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According to the Multiple Point Principle, our Universe is on the coexistence curve of two or more phases of
the quantum vacuum. The coexistence of different quantum vacua can be regulated by the exchange of the glo-
bal fermionic charges between the vacua, such as baryonic, leptonic, or family charge. If the coexistence is reg-
ulated by the baryonic charge, all the coexisting vacua exhibit the baryonic asymmetry. Due to the exchange of
the baryonic charge between the vacuum and matter, which occurs above the electroweak transition, the bary-
onic asymmetry of the vacuum induces the baryonic asymmetry of matter in our Standard Model phase of the
quantum vacuum. The present baryonic asymmetry of the Universe indicates that the characteristic energy
scale, which regulates the equilibrium coexistence of different phases of quantum vacua, is about 106 GeV.
© 2004 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION 

Dealing with quantum vacuum whose “microscopic”
physics is still unknown, the high-energy, general-rela-
tivity, and condensed-matter communities use different
experience developed in working in each of those fields
[1]. In condensed matter, there is a rather general class
of fermionic systems, where the relativistic quantum
field theory gradually emerges at low energy and where
the momentum-space topology is responsible for the
mass protection for fermions, so that masses of all the
fermions are much smaller than the natural energy scale
provided by the microscopic (trans-Planckian) physics
[2]. Since the vacuum of the Standard Model belongs to
the same universality class of quantum vacua, this con-
densed-matter example provides us with some criteria
for selection of the particle physics theories: the theory
which incorporates the Standard Model must be consis-
tent with its condensed-matter analogue.

Here, we apply such criteria to the Multiple Point
Principle (MPP) [3–6]. According to MPP, nature
chooses the parameters of the Standard Model such that
two or several phases of the quantum vacua have the
same energy density. These phases coexist in our Uni-
verse in the same manner as different phases of quan-
tum liquids, such as superfluid phases A and B of 3He
or mixtures of 3He and 4He liquids. Using MPP, Nielsen
and coworkers arrived at some prediction for the corre-
lation between the fine structure constants in their
extension of the Standard Model. The fine tuning of the
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coupling constants is similar to the fine tuning of the
chemical potentials of the coexisting quantum liquids
in equilibrium.

The problem of the Standard Model parameters is
thus related to the problem of the vacuum energy and,
correspondingly, to the cosmological constant problem.
It was suggested [6] that MPP can serve as a basic prin-
ciple to explain the present value of the cosmological
constant. From the condensed-matter point of view,
such connection is rather natural. According to obser-
vations, the cosmological constant is (approximately)
zero in our phase of the quantum vacuum, which is why
it must be (almost) zero in all the coexisting vacua as
well. In condensed matter, such nullification of the vac-
uum energy occurs for the arbitrary phase of the quan-
tum vacuum. This happens due to the thermodynamic
Gibbs–Duhem relation, according to which the micro-
scopic (trans-Planckian) degrees of freedom exactly
cancel the contribution to the vacuum energy from the
low-energy (sub-Planckian) degrees of freedom [2].
The phenomenon of nullification is so general that it
must be applicable to any macroscopic system includ-
ing the quantum vacuum of relativistic quantum fields,
irrespective of whether the vacuum is true or false, and
even if we do not know the microscopic physics.

Since the MPP is justified by the condensed-matter
analogue, we can apply it to different problems related
to quantum vacuum. Here, we discuss the scenario of
the baryonic asymmetry of the Universe, which follows
from MPP.
004 MAIK “Nauka/Interperiodica”
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2. ADJUSTMENT OF THE QUANTUM VACUUM 
AFTER PHASE TRANSITION

The phase transitions between different quantum
vacua does not influence the phenomenon of nullifica-
tion of the vacuum energy: the energies of the vacuum
are zero both above the transition and also after some
transient period below the phase transition. In quantum
liquids, the microscopic degrees of freedom, which
adjust themselves to nullify the energy density in a glo-
bal equilibrium, are the underlying bare particles—
atoms of the liquid. The number density n of atoms
changes after the phase transition, and this compensates
the change of the vacuum energy. For example, after the
phase transition between superfluid 3He-A and super-
fluid 3He-B, the relative change in the particle density is

(1)

Here, the superfluid transition temperature Tc character-
izes the energy scale of the superfluid phase transition
and also the transition between 3He-A and 3He-B; the
Fermi energy EF @ Tc characterizes the atomic (Planck)
energy scale of the liquid. It is important that the cor-
rection to the microscopic parameter n (and also to EF:
δEF/EF ~ δn/n) is very small, and, thus, it does not influ-
ence the parameters of the effective theory of superflu-
idity in the low-energy corner.

The translation to the language of the Standard
Model is almost straightforward. Let us consider the
relative change of the microscopic (trans-Planckian)
parameters needed to nullify the vacuum energy of the
Standard Model after, say, the electroweak phase tran-
sition. In this case, one must identify Tc ≡ Eew and EF ≡
EPl (the Planck energy). The relative change of the
microscopic parameters in quantum liquids corre-
sponds to the relative change of the Planck physics
parameters, and, thus, one can identify δn/n ≡ δEPl/EPl.
However, Eq. (1) is not applicable for the Standard
Model. The reason is that the fermionic density of
states (DOS) in the Standard Model above the elec-
troweak phase transition differs from the DOS in liquid
3He above the superfluid phase transition. The vacuum
in nonsuperfluid normal 3He above the superfluid tran-
sition belongs to the Fermi-surface universality class,
while the vacuum of the Standard Model above the
electroweak transition belongs to the universality class
with Fermi points. That is why they have different den-

sity of fermionic states: N(E)  const ~  ≡  in
the vicinity of the Fermi surface and N(E)  E2 in the
vicinity of the Fermi point. Thus, the energy density

related to superfluidity is (E = TC) ~ , while
the energy density involved in the electroweak transi-

tion is (E = Eew) ~ . This gives an additional

factor / ; as a result, the relative correction to the
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Planck energy needed to compensate the energy change
of the vacuum after the electroweak transition is

(2)

Such response of the vacuum is so extremely small that
it cannot influence the parameters of the effective low-
energy theory, the Standard Model.

This demonstrates that the adjustment of the deep
vacuum does not lead to any sizable correlation
between the parameters of the Standard Model, and,
thus, the cosmological constant problem has nothing to
do with the parameters of the effective theory. How-
ever, the MPP contains a stronger assumption than the
statement that each vacuum always acquires zero
energy. It assumes that several essentially different
vacua have zero energy simultaneously, i.e., these
vacua coexist in the same Universe (though the phase
boundaries between different vacua can be well beyond
the cosmological horizon). The coexistence, though it
does not influence the parameters of the effective theo-
ries, leads to other physical consequences, such as
baryonic asymmetry of the Universe. Let us discuss the
principles of the coexistence of quantum vacua using as
an example the coexisting quantum liquids, where the
coexistence can be regulated by both microscopic and
macroscopic parameters (analogues of microscopic or
macroscopic fermionic charges).

3. COEXISTING VACUA

Let us first consider the quantum liquid formed by
the mixture of k sorts of atoms. An example of the mix-
ture of k = 2 components is provided by the liquid solu-
tion of 3He atoms in 4He liquid. The number of atoms
Na of each species a is conserved, and it serves as the
conserved microscopic fermionic charge of the vacuum
(the ground state of the mixture). The relevant vacuum
energy whose gradient expansion gives rise to the effec-
tive quantum field theory for quasiparticles at low
energy is [7]

(3)

where * is the Hamiltonian of the system, 1a is the
particle number operator for atoms of sort a in the mix-
ture, and µa is their chemical potential. If the liquid is
in equilibrium, it obeys the Gibbs–Duhem relation,
which expresses the energy E = 〈*〉  through the other
thermodynamic variables, including the temperature T,
the entropy S, the particle number Na = 〈1a〉 , and the
pressure P:

(4)
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From this thermodynamic relation and Eq. (3), one
obtains at T = 0 the familiar equation of state for the
vacuum, which is valid both for relativistic and nonrel-
ativistic systems:

(5)

where we also introduced the energy density e = E/V
and particle number density na = Na/V.

If the system is isolated from the environment, its
pressure is zero and, thus, the energy density is zero
too:

(6)

For such condensed-matter systems, in which the effec-
tive gravity emerges in the low-energy corner, this
equation means that the effective cosmological con-
stant is zero. This nullification occurs without fine tun-
ing for any vacuum since the microscopic degrees of
freedom (the particle number densities na and chemical
potentials µa) automatically adjust themselves in equi-
librium in such a way that the Gibbs–Duhem relation
(4) is satisfied.

The more components the liquid has, the more flex-
ible the vacuum state is, and, as a result, the number ν
of different vacua which can coexist is bigger. In such
flexible system, the Multiple Point Principle naturally
emerges. For the system with k components, the maxi-
mal number of different vacua which can coexist being
separated by the phase boundaries is νmax = k (see the
figure for ν = k = 3), and all of these vacua have zero

energy density:  = 0 (i = 1, …, νmax). This results
from the following consideration. The coexisting vacua
must have the same chemical potentials µa because of
the exchange of particles between the vacua. They also
have the same pressure P = 0 (and the same temperature
T = 0). Thus, for each vacuum i, the pressure as a func-
tion of the chemical potentials must be zero: P(i)(µ1, µ2,
…, µk) = 0. All these ν equations can be satisfied simul-
taneously if ν ≤ k. This is the conventional phase rule
[8] which is constrained by the condition that two ther-
modynamic variables are fixed, P = 0 and T = 0.

4. COEXISTENCE OF VACUA REGULATED
BY EFFECTIVE FERMIONIC CHARGES

Does the coexistence of quantum vacua lead to
observable consequences for the effective field theories
emerging in these vacua? The answer is yes if some of
the variables na are soft variables belonging to the low-
energy world, such as the density of the baryonic
charge stored in the vacuum. An example is provided
by the superfluid phases of 3He, A and B, which can
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coexist at T = 0 and P = 0 in an applied magnetic field
H [9]. The corresponding vacuum energy density is

(7)

where n is the number density of 3He atoms, S is the
density of the angular momentum which comes from
the spins of the atoms (each atom has spin "/2), Ω = γH,
and γ is the gyromagnetic ratio of the 3He atom. For a
given direction of the magnetic field, say, H = , the
liquid can be represented as the mixture of the k = 2
components, with spin up and spin down:

(8)

where

(9)

Since we have effectively k = 2 components, the ν = 2
vacua can coexist in the absence of the environment,
i.e., at P = 0. This is the reason why A and B phases can
coexist at T = 0 and P = 0.

Unlike the variable n, the fermionic charge Sz is a
soft variable since, in typical situations, it is zero (in the
absence of external magnetic field). When the two
vacua coexist, both variables n and Sz adjust themselves
to nullify the pressure (and, thus, to nullify the “cosmo-
logical constant” ρvac) in each of the two phases. How-
ever, while the change of the particle density is negligi-

bly small, δn/n ∝  /  ! 1, the change of the vari-
able Sz is substantial since it changes from zero. The
energy density related to nonzero Sz is on the order of

ρvac e µn– Ω S,⋅–=
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Example of ν = 3 coexisting vacua A, B, and C in a droplet
of a substance with k = 3 conserved charges, N1, N2, and N3.
The droplet is isolated from the environment, so that, in all
three vacua, the pressure P = 0 if the curvature of the bound-
ary of the droplet and the curvature of interfaces are
neglected. That is why the energy density is also zero in all
three coexisting vacua: ρA = ρB = ρC = 0. Volumes VA, VB,
and VC occupied by the three vacua are determined by the
total microscopic fermionic charges of the droplet: the par-
ticle numbers N1 = VAn1A + VBn1B + VCn1C, N2 = VAn2A +
VBn2B + VCn2C, and N3 = VAn3A + VBn3B + VCn3C.
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/ . Comparing this with the superfluid energy

, one finds that the characteristic spin density of
the vacuum which emerges to compensate the AB
phase transition is

(10)

This is much bigger than the relative change in the par-
ticle density n after adjustment in Eq. (1). As a result,
the parameters of the effective theory, which describe
superfluidity, also change considerably. In particular,
the originally isotropic B phase becomes highly aniso-
tropic in the applied magnetic field (or at nonzero spin
density of the liquid) needed for coexistence of A and
B phases.

Note that Sz is the fermionic charge of the vacuum,
and, in principle, it is not related to the fermionic charge
of matter, since, in our example, the matter (quasiparti-
cles) is absent. However, the charge asymmetry in the
vacuum sector can cause the charge asymmetry in the
matter sector due to exchange between the vacuum and
matter. The resulting excess of the fermionic charge in
the matter sector can induce the nonzero matter density
even at T = 0. This is similar to the nonzero matter den-
sity in our Universe caused by the baryonic asymmetry
of matter. Let us consider how this baryonic charge can
be induced.

5. COEXISTENCE AND THE BARYONIC 
ASYMMETRY OF THE VACUUM

Let us start with the baryonic charge of the vacuum
of the relativistic quantum field exploiting an analogy
between the macroscopic global charges: the spin Sz of
the quantum liquid in its ground state and the global
charges in our quantum vacuum, such as the baryonic
charge B (or the family charge F [10]). The spin Sz of
the liquid must be nonzero to provide the coexistence of
the A and B vacua in superfluid 3He at T = 0. In the
same manner, the baryonic charge B or family charge F
could naturally arise in the quantum vacuum to estab-
lish the equilibrium between the coexisting phases of
the vacuum.

Let us consider the coexistence of several vacua
whose physics differ below the energy scale Ece ! EPl.
Such vacua can result from the broken symmetry phase
transition, which occurs at T ~ Ece, and we assume that
the ordered phases differ by their residual symmetries
H. The energy densities involved in the coexistence of

the vacua are on the order of . Let us assume that the
coexistence is regulated by the exchange of the bary-
onic charge between the vacua. Then, one can estimate
the density of this baryonic charge in the vacua by

equating the energy density difference  and the
energy density of the vacuum due to the nonzero charge

Sz
2 EPl

2

Tc
2EPl

2

n↑ n↓– TcEPl
2 , n↑ n↓–

n↑ n↓+
-----------------

Tc

EPl
-------.∼∼

Ece
4

Ece
4

density B. If the baryonic charge is stored in the micro-
scopic degrees of freedom of the quantum vacuum, the
energy density related to this charge must be on the

order of B2/ . As a result, the baryonic charge density
of the vacuum needed for the coexistence of different
vacua is

(11)

Thus, the coexistence results in the baryonic asymme-
try in the vacuum sector. In turn, the nonzero baryonic
charge of the vacuum could be in the origin of the bary-
onic asymmetry of the matter in our Universe—an
excess of the baryons over antibaryons, nB > . Let us
consider this mechanism of baryogenesis.

