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Abstract—Electrical conductivity and conduction-electron spin resonance (CESR) have been studied in stage-
2 acceptor α-graphite–nitric acid intercalation compound C10HNO3. It is found that the electrical conductivity
σc along the c axis in the structurally incommensurate phase of this compound is temperature independent,
whereas the electrical conductivity σa  along carbon layers exhibits “metallic” temperature behavior. Analysis
of the temperature dependences of σc, σa , and the CESR linewidth demonstrates that, in the incommensurate
phase of the graphite intercalation compound, the electrical conductivity along the c axis is realized through a
nonband mechanism—the transfer of free charge carriers along thin high-conductivity channels shunting the
carbon layers adjacent to the intercalate. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The structure of graphite intercalation compounds is
formed by alternating sequence of n hexagonal graphite
layers (n is the stage index) and a layer of “guest” atoms
or molecules (intercalate). By intercalating different
chemical species into graphite and varying their con-
centration, it is possible to change the sign and concen-
tration of free charge carriers in the carbon network of
materials and, consequently, their electric, magnetic,
and other properties [1, 2]. The electrical conductivity
is one of the most extensively studied properties of
graphite intercalation compounds. This is explained
primarily by three remarkable features found in accep-
tor graphite intercalation compounds: (1) the high con-
ductivity σa  in the basal plane, which in some com-
pounds is comparable to the conductivity of copper at
room temperature [1, 3]; (2) the large ratio between σa

and the electrical conductivity σc along the c axis
(σa/σc), which, for the majority of compounds, is as
great as ~105 [1, 4–6]; and (3) the metallic type of the
temperature dependence of σc for compounds with the
small stage index (as a rule, at n ≤ 3) [1, 5–7]. The last
feature of electrical conductivity in acceptor graphite
intercalation compounds has attracted the particular
attention, because the magnitude of σc in these conduc-
tors is several ten times smaller than the fundamental
critical value of n-type conductivity, below which,
according to the Ioffe–Regel criterion [8], the conduc-
tion electrons are localized. Moreover, it is difficult to
relate this feature of the conductivity σc to the fact that
its values lying in the range from 0.1 to 10 Ω–1 cm–1 [1,
4–7], according to the Drude classical formula, corre-
spond to the electron mean free paths of less than 1 Å,
which is almost one order of magnitude smaller than
1063-7834/00/4207- $20.00 © 21187
the typical distances between carbon layers adjacent to
the intercalate in the acceptor graphite intercalation
compounds [1, 2]. At present, the universally accepted
theory of the σc conductivity in these compounds is
absent. In the literature, the features of the σc conduc-
tivity, including those mentioned above, are explained
within mutually exclusive models that postulate either
nonband [6, 9–14] or band [15–17] mechanisms of con-
ductivity. In this respect, the search and investigations
into the new features of the σc conductivity in acceptor
graphite intercalation compounds can provide a deeper
insight into its nature and are important steps in the
development of the theory of free charge carrier trans-
fer along the c axis in these synthetic conductors.

In the present work, we studied the stage-2 acceptor
α-graphite intercalation compound C10HNO3 and
found a new feature of the σc conductivity. This feature
resides in the fact that σc in the structurally incommen-
surate phase is temperature independent, whereas the
electrical conductivity σa  has “metallic” temperature
behavior. The structurally incommensurate phase in
C10HNO3 is formed at a temperature below Tc ~ 250 K
due to the crystallization of two-dimensional liquidlike
HNO3 layers and remains stable down to the “lock-in”
transition at Tl – i ~ 210 K [18, 19].

2. EXPERIMENTAL TECHNIQUE

All highly oriented pyrolytic graphite plates used
for the synthesis of stage-2 α-graphite–nitric acid inter-
calation compound C10HNO3 were cut from the same
graphite bar with the conductivity in the basal plane
σa  = (1.2 ± 0.2) × 104 Ω–1 cm–1 and had the shape of a
rectangular parallelepiped with sizes: width (l) × height
000 MAIK “Nauka/Interperiodica”
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(h) × thickness (d), where l × h is the area of the basal
face. The sizes of plates were determined accurate to
within ~5 × 10–4 cm. The C10HNO3 compound was syn-
thesized in “fuming” nitric acid with the density ρ =
1.565 g/cm3. The graphite intercalation compound was
identified by x-ray diffraction analysis on a DRON-3.0
diffractometer (CuKα radiation).

