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Thearrival directions of extensive air showersare analyzed on the basis of world data. It isfound that the zenith-
angle distributions for energies E > 10'° eV and E > 4 x 10'° eV differ from each other. According to our esti-
mates, the SUGAR array detects no showers above 10%° eV. The mass composition of ultrahigh-energy cosmic
rays is estimated. Cosmic rays with E > 4 x 10'% eV most likely consist of superheavy nuclei. © 2004 MAIK

“Nauka/Interperiodica” .
PACS numbers: 98.70.Sa; 96.40.Pq

The composition of cosmic rays is an important
characteristic for determining their origin. The muon
component of a shower is essential for solving this
problem, because it is most sensitive to a change in the
composition of primary radiation. Analysis of the
AGASA data (Japan) for the muon component of
extensive air showers (EASs) shows that cosmic rays
with E > 10% eV consist predominately of light nuclei
[1]. According to the HiRes (USA) results on the rate of
displacement of the shower development maximum
with an increase in energy, cosmic rays with E ~ 2.5 x
10% eV aso consist predominantly of light nuclei [2].
The Cherenkov-radiation-based estimate of the compo-
sition of cosmic rays at the Yakutsk EAS array shows
that cosmic rays with E ~ 3 x 10'° eV also consist pre-
dominantly of protons [3]. Unfortunately, the experi-
mental data in those works are interpreted on the basis
of model calculationsincluding NN and TiN interactions
of ultrahigh-energy particles, with the corresponding
cross sections extrapolated from the accelerating
region. This extrapolation can involve errors. More-
over, the corresponding experiments present difficul-
ties, and errors are possible.

In this work, we propose a new method for estimat-
ing the composition of cosmic rays on the basis of
clearly determined experimental data.

Figure 1 shows the distribution of showerswith E >
10%° eV over the zenith angle 6 according to the (a)
Yakutsk and (b) Haverah Park data [4]. The number of
showersis458 and 144, respectively. The dashed lineis
the expected number of events for the isotropic distri-
bution of primary radiation according to [5]. Compari-
son of the observed and expected distributions of show-
ers by the Pearson 2 criterion shows that they do not
contradict each other at a significance level of 0.9.
Accordingto Fig. 1, inclined showers prevail inthe dis-

tribution of showerswith E > 10% eV, asis expected in
the case of isotropic primary radiation.

Figure 2 shows the distribution of showerswith E >
4 x 10 eV according to the (a) Yakutsk and
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Fig. 1. Distribution of showers with E > 10'° eV over the
zenith angle 6 for the (@) Yakutsk and (b) Haverah Park data.
The dashed line is the number of showers expected in the
isotropic case.
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Fig. 2. Zenith-angle distribution of showers with E > 4 x

10%° eV for the (a) Yakutsk and (b) AGASA data. The
dashed lineisthe number of showers expected in the isotro-
pic case.

(b) AGASA data [6] for 29 and 47 showers, respec-
tively. The dashed line is the number of events that is
expected for the isotropic case. Asisseenin Fig. 2, the
maximum of the distribution of the number of showers
lies in the angular range 20°-30°, and the number of
inclined showers is lower than the number expected in
the isotropic case (see also [7]). According to the Pear-
son ? criterion, the number of showers observed at the
Yakutsk array (Fig. 2a) does not contradict the expected
number of showers at a significance level of 0.15. This
isalso true for the AGASA data (Fig. 2b), though for a
significance level of 0.1. According to the x? criterion,
the distribution combining both these distributions con-
tradicts the number of events expected in the isotropic
case at a significance level of 0.03. In this case, the
number of showers observed in the angular range 20°—
30° exceeds the expected number by a factor of 2.30,
where ¢ is the standard deviation from the expected
number of events.

Thus, the maximum in the zenith-angle distribution
of showerswith E> 4 x 10 eV liesin therange of mid-
dle angles. Next, we analyze the zenith-angle distribu-
tion of showers detected at the SUGAR array. In[8], the
energies of showers were estimated by two models,
Sydney and Hillas-E. Figure 3 showsthe distribution of
showers with E > (a) 10%° and (b) 4 x 10 eV for the
Sydney model. These distributions are similar to the
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Fig. 3. Zenith-angle distribution of showers detected at the
SUGAR array with E > (a) 10%° and (b) 4 x 10*° eV accord-

ing to the Sydney model and (a) with E > 4 x 10%° ev
according to the Hillas-E model. The dashed line is the
number of showers expected in the isotropic case.

ones obtained at the Yakutsk, Haverah Park, and
AGASA arraysfor the corresponding energies (Figs. 1,
2). According to the Hillas-E model, showersin Fig. 3a
have energies above 4 x 10 €V. In this case, the
shower distribution contradicts the data from the other
arrays mentioned above (Fig. 2). One can thus conclude
that the Sydney model estimates the shower energies
more correctly; i.e., according to this model, no shower
was detected above 10%° eV at the SUGAR array [8].

To determine why the number of inclined showers
with E > 4 x 10%° eV is smaller than the expected num-
ber (Fig. 2), we analyze these showers. As an example,
Fig. 4 shows the electron—photon and muon compo-
nents of two inclined showers with angles 8; = 58.7°
and 6, =54.5° and energiesE; = 1.2 x 10°eV and E, =
2 x 109 eV. These showers are detected at the Yakutsk
EAS array on May 7, 1989, and December 2, 1996,
respectively. The axes of both showers were inside the
array perimeter. Asis seen in Fig. 4a, the particle den-
sities in scintillation detectors (with 3-MeV detection
threshold for electrons and photons) and muon detec-
tors (1-GeV detection threshold) are equal to each
other; i.e., the shower with E, = 1.2 x 10% eV has only
the muon component. The shower with the lower
energy, E; = 2 x 10° eV, has the el ectron—photon com-
ponent at the same zenith angle 6 (Fig. 4b). The
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Fig. 4. Densities of (closed circles) electrons and photons
and (open circles) muons at the distance r from the axis of

the shower with (a) E; = 1.2 x 102 and (b) E, =2 x 101 eV.
The solid and dashed lines are the densities expected for the
electron—photon and muon components, respectively.

increase in the muon fraction in inclined showers with
an increase in energy was found for al the datain [9].

Thus, it isfound for E > 4 x 10%° eV that, first, the
number of observed inclined showersisrelatively small
and, second, the muon component starts to prevail in
theinclined showers and dominates over the other com-
ponents at E ~ 10%° eV.

Previously, we have concluded that cosmic rays
with E > 4 x 10'° eV are, most likely, Galactic cosmic
rays[10]. The above facts can be treated as achangein
the mass composition of Galactic cosmic rays toward
heavier particles.

The qualitative pattern of the shower development is
as follows. A heavy nucleus interacts with atoms in
atmospheric layers lying higher than the layers of
lighter nuclei and decays into individual nucleons.
These nucleons produce lower-energy showers, and,
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likely, the inclined showers of relatively lower energy
are more strongly absorbed in the atmosphere. For this
reason, the corresponding inclined showers are in defi-
ciency (Fig. 2), while in the inclined showers with rel-
atively higher energies the muon component likely
startsto dominate over the el ectron—photon component.
Based on these facts, one can conclude that the mass
composition of cosmic rays with E > 4 x 109 eV is
heavier than for E ~ 10'° eV.

Aswas shown in [11], the cosmic rays with 10%° eV
most likely consist of iron nuclei. Thus, cosmic rays
with E > 4 x 10° eV are likely heavier than the iron
nuclei. Due to a change in the mass composition of pri-
mary radiation, the lateral distribution function of sec-
ondary particles in showers can change and, corre-
spondingly, the estimate of shower energy changes (at
the Yakutsk array, the shower energy is estimated from
the density of electrons and photons at a distance of
600 m from the shower axis). Therefore, it isdifficult to
conclude to what extent the mass composition of cos-
mic rays with E > 4 x 10'° eV is heavier than the iron
nuclei.

The Yakutsk EAS array is supported by the Ministry
of Education of the Russian Federation, project no. 01-30.
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The ultra-broadband phase matching was experimentally observed in a DKDP crystal upon parametric ampli-
fication of signal radiation with awavelength of 911 nm in apump field with awavelength of 527 nm. The orig-
inal scheme was used to excite the first parametric amplification stage by chirped pulses of idler radiation with
awavelength of 1250 nm. The saturated gain of athree-stage parametric amplifier was equal to 108. © 2004

MAIK “ Nauka/Interperiodica” .
PACS numbers; 42.65.Y|; 42.60.By

Parametric amplification of chirped femtosecond
laser pulses has been actively devised in the last several
years as one of the promising methods of reaching a
petawatt level for optical radiation. For thelower power
levels, this idea was formulated probably about
15 years ago [1]. However, it has attracted practical
interest in achieving the highest (multipetawatt) power
only recently, after the design of femtosecond lasers
with pulse durations as short as 10 fs and nonlinear
crystals with an aperture up to 40 cm [2, 3].

In the theoretical and experimental works [2-5]
devoted to the development of ultrahigh-power laser
sources, a KDP crystal was considered and used as a
nonlinear element in the fina stages of parametric
amplifiers. The use of second-harmonic radiation from
neodymium lasers with a wavelength of 527 nm as a
pump radiation holds the most promise for the devel op-
ment of powerful systems. The corresponding maximal
amplification bandwidthinaKDP crystal isachievedin
the case of degenerate interaction for asignal radiation
wavelength of ~1054 nm. In the experiments [4, 5], the
initial duration of amplified chirped pulses was no less
than 100 fs because of the difficulties associated with
the fabrication of shorter-duration femtosecond oscilla
tors in the wavelength range of ~1054 nm.

Analysis of the parametric interaction in a highly
deuterated DKDP crystal suggests [6] that the charac-
teristics of this crystal are substantially different from
the characteristics of a KDP crystal. According to the
most reliable Selmeier’s dispersion relations for DKDP
[7], the broadband matching in this crystal at a pump

wavelength of 527 nm occurs upon noncollinear
wavevector interaction in the amplification wavelength
range 800-1054 nm. Moreover, calculations show that
ultra-broadband phase matching in DKDP takes place
for the central wavelength A, = 910 nm of signal radi-
ation. In this case, the second-order wave-mismatch
dispersion tends to zero and the amplification band-
width is determined by the third-order dispersion. If the
conditions for the ultra-broadband matching are met,
the maximal amplification bandwidth in DKDP, all
things being the same, is approximately twice as large
asin KDP and is equal to 2300-2500 cm™ for a pump
intensity of 1-4 GW/cm? (Fig. 1), allowing the amplifi-
cation of pulseswith aduration of ~15fs.

In the DKDP parametric amplifiers, chirped pulses
of a femtosecond Ti:Sapphire laser can serve as a
source of signal pulses, whose initial duration at a
wavelength of ~910 nm can reach 30fs. Itisalso shown
in thiswork that signal radiation with A;, ~ 910 nm can
be excited at the input of the first amplifier stage by the
chirped pulses of afemtosecond Cr:Forsteritelaser, and
they can generate pulses with a duration of 30 fs at a
wavelength of ~1250 nm, coinciding with the wave-
length of frequency-conjugated radiation.

To use the entire DKDP amplification bandwidth
and produce, using DKDP amplifiers, pulses with a
duration of 10-20fs, it is hecessary to devise femtosec-
ond oscillators generating pulses of the corresponding
duration at wavelengths of ~910 nm (or ~1250 nm),
e.g., to devise a femtosecond parametric oscillator, as
was proposed in [8] for KDP amplifiers.
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Fig. 1. Amplification bandwidth of signal radiation as a
function of its wavelength for KDP and DKDP crystals, a
pump intensity of 1 GW/cm?, and a stage gain of ~10%;
(1) KDP crystal with broadband phase matching; (2) the
same with optimized angles; (3) DKDP crystal with ultra-
broadband matching; and (4) the same with optimized
angles.
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In the experiments (Fig. 2), a femtosecond Cr:For-
sterite laser with a mean power of ~0.25 W generating
pulses of aduration of ~40 fs with a spectrum FWHM
of ~400 cm! was used as a source of injected radiation.
A parametric amplifier was pumped by the second har-
monic radiation from a Nd:YLF laser with a wave-
length of 527 nm, a pulse energy of 1 J, and a pulse
duration of 1.5-1.7 ns. The pulse repetition rate was
2 Hz. The pump intensity at the input of the first para-
metric amplifier stage had almost uniform cross-sec-
tional distribution and was equal to ~1 GW/cm?.

A two-stage synchronization scheme [9] provided
the simultaneous (to within ~50 ps) passage of the
pump and amplified radiation pulses through the non-
linear crystals. The nonlinear DKDP elements in the
parametric amplifier were 70 mm in length, and the
deuteration level was 88.7%.

The reguirements to the stretcher dispersion charac-
teristic change significantly if the signal is excited by
theidler wave. In this case, the phase of the compressed
amplified signal pulse is given by the expression
CD(Q) = (Dcom(wlo + Q) - ‘Dsn(wzo - Q) ((*)10 and Wy are
the central frequencies of the signal and injected radia-
tions, respectively, and Q is the detuning from the cen-
tral frequency). It follows from this expression that the
guadratic dispersion of the system is zero if the second-
order dispersions of the stretcher and compressor are
identical. As for the cubic dispersion of the system, it
canturnto zero only if thethird derivatives of the phase
incursionsin the stretcher and compressor are opposite
in sign. Our calculations showed that this requirement
can be satisfied if, by analogy with acompressor, asys-
tem with negative quadratic dispersion and two prisms
with identical apex angles is used as a stretcher. For a
certain choice of parameters of such a system, one can
not only vary cubic dispersion within a relatively nar-
row range, as was demonstrated in [10], but even
change the sign of this dispersion and, thereby, exactly
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Fig. 2. Schematic block diagram of the experimental setup.

compensate the compressor dispersion up to the fourth
order inclusive.

A stretcher having atransmission band of 1000 cm
and stretching 40-fs pulses of theinjected radiation to a
half-height duration of 0.5 nswas devised on the basis
of aholographic diffraction grating with a groove den-
sity of 1200 mm™ and the appropriately fabricated
prisms.

In our scheme with the excitation of the parametric
amplifier by theidler wave, the spectral components of
a signal radiation with A;q ~ 910 nm propagate unidi-
rectionally only if the propagation direction of the
injected radiation components change according to
the law

Ko(wyn—Q) = k3 =2k (0 + Q),

where k; are the interacting wavevectors and z; is the
unit vector in the direction of a signal wave. In the
experiment, this was achieved by passing the injected
idler beam through a dispersing prism. The image of
this beam at the prism output was translated to the first
amplifier stage by a narrowing telescope. This dimin-
ished the effect of pump radiation divergence on the
amplification process. The radius of the exciting
injected beam in the crystal was ~1 mm.

The pump and signal beams were fed to the input of
the second amplifier stage through a system of mirrors
without changing the scale. From the output of the sec-
ond stage, the signal beam wastrand ated to the input of
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Fig. 4. Spectrum diagram of signal radiation in the critical
plane in the lens focus f = 406 mm: (a) for the collimated
injected radiation and (b) for the optimized angular chirp.

the third stage with afourfold magnification, while the
pump beam was fed with a 1.1-fold demagnification.

To determine the conditions for broadband amplifi-
cation in a DKDP crystal, the phase-matching angles
between the interacting waves were measured as func-
tions of the amplified wavelength. The angle ¢45(A,)
between the pump beam and the signal-radiation-
matching direction in the principal plane was measured
for different angles 65 between the pump wavevector
and the crystal axis. Figure 3 shows agood coincidence
between the experimental and theoretical curves calcu-
lated using the Selmeier relations [7]. For the optimal
angle 65, ~ 37°, the tuning of the injected wavelength
did not change the direction of the signal wavevector in
the spectral range considered. This result was aso con-
firmed by the studies of spectral and angular distribu-

ANDREEV et al.

tions of parametric superradiance in the range A; ~
885-935 nm.

The propagation direction of the signal spectra
componentsamplified in thefirst and second stageswas
studied as a function of the wavelength for different
angular chirps of the injected radiation at the output of
a quartz prism. To this end, the signa beam was
focused onto the entrance dlit of a spectrometer with a
CCD camera placed in the plane of its exit dlit. Thus,
we measured the dependence of the direction of ampli-
fied signal on its frequency (signal spectrum-diagram)
in the principal plane. For a collimated injected beam,
the angular spectrum of the output signal was fre-
guency-dependent (Fig. 4a), and the signal beam
became collimated upon setting the dispersing prism at
acalculated angle[11]. Thiswas accompanied by asig-
nificant broadening of the spectrum of amplified signal
(Fig. 4b).

For an energy of ~1 Jof the pump pulses at the input
of the system, the energy of signal pulsesreached ~0.1 J
after the third amplifier stage, and the amplification
became saturated (Fig. 5). Dueto thelosses on the path,
the pump-pulse energy at the input of the third stage
was ~0.7 J and, correspondingly, the energy transfor-
mation coefficient for the pump beam in the third stage
was ~15%. This is in accordance with the results of
numerical simulation of the amplifier operation with
allowance for the relative walk-off of the interacting
beams.

At the output of the second stage, the amplified
beam was close to Gaussian with a radius of ~0.1 cm
and anearly diffractional divergence. After the amplifi-
cation in the third stage, it had a clearly defined outer
boundary with adiameter of ~0.8 cm, corresponding to
the pump beam. The directivity diagram of signal beam
at the output of the third stage was symmetric and close
to the diagram of a beam with uniform intensity distri-
bution and flat phase front (Fig. 6).

For again of ~108, the spectral width of signal radi-
ation markedly decreases, because the side frequencies
are amplified in a pump field of lower intensity. How-
ever, spectrum narrowing is insignificant after stretch-
ing the pulse to 0.5 ns. The spectral width of the ampli-
fied pulse was approximately 30% narrower than the
spectral width of the injected signal. The compression
of this pulse without fine adjustment of the stretcher—
compressor system gave pulses with a duration of
~80fs.

Numerical simulation of the parametric amplifica
tion process shows that, upon the amplification to a
multiterawatt or petawatt level, the spectrum narrow-
ing, to a large extent, can be compensated by the
“supersaturation” effect [3]. The energy transformation
coefficient for the pump pulse increases to ~25-30%.