6. FROM BARYONIC ASYMMETRY
OF THE VACUUM TO BARYONIC ASYMMETRY 

OF THE UNIVERSE

If an exchange of the baryonic charge between the
vacuum and matter is possible, the chemical potential
for the baryons in matter must be equal to the chemical
potential for the baryonic charge in the vacuum. The
latter is nonzero due to the nonzero baryonic charge in
the vacuum sector in Eq. (11):

(12)

At temperature T @ µB, one obtains the following esti-
mation for the baryonic charge stored in the matter sec-
tor (in the gas of relativistic fermions):

(13)

However, the exchange between the vacuum and matter
occurs (due to axial anomaly) only at T above the elec-
troweak transition, T > Eew. Below the transition, at T <
Eew, the exchange with the quantum vacuum is highly
suppressed: the transition rate due to the sphaleron
mechanism becomes exponentially weak [11, 12]. At
the moment of the phase transition, i.e., at T ~ Eew, the
baryonic asymmetry of matter (primordial baryon-to-
entropy ratio) is

(14)

Below the transition, the baryonic charge in the matter
sector is completely separated from the vacuum and
evolves together with matter, while the density of the
baryonic charge in the vacuum sector remains constant.

In the matter sector, the baryonic density evolves in
the same way as the entropy and, thus, the baryon-to-
entropy ratio η remains the same as at the moment of
transition. To obtain the value η ~ 10–10, which follows
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from the cosmological observations [11, 12], the char-
acteristic energy Ece, related to the baryonic charge of
the vacuum, must be

(15)

In analogy with A and B phases of 3He, this corre-
sponds to the transition temperature Tc at which the
coexisting vacua were formed due to symmetry break-
ing.

The main point in this scenario of the baryogenesis
is that the vacuum and matter are two subsystems,
whose properties related to the fermionic (baryonic)
charge are different. In condensed matter, the analo-
gous exchange of spin charge between the superfluid
vacuum and quasiparticles (matter) plays an important
role in the spin dynamics of the system (see [13] and
Section 8.6 in [9]).

7. CONCLUSIONS
In conclusion, the gravitating part of the vacuum

energy is always zero in equilibrium vacuum, ρvac = 0,
even if the cosmological phase transition occurs. The
nullification after the phase transition is supported by
automatic adjustment of the microscopic ultraviolet
degrees of freedom. However, because of the huge
energy stored in the microscopic degrees, the relative
change in the microscopic parameters is extremely
small, and this adjustment practically does not influ-
ence the parameters of the effective infrared theories.
As a result, the Multiple Point Principle, which implies
the coexistence of two or several different (i.e., not con-
nected by symmetry) vacua, naturally occurs, and all
the coexisting vacua automatically acquire zero energy
without any fine tuning.

If the Universe is on the coexistence curve, this may
lead to the observable physical consequences related to
the fermionic charges of the vacuum and matter. In par-
ticular, if the coexistence is regulated by the exchange

Ece 10 5– EewEPl 106 GeV.∼ ∼
JETP LETTERS      Vol. 79      No. 3      2004
of the baryonic charge, all the coexisting vacua acquire
the baryonic asymmetry. The latter in turn gives rise to
the baryonic asymmetry in the matter sector.

According to Eqs. (15) and (11), the density of the
baryonic charge in the vacuum sector is rather high,

Bvac ~ 10–26 . What are the consequences of such CP
violation in the quantum vacuum is the subject of fur-
ther investigations.

I thank A.F. Andreev for illuminating discussion.
This work was supported by ESF COSLAB Program
and by the Russian Foundation for Basic Research.
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Data of the radiochemical experiment (E.L. Fireman, 1978) with 1.7 t of KC2H3O2, accumulated deep under-
ground during .1 yr, were reanalyzed to set limits on dinucleon (nn and np) decays into invisible channels (dis-
appearance, decay into neutrinos, etc.). The obtained lifetime bounds τnp > 2.1 × 1025 yr and τnn > 4.2 × 1025 yr
(at 90% C.L.) are better (or competitive) than those established in the recent experiments. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 13.30.-a; 14.20.Dh
The more than three-decade-long searches for pro-
ton decay, which is predicted by the Grand Unified
Theories, continue to be one of the most important and
intriguing subjects in the quest for effects beyond the
Standard Model of elementary particles [1]. Up to now,
only lifetime limits were established for such pro-
cesses, being on the level of τ > 1030–1033 yr for
nucleon decay into particles, which can strongly or
electromagnetically interact with the nuclei contained
in the detector’s sensitive volume [2]. Recently, interest
has increased in nucleon decays into so-called “invisi-
ble” channels (which are complementary to conven-
tional ones [2]), when a nucleon or pair of nucleons
decay into some weakly interacting particles (for exam-
ple, neutrinos) or disappear. The last possibility is
related with theories describing our world as four-
dimensional brane embedded in a higher-dimensional
structure [3–5]. According to [5], the disappearance of
particles into extra dimensions is a generic property of
matter. Searches for disappeared energy and/or
momentum in particles’ collision are planned with
accelerators at high energies [6]. An experiment to
search for the disappearance of orthopositronium is dis-
cussed in [7]. Perspectives to search for invisible decays
of neutrons and dineutrons in 12C with the 1000 t Kam-
LAND detector are examined in [8], and sensitivities of
future a 1000-t lead perchlorate detector for n disap-
pearance in 35Cl and 208Pb are considered in [9].

As for the to-date status, the most stringent limits for
nucleon and dinucleon decay into invisible channels
have been known from the experiments performed dur-
ing few last years (all bounds are given with 90% C.L.):

(1) τp > 3.5 × 1028 yr—from the number of free neu-
trons which could be created as a result of p disappear-
ance in deuterium nuclei (d = pn), which are contained
in 1000 t of D2O of the SNO apparatus [10];

¶ This article was submitted by the authors in English.
0021-3640/04/7903- $26.00 © 20106
(2) τp > 3.9 × 1029 yr and τn > 3.9 × 1029 yr—from
the number of γ quanta with Eγ = 6–7 MeV which will
be emitted in deexcitation of 15O or 15N after n or p dis-
appearance in 16O nucleus in 1000 t of the SNO heavy
water [11];

(3) τpp > 5.0 × 1025 yr and τnn > 4.9 × 1025 yr—from
the search for decay of radioactive nuclei (10C, 11Be,
and 14O) created after pp and nn disappearance in 12C,
13C, and 16O nuclei in liquid scintillator (4.2 t of C16H18)
and water shield (1000 t) of the BOREXINO Counting
Test Facility [12];

(4) τnp > 3.2 × 1023 yr—from the search for decay of
134I created as a result of np disappearance in 136Xe
[13].

In order to improve the τnp limit, we reanalyze here
the data of the old radiochemical experiment [14]
where the daughter nuclide 37Ar was searched for as a
possible product of the p or n disappearance in 39K. The
target, 1710 kg of potassium acetate KC2H3O2, which
contains 9.7 × 1027 atoms of 39K, was exposed deep
underground (the Homestake mine, 4400 m w.e.) for
more than 1 yr. The production rate of 37Ar, extracted
from the target and detected due to its radioactive decay
37Ar  37Cl (T1/2 = 35 days), for the last 3.5-month
period was measured as 0.3 ± 0.6 atom/day. On this
basis, the authors of [14, 15] have accepted the limit on
the production rate of 37Ar as 1 atom/day and have cal-
culated the restrictions on the p and n lifetimes. For

example, after the p decay in , the nucleus  will
be created, as a rule being in an excited state (unless the
disappeared p was on the outermost shell). The authors
estimated that, in 22.2% of cases, an additional neutron

will be emitted from  in the deexcitation process,

giving rise to an  nucleus [14, 15]. Similarly, after

K39
19 Ar38

18

Ar38
18

Ar37
18
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the n disappearance in initial , produced  emits
p with a 20.4% probability, which will also result in the

 nucleus. From these values, accounting for 19

protons and 20 neutrons in the , the limits τp = τn =
1.1 × 1026 yr were set [14, 15].

However, the same data can be used to calculate the
τnp limit, just noticing that the simultaneous disappear-

ance of the np pair in  also will produce the 
nucleus. The corresponding limit on the lifetime can be
derived by using the formula

(1)

where Nnucl is the number of 39K nuclei,  is the
“effective” number of objects (here, np pairs) whose
disappearance in the parent nucleus will result in the
creation of the daughter nuclide, t is the time of mea-
surements, and limS is the number of effect’s events
which can be excluded at a given confidence level on
the basis of the experimental data.

According to the Feldman–Cousins procedure [2,
16], the measured value of the 37K production rate S/t =
0.3 ± 0.6 atom/day results in the limit limS/t =
1.28 atom/day at 90% C.L. Conservatively, supposing

only one np pair (for one unpaired proton in the 
nucleus; disappearance of the outermost proton and
neutron on the nucleons shell in the parent nucleus will
produce a daughter in a nonexcited state) and using
Eq. (1) with Nnucl = 9.7 × 1027, we obtain the following
np lifetime limit:

In addition, the τnn bound can also be determined:

the disappearance of the nn pair from  nucleus will

give , which quickly decays again to  with

T1/2 = 1.2 s [17].1 The number of objects, , can be
calculated in the following way [12, 18, 19]. After the
disappearance of neutrons with binding energies

(A, Z) and (A, Z) in (A, Z) nucleus, the excita-
tion energy of the (A – 2, Z) daughter, Eexc, can be

approximated as Eexc = (A, Z) + (A, Z) – 2Sn(A,
Z), where Sn(A, Z) is the binding energy of the least
bound neutron in the (A, Z) nucleus. In the process of
deexcitation of the (A – 2, Z) daughter, only γ quanta
can be emitted when the value of Eexc is lower than the
binding energy of the least bound nucleon in the (A – 2,
Z) nucleus: Eexc < SN(A – 2, Z), where SN(A – 2, Z) =

1 Unfortunately, the disappearance of the pp pair results in the cre-

ation of stable nucleus  and, thus, cannot be investigated in
this approach.
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min{Sn(A – 2, Z), Sp(A – 2, Z)}.2 Under this condition,
we receive the restriction on the values of the neutrons

binding energies: (A, Z) + (A, Z) < 2Sn(A, Z) +
SN(A – 2, Z).

Values of the separation energies Sn and Sp were

taken from [20]. Single-particle energies (A, Z) for

neutrons in the  nucleus were calculated with the
WSBETA code [21] using the Blomqvist–Wahlborn
parametrization of the Woods–Saxon potential [22].
The calculated value of the neutron separation energy

 = 13.08 MeV is in good agreement with the exper-

imental value  = 13.07 MeV [20]. We conserva-
tively suppose that contributions to the effective num-

ber of objects, , give only paired neutrons (i.e.,
neutrons with equal values of all quantum numbers,
except for the magnetic quantum number) and neglect
contributions from other neutrons. Taking into account
that the binding energies of such particles are equal, the

appropriate equation is as follows: (A, Z) < 2Sn(A,
Z) + SN(A – 2, Z). This condition gives only two nn pairs

whose disappearance from  will produce relatively

low-excited daughter , which emit only γ quanta
(hence, cannot be transformed to a nucleus with A < 37
as a result of ejection of additional nucleons). Substitut-

ing the values Nnucl = 9.7 × 1027,  = 2, and limS/t =
1.28 atom/day in Eq. (1), one gets

In conclusion, reanalysis of the data of the radio-
chemical experiment of Fireman [14] allows us to
establish the limits τnn > 4.2 × 1025 yr and τnp > 2.1 ×
1025 yr at 90% C.L. The τnn value is near the same as
that given recently by the BOREXINO Collaboration
(τnn > 4.9 × 1025 yr [12]), while the obtained value for
τnp is two orders of magnitude higher than that set in
[13] and is the most restrictive up-to-date limit for np
decays into invisible channels.
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Based on the comparison of the iteration procedure of solving the Bethe–Salpeter equation and the Monte Carlo
method, we developed a method for simulating coherent multiple-scattering effects within the framework of a
unified stochastic approach. The time correlation function and the interference component were calculated for
the coherent backscattering from a multiply scattering medium. © 2004 MAIK “Nauka/Interperiodica”.
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Numerical simulation based on the stochastic
Monte Carlo method is widely used to calculate the
intensity of scattered radiation in randomly inhomoge-
neous turbid media [1]. However, a special approach is
required to apply the method for simulating coherent
effects, which manifest themselves even in the presence
of strong multiple scattering and have attracted increas-
ing interest in recent years [2–8].

In this work, the stochastic Monte Carlo method is
compared with a theoretical approach based on the rep-
resentation of the Bethe–Salpeter equation in the form
of a multiple scattering series to show how this method
is generalized within the framework of a unified sto-
chastic approach for calculating time correlations of
intensity, coherent backscattering, and other coherent
effects.

The field correlation function in an inhomogeneous
dispersive medium with random space–time fluctua-
tions of the dielectric constant is described by the inte-
gral Bethe–Salpeter equation

(1)

Here, the Green’s function (propagator) Γ(R2, R1, t |ks,
ki) of the Bethe–Salpeter equation describes the propa-
gation of a pair of time-shifted (by t) complex conju-
gate fields from the point R1 with the incident wave
vector ki to the point R2 with the outgoing wave vector
ks; ks = ki = k = nk0, where k0 = 2π/λ is the wavenumber,
λ is the wavelength; n = n1 + in2 is the refractive index
of a medium; and (2n2k0)–1 = l is the photon mean free
path. For simplicity, we restrict ourselves only to the
case where the intrinsic absorption is absent and light
losses are caused only by elastic scattering. In this case,

Γ R2 R1 t ks ki,, ,( ) µpt ki ks–( )δ R2 R1–( )=

+ µ pt k23 ks–( )Λ R23( )Γ R3 R1 t k31 ki,, ,( ) R3.d∫
0021-3640/04/7903- $26.00 © 20109
the scattering coefficient is µ = l–1. The function Λ(R) =
R–2exp(–R/l) is the product of a complex conjugate pair
of Green’s functions of the corresponding wave equa-
tion and describes the radiation propagation between
two scattering events. The function pt(ki – ks) is
expressed in terms of the Fourier transform of the pair
correlation function of dielectric constant fluctuations
and coincides at t = 0 with the scattering phase function
p0(ki – ks) = p(ki – ks).

