipole interactions and to obtain new states with unique
properties.

By way of an example demonstrating the potential-
ities of the model, we consider, in the first part of this
work, a two-electron configuration located in a central
Coulomb field and constructed from s-type one-particle
functions displaced from the center of the field. In order
to illustrate physically simple features of the model
1063-7834/00/4205- $20.00 © 20846
with the help of specific analytic calculations, avoiding
the use of a large number of variational parameters, we
choose the simplest form of the radial dependence of
the one-particle function (6) with a single variable
parameter Z playing the role of the effective charge. An
analysis of the energy functional leads to the conditions
in which the energy minimum corresponds to an elec-
tron configuration with nonzero displacements. In a
certain situation, the minimum energy corresponds to
several different directions of displacement. In this
case, in analogy with the description of the collective
motion of nucleons in nuclei [1] and the effects of non-
adiabaticity in molecular spectroscopy [2], correlated
physical states are introduced in the form of a superpo-
sition of displaced biorbitals degenerate in energy.
Such states can make a correlated contribution to the
orbital current. In the last section, a generalization of
the traditional MO-LCAO scheme in the model of
mobile electron shells is considered.

1. GENERAL ANALYSIS 
OF A TWO-ELECTRON CONFIGURATION

Let us consider the problem of two electrons in a
given atomic potential, i.e., the simplest situation in
which electron–electron correlations appear. The
orbital part of the singlet two-electron wave function
formed from displaced one-particle orbitals can be
written as

(1)

where a and b are the displacement vectors of one-par-
ticle orbitals (Fig. 1), and η is the normalization factor.
Henceforth, we shall consider only real one-particle
functions of the s-type. In this case, we have

(2)

Ψ r1 r2; a b, ,( )

=  η 1– ψ r1 a–( )ψ r2 b–( ) ψ r1 b–( )ψ r2 a–( )+[ ] ,

η2 2 1 S2 a b,( )+( ),=
000 MAIK “Nauka/Interperiodica”
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where S(a, b) is the overlap integral for one-particle
orbitals. The Hamiltonian of the problem, written in
atomic units (ε0 = me4/"2 = e2/a0, a0 = "2/me2), has the
form

(3)

The variational procedure is carried out for the total
energy functional of the system

(4)

Taking into account expression (1), we obtain

(5)

where the following matrix elements have been intro-
duced: t(a, a) for the kinetic energy of an electron
between the functions of the same center, u(a, a) for
the interaction of an electron with the central atomic
field between the functions of the same center, t(a, b)
for the kinetic energy of an electron between the func-
tions of different centers, u(a, b) for the interaction of
an electron with the central field between the functions
of different centers, and c(a, b) and a(a, b) are the
direct and exchange components of the electron–elec-
tron interaction, respectively. The expression for t(a,
a) is a one-center integral, whereas S(a, b), u(a, a),
t(a, b), c(a, b), and a(a, b) are two-center integrals
and u(a, b) is a three-center integral.

In the subsequent analysis, for one-particle orbitals
we shall take the Slater functions characterized by the
index k and the effective charge Z:

(6)

where the normalization factor has the form

(7)

The expressions for matrix elements are given in Table 1.

Reasoning only from expression (5) and the form of
the matrix elements, we can formulate some statements
concerning the extreme values of the vectors a and b.
Introducing the vectors 

(8)

Ĥ –
∆1

2
-----

∆2

2
-----–

Z0

r1
-----–

Z0

r2
-----–

1
r1 r2–
------------------.+=

E Ψ{ } Ψ Ĥ Ψ〈 〉≡ E a b,( ).=

E a b,( ) 1

1 S2 a b,( )+
------------------------------ 2t a a,( )[=

– Z0 u a a,( ) u b b,( )+( ) 2S a b,( )t a b,( )+

– 2Z0S a b,( )u a b,( ) c a b,( ) a a b,( )+ + ] ,

ψ r( ) NZ k, rke Zr– ,=

NZ k,
2Z( )k 3/2+

4π 2k 2+( )!
---------------------------------.=

q+
1
2
--- a b+( ), q–

1
2
--- a b–( )= =
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and using a coordinate system with the center at q+ = 0,
we note that q– appears only in the expressions for
u(a, a) + u(b, b) and u(a, b):

(9)

These expressions are invariant to inversion in the
space of displacement vectors, and hence q+ = 0 is a
singular point in the space of the vectors q+. If the one-
particle function ψ is of the s-type, the surfaces E{Ψ} =
const in the space of the vectors q+ are spheres, and the
point q+ = 0 is either a minimum or a maximum. In the
general case of an arbitrary angular dependence of the
one-particle function ψ, the point q+ = 0 can also be a
saddle point.

It is clear from physical considerations why we sin-
gle out the point q+ = 0: if a = –b, such a configuration
can minimize the electron–electron repulsion for the
given interaction with the central field. This is con-
firmed by the results of numerical minimization of the
energy functional for the 1s2 configuration (k = 0) pre-
sented in Tables 2 and 3. Thus, we can restrict our con-
sideration to the function

(10)

which reduces the number of variational parameters
considerably. For the functions (6), the total energy
functional depends only on q = |q | and not on the direc-
tion of q.

The parameter Z played the role of a free parameter
in the above calculations. This parameter is responsible
for the additional mechanism of the electron density
redistribution, along with displacements of electron
shells. In the case of an isolated atom, Z can also be nat-
urally regarded as a variational parameter since, in this

u a a,( ) u b b,( )+

=  
rd

r q+–
----------------- ψ2 r q––( ) ψ2 r q–+( )+( ),∫

u a b,( ) rd
r q+–
-----------------ψ r q––( )ψ r q–+( ).∫=

Ψ r1 r2; q,( )

=  η 1– ψ r1 q–( )ψ r2 q+( ) ψ r1 q+( )ψ r2 q–( )+[ ] ,

a b

Fig. 1. Displacement vectors a and b that characterize the
position of the centers of one-particle orbitals relative to the
atomic center.
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 are the expansion coefficients
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2Z( )k 3 2⁄+

4π 2k 2+( )!
---------------------------------

–1( )l n 1+

2 j 1– 
  n' 1+

l 
 

max 0 2 j n– 1–,{ }=

min 2 j n', 1+{ }

∑

)!-----

ρsCs
n n',( )

4k k 1+( ) ρsCs
k k 2–,( )

s 0=

2k

∑+

k 2+ )!
----------------- ρlGl

k( )

l 0=

4k 2+

∑

Table 1.  Explicit form of calculated matrix elements involving displaced orbitals

Definition Matrix elements for one-particle states ψk(r) = N

t(a, a)

u(a, a)
, where 

S(a, b)
, where ρ = Z|a – b|, 

t(a, b)

c(a, b)

where 

drψk r( ) –
∆
2
--- 

  ψk r( )∫ Z2

2 2k 1+( )
-----------------------

dr
r
-----ψk

2 r a–( )∫ Z
1
ã
---

e–2ã
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--------- 1 l
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  2ã( )l

l!
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∑– α̃ Zα=
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k k,( )ρs

s 0=

2k 2+

∑ A j
n n',( )

l

=

a

b 
  a!

b! a b–( )!
------------------------;= Cs

n n',( ) A j
n n',( )

2 j 1+
--------------- 

n n' 2 2 j–+ +(
s 2 j–( )!

------------------------------------
j 0=

s
2
---

∑=

2n n' 3+ +

4π
------------------- x a– ne– x a– x b– n'e– x b– xd∫ e–ρ

s 0=

n n' 2+ +

∑=

drψk r a–( ) –
∆
2
--- 

  ψk r b–( )∫ –Z2 e–ρ

2 2k 2+( )!
------------------------- ρsCs

k k,( )

s 0=

2k 2+

∑ 4 k 1+( ) ρsCs
k k 1–,( )

s 0=

2k 1+

∑–

dr1 r2d

r1 r2–
------------------ψk

2 r1 a–( )ψk
2 r2 b–( )∫ Z

1
ρ
---

e–2ρ

2k 2+( )ρ
----------------------- ρl2

l 2k 2 1–+( )
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--------------------------------- e–2ρ

22k 2+ k 1+( ) 2(
------------------------------------–

l 0=

2k 1+
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here NZ, k = 

r Legendre functions Q2s(x): 

2Z( )k 3 2⁄+

4π 2k 2+( )!
---------------------------------

n
) x( ) Σ̃s n,

m( )
x( ) e–x

xn 2+
-----------Σ̃s n,

m( )
x 1,( ); –=

~

l– s 1+ + )!
2l 2s 2+ + )!
--------------------------------;

; Ei –x( ) –
e–t

t
------ t;d

x

∞

∫=

t 4t 3+( ) 2t 2l 2+ +( )!
1– ) s t 1+ +( ) t l–( )! t l 1+ +( )!

------------------------------------------------------------------------------
Table 1.  (Contd.)

Definition Matrix elements for one-particle states ψk(r) = Nz, kr
ke–Zr, w

a(a, b)
ψk(r1 – a)ψk(r2 – b)

× ψk(r1 – b)ψk(r2 – a)

, 

where 

coefficients  and  define the Legendre polynomials P2s(x):

 and the second-orde

dr1 r2d

r1 r2–
------------------∫ Z

ρ4k 5+

2k 2+( )![ ]2
----------------------------- 4s 1+( ) ρnFs n,

k 1+( ) ρ( ) e–ρΣs 0,
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n 0=

2k 2+

∑
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k 1+

∑

Fs n,
m( ) ρ( ) 1
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m s,( ) 2 j( )!
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--------------; B j
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j
n 1+

2
------------=

m

∑ ar
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s( ) ; Σs,
m(
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∑= =

Σ̃s n,
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x ξ,( ) 2i n 1+ +( )!
x2i
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m s,( ) xξ( )t

t!
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t 0=
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∑
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∑=
~

Σ̃s n,
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2x
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m s,( ) σ2i n l,+
s( ) 1( )
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∑
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Q2s x( ) 1
2
--- x 1+
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Table 1.  (Contd.)

Definition Matrix elements for one-particle states ψk(r) = Nz, kr
ke–Zr, wh

u(a, b)
ψk(r – a)ψk(r – b)
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case, the atomic potential is the only factor forming the
electron density profile:

(11)

It should be noted, however, that a correlated state of
the type of displaced electron shells can be formed with
a high probability in a crystal from the given set of
functions with a definite value of Z (e.g., with that min-
imizing the energy of an isolated atom) to minimize a
given crystal potential characterized by a parameter Z0.
It is also obvious that the variation of the parameter Z
leads only to a certain isotropic variation of the electron
density. Consequently, in the case of an anisotropic per-
turbation, it is impossible to describe the rearrangement
of the electron density just by the variation of the effec-
tive charge. On the other hand, this problem can in prin-
ciple be solved easily by using the displacement q with-
out resorting to a large number of configurations.

2. EXPANSION OF TOTAL ENERGY 
FUNCTIONAL

The function (10) possesses the following property:
its expansion in powers of q near q = 0 contains no lin-
ear term. Indeed, since

(12)

the first derivative of the function (10) vanishes at q =
0. Consequently, the functional E(q, Z) defined on the
functions (10) has an extremum at q = 0, whose type is
determined by the sign of the quadratic term E(2) in the
expansion of E(q) in powers of q:

(13)

For the functions (6), the total energy functional is
independent on the direction of q, and hence we can
assume that displacements occur along the z-axis. The
expansion of function (6) in powers of q has the form

(14)

where

(15)

(16)

(17)

E Ψ{ } E q Z,( ) a q b, q; Z–= =( ).≡=

∂ψ r q–( )
∂q

------------------------
q 0=

∂ψ r q+( )
∂q

-------------------------
q 0=

,–=

E q( ) E 0( ) E 2( )q2.+≈

ψ r q–( ) a r( ) b r( )q–
1
2
---c r( )q2,–≈

a r( ) ψ r q–( ) q 0= NZ k, rke Zr– ,= =

b r( ) ∂ψ r q–( )
∂z

------------------------
q 0=

=

=  NZ k, krk 1– Zrk–( )e Zr– θ,cos

c r( ) ∂2ψ r q–( )
∂z2

--------------------------
q 0=

NZ k, krk 2– Zrk 1––[= =

+ k k 2–( )rk 2– Z 2k 1–( )rk 1–– Z2rk+( ) θcos
2 ]e Zr– ,
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the angle θ being measured from the z-axis. Table 4
contains the expansion in powers of q of various matrix
elements, as well as the quantities E(0) and E(2) to within
quadratic terms.

The expression for E(2) allows us to formulate a cri-
terion for a nonzero displacement of the electron shell
for the case when the one-particle state is chosen in the
form of an 1s-function (k = 0). The displacement differs
from zero if Z > Z0 – 3/16; otherwise, the displacements
of the electron shell from the atomic center are equal to
zero. This agrees with the numerical results presented
in Table 3.

Thus, for hydrogen-like 1s-functions (for Z = Z0),
the electron configuration with q = 0 gives an energy
gain as compared to the initial undisplaced configura-
tion. When Z is assumed to be a variable parameter,

Table 2.  Results of minimization of the energy functional
E(α, β) for Z = Z0

Z α β ϕ E(α, β)

1.5 0.078 0.078 3.1415 –1.3140

1.6 0.068 0.068 3.1415 –1.5614

1.7 0.059 0.059 3.1415 –1.8287

1.8 0.051 0.051 3.1415 –2.116

1.9 0.046 0.046 3.1415 –2.4236

2.0 0.043 0.043 3.1415 –2.7510

2.1 0.041 0.041 3.1415 –3.0984

2.2 0.038 0.038 3.1415 –3.4658

2.3 0.036 0.036 3.1415 –3.8533

2.4 0.034 0.034 3.1415 –4.2608

2.5 0.033 0.033 3.1415 –4.6882

Note: α = |a|, β = |b|, and ϕ is the angle between the vectors a and b.

Table 3.  Results of the minimization of the energy functional
E(α, β) for Z and Z0 = 2.0

Z α β ϕ E(α, β)

1.5 0.0 0.0 – –2.8125

1.6 0.0 0.0 – –2.8400

1.7 0.0 0.0 – –2.8475

1.8 0.0 0.0 – –2.8350

1.9 0.011 0.011 3.1415 –2.8026

2.0 0.043 0.043 3.1415 –2.7510

2.1 0.065 0.065 3.1415 –2.6809

2.2 0.084 0.084 3.1415 –2.5931

2.3 0.102 0.102 3.1415 –2.4877

2.4 0.118 0.118 3.1415 –2.3650

2.5 0.132 0.132 3.1415 –2.2253

Note: α = |a|, β = |b|, and ϕ is the angle between the vectors a and b.
0
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Table 4.  Expansion of various matrix elements and of the energy functional E(Z, q) in powers of displacements of the elec-
tron shells to within quadratic terms

General formula Explicit form of the expansion accurate to q2

Note: Here r12 = |r1 – r2|, and the subscript i on the functions a, b, and c indicates the dependence on ri.

S q –q,( ) 1 q22 rb2d∫–≈
1 q2 2Z2

3 2k 1+( )
-----------------------–

t q q,( ) –
1
2
--- ra∆ad∫= Z2

2 2k 1+( )
-----------------------

u q q,( ) rd
r

-----a2 q2 rd
r

----- b2 ac+( )∫+∫≈ Z q22Z3

3
--------- k,– 0=

Z
k 1+
------------ k 0≠,

t q –q,( ) –
1
2
--- ra∆a q2 rc∆ad∫+d∫≈ Z2

2
----- q25Z4

3
--------- k,– 0=

Z2

2 2k 1+( )
----------------------- q2 Z4

4k2 1–
----------------- k 0≠,–

u q –q,( ) rd
r

-----a2 q2 rd
r

----- –b2 ac+( )∫+∫≈ Z q24Z3

3
--------- k,– 0=

Z
k 1+
------------ q2 2Z3

3 2k 1+( ) k 1+( )
---------------------------------------- k 0≠,–

c q –q,( )
r1d r2d

r12
----------------a1

2a2
2 q22

r1d r2d

r12
----------------∫+∫≈

× –2a1b1a2b2 a1
2b2

2 a1
2a2c2++( )

Z
1

k 1+
------------ 4k 3+( )!

24k 2+ 2k 2+( )![ ]2
-------------------------------------------– 

  q2Z3 4k 2+( )!
3 2

4k 1–
2k 2+( )![ ]2×

----------------------------------------------------–

a q –q,( )
r1d rd 2

r12
----------------a1

2a2
2 q22

r1d rd 2

r12
---------------- –a1

2b2
2 a1

2a2c2+( )∫+∫≈ Z
1

k 1+
------------ 4k 3+( )!

24k 2+ 2k 2+( )![ ]2
-------------------------------------------– 

  q2Z3+

× –
4

3 2k 1+( ) k 1+( )
---------------------------------------- 4k 2+( )!

3 24k 1– 2k 2+( )![ ]2×
----------------------------------------------------+ 

 

E 0( ) – rd a∆a 2Z0
rd
r

-----a2 r1d rd 2

r12
----------------a1

2a2
2∫+∫–∫= Z2 2Z0Z

5
8
---Z k,+– 0=

Z2

2k 1+
---------------

2ZZ0

k 1+
-------------– Z

1
k 1+
------------ 4k 3+( )!

24k 2+ 2k 2+( )![ ]2
-------------------------------------------– 

  k 0≠,+

E 2( ) – rc∆a ra∆a rb2 2Z0–d∫d∫–d∫=

× rd
r

-----ac
rd
r

-----a2 rb2d∫∫+∫ 
  2

r1d r2d

r12
----------------∫+

× a1
2a2c2 a1b1a2b2 a1

2a2
2 rb2d∫+–[ ]

–
4Z3

3
--------- Z Z0

3
16
------+– 

  k, 0=

–Z4 4 k 1+( )
3 4k2 1–( )
------------------------- Z3 4k 3+( )!

3 24k 1+ 2k 1+( ) 2k 2+( )![ ]2×
------------------------------------------------------------------------- k 0≠,–
the minimum of the functional E(Z, q) for k = 0 is
attained at the point qmin = 0 and Zmin = Z0 – 5/16,
which agrees with the well-known result obtained by
the direct variational method in the theory of a helium
atom [3].
P

The expression for E(2) also implies that, for any Z0

and Z, the total energy functional on the functions (10)
with one-particle ns-states (6) with k = 0 has a minimum
for q ≠ 0; that is, the displacement of electron shells is
always nonzero for states of the form indicated above.
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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The expression for E(0) allows us to determine the
effective charge Z minimizing the total energy of the
ns2-configuration for q = 0:

(18)

This expression tends to  = 2Z0 – 1 as k  ∞.

The results presented in Table 4 clarify the reason
behind the different behavior of the electron shells with
k = 0 and k ≠ 0 as they are displaced from the atomic
center. A one-particle function with k ≠ 0 basically dif-
fers from that with k = 0 in that the former vanishes at
the point r = 0 (Fig. 2). The interaction energy of the
electrons with the central field is the most sensitive in
this respect. Owing to this energy and to the fact that
the wave function with k = 0 is nonzero at r = 0, the total
energy of the system sharply increases as the electron
shell is displaced from the atomic center. In contrast,
the vanishing of the wave function with k ≠ 0 at r = 0
leads to a considerably weaker dependence of the inter-
action energy with the atomic center on the electron
displacement, which is manifested in the vanishing of
the quadratic term in the expansion of u(q, –q). The
case of k = 0 is also not covered by the expressions with
k ≠ 0 for the integral t(q, –q) describing the relative
motion of electron shells. The integrals associated only
with the overlapping of electron shells (S(q, –q),
c(q, −q), and a(q, –q)) are described by a universal for-
mula applicable to both cases of k = 0 and k ≠ 0. Sum-
marizing what has been said above, we can state that, for
k ≠ 0, the gain in the electron–electron interaction
energy upon a displacement of electron shells is not
compensated by the loss in the energy of interaction
with the atomic center, as in the case k = 0, where the
electron density is nonzero at the center.

It is intuitively clear that the emergence of a nonzero
electron density at the center of the potential must also
give a gain in energy. This allows us to indicate the
most favorable directions in the displacement of the
electron shells in the case of an anisotropic wave func-
tion with zero at r = 0: for example, this must be the z
axis for the pz orbital and x and y directions for the

orbital. Since the gains in the energy of interac-

Zmin Z0
2k 1+
k 1+

---------------=

– 2k 1+
2k 2+
--------------- 2k 1+( ) 4k 3+( )!

24k 3+ 2k 2+( )![ ]2
------------------------------------------– 

  , k 0.≠

Zmin
∞

d
x

2
y

2–
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tion between electrons and with the atomic center are
added in this case, this may lead to rather deep minima
on the energy surface E(q, Z), located at considerable
distances from the point q = 0. This is confirmed by the
results of numerical minimization of the total energy
functional presented in [4] for the np2 configuration.

3. THE FORM OF THE TOTAL ENERGY 
FUNCTIONAL E(q, Z)

The general expressions of matrix elements for an
electron configuration with a = q and b = –q can be
obtained from the formulas given in Table 1, if we con-
sider that ρ = 2Zq and  = Zq. In the expression for
u(a, b), we must go to the limit ξ  0 and η  0.
In terms of the variable ρ = 2Zq, this expression
assumes the form

(19)

For k = 0, the expressions for the matrix elements coin-
cide with the well-known results for the helium atom
and the hydrogen molecule [5, 6].

The results of minimization of the functional E(q, Z)
for several first integer values of k (k = 0,…, 4) are
given in Table 5. The behavior of the total energy func-

α̃

u q q–,( ) Z
ρ2k 2+

2k 2+( )!
---------------------- 4s 1+( )b0

s( )Σs 0,
k 1+( ) ρ( ).

s 0=

2k 2+

∑=

0 0.5 1.0 1.5 2.0 2.5 3.0
r, a.u.

0.4

0.8

1.2

ψ(r)

k = 0

k = 1

k = 2
k = 3

k = 4
0.2

0.6

1.0

Fig. 2. Slater orbitals ψ(r) (expression (6)) for several first

integer values of k; Z =  (Table 5).Zmin
k( )
Table 5.  Results of minimization of the energy functional Ek(Z, q)

k Emin qmin Zmin Emin(q = 0) – Emin Zmin(q = 0) – Zmin

0 –2.84766 0.0 1.6875 0 0

1 –2.22965 0.3437 2.7110 0.2205 –0.2559

2 –1.79140 0.5061 3.2084 0.3463 –0.5204

3 –1.48131 0.6385 3.4999 0.3638 –0.7030

4 –1.25036 0.7644 3.6778 0.3424 –0.8192
0
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0 0.5 1.0 1.5 2.0 2.5 3.0
q, a.u.

–2.0

–1.0

0

E(q, Z(k)
min)

k = 0

k = 1

k = 2

k = 4

–3.0

1.0

k = 3

0.8
0.6
0.4
0.2

3.5

3.0

2.5

2.0

1.5 0

1
2

3

r, a.u.

Z

ψ(r)

–2.5

–1.5

–0.5

0.5

Fig. 3. Plots of the total energy functional E(q, Z) for Z =

 (Table 5).Zmin
k( )

Fig. 4. Variation of the shape of the one-particle function
ψ(r) for k = 1 with parameter Z. The bold curve on the sur-
face corresponds to the radial profile of the one-particle

function for Z = .Zmin
1( )

k = 0

k = 1

k = 2

k = 4

k = 3

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

0.5

1.0

1.5

2.0

2.5
qmin, a.u.

Z
Fig. 5. Dependence of the displacement q of an electron
shell minimizing the total energy on the preset parameter Z.
Points correspond to the minimum values of the total energy
for a given k.
tional as a function of q for Z =  is illustrated in
Fig. 3.

For k ≠ 0, a displacement of the atomic shells takes
place. The decrease in energy relative to the minimum
possible value in the absence of displacements of the
electron shells and the displacement itself are quite sig-
nificant (0.22–0.36 a.u. for energy and 0.34–0.76 a.u.
for qmin. The dependence of the parameters correspond-
ing to the global minimum of the total energy func-
tional, i.e., qmin and Zmin, on the number k is fully
explained by the form of the electron density distribu-
tion for functions with various values of k. It can be
seen from Fig. 2 that, as the number k increases, the
one-particle functions (10) become more delocalized
and the value of the electron density in the neighbor-
hood of r = 0 increases. The gain in the system energy
can be due to a decrease in the intensity of the electron–
electron interaction (decrease of the positive contribu-
tion from t(q, –q), c(q, –q), and a(q, –q)) and due to an
increase in the electron interaction with the atomic cen-
ter (an increase in the magnitude of the negative contri-
bution from u(q, q) and u(q, –q)). The increase in qmin
with the number k is associated with the delocalization
of ψk(r) upon an increase in k; a smaller overlapping
and, accordingly, a weaker interaction between the
electrons are observed for larger values of q. Another
mechanism ensuring the decrease in overlapping is
associated with an increase in the parameter Z, which
corresponds to a stronger localization of ψ(r). Figure 4
shows the variation of the wave function upon an
increase in the parameter Z on the example of the func-
tion ψ(r) with k = 1. With increasing Z, the magnitude
of the negative contribution to the total energy from the
interaction with the atomic center also increases; how-
ever, the positive contributions, including the kinetic
energy, increase as well, resulting in the attainment of a
certain compromising value. Consequently, the
increase in this parameter with k is also associated with
a decrease in the localization of ψ(r) with increasing k.
Figure 5 shows the dependence of the displacement
minimizing the total energy on the preset parameter Z.

4. DYNAMIC DISPLACEMENTS
OF ELECTRON SHELLS

Figure 6 shows the form of the electron density dis-
tribution for k = 1 in the absence of displacements and
in their presence; in both cases, the wave functions
minimizing the total energy are used. The symmetry of
the displaced electron density distribution (C∞h) vio-
lates the initial spherical symmetry of the system,
which can be restored if we take into account configu-
rations equivalent in energy but having other directions
of the displacement vector.

The total energy functional can possess a continuum
of equivalent minima in the space of displacement vec-
tors. In this respect, we can speak of variational degen-
eracy in the system. The existence, as well as the shape

Zmin
k
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and other parameters of the continuum of minima,
depends only on one-particle states and the parameters
of the central field. In the case of the ns2 configuration
considered above, we fixed only the difference in the
displacement vectors for the one-particle orbitals: |r | =
|a – b | = 2q (for a = q and b = –q), and, hence, the con-
tinuum is a sphere in the space of vectors q. This
restores the spherical symmetry of the problem. Analo-
gous to the description of the collective motion in
nuclei [1] and the “method of generating coordinates”
in molecular spectroscopy [2], we can construct linear
combinations of the biorbitals Ψ with various vectors
qmin,

(20)

where the integration is carried out over a sphere in the
q space. Such a combination may have a lower energy
due to “nondiagonal” (in q) contributions to the total
energy functional, which take into account the “interac-
tion” of biorbitals. The variational procedure with func-
tions (20) leads to the following integral equation for
the function f(Ω):

(21)

where

A symmetry argument [1, 2] leads to trivial solutions to
(21) in the case of an ns2 configuration:

(22)

In other words, for an ns2 configuration with displaced
shells, we can introduce a set of orthogonal states

(23)

transforming according to irreducible representations
of the rotational group. Such states can be referred to as
dynamic states, since they might be responsible for the
correlation contribution to the orbital current. The spec-
trum of these states may have nothing in common with
that of a spatial rotator. It should also be noted that the
electric (dipole, quadrupole) or magnetic susceptibility
in the states corresponding to dynamic displacements
of the electron shells can be abnormally large, their
magnitude being determined by the electron–electron
correlation effects.

5. MO-LCAO METHOD FOR DISPLACED 
ATOMIC ORBITALS

A generalization of the standard MO-LCAO method
proposed in [7] presumes the inclusion in the varia-
tional procedure for a cluster, instead of the traditional
set of molecular orbitals (MOs) (r, 0), i.e., sym-

Ψ f r1 r2,( ) Ψ r1 r2; q q–, ,( ) f Ω( ) Ω,d∫= =

Ωf Ω( ) K q q',( ) EI q q',( )–[ ]d∫ 0,=

K q q',( ) Ψ q q–,( ) Ĥ Ψ q' q'–,( )〈 〉 ,=

I q q',( ) Ψ q q–,( ) Ψ q' q'–,( )〈 〉 .=

f Ω( ) YLM θ ϕ,( ).=

Ψ̃LM NLM YLM Ω( )Ψ q q–,( ) Ω,d∫=

ϕΓ0γ0
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metrized combinations of atomic functions centered at
equilibrium positions of the nuclei (qΓγ = 0), of a new
set of displaced MO of the type

(24)

where qΓγ is a symmetrized displacement coordinate of

atomic shells in the cluster and  is the symmetrized
displacement operator. Such an approach is a natural
generalization of the model of displaced electron shells
to a cluster comprising many atoms. Other methods of
constructing MOs from displaced atomic orbitals are
indicated in [7].

The symmetry group of the wave function (24) is the
intersection of the kernels of the representations Γ0 and
G. In contrast to symmetrized coordinates of nuclear
vibrations in the cluster, the vector qΓγ is fixed and
specifies a certain distorted distribution of the electron
density. If Γ ≠ A1, the function (24) will not possess
“good” transformational properties (i.e., it will not

ϕΓ0γ0
r qΓγ,( ) T̂qΓγϕΓ0γ0

r 0,( ),=

T̂qΓγ
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Fig. 6. Two-electron density distribution in the plane z = 0
in the state Ψ(r1, r2; q, –q) for k = 1 and Z0 = 2: (a) with no

displacement of the electron shells (Z =  for q = –0 (a);

and (b) with displacements, Z = , q = ( , 0, 0).

Zmin
1( )
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belong to a certain irreducible representation of the
symmetry group of the undistorted cluster). This situa-
tion is similar to the case of a single center, in which a
displacement of one electron from the center lowers the
system symmetry to the minimum possible (axial) sym-
metry.

Assuming that the minimum energy corresponds to
a configuration minimizing the electron–electron inter-
action under equal other conditions, we can introduce,
analogous to the case of a single center, the following
wave function for a two-particle configuration: 

(25)

where N is the normalization factor,  is the transpo-

sition operator for the electron coordinates, and  is

the operator of a symmetrized displacement ,
which is transformed according to an irreducible repre-

sentation  and acts in the space of the coordinates of
the ith electron. The upper sign corresponds to the sin-
glet wave function and the lower sign, to the triplet
function. The transformational properties Γγ of the
two-particle wave function (25) are determined by the

product Γγ = Γ0γ0 × [ ]2 for the singlet and by Γγ =

Γ0γ0 ×  for the triplet.
In conclusion, let us record the main features of the

model of mobile electron shells. The inclusion of elec-
tron correlations often involves a large number of func-

ΨΓ0γ0; Γγ r1 r2; qΓ̃ γ̃,( )

=  N 1 P̂12±( )T̂qΓ̃ γ̃

1( )
T̂ qΓ̃ γ̃–

2( ) ϕΓ0γ0
r1 0,( )ϕΓ0γ0

r2 0,( ),

P̂12

T̂qΓ̃ γ̃

i( )

qΓ̃ γ̃

Γ̃ γ̃

Γ̃ γ̃
Γ̃ γ̃
P

tions in the zeroth approximation. We have demon-
strated that, in some cases, the redistribution of the
electron density in a system can be described by using
a variational procedure in which the coordinates of the
center of one-particle functions are varied. The physi-
cal clearness of this variational parameter enables one,
among other things, to simulate the response of the sys-
tem to an anisotropic perturbation in a basically simple
way without resorting to a large number of configura-
tions. We have considered specific correlated states that
can make a correlation contribution to orbital current. A
generalization of the MO-LCAO scheme with a limited
set of one-particle functions, which makes it possible to
take into account additional multipole–multipole inter-
actions in a cluster, is also considered.
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Abstract—The 2E–4A2 luminescence spectra of Cr3+ ions in Al2O3 are investigated in the course of transitions
between the structural forms γ–δ–θ–α. The spectral lines observed are assigned to Cr3+ ions in these structural
forms, which are identified by an X-ray powder diffraction analysis. The lifetimes of the Cr3+ excited states in
transient forms of Al2O3 are measured. Investigations of the luminescence spectra of Al2O3 : Eu3+ demonstrate
that the Eu3+ ions can form regular centers only in α-Al2O3 and, unlike the Cr3+ ions, give no rise to similar
centers in moderately ordered θ-Al2O3. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that aluminum oxide under normal con-
ditions can occur in different crystalline forms (also
referred to as phases). It is conventional to denote these
forms by the Greek letters α, β, γ, δ, η, κ, χ, and θ. The
α form of Al2O3, namely, corundum or sapphire, has
received the most study. On the other hand, other meta-
stable crystalline forms—the so-called transient
forms—are also of considerable interest. The reason is
that many of them are used in practice (adsorbents, cat-
alysts, coatings, and abrasives). In particular, β-Al2O3 :
Na is the superionic conductor. All transient forms of
Al2O3 have a disordered crystal lattice and represent
more complex objects than α-Al2O3 [1]. The structure
of all these different forms can be considered a disor-
dered spinel structure with a various degree of distor-
tion. The unit cell of the AB2O4 spinel (where A = M2+

and B = Me3+) contains 32 O2– ions, which comprise a
cubic close packing, and 24 cation sites including
16 octahedral and 8 tetrahedral ones. For transient
forms of Al2O3, the unit cell contains 21 1/3 Al3+ ions,
which occupy the possible cation sites with a various
degree of disorder [1]. This inhomogeneous distribu-
tion of cations over the sites and also the distortion of
oxygen sublattice, which leads to the lowering of its
symmetry, are responsible for the variety of Al2O3 tran-
sient forms. The transitions between crystalline forms
of Al2O3 are irreversible and proceed at certain temper-
atures. The structural transformations of Al2O3 also
depend on the choice of the starting material [1].

The spectroscopy of impurity rare-earth ions and
ions of the iron group in dielectrics provides informa-
tion on the structure and dynamic processes in crystals.
The spectra of impurity ions can be used in determina-
tion of the phase composition in different dielectric
materials, specifically, in Al2O3 [2]. However, no sys-
tematic investigations into the spectra of rare-earth ions
1063-7834/00/4205- $20.00 © 20857
and iron group ions in different forms of Al2O3 were
performed. Mention should be made of the only work
[3], in which the measurements were carried out with a
low spectral resolution. In the present work, the spectra
and kinetics of luminescence of the impurity ions Cr3+,
Eu3+, and Mn4+ were investigated in the course of struc-
tural transformations in Al2O3.

The problem of incorporating rare-earth ions into
the corundum lattice at a large difference in ionic radii
has attracted particular interest [4–9]. In the majority of
works, the incorporation of rare-earth ions into corun-
dum was investigated by the ion implantation method
[4–6]. There is also evidence for applying a more “stan-
dard” method of crystal growth [7]. However, rare-
earth ions do not necessarily form regular centers in the
corundum lattice, which bring about the appearance of
narrow lines in the spectra. Based on the performed cal-
culations, Verdozzi et al. [8] made the inference that the
rare-earth ions substitute for aluminum in corundum,
and in this case, the rare-earth ions are strongly shifted
(by 0.5 Å) with respect to the Al3+ site. According to
[8], the shift is observed along the trigonal axis of the
crystal toward the octahedral cavity, which is not occu-
pied by the Al3+ ion, and causes a strong distortion of
the local structure. In our earlier work [9], α-Al2O3 :
RE3+ was obtained from γ-Al2O3 : RE3+, which was pre-
pared by the “sol–gel” technology through a series of
structural transformations. One of the purposes of the
present work was to reveal the stage of the structural
transformations of Al2O3, at which the Eu3+ ions form
regular centers.

2. EXPERIMENTAL TECHNIQUE
The samples of high-porosity nanocrystalline trans-

parent γ-Al2O3, which was obtained by the sol–gel pro-
cedure described in [10, 11], served as the starting
materials. A small additive (0.05–1 at. %) of the rare-
000 MAIK “Nauka/Interperiodica”
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earth ions or iron group ions was introduced into the
samples in the process of the sol–gel synthesis. Then,
the samples were annealed at different temperatures
Tann in air for 1 h. The crystal structure was determined
by an X-ray diffraction technique. The fluorescence
spectra of the impurity ions were investigated by using
a double grating monochromator at T = 77 K with exci-
tation by an Ar laser or a Hg lamp. The luminescence
decay kinetics was measured by the mechanical modu-
lation of the exciting Ar laser beam and the recording
of the luminescence with time resolution.

3. RESULTS AND DISCUSSION

The 2E–4A2 spectra of Cr3+ luminescence in the
course of structural transformations are displayed in
Fig. 1. The annealing temperatures Tann are given at the
curves. The Greek letter near each spectrum denotes the
dominant crystalline phase in the sample, which was
annealed at the given temperature. The phases were
identified from the X-ray scattering data. The spectrum
corresponding to γ-Al2O3 was described in [12]. The
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980°C
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Wavelength, nm

Fig. 1. Luminescence spectra of Al2O3 : 0.05 at. % Cr3+

annealed at different temperatures. The annealing tempera-
ture Tann and dominant crystalline phase in the sample
(according to the X-ray scattering data) are indicated at the
curves. Conditions: excitation by an Ar laser, λexc =
514.5 nm, T = 77 K.
P

extremely strong inhomogeneous broadening (150 cm–1)
of the 2E–4A2 (R-line) electron transition is observed,
which masks the splitting of the excited 2E state. The
long-wavelength part of the spectrum corresponds to
the vibronic transitions. Similar spectra are characteris-
tic of the Cr3+ ions in a strong crystal field in a disor-
dered environment, for example, in disordered crystals
[13] and glasses [14]. Annealing of the samples leads to
radical changes in the luminescence spectra, which
manifest themselves in the appearance of narrower
doublets, first, at wavelengths of 682 and 686 nm and,
second, at 692 and 693.5 nm. After the annealing at
Tann = 1200°C, the spectrum contains only the second
doublet—the known lines of chromium in ruby. The
spectra corresponding to Tann = 980–1100°C directly
demonstrate the coexistence of different phases in the
samples. Indeed, the strongly inhomogeneously broad-
ened spectra and narrow doublets are observed simulta-
neously. Analysis of the X-ray scattering data and the
luminescence spectra permits us to conclude that the
doublet 682 and 686 nm corresponds to the R-lines
(2E−4A2) of Cr3+ in θ-Al2O3. Actually, this phase is
more ordered compared to the γ and δ phases: the sub-
lattice of the Al3+ ions, which occupy tetrahedral sites,
is ordered in θ-Al2O3 [1]. A similar identification was
made in [2] for oxide films on the metal surface. No
characteristic features that could be attributed to Cr3+ in
δ-Al2O3 were observed in the spectra. This is likely due
to the fact that the degree of disorder in δ-Al2O3 is equal
to that for γ-Al2O3. In actual fact, a strong disorder
leads to a strong inhomogeneous broadening and
makes the Cr3+ spectra for the γ and δ phases indistin-
guishable.

Figure 2 depicts the curves of Cr3+ luminescence
decay, which correspond to the different lines in the
spectra shown in Fig. 1. The luminescence decay in the
682- and 686-nm lines is strictly exponential and corre-
sponds to the radiation lifetime of the excited 2E state,
i.e., τR = 12 ms. This decay suggests a larger degree of
ordering of the matrix involving the ions responsible
for these lines and, thus, provides additional support for
the assignment of these lines to the Cr3+ ions in
θ-Al2O3. The luminescence decay in the region of the
broad inhomogeneously broadened spectrum, which is
attributed to the strongly disordered γ- and δ-Al2O3
phases, exhibits a nonexponential behavior. This corre-
sponds to the contribution of the centers with different
lifetimes of the 2E state. For comparison, the lumines-
cence decay in the “ruby R-lines” at 692 and 693.5 nm
(τR = 5.8 ms) is also shown in Fig. 2.

Of special interest are the spectroscopic studies of
Eu3+ ions in the course of structural transformations.
Actually, the ionic radius of Eu3+ (0.95 Å) substantially
exceeds the ionic radius of Cr3+ (0.51 Å). Incorporation
of Eu3+ into disordered γ-Al2O3, which contains vacan-
cies, should involve no particular problems, whereas
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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the Eu3+ regular centers in α-Al2O3 (corundum) repre-
sent a notably unusual object. In the earlier work [9],
we demonstrated that α-Al2O3 : Eu3+, in which Eu3+

ions give rise to the single-type regular centers with an
axial symmetry, can be obtained upon annealing of
γ-Al2O3 : Eu3+ prepared by the sol–gel technique. In
this respect, it is reasonable to raise the questions as to
how such formation of the Eu3+ centers in α-Al2O3 pro-
ceeds during annealing of the samples and as to which
centers are formed by the Eu3+ ions in relatively
ordered θ-Al2O3. The 5D0–7Fn luminescence spectra of
the Al2O3 : Eu3+ samples annealed at different tempera-
tures are shown in Fig. 3. It is seen that the annealing
leads to the appearance of narrow lines of α-Al2O3 :
Eu3+ instead of the inhomogeneously broadened spec-
trum of γ-Al2O3 : Eu3+. The sample composition can be
evaluated from the luminescence spectra of Cr3+, which
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Fig. 2. Luminescence decay of Al2O3 : Cr3+ for different
lines in the spectra shown in Fig. 1. Conditions: excitation
by an Ar laser, λexc = 514.5 nm, T = 77 K. (a) λ = 686 nm

(R1-line of Cr3+ in the θ phase), τR = 12 ms; (b) λ = 693.5 nm

(R1-line of Cr3+ in the α phase), τR = 5.8 ms; (c) λ = 697.5 nm;

and (d) λ = 710 nm (R-lines of Cr3+ and their vibronic wings
in the disordered γ and δ phases).
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are also present in some amounts in the samples. It can
be seen that at Tann = 1200–1300°C, the sample contains
a considerable amount of θ-Al2O3. At the same time,
the only series of narrow lines corresponding to Eu3+ in
the samples are the lines attributed to α-Al2O3 : Eu3+

[9]. Thus, it is evident that, unlike the Cr3+ ions, Eu3+

gives no rise to regular centers in θ-Al2O3. The regular
centers are formed only upon the θ–α transitions when
the distorted cubic packing of the oxygen sublattice
transforms to the hexagonal one. It is also possible that
the Eu3+ ions in the θ phase form the local surrounding
typical of Eu3+ in α-Al2O3 and, thus, contribute to the
narrow lines of Eu3+, which are characteristic of corun-
dum [9].

The luminescence spectra shown in Fig. 3 also
exhibit narrow lines at 672 and 676 nm, which are
attributed to the Mn4+ ions in corundum [15]. These
lines indicate that the manganese impurity is present in
the samples. A close examination of the luminescence
spectra of the Mn-containing samples annealed at dif-

Al2O3 : Eu3+ 5D0–7F0,1,2
α-Al2O3 : Cr3+

α-Al2O3 : Mn4+

θ-Al2O3 : Cr3+

1400°C

1300°C

1200°C

1100°C

750°C

560 580 600 620 640 660 680 700 720

Fig. 3. The 5D0–7Fn luminescence spectra of the Cr- and

Mn-doped Al2O3 : Eu3+ samples annealed at different tem-
peratures Tann. Conditions: excitation by an Hg lamp, λexc =
350–420 nm, T = 77 K.

Wavelength, nm
0
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ferent temperatures did not reveal narrow doublets that
could be assigned to Mn4+ in θ-Al2O3. This can be rea-
sonably explained by the fact that the Mn ions in
θ-Al2O3 occur in other charge states (2+ or 3+), do not
give rise to narrow lines in the spectra, and transform
into the 4+ state only in the α phase. In contrast, the
occurrence of the Mn4+ ions in corundum without
charge compensation is an unusual property of α-Al2O3 :
Mn, which was obtained using the sol–gel technology
[16]. In the standard crystal growth technique, the
charge compensation is required to produce α-Al2O3 :
Mn4+, for example, by introducing the Mg2+ ions [15].

It should be noted that the influence of impurity ions
on the temperatures of transitions between the structural
forms is seen from Figs. 1 and 3. For pure Al2O3, the
transitions take place at temperatures of 900°C (γ–δ),
1100°C (δ–θ), and 1150°C (θ–α).

The structural transformations γ–δ–θ–α in Al2O3,
which was obtained by the sol–gel technology, clearly
manifest themselves in the spectra of Cr3+ ions. The
results of our experiments permit the trustworthy iden-
tification of the lines in the luminescence spectra of dif-
ferent crystalline forms containing Cr3+. Therefore, the
spectroscopy of Cr3+ ions can be used to determine the
structural composition of Al2O3. The investigations into
the spectra of Eu3+ in the course of structural transfor-
mations demonstrated that the formation of Eu3+ regu-
lar centers occurs at the stage of the θ–α transition.
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Abstract—A study is reported of the temperature dependences of the dc and ac electrical conductivities, as
well as of I–V characteristics of pure and vanadium-doped germanosillenite crystals. It has been established
that the charge carriers in Bi12GeO20 are electrons and holes. Doping with vanadium gives rise to a strong
dependence of the conductivity and its activation energy on the dopant concentration. Within the model, the
results explain the hopping-charge transfer in doped, closely compensated semiconductors. © 2000 MAIK
“Nauka/Interperiodica”.
Photorefractive germanium and silicon sillenites are
wide-gap materials with a high resistivity and a low
carrier mobility [1, 2]. A number of publications deal
with the investigation of the charge transport mecha-
nism in these crystals [3–5]. Within the 20–400°C
region, the conduction occurs through electron (hole)
hopping over localized states with a broad energy spec-
trum. The hopping takes place both over states near the
Fermi level and at the density-of-states maximum.
Impurities substantially affect the conductivity and its
activation energy [2, 6, 7], so that the latter can vary in
the high-temperature region from 1.8 eV in crystals
with a Mn impurity to 0.45 eV in Al-doped crystals.
The reason for such high activation energies is still
unclear. There is considerable scatter in determining
the type of dark carriers. Thermopower studies [1, 2]
suggest that the dark conduction in Bi12GeO20 (BGO)
and Bi12SiO20 (BSO) is of the p-type, while in photoin-
duced transport, electrons are involved. Grebmeier and
Oberschmid [8] established by the same method the
dark conduction in undoped BGO and BSO to be of the
n-type. In his studies of the I–V characteristics on BGO
samples with an electronic contact, Gudaev [7] comes
to the conclusion that both the dark and photoinduced
conduction is of the n-type. Investigation of photoin-
duced transport in BGO single crystals showed that
when photoexcitation takes place in the impurity
region, both electrons and holes are mobile [9]. The
studies of dark I–V characteristics in [3, 6] were per-
formed on samples with two injecting electrodes, thus
precluding the determination of the contribution of
electrons and holes to the electrical conductivity of the
sillenites.

It is known that hopping conduction over localized
states can occur only under compensation. But the
compensation ratio in BGO and BSO crystals was not
determined.
1063-7834/00/4205- $20.00 © 20861
This work was aimed at studying the effect of the
vanadium dopant on the electrical conductivity, its acti-
vation energy, and compensation ratio of Bi12GeO20
single crystals.

1. EXPERIMENTAL TECHNIQUES

A study has been carried out of the temperature
dependence of dc and ac electrical conductivity, I–V
characteristics under monopolar injection, and of opti-
cal absorption spectra.

One studied BGO single crystals grown by the Czo-
chralski technique from ultrapure reagents. The V2O5
dopant was introduced into the batch in concentrations
of 0.2–1 mol %. The contacts used in measuring the I–
V characteristics were made of different materials. One
of the contacts was made of platinum deposited in vac-
uum. A thin layer of silicate glass (Na2SiO3) served as
the second electrode. The electrical conductivity in
such glasses is ionic [10] and, as shown by our mea-
surements, exceeds by several orders of magnitude that
of the samples under study. Using this layer permits one
to obtain a sample with one injecting electrode (plati-
num), i.e., to exclude double injection. The discrimina-
tion coefficient may serve as a criterion making possi-
ble the separation of monopolar from double injection
[11]. In our case, it is greater than unity, which is char-
acteristic of monopolar injection.

The studies of dc I–V characteristics were made in
fields of 100 to 10 000 V/cm at temperatures ranging
from 150 to 400°C. The field was applied to a sample
during 5 min. The temperature dependences of dc and
ac electrical conductivity were measured in weak fields
corresponding to the Ohmic part of the I–V curves in
the same interval. Low dc currents were measured with
a VK2-16 electrometer. A VM-311G Q-meter was used
to measure conductivities at a frequency of 20 MHz.
000 MAIK “Nauka/Interperiodica”
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Transmission spectra were measured on a double-
beam spectrophotometer SPECORD M-40 at room tem-
perature according to the technique described in [12].

2. EXPERIMENTAL RESULTS 
AND THEIR DISCUSSION

The temperature dependences of the conductivity of
Bi12GeO20 crystals measured in the 120–350°C region
is presented graphically in Fig. 1. The measurements
were performed in a weak dc field (curves 1–3) corre-
sponding to the Ohmic segment of the I–V characteris-
tics on samples with two (curve 1) and one (curves 2
and 3) injecting electrodes, as well as in an ac mode at
20 MHz (curve 4).

The activation energy of ac conduction is constant
within the whole temperature range covered and consti-
tutes approximately 0.05 eV. The dc conductivity and
its activation energy are practically independent of
electrode type and of the polarity of the electric field
applied. Two activation energies are observed within
the temperature interval studied, namely, 0.62 eV
below 200°C, and 1.35 eV at higher temperatures.

Doping the crystal with vanadium does not change
the pattern of the temperature behavior of electrical
conduction. However, the absolute magnitude of the
conductivity and its activation energy depend strongly
on the dopant concentration (Table 1). The latter is
characteristic of hopping conduction (ε3 conduction)

1
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3

4

1.6 2.0 2.4

–12

–10

–8

–6

–4

–14

log (σ, Ω–1 cm–1)

1/T, 10–3K–1

Fig. 1. Temperature dependences of the electrical conduc-
tivity of Bi12GeO20: (1)–(3) dc measurements, (4) 20 MHz.
P

[13–15]. In this case, the resistivity is a function of the
concentration of donors Nd (or of acceptors Na):

(1)

By [15],

(2)

where a is the Bohr radius and η is a parameter depend-
ing on the compensation ratio [15]

(3)

On the other hand, the temperature dependence of
the resistivity in hopping conduction can be written as
[13, 15]

(4)

where E3 is the hopping conduction (HC) activation
energy. The finite HC activation energy E3 in compen-
sated semiconductors is associated with the energy spread
of the donor (acceptor) levels. In a general case, the
dependence of the HC activation energy on the concentra-
tion of the majority impurity ND has the form [13, 15]

(5)

where E0 = is the characteristic Coulomb energy

of interaction with impurity centers, ε is the relative
permittivity of crystals, and F(K) is a function of the
compensation ratio. The analytic form of F(K) was
found only for the limiting cases of close (K  1) and
light (K  0) compensation [13]. It was shown that
the F(K) function should grow as (1 – K)–1/3 for close
compensation. Relations (1)–(5) can be used to derive
the following expression for the ε3 conductivity: 

(6)

This relation is characterized by a strong increase of
the activation energy E3 and a decrease of the conduc-
tivity σ for K  1. Our data obtained on vanadium-
doped BGO crystals show that when the batch contains
0.5 mol % V2O5, the conductivity passes through a min-
imum, and its activation energy, through a maximum
(Table 1). This possibility of controlling the electrical
properties of amorphous semiconductors by doping, up
to inversion of conduction type, is described by
LeComber and Spear [16] and Tawada [17]. Shklovskiœ
and Éfros [18] came to the conclusion that closely com-
pensated crystalline semiconductors with randomly
distributed donors and acceptors are so close in electro-
physical properties to amorphous semiconductors that
they could serve as a model for the latter. As seen from
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Table 1.  Parameters of the crystals at 200°C

Crystal σ, Ω–1 cm–1 µp, cm2 V–1 s–1 µn, cm2 V–1 s–1 E3, eV

Bi12GeO20 1.51 × 10–12 2.1 × 10–1 2.1 × 10–2 1.35

Bi21GeO20 + 0.2 mol % V2O5 1.7 × 10–10 2.82 × 10–1 3.3 × 10–2 0.62

Bi21GeO20 + 0.5 mol % V2O5 5.26 × 10–11 3.5 × 10–2 6.4 × 10–2 0.82

Bi21GeO20 + 1.0 mol % V2O5 1.85 × 10–10 – 7.4 × 10–2 0.52
Table 1, the activation energy is maximal for intermedi-
ately doped crystals. This suggests that, by varying the
vanadium concentration, one can change the type of
conduction in germanosillenites. The activation energy
of conduction in an undoped BGO crystal (1.35 eV)
shows that its Fermi level Ef lies close to midgap, i.e.,
that it is closely compensated.