Our experimental results and the results of numeri-
cal simulation suggest that petawatt pulseswith adura-
tion of up to 30-50 fs can be obtained upon the excita-
tion of a DKDP parametric amplifier by theidler radia-
2004
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Fig. 5. Dependence of the energy U of signal pulses after the third amplification stage on the energy Uy, of pump pulses.

tion. This will require the use of a wide-aperture
nonlinear DKDP element and pump pulseswith adura
tion of ~1.5 ns and energy of ~1 kJ at a wavelength of
527 nm. Joint work inthisdirection isin progress at the
Institute of Applied Physics RAS and the All-Russia
Research Institute of Experimental Physics of the Rus-
sian Federal Nuclear Center (Arzamas-16) on the basis
of a powerful neodymium phosphate glass facility
LUCh[12]. At the Institute of Applied Physics, nonlin-
ear elements with a cross section of ~10? cm? have
already been fabricated and the preparation for the
experiment aimed at reaching ~100 TW and for the fab-
rication of elements with across section of 10° cm? has
been started.

Thiswork was supported by the Russian Foundation
for Fundamental Research (project no. 02-02-17474),

I (arb. units)
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Fig. 6. Directivity diagram | of asignal beam at the output
of third amplifier stage (dots). Solid line is the theoretical
dependence for a beam with a diameter of 8 mm and uni-
form intensity distribution.
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A symmetry analysis of ordering in lithium nickelite Li; _,_,Ni; . ,O, (Li; _y_,0,Niy ,,O,) was performed
with regard to the substitution of Li and Ni atoms and the occurrence of structural vacancies in the metal sub-
lattice. For all the ordered phases, the kgg) ray of the Lifshitz{kg} star ispresent inthe order—disorder transition
channel. Thisray determines the consecutive alternation of atomic planes filled with only Ni atoms or only Li
atoms and vacancies in the [111] g; direction. It was shown that the rhombohedral ordered LiNiO, phase is
formed in the defect-free lithium nickelite, whereas a family of three monoclinic Liz0Ni,Og (C2/m space
group) and Li,00NizOg (C2/m and C2 space groups) superstructures arises as the concentration of structural

vacancies increases. For all the superstructures, the order—disorder phase-transition channels were determined
and the distribution functions of Li and Ni atoms have been calculated. The long-range order parameters
describing each superstructure were found as functions of the Li; _, _,Ni; , O, composition. © 2004 MAIK
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Lithium nickelite, the related oxide compounds
LiMO,, and their solid solutions are being studied
intensively as rather promising cathode materials for
chemical power sources [1]. The implementation of
their high potentialities is hampered by the instability
of their properties caused by the complicated defect
structure, which is primarily due to the lithium nonsto-
ichiometry and to the possibility of ordering and disor-
dering. Thecrystal structuresof complex oxidesLiMO,
(M = Ni, Co) are derivatives of the Bl-type (NaCl)
structure and differ in the way of ordering of lithium
and transition-metal cationsin the (111)g; or equivalent

(111)g1, (111)s1, and (111)e; planesof the face-cen-
tered cubic (fcc) sublattice. In the cases where lithium
and transition-metal ions separately occupy alternating
metal (111)g, planes of the basic cubic lattice, layered

structures are formed.

Several ways of writing the chemica formula for
lithium nickelite are used in the literature: Li,NiO, [2—
4], Liy_yNi; ,,0,[3, 5], and Li,Ni, _,O, (or Li,Ni; _,O,
wherey = x/2) [6-8]. The difference in the formulasis
associated with a difference in the understanding of the
lithium nickelite structure. A solid solution LiyNi; _,O
(0=<y<0.5) isformed in the ternary Li—Ni—O system,
whose extreme members are cubic nickel monoxide
NiO (at y = 0) and rhombohedral (trigonal) stoichio-
metric LiNiO, lithium nickelite (at y = 0.5, i.e,
LigsNigs0). The structure of stoichiometric LiNiO,
lithium nickelite can be considered as a result of the
ordering of lithium and nickel atoms (ions) in the basic

cubic structure of the B1 type. The Li; _,Ni, ., O, and
Li,Ni,_,O,formulasare, in essence, similar (X =1—X)
and reflect the substitution of nickel for lithium in the
solid solution but take no account of the possible occur-
rence of structural vacanciesin the lithium sublattice of
rhombohedral lithium nickelite. In fact, if the composi-
tion of lithium nickelite departs from the stoichiometric
LiNiO,, structural vacancies appear in the lithium sub-
lattice whose concentration can be rather high. The
occurrence of vacancies is taken into account in the
Li,NiO, formula (or Li,d, _,NiO,, where O is a struc-
tural vacancy in the lithium sublattice) [2—4]; however,
the substitution of nickel for lithium is not taken into
account in this representation. To take into account the
substitution of nickel for lithium upon the formation of
a solid solution between NiO and LiNiO, and the
occurrence of structural vacancies in the metal sublat-
tice, the lithium nickelite formula should be repre-
sented as Li;_,_,Ni;., 0, (Li;_,_,0,Ni;,,0,). This
formula takes into account the specific features of the
lithium nickelite structure and allows the ordering of
lithium nickelite to be analyzed using the atomic distri-
bution function and the concept [9-11] of the order—
disorder phase transition channel in nonstoichiometric
compounds.

Up to now, the majority of structural investigations
of lithium nickelite and related compounds have been
empirical; a theoretical analysis of the structures has
not been performed. This prevents the specific features
of experimentally observed ordered phases from being
understood; moreover, it is not possible to predict the
ordered phases that are formed and the concentration
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regions in which they arise. In this work, we perform a
theoretical symmetry analysis of the experimentally
observed and theoretically possible superstructures of
Li;y_y_,Ni; ., O, lithium nickelite, from the determi-
nation of the order—disorder transition channel to the
calculation of the distribution function of the ordering
atoms.

The unit cell of the rhombohedral (trigonal) ordered
phaselLi, _,_,Ni;,,O,isshowninFig. 1. Inthe coordi-
nates of the basic cubic structure, the unit cell of the

perfect rhombohedral (R3m (ng) space group)
LiNiO, phase has the trandation vectors a, =
%mélugl, by = %Ezimgl, and ¢, = %mizmgl . The
rhombohedral cell is primitive with respect to the lith-
ium atoms and contains one Li atom in the 1a (0 0 0)
position, one Ni atom in the 1b (1/2 1/2 1/2) position,
and two O atoms in the 2c (1/4 1/4 1/4) position. The
nonprimitive cell is hexagonal, has a three times larger
volume, and contains three Li atoms, three Ni atoms,
and six O atomsin the 3a (00 0), 3b (0 0 1/2), and 6¢
(00 1/4) positions, respectively. This cell hasthe trans-

lation vectors a,e, = %ﬂlZEgl, Dre = %DLlOEgl, and

Crex = 21110k, .

In order to determine the structural order—disorder
phase-transition channel through which the rhombohe-

dral (trigonal) LiNiO, superstructure with the R3m
space group is formed, the reciprocal -l attice vectors of
the superstructure were calculated and the {k} starsto
which these vectors belong were determined. The cal-
culation showed that the rhombohedral superstructure
of lithium nickelite is formed through the phase-transi-

tion channel that involvesoneray kﬁf) =b,/2 of the Lif-

shitz {kg} star (the subscript and superscript of the
wave vector correspond to the star number and the ray
number in the star, respectively; from here on, the num-
bering of wave-vector stars { kg is given according to

[9-13], and the numbering of their rays k' corre-
spondsto [9-11]; b, ={-111},b,={1-11},and bs =
{11-1} arethe basisvectorsof thereciprocal lattice of
fcc crystal in 21ag, units).

The found order—disorder transition channel allows
one to caculate the distribution functions for lithium
and nickel atoms in the rhombohedral superstructure.
The star {kg} is characterized by the long-range order

parameter r]éM) inthe fcc meta sublattice. The arrange-

ment of atoms of sort v in an ordering crystal is
described by the distribution function n)(r) that pos-
sesses symmetry of the ordered lattice and represents
the probability of finding an atom of the given sort at the
crystal lattice site r. In the disordered Li; _,_Ni; .0,
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Fig. 1. Position of the rhombohedral (R3m space group)
unit cell of LiNiO, lithium nickelite in the lattice with the
B1 structure. The consecutive alternation of atomic planes
filled with only Li atoms, only O atoms, or only Ni atomsin

the [111] g1 direction is shown.

(Liy_x_,Ni; 4 O,), the probabilities n)(r), nMN(r),
and n®)(r) coincide with the fraction of metal sublat-
tice sites occupied by lithium or nickel atoms or with
the fraction of vacant sites, respectively; i.e., nt)(r) =
(1—=x=2)/2, "N)(r) = (1 + x)/2, and nO)(r) = Z/2.

The order—disorder transition induces a spatially
periodic modulation of the atomic uniform distribution
over the crystal lattice sites in the disordered com-
pound, resulting in the formation of the ordered phase.
This modulation, i.e., the departure of the probability
n¥)(r) from its value for the disordered (random) distri-
bution, can be represented as a superposition of several
plane concentration waves [14]. The wave vectors of
the concentration waves are the superstructure vectors
that form the order—disorder phase-transition channel
[10, 11, 15]. In the method of static concentration
waves [14], the distribution function is expressed
through the fraction of sitesy, occupied by the atoms of
agiven sort v in the ordering sublattice and through the
modulation, i.e., superposition of static waves.

In the case under consideration, the metal fcc subl at-
ticerepresentsthe Ising lattice, in which the ordering of
Ni atoms occurs, on the one hand, and Li atoms and
structural vacancies, on the other. The translation vec-
torsdetermining the position of itssitesr havetheform
r =xa, + Y@+ za;, wherex,, y,, and z are the coordi-
nates of metal fcc sublattice sites and a;, a,, and a; are
the fundamental trandlations of the basic lattice in the
[100]g;, [010]g;, and [001] g, directions. Thecalculation
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performed showed that the distribution function of

nickel atoms in the rhombohedral (R3m space group)
Li; _,_Ni; ., 0O, superstructure takes the form

(Ni)(xh Vi, 2Z)

) (1)
= (1+x)/2—(n$"12) cos[T(x, —y; + Z)]

and depends on one long-range order parameter r](M) .
The distribution function (1) takes two values on al

sites of the metal fcc sublattice: n(N') =(1+x)/2+
N 12and n"" = (1+x)/2—n{" /2. Theformer value,

n{" , isthe probability of finding Ni atoms at the nickel

sublattice sites, and the latter, n(N') isthe probability of

finding Ni atoms at the lithium sublattice sites (from
here on, the subscript in the designations of probabili-
ties n and concentrations signifies the sublattice under
consideration, and the superscript corresponds to the
sorts of atoms arranged at the sites of this sublattice). In
the case of rhombohedral ordering, Li atomsand vacan-
cies O are randomly distributed over the sites of a uni-
fied lithium sublattice; therefore, the site distribution
function in the basic cubic lattice of the unified Li sub-
lattice can be written as follows:

n(Li'D)(Xln Vi, 7))
= (1-x)/2+(n§"12) cos[i(x, —y, + )]

The distribution function (2) takes two values on the
sites of the metal fcc sublattice: n{” = (1 — x)/2 +
nd/2.and i’ = (1-x)2+ni" /2.

The completely ordered state of lithium nickeliteis
attained for the stoichiometric LiNiO, composition

when the long-range order parameter n(M’ () =1 and

the relative concentrations of lithium and nickel atoms
in the metal sublattice are equal, while the structural
vacancies are absent; i.e., X, =0and z, = 0.

In the metal sublattice of the completely ordered
rhombohedral (R3m space group) LiNiO, structure, the
hexagonal atomic [111]s: planes, whose sites are
occupied by lithium atoms, and the (111)g: planes,
whose sites are occupied by nickel atoms, consecu-
tively alternatein the (111)e; direction.

Theformation of therhombohedral (trigonal) ordered
LiNiO, phase is associated with the Lifshitz {kg} dtar,
which satisfies the Landau criterion for the second-
order transition. Thus, the ordering of Li; _,_,Ni;.,0,

nickelite with the formation of the rhombohedral (R3m
space group) superstructure of the LiNiO, type can pro-
ceed through the second-order phase-transition mecha-

)
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nism. The rotational and trandational reductions of
symmetry upon the formation of the rhombohedral
LiNiO, phase are equa to 4 and 3/2, respectively; the
overall reduction of symmetry equals 6.

From the results obtained, it follows that the struc-
ture of rhombohedral lithium nickelite is described by

only one long-range order parameter n(M) though

some authors (see, for example, [7]) believe that two
parameters are required to describe order in this phase;
one is necessary for the description of order in the lith-
ium sublattice and the other is necessary for the
description of order in the nickel sublattice. However,
long-range order in these sublattices is completely
determined by the parameter r](M) In fact, using the

parameter NS and the found values of the distribution

function, one can obtain expressions for the estimations
of the degree of order inthe Li and Ni sublattices. Inthe
general case, the degree of order in the Ni sublattice

equaIS Nni = (C(N') CN|I))/C(NI)maX =
(N — ")/ c™  The highest possible concentra-

tion of nickel in the Ni sublatticeis ¢l '™ = 1. With

regard to this equality and the values of n{}’ and n"

given by distribution functions (1) and (2), the degree
of order in the nickel sublatticeis

Nni = N5 +X ©)
Similarly, the degree of order in the Li sublattice is

defined as . = (7 —cMy/c™™ \where ¢tV =

n" and ¢\ = n™" are the concentrations of Li and

Ni atoms in the lithium sublattice, respectively, or,
which is the same, in the lithium layers. The value

¢ = (1 _x) is the highest possible concentration
of lithium in the Li sublattice. With regard to the found

(NI)

values of n;;’ and n(L') for functions (1) and (2), one
obtains
M) _
No
r]Li 1 X " (4)

The dependence of the maximum value of the long-

range order parameter r](M) on the composition of

Li; _y_,Ni; ., O, lithium nickelite upon the formation
of the rhombohedral LiNiO, superstructure has the
formfor values0<x<1,0<z<(1-X)

g™ (x,z) = 1—x. (5)
With regard to Eq. (5), nii = (1 — 2x)/(1 — X) and

N = 1. For the maxima long-range order in

JETP LETTERS Vol. 79 No.4 2004
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Liy_, - Ni;,, 0, when x = 0 and z = 0, the degree of
order in the nickel and lithium sublatticesis1. At x>0,
the degree of order in the Ni sublattice is till equal to
unity, because all its sites are occupied by only Ni
atoms, and the degree of order inthe Li sublatticeisno

higher than ;7 = (1 —2x)/(1—Xx), because not only Li
atoms but also XN, Ni atoms arelocated at itssites. The
degree of order cannot be negative; therefore, it follows

fromtheequationfor n;~ that the rhombohedral struc-

ture (R3m space group) cannot exist at x > 0.5. Actu-
ally, at ahigh concentration of vacancies (z= 1/6), dis-
ordering must proceed to the cubic phase, or the sym-
metry must be reduced with the retention of nickel
atomic planes and with ordering of Li atomsand vacan-

ciesin the (111)g:1 planes relating to the unified lith-
ium sublattice. In lithium nickelite with a high excess
of Ni (x= 1/6), avariant of the symmetry reduction can
take place with the redistribution of Li and Ni atoms

overall (111)s; planesof themetal sublattice and their
ordering in these planes. Such orderings can proceed as
first-order phase transitionsthrough the transition chan-
nelsinvolving the {k,} and {kg} star rays, in addition
to the {kg} star rays. As aresult, superstructures of the
LisOONigO;, or (LigNi)gO;, types with the monoclinic
and trigonal symmetries can arise. At an even higher
concentration of vacancies z = 0.25, superstructures of
the Li;00Ni,Og or Li,ONi;Og types can arise. Actually,
the monaclinic Li;0Ni,Og superstructure was detected
in Ligso075NiO, nickelite by X-ray and electron dif-
fraction [2, 16].

All the superstructures that are formed on the basis
of the rhombohedral phase retain the alternation of the

(111)s: planes, whose sites are occupied by only Ni
atomsor only Li atoms and by structural vacancies; the
alternation of planes is determined by the superstruc-

ture vector k&, which is characterized by the long-

range order parameter n{" in the metal fcc sublattice.

The distribution of Ni atoms over the sites of the metal
fcc sublattice is described by Eqg. (1), asin the rhombo-

hedral structure, and the dependence n$™™(x, z) for

all superstructures is described by Eq. (5). Lithium

atloms and vacancies in the (111)g:; planes are
arranged in the ordered way; i.e., the unified lithium
sublatticein the rhombohedral phaseisdividedinto two
nonequivalent sublattices containing only lithium
atoms and only vacancies, respectively. In these super-
structures, the fraction of Li atoms among the lithium
atoms and vacanciesis (1 —x—2)/(1 —x); therefore, the
first term in the corresponding distribution functions of
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Fig. 2. Perfect monoclinic (C2/m space group) unit cell of
ordered Li3z0Ni4Og nickelitein thelattice with the B1 struc-
ture.

Li atoms, which corresponds to the concentration wave
with the wave vector k{¥, will be

[(1-x=2)/(1-x)]n""D(x, y1,2) = (1-x~2)/2

(M)

+(1-x=2)ng "/[2(1-x)] cos[r(x, -y, +7)].

The unit cell of the perfect monoclinic ordered
Liz0Ni, O phase (C2/m(C3,) space group) has the
translation vectors a,, = [1120k1, b,, = 1100, and

Cy = 0020k (Fig. 2). Theunit cell contains 6 Li atoms
inthe 2b (0 1/2 0) and 4f (1/4 1/4 1/2) positions; 2 struc-
tural vacanciesin the 2a (0 0 0) position; 8 Ni atomsin
the2c (00 1/2), 2d (0 1/2 1/2), and 4e (1/4 1/4 0) posi-
tions; and 16 O atomsin the 4i (00 1/4), 4i (/2 0 1/4),
and 8j (1/4 3/4 3/4) positions (without regard for dis-
placements). The symmetry analysis performed has
shown that the distribution of Li atoms and vacancies O

depends on three superstructure vectors k{” , k¥, and

k{" , which are characterized by the long-range order

parameter r](gLi) . The calculated distribution function of
lithium atoms in the monoclinic (C2/m space group)
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Fig. 3. Position of the monoclinic (C2/m space group) unit
cell of the ordered Li,0Ni3Og phase in the lattice with the

B1 structure.

ordered Li;0Ni,Og phase of Li;_,_Ni;, O, nickelite
has the form

n“(x,y,2) = (1-x-2)/2

+(1=x-2)n$"/[2(1 - x)] cos[rt(x, - y; + )] ©
—n$4){ cos[T(x, + y; + 2)] + Cos[TT(=x, + Y, +2)]

+ cos[T(X, + Y, —2)]

and depends on two long-range order parameters r](M)
and ng () At the 2b and 4f sites of the Li sublatti ce, the
function given by Eq. (6) is n{;” = (1 -x-2)/2 + (1 -
x — 22N [2(1 = X)] + n{ /4. At the 2a sites of the
vacancy sublattice, it equals n(L" =(1-x-2/2+(1-
x—-2nM 1[2(1-x)] - 34" /4.
The dependence of the maximum value of the long-

range order parameter n{") on the composition of
Li; __Ni; ., O, lithium nickelite upon the formation
of the monoclinic (C2/m space group) LisCINi Og
superstructure has the form

(A(x+2),if (x+2)<1/4

(Li)ymax _
o 2 = 0 3t (x+2)> 14 )

for valuesx=0and z= 0.