Let a scattering medium occupy the half-space z > 0,
where z is the Cartesian coordinate normal to the
medium boundary. For the normal incidence and back-
scattering, the incoherent component of the time corre-
lation function is described by the ladder-diagram
series and has the form

(2)

For scattering angles θs close to 180°, the interference
component caused by the cyclic [9, 10] or fan diagrams
is comparable with the ladder component:

(3)

The incident and scattered beams lie in the (x, z) plane.

C L( ) t ks ki,( ) R1 R2dd∫=

× Γ R2 R1 t ks ki,, ,( ) µ z1 z2+( )–[ ] .exp

C V( ) t ks ki,( ) R1 R2dd∫=

× Γ R2 R1 t
ks ki–

2
---------------

ki ks–
2

---------------,, , 
 

---– µ pt ki ks–( )δ R2 R1–( )

× µ z1 z2+( )– ik0 x1 x2–( ) θssin+[ ] .exp
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At t = 0, Eq. (2) describes the backscattering inten-
sity. Correspondingly, Eq. (3) determines the peak in
the coherent backscattering.

By integrating the Bethe–Salpeter equation, one
arrives at a series that is usually illustrated by a series
of ladder diagrams.

Let us compare the analytic procedure of summing
ladder-diagram series with the Monte Carlo method.
The first term of the iterative series describes single
scattering, the second term describes two scattering
events, etc. Similarly, the Monte Carlo method
describes the radiation propagation as a stochastic pro-
cess consisting of 1, 2, …, N scattering events. The
addition of one ladder section Λ(Rn n + 1)p0(kn n + 1 –
kn + 1) in the theoretical description is realized in the
numerical experiment by modeling the photon paths
through a certain distance s to the next scattering event.
The main assumption in the stochastic Monte Carlo
method consists of postulating the distribution law
f(s) = µexp(–µs) for the photon mean free path as a ran-
dom variable s [11]. It follows from this distribution
that s = –µ–1lnξ, where ξ is the probability that the
mean free path is no less than s. In the Monte Carlo
method, the arbitrary ξ value is chosen in the [0, 1]
interval using a random number generator. The change
in the direction of motion of the photon package in each
elastic scattering event is determined by the scattering
phase function.

Physically, the series arising upon the iteration of
Eq. (1) is a series in scattering multiplicity. If the inte-
gration with respect to Ri is replaced by a random
choice Ri = s and the integration with respect to Ri is
realized by a random choice of angles with the statisti-
cal weight determined by the phase function, then the
solution of the Bethe–Salpeter equation is simulated by
the Monte Carlo scheme described above, making it
possible to use it for calculating coherent effects.

The majority of applications [12, 13] are devoted to
the diffusion mechanism of inhomogeneity time evolu-
tion, for which the time correlation function of intensity
fluctuations can be represented as the product of static
correlation function and exponential

(4)

where Ds is the self-diffusion coefficient. The only dif-
ference between the calculation of the time correlation
function and the calculation of intensity is that the

pt q( ) p0 q( ) Dsq
2
t–( ),exp≈

Intensity of backscattered light as a function of the layer
thickness L for various anisotropy parameters

L = l* L = 2l* L = 5l* L = 10l* ∞

0 0.3481 0.5254 0.7507 0.8665 1

0.9 0.3214 0.5318 0.7784 0.9003 1

θcos
weight of the photon package is multiplied by the phase
function pt(kn – kn – 1) in each scattering event.

The number of incident photons varied in the range
105–107. The simulation of photon trajectory was termi-
nated when the number of scattering events exceeded
104. We also disregarded photons whose statistical
weights became less than 10–3. This neglect leads to an
error no higher than 10–5, because, according to our
estimates, the probability of detecting such a photon on
the surface is no higher than 10–2. The accuracy of cal-
culated parameters was tested by the stability of numer-
ical values upon increasing the sample size. For a num-
ber of 105, the intensity is stable with an accuracy of no
less than four decimal places.

The time correlation function of the field g1(t) was
calculated for media with various anisotropy factors

 = 0, 0.5, and 0.9. The Henyey–Greenstein phase

function was used in simulation. In terms of ,
where τ = 1/Dsk2 is the characteristic diffusion time of
a scattering particle through a distance on the order of
the wavelength, the time correlation function is virtu-
ally universal and is independent of the anisotropy of
single scattering, in agreement with experiments [12,
13] and theoretical solution in the P1 approximation
[14], while the specificity of the scattering system is
taken into account upon the transition to the description
in units of characteristic time τ. The dependence
obtained for the time correlation function is well

described by the formula g1(t) ∝  exp(–γ ) pro-
posed in [13].

The time correlation function was calculated for
layers of different thickness. The corresponding depen-

dence on the average cosine  of the single-scatter-
ing angle is weak enough for finite-thickness layers, as

is seen in the table, where l* = l(1 – )–1 is the
transport mean free path.

Figure 1 shows the results of simulation of the field
time correlation functions for finite-thickness layers

with  = 0.9. As is seen, the diffusion character of

light propagation with a linear dependence on 
reveals itself at increasingly large times with a decrease
in thickness. Good agreement with the experimental
data is noteworthy: Fig. 1 almost exactly reproduces
Fig. 2 from [13].

Figure 2 also shows the angular dependence of the

coherent backscattering peak calculated for  = 0,
0.5, and 0.9. It follows from Eq. (3) that, in the case of
normal incidence and small backscattering angles, the
difference from the expression for the intensity of the
incoherent component consists only in the presence of
the additional factor exp(iq⊥ (r1 – r2)), which can be
replaced by cos(q⊥ (r1 – r2)) because of the transla-
tional invariance about the transverse coordinates r.

θcos

t/τ

6t/τ

θcos

θcos

θcos

t/τ

θcos
JETP LETTERS      Vol. 79      No. 3      2004



COHERENT MULTIPLE SCATTERING EFFECTS AND MONTE CARLO METHOD 111
Then, when calculating the intensity of the back-
scattering coherent component, one should, first, multi-
ply the total weight of photon packages arriving with
vector ks at distance ρ from the entry point at the inter-
face by the factor cos(q⊥ r) and, second, take the sum
over the entire surface.

Similarly to the time correlations, the angular
dependence of the coherent backscattering peak inten-
sity proves to be universal in the dimensionless variable

 = kl*sinθs and is well described by the formula
ICBS ∝  exp(–γkl*sinθs) with γ = 2. Note that the
obtained universal dependence ICBS ∝  exp(–γkl*sinθs)
with γ = 2 differs significantly from the dependence
[15]

predicted in the diffusion approximation for kl*sinθs !

1, where z* = 0.71(1 – )–1. This formula gives the

slope γ(diff) = 2.3 for  = 0 and γ(diff) = 0.71 for

  1.
Contrary to the diffusion approximation, which pre-

dicts that the linear slope of the coherent backscattering
peak decreases with an increase in anisotropy, the
dependence calculated by us indicates the universal
character of a decrease. If the phase function is strongly
anisotropic, the coherence effects can be quite pro-
nounced, despite the smallness of these parameters. In
particular, the decay of intensity time correlations is
governed by the parameter t/τ, which can be much

q̃

ICBS
diff 1 2

1 z*+( )2

1 2z*+
---------------------kl* θs,sin–∝

θcos

θcos

θcos

Fig. 1. Time correlation functions g1 of backscattered radi-
ation for layers with thickness L = (×) l*, (m) 2l*, (e) 5l*,
(d) 10l*, and (h) ∞ (semi-infinite medium). All data are
normalized to the intensity of light diffusively reflected
from the semi-infinite medium. The optical parameters of

the medium are µ = 30 mm–1 and  = 0.9.θcos

g1
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greater than the parameter (t/τ)(l/l*). It is precisely due
to this fact that the intensity correlation functions are
described by the multiple-scattering theory even if they
decrease by two orders of magnitude.

In this work, the coherent effects in multiple scatter-
ing have been simulated within the framework of a uni-
fied stochastic approach. Similar calculations can eas-
ily be carried out for suspensions that are usually
treated as a system of hard spheres [16]. The phase
function for this system is represented as the product of
the Mie form factor and the Percus–Yevick structure
factor.

The comparative analysis carried out in this work
enables one to considerably simplify the simulation of
radiation transport and coherent effects in randomly
inhomogeneous strongly scattering media, such as liq-
uid crystals, tissues, etc., and to extend the application
field of these methods.

We are grateful to D.Yu. Churmakov for assistance
in calculations and V.P. Romanov for valuable advice.
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The concept of spin fluctuations in the Hubbard model is used for deriving a closed system of equations for the
superconducting order parameter ∆ and spin susceptibility. The limiting cases of low temperatures and temper-
atures close to the superconducting transition temperature are considered. The temperature dependences of the
parameter ∆ and the Knight shift are obtained. The conditions under which the second-order phase transition
turns to the first-order phase transition are established. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.20.De; 71.10.Fd; 71.27.+a
In studies of the possibility of superconductivity in
the Hubbard model [1], it was found that the effect of
spin fluctuations reduces to the appearance of a finite
spin-flip relaxation rate (1/τs) proportional to the mean-
square spin fluctuation Ks: 1/τs ~ Ks. In turn, the quan-
tity Ks is proportional to the product Ks ~ Tχs of the tem-
perature and spin susceptibility. In the metallic nonsu-
perconducting phase, the susceptibility is virtually
independent of temperature, so that the reciprocal
relaxation time proves to be directly proportional to
temperature.

In the Hubbard model, one has

(1)

where νn is the density of states at the Fermi surface and
µ is the Fermi energy.

In the Emery–Hirsch model,

(2)

where ep, d are the energies of the one-particle p and d
states and χp, d are the susceptibilities of the p and d sub-
systems.

In the superconducting state, the spin susceptibility
becomes temperature-dependent because of a decrease
in the number of normal electrons. The spin susceptibil-
ity normalized to the susceptibility of the normal phase,
χs/χn, can be expressed in terms of the reciprocal spin-
flip relaxation time using the well-known relation [2, 3]

(3)

1
τ sn

------ 12πνnµ
2Tχn,=

1
τ sn

------ 3πνn

eped( )2

2µ2
-----------------T χ p χd+( ),=

χs
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2πT
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The quantity uk in this equation can be expressed as a
function of the half-integer parameter k + 1/2:

(4)

The equation for the superconducting order parameter
∆ can be written as the sum

(5)

where Tc0 is the superconducting transition temperature
calculated in the limit τs  ∞.

The system of Eqs. (3)–(5) assumes a closed form if
we write the relation between the relaxation time and
the spin susceptibility as

(6)

As was noted above, the quantity 1/τsn is directly pro-
portional to temperature, so that parameter ζn is a con-
stant quantity dependent only on the properties of the
normal metal but independent of temperature. Below,
we assume that it does not exceed unity.

Equations (3)–(6) form a closed system of equations
for determining the superconducting order parameter ∆
and the depairing parameter

To clarify the general picture, we note that the main
Eq. (4) has the form of the fourth-degree equation in

wk k
1
2
---+ uk 1 ζ T( )

uk
2 ∆/2πT( )2+

---------------------------------------–
 
 
 

,= =

ζ T( ) 1
2πTτ s

---------------.=

T
Tc0
-------ln 1

uk
2 ∆/2πT( )2+

--------------------------------------- 1
k 1/2+
-----------------–

 
 
 

,
k 0>
∑=

ζ T( ) = 
1

2πTτ s

--------------- = 
1

2πTτ sn

-----------------
τ sn

τ s

------ = 
1

2πTτ sn
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χs

χn

----- = ζn

χs

χn

-----.

ϕ s 1/∆τ s 2πTζ T( )/∆.= =
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variable uk, so that we can obtain the explicit depen-
dence of uk on the discrete variable wk = k + 1/2:

. (7)

In accordance with the general theory of algebraic
equations, the solution to Eq. (7) can be expressed
through one of the real roots of the following cubic
equation:

(8)

In our case with ζ < ζn < 1, we have only a single real
root

(9)

In this case, the required function uk is defined through
z after solving one of the two quadratic equations (for
details, see, for example, [4]).

This gives

(10)

For each given value ζn, self-consistency condition (6)
assumes the form of dependence ζ = f(x). In the new
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Fig. 1. Dependence of the depairing parameter ζ(T) on
∆/2πT.

ζ(
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)

variables, we obtain the following equation:

(11)

The numerical solution of this equation is presented in
Fig. 1 for four different values of ζn.

Thus, for all ζn < 1, the quantity ∆/2πT is in one-to-
one correspondence with the parameter ζ(T). However,
the temperature dependence of these parameters is not
always unambiguous.

In the low-temperature range T ! ∆ the susceptibil-
ity is proportional to the density of normal electrons
and can be determined from relations (3) and (4) in the
limit ζ(T) = 0 and uk = k + 1/2 = wk:

(12)

When written in this form, it coincides with the well-
known Yosida formula [5].

In this limit, one can perform summation in Eq. (5)
for ∆:

(13)

Here, the natural notation ∆0 = ∆(0) = πTc0/γ is intro-
duced, where γ = exp(C) and C ≈ 0.577 is the Euler con-
stant.

The next approximation is found by the expansion
in parameter ζ(T):

(14)

It turns out that, in addition to the regular quasiparticle
term, the low-temperature correction to ∆0 also con-
tains the contribution from paramagnetic fluctuations:

(15)

Using expansion (14), we obtain

(16)

The contribution to the magnetic susceptibility from the
paramagnetic fluctuations turns out to be small com-
pared to (12),
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Next, we consider equations linearized with respect to ∆.

The equation for the transition temperature can be
found from Eqs. (5) and (6) with χs = χn and ∆ = 0:

(18)

After the summation, we find

(19)

In the limit T = 0, χs = 0 and we have uk = k + 1/2. Then,
using Eq. (5), we arrive at the classical relation

(20)

From the comparison of Eqs. (13) and (19), we find the
ratio 2∆(0)/Tc,

(21)

which proves to be greater than its classical value
2π/γ ≈ 3.53…. The corresponding curve is shown in
Fig. 2.

In the superconducting region T ≤ Tc, a decrease in
the spin susceptibility χs can be expressed in terms of
the temperature slope of parameter ∆(T).

By expanding the self-consistency equations in
small parameter (∆/2πT)2, we obtain

(22)

where 

Here, ψ(k)(x) are the kth derivatives of ψ(x), while the
obtained equation coincides with the well-known rela-
tions for superconductors with paramagnetic impurities
[6].