A quantitative comparison of the theory with the
experimental data obtained requires the knowledge of
Nd and K. Solving the coupled equations (3) and (5) for
ND, with due account of the fact that in the case of close
compensation, the free carrier concentration n = ND –
NA , yields

(7)

As seen from (7), in order to determine the concen-
tration of the majority impurity, one has to know the
HC activation energy, the excess carrier concentration
n, and the permittivity ε. The HC activation energy E3
is derived from the temperature dependence of electri-
cal conductivity (Table 1). The relative permittivity ε
was found from conductivity measurements at 20 MHz.
The concentration n can be determined either using the
relation

(8)

or, by studying the I–V characteristics of space-charge
limited currents [19], from the voltage VΩ at which a
crossover occurs from the Ohmic to quadratic I(U)
dependence: 

(9)

The results of studies of steady-state I–V character-
istics are presented graphically in Fig. 2. Curve 1 was
obtained using the injecting platinum electrode as the
anode, and curve 2, when it was the cathode. The I–V
curves (Fig. 2) exhibit segments with different I ~ Uγ

dependences, where γ varies from 1 to 10. The presence
of segments with γ ≥ 2 in curves 1 and 2 (Fig. 2) sug-
gests the injection of both electrons and holes from the
contacts into the sample [19]. The equilibrium carrier
concentrations n and p derived from (9) turn out to be
very low 1010–1012 cm–3 compared with the concentra-
tions of both the intrinsic defects and of the dopant. It
should be pointed out that if a voltage step is applied

ND

E3εε0

e
-------------- 

 
3/2

n1/2.=

n σ/eµ=

n
εε0VΩ
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when measuring a steady-state I–V curve in the weak-
field region, where there is no noticeable injection, the
current is observed to fall off with time. Measurements
of “dynamic” I–V characteristics yield somewhat
higher carrier concentrations. This may be due to the
fact that at the temperatures used in the experiments,
the hopping transport of a charge occurs in the samples
over clusters of a finite size; i.e., no infinite percolation
cluster has yet formed in these conditions [20]. The
charge builds up at cluster ends to create a certain
space-charge-type (interlayer) sample polarization.
The possibility of carriers migrating over finite clusters
to contribute to the permittivity of random-field semi-
conductors was pointed out in [21]. This phenomenon
was observed experimentally in silicosillenites [22].
Finite clusters were detected in sillenites in studies of
the temperature dependence of electrical conductivity
at various frequencies [4, 5]. Thus, n(p) can be deter-
mined with a higher accuracy from (8) using the values
of the ac conductivity measured at high frequencies,
where practically all carriers participate in charge

1 2

0.5 1.0 1.5 2.0 2.5 3.0

–4
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–6

–7

–8

–9

–10

log (I, A)

log (U, V)

Fig. 2. I–V characteristics of a germanosillenite crystal with
nonsymmetrical electrodes. The platinum electrode is used
as anode (curve 1) or cathode (curve 2).
0
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Table 2.  Calculated crystal parameters

Crystal Nd × 10–18, cm–3 Na × 10–18, cm–3 K n × 10–15, cm–3 p × 10–15, cm–3

Bi12GeO20 – 3.13 0.99952 – 1.5

Bi21GeO20 + 0.2 mol % V2O5 7.011 7.021 0.99868 – 9.96

Bi21GeO20 + 0.5 mol % V2O5 6.906 6.902 0.99944 3.89 –

Bi21GeO20 + 1.0 mol % V2O5 5.14 5.132 0.99836 8.446 –
transport. The values of the mobility needed to deter-
mine n and p were found from the quadratic segments

of the I–V characteristics using the relation µ = 
8d3J

9εε0U2
------------------
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Fig. 3. Activation energy (curve 1) and electrical conductiv-
ity (curve 2) versus compensation ratio. The points refer to
experimental results.

Fig. 4. Spectral response of the absorption coefficient of
germanosillenite crystals: (curve 1) nominally pure and
(curves 2–4) V2O5-doped Bi12GeO20 crystals.; mol %
V2O5: (2) 0.2, (3) 0.5, (4) 1.0.
P

(Table 1). The values of n and p calculated in this way
are listed in Table 2.

The majority carriers in BGO were found to be
holes [1, 2]. Studies of the incorporation of vanadium
into the Bi12TiO20 crystal and of its effect on the optical
and photoelectric properties suggest [23, 24] that this
impurity occupies the tetrahedral positions in the
titanosillenite lattice in the 5+ charge state; i.e., it acts
as a donor. Because BTO and BGO crystals are isomor-
phic, it may be conjectured that in germanosillenite one
has a similar situation. The low concentration of vana-
dium (0.2 mol % V2O5 in the batch) does not change the
type of conduction. Because at 1 mol % V2O5, the acti-
vation energy is lower than that at 0.5 mol % V2O5. In
this case the crystals may be assumed already to be of
the n-type. If we assume that crystals with 0.5 mol %
V2O5 are also of the n-type, equations (5) and (7) can
be used to find Nd (Na) and the compensation ratio of
the crystals (Table 2). Note that the value of Na for a
pure Bi12GeO20 crystal agrees well with the data quoted
in [24] (Na ≈ 6 × 1018 cm–3). As follows from Table 2,
the donor concentration decreases with increasing
vanadium concentration. A similar decrease of Nd and
the associated drop in the photocurrent observed in [24]
is associated with the fact that doping the BTO crystal
with pentavalent vanadium noticeably reduces the
oxygen vacancy concentration, which should bring
about a decrease in the donor concentration. It should

also be mentioned that the parameter E0 = 
remains practically the same for samples with 0.5 and
1 mol % V2O5 in the batch. By contrast, in a crystal with
0.2 mol % V2O5, it is different. This provides additional
evidence for the crystals with 0.5 and 1 mol % V2O5
having the same type of conduction. The dependence of
the conductivity and of its activation energy is plotted
in Fig. 3 versus compensation ratio for BGO : V using
the data of Tables 1 and 2. The same figure displays a
calculated E3(K) dependence with E0 as a parameter
(curve 1).

As evident from Fig. 3 and Table 2, both pure and
vanadium-doped germanosillenite crystals are closely
compensated. Such materials are characterized by a
shoulder in the absorption spectra, which was exactly
what was observed in our experiments (Fig. 4). It
should be pointed out that the value of α for hν =
2.8 eV in the Bi12GeO20 crystal is close to that quoted
in [25]. Doping with vanadium results in an increase of

eNd
1/3/εε0
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absorption in the 2.8 < hν < 3.17 eV region compared
to a pure crystal. As the impurity concentration
increases, for hν < 3.0 eV the crystals become more
transparent, and for hν > 3.0 eV, darken. The decrease
in absorption in the 2.6–2.8 eV band is probably caused
by a decrease in the concentration of intrinsic defects in
the crystal, similar to what was observed in [24].

Thus, our experiments suggest that both electrons
and holes act as mobile carriers in BGO and BGO:V
crystals. One observes a strong dependence of the con-
ductivity and of its activation energy on impurity con-
centration, and the crystals themselves are closely com-
pensated. Vanadium doping in concentrations below
1 mol %V2O5 (in the batch) permits one to properly
control the magnitude and type of the dark conduction
in Bi12GeO20 single crystals. Doping with vanadium
changes the compensation ratio and the associated
spectral response of the absorption coefficient in the
region of the absorption shoulder.
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Abstract—A method of group-theoretical classification of excitonic states with a charge transfer from a unit
cell to neighboring ones is suggested in a tetragonal two-dimensional model of a CuO2 plane. The orientation
(anisotropy) and polarization (pleochroism) dependences of the intensities of excitonic dipole-forbidden optical
transitions are determined. The phenomenon of initiating dipole-forbidden transitions in an external electric
field is theoretically considered. General dependences of the probabilities of such transitions on the value and
direction of the electric field and on the light wave polarization are found. The dependences obtained can be
used to identify weak absorption bands in dielectric cuprates containing CuO2 planes. © 2000 MAIK
“Nauka/Interperiodica”.
Tetragonal two-dimensional (2D) CuO2 layers are
fragments of the structures of high-temperature super-
conductors, such as La2CuO4 + y, La2 – xSrxCuO4, etc.
That is why the investigation of electronic (including
excitonic) excitations in a 2D model of CuO2 is of great
interest. A number of experimental [1–5], as well as
theoretical [6–12], articles are dedicated to this ques-
tion.

In the 2D model of CuO2, a unit cell contains one
copper atom and two oxygen atoms. There is one hole
per unit cell in the ground state; according to different
theoretical estimations, the state of the hole is 70–80%
Cu3  state. Light may initiate the transfer of the

hole to a neighboring cell, which leads to the emer-
gence of an empty hole state in the cell and a two-hole
singlet state in a neighboring one. Electrostatic interac-
tion binds these two states, and the translational sym-
metry of the lattice determines the movement of such a
singlet pair through the crystal (the so-called charge-
transfer exciton [12]). Overhauser [13] was the first to
consider the charge-transfer exciton. No current
accompanies translational exciton movement.

Since there is a spectrum of energies of two-hole
states of a cell and different charge-transfer excitons
will appear, depending on the type of the two-hole state
generated after the crystal excitation. As a result of the
transfer of a hole to one of the four neighboring cells of
CuO2 plane being possible, there is an additional
degeneracy, which is removed due to dp-hybridization
and electrostatic interactions. One of the goals of the
present paper is to determine the symmetry of excitonic
charge-transfer states, which originate at a given sym-
metry of the “two-hole” state Γ (Γ is an irreducible rep-

d
x

2
y

2–
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resentation of the $4h point symmetry group of the 2D
lattice with a copper atom in the center). Besides, it is
necessary to notice that excitons connected with elec-
tronic transitions within a unit cell can exist. Such exci-
tons are similar to Frenkel excitons in crystals and dif-
fer from the “two-cell” excitons we consider in this
article.

As usual, phototransitions from the ground state of
a crystal to the excitonic one can be divided into dipole-
allowed and dipole-forbidden transitions. In the 2D
model, the probabilities of the former transitions
depend on the direction of light polarization, while
those of the latter ones are also determined by the light
propagation direction. The determination of the depen-
dences of the dipole-forbidden transition probabilities
on the direction of polarization (pleochroism) and light
propagation (anisotropy) is another purpose of the
present paper. Despite the electric quadrupole and mag-
netic dipole phototransition probabilities being much
smaller than those of electric dipole phototransitions,
they have been observed in some cases [3, 6]. Besides,
the dipole-forbidden phototransitions can be investi-
gated by means of the effect of their enhancement in the
external electric field [14–18]. Recently, this effect has
been found for two weak absorption peaks at 1.4 and
1.6 eV in La2CuO4 + y [18]. In Section 3 of the present
paper, the orientation dependence (on the electric field
direction) and the polarization dependence (on the
direction of the light wave polarization) of the
enhanced dipole-forbidden exciton phototransition
probabilities of all types are derived in the 2D model of
a CuO2 layer.
000 MAIK “Nauka/Interperiodica”
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1. TYPES OF SYMMETRY OF SINGLET 
EXCITONIC CHARGE-TRANSFER STATES

IN THE 2D MODEL

The two-dimensional lattice of a CuO2 layer pos-
sesses the symmetry group $4h × T, where T is the
group of discrete translations tnm = nax + may. Here, ax,
ay are the basis vectors and n, m are integers. An exam-
ple of a singlet excitonic state with the transfer of a hole
from one cell to another is schematically shown in the

figure. The hole transfers from the state (R) (for

example, it can be Cu3  state) to a neighboring

cell, and, as a result, there appears a two-hole state

(R + ax) (the structure of the last state is of no
importance in what follows) and an empty-hole state

(R) corresponding to the closed-shell configura-
tion. In the zeroth approximation, the wave-functions
of the four degenerate excitonic states with the transfer
of a hole from the cell R to the cell R + t can be written
as

(1)

where t = ±ax, ±ay. In (1), we have omitted the products

of four functions  or  corresponding to the
other coordination shells of the cell R. The products for
each shell are invariant with the crystal transformation
under the action of the elements  of the point group
$4h with the center at an arbitrary site R and, therefore,
can be omitted in the consideration of the symmetry

properties of the functions (t). The index Γ in (1)
denotes the irreducible representation of the $4h group
with the center at the point R + t and M enumerating
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the functions belonging to this representation. Consid-
ering the action of the operator  on function (1) yields

where  are the characters of the irreducible repre-
sentation B1g, and $(Γ) are the matrices of the irreduc-

ible representation Γ of the group $4h. Since ( ) =
±1, we can write

(2)

For the elements of the point group of the wave vec-
tor Jk, we have k = k ± b (where b is a reciprocal lat-
tice vector); therefore, in the reduced wave-vector
scheme, we can write

(3)

Hence, the characters of the representation Γex con-
structed in terms of the basis functions (1) are

(4)

The sum in (4) is

The center of the Brillouin zone k = 0, for which we
have Jk = 0 = $4h, is particularly interesting. Determin-
ing the characters of Γex with the aid of (4) and reducing

ĝ

ĝΨM
k t( ) X

B1g ĝ( )[ ]
3

$M'M
Γ( )

ĝ( )ΨM'
ĝk ĝt( ),

M'

∑=

X
B1g

X
B1g ĝ

ĝΨM
k t( ) X

B1g ĝ( ) $M'M
Γ( )

ĝ( )ΨM'
ĝk ĝt( ).

M'

∑=

ĝ

ĝΨM
k t( ) X

B1g ĝ( ) $M'M
Γ( )

ĝ( )ΨM'
k ĝt( ).

M'

∑=

X
Γex ĝ( ) X

B1g ĝ( )XΓ ĝ( ) δĝt; t.
t
∑=

δĝt; t

t
∑

4, for ĝ E IC4z
2,=

2, for ĝ U2x U2y IU2x IU2y, , ,=

0,
 for the other elements  

of the group  $4h.







=

xx

yy

k

ψ↑
Blg(R) ψ↓

Βlg(R + ax) φAlg(R) χΓ
γ(R + ax)

The formation of a charge-transfer exciton. A hole transfers between the ions of copper and oxygen. The empty hole and two-hole
states of the neighboring cells are coupled and move through the lattice. The black circle corresponds to copper; the light one, to
oxygen. The ground state is on the left, and the excitonic state is on the right.
0
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Γex into a set of irreducible representations of the group
$4h, we find the types of excitonic states with k = 0

(5)

Using (4), it is easy to carry out the group-theoreti-
cal classification of the states for any symmetry point in
the Brillouin zone. Besides, the level splitting caused
by a displacement from a more symmetric to a less
symmetric point can be easily determined. For exam-
ple, the following level splitting takes place as a result
of a displacement from the zone center along a C2ν axis:
A1g(B1g)  A1, A2g(B2g)  B1, Eg  A2 + B2,
A1u(B1u)  A2, A2u(B2u)  B2, and Eu  A1 + B1
(the irreducible representations of the group of the
wave vector C2v are indicated on the right-hand side).

The proper wave functions of the excitonic states
are linear combinations of functions (1):

(6)

The coefficients C can be determined only by diag-
onalizing the Hamiltonian. In what follows, we shall
not need explicit expressions of the functions

(k). In the particular case of an excitation like

b1g↑, b1g↓  (1A1g), (1A1g) which leads to the
formation of the Zhang–Rice singlet 1A1g, one can
derive from (5) that Γex = A1g + B1g + Eu. This coincides
with the result of [12], where these states are denoted S
+ D + (P1, P2), respectively. However, aside from 1A1g,
other “two-hole” singlet states of the CuO4 system are
possible, in particular, 1A2g, 1B1g, 1B2g, 1Eg, etc. (see
[18]). For each of them, according to the reduction (5),
a set of excitonic energy levels must exist at k = 0. In
accordance with the calculations in [11], excitonic

states of the type  = A2g, B1g, and Eu must be within
the charge-transfer gap. Besides, current-free exciton-
like excitations above the charge-transfer gap were
observed in electron energy loss experiments on
Sr2Cl2CuO2 [4, 12].

Γ A1g B1g: Γ ex, A1g B1g Eu;+ += =

Γ A2g B2g: Γ ex, A2g B2g Eu;+ += =

Γ Eg: Γ ex A1u A2u B1u B2u 2Eg;+ + + += =

Γ A1u B1u: Γ ex, A1u B1u Eg;+ += =

Γ A2u B2u: Γ ex, A2u B2u Eg;+ += =

Γ Eu: Γ ex A1g A2g B1g B2g 2Eu.+ + + += =

ΨM̃
Γ̃ k( ) 1

N
-------- CM̃M t,

Γ̃ Γ k( ) ikR( )exp
R

∑
M

∑
t
∑=

× φ
A1g R( ) χM

Γ R t+( ) ψ↓
B1g R t'+( )

t' t≠
∏ …  .

CM̃M t,
Γ̃ Γ

b1g
0 b1g

2

Γ̃

  
P

2. ANISOTROPY AND PLEOCHROISM
OF EXCITONIC PHOTOTRANSITIONS

The wave function of the ground state of the system is

(7)

where we have omitted the products of the functions

 and  for more distant copper atoms relative to
the lattice site R

 

. Obviously, the wave function 

 

Ψ

 

0

 

 is
transformed on 

 

B

 

1

 

g

 

 under the action of  

 

∈

 

 

 

$

 

4

 

h

 

. The
probability of the optical transition from the ground to

the excitonic state of the (

 

k

 

) type is defined by the
expression

(8)

where 

 

α

 

(

 

ω

 

) = (2

 

π

 

/

 

"

 

)

 

ρ

 

(

 

ω

 

), 

 

ρ

 

(

 

ω

 

) is the density of states

for the transition frequency 

 

ω

 

, and  is

(9)

in the linear approximation in 

 

A

 

. Here, 

 

A

 

 is the vector
potential of the electromagnetic field and  is the
momentum operator of electron 

 

j

 

 of the system. We
suppose that

(10)

where 

 
x

 

 is the unit polarization vector of the light wave.
Substituting (6), (9), and (10) into the matrix element
(8) yields

It should be noted that, on the left- and right-hand sides
of this expression, multielectron wave functions are
involved that depend on the electron coordinates 

 

r

 

j

 

 (the

function (

 

R

 

), which in turn depend on the differ-

ences (

 

r

 

j

 

 – 

 

R

 

). Similarly, the function (

 

R

 

 + 

 

t

 

)
depends on (

 

r

 

j

 

 – (

 

R

 

 + 

 

t

 

)). Making the substitution of

Ψ0 ψ↑
B1g R( ) ψ↓

B1g R t+( )
t

∏ …,=

ψ↑
B1g ψ↓

B1g

ĝ

Γ̃

W 0 Γ̃ k( )( ) α ω( ) ΨM̃
Γ̃ k( ) ĤeR Ψ0〈 〉

2
,

M̃

∑=

ĤeR

ĤeR
e

mc
------- A r j( )p̂ j( )

j

∑–=

p̂ j

A R( ) A0 iqR( )x,exp=

ΨM̃
Γ̃ k( ) ĤeR Ψ0〈 〉 e

mc
-------A0

1

N
-------- CM̃M t,

*Γ̃ Γ
k( )

R

∑
M

∑
t
∑–=

× ikR–( ) φ
A1g R( ) χM

Γ R t+( )∏exp

× ψ↓
B1g R t'+( )

t' t≠
∏ … iqr j( ) xp̂ j( )exp

j

∑ Ψ0 .

φ
A1g

χM
Γ
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variable (rj  rj + R) and taking into account the
invariance of Ψ0 under translation by R yields

where B = –(eA0)/(mc). The sum i(q – k)R) =
Nδk; q leads to the phototransition selection rule: k = q.

Taking into consideration the condition q ! 1/a for
visible and IR region and expanding the exponent in
power series in q up to terms of the first order, we find

(11)

where  = . After common mathematical
manipulation (see, e.g., [19, 20]), we obtain

(12)

where $$$$ = –e  is the electric dipole moment,

Qαβ = –(e/2) rjβ is the electric quadrupole

moment, and  =  is the magnetic moment of
the system. In deriving (12), we have taken into account
that the matrix element does not depend on the choice
of the zeroth lattice site 0; that is, it is possible to

replace 0 by R and introduce the summation (1/N) .

ΨM̃
Γ̃ k( ) ĤeR Ψ0〈 〉 B

N
-------- i q k–( )R( )exp

R

∑=

× CM̃M t,
*Γ̃ Γ

k( ) φ
A1g 0( ) ΨM

Γ t( )∏
M

∑
t
∑

× ψ↓
B1g t'( )

t' t≠
∏ … iqr j( ) xp̂ j( )exp

j

∑ Ψ0 ,

(expR∑

ΨM̃
Γ̃ k( ) ĤeR Ψ0〈 〉 B Nδk; q CM̃M t,

*Γ̃ Γ
q( )

M

∑
t
∑=

× φ
A1g 0( ) ΨM

Γ t( ) ψ↓
B1g t'( )

t' t≠
∏ … xP̂( )

+ i qr j( ) xp̂ j( ) Ψ0

j

∑ ,

P̂ p̂ jj∑

ΨM̃
Γ̃ k( ) ĤeR Ψ0〈 〉 i

mω
e

--------Bδk; q–=

× ΨM̃
Γ̃ q( ) xα$α i qαξβQαβ

αβ
∑+

α
∑

+
e

2mω
------------ q ξ×[ ]α}̂α

α
∑ Ψ0 ,

r jj∑
r jαj∑

}}}}̂ }}}}̂ jj∑

R∑
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Since the condition q ! (1/a) takes place, we can
replace δk; q by δk; 0, thus obtaining from (8) and (12)

(13)

where γ(ω) = α(ω)ω2(A2/c2). Although the function

(q) is generally not analytic at the point q = 0, it can
be expanded in powers of q at a given q direction. It is
easy to prove that the sum in (13) does not depend on
the direction of q as it tends to zero.

2.1. Electric Dipole Transitions

In view of the fact that $x and $y transform accord-
ing to Eu, and $z according to A2u, the electric dipole
transitions from the B1g-type ground state are possible

only to the state  = Eu or B2u. Retaining only the elec-
tric dipole contribution, we obtain from (13) the formu-
las

(14)

where

2.2. Dipole-Forbidden Transitions

Introducing the irreducible components  = Qzz,

 = Qxx + Qyy,  = Qxx – Qyy,  = Qxy,  =

(Qxz, Qyz),  = Mz, and  = (Mx, My) we find

We also have

W 0 Γ̃ 0( )( ) γ ω( ) ΨM̃
Γ̃ 0( ) ξα$α

α
∑

M̃

∑=

+ i qαξβQαβ
e

2mω
------------ q ξ×[ ]α}̂α

α
∑+

αβ
∑ Ψ0

B1g

2

,

ΨM̃
Γ̃

Γ̃

W 0 Eu 0( )( ) γ ω( )C2
2 ξ x

2 ξ y
2+( );=

W 0 B2u 0( )( ) γ ω( )C1
2ξ z

2,=

C1 B2u 0( ) $z B1g〈 〉 ,=

C2 Eu 0( ) $ B1g〈 〉 .=

Q
A1g

Q
A1g

'
Q

B1g Q
B2g Q1 2,

Eg

M
A2g M1 2,

Eg

qαξβQαβ

αβ
∑ 1

2
---qxξ x Q

A1g'
Q

B1g+( )=

+
1
2
---qyξ y Q

A1g'
Q

B1g–( ) qzξ zQ
A1g qxξ y qyξ x+( )Q

B2g+ +

+ qxξ z qzξ x+( )Q1
Eg qyξ z qzξ y+( )Q2

Eg.+

q x×[ ]α}̂α

α
∑ qyξ z qzξ y–( )}̂x

Eg

=

+ qzξ x qxξ z–( )}̂y

Eg

qxξ y qyξ x–( )}̂z

A2g

.+
0
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Applying the Wigner–Eckart–Koster theorem and
using the tables of Clebsch–Gordan coefficients for the
group $4h yields

(15)

where  =  + . The constants  and |C10 |2
contain only the magnetic dipole (MD) contribution,

and the other constants  involve only the electric
quadrupole (EQ) one. We do not quote the explicit
expressions for these constants here. In calculating
W(0  Eg(0)), we have neglected the mixed EQ–MD
contribution.

The above formulas describe the orientation depen-
dence (on the q direction) and polarization dependence
(on the x direction) of the probabilities of the dipole-
forbidden phototransitions of all types, E0(B1g) 

(0). It can be seen from (15) that various types of
transitions have different orientation and polarization
dependences. Therefore, the formulas we obtained here
can be used in spectroscopic investigations to identify
the transitions.

3. THE EFFECT OF AN EXTERNAL ELECTRIC 
FIELD ON DIPOLE-FORBIDDEN 

PHOTOTRANSITIONS

Electric dipole transitions from the B1g-type ground

state to even-parity excitonic states (0) = Γg(0) are
forbidden. However, in an external electric field , the

odd states (0) are mixed with the excitonic (0)

and the ground state . In the first order perturba-
tion theory, we have

W 0 A1g 0( )( ) γ ω( )
C3

2

4
------ qxξ x qyξ y–( )2;=

W 0 A2g 0( )( ) γ ω( )C4
2 qxξ y qyξ x+( )2;=

W 0 B1g 0( )( ) γ ω( )
C5

2
------ qxξ x qyξ y+( ) C6qzξ z+

2

;=

W 0 B2g 0( )( ) = γ ω( )
e

2mω
------------ 

 
2

C7
2 qxξ y qyξ x–( )

2
;

W 0 Eg 0( )( ) γ ω( ) C11
2 qxξ z qzξ x+( )2[{=

+ qyξ z qzξ y+( )2 ] e
2mω
------------ 

 
2

C10
2+

× qxξ z qzξ x–( )2 qyξ z qzξ y–( )2+[ ] } ,

C11
2 C8

2 C9
2 C7

2

Ci
2

ET̃

Γ̃
%%%%

ΨM'
Γu ΨM

Γg

Ψ0
B1g

ΨM ΨM
Γg 0( )

Γ uM' e%%%%R ΓgM〈 〉
∆ Γu; Γg( )

---------------------------------------------ΨM'
Γu 0( ),

ΓuM'

∑+=
P

where

In the first order in , the electric-dipole transition
matrix element is

Using the Wigner–Eckart–Koster theorem, for the elec-
tric-dipole transition probabilities

we obtain the following expressions:

(16)

where

(“+” i = 1, 2, 3, 4; “–” i = 5),

Ψ0 Ψ0
B1g ΓuM' e%%%%R 0B1g〈 〉

δ Γ u; 0( )
---------------------------------------------ΨM'

Γu 0( ),
ΓuM'

∑+=

∆ Γu; Γg( ) EΓu
0( ) EΓg

0( ),–=

δ Γu; 0( ) EΓu
0( ) E0,–=

R r j.
j

∑=

%%%%

ΨM %%%%$$$$ Ψ0〈 〉 e ΨM xR Ψ0〈 〉–=

=  e2 ΓgM %%%%R ΓuM'〈 〉 ΓuM' xR 0B1g〈 〉
∆ Γu; Γg( )

-----------------------------------------------------------------------------------
ΓuM'

∑–

+
Γ gM xR ΓuM'〈 〉 ΓuM' %%%%R 0B1g〈 〉

δ Γ u; 0( )
----------------------------------------------------------------------------------- .

W 0 Γg 0( )( ) γ ω( ) ΨM x$$$$ Ψ0
B1g〈 〉

2
,

M

∑=

W 0 A1g 0( )( ) γ ω( )e4

2
----J1

2 A1g( ) %xξ x %yξ y–( )2
,=

W 0 A2g 0( )( ) γ ω( )e4

2
----J2

2 A2g( ) %xξ y %yξ x+( )2
,=

W 0 B1g 0( )( ) γ ω( )e4=

×
J3 B1g( )

2
------------------ %xξ x %yξ y+( ) K B1g( )%zξ z+

2

,

W 0 B2g 0( )( ) γ ω( )e4

2
----J5

2 B2g( ) %xξ y %yξ x–( )2
,=

W 0 Eg 0( )( ) γ ω( )e4 J6
2%z

2 ξ x
2 ξ y

2+( )[=

+ J7
2 %x

2 %y
2

+( )ξ z
2 2J8%zξ z %xξ x %yξ y+( ) ] ,+

Ji Γg( ) F Γg; Eu( ) 1
∆ Eu; Γg( )
------------------------

1
δ Eu; 0( )
--------------------±

Eu

∑=

F Γg; Eu( ) Γg R Eu〈 〉 Eu R 0B1g〈 〉 ,=
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We do not present the expressions for the parame-
ters J6, J7, and J8, because they are cumbersome. The
results for some particular configurations of  and x
are listed in the table. It should be noted that, when cal-
culating W(0  Eg(0)), we neglected the splitting of
the energy level Eg(0) in the electric field; that is, the
total intensity of the splitting components was deter-
mined.

The transition probabilities presented in the table
are consistent with the selection rules established in
[18], but the transition to the A2g-type excitonic state
was neglected in that paper. With reference to theoreti-
cal calculations [21], the authors of [18] believed that
the transition to the A2g state is out of the charge-trans-
fer gap and, therefore, cannot be observed. However,
various theoretical calculations lead to different results.
For example, the calculation in the six-band Habbard
model [11] shows that it is the A2g state that must be the
lowest excitonic state below the edge of the charge-
transfer band. Thus, the transition 0  A2g(0) should
not be excluded from consideration.

An enhancement of two absorption peaks in the elec-
tric field at 1.4 eV (at  ⊥  C4) and 1.6 eV (at  || C4),
found by the electroreflection method, was reported in
[18] for La2CuO4 + y (y = 0.016). The authors of that
paper unambiguously identified these peaks with the
transitions B1g  B2g and B1g  Eg, respectively.
However, the first identification is questionable,
because there are two allowed transitions, B1g  B2g

and B1g  A2g, at  || x, x || y (or at  || y, x || x).
In order to distinguish these two transitions, we sug-

gest making an experiment in which the electric field
 is directed along the bisectrix between the x and y

axes and the plane of polarization is rotated around the
z axis (the light beam must be perpendicular to the
CuO2 planes). For this case, we obtain from (16)

where φ is the angle between x and . Therefore, the
polarization dependences for A2g and B2g are different.

Thus, we performed a symmetry analysis of the sin-
glet excitonic states for a two-dimensional CuO2 crys-
tal transferring a hole from one unit cell to the nearest
neighboring ones, which leads to the formation of
“two-hole” states in the cells. A group-theoretical
method is suggested for describing excitonic singlet

K B1g( ) = F B1g; B2u( ) 1
∆ B2u; B1g( )
-----------------------------

1
δ B2u; 0( )
-----------------------± ,

B2u

∑
F B1g; B2u( ) B1g R B2u〈 〉 B2u R 0B1g〈 〉 .=

%%%%

%%%% %%%%

%%%% %%%%

%%%%

W 0 A2g 0( )( ) e4

2
----γ ω( )J2

2%2 φ( );cos
2

=

W 0 B2g 0( )( ) e4

2
----γ ω( )J5

2%2 φ( ),sin
2

=

%%%%
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states for an arbitrary wave vector k. This method
allows one to qualitatively examine calculations of the
positions and dispersion of the charge-transfer exciton
energy bands in a 2D model. The formulas derived in
this paper for the dependences of the probabilities of
the dipole-forbidden phototransitions to the excitonic
states of different symmetry on the propagation and
polarization direction of the light wave can be used for
the unambiguous identification of these transitions.

The influence of an external electric field on dipole-
forbidden phototransitions is theoretically considered,
and the orientation and polarization dependences of
various enhanced transitions are determined in the 2D
model. These dependences are not the same for differ-
ent types of the transitions. It is shown that the identifi-
cation of the enhanced absorption peak at 1.4 eV in
La2CuO4, with the transition B1g  B2g made in [18],
is ambiguous. A modification of the experiment, allow-
ing to distinguish the transition B1g  B2g from
B1g  A2g, is suggested.

Although the present work is dedicated to charge-
transfer excitons, the polarization and orientation
dependences obtained in Sections 2 and 3 have a more
general meaning, because they are dictated only by the
symmetry of excitonic states. In particular, these
dependences are valid for one-cell Frenkel excitons.

When interpreting spectroscopic data in La2CuO4
and other compounds containing CuO2 planes, the for-
mulas derived in this paper will enable one to identify
the excitonic excitations more completely and exactly.
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DIELECTRICS, DISLOCATIONS, 
AND PHYSICS OF STRENGTH
Anisotropy and Scale Effect in the Microhardness of Crystals 
of Bi-Based Superconducting Phases
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Abstract—Microhardness studies are carried out on the (001) plane of faceted crystals of the Bi2Sr2CuO6
(2201) and Bi2Sr2CaCu2O8 (2212) phases with the help of a Knoop indenter. Peculiarities in the effect produced
on the microhardness by the indenter orientation relative to crystal faces, the presence of lead in the structure,
and the force applied to the indenter (scale effect) are detected. It is found that crystals of the 2212 phase exhibit
the strongest dependence of the microhardness on the above factors. © 2000 MAIK “Nauka/Interperiodica”.
The number of publications devoted to physical and
mechanical properties of high-Tc superconducting
(HTSC) crystals based on bismuth is much smaller than
that in which the properties associated with supercon-
ductivity are studied. The strength characteristics can
be helpful for studying the physical and mechanical
properties of complex compounds, such as conductors
of the composition Bi2Sr2Ca2Cu3O10/Ag (2223/Ag) or
devices based on HTSC crystals. On the other hand, the
values of these characteristics may correlate with the
state of the structure [1].

The method of microhardness is a widely used tool
for studying physical and mechanical properties. It is
especially helpful for small-sized objects (such as
HTSC crystals) for which it is difficult to measure
strength parameters by using other methods. The
microhardness of HTSC materials was studied mainly
on Y- and Bi-based superconductors with the help of a
Vickers pyramid [2–6].

In the microhardness measurements in the range of
small loads, the scale effect, i.e., the dependence of
microhardness on the load, is observed. A possible rea-
son behind the scale effect is the elastic relaxation of
the material (elastic restoration of the imprint), since
hardness is usually calculated from the diagonal of the
indenter imprint after the removal of loading. On the
other hand, the microhardness under small loads can be
affected by strengthening of the material as a result of
plastic deformation under the indenter.

In the present communication, the microhardness
HK, the polar anisotropy PK (type I anisotropy) of
microhardness, and the scale effect are studied on the
(001) plane of faceted (idiomorphic) crystals of the
superconducting Bi-based phases Bi2Sr2CuO6 (2201)
and Bi2Sr2CaCu2O8 (2212) (the BSCCO system) with
the help of a Knoop pyramid, since in this case micro-
hardness is most sensitive to the anisotropy of physical
and mechanical properties of the crystal structure [7,
1063-7834/00/4205- $20.00 © 20873
8]. The microhardness anisotropy of Bi2Sr2Ca2Cu3O10
crystals was investigated in [9].

1. EXPERIMENTAL TECHNIQUE

We synthesized the crystals of the HTSC phases of
the BSCCO system from a solution in a KCl melt by
using the preliminarily formed compounds (precur-
sors) and isothermal holding conditions [10]. The sec-
ond precursor for obtaining 2201 crystals was CuO.

The phase composition of the synthesis products
and the crystal lattice parameters of superconducting
phases were determined from the results of analyzing
X-ray diffraction patterns obtained on a DRON-2.0
X-ray diffractometer (FeKα = 1.937 Å) by a standard
method [11].

The microhardness of crystals selected with the help
of an optical microscope was studied on a PMT-3
instrument by measuring the longer diagonal of the
imprint made by the Knoop pyramid [12] and having
the shape of a rhombus extended along one of its diag-
onals. The maximum load applied to the indenter was
≅ 0.03N(3g) in view of a low microhardness and small
sizes of the crystals of the superconducting phases,
while the minimum load was 0.01N(1g). The time of
drawing the indenter to the surface was 15 s and the
time of holding under the load was 10 s. The imprints
were made so that the longer diagonal lied in the (001)
plane of the crystal at angles 0, 45°, and 90° to the
{100} faces of the crystals of the 2201 and 2212
phases.

2. DISCUSSION OF RESULTS

The data presented in Table 1 show that when a part
of Bi is replaced by Pb, the values of the crystal lattice
parameters a and b for the superconductors of the 2201
and 2212 phases become closer. This is apparently due
to the lowering of the distortion level of the crystal lat-
000 MAIK “Nauka/Interperiodica”
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tice of the HTSC phases. This assumption is also con-
firmed by an analysis of the structure of Bi-based
HTSC phases with the help of a high-resolution micro-
scope [13, 14]. It was found that a partial substitution
of lead for bismuth leads to a decrease in the intensity
of the modulation of the atomic spacing observed in the
crystal lattice of this family of HTSC crystals, down to
its complete suppression.

The results of microhardness measurements are pre-
sented in Table 2. According to these results, the value
of HK of crystals belonging to the BSCCO system is
affected by the phase composition and partial substitu-
tion of lead for bismuth. For a load equal to 0.03N, the
microhardness of the crystals of the 2212 phase is close
to the values obtained in [2, 7] for large loads applied
to the indenter. The maximum changes in HK intro-
duced by the addition of lead are observed for crystals
of the 2212 phase, which is apparently due to the con-
siderable effect of substitution on the increase in the
activation energy for the motion of dislocations in spite
of a decrease in the distortion of the structure. Shen

Table 1.  Crystal lattice parameters for superconducting
phases of the BSCCO system depending on the composition
and the presence of lead in the structure

Phase Presence of Pb a (Å) b (Å) c (Å)

2201 – 5.396 5.434 24.64

+ 5.372 5.383 24.52

2212 – 5.390 5.403 30.84

+ 5.377 5.384 30.75
P

et al. [15] observed edge and screw dislocations, as
well as combinations of these dislocations in the struc-
ture of the 2212 phase of the BSCCO system. Shen et
al. [15] considered the double planes of Bi atoms, as
well as the planes between Ca- and CuO layers as slip
planes.

The data presented in Table 2 point to the existence
of polar anisotropy in the microhardness of crystals,
which is especially strong for crystals of the 2212
phase. The introduction of lead to the structure of the
2212 phase results in a change in the orientation of the
indenter for which the microhardness HK has the mini-

mum values, while the direction for  remains
unchanged upon the introduction of lead into the struc-
ture of the 2201 phase. This is apparently due to a
change in the slip direction and in the form of the inter-
action of dislocations under the deformation of the
2212 structure. A partial substitution of lead for bis-
muth changes not only the value of HK, but also the

polar anisotropy coefficient PK = /  [16]. For
the 2212 phase free of Pb, PK = 1.5, while the value of
PK with Pb is 1.4; for the 2201 phase, PK = 1.1 without
Pb and PK ≅  1.0 with Pb. The change in PK is associated
with a more intense increase in the microhardness for
directions corresponding to the minimum values of HK,
which therefore leads to a decrease in the degree of
anisotropy.

In the range of small loads, the microhardness of
BSCCO crystals increases with a decreasing load
applied to the indenter, which is attributed to the scale
effect [8, 17]. The scale effect can be arbitrarily divided

HK
min

HK
max HK

min
Table 2.  Microhardness HK (GPa) of crystals of the 2201 and 2212 phases for various angles ϕ of the indenter orientation
relative to the [100] direction

Phase Load (N)
Microhardness of crystals without Pb Microhardness of crystals with Pb

0 45° 90° 0(90°) 45°

2201 0.03 0.42 ± 0.03 0.36 ± 0.02 0.39 ± 0.03 0.53 ± 0.03 0.50 ± 0.04

0.02 0.41 ± 0.04 0.40 ± 0.03 – 0.59 ± 0.05 0.56 ± 0.04

0.01 0.59 ± 0.06 0.59 ± 0.05 – 0.73 ± 0.06 0.67 ± 0.05

2212 0.03 0.96 ± 0.07 0.91 ± 0.08 0.66 ± 0.04 1.12 ± 0.05 0.86 ± 0.05

0.02 1.28 ± 0.07 – 0.77 ± 0.06 1.40 ± 0.09 1.16 ± 0.08

0.01 1.88 ± 0.09 – 0.84 ± 0.08 2.57 ± 0.08 1.62 ± 0.08

Table 3.  Coefficients C1 and C2 for various angles ϕ of the indenter orientation relative to the [100] direction

Phase 2201 2212

Presence of Pb – – + + – – + +

ϕ (deg) 0 45 0(90) 45 0 90 0(90) 45

C1 (N/mm) 0.036 0.040 0.029 0.040 0.087 0.040 0.110 0.089

C2 × 104 (N/mm2) 16.8 14.3 25.3 22.2 25.8 35.3 19.4 19.2
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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into the effect of elastic restoration of the surface region
(the reduction in the imprint size after the removal of
loading) and the effect of work hardening in the plasti-
cally deformed volume under the imprint on the change
in microhardness [17–19].

It has been established experimentally that the load
P applied to the indenter acting on various materials
(polycrystals, ceramics, and crystals) is balanced by the
resistance offered by the material, which can be pre-
sented in the form [17, 20, 21]

, (1)

where h is the imprint depth and R1 and R2 are propor-
tionality factors.

We assume that the first term on the right-hand side
of equation (1) characterizes the contribution of the
deformed surface, while the second term describes the
contribution of the deformed volume to the resistance
offered by the material to the intrusion of the indenter.
Equation (1) can be written in the form

(2)

, (3)

where C1 and C2 are new constants and d is the longer
diagonal of the imprint.

The figure shows the dependences of P/d on d for
crystals of the superconducting phases of the BSCCO
system with lead partially substituted for bismuth and
without lead. The coefficients C1 and C2 for various
crystals are given in Table 3. Since, according to [17,
18, 21], elastic restoration is associated with C1 and
strengthening of the region under the indenter is con-
nected with C2, these coefficients enable us to estimate
the variation of the contributions of elastic restoration
and strengthening to the scale effect.

According to the data in Table 3, the coefficients C1
and C2 differ most strongly (depending on the direction
of the longer diagonal of the imprint left by the Knoop
pyramid) for the 2212 phase free of Pb, indicating a
strong anisotropy of elastic restoration and plastic
properties of the crystal lattice of this phase. On the
other hand, the closeness of the values of C1 and C2 for
different orientations in the 2201 phase indicates the
similarity of the scale effect in the structure of this
HTSC phase.

It can be seen from the figure (curves 5–8 and
Table 3) that the change in the scale effect in the 2201
structure is associated with a change in the extent of
strengthening of the material under the indenter. The
strongest influence on the change in the scale effect is
produced by doping with lead of the structure having
the 2212 composition, which increases the coefficient
C1 by a factor of 1.5 or 2.5 depending on the orientation
of the indenter (see curves 1–4 and Table 3). An
increase in C1 results in a change in the scale effect and,
besides, reduces the plasticity of the structure of the

P P1h R2h2+=

P C1d C2d2,+=

P/d C1 C2d+=
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2212 phase after the introduction of Pb [8]. At the same
time, the difference between the coefficients C1, as well
as C2, for different orientations decreases, which indi-
rectly confirms the decrease in the anisotropy of this
structure upon a partial substitution of Pb for Bi.

Thus, the values of microhardness HK and the polar
anisotropy PK of microhardness of crystals having the
2201 and 2212 compositions are different. The maxi-
mum values of HK and PK are observed for crystals of
the 2212 phase. A decrease of loading of the indenter
leads to an increase in the Knoop microhardness of
HTSC crystals belonging to the BSCCO system (scale
effect). A change in the orientation of the Knoop
indenter leads to a change in the scale effect for crystals
with the 2212 structure (scale-effect anisotropy). The
data reflecting the influence of the indenter orientation
on the scale effect indirectly confirm the existence of
polar anisotropy both in the elasticity and in the plastic-
ity of the structure of Bi-based HTSC crystals.

A partial substitution of lead for bismuth in the
structure of superconducting phases of the BSCCO sys-
tem leads to a change in HK and PK of the crystals of the
phases 2212 and 2201.

The observed strong anisotropy in the microhard-
ness of crystals of the 2212 phase decreases after the
introduction of lead into the structure, which is
accounted for by a decrease in the distortion of the crys-
tal lattice of this phase. The change observed in the
scale effect in crystals of the 2212 phase upon a partial
substitution of lead for bismuth is associated with a
change in the elastic restoration of the imprint, as well
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Dependence of P/d on d for crystals of the 2212 and 2201
phases (curves 1–4 and 5–8, respectively) for various orien-
tations of the diagonal of the indenter imprint relative to the
[100] direction: (1, 6) with Pb, parallel to [100]; (2, 7) with-
out Pb, parallel to [100]; (3) without Pb, at 90° to [100]; (4,
5) with Pb, at 45° to [100]; and (8) without Pb, at 45° to
[100].
0



876 OSIPOV et al.
as with a change in the degree of strengthening of the
structure under the indenter.
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Abstract—It is shown that the passage of an electric current through crystalline silicon may lead to the so-
called galvanoplasticization, as well as the galvanostrengthening, effect. It is found that the effect is sensitive
to the temperature regime of deforming and to the preliminary high-temperature treatment of the samples. The
motion delay time for short dislocations and starting stresses are significantly affected by the current. The rela-
tion of these effects to the change in the electric state of the Cottrell atmosphere as a result of the passage of the
current through the crystal is considered. © 2000 MAIK “Nauka/Interperiodica”.
The excitation of the electron subsystem of a crystal
is known to result in a change in the mobility of dislo-
cations under mechanical loading [1–3]. The excitation
can be due to the effect of an electric field, irradiation
by a light or electron beam, as to an well as injection
current.

The stimulating effect of a current on the mobility of
short dislocations (L ≤ 100 µm) in crystalline Si was
studied experimentally in [4–6]. Peculiarities in the
behavior of individual dislocations observed in [4–6]
agree well with the conclusions later drawn by Aliev
et al. [7], who studied the electroplastic deformation of
silicon samples.

Typical features in the behavior of short dislocation
segments in Si crystals are the existence of starting
stresses σst and delay times tdel of dislocation move-
ments. Earlier experiments proved that these starting
parameters depend on the conditions of bringing dislo-
cations to starting positions, the regimes of thermal
treatment of the samples, the experimental tempera-
ture, and the state of the surface [8, 9]. One can assume
that the emergence of σst and tdel is associated with the
formation of a region with an elevated concentration of
point defects (Cottrell atmosphere) around disloca-
tions.

In the present communication, we analyze the effect
of a direct electric current on the starting characteristics
of short dislocations and on the activation parameters
determining the depinning of dislocations from the
Cottrell atmosphere (the energy of activating the dislo-
cation detachment from pinning centers and the activa-
tion volume of the depinning process).

High-temperature treatment (HTT) of samples (in
particular, in oxygen atmosphere) is known to be an
effective method for changing the concentration and
structure of microscopic defects in silicon [10, 11]. For
this reason, we studied the effect of electric current on
1063-7834/00/4205- $20.00 © 20877
the interaction of dislocations with point defects by
using both the initial Si samples and the samples sub-
jected to additional high-temperature treatment in air
(3-h annealing at T = 1300 K). The layer of oxygen
formed during such a thermal treatment was etched by
hydrofluoric acid prior to the passage of current.

The sources of dislocation half-loops were stress
concentrators drawn in the [110] direction on the (111)
surface. The motion of dislocations was induced by
bending about the [112] axis (four-support method).
The sample size was 20 × 4 × 0.4 mm in the [110],
[112], and [111] directions, respectively. The relative
error in determining the shear stress was 5%. The initial
and final positions of the ends of the half-loops were
fixed by the chemical etching method. The dislocation
path lengths were measured on a BIOLAM-M micro-
scope with the help of an eye-piece micrometer to
within ≈0.3 µm.

We studied the effect of an electric current on the
dynamics of dislocations by the method of four-support
bending differing from the traditional technique in that
the role of two lower supports was played by cylindri-
cal tungsten electrodes to which voltage was supplied.
This allowed us to pass the electric current through the
samples directly during their mechanical deformation.

The effect of a direct current on the dislocation path
lengths was studied in the temperature range T = 650–
1000 K under mechanical stresses σ = 11–110 MPa for
the current densities J = 1 × 102–1 × 106 A/m2.

It is well known that, in the low-temperature region
(T < 800 K), dislocations in initial Si crystals are immo-
bile. In this paper, we prove that the passage of an elec-
tric current through the Si samples initiates the motion
of dislocations at much lower temperatures than in the
initial crystals.

It was found to be expedient to divide the entire tem-
perature interval under investigation into two parts: the
000 MAIK “Nauka/Interperiodica”
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high-temperature region ∆T1 = 800–1000 K (which was
studied in detail earlier [4–6, 8, 9]) and the low-temper-
ature region ∆T2 = 650–800 K.

The starting stresses σst and delay times tdel were
determined experimentally directly from the linearized
dependences of the average dislocation path lengths
∆L(t) on the time of loading t. Typical time depen-
dences of dislocation path lengths ∆L under various
mechanical stresses in the samples carrying an electric
current in the regions ∆T1 and ∆T2 are shown in Fig. 1.
Figure 1a shows that, for a fixed temperature T and a
mechanical stress σ, the delay time tdel for crystals
excited by the current is longer than in the initial Si
crystals, with the delay time decreasing and ultimately
vanishing upon an increase in the current density J. We
found (Fig. 2) that the starting delay time is inversely
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Fig. 1. Effect of current and temperature on the dislocation
kinetics for (a) σ = 34 MPa, T = 823 K, and different values
of J × 10–5 A/m2: (1) 0, (2) 1, (3) 2, (4) 5, and (5) 10; and
(b) σ = 110 MPa, J = 2 × 105 A/m2, and various values of
T(K): (1) 673, (2) 723, and (3) 773. Under the same condi-
tions, dislocations remain stationary for J = 0.
P

proportional to the length of a moving dislocation seg-
ment (tdel ≈ const/L). For fixed σ and J, the delay time
is a function of temperature T of the sample (Fig. 1b).

It was found that the temperature dependence of the
delay time tdel in the initial samples, as well as in the
samples carrying current, is of the exponential type:

(1)

where tdel 0 is a certain approximation parameter, V(σ)
is the activation energy for the depinning of a disloca-
tion from the Cottrell atmosphere, k is the Boltzmann
constant, F(σ) is a coefficient depending on stress, L is
the length of the dislocation segment, and ν is the
attempt frequency of depinning of the dislocation seg-
ment from the points of its fixation [12–14].

The values of V(σ) were calculated from the temper-
ature dependence of delay times for the entire range of
working stresses. It was found that the V(σ) depen-
dence is linear and can be described by the formula

(2)

where V0 is the height of the barrier preventing the ther-
mal depinning of dislocations from impurity centers in
the absence of external stresses acting on the crystal
(this quantity can be assumed to be equal to the energy
of dislocation depinning from such centers) and γ is the
so-called activation volume of the depinning of a unit-
length dislocation [9, 15]. The values of the experimen-
tally determined activation parameters V0 and γ are
given in the table.

The information contained in the table shows that
the passage of a current through crystalline silicon
reduces the height of the initial barrier V0 for the depin-
ning of dislocations by 0.6–0.7 eV in the high temper-
ature regions (800–1000 K). At low temperatures (650–
800 K), the values of V0 were determined only for cur-
rents of density J = 2 × 105 A/m2. For currents J < 2 ×
105 A/m2, dislocations remained at rest in this tempera-
ture range during the real time of the experiment. In
both temperature regions, there was practically no
delay time at the beginning of the motion of disloca-
tions for J ≥ 5 × 105 A/m2, and hence the activation
parameters of short dislocations for these current den-
sities were not determined.

The noticeable decrease in the barrier height V0
under the action of the current can be interpreted as the
result of a decrease in the energy of interaction of dis-
locations with pinning centers. It is well known
[11,16,17] that, in the temperature intervals ∆T1 and
∆T2, dislocations in silicon are charged and are sur-
rounded by spatial charge regions (Read cylinders) in
order to satisfy the electroneutrality condition. The
atmosphere of point defects around dislocations also
includes pinning centers that have to be overcome by a
dislocation at the beginning of its movement. The pas-
sage of current changes the charge state of the pinning
centers, due to their partial or complete neutralization,

tdel tdel 0 V σ( )/kT[ ]F σ( )/Lν ,exp≈

V V0 γσ,–=
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thus ensuring the lowering of the potential barrier asso-
ciated with the Coulomb interaction. Thus, if we
assume that a dislocation interacts with pinning centers
not only through elastic forces, but also through electric
forces, the decrease in the barrier height V0 in current-
excited Si crystals may serve as indirect evidence of the
change in the charge state of dislocations and point
defects as a result of the passage of current.

In contrast to the dislocation depinning energy,
which changes significantly as a result of the passage of
current through Si crystals, the activation volume (and,
hence, the concentration of pinning centers holding a
dislocation in its starting position) is insignificantly
affected by current flowing through the sample. It
should be noted that this result holds for the high-tem-
perature region. The situation changes drastically as we
go over to the range of low temperatures, in which the
coefficient γ for excited crystals decreases strongly
(approximately by a factor of four) as compared to the
activation volume in the high-temperature range. This
may indicate that the concentration and structure of
pinning centers in the low-temperature region differ
from the concentration and structure of similar centers
in the range of high temperatures.

Our investigations proved that the characteristics of
long and short dislocations in silicon differ qualita-
tively. Long dislocation segments (L @ 300 µm) have
no starting time delay (tdel = 0), but for a fixed σ only a
part of dislocations starts moving.

A qualitatively different situation is realized for
short dislocation loops (L < 100 µm) in the same Si
crystals. For a fixed σ, short dislocations either start
almost simultaneously, or all of them remain at rest.
The effect of starting time delay is typical just of short
dislocations. The delay time itself is a function of
stress: tdel = tdel(σ) (Fig. 3).

The dependence tdel(σ) presented in Fig. 3 corre-
sponds to the high-temperature region (∆T1). The rela-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
tion between the delay time and the stress has a typical
form

(3)

where tdel 0 is a certain approximation parameter.

The stress (J, T) at which dislocations are set in
motion simultaneously (i.e., to tdel = 0, see Fig. 3) will

henceforth be called the absolute start stress. For  <

(J, T), short dislocations are set in motion with a
delay (tdel > 0). Besides, there exists a threshold stress

 < (J, T) for which dislocations remain at rest
irrespective of the time of action of the external agency
(rest boundary of a dislocation).

σst* V0 kT tdel/tdel 0( )γ 1– ,ln–=

σst
A

σst*

σst
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0 σst
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0 0.5 1.0 1.5 2.0 2.5 3.0
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(1/L) × 102, µm–1

Fig. 2. Dependence of the delay time tdel of the beginning of
dislocation motion on the length L of dislocation segments
in Si crystals for σ = 63 MPa, T = 823 K, J = 0.
Activation parameters of depinning of short dislocations from pinning centers in Si single crystals

No. Sample type J × 10–4, A/m2

Temperature range

∆T1 = 800–1000 K ∆T2 = 650–800 K

V0, eV γ × 1027, m3 V0, eV γ × 1027, m3

1 Initial Si 0 2.2 ± 0.1 1.0 ± 0.1 * *

2 Si 1.0 1.6 ± 0.1 0.9 ± 0.1 * *

3 Si 2.0 1.5 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.2 ± 0.1

4 Annealed Si** 0 1.9 ± 0.1 3.5 ± 0.1 *

5 Annealed Si** 1.0–10.0 * * *

* Marks conditions under which the motion of dislocations is not observed, ** corresponds to an annealing temperature of 1300 K and
annealing time of 3 h.
0
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The boundaries  and  of the start regions in
the initial, as well as galvanoexcited, samples depend
on the sample temperature, decreasing upon heating.

For a fixed temperature, the values of stresses  and

 in galvanoexcited Si crystals are lower than in the
initial crystals. For example, for a current with J ≥ 2 ×
105 A/m2,  is smaller than the initial value by
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Fig. 3. Starting characteristics of motion of short disloca-
tions in the temperature range ∆T1. The arrows on the letters
A (1–5) indicate the corresponding values of the absolute
start loading, and B is the rest boundary for dislocations:
(1) J = 0, T = 823 K, (2) J = 0, T = 873 K, (3) J = 1 × 105 A/m2,
T = 823 K, (4) J = 1 × 105 A/m2, T = 873 K, (5) J = 1 ×
105 A/m2, T = 923 K.