The authors of [3] assumed that, as the concentra-
tion of structural vacanciesin Li; _,_,Ni; ., O, lithium
nickelite increases from z = 1/4 to z= 1/2, the structure
of the ordered phase remains unchanged and only the
degree of occupation of the 2b positions by lithium
atoms decreases from 1 to 0. This is improbable

GUSEV

because, as arule, the variation of the relative concen-
tration of structural vacancies Az within the homogene-
ity regions of ordered phases of nonstoichiometric
compounds does not exceed 0.1 [10, 11]. This assump-
tion also contradicts the experimental data[2]: electron
diffraction patterns obtained for Li, _,_,Ni, , O, of dif-
ferent composition (x = 0, 0.35 < z< 0.75) are notice-
ably different.

If the concentration of structural vacancies in
Li; _y_,Ni; 4, O, reaches z= 1/3, the formation of the
ordered Li,00Ni;O4 phase is most probable. This phase

isalso monoclinic and belongsto the C2/m (Cgh) space
group but has a different unit cell with the translation

%Eﬂé[hl, by = :—;DLlOEgl, and ¢, =

% [1120%; (Fig. 3). Theunit cell contains4 Li atomsin

the4g (0 1/3 0) position, 2 structural vacanciesin the 2a
(000) position, 6 Ni atomsin the 2d (0 /2 1/2) and 4h
(0 1/6 1/2) positions, and 12 O atomsinthe 4i (1/4 0 3/4)
and 8j (1/4 2/3 3/4) positions. Because the Li,[INi;Og,
like the previous Li;0Ni,Og, arises on the basis of the
rhombohedral phase, the transition channel retains the

superstructure vector kS, which determines the alter-

vectors a,, =

nation of the (111)s1 planes, whose sites are occupied
by only Ni atomsor only Li atoms and structural vacan-
cies. This vector is characterized by the long-range

order parameter n(M) Thedistribution of lithium atoms

and vacanciesin the (111)g: planes of the phase under
consideration is determined by the superstructure vec-

tors k(" and k'?, which are characterized by the long-

range order parameter n'"" . The calculated distribution

function of lithium atoms in the ordered Li,CONi3Oq
phase of Li; _,_Ni; ,, O, lithium nickelite hastheform

n(x, v, 2) = (1-x-2)/2
+(L-x-2)ng"M[2(1-x)] cos[m(x,—y, +2)] (8

—(2n$"13) cos[4m(x, +Y,)/3].
The function given by Eq. (8) depends on two order
parameters n{" and n{" . At the 4g sites of thelithium
sublattice, it takes the value n(L') =(1-x-2/2+(1-
x — 2N /[2(1 — ¥)] + n' /3. At the 2a sites of the
vacancy sublattice, it equals n's" = (1-x—2)/2 + (1 -

x—2nM 121 -x)] - 2n$ /3.

The dependence of the maximum value of the

long-range order parameter r](L') on the composition
of Liy_y_,Niq,,O, lithium nickelite upon the forma-
JETP LETTERS  Vol. 79
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tion of the monoclinic (C2/m space group) Li,00Ni;Og
superstructure in lithium nickelite has the form for x =
Oandz=0

[(B(x+2),if (x+2)<1/3
(1-x-2)/2,if (x+2)>1/3

(Li)ymax

Na (%2 =

(9)

The monoclinic ordered Li,rINi;Og phase can have
a twice as large unit cell that corresponds to the C2
space group and has the trandlation vectors a,, =
% 1120k, by = g’ 10, , and ¢, = (1120%: (Fig. 4).
The unit cell contains 8 Li atomsinthe 2a (0 /3 0), 2a
(02/30), 2b (00 1/2), and 2b (0 2/3 1/2) positions; 4
structural vacanciesin the 2a (0 0 0) and 2b (0 1/3 1/2)
positions; 12 Ni atomsin the 4c (0 1/6 1/4), (0 1/2 1/4),
and (0 5/6 1/4) positions; and 24 O atomsin the 4c posi-
tions. In addition to the vector kgs) , the transition chan-

nel involves the superstructure vectors k&, k7, kY,

K, kS kP kS and k§ of the{k,}, {ks}, and
{kq} stars. Thedistribution of lithium atoms and vacan-

ciesin the (111)s: planes of the phase under discus-

sion is determined by the superstructure vectors of the
{k4}, {ks}, and {k¢} stars, which are characterized by

the long-range order parameters n&”, n{™, and n{™".

The calculated distribution function of lithium atomsin

the monoclinic (C2 space group) ordered Li,CINi3Og

phase of Li; _,_,Ni;,,0O, nickelite has the form
n(“)(x,,yl,zl) = (1-x-2)/2

+(1-x-2)n$"/[2(1 - x)] cos[t(x, - y; + )]
~(n$"7112{ cos[4T(x, +y))/3 - (/3 sin[4Ti(x, + )/}

— (n§"/12){ cos[1i(x, — 5y, —37)/3] (10)

— (J/3)sin[T(x, -5y, —32)/3]}
—(n§12){ cos[n(x, + 7y, + 92,)/6]
—(«/é)sm[n(xl +7y,+9z2)/6]}

and depends on four long-range order parameters. The
function given by Eq. (10) takes five different values
(see, for example, the analogous function for the
MgX s superstructure [15]). In the case of equal order

=t = D = ), these values
degenerate into two values: N5 = (1-x—2)/2+ (1 -
x—2N5" 1[2(1 = X)] + n)/3 at the sites of the lithium
sublatticeand n&" = (1-x-2)/2+ (1-x-2)n{" /[2(1
—X)] —2n*)/3 at the sites of the vacancy sublattice.

parameters, n
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The dependence of the maximum value of the long-
range order parameter n) on the composition of
Li; __,Ni; ., 0O, upon the formation of the monoclinic
(C2 space group) ordered Li,[ONi;Og phase in lithium
nickelite hastheform for x=0andz= 0

(Liymax _ B(x+2),if (x+2)<1/3
) = BB(1—x—2)/2, if (x+2) > 13’ (1)

The presence of non-Lifshitz star raysin the order—
disorder transition channels associated with the forma-
tion of monaoclinic superstructures signifies that these
superstructures are formed through the first-order
phase-transition mechanism, i.e, with a stepwise
change in the period ag,; of the basic cubic lattice. The
diffraction patterns of the monoclinic superstructures
will differ in both the position and intensity of super-
structure reflections; however, structural neutron dif-
fraction analysis should be used along with X-ray and
electron diffractions to provide an accurate determina-
tion of the structure of ordered phases.

Thiswork was supported by the Russian Foundation
for Basic Research, project no. 03-03-32031a.
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M agneti zation-induced third harmonic (TH) generation was observed in magnetic nanostructures—nanogran-
ular Co,Ag; _ films—possessing giant magnetoresistance (GMR). The magneti zation-induced contribution to
the TH intensity was studied as a function of the concentration of a magnetic component (cobalt) in the films.
Magnetic contrast of the TH intensity was found to correlate with the GMR coefficient: both parameters simul-
taneously reach extremum in the range of cobalt concentrations x ~ 0.3-0.35. © 2004 MAIK “ Nauka/Interpe-

riodica” .

PACS numbers; 42.65.Ky; 75.70.Ak; 75.75.+a; 75.47.De

Magnetic nanostructures have attracted attention
over the last two decades as structures exhibiting
unusua magnetic and magnetooptical effects, such as
oscillation of exchange interaction between magnetic
layers separated by a nonmagnetic spacer [1], spin-
dependent scattering and tunneling [2, 3], giant magne-
toresistance (GMR) [4], giant nonlinear magnetoopti-
cal Kerr (GMK) effect in the second harmonic (SH)
generation [5], etc. Thelatter two effectswere observed
in the multilayer magnetic structures and in magnetic
nanogranulated alloys consisting of nonmagnetic
(dielectric or metallic) matrices and magnetic nanopar-
ticles distributed in their bulk [6].

The transport properties (including GMR) of such
magnetic nanostructures are largely governed by the
structure of internal interfaces between the multilayers
(nanoparticles) and by the matrix material [7]. At the
same time, the nonlinear optical effects and, primarily,
the SH generation, which is forbidden in the bulk of
centrosymmetric media (including metals) in the elec-
tric-dipole approximation, are distinguished by a high
sensitivity to the interface properties. In this case, the
surfaces and internal interfaces, for which theinversion
center is absent, are the SH sources [§].

In magnetic media, the quadratic susceptibility ten-
sor acquires additional (magnetization-induced) com-
ponents, because the time-reversal symmetry is broken
due to the magnetization, while the spatial inversion
symmetry is broken at the surfaces and interfaces as a
result of structural disturbance, giving rise to the sur-
face (interfacial) magnetization-induced SH. Dueto the
unique sensitivity of the magnetization-induced SH to

the magnetism of low-dimensional systems, its genera-
tionis used for studying the magnetic properties of sur-
facesand thin films of ferromagnets, magnetic superlat-
tices, and nanoparticles[9]. In the study of the SH gen-
eration in magnetic nanogranular films, the intensive
nonlinear optical magnetic Kerr effect was observed,
for which the dependence of magnetic contrast of the
magnetization-induced SH intensity on the film con-
centrational composition qualitatively coincided with
the anal ogous dependence of the GMR coefficient [10].

Up to now, all nonlinear magneto-optics was practi-
cally concentrated on the study of the magnetization-
induced SH, while the fact that the third harmonic (TH)
generation in magnetic nanostructures can aso be
informative was disregarded, and the magnetization-
induced TH generation was not observed in magnetic
nanostructures.

In thiswork, the magnetization-induced TH genera-
tion was observed in magnetic nanogranular films pos-
sessing GMR. The magnetic contrast of the TH inten-
sity was found to correlate with the GMR coefficient as
afunction of the concentration of the magnetic compo-
nent in nanogranular Co,Ag; _, films. A comparison
with a similar effect in the magnetization-induced SH
generation was also carried out.

Samples of nanogranular Co,Ag; _, films with a Co
atomic fraction of 0.04 < x < 0.9 were prepared by the
separate electron-beam coevaporation of Co and Ag
from two sources in a high vacuum (10~ Pa) and con-
densation of a mixed metal vapor onto glass-ceramic
substrates at room temperature. Film thicknesses were
about 200 nm. Film composition was determined by the

0021-3640/04/7904-0155%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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SH intensity (arb. units)

Fig. 1. Azimuthal dependences of the SH intensity for the
pp- and ss-polarization combinations; Cog 4Agy 6 film.

EDXA method. The crystal structure of films was
determined by X-ray diffraction. To estimate the sizes
of magnetic grains, the SQUID magnetometry dataand
the magnetization curves were analyzed by the method
described in[2]. Film magnetoresi stance was measured
by the four-probe method at room temperature in a
magnetic field up to 8 kOe.

Analysis showed that, at x < 0.5, the average size
of Co grains in the granulated films was 3 A. In the
domain of existence of the granulated structure (x <
0.5), the Co grainsin the Co,Ag; _, films are character-
ized by an fcc (111) structure which coherently
matches with the fcc structure of the Ag matrix.

The magnetization-induced TH generation was
observed upon the irradiation of film surfaces by an
YAG:Nd®* laser with awavelength of 1064 nm, apulse
intensity of 10 MW/cm?, a pulse duration of 15 ns, and
a pulse repetition rate of 25 Hz. The TH radiation
reflected from the granular films was separated by the
appropriately chosen filters and detected using a photo-
multiplier and a gated electronic recording system. In a
similar manner, the magnetization-induced SH was
studied in the same films. A magnetic field of about
2 kOe was produced by permanent magnets and ori-
ented in the film planes.

MURZINA et al.

Figure 1 presents the azimuthal angular depen-
dences of SH intensity for the Co, ,Agy SAMplein the
case of pp- and ss-polarization combinations, wherethe
first index stands for the polarization of SH radiation
and the second indicates the polarization of fundamen-
tal radiation. Similar dependences were obtained for all
the studied Co,Ag; _, samples. The isotropic character
of these dependences is, primarily, evidence of the
absence of anisotropy for the properties in the film
plane, allowing these filmsto be considered isotropic as
regards the magnetization-induced nonlinear optical
effects. Moreover, the presence of a nonzero isotropic
ss SH-intensity component violates so-called ssforbid-
ding [11] that islikely caused by the granular character
of film structure and is an indication of the second-
order hyper-Rayleigh scattering, i.e., appearance of an
incoherent diffuse SH component [12].

L et us consider what kind of magnetization-induced
effects can be observed for the second and third har-
monics in an isotropic magnetic film. The nonlinear
polarization can be written in the form

P(2w, 30) = X (M) : E;E + X n(M) : E;EE;, (1)

where x®@ and x©® are, respectively, the quadratic and
cubic susceptibility tensors determining the SH and TH
generation processes and, in the general case, are func-
tions of the medium magnetization M; and E; is the jth
component of the fundamental field. A consistent con-
sideration of the form of material tensors of different
rank was carried out in [13] for magnetized media
belonging to each of the point symmetry groups.
According to the approach developed in [14] for the
description of the magnetization-induced effectsin SH,
the quadratic susceptibility tensor of a magnetized
medium can be represented as the sum of the magneti-
zation-even and magnetization-odd components,

XaM) = 55 £ x &9 (M), the first of which is
invariant about the magnetization inversion, while the
second changes its sign upon changing M direction.
Similarly, in the case of TH generation, the cubic sus-
ceptibility tensor can bewritten as x (M) = x (™"
Xi(jgklmd) (M).

The nonzero components of tensors X and x© are
presented in the table. The coordinate system is chosen

M agneti zation-even X (&® and magneti zation-odd x(°4) quadratic and cubic susceptibility components; the odd components
are calculated for the geometries of equatorial (M || Y) and meridional (M || X) magnetooptical Kerr effect

X&) (M = 0) XD M1Y) XD (M 1X)

2, -, @ - 2 .M @M (2.M | (2,M (2),M @.M @M (2.M
SH Xzzzv szx - Xzyyv Xxxz - nyz Xxyy ’ Xxxx ’ nyx ’ szz ’ Xzzx nyy ’ nyx ’ Xyzz

3 6 - O 3 -0 @M JBM @M (3).M _(3)M (3).M (3).M
TH Xzzzz0 Xsoxxx = nyyya Xzzxx = Xzzyy Xzxzz + Xxxxz + Xooxx nyxx 1 Xxzzz Xzyyy vaxxz

3 -0 @ -0 (3),M

Xxxyy - nyxx' Xxxzz = nyzz yzzz
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so that the Z axis is perpendicular to the film surface,
while the (X2) plane coincides with the incidence plane
of the fundamental radiation (see inset in Fig. 2d). It
follows from the table that, in the absence of the exter-
nal magnetic field, the SH generation is possible only
for the pp and sp polarization combinations, while the
TH generation is possible only for the pp and ss combi-
nations. Depending on the direction of external field,
various magnetization-induced effects can be observed
in the SH and TH generation. For the equatorial Kerr
effect with Y-directed magnetic field, only the p-polar-
ized magnetization-induced SH and TH components
appear (table, second column). In this case, achangein
the direction of the applied magnetic field brings about
M-odd changes in the intensity of the corresponding
harmonic, because the total SH/TH intensity can be
represented as

2
260, 30(M) O(Eerse + Eayae)

_ even 2 even odd odd 2
- E2w/3w + 2COS((p) E2w/3wE2w/3w + E2w/3oov

)

where the term ESn (ES,.) is responsible for the

even (odd) magnetic effect and @isthe phase difference

between Eges 5, and Ege s, (insetin Fig. 2b). Asiscus-

tomary in magneto-optics, magnetic contrast

p2(.o, 3w

= (IZw,3w(T)_IZw,Bw(l))/(IZw,Bw(T)+ IZw,3w(l)) (3)

= AE5 5B 3000S(0)/ (1 26 30(1) + 126 30( 1))

serves as ameasure of a magnetization-induced change
inthesignal intensity. In Eq. (3), 54, 3w(1) and 15, 3.(4)
are, respectively, the SH (TH) intensities measured for
the oppositely directed magnetic fields. Thus, both the
ratio of field amplitudes of the magnetic and nonmag-
netic SH (TH) and the phase relations between them
prove to be essentia in the measurement of magnetic
contrast. For this reason, measurement of the intensive
magnetic contrast was accompanied by measuring the
phases of harmonic fields using SH or TH interfero-
metry [15].

Note that there are no coinciding even and odd com-
ponents among the quadratic and cubic susceptibilities.
This means that, in the general case, the Fresnel and
local-field factors can be different for these compo-
nents, which may result in different spectral depen-
dences of the nonmagnetic and magnetic SH- and
TH-field components.

One can see in the table that, in the case of the
meridional Kerr effect, the magnetization-odd s-polar-
ized SH and TH components appear for the p-polarized
fundamental radiation, resulting in the rotation of
polarization planes of the SH and TH waves. The mag-
netization-induced angle of rotation of the SH-wave
polarization planein the Co, ;A g, ¢ film wasfound to be
10°-15°.
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Fig. 2. Magnetoresistance and magnetic contrast of (a) SH
and (b) TH intensity as functions of the concentration x of
magnetic component in the Co,Ag;_y films for the
pp-polarization combination in the geometry of equatorial
magnetic Kerr effect. Inset: (upper panel) measurement
geometry for the equatorial Kerr effect and (lower panel)
vector-addition diagram for the magnetization-even and
magnetization-odd SH- and TH-field components.