In order to determine the temperature slope with
which ∆ turns to zero, it suffices to expand the left-hand
side of Eq. (22) in powers of (Tc – T)/Tc and ζ(T) – ζn.
This gives

(23)

Here, the superconducting transition temperature and
the correction to the depairing parameter are deter-
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mined from the conditions

(24)

The first nonvanishing correction to the susceptibility
can be found by expanding Eqs. (3) and (4) in powers
of ∆/2πT:

(25)

This gives for the temperature slope

(26)

where

(27)

It can be seen that, when the temperature decreases
below T ≤ Tc, a decrease in the spin susceptibility χs is
accompanied by an increase (in absolute value) in the
temperature slope of parameter ∆(T) because of the
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Fig. 2. Dependence of 2∆0/Tc on the depairing parameter ζn.
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appearance of the additional coefficient B2(ζn). For the
critical value ζc ≈ 0.105, the coefficients of ∆2 vanishes.

In the low-temperature range, where the intensity of
spin fluctuations is exponentially small, the physical
properties of the superconductor are qualitatively the
same as for an ideal superconductor. The energy gap in
the excitation spectrum coincides with ∆, the density of
states has a root singularity, and the ground-state energy

Fig. 3. Temperature dependence of the spin susceptibility
χs(T)/χn for various values of parameter ζn.

Fig. 4. Temperature dependence of the superconducting
order parameter ∆(T)/∆0 for various values of parameter ζn.

Fig. 5. Temperature dependence of the density ns(T)/ne of
superconducting electrons for various values of parameter ζn.
can be expressed in terms of ∆ using the same formula
as in the BCS theory. The formulas for the Knight shift
and the specific heat in this range have the same expo-
nential form but with different preexponential factors.

As the temperature increases, the spin-flip relaxation
rate increases in parallel with the increase in the spin
susceptibility. In the vicinity of the transition point, the
temperature slope of spin susceptibility is determined
by expansion (25). The temperature slope of parameter
∆ is determined from formula (26). The susceptibility
curves are shown in Fig. 3, from which one can see that
the expansion in powers of the distance from the transi-
tion point is valid only for extremely small values of
parameter ζn ! 1. In the range ζn ! 1, our equations are
equivalent to those in the theory of superconductors
with a low concentration of paramagnetic impurities
[6]. However, even for ζn ≈ 1/10, a decrease in the spin
fluctuations with increasing number of superconducting
electrons becomes so rapid that the superconducting
order parameter and the density of superconducting
electrons ns/ne = 1 – χs/χn become increasing functions
of temperature (Figs. 4, 5).

Hence, it follows that, starting with the critical value
ζc, our system becomes unstable, leading to a first-order
phase transition. If ζn > ζc, the transition temperature
determined from Eq. (19) should be treated as a super-
cooling temperature. In the intermediate range between
the supercooling and superheating temperatures, super-
conductivity exists in a mixed phase whose physical
properties deserve special analysis.

Thus, spin fluctuations appreciably reduce the effec-
tive BCS constant that determines the superconducting
transition temperature, as compared to the constant
determining the energy gap in the limit T  0. As a
result, it has become possible to explain the experimen-
tally observed value of parameter 2∆(0)/Tc that is higher
than in the BCS theory. At the same time, the reverse
effect of Cooper pairing on spin fluctuations leads to
their suppression. Under certain conditions, this effect
causes a rapid increase in parameter ∆ with temperature
and the occurrence of a first-order phase transition with
a small heat release.

REFERENCES
1. R. O. Zaœtsev, Pis’ma Zh. Éksp. Teor. Fiz. 56, 355 (1992)

[JETP Lett. 56, 339 (1992)].
2. A. A. Abrikosov and L. P. Gor’kov, Zh. Éksp. Teor. Fiz.

42, 1088 (1962) [Sov. Phys. JETP 15, 752 (1962)].
3. L. P. Gor’kov and A. I. Rusinov, Zh. Éksp. Teor. Fiz. 46,

1363 (1964) [Sov. Phys. JETP 19, 922 (1964)].
4. Handbook of Mathematical Functions, Ed. by M. Abra-

mowitz and I. A. Stegun, 2nd ed. (Dover, New York,
1972; Nauka, Moscow, 1979).

5. K. Yosida, Phys. Rev. 110, 769 (1958).
6. A. A. Abrikosov and L. P. Gor’kov, Zh. Éksp. Teor. Fiz.

39, 1781 (1960) [Sov. Phys. JETP 12, 1243 (1960)].

Translated by N. Wadhwa
JETP LETTERS      Vol. 79      No. 3      2004



  

JETP Letters, Vol. 79, No. 3, 2004, pp. 117–120. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 79, No. 3, 2004, pp. 148–152.
Original English Text Copyright © 2004 by Kostko, Anisimov, Sengers.

                                                                                                 
Probing Structural Relaxation in Complex Fluids 
by Critical Fluctuations¶
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Complex fluids, such as polymer solutions and blends, colloids, and gels, are of growing interest in fundamental
and applied soft-condensed-matter science. A common feature of all such systems is the presence of a mesos-
copic structural length scale intermediate between the atomic and macroscopic scales. This mesoscopic struc-
ture of complex fluids is often fragile and sensitive to external perturbations. Complex fluids are frequently vis-
coelastic (showing a combination of viscous and elastic behavior), with their dynamic response depending on
the time and length scales. Recently, noninvasive methods to infer the rheological response of complex fluids
have gained popularity through the technique of microrheology, where the diffusion of probe spheres in a vis-
coelastic fluid is monitored with the aid of light scattering or microscopy. Here, we propose an alternative to
traditional microrheology that does not require doping of probe particles in the fluid (which can sometimes
drastically alter the molecular environment). Instead, our proposed method makes use of the phenomenon of
“avoided crossing” between modes associated with the structural relaxation and critical fluctuations that are
spontaneously generated in the system. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.25.Hq; 83.80.Rs; 83.85.Ei
A liquid mixture in the vicinity of a critical point of
mixing exhibits large concentration fluctuations. The
dynamics of such critical concentration fluctuations in
molecular liquids is well understood: the fluctuations
decay exponentially with a diffusive relaxation time [1]

(1)

where q is the wave number of the critical fluctuations,
ξ is the spatial correlation length of the fluctuations,
and D is the mesoscopic (q-dependent) diffusion coef-
ficient. D vanishes at the critical point in the limit of
zero wave number approximately as ξ–1 ~ ε0.63, where
ε = (T – Tc)/T is the reduced distance between the tem-
perature T and the critical temperature Tc. In molecular
fluids, the q-dependent diffusion coefficient is well
described by the mode-coupling theory of critical
dynamics [2, 3]:

(2)

where kB is Boltzmann’s constant and the apparent vis-
cosity ηapp is expected to be equal to the solution vis-

¶ This article was submitted by the authors in English.
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cosity η measured by macrorheology; zη . 0.065 [4] is
a universal dynamic scaling exponent. The function
K(q, ξ) is a universal (Kawasaki) function with
K(qξ  0) = 1; the function Ω(ξ/ξD) =
2/π  is an approximated dynamic cross-
over function, where ξD is a cutoff length for the critical
fluctuations [5, 6].

However, new phenomena emerge in a complex
fluid where ξD is a mesoscopic length that may compete
with the correlation length ξ of the concentration fluc-
tuations. The presence of two mesoscale lengths in
near-critical complex fluids causes the appearance of
two dynamic modes: one will be a diffusive decay of
the critical concentration fluctuations and the other one
will be a structural relaxation mode, which often
reveals itself as viscoelastic relaxation. The decay time
of the diffusive mode can be tuned over a broad range
of time scales by varying the reduced temperature ε, so
that it may intersect the structural relaxation time,
which is insensitive to the proximity to the critical
point. As a consequence, it becomes possible to probe
structural relaxation in complex fluids by dynamic light
scattering of critical fluctuations. This method is an
alternative to the traditional microrheology [7–9] that
requires doping of probe particles in the fluid.

As an illustration of this principle, we have per-
formed accurate light-scattering measurements of solu-

ξ /ξD( )arctan
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tions of nearly monodisperse polystyrene (with molec-
ular weights M ranging from 104 to 107) in cyclohexane
[10, 11]. The major result of our study is that the critical
dynamics in polymer solutions appears to be very dif-
ferent from that in molecular fluids. Even for a modest
polystyrene molecular weight of 195, 900, with the
dynamic correlation function obeying a single-expo-
nential decay, the apparent viscosity ηapp extracted
from dynamic light scattering (DLS) (on the basis of
Eq. (2) with the correlation length ξ determined by
static light scattering [10]) is vastly different from both
the macroscopic viscosity of the solution and the vis-
cosity of the solvent (Fig. 1). But, in terms of this appar-
ent (“mesoscopic”) viscosity, the mesoscopic diffusion
coefficient at various angles can be well described by
Eq. (2) (lines through the symbols, Fig. 2). The perti-
nent question is: What is the physical meaning of this
mesoscopic viscosity determined with DLS? Disagree-
ments between the predictions of the mode-coupling
theory for molecular fluids and the DLS data in near-
critical polymer solutions have also been noted by oth-
ers [12, 13] but have not yet been explained.

We have observed an even more dramatic change in
dynamics in high-molecular-weight (M = 106 and
higher) polymer solutions, where the dynamic correla-
tion function turns out to deviate from a single-expo-
nential decay and where two dynamic modes are
clearly present. Far from the critical point, a fast mode
dominates, while, close to the critical point, a slow
mode dominates. Between these extremes, the data can
be approximated by a sum of two exponentials, indicat-
ing contributions from both modes. The presence of
two dynamic modes near the critical temperature

Fig. 1. Apparent mesoscopic viscosity of a solution of poly-
styrene (M = 195, 900) in cyclohexane as a function of ε =
(T – Tc)/T obtained by fitting the experimental light-scatter-
ing data to the mode-coupling theory. The dotted curve rep-
resents the viscosity of the solvent (cyclohexane), and the
dashed curve represents the macroscopic viscosity of the
same solution [12].
appears to be a universal feature in macromolecular
systems and has been observed also by Ritzl et al. [14]
for an M = 1 million polystyrene solution in cyclohex-
ane and more recently by Tanaka et al. [15] for an M =
4 million polystyrene solution in diethyl malonate.
These modes are effective dynamic modes, neither of
which is purely viscoelastic (dictated by polymer chain
dynamics) or purely diffusive (associated with the
decay of critical fluctuations). Instead, the two
observed modes emerge from a coupling of diffusive
and viscoelastic modes, which belong to two different
dynamic universality classes, pertaining to conserved
and nonconserved order parameters [16]. The challenge
is to quantitatively understand this coupled dynamic
crossover behavior. A starting point in explaining the
dynamics is the Brochard–De Gennes theory [17–19],
which predicts a coupling of diffusion and chain relax-
ation in polymer solutions that has been subsequently
detected experimentally in noncritical polymer solu-
tions [20–22].

We submit that the Brochard–De Gennes theory can
be applied to any system with dynamic coupling
between conserved and nonconserved order parame-
ters. Phenomenologically, it follows from this theory
that the time-dependent intensity correlation function is
the sum of two exponentials:

(3)g2 t( ) 1 f +
t
τ+
-----–exp f –

t
τ–
----–exp+

 
 
 

2

,+=

Fig. 2. Mesoscopic diffusion coefficient of a solution of
polystyrene (M = 195, 900) in cyclohexane as a function of
ε = (T – Tc)/T measured at three scattering angles. The sym-
bols represent experimental data, while the curves represent
the critical contribution predicted by the mode-coupling
theory with the mesoscopic viscosity shown in Fig. 1.
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with the two decay times (slow τ– and fast τ+) and cor-
responding amplitudes (f ±) given by

(4)

(5)

In Eq. (4), τve is the q-independent viscoelastic
relaxation time, τq is the q-dependent diffusion relax-
ation time, and ξve is the mesoscopic viscoelastic length
[23]. The above theory indeed grasps the essential fea-
tures of our data (Figs. 3 and 4) if we use ξve and τve as
adjustable parameters. In addition, to obtain τq = 1/Dq2,
we need to use the apparent mesoscopic viscosity ηapp
in Eq. (2). The predictions for the two uncoupled modes
(pure diffusion and pure viscoelastic relaxation) are
indicated by the dashed curves in Fig. 3. While the dif-
fusion relaxation time changes rapidly when the critical
point is approached, the viscoelastic relaxation time
exhibits a regular dependence on temperature. While
the original uncoupled modes would cross each other at
a certain temperature, the coupling produces two effec-
tive modes that “avoid crossing” each other very much
similar to the well-known avoided crossing of two cou-
pled energies [24]. Therefore, the microrheological
characteristics can be deduced from scattering data in a
near-critical fluid, since one can vary the diffusion
relaxation time over many orders, thus probing the rel-
evant viscoelastic times over the same range.

While ξve (as expected [23, 25]) appears to be pro-
portional to the viscosity, it was not clear a priori which
viscosity is the appropriate quantity, the mesoscopic
ηapp or the macroscopic η at zero shear rate. Our study
has shown that ξve is proportional to the apparent
(mesoscopic) viscosity measured by DLS. A further
notable point is the shift in Fig. 3 between the calcu-
lated diffusion mode (long-dashed curve) and the
observed slow mode (τ–, solid curve). The data suggest

that τ– is slowed down at nanoscales by a factor 
with respect to the diffusion mode. For example, at M =
11.4 million and a scattering angle of 30°, where length
scales of about q–1 = 137 nm are probed and ξve reaches
200 nm, the slow mode is shifted from 0.4 to 1.5 s. We
may attribute this anomalous slowing down of the fluc-
tuations to “diffusion trapped by viscoelasticity at the
nanoscale,” and we expect this effect to be ubiquitous
in viscoelastic systems. Note that this effect of addi-
tional slowing down at smaller scales (large q) is oppo-
site to the famous critical slowing down, which
becomes more pronounced at larger scales (small q). In
Fig. 4, the experimental amplitudes of these effective
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dynamic modes are compared with the theoretical ones
calculated with Eq. (5). We submit that our interpreta-
tion of the coupled modes on the basis of the Brochard–
De Gennes theory does account for the essential phys-
ics of the phenomenon. The analysis of the observed
avoided crossing of two coupled modes has a good sen-
sitivity because the amplitudes of the two effective

Fig. 3. Dynamic modes in a solution of polystyrene (M =
11.4 million) in cyclohexane for q, corresponding to a scat-
tering angle of 30°. Open symbols represent the experimen-
tal relaxation times of the two observed modes. The solid
curves represent the relaxation times of the effective “slow”
and “fast” modes calculated with Eq. (4). The long-dashed
curve represents the uncoupled critical-diffusion decay
time. The short-dashed curve represents the uncoupled vis-
coelastic relaxation time.

Fig. 4. Amplitudes of the two effective dynamic modes as a
function of ε = (T – Tc)/T in a near-critical polymer solution.
Solid curves are theoretical predictions for the amplitudes
(Eq. (5)).
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modes become of the same order of magnitude in the
avoided-crossing domain (Fig. 4).