Fig. 4. Temperature dependence of starting stress  for a

fixed value of the delay time tdel = 300 s and different values

of J, A/m2: (1) 0, (2) 1 × 105. 
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approximately a factor of three. The values of  and

 in galvanoexcited samples were functions of the
current density, decreasing upon an increase in J.

It should be emphasized that the start characteristics

tdel, , , and  have the above-mentioned pecu-
liarities only in the temperature range T < 973 K. How-
ever, in the region T ≥ 973 K, the galvanostrengthening
effect can be observed, in which the values of starting
characteristics of Si samples differs significantly as a
result of the passage of a current, namely, the values of
starting stresses in galvanoexcited crystals are higher
than the starting stresses of motion of short dislocations
in the initial Si crystals (Fig. 4). It should be noted that

the (T) dependence depicted in Fig. 4 was measured
for a fixed starting delay time equal to 300 s.

The results described above lead to the conclusion
that the passage of a current produces a plasticizing
effect on the surface layers of Si only for T < 973 K. It
was found that the effect of current on the motion of
dislocations depends not only on the temperature range
under investigation, but also on the previous history of
the sample, in particular, on the preliminary HTT of
samples. For example, the passage of a current through
the samples subjected to a preliminary HTT does not
induce the motion of dislocations in any temperature
range under investigation. On the other hand, the
motion of dislocations was observed in Si samples sub-
jected to HTT, but carrying no current, which allowed
us to determine the activation parameters of dislocation
depinning from impurity centers in samples subjected
to annealing in air (see table).

Thus, the effect of a current on the starting parame-
ters and dynamic behavior of dislocations strongly
depends on the previous history of the samples, which
is clearly manifested in Si samples subjected to thermal
treatment (annealed in air). In this case, the passage of
current pins dislocations in their starting positions,
which can be explained by a change in the charge state
of structural defects in such samples. According to
Shimura [18], annealing of silicon at high temperatures
T ~ 1300 K leads to oxygen diffusion to the bulk of the
material along dislocations and slip planes and to the
formation of coarser pinning centers. It was proved in
[17, 18] that dislocations surrounded by an atmosphere
of impurities lose their electrical activity as a result of
such a thermal treatment; i.e., they become electrically
neutral.

The electroneutrality of the atmosphere can only
account for the decrease in the delay time and the
increase in the velocity of dislocations that we observed
[15] in samples annealed at a high temperature (T ~
1300 K). At the same time, the passage of a current
changes the state of the Cottrell atmosphere around a
dislocation, namely, the initially neutral atmosphere
becomes charged. We can assume that the coarser
charge centers formed as a result of the passage of cur-

σst
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σst
0

σst
A σst* σst

0

σst*
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rent pin dislocations at their starting positions so
strongly that the dislocations are unable to leave these
positions under nondestructive stresses. Therefore, the
passage of a current through the samples subjected to a
special thermal treatment must increase the crystal
rigidity as compared to the rigidity of samples carrying
no current.

It should be noted, in conclusion, that the passage of
a current through silicon crystals may lead to two oppo-
site effects, depending on the experimental temperature
and previous history of the samples. For T < 973 K, the
samples not subjected to annealing (“initial” samples)
exhibit a galvanoplasticization effect. In this case, the
delay time of dislocation movement decreases (down to
zero), and starting stresses are reduced (by a factor of
several units). For T ≥ 973 K, the galvanoplasticization
effect is replaced by galvanostrenthening. Silicon crys-
tals subjected to HTT exhibit a tendency to galvano-
strengthening in the entire temperature range under
investigation. This effect can be due to the pinning of
dislocations at stoppers, which is manifested in the
growth of starting stresses and in the increase in the
starting delay time.
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Abstract—The temperature dependence of magnetostriction of textured polycrystalline Co0.72Zn1.28–W hexa-
ferrite has been studied by means of x-ray dilatometry and strain gauges. It is shown that the magnetostriction
constants exhibit an anomalous behavior in the region of spin–reorientational phase transitions and reach as
high as 10–5–10–4. © 2000 MAIK “Nauka/Interperiodica”.
In oxide ferrimagnets with the hexagonal structure
(hexaferrites), which contain, besides trivalent iron,
magnetoactive cations with strong spin-orbit coupling
(for instance, Co2+ ions), variation of temperature can
produce various magnetic structures, namely, the easy-
cone, easy-plane, and easy-axis states. The role played
by the magnetoelastic interaction in the formation of
the magnetic states of magnets of this kind remains
very poorly studied. The available data, obtained pri-
marily at room temperature, provide no more than frag-
mentary information on the behavior of the magneto-
striction constants of some simplest hexaferrites
(BaFe12O9–BaM, BaFe18O27–Fe2–W, etc.) [1–5]. Infor-
mation on the temperature dependences of the magne-
tostriction constants and, hence, on those of the magne-
toelastic coupling constants is extremely scant.

At the same time, it appears obvious that spin–reori-
entational phase transitions, i.e., the processes involv-
ing a change in direction of spin magnetic moments rel-
ative to the crystallographic axes, may be accompanied
by a change in the crystal dimensions because of the
anisotropic nature of the spin subsystem interaction
with the lattice. In particular, x-ray dilatometric studies
of the lattice parameter c made on a BaCo2 – xZnx–W
sample, in which the whole variety of magnetic states
can be realized, showed that in the spin–reorientation
region one observes well-pronounced anomalies in
c(T), which may be interpreted as a manifestation of
spontaneous magnetostriction (λc ≅  10–4) [6, 7].

The measurement of the magnetostriction constants
reduces to determining the relative change in the linear
dimensions of a single-crystal sample along different
crystallographic axes and different directions of the
magnetizing field. Mason [8] derived general expres-
sions for the magnetostriction constant in an arbitrary
direction for a magnet of hexagonal symmetry for the
following two cases:
1063-7834/00/4205- $20.00 © 20882
(i) easy-axis anisotropy

(1)

(ii) easy-plane anisotropy

(2)

where αi are the direction cosines of the magnetization
vector relative to the crystallographic axes and βi are
the direction cosines of the direction in which the mag-
netostriction is measured.

It thus follows that in order to describe magneto-
striction of a uniaxial magnet, it is sufficient to deter-
mine the four principal constants, whereas in the case
of an easy-plane anisotropy, the number of independent
constants increases to nine (because of the lowering of
the magnetic symmetry). Experimental data should be
treated with (2) for the easy-cone and easy-plane states
and with (1) for the easy-axis magnetization.

This paper presents the results of magnetostriction
measurements in the region of spin–reorientational
phase transitions carried out on textured polycrystalline
hexaferrite BaCo0.72Zn1.28Fe16O27–(Co0.72Zn1.28–W),
which undergoes easy-plane ⇔ easy-cone and easy-

λ λ a α1β1 α2β2+( )2 α1β1 α2β2+( )α3β3–[ ]=

+ λb 1 α3
2–( ) 1 β3

2–( ) α1β1 α2β2+( )2–[ ]

+ λ c 1 α3
2–( )β3

2 α1β1 α2β2+( )α3β3–[ ]

+ 4λd α1β1 α2β2+( )α3β3;

λ A 2α1α2β1 α1
2 α2

2–( )β2+[ ] 2
=

+ Bα3
2 α1β1 α2β2+( )2 α1β1 α2β1–( )2–[ ]

+ C α1β1 α2β2+( )2 α1β2 α2β1–( )2–[ ]

+ D 1 α3
2–( ) 1 β3

2–( ) Eα3
2β3

2 1 α3
2–( )+

+ Fα3
2 1 α3

2–( ) Gβ3
2 1 α3

2–( )+

+ Hα3β3 α1β1 α2β2+( ) Iα3β3 α1β1 α2β2+( ),+
000 MAIK “Nauka/Interperiodica”



MAGNETOSTRICTION OF HEXAFERRITES IN THE REGION 883
cone ⇔ easy-axis phase transitions near room temper-
ature.

The magnetostriction constants of hexaferrites in
the region of spin–reorientational transitions were
determined by means of x-ray dilatometry and tensom-
etry.

X-ray dilatometry permits one to study linear defor-
mations of a crystal along certain crystallographic
directions, i.e., to obtain information on the main mag-
netostriction constants of a single-crystal sample. The
lattice parameters and their variation can be measured
with high precision only on sufficiently perfect crystals,
with rocking curves about 0.1° in a half-width, in which
case the margin of error of determination of the relative
elongation may be as small as (2–3) × 10–6. If the tex-
ture of a polycrystalline sample is perfect enough, the
interplanar distances can be measured to within 10–5.
Figure 1 presents the magnetostriction constants λa and
λc measured by this method on a textured polycrystal-
line sample (ft ≅  0.7) of the above-mentioned hexafer-
rite. In the region of reorientational phase transitions
one readily sees “giant” magnetostriction, which
exceeds by at least two orders of magnitude the values
quoted typically in the literature for ferrimagnets of this
class [1–4, 9].

The polycrystalline sample used in the magneto-
striction measurements by tensometric technique had a
“sheet”-pattern texture in the basal planes, with the tex-
ture index ft ≅  0.35. As strain transducers, we used
GDT-type germanium dendrite strain sensors with a
strain sensitivity coefficient S = +55 and a base length
of 10 mm. The strain sensor was mounted on the sam-
ple surface in accordance with the averaged values of
the directional cosines α1 = α2 = β1 = β2 = 0.468, α3 =

280 290 300 310 320
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λa
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λ, 10–4

Fig. 1. Temperature dependence of the magnetostriction
constants λa and λc of the BaCo0.72Zn1.28Fe16O27 hexafer-
rite.
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β3 = 0.352 in the case of longitudinal magnetization,
and with α1 = α2 = 0.176, α3 = 0.936, β1 = β2 = 0.662,
β3 = 0.352 for transverse magnetization.

Figure 2 displays the field dependences of the longi-
tudinal and transverse magnetostriction obtained at dif-
ferent temperatures. In the case of transverse magneto-
striction, the curves exhibit saturation, with the effect
decreasing with increasing temperature. For longitudi-
nal magnetostriction, the effect is small in the region
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Fig. 2. Field dependences of (a) the longitudinal and
(b) transverse magnetostriction of BaCo0.72Zn1.28Fe16O27
at different temperatures T(K): (a) (1) 178, (2) 308, (3) 323,
(4) 333, (5) 363, (6) 389; and (b) (1) 317, (2) 367, (3) 388.
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where easy-plane magnetization exists and is appar-
ently due to domain-structure rearrangement. The
dependence obtained at a temperature of 389 K, corre-
sponding to the easy-axis state, has an anomalous shape
with a maximum at a magnetizing field of 3–4 kOe.

Figure 3 presents the temperature dependences of
the magnetostriction constants taken at a magnetizing
field of 8 kOe. The maximum values of magnetostric-
tion in the basal plane reached under magnetization
along the c axis are reached at the temperatures of the
easy-plane ⇔ easy-cone spin–reorientational transition
and are as high as 10–4. Magnetostriction in the basal
plane obtained under longitudinal magnetization is at
least an order of magnitude smaller.

The analysis of the results of measurements, made
using the relations (1) and (2) (derived for the magne-
tostriction of a magnet of hexagonal symmetry), took
into account the real distribution of crystallographic
axes in the textured sample under longitudinal and
transverse magnetization. Substituting the magneto-
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–10
280 300 320 340 360 380 400

T, K

λ, 10–5

1

2

Fig. 3. Temperature dependences of (1) longitudinal and (2)
transverse magnetostriction of the BaCo0.72Zn1.28Fe16O27
hexaferrite.
P

striction constants λa and λc, determined by the x-ray
dilatometric method, and the directional cosines αi and
βi into the expressions for magnetostriction under lon-
gitudinal and transverse magnetization yielded the fol-
lowing estimates for the main magnetostriction con-
stants of this sample for 300 K:

Thus, our study has shown that in the region of spin–
reorientational transformations one observes anoma-
lous magnetostriction effects. The maximum values of
magnetostriction are found in the case where magneti-
zation caused by an external field induces an orienta-
tional transition involving a maximum change of the
orientation angle, for instance, at the induced easy-
plane  easy-axis phase transition. The results
obtained in this work can be used advantageously to
estimate magnetoelastic interactions in the region of
spin reorientation.
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Abstract—Domain structures with in-plane magnetization are investigated in magnetically hard films. A mag-
netooptical setup designed for studying stray magnetic fields combines the advantages of the vibrating-sample
magnetometer and the magnetooptical method of signal detection. The sensitivity of measurements of the stray
field normal component is ~0.1 Oe. The criteria for choosing the optimal parameters of magnetooptical media
for information readout are established. © 2000 MAIK “Nauka/Interperiodica”.
The measurement of weak stray magnetic fields is
important in connection with investigating the domain
structure (DS) of magnetic films, with the magnetiza-
tion vector lying in the film plane. The main problem of
studying such objects is that the standard magnetoopti-
cal methods of DS observation cannot be used [1],
since both the Faraday effect and the polar Kerr magne-
tooptical effect required for DS observations are con-
siderably suppressed in the case of the magnetization in
the plane of the film [1]. Other methods are either qual-
itative (e.g., the magnetic liquid method) or very com-
plicated (e.g., the electron-optical method) and inappli-
cable for an express analysis [2]. A possible way of
solving this problem is the application of an intermedi-
ate readout medium [1, 2] possessing high magnetoop-
tical characteristics, on the one hand, and being cou-
pled magnetostatically with the object under investiga-
tion, on the other hand.

The most promising media for detecting spatially
nonuniform magnetic fields with a characteristic non-
uniformity scale of the order of a micrometer or slightly
larger are epitaxial films of Bi-containing garnet fer-
rites (EGFF) [1]. Besides, such films are the most suit-
able as magnetooptical heads for an information read-
out. Such heads are used when the magnetooptical
parameters of an information-carrying medium do not
permit a direct readout from the medium itself (e.g.,
due to the small value of the Kerr rotation).

The method of magnetic field visualization and
topography using the configurations of domain struc-
tures of Bi-containing EGFF is known [2]. However,
this method has limitations on the magnitude of the
magnetic field under study and is characterized by a
considerable error when the characteristic spatial scale
of the field being measured is comparable with the DS
period of the sensor.
1063-7834/00/4205- $20.00 © 20885
In this communication, we describe a nonvisual
magnetooptical method of recording weak magnetic
fields and formulate the criteria for choosing the opti-
mal parameters for EGFF to be used as a sensor. The
main feature of the proposed method of measurements
is the combination of a vibrating-sample magnetometer
with the optical method of recording a useful signal.

1. EXPERIMENT

The setup for studying a nonuniform magnetic field
was developed on the basis of a polarization micro-
scope with a laser emitting λ = 0.63-µm-long waves as
a light source (Fig. 1). The principle of operation is as
follows: the laser beam is focused on a Bi-containing
EGFF that serves as a readout medium; it has a light-
reflecting aluminum layer of thickness 0.1 µm depos-
ited on the back side of the film. A sample with a DS
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Fig. 1. Block diagram of the measuring setup: (1) laser,
(2) EGFF, (3) sample, (4) sample displacement unit,
(5) polarizer, (6) photodetector, (7) amplifier, (8) oscillo-
scope, (9) generator, (10) x–y desk.
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whose stray magnetic fields are to be measured is
placed under the EGFF. The sample is mechanically set
in motion parallel to the EGFF. As a result, the DS of
the EGFF is under the action of variable stray fields of
the sample under investigation, which leads to the
emergence of Faraday rotation upon the reflection of
the laser beam by the dielectric layer. The recording
system measures the coordinate dependence of the
magnetooptical signal amplitude proportional to the
normal component of the stray field of the sample in the
region of the laser spot.
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Fig. 2. Block diagram for measuring the sample vibration
amplitude: (1) displacement unit, (2) rod, (3) opaque shut-
ter, (4) light source, (5) photodetector, (6) sample, (7) sam-
ple holder, (8) EGFF.
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Fig. 3. Coordinate dependence of the normal component of
the stray field.
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Fig. 4. Schematic diagram of a domain under illumination
by a laser.
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In order to determine the normal component of the
stray field, we use the comparison method applied for
measuring the absolute value of saturation magnetiza-
tion in vibrating-sample magnetometers. For this pur-
pose, we arrange the calibrated coil so that the EGFF is
located in a known variable magnetic field having the
same frequency as the vibrational frequency of the
vibrator. Comparing the amplitude of the magnetoopti-
cal signal from the DS of the vibrating sample with the
amplitude of the magnetooptical signal induced by the
magnetic field from the calibrated coil, one can deter-
mine the amplitude of the normal component of the
stray field of the sample DS under investigation.

The recording system includes an FD-7 photodiode
with a UPI-2 amplifier–transducer. The amplitude of
sample vibrations is measured with the help of an opti-
cal system (Fig. 2) whose operation principle can be
described as follows: an opaque shutter is fixed to the
vibrator rod so that it partially covers the surface of the
photodiode (1) when the latter is illuminated with a
plane-parallel beam of light from the illuminant (4).
The amplitude of photo-emf is proportional to the
amplitude of the rod vibrations, provided that the latter
is much smaller than the size of the photosensitive sur-
face of the photodetector.

Figure 3 shows the results of experimental investi-
gations of the normal component of the stray field as
a function of the coordinate for a domain structure,
with the magnetization vector lying in the plane of the
film. The sample under investigation is a standard
magnetic tape for audio recording, carrying a test sig-
nal of frequency 500 Hz. For the detecting medium,
we have chosen the EGFF having the composition
(BiSmTm)3(FeGa)5O12 with the following parameters:
film thickness h = 6 µm, domain size P = 100 µm, and
saturation field Hs = 6 Oe.

2. CALCULATING THE OPTIMAL PARAMETERS 
OF A DETECTING MEDIUM

The most important parameters of the system
intended for measuring weak magnetic fields are the
sensitivity and spatial resolution. The sensitivity of this
method is determined primarily by the magnetic
parameters of the recording EGFF (saturation field,
coercive force, and Faraday rotation), as well as by the
sensitivity of the recording system of the magnetoopti-
cal signal.

Let us determine the parameters of the material to
ensure the maximum sensitivity of the system, other
conditions being equal. This can be done on the basis of
the condition of the maximum of the magnetooptical
signal amplitude under the action of an external mag-
netic field H. For the magnetooptical signal amplitude,
we can write

(1)S kΨ0h∆W /Pn,=
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Fig. 5. Nomogram for determining the optimal parameters of uniaxial materials for a magnetooptical readout of information.
where Ψ0 is the specific value of Faraday rotation, h is
the film thickness, P is the DS period, ∆W denotes the
changes in the domain size under the action of the
external magnetic field H, n is the number of domain
walls in the region of the laser spot with a diameter L
(Fig. 4) (L is the characteristic size of information bit),
M is the magnetization of the material, Ms is the satura-
tion magnetization, and k is a coefficient characterizing
the sensitivity of the readout system. Besides, we can
write

(2)

The magnetooptical susceptibility χm0 can be written as

(3)

Obviously, χm0 must have the maximum value. Substi-
tuting expressions (2) and (3) into formula (1), we
obtain

(4)

∆W /P M/M.=

χm0 dS/dH H 0= .=

χm0 kΨ0h/Ms dM/dH H 0=( ) 2L/P 1–( ).=
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The expression for dM/dH|H = 0 can be derived from the
theory of a stripe DS [4] under the conditions M/Ms ! 1

and Q @ 1, where Q = Ku/2π  is the quality factor of
the material and Ku is the uniaxial anisotropy constant:

(5)

In the region 1 < P/h < 5, expression (5) can be approx-
imated by the formula

(6)

Besides, the following relation holds in the same
range of the ratio P/h [4]:

(7)

Ms
2

dM/dH H 0= 4π 1 P/ πh( )∑+




=

× 1–( )n 1 2πh/P–( )exp–( )/n
n

∑ 



1–

.

dM/dH H 0= 0.053 0.047P/h.+=

1/h 0.05– 0.083P/h.+=
0
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For uniaxial magnetic materials, the following rela-
tions hold [3]:

where A is the exchange constant belonging to the
range 2 × 10–7–4 × 10–7 erg/cm3 for an EGFF.

Substituting expressions (6) and (7) into (4), we
obtain the following equation for the magnetooptical
susceptibility:

We must find the values of P and h for which χm0 has a
maximum value, i.e., solve the system of equations

This condition is satisfied for the following relations:
P/h = 2.585, P = L, and l/h = 0.165.

These relations determine the optimal parameters
of the material used for measuring weak magnetic
fields with the characteristic scale L by the magnetoop-
tical method. Thus, if we must read out information
with the characteristic size L of a recording bit by the
magnetooptical method, the optimal parameters of the
material serving as the readout medium are as follows:
(1) a Bi-containing EGFF with the maximum possible
concentration of Bi ions; (2) the DS period is equal to
the size of an information bit, P = L; (3) the diameter
of the laser spot is equal to the size of the information
bit; (4) the characteristic length of the material is
l = 0.0637L; (5) the film thickness is h = 0.387L, or
h = 6.07l; (6) 4πMs = 157(QA)0.5/L; and (7) Ku =
1017Q2A/L2.

It should be noted in addition that χm0 ~ (QA)–1, and
hence Q must have a minimum value. For the conve-
nience of determining the required parameters of the
film, Fig. 5 shows a nomogram which makes it possible
to find the optimal magnetic parameters of EGFF. The
principle of operation with such nomograms are
described in detail in [3, 4]. The parameters should be
determined in the following sequence. We assume that
the characteristic size of a readout information bit is L.
(1) Specify the Q-factor of the material (the value of Q
normally belongs to the interval 1.5–10). (2) Choose
the value of the exchange constant A, which usually
varies from 2 × 10–7 to 4 × 10–7 erg/cm3. (3) Mark the
value of L on the diagram and find the values of film
thickness h, domain size P, and characteristic length l of
the material corresponding to it. (4) Knowing Q and A,
draw a horizontal line to the intersection with the
straight line on the nomogram. (5) Find the values of
4πMs and Ku corresponding to this point (as shown in
Fig. 5).

Ms 2QA/π( )1/2/l; l 4 AKu( )1/2/ 4πMs
2( ),= =

χ kΨ0h 0.05h– 0.083P+( )=

× 0.053 0.047P/h+( ) 2L/P 1–( ) 2QA/π( ) 1/2– .

∂χm0/∂P 0=

∂χm0/∂h 0,=

 ∂2χm0/∂P2 0=

∂2χm0/∂h2 0.=



PH
It should be observed that the film thickness h is
bounded by the optical absorption of the material. If a
laser with the wavelength λ = 0.63 µm is used, the max-
imum possible EGFF thickness is h = 10 µm. This
means that if the characteristic size of the magnetic
field under investigation is L ≥ h/0.346 = 26 µm, the
most optimal parameters of the EGFF can be deter-
mined from the condition ∂χm0/∂P = 0 for h = 10 µm
and P = L. Besides, it should be borne in mind that the
coercive force is Hc ~ 1/h and can be as high as 4 Oe for
1/h ~ 1–2 Oe [5]. Thus, the application of EGFF for
studying weak magnetic fields with a characteristic
period exceeding 50 µm is limited in view of the
increase in coercive force. This difficulty can be over-
come by increasing the EGFF thickness to the optimal
value with the corresponding transition to the infrared
spectral region, where the optical absorption coefficient
is considerably smaller (e.g., a laser with the wave-
length λ = 0.8 µm can be used). If, however, one has to
operate in the visible spectral range, other magnetoop-
tical materials (like orthoferrites) should be used as the
sensor.

Thus, the setup we developed to measure the ampli-
tude of the normal component of the stray field and
using an intermediate recording medium in the form of
Bi-containing garnet ferrite films makes it possible to
determine the parameters of domain structure of mag-
netic materials with an in-plane magnetization vector.
The theoretical analysis carried out here makes it pos-
sible to determine the optimal parameters of the record-
ing medium material for magnetooptical readout of
information as functions of the bit size (density of
recording).
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Abstract—A theoretical study is reported of the effect of interlayer exchange coupling on the resonance prop-
erties of a two-layer magnetic film with “easy-axis” and “easy-plane” anisotropic layers in a strong tilted mag-
netic field. The dependence of the resonance fields on the tilting angle of the external magnetic field to the film
has been obtained, the tensor of integrated high-frequency film susceptibility has been found, and its depen-
dence on the strength and orientation of the external field, as well as on layer thickness, has been analyzed. The
results obtained agree with the available experimental data. © 2000 MAIK “Nauka/Interperiodica”.
The continuing interest in the investigation of mul-
tilayer magnetic structures is stimulated by their fairly
unusual properties, which in many cases turn out to be
more complex and diverse than those of single-layer
films. The current significant interest in multilayer
films is due to their broad application potential in vari-
ous devices.

Among the most important characteristics of mag-
netic systems are their high-frequency properties, in
particular, the ferromagnetic resonance (FMR) fre-
quencies, the dynamic magnetic susceptibility of a film,
etc. Obviously enough, interlayer coupling in a multi-
layer film may strongly affect all its properties, includ-
ing the FMR frequency spectrum, as well as give rise to
features in energy absorption. For this reason, films
made up of magnetic layers with different magnetic
anisotropy types are of major interest among multilayer
structures, both for theorists and for device applica-
tions.

Among the first theoretical approaches to the inves-
tigation of two-layer magnetic films was formulating
the problem of magnetization distribution in a film con-
sisting of two exchange-coupled ferromagnetic layers
with differently oriented easy axes; a particular case
was that of the easy axes lying in the film plane at an
angle to one another [1, 2]. The strong exchange inter-
action between the layers accounts for the nonuniform
distribution of magnetization across such a film, which
was taken into account in [1, 2] by accepting the corre-
sponding boundary conditions. Ion-implanted films
consisting of layers differing in the nature of the mag-
netic anisotropy were considered in [3, 4].

Attempts to analytically solve the problem of mag-
netization distribution in the ground state meet with
formidable mathematical difficulties, and therefore cer-
tain approximation are invoked (for example, by postu-
1063-7834/00/4205- $20.00 © 0889
lating a strong external magnetic field and infinite layer
thickness [3]) or a numerical approach is used [2, 4].

This work reports a theoretical study of some fea-
tures in FMR frequencies and a calculation of the high-
frequency magnetic susceptibility tensor for a film
made up of two layers with an easy-axis and an easy-
plane magnetic anisotropy. Considerable attention is
paid to the existence of a gap in the FMR frequency
spectrum discovered experimentally in [5, 6]. Specific
features in the absorption intensity described by the
high-frequency susceptibility tensor were observed in
[7]. The existence of a gap in the FMR spectrum was
theoretically validated in [8], where this phenomenon
was related to the finiteness of the interlayer exchange
coupling. However, the model used in [8] only allows
description of ultrathin films, where the interface is
comparable in thickness to the layers themselves. At
the same time, the layer thicknesses used in the experi-
ment [5–7] far exceed (by an order of magnitude and
more) the characteristic length. In the model proposed
here, the limitation on the layer thickness is removed,
and the small parameter allowing the analytical solu-
tion of the FMR frequency problem and the calculation
of the susceptibility tensor is the small ratio of the layer
anisotropy fields to the external magnetic field.

1. FORMULATION OF THE PROBLEM

Consider a two-layer film with the surface normal
coinciding with the Z axis. One of the layers (layer 1)
has an easy-axis anisotropy and extends in thickness
through 0 < z < d1, and the second layer (layer 2), occu-
pying the –d2 < z < 0 region, is easy-plane anisotropic.
We assume the easy axis in layer 1 and the hard axis in
layer 2 to be parallel to the Z axis. A strong tilted mag-
netic field He exceeding the anisotropy field Han in each
2000 MAIK “Nauka/Interperiodica”
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layer is applied to the film (here and subsequently, the
subscript n = 1, 2 denotes the layer number).

The equilibrium distribution of the magnetization
vector M in a constant external field He is determined
by minimizing the energy W of the structure:

(1)

where An are the exchange-coupling constants, Mn is
the saturation magnetization of each layer,  = Kn –

2π  are the effective magnetic-anisotropy constants,
He is the external magnetic field, and J is the interlayer
exchange-coupling constant. All the constants entering
(1) (An, , and Mn) are assumed to be constant within
each layer. Integration in the first term is performed
over the volumes of the corresponding layers, and in
the second one, over the layer interface. In this work,
we are going to restrict ourselves to analyzing the exci-
tations uniform in the film plane (XY) and nonuniform
across the film (i.e., along the Z axis); this actually
makes the problem one-dimensional, and taking into
account that the magnetostatic interaction reduces to a
renormalization of the anisotropy constants,  = Kn –

2π .

The equations of motion for the magnetization in
each layer can be cast in the form

(2)

where λn are the damping coefficients, gn are the gyro-
magnetic ratios, and the angular variables θ and ϕ
parametrize the magnetization vectors, Mn = Mn(cosθ,
sinθsinϕ, sinθcosϕ).

The boundary conditions for the coupled equations
(2) taking into account the interlayer exchange cou-
pling can be written as [9–11]

(3)

where the prime denotes the derivative with respect to
the coordinate Z. This choice of boundary conditions
corresponds to free spins at the film surface and takes
into account the exchange interaction between the lay-
ers at their interface, which is described by the second
term in (1).
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Note that many works dealing with the analysis of
linear and nonlinear excitations in layered structures
[3–5] make use of simpler boundary conditions at the
layer interface; i.e.,

(4)

One readily sees that these boundary conditions are
actually the limiting case of boundary conditions (3) and
correspond to an infinitely strong interlayer exchange
coupling (J  ∞). As we shall see later, in this limiting
case, the two-layer film under study here has only one
FMR frequency rather than two, which are found to exist
at a finite exchange-coupling parameter J.

Because the film is assumed to be isotropic in the
(XY) plane, we shall consider, without any loss of gen-
erality, that the external dc magnetic field He lies in
the (YZ) plane, with its direction given by the ϕH and
θH = π/2 angles.

2. FMR AND RESONANCE FIELDS

In order to analyze the spectrum of linear excitations
of the two-layer film under study, one has to linearize
the equations of motion (2) and the boundary condi-
tions (3) with respect to small deviations of the magne-
tization vector M from its equilibrium distribution, for
which purpose we set θ = θ0 + ϑ , ϕ = ϕ0 + ψ, and ϑ ,
ψ ! 1, where the angles θ0 and ϕ0 correspond to the
equilibrium distribution of the M vector. In the two-
layer film under study with different magnetic anisotro-
pies in the layers, this magnetization distribution is
nonuniform across its thickness, even in a strong tilted
magnetic field in excess of the layer anisotropy fields
Han [12]. The equilibrium magnetization in an infinite
easy-axis magnet would be tilted at an angle ϕ10 = ϕH –
sin2ϕH/2h1, and in an easy-plane one, at ϕ20 = ϕH +
sin2ϕH/2h2. The interlayer exchange coupling in a two-
layer film of a finite thickness makes the magnetization
vector turn within the angular interval ( , ),

where the  and  angles define the magnetization

orientation at the film surfaces, ϕ10 >  >  > ϕ20,
to form a kind of a “domain wall.” This nonuniformity
in the magnetization distribution is, however, small
because of the smallness of the (~Han/H) parameter,
and therefore in the equations linearized in the ϑ  and ψ
variables one can set θ0 = π/2, ϕ0 = ϕH; i.e., assume the
ground state to be uniform. In this case, interlayer
exchange will become manifest only in the spin wave
equations.

The equations describing the normal vibrations of

A1

M1
2

-------M1'
A2

M2
2

-------M2' ,
M1

M1
-------

M2

M2
-------.= =

ϕ̃10 ϕ̃20
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the system in this approximation have the form

(5)

Here ln = (An/ | |)1/2 is the characteristic length, hn =

HeMn/2| | is the normalized external field, and ωn =

2gn | |/Mn is the frequency of uniform FMR in the
nth layer in the absence of an external magnetic field.

The linearized boundary conditions can be written
as

(6)

We shall look for the solution to linear homoge-
neous equations (5) in each layer in the form

(7)

Inserting (7) into equations (4) yields a homogeneous
system of algebraic equations for the coefficients ϑna,
ϑnb, ψna, ψnb; now, equating the determinant of this sys-
tem to zero, we come to the spin-wave dispersion rela-
tion ω = ω(k). The dissipative term in the equations of
motion naturally results in the ω quantity being com-
plex (while the wave vector k is real), ω = ω' + iω",
where ω' is the normal vibration frequency and ω"
characterizes the spin wave damping,

(8)

Obviously enough, the same frequency ω in differ-
ent layers should be identified with different values of

1
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the wave vector k = kn, namely,

(9)

(without loss of generality, we shall assume that kn > 0).
Substituting (7) into the boundary conditions (6)

yields an equation for resonance frequencies as func-
tions of the external field He, which can be cast in the
form

(10)

where

One readily sees that the quantities Hn are actually
the values of the external field at which the FMR occurs
at a frequency ω for a fixed angle ϕH in individual lay-
ers; therefore, we shall call the Hn quantities in what
follows the resonance fields of the nth layer.

Equation (10) gives the eigenfrequencies of a two-
layer film as functions of parameters of the two-layer
film and of the external magnetic field He in an implicit
form. An explicit expression for the resonance frequen-
cies generally cannot be derived from (10), and there-
fore one can conveniently consider this expression as
representing the resonance field as a function of its tilt
angle ϕH and of the frequency ω; i.e., H = H(ω, ϕH).
Equation (10) can be solved for H in a trivial way by
determining two values of the resonance field of a two-
layer structure as a function of the frequency ω and of
the tilt angle ϕH:

(11)

where we have introduced the notation Jn = J/Mndn.
As seen from (11), for any finite value of the J

parameter, there exist two values of the resonance field
given by expression (11) (and, hence, two FMR fre-
quencies). In the limiting case of J = 0, which corre-
sponds to noninteracting layers, the resonance fields H+
and H– coincide naturally with the corresponding val-
ues of the H1 and H2 fields for one-layer films. In the
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opposite limiting case of J  ∞, which can be identi-
fied with the strongest possible exchange coupling
between the layers, the resonance field H+ also grows
without limit, H+ ≈ J1 + J2 ~ J  ∞, which leaves only
one hybrid resonance field for the film under study here
(and, hence, only one FMR frequency)

(12)

This behavior of the resonance fields (and FMR fre-
quencies) allows a straightforward interpretation based
on a simple mechanical analogy; indeed, a two-layer
film may be considered conventionally as two coupled
oscillators, with the normal frequency of each oscillator
coinciding with the FMR frequencies of noninteracting
layers. If the coupling between the oscillators is finite,
the system will have two normal frequencies, while if
the oscillators are rigidly connected, the system is char-
acterized by a single resonance frequency.

Figure 1 presents plots of the two resonance fields
vs. the tilt angle ϕH relative to the Z axis calculated for
a fixed frequency (ω = 2π × 7.92 GHz) from (11) for
several values of the two-layer parameters (solid

H– H1

J2

J1 J2+
---------------- H2

J1

J1 J2+
----------------.+=

4000

3000

2000
0 0.5 1.0 1.5

ϕΗ, rad

H, Oe

Fig. 1. Resonance fields H± plotted against the tilt angle ϕH
of the external magnetic field with respect to the film nor-
mal. The points are experimental data.

Parameters of a two-layer YIG structure

Layer 1 2

Composi-
tion (YEuTmCa)3(FeGe)5O12 (YGdLa)3(FeGa)5O12

A, erg/cm 2.9 × 107 3.5 × 107

M, Gs 36.53 70.06

K*, erg/cm3 18264 –70000

d 0.5 × 10–4 0.18 × 10–4

g, Oe–1 cm–1 1.25 × 107 1.78 × 107

λ 2.5 × 10–3 6 × 10–3
P

curves). Both branches are seen to depend nonmono-
tonically on the tilt angle ϕH, with the minimum reso-
nance field on the upper branch, (H+)min, and the maxi-
mum field on the lower branch, (H–)max, occurring for
different ϕH angles. It is essential that (H–)max < (H+)min
for any value of the film parameters. Hence, the upper
branch is separated from the lower one by a gap; i.e., an
interval of external fields within which FMR does not
exist for any tilt angle ϕH. It goes without saying that
the gap width depends on the parameter of interlayer
exchange coupling.

The points in Fig. 1 show the experimental values of
the resonance fields obtained in [13] for a two-layer
film with known magnetic parameters (see the table). It
is these parameters that were used in constructing the
theoretical graphs in Fig. 1, with the interlayer
exchange coupling constant J being the only fitting
parameter; the best fit to the experiment was achieved
for J = 0.24 cm. This film is characterized by a small
value of the J parameter, such that J1, J2 ! H1, H2;
besides, the inequality |J1 – J2| @ |H1 – H2 | holds. As
can readily be seen from the general relation (11), for
any value of the ϕH angle (excluding a narrow region
near the gap), the resonance fields H+ and H– can be
approximated for such parameters by the H1 + J1 and
H1 – J2 expressions, respectively.

Generally, the analytic expressions for the extremal
values of resonance fields, (H+)min and (H–)max, and for
the angles, ϕ+ = ϕH((H+)min) and ϕ– = ϕH((H–)max), at
which these values are reached, are very cumbersome.
However, if the angles ϕ+ and ϕ– are close to one
another, the gap δH can be estimated approximately by
the expression δH ≈ 2(J1J2)1/2. For a two-layer film with
the parameters listed in the table, one obtains 316 Oe, a
value that agrees with the experiment.

In concluding to this section, we note that in the case
of fairly “thick” magnetic layers making up a two-layer
film, the effect of interlayer exchange coupling on the
FMR frequencies of the film under consideration (or on
the resonance fields) may be expected to be small.
Indeed, for sufficiently large thicknesses, the parame-
ters Jn = J/Mndn become small; thus, we return to the
limiting case Jn ! Hn, where the second and third terms
in (10) may be neglected, after which the resonance
fields H+ and H– will coincide with the corresponding
values of H2 and H1 characteristic of noninteracting
layers. If one reduces the thickness of one of the layers
(for instance, by gradually etching off the first layer),
the second term in (10), which is proportional to J1, will
increase, while the third one, proportional to J2, will
remain small. As can be readily verified, the resonance
fields in this case are equal to H2 and H1 + J1 (except a
region near the gap); i.e., one of the FMR frequencies
of the two-layer film coincides with the resonance fre-
quency of the thicker layer, and the second frequency
differs from the FMR frequency of the thinner layer (in
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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the limit as d1  0, the film only has one resonance
frequency which coincides naturally with that of the
second layer).

3. HIGH-FREQUENCY SUSCEPTIBILITY 
TENSOR FOR A TWO-LAYER FILM

To analyze forced linear vibrations of a two-layer
film, consider linearized equations of motion that
include not only a constant, but also a variable external

magnetic field (t) = exp(iωt) of frequency ω.
These equations naturally differ from equations (5)
only in the presence of a nonzero right-hand side,

which is proportional to the external variable field (t)

H̃ H̃0

H̃

1
ωn

------∂ϑ
∂t
------- ln

2ψ''– hn Kn* 2ϕHcossgn+( )ψ+
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(13)

where  = /Han.
We shall look for the solution to the inhomoge-

neous linear equations (13) in the form of ϑ  =  + ,

ψ =  + , where ,  is the general solution (7) of
the homogeneous system found in the preceding sec-

tion, and ,  are particular solutions of the inhomo-
geneous system. We find from (13) that

+ λn –lnϑ '' hn Kn* ϕHcos
2

sgn+( )ϑ+[ ]

=  h̃ny ϕHcos h̃nz ϕH,sin–

–
1
ωn

------∂ψ
∂t
------- ln

2ϑ ''– hn Kn* 2ϕHcossgn+( )ϑ+

– λn –lnψ'' hn Kn* ϕHcos
2

sgn+( )ψ+[ ] h̃nx ,–=

h̃n H̃

ϑ ϑ̃
ψ ψ̃ ϑ ψ

ϑ̃ ψ̃
(14)

ϑ̃ n

–H̃xFn
2( ) H̃y ϕHcos H̃z ϕHsin–( ) iω

ωn

------Han λnFn
2( )+ 

 +

Hn iRn H–+( ) Un iRn– H+( )
---------------------------------------------------------------------------------------------------------------------------,=

ψ̃n

H̃x
iω
ωn

------Han λnFn
1( )+ 

  H̃y ϕHcos H̃z ϕHsin–( )Fn
1( )+

Hn iRn H–+( ) Un iRn– H+( )
-----------------------------------------------------------------------------------------------------------------------.=
We have introduced here the notation Rn = –ωλnHan/ωn,

The coefficients ϑna, ϑnb, ψna, ψnb appearing in the
general solution (7) of the homogeneous system of equa-
tions can be found by substituting the general solution of

the inhomogeneous equation ϑ =  + , ψ =  +  in
to the boundary conditions (6):

Un Han
ω2

ωn
2

------
ϕHsin

4

4
----------------+

 
 
 

1/2

=

–
Kn*sgn

2
---------------- 2ϕHcos ϕHcos

2
+( ) ,

Fn
1( ) He Kn*Han ϕHcos

2
,sgn+=

Fn
2( ) He Kn*Han 2ϕHcos .sgn+=

ϑ ϑ̃ ψ ψ̃

ϑ 1a ϑ̃ 2 ϑ̃ 1–( )
J1 H2 iR2 H–+( )

H+ iR+ H–+( ) H– iR– H–+( )
-------------------------------------------------------------------------,=

ϑ1b ϑ̃ 2 ϑ̃ 1–( ) k1d1,tan=

ϑ 2a – ϑ̃ 2 ϑ̃ 1–( )
J2 H1 iR1 H–+( )

H+ iR+ H–+( ) H– iR– H–+( )
-------------------------------------------------------------------------,=
(15)

where the quantities R± = [R1 + R2 ± (R1 – R2)(H1 + J1 –
H2 – J2)/D1/2]/2 determine the height and width of the
resonance peak.

Based on the expressions (7), (14), and (15)
obtained for the magnetization distribution, one can
readily find the tensor of the integrated high-frequency

susceptibility (ω), which is defined as a coefficient of
proportionality between the components of integrated
magnetization and of the external variable magnetic

field. The imaginary part (ω) is known to determine
the energy absorption by a system:

ϑ2b ϑ̃ 2 ϑ̃ 1–( ) k2d2,tan=

ψ1a ψ̃2 ψ̃1–( )
J1 H2 iR2 H–+( )

H+ iR+ H–+( ) H– iR– H–+( )
-------------------------------------------------------------------------,=

ψ1b ψ̃2 ψ̃1–( ) k1d1,tan=

ψ2a – ψ̃2 ψ̃1–( )
J2 H1 iR1 H–+( )

H+ iR+ H–+( ) H– iR– H–+( )
-------------------------------------------------------------------------,=

ψ2b ψ̃2 ψ̃1–( ) k2d2,tan=

χ̂

χ̂

Q
ω
2
---- χ ij'' ω( )H̃iH̃ j.

i j, 1=

2

∑–=
0
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In the general case, we have

(16)

χ̂ 1
d1 d2+( )

--------------------- 1
H+ iR+ H–+( ) H– iR– H–+( )

-------------------------------------------------------------------------=

×

P1 2 2,( ) ϕHP2 2 2,( )cos– ϕHP2 2 2,( )sin

ϕHP2 1 1,( )cos ϕHP1 1 1,( )cos
2 ϕH ϕHP1 1 1,( )cossin–

ϕHP2 1 1,( )sin–  ϕH ϕHP1 1 1,( )cossin– ϕHP1 1 1,( )sin
2

 
 
 
 
 
 

.

The notation used here is as follows

(17)

It should be stressed that the components of the inte-
grated susceptibility tensor (ω), as expected, exhibit
a resonance behavior at external fields H close to the
resonance fields of a two-layer film, and H+ and H–
[Pn(k, j) are smooth functions of the external field,
which do not contain resonance denominators],
whereas the expressions (15) for the amplitudes ϑna,
ϑnb, ψna, ψnb have resonance denominators not only in
the fields H±, but also in the fields H1, 2 characteristic of
noninteracting layers.

Note also that all nine components of the integrated
susceptibility tensor are usually different. The (ω)
tensor acquires a simpler form in the Cartesian frame
(X'Y'Z'), in which the Cartesian axis Z' is directed along
the external magnetic field He, and the film surface nor-
mal lies in the (Y'Z') plane. In this system, the inte-
grated-susceptibility tensor can be written

(18)

P1 k j,( )
M1d1 H2 J1 J2 iR2 H–+ + +( )F1

k( )

U1 iR1– H+
----------------------------------------------------------------------------------=

+
M2d2 H1 J1 J2 iR1 H–+ + +( )F2

j( )

U2 iR2– H+
---------------------------------------------------------------------------------;

P2 k j,( )

M1d1 H2 J1 J2 iR2 H–+ + +( ) iω
ω1
------Ha1 λ1F1

k( )+ 
 

U1 iR1– H+
-------------------------------------------------------------------------------------------------------------------=

+

M2d2 H1 J1 J2 iR1 H–+ + +( ) iω
ω2
------Ha2 λ2F2

j( )+ 
 

U1 iR2– H+
-------------------------------------------------------------------------------------------------------------------.

χ̂

χ̂

χ̂ 1
d1 d2+( )

--------------------- 1
H+ iR+ H–+( ) H– iR– H–+( )

-------------------------------------------------------------------------=

×
P1 2 2,( )  P2 2 2,( ) 0

P2 1 1,( ) P1 1 1,( ) 0

0 0 0 
 
 
 
 

.

P

Figure 2 presents the dependences of the imaginary

parts of the components of the susceptibility tensor 
on the external field He calculated for different tilt
angles ϕH of the external field with the two-layer film
parameters given in the table. The diagonal compo-
nents (Fig. 2a) exhibit a typical resonance behavior for
fields close to H+ and H– [the difference is due to the
presence of dissipative terms in the denominator of

(18)], whereas the off-diagonal components of the 
tensor follow a typical resonance-antiresonance pattern
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Fig. 2. Imaginary parts of the components of the integrated

susceptibility  plotted against the external magnetic field

He for various angles ϕH (rad). (a) , (b) .
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(Fig. 2b). The values of the resonance fields as func-
tions of the tilt angle ϕH are naturally close to the cor-
responding dependences of the H+ and H– fields [see
(11) and Fig. 1].

Note the substantial difference in the intensity of the
peaks corresponding to the upper and lower resonance
fields, and the strong dependence of these intensities on
the angle ϕH. Figure 3 presents the extremal values of
the imaginary parts of the integrated susceptibility ten-
sor components as functions of the field tilt angle ϕH.
The resonance peak corresponding to the upper reso-
nance field H+ decreases in intensity with the external
magnetic field deviating from the film norm, and in the
gap region, where the separation between the H+ and H–

fields is small, this intensity becomes so low as to be
practically indistinguishable against the background of
the peak due to the lower resonance field H–. A compar-
ison of our theoretical dependence with the experimen-
tal plot [7] reveals a fairly good qualitative agreement
between the theoretical and experimental curves, which
proves the validity of the model proposed here.

The dependence of the peak intensity on the thick-
ness d1 of one of the layers making up a two-layer film
was also studied experimentally [7]. Figure 4 plots a
calculated dependence of the imaginary part of inte-
grated susceptibility on the thickness of the easy-axis
layer. For H = H+, this dependence (the lower curve in
Fig. 4) also exhibits a qualitatively good agreement
with those presented in [7]. Unfortunately, the lack of
reliable experimental data does not presently allow one
to make a qualitative and a quantitative comparison of
theoretical and experimental curves.

We note, in conclusion, that the theoretical model
put forward in this work permits a description of the

χxx (H–)

χxx (H+)

ϕΗ, rad

χxx, Gs cm2/Oe

2.0

1.5

1.0

0.5

0 0.5 1.0 1.5

Fig. 3. Maximum values of the imaginary parts of the com-
ponents of integrated susceptibility  plotted against the
angle ϕH.

χ̂
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main high-frequency properties of a two-layer
exchange-coupled magnetic film. The above compari-
son was made with experimental data available for epi-
taxial YIG films, in which the interlayer exchange cou-
pling parameter J is relatively small. However, the
model adequately reproduces the properties of ion-
implanted films as well, for which this parameter is
fairly large [in some cases, one may consider it to be
infinitely large and use approximate boundary condi-
tions (4)]. Besides, by taking into account the eddy cur-
rents one can readily generalize the obtained results to
cover metallic films.
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Abstract—The magnetic properties of a 50- to 2-nm-thick surface layer in hexagonal ferrite BaFe12O19 single
crystals are investigated for the first time. Measurements are made on a conversion-electron Mössbauer spec-
trometer constructed on the basis of a unique ultrahigh-vacuum magnetostatic electron analyzer of the “orange”
type. An analysis of the experimental Mössbauer spectra obtained from the surface layer of BaFe12O19 50- to
2-nm-thick single crystals reveals that (1) the spectral line widths are close to the natural widths of Mössbauer
lines and neither changes nor a set of the values of effective magnetic fields, as well as a paramagnetic state of
iron ions, could appear due to a defect such as the “surface,” and (2) the experimental spectra are best described
only under the assumption that the surface of a hexaferrite BaFe12O19 single crystal contains a 2-nm-thick layer,
in which the magnetic moments of iron ions are deflected through ~20° from the crystallographic C axis along
which the magnetic moments of ions located in the bulk of the crystal are oriented. © 2000 MAIK
“Nauka/Interperiodica”.
Since the early 1970s, the number of publications
devoted to peculiarities of the magnetic structure of the
surface layer of crystals and the processes on the sur-
face accompanying phase transitions has increased
considerably. From the point of view of fundamental
investigations, this is due to the need to explain the
effect of surface on the properties of the surface layer
of the crystal. The study of the formation of surface
layer properties is also important from the viewpoint of
applications, since fine powders and thin films, in
which the effect of the surface is significant, are widely
used in modern microelectronic devices.

The possibility that the properties of the surface
layer and of the bulk of the crystal are different was first
demonstrated by Neel [1], who theoretically substanti-
ated the assumption of the existence of an anisotropic
layer having a thickness of several tens of angströms on
the surface of ferromagnetic crystals. The study of fine
powders [2] revealed that the magnetic moments of iron
ions in crystallites are not aligned collinearly to the
magnetic field, even for its large values. This led to the
conclusion on the existence of a thin layer on the sur-
face, in which the orientation of magnetic moments dif-
fers from that in the bulk of the crystallite. Subse-
quently, the magnetic properties of fine powders were
explained on the basis of a model according to which
the magnetic moments of ions located in a thin surface
layer are oriented not parallel to one another, but at a
certain angle Θ, thus forming an angular, or a noncol-
linear, magnetic structure in this surface layer [3, 4].
1063-7834/00/4205- $20.00 © 20897
The angle Θ in this model must vary smoothly as we
move to the bulk of a crystallite.

Another approach to explaining the magnetic prop-
erties of a group of particles presumes the existence on
the crystallite surface (or “magnetically dead,” in the
terminology of the authors of [5–7]) layer of a thin
paramagnetic. In this case, the exchange interaction of
surface ions is much weaker than for ions located in the
bulk of the sample, in view of the absence of one or sev-
eral nearest magnetic neighbors. The destruction of the
magnetic ordering of ions located at the sample surface
by thermal fluctuations results in the formation of a
layer that makes no contribution to the magnetization
of the crystallite. The estimated values of the thickness
of the “magnetically dead” layer were ~20–25 Å for
ferrite particles [5–8] and from 10 to 100 Å for other
compounds [3, 9].

Other interpretations of the results of experiments
described in [2, 3] also exist. For example, Parker et al.
[10, 11] explained these results by the presence of a
large fraction of smaller-size crystallites in the groups
of particles under investigation. Thus, the existence of
a thin layer with a noncollinear arrangement of mag-
netic moments on the surface of a crystallite did not
receive unambiguous confirmation. This is due to the
complexity of investigating the properties of the sur-
face for fine powders due to relaxation processes inten-
sified upon a decrease in the crystallite size, as well as
to technological difficulties in obtaining a group of par-
ticles with a small size dispersion. Consequently, the
properties of the surface should be investigated on the
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic diagram of the setup for depth-selective conversion-electron Mössbauer spectroscopy: (A) magnetic system of the
electron analyzer, (M) Doppler modulator, (S) source of gamma quanta, (C) crystal under investigation, (R) electron counter,
(IF) ideal focussing position, (D) diaphragm, and (K) electron recording channels.
cuts of macroscopic crystals. Such experiments were
first made by Krinchik et al. [12, 13] assuming that the
thickness of the anisotropic surface layer at the surface
of antiferromagnets with weak ferromagnetism must be
considerably larger than in ferromagnets. The experi-
mental results allowed these authors to discover an
anisotropic surface layer (called a “transition” layer)
and to assume that the orientation of magnetic
moments within this layer changes smoothly. Subse-
quently, a “transition” layer was observed for other
macroscopic crystals exhibiting weak ferromagnetism
[14–16]. The thickness of the “transition” layer obtained
from theoretical calculations for FeBO3 amounted to
~500 nm [15], which agrees well with the estimates
based on the experimental data [14].

New prospects in the study of the properties of the
surface of a macroscopic crystal were opened by the
simultaneous gamma-resonance, x-ray, and electron
Mössbauer spectroscopy (SGXES) methods, which
makes it possible to simultaneously gain information
about the surface layer and the bulk of the crystal
[17, 18]. As a result, direct experimental evidence was
obtained [19] on the existence of a ~400 nm-thick layer
on the surface of single crystals with weak ferromag-
netism, in which the orientation of magnetic moments
differs from that in the bulk, this difference increasing
as one approaches the surface.

The SGXES experiments with Ba–M, Sr–M, and
Pb–M hexagonal ferrites [20] did not reveal the pres-
ence of a “transition” layer to within an experimental
error in analyzing layers with thicknesses larger than
20 nm. According to estimates obtained in [1, 20], the
thickness of the anisotropic surface layer in ferrites
PH
amounts to a few nanometers. Thus, the magnetic struc-
ture of the surface of ferrites should be studied by using
methods permitting an analysis of surface layers to
within 1 nm. The results of investigating the surface
layers of macroscopic crystals of Ba–M type hexagonal
ferrite (with the chemical formula BaFe12O19) are
described in the present paper.

1. METHOD OF DEPTH-SELECTIVE 
CONVERSION-ELECTRON MÖSSBAUER 

SPECTROSCOPY

In our measurements, we used the method of depth-
selective conversion-electron Mössbauer spectroscopy
(DSCEMS), first proposed in [21]. The schematic dia-
gram of the spectrometer is shown in Fig. 1. The accu-
racy of the measurement of the layer thickness was ele-
vated considerably by using computer technologies
[22] for designing the shape of the magnetic separator
for electrons. The information on the properties of the
layer was obtained from calculations of energy losses
for conversion or Auger electrons, whose yield function
was determined on the basis of the Monte Carlo method
[22, 23]. The magnetostatic system we developed has
the following parameters: a transmittance of 21% of
4π, and an energy resolution of 0.2–2%, depending on
the sample size.