The GMR coefficient and the magnetic contrast of
the magnetization-induced SH intensity in the geome-
try of equatorial Kerr effect are shown in Fig. 2a as
functions of cobalt concentration x in the Co,Ag;
films. The GMR is maximal at x ~ 0.33. The magnetic
contrast also showsamaximum intherangex=0.3-0.4
followed by increase at x > 0.55. Analogous depen-
dence of magnetic contrast is presented in Fig. 2b for
the TH intensity. Asin the case of SH, the TH magnetic
contrast hasalocal maximum at x = 0.3-0.4, which cor-
responds to the GMR maximum.

To take into account the phase rel ations between the
magnetization-even and magnetization-odd contribu-
tions to SH and TH, the magnetization-induced phase
shift of the SH and TH waves was measured in the
geometry of equatorial Kerr effect for oppositely
directed magnetic fields. The scheme of interferometry
of the magnetization-induced SH and TH is shown in
Fig. 3a. The dependences of the SH/TH intensity on the
position of areference SH/TH source are presented in
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Fig. 3. (8) Measurement scheme for the interferometry of
magnetization-induced SH and TH; (b, ¢) magnetization-
induced (b) SH and (c) TH intensities as functions of the
position of reference SH/TH source, as obtained by measur-
ing interferometry of magnetization-induced SH and TH in
the geometry of equatorial magnetic Kerr effect for the
pp-polarization combination.

Figs. 3b and 3c. The periods of the interference pattern
proved to be substantialy different (~13 and ~3 cm)
because of the difference in the dispersion of air refrac-
tive index at the SH and TH freguencies (532 and
355 nm). Since the magnetization-induced phase shift
is ~10°, it can be ignored when estimating the ratio
x(©dd/y(even) g0 that the experimentally measured mag-
netic contrast reflects the ratio between the effective
magnetization-even and magnetization-odd compo-
nents of the nonlinear susceptibility tensor.

MURZINA et al.

Thus, the magnetic contrast for the intensities of the
magnetization-induced third and second optical har-
monics clearly correlates with the coefficient of giant
magnetoresistance. Thiscorrelation ismanifested in the
identical dependence of these effects on the film com-
position. In the case of magnetization-induced SH gen-
eration, the maximum at x = 0.3-0.4 isless pronounced
because of alocal increase in the intensity of nonmag-
netic SH component in this range of x values.

Among the effects that can play an important part in
the nonlinear magnetooptical Kerr effect and in its cor-
relation with the GMR in nanogranular films, one
should first of al examine the possibility of exciting
local surface plasmons. Aswas shown in [10], the exci-
tation of surface plasmons with optical frequenciesin
metallic magnetic nanoparticles surrounded by a non-
magnetic metallic matrix is possible for nanogranular
systems and can lead to SH generation. In this case, one
can expect that the magnetic contrast will be frequency-
dependent, because the resonance properties of the
magnetization-even and magnetization-odd SH/TH-
field components are different, as follows from the dif-
ferent forms of the nonlinear susceptibility tensor com-
ponents (table). At the same time, it was shown in [10]
that, for different fundamental-radiation wavelengths
(1064 and 800 nm), such a dependence of the magneti-
zation-induced SH generation in the Co,Ag; _, filmsis
absent. It has a so been found in thiswork that the mag-
netic contrast for the second and third harmonics
depends on x qualitatively in the same way, indicating
that the spectral dependence is absent for the magnetic
contrast at the frequencies of recorded signal. The
experimentally observed correlation between the
SH/TH magnetic contrastsislikely caused by the struc-
tural features of the films near the percolation threshold
and the attendant increase [16] in the nonmagnetic
component of the nonlinear optical response, which has
asignificant effect on the magnetic contrast.

In summary, the magnetization-induced third har-
monic generation has been experimentally observed in
this work for nanogranular magnetic films possessing
giant magnetoresistance. In the Co,Ag; _, films, the
magnetic effect for the TH intensity is on the same
order of magnitude as (or even somewhat stronger than)
the previously observed analogous effect for the mag-
netization-induced SH. It has been shown that, similar
to the magnetization-induced SH, the GMR effect cor-
relates with the nonlinear magnetooptical Kerr effect in
the third harmonic. Thiscorrelation ismanifested in the
identical dependence of these effects on the film com-
position and in the fact that these effects reach their
maxima at the same concentration of magnetic compo-
nent in the nanogranular films.

This work was supported by the Presidential grant
“Leading Scientific Schools of the Russian Federation”
(grant no. NSh-1604.2003.2), grant from Moscow
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“Nanosystems, Nanomaterials, and Nanotechnology”
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On the Hall Effect in a Two-Dimensional Doped
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The conductivity and the Hall coefficient of a doped 2D antiferromagnet in the normal state are considered
using the Kondo lattice model in the multimoment approximation. The anomal ous temperature dependence of
the kinetic coefficientsis explained by the strong anisotropic charge-carrier scattering from the spin subsystem
and found to be in qualitative agreement with the experimental data for the normal state of high-T, supercon-

ductors. © 2004 MAIK “ Nauka/lInterperiodica” .
PACS numbers; 75.30.Mb; 74.20.Mn; 75.50.Ee

Itisgenerally accepted that the properties of carriers
in the CuO, planes, which are an almost ideal analogue
of a doped 2D antiferromagnet, are the key to under-
standing the unusual kinetic properties of the normal
state of high-temperature superconductors (HTSCs).

The resistivity p of HTSCs increases linearly with
temperature over awide range, starting almost with the
superconducting transition temperature T,, which is
much lower than the Debye temperature 6, [1-4]. In
addition to the strong temperature dependence, the Hall
coefficient R, exhibits a nontrivial dependence on the
doping level [1-6].

Much theoretical work has been devoted to the
transport properties of HTSCs. However, the number of
publications in which the temperature dependences of
theresistivity and the Hall coefficient are studied simul-
taneoudly is relatively small, and in most cases, the
studies are purely phenomenological. In awidely used
approach based on a nearly antiferromagnetic (AFM)
Fermi liquid (FL) [7], the strong anisotropy in the scat-
tering of Fermi carriers from the spin subsystem natu-
rally leads to the model of cold and hot spots at the
Fermi surface (FS) [7-10].

In this work, the p(T) and R,(T) dependences are
also analyzed within the framework of the AFM FL
model, whose spectrum corresponds to the lower spin-
polaron band. It iswell known that the charge dynamics
of carriers in the CuO, planes are successfully
described by the three-band Emery model [11-13]. In
particular, the analysis of the elementary excitation
spectrum on the basis of a spin polaron leads to the
spectrum observed in the angle-resolved photoemission
experiment (ARPES) over a wide doping range [14].
For example, aresidua FSis observed in the undoped
regime; with increasing doping level, a pseudogap
opens at the FS, and alarge FS with the center at (11, T)

is observed in the optimal doping regime. The calcula
tion based on the one-band Kondo model (whichissim-
pler for theoretical analysis) qualitatively reproduces
the same features.

For this reason, we will use below the model of a
regular Kondo lattice for the Hamiltonian of the CuO,
plane. The charge-carrier spectrum is determined from
the calculation of the lower polaron band [14, 15], in
contrast to the majority of studies, where the spectrum
is chosen on the basis of FS parametrization extracted
from the ARPES measurements. Another distinction is
that the spin subsystem, which represents a frustrated
2D AFM, is treated in the self-consistent spherically
symmetric approximation [16]. It should be noted that,
in previous studies, claiming a the microscopic
description of kinetic coefficients, the authors ordi-
narily used the phenomenological spin susceptibility
corresponding to the overdamped paramagnons [7, §].
We will determine the kinetic coefficients using a mul-
timoment approach to the solution of the kinetic equa-
tion, which allows one to simultaneously analyze the
temperature behavior of the nonequilibrium distribu-
tion functions in the problems of resistivity and Hall
effect and which isalternative to the multipatch charge-
carrier model [10].

The Hamiltonian of a regular square Kondo lattice
has the form
H = Ho+Hi, Ho=Hn+l,

|:|h = zakalcakc’ (1)
k, o

I = %Ilg$+g$+ %lzRZd$+d$-

0021-3640/04/7904-0160$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Here, Hy, and 1 describe, respectively, the carrier
(hole) motion and the subsystem of localized spins and
g and d are the vectors of the first and the second near-

est neighbors. The exchange Hamiltonian 1 is respon-
sible for the AFM interaction between spins, p (0<p <
1) isthefrustration parameter; and 1, = (1—p)l and I, =
pl are the exchange interaction constants for the first
and second nearest neighbors, respectively.

We define the hole spectrum ¢, by the harmonics
with quadratic symmetry, yg_(k) = (cos(k,) + cos(k,))/2
and yy(k) = cos(k,)cos(k) (Fig. 1):

g = T(aryy(K) +ays)(K)

+agyq(K) + agya(k) + asyy(K)yg(k)),
a,=15, a,=3.0, a3=-1.25, a,=0.0, a;=0.1. (3)

(2)

Theterm H; isthe sum of the on-site exchange J and
theinteraction H; with an external field:

~ 1 t ~q
J=J= A+ .75 Oy,y, By,
/\/NquZVZLVVZ
1 _igR
Sq = _Ze q SR,
IN q

where 6° are the Pauli matrices (coinciding Cartesian

indices a imply summation). The interaction H¢ with
auniform external electric field E and a magnetic field
H (perpendicular to the CuO, plane) is described in
terms of the carrier polarization operator.

The spin subsystem is considered in a spherically
symmetric approximation [16]. In this approximation,
spin excitations consist of three degenerate branches
defined by the two-time retarded Green's function

(T8 |S'{T, = Ay/(w” - wg) , where numerator A, and
the spin excitation spectrum w, are cal cul ated self-con-
sistently. The w, and A, spectra depend on the frustra-

tion parameter p and on afinite number of spin correla-
tion functions C, = [8;S; . ,[land have the form

Aq = —8(11(1-y4(a))Gg + 1,(1-y4(a)) C),

oy = 1AV (B (1+Y)B)  (4)

D1/2
+(1-Yg)(Bs + (1+V4)Ba) +Yg(1-Va)Bs)

The spectral parameters B, depend on temperature
through Cg, Cy, Cy, Cy.q, and Cyy. The functions A,
and w, tend to zero asq — 0. Inthe limitq — Q,
2004
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Fig. 1. The spectrum of charge carriers (in electronvolts) is
represented by energy isolines g, = const; the bold curves

show thelevel g, = 1.64 corresponding to the FSin the opti-

mally doped compounds. The arrow indicates the scattering
in hot spots by the AFM vector Q = (1T, ) from state k4

under the FSto state k, above the FS.

the numerator A, tends to a positive constant Ao, while
the spin-wave spectrum wé = A\? + c*(g - Q)? is sepa
rated from zero by the gap A = wq, whichincreaseswith
temperature. As T — 0, the gap width tendsto afinite
limit that is determined by the frustration parameter p.
It is generally accepted that p increases with the doping
level n,. Bearing in mind that we deal with a doping
level close to optimal (n, = 0.15), we choose p= 0.1
[14].

It should be noted that the spin—spin correlation

function C, = [8), S, has asharp peak at q = Q; this
corresponds to a strong dependence of carrier scatter-
ing on the resonance structure of the spin fluctuation
spectrum.

To take into account the scattering anisotropy that
arisesin our case due to the strong scattering by vector
Q, wewill use a multimoment approach to the solution
of the equation of motion for the density matrix. This
approach was devel oped for the description of the low-
temperature behavior of coefficients p(T) and Ry(T) in
polyvalent metals in the case of scattering from
phonons [17, 18], where the scattering anisotropy
increases due to the umklapp processes.

In the stationary case, the deviation from equilib-
rium can be defined by using the density matrix. The

most general form of this matrix is p° = p® (1 + F),
p%* = Ztexp(=Ho/T), Z=Sp{ Ag, (FO= {§°A =o0.
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To calculate the one-particle distribution function
f. = Sp{ f)oaicakc} , which determines the transport
coefficients, we can choose the operator F as aone
particle operator, i.e., represent it in the form F =
S ko F(K)a/,a., . Inthiscase, f, can bewritten asf, =
fio + g fx = (L + epec — WM g =
T(-of %0¢,)F(k), where [ is the chemical potential.

We seek F intheform of alinear superposition of a
set of moments, viz., operators F;: F = Z' nE, F =

Y o Filk)acoa

The solution of the evolution equation for the den-
sity matrix within the framework of linear response in
the resistivity problem leads to the system of equations

1
X, = ZPH.mE, X = NZFl(k)eEvk(—afolaek),
| k
Ve = AT OiE,.
Ml A _
P = 23 Nzghwq(':'(k) Fi(k+q)) (9

x (Fr(k) = Fr(k + @) fR(1— 7. q)

X Ng (A 0G) (& 4 q—E —TAWY).

This system is equivalent to the linearized Boltzmann
equation if {F} isa complete set of operators com-
muting with Ho. Clearly, we must restrict our analysis

to a certain finite number |, of moments F, that is cho-
sen from the condition that the scattering anisotropy
and the shape of the Fermi surface are correctly taken
into account.

The usual practice in solving the Boltzmann equa-
tion is to use the relaxation time approximation that is
equivalent to the one-moment approximation (OMA),

F = nSFL; FE(k) =nv g™ F = TeBv,(-of %dg,);

n. = 1eE/T; and n is the unit vector in the direction of

the applied electric field, which is assumed to be
directed along the X axis.

We will restrict our subsequent analysis to the case
of two moments (I, = 2), which will enable usto intro-
duce the classification of various areas of the Brillouin
zone (“hot” and “cold” spots). In this two-moment
approximation (TMA), we choose the moments

BELEMUK et al.

F-(k), F5(k) and the nonequilibrium distribution

(2).E

function g, = intheform

o€ = T(FFS(k) +nEF5(Kk)) (=51 %08,);
Ff(k) = nv,, FE(k) = (nd)3-

The coefficients > and n; can be found from system
of Egs. (5). The current density j* = o®EP, jo =

\l/zk ,evigr determines the conductivity tensor g%

and the resistivity tensor pyg = 05 - In the case of qua-
dratic symmetry, p = Py, = Pyy-

The found correction g = TzI neFi(k) x

(—of %0¢,) isused at the second step for solving the sys-
tem of equations in a magnetic field. The correction

g =TS, n'F(K) (-9f %) to the equilibrium dis-

tribution function in the presence of a Z-directed mag-
netic field is determined by the system of equations
“aongtheY axis’:

X+ X' =y Pynr,
C
1 H 0
X' = =¥ F(k)eE'vi(-0f /ag), (7
3

X' = 5 FROXE,
k

X¢ = —(vicx H)agy/ok,

L 3 ®)
Fr(k) = v, Fi(k) = (v)".

There are two more equations for determining the
Hall coefficient R, and coefficients mH; one of them

corresponds to zero current in the Y direction: j¥ =

zkyaev‘k’g{ =0, Y= Ryj*H2
The resistivity p(T) and the Hall coefficient R,(T)
were calculated for the hole spectrum g, given by
Eq. (3) with parameter 1 = 0.2 eV. The spectrum and the
FS corresponding to the doping level n, = 0.15 are
shown in Fig. 1. For the magnon spectrum determined
by Eq. (4), we chose the frustration parameter p = 0.1
and the exchange interaction | = 0.71. Such a choice
correspondsto the realistic spin—spin exchange interac-
tion| ~ 1500 K in the CuO, plane and the characteristic
hole dispersion £(0, 0) — g ~ 0.5 eV for the optimally
doped HTSCs that is reliably measured in the ARPES
JETP LETTERS  Vol. 79
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experiments. It should be noted that the spectrum cho-
sen is close to the spectrum of the lower spin-polaron
band for the optimal doping. In the maority of publica-
tions devoted to the calculations of p(T) and Ry(T), the
spectrum is chosen so as to fit to the Fermi surface
given by the ARPES experiments and corresponding to
the doping level n,, = 2[7, 8, 10]. It then turns out that
the Van Hove singularity lies at points X = (0, £m),
(T, 0) and the bandwidth isW=¢ —g,, = 1.6 eV [7]
and 2 eV [8]. Inthe spectrum used in thiswork, theVan
Hove singularity is shifted, in accordance with the
experiment, from the point X toward the point I'. The
bandwidth €, corresponds to W ~ 0.7 eV. It should be
noted that, for alarger value of thisquantity, it isimpos-
sible to describe the spectrum evolution in the direction
of thelow-doping limit (i.e., with decreasing number of
holes) [14]. It will be shown below that the temperature
behavior of R,(T) strongly depends on the choice of €,.
For thisreason, analysis of p(T) and R,(T) for g, differ-
ing from the values considered earlier seems to be
essential.

Figure 2 shows the temperature dependence p®@(T)
of theresistivity calculated inthe TMA (6) and the Hall

coefficient Rﬁ’ 2)(T) determined in the one- and two-
moment approximations. In accordance with the exper-
iment, p@(T) exhibitsalinear dependence starting with
low temperatures (=70 K). We do not present the tem-
perature dependence pD(T) inthe OMA, becauseit dif-
fersonly slightly from p®@(T). However, the difference
increases with decreasing temperature, and p@/p® =
0.85at T =70 K. The linear dependence p@(T) over a
wide temperature range is determined by the following.
In view of a comparatively narrow gap A =
(A(200 K) = 250 K), the main contribution to the colli-
sion integral in the magnon spectrum comes from the
backward scattering; in other words, for an electricfield
directed aong the diagonal ' — (11, 1) of the Bril-
louin zone (BZ), these are transitions between the FS
sheets located in the first and the third quadrants of the
BZ (Fig. 1). Obviously, at high temperatures, where the
scattering isisotropic, the p(T) dependence obeysalin-
ear law. For a temperature-independent magnon spec-
trum, the backward scattering processes must be frozen
out with adecreasein T, which could lead to adeviation
from thelinearity. However, in the 2D case, the magnon
spectrum in the range of quasi-momenta close to the
vector Q considerably softens with decreasing temper-
ature. In particular, the gap A first decreases linearly
and reaches aconstant valueonly at T< T* = 50K (in
the general case, the value of T* is afunction of | and
the frustration parameter p). Such atemperature behav-
ior of the spectrum draws the linear dependence p@(T)
far into the low-temperature region.