The key results obtained in our study are significant
far beyond just the near-critical polymer solutions
investigated. The coupling between diffusion-like and
structure relaxation modes is expected whenever such
modes are close to each other, and thus, scanning the
diffusivity decay times by any means (varying compo-
sition, temperature, or pressure) will reveal the struc-
tural relaxation. Our results are relevant for a variety of
complex fluids in which critical phenomena couple
with a mesoscopic structure and/or viscoelastic relax-
ation. These include polymers in supercritical fluids
[26], polymer blends [27], polymer solutions under
shear [28], and microemulsions [29, 30], as well as sys-
tems important in the life sciences, such as solutions of
polyelectrolytes or biopolymers [31, 32].

We conclude by highlighting the possible practical
applications of studying the coupling between diffusive
relaxation of critical fluctuations and structural relax-
ation. Because of this coupling, dynamic light scatter-
ing of critical fluctuations becomes a new tool for mea-
suring the rheological properties of near-critical com-
plex fluids. That is, by performing noninvasive DLS
measurements on a sample, we can obtain quantitative
information concerning its microrheological proper-
ties. Our proposed approach may be termed “critical
microrheology” and does not require the addition of
probe particles to the fluid. The uniqueness of critical
microrheology is its ability to scan diffusive decay time
of fluctuations at a given length scale q–1 over several
orders of magnitude and, thereby, probe viscoelastic
relaxation as an intrinsic fluid property. Moreover,
instances have been reported where microrheological
measurements are inconsistent with macroscopic rheol-
ogy [33]. Critical microrheology experiments may clar-
ify the nature and extent of these discrepancies. By
selecting appropriate solvents for bringing systems into
a near-critical state, one should be able to probe struc-
tural relaxation of a variety of macromolecular species
in solutions.

We acknowledge some valuable discussion with
M.R. Moldover. The research was supported by the
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A new class of quasi-linear carbon molecules [C60]n[Cm]n – 1 consisting of n fullerenes C60 linked by n – 1 car-
byne-type Cm fragments with a system of conjugated bonds is described. The possible geometric configurations
of such molecules and crystals on their base are discussed. The structure optimization by the empirical (MM+),
semiempirical (PM3), and ab initio (HF/6-21) methods showed that these molecules are energetically stable.
© 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.48.+c; 36.90.+f
The discovery of carbon allotropic forms such as
carbyne, fullerenes, and nanotubes has stimulated
investigations aimed at modeling the structures of new
carbon materials and predicting their properties [1–6].
Inasmuch as carbon atoms can occur in one of the three
hybrid states sp, sp2, and sp3, an infinite number of car-
bon crystalline forms can exist in practice. In these
crystals, carbon atoms can have the same or different
hybridization types and situate at surfaces of different
topology. The possible existence of an infinitely large
number of carbon crystal modifications was justified in
[1] (see also reviews [2, 3]).

In this work, we discuss the possible existence of a
new class of hybrid carbon structures consisting of
fullerenes linked together by linear carbon fragments of
the carbyne type. Recall that by the carbyne forms are
meant carbon materials consisting mainly of carbon
chains (see review [4]). Two types of molecules con-
taining rather long linear carbon chains are presently
known: polyynes (RC2nR') and cumulenes ,
where R and R' stand for the univalent atoms (e.g., H,
F, Cl) or functional groups (e.g., CH3, C6H5). In the
polyyne-type systems RC2nR

,

the carbon fragment consists of the alternating single
and triple bonds, and all carbon atoms are in the sp
hybrid state. In the cumulene systems R2CnR2

,

all C–C bonds are formally double, while the end car-
bon atoms are in the sp2 hybrid state [1]. For this rea-
son, free valence of each of them can be saturated by
two functional groups or two univalent atoms. Note that
the end groups CR2 and  in cumulenes with an odd

R2CnR2'( )

R– –C C–≡[ ] n–R

C=C – –C=C
R

R

R

R

––
–
–

CR2'
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number of carbon atoms can be turned about each other
by 90°.

In the cumulene systems, carbon atoms of one of the
fullerene double bonds can serve as R and R' fragments.
For this reason, the formation of the molecules consist-
ing of two fullerenes, e.g., C60, linked together only by
a linear carbon chain of the cumulene type seems to be
quite possible (Fig. 1).

Fullerene C60 contains six double bonds centered at
the octahedron vertices. Consequently, fullerenes C60
can be linked together by carbyne chains to form quasi-
one-dimensional (1D), quasi-two-dimensional (2D),

Fig. 1. Linkage between fullerenes through the carbyne
chain: (a) C60C2C60 and (b) C60C3C60. Mutual geometric
arrangement of the numbered atoms is given in Tables 1
and 2.

'

'

'

'
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and three-dimensional (3D) crystal structures. In the
quasi-two-dimensional structure, the chains can be
bonded to fullerenes C60 in various ways. For this rea-
son, no geometrical obstacles should arise to the forma-
tion of the same structures as those formed by the pure
C60 polymers: orthorhombic (packed linear chains), tet-
ragonal, and rhombohedral (packed layers) phases [6].

The purpose of this work is to assess the possibility
of the existence for some monomeric and polymeric
hybrid structures of carbyne and fullerenes. To this end,
quantum-chemical calculations were carried out for
hybrid carbon clusters consisting of two (Fig. 1) and
three (Fig. 2) C60 fullerenes linked together by linear
carbon chains with two to five C atoms and some of the
2D and 3D crystal structures on their base.

Dimers and trimers were calculated by the semiem-
pirical PM3 method and the ab initio Hartree–Fock
(HF/6-21G) method using the GAMESS program
package for quantum-chemical calculations [7]. The
1D, 2D, and 3D crystal structures were calculated by
the empirical molecular mechanic method (force field
MM+; HYPERCHEM-6) in the cluster approximation.

The PM3 scheme is one of the parameterizations of
the MNDO (modified neglect of differential overlap)
method [8]. In this method, only valence electrons are
considered and the overlap of atomic orbitals (AOs)
belonging to different atoms is neglected, while the
two-electron integrals of AOs belonging to the same
atom are taken into account, allowing the interaction of

Fig. 2. Hybrid carbon cluster [C60]3[C2]2, which can be
considered as a fragment of the ([C60][C2])n polymer.
lone electron pairs to be taken into account more cor-
rectly than in other semiempirical methods.

In the ab initio method, the electron integrals are not
replaced by empirical parameters, and the full self-con-
sistent procedure is carried out with the calculation of
all electron integrals. The basis set is taken in the form
of AOs approximated by the Gaussian primitives. We
used the split-valence (6-21G) basis; i.e., the core and
valence orbitals were taken in the form of various sets
of Gaussian primitives, which is necessary for a more
accurate calculation of the electronic state in the pres-
ence of chemical bonding [8].

At present, these methods are widely used in the cal-
culations of the fullerene and nanotube structures.

Computational results and discussion. The geo-
metric structures of carbon clusters consisting of two
fullerene molecules linked together by a linear carbon
chain were calculated by full energy optimization of
atomic coordinates. For the clusters containing three
fullerene molecules, calculations were constrained to
the D2h symmetry to save run time. We found that the
full optimization (without symmetry constraint) of
clusters containing two fullerene molecules led to the
same D2h symmetry. The bond lengths and angles in the
region where the linear fragments are bonded to
fullerenes are given in Tables 1 and 2 (atomic number-
ing as in Fig. 1). For the structures with an odd number
of carbon atoms in the linear fragment, the empirical
and semiempirical methods predicted the existence of a
stable state, in which the arrangement of all fullerenes
about the symmetry axis going through the linear frag-
ments is the same. However, the ab initio calculations
showed that the configuration in which the fullerene
fragments are alternately turned by 90° about the chain
axis is the most stable.

The computational results obtained for the clusters
containing three C60 fullerenes can be used to estimate
the parameters of quasi-one-dimensional periodic
structures consisting of an infinitely large number of
alternating fullerenes and carbon chains and repeating
elementary fragments of the form C60=C=C,
Table 1.  Bond lengths in the region of fullerene linkage (HF/6-21 calculations)

Type of molecule
Bond length, Å

1–2 2–2' 2–3 3–4 4–5

[C60]2[C2] 1.492 1.629 1.461 1.287 –

[C60]2[C3] 1.493 1.612 1.466 1.274 –

[C60]2[C4] 1.493 1.614 1.465 1.279 1.258

[C60]2[C5] 1.493 1.610 1.467 1.278 1.262

[C60]3[C2]2 1.492 1.629 1.460 1.286 –

[C60]3[C3]2 1.493 1.612 1.466 1.274 –

[C60]3[C4]2 1.493 1.614 1.465 1.279 1.258

[C60]3[C5]2 1.495 1.579 1.476 1.281 1.266
JETP LETTERS      Vol. 79      No. 3      2004
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Table 2.  Bond angles in the region of linkage between fullerene and cumulene (HF/6-21 calculations)

Type of molecule
Bond angle, deg

121' 123 232' 233'

[C60]2[C2] 105.34 126.57 67.79 146.10

[C60]2[C3] 105.36 126.41 66.69 146.69

[C60]2[C4] 105.35 126.44 66.86 146.57

[C60]2[C5] 105.35 126.40 66.56 146.72

[C60]3[C2]2 105.33 126.58 67.84 146.08

[C60]3[C3]2 105.29 126.43 66.68 146.66

[C60]3[C4]2 105.31 126.45 66.86 146.57

[C60]3[C5]2 105.13 126.19 64.69 147.65

Table 3.  Main energy characteristics of the HF/6-21 structures: formation heats (∆Hf), energies of dissociation into fullerenes
and cumulenes (∆E), and ionization energies (I)

Type of molecule ∆Hf, kcal/(mol at.) ∆E, kcal/(mol at.) I, eV

[C60]2 “2 + 2” 13.22 0.42

[C60]2[C2] 13.78 1.80 8.01

[C60]2[C3] 13.93 1.06 8.05

[C60]2[C4] 14.07 2.23 7.99

[C60]2[C5] 14.20 1.03 8.03

[C60]3[C2]2 13.85 2.53 7.94

[C60]3[C3]2 14.67 1.01 7.53

[C60]3[C4]2 14.39 3.13 7.91

[C60]3[C5]2 15.02 1.14 7.25

Table 4.  Lattice parameters and strain energies of the crystal phases of C60C2 polymers according to the data for the central
fragments of the MM+-optimized cluster structures (≤3000 atoms)

C60C2 phase a1, Å a2, Å a3, Å Est, kcal/(mol at.)

1D Chain 11.12 – – 10.96

2D Orthorhombic, Imm 11.13 a2 = a1 – 16.45

Hexagonal, P m 11.32 a2 = a1 – 18.50

3D O phase, Immm 11.14 9.79 12.23 10.50

T phase, Immm 11.11 a2 = a1 11.18 15.56

Hexagonal, P m2 11.30 a2 = a1 13.83 17.70

6

6

C60=C=C=C, etc. Note that the unit cell of a crystal
formed by the fragments with an odd number of atoms
is twice as large as the unit cell of a crystal with an even
number of atoms in the chains between fullerenes. In
this case, the atomic structure of a unit cell possesses
the rotation-reflection symmetry about the chain axis
and the plane passing perpendicular to this axis midway
between the fullerenes; i.e., apart from the 90° rotation,
fullerenes suffer no geometric changes.
JETP LETTERS      Vol. 79      No. 3      2004
The relative stability of the carbon hybrid structures
was estimated using the differences in their formation
heats (or total energies) and the formation heats of their
fragments: C60 fullerenes and C2, C3, C4, and C5 mole-
cules (Table 3). It follows from the data given in this
table that all configurations are energetically favorable
and their stability is appreciably higher than for the
[C60]2 dimer resulting from the [2 + 2] cycloaddition
reaction [2, 6, 9]. It should be noted that the systems
with an odd number of atoms in the cumulene frag-
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Fig. 3. Quasi-two-dimensional fullerene–cumulene crystals
C60C2 with (a) rectangular and (b) hexagonal lattices.
Straight lines indicate the crystal unit cells.
ments are much less stable than the analogous systems
with an even number of atoms. One can also note that
the stability of the systems with an even number of
atoms increases both with the length of carbon chains
and with the number of fullerene fragments.

The calculated ionization potentials of the mole-
cules are given in Table 3. They are somewhat lower
than for the C60 fullerene (7.63 eV [2]) and change only
slightly on going from one molecule to another.

We also calculated the 1D, 2D, and 3D structures
formed by chain-linked C60 fullerenes (Figs. 3, 4). The
calculated fragment contained about 3000 atoms. The
period of the chain (1D) structure (a = 11.13 Å) proved
to be close to the ab initio molecular separation in the
trimer (11.06 Å). The related 3D O phase (by analogy
with the polymeric C60 O phase [6]) with body-centered
orthorhombic lattice of symmetry Immm (Fig. 4a) is
energetically more favorable than the 1D chain struc-
ture, as is seen from the comparison of their strain
energies (Table 4). Of all the structures considered,
this phase is the most stable. The unit cell parameter
in the 2D structures (orthorhombic (Fig. 3a) and hex-
agonal (Fig. 3b)) is also close to 11.06 Å. The corre-
sponding phases (tetragonal T phase of symmetry
Immm (Fig. 4b) and hexagonal phase (Fig. 4c) of sym-

metry ) are also energetically more favorable
than the 2D phases (Table 4).

Thus, energy estimates give grounds to believe that
the formation of such structures is quite possible under
the appropriate synthesis conditions, e.g., upon simul-
taneous evaporation of C60 and the carbon chain frag-
ments C2, C3, C4, or C5.

Preliminary estimates show that the structures
formed by these hybrids are semiconductors with a nar-
rower energy gap than in the C60 crystals. Their elec-
tronic properties will be considered in a separate paper.

P6m2
Fig. 4. 3D structures of crystal phases based on the fullerene–carbyne hybrids C60C2 (view in the [001] direction): (a) orthorhombic O,
(b) orthorhombic T, and (c) hexagonal. The dark and light circles show, respectively, atoms of the molecules situated in the neigh-
boring planes (001) and (001/2).
JETP LETTERS      Vol. 79      No. 3      2004
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The large lattice parameters and the presence of
double C–C bonds in the chain fragments allow these
structures to be reliably identified among the polymeric
C60 phases, e.g., by the methods of electron paramag-
netic resonance, X-ray structural analysis, Raman spec-
troscopy, etc.