The conductivity σa  of the C10HNO3 samples was
measured by the contactless induction technique using
a setup similar to that described in [20]. In this tech-
nique, the electrical conductivity of a conductor is
determined from comparison of the changes in the
inductance of a measuring cell after alternately bring-
ing the studied and reference conductor plates into the
cell.

The conductivity σc was also measured using the
contactless technique. This technique is based on the
fact known from the theory of conduction-electron spin
resonance (CESR) [21, 22] that, for samples with sizes
of an order of the skin layer, the asymmetry parameter
A/B of the first derivative of the CESR absorption line
(the ratio between the peak intensities of its more
intense wing A and the less intense wing B) does not
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Fig. 1. Dependences of the asymmetry parameter A/B of the
first derivative of the ESR absorption line on λ = l/δ (l is the
plate thickness, and δ is the skin layer depth) for different
ratios R = (TD/T2)1/2 (TD is the time of spin diffusion
through the skin layer δ and T2 is the spin-lattice relaxation
time).
P

depend on the diffusion rate of current carriers (Fig. 1).
The ratio A/B for these samples is determined only by
their electrical conductivity and the microwave field
frequency of a spectrometer. Since the plates of the
acceptor graphite intercalation compound exhibit a
large anisotropy of electrical conductivity, the contribu-
tion from regions adjacent to the basal faces to the
CESR signal can be ignored [22, 23]. Therefore, at the
known frequency of a microwave field, the conductivity
σc can be uniquely determined from the A/B ratio of the
CESR signal of the acceptor graphite intercalation
compound plate with the sizes l/δc ≤ 2 (δc is the skin
layer thickness determined by σc) using the nomo-
graphic chart depicted in Fig. 1. Both techniques used
for measuring the electrical conductivity are free of a
number of disadvantages that are characteristic of con-
tact techniques for measuring the electrical conductiv-
ity (problems associated with contacts, stray currents,
etc.). The conductivities σa  and σc were measured
accurate to ~105 and ~0.1 Ω–1 cm–1, respectively.

In order to evaluate the collision relaxation times of
current carriers in different phases of C10HNO3, the
widths of the CESR signals were also measured in the
ESR experiments carried out in order to determine the
σc conductivity. The CESR signals of the C10HNO3
plates were recorded on an ESR-231 spectrometer
(Germany) working in the X band.

The temperature dependences of the σa  and σc con-
ductivities were measured in the range 77–300 K with
the use of the C10HNO3 plates of geometric sizes 0.4 ×
0.4 × 0.02 and 0.04 × 0.4 × 0.02 cm, respectively. In all
the experiments, the temperature was changed by con-
trolling the rate and the temperature of a gaseous nitro-
gen stream flowing through a quartz Dewar vessel. The
accuracies of the measurement and maintenance of the
temperature were equal to ~0.5 K and ~1 K/h, respec-
tively.

3. RESULTS

Figure 2 demonstrates the experimental depen-
dences of the electrical conductivity for the C10HNO3
graphite intercalation compound in the temperature
range covering the range of its incommensurate phase.
It is seen from the figure that, as the temperature
decreases, the σa  conductivity increases irrespective of
the aggregate state of the intercalate and the structural
modification of its crystalline phase. Outside the tem-
perature range of the incommensurate phase, the σc

conductivity also exhibits metallic temperature behav-
ior. In the structurally incommensurate phase of the
studied compound, within the limits of experimental
error, σc does not depend on the temperature. Upon
crystallization (melting) of the subsystem of interca-
lated molecules, both conductivities under consider-
ation increase (decrease) jumpwise. The qualitative
character of the temperature dependences of the σc and
HYSICS OF THE SOLID STATE      Vol. 42      No. 7      2000
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σa  conductivities does not depend on the direction of
changes in the temperature and the number of ther-
mocycling of the C10HNO3 plate in the range involving
the temperature range of the incommensurate phase.

At room temperature, the CESR signal of the
C10HNO3 graphite intercalation compound is charac-
terized by the following parameters: g|| = 2.0023 ±
0.0002, g⊥  = 2.0028 ± 0.0002, ∆H|| = (0.38 ± 0.02) ×
10−4 T, and ∆H⊥  = (0.36 ± 0.02) × 10–4 T. Here, g|| (∆H||)
and g⊥  (∆H⊥ ) are the g tensor components (the half-
widths of the A peak) of the CESR signal at the external
constant magnetic field H0 aligned along and perpen-
dicular to the c axis. The crystallization of the interca-
late brings about the broadening of the CESR signal by
a factor of two or three. The direction of the axial sym-
metry of the spectrum and the values of the g tensor do
not depend on the aggregate state of the intercalate sub-
system.