Figure 2 shows that the temperature dependences
RI(T) and RY(T) are noticeably different. The
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Fig. 2. Temperature dependences of resistivity p(z)('l') (in
units of the ratio p@(T)/p®@ (T = 50 K)) and of the Hall

coefficient RP(T) and RZ(T) (in units of Ryy(T)/RY)

(T=150K - 3) for the spectrum defined by coefficients (3).

The temperature dependence RS)*(T) of the Hall coeffi-

cient corresponds to coefficients (9) of carrier spectrum (2).

quantity R(HZ)(T) qualitatively reproduces the experi-
mental behavior of the Hall coefficient in the HTSC
characterized by the law Ry(T) ~ UT.

To explain the strong difference between Rff) and

R in the low-temperature range, we compare the

nonequilibrium corrections g{”  and g\** © to the one-

particle distribution function that are calculated in the
OMA and TMA, respectively, at the temperature T =
150 K and are shown in Figs. 3aand 3b. The functions

9" ?F are represented by the isolines for an electric
field directed along the I — (11, 17) diagonal.

It can be seen from Fig. 1 that strong scattering
occurs between the FS areasin the first and third quad-
rants, where the FS intersects the AFM BZ boundaries,
i.e., X=Xlines (transitions from the state k, to k, in Fig.
1). These areas correspond to the hot spots, and the
scattering between them makes the main contribution
to the collision integrals P, a low temperatures
because of alarge difference in velocities (v — Vi . )?
(backward scattering) and the closeness of the magnon
guasi-momentum ¢ to the AFM vector Q. For thisrea-
son, the hot spots correspond to a short relaxation time.
The TMA makesit possibleto take into account the fact
that the conductivity must be determined by the FS
areas corresponding to a long relaxation time, viz., to
the cold spots (in our case, these areas correspond to the
intersection of the FS with the (—t, —11) — (11, 1) diago-
nal). Thisis clearly seen in Figs. 3a and 3b, where the
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Fig. 3. The nonequilibrium correction to the one-particle
distribution function gE (in arbitrary units) is represented

by isolinesfor T= 150K (the electric field isdirected along
thel" — (11, 1) diagonal of the Brillouin zone): (a) in the

OMA for g(kl)’ E and (b) inthe TMA for g(kz)’ E

9?2 value at cold spotsistwice aslargeas g™ F. Itis

essentia that the strong redistribution in the nonequi-

librium density gE upon passing from the OMA to the

TMA aso occurs in the portion of the k space corre-
sponding to the FS areas located in the second and
fourth quadrants. It can be seen that the derivatives of

92" & in the second and fourth quadrants of the k space

increase by three to four times relative to the OMA.

One can verify that it is the derivatives of g*" in the

BELEMUK et al.

second and fourth quadrants that play adecisiverolein
the Hall-field term X{' .

This determines the strong difference between R(HZ)

and R}’ in the low-temperature range. With increasing

temperature, the scattering becomes isotropic and the

shape of g% becomes close to the shape of g\,

which is independent of the scattering mechanism and
is determined by the purely geometrical factors associ-

ated only with the g, spectrum. As a result, R(HZ)(T)
approaches Rfj) (T) with increasing temperature.

Let us aso demonstrate that a detailed form of the
temperature dependence R,(T) is determined, to a con-

siderable extent, by the topology of the hole spectrum.
The dot-and-dash curve in Fig. 2 shows the dependence

Rff)(T) for aspectrum which differsonly slightly from

the one used earlier and which is defined by the coeffi-
cients

al = 15, 8.2 = 30, 8.3 = _125,

9
a, = 03, a; = -0.3. ©

It can be seen that the new Hall coefficient R>* (T)
(for the same value n, = 0.15 of the hole concentration)

shows a tendency to saturation at both high and low
temperatures. The details of the R>* (T) dependence

considerably differ from the R&’(T) dependence.

It should be noted in conclusion that a further anal-
ysis of the Hall effect is essential, primarily in connec-
tion with an increase in the number of moments and
with the necessity of taking into account the fact that
the residues for bare holes in the lower spin-polaron
band differ from unity and noticeably depend on the
guasi-momentum.

This study was supported by the Russian Founda-
tion for Basic Research.
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The mesoscopic fluctuations of thermopower (MFT) were experimentally observed in an AlGaAsGaAs het-
erojunction with alow-resistance (~0.02h/e?) periodic antidot lattice in the situation where the mesoscopic fluc-
tuations of conductance (MFC) were absent to within the experimental accuracy. The MFT spectrum contained
aperiodic component associated with the Aharonov—Bohm h/e oscillations in the area occupied by one antidot,
whereas the h/2e oscillations were not observed. It is shown that a sizable contribution to the MFT comes from
the interference of electron trajectorieslocalized inside billiards formed by four neighboring antidots. Contrary
to MFC, the MFT autocorrelation function in single billiards deviates from the L orentzian form. © 2004 MAIK

“ Nauka/Interperiodica” .
PACS numbers. 73.23.Ad; 73.50.Lw

Periodic antidot lattices[1] are aversion of electron
billiards. At present, they are being extensively studied
both experimentally and theoretically. As a rule, the
emphasis is placed on only one of the kinetic coeffi-
cients, namely, on the conductance (resistance),
whereas the other kinetic coefficient (thermopower)
remains poorly studied. The magnetoresistance of the
antidot lattices exhibits so-called commensurate oscil-
lations [2—4] arising as a result of the formation of sta-
ble electron orbits [5, 6]. As the temperature decreases,
the mesoscopic fluctuations of conductance (MFC)
caused by the interference of electron waves are
observed on the background of the classical commen-
surate oscillations [7-12]. Contrary to the conventional
disordered conductors, the MFC in electron billiards
are not universal and reflect the particular characteris-
tics of hilliards and dynamic chaos in them [9]. In this
respect, the studies of mesoscopic effects in electron
billiardsis of considerableinterest. However, the exper-
imental study of MFC is possible only in rather high-
ohmic conductors, because the amplitude of these fluc-
tuationsison the order of 8G ~ €%/h, and, hence, therel-
ative fluctuation amplitude SR/R = 3G/G ~ (e/h)R of a
measured quantity (resistance) is proportional to this
resistance. Thus, the mesoscopic effectsin widely open
systems remain poorly studied experimentally. The
thermopower has appreciable advantages in this
respect. Indeed, the classica magnitude of ther-
mopower in the degenerate systemsis small because of
the symmetry of quasielectrons (above the Fermi level)

and quasiholes (below the Fermi energy). In the meso-
scopic systems, this symmetry is broken and the ampli-
tude of mesoscopic fluctuations becomes larger than
the mean value of thermopower [13]. Therefore, the
thermopower isamuch more sensitive tool for studying
the mesoscopic phenomena compared to the magne-
toresistance.

This work reports the results of experimental study
of the mesoscopic fluctuations of thermopower (MFT)
in atwo-dimensional electron gas (2DEG) with alow-
resistance (~0.02h/€?) periodic antidot square lattice.

Experimental samples were fabricated on the basis
of an AlGaAs/GaAs heterojunction containing 2DEG
with electron mobility p = (5-7) x 10° cm?(V s) and
density Ng = (2-5) x 10" cm™ using €electron-beam
lithography and subsequent anisotropic plasma-chemi-
cal etching. The lattice parameter was d = 0.9 um and
the antidot radius was a = 0.2-0.3 pm with allowance
for the depletion layers. The antidots were placed at the
Hall bridge with sizesL x W= 9 x 6 pm (Fig. 1). The
thermopower was measured using a heater in the form
of a 12-um-long 2-um-wide conducting channel adja-
cent to the Hall bridge.

The thermopower was measured by the standard
method of local heating that all ows the measurement of
diffusiona thermopower without a contribution from
phonon drag (see[14-16] and references cited therein).
A weak current with frequency f was passed through
the heater (between contacts 3 and 6), and the potential

0021-3640/04/7904-0166%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Geometry of the experimental sample and arrange-
ment of contacts. Lattice parameter isd = 0.9 um, and the
antidot radiusisa = 0.2-0.3 um.

difference between different billiard contact pairs was
recorded at frequency 2f as afunction of magnetic field
perpendicular to the 2DEG plane. Joule heat produced
by the heating current rai sesthe temperature of electron
gas near the heater and creates temperature gradient
along the billiards. At a sufficiently low frequency f, the
temperature gradient oscillates with frequency 2f and,
therefore, the voltage measured at this frequency
proves to be proportional to the thermopower. In this
work, we report the results of studying the transverse
thermovoltage U,; (the Nernst—Ettingshausen effect).
Since the scheme of measuring the longitudinal ther-
movoltage U,z was asymmetrical, it was necessary to
symmetrize it about reverting sign of magnetic field.
This procedure is reasonable for the effects associated
with classical transport, where the thermomagnetic
phenomena are described in terms of a loca ther-
mopower tensor. However, this averaging loses its
meaning in the case of mesoscopic thermopower fluc-
tuations, because the latter are nonlocal and, generally,
asymmetrical about changing sign of magnetic field.
For this reason, we restricted ourselves to the study of
transverse thermovoltage. The magnetoresistance was
measured for the same structure. Measurements were
carried out in adissolution refrigerator (Oxford Instru-
ments) at temperature T = 60 mK. Magnetic field was
directed perpendicular to the 2DEG plane and varied
from—2t02T.

The magnetic-field dependences of the longitudinal
R = Uyl and transverse (Hall) Ry = U,;/l4, resis-
tances measured for the bias current 1,, = 10° A are
shown in Fig. 2a. The longitudinal magnetoresistance
exhibits well-defined oscillations, with the main peak at
B=0.18T corresponding to the commensurability con-
dition 2R, = d, where R, is the electron Larmor radius.
The Hall resistance is nonlinear in this range of mag-
netic fields. Such a behavior of the magnetoresistance
of antidot lattices is caused by the classical chaotic
dynamics of electrons moving in aperiodic potential of
antidots [5, 6]. One can see in Fig. 2 that the mesos-
copic conductance fluctuations are absent. A detailed
analysis of these dependences shows that the MFC
amplitude is lower than the instrumental noise (AU <
0.05 nV). To check that 2DEG was not heated by the
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Fig. 2. (a) Longitudina (solid line) and Hall (dots) magne-
toresistances. (b) Equally scaled thermovoltages U7 mea-

sured for the minimal I35 = 3.5 x 107" A (solid line) and
maximal 35 =4 x 10%A (dots) heating currents.

bias current, which could suppress the MFC, the mag-
netoresistance was measured for 1,, = 10° A; however,
this only impaired the signal-to-noise ratio. One can
thus conclude that the MFC in an open antidot lattice
are absent to within experimental accuracy.

The thermovoltage U,; demonstrates a cardinaly
different behavior (Fig. 2b). For a sufficiently high
heating current, 155 =4 x 10° A, for which the electron
subsystem isstrongly heated and its temperature breaks
away from the lattice temperature, T, > T,, the ther-
mopower is a smooth function of magnetic field and
displays detectable oscillations accompanied by the
change of sign. The features in the magnetoresistance
and thermopower curves are correlated, alowing the
conclusion to be drawn that they are also determined by
the chaotic electron dynamics. The U ,(B) dependence
is antisymmetric with respect to the magnetic field, in
accordance with the Onsager relation for the ther-
mopower nondiagonal tensor component. The classical
thermopower commensurate oscillations will be the
subject of a separate paper. As the heating current
decreases, the behavior of thermopower changes sub-
stantialy; on the background of classical oscillations,



168
0.3
(@)
>
2
= 0
ZDE

0.02

4
~ @
z
= |
g
ke,
0 50 100 150 200
I
@AaB)y (T)

Fig. 3. () Mesoscopic fluctuations of thermal voltage Uy et

separated on the background of its classical commensurate
oscillations; (b, ¢) autocorrelation function C(UpeT); and

(d) Fourier-transform spectrum of mesoscopic fluctuations;
the dotted line in (c) shows the best approximation of the
autocorrelation function by the Lorentzian curve in the
range of small AB.

reproducible high-frequency fluctuations appear,
whose relative amplitude increases and, for the heating
current |35 = 3.5 x 10~" A, becomes appreciably larger
than the amplitude of classical thermopower oscilla-
tions. The strong dependence of the thermopower fluc-
tuations on the electron temperature allows the conclu-
sion to be drawn that they result from the quantum
interference.

The MFT can be separated on the background of a
smoothly varying classical thermopower through the
subtraction of the U,(B)curve corresponding to high
power, for which the MFT are suppressed, from the
low-power U,(B) curve. However, in so doing, one
should keep in mind that, according to the Mott’s for-

mula, S= eLy(dIno/dE)T, (L, = T°k3/3€” isthe Lorentz
number, kg isthe Boltzmann constant, and eis electron
charge), while the thermovoltage is U = ST, =
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eLy(dIno/dE)T LT, i.e., it is proportional to the mean
electron-gas temperature and its gradient inside the
sample. Since both these quantities change with a
changein heating power, the MFT should be calculated
by taking difference Uy(B) = U,(B) — aU,(B), where
o = T4uOT,/(TeuOTy,) and indices 1 and 2 refer to the
weak and strong heating, respectively. In our case, the
coefficient o = 0.02 was found under the assumption
that the MFT and classical oscillations do not correl ate,
i.e, from the condition that the correlator C(Ue,
U,) = 0. The separated mesoscopic fluctuations of ther-
mal voltage U7 are shown in Fig. 3a.

The autocorrelation function C(AB) of the mesos-
copic thermopower fluctuations is shown in Fig. 3b.
The correlation magnetic field AB, = 9 mT corresponds
to an areaequal to ®y/AB, = 0.5 um?, where &, = h/eis
the magnetic flux quantum. In the conventional disor-

dered conductors, ®y/AB, =min(L; , 9, whereL, isthe
phase coherence length and Sisthe sample characteris-
tic area. The estimate of the phase interruption time,
according to[17], givesin our caset, =2 x 109 sfor T =

60 mK, which correspondsto L, = ,/D1, =8 um. The

experimental sample had approximately the same sizes.
Therefore, ®yAB, proves to be appreciably smaller

thanboth L and the sample size. Assume that the main

contribution to the MFT comes from the interference of
electron trajectories localized inside the crossing-type
billiards formed by four neighboring antidots. The
areas of these billiards are S, = d? — ma? = 0.6 pm2.
According to [18], the value of ®yAB, for single bil-
liards coincides with the area encompassed by the clas-
sical trgjectories passing through the hilliards; i.e., it
should be ®y/AB. £ S,, which is observed in our case.
Thus, an appreciable contribution to the MFT comes
from the interference of electron tragjectories inside the
crossings between four neighboring antidots.

On the tail of the autocorrelation function (at AB >
AB,), oscillations with a considerable amplitude are
observed. Numerical simulation carried out in [18]
shows that similar oscillations are also observed for the
MFC because of the nonuniversal behavior of short tra-
jectories. It was also shown in that work that, at small
AB, the MFC autocorrelation function for single bil-
liards (including billiards of the crossing type) are well
described by the Lorentzian function. It is seen in
Fig. 3c that, in our case, i.e., for the MFT in a periodic
lattice with such crossings, the shape of the C(AB)
curve is poorly described by the Lorentzian. We failed
to explain unambiguously this discrepancy. It may be
caused by the difference in the MFT and MFC spectra
insinglebilliards, aswell as by theinterference of elec-
tron tragjectories leaving the crossing. Such an interfer-
ence may occur in our system. Indeed, let us compare
T, With the residence time 1, of an electron in the cross-
ing between four neighboring antidots. The latter time
No. 4
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can be estimated from the classical conductance under
the assumption that an electron executes random hop-
ping a a distance on the order of d in time T, (this
assumption is justified if the electron transit time d/v¢
to the neighboring crossing is much shorter than t,).
The diffusion coefficient isthen D = d%1,. Conductance
measurements give T, = 2.5 x 10! s for the diffusion
coefficient. This value is much larger than d/vy = 4 x

1022 s, justifying our assumption. Thus, we have for
our system d/vg < 1, < T1,. Thefirst inequality explains
the overwhelming contribution to MFT from the elec-
tron trajectories interfering inside the crossing between
four neighboring antidots, as was assumed above,
whereas the second inequality (1, < T,) alows one to
expect that long electron trajectories leaving the cross-
ing also make a contribution to the MFT.

The MFT Fourier-transform spectra, shown in
Fig. 3d, indicate that the thermopower fluctuations are
quasiperiodic and contain a component oscillating with
the period AB = 20 mT. This period corresponds to the
Aharonov—-Bohm h/e oscillations caused by the quanti-
zation of magnetic flux through the area ma? occupied
by one antidot (AB = (h/e)/ma?). Phenomenologicaly,
one can expect the presence of the Aharonov—Bohm h/e
and h/2e oscillations in our system on the areas d?, 122,
and d? — a2, The observation of the conductance oscil-
lations with periods AB = (h/2e)/d? and AB = (he)/(d? —
ma?) in the antidot | attices was already reported, in [19]
and [9] respectively. In our case, the frequencies of al
these oscillations are positioned at intervals apprecia-
bly larger than the peak width at AB = 20 mT, so that
this peak can be unambiguously assigned to the h/e
oscillations on the area@?. It isworth noting that oscil-
lations of this type can exist only in the presence of
interference on long electron trajectories that encom-
pass the antidot, i.e., pass through at |east four adjacent
crossings. It was shown above that such interference
may occur in our system. An important feature of the
MFT spectrum in our system is that the h/2e oscilla-
tions, which are ordinarily treated as a periodic modu-
lation of the weak-localization effect, are absent. This
result isin accord with recent work [15] devoted to the
thermopower of quantum dots, where the MFT was
observed, whereas the weak-localization effects did not
show up. Theoretically, the h/e and h/2e oscillationsin
the lattices should behave in a substantially different
way. Indeed, the h/e oscillations have random phasesin
different cells, so that their amplitude is suppressed as

1/./N, where N is the number of cells. Under the same
conditions, the amplitude of the Altshuler—Aronov—
Spivak oscillations [20] having period h/2e is not sup-
pressed, because these oscillations are caused by the
interference on the trajectory pairs that interchange
upon time reversion and, hence, have zero phase differ-
ence in the absence of amagnetic field. In the presence
of alarge number of such trgjectory pairs encompass-
ing various areasin the system, the h/2e oscillations can
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be suppressed by the magnetic field. Such abehavior of
the h/e and h/2e oscillations was confirmed in the
experimental study of conductance [21]. However,
recent work [22] reports the observation of conduc-
tance h/e oscillations in the absence of h/2e oscillations
in weak magnetic fields. A detailed explanation of all
MFT features observed in thiswork isbeyond the scope
of the available models and calls for separate theoreti-
cal analysis.