This work was supported by the Russian Scientific
and Technical Program “Controlled Synthesis of
Fullerenes and Other Atomic Clusters.”
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A microwave magnetic field crossed with a static field was found to exert a resonance effect on the dislocation
mobility in single crystals of p-type silicon. The frequency of alternating field and the magnitude of static mag-
netic field corresponding to the maximal crystal hardening satisfy conditions for EPR of structural defects. This
is evidence that the primary elementary processes observed previously in magnetoplasticity effects (influence
of a static magnetic field on plasticity) are spin-dependent in silicon crystals. The dislocation path detected EPR
spectrum was found to be anisotropic. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.72.Hh
The studies of magnetic field (MF) effect on the
mechanical properties of ionic crystals [1–10] have led
to the revelation of crystal plasticization induced by
electron paramagnetic resonance (EPR) of defect struc-
tures in crossed static and microwave magnetic fields
[11]. This new physical phenomenon was predicted in
[10]. More recently, the experimental results on magne-
toresonant crystal plasticization were confirmed and
used as a new method for studying spin-dependent
plasticity stages and for the indirect EPR detection dur-
ing the process of plastic deformation [12–16]. It was
established that the dislocation mean path [11, 12], the
microhardness [13–15], and the strain hardening coef-
ficient [16] of ionic crystals depend on the mutual spin
orientation in the defect pairs, because it determines the
efficiency of overcoming local obstacles (stoppers) by
dislocations. The possibility of observing resonant
crystal plasticization at near-room temperature is
caused by the fact that the lifetimes of short-lived defect
states are shorter than the spin relaxation time [11–16].
For this reason, an MF with a magnetic induction of
~1 T can influence both the paramagnetic impurity
aggregation kinetics that determine the appearance of
one or another type of dislocation stoppers [17–20] and
the formation or rupture of the covalent bonds between
a paramagnetic center situated at the dislocation line
and a local obstacle in the bulk of ionic crystal [1–10].

To date, the EPR-stimulated change in plasticity
was observed only in ionic crystals. However, it
remains unclear whether the plasticity of other types of
solids, e.g., those containing covalent bonds, can be
affected by EPR. The answer to this question is of fun-
damental importance, because the possibility of selec-
tive frequency-tuned control of plastic deformation in
crystals with various dislocation motion mechanisms
0021-3640/04/7903- $26.00 © 20126
and various electronic structures would indicate the
universal character of the role of spin in the formation
of mechanical properties of crystals.

The dislocation mobility in Si single crystals (the
most popular elementary semiconductor) is determined
not only by local stoppers but also by the Peierls poten-
tial relief [21]. Some publications report that doped Si
crystals containing dislocations become disordered
after applying static MF with a magnetic induction of
~1 T [22–26]. However, the magnetoplastic effect in a
static magnetic field alone does not necessarily signify
that MF affects the dislocation mobility through the
spin reorientation in Si defects. Although the magnetic
field effect on the spin-dependent processes in the dis-
location cores was already observed for silicon in [27,
28], the possibility of controlling its mechanical prop-
erties by switching mutual orientation of defect spins in
a magnetic field have not been studied so far. It is the
purpose of this work to study the dislocation mobility
in p-type Si single crystals upon the simultaneous
action of crossed static and microwave magnetic fields
in the case where the ratio between the microwave fre-
quency ν and the magnetic induction B0 of a static MF
satisfy the EPR condition gµBB0 = hν, where µB is the
Bohr magneton, h is the Planck’s constant, and g ~ 2 is
the g factor.

Polished boron-doped silicon plates with a diameter
of 100 mm and a resistivity of 1 Ω cm were grown by
the Czochralski method and used in the experiment.
After growth and polishing, the plates were protected
from external action for several years. Samples of size
32 × 10 × 0.48 mm oriented in such a way that the large
face corresponded to the (100) plane were cut from the
plates perpendicularly to the main basic cut. This face
004 MAIK “Nauka/Interperiodica”
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was used to make a scratch along the long crystal side
parallel to the [011] direction (Fig. 1). After this proce-
dure, the sample was placed in a rectangular cavity
matched to a magnetron at a constant frequency ν =
9.6 GHz and situated between the electromagnet poles.
An attenuator allowed the microwave power in the cav-
ity to be adjusted within P ~ 0.3 – 15 W. After exposure
to an MF for 30 min (at room temperature), the samples
were taken out of the cavity and, after 30 min,

deformed by four-point bending about the  direc-
tion at a temperature of 675°C. The reference samples
were not subjected to magnetic fields and also kept for
33 min between the introduction of dislocations and the
deformation. After the deformation, the (100) surface
was subjected to a tension of 58 MPa that was constant
along the crystal section under study and was the same
in all experiments. According to [29], four dislocation
glide systems were activated by this procedure: (111)

, (111) ,  , and  [110].
As a result of sample loading at a temperature of
675°C, dislocation half-loops consisting of two 60-
degree segments and a screw-dislocation fragment
arranged parallel to the (100) surface appeared in the
near-surface layer of the sample (Fig. 1).

After deformation, crystals were cooled to room
temperature and chemically etched to locate the lines of
dislocation outcrop at the surface using the standard set
of reagents [22–25]. The paths of the 60-degree sec-
tions of frontal dislocations were measured using an
optical microscope. Since the microwave amplitude in
the cavity was not uniform along the sample length,
each point for the B0 dependence of the dislocation
mean path L was obtained using a small section (with a
size no greater than 5 mm) of the sample in the antinode
of the microwave magnetic field. From three to four
samples exposed to MF under the same conditions were
used with the aim to accumulate sufficient statistics for
the dislocation paths (~200 measurements) and provide
a scatter of L no higher than 15% for each point in the
graphs. Thus, the method of measurements was similar
to the standard procedure of recording EPR spectra,
except that the response to the resonance was detected
not from the absorbed microwave power but from the
dislocation paths and, instead of a continuous sweep of
static MF, a discrete set of measurements with a step of
~0.1 T was carried out for different samples.

According to the data obtained by averaging over
several samples, the dislocation mean path in crystals
not exposed to MF was L0 = 300 ± 15 µm. This value
was used as the reference point for measuring path
increment after exposing crystals to MF. The quantity
(L – L0)/L0, where L is the mean path of frontal disloca-
tions after exposure to MF, was used as a measure of the
MF effect on plasticity.

In the absence of a microwave field, (L – L0)/L0
increased monotonically with static MF directed along
[100] (Fig. 2, curve 1). That is, after exposure only to

011[ ]

110[ ] 101[ ] 111( ) 101[ ] 111( )
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the static MF, crystals become disordered, much as it
was reported earlier in [22–26]. In the presence of a
microwave field with a power of P ~ 0.3 W, the L(B0)
dependence changes radically. If the microwave mag-
netic component B1 is perpendicular to the induction
vector of the static MF B0 || [100], (L – L0)/L0 depends
on B0 nonmonotonically. At B0 = 0.6 T, it drastically
decreases (by a factor of two), as compared to the exper-
iments without the microwave field (Fig. 2, curve 3).
Figure 3 presents the photographs of the reference

Fig. 1. Scheme illustrating the dislocation half-loops arisen
in silicon single crystals near the (100) surface upon four-

point bending about the  direction. Dislocation half-
loops (1) and (2) are arranged in the glide planes (111) and

, respectively. Thick solid line indicates the scratch
inscribed along the [011] direction. The dislocation half-
loop outcrops revealed by chemical etching of the (100) sur-
face are shown by the black dots.

011[ ]

111( )

Fig. 2. The relative dislocation path under load vs. the
induction of a static magnetic field B0 applied before load-
ing: (1) without microwave field; (2) in the presence of the
static and microwave fields in the B0 || B1 orientation; and
(3) in the presence of the static and microwave fields in the
B0 ⊥  B1 orientation. Microwave power in the cavity is
~0.3 W. In all experiments, B0 || [100].
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sample and the sample exposed to the microwave and
static fields in the conditions corresponding to the min-
imum of curve 3 in Fig. 2. For B1 || B0, the B0 depen-
dence of the relative change in the dislocation path
again becomes monotonic (Fig. 2, curve 2), but the cor-
responding curve lies slightly lower than the curve
obtained in the absence of microwave field.

The study of the change in (L – L0)/L0 with changing
position of the crystal section under study in the cavity
showed that, at a fixed B0 = 0.6 T, the maximal crystal
hardening in the crossed static and microwave magnetic
fields was achieved in the antinode of magnetic field.

Fig. 4. The dislocation mean path under load vs. the induc-
tion of a static magnetic field B0 ⊥  B1 applied before load-

ing in the (1) [100] direction and (2)  direction. The
microwave power in the cavity is ~15 W.

011[ ]

B1

B0 50 mm

[011]
–

[011]

(100)

Fig. 3. Photographs of the Si (100) surfaces subjected to
loading and chemical etching: (left) reference sample not
exposed to MF and (right) a sample after the combined
action of the static MF B0 = 0.6 T and the microwave field
in the B1 || B0 orientation. In all experiments, B0 || [100] and
the microwave power in the cavity is ~0.3 W.

–0.1
The aim of the following types of measurements
was to study the anisotropy of the resonant crystal hard-
ening effect. Simultaneously, to reveal the role of the
microwave power, it was chosen to be equal to ~15 W.
The static and microwave magnetic fields were mutu-
ally perpendicular. Only the crystal orientation in the
cavity was changed. For the B0 || [100] orientation, (L –
L0)/L0 has a minimum near B0 = 0.5–0.6 T, and the dis-
location paths almost do not change upon a 50-fold

increase in power (Fig. 4). However, for the B0 || 
orientation, the relative change in dislocation paths has
a minimum at B0 = 0.3 T (Fig. 4).

One of the main distinctions from the results
obtained for ionic crystals [11–16] is that the disloca-
tion paths in our experiments decrease, rather than
increase, in the presence of static and microwave mag-
netic fields. The absence of resonant crystal hardening
in the parallel orientation of the B1 and B0 vectors and
the occurrence of hardening in the case of B1 ⊥  B0
unambiguously testifies that the spin transitions
induced by EPR in the structural defects are the cause
of the change in the dislocation mobility. It was estab-
lished in the test experiments that crystal heating by 5–
10°C (instead of exposure to MF) does not change the
dislocation paths upon the subsequent loading. The
heating of the sample in the microwave field did not
exceed 0.1°C. Therefore, the effect observed in this
work at P ~ 0.3 W was not caused by mere crystal heat-
ing, so that it should be interpreted in terms of spin-
dependent transitions in short-lived defect pairs.

The value B0 ~ 0.6 T, for which the resonant harden-
ing occurs in the B0 || [100] orientation in the case of
B1 ⊥  B0, can be used to estimate the effective g factor
g[100] ~ 1.1 from the EPR condition gµBB0 = hν, where
µB is the Bohr magneton and h is the Planck’s constant.
Contrary to ionic crystals [12–16], only a single reso-
nance peak was observed in our experiments. This sug-
gests that electron spins of the magnetically sensitive
components of a defect pair are Se = 1/2. The effective g

factor in the case of B0 ||  orientation and B1 ⊥  B0

is  ~ 2.3. A nearly twofold difference in the effec-

tive g factors (g[100] = 1.21 and  ~ 2.43) was
observed earlier [30] in the standard EPR (i.e., detected
from the absorption of microwave power) of a boron-
doped p-type silicon. The fact that the g factors
obtained in [30] from the data of standard EPR coincide
with the values obtained in our work is evidence that
boron atoms are incorporated into the magnetically
sensitive defects, while the microwave-induced spin
transitions in these defects are the primary processes
causing magnetoresonant hardening.

As of now, one can hardly answer the question of the
nature of magnetically sensitive defects in Si. Since the
magnetoplastic effect was observed in [25] only for the
silicon crystals grown by the Czochralski method and

011[ ]

011[ ]
g

011[ ]

g
011[ ]
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was not for the Si crystals grown by the crucibleless
melting, one can assume that, apart from the acceptor
atoms, nonequilibrium oxygen complexes can be incor-
porated into the complexes under study. It is most likely
that the transition to the nonequilibrium state in our
experiments could occur at the stage of applying
scratch with a local fracture of the material. It is well
known that, in the oxygen atmosphere at room temper-
ature, this process gives rise to numerous paramagnetic
centers in the vicinity of the scratch [31].

The calculations of the binding energies of various
boron complexes formed through chemical bonding to
the (interstitial) silicon atoms indicate [32] that the
binding energy of these complexes strongly depends on
the boron charge state. As it changes (due to electron or
hole capture), the complex transforms to the energeti-
cally more favorable state [32]. The atomic structure of
the complexes formed upon the MF-sensitive structural
relaxation can strongly influence the efficiency of over-
coming these complexes, the starting stress, and, ulti-
mately, the frontal dislocation path.

Magnetically sensitive complexes can form not only
in the crystal bulk near the scratch but also in the dislo-
cation cores arisen upon scratching, as well as near the
surface of amorphous silicon. The nucleation of dislo-
cation half-loops as a result of inscribing scratch at the
(100) surface of p-type silicon was experimentally
observed at room temperature by atomic force micros-
copy in [33].

In summary, magnetoresonant hardening of p-type
silicon single crystals has been observed in crossed
static and microwave magnetic fields. This is evidence
that the structural relaxation of magnetically sensitive
complexes responsible for the magnetoplastic effect in
Si crystals is a spin-dependent process. The anisotropy
observed for the resonance MF effect on the crystal
plasticity characterizes the local symmetry of magneti-
cally sensitive centers. The determination of atomic
structure of the latter calls for further investigation.
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Decrease in the Bond Energy of Arsenic Atoms
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It has been found experimentally that the bond energy of arsenic atoms on the GaAs(100) surface decreases
under the influence of adsorbed cesium. This is manifested in the disordering of the As-stabilized surface and
in a decrease of ~100 K in the temperature of the transition to the Ga-stabilized (100)GaAs(4 × 2)/c(8 × 2) sur-
face. This effect is caused by the redistribution of the valence electron density between the arsenic atoms in the
upper layer and the gallium atoms in the lower-lying layer as a result of charge transfer from the electropositive
adsorbate to the semiconductor. In combination with the analogous effect of a decrease in the bonding energy
of gallium atoms on the Ga-stabilized GaAs surface upon the adsorption of electronegative adsorbates (halo-
gens), the effect observed allows the atomic layer etching of the polar GaAs(100) face. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 68.35.-p; 81.15.Ef
Advances in the physics of low-dimensional sys-
tems, which has been intensively developed in recent
years, are closely related to the capabilities of modern
epitaxial technologies such as atomic layer epitaxy [1].
These capabilities are such that heterostructures and
superlattices in which the layer thicknesses and inter-
face smoothness are controlled to an accuracy of one
monolayer. Not only atomic layer growth proves to be
necessary for modern nanotechnology, but the atomic
layer etching of semiconductors turns out to be neces-
sary as well. Atomic layer etching represents precision
crystal disassembling by removing monolayers one by
one with the retention of the atomic smoothness of the
surface. Atomic layer etching with a resolution of one
monolayer can be accomplished apparently on polar
faces of binary III–V compound semiconductors by
using adsorbates that selectively react with atoms of the
third and fifth groups. It has been shown in [2, 3] that
the adsorption of iodine on an atomically pure
Ga-stabilized GaAs(100) surface is accompanied by its
preferential bonding to gallium atoms. The low-tem-
perature heating of the iodinated surface leads to the
desorption of reaction products in the form of GaIx and
to the formation of the (2 × 4)-reconstructed As-termi-
nated surface. Similar results were obtained for the
adsorption of various halogens on III–V semiconduc-
tors [2, 4]. The selectivity of the chemical activity of
halogens to a third group element suggested that alkali
metals can selectively weaken the bond of fifth group
atoms on the surface of III–V semiconductors. The goal
of this work was to examine the possibility of decreas-
ing the temperature of arsenic desorption from the
0021-3640/04/7903- $26.00 © 20131
GaAs(100) surface under the influence of the adsorp-
tion of an electropositive adsorbate, namely, an alkali
metal.