4. DISCUSSION

Within the theory of nonband transfer of free charge
carriers along the c axis in the acceptor graphite inter-
calation compounds [6, 9–14], the metallic type of the
temperature dependence of the σc conductivity for low-
stage compounds (n ≤ 3) is associated with the fact that,
at all temperatures, the σc conductivity is predomi-
nantly provided by the mechanism of charge transfer
through very thin high-conductivity paths (channels)
shunting the nearest carbon layers separated by the
intercalate. According to Suzuki et al. [14], the contri-
bution of this mechanism to the σc conductivity is
defined by the relationship

(1)

where V0 is the matrix element of the scattering poten-
tial, Nc is the number of conducting channels per unit
cell, m* is the effective mass of current carriers in the
basal plane, dI is the distance between the nearest
graphite layers separated by the intercalate, e is the
electronic charge, " is the Planck constant, and Γ/" is
the sum of relaxation rates of current carriers in the
basal plane due to phonon and impurity scattering: Γ =
Γph + ΓI. At high temperatures, Γ /" with a high accu-
racy can be taken to be equal to the relaxation rate of
current carriers in the basal plane Γa/" related to σa [13,
14].

In the framework of the band model [15–17], it is
supposed that the σc conductivity is associated with a
weak overlap of wave functions for the states of current
carriers in the nearest carbon layers separated by the
intercalate. In this case [15, 17],
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where B is the resonance integral relating the states of
current carriers in the carbon layers adjacent to the
intercalate, and the other designations are the same as
in relationship (1). From a comparison of the electrical
conductivity anisotropy in a number of graphite inter-
calation compounds, it was found that [15, 17]

where d0 = 0.71 Å.

If the temperature variations in dI and V0 are
neglected, it is seen from relationships (1) and (2) that
σc can remain constant in a certain temperature range in
the presence of the temperature dependence of Γ (∝Γ a)
and, hence, σa only in the case when the temperature
variations in Γ and B2 (in the band model) or Γ and Nc

(in the nonband model) are mutually compensated in
this temperature range. Within the band model of the σc

conductivity in graphite intercalation compounds, it is
impossible to propose a physically reasonable mecha-
nism providing such temperature variations in Γ and B
that are required for the constancy of σc. At the same
time, for the nonband model of the σc conductivity in
graphite intercalation compounds through thin high-
conductivity channels, it is easy to explain why, in
some phases of graphite intercalation compounds, the
ratio Nc/Γ determining σc [see relationship (1)] can be
temperature independent. Actually, this can stem from
the high concentration of structural defects Nd in these
phases when the value of Γ/", to a first approximation,
is determined only by the scattering of current carriers
by defects; i.e., Γ/" ≅  ΓI /" ∝  Nd . Since, according to the
nonband concepts [6, 9–14], Nc ∝  Nd, it is evident that,
in phases of graphite intercalation compounds with a
high content of defects, the Nc/Γ ratio and, hence, σc

[see relationship (1)] can be temperature independent.
Taking into consideration that σa  ∝  (Nd)–1, from the

B dI/d0–( ),exp∝
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Fig. 2. Temperature dependences of (1) σc and (2) σa  con-
ductivities for the C10HNO3 graphite intercalation com-
pound plates.
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foregoing it follows that the independence of σc from
the temperature in the presence of the temperature
dependence of σa  in the incommensurate phase of
C10HNO3 can be explained by the fact that the incom-
mensurate crystallization of the intercalate leads to the
formation of new structural defects whose concentra-
tion decreases with a decrease in the temperature. Note
that the assumption on the more defective C10HNO3
structure in the solid intercalate phase is indirectly cor-
roborated by the broadening of the CESR signal by a
factor of two or three upon crystallization of interca-
late.