Note in conclusion that we have experimentally
studied the diffusional thermopower in a widely open
sguare antidot lattice with aresistance of ~0.02h/e? at a
temperature of 60 mK. Well-defined mesoscopic ther-
mopower fluctuations were observed, whereas the
mesoscopic conductance fluctuations were absent to
within the experimenta accuracy. Analysis of the MFT
autocorrelation function C(AB) have shown that they
are caused by the interference of electron trajectories
geometrically localized inside crossings formed by four
neighboring antidots. Contrary to the MFC in single
billiards, C(AB) for the MFT in antidot lattice is not
described by the Lorentzian function at small AB. The
MFT spectrum contains a periodic component that cor-
responds to the h/e oscillations on the area occupied by
one antidot. Thus, it has been demonstrated that, in the
case of widely open systems, where the influence of
mesoscopic effects on the traditionally studied resis-
tance is small and undetectable, the thermopower pro-
vides a unique possibility of experimentally studying
the quantum mesoscopic phenomena.

This work was supported by grant no. MK-
253.2003.02 from the President of the Russian Federa-
tion, INTAS (grant no. 03-55-639), and the Russian
Foundation for Basic Research (project no. 04-02-
16894).
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We use aquasi-Corbino sample geometry with independent contactsto different edge statesin the quantum Hall
effect regime to investigate the edge energy spectrum of a bilayer electron system at atota filling factor of v = 2.
By analyzing nonlinear I-V curvesin normal and tilted magnetic fields, we conclude that the edge energy spec-
trum isin a close connection with the bulk one. At the bulk phase transition spin-singlet—canted antiferromag-
netic phase, the I-V curve becomes linear, indicating the disappearance or strong narrowing of thev = 1 incom-
pressible strip at the edge of the sample. © 2004 MAIK “ Nauka/Interperiodica” .

PACS numbers: 73.21.Ac; 73.43.Nq

In a quantizing magnetic field, energy levels in a
two-dimensional (2D) electron gas (2DEG) bend up
near the edges of the sample, forming edge states (ESs)
at theintersections with the Fermi level. Electron trans-
port through ESsis responsible for many transport phe-
nomenain 2D, asit wasfirstly proposed by Biittiker [1]
and further developed by Chklovskii et al. [2] for inter-
acting electrons. This ES picture is in good agreement
with experimental results [3] on the transport both
along ESs and between them.

Two principally different sample geometries were
applied for transport investigations between different
ESs: (i) across-gated Hall-bar [3] and (ii) a split-gated
guasi-Corbino geometry [4, 5]. While measurementsin
aHall-bar geometry provide information on the equili-
bration length between ESs [3, 6], investigations in a
guasi-Corbino geometry are used to study the energy
spectrum at the edge of a 2D system [5]. So far al
experiments on the interedge channel equilibration
have been performed on single-layer 2D systems,
despite the fact that bilayer electron systems also seem
to be very interesting.

In the bulk of abilayer system, each Landau level is
split into four sublevels corresponding to the spin and
symmetric—antisymmetric splitting, which is caused by
interlayer tunneling. In the simplest case of a weak
Coulomb interlayer interaction, the interplay between

TThis article was submitted by the authorsin English.

the symmetric—antisymmetric splitting Ags and the
Zeeman splitting is responsible for the bulk properties
of bilayer systems at a filling factor of v = 2. Ags
depends only on the electron concentration, so at fixed
total filling factor, it diminishes with increasing mag-
netic field. In contrast, the Zeeman splitting is propor-
tional to the absolute value of the magnetic field. For
thisreason, at atotal filling factor of v = 2, in low quan-
tizing magnetic fields, two occupied energy levels are
separated by a bare Zeeman energy. These two occu-
pied levels belong to different spin orientations, so that
the system is in a spin-singlet state. The excitation
energy at afilling factor of v = 2 is determined by the
next energy scale, i.e., the symmetric—antisymmetric
splitting, and is equal to Agg — gUB. Increasing the
magnetic field at fixed total filling factor, the excitation
energy goes to zero. At zero excitation energy, Agg =
guB and a spectrum reconstruction occurs: at higher
fields, Agg is the minimal energy scale, so both the
filled levels are at the same spin orientation (in the field
direction). The bilayer system is said to be in a ferro-
magnetic state. This spin-singlet—ferromagnetic phase
transition can be driven also by an in-plane field com-
ponent at fixed norma magnetic field. Indeed, this is
only the Zeeman term which depends on the absolute
value of the field, while the other energy scales are
determined by the normal field component.

Regarding the single-particle approximation (with-
out significant inter-layer interactions), while increas-

0021-3640/04/7904-0171$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Quantum well subband diagram at zero gate voltage
(solid line) and at twice smaller electron conservation
(dashed line) as calculated from the growth sequence of the
structure (calculated using Poisson-Schrodinger solver by
G. Snider). Inset shows the capacitance of the sample in
dependence on the gate voltage cal cul ated from the subband
diagram (dashed) and measured in the experiment (solid).
The magnetic field is zero.

ing the Zeernan splitting, the bilayer system at afilling
factor of v = 2 undergoes a direct phase transition from
a spin-singlet to a ferromagnetic state [7] at a critica
magnetic field of B, = Agdgu. However, in experi-
ments with high interlayer Coulomb interaction [8, 9]
(the distance between the layers is comparable to the
magnetic length), the transition point is significantly
shifted to lower fields. This was understood as a mani-
festation of many-body effects [10-12]. It was shown
theoretically that the interlayer Coulomb interaction

shifts the transition point to a value of pugB, = AéAS/EC,
where E. isthe Coulomb energy. At the field B, atran-
sition from the spin-singlet to anovel canted antiferro-
magnetic state now occurs. In this new phase, electron
spins in both layers are canted from the field direction
due to the Coulomb interaction. This bulk phase was
experimentally investigated [8, 9] and the obtained
results are in good agreement with theoretical predic-
tions[10-12].

The situation at the sample edge is expected to be
more complicated. The ES structure is determined by
both the edge potential and the bulk spectrum of a
bilayer system. The latter can be very complicated even
for the simplest situation of atota filling factor of v = 2
inthebulk [7-9, 13]. Moreover, the excitation spectrum
is strongly dependent on the local filling factor, which
varies widely at the sample edge. For these reasons,
even a systematic of the excitations at the edge is
unknown ab initio.

Here, we use a quasi-Corbino sample geometry to
investigate the edge spectrum of excitations at a total
filling factor of v = 2 in abilayer electron systemin nor-
mal and tilted magnetic fields while approaching the

DEVIATOV et al.

bulk phase transition from a spin-singlet to a canted
antiferromagnetic state. At the bulk transition point, the
|-V curve becomes linear, indicating a strong narrow-
ing of the incompressible strip between two ESs.

Our bilayer structures are grown by molecular beam
epitaxy on asemi-insulating GaAs substrate. The active
layers form a 760 A wide parabolic quantum well. In
the center of the well, a three-monolayer-thick AlAs
sheet is grown which serves as atunnel barrier between
both parts on either side. The symmetrically doped well
is capped by 600-A Al,Ga, ,As (x = 0.3) and 40-A
GaAslayers. The symmetric—antisymmetric splitting in
the bilayer electron system as determined from far
infrared measurements and model calculations [14] is
equal to Ags= 1.3 meV.

At zero gate voltage, the quantum well ispractically
symmetric, see Fig. 1 (solid line). It contains 4.2 x
10 cm electrons, which are distributed in both parts
of the well. Applying a negative voltage to the gate
makes the potential relief asymmetric (see Fig. 1,
dashed line), indicating the depl etion of the upper elec-
tron layer at low enough voltages.

Thisisillustrated in the inset to Fig. 1, where both
measured (solid) and calculated (dashed) capacitances
are shown as afunction of the gate voltage in zero mag-
netic field. At the point of the abrupt changing of the
capacitance (bilayer onset, V,, = -0.3V), éectrons are
leaving the top part of thewell and the distance between
the gate and the 2D system is enlarged.

Samples are patterned in a quasi-Corbino geometry
[5] (see Fig. 2). The square-shaped mesa has a rectan-
gular etched region inside. Ohmic contacts are made to
the inner and outer edges of the mesa (each of the con-
tacts is connected to both electron systems in the two
parts of the well). The top gate does not completely
encircle the inner etched region but leaves uncovered a
narrow (3 pum) strip (gate-gap) of 2DEG at the outer
edge of the sample.

Atinteger total filling factor v = 2, edge channelsare
running along the etched edges of the sample (see
Fig. 2). Depleting the electron system under the gate to
asmaller integer filling factor g =1 (asshowninthefig-
ure), one channel is reflected at the gate edge and redi-
rected to the outer edge of the sample. In the gate-gap
region, ESs originating from different contacts run in
paralel along the outer (etched) edge of the sample, at
a distance determined by the gate-gap width. Thus, the
applied geometry alows us to separately contact ESs
with different spin and layer indices and bring them
into an interaction at a controllable length.

In our experimental setup, one of the inner contacts
is aways grounded. We apply a dc current to one outer
ohmic contact and measure the dc voltage drop
between two remaining inner and outer contacts. To
increase the Zeeman splitting with respect to other
energy scales, in our bilayer structure, we apply an in-
plane magnetic field at fixed normal field by tilting the
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sample. Experiments are performed at atemperature of
30 mK in magnetic field upto 14 T.

Measured |-V curves are presented in Fig. 3 for nor-
mal and tilted magnetic fields for afilling factor of v =2
in the gate gap and g = 1 under the gate.

In normal magnetic field, the obtained |-V curve is
of adiode-likeform. It is nonlinear and consists of two
branches, which starts from corresponding onset volt-

ages—positive V, and negative Vj, thresholds. In

between these thresholds, the current is practically
zero. The positive branch of |-V is close to linear and
characterized by low resistance. In contrast, the nega-
tive branch is strongly nonlinear and of higher resis-
tance, see Fig. 3.

In normal magnetic field, the positive threshold Vj,

is close to the bare Zeeman splitting (0.21 meV in a
field of 8.7 T). The negative threshold is one order of

magnitude higher (V, is about 2 meV) and corre-
sponds to Agas in our bilayer structure. In both cases, it
is a problem to estimate the experimental accuracy—
the exact value of the threshold depends on the determi-
nation method. For example, the positive threshold we
can define either by an extrapolation from high currents
or asthe voltage at which a significant current appears.
These values are slightly different, as can be seen from
Fig. 3. For the negative threshold, the second method
seems to be more appropriate because of the strong
nonlinear form of the curve. Nevertheless all relevant
energy scales in a bilayer system (Zeeman splitting,
symmetric—antisymmetric splitting, and a cyclotron
splitting, which is about 15 meV here) are very differ-
ent, so it iseasy to assign athreshold to the appropriate
spectral gap.

Both threshold voltages are strongly dependent on
thein-planefield, see Fig. 3. They are diminishing with
increasing in-plane field and disappear at atilt angle of
0 =45°. A calculated |-V tracefor the case of full equil-
ibration between two ESsisalso shownin Fig. 3 (dash—
dot line) for the comparison with 6 = 45° data. It can be
seen that, despite disappearance of the threshold volt-
ages at 0 = 45°, the experimental curve is still dightly
nonlinear.

The curvesin Fig. 3 are given for two sweep direc-
tions—from positive to negative currents and vice
versa. A small hysteresis can be seen. It is a maximum
innormal magnetic field, becomessmaller at atilt angle
of 8 =30°, and disappears at 8 = 45°. This hysteresisis
a key feature for transport between two spin-split ESs
[15-17]—for some electrons, spin flip is accompanied
by nuclear spin flop. The hysteresis is an effect of the
high nuclear relaxation time (for athorough discussion,
see[17]).

The dramatic influence of the in-plane magnetic
field on the experimental 1-V traces can aso be seen
from Fig. 4a. It demonstrates |-V curves in a much
wider current/voltage range. The experimental nonlin-
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Fig. 2. Schematic diagram of the pseudo-Corbino geometry.
Contacts are positioned along the etched edges of the ring-
shaped mesa (thick outline). The shaded area representsthe
Schottky gate. Arrowsindicate the direction of electron drift
in the edge channels for filling factors of v = 2 in the
ungated regions and g = 1 under the gate.
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Fig. 3. 1-V curvesfor atotal filling factor of v=2andg=1
under the gate at different tilt angles. They are 8 = 0 (solid
line), @ = 30° (dashed line), 6 = 45° (dotted line). Dash—dot
line depicts fully equilibrium 1-V curve, calculated from
Landau—Buttiker formulas. The normal magnetic field is
constant and equals 8.7 T.

ear |-V curves are clearly flattening when the in-plane
field increases. At atilt angle of 8 = 45°, even the curve
shapeisvery different from the normal field case.

The described behavior istotally different from that
of asingle-layer structure, where no influence of thein-
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Fig. 4. -V curvesfor atotal filling factor of v=2andg=1
under the gate at different tilt angles in awide current/volt-
agerange. (a) The present bilayer system. Thetilt anglesare
0 = 0 (solid line), 8 = 30° (dashed line), 6 = 45° (dotted
line). (b) A single-layer heterostructure, discussed in [17].
Thetilt anglesare 6 = 0 (squares), 6 = 30° (circles), 6 = 45°
(up triangles), 6 = 60° (down triangles).

plane magnetic field on the nonlinear I-V curves can be
observed [17]. To demonstrate it in comparison with
the bilayer data, we present in Fig. 4b |-V curvesfor a
single-layer structure [17] at different tilt angles.
Because of high hysteresisin a single-layer case, these
curves are obtained by waiting for 10 min at each point
to have time-independent |-V curves. From both the
values of the thresholds and tilted field behavior, we
should conclude that bilayer properties areimportant in
the present experiment.

Using the gated part of the sample for magnetoca
pacitance measurements, we reproduced the previously
obtained results [9, 13] on the bulk bilayer spectrum at
atotal filling factor of v = 2 in normal and tilted mag-
netic fields: (i) In normal magnetic field, the bulk acti-
vation energy, obtained from the magnetocapacitance,
iscloseto the single-particle Agg (i) Whileincreasing
thein-plane magnetic field component, the bulk bilayer
system goes to the transition into the canted antiferro-
magnetic phase. This phase transition is characterized

DEVIATOV et al.
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Fig. 5. Energy subband diagram of the sample edge in the
gate gap for filling factorsof v =2 and g = 1. (a) No voltage
V applied between the inner and outer ESs. (b) V> 0, in the
situation shown, the outer ES is shifted down in energy by
eV = —g|ugB; (¢) V < 0, here the energy shift is eV > 0.
(d) Sketch of the compressible stripsin the gate-gap region.
Arrows in Figs. 5b and 5c indicate new ways for electron
relaxation opening up at high potential imbalance.

by the appearance of a deep minimum in the activation
energy at atilt angle of 8 = 45°.

Let us start the discussion from the case of normal
magnetic field. The bulk bilayer system at afilling fac-
tor of v = 2isinaspin-singlet state[13] and isfar from
the phase transition point. The energy structure in the
bulk at afilling factor of v = 2 can therefore be depicted
in a single-particle approximation as two filled quan-
tum levels under the Fermi energy separated by the
Zeeman gap. The energy level structure is depicted in
Fig. 5ain the gate-gap region. Approaching the sample
edge, two occupied energy levels bend up because of
the rising edge potential.

In our experimental geometry, we independently
contact inner (always grounded) and outer ESs. For this
reason the measured voltage drop V is equa to the
energy shift of the outer ES in respect to the inner one,
see Figs. 5b and 5c¢. For a positive measured voltage,
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V >0, the outer ESisshifted down in energy by avalue
of eV < 0. It can be seen from Fig. 5b that, at the value

of the voltage V = V3, =—|g|uB/e (where g isthe bare g

factor, e< 0 isthe electron charge), the lowest (the only
occupied in both ESs) energy level isflattened between
two ESs, so that electrons can easily move from one ES

into the other. Thus, starting from the eVy, = —|g|uB,

electrons can be transferred between ESs by vertica
relaxation in the inner ES between two spin-split levels
and move along the lowest energy level to the outer ES,

see Fig. 5b. This positive voltage Vy, is characterized

by asharp risein the current; i.e., it isathreshold volt-
age for the positive branch of the -V curve. It isarea

son for the experimentally observed Vy, to be close to

the bare Zeeman gap. On the other hand, a negative
voltage shifts the outer ES up in energy. Electrons
always haveto tunnel through the potential barrier from
the outer ES into the inner one. This tunneling is only
possible from the occupied states in the outer ES either
into the empty statesin the inner ES or into the excited
energy statesin it. The latter process (with further ver-
tical relaxation in the inner ES to the Fermi level) is
more likely for eV > E,, where E, is the energy of the
first excited state. For this reason, experimental -V
traces change their slopes at eV = E,, which we refer to

asthe negative threshold voltage Vi, . Aswe know from

bulk spectrum investigations, at afilling factor of v = 2,
thefirst excited state is separated from the ground state

by Ags Itisareason for Vy, to be close to Aggin nor-
mal magnetic field.

For an increase of the in-plane magnetic field com-
ponent, the Coulomb interaction becomes more and
more important, so that the simple single-particle pic-
ture described aboveis no longer adequate. In the bulk,
the quantum level s are mixed into anew ground state of
the system, which is separated from the excited state by
a very low energy at the transition point [10].
Approaching the sample edge, the electron concentra-
tion is diminishing due to the edge potential. The local
filling factor is still v = 2 before the inner ES and
becomesv =1 in between the inner and outer ESs (see
Fig. 5d). The energy structure at the edgeis determined
by the local filling factor, so the system is till atv =2
ground state before theinner ES and changestothev =1
ground state between two ESs. Intheinner ES, theelec-
tron concentration changes from the value correspond-
ingtov = 1tothevaluev = 2.