To exclude the possible effect of defects in the dis-
turbed surface layer of GaAs wafers on the stoichiom-
etry and structure of the surface, the experiments were
carried out with epitaxial GaAs(100) layers. The prep-
aration of the pure GaAs surface involved the removal
of oxides with a solution of HCl in isopropyl alcohol
(IPA) in a dry nitrogen atmosphere, after which the
sample was transferred to an ADES-500 ultrahigh-vac-
uum electronic spectrometer in a hermetically sealed
container without contact with air, followed by its vac-
uum heating [5]. The structure and chemical composi-
tion of the surface were determined by low-energy elec-
tron diffraction (LEED) and X-ray photoelectron spec-
troscopy (XPS), respectively. Cesium was used as the
electropositive adsorbate. The deposition of Cs was
carried out in the preparation chamber of the spectrom-
eter under a vacuum of 10–10 mbar using dispensers
filled with purified cesium chromate. The temperature
of Cs dispensers did not exceed 500°C. The time inter-
val between the deposition of Cs and the measurement
of its concentration in the analytical chamber was about
5 min. The deposition of Cs and all measurements were
performed at room temperature.

As the first step of comparative study of the varia-
tion of the properties of As- and Ga-stabilized surfaces
of the polar GaAs(100) face upon Cs adsorption, we
measured the dose dependences of the amount of Cs
adsorbed on these surfaces by XPS. Because the thick-
004 MAIK “Nauka/Interperiodica”
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ness of the adsorbed Cs layer at room temperature (in
the absence of a Cs flow) does not exceed one mono-
layer (ML) [6], the concentration of Cs atoms on the
surface was assumed to be directly proportional to the
integral intensity A of the photoemission Cs3d line
excited by the X-ray AlKα line at 1486 eV. The work
function measured during the deposition of Cs was
monitored by measuring the electron emission current
into a vacuum upon illumination by a semiconductor
laser (λ = 655 nm). A maximum of photoemission from
the As-stabilized surface was achieved in the time tmax =
25 min, and that from the Ga-stabilized surface was
achieved in 19 min.

The results of measuring the dependence of the
Cs3d peak area on the cesium deposition time A(t) for
GaAs(100) surfaces with different stoichiometries are
shown in Fig. 1. It is evident in the figure that the
dependences A(t) measured for the As- and Ga-stabi-
lized surfaces with (2 × 4)/c(2 × 8) and (4 × 2)/c(8 × 2)
superlattices, respectively, are rather close to each
other. According to the scatter of the experimental
points, the systematic differences in the amount of
cesium observed at t ≥ 40 min exceed the random error
but lie within the limits of the absolute error of the XPS
technique, which is equal to ~10%. It is also evident
that the linear growth of the cesium concentration
observed for small doses (t < tmax) slows down and sub-
sequently goes to saturation at large doses (t > tmax).
This behavior is in agreement with the results obtained
previously by Auger spectroscopy for Cs adsorption on

Fig. 1. Dependences of the Cs3d photoemission peak area
on the time of Cs deposition onto the As-stabilized
GaAs(100)-(2 × 4)/c(2 × 8) surface (circles) and Ga-stabi-
lized GaAs(100)-(4 × 2)/c(8 × 2) surface (triangles). Solid
and dashed curves correspond to the dependences calcu-
lated within the Langmuir adsorption model for the As- and
Ga-stabilized surfaces, respectively. Cs coverages θ in
monolayers for these surfaces are shown by the solid and
dashed lines in the ordinate axis on the right-hand side. The
solid and dashed arrows indicate the time tmax that corre-
sponds to the maximum photoemission on the As- and Ga-
stabilized surfaces, respectively.
the Ga-stabilized GaAs(100) surface [7–9]. To perform
a quantitative analysis of the obtained dependences, we
used the Langmuir adsorption model [7], in which it is
assumed that the probability that an atom will be
adsorbed on the surface is proportional to the sticking
coefficient α and to the concentration of the unoccupied
adsorption sites. For a constant Cs flux density, the
Langmuir model gives the following form of the depen-
dences A(t) and the coverage θ(t):

(1)

where α is the sticking coefficient of adatoms on a
clean surface; N0 is the concentration of adatoms in one
monolayer, which equals N0 ≈ (6 – 8) × 1014 atoms/cm2

[7] for a cesium monolayer; R is the density of the ada-
tom flux onto the surface, which was constant in our
experiments to within 5%; A0 = kN0 is the Cs3d peak
area at saturation; and k is a constant depending on the
element sensitivity factor for cesium and on the X-ray
radiation intensity, which was also maintained con-
stant. The solid and dashed lines indicate the Langmuir
adsorption curves that are calculated by Eq. (1) using
the least-squares method and describe the experimental
data for the As- and Ga-stabilized surfaces, respec-
tively. Figure 1 demonstrates that the experimental data
for both surfaces are described well within the Lang-
muir model with coefficients α independent of the cov-
erage θ. From the obtained values of fitting parameters
A0 and t0 = N0/αR, it follows that the values of α for the
As- and Ga-stabilized GaAs(100) surfaces coincide to
within 4%, that is, within the experimental error.
According to [10, 11], the sticking coefficient of Cs on
the Ga-stabilized surface is close to unity. Therefore, as
follows from the data obtained in this work, α ≈ 1 for
the As-stabilized surface as well, in contradiction to the
conclusions made by the authors of [12]. In connection
with this contradiction, we emphasize that no direct
measurement of the amount of cesium on the surface
was performed in [12]. Thus, the sticking coefficient of
cesium on the GaAs(100) surface is close to unity and
does not depend on its stoichiometry or structure.

We continued to search for the selectivity of cesium
interaction with the As- and Ga-stabilized GaAs(100)
surfaces by studying the effect of cesium adsorption on
the structure of these surfaces. For this purpose, LEED
patterns were measured for clean surfaces with differ-
ent stoichiometries and for these surfaces upon cesium
deposition. The results are shown in Fig. 2. The clean
surfaces with an As-stabilized (2 × 4)/c(2 × 8) superlat-
tice (Fig. 2a) and with a Ga-stabilized (4 × 2)/c(8 × 2)
superlattice (Fig. 2d) were obtained by removing
oxides in an IPA solution of HCl followed by heating in
vacuum at temperatures T = 450 and 560°C, respec-
tively. The deposition of cesium on the As-stabilized
surface leads to a rapid smearing of the diffraction pat-
tern, which points to a disordering of the surface. The
intensity of diffraction reflections with respect to the

A t( ) A0θ t( ); θ t( ) 1 αRt
N0

---------– 
  ,exp–= =
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background of diffusely scattered electrons decreases
several times already at the coverage θ ~ 0.1 ML, while
the fractional reflections disappear at θ ≈ 0.3–0.5 ML
(Fig. 2b). An increase in θ to 0.7 ML leads to the disap-
pearance of part of the main reflections as well,
whereas the intensity of the remaining reflections
becomes several times lower than the diffuse back-
ground. On the other hand, Cs on the Ga-stabilized sur-
face is adsorbed significantly more orderly: the (4 ×
2)/c(8 × 2) structure is clearly visible at θ = 0.5 ML
(Fig. 2e) and is retained up to θ ≈ 0.75 ML. With a fur-
ther increase in the coverage, the fractional reflections
disappear and the diffuse background increases. Never-
theless, at θ ~ 1 ML, the (1 × 1) diffraction pattern for
the Ga-stabilized surface remains significantly more
distinct than for the As-stabilized surface.

By and large, the results obtained are in agreement
with the statement made by the authors of [6, 13] that
the low-energy electron diffraction pattern degrades
upon cesium diffraction and a disordered
Cs/GaAs(100) boundary forms. However, though it
was stated in [6] that this process proceeds similarly for
both the As- and Ga-stabilized GaAs(100) surfaces,
there is no data in the literature that would allow us to
compare the evolution of the structure of these surfaces
upon an increase in the cesium coverage. As follows
from the results obtained in this work, there are signif-
icant differences in the action of cesium on the structure
of the As- and Ga-stabilized surfaces. These differences
are caused not by different sticking coefficients but by
the fundamental differences in the adsorption mecha-
nism. The differences in the structure of the Cs/GaAs
interfaces depending on the starting reconstruction are
most pronounced in the experiments on heating
cesium-coated surfaces. Figures 2c and 2f demonstrate
LEED patterns after coating the As- and Ga-stabilized
surfaces with cesium up to θ ~ 1 ML followed by heat-
ing at temperatures of 470 and 450°C, respectively.
After heating, the residual amount of cesium on the sur-
face is θ ≤ 0.1 ML. It is seen in Fig. 2c that cesium
adsorption and heating lead to the conversion of the As-
stabilized (2 × 4)/c(2 × 8) surface into the Ga-stabilized
(4 × 2)/c(8 × 2) surface, and the conversion proceeds
starting with the heating temperature T = 450°C. On the
contrary, the Ga-stabilized (4 × 2)/c(8 × 2) structure
destroyed by the deposition of 1 ML of Cs is restored
by heating at temperatures T ≥ 200°C.

The effect of the cesium-induced conversion of the
As-stabilized surface to the Ga-stabilized one detected
in this work seems interesting and important. It is
known that the As-stabilized GaAs(100)-(2 × 4)/c(2 × 8)
superlattice is reproducibly obtained by heating at T =
420–480°C [5, 14]. It is more complicated to obtain the
ordered Ga-stabilized (4 × 2)/c(8 × 2) surface, because
to do this requires heating to temperatures 560–600°C.
These temperatures are close to the incongruent evapo-
ration temperature of GaAs, at which many point
defects are generated in the near-surface region, the
JETP LETTERS      Vol. 79      No. 3      2004
morphology of the surface deteriorates, and the occur-
rence of even submonolayer impurities leads to its face-
ting [15]. The sequence of Figs. 2a–2c illustrates an
alternative method for obtaining the (4 × 2)/c(8 × 2)
superlattice at a lower temperature (T = 450–470°C)
using cesium preadsorption.

To elucidate the reasons for the cesium-induced dis-
ordering of the As-stabilized (2 × 4)/c(2 × 8) superlat-
tice and the decrease in the temperature of the phase
transition to the Ga-stabilized (4 × 2)/c(8 × 2) superlat-
tice, we will compare these effects with the known
results on the effect of electronegative adsorbates (halo-
gens) on the surface stoichiometry and structure of III–
V semiconductors [2–4]. It was shown in [2, 3] that the
adsorption of iodine onto a Ga-rich GaAs(100)-(4 ×
2)/c(8 × 2) surface followed by heating results in a
structurally ordered As-rich surface with a (2 × 4)/c(2 ×
8) superlattice. At the same time, the adsorption of
iodine followed by the heating of the As-stabilized sur-
face does not change its starting composition or struc-
ture.

(‡)

(b)

(c)

(d)

(e)

(f)

Fig. 2. LEED patterns upon Cs adsorption on (left-hand col-
umn, (a), (b), and (c)) the As-stabilized surface and (right-
hand column, (d), (e), and (f)) Ga-stabilized GaAs(100) sur-
faces followed by heating. Patterns (a) and (d) were
obtained on pure substances with (2 × 4)/c(2 × 8) and (4 ×
2)/c(8 × 2) superlattices, patterns (b) and (e) were obtained
after the deposition of cesium (0.5 ML) onto these surfaces,
and patterns (c) and (f) were obtained after heating at 470
and 450°C, respectively.
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The transformations of the surface structure under
the action of both cesium and iodine are caused by the
change of its stoichiometry due to the removal of part
of the atoms of the upper layer: the cesium-induced
transition is due to the removal of arsenic atoms, and
the iodine-induced transition is due to the removal of
gallium atoms. In turn, the adatom-induced removal of
surface atoms depends primarily on whether the bonds
of atoms of the upper layer with atoms of the second
layer (so-called backbonds) become weaker or stron-
ger. It is known that the stabilization of the main surface
reconstructions of III–V semiconductors and the corre-
sponding strengthening of bonds on the surface is
attained through the transfer of electrons from the par-
tially occupied dangling bonds of the cation to the
orbitals of the anion, so that the orbitals of the anion
become fully occupied, while those of the cation
become empty [16]. Therefore, it can be suggested that
the destabilization of a superlattice and the weakening
of backbonds occur in the case when adsorption
induces the return of electron density from anions to
cations. This suggestion explains the opposite action of
cesium and iodine with regard to the differences in the
electronegativity of these elements. In the case of
adsorption of electropositive cesium atoms on the As-
stabilized GaAs(100) surface, the electron-density
transfer from cesium to the upper layers of GaAs leads
to the return of electron density from arsenic to lower-
lying gallium. This leads to a weakening of backbonds
and, as a result, to the disordering of the As-stabilized
surface and to a decrease in the temperature of the tran-
sition to the Ga-stabilized surface, as was observed in
this work. Analogous considerations for the electrone-
gative adsorbate (iodine) lead to the conclusion that the
backbonds become weaker upon adsorption on the Ga-
stabilized surface, which is favorable to the transition to
the As-stabilized surface upon the subsequent low-tem-
perature heating [2, 3].