2. DISCUSSION OF EXPERIMENTAL RESULTS

Single crystals of hexagonal barium ferrite
BaFe12O19 were synthesized from a solution in melt.
The concentration of the 57Fe isotope in the compound
YSICS OF THE SOLID STATE      Vol. 42      No. 5      2000



        

DEPTH-SELECTIVE CONVERSION-ELECTRON MÖSSBAUER SPECTROSCOPY 899

                                                                                                  
88000

92000 6.84 keV

7.01 keV

38000

36000

7.22 keV104000

100000

7.25 keV
148000

144000

140000

7.32 keV

50000

49000

–12 –8 –4 0 4 8 12 0 20 40 60
Depth, nmVelocity, mm/s

0.05

0.10

0.15

0.05

0.10

0.15

0.05

0.10

0.15

0.05

0.10

0.15

0.05

0.10

0.15

W
ei

gh
t, 

dP
/d

x,
 [

nm
–1

]

C
ou

nt
s

Fig. 2. Mössbauer spectra of BaFe12O19 single crystals obtained at 293 K by recording conversion electrons from surface layers.
The wave vector of gamma quanta is parallel to the crystallographic C axis. The probabilities of an electron recording as functions
of the depth of an atom’s location at which the electron has been formed are shown on the right.
was natural, i.e., 2% of the iron content. The sample
plates having a diameter of 9 nm and a thickness of
~120 µm were cut from single crystals. X-ray studies
proved that the crystallographic C axis was perpendic-
ular to the plane of the plates. In the sample prepara-
tion, special attention was paid to the quality of the
crystal surface under investigation. Previous experi-
ments proved that a high-quality surface can be
obtained with a 1-min chemical polishing in the ortho-
phosphoric acid at a temperature of 90°C.

The DSCEMS method was used to obtain experi-
mental spectra in the energy range from 6.9 to 7.4 keV
at room temperature (Fig. 2). The wave vector of
gamma radiation was oriented parallel to the crystallo-
graphic C axis. The same figure (right part) shows the
profiles of the weight functions of electrons for each
Mössbauer spectrum. The correctness of the orientation
of the crystallographic C axis relative to the cut plane
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
of the plate was controlled by recording the Mössbauer
spectra in the gamma-radiation transmission geometry
(Fig. 3). Figures 2 and 3 show that the spectral lines
belonging to different sublattices are well resolved,
which allows one to process experimental data more
accurately.

Effective magnetic fields Heff, isomeric shifts δ, and quadru-
pole splitting ∆E for BaFe12O19 at room temperature

Sublattices Heff , kOe δ, mm s ∆E, mm/s

12k 415 ± 1 0.25 ± 0.01 0.40 ± 0.02

4fvi 493 ± 1 0.25 ± 0.01 0.18 ± 0.02

4fvi + 2a 512 ± 2 0.16 ± 0.01 0.21 ± 0.02

2b 421 ± 4 0.23 ± 0.02 2.35 ± 0.04

Note: The isomeric shift δ is determined relative to α-Fe.
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The experimental spectra were used to calculate the
parameters of hyperfine interactions, which are pre-
sented in the table. The obtained values agree well with
the available data (see [24] and the literature cited
therein, as well as [20]).

Figure 3 shows that, in the recording of gamma
quanta, no resonance lines are observed in the spectrum
obtained for the orientation of the crystallographic C
axis parallel to the wave vector of gamma radiation in
the range from 4 to 5 mm/s, both for positive and neg-
ative values of the Doppler shift velocities of the
gamma-quanta sources.

Using the formula

(1)

for the intensity ratio of first and second (and also fifth
and sixth) lines of sextuplets (see, for example, [25]),
we calculated the angles Θ determining the direction of

Θ
4A1.6 3A2.5–
4A1.6 3A2.5+
------------------------------ 

 
1/2

arccos=

=  
3/2( )A2.5/A1.6

1 3/4( )A2.5/A1.6+
------------------------------------------ 

 
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Fig. 3. Mössbauer spectra of a BaFe12O19 single crystal
obtained at room temperature (a, c) by the recording of
gamma quanta carrying information from the bulk of the
crystal and (b) by the recording of secondary electrons from
a surface layer of a thickness from 0 to 200 nm. The wave
vector of gamma quanta is parallel to C for (a) and (b) and
forms an angle of 28° with C for (c).
P

magnetic moments relative to the wave vector of
gamma radiation.

The results of processing the spectra obtained dur-
ing recording gamma quanta demonstrated that the
intensities of the second and fifth lines, which corre-
spond to transitions with ∆m = 0 in the Zeeman sextu-
plets of each nonequivalent position, are equal to zero.
This means that the angle Θ is zero, and hence the mag-
netic moments of iron ions located in the bulk of the
crystal are collinear to the wave vector of gamma
quanta and to the crystallographic C axis. This conclu-
sion coincides with the results of the investigation of
these crystals bulk properties (see, for example, [24]).
The spectrum shown in Fig. 3 confirms the correctness
of the orientation of the sample plate relative to the
wave vector of gamma radiation in our experiments.

The Mössbauer spectra obtained with the recording
of conversion electrons display low-intensity lines in
the range from 4 to 5 mm/s for both positive and nega-
tive values of the velocities. An analysis of the results
based on formula (1) proved that these lines correspond
to transitions with ∆m = 0.

The form of the spectrum obtained with the record-
ing of gamma radiation (Fig. 3a) shows that these lines
are not associated with disorientation of the crystallo-
graphic C axis relative to the gamma-quanta beam. The
reasons behind the emergence of these lines in the spec-
tra obtained with the recording of electrons can be for-
mulated as follows. First, the source of gamma quanta
and the samples under investigation are not pointlike,
and the Mössbauer source was mounted as close as pos-
sible to the sample to intensify the electron beam. On
account of a small separation between the source and
the absorber (as compared to the diameter of the
source), the experimental Mössbauer spectra display
only the lines corresponding to transitions with ∆m = 0.
Second, the contribution to the intensities of these lines
may come from the noncollinearity of the magnetic
moments to the crystallographic C axis in the layer
under investigation.

In the mathematical analysis of experimental spec-
tra, both these factors were taken into account. In our
experiments, we used the samples with a diameter of
8 mm mounted at a distance of 10.5 mm from the
source of gamma quanta. The radioactive spot from the
gamma-quanta emitter of the Mössbauer source was
4 mm in diameter. It should be noted that a positive fac-
tor of such a geometry is the elevation of the sensitivity
of the experiments, owing to the employment of a
steeper part of the function describing the dependence
of the intensity of Mössbauer lines on the angle Θ.

The mathematical analysis of the experimental
Mössbauer spectra for the BaFe12O19 hexaferrite was
carried out on the basis of two different methods. In the
first method, the shape of the lines and of the entire
spectrum was analyzed by using the standard approach
to Mössbauer spectra processing based on the least
square technique. However, in contrast to the standard
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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procedure, all the spectra obtained during the recording
of electrons with different energies were analyzed
simultaneously. This means that the parameters of
hyperfine interactions were determined from all the
spectra in accordance with their statistical weight. The
main goal of the given stage was to find out whether the
intensities of the second and fifth lines (corresponding
to transitions with ∆m = 0) in the Mössbauer spectra
obtained by recording electrons having different ener-
gies are different. Consequently, the intensities of the
second and fifth lines, and accordingly, the angle Θ,
were variable parameters. According to the results of
our analysis, the angle Θ obtained from the spectra with
the recording of electrons having an energy of 7.32 eV,
i.e., from the thinnest surface layer, differs from zero.
The error of calculations increases twofold if the value
of the parameter Θ is fixed and equal to zero.

In the other method, we used the program developed
specially for an analysis of the DSCEMS [23]. In the
model used for data processing, the angle of inclination
of magnetic moments to the C axis was fixed, i.e., was
not a free parameter, while the thickness of the surface
layer in which such a deviation could be observed was
varied. It was found that for Θ = 25°, the thickness of
the surface layer in which the magnetic moments were
not collinear to those in the bulk was 1.6 nm (the error
of measurements varied from –0 to +1.6). In these cal-
culations, the angle Θ was not a free parameter, but the
thickness of the transition surface layer was varied. The
analysis proved that the best agreement between the
theoretical and experimental spectra is attained when
assuming that there exists a 3-nm-thick layer on the
crystal surface, in which the magnetic moments are
deflected from the orientation in the bulk through 20°.
The margin of error of the measurement of the layer
thickness was +1 and –2 nm. Thus, a correct analysis of
the Mössbauer spectra is possible only on the basis of
the model presuming the existence of a thin layer on the
crystal surface, where the magnetic moments are non-
collinear to the directions of spins in the bulk of the
sample.

The following experiments were made for control
purposes. The single crystals under investigation were
mounted so that the wave vector of gamma quanta was
oriented at an angle α to the crystallographic C axis.
Figure 3 shows an example of the Mössbauer spectrum
obtained for α = 28 ± 2°. It can be seen from Fig. 3 that
the deviation of the orientation of the magnetic
moments from the direction of propagation of gamma
quanta leads to the emergence in the spectra of a Zee-
man sextuplet line corresponding to transitions with
∆m = 0. The angle Θ determined by formula (1)
amounts to 29 ± 2° and coincides with the preset exper-
imental conditions.

Thus, the DSCEMS method was first used to study
the properties of the thin surface layer of single crystals
of hexagonal ferrites BaFe12O19. It was found that a
correct analysis of experimental data is possible only
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
under the assumption that there exists a surface layer in
ferrites BaFe12O19, having a thickness of 3 nm (the mar-
gin of error of measurements varying from –1 to
+2 nm) and displaying a deviation of magnetic
moments from their orientation in the bulk of the crys-
tal through an angle of 20 ± 3°.
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Abstract—A symmetry approach is used to study the influence of electric field E on the NMR frequency spec-
trum of antiferromagnets of the rhombohedral (Cr2O3) and tetragonal (e.g., the Fe2TeO6 trirutiles) systems
exhibiting a linear magnetoelectric (ME) effect. The latter originates from the presence in their magnetic struc-

ture of an antisymmetry center . It is shown that besides the trivial effect of E on the NMR frequency through
the total magnetization induced by the ME phenomenon, there also exists an independent mechanism of a direct
action of electric field on the local field at the nuclei, which can, in particular, produce an additional NMR fre-
quency splitting. The dependence of this effect on the exchange magnetic structure and orientational state is
considered.© 2000 MAIK “Nauka/Interperiodica”.

1'
In crystals whose symmetry (the Fedorov group)
includes the center of symmetry , antiferromagnetic
(AF) ordering may transform the latter into an antisym-
metry center, i.e., an element  =  · 1' (1' is the time
inversion operation) from the viewpoint of magnetic
symmetry, or an odd element (–) if considered in
terms of crystal-chemistry symmetry. The odd g(–) and
the even g(+) elements relate in the lattice the magnetic
moments belonging to magnetic sublattices with oppo-
site and like magnetizations, respectively [1, 2]. Such
centroantisymmetric (CAS) antiferromagnets exhibit
the so-called magnetoelectric (ME) effect; i.e. they can
be electrically polarized by a magnetic field H (the PH

effect) and magnetized by an electric field (the ME

effect):

(1)

where  is the ME susceptibility tensor, and T is the
transposition operation [3]. The form of the  tensor is
determined from the invariance of (1) under the mag-
netic point-symmetry group of the magnetic structure
under study.

By inducing or changing the total magnetization M
in accordance with (1), the electric field E affects the
local magnetic fields at the nuclei and, hence, at the
NMR frequencies. If this (actually trivial) effect of E
on the NMR frequency had been the only one, our task
could have been considered completed, because if one
knows , one can readily find ME and, thus, calculate
the corresponding contribution of E to the hyperfine
field at the nuclei in each sublattice for a known AF
structure.

1

1' 1

1

PH α̂H, ME α̂TE,= =

α̂
α̂

α̂

1063-7834/00/4205- $20.00 © 20903
In reality, however, there exists another, indepen-
dent channel by which an electric field E can act on
local magnetic fields and, hence, the NMR frequencies,
which is determined directly by the AF vector L corre-
sponding to the AF structure under study. Considered in
terms of symmetry, this contribution of E to the local

field  at the nuclei of the νth sublattice is given by
the expression

(2)

where the form of the matrix  =  (here α, β, and
γ take on the values x ≡ 1, y ≡ 2, z ≡ 3)1 is found from
the requirement of invariance of (2) under the local
(island) symmetry group for the atoms of sublattice ν,

and the relation between the  belonging to different
sublattices is determined by the elements of space crys-
tal-chemistry symmetry transforming one sublattice
into another. It is a theoretical analysis of this channel
of the electric-field effect on the NMR frequency spec-
trum, which is performed for the specific example of
CAS antiferromagnets of two types, i.e., the rhombohe-
dral oxides Cr2O3 and the tetragonal trirutiles Fe2TeO6,
that is the main purpose of this study.

There are factors that somewhat complicate this
problem. We have in mind the possible (weak) noncol-
linearity of the four-sublattice magnetic structures of

1 This double (alphanumeric) notation has the following meaning.
The numerical indices are used to denote the expansion matrix
constants that are not acted upon by symmetry transformations
involved in finding the invariant form of this expansion. It is the
variables in which the expansion is made and that transform
under operation of the above symmetry elements that the literal
indices (usually on the L, E, etc. vector components) belong to.

Hν
E

Hν
E λ̂ νLE,=

λ̂ ν λαβγ
ν

λ̂ ν
000 MAIK “Nauka/Interperiodica”
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the above antiferromagnets [4]. It appears, however,
more reasonable to touch on this point at the end of the
paper when discussing the results obtained.

1. ON THE MAGNETIC STRUCTURE 
OF THE OXIDES AND TRIRUTILES

We understand by a magnetic structure the combi-
nation of the exchange magnetic structure (EMS) deter-
mined by the orientation of the magnetic moments with
respect to one another as a result of their being
exchange coupled and of the orientational state (OS),
which depends on the directions of the moments rela-
tive to the crystallographic axes (magnetically isotropic
relativistic interaction). A collinear EMS is identified
by its code [1, 2], which specifies the parities of the ele-
ments acting as generators of the space crystal-chemis-
try group of the crystal. Because the chemical and mag-
netic cells for the antiferromagnets that are of interest
to us here coincide, translations by integral periods may
be considered to be identity elements.

The crystal-chemistry symmetry of the chromium

oxide Cr2O3 is determined by space group R c( ),
and its magnetic ions Cr3+ occupy the fourfold site 4c
with the local symmetry {3}. As a result, crystals of this
type (to which the hematite α-Fe2O3 belongs) allow the
existence of collinear EMSs with the following codes
[2]:

(3)

Shown on the right are the linear combinations of the
sublattice magnetizations Mν (ν = 1, 2, 3, 4), which rep-
resent vector order parameters of the corresponding
EMSs (basis vectors). For the three AF structures (a, b,
and c), these will be the antiferromagnetism vectors La,
Lb, or Lc, and for the fourth ferromagnetic (FM) struc-
ture, the ferromagnetism vector M.

Each of these EMSs can be realized in pure form,
depending on the actual character of the exchange
interaction. However, relativistic interaction can give
rise to a weak admixture of another structure to it. For
instance, a structure (f) is admixed to a centrosymmet-
ric (CS) structure (a) characteristic of the hematite
(α-Fe2O3) to produce a weakly ferromagnetic structure
with M ! La. Also, to a CAS structure (c) with a vector
Lc ≠ 0 can, in principle, become admixed another CAS
structure (b) with Lb ! Lc to yield a weakly noncol-
linear “cross”-type magnetic structure [5], whose vec-
tors M1 and M2 (M3 and M4) deviate slightly from the
strict parallelism characteristic of the pure structure (c).

3 D3d
6

a( ) 1 +( )3z +( )2x –( ), La M1 M2– M3– M4,+=

b( ) 1 –( )3z +( )2x +( ), Lb M1 M2 M3– M4,–+=

c( ) 1 –( )3z +( )2x –( ), Lc M1 M2 M3 M4,–+–=

f( ) 1 +( )3z +( )2x +( ), M M1 M2 M3 M4.+ + +=
P

We note immediately that in order to simplify as much
as possible the problem of the effect of electric field E
on an NMR spectrum, we shall neglect for the time
being the latter noncollinearity, all the more so that no
experimental data on its existence in the antiferromag-
nets under study are available. Thus, we actually set
Lb = 0 to reduce the case to a two-sublattice model in

which M1 = M2 = MI and M3 = M4 = MII, so that

M = MI + MII and L ≡ Lc = MI – MII. This will be our
first approximation. The question of what the abandon-
ing of this approximation leads to is postponed until the
end of the paper.

A similar consideration can be carried out for

trirutiles with the P42/mnm( ) crystal-chemistry
symmetry. Their magnetic ions (Fe3+ or others) occupy
the fourfold site 4e with the {mm} local symmetry. The
EMSs possible for these ions are described by the fol-
lowing codes and basis vectors:

(4)

As in the preceding case, the La in a centrosymmetric
EMS can be admixed with M to produce a weakly fer-
romagnetic structure, as this occurs with NiF2. As for
the two centroantisymmetric EMSs, (b) and (c), each
of them can form the basis, either Lb with a relativistic
admixture of Lc ! Lb, or Lc, with an admixture of
Lb ! Lc. Structure (b) is characteristic of Fe2TeO6 and
Cr2TeO6, and structure (c) is realized in Cr2WO6 and
V2WO6. The first and the last compounds have fairly
high Néel points, TN = 210 and 370 K, respectively. We
also neglect for the time being this noncollinearity, and
shall restrict ourselves to the two-sublattice model,
namely, either with L ≡ Lb (for M1 = M3 and M2 = M4)
or with L ≡ Lc (for M1 = M4 and M2 = M3).

To consider our problem, we should naturally know,
besides the EMS, the orientational state as well. It can
be found by minimizing the total thermodynamic
potential, which consists of a magnetic part (exchange,
magnetic anisotropy, Zeeman energy) and also, in the
presence of an electric field E, of the ME interaction
[6–8], i.e.,

(5)

as well as the energy associated with the polarizability
P in this field. (Recall that summation is run over recur-
ring dummy indices.) For the sufficiently low frequen-
cies that are of interest to us here, Pα = καβEβ, where καβ
is the electrical susceptibility tensor [7, 8]. The form of
the coefficients of the γαβγ matrix is found from the

1
2
--- 1

2
---

D4h
16

a( ) 1 +( )4z –( )2d +( ), La M1 M2 M3– M4,–+=

b( ) 1 –( )4z +( )2d –( ), Lb M1 M2 M3 M4,–+–=

c( ) 1 –( )4z –( )2d –( ), La M1 M2– M3 M4,+–=

f( ) 1 +( )4z +( )2d +( ), M M1 M2 M3 M4.+ + +=

ΦME γαβγLα PβMγ,–=
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requirements of invariance of (5) under the crystal-
chemistry symmetry elements entering the code of the
corresponding EMS, taken with due account of their
parity. We shall not consider here the problem of the
ground state, because in what follows, we intend to deal
with the fairly simple situations where it is actually
known, and we shall present some simple relations
bearing primarily on the total magnetization, which
includes both the magnetic and the electrical parts, i.e.,

(6)

without proof.

2. LOCAL FIELDS AT NUCLEI AND THE NMR 
FREQUENCIES: GENERAL APPROACH

Thus, the local field at a nucleus ν is the sum of three
vectors, namely, of the hyperfine field , which is
determined by the local magnetization at it, i.e., by the
magnetization of the corresponding sublattice Mν,

(7)

of the external field H; and of the ME field (2) intro-

duced above. The actual form of  is again found
from the requirements of invariance (7) under the above
local symmetry elements of site ν. On finding in this
way the field  for any concrete number ν, one can

readily determine the field  at a nucleus ν' of any
other sublattice from (7) by means of the symmetry
operation transforming site ν into ν'. In this manner,
one can obtain the hyperfine field for all four sublattices
of chromium oxide or of trirutiles.

It appears reasonable now to transfer in (7), as was
done in (2), to the antiferromagnetism vector L, the
basis vector representing the EMS of interest to us here.
This is how one crosses over to the two-sublattice col-
linear model discussed above. For chromium oxide, we
have the (c) structure, so that, in accordance with (3),

L ≡ Lc (La = Lb = 0), with M1, 3 = (M + L) and

M2, 4 = (M – L). For the two possible CAS structures

in trirutiles, (b) and (c), we have by (4), respectively,

L ≡ Lb (La = Lc = 0), with M1, 3 = (M + L) and

M2, 4 = (M – L), or L ≡ Lc (La = Lb = 0), so that

M1, 4 = (M + L) and M2, 3 = (M – L).

To present the effect of electric field E on NMR fre-
quencies in the simplest way possible, we make here a
second essential approximation, namely, we neglect in

Mα χαβHβ αβα Eβ MH ME,+≡+=

Hν
hf

Hνα
hf 4Aν

αβMνβ;=

Aν
αβ

Hν
hf

Hν'
hf

1
4
---

1
4
---

1
4
---

1
4
---

1
4
--- 1

4
---
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(7) the anisotropic elements of matrix  by assuming

where δαβ is the Kronecker delta symbol. The role of
the off-diagonal elements will be touched on later when
discussing the results (together with the part played by
the noncollinearity of magnetic structures in the four-
sublattice model).

The NMR frequency for a nucleus ν of the sublattice
is determined by the modulus of the total local field it
sees [4]:

(8)

(γn is the nuclear gyromagnetic ratio). Rather than
going through the entire procedure of Ων calculation in
its general form, we present here only the final results
obtained for several simple particular cases of interest.

3. EASY-AXIS STATE FOR AN EMS 
WITH AN EVEN PRINCIPAL SYMMETRY AXIS: 

(–)3z(+)2x(–) AND (–)4z(+)2d(–)

Let E || H || L || Z.
For both structures, one obtains the same expres-

sions:

(9)

(10)

where χ|| and κ33 are the magnetic and dielectric suscep-
tibilities for fields aligned with L || Z. The splitting of
the NMR spectrum into two lines due to the sublattice
magnetizations being oriented in opposite directions
(along the H field and antiparallel to it) is retained here
for E ≠ 0 as well. Both channels of the effect of electric
field E on the spectrum via ME (the ME channel) and

through  (2) (the LE channel) only shift these lines,
similar to the Hz field. The only difference between
these two channels probably lies in that the shift in the
ME channel vanishes as the temperature T  0 K
(together with the longitudinal magnetic susceptibility
χ||), whereas to the LE channel this statement, generally
speaking, does not apply (it being an independent
mechanism).

Equations (9) are valid for Cr2O3 and Fe2TeO6 for
fields Hz < Hsf (the spin-flop field).

4. EASY-AXIS STATE WITH E || H || L || Z 
FOR THE (–)4z(–)2d(–) EMS STRUCTURE

Replacing the 4z(+) even axis with the 4z(–) odd one
substantially changes the effect of the electric field on

Aν
αβ

Aν
αβ Aδαβ,=

Ων
ων

γn

------ Hν
hf H Hν

E+ +=≡

1 1

Ω1 Ω3 A Lz Mz+( ) Hz λ333LzEz+ + ,= =

Ω2 Ω4 A Lz Mz–( ) Hz– λ333LzEz– ,= =

Mz χ||Hz α33Ez α33 χ||γ333κ33Lz=( ),+=

Hν
E

1

0
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the spectrum, which in this case will consist of four
lines:

(11)

(here and subsequently, the first subscript on Ω corre-
sponds to the upper sign on the right-hand side, and the
second subscript, to the lower sign). Here ME = 0,
because for this structure α33 = 0 and, hence, the ME

channel does not operate, and the above-mentioned
additional splitting of the spectrum is due to the LE
channel.

Unfortunately, the trirutiles with an odd 4z(–) axis
known to us (Cr2WO6 and V2WO6) are in the easy-
plane state with L ⊥  4 || Z. Therefore, the antiferromag-
nets we are going to discuss will be in this state. The
most probable (“easiest”) directions of L in the XY
plane correspond to the [100] (or [010]) axis, as well as

to [110] (or [ 10]). These are the situations to be con-
sidered in what follows.

5. EASY-PLANE TRIRUTILES, 
H || [100] || X, L || [010] || Y, E || Z

This orientational state is realized, even if it is not
the easiest one, when the H || X field is strong enough
to overcome the basal anisotropy and reach L ⊥  H.

A. (–)4z(+)2d(–) Structure

In this case and in what follows, it is convenient to
cast the expressions for squared NMR frequencies in
the form

(12)

(13)

As seen from (12) and (13), the splitting into four
lines is due in this case totally to the electric field E.
However, in the absence of the LE channel, the spectrum
would contain two lines only (as a result of My ≡ ME).
This splitting disappears (together with χ||) for T = 0.
The LE channel adds to the pair splitting the terms (the
term with λ113), which do not vanish for T  0, and,
besides, it splits each of these two lines in two (the term
with λ123). Significantly, the latter splitting occurs for
both Ez ≠ 0 and Hx ≠ 0, because it is proportional to the
EzHx product.

Ω1 4, A Lz Mz+( ) Hz λ333LzEz±+ ,=

Ω2 3, A Lz Mz–( ) Hz– λ333LzEz+− ,=

Mz χ||Hz=

1

1

Ω1 2,
2 A2Ly Ly 2My+( )=

+ 2ALy
2λ113Ez 2Lyλ123EzHx,±

Ω3 4,
2 A2Ly Ly 2My–( )=

– 2ALy
2λ113Ez 2Lyλ123EzHx,±

My α32Ez α32 χ||γ223κ33Ly=( ).=
P

B. (–)4z(–)2d(–) Structure
In this case,

(14)

The splitting into two lines here is again associated
with the LE channel (the term with λ113), while the
terms with λ123 are responsible for the line shift in the
doublet, which varies linearly with Hx. There is no ME

channel (in this approximation).

6. EASY-PLANE TRIRUTILES, 
H || [110] || 2d, L || [ 10], E || Z

We are also presenting here the results for two EMS

structures, (–)4z(+)2d(–) and (–)4z(–)2d(–).

A. (–)4z(+)2d(–) Structure

(15)

Here, the L || [ 10] direction is taken as a new axis
Y ' of the coordinate frame X 'Y 'Z, which is obtained
from XYZ by rotating it through 45° (by the rule of the
right-hand screw) about the Z axis. Note that

(16)

i.e., it originates from the ME channel. This channel is
responsible for splitting into two lines only. An addi-
tional twofold splitting is due to the LE channel [the
terms with λ123 in (15)]. Obviously enough, in the indi-
ces of (16), 2' ≡ y'.

B. (–)4z(–)2d(–) Structure

(17)

In this case, the ME mechanism leads again to split-
ting into two lines only (the terms with 2My '), with each
of them being split in two due to the LE channel (this
time, the terms with λ123.

The authors believe the main and nontrivial results
of this work consist in predicting an additional channel
(mechanism) of the effect of an electric field on the
NMR frequency spectrum, namely, not through the ME
susceptibility (the ME channel), but rather directly via
the antiferromagnetism vector (the LE channel). Signif-
icantly, it is this second channel (the terms with λαβγ)
that is responsible for the additional spectral splitting,
which is different for different EMSs and orientational
states.

One could draw here an analogy with the ferromag-
netic (∝ M) and antiferromagnetic (spontaneous, ∝ L)

1

Ω1
2 Ω3

2 ALy
2 A 2λ113Ez+( ) 2Lyλ123EzHx,+= =

Ω2
2 Ω4

2 ALy
2 A 2λ113Ez–( ) 2Lyλ123EzHx.+= =

1

1 1

1

Ω1 3,
2 A2Ly' Ly' 2My'+( ) 2ALy'

2 λ113 λ123+−( )Ez,+=

Ω2 4,
2 A2Ly' Ly' 2My'–( ) 2ALy'

2 λ113 λ123+−( )Ez.–=

1

My' α32'Ez α32' χ||γ2'32'κ33Ly'=( );=

1

Ω1 4,
2 ALy' ALy' 2My'–( ) –λ123 λ113±( )Ly'Ez+[ ] ,=

Ω2 3,
2 ALy' ALy' 2My'+( ) 2 λ123 λ113±( )Ly'Ez+[ ] .=
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contributions to the Hall effect [9] and the Faraday
effect [10] in centrosymmetric antiferromagnets. In
these cases, the AF contribution is substantially larger
than the FM one. It may be expected that, in this case,
the LE channel in CAS antiferromagnets will likewise
by far exceed the ME channel in efficiency. This point is
essential for experimental testing of the electric-field
effect on the NMR spectrum, because an estimate of the
frequency shift associated with the ME channel yields
too small a value. This estimate can be readily
obtained; indeed, if one knows the ME susceptibility

, one can determine ME and, hence, using the above
expressions, the effect of electric field on NMR fre-
quencies due to this channel. It turns out that such esti-
mates of the shift yield, in the best case, figures of the
order of the NMR line width. As for the LE channel, its
efficiency can be derived quantitatively either directly
from experiment or from calculations based on micro-
scopic theory (the authors are presently trying to per-
form such calculations).

An obvious merit of the above results as applied to
specific cases is, first, the possibility to refine or select an
EMS by using the NMR technique with an applied elec-
tric field in the conditions where neutron diffraction (or
other methods) cannot provide an unambiguous answer.
The simplest realistic example can be obtained from a
comparison of equations (11) and (12), which relate to
the same experimental geometry (E || H || L || 4 || Z), but
for EMSs differing only in the parity of the 4z symme-
try axis. In the first case, there are two, and in the sec-
ond, four NMR lines.

Another possibility in the practical application of
the relations presented in this work lies in establishing
which of, orientational states is realized in an easy-
plane antiferromagnet (for H = 0), namely, with the L
vector parallel to the edge of the basis square ([100] or

[010]) or to its diagonal ([110] or [1 0]). For instance,
for the above-mentioned easy-plane trirutiles Cr2WO6
and V2WO6, neutron diffraction measurements have
thus far not provided an unambiguous answer to this
question. To find it by the NMR technique in the pres-
ence of a E || Z field, one should apparently perform an
experiment in two geometries, namely, with H || [100]
and H || [110], which correspond to formulas (14) and

(17) relating to the (–)4z(–)2d(–) EMS. The H field
should be strong enough to produce an orientational
state with L ⊥  H (irrespective of which of the two states
is the easiest). Next, one should check for both situa-
tions which of the equations, (14) with two lines, or
(17) yielding four lines, will fit the experiment if one
reduces the H field down to the level at which the L
vector changes the original orientational state, provided
that it is not the easiest one.

Finally, we must now discuss the complicating cir-
cumstances mentioned in the beginning of the paper
and which are associated with the possible lack of col-
linearity among the EMSs or, to be more precise, with

α̂

1

1
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the presence of four sublattices. One can readily show
that in easy-axis states with L || 3 or L || 4, whose NMR
frequencies were considered in Sections 4 and 5, no
collinearity and, thus, no admixture of other vectors to
the ground basis vector can appear (similar to the case
where no weak ferromagnetism appears in α-Fe2O3
below the Morin point, where L || 3 || Z). As a result, the
NMR frequency spectrum in nominally four-sublattice
antiferromagnets residing in this orientational state will
still be described by the corresponding expressions (9),

for the (–)3z(+)2x(–) and (–)4z(+)2d(–) EMSs, or

(11), for the (–)4z(–)2d(–) EMS.
The situation is different for easy-plane antiferro-

magnets. In the magnetic structure discussed above
(Cr2WO6 and V2WO6), we have an admixture to the
ground basis vector L ≡ Lc ⊥  Z of a vector Lb of another
centroantisymmetric EMS, such that

(18)

where c is a constant. (Similarly, in α-Fe2O3 above the
Morin point and in NiFe2, a weak ferromagnetism
appears in the L ⊥  Z state.) Equations (18) imply that
the relativistically induced vector Lb ⊥  Lc (which
accounts for the noncollinearity) if Lc || [100] (or

[010]), and Lb || Lc for Lc || [110] (or [1 0]). In both
cases, there appears an anisotropic contribution to the

hyperfine interaction tensor  in (7). This affects the
frequencies as well, namely, in formulas (14) one adds,
respectively, the terms

(19)

and in formulas (17), the terms

(20)

In both cases, the above factor does not produce any
additional splitting, but the terms proportional to c
affect the magnitude of the already existing splitting.
Also, for Hx  0, the shifts (19) in (14) vanish to
leave only the splitting associated with the electric field
E (the LE channel).

In the case of formula (17), the extra terms (20)
affect only the twofold splitting (similar to the terms
with My '), and the four lines observed will again be due
to the electric field through the LE channel (the terms
with λ113).

Thus, the effects associated with taking into account
a four-sublattice structure in the cases considered above
cannot mask the effect of electric field on the NMR
spectrum predicted in this work. Nevertheless, a rigor-
ous theory should certainly study in more detail the part

played by the anisotropy of the hyperfine tensor ,
which can originate from a number of other reasons.
Such a study was carried out for centrosymmetric anti-

1 1

1

Lbx cLcy,=

Lby cLcx,=

1
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2cALyHx and 2cALyHx,–
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ferromagnets in ([4], Section 3.8) and in [11]. Besides,
in the case of nuclei with spins I > 1/2 (for 53Cr, I = 3/2),
one has also to take into account the quadrupole split-
ting of NMR spectra. It may be repeated that we chose
here the simplest possible model to stress in a more
revealing way the most essential aspect of the problem
of the electric-field effect on NMR spectra in CAS anti-
ferromagnets.
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Abstract—The second optical harmonic generation and magnetooptical Kerr effect are investigated for the
light (λ = 800 nm) reflected by ferromagnet–semiconductor heterostructures CaF2/MnAs/Si(111). The
observed change in the second-harmonic intensity is odd in magnetization. A phenomenological analysis of
possible contributions to the second harmonic is carried out, and the sources of optically nonlinear signals are
determined from the experimental azimuthal dependences of the light intensity at double frequency. The differ-
ence in the field dependences of the second harmonic and the magnetooptical Kerr effect is observed. © 2000
MAIK “Nauka/Interperiodica”.
The heterostructures obtained by growing ferro-
magnetic films directly on the surface of semiconduc-
tors such as silicon or gallium arsenide are promising
for developing new magnetoelectronic devices [1].
Among potential applications of these structures, it is
important to mention the possibility of creating devices
combining the cells of energy-independent magnetic
memory or magnetosensor cells and semiconducting
readout elements in the same integrated circuit, as well
as other devices based on galvanomagnetic phenom-
ena. The characteristics of these devices will undoubt-
edly depend strongly not only on the bulk properties of
a ferromagnetic film, but also on the magnetic state of
the film near the surface and, especially, near the ferro-
magnet–semiconductor interface.

The traditional methods of studying the magnetic
state of substances are based on the measurements of
magnetization or the magnetooptical Kerr effect (KE)
and are integral methods that do not possess the
required spatial selectivity for probing several atomic
layers near the surface or interface. The signal intensity
in the inductive method depends on the magnetic state
of the sample in the bulk, while the signal amplitude in
KE measurements is determined by the characteristic
depth of light penetration. One of the methods of study-
ing the surface magnetism is associated with the spin-
polarized diffraction of electrons. However, this
method is inapplicable for studying interfaces at a
depth of several tens or hundreds of nanometers in view
of the small electron penetration depth. In recent years,
the method of magnetically induced second optical har-
monic generation (SHG) was proposed for studying the
1063-7834/00/4205- $20.00 © 20909
surface and interface magnetic states of thin-film struc-
tures. For centrosymmetric media in the electric-dipole
approximation, SHG is allowed only near interfaces
where the spatial inversion is violated. The possibility
of the influence of an external magnetic field and spon-
taneous magnetization on the nonlinear optical polar-
ization was discussed in several theoretical publica-
tions [2–9]. The first attempt at experimental investiga-
tion of the SHG induced by magnetic ordering in the
antiferromagnet BiFeO3 was made by Agal’tsov et al.
[10]. Aktsipetrov et al. [11] studied the SHG in mag-
netic films of garnet ferrites, but they attributed the
observed variation in the optical signal at a double fre-
quency to the manifestation of linear magnetooptical
effects, and the existence of a magnetically induced
contribution to SHG was not proved. Reif et al. [12,13]
were the first to prove experimentally the influence of
magnetization on the intensity of second harmonic. The
method of magnetically induced SHG was successfully
employed for studying the magnetic state near inter-
faces in various film-type structures [14]. Wierenga et
al. [15] demonstrated that the source of magnetically
induced SHG for multilayered films is confined to six
atomic layers of the interface region. One can conclude
that the method based on the measurement of the SHG
intensity in a centrosymmetric magnetic medium is
sensitive to the magnetic state of several atomic layers
in the vicinity of the interface.

In contrast to SHG, the linear magnetooptical KE is
formed by a region having the thickness of the order of
the light penetration depth d = λ/(4πk) [16], where λ is
the wavelength of light and k is the absorption coeffi-
000 MAIK “Nauka/Interperiodica”



 

910

        

BANSHCHIKOV 

 

et al

 

.

                                 
Table 1.  Parameters of CaF2/MnAs/Si(111) heterostructures

No.
CaF2 MnAs Si(111)

Growth temperature, K Thickness, nm Growth temperature, K Thickness, nm Disorientation

1 613 5 613 40 5′
2 593 5 593 40 3°
3 593 5 593 70 13′
cient. Thus, the two magnetooptical methods based on
the measurement of KE and the intensity of SHG and
having different probing regions can provide mutually
complementing information on the bulk magnetic
properties and the magnetic state of the surface and the

(‡) No. 1

(b) No. 2

(c) No. 3

1000 nm

1000 nm

100

80

60

40
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0

nm

160

120
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250

200

150

100

50

0

nm

Fig. 1. AFM images of the studied structures.
P

interface of the ferromagnet–semiconductor-type het-
erostructures.

This research aims at the investigation of magneti-
cally induced SHG and the magnetooptical KE in
CaF2/MnAs/Si(111) heterostructures. The magnetic
phase transition point close to room temperature, the
large reflection coefficient, and relatively high values of
magnetooptical KE in polycrystalline MnAs films [17]
enable one to use this information for designing mem-
ory units with thermomagnetic recording and magne-
tooptical readout of information.

1. PHYSICAL PROPERTIES OF MNAS 
AND PREPARATION OF SAMPLES 

WITH CAF2/MNAS/SI(111) 
HETEROSTRUCTURES

A decrease in temperature below 400 K in MnAs
leads to a structural phase transition in which a cen-
trosymmetric hexagonal crystal lattice of the NiAs type
(point group 6/mmm) is transformed into a lattice of the
MnP type (point group mmm) [18]. At a temperature of
318 K, the crystal structure is restored to the initial lat-
tice, and a magnetic ordering is established with a col-
linear ferromagnetic structure and spins in the (0001)
plane. The magnetic and magnetooptical properties of
the MnAs/Si and MnAs/GaAs heterostructures were
studied by the polarimetric and inductive methods in
[19–22].

The CaF2/MnAs/Si(111) heterostructures were
grown in an ultrahigh-vacuum chamber by the molecu-
lar-beam epitaxy method. After the standard chemical
cleaning [23], silicon substrates were loaded to the
growth chamber and cleaned additionally by thermal
annealing at 1520 K. This procedure allows one to
obtain atomically clean silicon surface with a 7 × 7
superstructure. The crystal quality of the substrates and
the growth of heterostructures were controlled in situ by
the fast electron diffraction with an energy of 15 keV.
The film thickness was estimated with the help of a sur-
face roughness recorder. The MnAs film thickness was
40 nm in structures no. 1 and 2 and 70 nm in structure no.
3 (see Table 1). The MnAs films were grown on different
buffer layers in the temperature range 320–340 K. The
As buffer layer for structures no. 2 and 3 was deposited
according to the technique described in [22]. An Mn
buffer layer of thickness 3 nm for structure no. 1 was
grown during the cooling of the substrate from 1000 to
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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Fig. 2. Experimental setup for measuring (a) the generation of second optical harmonic and (b) meridional magnetooptical Kerr
effect during light reflection at the magnetized sample.
750 K for 30 s. In order to prevent possible contamina-
tion from the atmosphere, the MnAs films were coated
with several atomic layers of calcium fluoride CaF2.

Morphological measurements on the surface of het-
erostructures were made on an atomic-force micro-
scope. The obtained images (see Fig. 1) displayed a
dependence of the surface morphology on the type of
the buffer layer. The surfaces of MnAs layers grown on
a Mn buffer layer display protrusions with a transverse
size of 500–1000 nm and a height of 50–90 nm
(Fig. 1a). The surface of the layers grown on an As
buffer layer is formed by clusters having a size of sev-
eral tens of nanometers (Figs. 1b and c).

2. EXPERIMENTAL SETUP

The intensities of SHG and KE were measured
using the radiation emitted by a femtosecond-range Ti–
sapphire (Al2O3 : Ti) laser with a pulse duration of
100 fs and a pulse-repetition frequency of 82 MHz. The
optical diagram of the experimental setup for measur-
ing SHG signals is shown in Fig. 2a. The radiation of
argon ion laser 1 having an average power of 8 W in the
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
blue–green spectral region was used for pumping the
Ti–sapphire laser 2. In order to reduce the integrated
intensity of radiation emitted by the Ti–sapphire laser
without decreasing the peak intensity in the pulse, the
light beam was passed through a mechanical modula-
tor 3 of the chopper type and then through polarizer 4
and a Babinet–Soleil compensator 5 playing the role of
a λ/2 phase plate. The polarization plane for light at the
fundamental frequency ω was of the P- or S-type and
was fixed by the rotation of compensator 5. The red fil-
ter 6 was used for suppressing possible stray radiation
from the optical elements at the double frequency 2ω.
The beam of light passed through sample 7, blue filter
8 absorbing the light of the fundamental frequency and
transmitting the second harmonic, and through ana-
lyzer 9 and reached photomultiplier 10 operating in the
photon counting mode.

In the setup intended for measuring the magnetoop-
tical KE (Fig. 2b), the excess power of laser radiation
was absorbed by the grey filter 3. The Babinet–Soleil
compensator 5 was tuned so that the beam of the light
incident on sample 7 had P-type polarization. After the
reflection at the sample, the light beam passed through
0
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the Faraday cell 8 and analyzer 9 tuned for the maxi-
mum transmission of the S-type polarization and
reached photodiode 10. Electrical signal from the pho-
todiode were fed to the synchronous detecting circuit.

All the measurements were made during reflection
of the light of the fundamental frequency at a wavelength
of 800 nm at an angle of incidence of 45°. The intensity
of light incident on the sample was 40–60 mW. The pos-
sibility of sample rotation about the normal in the
range of azimuthal angles 0 < ϕ < 340° was envisaged.
The sample was in a magnetic field applied in the

Htrans

Hlong

kω

Es

Ep

Ep

Es

kω + k2ω

ϕ

Fig. 3. Experimental geometry: EP and ES are the electric
field strengths of a light wave of the P- and S-type, respec-
tively; kω and k2ω are the wave vectors of light for frequen-
cies ω and 2ω, respectively; and Hlong and Htrans are the
magnetic field strengths in the meridional and equatorial
geometries, respectively.

Table 2.  Independent components of tensors  and 
for point groups 3m and 6mm [24]

Point 
group Tensor Independent nonzero elements

3m –xxx = yyx = yxy = xyy, 
xxz = xzx = yyz = yzy,
zxx = zyy, 
zzz

6mm xxz = xzx = yyz = yzy, 
zxx = zyy, 
zzz

6mm yxxx = –xyyy, xzzy = –yzzx, 
xyxx = xxyx = –yxyy = –yyxy, 
zzxx = zxzy = –zzyx = –zyzx,
xyzz = xzyx = –yxzz = –yzxz, 
xxxy = –yyyx = xyyy +2yyxy

χ ijk
2( ) χ ijkl

3( )

χ ijk
2( )

χ ijk
2( )

χ ijkl
3( )
P

equatorial (Htrans) or meridional (Hlong) geometry as
shown in Fig. 3.

3. PHENOMENOLOGICAL DESCRIPTION 
OF NONLINEAR OPTICAL EFFECTS

In the electric-dipole approximation, the nonlinear
polarization P2ω induced in a medium with the magne-
tization M by the electric field Eω of an incident elec-
tromagnetic wave can be written as the sum of two
terms

(1)

where  and  are nonlinear tensors describing
the crystallographic and magnetic contributions to the

nonlinear polarization , respectively. The quantity

 is a polar rank-three tensor, and  is an axial
tensor of rank four. Both tensors differ from zero only
in noncentrosymmetrical media. Consequently, the
generation of the second optical harmonic in the bulk of
CaF2, MnAs, and Si possessing a centrosymmetric
structure is forbidden in the electric-dipole approxima-
tion. The nonlinear polarization can differ from zero
only in the vicinity of interfaces such as air/CaF2,
CaF2/MnAs, and MnAs/Si, where the space inversion is
violated.

For the SHG intensity, we have

(2)

In nondissipative media, the tensor  is real-val-

ued, while the tensor  is purely imaginary [2, 8].
Thus, the crystallographic and magnetic contributions
to the nonlinear polarization of nonabsorbing media
have a π/2 phase shift relative to one another and,
hence, cannot interfere. In a dissipative medium, the
nonlinear susceptibilities are complex-valued in the
general case, and, hence, the interference of the crystal-
lographic and magnetic contributions becomes possi-
ble, which leads to the emergence of the interference
term ±2χ(2)χ(3)M linear in magnetization M in the SHG
intensity.

Table 2 lists the independent components of the ten-

sors  and  for the interfaces, where the second
optical harmonic generation is allowed, i.e., for the
MnAs/Si(111) interface (buffer layer/Si), whose sym-
metry can be described by the point group 3m, as well
as for the CaF2/MnAs(0001) interface, point group
6mm. Using equations for vector transformation from
the laboratory reference frame to the crystallographic
one and back, we can obtain the following dependences
of nonlinear polarizations on the azimuthal rotational
angle ϕ of the sample for the 45° angle of incidence.

The crystallographic contribution from the

Pi
2ω χ ijk

2( )E j
ωEk

ω χ ijkl
3( ) E j

ωEk
ωMl,+=

χ ijk
2( ) χ ijkl

3( )

Pi
2ω

χ ijk
2( ) χ ijkl

3( )

I2ω χ 2( ) 2 χ 3( )M
2

2χ 2( )χ 3( )M.±+∝

χ ijk
2( )

χ ijkl
3( )

χ ijk
2( ) χ ijkl

3( )
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MnAs/Si(111) interface is determined as

(3)

The crystallographic contribution from the
CaF2/MnAs(0001) interface is given by

(4)

The magnetic contribution from the
CaF2/MnAs(0001) interface for the meridional geome-
try can be written as

(5a)

The magnetic contribution from the
CaF2/MnAs(0001) interface for the equatorial geome-
try is as follows:

(5b)

The superscripts on the nonlinear polarization PIJ indi-
cate the states of input (I) and output (J) polarizations.
All the nonlinear polarizations are normalized to the
intensity of the incident wave. It should be noted that
the isotropic component of the crystallographic contri-
bution from the MnAs/Si(111) and CaF2/MnAs(0001)
interfaces and the magnetic contribution from the
CaF2/MnAs(0001) interface for the meridional geome-
try in each combination of polarizations are incompat-
ible. Thus, the crystallographic and magnetic contribu-
tions to SHG can be separated using the rotational
anisotropy method, in which the SHG intensity is mea-
sured as a function of the angle of crystal rotation about
the normal. This method was used successfully in the
experiments on SHG in garnet-ferrite epitaxial films
[25, 26].

PPP
cr χxxx
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2
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2( )–
χzxx

2( ) χzzz
2( )+

2
-----------------------+cos 

  1

2
-------,=

PPS
cr χxxx

2( )

2
--------- 3ϕ ,sin=

PSP
cr χxxx

2( ) 3ϕ χzxx
2( )+cos–( ) 1

2
-------,=

PSS
cr χxxx

2( ) 3ϕ .sin–=

PPP
cr χxxz

2( )–
χzxx

2( ) χzzz
2( )+

2
-----------------------+ 

  1

2
-------, PPS

cr 0,= =

PSP
cr 1

2
-------χzxx

2( ) , PSS
cr 0.= =

PPP
mag 0, PPS

mag χyxxx
3( ) χxzzy

3( )–
2

----------------------------,= =

PSP
mag 0, PSS

mag χyyyx
3( ) .= =
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4. DISCUSSION OF RESULTS

Figure 4 shows the dependences of the SHG inten-
sity on the azimuthal angle ϕ of sample rotation about
the normal for the CaF2/MnAs(40 nm)/Mn/Si(111)
heterostructure. The dependences for CaF2/MnAs
(40 nm)/As/Si(111) have a similar form. The measure-
ments were made for four combinations of the input–
output light polarizations PP, PS, SP, and SS in the
meridional geometry, when the magnetization ±M was
in the plane of light incidence. The azimuthal depen-
dences of the intensity for the PP and SP combinations
of polarizations exhibit a 120° periodicity typical of a
(111)-type plane in crystalline silicon. The magnetic
contribution to SHG for these polarization combina-
tions is not manifested; i.e., there is no difference
between the SHG intensities corresponding to two
directions of magnetization ±M. The azimuthal depen-
dences of the SHG intensities for the PS and SS polar-
ization combinations exhibit a 60° periodicity for a
demagnetized sample and a 120° periodicity for a mag-
netized sample. Thus, the application of an external
magnetic field imparts the sample a single domain
structure, resulting in nonequivalence of the SHG
intensities for the two directions of magnetization for
certain angles ϕ and, accordingly, in the change in the
anisotropy type. The nonequivalence of the SHG inten-
sities emerges as a result of the coexistence of the crys-
tallographic and magnetic contributions to the nonlin-
ear polarization and their interference.

PP120 60

240 300

180 0
ϕ

PS120 60

240 300

180 0
ϕ

SP120 60

240 300

180 0
ϕ

SS120 60

240 300

180 0
ϕ

(a) (b)

(c) (d)

I2ω(–M)

I2ω(+M)

Fig. 4. Azimuthal dependences of the intensity of the second
optical harmonic generation in the CaF2/MnAs
(40 nm)/Mn/Si(111) heterostructure for the meridional
geometry and four combinations of the input–output polar-
izations of radiation: (a) PP, (b) PS, (c) SP, and (d) SS. Dark
circles correspond to I2ω(+M), and light circles, to I2ω(–M).
0
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Figure 5 shows the azimuthal dependences of the
SHG intensity in the CaF2/MnAs(40 nm)/Mn/Si(111)
heterostructure for four polarization combinations in
the equatorial geometry when the magnetization ±M is
perpendicular to the plane of light incidence. In this

PS120 60

240 300

180 0
ϕ

PP120 60

240 300

180 0
ϕ

SP120 60

240 300

180 0
ϕ

(a) (b)

(c)

SS120 60

240 300

180 0
ϕ

(d)

I2ω(–M)

I2ω(+M)

Fig. 5. Azimuthal dependences of the intensity of the second
optical harmonic generation in the CaF2/MnAs
(40 nm)/As/Si(111) heterostructure for the equatorial
geometry and four combinations of the input–output polar-
izations of radiation: (a) PP, (b) PS, (c) SP, and (d) SS. Dark
circles correspond to I2ω(+M), and light circles, to I2ω(–M).
P

geometry, other combinations of the nonlinear suscep-
tibilities differing from those in the meridional geome-
try can operate [see expressions (5)]. In the given
geometry, the magnetic contribution to SHG is mani-
fested for the PP and SP polarization combinations and
is not observed for the PS and SS combinations.

The experimental dependences shown in Figs. 4 and
5 are described correctly by the following expressions:

(6)

for the PP and SP polarization combinations and

(7)

for the PS and SS polarization combinations, where A
and B are the coefficients characterizing the anisotropic
and isotropic components of the SHG intensity, respec-
tively. We can separate the crystallographic Bcr and the
magnetically induced Bmag components of the B coeffi-
cient as follows:

(8)

Tables 3 and 4 show the coefficients A, Bcr, and Bmag

obtained as a result of the approximation of the experi-
mental dependences on the basis of formulas (6) and
(7). It can be seen that in the meridional geometry,
Bmag = 0 for the PP and SP polarization combinations.
This means that the isotropic contribution to SHG is
purely crystallographic. On the contrary, in the case of
the PS and SS combinations, Bmag ≠ 0 and Bcr = 0, and

I2ω ϕ( ) A 3ϕcos B+( )2=

I2ω ϕ( ) A 3ϕsin B+( )2=

Bcr B +M( ) B M–( )+[ ] /2,=

Bmag B +M( ) B M–( )–[ ] /2.=
Table 3.  Results of approximation of azimuthal dependences of SHG by formulas (6)–(8) for meridional and equatorial
geometries and four combinations of polarizations in the CaF2/MnAs(40 nm)/Mn/Si(111) heterostructure

Coefficients PP PS SP SS

Meridional 
geometry

A, rel. units 16 ± 1 13.9 ± 0.2 10.9 ± 0.2 9.4 ± 0.1

Bcr, rel. units 29.7 ± 0.2 0 5.3 ± 0.3 0

Bmag, rel. units 0 4.7 ± 0.6 0 2.7 ± 0.4

Equatorial 
geometry

A, rel. units 16 ± 1 14.9 ± 0.1 11.2 ± 0.1 10.3 ± 0.1

Bcr, rel. units 30 ± 0.1 0 6.0 ± 0.2 0

Bmag, rel. units 1.2 ± 0.2 0 0.9 ± 0.2 0

Table 4.  Results of approximation of azimuthal dependences of SHG by formulas (6)–(8) for meridional and equatorial
geometries and three combinations of polarizations in the CaF2/MnAs(40 nm)/As/Si(111) heterostructure

Coefficients PP PS SP

Meridional 
geometry

A, rel. units 6 ± 1 4.5 ± 0.1 2.9 ± 0.3

Bcr, rel. units 24.5 ± 0.1 0 4.9 ± 0.1

Bmag, rel. units 0 1.2 ± 0.3 0

Equatorial 
geometry

A, rel. units 4.5 ± 0.4 4.5 ± 0.1 1.9 ± 0.2

Bcr, rel. units 25.3 ± 0.5 0 5.3 ± 0.2

Bmag, rel. units 1.0 ± 0.3 0 0.7 ± 0.2
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the isotropic contribution to SHG is purely magnetic.
The phenomenological expressions (3)–(5) imply that
the anisotropic contribution to SHG can only be the
crystallographic contribution from the MnAs/Si(111)
interface. In the case of equatorial magnetization, the
isotropic crystallographic and magnetic contributions
coexist in the PP and SP polarization combinations but
are absent in the SP and SS combinations. This is in
good agreement with the phenomenological expres-
sions (3)–(5).