The electron system in the vicinity of thev = 1
incompressible strip can be described asav = 1 ground
guantum Hall state with some amount of electron exci-
tations (right side of v = 1 stripin Fig. 5d), or asav =1
ground quantum Hall state with some amount of holes,
on the opposite side of the v = 1 strip. It is the edge
potential inthev = 1 incompressible strip that separates
electrons and holes on both sides of the strip. Conse-
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guently, the main result of our experiment should be
interpreted asapractical disappearance of this potential
barrier (or, possibly, of the incompressiblev = 1 strip
itself) under conditions of the canted antiferromagnetic
phase in the bulk. In these conditions, electrons can
freely move between ESs without spin-flips, so thereis
no reason both for the nonlinear behavior of experimen-
tal 1-V traces and for the hysteresis on them.

We used a quasi-Corbino sample geometry with
independent contacts to different edge states in the
guantum Hall effect regime to investigate the edge
spectrum of a bilayer electron system at a total filling
factor of v = 2. By analyzing nonlinear |-V curvesin
normal and tilted magnetic fields, we found that the
edge energy spectrum isin a close connection with the
bulk one. At the bulk transition spin-singlet—canted
antiferromagnetic phase, the |-V traces become linear,
indicating the disappearance of the potentia barrier
between v = 1 ground state with some amount of elec-
tron excitations and the v = 1 ground state with some
amount of holes at the edge of the sample.
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We study the conductivity of two-dimensional interacting electrons on the half-filled Nth Landau level with
N> 1 in the presence of quenched disorder. The existence of the unidirectional charge-density wave state at
temperature T < T, where T is the transition temperature, |eads to the anisotropic conductivity tensor. We find
that the leading anisotropic corrections are proportional to (T, — T)/T just below the transition, in accordance
with the experimental findings. Above T, the correlations corresponding to the unidirectional charge-density

wave state below T result in corrections to the conductivity proportional to /T /(T-T,). © 2004 MAIK

“ Nauka/Interperiodica” .
PACS numbers: 73.20.Mf; 71.45.Lr

1. INTRODUCTION

Two-dimensional e ectrons in a perpendicular mag-
netic field was a subject of intensive studies, both theo-
retical and experimental, for several decades [1, 2]. It
has been found that the properties of two-dimensional
electrons in the magnetic field are strongly affected by
the presence of electron—electron interaction aswell as
by impurities. The behavior of the system in a strong
magnetic field where only the lowest Landau level is
occupied has been investigated in great detail [2]. But
only afew attempts were made to consider the system
inaweak magnetic field (large number of Landau levels
N > 1 are occupied) where the Coulomb energy at dis-
tances of the order of the magnetic length exceeds the
cyclotron energy [3].

Progress in understanding the clean two-dimen-
sional electronsin aweak magnetic field was achieved
by Aleiner and Glazman, who, by using the small
parameter 1/N < 1, have derived the successive theory
that describes electrons on the partially filled Nth Lan-
dau level [4]. By treating the effective el ectron—el ectron
interaction on the Nth Landau level within the Hartree—
Fock approximation, Koulakov, Fogler, and Shklovskii
[5] predicted a unidirectional charge-density-wave
(UCDW) state (stripe phase) for the half-filled high
Landau level at zero temperature and in the absence of
disorder. Moessner and Chalker [6] showed the exist-
ence of the UCDW state on the half-filled high Landau
level without disorder below some temperature T,. In
the presence of disorder, the UCDW state on the half-
filled high Landau level can exist if the Landau level

TThis article was submitted by the author in English.

broadening 1/2t does not exceed the critica vaue
121, = 4T y1[7]. (We usethe system of unitswith# =1,
¢ =1, and kz = 1 throughout the letter.)

The anisotropic magnetoresistance discovered near
half-fillings of Landau levels at low temperatures was
attributed to the existence of the UCDW state [8]. This
stimulates an extensive study of the properties of two-
dimensional electrons in a weak magnetic field [9].
However, to date, the magnetoresistance of the UCDW
state has been theoretically considered in the zero tem-
perature limit only where stripes have well-defined
edges[9].

The main objective of the present letter isto present
the results for the conductivity tensor of the UCDW
state developed on the half-filled high Landau level in
the presence of the quenched disorder just below the
transition temperature T., where the expansion in the
CDW order parameter A isjustified.

2. UCDW STATE

Thetwo-dimensional electronsin aweak perpendic-
ular magnetic field H occupy alarge number (N > 1) of
the Landau levels. We assume that disorder isweak, so
it leads to the Landau level broadening 1/2t that satis-
fies the condition 1/21 < wy, where wy, = eH/misthe
cyclotron frequency, with e and m being the electron
charge and the effective electron mass, respectively.
Simultaneously, we imply that the number of impurities
exceeds the number of states on the Landau leve, i.e.,
impurities lift the degeneracy of the Landau level com-
pletely [11]. This means that the Landau level broaden-
ing 1/2t should be larger than wy|al/z,, where a stands

0021-3640/04/7904-0177$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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for the impurity scattering length and z, (>|a)) is the
decay length of the electron wave function in the direc-
tion perpendicular to the two-dimensiona plane.
Thereby, we assume that the Landau level broadening
1/2t satisfiesthe condition wylal/z, < 1/21 < wy. Asthe
temperature decreases, transition from the homoge-
neous state to the UCDW state occurs. Vector Q that
characterizes a period of the UCDW can be oriented
along a spontaneously chosen direction. Usually, the
orientation is fixed either by the intrinsic anisotropy of
the crystal or by the small external in-plane magnetic
field [9]. Hereinafter, we assume that the vector Q is
directed under angle ¢ with respect to the x axis. The
period of the UCDW seems to be of the order of the

cyclotronradiusR. = 1,+/2N + 1, wherel, = 1/ ,/mwy

denotes the magnetic length. More precisely, the mod-
ulus of the vector Q equals Q = ry/R,, wherery,= 2.4 is
the first zero of the zeroth order Bessel function of the
first kind $4(2) [5, 7]. In the mean-field approximation,
the temperature T, of the second-order transition from
the homogeneous to UCDW state is determined as the
solution of the following equation [7]:

e_2,01, 10
To ng%’2+4nTch’ @

where (2, 2) is the generaized Riemann zeta function
and T, is the transition temperature in the clean case
(1t < Ty). We notice that Eq. (1) has a solution for T,
only if the Landau level broadening is smaller than the
critical one 1/2t < 1/2t. = 4T/ According to [5, 6],

r0 c c 1
T =T H[In +_m__} S<r<1,(2
°T a2 %l & 2+r )t N

wherec=1/(./2r,) = 0.3, and r,= /2 €¥ev; < 1, with
ve and € being the Fermi velocity and the dielectric
constant of a media, respectively. It is worth mention-
ing that T, is determined by the characteristic energy
&IR, ~ rqy, < wy of the screened electron—electron
interaction on the Nth Landau level.

If we take into account the fluctuations of the
UCDW order parameter, the transition becomes of the
first order at lower temperature T, — T, where 8T/T, O
h,(nN-23[7]. Here, for convenience, we introduce the
dimensionless parameter ), = /41T, which we use
throughout the letter. The function hy(n.) decreases
monotonically from the value 0.46 at n. = 0 to zero at
Ne — %.Asitisknown, thefluctuations of the UCDW
order parameter produce power divergences and, there-
fore, destroy it in the infinite system. In the finite sys-
tem of size L, the UCDW state survives, provided that
the condition L/R, < h,(n.) N3 holds. Here, the func-
tion h,(n.) monotonically increases from the value 0.55
at n. = 0toinfinity at n, — o. Therefore, in the con-
sidered case of aweak magneticfield (N > 1), the effect
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of the fluctuations on the transition is negligible and the
mean-field picture is well justified.

3. RESULTS

The conductivity tensor o, of the two-dimensional
electrons on the half-filled high Landau level above the
transition temperature T, i.e., in the homogeneous
state, isknown to beisotropic [1]. To this end, we show
that, in the presence of the quenched weak disorder, the
existence of the UCDW state on the half-filled high
Landau level below T, resultsin anisotropic corrections
to the isotropic conductivity tensor o, For atempera-
ture slightly below T,, where the condition T,— T < T,
holds, the anisotropic corrections are given as

504 [ T.—
aig 0 = FNF(N)G(nc)cos[2g] ——, (3
60'yy ] c
and
50,570 o T-T
o 0= NE(n)GMIsn[20 -5~ (&)
oo, [ c
The functions f(2) and g(2) are defined as
329%(r,) 2
(= 2L, o= (g
B % 5" %%2 ot % 0
where g(2) will be used below. The other function (2)
isgiven as
1 1
(Rt H- AP 5+ E
@ = — N0
~3U 3+ H+ 40(2) +20(2)
with
Z%, %+% Imw%+z+ izSBO(nrO)E
CDn(Z) = . (7)

Z9%nry)  29(nry)

The Y(2) standsfor the digammafunction, and the sym-
bol Im denotes the imaginary part.

There are severa features of the main results (3) and

(4). First of all, the anisotropic corrections 3o are
proportional to (T.—T)/T.. Although Egs. (3) and (4) are
derived only for the case of a short-range random
potential (quenched disorder), it can be shown that the
anisotropic corrections remain proportional to (T, —
T)/T. in the case of along-range random potential that
corresponds to high mobility samples used in experi-
ments [8] as well. We emphasi ze that such temperature
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dependence of the devel oping anisotropy in magnetore-
sistance was observed in the experiments [8].

The angle dependence of the anisotropic correction
(3) to conductivity o, has the minimum for @ = 0 that
corresponds to the vector Q directed along the x axis
and stripe oriented along the y axis. From Eq. (3), we
see that the conductivity o,, along the stripe is
enhanced, whereas the conductivity o,, across the
stripes (along the modul ation of the order parameter) is
suppressed, as it should be according to the experi-
ments [8]. At the same time, the anisotropic correction
(4) to a,, vanishes. If the vector Q is oriented at angle
@ = 174 with respect to the x axis, the anisotropic cor-
rection (3) to o,, becomes zero due to the symmetry
between the x and y axes. Conversely, the anisotropic
correction (4) to g, attains the minimum.

The behavior of the anisotropic corrections (3) and
(4) as the functions of the parameter n for fixed tem-
perature T and angle @ are shown in Fig. 1.

In addition, the existence of the UCDW state on the
half-filled high Landau level leads to the isotropic cor-
rection that, for T.— T < T, isasfollows:

i T.-T
50l = —Tg(no) + FNIIGM)-5—. ()
C

Tt

The behavior of the isotropic correction (8) as a func-
tion of n for fixed temperature T isshown in Fig. 1.

4. MODEL

The grand canonical partition function of the two-
dimensional interacting electrons in the random poten-
tial V(r) subjected to the perpendicular constant mag-
netic field H and the time-dependent external vector
potentia A is given by

% = J’gb[w, WND[V]P[V] expTo[W, W' V], (9)

where the action F[W, W7, V] in the Matsubara repre-
sentation has the form

So = jw*(r)[iw U= Ho+ K =V(r)]W(r)
* (10)

eZ
glr —r'|

~5[ S YOO FER YOI,

rravy
Here, we use the matrix notation Wi'(...)W =
Wl)f(...):riwﬁ,m for the electron annihilation W, ()

and creation HJI)‘:( r) operators. Superscripts a, B =
1, ..., 2N, stand for replicaindices combined with spin
ones. We introduce the replicaindices in order to aver-
age over the random potential V(r). The subscripts w,,
Wy, denote the Matsubara fermionic frequencies w,, =
TIT(2n + 1). The one-particle Hamiltonian %€, for atwo-
No. 4
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Fig. 1. The f(ng)%(ny) and [g(no) + f(n)]4(ng)/mas func-
tionsof In(1 + ny).

dimensional electron in the presence of the magnetic
field H = e,,0,A; isdefined as ¥, = —D?/(2m) with the
covariant derivative D = [ — ieA%. The matrix w has
only diagona elements wﬁ,‘i = 0,0°®d,,,, that represent
the Matsubara frequencies wy,. The matrix |5 with ele-
ments (1%)0) = 5%88v5,,_, . is a generator of the U(1)
gauge transformation. The time-dependent externa
vector potential A is involved through the matrix K =

zm K (Vo) ly, where
K(Va) = =ZA(V)D +5=5 AV, wA(Vy). (1)

m

Here, A(v,) is the Fourier component of the externa
vector potential A with frequency v,, = 2rTn.

We assume the white-noise distribution for the ran-
dom potential V(r) is

PIV()] = %ﬁgexp[—zigjvz(r)}. (12)

5. METHOD

To proceed, we integrate over the random potential
V(r) in EqQ. (9). Asusud, it leads to the quartic interac-
tion that we decouple by introducing the matrix field
Q(r) [12]. The annihilation W(r) and creation Wi(r)
operators written in the basis of the eigenfunctions
@(r) of the Hamiltonian ¥,

W) = 3 Wadu(r), W) = S Wpdir) (13)
p, k p, k
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involve the electron states on all Landau levels. There-
fore, the term with the electron—electron interaction in
the action (10) contains the interactions of electrons
from different Landau levels. In generdl, to treat prob-
lem (10) analytically seemsto be impossible. However,
as it was shown in [4], if the N — 1 Landau levels are
filled, whereas the Nth Landau level is partially occu-
pied, one can obtain adescription of the systeminterms
of electrons on the Nth Landau level only provided that
the relative strength of the bare Coulomb interaction is
small, ry < 1, and the magnetic field is rather weak,
Nrg> 1.

Following the same strategy asin [10], weobtain the
grand canonical partition function % as

9% :J'QD[W, WND[Q]expS[W, W', Q], (14

where
S = [Winlieo+ p-%o+ K + iQ]LIJ(r)—%TrQZ
r (15)
‘EIZ”’T(r)"n‘w(r)Uw(r, W () 15w(r).

rravy
Here, the symbol Tr denctes the trace over the Matsub-

arareplica combined with spin and spatial indices. The
electron—€electron interaction iswritten in terms of elec-

tron operator Yi(r) = zk WYk Ou(r) on the Nth Landau

level only. The screened interaction Ug,(r) of electrons
on the Nth Landau level takes into account the effects
of electrons on the other levels and has the following
form [4, 10]:
2me”
Uswr(Q) =

1
€Q _ T [
1+ & "2 1 g ar))
RN old
It is worth mentioning that the range of the screened
el ectron—electron interaction (16) is determined by the
Bohr radius ag = e/me?. We assume that the magnetic

field is so weak that the condition Nr2 > 1 holds. That
means that the range ag of the screened electron—el ec-
tron interaction (16) is much smaller than the magnetic
length . It allows usto treat the interaction in the Har-
tree—Fock approximation [6].

In the absence of the external vector potential A, one
can project thefirst linein Eq. (15) onto the Nth Landau
level, i.e., substitute W(r) — W(r). Then, the action
becomes to involve electrons on the Nth Landau level
only and, evidently, it smplifiesthe analysis. The accu-
racy of such projection is of the order of
max{T, T} /wy, < 1. It is worthwhile to mention that
the correction 176w, T < 1 in the screened interaction
(16) resultsin the correction of the same order to the T,,.

. (16)
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For reasons to be explained shortly, we neglect this
effect. However, in order to investigate the response of
the system to the external vector potential A, such pro-
jection onto the Nth Landau level is not appropriate. We
should leave the action (15) as it stands, because the

matrix elements D , = If @, (r)D*@, (r) of the

covariant derivative D = (D*, DY) involve the electron
states on the adjacent Landau levels. Asthelast step, we
mention that the electrons on the Nth Landau level
should be regarded as spin-polarized, according to the
numerical findings [14].

The action (15) involves the unitary matrix field
Q(r). There exists the saddle-point solution Q(r) =
V\rluspw in the absence of the electron—electron inter-
action. Here, the constant unitary matrix W describes

the global rotation, whereas (usp)gf; = 3B, Sgnw, /2t

with 1/2t = ,/g/2mi?, . Being motivated by the form of
the saddle-point solution, we split the matrix field Q(r)
intransverse W(r) and longitudinal U(r) componentsas
Q(r) =W(r)(Ug, + U(r))W(r). Asitiswell known, the
transverse field W(r) is responsible for weak localiza-
tion corrections [12], but, in the case of interest, they
are of the order of INN/N < 1. Therefore, we eliminate
the transverse field from the future considerations by
formally putting W(r) = 1. The transformation of the
variable Q(r) discussed above leads to the additional
measure in the functional integral [13]

ap
InI[U] O 3 [1=O(m) U (NUmn(r),  (17)

T 00, W
where ©(x) stands for the Heaviside step function.

To describe the UCDW state, we introduce the
CDW order parameter A that isrelated with adistortion
of the electron density on the Nth Landau level

[Bp()0= 21 Fun(a)[8(q - Q) +3(q + Q)]A, (18)

wherethe F, , (q) isdefined as

|2
y'H

.1
1504
Fop(d) = 215 Y @5u(0)@pu(ali)e” . (19)
k

In particular, the form-factor Fy\(q) = $4(qR.) for
gR. < 2N. The presence of the distortion of the electron
density by the charge-density wave on the Nth Landau
level results in the additional periodic potential A(r)
that is related with the UCDW order parameter as

AQ) = (4T *ToFun(a)[3(q - Q) + 8(q + Q)]A. (20)
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After the Hartree—Fock decoupling [15] of the inter-
action term in the action (15) and integration over elec-
trons, we obtain

% 0[BUN[U] exp U], (21)

where the action becomes

g = _EléTrU2+TrIn(1+ (iU + K +PyAPy)G).(22)

The projection operator Py(r, r') = Zk@Nk(r)(p’;,k(r')
in the action (22) indicates that the potential A(r) exists
on the Nth Landau level only. In general, the UCDW
state on the Nth Landau level creates the potential not
only onthe samelevel but also on the adjacent ones. We
neglect this effect since it results in the corrections to
the conductivity tensor o, of the order of 1/N? beside
expressions (3), (4), and (8).

The saddle-point Green function Gﬁﬁ,(r,r') is
determined as

Gon(r, 1) = 881y @) () Gy (@),
pk (23
G (@) = i+ @y(p—N) +i 22
We notice that Green function (23) coincides with the
Green function averaged over disorder in the self-con-
sistent Born approximation [1].