It should be emphasized that the suggested explana-
tion based on the symmetry of charge transfer from
adatoms to a semiconductor is of a solely qualitative
character and does not take into account significant dif-
ferences in the character of cesium and iodine interac-
tions with the surface. In particular, it is known that
chemically shifted components induced by chemisorp-
tion are distinctly visible in the photoemission lines of
Ga and As on the I2/GaAs surface [2], while the data on
the presence or absence of chemically shifted compo-
nents on the Cs/GaAs surface are ambiguous [17, 18].
Note also that other halogens (F, Cl, and Br) and alkali
metals (Na, K, and Rb) with lower atomic numbers and
smaller covalent radii lead to cruder effects, in particu-
lar, to the steady etching of the surface by halogens and
to clusterization of alkali-metal adatoms due to their
higher chemical activity in the interaction with the sur-
face of III–V semiconductors, as compared with
cesium and iodine. On the contrary, cesium and iodine
are elements with large covalent radii. Therefore, they
participate in more subtle and selective interactions that
depend on the composition and structure of the starting
surface, which provides the possibility of low-tempera-
ture adatom-induced reconstruction transitions and
atomic layer etching.

Thus, it has been shown in this work that the
changes in the atomic structure of GaAs(100) surfaces
with different stoichiometries that occur upon the
adsorption of submonolayer cesium coatings are sub-
stantially different; the As-stabilized surface with the
(2 × 4)/c(2 × 8) superlattice becomes disordered at con-
siderably smaller coverages compared with the Ga-sta-
bilized surface with the (4 × 2)/c(8 × 2) superlattice,
though the sticking coefficients of Cs atoms on the As-
and Ga-stabilized GaAs(100) surfaces coincide within
the accuracy of the XPS technique. This observation
indicates that charge transfer from cesium adatoms to
the semiconductor weakens the chemical bonds of
arsenic atoms. An additional corroboration of this con-
clusion is the cesium-induced decrease of ~100°C in
the temperature of the reconstruction transition from
the As-stabilized surface to the Ga-stabilized one
observed in this work. Along with the known phenom-
enon of a decrease in the bonding energy of Ga atoms
due to the adsorption of iodine on the Ga-stabilized
GaAs(100) surface [2, 3], this effect opens up possibil-
ities for the low-temperature (T ≤ 450°C) atomic layer
etching of polar faces of III–V compounds.
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Small-radius (110 nm) ring interferometers were fabricated by the local anodic oxidation of AlGaAs/GaAs het-
erostructures containing 2D electron gas. Measurements and modeling show that a small ring asymmetry,
which is detected by an atomic force microscope, leads to a small amplitude of Aharonov–Bohm oscillations,
while a stronger asymmetry completely suppresses these oscillations. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.23.Ad; 73.20.-r; 73.50.-h
The properties of ring electron interferometers have
been studied for twenty years, starting with pioneering
publications [1]. Owing to the Aharonov–Bohm (AB)
effect, these devices most clearly demonstrate the effect
of quantum interference on electric resistance. The
period of AB oscillations in a magnetic field is a stable
parameter characterizing each individual interferome-
ter; it is determined by the ratio of the magnetic flux
quantum h/e to the ring area. The AB oscillation ampli-
tude was found to be much less stable and unexpectedly
small in many experiments. Previous studies mainly
dealt with ballistic ring interferometers fabricated by
electron lithography and subsequent plasma chemical
etching of AlGaAs/GaAs heterostructures containing
high-mobility 2D electron gas [2]. This technique
allowed the fabrication of ring interferometers of a
rather small size (r = 130 nm) and the observation of
AB oscillations at temperatures up to 4.2 K [3]. How-
ever, the reasons why the AB oscillation amplitude is
often found to be much smaller than expected remained
unexplained.

Recently, it has become possible to fabricate inter-
ferometers using the oxidation of the heterostructure
surface by the tip of an atomic force microscope (AFM)
[4, 5]. This technique makes it possible to obtain even
smaller interferometers and control the geometry of the
structure with a higher accuracy. It is significant that,
with the AFM technique, one obtains a detailed image
of the surface relief for each sample, and it can be com-
pared with the results of transport measurements. Basi-
cally, this gives one the chance to study experimentally
the effect of the actual ring topology on the amplitude
of AB oscillations. In addition, using the sample
images, one can model electrostatic properties of the
devices under consideration [6, 7] and their conduc-
tance [6–8]. As a result, a more detailed comparison
0021-3640/04/7903- $26.00 © 20136
becomes possible between the theory of semiconductor
ballistic structures and the corresponding experimental
data.

This paper describes the study of ring interferome-
ters fabricated using the AFM technique and character-
ized by an effective radius of r = 110 nm. As an initial
structure with 2D electron gas, AlGaAs/GaAs hetero-
junctions with a small distance (25 nm) between the 2D
electron gas and the surface were grown. The mobility
of 2D electron gas was µ = 105 cm2/(V s) at an electron
concentration of Ns = 5 × 1011 cm–2, and the correspond-
ing electron mean free path was l = 1.2 µm. The ring
fabrication procedure was as follows. Preliminarily,
using a Solver P-47H (NT-MDT) atomic force micro-
scope, the surface morphology of the initial heterojunc-
tion was studied in the semicontact scanning mode.
After the information on the surface area of interest had
been obtained, the local anodic oxidation process was
initiated [5, 9]. The oxidation was performed using a
specially manufactured template in the scanning mode
of surface modification. At the points marked on the
template, an electric potential, negative with respect to
the surface, was applied to the AFM probe to initiate the
local anodic oxidation processes at these points. The
intensity of the oxidation process was controlled by the
magnitude of the probe–sample voltage. The geometric
dimensions of the oxidized patches were determined by
the time of applying the oxidizing voltage and by the
relative air humidity. To obtain a deeper surface modi-
fication, the system of voltage feed to the AFM probe
was improved so as to obtain probe–sample voltages up
to 40 ± 0.2 V and a total oxide thickness up to 50 nm.
For structures shown in Fig. 1, the oxidizing potential
was ~20 V. This provided a height of ~12 nm for the
local anodic oxidation line at a relative humidity of
40%. The AFM images and the surface modification
004 MAIK “Nauka/Interperiodica”
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0.1 µm 0.1 µm

Fig. 1. AFM images of open rings fabricated by the local anodic oxidation technique: (a) symmetric and (b) asymmetric rings.
were obtained in the resonance semicontact mode with
the use of standard cantilevers (ν = 150 kHz). One can
see from Fig. 1 that the line height and width vary from
point to point and from sample to sample; i.e., the
geometry preset by the template is randomly disturbed.
The image of one of the rings (“symmetric” ring) is
shown in Fig. 1a. Next to it, another (“asymmetric”)
ring is shown; the arms forming this ring have different
widths (Fig. 1b). It should be noted that we present the
images of the rings studied in the experiment rather
than of the reference samples, for which no transport
measurements are usually carried out [7]. Thus, in con-
trast to the standard technology, we can directly study
the resistance response to small deviations from the
ideal geometry that occur upon the fabrication of nano-
structures near the limit of lithography resolving power.

The resistance of the aforementioned rings was
measured in the temperature range 1.5–4 K in magnetic
fields up to 1 T. The results of these measurements at
3.3 K are shown in the left panel in Fig. 2. One can
clearly see that the curve obtained for the symmetric
ring (curve a) exhibits AB oscillations. The subtraction
of the background reveals the presence of beats in the
oscillations of the quantity δR. The oscillation ampli-
tude reaches 5%. Note that, upon a further decrease in
temperature, the maximal oscillation amplitude
remained virtually unchanged. The AB effect persisted
for different cooling cycles and illuminations of the
sample, although the background resistance varied con-
siderably (e.g., by a factor of two). The right panel in
Fig. 2 shows the Fourier spectrum of AB oscillations
that was obtained by averaging over several curves
δR(B) for the symmetric ring. The spectrum consists of
a single narrow peak corresponding to the oscillation
period ∆B = 0.11 T in a magnetic field. This period cor-
JETP LETTERS      Vol. 79      No. 3      2004
responds to the ring effective radius r = 110 nm. Note
that no publications reporting such a small ring interfer-
ometer obtained by local anodic oxidation are available
to us.

The results obtained for the asymmetric ring are also
shown in Fig. 2 (curve b). No oscillations, at least none
exceeding 0.1%, are observed in this case. Other cool-
ing cycles and illuminations also revealed no oscilla-
tions for this sample, although the curve shapes and the
zero-field resistance varied. Thus, a fundamental dis-
tinction is observed in the behavior of the rings under

Fig. 2. The left panel presents the measured magnetic field
dependence of the resistance for the samples shown in
Fig. 1: (a) symmetric and (b) asymmetric rings; the lower
curve represents the quantity δR = R – 〈R〉  for the symmetric
ring. The right panel presents the Fourier spectrum of the
dependences δR(B) for the symmetric ring.
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Fig. 3. Calculated 2D electron density distribution for the (a) symmetric and (b) asymmetric rings shown in Fig. 1 (isolines in units
of 1011 cm–2).
study. The symmetric ring exhibits the AB effect, testi-
fying to the interference associated with the electron
transport through the two ring arms [1]. In the asym-
metric ring, no traces of such an interference were
observed. The behavior of the rings was found to be sta-
ble to changes in the fluctuation potential as a result of
recharging impurities. This fact suggests that the pres-
ence or absence of the AB oscillations is determined by
the difference in the geometry of the electron rings.

In this study, the aforementioned assumption was
verified by modeling the electrostatic properties of the
rings and their resistance with allowance made for all
actual parameters of the structures under investigation.
The methods of calculation are similar to those
described in [6, 7], but, in our case, we took into
account the complicated dependence of the oxidation
line height h on the position of a point on the plane. One
of the boundary conditions used in solving the three-
dimensional Poisson equation was determined from the
2D distribution of the depth H to which oxide pene-
trates into the semiconductor. At the semiconductor–
oxide boundary, we used the condition for pinning the
Fermi level by the surface states lying at the center of
the GaAs band gap. It was assumed that H is propor-
tional to the measured quantity h. For these conditions,
we verified the applicability of the known proportional-
ity coefficient for the GaAs structures (H/h ≈ 1.5 [5]) to
our case. The calculation showed that, with this value,
both electron rings are broken and cannot exhibit AB
oscillations. For the modeling to be adequate to the
experimental situation, it is necessary to reduce the
value of H/h to 1.2. It should be noted that the small val-
ues H < H0 = 3 nm were neglected to reduce the effect
of the initial surface roughness and the measurement
error for h in the ring arms, i.e., in the narrow dips of
the relief. In these areas, the measured value of h can be
greater than its true value because of the finite thickness
of the AFM tip. Microscale inhomogeneities of charge
distribution in delta-doped layers (fluctuation potential
[7]) were not taken into account to simplify the analysis
of the effects associated with the geometry. The results
of the self-consistent modeling of the potential and
electron density are shown in Figs. 3a (symmetric ring)
and 3b (asymmetric ring). One can see that, in the first
case, the electron ring is in fact asymmetric but has two
conducting arms, whereas, in the second case, the nar-
rower arm is broken by a wide gap. To check whether
the model fits the experiment, the zero-field 2D ballistic
transport was calculated. The calculation shows that the
resistances of the electron systems are close to the resis-
tance quantum h/2e2 and can irregularly vary by
approximately h/4e2 with varying Fermi level EF. This
agrees well with the results of measurements and with
the observation of the random resistance variations
caused by switching the fluctuation potential.

Important information on the asymmetry of the
electron rings can be obtained by calculating the sub-
bands En(x), i.e., the energy levels of the finite motion
across the longitudinal axis of the interferometer. The
result of such a calculation for the symmetric ring is
JETP LETTERS      Vol. 79      No. 3      2004
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presented in Fig. 4a. The outermost barriers correspond
to the ring inputs, and the central barriers, to its arms.
The anticrossings of the subbands in the central part of
the figure are caused by the abrupt narrowing of the
channel in one of the ring arms. When calculating the
potential, the Fermi level was taken to be zero. Figure 4a
shows that two one-dimensional modes (1r, 2r) are
propagated in one of the arms (r), while only one mode
(1l) is propagated in the other arm (l). One can expect
that the AB effect should persist in this case. In the sec-
ond ring, one of the arms is interrupted by a wide bar-
rier. From the subband picture, it was found that, for the
lower mode, the top of this barrier reaches 47 meV
above the Fermi level. The calculated penetrability of
such a tunneling gap in zero magnetic field is negligibly
small (10–27) and remains so when the parameters H/h,
H0, and EF are varied within the allowable limits. Natu-
rally, the AB effect is absent in this structure.

The transition from the abovebarrier transport to
tunneling, which occurs in the narrowest part of the
ring, was modeled by varying EF in the first ring. The
magnetic field dependence of the conductance was cal-
culated by the method of recursive Green’s functions
[8] for the effective 2D potential obtained from the self-
consistent electrostatic calculations. Let Vb denote the
barrier height for the 1l subband in the narrow part of
the ring. From Fig. 4a, it follows that Vb = –1 meV. The
conductance calculation shows that the AB oscillations
have an amplitude of ~10% at EF – Vb ≈ 1 meV but are
strongly attenuated when the transition to tunneling
occurs (Fig. 4b). Therefore, no AB oscillations are pos-
sible in the second ring, in which Vb is several tens of
millielectronvolts higher than EF. Interestingly, the
asymmetry of the potential in the first ring at EF ≈
0 meV gives an oscillation amplitude close to that
observed in the experiment. A good agreement between
experiment and theory was obtained without taking into
account phase interruption of the electron wave func-
tion and without smoothing the curves. Although the
actual asymmetry of the potential has never been inves-
tigated before, we can assume that our mechanism of
suppression of the AB oscillations is operative in many
other structures. This hypothesis is indirectly confirmed
by the small yield of working samples exhibiting AB
oscillations, independently of the fabrication tech-
nology.

Concerning the reliability of our modeling, it should
be noted that the measured period of AB oscillations is
one-third smaller than the calculated period; i.e., the
calculated effective area of the ring proves to be smaller
than the effective area in the experiment. It is significant
that both areas fit into the size of the electron system of
the interferometer and, hence, no fundamental dis-
agreement occurs between the theory and experiment.
However, the period of AB oscillations, unlike their
amplitude, is stable, and the determination of the origin
of the difference in the periods calls for further investi-
gation.
JETP LETTERS      Vol. 79      No. 3      2004
Thus, using the probe lithography technique, we
fabricated a semiconductor ring interferometer with an
effective radius of 110 nm. We found that small errors
in the nanolithography may cause a break in the arm of
the electron ring and completely suppress the AB oscil-
lations. By both experiment and calculation, we
showed that the amplitude of the AB oscillations is
small for a ring that is close to being broken. The results
of this study and the previous studies suggest that the
mechanism we found to be responsible for the suppres-
sion of the AB oscillations is rather common.
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