Figure 6 shows the azimuthal dependences for the
CaF2MnAs(70 nm)/As/Si(111) heterostructures with
the PP polarization combination in the meridional (b)
and equatorial (a) geometries. It can be seen that the
azimuthal dependences of SHG for the given hetero-
structure are isotropic (A = 0), and the magnetic contri-
bution to the SHG in the meridional geometry for the
PP combination is absent (Bmag = 0). However, this
contribution takes place for the PP and SP polarization
combinations in the equatorial experimental geometry.
Table 5 contains the results of approximating the azi-
muthal dependences of SHG by formula (6).

Expressions (3)–(5) show that anisotropy in the SHG
can be due to the interfaces (buffer layer)/Si and
MnAs/Si) or open Si regions (see Fig. 1a). It should be
noted that in view of the strong absorption of the light at
frequency ω in the MnAs film, we can expect that the
largest contribution to the anisotropic component of
SHG comes from open regions in Si. The fact that het-
erostructures are characterized by the different ampli-
tudes A can also be attributed to strong absorption of the
light at frequency ω in MnAs films (the absorption coef-
ficient k = 2.8 for light with the wavelength λ = 800 nm
[17]).

The dependence of the SHG intensity on the magne-
tization M can be used for determining the magnetic
contrast ρ:

(9)

Figure 7 shows the magnetic contrast ρ of the SHG as
a function of the analyzer rotational angle α for the
P-type polarized light incident on the sample of the
CaF2/MnAs(70 nm)/As/Si(111) structure in the merid-
ional geometry. This experimental dependence was
approximated by the function [27]

(10)

where δ is the phase difference between the crystallo-
graphic and magnetic contributions and C is the ratio
between the amplitudes of the magnetic and crystallo-
graphic contributions. As a result of approximation, we
obtain δ = 146° and C = 0.12. Thus, analyzing the SHG
in the meridional geometry as a function of the analyzer
rotational angle, one can obtain important information

ρ I2ω +M( ) I2ω M–( )–

I2ω +M( ) I2ω M–( )+
----------------------------------------------

2χ 2( )χ 3( )M

χ 2( ) 2 χ 3( )M
2

+
--------------------------------------.= =

ρ 2C δ αtancos

1 C α2tan+
--------------------------------,=
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concerning the relation and phase difference between
the crystallographic and magnetic contributions.

Figure 8 presents the field dependences of SHG
and magnetooptical Kerr effect in the heterostructures
CaF2/MnAs(70 nm)/As/Si(111) and CaF2/MnAs
(40 nm)/Mn/Si(111) in the meridional geometry for the
analyzer angle α = 80°, which corresponds to a high
magnetic contrast and a favorable signal-to-noise ratio.

120 60

240 300

180 0
ϕ

PP 120 60

240 300

180 0
ϕ

PP
I2ω(–M)

I2ω(+M)

(a) (b)

Fig. 6. Azimuthal dependences of the intensity of the sec-
ond optical harmonic generation in the CaF2/MnAs
(70 nm)/As/Si(111) heterostructure for (a) equatorial and
(b) meridional geometries and the PP-combinations of the
input–output polarizations of radiation. Dark circles corre-
spond to I2ω(+M), and light circles, to I2ω(–M).

fit
ρ

0 45 90 135 180

–1.0

–0.5

0

0.5

1.0

ρ

Fig. 7. Dependence of the magnetic contrast ρ of the second
optical harmonic on the analyzer rotational angle α. Light
circles correspond to experimental points, and the solid
curve described the approximation by formula (14).

Table 5.  Results of approximation of azimuthal depen-
dences of SHG by formula (6) for meridional and equatorial
geometries and two combinations of polarizations in the
CaF2/MnAs(70 nm)/As/Si(111) heterostructure

Coefficients PP (merid.) PS (equat.) SP (equat.)

A, rel. units 0 0 0

Bcr, rel. units 23.1 ± 0.1 23.3 ± 0.2 3.6 ± 0.2

Bmag, rel. units 0 1.2 ± 0.2 0.7 ± 0.2
0
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Fig. 8. Field dependences of the intensity I2ω of the second optical harmonic and the angle of rotation of polarization plane (Kerr
effect) for the (a) CaF2/MnAs(40 nm)/Mn/Si(111) and (b) CaF2/MnAs(70 nm)/As/Si(111) heterostructures.
It can be seen that the hysteresis loop for SHG is nar-
rower than that for the Kerr effect. This result can be
interpreted as follows. In the electric-dipole approxi-
mation, a SHG signal is formed in defective noncen-
trosymmetric regions such as the surface and the inter-
face. The formation of a domain wall is most probable
at a defect. Since the motion of domain walls takes
place at the first stage of technical magnetization [28],
the magnetization reversal can be carried out more eas-
ily in the region of nonlinear-optic probing, and hence,
the hysteresis loop for SHG can become narrower. The
field dependences of SHG show that the hysteresis loop
is asymmetric relative to the ordinate axis and is dis-
placed toward positive fields. This effect can be
observed at the interface between a ferromagnet and an
antiferromagnet [29]. The emergence of the antiferro-
magnetic state in a MnAs crystal under the effect of
applied pressure was studied in [30]. It can be proposed
that some interfacial regions of the MnAs film were
transformed from the ferromagnetic state to the antifer-
romagnetic state due to stresses emerging as a result of
mismatching of the unit cell parameters of MnAs and
Si crystals. The effect of hysteresis loop asymmetry
forms the basis of operation of magnetic valves, and
hence, MnAs films can find application in such devices.

CONCLUSION

Thus, we have studied the ferromagnet–semicon-
ductor heterostructures CaF2/MnAs/Si(111) by using
two mutually complementing magnetooptical methods.
On the basis of symmetry analysis of the azimuthal
dependences of the second optical harmonic genera-
tion, we proved that the nonlinearity of the optical sig-
nal is accounted for by the interference of the anisotro-
pic contribution and the isotropic crystallographic and
isotropic magnetic contributions. These contributions
were separated by using the azimuthal and field depen-
dences. It was found that the field dependences of the
two magnetooptical phenomena are different due to the
sensitivity of the second optical harmonic and the mag-
P

netooptical Kerr effect to the interfaces and the bulk of
the film, respectively, which are characterized by dif-
ferent magnetic properties.
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Abstract—For a system of superparamagnetic particles in a high external constant magnetic field, a technique
for calculating the nonlinear response to a sudden change in the field direction and magnitude is proposed. A
set of momentary equations for the averaged spherical harmonics, which is derived from the Fokker–Planck
equation for the magnetization-orientation distribution function is the basis of this technique. As an example,
the nonlinear response of a system of particles with anisotropy of the easy-axis type is examined. For this case,
a solution to the momentary equations is obtained by using matrix continued fractions. The magnetization
relaxation time and the spectrum of the relaxation function are calculated for typical values of anisotropy, dis-
sipation, and nonlinearity parameters. It is shown that the magnetization kinetics is essentially dependent on
these parameters. © 2000 MAIK “Nauka/Interperiodica”.
1. Single-domain ferromagnetic particles are char-
acterized by internal anisotropy magnetostatic poten-
tial, which may have several local minima separated by
potential barriers. If particles are small (~10 nm) and,
hence, the potential barriers are low, the magnetization
vector M(t) may be reoriented from one equilibrium
portion to another, overcoming the potential barriers
owing to thermal fluctuations [1]. The magnetization
thermal instability gives rise to a so-called superpara-
magnetism [2], because each particle is similar to a
paramagnetic atom with a magnetic moment equal to
about 104–105 Bohr magnetons. Presently, studying
thermal fluctuations and the relaxation of single-
domain particle magnetization comes to the attention in
the context of getting better characteristics of magnetic
recording media [3].

The kinetics of the magnetization of superparamag-
netic particles (SPs) is described by the Fokker–Planck
equation for the probability density W of the magneti-
zation M. This equation was first obtained by Brown
[4] from the Gilbert equation with a fluctuating field [5]
that takes into account thermal fluctuations in the mag-
netization of an individual particle. On the basis of the
Gilbert and Fokker–Planck equations, a theory of mag-
netic relaxation in a system of SPs was elaborated (see,
for example, [6–8]). The similar Fokker–Planck equa-
tions, describing the Brownian rotation of particles, are
often used in studies of dielectric relaxation in molecu-
lar and liquid crystals [9, 10], of birefringence kinetics
in liquids [11], etc.
1063-7834/00/4205- $20.00 © 20918
In an external magnetic field H0 of a moderate mag-
nitude, due to the large magnetic dipole moment of a
particle, the particle energy becomes comparable to kT
(k is Boltzmann’s constant, T is the temperature). In
view of the magnetization relaxation time being essen-
tially dependent on the external field intensity [12–14],
it is necessary to consider nonlinear effects in analyzing
the magnetization kinetics in an external field changing
in both magnitude and direction (e.g., in the case where
H0 is reversed). If the field variation is faster than the
process of relaxation, such a variation may be consid-
ered sudden. Therefore, the problem may be formu-
lated as a usual problem of calculating a nonlinear
response (NR) to a sudden change in the external field.
However, until now, the appropriate theory was elabo-
rated only for the case of the linear response (LR) of
superparamagnetic particles, i.e., when the particle
energy change due to the external field variation is far
smaller than kT. The theory of the response to high
magnetic fields has barely been developed. It is very
difficult to calculate the response to the strong external
action, because the response depends on the type of an
external action, and there is no universal response func-
tion being able to describe all types of action, as it takes
place in the case of a linear response. For nonlinear
problems, the main results were obtained by using the
perturbation theory (see, for example, [15–17]), which
implies that they are applicable only in the range of
weak fields.

The primary aim of this work is to investigate the
kinetics of the SP magnetization after a sudden change
000 MAIK “Nauka/Interperiodica”
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in both the intensity and direction of the high constant
magnetic field. The results of the examination of the
nonlinear response of superparamagnetics to a high
varying field shall be described in another paper.

2. Let the system of noninteracting SPs to be located
in an external uniform magnetic field HI, which is sud-
denly changed in magnitude, as well as in direction into
HII at the instant t = 0. Up to the instant of the field
change, the system was in the equilibrium state, which
is characterized by the distribution function

(1)

After the field change, the system relaxes to the new
equilibrium state II, characterized by the distribution
function

(2)

In (1) and (2), U is the particle free energy density
in the absence of any external field, β = ν/kT, ν is the
volume of the particle, and ZN (N = I, II) is the normal-
ization constant. This problem is essentially nonlinear,
because it is assumed that the field change, in both
magnitude and direction, may be considerable. The
kinetics of the magnetization nonlinear response
(MNR) is described by the normalized relaxation func-
tion

(3)

where Mr is the projection of the magnetization on the

direction of the unit vector r = i  + j  + k ,

(4)

MS is the spontaneous magnetization; uX = sinθcosϕ,
uY = sinθsinϕ, uZ = cosθ; θ and ϕ are the polar and azi-
muthal angles, respectively; and the angle brackets
denote averaging with respect to the function WN,

(5)
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----------------------------------------

ru〈 〉 t( ) ru〈 〉 II–
ru〈 〉 I ru〈 〉 II–

---------------------------------------,= =

νX
r νY

r νZ
r

M MSu MS iuX juY kuZ+ +( );= =

ru〈 〉 N ϕ θ θ ru( )WN .dsin

0

π

∫d

0

2π

∫=
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For the diffusion model, the kinetics of the magne-
tization vector M(t) of a single-domain particle is sim-
ilar to the Brownian rotation of a macromolecule in liq-
uid and described by the Fokker–Planck equation for
the distribution function W(ϑ , ϕ, t) [6, 8]

(6)

with the initial condition W(ϑ , ϕ, 0) = W1. Here, ∆ is the
angular part of the Laplace operator, VII = U – (MHII)
is the particle density free energy in the state II, α =
ηγMS is the dimensionless dissipation coefficient, γ is
the gyromagnetic ratio, η is the coefficient of friction,
b = β/2τN, and

(7)

is the characteristic time of thermal fluctuations of the
magnetization. Equation (6) was derived under the
assumption that the random field causing the magneti-
zation fluctuations possesses white noise properties.
Therefore, the possible effects of “memory” are also
not taken into account in (6). The surface effects are not
taken into account here, and, furthermore, it is assumed
that the magnetization is uniform inside the particle.
These assumptions are discussed in detail, for example,
in [18].
From (6), using the results of [19, 20], the following
equations can be obtained for the relaxation functions
cl, m(t) = 〈Yl, m〉(t) – 〈Yl, m〉 II:

(8)

with the initial conditions

(9)

where Yl, m(θ, ϕ) are the spherical harmonics [21].
Explicit expressions for dl', m ± s, l, m in terms of the
Clebsch–Gordon coefficients and the expansion of the
free energy V in terms of spherical harmonics are given
in [19, 20]. Thus, in (3), the nonlinear response func-
tion f(t) may be expressed in terms of cl, m(t) as

∂
∂t
-----W b α 1– u gradV II gradW×( )[=

+ div WgradV II( ) β 1– ∆W+ ] t 0>( )

τN βMS 1 α2+( )/2γα=

τN
d
dt
-----cl m, t( ) dl' m s± l m, , , cl' m s±, t( )

s

∑
l'

∑=

cl m, 0( ) Yl m,〈 〉 I Yl m,〈 〉 II ,–=
(10)f t( )
2νZ

r c1 0, t( ) νX
r iνY

r+( )c1 1–, t( ) νX
r iνY

r–( )c1 1, t( )–+

2νZ
r c1 0, 0( ) νX

r iνY
r+( )c1 1–, 0( ) νX

r iνY
r–( )c1 1, 0( )–+

--------------------------------------------------------------------------------------------------------------------------------.=
0
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3. Equations (8)–(10) are applicable for particles
with arbitrary anisotropy: of the easy-axis type, cubic,
etc. In this work, we will consider, for simplicity’s sake,
only the particles with uniaxial anisotropy, whose free
energy takes the form [8]

(11)

where K is the anisotropy constant and , , and 
are the direction cosines of the vectors HN. In this case,
equation (8) for cl, m(t) takes the recurrent form

(12)

where dn ± 2, m ± 1, n, m ≡ 0; explicit expressions for the
eleven nonzero coefficients dl', m', l, m are given in the
Appendix.

V –K θcos
2 MHN( )–=

=  –HNMS
2π
3

------ νX
N iνY

N+( )Y1 1–, 2νZ
NY1 0,+[

– νX
N iνY

N–( )Y1 1, ] 4K
3

------- π
5
---Y2 0,–

K
3
----,–

νX
N νY

N νZ
N

τN
d
dt
-----cl m, t( ) dl' m s± l m, , , cl' m s±, t( )

s 1–=

∑
l' 2–=

∑=

t 0>( ),
P

From the mathematical point of view, solving (12) is
reduced to solving an infinite set of linear differential
equations. In [22–24], it was shown that the solution of
this problem may be simplified significantly by using
matrix-continued fractions (MCFs) [25, 26]. To do this,
equation (12) should be transformed to a matrix equa-
tion with the following form:

(13)

Here, the vectors Cn(t) can be represented in the same

form as in [23]; the matrices Qn , , and  are given
in the Appendix. The expect solution of (13) for the

spectrum (ω) has the form [25, 26]

(14)

where

τN
d
dt
-----Cn t( ) Qn

–Cn 1– t( ) QnCn t( ) Qn
+Cn 1+ t( ),+ +=

n 1 2 3 …., , ,=

Qn
+ Qn

–

C̃1

C̃1 ω( ) τN∆1 ω( )=

× C1 0( ) Qk 1–
+ ∆k ω( )

k 2=

n

∏ 
 
 

Cn 0( )
n 2=

∞

∑+
 
 
 

,

(15)∆n ω( ) I

iωτN I Qn– Qn
+ I

iωτN I Qn 1+– Qn 1+
+ I

iωτN I …–
--------------------------Qn 2+

––
-------------------------------------------------------------------------------------------Qn 1+

––
------------------------------------------------------------------------------------------------------------------------------------------------=
is an MCF, and tilde denotes the Fourier transform

(16)F̃ ω( ) F t( )e iωt– t.d

0

∞

∫=
The initial values Cn(0) in (14) are also calculated using

MCFs (see Appendix). With (ω) determined from
(14), it becomes possible to calculate the spectrum of
the RF and the relaxation time from (10):

C̃1
(17)τ f t( ) td

0

∞

∫
2νZ

r c̃1 0, 0( ) νX
r iνY

r+( )c̃1 1–, 0( ) νX
r iνY

r–( )c̃1 1, 0( )–+

2νZ
r c1 0, 0( ) νX

r iνY
r+( )c1 1–, 0( ) νX

r iνY
r–( )c1 1, 0( )–+

--------------------------------------------------------------------------------------------------------------------------------.= =
The above results are true for a system of particles
whose easy axes are oriented along the OZ axis. If the
easy axes of the particles are randomly distributed in
space, then, in order to calculate the spectrum and the
relaxation time, they must be probably averaged. More-
over, in the above consideration, it was assumed that all
particles are identical. To take the poly-dispersion of
the particles into account, averaging with the corre-
sponding distribution functions must be performed
(e.g., over the volumes of the particles).
H

4. For uniaxial particles, there is a certain geometry
of the problem in which the relaxation time τ may be
calculated with quadratures. It corresponds to the case
when, in both states I and II, the constant magnetic field
coincides with the easy axis of the particle. In this case,
due to the symmetry of the problem, the Fokker–Planck
equation (6) becomes one-dimensional, and, therefore,
we can use the results of [27], where the problem of
time relaxation was solved in the general form for the
nonlinear response of one-dimensional systems, whose
dynamics may be described with the one-dimensional
YSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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Fokker–Planck equation. Applying the results of [27] to
our problem, it can be shown that the relaxation time τ
is defined by the quadrature

(18)

τ
2τN

θcos〈 〉 II θcos〈 〉 I 1––
---------------------------------------------------=

× Φ z( )Ψ z( )e
σ z

2 2hIIz+( )–
zd

1 z2–
--------------------------------------------------------, n

1–

1

∫ 1 2,,=

0

10
ln

[τ
/τ

Ν
]

σ0.25

0.50

5

0

2

4

6

h

Fig. 1. Logarithm ln(τ /τN) as a function of σ and h = |hI| =
|hII| for the case of the sudden reverse of the field direction
(HI = –HII).
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where

(19)

(20)

In (18)–(20), hII > 0 or hII < 0 when HII is parallel or
antiparallel to HI, respectively.

5. In our calculations, for simplicity’s sake, we lim-
ited ourselves to the case when the field HI is directed
along the easy axis of the particle, and the response is
calculated in the direction of the field HII. In this case,
it can be assumed without loss of generality that the

direction cosines of the vector HII are  = sinΘ,  =

0, and  = cosΘ, since the response does not depend
on the azimuthal angle because of the symmetry of the
problem. At Θ ≠ 0, the nonlinear response depends on
the dissipation parameter α because the longitudinal
and transverse modes are coupled. However, qualita-
tively, this dependence is similar to that of the linear
response, which was examined in detail in [23, 28]. The
experimental and theoretical methods of estimating α
were discussed, for example, in [7, 19, 29]. The estima-
tions assign its value to the range of ~0.01–0.1. For def-
initeness, we carried out our calculations at α = 0.1.

Figure 1 shows the relaxation time τ as a function of
anisotropy parameter σ and of field h = |hI| = |hII| for the
case of the field direction being reversed suddenly

Φ z( ) W II z'( ) W I z'( )–[ ] z',d

1–

z

∫=

Ψ1 z( ) z' θcos〈 〉 II–[ ]e
σ z'2 2hIIz'+( )–

z',d

1–

z

∫=

σ βK , hN HNMS/2K .= =

νX
II νY

II

νZ
II
0

0.1

0.2 20

10

0

0

10

20

h σ

ln
[τ

/τ
Ν

]

Fig. 2. Logarithm ln(τ /τN) as a function of σ and h = hII /2 = hI for when the external field intensity is suddenly doubled.
0
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(HI = –HII). Figure 2 exhibits the behavior of τ in the
case where the external field intensity is suddenly dou-
bled, i.e., hII = 2hI. In these cases, τ does not depend on
α and can be determined from (18)–(20). In a low exter-
nal field, τ is mainly determined by the lower-fre-
quency relaxation mode, which characterizes transi-
tions of the magnetization vector through the potential
barrier of the double-well potential (11), from one
potential well to the other. In this case, the dependence
of τ on the anisotropy parameter σ is of an activation
character, namely, it increases exponentially with σ
growth. However, when the field HII is fairly high, the
time τ decreases with σ growth (see Fig. 2). This effect,
first discovered in [14] by analyzing the linear response
(LR) of a system of uniaxial particles in the low-tem-
perature limit, is due to the depletion of the population
of the higher well. The last circumstance, in particular,
explains the fact that the relaxation time τ ceases to be
of the activation type when values of h are larger than a
certain critical value hc (for potential (14), hc ≈ 0.17 at
Θ = 0 [30]). This means that the relaxation time τ
decreases, rather than increases, with σ growth. The
absolute value of the NR time τ may differ substantially
(see Fig. 3) from the magnetization relaxation times τI
and τII characterizing the LR of the particle to a weak
external probe field in states I and II (τI and τII are deter-
mined by the eigenvalues of the Fokker–Planck opera-
tor1 (6) in states I and II, respectively [7, 14, 28]).

In Fig. 4, the results of calculations of the modulus
of the Fourier transform f of the relaxation function are
presented for the case of the sudden switch of the high
field (i.e., for hI = 0 and hII = h) forming an arbitrary

1 With the matrix continued fraction method used in this work, the
eigenvalues λ of the Fokker–Planck operator are determined from

the equation det |λI + Q1 + ∆2(–λ)  = 0.QI
–

Q2
–

–4

0 5

In(τ/τN)

σ

1

2

3

4

0

4

8

12

10 15 20

Fig. 3. Logarithm ln(τ /τN) as a function of σ: (1 and 4) cor-
respond to the linear response, (2 and 3) to the nonlinear
one. (1) hII = hI – ε = 0.1 (ε  0)); (4) hII = hI – ε = 0.5
(ε  0); (2) hI = 0.5  hII = 0.1; and (3) hI = 0.1 
hII = 0.5.
P

angle Θ with the particle axis. In all these figures, three
bands are seen in the f spectrum. The characteristic fre-
quency and half-width of the lower-frequency band are
defined by the reciprocal value of the mean lifetime of
the magnetization vector in the less deep potential well.
The significantly weaker relaxation band associated
with intrawell modes manifests itself at high frequen-
cies (at Θ = 0 and σ @ 1, and the characteristic fre-
quency of this band is ωwell ≈ 2σ(1 + h)/τN  [30]). More-
over, in Figs. 3 and 4, in the high-frequency range of the
spectrum, the resonance band is seen, which is due to
the contribution of the transverse modes at the frequen-
cies of the magnetization vector precession. With a
decrease in α, this high-frequency band is narrowed
down and displaced to the high-frequency region. At
Θ = 0, this band completely disappears, because, in this
case, the transverse modes do not take part in the relax-
ation process. In Fig. 5, the results of the calculations of

| |are presented for the cases of the sudden change in
the field direction, with |HI| = |HII|. As in Fig. 4, three
typical bands, which are associated with long-lived,
intrawell, and transverse modes, respectively, are seen
here. Besides, in Fig. 5, the effect of a low-frequency
mode suppressed by a constant field, when the field
vector rotates through the angle Θ < π/2, is clearly
demonstrated.

6. So, in this work, the method of calculating the

spectrum (ω) and relaxation time τ for the nonlinear

relaxation function (ω) describing the kinetics of the
SP magnetization after a sudden change of the constant

magnetic field is proposed. For uniaxial particles, (ω)
and τ can be calculated from (14) using MCSs for all
ranges of nonlinearity, anisotropy, and dissipation
parameters. In this way, the cubic anisotropy particles
may be examined, for which a similar technique of LR

f̃

f̃

f̃

f̃

2
0

–2
–4
–6

–4
–2

0

2
0

π/2

π

log
10 [ωτN ]

Θ

lo
g 1

0
f~

Fig. 4. Logarithm  as a function of log10(ωτN) and
Θ at the sudden switch-on of the constant magnetic field
(hI = 0; hII = 0.1; σ = 10; and α = 0.1).

f̃10log
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characteristics calculations was developed in [24]. It is
hoped that our approach will be useful in setting and
interpreting experiments in the nonlinear response
investigation.

APPENDIX

In (13), the matrices Qn , ,  are of the form

(A1)

Here, the index T denotes the transposition of the

matrix. The dimensions of Qn , ,  matrices are
8n × 8n, 8n × 8(n + 1), 8n × 8(n – 1), respectively. The
explicit forms of the tridiagonal submatrices Xl , Yl , Wl ,
Zl of formula (A1) are given in [23]. However, their ele-
ments, used in our work, differ from those presented in
[23] and are as follows:

Qn
+ Qn

–

Qn
X2n W2n

Y2n 1– X2n 1– 
 
 

, Qn
+ Z2n Y2n

0 Z2n 1– 
 
 

,= =

Qn
–

2n 1+
2n 2–
---------------Z2n 2–

T– 0

W2n 1–
2n

2n 3–
---------------Z2n 3–

T–
 
 
 
 
 
 

.=

Qn
+ Qn

–

xn m, dn m n m, , ,
σ n n 1+( ) 3m2–( )

2n 1–( ) 2n 3+( )
---------------------------------------------= =

–
n n 1+( )

2
-------------------- i

mσhIIγZ
II

α
--------------------,–

xn m,
+ xn m–,

–( )∗– dn m 1 n m, ,+,= =

=  –i
σhII γX

II iγY
II–( )

2α
---------------------------------- n m 1+ +( ) n m–( ),

yn m, dn 1 m n m, , ,+=

=  –σ hIIn i
m
α
----+ 

  n 1+( )2 m2–
2n 1+( ) 2n 3+( )

-----------------------------------------,

yn m,
+ yn m–,

–( )∗– dn 1+ m 1 n m, ,+,= =

=  
nσhII γX

II iγY
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2
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2n 1+( ) 2n 3+( )
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wl m, dn 1– m n m, , ,=

=  σ hIIγZ
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II iγY
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2
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2n 1+( ) 2n 1–( )
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The calculation of the initial values Cn(0) in (14) is
carried out in the following way. Let us introduce the
vector

(A2)

Then, in accordance with (12), for , the following
matrix recurrent relation is true:

(A3)

Its solution is

(A4)

Here, it is taken into account that  = 1/ . Thus,

zn m, dn 2 m n m, , ,+=

=  –
σn

2n 3+
--------------- n 2+( )2 m2–[ ] n 1+( )2 m2–[ ]

2n 1+( ) 2n 5+( )
-------------------------------------------------------------------------.
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N

Y2n 2n–,〈 〉 N
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Fig. 5 Logarithm  as a function of log10(ωτN) and
Θ for the case of the sudden rotation of the constant mag-
netic field (h = |hI| = |hII| = 0.3; σ = 10, and α = 0.1).
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for Cn(0), we have
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Abstract—A study is reported of the dc and 9.2-GHz electrical and magnetoresistance (ρ0, MR0, ρmw, and
MRmw) in La1 – xCaxMnO3 polycrystals (x = 0–0.3) in the 77–300 K temperature interval. The microwave mag-
netoresistance exhibits a sharp peak within a narrow interval near the Curie temperature TC, while MRmw ≈ 0 is
far from TC. The microwave absorption in low magnetic fields is shown to be due to a variation of the microwave
magnetic, rather than electrical losses. The peaks of ρ0, ρmw, MR0, and MRmw do not coincide in temperature.
The specific features in the behavior of ρ0, MR0, ρmw, and MRmw are explained as being due to an inhomogeneity
of the grains, which generates in the grain close to the interface a magnetic-field-dependent contact potential
difference. The origin of the inhomogeneities can either be traced to the formation on a grain of a surface layer
with properties differing from those in the grain bulk, or understood in terms of the model postulating grain
separation into a conducting and a nonconducting phase. © 2000 MAIK “Nauka/Interperiodica”.
We pointed out that the current flowing through a
structure of two different contacting substances whose
Fermi level positions depend on magnetic field should
be also magnetic-field dependent [1]. We hypothesized
that, in view of the observed sensitivity of the band
structure of the manganites to magnetic ordering and
magnetic field [2], a colossal magnetoresistance
(CMR) in polycrystalline manganites can be realized
due to the presence of a surface layer, whose properties
differ from those of the grain bulk. Such a layer forms,
e.g., in ferrites [3] as a result of the sample not being in
equilibrium with the atmosphere in the course of its
preparation (for instance, during cooling). Our study of
the microwave surface resistance Rs and of the electri-
cal properties as functions of the electric field E permit-
ted an estimate of the surface layer thickness and the
height of the potential barrier between the surface layer
and the manganite grain.

This work reports on a study of the electrical resistiv-
ity ρ0, ρmw, and magnetoresistance MR0 (≡ [ρ(H) – ρ(H =
0)]/ρ(H = 0)), MRmw, both in the dc mode and at a fre-
quency of 9.2 GHz, as well as of the microwave complex
permeability µ* = µ' + iµ'' of La1 – xCaxMnO3 polycrys-
talline manganites (x = 0–0.3), performed at tempera-
tures from 77 to 300 K in magnetic fields of up to 1.8 T.
The results of the study indicate that the grains are not
homogeneous, and this can be explained in terms of the
model proposed in [1]. Besides, some publications [4–6]
maintained that in polycrystalline manganites MRmw >
MR0. We show that at low temperatures T ! TC, a reverse
relation, MRmw ! MR0, holds for these substances, and
that the substantial microwave absorption observed in
low magnetic fields is due to the contribution of the nat-
ural ferromagnetic resonance to the permeability µ*.
1063-7834/00/4205- $20.00 © 20925
1. EXPERIMENTAL TECHNIQUES 
AND SAMPLES

The samples, prepared by solid-state reaction
among the starting powders of La2O3, CaCO3, and
Mn3O4 at T = 1300°C, were shown by x-ray diffraction
to be single phase. The unit cell was found to be orthor-
hombic for LaMnO3 and cubic for the other com-
pounds. The dc measurements of ρ0 were performed by
the standard four-probe method. To determine Rs, a pol-
ished plate of thickness t and with surface area S was
placed at the center, at the antinode of the microwave
magnetic field h of a rectangular reentrant resonator
[7]. The resonance frequency ω and the passband δω of
the resonator with the magnetic material inside are also
determined [8], in addition to the electrical resistance
[7], by the complex permeability µ = µ' + iµ''. Follow-
ing [7–9], it can be shown that for τ = t/δ @ 1, we have

(1)

(2)

For an arbitrary τ, including τ ≤ 1, the first term of
equation (1) can be written as [1]

(3)

Here Rs = ρmw/δ, δ =  is the skin depth, Vs

and Vr are the volumes of the sample and of the resona-
tor, respectively, (µ)2 = (µ')2 + (µ'')2, C1–C4 are some
known constants, and the superscripts L and 0 identify

δωL δω0–( )/ω0 RsSC1/Vr µ''2δSC2/Vr,+=

ωL ω0–( )/ω0

=  Vs 2δS–( )C3/Vr µ' 1–( )2δSC4/Vr.–

δωL δω0–( )/ω0

=  2Vs τ τsin–sinh( )/ τ τcos+cosh( )τVr.

2ρmw/ωµ
000 MAIK “Nauka/Interperiodica”
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the parameters of the resonator with and without the
sample inside.

Solving the coupled equations (1)–(3) for two sam-
ples of different thicknesses, t1 @ δ and t2 < δ, yields the
three unknowns, µ', µ", and ρmw. However, because of
the large values of µ' and µ", their contribution to the
resonator parameters may far exceed that due to the
electrical resistance of the sample. Therefore, prelimi-
nary measurements of the temperature dependences of
µ' and µ" were carried out on very thin samples, with
t ! δ (sometimes down to t ≈ 25 µm), which, in accor-
dance with (3), provide a small contribution to ρmw

compared to those due to the magnetic losses. The stud-
ies of ρmw and MRmw in a magnetic field were performed
for H || h, because in this case the transverse ac magne-
tization in a ferromagnet magnetized to saturation is
zero, and µ' ≈ 1 and µ" ≈ 0 [10]. The microwave elec-
trical resistivity ρmw was derived from Rs (1) and refined
in measurements on samples with different thicknesses
using (3). Equation (2) was used to estimate the skin
depth and, thus, to provide an additional check on the
results of ρmw measurements.

The dc and 9.2-GHz measurements were performed
on a computer-controlled setup. The dc current, tem-
perature, microwave transmission, and sweep generator
signals were fed into the computer, and the values of
the resonator δω and ω were obtained by a least-
squares fitting of the absorption line shape. The mea-
surements were made in steps of approximately 2 K,
and the Q-factor of the silver-coated measuring resona-
tor was about 7000.

2. RESULTS

Figure 1 presents temperature dependences of the dc
and 9.2-GHz electrical and magnetoresistance, and ac
magnetic susceptibility χac at 1 kHz obtained in a zero
magnetic field on a series of La1 – xCaxMnO3 samples
with x = 0, 0.1, and 0.3. Measurements of the χac

(curve 5 in Fig. 1) show that the La1 – xCaxMnO3 com-
pounds we studied (x = 0–0.3) are magnetically ordered
and have a Curie temperature TC = 160–215 K, depend-
ing on the calcium concentration x. Phase diagrams
plotted for the stoichiometric composition suggest that
LaMnO3 should be an antiferromagnetic dielectric. It is
known, however, that ferromagnetic manganites can

Activation energies ∆E0 and ∆Emw of polycrystalline lantha-
num manganites in a magnetic field

Compound
∆E0, eV ∆Emw , eV

H = 0 H = 16 kOe H = 0 H = 9 kOe

La0.7Ca0.3MnO3 0.150 0.140 0.074 0.072

La0.9Ca0.1MnO3 0.144 0.135 0.074 0.073

LaMnO3 0.157 0.154 0.100 0.100
P

also be prepared quite often without any doping by
making them nonstoichiometric in lanthanum and oxy-
gen [11]. The polycrystals studied in the dc mode
exhibited properties typical of manganites (curves 1
and 2 in Fig. 1), namely, a maximum in ρ0 and a peak
of the negative magnetoresistance MR0 near TC. The
temperature dependences of ρ0 and ρmw are approxi-
mately the same; indeed, they show a semiconducting
behavior at high temperatures and a metallic one in the
low-temperature domain. Note that ρmw ! ρ0 through-
out the temperature range covered, with the variation of
ρmw being strongest at the temperatures where ρmw(T)
reaches its maximum value.

One readily sees (Fig. 1) that in samples with high
TC = 205–215 K (x = 0 and 0.3), ρmw, MRmw, ρ0, and MR0
pass through a maximum at about the same temperatures
close to TC. The maxima of ρmw(T) and MRmw(T) in the
sample with a low TC ≈ 160 K (x = 0.1), which also
exhibited the largest dc and ac resistivity, differ from
those of ρ0(T) and MR0(T) by about 70–80 K. Interest-
ingly, the values of ρmw and MRmw for all samples reach
a maximum near T ≅  190–225 K.

Note that the field dependences MR0(H) are also
typical of polycrystalline manganites; indeed, in the
paramagnetic region, MR0 ~ H2, while in the ferromag-
netic region, up to the demagnetizing field, one
observes a strong growth (up to MR0 ≅  –0.1 at T = 77 K
in all samples), followed by a weak, approximately lin-
ear rise of |MR0| with the increasing magnetic field H.

The table lists the activation energies ∆E0 and ∆Emw

derived from the temperature dependences of ρ0 and
ρmw in the paramagnetic region. The dc activation
energy ∆E0 is less than the microwave one, ∆Emw, and,
unlike the latter, it depends noticeably on the magnetic
field.

Some publications [4–6] maintained that when mea-
sured in the ac mode, MRmw > MR0. To check this point,
we studied Rs in a magnetic field H || h on two samples
of the same composition but with different thicknesses,
t1 @ δ and t2 ! δ. As follows from (3), for τ @ 1, Rs ~
(δωL – δω0), while for τ ! 1, Rs ~ (δωL – δω0)–1/2.
Therefore, a negative magnetoresistance MRmw should
bring about a decrease of δω in the thick sample, and an
increase of δω in the thin one, with an increasing mag-
netic field. The experiment (Fig. 2) showed both sam-
ples to follow about the same pattern; indeed, δω and ω
decrease with the increasing magnetic field up to about
the demagnetizing field Hd ≈ 4πM, after which they
remain practically constant. The variation of δω(H) and
ω(H) does not correlate with that of ρ. If the decrease
of δω(H) (curves 1 and 2 in Fig. 2) were connected with
that of ρmw, this should have resulted in a decrease of
the skin depth and, according to (2), in an increase,
rather than decrease, of ω (curves 3 and 4 in Fig. 2).
This shows that the variations in microwave absorption
in manganites observed to occur in a magnetic field are
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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Fig. 1. Temperature dependences of the dc and 9.2-GHz electrical and magnetoresistance (ρ0, MR0, ρmw, MRmw), and of the mag-
netic susceptibility χac at 1 kHz of La1 – xCaxMnO3 polycrystals (a, b, and c for x = 0, 0.1, and 0.3, respectively). (Curves 1) ρ0,
(curves 2) MR0, (curves 3) ρmw, (curves 4) MRmw, (curves 5) χac.
due primarily to variations in the permeability µ*,
rather than in the electrical resistivity ρmw of the man-
ganites. One readily sees that as the magnetic field
increases up to saturation, µ'  1, and µ"  0
(curves 5 and 6 in Fig. 2).

Both experiments and calculations show that at low
temperatures (T ≈ 77 K), the microwave magnetoresis-
tance of other La1 – xCaxMnO3 manganites is also small,
|MRmw| ≤ 0.02–0.03 (curves 4 in Fig. 1). The high val-
ues of µ' and µ" (Fig. 3) result in a large error in MRmw

determination. The most reliable values of MRmw can be
obtained for T ≥ TC, where both µ' and µ" are small. The
sharp peak of MRmw is seen to occur in the samples
studied (curves 4 in Fig. 1) in the temperature region
where the behavior of the microwave electrical resistiv-
ity crosses over from semiconducting to metallic.
Although we have not been able to determine MRmw

with a high enough accuracy within a certain tempera-
ture interval because of the effect of µ*, additional
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
studies and calculations give one grounds to suggest
that MRmw decreases here from the high values near TC

to low MRmw at T = 77 K. Note that MRmw increases near
TC with increasing calcium concentration, and was also
found to reach a maximum at x = 0.3.

Figure 3 displays temperature dependences of µ'
and µ" for La1 – xCaxMnO3 samples. The largest and
strongest variations of µ' and µ" near TC are seen to
occur in La0.7Ca0.3MnO3.

3. DISCUSSION

Thus, microwave experiments confirm that polycrys-
talline samples consist of a conducting grain [1, 4, 5],
whose TC, derived from the maximum of MRmw for dif-
ferent calcium concentrations, is about the same,
TC ≈ 190–225 K. Because the microwave response is
dominated by the contributions due to single-crystal
grains, the temperature dependence of MRmw in this
0
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Fig. 3. Temperature dependences of the microwave permeabilities µ' (curves 1–3) and µ" (curves 4–6) for polycrystalline
La1 − xCaxMnO3 with x = 0 (curves 1, 4), x = 0.1 (curves 2, 5), and x = 0.3 (curves 3, 6).
region should have a pattern typical of single crystals
measured in the dc mode [12], namely, a sharp peak of
MR0 near TC and a small MR0 far from TC, exactly what
we observe experimentally for MRmw (curves 4 in Fig. 1).

The high values of ρ0 in polycrystals can be
accounted for by surface phenomena [12, 13]. How-
ever, the simplest model, by which the high ρ0 values
for polycrystals are due to high values of ρ0 in the grain
surface layer, cannot explain, for instance, why sub-
stantially below the ferromagnetic transition the values
of MR0 for polycrystals are higher than those for single
crystals [12]. Since below TC the conduction electrons
in manganites are completely polarized, carrier tunnel-
ing between grains with different magnetization direc-
tions gives rise to additional scattering, which results in
negative MR when the sample reaches saturation mag-
netization [13]. This model cannot, however, account
for the linear decrease of ρ0(H) above the demagnetiz-
ing field, observed to occur in polycrystalline mangan-
ites for T ! TC.

We suggested [1] that polycrystals could have,
besides the intergrain barrier, an additional barrier
inside a grain because of the formation of a surface
P

layer on the former. An analysis of the energy diagram
of the contact between two different substances [14, 15]
(metal–semiconductor, p–n junction) reveals the for-
mation in such a structure of a space charge generating
a contact potential difference. This contact potential

difference Uc =  =  is determined by the differ-
ence between the thermionic work functions, or Fermi

energies  and , of these substances. If the contact
potential difference depends on the magnetic field, one
should also expect ρ0 to vary with the magnetic field.
One could also expect the band structure of the manga-
nites undergoing magnetic ordering to depend on the
magnetic field. This is indicated by the optical proper-
ties of manganites being sensitive to magnetic ordering
and to the magnetic field in the ferromagnetic region
(the redshift effect) [2]. As follows from studies of
magnetic semiconductors of the type of EuO and
HgCr2Se4 [16–18], the sensitivity of their band struc-
ture to the magnetic field is maximal near TC, while also
being quite large above and below it. This may account
for the peak in the magnetoresistance of polycrystalline
manganites near TC, and for MR0 remaining fairly high
both above and below TC.

EF
1 EF

2

EF
1 EF

2

HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000



INTERFACE PHENOMENA AND MICROWAVE MAGNETORESISTANCE 929
To transfer from one region to another, carriers have
to overcome the potential barrier Uc due to their ther-
mal energy kT. The exponential nature of the electrical
conductivity gives one grounds to expect that small
changes in Uc can give rise to large values of MR0 in a
magnetic field. The existence of a surface layer is
argued for by the comparatively slow decay of the mag-
netic susceptibility χac within a 30-K interval near TC

(curve 5 in Fig. 1) and by the strong effect of the elec-
tric field on ρ0 [1]. The thickness of this surface layer,
estimated by us [1] as ≈103 Å, may reach a few percent
of the grain size and can depend on the temperature,
sample composition, and magnetic field.

This model allows interpretation of some features in
the behavior of MR0 and ρ0 in the samples studied. The
samples with x = 0 and 0.3 have TC ≅  205–215 K
(Fig. 1), which is close to the maximum value TC ≈
230 K in the La1 – xCaxMnO3 system, and this appar-
ently accounts for the properties of the surface layers
not differing much from those of the grain bulk (core).
The sample with x = 0.1 has a lower value TC ≅  160 K
(as follows from χac data in Fig. 1), and so one can
expect that the properties of its surface layer (for
instance, TC) should differ substantially from those of
the core, whose Curie temperature TC ≅  200 K esti-
mated from the maximum of MRmw (see Fig. 1) is also
high. In this case, the values of Uc may be higher and
vary within a broader temperature range than those in
the samples with x = 0 and 0.3. The behavior of Uc can
account for the higher value of ρ0, the difference
between the temperatures of the maxima in ρ0 and ρmw,
MR0 and MRmw, the smoother growth of MR0 within a
broad temperature range T = 225–125 K, and the higher
value of MR0 at 77 K in the sample with x = 0.1 com-
pared to those in the samples with x = 0 and 0.3 (Fig. 1).

The part played by the contact potential difference
Uc and the effect of the magnetic field on the band
structure of manganites are also evidenced by the vari-
ation in the activation energy ∆E0, and by the indepen-
dence of ∆Emw on the magnetic field (see the table).
Besides, when considered in terms of this model, carri-
ers excited in the dc mode should overcome an addi-
tional potential barrier compared with those involved in
microwave measurements of ρmw by the induction tech-
nique [7]. As seen from the table, in the paramagnetic
region, ∆Emw is smaller than ∆E0 by 0.05–0.07 eV. This
value of the additional potential barrier coincides with
the potential barrier derived from the breakdown volt-
age in a strong electric field for the samples with x = 0
and 0.1 [1].

The nature of the CMR in manganites still remains
unclear, with the double exchange [19] or phase sepa-
ration [11] models being most popular. In the case of
phase separation, space charge and a contact potential
difference Uc may appear at the boundaries of inhomo-
geneities, and one may observe approximately the same
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
temperature and field dependences of ρ0, MR0, ρmw, and
MRmw as in the sample with x = 0.1 (Fig. 1b). It may be
conjectured that the conducting grain is divided by non-
conducting (for instance, antiferromagnetic) layers
with a thickness d ≈ 102 Å. Such estimates of d are
obtained when adapting the calculations of ρ0(E) [1] to
the phase-separation model. The small layer thickness
d could account for the stronger effect of the electric
field on the electrical properties of the sample with x =
0.1 compared to those with other x; indeed, in the sam-
ple with x = 0.1, deviations from Ohm’s law start from
very low fields E ≈ 1 V/cm, with ρ0 decreasing by
nearly two orders of magnitude at E ≈ 102 V/cm (Fig. 2
in [1]). Note that the results obtained in the optical stud-
ies of these samples also agree with the phase-separa-
tion model.

In ferrites, the nature of the dispersion in permeabil-
ity has largely been established long ago [3, 10].
Because the manganites are “poor” metals, the skin-
layer thickness (δ ≥ 10–3 cm) in the highest conductivity
samples (ρ ≈ 10–3–10–4 Ω cm) at 10 GHz is larger or of
the order of the equilibrium linear domain size
(10−3−10–4) cm [21], with the result that the electro-
magnetic field acts on the domain as a whole. There-
fore, the conventional concepts of the quasistatic mag-
netization mechanism used to explain the dispersion of
µ in ferrites should also be applicable in most cases to
the manganites. Polycrystalline materials actually rep-
resent aggregates of small, arbitrarily oriented single
crystals. In nonsaturated samples, the tiny magnets
break down into domains magnetized in various direc-
tions. In the regions where an magnetic field has a com-
ponent perpendicular to the domain walls, one will
observe the so-called “natural ferromagnetic reso-
nance” (NFMR). The dependences of µ' and µ" of fer-
rites at low frequencies (below 300 MHz) are usually
related to domain wall vibrations, and the higher-fre-
quency losses, to the NFMR, whose extreme frequen-
cies in polycrystals are determined by the Polder–
Smith relations ωmin = γHa, and ωmax = γ(Ha + 4πM)
[10]. Because in manganites the anisotropy field is
small (Ha ≈ 102 Oe) and the saturation magnetization
4πM ≈ 5 kG, the NFMR-induced dispersion of µ*
should be observed within a broad frequency region
extending from 102 MHz to 15–20 GHz. The field and
temperature dependences of µ' and µ" in La1 –

 xCaxMnO3 (Figs. 2 and 3) generally follow behavior
typical of ferrites at NFMR, namely, µ' = 1, µ" = 0 in
the paramagnetic region; in the ferromagnetic region,
they depend on temperature and the magnetic field; and
µ' = 1, µ" = 0 in a sample magnetized to saturation at
H || h. Note [3, 10] that the values of µ' and µ" are gov-
erned by many factors, primarily by the size and shape
of the grains, pores, and specific features of the domain
structure, which could be the subject of a dedicated
study. A new aspect of the problem of CMR in the man-
ganites is the finding that the variation of microwave
0
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absorption in magnetic fields at low temperatures, T !
TC, is associated with the change in the magnetic rather
than electrical losses.

Thus, intergranular surface phenomena in inhomo-
geneous structures (interface layers) may lie at the ori-
gin of the colossal magnetoresistance.
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Abstract—The influence of the polarization interactions on the state and phase transitions in magnetic-ordered
and dielectric crystals with two interacting order parameters has been investigated. Consideration is given to
the case when the interaction in one of the subsystems is considerably weaker than that in the other subsystem.
It is demonstrated that the polarization interactions in the weak subsystem can substantially affect the state and
the character of phase transitions in the strong subsystem. These interactions can bring about the disordering
(formation of the random-field state or the state of spin glass) in the critical region near the second-order phase
transition in the main subsystem and also the smearing of the phase transition. At the same time, the polarization
interactions can give rise to the ordered and disordered states in the weak subsystem. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In this paper, the polarization interaction will be
taken to mean the interaction between polaron states
(polarons) in crystals. It is the effective interaction due
to the mutual polarization of interacting subsystems
and manifests itself in the second-order approximation
of the perturbation theory.

In the solid-state physics, the polarization interac-
tions have been most extensively investigated for semi-
conductors. There are works dealing with the polaron
effect caused by the self-consistent action of free elec-
trons and anionic lattice skeleton. The study was also
given to the decrease in energy of the ground level of a
system due to the electron–phonon interaction, the
renormalization of effective masses of electrons and
excitons, the polaron mobility, etc. (see, for example,
the review [1]).

However, the polaron effects and polarization inter-
actions in crystals should be taken into account not only
in consideration of the electron–phonon interaction for
charge carriers. Similar effects and polarization interac-
tions are observed in dielectric crystals and other sys-
tems involving at least two interacting subsystems. In
the present work, we analyzed how the exchange polar-
ization interactions affect the properties of magnetodi-
electric crystals and how the polarization interactions
associated with the mutual influence of ionic displace-
ments in dielectric crystals affect the structure of these
crystals.

The situation when the unit cell contains several dif-
ferent-type magnetic ions that form interacting sub-
systems with their own order parameters is characteris-
tic of many magnetic crystals. In this case, the states of
subsystems produce a mutual effect on each other,
1063-7834/00/4205- $20.00 © 20931
which depends on the character of interactions within
the subsystems and between them. It is clear that the
phase transitions (their temperature and character) in
these magnetic crystals also depend on the interaction
between the subsystems.

Note that, in the case when a magnetic crystal con-
tains magnetic ions of only one type, there also exist
nonmagnetic subsystems in this crystal that can interact
with the magnetic subsystem. Examples of such sub-
systems can be provided by the orbital subsystem of the
magnetic ions or ionic displacements in the lattice. This
gives rise to the spin–orbit and magnetoelastic interac-
tions, respectively, which, in turn, can lead to the polar-
ization effects.

A situation completely similar to that observed for
two interacting magnetic subsystems arises in the case
when the nonmagnetic order parameter is described
within the pseudospin formalism and the correspond-
ing interactions can be represented by the exchange
Hamiltonians. The most characteristic example of this
situation is the order–disorder structural second-order
phase transition (see, for example, [2]).

2. POLARIZATION EXCHANGE INTERACTION

Let us consider the case of a magnetic-ordered
dielectric in which the unit cell involves magnetic ions
of two types (A and B) with the spins SA and SB, respec-
tively. The Hamiltonian of exchange interactions can be
written in the following form:

(1)

Here, the quantities , , and  are nonzero for
the ith and jth nearest neighbor ions and characterize

H Σij Jij
AASi

AS j
A Σij Jij

BBSi
BS j

B Σij Jij
ABSi

AS j
B.+ +=

Jij
AA Jij

BB Jij
AB
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the exchange interactions in a subsystem of the SA and
SB spins and between the SA and SB spins, respectively.
Now, we assume that the exchange interactions obey
the following hierarchy, which is often realized in mag-

netic crystals:  @  @ . For example, this
hierarchy of exchange interactions is observed in mag-
netic crystals of rare-earth garnets, rare-earth orthofer-
rites, and rare-earth orthochromites [3] containing both
the 3d (SA spins) and 4f (SB spins) ions.

In the framework of perturbation theory, the effec-
tive Hamiltonian describing the spin states in the B sub-
system can be written to the second order in the small

parameter  /  as follows:

(2)

The quantity 〈 〉  characterizes the spin averaged over
the states in the A subsystem. This quantity is nonzero
when the A subsystem possesses a homogeneous long-
range magnetic order and is equal to zero in the para-
magnetic phase. Moreover, this quantity is also equal to
zero at any temperature if the A subsystem involves a
cooperative, but disordered state (for example, the ran-
dom-field state or the state of spin glass [4]).

The quantity  = 〈 〉  – 〈 〉〈 〉  character-
izes the correlation function of spin fluctuations in the
A subsystem, which is nonzero at any temperature and
for any state of the crystal.

The first sum in the effective Hamiltonian (2)
accounts for the magnetic biasing of the SB spins by the

mean field of the A ordered subsystem, that is,  =

Σi 〈 〉 .
The second sum in Hamiltonian (2) describes the

effective exchange interaction between the SB spins
through the correlations in the spin orientation in the A
subsystem. This polarization exchange interaction is
represented in the form

(3)

The summation in the second term in expression (2)
[and, correspondingly, in formula (3)] is carried out
over all sites of the lattice. In this case, the polaron
effect (exchange polaron) is described by the self-
action, i.e., the exchange interaction between one ion B

at the ith site with the spin  and the whole matrix of

the A ions with the spins . The polarization exchange
interaction (3) describes the interaction between the

exchange polarons. The polarization exchange  is
efficient when the direct exchange interaction of spins

Jij
AA Jij

AB Jij
BB

Jij
AB Jij

AA

Heff
B Σij Jij

AB Si
A〈 〉 S j

B=

– Σi j kl, Jik
BAKkl

AAJlj
AB( )1/JAASi

BS j
B Σij Jij

BBSi
BS j

B+

≡ Σ jHmfj
B S j

B ΣijVij
BBSi

BS j
B Σij Jij

BBSi
BS j

B.+ +

Si
A

Kkl
AA Sk

ASl
A Sk

A Sl
A

Hmfj
B

Jij
AB Si

A

Vij
BB Σkl Jik

BAKkl
AAJlj

AB( )1/JAA.–=

Si
B

S j
A

Vij
BB
P

in the B subsystem is weaker than the polarization

exchange interaction (  ! ) or when the role of

the mean field  is considerably weakened (by vir-
tue of the crystal symmetry in the critical region near
the phase transition in the A subsystem or when the A
subsystem is disordered).

Note that the effective exchange interaction
between impurity atoms in interstitial sites of a meta-
magnet lattice due to the polarization of spins in the
main sublattice was originally treated by Ivanov and
Shender [5]. Earlier [6], we considered the f–d–f polar-
ization exchange in rare-earth magnets and wrote the
Hamiltonian in the explicit form (2) in order to interpret
the magnetic phase transition induced by high-power
optical pumping in EuCrO3. The polarization (fluctua-
tion) exchange was studied in antiferromagnetic gar-
nets [7] and in rare-earth orthoferrites and ortho-
chromites [8].