6. CONDUCTIVITY TENSOR

With the action (22) in hand, we can evaluate the
contributions to the conductivity tensor o,, due to the
presence of the UCDW state on the half-filled Landau
level. As one can verify, the contributions of the first
order in the UCDW induced potential A(r) vanish. In
order to find the contributionsto o, of the second order
in A, we should expand the action (22) up to the second
order in both A and K. Then, integrating over the U
fields, we obtain several contributions. We present the
diagrams that correspond to them in the standard per-
turbative technique in Fig. 2.

Thefirst three diagrams (Fig. 2a) yield only theiso-
tropic contribution

ol (V)
Gy(0a,) ToA

=-T W, W, 2
o 1+9gm7(0,0)(1+gm (0, Q))

(24)

41Ty
Vn

X

O
a b
;%I% DNprNGp(wn + Vn) _6a%-
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Fig. 2. Diagrams for the corrections to o, The solid lines
arethe Green functions, the N/p/p' symbols denote the Lan-
dau level, the dashed lines are the UCDW induced potential
A(r), and the shaded blocks are impurity ladders.

Here, the polarization operator m (Vn ) On the Nth
Landau level is defined as

TT"(Vp, @) = =N Gy (@, + V) Gy () Fan(). (25)

The contribution of diagram (Fig. 2b) is seemed to be
proportional to $(r,) and therefore vanishes. The last
diagram (Fig. 2c) isasfollows:

o (v,)
_ 8y (@) Gu(@y + V) Toh”
VM £ (14 gmt™"(0, Q))(1+gm (v, Q)) (26)
?JND?J'NleNp'(Q)

1+gm (0, Q)

where a single impurity line is written in the Landau
level indices representation as

D
X Z Gp(wn)Gp'(wn + Vn)
pp'

L2
-iqQly

|p1p2p3p4(Q) = gIFp1pz(q)Fpsp4(_q)e (27)
q

The contribution (26) contains the anisotropic as well
asisotropic correctionsto o, If wetakep=p'=Nz1,
we obtain the anisotropic contribution due to the struc-
ture of matrix elements Df,l p,- The opposite case p =
N+ 1andp' =N * 1resultsin the isotropic correction.
Now, with the help of the results Iy nNe1 =
F2i 2
ge 2“%1("0) and Iy ns1nNFL = gﬂ’i(ro% we per-
form the summation over the Landau level indices as
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well as over the Matsubara frequency. As the last step,

we express the UCDW order parameter A via the tem-
perature difference T.— T < T, as[7]

T.-T
A= R S +nB /800 =

and obtain the results (3), (4), and (8).

(28)

7. FLUCTUATIONS
OF THE ORDER PARAMETER

There isalegitimate question about the effect of the
fluctuations on the conductivity tensor above and bel ow
the transition temperature T.. Below, we consider the
former case as more interesting. At T > T, the mean-
field order parameter A = 0 on average, but the average
of its square [A2[is nonzero. It leads to the appearance
of the corrections to the conductivity tensor g, above
T, due to the presence of the UCDW correlations. We
can find the contributions of the order parameter fluctu-
ationsto g, by substituting [A2(for A% in Egs. (24) and
(26).

Generally, the angle ¢ and modulus Q of the CDW
vector Q can fluctuate simultaneously. Naturally, only
the isotropic correction can appear in this case. Then,
the result for the correction one can obtain from Eq. (8)
with the help of the following substitutions:

T.-T ro

|_Te
T, ATNNT-T.
U5
ViR 3+ H+ S0 Z S+ F

wherey=0InTy/dr,= 2.58. It isworthwhile to mention
that these fluctuational contribution (29) to o, above T,
isanalogous to the correction for conductivity of anor-
mal metal due to superconducting pairing [16]. The
fluctuation correction (29) has square-root divergence
at T— T.. Thisfact indicatesthat the result (29) is hot
applicable in the vicinity of the transition temperature
T.. The limit of applicability is determined by the
requirement that the fluctuational correction should be
much smaller than o, itself.

(29)
4(z2)

8. CONCLUSIONS

Summarizing, we cal culated the anisotropic, as well
as isotropic, corrections to the conductivity tensor of
the two-dimensional electrons on the half-filled high
Landau level just below the transition to the UCDW
state. The corrections obtained are proportional to (T, —

BURMISTROV

T)/T,, which is in agreement with that found in the
experiments. Also, we calculated the fluctuational cor-
rection to the conductivity tensor of the two-dimen-
sional electrons above the transition.

| am grateful to M.A. Baranov, L.I. Glazman,
M.V. Feigelman, S.V. lordansky, PM. Ostrovsky, and
M.A. Skvortsov for illuminating discussions. Financial
support from the Russian Foundation for Basic
Research, the Russian Ministry of Science, Dynasty
Foundation, Forschungszentrum Jilich (Landau Schol-
arship), and Dutch Science Foundation (FOM) is
acknowledged.
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We haveinvestigated the detail s of the eigenmode for aresonator containing atwo-dimensional electron system
(2DES) formed on the surface of liquid helium. We show that anticrossing phenomena occur near the crossing
point wy = W, where wy, is the eigenmode of the resonator and v, is the cyclotron frequency. The structure of
the coupling constant is established. It is a flexible parameter, i.e., sensitive especialy to magnetic field and
electron density. A finite coupling leads to a perturbation, dw of the eéigenmode of the resonator in presence of
the 2DES. Corresponding cal culations and measurements of dware presented. The theory fits the experimental
data. The influence of anticrossing on the cyclotron resonance absorption line shape is demonstrated. © 2004

MAIK “ Nauka/Interperiodica” .
PACS numbers; 67.70.+n; 73.20.-r; 73.50.-h

Cyclotron resonance (CR) measurements in mag-
netic fields represent a valuable method of studying the
electronic properties of two-dimensiona electron sys-
tems (2DESs). In low density electron systems, the CR
isusualy investigated by using aresonator cavity (see,
e.g., [1-8]). Under these conditions, the CR of the elec-
trons appears when the requirement

Wy = 0 N

is fulfilled. Here, wy is the resonator eigenmode and
w, = (eB)/(m) is the electron cyclotron frequency in
magnetic field B, m, is the free electron mass, e is the
elementary charge, and c isthe velocity of light.

However, this condition is only correct in the limit-
ing case n,— 0, where n, isthe average density of the
2DES. If ng# 0, then the coupling between the resona-
tor mode and the 2DES becomes important due to the
development of anticrossing mode repulsion around the
crossing point wy, = w, (1). The effect of anticrossing in
the system “resonator + 2DES’ is similar to well-
known phenomena, e.g., the predissociation effect in
the behavior of diatomic molecules [9], the dispersion
of the dielectric constant near atomic oscillator eigen-
modes [10], energy gaps in the free electron spectrum
caused by periodical potential perturbation [10, 11], the
so-caled polariton effect in dielectrics [12], etc. It has
surmised to be fixed in any CR measurements [1-8];
however, this effect was not discussed so far (to be cor-
rect, see comment [13]). Here, we present a detailed
analysis of this problem and show the influence of anti-
crossing phenomenain CR absorption measurements.

TThis article was submitted by the authorsin English.

The main information about “anticrossing” is
extracted from measurements of the shift of the eigen-
mode of the resonator, dw caused by the presence of a
2DES. For these investigations, the setup shown in the
inset in Fig. 1 has been used. Details of this setup are
discussed in [8].

The resonator eigenmade is determined by the posi-
tion of the maximum of the transmission signal. Exam-
ples of such signal structures are presented in Fig. 1. A
typical set of datafor w,, the eigenmode of the resona-
tor in presence of electrons as function of B and elec-
tron density ng is shown in Fig. 2. These data can be
understood as a combination of two contributions, i.e.,

We = Wy + 0w, With dw = dw; + dwy, 2

where wy, is the eigenmode of the empty resonator with
just the Si substrate inside it (at fixed liquid helium
level and electric field E; = O; see Fig. 1).

The first contribution, dwy,, is due to the finite con-
ductivity of the 2DES. In the limiting case, when the
coupling constant o < 1 (the definition of o is shown
below in Eq. (8)), the shift o isalinear function of n, (at
least when B — 0). So, we obtain

563,(n B)|5 ., — 0. (3)

The second contribution in dw 8, resultsfrom the
sensitivity of the eigenmaode on the liquid helium level
and E in the resonator (the electric pressing field
applied to the Si substrate). Such a shift is not sensitive
to magnetic field and has a nonlinear dependence on n,.

600c(ns’ B)la -0 un,

0021-3640/04/7904-0183%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. The measured transmission signals for the empty
resonator (solid line) and for the system “resonator + Si”
(dashed line), with eigenmodes (e, and o, respectively.
Inset: schematical sketch of the cavity and, at the center, of
the dielectric Si substrate with a helium film around it (the
total thickness is 2d). Two high frequency coax lines (not
shown) are connected left and right to the resonator to apply
the microwave excitation to the system “resonator + 2DES’
and measure its transmitted signal. 2h is the distance
between the upper and lower electrodes. On theright, atyp-
ical profile of the electric field E is shown.

Using Egs. (2) and (3), we can renormalize the
experimental data presented in Fig. 2. The results are
shown in Figs. 3 and 4. Figure 3 presents the shift dwy,
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9.146 frgoon®9%% g oV _ 8
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Magnetic field (T)

0 0.1 06 07 038

Fig. 2. The measured dependence of w, vs. B for several
electron densities. The experimental conditions correspond
to a saturation density of the 2D electron layers on the bulk
helium surface. Therefore, ng 0 U, where U is the potential
difference between the Si substrate and the cavity. Here,
Ugit = 384 V; i.e, this potential corresponds to the maxi-

mum charge density, ng”‘ =2x 102 m™2, on abulk helium

surface due to the electrohydrodynamical instability.
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versus B. It is evident that the distribution dwy, follows
therequirementsin (2) and (3): dwy, isadditivewith dy,
(Fig. 4), is linear dependent on n,, and goes to zero
when B — oo,

To check the properties of dw,, we have plotted its
dependence against the normalized electron density
(see Fig. 4). Asindicated above, the shift dwy, includes
two effects. One of them corresponds to a decreasing
eigenmode when E # 0 (without the presence of elec-
trons, i.e., ny=0). Inthiscase, the eectric field liftsthe
helium level and so the eigenmode goes down (see
Fig. 1). The other effect, when ng # 0, arises from the
electron pressure, Py O eEn,, which pushesthe helium
level down and, hence, the eigenmode increases (see
Fig. 4). Variances of this shift have been discussed [14].

To explain the datain Fig. 3, we need the dispersion
calculated for the model setup (inset in Fig. 1). The
Maxwell equations for the E mode with

E,=0, E, =0, E#0, 4
are completed by the boundary conditions. The electric
fields are zero for z = +h. Along the boundaries z = +d
of the Si layer, we have to equate E, from both sides of
these boundaries.

It isalso necessary to take into account the contribu-
tion arising from the presence of the movable 2DES.
The 2D electrons are localized along the helium film,
with thickness d,,., above the Si substrate. Typically,
dye < d, where 2d is the thickness of the Si substrate

=384V

0.5 0.75 1
Normalized »_

8o /2n (MHz)

0 0.2 04 0.6 0.8
Magnetic field (T)

Fig. 3. The dependence of dwy, vs. B. duy, is extracted from
the measured datain Fig. 2 using Egs. (2) and (3). The solid
lines represent the fits to the data using Eq. (10) and the
relaxation time T asfitting parameter. Inset: the dependence
of wgt on ng after the fitting program (Eq. (10)) has been
realized. Here, the data are normalized to the maximum
density, at Ugj; = 384 V.
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(seeinsetinFig. 1) and (e — 1) << (eg —1). Therefore,
and for simplification, we neglect the existence of d.
€e and eg are the dielectric constant of liquid helium
and the Si substrate. As a result, we have, along the S
substrate, a jump of the magnetic field, caused by 2D
electron motion,

vac ] 4T[.x d
HY=(d) - HE(0) = 20D, ©
with
jX = enSvX’
eE, (6)
EQH %Bvx = -r—n:+cocvy, 5(’“ %va = —WV,,

where v, and v, are the components of the electron
velocity and 1 is the momentum relaxation time.

Based on these calculations, we can formulate the
dispersion law as

sin(kd) + cos(kd)cot(kh) _ 4t

ten(Ad) - Cos(kd) —sin(kd)cor(kn) ~ ¢ o=
2 2
wherekZ:—(we_wap) and qzzes—(we—cfziwp) . Oy IS

the ac conductivity of the 2DES in magnetic field.
Again, because the thickness of the helium filmismuch
less than d, it is not important for the definition of w..
The result (7) has been published in [14] but without
considering magnetic field.

The conductivity o,(w, w,) of the 2DES is
described by the conventional ac Drude form

c)-XX = O-XX + iOXX’

with 0}, = 0'(WT, W.T), O, = 0"(WT, WT),

where wisthe external pumping frequency.

From Eqg. (7), it becomes evident that the coupling
constant o isdefined as

0 = —O0,,. (8)

If o issmall enough (o < 1), then the general expres-
sion (Eg. (7)) can be simplified; i.e.,

sin(koyd) + cos(kqd)cot(koh)

ten(009) ~ o5 (kod) = Sin(kod) COL(KeR)
W, (A)Z (9)
with ki = =2 and g5 = eg—.
C C
hdwy, = 4110, (W, W) T, (10)
JETP LETTERS Vol. 79 No.4 2004
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Fig. 4. The shift duy, vs. normalized electron density (*1”
along the horizontal axis corresponds to the given critical

value of ng”‘). The lower line corresponds to the data
shown in Figs. 2 and 3, when U = 384 V. The upper line
shows dwy, measured for a thinner bulk helium film, with
Uit = 81 V. The observed dependence refl ects the sensitiv-
ity of the transmission signal to the helium level; i.e., the
electron pressure P is proportional to U2, So, duyisanon-
linear function of U.

hdw, = 410, (W, w.)f, (11)
tan(kod)tan[d(g,—k)] =1
cos[d(go—K)]

f = cos(k,d)sin(gy,d)

We can seethat, in linear approximation, wheno < 1,
the shift dwis proportional to the imaginary part of the

conductivity, i.e.,, dwy; O 0,,. Such a dependence fits
the experimental data for dwy, with the normalization
in one point (see Fig. 3). Normalization allows one to
circumvent the lack of knowledge of the electron den-
sity n, and the geometrical factor f. Results similar to
Egs. (10) and (11), but for a different resonator geome-
try, have been obtained in [15].

From successful fitting to the data (solid lines in
Fig. 3), we can conclude the following: (a) Eqg. (2) isa
reasonabl e presentation for dw; (b) the geometrical fac-
tor fin Egs. (10) and (11) is not sensitive to both ngand
B; and (c) the scale of the coupling constant o (Eg. (8))
is far from the resonance condition small enough.
Using the data in Fig. 3 and an estimation of ng via
U/d ~ en,, we can conclude that

0.01<Reg|g _ ,<0.04, (12
where o is from Eqg. (8). This estimation is consistent
with the simplifications Egs. (9)—(11). It aso indicates
that the quality of the eigenmode peaksin the reflection
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Fig. 5. Frequency scans (w axis) asafunction of the applied
magnetic field B (along this axis, wy is determined). Each
scan represents a measured transmission signal, T(w, B),
with the dependence of the maxima and signal shape on
0y,(B) . Thetracein the w, B plane (line 1) corresponds to

the condition w = wy. Line 2 exhibits the path of the fre-
quency at the maxima of the transmission lines. Details of
thisline are presented in Fig. 3. The trace in the B, T plane
(line 3) represents the CR absorption under optimal condi-
tions, i.e., the maxima of the transmission signals. Line 4
reflects the situation for afixed frequency, i.e., w = w, dur-
ing the CR absorption measurements.

1.6
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0 0.2 04 0.6 0.8
B (T)

Fig. 6. A comparison of transmission vs. magnetic field for
CR measurements with fixed w (open symbols) and flexible
w (solid symbols).

(or transmission) data is much better than for the CR-
line shape.

In Fig. 5, the general experimental picture of the
transmission signa T, for the setup shown in the inset
inFig. 1, ispresented asafunction of B and w. The pro-

KLIER et al.

filesof T(w, B) for fixed B but changing w clearly show
pronounced eigenmode peaks. The position of these
peaks in the w, B plane follows line 2, formed in the
vicinity of line 1 with w = wy,.

The quality of the peaks of the eigenmode goes
down in the vicinity of the anticrossing area. The trace
of the T(w, B) profile in the w, T plane corresponds to
the information of the CR absorption. Thistraceisquite
sensitive to the conditions of the projection.

Using the T(w, B) presentation (Fig. 5), we can
explain in detail the information (Fig. 6). The “solid”
and “open” symbols correspond to projections of the
T(w, B) profile to the plane (T, B) (lines 3 and 4 in
Fig. 5). Certainly, the optimal experimental path corre-
spondsto line 3.

In conclusion, we have demonstrated and explained
the existence of anticrossing phenomena in the system
“resonator + 2DES.” The scale of the coupling constant
o (Eg. (8)) isdeduced from the data (12). The coupling
is flexible (it is sensitive to both magnetic field and
electron density). Such aflexibility reduces dw, to zero
at the crossing point wy, =w,. However, in the vicinity of
this point, the shift dwy, exists and can be measured. The
experimental verification of the anticrossing phenom-
enaisshowninFigs. 3and 5. It lookslike adu)B) shift,
which is similar to the dielectric constant dispersion in
optics(see[9, 10]). The genera picture of the transmis-
sion signal versus w and B in the presence of anticross-
ing phenomenais discussed (see Fig. 5). The details of
the anticrossing cyclotron resonance line shift dw;, are
investigated. The measured data of dw, follow the pre-
dictions (Eq. (9)) quite well (see Fig. 3). The coupling
between anticrossing phenomena and behavior of the
CR absorption linewidth isdiscussed. The optimal way
to measure such a line shape is indicated (see “solid”
symbolsin Fig. 6 and line 3 in Fig. 5).

We thank P. Leiderer for informative discussions.
This activity is supported by the DFG, Forschergruppe
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Mesoscopic Structures,” and the Russian Foundation
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V. L. Korenev
PACS numbers: 85.35.Be; 85.75.-d; 99.10.Cd

In Eg. (2), Jp should be replaced by Jg.
P. 565, right column, 6th line from bottom should read “coupling parameter K = J°g/43 < 1.
P. 567, left column, 15th line from bottom should read “5 x 108 Hz.”
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