It should be emphasized that, unlike the orienting

action of the mean field  on spins in the B sub-

system, the polarization exchange  can result in the
ordering of the SB spins characterized by the specific
temperature of ordering and the proper symmetry. Such
an ordering of the optically excited Eu3+ ions, which
was brought about by the polarization interaction
through spin excitations in the main magnetic sub-
system of Cr3+ ions, was first found in EuCrO3 crystals
in our earlier works [6, 9].

Unlike the mean field , which is equal to zero
in the disordered state, the polarization exchange is
nonzero at any temperature. At the same time, the
polarization exchange depends on the temperature and
state of the crystal, which determine the correlation

function .

It is important to note that, when the , , and

 exchange interaction constants are nonzero only
for the nearest neighbors, the range of the polarization

exchange interaction  [see expression (3)] is deter-
mined by the correlation radius of spin fluctuations in
the A subsystem. This means that the polarization inter-
action is, by definition, the long-range interaction, and,

therefore, the corresponding molecular field  =

〈 〉  is enhanced by this long-range interaction. As
a result, the temperature of the ordering of spins of the
B ions at the expense of the polarization exchange inter-

action  can be considerably higher than the temper-
ature of the ordering of the SB spins through the
exchange interaction .

In the case when appreciable spin fluctuations with
large correlation radii take place in the A subsystem, the

Jij
BB Vij

BB

Hmfj
B

Hmfj
B

Vij
BB

Hmfj
B

Kij
AA

Jij
AA Jij

BB

Jij
AB

Vij
BB

HMF
P

Vij
BB Si

B

Vij
BB

Jij
BB
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contribution of the  interaction becomes especially
noticeable. This situation arises either in the vicinity of
the second-order phase transition in the A subsystem or
in the cases when this subsystem is low-dimensional
and disordered.

Apart from the ordering of the B subsystem, the

polarization interaction  in a number of cases can
substantially affect the state and phase transitions in the
main magnetic subsystem A. Let us now consider these
situations in more detail.

3. EFFECT OF POLARIZATION INTERACTIONS 
ON THE CHARACTER OF MAGNETIC PHASE 

TRANSITIONS IN CRYSTALS 
WITH TWO ORDER PARAMETERS

As mentioned above, the polarization interaction

 can induce the ordering of the B subsystem with
the specific temperature of ordering and the proper

symmetry. In this case, the polarization interaction 

and the direct short-range exchange interaction  can
be opposite in sign. This leads to frustrations in the B
subsystem, provided that the  interaction is not neg-

ligibly small compared to the  interaction. As a
consequence, the frustrations due to the presence of
exchange interactions with opposite signs can arise in
the B ordered subsystem containing no impurities of
other ions (i.e., in the subsystem without ionic disor-
der). In some cases, the effect of these frustrations can
be quite significant.

(A) If the magnetic bias field  = Σi 〈 〉  con-

siderably exceeds the molecular field  = 〈 〉

(and, especially, 〈 〉), then, at temperatures below
the ordering temperature of the A subsystem, the state
of the B subsystem is homogeneous and will be deter-

mined by the magnetic bias field  of the A ordered
subsystem. However, the situation can radically change
in the vicinity of the magnetic phase transition in the A
subsystem (in the critical range of temperatures). Actu-
ally, in the critical range, the effect of the mean field

 weakens (the order parameter 〈 〉  decreases in
accord with the Brillouin function), whereas the corre-
lation radius of critical fluctuations in the A subsystem

and, correspondingly, the  interaction increase.
Taking into account the competition between the inter-

actions  and , which leads to frustrations in the
B subsystem, the random-field state or the state of spin
glass [4] can arise in this subsystem. As a result, the
mean molecular field in the B subsystem, which is

determined by the  and  interactions [the last

Vij
BB

Vij
BB

Vij
BB

Vij
BB

Jij
BB
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Vij
BB
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two terms in Hamiltonian (2)], proves to be random.

Then, the 〈 〉  quantity characterizes the frozen ran-
dom local spin in the B subsystem [4]. Owing to the
interaction between the A and B subsystems, the ran-

dom field  = 〈 〉  arises in the A subsystem,
too. Furthermore, in the critical region near the phase
transition, the random-field state or the state of spin
glass also arises in the A subsystem. Indeed, according
to the Imre–Ma theorem [10], the state with a homoge-
neous long-range order is unstable toward the forma-
tion of bounded regions with the same order in the pres-
ence of random field.

Therefore, the polarization interaction in the B sub-
system and the competition with its own exchange
interaction in the same subsystem give rise to the disor-
dered state in the critical region near the phase transi-
tion in the A subsystem and lead to the smearing of the
phase transition in this state.

(B) A similar situation always arises in the critical
region near the second-order phase transition in the A
subsystem with allowance made only for the polariza-
tion interaction (even without regard for the competi-
tion with the exchange interaction ), provided that
the A subsystem is an antiferromagnetic subsystem. In
this case, in the critical temperature range of the A sub-
system, when the correlation radius of antiferromag-
netic spin fluctuations ξ @ a (where a is the lattice

spacing), the polarization exchange interaction 
[see expression (3)] appears to be both long-range (on
the ξ scale) and alternating-sign simultaneously for
every lattice spacing (because the antiferromagnetic

correlation function  changes sign every lattice
spacing). The interaction of this type brings about the
stochastization of the spin state in the B subsystem and
the formation of glass state, even though there is no fro-
zen random disorder in the ion arrangement of the B
subsystem in the crystal. The reverse effect of the B dis-
ordered subsystem on the A subsystem also gives rise to
a random-field (or glass) state in the critical region in
the A subsystem. A similar situation was considered in
studying the mechanism of the formation of orbital
glass in Eu2CuO4 crystals in our earlier work [11].

4. THE CASE OF LOW-DIMENSIONAL
OR DISORDERED A SUBSYSTEM

A specific situation occurs when the A subsystem
originally exhibits a cooperative, but disordered state,
for example, the random-field state or the state of spin

glass. In this case, the mean molecular field  bias-
ing the B subsystem is equal to zero at all temperatures,
and the polarization interaction (3) becomes predomi-
nant for the B subsystem. If the A subsystem involves
sufficiently large regions of spin correlations, the polar-

Si
B

HRF
A Jij

AB Si
B

Jij
BB

Vij
BB

Kij
AA

Hmfj
B

0
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ization interaction  is rather strong. Under these
conditions, both ordered (order from disorder) and dis-
ordered states can arise in the B subsystem not only in
the critical region, but over the entire range of temper-
atures.

In the quasi-two-dimensional Heisenberg antiferro-
magnets R2CuO4 (R = Eu, Pr, and Gd) studied in [12,
13], we experimentally observed the random-field state
over a wide range of temperatures (at both T ! TN and
T @ TN, where TN is the Néel temperature). In our opin-
ion, this state stems from the random anisotropy in the
A subsystem due to the polarization interactions in the
B subsystem [14]. In this case, the A subsystem is the
quasi-two-dimensional Heisenberg antiferromagnetic
subsystem of spins of the Cu2+ ions (in the CuO2 lay-
ers), and the B subsystem at different temperatures can
be either the magnetic orbital subsystem of Cu2+ ions or
the subsystem of magnetic rare-earth ions R3+.

As an illustration, let us consider the effect of mag-
netic rare-earth ions on the state of the quasi-two-
dimensional Heisenberg antiferromagnetic subsystem
of Cu2+ ions in the CuO2 layers. In analyzing Hamilto-
nian (2), we will take into account the first two terms
and disregard the exchange interaction between rare-
earth ions.

(A) Assume that, at T < TN, the quasi-two-dimen-
sional antiferromagnetic subsystem possesses the long-

range order and the mean molecular field  is non-
zero. Under the action of this field, the moments of
rare-earth ions (the SB spins in our model) should be
antiferromagnetically biased; i.e., the staggered field

should occur in the B subsystem. Then, the  polar-
ization exchange interaction is determined by the inter-
action between the SB spins through the spin waves in the
A ordered subsystem. Note that, as was shown in [7, 8],
the polarization interaction tends to ferromagnetically
order the SB spins. As a result, in the case of the homo-
geneous antiferromagnetic long-range order in the A
subsystem, the polarization interactions bring about the
emergence of competing interactions, which result in
the frustrations and the disordering of the B subsystem.
In turn, this gives rise to a random anisotropy for the A

subsystem ( ) and a random-field state in the A sub-
system. Therefore, in the antiferromagnetic A sub-
system, the homogeneous antiferromagnetic long-
range order cannot be realized, and a state of the ran-
dom-field type arises if the polarization interaction in
the B subsystem is not negligibly small compared to the

mean field .

(B) If the A subsystem originally (without consider-
ing the influence of the B subsystem) exhibit spin fluc-
tuations with large correlation radii (for example, the
quantum two-dimensional Heisenberg antiferromag-
netic spin fluctuations in the CuO2 layers in quasi-two-

Vij
BB

Hmfj
B

Vij
BB

HRF
A

Hmfj
B

P

dimensional crystals R2CuO4), the role of the polariza-
tion exchange becomes quite significant beginning with
the lowest temperatures—the long-range and alternat-
ing-sign (frustrating) polarization interaction takes
place in the B subsystem. This interaction can result in
both the disordering of the B subsystem and the forma-
tion of the random-field state in the A subsystem.

5. EFFECT OF POLARIZATION 
INTERACTION ON THE STRUCTURAL PHASE 

TRANSITION IN CRYSTALS 
WITH TWO ORDER PARAMETERS

The manifestation of polarization interactions upon
the second-order structural phase transitions can be
illustrated by the isostructural phase transition in
EuCrO3, which was observed with a change in the con-
centration of thermally excited ions Eu3+ (7F1) [15, 16].
This transition was revealed at temperature T ~ 280–
290 K in studies of the dielectric susceptibility and X-
ray diffraction analysis. The transition was accompa-
nied by strong anomalies in the dielectric properties,
which is usually typical of smeared ferroelectric phase
transitions [2]. According to the X-ray diffraction data,
the transition leads to the uniform displacement of the
Eu3+ ions by ~0.0076 Å, all the other lattice parameters
being the same [16].

The EuCrO3 crystals belong to the rare-earth ortho-
chromite class and have the symmetry of orthorhomb-

ically distorted perovskite with the space group 
(Pbnm). The Eu3+ ions in the ground state (7F0) are non-
magnetic. The first excited state (7F1) differs in energy
from the ground state (7F0) by ~300 cm–1. The first
excited state is magnetic and degenerate (triplet J = 0,
±1), so that the thermal filling of the excited level gives
rise to the magnetic moment and local lattice distor-
tions (the local Jahn–Teller pseudoeffect [17]). In the
temperature range T > 200 K, the thermal filling of the
excited levels of Eu3+ ions rapidly increases, and the
possibility exists of forming the metastable clusters
consisting of the structurally correlated, thermally
excited ions. A further increase in the concentration of
thermally excited ions results in the isostructural phase
transition, which is attended by the correlated displace-
ments of all the Eu3+ ions in the crystal [16].

In the case under consideration, two interacting sub-
systems take place: the Eu3+ ions in the ground state
and the thermally excited ions. There are two interact-
ing order parameters—the displacements of the Eu3+

ions in the ground state and the displacements of the
Eu3+ thermally excited ions in the lattice with respect to
the central position in the cubic praphase. The local
ionic displacements in the lattice are described by the
pseudospins, and the Hamiltonian of the corresponding
interactions within the subsystems and between them is
similar to the exchange Hamiltonian (2). Moreover, the

D2h
16
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following condition is met: additional displacements of
the thermally excited ions are small in comparison with
the initial displacements of ions in the ground state. The
antiferroelectric ordering is realized in the original sub-
system of the Eu3+ ions (in the ground state). The polar-
ization interaction between the excited ions has a ferro-
electric nature and leads to an increase in the concen-
tration of the ferroelectric clusters and also to the
structural phase transition in the whole crystal. This is
accompanied by the antiferroelectric ordering of the
europium ions in the ground state and the thermally
excited europium ions throughout the crystal [16].

Thus, in the present work, we demonstrated that the
polarization interactions play an important role in the
crystals with two interacting order parameters. The
polarization interactions can bring about changes in the
state of crystals and affect the character of phase tran-
sitions in these crystals.
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Abstract—The dielectric and electromechanical characteristics of the (1 – x)PMN–xPZT ferroelectric ceramics
have been obtained at different temperatures, amplitudes, and frequencies of the measuring field and at different
bias field strengths. It is shown that this ferroelectric ceramics at low and infralow frequencies possesses pro-
nounced relaxor properties in a certain temperature range and ferroelectric properties in other temperature
range. The temperature and amplitude ranges have been determined, in which the permittivity ε' either only
decreases or first increases and then decreases with an increase in the measuring field amplitude E0. The tem-
perature ranges of existing the phases similar to the superparaelectric phase, dipole glass phase, and ferroelec-
tric phase are evaluated from the temperature dependences of the coercive field Ec(T) and the remanent polar-
ization Pr(T) and also from the reverse dependences of ε* and the electromechanical characteristics. The PZT
concentration in the PMN–PZT system is determined, at which the electrostrictive constant M11 is maximum.
It is demonstrated that, in the neighborhood of the temperature at a maximum of ε', the strain S3 is quadratic in
the field E=; that is, S3 = M11E2. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that ferroelectric ceramics based on lead
magnesium niobate (PMN) is one of the most promis-
ing materials for the use as micropositioners, adaptive
mirrors, actuators, etc. In addition to their technical
applications, these materials are very attractive from
the viewpoint of basic research, because they are con-
venient (model) objects in studies of various nonequi-
librium processes proceeding in disordered systems. In
particular, these materials belong to the class of the so-
called relaxor ferroelectrics [1].

Despite a considerable amount of available experi-
mental information regarding relaxors, there has been
no unified interpretation of the physics of processes
occurring in these materials under different experimen-
tal conditions. For example, a number of properties are
explained in the framework of the superparaelectric
model [1, 2]. Within this model, it is assumed that, in
the temperature range T ≥ Tm (where Tm is the tempera-
ture at a maximum of the permittivity ε'), there exist
thermally activated polar nanoregions that can be
switched (reoriented) in an external (even weak) field
and, thus, contribute to the dielectric response of a sys-
tem. At the same time, the behavior of the dielectric
properties in the temperature range T < Tm under the
action of a dc electric field E= [3] and without field
(when very prolonged processes of polarization relax-
ation—aging [4] and different memory effects [5, 6]—
are observed) can be more adequately described either
within the model of spin or dipole glass [7], in the
framework of the random field model [8], or in the con-
1063-7834/00/4205- $20.00 © 20936
text of concepts developed by Isupov [9, 10]. In these
works, Isupov has attached much importance to the
influence of paraelectric interlayers on the time depen-
dences of different processes occurring in the course of
smeared phase transitions, specifically on the possibil-
ity of forming a macrodomain state in relaxors.

However, recent works published by Tagantsev and
Glazounov [11–13] cast some doubt on the above
approaches (for example, for lead magnesium niobate
materials). Particularly, in order to describe the proper-
ties of ceramics and crystals of lead magnesium nio-
bate, they proposed the model based on the statement
that the contribution to the permittivity ε' in the ergodic
phase is determined by the interphase boundary oscil-
lations (irreversible hysteresis motion of interphase
boundaries [14]); i.e., in the authors’ opinion [11–13],
the depinning of phase boundary is more probable than
the reorientation of polar nanoregions under the action
of an ac electric field at temperatures above 200 K.
Note that, in principle, there is no considerable differ-
ence between the notion of the polar nanoregion reori-
entation and the notion of the interphase boundary
vibration, particularly where the activation by electric
field is concerned [14]. The matter is that the “vibra-
tion” of interphase boundary can be reversible (ther-
mally activated) and irreversible (activated by the ac
measuring field [14]). The former case is virtually not
considered [11–13], even though it is completely anal-
ogous in physical nature to the reorientation of ther-
mally activated polar nanoregions. It should be empha-
sized that, in the recent work [15] concerned with the
investigation of lead magnesium niobate by high-reso-
000 MAIK “Nauka/Interperiodica”
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lution electron microscopy, Yoshida and coworkers
conclusively proved that, in the “nonergodic phase” of
lead magnesium niobate, the formation of domain
boundaries does not require external action, as it was
earlier assumed in discussions of the results obtained
for this material. According to [15], the noninduced
(spontaneous) formation of domains occurs upon cool-
ing of the crystal at very low temperatures correspond-
ing to the reversible phase transition from the relaxor
phase (on the average, with a cubic symmetry) to the
rhombohedral ferroelectric phase. Yoshida et al. [15]
demonstrated that, upon cooling of the lead magnesium
niobate crystal, this phase transition begins only at a
temperature of 200 K and ceases at Tpht = 135 K. There-
fore, the temperature Tpht = 135 K can be considered the
average (most probable) temperature of the structural
ferroelectric phase transition, at which a larger part of
the phase becomes rhombohedral.

It should be mentioned that the occurrence of a simi-
lar reversible phase transition not induced by the electric
field was earlier established by Heike and William [16],
reasoning from the Raman scattering when a sharp
change in the wavenumber and the width of the 227-cm−1

band attributed to the bending mode was observed in the
spectra in the range of T ~ 200 K. Still earlier, Kuznets-
ova et al. [17] reported that the extrapolation of the tem-
peratures of field-induced phase transitions to zero field
amplitude resulted in Tpht ≈ 100–120 K for lead magne-
sium niobate, which is in good agreement with the data
obtained by the high-resolution electron microscopy
[15]. On the other hand, the results presented by Korol-
eva [18] and Vakhrushev [19] do not agree with the data
obtained in [15–17] and are not quite consistent with the
conclusions made in [11–13]. Note also that the
approach developed in [11–13] was applied to relaxors
even in our earlier works [5, 6] in the interpretation of
memory effects in the PLZT and PMN relaxor ceramics
within the model of pinning and depinning of interphase
boundaries at mobile point defects. Furthermore, Nado-
linskaya et al. [20] emphasized that the dispersion of ε*
in the lead magnesium niobate crystal at low and
infralow frequencies in different temperature ranges is
determined by the contribution of domain walls, inter-
phase boundaries, and (or) polar nanoregions to ε*; in
other words, these authors considered the thermally acti-
vated reversible motion (oscillation or vibration) of the
domain and interphase boundaries.

A very large body of experimental data accumu-
lated up to now for different relaxors and their rather
contradictory interpretation mentioned above gave
impetus to the complex investigations into the dielectric
response at low and infralow frequencies over wide
ranges of temperatures, measuring field amplitudes, and
bias field strengths, as well as the studies of the electro-
mechanical parameters and pyroelectric current [21] in
the (1 – x)PMN–xPZT relaxor ceramic system similar in
properties to the lead magnesium niobate ceramics. In
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
the present work, we made a further attempt to give
insight into the mechanisms of polarization, repolariza-
tion, and electromechanical response in typical relaxors.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The dielectric parameters—the real (ε') and imagi-
nary (ε'') parts of the permittivity ε*—were measured at
low (10–103 Hz) and infralow (0.1–10 Hz) frequencies
in the dynamic mode upon cooling at a rate of 1 K/min
from 353 to 90 K by using the bridge method [22] and
in the quasi-static mode with the use of a modified Saw-
yer–Tower hysteresis scheme involving an S9-8 digital
storage oscilloscope equipped with a computer.

In the former case (in the ultraweak measuring fields
at amplitude E0 ≈ 1 V/cm), we determined the initial
values of the real ( ) and imaginary ( ) parts of the

complex permittivity . In the latter case (in the
medium and strong fields E0), we obtained the effective
quantities  and  and evaluated the contributions
from the hysteresis and relaxation mechanisms of
domain and interphase boundary motions [14]. More-
over, the maximum (P) and remanent (Pr) polarizations
and the coercive fields Ec were obtained from the anal-
ysis of the polarization loops. The latter parameters
were also evaluated from the reverse dielectric and
reverse piezoelectric characteristics obtained by the
resonance and antiresonance methods. The induced
strain S3 in ferroelectric ceramics was measured with an
instrument based on a capacitance-type transducer
[23]. These measurements were carried out above the
Tm temperature in the range from 298 to 318 K.

The samples of the (1 – x)Pb[Mg1/3Nb2/3]
O3-xPb[Zr0.53Ti0.47]O3 (where 0 ≤ x ≤ 0.3) ferroelectric
ceramics were prepared according to the usual ceramic
technology. The dielectric measurements were per-
formed using the samples with size S = 5 × 5 mm and
thickness from 0.2 to 0.5 mm. The ceramic discs with
diameter D = 10 mm and thickness from 0.5 to 3 mm
were used for measuring of the electromechanical
parameters. Electrodes were applied by burning-in sil-
ver solder paste.

3. RESULTS AND DISCUSSION

3.1. Characterization of the phase state of the mate-
rial. Figure 1 demonstrates the temperature–field
dependences (T, E0) and (T, E0) for the
0.89PMN–0.11PZT ferroelectric ceramics at the mea-
suring field frequency ν = 1 Hz. It is clearly seen from
Fig. 1 that, as the measuring field amplitude E0

increases, the maximum values of (T) and, espe-

cially, (T) first increase and then decrease, shifting

ε0' ε0''

ε0*

εeff' εeff''

εeff' εeff''

εeff'

εeff''
0
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Fig. 1. Temperature–field dependences (T, E0) and

(T, E0) of the 0.89PMN–0.11PZT ferroelectric ceramics

at frequency ν = 1 Hz. Measuring field amplitude E0
[kV/cm]: (1) 0.001, (2) 0.6, (3) 1.8, (4) 3, (5) 5.4, (6) 10.8,
(7) 16.2, and (8) 21.7.

εeff'

εeff''

Fig. 2. Field dependences of the temperatures at a maximum
of the real (E0) (solid line) and imaginary (E0)

(dashed line) parts of the permittivity at frequencies of 1 and
10 Hz. The inset shows the frequency dependence

([ln(ν/ν0)]–1) at ν0 = 3 × 1013 Hz [11] for ultraweak

measuring fields (E0 = 0.001 kV/cm).
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toward the low-temperature range. It is worth noting
that, at the measuring field amplitude E0 ≥ 15 kV/cm,
the temperature dependences (T) exhibit new
anomalies in the form of small additional maxima at
temperatures of about 155 K.

The field dependences of the temperatures at a max-
imum of the effective permittivity  ( (E0)) and the

effective dielectric losses  ( (E0)) at two measur-
ing field frequencies of 1 and 10 Hz for the 0.89PMN–
0.11PZT ferroelectric ceramics are depicted in Fig. 2.
The frequency dependence (ν) of the temperature at

a maximum of the permittivity  measured in
ultraweak fields for the same sample is displayed in the
inset of Fig. 2.

As can be seen from Fig. 2, a substantial decrease in
temperatures  and  is observed only at a measur-
ing field amplitude exceeding a certain threshold field
(in our case, E0 = Ethreshold ∼  600–700 V/cm).

An increase in the values of  and  at measur-
ing fields less than Ethreshold (Fig. 1) and a shift of tem-
peratures  and  toward the low-temperature
range with an increase in the field amplitude, on the
whole, agree with the data reported in [11–13] for the
lead magnesium niobate crystal. However, there are
certain differences. For example, the (E0) depen-
dence given in [11] shows a linear behavior. In our case,
one can see two field ranges in Fig. 2: in the first range
(at the relatively low prethreshold field amplitudes E0),
the  temperature very weakly depends on E0, and, in
the second range (at the relatively strong fields when
E0 > Ethreshold), the (E0) dependence is sufficiently
well approximated by the logarithmic relationship

 ~ f . Moreover, in [11], the value of ε' in
the temperature range T ≤ Tm always increases with an
increase in the field. By contrast, according to our data
(Fig. 3), at the temperatures T ≤ Tm and frequencies of
0.1–10 Hz, an increase in the values of (E0) and

(E0) gives way to their decrease (Fig. 3, curves 1, 2).

On the other hand, at a sufficiently high temperature
when (T – ) ≈ 60 K (Fig. 3, curves 3), there is a por-

tion of the curve in which the value of  is indepen-

dent of E0, and also a portion in which  noticeably
decreases with an increase in the measuring field
amplitude E0.

Therefore, it can be argued that an increase in the
measuring field amplitude leads to a decrease in the real
and imaginary parts of the effective complex permittiv-
ity at the temperatures Ti above Tm; i.e., in the tempera-
ture range where the interaction between elements con-
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tributing to the dielectric response is actually absent
(ergodic phase). To put it differently, the polarization is
saturated, and the assumption can be made that the
sample exhibits a superparaelectric behavior in the
repolarizing field.

The above inference is conclusively supported by
analysis of the reverse dependence (E=) obtained at
T = 326 K when T > Tm, and the difference ∆T = T – Tm

is sufficiently large (Fig. 4a). Actually, the dependence

shown in Fig. 4a [ε'(E=) = b – d , where b and d are
the approximate constants for a given temperature] is
similar to the curve of the dielectric nonlinearity of the
paraelectric phase in ferroelectrics when (at T = const)
we have restricted ourselves to two terms of the rapidly
convergent series ε(E) [24].

The fact that this phase state is identical to the super-
paraelectric state is corroborated by the following facts:
(a) the strong dependence (E=) (Fig. 4a), (b) the occur-
rence of nonzero spontaneous polarization (Ps ≠ 0)
detected by the pyroelectric current [21] at the above
temperature, (c) the shape of the polarization loops in
strong fields (Fig. 4b), and (d) the character of the field
dependence of the induced strain S3(E2) (Fig. 5). The
concentration dependence M11(x) is depicted in the
inset of Fig. 5. This dependence shows a maximum at
x = 0.11, which has motivated a more detailed investi-
gation of the material with the given concentration.
Likely, we can believe with a fair degree of confidence
that the aforementioned polar state stems from the pres-

ε0'

E=
2

ε0'
PH
ence of the polar nanoregions—polar clusters—in the
bulk of the sample [19].

Analysis of the dependence Pr(T) represented in
Fig. 6 allows us to conventionally separate the studied
range of temperatures into three portions. In the first
temperature range from ~350 to ~285 K, the rate of
increase in the remanent polarization (–dPr/dT) with a
decrease in the temperature is relatively low. In the sec-
ond range from ~285 to ~230 K, the magnitude
|dPr/dT | is appreciably larger than that in the first por-
tion. Finally, in the third portion from ~230 to ~150 K,
the magnitude |dPr/dT | is somewhat less than that in
the first portion.

Therefore, taking into account the foregoing, it can
be concluded that the superparaelectric phase being
ergodic exists at temperatures above ~285 K.

The fact that a phase similar to the dipole glass
phase exists in the second temperature range is sup-
ported, in particular, by a virtual coincidence between
the “glass” transition temperature calculated by the
Vogel–Fulcher formula and Tf ≈ 285 K. Moreover, the
polarization loops obtained in very weak electric fields
at a frequency of 10 Hz take the shape of concentric
ellipses at a temperature close to Tf (Fig. 7), which indi-
cates the polarization relaxation at infralow frequen-
cies. Furthermore, in the same temperature range, the
minimum dispersion of  at infralow frequencies is
observed in relatively weak fields, which also is charac-
teristic of the dipole glass.

The third portion in the Pr(T) dependence (Fig. 6)
corresponds to the polar phase. This is evidenced by the

εeff*
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ν = 0.1 Hz ν = 1 Hz ν = 10 Hz
polarization loop family (Fig. 8) typical of ferroelec-
trics, the character of the reverse dependences ε'(E=)

and (E=) (Figs. 9a, 9b), and the temperature depen-
dence of the piezoelectric coefficient g31(T) ~ Ps(T)
whose extrapolation leads to the phase transition tem-
perature T ≈ 230 K (Fig. 9c).

It should be remarked that, within the polar phase,
there is one more ferroelectric transition, which, as fol-
lows from the maximum in the (T) dependence [25]
and the behavior of Pr (Fig. 6), occurs in the vicinity of
T ≈ 113 K. Note that this phase transition in strong
fields is observed at T ≈ 123 K (Fig. 1a) and at higher
temperatures according to the data on the piezoelectric
coefficient (Fig. 9c). However, no structural investiga-
tions were performed in this work.

s11
*E

ε0'
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
3.2. On the mechanisms of polarization and repo-
larization. Analysis of the polarization loops (Figs. 4b,
7, 8) and the reverse dependences (E=) (Fig. 9a),

(E=) (Fig. 9b), and the piezoelectric characteristics
[d31(E=), g31(E=), and kp(E=)] indicates that different
mechanisms of the interphase and domain boundary
motions contribute significantly to the corresponding
dielectric and electromechanical characteristics of the
material in all three temperature ranges studied (Fig. 6).

In the first temperature range, the reversible elastic
and reversible relaxation motions of interphase bound-
aries in relatively weak fields make the contributions to
the permittivities  and  and also to the piezoelec-

tric characteristics (d31, g31, kp, and ). In the rela-
tively strong fields characterized by the depinning of

ε0'

s11
*E

ε0* εeff*

s11
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interphase boundaries, these quantities are contributed
by the irreversible hysteresis (jumpwise) motion of
interphase boundaries. Therefore, the statement made
in [11–13] is valid only for this (last) case.

In the second temperature range, unlike the first
range, the reversible elastic motion of interphase
boundaries is not observed; however, the interphase
boundaries execute an irreversible relaxation motion
(in addition to all the other types).

The mechanisms of the domain boundary motion in
the course of the polarization and repolarization in the
ferroelectric phase do not radically differ from those
considered earlier for ferroelectrics [26, 27].

Thus, the results obtained in the present work can be
summarized as follows:

(1) The phase transitions in the (1 – x)PMN–xPZT
ferroelectric ceramics are characterized. It is demon-
strated that compounds in this system undergo at least
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Fig. 9. Reverse dependences of (a) the permittivity ε'(E=)

and (b) the compliance (E=) at temperatures of 220,
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piezoelectric coefficient g31(T) at bias field strengths of (1)
17.84, (2) 5.88, (3) 1.98, and (4) 0 kV/cm for the 0.89PMN–
0.11PZT ferroelectric ceramics.
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three phase transitions, namely, the transition from the
superparaelectric phase to a phase similar to the dipole
glass, transition from the glasslike phase to the “first”
ferroelectric phase, and transition from the “first” ferro-
electric phase to the “second” ferroelectric phase.

(2) It is established that different mechanisms of
interphase and domain boundary motions contribute to
the dielectric and piezoelectric properties.
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Abstract—The processes of polarization evolution in single crystals of the PbMg1/3Nb2/3O3 model ferroelec-
tric relaxor in a sinusoidal electric field are investigated at temperatures near and above the temperature Td0 of
destruction of the induced ferroelectric state upon heating in zero electric field. The polarization switching cur-
rent loops are measured in the ac electric field applied along the 〈111〉  and 〈110〉  pseudocubic directions. The
electroluminescence intensity loops are obtained under the combined action of ac and dc electric fields applied
along the 〈100〉  direction. In a certain temperature range above Td0 and the freezing temperature Tf in lead mag-
nesium niobate, there are electric current anomalies, that correspond to the dynamic formation and subsequent
destruction of the ferroelectric macroregions throughout each half-cycle of the ac electric field. The measure-
ments of electroluminescence hysteresis loops demonstrate that the observed depolarization delay (related to
the ac electric field amplitude) increases with an increase in the dc electric field and decreases as the ac field
amplitude increases. The nature of the observed phenomena is discussed. © 2000 MAIK “Nauka/Interperiod-
ica”.
INTRODUCTION

Research in disordered materials is a rapidly pro-
gressing direction in solid-state physics. An example of
ferroelectric disordered materials is provided by the
ferroelectrics with a smeared phase transition or ferro-
electric relaxors, which were first discovered by Smo-
lenskiœ and coworkers (see, for example, [1]). In these
materials, there exists only a short-range order in the
distribution of different ions over single-type crystallo-
graphic sites, and considerable random fields can arise
at the boundaries of ordered regions. Despite a large
number of works dealing with these materials, even for
a model relaxor such as the lead magnesium niobate
crystal, there is no generally accepted concept regard-
ing the nature of induced dielectric polarization and its
evolution with variations in the temperature and the
electric filed applied to the crystal. In particular, the
question as to whether the low-temperature state in the
absence of electric field is a state similar to a dipole glass
or a state of frozen polar regions remains open [2–7].
The hysteresis phenomena observed in strong electric
fields near the temperature of phase transition between
the field-induced macrodomain ferroelectric state and
the higher temperature nonpolar state also have not
been adequately investigated. [Upon cooling in zero
electric field, the phase transition occurs at temperature
Td0 . 210 K (see, for example, [8–12])]. A further accu-
mulation of information about the processes associated
with the polarization evolution in lead magnesium nio-
bate crystals at different temperatures and in various
1063-7834/00/4205- $20.00 © 20944
electric fields can contribute to the development of con-
cepts on the nature of relaxor properties and changes in
the correlation interactions between polar regions in an
inhomogeneous medium. Moreover, these data can be
useful in expanding practical applications of relaxors.
Specifically, it is of interest to investigate the hysteresis
phenomena in the course of polarization and depolar-
ization at temperatures near and above the Td0 temper-
ature. It is also instructive to reveal the possibility of
observing the induced phase transition to the ferroelec-
tric state in lead magnesium niobate crystals in the ac
electric field at these temperatures.

EXPERIMENTAL RESULTS AND DISCUSSION

In this paper, we report the results of investigations
into the processes of polarization switching and the
attendant hysteresis phenomena. The presented data
were obtained by measurements of the current loops in
the ac electric field E and the electroluminescence hys-
teresis loops in the ac and dc electric fields applied
simultaneously. The lead magnesium niobate crystals
were grown by a modified method of spontaneous crys-
tallization [13].

The current loops i(E) were measured in the ac elec-
tric field with a frequency of 50 Hz upon heating (see
also [14]). The electric field E was applied along the
〈111〉  and 〈110〉  pseudocubic directions at temperatures
near (and above) the Td0 temperature. The electric field
was switched off between measurements.
000 MAIK “Nauka/Interperiodica”
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The electroluminescence in ferroelectrics is a sensi-
tive tool for studying the processes of polarization evo-
lution. The luminescence is usually observed upon
radiative recombination of nonequilibrium current car-
riers formed during the transformations of domain and
heterophase structures, which are accompanied by the
appearance of strong local electric fields [15]. The elec-
troluminescence hysteresis loops are the dependences
of the electroluminescence intensity on the applied
electric field I(E) [16]. The sinusoidal field and the dc
electric bias field E were simultaneously applied along
the 〈100〉  direction (see also [17]). The technique based
on the electroluminescence hysteresis loops provides
more illustrative information on the evolution of polar-
ization and depolarization processes as compared to the

Fig. 1. Schematic representation of the polarization switch-
ing current loops i(E) measured at different temperatures in
lead magnesium niobate crystals in ac electric field E
applied along the 〈111〉  pseudocubic direction. T, K: (a) 176,
(b) 236, and (c) 239. Arrows indicate the current anomalies
arising upon the induced ferroelectric phase transition.
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5
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0–5

50

(b)

E, kV/cm
0–5

(c)

5

–5
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oscillograms of the electroluminescence intensity as a
function of time [12].

It is well known that, in the case when the dc electric
field is applied to the depolarized lead magnesium nio-
bate crystal at temperatures below Td0, the time it takes
for the stationary ferroelectric state to be attained is
equal to tens of minutes (see, for example, [8, 18, 19]).
Analysis of the current loops measured in the present
work shows that, at temperatures above ~230 K, the
collective processes of formation and destruction of the
ferroelectric regions can be observed in the sinusoidal
electric field. This is clearly seen from the current loops
displayed as an example in Figs. 1 and 2.

For the ferroelectric phase of lead magnesium nio-
bate, the polarization branches of the current loops
measured in electric fields applied along the 〈111〉  and

Fig. 2. Schematic representation of the polarization switch-
ing current loops i(E) measured at different temperatures in
lead magnesium niobate crystals in ac electric field E
applied along the 〈110〉  pseudocubic direction. T, K: (a) 235,
(b) 237, and (c) 247. Arrows indicate the current anomalies
arising upon the induced ferroelectric phase transition.
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〈110〉  directions are characterized by two current max-
ima (with different coercive forces) associated with the
domain reorientations. At a temperature of ~230 K, the
coercive force of the low-field maximum reduces to
zero [14]. Above ~230 K, the polarization branches of
the current loops exhibit a smeared maximum of the
current, and a maximum of the current appears in the
depolarization branches. These maxima are shown by
arrows in Figs. 1b, 1c, 2a, and 2b. An increase in the
temperature leads to the shift of the maxima toward the
high-field range.

The presence of current maxima in the polarization
and depolarization branches of the current loops at tem-
peratures above 230 K and their shift toward the high-
field range with an increase in the temperature suggest
the dynamic formation and the subsequent suppression
of the ferroelectric state in macroregions with a change
in the instantaneous electric field. The polarization cur-
rent maximum corresponding to the formation of ferro-
electric regions is superposed on the high-field maxi-
mum associated with the domain reorientations. This
superposition leads to an additional smearing of the
maximum of electric current.

The collective processes of formation and destruc-
tion of the ferroelectric regions manifest themselves
only in the limited range of temperatures from ~230 to
240 K. This is not contradictory to the inference about
the smearing of the ferroelectric phase transition with
an increase in the electric field and its possible transfor-
mation to the second-order transition [18, 19]. It can be
seen from Fig. 2c that, at higher temperatures, the
polarization and depolarization branches of the current
loop show spread-out inflections instead of current

E E E

I I I

I
II

E E E

(a) (b) (c)

(f)(e)(d)
(E0 – E1)

Ip
I

Id

2E0

Fig. 3. Schematic representation of the electrolumines-
cence intensity loops I(E) measured in ac electric field E =
E0sin(2πνt) with frequency ν = 6 kHz at a temperature of
~293 K. The ac electric field E and dc electric bias field E=
are jointly applied along the 〈100〉  pseudocubic direction.
E0 (kV/cm): (a, d) 6.45, (b, e) 9.7, and (c, f) 19.4. E=
(kV/cm): (a, b, c) 8.3 and (d, e, f) 23.5. Electrolumines-
cence intensity I is given in arbitrary units. The scale of the
ordinate axis in (c and f) is half as much as that in (a, b, d,
and e).
P

maxima. In this case, small currents of the depolariza-
tion branches that indicate the delay of the development
of depolarization are observed in a narrower range of
the decreasing electric field.

It can be assumed that two maxima in the polariza-
tion branches of the current loops at temperatures
below 230 K in the electric fields applied along the
〈111〉  and 〈110〉  directions (see Fig. 1a and [14]) are
caused by the domain reorientations in different local
regions of the crystal. Then, the induced ferroelectric
phase transition occurs only in macrovolumes of the
studied crystals where the domain reorientations with a
smaller coercive force corresponding to the low-field
maximum of the current are observed at temperatures
below ~230 K. It should be noted that the current max-
ima associated with the domain reorientations, rather
than with the induced ferroelectric phase transition, are
also observed at temperatures above the transition tem-
perature Td0; moreover, the coercive force becomes
zero only at ~230 K. These findings demonstrate that,
at temperatures immediately above Td0, the crystal in
the ac electric field is in the metastable state. At these
temperatures, the fluctuation times of ionic displace-
ments and dielectric relaxation are rather large, because
the temperature Tf of freezing the local correlated
polarization states in the lead magnesium niobate crys-
tal falls just in the range of ~230 K [20–22]. The obser-
vation of the collective processes of forming and
destroying the ferroelectric regions at temperatures
above ~230 K reveals that the rates of these processes
and, hence, the rates of formation and motion of the
heterophase boundaries are higher than those in the
experiments with the dc electric field [8, 19]. The
breakdown of interlayers of the glasslike phase and also
changes in random fields under the action of applied
electric field facilitate the liberation of defects pinning
the boundaries. These factors can be responsible for the
decrease in the duration of the formation and destruc-
tion of the ferroelectric regions at temperatures above
230 K.

The coexistence of the local ferroelectric regions,
which earlier possessed a large coercive force, and the
regions of the crystal, in which the ferroelectric phase
transition occurs in the electric field, apparently per-
sists over the entire temperature range from ~230 to
240 K. A further increase in the temperature brings
about a weakening of the correlation interactions
within and between the local ferroelectric regions and a
decrease in the concentration of the ferroelectric
regions. This manifests itself in a change in the charac-
ter of the field dependences of the current and in a
decrease of the current magnitude.

Now, let us consider the results obtained in the study
of the electroluminescence hysteresis loops I(E) and
analyze the combined effect of ac and dc electric fields
on the polarization in the lead magnesium niobate crys-
tal at a temperature of ~293 K.
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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Figure 3 clearly demonstrates the difference
between the electroluminescence intensity Ip upon
polarization with an increase in the electric field mag-
nitude E and the electroluminescence intensity Id upon
depolarization with a decrease in the electric field (see
designations in Fig. 3f). The Id(E) dependences are sim-
ilar to the dependences of the depolarization current
id(E), which are observed at temperatures above 240 K
(cf., for example, Figs. 2c and 3). As the instantaneous
magnitude of the ac electric field E approaches zero, the
magnitudes of Id and id rapidly increase. The field range
that corresponds to the decreased magnitudes of Id and
id characterizes the delay of depolarization evolution.
In the electroluminescence loops, the depolarization
delay more clearly manifests itself under the combined
action of the alternating E and constant E= electric
fields, especially when E= > E0. The electric fields were
applied along the 〈100〉  pseudocubic direction (Fig. 3).
The field range of the depolarization delay can be eval-
uated from the difference E0 – E1, where E0 is the ac
field amplitude and E1 is the field below which a
decrease in the electric field leads to a more rapid
increase in Id (see Fig. 3f). In addition to the range of
depolarization delay, we also estimated the relative
delay (E0 – E1)/E0.

The field dependence of the depolarization delay
can qualitatively characterize how the applied electric
fields affect the correlation interactions between polar
regions. Moreover, the depolarization delay can depend
on the kinetic processes of motion of the domain and
heterophase boundaries, which are associated with the
transformations in a system of defects pinning the
boundaries.

In the case when the dc electric field E= and the ac
field E exciting the electroluminescence are jointly
applied along the same crystallographic direction
〈100〉 , the depolarization delay increases at the constant
amplitude E0. We consider the depolarization delay for
a half-cycle of the ac field when the directions of the
electric fields E and E= coincide with each other
(Figs. 4a, 4b). An increase in the dc electric field E=
brings about an extension of the field range of the delay
and an increase in the relative delay of depolarization,
which suggests an increase in the correlation interac-
tions. At the same time, it was found that an increase in
the ac field amplitude E0 at a constant value of E= leads
to a decrease in the relative depolarization delay
(Fig. 4b). This decrease can be explained by a more
intense formation of new local polar regions at large
instantaneous fields and the subsequent destruction of
these regions when the field decreases. The destruction
of the arisen regions is reflected by an increase in the
electroluminescence intensity Id beginning with elec-
tric fields that are higher than E1 and close to the field
amplitude E0. This suggests a continuous distribution
of local critical fields inducing the formation of differ-
ent polar regions and the absence of a common collec-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
tive process of formation. In order to elucidate how the
increase in the field amplitude E0 affects the depolariza-
tion delay, allowance should be made for the increase in
the number and the mobility of domain and het-
erophase boundaries, which, during the course of the
increase in the electric field, have no time to be pinned
on defects and be shielded. It is this motion of more
mobile boundaries that is responsible for a jumpwise,
rapider increase in the electroluminescence intensity I
with an increase in E0. This motion was observed in
lead magnesium niobate crystals in our earlier work
[16]. The effect of incompleteness of changes in the
polarization on the rate of development of these
changes also showed itself in lead magnesium niobate
in pulsed electric fields when the current pulse duration
was shorter than, and of the order of, the probable time
taken to accomplish the polarization [12].
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Fig. 4. Relative depolarization delay (E0 – E1)/E0 in the
lead magnesium niobate crystal at a temperature of ~293 K
under the combined action of ac electric field with ampli-
tude E0 and dc electric field E= applied along the 〈100〉
pseudocubic direction as a function of (a) the dc field E= at
constant values of E0 = (1) 6.45, (2) 9.7, and (3) 19.4 kV/cm
and (b) the ac field amplitude E0 at constant values of E= =
(1) 8.3, (2) 19.5, and (3) 23.5 kV/cm.
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The above changes in the delay of depolarization in
lead magnesium niobate can also depend on changes in
the distribution of random fields under the action of
applied electric fields.

Therefore, the analysis of the current loops in single
crystals of the lead magnesium niobate ferroelectric
relaxor demonstrates that the heating in the ac electric
field applied along the 〈111〉 and 〈110〉 pseudocubic
directions gives rise to collective processes of the forma-
tion and subsequent destruction of the ferroelectric phase
in the temperature range ~230–240 K. These processes
are observed throughout each half-cycle of the ac electric
field in certain regions of the crystal. Note that the col-
lective processes under consideration are observed only
beginning with temperatures above the freezing point of
lead magnesium niobate (Tf . 230 K) and not with the
temperature of destroying the ferroelectric state (Td0 .
210 K). It can be assumed that, in strong ac fields, the
ferroelectric regions with two different effective coer-
cive forces coexist in lead magnesium niobate crystals
at temperatures above the Td0 point. The coercive force
in the regions characterized by its smaller value reduces
to zero at T . 230 K. An increase in the temperature
leads to a decrease in the relaxation times in these
regions, because they are apparently more homoge-
neous, possess weaker random fields, and involve
smaller volumes of glasslike interlayers. Therefore,
although the stationary state is not attained in the
applied ac field, it is possible to observe the processes
of forming and destroying the ferroelectric phase in the
temperature range ~230–240 K until the correlation
interactions between the polar regions remain suffi-
ciently strong. Upon further increase in temperature,
the current maxima corresponding to these processes
become almost completely smeared. The origin of this
smearing calls for further investigation. At tempera-
tures above 240 K, the correlation interactions between
the persistent polar regions, as well as the correlation
interactions between the polar regions whose formation
is induced by sufficiently strong instantaneous fields,
manifest themselves in the delay of depolarization pro-
cesses with a decrease in the instantaneous magnitudes
of the applied electric field. During the course of the
depolarization delay, the depolarization current has
decreased magnitudes.

Consideration of the loops of the electrolumines-
cence intensity as a function of the strength of the sinu-
soidal electric field applied simultaneously with the dc
bias field shows that, at a temperature of ~293 K, the
depolarization delay is observed in electric fields in the
range from several kV/cm to a total field of ~40 kV/cm.
The luminescence intensity remains low and virtually
constant in the ac electric field range corresponding to
the depolarization delay. This made it possible to exam-
ine the character of the field dependences of the depo-
larization delay. The delay increases with an increase in
the dc electric field. At the same time, it was found that
an increase in the ac field amplitude brings about a
PH
decrease in the ratio between the field range of depolar-
ization delay and the field amplitude. The found
decrease in the relative depolarization delay can be
explained by more intense local processes of the forma-
tion and subsequent destruction of new polar regions.
The observed change in the kinetics of depolarization
processes depending on the electric field can be caused
either by changes in the concentration of polar regions
or by changes in the rate of motion of the heterophase
boundaries due to the incompleteness of the processes
of pinning the boundaries by defects and their shield-
ing. The effect of changes in the distribution of random
fields under the action of the applied electric fields is
also possible.

The hysteresis phenomena observed in lead magne-
sium niobate in sufficiently strong electric fields indi-
cate that the motion of heterophase and domain bound-
aries plays an important role in the processes of polar-
ization evolution over a wide range of temperatures
above the temperature of phase transition between the
ferroelectric state and the high-temperature nonpolar
state.
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Abstract—The heat capacity of dimethyl ammonium-aluminum sulfate crystals (DMAAS), both nonirradiated
and γ-irradiated to fluences of 107, 5 × 107, and 108 R, has been measured by the adiabatic method near the
ferroelectric phase transition (PT) within the 80–300 K temperature range. The Cp = f(T) curve exhibits a
λ-shaped anomaly near the phase-transition point TC = 152 K. The PT temperature and the magnitude of the
anomaly are shown to decrease with increasing γ-irradiation fluence. It has been established that the ferroelec-
tric PT at TC = 152 K, which lies close to the tricritical point, shifts progressively more under γ irradiation
toward the second-order PT, and that the behavior of the anomalous part of the heat capacity in the ferroelectric
phase is described by the thermodynamic theory of Landau. The experimental heat-capacity data have been
used to calculate the variation of the thermodynamic functions of the DMAAS crystal. © 2000 MAIK
“Nauka/Interperiodica”.
DMAAS crystals, which are representatives of a
new family of ferroelectrics–ferroelastics, have been
synthesized fairly recently and are presently widely
studied by a variety of methods. It is known [1] that at
TC = 152 K the DMAAS crystals undergo phase transi-
tion (PT) from the 2/m paraelectric-ferroelastic to the m
ferroelectric phase. Below TC = 152 K, the crystals
exhibit ferroelectric properties and are ferroelastics
throughout the temperature range covered. Besides, as
1063-7834/00/4205- $20.00 © 20950
shown in [2, 3], one observes near T ≈ 75 K a second
low-temperature PT, whose nature still remains
unknown and whose low-temperature phase symmetry
has not been established.

This paper presents the results of a study of the heat
capacity of crystalline DMAAS within the 80–300 K
temperature range, as well as of the effect of γ irradia-
tion on the heat capacity in the vicinity of the ferroelec-
tric PT at TC = 152 K.
300200100
T, K

200

300

400

Cp, J/(K mol)

Fig. 1. Temperature dependence of the heat capacity of crystalline DMAAS.
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EXPERIMENTAL TECHNIQUES 
AND THE RESULTS OF THE STUDY

The heat capacity measurements were carried out on
an UNTO setup with automatic temperature control in a
vacuum adiabatic calorimeter providing discrete heat
supply to the sample (m = 7.67 g). The sample was
heated with a heating rate of 0.04–0.09 K/min. The sam-
ple temperature was monitored by a platinum resistance
thermometer capable of temperature determination to
within ±0.01 K. The heat capacity was measured in steps
of 0.8–1.8 K to within 0.3%. The sample was irradiated
with Co60 γ rays, with a dose rate of ≈ 300 R/s in the irra-
diation zone. The fluence was accumulated in succes-
sive exposures of the same sample to 107, 5 × 107, and
108 R.

Figure 1 plots the temperature dependence of the
heat capacity of DMAAS crystals in the range from 80
to 300 K. At the phase-transition point TC = 152 K, one
clearly sees a λ-shaped anomaly in the heat capacity
characteristic of second-order phase transitions. The
dashed line represents the lattice component of the heat
capacity determined by interpolation with a C =

Ti polynomial. Numerical integration yielded

for the changes in the enthalpy and entropy at the tran-
sition 702 J/mol and 4.8 J/(K mol), respectively. The
smoothened values of the heat capacity of DMAAS and
the calculated changes in the relevant thermodynamic
functions, namely, the entropy, enthalpy, and Gibbs free
energy, are listed in Table 1.

Figure 2 presents a Cp(T) dependence for a DMAAS
sample irradiated to various γ-ray fluences. The phase-
transition point is seen to shift toward lower tempera-
tures with increasing fluence, but the transition itself
does not become diffuse. Also, the anomaly peak
noticeably decreases in amplitude. As pointed out in
[1], the transformation occurring in DMAAS at TC =
152 K is a proper, order–disorder-type ferroelectric PT,
which is close to the tricritical point. This has stimu-
lated our investigation of the evolution of the heat
capacity anomaly with γ-irradiation fluence.

For transitions close to the tricritical point, the
dependence of the thermodynamic potential on a one-
component order parameter η has the form [4]

where A = AT(T – TC), TC is the transition temperature,
C > 0, and the sign of B depends on the type of the tran-
sition (B < 0 for a first-order PT, and B > 0 for a PT of
the second kind). The excess heat capacity below TC is
given in this case by [4]

(1)

Aii 0=
3∑

Φ P T η, ,( ) Φ0 Aη2 Bη4 Cη6,+ + +=

∆Cp
2– 4B2

AT
4 TC

2
-------------

12C

AT
3 TC

2
------------- TC T–( ).+=
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Using the (∆Cp)–2 ~ TC – T plot (Fig. 3), one can deter-
mine the coefficients of the thermodynamic potential
for the pure and irradiated DMAAS samples. One can
readily verify that function (1) remains linear in the
vicinity of the PT point for all fluences. Table 2 lists the
expansion coefficients AT, B, and C in the SI system.
The value of AT was derived from the measurements of
the permittivity made in [1] and was assumed not to
change under irradiation. By Landau’s theory, in the
case of the tricritical point, the behavior of the heat
capacity in the ferroelectric phase near the transition
point obeys a power law with an exponent of 0.5 [4]. An
analysis of the experimental data obtained on the

DMAAS crystal showed the ∆Cp ~  relation

to hold for α = 0.47 ± 0.06. This observation, as well as
the positive sign of the B coefficient, provides support-
ive evidence for the existence in DMAAS of a second-
order phase transition close to the tricritical point. The
B and C coefficients increase with increasing fluence.
The increase of coefficient B indicates that the phase
transition moves gradually away from the tricritical
point along the phase-transition line for this crystal.

TC T–
TC

---------------
α–

Table 1.  Smoothened values of the heat capacity and of the
changes in the DMAAS thermodynamic functions

T, K
Cp(T) S(T)–S(80 K) Φ(T)–Φ(80 K) H(T)–H(80 K), 

J/molJ/(K mol)

80 154.1 0.000 0.000 0.0

100 196.1 38.87 8.974 3502

120 230.8 77.71 22.14 7771

140 260.3 115.5 37.42 12680

160 286.7 152.1 53.77 18150

180 311.4 187.3 70.65 24130

200 335.5 221.4 87.74 30600

220 359.8 254.5 104.9 37560

240 384.7 286.9 122.0 45000

260 410.0 318.7 139.0 52950

280 435.6 350.0 155.9 61400

300 460.5 380.9 172.7 70370

Table 2.  Thermodynamic parameters of the phase transition
in DMAAS

Irradiation 
fluence, R TC , K AT × 103, 

K–1
B × 108, 
J–1 mol

C × 1011, 
J–2 mol2 N × 104

0 152.16 5.4 0.31 0.46 6.20

107 151.25 5.4 0.33 0.87 7.14

5 × 107 149.85 5.4 0.38 0.95 7.91

108 148.68 5.4 0.46 1.29 8.25
0
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The degree of closeness to this point can be character-

ized by a dimensionless quantity N =  [4].

As seen from Table 2, N increases in magnitude, which
suggests that γ irradiation changes the nature of the PT
in DMAAS from close to the tricritical point to a sec-
ond-order phase transition. A similar effect was found
earlier in TGSel and DTGSel crystals [5, 6].

An analysis of the origin of ferroelectricity in
DMAAS, i.e., of the PT at T = 152 K, made in [7, 8],
gave preference to the mechanism associated with ori-
entational ordering of the dimethyl ammonium (DMA)
ion in the crystal lattice. However, a Raman scattering
study [9] suggests the existence of strong hydrogen
bonding between the [Al(H2O)6]3+ complex and the sul-
fate sublattice in DMAAS and that the order–disorder-
type PT can be driven by orientational ordering of
water molecules on the Al–O–H–…–O–S bonds. As
follows from experimental studies of the dimethyl
ammonium-gallium sulfate crystal (DMAGS), which is
isomorphous with the DMAAS, such a PT of the sec-
ond kind occurs in the former at 135 K. Substitution of
Ga3+ for Al3+ lowers the PT temperature, and the inter-
atomic distances in the lattice increase. It is also known
that the [Ga–6H2O] cations are looser than the
[Al−6H2O] ones, because the (Ga–OH) distance is
1.91–1.98 Å, whereas the (Al–OH) one is 1.86–1.91 Å
[10]. It was shown earlier [11] that the PT point in
DMAGS also shifts toward lower temperatures under γ
irradiation. Thus, the experimentally observed dis-

B2

2ATCTC

--------------------

Fig. 2. Temperature dependence of the heat capacity of crys-
talline DMAAS subjected to various irradiation fluences
(R): (1) 0, (2) 107, (3) 5 × 107, and (4) 108.
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T, ä
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placement of the PT point in DMAAS to low tempera-
tures permits one to suggest preferential effect of γ irra-
diation on the Al–O–H–…–O–S chains, which causes
bond deformation in these links. The above reasoning
permits one to maintain that the mechanism of the fer-
roelectric PT proposed in [9], as well as the DMA ori-
entational ordering, plays a certain role in the phase
transition in DMAAS.
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Abstract—The effects of the phase transition in Hg2(Br,I)2 crystals have been investigated over a wide range
of temperatures by the Raman scattering spectroscopy and X-ray diffraction analysis. The overtones (at the X
point of the Brillouin zone boundary) and the fundamental tones (at the center of Brillouin zone) of soft modes
are found in the Raman spectra of these crystals and studied in detail. The density of one-phonon states of the
soft TA branch manifests itself in the Raman spectra of mixed crystals. The potentialities of the soft-mode spec-
troscopy are realized in full measure. Analysis of the ratio between intensities of overtones and fundamental
tones of the soft modes has demonstrated the applicability of the Landau phenomenological theory of phase
transitions. The orthorhombic splitting of the reflections corresponding to the basal plane is revealed in the
X-ray diffraction patterns and thoroughly explored. The temperature dependences of the isotropic and shear
spontaneous strains are obtained. It is shown that the shear spontaneous strain plays a decisive role. The critical

indices are determined and the model of the improper ferroelastic phase transition    in the vicinity
of the tricritical point is corroborated. © 2000 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Crystals of the univalent mercury halides Hg2Hal2
(Hal = Cl, Br, and I) at room temperature form the tet-

ragonal body-centered lattice  with two linear mol-
ecules (formula units) in the unit cell [1]. They possess
unique physical properties, in particular, the highest
birefringence, the lowest sound velocity, and high
acoustooptical constants [2]. In technology, these crys-
tals have found a wide use as basic elements of polariz-
ers, acoustic delay lines, acoustooptical filters, etc.

Considerable attention drawn to these objects is
explained by the fact that they can be regarded as model
crystalline systems in studies of general problems con-
cerning structural phase transitions. The improper fer-

roelastic phase transitions    from a tetrag-
onal phase to the orthorhombic phase were found in
these crystals upon their cooling down to the tempera-
ture Tc equal to 186 K for Hg2Cl2 and 144 K for Hg2Br2
[3]. These transitions are induced by the condensation
of the slowest soft TA branch at the X point of the Bril-
louin zone boundary and accompanied by the doubling
of the unit cell and the X  Γ “crossover” in the Bril-
louin zone. The phase transition in the Hg2I2 crystals
was observed only under a high hydrostatic pressure
(Pc = 9 kbar at T = 293 K) [4].

In recent years, particular interest has been
expressed by researchers in the lattice dynamics and
phase transitions in mixed crystals. The Hg2(Cl,Br)2
crystals were investigated in our earlier work [5].
Moreover, the Hg2(Cl,I)2 [6] and Hg2(Br,I)2 [7] crystals
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have come under the study. In the present work, the
phase transitions in a system of the mixed Hg2(Br,I)2
crystals were studied for the first time by the X-ray dif-
fraction and optical (Raman light scattering) tech-
niques. We investigated the mixed Hg2(Br0.88,I0.12)2 sin-
gle crystals and, for comparison, the iodine-free crys-
tals Hg2Br2—the last component in the Hg2(Br,I)2
system. Consideration was also given to the soft modes
in the paraphase (overtones at the X point of the Bril-
louin zone boundary), which are responsible for the
phase transitions, the soft modes in the ferroelastic
phase (the fundamental tones at the center of Brillouin
zone—the Γ point), the orthorhombic splitting of the
fundamental Bragg reflections, spontaneous strains,
critical indices, etc.

2. EXPERIMENTAL TECHNIQUE

The optical spectra were measured on a Dilor-Z24
triple Raman spectrometer with the use of argon (λ =
5145 Å) and helium–neon (λ = 6328 Å) lasers whose
powers were varied from tens to hundreds of mW. The
X-ray diffraction patterns were recorded on a two-cir-
cle diffractometer (Cu  radiation). The low-tem-
perature (optical and X-ray structural) measurements
were carried out using Cryogenics closed-cycle helium
cryostats with a good temperature stabilization
(~0.1 K). For these measurements, samples of the
Hg2(Br,I)2 single crystals 5 × 5 × 5 mm in size were

split along the cleavage planes (110) and ( ), cut
along the (001) plane, ground, and polished. Moreover,

Kα1 α2–

110
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Fig. 1. Low-frequency Raman spectra (Stokes and anti-Stokes regions) for crystals (a) Hg2Br2 and (b) Hg2(Br0.88,I0.12)2 at different
temperatures. The second-order spectra (2ωsm) are shown on a scale enlarged by a factor of ~20. The maxima corresponding to the
density of one-phonon states of the soft TA branch at the X point of the Brillouin zone are marked by asterisks.
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in order to perform the X-ray diffraction experiments,
the samples were additionally treated by an etching
agent—a solution of aqua regia in distilled water.

3. LOW-FREQUENCY RAMAN SPECTRA

The Raman spectra of the mixed Hg2(Br,I)2 crystals
at room temperature were studied earlier in [7]. In the
present work, most attention was focused on the inves-
tigation into the effects of phase transitions, i.e., on the
observation and exploration of soft modes in the
paraphase (at the X point of the Brillouin zone bound-
ary) and in the ferroelastic phase (at the Γ point—the
center of Brillouin zone).

Figure 1 displays a number of the most characteris-
tic low-frequency Raman spectra of the Hg2(Br,I)2
crystals in the Z(XX)Y geometry at different tempera-
tures above and below Tc. It can be seen from Fig. 1a
that the Stokes and anti-Stokes spectral regions at tem-
peratures T > Tc = 144 K (Hg2Br2) are characterized by
the clearly defined broad 2ωsm maxima at about 12 cm–1

(293 K) and the narrow intense νsm lines at T ≤ Tc,
whose frequencies tend to zero as the phase transition
temperature is approached (T  Tc). The above max-
ima correspond to the 2ωsm overtone of the soft TA
branch (primarily, at the X point of the Brillouin zone
boundary), and the lines, to the νsm  fundamental tone of
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
the soft mode at the center of Brillouin zone. This tone
is excited at temperatures T ≤ Tc due to the phase tran-
sition or, in other words, the doubling of the unit cell
and the X  Γ crossover in the Brillouin zone.

Typical low-frequency Raman spectra of the mixed
Hg2(Br0.88,I0.12)2 crystals are depicted in Fig. 1b. As can
be seen from this figure, all the soft-mode spectra are
similar to the spectra of pure Hg2Br2; however, the lines
(maxima) are somewhat broadened, which is associ-
ated with the inhomogeneous broadening caused by the
disordering of anionic sublattice. Moreover, the spectra
exhibit new broad maxima (marked by asterisks),
which most clearly manifest themselves at tempera-
tures near room temperature in the frequency range of
~6 cm–1. The nature of these maxima stems from the
density of one-phonon states of the soft TA branch. The
excitation of the fundamental tone of the soft mode (the
Γ point of the Brillouin zone) is observed at the lower
temperature Tc = 100 K; i.e., the introduction of a small
amount of Hg2I2 (12%) into pure Hg2Br2 results in an
anomalously large shift (decrease) of the transition
temperature Tc. In this case, as for pure Hg2Br2, the
intensity of the 2ωsm overtone of the soft mode is con-
siderably (approximately twenty times) less than the
intensity of the νsm fundamental tone of the soft mode.

The temperature dependences of the frequency of
soft modes for the studied crystals are constructed in
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2ωsm overtone and the νsm fundamental tone of the soft
mode for crystals (a) Hg2Br2 (circles) and (b)
Hg2(Br0.88,I0.12)2 (triangles).

Fig. 3. Dependences of the frequency of (a) 2ωsm overtone
and (b) νsm fundamental tone of the soft mode on the
reduced temperature t on the log–log scale for crystals (1)
Hg2Br2 and (2) Hg2(Br0.88,I0.12)2. Dashed lines represent
the linear approximation.
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Fig. 2. It is clearly seen that the fundamental tone and
the overtone of the soft mode are substantially softened
as the temperature approaches the Tc point. Figure 3
demonstrates similar dependences on the reduced tem-
perature t = (T – Tc) / Tc on the log–log scale. As can be
seen from Fig. 3, at T > Tc, the dependences of the log-
arithm of the 2ωsm overtone frequency of the soft mode
on the logarithm of the reduced temperature t for pure
and mixed crystals are described well by straight lines.
Therefore, the dependence of the overtone frequency of
the soft mode can be approximated by the formula

(1)

where g is a constant, and β' is the critical index.
The critical indices β' determined from this formula

are equal to 0.50 ± 0.02 for Hg2Br2 and 0.51 ± 0.02 for
Hg2(Br0.88,I0.12)2. These indices are completely consis-
tent with the Landau phenomenological theory of sec-
ond-order phase transitions (β' = 0.5). An analysis of
the plots in Fig. 3 (the logarithmic dependences of the
νsm fundamental tone frequency of soft modes on the
reduced temperature t at T ≤ Tc) shows that these depen-
dences over a wide range of temperatures are approxi-
mated by nearly straight lines and, as for the overtones
of the soft mode, can be described by the simple power
law

(2)

where δ is a constant, and β'' is the critical index.
This formula enabled us to evaluate the critical indi-

ces β'' (at T ≤ Tc). Their values were found to be equal
to 0.34 ± 0.02 for the pure Hg2Br2 crystal and 0.33 ±
0.02 for the mixed Hg2(Br0.88,I0.12)2 crystal.

4. X-RAY DIFFRACTION MEASUREMENTS

The temperature dependences of the basal plane
parameters for the aforementioned crystals Hg2(Br,I)2
were examined down to helium temperatures. Specifi-
cally, we studied the orthorhombic splitting of the fun-

damental (440) reflections of the  tetragonal
paraphase due to the phase transition (Fig. 4). The split-
ting of these reflections at T ≤ Tc is brought about by the
formation of orthorhombic domains rotated through
90° with respect to each other around the tetragonal
axis; i.e., the reflections of the (110) plane are superim-
posed on the reflections of the (1 0) plane. In the low-
temperature phase, the parameters (sizes) of a new unit
cell along the [110] and [1 0] directions become non-
equivalent, and the Bragg peaks along these directions
are split below the Tc temperature. A further decrease in
the temperature leads to an increase in the orthorhom-
bic splitting. The temperature corresponding to the
appearance of this splitting (Fig. 4), as well as the
instant of the excitation of the νsm fundamental tone of

2ωsm gtβ' ,=

νsm δtβ'' ,=

D4h
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1

1
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the soft mode at the Brillouin zone center (the Γ point),
serves as a reference point of the phase transition tem-
perature Tc, which is equal to 144 K for Hg2Br2 and
100 K for Hg2(Br0.88,I0.12)2. The orthorhombic splitting
was measured upon both cooling and heating; however,
within the limits of experimental error, no hysteresis
was observed for these crystals. In both cases, the
orthorhombic splitting occurs without jumps, which
suggests a continuous character of the phase transi-
tions. For the mixed crystals (T ≤ Tc), the orthorhombic
splitting has a somewhat lesser value at the same differ-
ence in temperatures T and Tc, which can be reasonably
explained by the disordering of the anionic sublattice.
The aforementioned anomalous temperature depen-
dences of the lattice parameters are associated with the
appearance of spontaneous ferroelastic strains at tem-
peratures T ≤ Tc. According to [3], the spontaneous

strains  (i = 1, 2, 3, and 6) in the basal plane of the
Hg2(Br,I)2 crystals are characterized by the following
nonzero components (in terms of tetragonal phase):

 = εxx =  = εyy,  = εzz, and  = εxy, where x, y, and
z are the tetragonal crystal axes. The shear spontaneous
strain is defined as

(3)

The isotropic strain in the basal plane is represented
in the form

(4)

where  is the crystal lattice parameter correspond-
ing to a temperature of 0°C, at which the spontaneous
strains are equal to zero.

Figure 5 demonstrates the temperature dependences
of the spontaneous strains calculated from the experi-
mental data for the studied crystals Hg2(Br,I)2 accord-
ing to relationships (3) and (4). It is clear that, above the
phase transition temperature, the shear spontaneous
strain is equal to zero [see formula (3)], whereas the
isotropic strain in this temperature range varies linearly
with temperature. At T ≤ Tc, the temperature depen-
dences of the strains for both the pure Hg2Br2 and
mixed Hg2(Br0.88,I0.12)2 crystals are typical of structural

phase transitions. The share  and isotropic  sponta-
neous strains (T ≤ Tc) were determined as the difference
between the experimental values and the background
strains obtained by the extrapolation of the high-tem-
perature dependence of ε toward the low-temperature
range. In the case of the shear spontaneous strain , the
background strain is equal to zero at any temperature
[see formula (3)]. The temperature dependence of the
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spontaneous strain  (i = 1 and 6) at T ≤ Tc can be
described by the following expression:

(5)

where ai is the constant multiplier, and 2β is the critical
index.

Similar dependences on the log–log scale are dis-
played in Fig. 6. The experimental data for the studied
crystals Hg2(Br,I)2 are described by the linear depen-
dences (dashed lines in Fig. 6). The critical indices 2β
determined from the slopes of the linear dependences
are equal to 0.48 ± 0.08 ( ), 0.56 ± 0.05 ( ) and
0.46 ± 0.08 ( ), 0.55 ± 0.05 ( ) for the Hg2Br2 and
Hg2(Br0.88,I0.12)2 crystals, respectively. It should be
mentioned here that the critical indices describing the
temperature dependences of the shear spontaneous
strain  can be more precisely determined, because, in
this case, there is no problem with the background (the
background strain is absent), and the absolute values of

 are almost one order of magnitude larger than those
of the isotropic spontaneous strain .
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5. RESULTS AND DISCUSSION

The investigations into the effects of phase transi-
tions in the Hg2(Br,I)2 crystals demonstrate that the soft
modes are observed in the Raman scattering spectra of
the paraphase and the ferroelastic phase in both crystals
under study. The 2ωsm overtone of the slowest soft TA
branch at the X point of the Brillouin zone boundary
predominantly manifests itself in the low-frequency
spectra of the paraphase. The spectra of the ferroelastic
phase are characterized by the νsm fundamental tone of
the soft mode at the Brillouin zone center (the Γ point).
The appearance of this overtone is associated with the
phase transition or, in other words, with the doubling of
the unit cell and the X  Γ crossover in the Brillouin
zone. The low-frequency spectra of the pure Hg2Br2
and mixed Hg2(Br0.88,I0.12)2 crystals are similar to each
other. However, there are certain differences. Specifi-
cally, the spectra of the mixed Hg2(Br,I)2 crystals even
at small degrees of doping show maxima (in both
Stokes and anti-Stokes regions) marked by asterisks in
Fig. 1, which are likely accounted for by the density of
one-phonon states of the soft TA branch. Note that the
main contribution is made by the vibrational states at
the X point of the Brillouin zone. As should be
expected, the frequencies of these maxima are approx-
imately two times less than the frequencies of the cor-
responding overtones (2ωsm) of soft modes; they anom-
alously depend on the temperature and, similar to the
overtone, are softened at T  Tc. The effect associ-
ated with the density of one-phonon states is caused by
the disturbance of translational symmetry due to a ran-
dom distribution of the bromine and iodine atoms in the
anionic sublattice of mixed crystals. This disturbance is
rather large and arises from a considerable difference in
the ionic radii of bromine and iodine, which, upon
replacement of bromine ions by iodine ions, can give
rise to large local elastic stresses and produce condi-
tions favorable for the nucleation of clusters of the low-
temperature orthorhombic phase in the high-tempera-
ture tetragonal paraphase matrix. [Recall here that the
ratio between the change in the phase transition tem-
perature and the change in the external hydrostatic
pressure for the Hg2Br2 crystals is equal to 46.8 K / kbar
[8]. A similar strong dependence of the Tc temperature
on the elastic stresses can also be expected for the
mixed Hg2(Br,I)2 crystals at small degrees of substitu-
tion.]

A comparison of the intensity of the 2ωsm overtone
of the soft mode (the X point of the Brillouin zone
boundary) at temperatures T > Tc and the intensity of
the νsm fundamental tone (the Brillouin zone center) at
T < Tc in the Raman scattering spectra of the Hg2(Br,I)2
crystals demonstrates that the former intensity is
approximately twenty times less than the latter inten-
sity. This implies that the Landau phenomenological
theory of phase transitions [9] is applicable over the
entire temperature range under consideration. The crit-
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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ical indices characterizing the temperature behavior of
soft modes at temperatures above and below Tc are also
consistent with the Landau theory of second-order
phase transitions. In the paraphase, the critical indices
for the pure Hg2Br2 (0.50) and mixed Hg2(Br,I)2 (0.51)
crystals are in complete agreement with the predicted
value (β' = 0.5) given by the Landau theory in the case
of the second-order phase transitions and weak first-
order transitions close to the second-order structural
transitions. However, at T ≤ Tc, the β'' indices, which are
equal to 0.34 and 0.33 for the pure Hg2Br2 and mixed
Hg2(Br,I)2 crystals, respectively, can be interpreted
only by invoking the model of phase transitions in the
vicinity of the tricritical point, which we successfully
applied earlier for the pure Hg2Cl2 and Hg2Br2 crystals
[10].

Analysis of the experimental data on the orthorhom-
bic splitting for the studied crystals Hg2(Br,I)2 (Fig. 4)
shows that, at the same difference in temperatures T
and Tc (T ≤ Tc), the splitting brought about by the phase
transition in the mixed Hg2(Br0.88,I0.12)2 crystal is less
than that for the pure Hg2Br2 crystal. Since the sponta-

neous strains  are related to this splitting and the tem-
perature dependence of the basal plane parameters for
the ferroelastic phase, it can be expected that, over the
entire temperature range covered, the values of  for
the mixed Hg2(Br0.88,I0.12)2 crystals are less than those
for the pure Hg2Br2 crystals (see Fig. 5). The smaller

spontaneous strains  for the mixed Hg2(Br0.88,I0.12)2
crystals are explained by the disordering of anionic
sublattice and the appearance of substantial random
elastic stresses and strains upon substitution of iodine
ions for bromine ions. It should be noted here that the
mechanism of the phase transition in the Hg2(Br,I)2
crystals is primarily determined by the shear spontane-
ous strain , which is almost one order of magnitude
larger than the isotropic spontaneous strain  over the
entire temperature range studied (T ≤ Tc), including
helium temperatures. Let us dwell briefly on the critical
indices 2β obtained by analyzing the temperature
dependences of the spontaneous strains . As can be
seen, their values are close to 0.5, which is characteris-
tic of the phase transitions occurring near the tricritical
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ε6
0

ε1
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εi
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point. It should be recalled that the temperature behav-
ior of the soft modes in these crystals and the relevant
critical indices can be interpreted only by invoking the
model of phase transitions in the vicinity of the tricriti-
cal point.
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ing through a Hubbard-type potential on a bounded quadratic lattice. Exact two-particle states and the energy
spectrum are constructed. © 2000 MAIK “Nauka/Interperiodica”.
1. Interest in the two-particle problem on a low-
dimensional bounded lattice is provoked by the search
for mechanisms of high-temperature superconductivity
[1], the study of magnetic properties of strongly corre-
lated electron systems [2], and the problem of zero-
point defectons in adsorbed He3–He4 monolayers on
the graphite surface [3]. The properties of these sys-
tems are investigated on the basis of lattice models with
δ-interaction (Hubbard-type models, the model of zero-
spin lattice bosons, etc.) [4, 5]. The knowledge of exact
two-particle states in these models allows us to investi-
gate the effective two-particle interaction in a many-
particle system and a possible rearrangement of the
ground state of the system associated with this interac-
tion [6]. Exact two-particle states are known only for a
1D bounded lattice [7], while exact results for a 2D lat-
tice have not been obtained. Chen and Mei [8] studied
two-particle states on 1D and 2D bounded Hubbard lat-
tices by using the variational method, while Dong and
Yang [9] investigated bound states on 2D and 3D lat-
tices; however, the Lifshitz approach used does not lead
to exact results in the case of high dimensions.

In this paper, we consider the problem of two Hub-
bard electrons (δ-interacting zero-spin bosons) on a
quadratic N × N lattice. Exact two-particle states and
the energy spectrum are constructed. The lattice is
assumed to coil into a torus, ensuring the fulfillment of
the cyclic boundary conditions.

2. In the center-of-mass system, the Schrödinger
equation for two particles on a quadratic lattice has the
form

(1)

where t is the tunneling amplitude, U is the δ-interac-

tion amplitude,  are the second-order finite-differ-
ence operators, and x and y are the components of the
2D discrete position vector describing the relative
motion.

–t ∆x
2 ∆y

2+( )Ψ x y,( ) Uδx0δy0Ψ x y,( )+

=  EΨ x y,( ),

∆x y,
2
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Henceforth, we shall assume that the eigenvalues
are parametrized as follows:

(2)

We divide the coordinate plane into the four regions: I
(x < 0, y < 0), II (x > 0, y > 0), III (x < 0, y > 0), and IV
(x > 0, y < 0) and seek the wave function in the form of
a superposition of plane waves in each of the four
regions:

(3)

We must impose the following conditions on wave
functions (3):

(4)

because the states Ψ are also eigenfunctions of the par-
ity operator.

Conditions (4) and expressions (3) imply that

(5)

E 4t p1cos p2cos+( ).–=

ΨI x y,( ) A1e
i p1x p2y+( )

A2e
i– p1x p2y+( )

+=

+ A3e
i p1x p2y–( )

A4e
i– p1x p2y–( )

,+

ΨII x y,( ) B1e
i p1x p2y+( )

B2e
i– p1x p2y+( )

+=

+ B3e
i p1x p2y–( )

B4e
i– p1x p2y–( )

,+

ΨIII x y,( ) C1e
i p1x p2y+( )

C2e
i– p1x p2y+( )

+=

+ C3e
i p1x p2y–( )

C4e
i– p1x p2y–( )

,+

ΨIV x y,( ) D1e
i p1x p2y+( )

D2e
i– p1x p2y+( )

+=

+ D3e
i p1x p2y–( )

D4e
i– p1x p2y–( )

.+

ΨI x– y–,( ) ΨII x y,( ),=

ΨIII x– y–,( ) ΨIV x y,( ),=

B2 A1, B1 A2, B4 A3, B3 A4,= = = =

D2 C1, D1 C2, D4 C3, D3 C4.= = = =
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We also take into account the fact that the wave func-
tions must coincide at the boundaries of the regions,
i.e.,

(6)

so that we ultimately have

(7)

Among other things, these conditions imply that the
wave functions (3) coincide at zero.

Substituting expressions (3) into equation (1) and
taking into account the parametrization (2), we obtain
the following equations:

(8)

(9)

We introduce vectors 

In this case, equations (8) and (9) assume the form

(10)

ΨI 0 y,( ) ΨIV 0 y,( ); ΨIII 0 y,( ) ΨIV 0 y,( );= =

ΨI x 0,( ) ΨIII x 0,( ); ΨII x 0,( ) ΨIV x 0,( ),= =

A1 A4+ C2 C3, A1 A3+ + C1 C3,+= =

A2 A3+ C1 C4, A2 A4+ + C2 C4.+= =

–
η
2
--- i p1sin p2sin+( )– A1

+ –
η
2
--- i p1sin p2sin+( )+ A2

+ –
η
2
--- i p1sin p2sin–( )– A3

+ –
η
2
--- i p1sin p2sin–( )+ A4 0,=

–
η
2
--- i p1sin p2sin–( )– C1

+ –
η
2
--- i p1sin p2sin–( )+ C2

+ –
η
2
--- i p1sin p2sin+( )– C3

+ –
η
2
--- i p1sin p2sin+( )+ C4 0,=

η U
2t
-----.=

ni –
η
2
--- i p1sin p2sin+( )–  –

η
2
--- i p1sin p2sin+( ),+,



–
η
2
--- i p1sin p2sin–( )–  –

η
2
--- i p1sin p2sin–( )+, 

 ,

ai A1 A2 A3 A4, , ,( ), ci C3 C4 C1 C2, , ,( ).

niai 0, nici 0,= =
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implying that the vectors ai and ci are linearly depen-
dent:

(11)

Supplementing this relation with the condition of the
equality of the wave functions (3) at zero, we find that
λ = 1, and, hence, conditions (7) are satisfied automat-
ically.

Carrying out complex conjugation in equations (8)
and (9), we can easily see that

(12)

whence

(13)

We write these relations in the form

(14)

In this case, equations (8) and (9) can be written in the
form

(15)

where

(16)

Equation (15) holds if we put

(17)

and choose ϕ0 = π to satisfy the boundary condition

(18)

according to which, two particles cannot get to the
same lattice site in the case of infinitely strong repul-
sion.

ci λai.=

A2* µA1, A1* µA2,= =

A3* µA4, A4* µA3,= =

A1
2 A2

2, A3
2 A4

2, µ 2 1.= = =

A1 A1 e
iϕ1, A2 A1 e

iϕ2, A3 A3 e
iϕ3,= = =

A4 A3 e
iϕ4, µ e

iϕ0.= =

α A1 δ1 ϕ1
ϕ0

2
-----+ + 

 cos

+ β A2 δ2 ϕ2
ϕ0

2
-----+ + 

 cos 0,=

α β, η2

4
----- p1sin p2sin±( )2+

1/2

,=

δ1 2,
η
2
--- p1sin p2sin±( ).arctan–=

ϕ1 2, –δ1 2,
ϕ0

2
-----– π

2
---+=

Ψ x y,( )
U ∞→
x y, 0→

lim 0,=
0
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Then the wave functions (3) assume the form

(19)

Here, we have changed the notation of the products
α|A1| and β|A3| for |A1, 3|.

It should be observed that the transposition of the
parameters p1 and p2 leads to new two-particle states
corresponding to the same eigenvalues, i.e.,

(20)

where we have taken into account that

(21)

Consequently, the general solution of equation (1)
should be presented as a superposition of the two-parti-
cle states (19) and (20):

(22)

We impose on the wave function (21) the constraints

(23)

These relations are accounted for by the following cir-
cumstance: the rotation of the coordinate axes through
the angle θ = π/2 should not change the state of the sys-
tem, while the rotation through 2θ = π leads to (4) (in
view of the symmetry of a quadratic lattice).

A direct verification shows that |A1| = | | and

|A3| = | |. Moreover, the transformation p1  –p1 or
p2  –p2 must transform the wave function into itself.
This constraint is due to the fact that the wave function
is single-valued in each of the four quadrants. It gives
|A1| = |A3|, and hence we obtain the following expres-
sions for Ψ(x, y) correct to an arbitrary factor:

(24)

ΨI II, A1 p1x p2y δ1+−+( )cos=

+ A3 p1x p2y– δ2+−( ),cos

ΨIII IV, A1 p1x p2y– δ1+−( )cos=

+ A3 p1x p2y δ2+−+( ).cos

ΨI II,' |A1' | p2x p1y δ1+−+( )cos=

+ |A3' | p2x p1y– δ2±( ),cos

ΨIII IV,' |A1' | p2x p1y– δ1+−( )cos=

+ |A3' | p2x p1y δ2±+( ),cos

δ1 p2 p1,( ) δ1 p1 p2,( ),=

δ2 p2 p1,( ) δ2– p1 p2,( ).=

Ψ x y,( ) Ψ p1x; p2y( ) Ψ p2x; p1y( ).+=

ΨI y x–,( ) ΨIV x y,( ),  ΨII y x–,( ) ΨIII x y,( ),= =

ΨIII y x–,( ) ΨI x y,( ),  ΨIV y x–,( ) ΨII x y,( ).= =

A1'

A3'

ΨI II, p1x p2y δ1+−+( )cos=

+ p1x p2y δ2+−–( )cos p2x p1y δ1+−+( )cos+

+ p2x p1y– δ2±( ),cos

ΨIII IV, p1x p2y δ1+−–( )cos=

+ p1x p2y δ2+−+( )cos p2x p1y δ1+−–( )cos+

+ p2x p1y δ2±+( ).cos
P

Thus, two-particle states can be presented as a superpo-
sition of standing waves, while on an infinite lattice
they can be expressed in terms of Bessel’s functions
[10]. In our opinion, it would be interesting to relate the
states (24), derived here, to expressions (16) from [10]
for the lattice constant tending to zero or the lattice size
tending to infinity.

We must impose cyclic boundary conditions on the
states (24). For this purpose, note that (24) can be writ-
ten in the form

(25)

where θ(x) is a Heaviside function.
This obviously leads to

(26)

and relations (24) and (26) can be used to derive the fol-
lowing equations for p1, 2:

(27)

where n, m = 0, 1, ..., N – 1.
Thus, the energy spectrum is defined completely by

relations (2) and (27). 
The ground-state energy of the system is 

(28)

In particular, for U = +∞, we have

(29)

or, for an asymptotically large N,

(30)

The variational calculations made by Chen and Mei [8]
prove that, for N @ 1, the ground-state energy can be
written in the form

(31)

where, in particular, for U/t = 10, the parameter α varies
from 0.618 to 0.682 depending on the size of the lattice,
and it increases slowly with U/t. The results (29) and
(30), obtained here, prove that the energy of the true
ground state is lower than the variational value; besides,
the parameter α is independent of the lattice size in the
limit U = +∞.

Ψ ΨIθ x–( )θ y–( ) ΨIIθ x( )θ y( )+=

+ ΨIIIθ x–( )θ y( ) ΨIVθ x( )θ y–( ),+

ΨI x N y N+,+( ) ΨII x N y N+,+( )+

+ ΨIII x N y N+,+( ) ΨIV x N y N+,+( )+

=  ΨII x y,( ),

p1
δ1 δ2+

2N
----------------

π n m+( )
2N

----------------------,+=

p2
δ1 δ2–

2N
----------------

π n m–( )
2N

---------------------,+=

E0 8t
δ1

2N
-------

δ2

2N
------- n m 0= =( ).coscos–=

E0 8t
π

4N
-------cos

2
–=

E0 8t 1 π2

16N2
------------– 

  .–=

E0 8t 1 α
N2
------– 

  ,–=
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000



TWO-PARTICLE STATES IN THE 2D HUBBARD MODEL 963
REFERENCES
1. J. C. Bednorz and K. A. Müller, Z. Phys. B 64, 189

(1986).
2. Y. Nagaoka, Phys. Rev. B 141, 392 (1966).
3. M. Bretz, Phys. Rev. Lett. 38, 501 (1977).
4. J. Hubbard, Proc. R. Soc. London A 276, 238 (1963);

ibid. 277, 237 (1964).
5. C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967).
6. A. N. Kocharyan and A. S. Saakyan, Fiz. Tverd. Tela

(S.-Peterburg) 40, 761 (1998) [Phys. Solid State 40, 701
(1998)].
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
7. A. N. Kocharyan and A. S. Saakyan, Fiz. Tverd. Tela
(S.-Peterburg) 40, 366 (1998) [Phys. Solid State 40, 336
(1998)].

8. L. Chen and C. Mei, Phys. Rev. B 39, 9006 (1989).

9. Sh. Dong and Ch. N. Yang, Rev. Math. Phys. 146, 139
(1989).

10. G. A. Vardanyan and A. S. Saakyan, Zh. Éksp. Teor. Fiz.
88, 1079 (1985) [Sov. Phys. JETP 61, 634 (1985)].

Translated by N. Wadhwa
0



  

Physics of the Solid State, Vol. 42, No. 5, 2000, pp. 964–967. Translated from Fizika Tverdogo Tela, Vol. 42, No. 5, 2000, pp. 934–936.
Original Russian Text Copyright © 2000 by Saakyan.

                                                     

LOW-DIMENSIONAL SYSTEMS 
AND SURFACE PHYSICS
Two-Particle Correlations on a 1D Lattice 
in a Constant Magnetic Field

A. S. Saakyan
Armenian State Engineering University, 375009 Yerevan, Armenia

e-mail: root@yeriac.arminco.com
Received in final form November 4, 1999
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spectrum is constructed and analyzed. The possibility of a field-induced singlet–triplet transition is demon-
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1. Correlations between particles are important in
explaining various effects in many-particle systems.
Some models taking these correlations into account can
be exactly solved in the thermodynamic limit in the 1D
case [1–3]. However, in certain cases, the transition to
the thermodynamic limit is incorrect (as for a finite
number of particles), and the problem should be solved
on a bounded lattice. This problem is of importance, for
example, in relation to the recent discovery of atomic
clusters of rhodium possessing strong ferromagnetism,
which is not observed in bulk samples [4]. The analysis
of the two-particle problem on a bounded lattice is also
important for determining the mechanisms of high-
temperature superconductivity, for elucidating the
effective two-particle interactions in a many-particle
system, and for analyzing magnetic properties of
strongly correlated systems [5–8].

In this communication, we consider the behavior of
two interacting particles (U > 0) on a finite 1D lattice in
a constant uniform magnetic field. A simple model used
here allows us to obtain exact solutions for two-particle
states and to analyze the energy spectrum as a function
of the magnetic field strength.

2. We choose the Hamiltonian of the system in the
form

(1)

Here, σ is the spin index; ε0σ are the centers of the
bands; 2t is the width of the energy bands, which is the
same for the two particles; and U is the amplitude of the
Hubbard interaction. Henceforth, we shall assume that
the term corresponding to the spin–magnetic-field
interaction is included in the first addend in (1), and the

H ε0σanσ
+ anσ

nσ
∑ γH an↑

+ an↑ an↓
+ an↓–( )

n

∑–=

– t an lσ+
+ anσ

nlσ
∑ U

2
---- δnn'δσ σ'–, anσ

+ anσan'σ'
+ an'σ' .

nn'
σσ'

∑+
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same notation will be used:   ε0σ. Thus,
the energy bands are separated, the separation between
the band centers being ε01 – ε02. Carrying out the trans-
formation

(2)

in the Hamiltonian (1), we obtain

(3)

where s, s' are the pseudospin indices, the energy is
measured from the value ε = (1/2)(ε01 + ε02), and g =
(1/4)(ε01 – ε02).

Thus, we arrive at the pattern of two mutually scat-
tering pseudosinglet fermions in the band; the system
displays a sort of hybridization at a lattice site, which is
dependent on the magnetic field.

We present two-particle states of the Hamiltonian
(3) in the form of the following expansion in terms of
the occupation-number states:

(4)

where Ψ is the first-quantized two-particle wave func-
tion. Applying the operator (3) to the state (4), we arrive
at the Schrödinger equation

(5)

where  are second-order finite-difference operators

ε0σ γH+−

bn1 2,
1

2
------- an↑ an↓±( )=

H t bn ls+
+ bns

nls

∑– g δs s'–, bns
+ bns'

ss'n

∑+=

+
U
2
---- bns

+ bnsbns'
+ bns'δs s'–, ,∑

2| 〉 Ψ s n; s' n', ,( )bn s,
+ bn' s',

+ 0| 〉 ,
ss'
nn'

∑=

t ∆1
2 ∆2

2+( )Ψ n1 s1; n2 s2, ,( )–

+ g Ψ n1 s; n2 s2, ,( )δs s1–, Ψ n1 s1; n2 s, ,( )δs s2–,+[ ]
s

∑
+ Uδn1 n2, δs1 s2–, Ψ n1 s1; n2 s2, ,( ) EΨ n1 s1; n2 s2, ,( ),=

∆1 2,
2
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with respect to the variables n1, 2. We write equations
(5) in an explicit form:

(6)

Here, Ψ1, 2(n1, n2) and Ψ3, 4(n1, n2) are the wave func-
tions corresponding to the pseudosinglet and pseudot-
riplet states, respectively.

Equations (6) can be written in the matrix form:

(7)

where  = (  + ) ,  is a 4 × 4 unit matrix,  =

U ,  = E , and

(8)

We write a solution of equation (7) in the form

(9)

where Q is the quasi-momentum of the center of mass
of two particles, k is the “bare” quasi-momentum of the

relative motion, and (k, Q) is the Fourier transform of
the column vector (8). Here and below, we assume that
cyclic boundary conditions are satisfied, so that k =
2πn/N, n = 0, 1, …, N – 1.

Substituting (9) into (7) and carrying out transfor-
mations, we obtain

(10)

–t ∆1
2 ∆2

2+( )Ψ1 n1 n2,( ) Uδn1 n2, Ψ1 n1 n2,( )+

+ g Ψ3 n1 n2,( ) Ψ4 n1 n2,( )+[ ] EΨ1 n1 n2,( ),=

–t ∆1
2 ∆2

2+( )Ψ2 n1 n2,( ) Uδn1 n2, Ψ2 n1 n2,( )+

+ g Ψ3 n1 n2,( ) Ψ4 n1 n2,( )+[ ] EΨ2 n1 n2,( ),=

–t ∆1
2 ∆2

2+( )Ψ3 n1 n2,( )
+ g Ψ1 n1 n2,( ) Ψ2 n1 n2,( )+[ ] EΨ3 n1 n2,( ),=

–t ∆1
2 ∆2

2+( )Ψ4 n1 n2,( )
+ g Ψ1 n1 n2,( ) Ψ2 n1 n2,( )+[ ] EΨ4 n1 n2,( ).=

t∆̂2Ψ̂– ĝΨ̂ ÛΨ+ + ÊΨ̂,=

∆̂2 ∆1
2 ∆2

2 Î Î Û

δn1 n2, Î Ê Î

ĝ

0 0 g g

0 0 g g

g g 0 0

g g 0 0 
 
 
 
 
 

, Ψ

Ψ1

Ψ2

Ψ3

Ψ4 
 
 
 
 
 
 

.= =

Ψ̂ e
iQ/2 n1 n2+( )

Ψ̂ k Q,( )e
ik n1 n2–( )

,
k

∑=

Ψ̂

Ψ̂ k Q,( ) L̂ ĝ Ê–+( )τ̂ ,–=

L̂ k Q,( ) L k Q,( ) Î ,=

L k Q,( ) 2t k Q/2+( )cos k Q/2–( )cos+[ ] ,–=
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and the column vector  can be determined from the
self-consistency condition

(11)

The condition for the existence of a nonzero solution of
system (11) is the equality of the determinant to zero:

(12)

This condition leads to the following equations for
determining the eigenvalues of the problem (Lifshitz–
Yang equations):

(13)

(14)

Solving the system of the homogeneous equations (11),
we obtain

(15)

where

(16)

It can be easily seen that the condition (12) for the exist-
ence of nonzero solutions or, what is the same, the con-
dition for the solubility of equations (13) and (14) has
the form

(17)

Taking into account (15) and (16), we can write the

τ̂

τ̂ L̂ ĝ Ê–+( ) 1–
Û τ̂ .

k

∑–=

det Î L̂ ĝ Ê–+( ) 1–
Û

k

∑+ 0.=

1
N
---- 1

L k Q,( ) E– 2g–
---------------------------------------- 1

L k Q,( ) E– 2g+
-----------------------------------------+

k

∑

=  
2
U
----,–

1
N
---- 1

L k Q,( ) E–
----------------------------

k

∑ 1
U
----.–=

τ2
1 UA+

UB
-----------------τ1, τ3 4, UC τ1 τ2+( ),= =

A
1
N
---- 1

L k Q,( ) E–
---------------------------- 1 2η2

L k Q,( ) E–[ ]2 4g2–
-------------------------------------------------+

 
 
 

,
k

∑=

B
1
N
---- 1

L k Q,( ) E–
---------------------------- 2η2

L k Q,( ) E–[ ]2 4g2–
-------------------------------------------------,

k

∑=

C
1
N
---- η

L k Q,( ) E–[ ]2 4g2–
-------------------------------------------------.

k

∑=

U A B±( ) 1.–=
0
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wave functions Ψ1, 2(n1, n2) in the form

(18)

For the solutions of equation (17), we obtain

(19)

and, finally, 

(20)

The constant τ can be determined from the self-con-
sistency condition defined by equation (8) from [6] and
has the form

(21)

Thus, the wave functions of two-particle states coincide
in form with those obtained in [6], but the eigenvalues
E are determined from (13).

If we try to determine the eigenvalues from (14), we
will find that the t-matrix Uτ3 diverges for U = +∞; i.e.,
the states defined by (14) are deprived of any physical
meaning.

Parametrizing the eigenvalues of the problem in
accordance with

(22)

we obtain

(23)

and the scattering phase is given by

(24)

Analyzing equation (13), we note, in particular, that, in
the region |cosp | < 1 – η (η < 1), it can be reduced to
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the form

(25)

by using a method similar to that described in [6].
The denominator sin p1 in the expression on the left-

hand side of equation (25) vanishes for p0 =

; expanding it into a power series in
p – p0, we obtain

(26)

Henceforth, we assume the parameter η to be small
(η ! 1). Taking into account the fact that expression
(26) is transformed into

(27)

under the substitution p = p0 and that (26) holds in the
neighborhood of p0, we can write it, to a fairly high
degree of accuracy, in the form

(28)

Expression (27) implies that, for the value of the
parameter η = π2/2N2, the particles acquire a rigid core;
i.e., the scattering phase becomes δ = π/N, and the
wave function Ψ1, 2 assumes the form

(29)

The values (28) of the parameter p correspond to the
following ground-state energy of the two-particle sys-
tem:

(30)

In the region η @ 1, the sum (13) immediately leads to
E = ε0 – 2γH, and the magnetization of the system is
M = 2γ. Thus, the transition described by (28) and (30)
obviously corresponds to a transition to the triplet state.

It should be noted that the singlet–triplet transition
described here occurs for any finite value of the Hub-
bard interaction potential. The case when U = +∞
should be analyzed separately.

It should also be noted that the canonical transfor-
mation (2) does not mix up even and odd solutions; this
follows from the commutativity of the Hamiltonians (1)
and (3) with the parity operator, which enables us to
speak not of pseudo-, but of true singlet and triplet
states.
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Abstract—The self-propagating high-temperature synthesis in the two-layer and multilayer Pt/Co(001) thin
films has been investigated. It is shown that the initiation of the synthesis occurs at temperatures of 770–820 K.
After the synthesis in the two-layer film samples, the PtCo(001) disordered phase exhibits an epitaxial growth
at the interface between cobalt and platinum layers. In the multilayer Pt/Co(001) thin films, the self-propagat-
ing high-temperature synthesis also brings about the formation of the PtCo(001) disordered phase on the
MgO(001) surface. Further annealing at a temperature of 870 K for 4 h results in the transition of the PtCo(001)
disordered phase to the ordered phase. Rapid thermal annealing of the Pt/Co(001) multilayer films at a temper-
ature of 1000 K leads to the formation of the CoPt3 phase. The magnetic characteristics change in accord with
the structural transformations in Pt/Co film samples. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, intensive studies of the Pt/Co mul-
tilayer films have been caused by their possible use as
a medium for high-fidelity magnetooptical recording
[1–7]. The Pt/Co multilayers deposited onto glass sub-
strates are characterized by the (111) texture and a con-
siderable perpendicular magnetic anisotropy whose
nature remains unclear. In the Pt/Co/MgO(001) epi-
taxial multilayer films, the easy magnetization axis
either can be aligned perpendicular [8] or within the
plane of the film [9, 10], or can form an angle with the
sample plane [11]. In the course of annealing [8, 12] or
ionic bombardment [13], the structural and magnetic
properties of the Pt/Co multilayer films exhibit sub-
stantial changes. Actually, the Pt/Co/MgO(001) multi-
layer films due to annealing in the temperature range
475–675°C for 14 h undergo a transformation into the
CoPt ordered tetragonal phase with the c axis perpen-
dicular to the surface of the sample [8, 12].

However, in analyzing the results of heat treatments
or the action of ionic bombardment, it is usual practice
to ignore the possibility of initiating the self-propagat-
ing high-temperature synthesis between cobalt and
platinum layers. Unlike the self-propagating high-tem-
perature synthesis occurring in powders, which is
rather well understood [14], this process in thin films
has come under the scrutiny of science only in the very
recent years [15, 16]. Upon fast heating of the two-
layer film samples above the initiation temperature T0
at a rate of higher than 20 K/s, the self-propagating
1063-7834/00/4205- $20.00 © 0968
high-temperature synthesis in thin films proceeds in the
form of a surface combustion wave. Since the velocity
of the front of self-propagating high-temperature syn-
thesis at temperatures close to the initiation tempera-
ture T0 is equal to ~(0.2–0.5) × 10–2 m/s, its propaga-
tion can be observed visually. The temperature of the
front is considerably higher than the temperature of the
rest of the film, and, hence, most of the mass transfer
and the formation of reaction products take place solely
at the front of self-propagating high-temperature syn-
thesis. As a result, upon fast cooling at the rear of the
front, the metastable, quasicrystalline, and amorphous
phases, apart from the equilibrium compounds, can be
formed in the reaction products [15–17].

The purpose of the present work was to investigate
the self-propagating high-temperature synthesis and its
influence on the structural and magnetic properties of the
epitaxial two-layer and multilayer Pt/Co/MgO(001)
films.

2. SAMPLE PREPARATION AND 
EXPERIMENTAL TECHNIQUE

The two-layer and multilayer Pt /Co film samples
were prepared by the ion–plasma sputtering onto glass
substrates and onto the freshly cleaved MgO(001) sur-
faces. The total thickness of cobalt was equal to
30−50 nm, and the total thickness of platinum was
50−70 nm. In the experiments, their ratio was taken to
be close to the atomic ratio 1 : 1. The character of the
2000 MAIK “Nauka/Interperiodica”
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propagation of high-temperature synthesis essentially
depends on the thermal properties and substrate thick-
ness. In order to decrease the heat transfer into the sub-
strates, their thicknesses were taken to be minimum as
far as possible. The glass substrates used in the experi-
ments were 0.18 mm thick, and the thickness of the
MgO substrates was varied in the range from 0.35 to
0.40 mm. The Pt/Co two-layer film samples were pro-
duced by the sequential evaporation of cobalt and plat-
inum layers onto a substrate in the following way: the
cobalt film was first evaporated at a temperature of
550 K, and then, the platinum layer was applied at a
temperature of 300 K. The Pt/Co epitaxial multilayers
were deposited at a temperature of 550 K onto the
MgO(001) substrates and contained from 60 to 90 pairs
of the cobalt and platinum layers. The thicknesses of
cobalt and platinum layers in each pair fell in the ranges
0.40–0.44 and 0.51–0.55 nm for cobalt and platinum,
respectively.

The phase composition of the samples was deter-
mined on a DRON-4-07 instrument (Kα-radiation). The
X-ray fluorescence analysis was employed to deter-
mine the chemical composition and thickness of the
studied films. The magnetic properties of samples were
examined with the use of vibrating-sample and tor-
sional magnetometers. The biaxial anisotropy constant
was determined as 2lmax, where lmax is the maximum
torque moment per unit volume of the sample. To ini-
tiate the self-propagating high-temperature synthesis,
the samples prepared were placed on a tungsten heater
to produce a uniform temperature field in the sample
plane. The heating was performed under a vacuum of
~1 × 10–3 Pa at a rate of no less than 20 K/s up to the
temperature T0 of the initiation of self-propagating
high-temperature synthesis followed by cooling at a
rate of ~10 K/s.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The self-propagating high-temperature synthesis in
the Pt/Co two-layer films deposited onto glass sub-
strates was initiated at temperature T0 = 770–820 K.
The front of the propagation of high-temperature syn-
thesis was observed visually (Fig. 1). A visual observa-
tion showed that the self-propagating high-temperature
synthesis proceeded across the whole width of the film
sample.

Figure 1 demonstrates the autowave motion of the
front of self-propagating high-temperature synthesis,
which is typical of the two-layer film samples [15, 16].
The temperature profile of the front and the mechanism
of its autowave propagation were described in [15, 16].
However, in the case of the two-layer and multilayer
Pt/Co films deposited onto the MgO(001) substrates,
the motion of the front of self-propagating high-tem-
perature synthesis was not visually observed. This can
be due to the fact that the heat transfer from the front to
the substrate is quite significant even if the thickness of
the MgO substrate is equal to ~0.35 mm. As a conse-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
quence, the temperature of the front decreases, and the
wave of self-propagating high-temperature synthesis
covers only the thin boundary layer between platinum
and cobalt, which is invisible to the eye. An alternative
explanation resides in the fact that, upon reaching the
initiation temperature T0, the self-propagating high-
temperature synthesis proceeds throughout the phase
boundary rather than in the form of a surface combus-
tion wave. Hence, the cycle of the self-propagating
high-temperature synthesis consisted in heating the
two-layer and multilayer Pt/Co/MgO(001) film sam-
ples at a rate of higher than 20 K/s up to a temperature
of 870 K, which exceeded the initiation temperature T0.
Thereafter, the samples were allowed to stand at this
temperature for 30 s, followed by cooling at a rate of
~10 K/s. This time is large enough for the self-propa-
gating high-temperature synthesis to extend over the
whole sample, including the induction period.

The heat treatment similar to the above cycle of self-
propagating high-temperature synthesis is often
employed in thin films and is referred to as the rapid
thermal annealing [18]. The rapid thermal annealing
was also used in studies of the Fe/Pt nanoscale multi-
layers [19].

The X-ray diffraction patterns of the Pt/Co/MgO(001)
two-layer film samples prior to the initiation of the
self-propagating high-temperature synthesis indicated
that the β-Co film grew up with the (001) orientation
on the MgO(001) surface at the substrate temperature
Ts = 470 K. The upper platinum layer, which was
deposited onto the β-Co(001) film at the temperature
Ts = 300 K, grew up with the predominant (001) orien-
tation. However, in this case, the (111) orientation of the
platinum phase is also observed, but to a lesser degree
(Fig. 2a). According to the magnetic measurements, the

4 mm

Fig. 1. A micrograph of the self-propagating high-tempera-
ture synthesis in the Pt(50 nm)/Co(40 nm) film on a glass
substrate 0.18 mm thick. The arrow indicates the direction
of the front of self-propagating high-temperature synthesis.
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saturation magnetization Is and the first constant of mag-
netocrystalline anisotropy K1 for these samples (per unit
volume of the cobalt film) correspond, respectively, to
the values of Is and K1 for the β-Co phase.
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Fig. 2. X-ray diffraction patterns and schematic diagrams
of the phase composition and phase orientation in the
Pt(50 nm)/Co(40 nm)/MgO(001) two-layer films: (a) ini-
tial sample and (b) sample after the cycle of self-propagat-
ing high-temperature synthesis.
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Fig. 3. X-ray diffraction patterns and schematic diagrams of
the phase composition and phase orientation in the
Pt(5.3 nm)/Co(4.2 nm)/MgO(001) multilayer films: (a) ini-
tial sample and samples after (b) the cycle of self-propagat-
ing high-temperature synthesis, (c) annealing at a tempera-
ture of 870 K for 4 h, and (d) annealing at a temperature of
1000 K for 30 s.
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An analysis of the X-ray diffraction patterns and
magnetic measurements demonstrate that the β-Co film
and the MgO substrate are characterized by the epitax-
ial relationships (001), Co[100] || (001), MgO[100],
which were observed earlier in [20]. The X-ray diffrac-
tion patterns of samples after the cycle of self-propagat-
ing high-temperature synthesis indicate that, in addi-
tion to the residual layers of cobalt and platinum, the
reaction products contain a layer of the CoPt disordered
phase with a coherent orientation with respect to the
(001) plane. As follows from the magnetic measure-
ments, the self-propagating high-temperature synthesis
between cobalt and platinum layers proceeds not across
the whole width of the film sample, but extends for a
depth of no more than 25–30 nm (Fig. 2b). The biaxial
anisotropy in the plane of the sample increases by a fac-
tor of 1.5–2 after the cycle of self-propagating high-
temperature synthesis, whereas the easy magnetization
axes do not change their directions.

The discrepancy between the lattice parameters of the
β-Co and CoPt phases has a minimum value when the
CoPt disordered phase grows in an epitaxial fashion and,
in the case of the β-Co matrix phase, follows the orienta-
tional relationships (100), CoPt[100] || (100), Co[100].
This implies that the CoPt disordered phase, like the
β-Co matrix phase, possesses the negative magnetoc-
rystalline anisotropy. Similar epitaxial relationships are
observed upon self-propagating high-temperature syn-
thesis in the Al/Fe/MgO(001) two-layer films [21]. It
seems likely that the cooling at high rates makes impos-
sible the formation of the CoPt equilibrium tetragonal
ordered phase.

The X-ray diffraction patterns of the
Pt/Co/MgO(001) multilayer film samples prior to the
initiation of the self-propagating high-temperature syn-
thesis exhibit a peak corresponding to the lattice param-
eter intermediate between the unit cell parameters of
cobalt and platinum (Fig. 3a). The absence of large-
angle and small-angle satellite reflections suggests a
partial mixing between the cobalt and platinum layers.
The magnetic measurements show that the easy axes of
the Pt/Co/MgO(001) multilayers coincide with the
MgO[111]-type directions rather than lie in the plane of
the film. As follows from the curves of torque moments
measured in the (100), (010), (001), (110), and
MgO(1 0) planes, the magnetocrystalline anisotropy
of the Pt /Co/MgO(001) multilayer films is ade-
quately described by the anisotropy constant K1 = 1 ×
106 erg/cm3, which considerably exceeds the shape

anisotropy of the sample 2π  (K1 @ 2π ). The mea-
sured values of the saturation magnetization of these
samples (Is = 200–220 emu/cm3) satisfy this inequality.
This gives grounds to believe that the multilayers under
consideration are not a superposition of cobalt and plat-
inum layers, but represent a weakly modulated phase
that consists of mutually penetrating layers of cobalt
and platinum.

1

IS
2 IS

2
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After the cycle of self-propagating high-tempera-
ture synthesis, the diffraction peak shifts and, thus, cor-
responds to the reflection from the (200) plane of the
CoPt disordered phase (Fig. 3b). The magnetic proper-
ties of the samples upon self-propagating high-tempera-
ture synthesis exhibit radical changes. The plane of the
film becomes the easy magnetic plane. The easy axes of
magnetization in the plane of the film do not change
their directions; however, the biaxial anisotropy in the
film plane and the saturation magnetization increase
up to the values of 2lmax = (2.5–2.0) × 106 erg/cm3 and
Is = 560–580 emu/cm3, respectively. From the forego-
ing, it is evident that the CoPt disordered phase epi-
taxially grows on the MgO(001) surface in the same
manner as in the course of growth in the Pt /Co two-
layer films, follows the orientational relationships (100),
CoPt[100] || (100), MgO[100], and has the first magne-
tocrystalline anisotropy constant K1 = –(2.5–2.0) ×
106 erg/cm3.

In the experiments, we also used the thermal anneal-
ing of the Pt/Co/MgO(001) multilayer films at a temper-
ature of 870 K for 4 h. After the annealing, the easy mag-
netization axes are located at an angle of 10–15 deg with
the plane of the film, rather than lie within this plane. The
biaxial magnetic anisotropy in the plane of the sample
retains the directions of easy magnetization axes. How-
ever, the magnetic anisotropy and the coercive force
along the direction of easy magnetization drastically
increase and become equal to (10–12) × 106 erg/cm3 and
10 kOe, respectively. That large values of the magnetic
anisotropy and coercive force correspond to the forma-
tion of the CoPt tetragonal ordered phase [8, 12]. This
is corroborated by the diffraction data. The X-ray dif-
fraction patterns of these samples display the (002)
reflections and also the (001) superstructure reflections
from crystallites of the CoPt tetragonal ordered phase,
which is oriented by the c axis perpendicular to the film
plane (Fig. 3c). The presence of reflections from the
CoPt(200) phase suggests that crystallites of the CoPt
tetragonal phase are ordered by the c axis along three
mutually perpendicular axes of the MgO phase. The
magnetocrystalline anisotropy energy EK of the tetrag-
onal crystal per unit volume of the sample without
regard for anisotropy in the basal plane can be written
in the following form: EK = E0 + K1sin2θ + K2sin4θ,
where θ is the angle between the magnetization Is and
the c axis. Under the assumption that crystallites of the
CoPt ordered phase equiprobably grow with the c axes
along three mutually perpendicular axes of the MgO
phase, the magnetocrystalline anisotropy energy of this
film system can be represented as EK = E0 +
1/6K2(sin22ψsin4ψsin22φ), where φ is the angle
between the projection of the magnetization Is onto the
film plane and the MgO[100] axis, and ψ is the angle
between the magnetization Is and the normal to the film.
The torque moment curve L = –dEK/dφ in the plane of
the sample (ψ = π/2) has a maximum that can be deter-
mined as 2lmax = K2/3; the experimental value of this
maximum is equal to (1.0–1.2) × 107 erg/cm3. From
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
this, one can obtain the second constant of magnetoc-
rystalline anisotropy K2 = (3.0–3.6) × 107 erg/cm3 for
the PtCo ordered phase. The CoPt ordered phase of the
bulk alloy is characterized by the values K1 = 5 × 107

[22] and K1 + K2 = 2 × 107 erg/cm3 [23]. The found
value of the second magnetocrystalline anisotropy con-
stant K2 = (3.6–4.2) × 107 erg/cm3 for the PtCo ordered
phase on the films is inconsistent in sign with the K2
value for the bulk samples.

The magnetic measurements of the
Pt/Co/MgO(001) multilayer films after the cycle of
self-propagating high-temperature synthesis carried
out at a temperature of 1000 K demonstrate that no
anisotropy is observed in the plane of the sample. In
this case, the samples exhibit a low saturation magneti-
zation (~100 emu/cm3) with the easy magnetic plane
coinciding with the plane of the film. The diffraction
patterns indicate that crystallites of only the CoPt3
phase with the predominant orientation of the (001)
plane parallel to the MgO(001) plane are formed in the
samples. There exists also a small amount of the CoPt3
phase with an orientation of the (111) plane parallel to
the MgO(001) plane (Fig. 3d). The CoPt3 ordered phase
is nonferromagnetic at room temperature, whereas the
CoPt3 disordered phase possesses the magnetization
equal to 500 emu/cm3 [24]. Hence, it follows that the
CoPt3 phase formed during the self-propagating high-
temperature synthesis exhibits a larger degree of order-
ing. The sequences of the phase formation with an
increase in the annealing temperature, which are simi-
lar to the sequence Pt/Co  CoPt  CoPt3, can be
frequently observed in the solid-phase reactions. As
mentioned above, the Pt/Co/MgO(001) multilayer
films, as well as the CoPt phase formed upon the heat
treatment, have the larger negative magnetocrystalline
anisotropy constant K1. Therefore, in the Pt/Co multi-
layer films with the (111) texture, the easy magnetiza-
tion axis is perpendicular to the plane of the sample,
and the perpendicular magnetic anisotropy constant is
primarily determined by the magnetocrystalline anisot-
ropy constant K1. It is important to keep in mind that the
temperature of the initiation of self-propagating high-
temperature synthesis T0 = 770–820 K for the Pt/Co
film samples coincides with the ordering temperature
for the CoPt alloy [25]. This gives grounds to assume
that there is a certain interrelation between the chemi-
cal mechanisms of the synthesis and ordering. The FePt
phase is formed as the result of annealing in the Fe/Pt
multilayer films [8, 12, 19, 26]. Hence, it can be
expected that the self-propagating high-temperature
synthesis should be initiated in the two-layer and mul-
tilayer Fe/Pt film samples with the formation of the
FePt phase in the reaction products.

Therefore, in the Pt/Co two-layer films deposited
onto glass substrates, the self-propagating high-tem-
perature synthesis in the form of a surface combustion
wave is initiated between the cobalt and platinum lay-
ers at temperatures T0 = 770–820 K and proceeds
across the whole width of the film sample provided that
0
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the total thickness of the films does not exceed 100 nm.
In the same film samples, but deposited onto the MgO
substrates, the self-propagating high-temperature syn-
thesis covers an interphase boundary between cobalt
and platinum whose thickness is equal to 20–30 nm.
After the cycle of self-propagating high-temperature
synthesis at temperatures T0 = 770–820 K, the reaction
products contain a layer of the CoPt disordered phase,
which epitaxially grows on the surfaces of cobalt and
platinum. Upon annealing at a temperature of 870 K for
4 h, the CoPt disordered phase undergoes a transforma-
tion into the ordered phase. It is assumed that crystal-
lites of the CoPt ordered tetragonal phase equiprobably
grow with the c axes, which coincide with the crystal-
lographic directions of the MgO[100] type. This
assumption made it possible to determine the constant
K2 = (3.0–3.6) × 107 erg/cm3 in the expression of the
magnetocrystalline anisotropy energy for the CoPt
ordered tetragonal phase. The cycle of self-propagating
high-temperature synthesis in the Pt/Co/MgO(001)
multilayer films at a temperature of 1000 K results in
the formation of the CoPt3 phase, which grows with the
predominant (100) orientation on the MgO(100) sur-
face.
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Abstract—The electronic and crystalline structures of the systems formed upon deposition of silicon layers
onto the Gd(0001) and Dy(0001) surfaces of single-crystal films annealed subsequently at T = 450–500°C have
been studied by low-energy electron diffraction (LEED) and also by the Auger electron and angle-resolved pho-
toelectron spectroscopy of the valence band and the Si(2p) core level. It is shown that the systems thus produced
can be described as starting single-crystal films of Gd and Dy, with 3D islands of the silicides of these metals
on the surface of the corresponding metal films. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, there is a wealth of publications on the
interaction of rare-earth metals (REM) with silicon sur-
face. It is reliably established that the REM deposition
onto the Si(111) surface followed by annealing at a
temperature of ~400–500°C gives rise to a strong inter-
action of Si with the rare-earth metals and epitaxial
growth on the surface of ordered layers of REM disili-
cides with an AlB2-type structure and a stoichiometry
close to MeSi1.7 [1–9]. These disilicides have a layered
Si–REM–Si structure with a hexagonal arrangement of
Si and REM atoms inside the corresponding layers
[1, 5–9]. Note that if rare-earth metal atoms form cen-
tered hexagons (i.e., with an atom at the hexagon cen-
ter) with a lattice constant of ~3.8 Å, the silicon atoms
inside the corresponding layers build noncentered
graphite-like hexagons with one additional vacancy in
each hexagon [1, 2, 6–8]. These vacancies form, in turn,
an ordered structure of a larger size whose diffraction

patterns are of the (  × )R30° type with respect to
the principal structure. These vacancies account for the
silicon hexagon matching to the corresponding basal lat-
tice constant of the system (~3.8 Å). It is this that stimu-
lates the growth of epitaxial layers of nonstoichiometric
REM disilicides on the Si(111) surface with a good lat-
tice match between the disilicide film and the silicon
substrate. This work was aimed at studying the interac-
tion between silicon and rare-earth metals (Gd, Dy) in a
Si/REM system obtained by deposition of silicon onto
an REM surface, which can be called “reverse” with
respect to the system formed by REM deposition on the
silicon surface.

We studied the electronic and crystalline structure
of the systems produced by deposition of thin silicon

3 3
1063-7834/00/4205- $20.00 © 20973
films onto the (0001) surface of the gadolinium and
dysprosium single-crystal films grown on a W(110)
single-crystal surface. The basal constants of the crystal
structure of these rare-earth metals are smaller than
those of the epitaxial silicides in the “direct” system:
3.63 Å for Gd and 3.59 Å for Dy [10]. On the one hand,
this removes the requirement of lattice matching
between the silicide phases and the REM substrate. On
the other, these metals readily form silicide-like struc-
tures in the direct system; i.e., when a rare-earth metal
is deposited onto the Si(111) surface with its subse-
quent thermal annealing [3, 4, 11, 12].

In this work, the studies were carried out by the
methods of Auger electron and photoelectron spectros-
copy of the valence band and the Si(2p) core level in the
course of deposition of thin Si layers on the (0001) sur-
face of Gd and Dy single-crystal films, followed by
thermal annealing at ~450–500°C. Low-energy elec-
tron diffraction (LEED) spectroscopy was employed to
characterize the crystal structure of the systems.

It was shown that the systems formed by deposition
of silicon thin layers on the (0001) surface of the gado-
linium and dysprosium single-crystal films annealed
subsequently at ~450–500°C can be described as sin-
gle-crystal films of rare-earth metals (Gd, Dy) with 3D
islands of the silicides of these rare-earth metals cre-
ated on the surface of the system.

2. EXPERIMENTAL TECHNIQUE

The photoelectron studies were carried out at the
Synchrotron Radiation Center (BESSY I, Berlin) on
the TGM-3 channel with the use of a WSW-ARIES-
type electron spectrometer capable of angular resolu-
000 MAIK “Nauka/Interperiodica”
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Fig. 1. LEED patterns (Ep ~ 83 eV) for (a) clean W(110) surface, (b) Dy(0001) single-crystal film on the W(110) surface, and (c)
Si(12 Å)/Dy(0001)/W(110) system after annealing at 450–500°C.

B

C' C

A

(a)Θ
50°

46°

42°

38°

34°

32°

26°

22°

16°
12°

0°

Θ
48°

PE

39°

33°

30°

27°

18°

6°

0°

0°

Dy/Si(111)
hν = 30 eV

(b)PE

2.5 2.0 1.5 1.0 0.5 0 EF 2.53.0 2.0 1.5 1.0 0.5 0 EF

Si(4Å)/Dy(0001)/W(110)
hν = 26 eV

Si(4Å)/Gd(0001)/W(110)
hν = 26 eV

Binding energy, eV Binding energy, eV

In
te

ns
ity

In
te

ns
ity

B

C

C'

A

42°

A

Fig. 2. Valence-band photoelectron spectra for different photoelectron polar takeoff angles (Θ) measured for the systems (a)
Si(4 Å)/Gd(0001)/W(110) and (b) Si(4 Å)/Dy(0001)/W(110) after annealing at 450–500°C. Shown in the bottom of Fig. 2b is the
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tion and provided with a LEED diffractometer. The
total energy resolution of the system during experi-
ments was no worse than 0.2 eV. We measured the pho-
toelectron spectra of the valence band and the Si(2p)
core level in the course of deposition of silicon thin
films of different thicknesses onto the (0001) surface of
the gadolinium and dysprosium single-crystal films,
followed by warming the systems up to temperatures of
450–500°C. The exciting photon energy was chosen so
as to reduce the contribution of the REM 4f and 5d
states to the valence-band photoelectron spectra and
was equal to 26 eV. The Si(2p) photoelectron spectra
were measured at an incident energy of 130 eV, which
provided the maximum possible surface sensitivity of
the experiment. The Auger electron spectra of the
Si/REM systems studied during the Si deposition and
thermal annealing were measured by means of a four-
grid retarding-field energy analyzer at a primary-elec-
tron energy of ~1 keV.

The gadolinium and dysprosium single-crystal films
were grown on the (110) surface of a tungsten single
crystal according to the standard procedure [13, 14] by
depositing these metals to a thickness of ~150–200 Å,
followed by thermal annealing at a temperature of
~400–500°C. The films thus prepared had a hexagonal
structure characteristic of the REM(0001) surfaces.
The diffraction patterns obtained from a clean W(110)
surface and a dysprosium single-crystal film grown on
the W(110) surface are compared in Figs. 1a and 1b,
respectively. The LEED patterns of a gadolinium sin-
gle-crystal film were similar. Silicon was deposited
onto the REM films from a silicon plate heated directly
by passing through it electric current. The thickness of
the deposited Si and REM layers was determined from
the frequency shift of a quartz resonator placed inside
the chamber so as to be at the same conditions as the
sample. The base pressure in the chamber during the
experiment was no higher than 1 × 10–10 Torr. After the
silicon deposition, the Si/Gd(0001) and Si/Dy(0001)
systems were annealed at 450–500°C. As a result of
this treatment, both systems recovered the hexagonal-
structure LEED patterns characteristic of the original
surfaces of the gadolinium and dysprosium single-crys-
tal films. Figure 1c shows a typical LEED pattern for
the Si/Dy(0001) system after its annealing at 450–
500°C. Similar patterns were observed for the
Si/Gd(0001) system.

3. RESULTS AND DISCUSSION

Figures 2a and 2b present the photoelectron spectra
of the valence band near the Fermi level at different polar
photoelectron takeoff angles for the Si(4 Å)/Gd(0001)
and Si(4 Å)/Dy(0001) systems after annealing at 450–
500°C. [The spectra of thicker (up to 12 Å) predeposited
Si layers measured after thermal annealing had the same
pattern.] The photoelectron spectra of both systems were
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
measured along the Γ–M–Γ direction of the surface Bril-
louin zone of the rare-earth metal. As is seen from
Figs. 2a and 2b, the photoelectron spectra obtained for
polar angles below 30° relative to the normal to the
surface for both systems have a strong feature (A) in
the range of binding energies near the Fermi level
(0−0.5 eV). The structure of the spectra changes with an
increase in the polar angle. The A feature first shifts
toward higher binding energies and, at polar angles
above 30°, splits into two features (A and B), one of
which (B) strongly disperses toward higher binding ener-
gies. The A structure near the Fermi level is more com-
plex. However, one can likewise isolate here features dis-
persing with a variation in the polar angle and reaching a
maximum binding energy at polar angles of ~25 and 50°.
The above variations in the binding energy within the
main electron groups (features) in the valence band of
the Si/Gd(0001) and Si/Dy(0001) systems after anneal-
ing are shown graphically in more detail in Figs. 3a and
3b, which display the dispersion relations E(k||) derived
from the photoemission spectra with the use of the stan-
dard expression

where k|| is the parallel component of the quasi-momen-
tum in the Brillouin zone, Ekin is the photoelectron
kinetic energy, and Θ is the photoelectron polar takeoff
angle relative to the surface normal.

The features corresponding to different thicknesses
of the predeposited silicon layers (2, 4, and 12 Å) are
identified in Figs. 3a and 3b by different symbols. For
comparison, crosses in Fig. 3a show the corresponding
dispersion relations for the original Gd(0001) single-
crystal film, which were measured in this work also for
hν = 26 eV.

For comparison, Fig. 2b presents a photoelectron
spectrum of epitaxial Dy disilicide obtained in the
direct system by depositing Dy onto the Si(111) sur-
face, with its subsequent annealing at ~500°C. This
spectrum exhibits a clearly pronounced silicide-like
structure with the main features at binding energies of
0.8, 1.1, and about 2.5 eV—a pattern similar to that of
the valence band of the disilicides of other rare-earth
metals, including Gd [3–8]. As is seen from compari-
son with the spectrum of dysprosium silicide, the
Si/Dy(0001) system does not exhibit distinct spectral
features characteristic of epitaxial bulk phases of REM
disilicides. One can distinguish only very weak features
near the binding energies of 2–2.5 and 1–1.5 eV (C and
C'), which are identified in the figure by dashes.

The photoelectron spectra of the Si/Gd and Si/Dy
systems presented in Figs. 2a and 2b resemble more
closely those of the valence band, which are character-
istic of the original Gd(0001) and Dy(0001) single-
crystal films. A comparison with the dispersion rela-
tions obtained for a clean Gd(0001) surface shows that

k || 0.51 Ekin Θ,sin∼
0
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the main features in the electronic structure of the
Gd(0001) film and the Si/Gd(0001) system after
annealing are clearly similar to each other. This relates
primarily to the B feature, which disperses strongly
toward higher binding energy for polar angles Θ > 25–
30° (k|| > 1–1.2 Å–1). The pattern of the variation and the
binding energies of the main features (A and B) in the
valence band of the original Gd(0001) film and the
Si/Gd(0001) system after annealing practically coin-
cide.

The variations in the photoelectron spectra and in
the binding energies for the main valence-band features
(A, B, and C) of the Si/Gd and Si/Dy systems presented
here correlate with the theoretical and experimental
studies made for the Gd(0001) and Dy(0001) surfaces
in the Γ–M–Γ direction [13–17]. This provides support
for the above assumption that the main features in the
P

photoelectron spectra characteristic of the starting
Gd(0001) and Dy(0001) single-crystal films are
retained after deposition of thin silicon layers, which
are subsequently annealed at 450–500°C.

Figure 4 displays the Si(2p) core-level photoelec-
tron spectra measured for the Si(12 Å)/Gd(0001) and
Si(4 Å)/Dy(0001) systems after annealing at ~450–
500°C. Also shown for comparison is a photoelectron
spectrum for a ~20-Å-thick silicon layer deposited onto
a Gd film and measured directly after a room-tempera-
ture deposition of silicon. An analysis of the spectra
permits the following conclusion. If a spectrum
obtained before the annealing of the system has a single
broad peak with a maximum at a kinetic energy of
~27.2 eV, the annealing leads to the formation of a dis-
tinct Si(2p) doublet and a shift of the spectrum as a
whole toward higher kinetic energies (and, hence,
toward lower binding energies). After the annealing of
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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the Si/Dy system, one can observe a similar Si(2p)
doublet at the same energies (with one peak at about
27.3 eV, and another, at ~27.8 eV). The energies of the
peaks in the doublet do not depend on the thickness of
the predeposited silicon layer. At the same time, the
location of the maximum of the Si(2p) peak before the
annealing of the system does depend on the thickness
of the Si layer deposited preliminarily and varies from
27.5 to 26.8 eV for the thicknesses studied in the work
(from 2 to 20 and 50 Å). Following the annealing of the
Si/Gd and Si/Dy systems, the intensity of the Si(2p)
peak decreases substantially.

Figures 5a and 5b demonstrate the variations in the
silicon and rare-earth metal (Gd, Dy) Auger spectra
obtained after the deposition of silicon layers with the
different thicknesses (3, 12, and 15 Å) on the Gd(0001)
and Dy(0001) surface and annealing of the Si/REM
systems with the different thicknesses of the deposited
Si layer at a temperature of 450–500°C. Analysis of the
spectra shows that the Si(LVV) Auger peaks before and
after the annealing differ substantially in shape. While
before the annealing (particularly in the case of the 50-
Å-thick silicon layer), the Si(LVV) Auger peak is close
in structure to that characteristic of pure noninteracting
silicon, after the annealing, this peak has a structure
observed in direct systems upon formation of the bulk
REM silicides [12, 18], particularly the Gd silicide
[12].

Thus, analysis of the Si(2p) photoelectron spectra
and the Si(LVV) Auger electron spectra evidences the
presence of silicon on the surface of REM films after
the silicon deposition and following their heating
despite the fact that the valence band manifests itself
primarily in the features typical of REM films. The
location of the Si(2p) doublet and its structure are sim-
ilar to those of the features in the Si(2p) spectra of REM
silicides [3–6]. The Si(LVV) Auger electron spectra
obtained after the annealing of the Si/Gd and Si/Dy sys-
tems also have a structure characteristic of REM sili-
cides in direct systems. All this evidences a silicide-like
nature of the interaction between surface silicon and the
underlying REM film and the formation of the corre-
sponding Gd and Dy silicides on the surface of these
systems.

We believe that the totality of the features observed
in the photoelectron and Auger spectra can be
accounted for by an intense interaction of deposited sil-
icon with a part of surface atoms in the REM film,
which occurs during annealing of the Si/REM systems
at 450–500°C and leads to the formation of silicide-like
bonds between Si and the rare-earth metal. The silicide
thus formed, rather than producing a uniform coating,
grows in three-dimensional islands on the surface of the
starting REM films. This can be due, on the one hand,
to the fact that this silicide is a chemically saturated
phase and is not bonded to the surface of the REM film.
On the other hand, the fairly large lattice mismatch
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
between the silicide and the metal precludes formation
of epitaxial silicide phases on the REM surface. The
REM silicide islands occupy a small fraction of the sur-
face (they grow apparently primarily near defect clus-
ters in the starting REM films) and, hence, do not affect
appreciably the photoelectron spectra and the LEED
patterns. As a result, the photoelectron spectra and the
LEED patterns generally have a structure and symme-
try similar to those observed in the original REM films.
The 3D silicide islands become manifest in the valence-
band spectra as weak features at binding energies of 1–
1.5 and 2–2.5 eV (Fig. 2), as well as in the form of a
clearly pronounced silicide-like doublet in the photo-
electron spectra of the Si(2p) level and a modified
Si(LVV) Auger peak in the Auger spectra of the final
systems. Experiments involving layer-by-layer Ar-ion
etching of the Si/Gd and Si/Dy systems bear out the
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Fig. 4. The Si(2p) core-level photoelectron spectra mea-
sured for the Si(4 Å)/Gd(0001)/W(110) systems after
annealing at 450°C. Shown in the bottom is a Si(2p) photo-
electron spectrum obtained immediately after deposition of
a 20-Å-thick Si layer onto the Gd(0001) surface.
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Fig. 5. Variations in the Auger electron spectra during the deposition of silicon layers with different thicknesses (3, 12, and 50 Å)
onto the single-crystal films (a) Gd(0001)/W(110) and (b) Dy(0001)/W(110) measured at room temperature and after annealing at
450–500°C.
above assumptions of the bulk of the REM films
remaining unaffected after the interaction with thin Si
layers and the accumulation of the reacted silicon on
the surface of the REM films. The experiments showed
that silicon (in the form of silicide) is distributed
directly on the surface of the system, so that etching it
off leaves a film of a pure rare-earth metal down to the
REM/W(110) interface.

In conclusion, we note that silicide-like bonds
between the deposited silicon and an REM start to form
already at room temperature. As is seen from Figs. 5a
and 5b, the Si(LVV) Auger spectra measured after the
deposition of ~3 Å Si have a nearly silicide-like struc-
P

ture. Heating the system to 450–500°C only makes the
process more intense, which permits all deposited sili-
con to react with the rare-earth metal and, thus, to form
a thermodynamically stable system.

Thus, the above analysis of the experimental photo-
electron spectra [of the valence band and of the Si(2p)
core level] and the Auger electron spectra of the
Si/REM systems studied permits the conclusion that
the deposition of thin silicon layers on the surface of the
Gd(0001) and Dy(0001) single-crystal films, followed
by their annealing at 450–500°C, favors the formation
of 3D island films of the silicides of the corresponding
REM on the REM surface. After the annealing, the sili-
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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Fig. 5. (Contd.).
cide islands occupy a small fraction of the surface. The
island-free surface represents the Gd and Dy single-
crystal surfaces with a valence-band structure and a
symmetry similar to those of the starting REM films.
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Abstract—The reflectance anisotropy spectra of the clean (100) surfaces of the AlxGa1 – xAs ternary com-
pounds at aluminum concentrations 0 ≤ x ≤ 0.5 have been measured and thoroughly studied. In the spectral
range from 1.6 to 3.5 eV, the signal caused by the optical transitions in the arsenic dimers dominates in the spec-
tra of the clean arsenic-terminated GaAs surfaces. For the ternary compounds, an increase in the aluminum con-
centration brings about the broadening of this signal and its shift toward the low-energy range. This is explained
by the appearance of additional signals associated with the optical transitions in the nonequivalent arsenic
dimers, in which a part of the Ga atoms in the bulklike bonds is replaced by the Al atoms. An increase in the
number of the substituted gallium atoms leads to a decrease in the energy of optical transition in the dimer. The
fundamental optical transition energies are determined for the nonequivalent dimers. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, an optical modulation technique—
reflectance anisotropy spectroscopy—has been widely
used in studies of electronic states on the surfaces of
semiconductors [1]. For cubic semiconductors, this
method provides a means for separating weak signals
of optical transitions on the surface from much stronger
signals of the optical transitions in the bulk of a mate-
rial due to the difference in the polarization properties.
The (100) surfaces of A3B5 semiconductors, unlike
their bulk, possess a pronounced optical anisotropy. In
particular, the clean surface becomes anisotropic owing
to the reconstruction, which leads to the lowering of its
symmetry. This brings about the polarization of optical
transitions on the surface, as a result of which the
reflectances for the light linearly polarized along two
principal axes of the surface appear to be different. For
the (100) surface, the signal in the reflectance anisot-
ropy spectrum is defined as

where  and R110 are the reflectances for the nor-

mally incident light linearly polarized along the 
and 〈110〉  axes, respectively. Since the bulk of the A3B5
semiconductors, to a first approximation, can be
regarded as an optically isotropic medium, the reflec-
tance anisotropy signal from the bulk is equal to zero.
Nonzero signal can be formed only in the reconstructed
layer of atoms on the surface.

The clean GaAs(100) surfaces have been exten-
sively investigated in recent years by the reflectance
anisotropy spectroscopy under growth conditions of

∆R/R 2 R
110

R110–( )/ R
110

R110+( ),=

R
110

110〈 〉
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molecular beam epitaxy [2], MOS hydride epitaxy [3],
and upon annealing of samples passivated by sulfide
solutions [4]. These studies made it possible to obtain
the characteristic spectra corresponding to the known
reconstructions of the (100) surface. However, the
interpretation of these spectra involves considerable
difficulties, because, apart from the signals of optical
transitions between surface states, the spectra can
exhibit signals brought about by the transitions in the
adjacent bulk region perturbed by the surface of the
crystal. Specifically, the spectrum of the As-rich
GaAs(100) surface with the (2 × 4)/C(2 × 8) recon-
struction [2] shows a similarity to the spectrum of the
imaginary part of the permittivity for GaAs and con-
sists of two broad lines lying in the range of the bulklike
transitions E1, E1 + ∆1 (3 eV), and  (4.5 eV). Reason-
ing from this coincidence, the spectral features
observed were assigned to the transitions in the subsur-
face layer of the bulk [5].

According to another viewpoint [6–8], the reflec-
tance anisotropy spectrum of the GaAs(100) surface
with the (2 × 4)/C(2 × 8) reconstruction can be directly
connected with the transitions between electronic states
of the arsenic dimers, which represent the basic units of
the given reconstruction. The dimer is formed by the
two nearest-neighbor arsenic atoms on the (100) sur-
face and linked to four gallium atoms of the underlying
layer of the crystal. The optical transitions can occur
between orbitals of the dimer that are predominantly

oriented along the  axis of the surface. The tight
binding calculations have assigned the spectral feature
at an energy of 3 eV to the transition of an electron from

E0'

110[ ]
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the occupied dangling orbital to the antibonding orbital
of the arsenic dimer [7, 8].

It is obvious that, in the former case, the anisotropy
of the GaAs(100) surface is associated with the transi-
tions between the electronic states delocalized in the
subsurface region, and, in the latter case, it is caused by
the transitions between the localized states on the sur-
face.

The validity of these viewpoints can be experimen-
tally verified by the investigation of solid solutions of
the AlxGa1 – xAs ternary compounds. The lattice param-
eter of these compounds does not depend on the alumi-
num concentration. Consequently, it can be expected
that the configuration of arsenic dimers formed on the
As-terminated AlxGa1 – xAs(100) surface is identical to
that on the GaAs(100) surface. However, the nonequiv-
alent arsenic dimers should be formed in the ternary
compound due to the substitution of the Al atoms for
the Ga atoms in the nearest environment of the dimer.
It can be assumed that the spectral feature at an energy
of 3 eV stems from the transitions between the delocal-
ized states in the subsurface layer. Then, an increase in
the aluminum concentration in the composition of the
solid solution should lead to the shift of this feature
toward the high-energy range, as it was observed in the

a

b

c

d

E0

E1

∆R
/R

0.1%

2 3 4
Energy, eV

Fig. 1. Reflectance anisotropy spectra of the AlxGa1 – xAs(100)
oxidized surfaces at different aluminum concentrations x:
(a) 0, (b) 0.27, (c) 0.35, and (d) 0.5. Arrows show the ener-
gies of the bulklike transitions E0and E1. Horizontal
straight-line segments at the left indicate the levels of zero
signals.
P

permittivity spectrum of the bulk of a material [9]. If
the spectral feature results from the transitions between
the electronic states of the arsenic dimer, one can
expect its broadening and even splitting due to the for-
mation of dimers with other energies of the optical tran-
sition.

In the present work, we measured and investigated
the reflectance anisotropy spectra of the clean As-ter-
minated AlxGa1 – xAs(100) surfaces. The main purpose
of our investigation was to reveal the extent to which
these spectra are contributed by the optical transitions
localized at the arsenic dimers on the surface.

2. EXPERIMENTAL RESULTS

An experimental setup for recording the reflectance
anisotropy spectra was described in detail in [10]. The
experiments were performed using the AlxGa1 – xAs liq-
uid-phase epitaxial layers 6 µm thick with composi-
tions x = 0 and 0.27; moreover, we used the MOS
hydride epitaxial samples 2.3 µm thick with x = 0.35
and 0.5. The compositions of the solid solutions of ter-
nary compounds were refined from the reflectance
anisotropy spectra of the oxidized surfaces of samples.

Figures 1a–1d demonstrate the reflectance anisot-
ropy spectra of the oxidized (100) surfaces of the
p-AlxGa1 – xAs layers at several concentrations x in the
range from 0 to 0.5. In the spectrum of GaAs, the spec-
tral feature most clearly manifests itself in the energy
range of the bulklike transitions E1 and E1 + ∆1. This
feature is associated with the anisotropy of the linear
electrooptical effect induced by the space-charge elec-
tric field in the subsurface layer [10, 11]. As the alumi-
num concentration in the AlxGa1 – xAs solid solution
increases, the spectral feature shifts toward the high-
energy range, thus reflecting an increase in the energy
of the E1 and E1 + ∆1 transitions [9]. The compositions
of the solid solutions were refined from the location of
a minimum that corresponds to the energy of the E1
transition. It should be noted that a broad structureless
signal is also observed in the reflectance anisotropy
spectra over the entire energy range studied. A possible
reason for this signal is the shielding effect at the semi-
conductor–oxide interface [12]. In the energy range
below the absorption edge, the spectrum shown in
Fig. 1c exhibits oscillations caused by the interference
in the solid solution layer.

At present, there has been no technique for prepar-
ing clean AlxGa1 – xAs(100) surfaces by annealing of the
samples under ultrahigh vacuum. Earlier [13], it was
shown that the reconstructed GaAs(100) surface can be
obtained when the sample is in situ treated in a passi-
vating sulfide solution. The experimental procedure
devised in [13] was applied in the present work to the
ternary compounds. This procedure was as follows. A
sample was fixed in a quartz cell. The quartz cell was
filled with a 1 M Na2S · 9H2O solution, and immedi-
ately afterward the reflectance anisotropy spectrum of
HYSICS OF THE SOLID STATE      Vol. 42      No. 5      2000
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the sample in the solution was recorded. Then, the sam-
ple was isolated from the external lighting and left to
stand in the solution for 90–120 min. In this time inter-
val, the natural oxide was removed, instead of which
the passivating coating was formed on the sample sur-
face to prevent a further contact between the surface
and the solution. Then, the spectrum was recorded
again. The difference between the spectra obtained
characterizes the anisotropy due to the formation of a
passivating coating on the surface. Thereafter, the sam-
ple was exposed for a short time (several minutes) to
light with a quantum energy higher than the band gap
of the semiconductor, and the reflectance anisotropy
spectrum was recorded again. As was shown for the
GaAs(100) surface, exposure to the light brings about
the breaking of the As–S chemisorption bonds, which
are formed in the course of the “dark” treatment and
dominate on the crystal surface. As a result, the arsenic
dimers are formed on the surface under the passivating
coating. Note that the difference spectrum obtained
from the spectra prior to and after the exposure to light
appears to be identical to the spectrum of the clean
(100) surface with the (2 × 4) reconstruction [14].

The spectra of the GaAs(100) surfaces obtained
according to the above experimental procedure are
depicted in Fig. 2 (curves a–c). In all the spectra, the
signal decreases down to zero at energies above 3.5 eV
due to the absorption of light by the solution. Spectrum
d in Fig. 2 (the difference between spectra b and a)
characterizes changes observed in the reflectance
anisotropy spectra due to the dark treatment of the sur-
face in the solution. At energies below 3.5 eV, this spec-
trum is the sum of the monotonically increasing signal
caused by the formation of passivating coating on the
surface [13] and the narrow spectral feature near 3 eV,
which reflects the change in the subsurface electric field
[10]. Spectrum e (the difference between spectra c and
b) is associated with the anisotropy induced by the illu-
mination of the passivated surface by the light. This
spectrum is represented by the spectral line with a max-
imum at about 3 eV and coincides with the characteris-
tic spectrum of the clean GaAs(100) surface with the
(2 × 4) reconstruction (spectrum f ) [14].

Figure 3 displays the reflectance anisotropy spectra
of the clean As-terminated AlxGa1 – xAs(100) surfaces,
which were obtained in the same manner as spectrum e
in Fig. 2. It can be seen that, in the spectra of ternary
compounds, an increase in the aluminum concentration
leads to a considerable broadening of the line observed
in the spectrum of GaAs(100) at about 3 eV toward the
low-energy range, and, at x = 0.5, the signal maximum
is also shifted toward the low-energy range.

3. DISCUSSION

It is evident that the reflectance anisotropy spectra
of the AlxGa1 – xAs ternary compounds (Fig. 3) do not
follow the behavior observed in the spectra of the imag-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
inary part of the permittivity for these compounds,
which are displaced toward the high-energy range with
an increase in x. At the same time, the aforementioned
spectral changes can be easily explained under the
assumption that the reflectance anisotropy spectra in
the range 1.6–3.5 eV are predominantly contributed by
the optical transitions localized at the arsenic dimers on

a

b

c

d

∆R
/R

0.1%

2 3 Energy, eV

0.1%

d = b – a

f

e = c – b

Fig. 2. Reflectance anisotropy spectra of the (100) surface of
the GaAs sample in situ treated in a Na2S solution: (a)
immediately after the pouring of the solution, (b) after the
treatment in the solution without lighting for 120 min, and
(c) after exposure of the surface to the light. (d, e) Differ-
ence spectra characterizing the anisotropy induced at the
corresponding stage of treatment. (f) The characteristic
spectrum (obtained under ultrahigh vacuum [10]) of a clean
(100) surface with the (2 × 4) reconstruction. Horizontal
straight-line segments at the left indicate the levels of zero
signals.
0
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the surface. In the spectrum of GaAs, this contribution
is reflected by a single line at an energy of 3 eV. The
broadening and shifting of the reflectance anisotropy
spectra of the ternary compounds toward the low-
energy range with an increase in x are reasonably
explained by the splitting of this line due to the forma-
tion of nonequivalent arsenic dimers when the Al atoms
substitute for the Ga atoms in the bulklike bonds of the
dimer. In this case, as can be seen from the spectra, the
energy of optical transition in the nonequivalent dimers
should decrease with an increase in the number of the
substituted gallium atoms. This decrease can be quali-
tatively explained in the following way. The replace-
ment of the Ga atom by the more electropositive Al
atom leads to an increase in the electron density on the
As atom in the dimer. Then, the energy level of an elec-
tron in the dangling orbital of the dimer, from which the
optical transition occurs, is shifted toward the energy

0.1%
a

b

c

d

2 3 Energy, eV

∆R
/R

Fig. 3. Reflectance anisotropy spectra of the clean As-termi-
nated AlxGa1 – xAs(100) surfaces at different aluminum
concentrations x: (a) 0, (b) 0.27, (c) 0.35, and (d) 0.5. Hori-
zontal straight-line segments at the left indicate the levels of
zero signals.
P

level of the electron in vacuum. The level of the anti-
bonding state of the dimer is also shifted upward; how-
ever, since this state is more delocalized, the shift is
smaller. As a consequence, the energy of the optical
transition contributing to the reflectance anisotropy
spectrum is shifted toward the low-energy range. The
energies of optical transitions in arsenic dimers of dif-
ferent types can be exactly calculated within the tight
binding approximation.

The decomposition of the reflectance anisotropy
spectrum of the GaAs(100) surface with the (2 × 4)
reconstruction (see Fig. 3, spectrum a) is demonstrated
in Fig. 4. According to [14], in the spectral range from
1.6 to 3.5 eV, this spectrum can be represented as the
sum of the spectral line described by the Gaussian con-
tour with a maximum at 3 eV and the monotonically
increasing structureless signal. As follows from the
experimental data [15], the latter signal persists after

0.1%

(a)

(b)

2 3 Energy, eV

∆R
/R

Fig. 4. Decomposition of the reflectance anisotropy spectra
of the clean surfaces: (a) GaAs and (b) Al0.5Ga0.5As. Dotted
lines show the spectral lines corresponding to the optical
transitions in the nonequivalent As dimers. Dashed lines
represent the contributions of the bulk to the reflectance
anisotropy signal.
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Spectral parameters of optical transitions in the nonequivalent As dimers on the Al0.5Ga0.5As(100) surface

Atoms in bulklike bonds of As dimers 4Ga 3Ga + 1Al 2Ga + 2Al 1Ga + 3Al 4Al

Energy location of lines of optical transitions, eV 2.9 2.6 2.25 1.95 (1.6–1.65)?

Normalized integrated intensity (experiment) 0.06 0.255 0.38 0.255

Relative concentration of As dimers (calculation) 0.0625 0.25 0.375 0.25 0.0625
the complete oxidation of the surface. Therefore, it can
be assumed according to [16] that this signal reflects
the contribution of the subsurface bulk region to the
reflectance anisotropy spectrum.

The spectrum of the clean Al0.5Ga0.5As(100) surface
(Fig. 3, spectrum d) can be decomposed in a similar
way as the spectrum shown in Fig. 4a on the basis of the
following simple considerations. First, the broad struc-
tureless signal arising from the bulk anisotropy should
be strongly shifted toward the high-energy range owing
to an increase in the energy of the bulklike transitions
in the ternary compound and virtually should not over-
lap with the spectral feature attributed to the optical
transitions in the arsenic dimers. Second, it can be
assumed that the half-width of the decomposition com-
ponents corresponding to the optical transitions in the
nonequivalent dimers is identical to that of the Gauss-
ian contour in Fig. 4a. Since, at x = 0.5, the percentage
of the Ga and Al atoms is the same, the As dimers with
two Ga atoms and two Al atoms in the nearest environ-
ment are most probably formed on the clean
Al0.5Ga0.5As(100) surface. Consequently, the energy of
the appropriate optical transition should coincide with
the location of a maximum in the reflectance anisotropy
spectrum of the Al0.5Ga0.5As(100) surface. The total
number of the splitting components for the line associ-
ated with the arsenic dimers is equal to five, provided
that the energy of optical transition depends only on the
number of substituted gallium atoms. In Fig. 4b, a part
of the spectrum associated with the optical transitions
in dimers is represented as the sum of four components
corresponding to nonequivalent dimers of four types.
The neighboring components of the decomposition are
separated in energy by 0.3–0.35 eV. This allows us to
assume that the fifth component of decomposition asso-
ciated with the transitions in the As dimers with four Al
atoms in the nearest environment should lie in the
energy range 1.6–1.65 eV, which corresponds to the
boundary of the operating range of the experimental
setup. The energies and the normalized integrated
intensities of the decomposition components are listed
in the table.

It is clear that the intensity of each component of the
decomposition should be proportional to the concentra-
tion of dimers of a particular type on the surface. The
relative concentrations of nonequivalent arsenic dimers
of each type on the Al0.5Ga0.5As surface can be esti-
mated from probability considerations. If the total con-
centration of dimers is equal to unity, the sought con-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 5      200
centrations are equal to xk(1 – x)4 – k, where k is the
number of Al atoms in the nearest environment, and x
is the Al concentration in the solid solution. The table
presents the concentrations of nonequivalent dimers at
x = 0.5, which were calculated using this relationship.
It is seen from the table that the calculated concentra-
tions correlate well with the normalized integrated
intensities of the spectral lines corresponding to the
nonequivalent dimers.

Thus, in the present work, we obtained and examined
the reflectance anisotropy spectra of the (100) surfaces of
the AlxGa1 – xAs ternary semiconductors. It is revealed
that the spectra of the oxidized surfaces of the ternary
compounds are similar to the spectrum of GaAs. This
enables us to draw the inference that the reflectance
anisotropy in the ternary compounds, as in GaAs, can be
represented as the sum of two contributions, one of
which is associated with the subsurface electric field, and
the other contribution is due to the shielding effect at the
semiconductor–oxide interface. The spectra of the clean
As-rich AlxGa1 – xAs surfaces were obtained using non-
vacuum technique under conditions when the samples
were in the sodium sulfide solutions. It is found that, in
the spectral range 1.6–3.5 eV, the reflectance anisotropy
signals are primarily brought about by the localized opti-
cal transitions in the nonequivalent arsenic dimers differ-
ing in the number of Al atoms in the bulklike bonds
(from 0 to 4). As the number of Al atoms increases by
one atom, the energy of optical transition in the dimer
decreases by approximately 0.3 eV. The fundamental
optical transition energies are determined for the non-
equivalent dimers of four types.

Moreover, it was found that the spectra of the clean
AlxGa1 – xAs surfaces, like the spectra of GaAs, exhibit
a structureless monotonically increasing signal attrib-
uted to the transitions in the subsurface perturbed layer
in the bulk of the semiconductor. With an increase in x,
the signal shifts toward the high-energy range in much
the same manner as the spectrum of the imaginary part
of the permittivity for ternary compounds.
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Abstract—The high-frequency dielectric spectra of liquid crystals of the alkylcyanobiphenyl group with vari-
ous length of the mobile alkyl chain CnH2n + 1 (n = 5–8) are experimentally studied. It is established that a reso-
nance feature is observed in the frequency range of 300 MHz for all the crystals on the high-frequency branch
of the orientational part of dielectric spectra. It is shown that the position of the dielectric resonance is virtually
independent of the temperature and the degree of crystal dilution by benzene, but its intensity essentially
depends on both factors. The nature of the dielectric resonance found is probably caused by the intramolecular
motion of methylene fragments, which are strongly bound with a rigid core of molecules. © 2000 MAIK
“Nauka/Interperiodica”.
For a number of mesomorphic phases of liquid crys-
tals, the dielectric spectra often involve portions with a
significant deviation from the Debye dispersion law. As
a rule, the spectra are characterized by high- and low-
frequency distortions depending on the molecule struc-
ture, magnitude, and type of the liquid-crystal order.
The low-frequency part of the dispersion (radio-fre-
quency range) is usually associated with the features of
the orientational collective motion of molecules and
mobile ionic charges [1, 2]. The high-frequency part of
the spectrum is the least understood, and additional
mechanisms of dielectric relaxation related to the
intramolecular mobility are currently only assumed to
take effect in a decimeter wavelength range [3, 4]. In
our earlier detailed study [5] of the dielectric spectra of
the 4-n-pentyl-4'-cyanobiphenyl (5CB) liquid crystal in
the frequency range 50–1000 MHz, we found that, in
the vicinity of 300 MHz (and at higher frequencies with
an increase in the temperature), there is a rather strong
deviation of the spectrum from the Debye monotonic
dependence. 

The present work is devoted to the study of the
dielectric spectra in a decimeter wavelength range on
the samples of liquid crystals from the series of 4-n-
alkyl-4'-cyanobiphenyls with a various length of the
mobile alkyl chain CnH2n + 1 (n = 5–8). As is known, the
rigid core of molecules in the cyanobiphenyl com-
pounds of liquid crystals is formed by two benzene
rings, along the axis of which the strongly polar group
C≡N is situated on one side of the core (this group has
a large dipole moment oriented along the long axis of
the molecule) and the flexible hydrocarbon chains
(“tails”), which consist of –CH2– groups, are located on
the other side of the core. All the samples under study
are nematic liquid crystals by type of liquid-crystal
1063-7834/00/4205- $20.00 © 20987
ordering, and only for the 8CB crystal, there is also the
smectic phase in the temperature range 20.9 ≤ t ≤
33.5°C. The dielectric spectrum of each sample was
taken twice for two states of the crystal. For measure-
ments in the nematic phase, the temperature was set
5 K below the temperature tni of transition from the
nematic state to the isotropic state, and in the case of the
isotropic phase, the temperature was set 2 K above tni. 

The dielectric properties of liquid-crystal
mesophases were investigated in the frequency range
50–500 MHz, which corresponds to the most pro-
nounced resonance feature in the spectrum [5]. This
range of decimeter wavelengths is rather difficult to
carry out reliable measurements. For this reason, we
used specially devised miniature tunable microwave
sensors based on the ring-shaped microstrip resonators.
The sensors and techniques of resonance measure-
ments were described in [5, 6]. A liquid crystal was
placed inside an UHF measuring cell in the antinode of
a high-frequency electric field between two gold-
coated surfaces 2 × 2 mm in size with a spacing of
100 µm. The parallel orientation of long axes of the liq-
uid crystal molecules with respect to the high-fre-
quency field was achieved with the help of the uniform
constant magnetic field H = 2.5 kOe. The temperature
of the measuring cell was stabilized with an accuracy of
0.1°C and could be varied from 0 to 60°C. 

The spectra of the real part of the permittivity for
5CB, 7CB, and 8CB liquid crystal samples, which were
taken in the nematic phase under the molecular director
orientation parallel to the polarization of the high-fre-
quency field (f), are given in Fig. 1 (curves 1, 2, and
3, respectively). In order not to overload the figure, the
spectrum for a 6CB liquid crystal is not shown, because
it almost coincides with the spectrum of the 5CB liquid
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crystal sample. The absolute precision of the (f) mea-
surements is shown in curve 1. This precision was
observed in all the experimental curves and was equal
to ±0.02. It can be seen that all the curves are qualita-
tively similar to each other, and the main feature of each
dielectric spectrum is a clearly revealed maximum near
280 MHz ( ) and a minimum near 350 MHz ( ).
The behavior of (f) in the range under consideration
indicates the existence of dielectric resonance, which is
observed at about the same frequency for all the sam-
ples under study. 

To put it differently, the resonance location is inde-
pendent on the length of the alkyl chain in cyanobiphe-
nyls. However, as is known, this length rather strongly
affects the Debye relaxation frequencies fD. Actually,
the fD frequencies measured for 5CB, 7CB, and 8CB
liquid crystals at temperatures 5 K below tni are equal
7.2, 6.2, and 5.45 MHz, respectively [7]. As the length
of alkyl “tails” increases, i.e., when passing from the
less “inertial” composition to the more “inertial”
(Fig. 1), one can observe not only a decrease in the per-
mittivity of the liquid crystal samples at high frequen-
cies, but also a significant decrease in the dielectric res-
onance intensity, which can be evaluated from the dif-
ference (  – ). 

Note that the intensity of the resonance observed
monotonically increases with an increase in the temper-
ature. It follows from the experiment that, upon transi-
tion from the nematic phase to the isotropic phase, the
resonance intensity increases for all the samples stud-
ied more than three times. However, in this case, the
characteristic frequencies corresponding to  and

 virtually do not change, and, hence, the location of
the dielectric resonance does not change as well. It is of
interest to note that the resonance observed rather well
manifests itself in the smectic phase, which exists in the
8CB liquid crystal. The dielectric spectra of this liquid
crystal are shown in Fig. 2. These spectra were mea-
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Fig. 1. Frequency dependences of the real part of the permit-
tivity for (1) 5CB, (2) 7CB, and (3) 8CB liquid crystals in
the nematic phase. 
P

sured for three different phases, namely, the smectic
(t = 28.5°C), nematic (t = 35.8°C), and isotropic liquid
(t = 42.2°C) phases. It is seen that, upon transition from
the nematic phase to the smectic phase, the intensity of
resonance decreases approximately three times, but its
location on the frequency axis remains as before. 

It is known that the Debye relaxation frequency of
liquid crystals increases with an increase in the temper-
ature. As a result, the orientational part of the dielectric
spectrum shifts to the right toward the high-frequency
range. It is also known that, as the length of alkyl chain
in a liquid crystal molecule increases, the fD frequency,
on the contrary, decreases, and, as a consequence, the
orientational part of the dielectric spectrum shifts
toward the low-frequency range. Therefore, taking into
account the results of experiments presented in Figs. 1
and 2, we can conclude that the intensity of the dielec-
tric resonance observed increases in any cases when the
relaxation region of the spectrum (induced by the polar-
ization of liquid crystal molecules) approaches this res-
onance. 

The degree of deviation of the experimentally
observed dielectric spectra from the Debye frequency
dependences of the permittivity for liquid crystals from
the series of alkylcyanobiphenyls was evaluated in [1–4]
according to the Cole–Cole diagrams. The high-fre-
quency distortions in the diagrams, as a rule, are
described by a set of internal relaxation regions of the
Debye type. In this case, the frequency dependence of
the real part of the permittivity (ω) is represented in
the form 

(1)

where  and τk are the kth components of the static

permittivity and relaxation time, respectively; and  is

εD'

εD' ω( ) ε∞'–
εk' ε∞'–

1 ω2τk
2+

--------------------,
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Fig. 2. Frequency dependences of the real part of the permit-
tivity for 8CB liquid crystal in (1) smectic phase, (2) nem-
atic phase, and (3) isotropic state. 
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the rf permittivity. Because of the limited number of
experimental points presented in the papers, the spec-
tral components of these regions and, first of all, the
reasons for their appearance still remain unclear. 

However, in the present work, we established that
the deviation from the Debye dependence in the high-
frequency part of the dielectric spectrum most likely
can be connected with the resonance behavior of alkyl-
cyanobiphenyls at high frequencies rather than with
their relaxation behavior. Evidence for this conclusion
is the absence of the characteristic frequency shift in
the dispersion region of the dielectric spectrum with a
change in the temperature of samples, which is cer-
tainly not typical of the relaxation processes. The loca-
tion of a maximum in the frequency dependence of the
imaginary part of the permittivity (Fig. 3) determines
the resonance vibrational frequency, which turned out
to be approximately identical (about 320 MHz) for all
the samples studied. 

The experiments performed demonstrate that the
origin of the dielectric resonance found is brought
about by the excitation of intramolecular vibrations.
This is confirmed by the following findings. First, the
resonance intensity increases with an increase in the
temperature of samples, which especially clearly man-
ifests itself in the nematic–isotropic liquid phase transi-
tion. Second, upon dilution of liquid crystals by ben-
zene (up to 50% benzene content in the sample vol-
ume), the resonance intensity first significantly
increases and then monotonically decreases, the reso-
nance frequency being unchanged. 

1

2

3

100 200 300 400
0.1

0.2

0.3

ƒ, MHz

=ε''

Fig. 3. Frequency dependences of the imaginary part of the
permittivity for (1) 5CB, (2) 7CB, and (3) 8CB liquid crys-
tals in the nematic phase. 
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The vibrations of flexible alkyl groups can be the
most probable intramolecular motions connected with
the dielectric resonance. However, the fact that the fre-
quency of the resonance found is virtually independent
of the length of the alkyl chain suggests that only cer-
tain methylene fragments can contribute to the vibra-
tional process. This assumption is well justified with
the data obtained by the NMR method [8, 9]. According
to these data [8, 9], the order parameter is strongly non-
uniform along the length of alkyl chain. Its value dras-
tically decreases toward the chain end and remains
almost the same for the three first fragments in all alkyl-
cyanobiphenyl compounds. It is quite probable that it is
these vibrations of the first alkyl chain fragments
strongly bound with the rigid core that manifest them-
selves as the dielectric resonance found at the end of the
Debye dispersion region. The natural frequencies of
vibrations of the next alkyl chain fragments are signifi-
cantly higher, and, probably, the resonances observed at
frequencies of 450–1000 MHz in the isotropic phase of
a 5CB liquid crystal are caused by these fragments [15]. 
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