New defects in the crystalline phase of the interca-
late subsystem can arise from its domain structure. For
example, the solid intercalate phase can involve a set of
several types of two-dimensional orientational domains
whose boundaries (walls) form a particular type of
structural defects inherent in this phase. In principle,
these defects can be responsible for the appearance of
new thin conducting channels along the c axis upon
crystallization of intercalate. However, it should be
believed that this concerns not all the channels, because
the appearance of similar defects upon phase transition
can explain only the jump of σc and (at their sufficiently
high concentration) the temperature independence of
σc below the transition temperature. On the other hand,
the appearance of these defects cannot explain the
“metallic” temperature behavior of the σa  conductivity
in the solid intercalate phase, since there are no data
indicating that their concentration depends on the tem-
perature. At the same time, it is known that, in addition
to the orientational domains, modulated phases of crys-
tals can involve wide domain walls separating transla-
tional domains (“strip domains”), as well as structural
solitons whose concentration decreases as the tempera-
ture of the “lock-in” transition is approached [24, 25].
According to the x-ray structural data for C10HNO3
[19], analogous structural imperfections can occur in
this graphite intercalation compound below the crystal-
lization temperature of the intercalate. The quasi-elas-
tic neutron scattering investigation of C10HNO3 [26]
confirms this conclusion and, moreover, suggests a
decrease in the concentration of “strip domains” as the
temperature of the “lock-in” transition is approached.
Consequently, if, in the incommensurate phase of the
C10HNO3 graphite intercalate compound, Γph @ ΓI, and
a part of high-conductivity channels arising upon crys-
tallization of the intercalate is associated with the “strip
domains” or structural solitons in the intercalate layers,
a decrease in their concentration as the temperature of
the “lock-in” transition is approached can be responsi-
ble for an increase in σa  at constant σc. Furthermore, as
follows from the aforesaid, in general, in certain phases
of the graphite intercalation compounds, the “metallic”
temperature behavior of σa  can be determined by the
structural ordering in the intercalate subsystem, rather
than by a decrease in the amplitude of atomic thermal
vibrations in the carbon and intercalate layers.
P

The crystallization of the intercalate subsystem in
C10HNO3 also leads to the change in its electronic
structure [27] and, as a consequence, to an increase in
the density of states at the Fermi level [28]. The latter
fact suggests that the jumpwise increase in σa  upon
crystallization of intercalate in this graphite intercala-
tion compound (Fig. 2) can be attributed to an increase
in the concentration of current carriers whose contribu-
tion exceeds the expected decrease in the conductivity
due to a decrease in the mobility of current carriers
(owing to an increase in the defect concentration).

Until recently, the problem concerning the search
and investigations into possible features of the electri-
cal conductivity in the incommensurate phases of
acceptor graphite intercalation compounds was not
considered in the literature. However, analysis of the
available data demonstrates that, among the graphite
intercalation compounds, for which the temperature
dependence of σc was studied, several compounds
exhibit structurally incommensurate phases. These are
the acceptor stage-3, stage-4, and stage-6 SbCl5 graph-
ite intercalation compounds [29], in which the interca-
late subsystem at T ≈ 210 K undergoes a phase transi-
tion to a structurally incommensurate state [30]. For all
these graphite intercalation compounds, the magnitude
of the temperature coefficient of electrical conductivity
upon the phase transition to the structurally incommen-
surate state sharply decreases down to small value and,
for stage-3 and stage-4 compounds, is virtually zero
over a wide range of temperatures below the transition
point. These facts suggest that the temperature invari-
ance of σc, found in the incommensurate phase of
C10HNO3, can be the feature inherent in all the structur-
ally incommensurate phases of acceptor graphite inter-
calation compounds.

In closing, let us evaluate the concentration of thin
high-conductivity channels in the incommensurate
phase of C10HNO3 immediately after the crystallization
of the intercalate by using relationship (1). For this pur-
pose, we will ignore the possible difference between Γ
and Γa and assume that Γa can be calculated from the
known Drude relationship σa = Ne2/(Γa/")m* (where N
is the concentration of current carriers). Then, the fol-
lowing parameters are substituted in relationship (1):
σc = 1.9 Ω–1 cm–1, σa = 8 × 105 Ω–1 cm–1, V0 = (2–3) ×
10–2 eV [11, 13, 14], N = 1.02 × 1021 cm–3 [31], dI =
7.80 Å, and m* = (0.06–0.32)m0 [32, 33–37] (where m0
is the mass of free electron). As a result, we have NI =
(1.1–65) × 10–5. (The σc, σa , and dI values used for the
calculation of NI were determined by the author. The V0
and m* values for the nitric acid–intercalated graphite
compound are not known. Therefore, the minimum and
maximum values of these parameters for other acceptor
graphite intercalation compounds available in the liter-
ature were chosen for the evaluation of NI.) It should be
mentioned that, according to the Suzuki estimates for
stage-2 MoCl5-intercalated graphite compound [14],
HYSICS OF THE SOLID STATE      Vol. 42      No. 7      2000
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NI  ~ 5 × 10–5. As can be seen, despite a different inter-
calate nature, the value of NI for this graphite intercala-
tion compound falls in the range evaluated for the
incommensurate phase of C10HNO3.

Thus, the data on the electrical conductivity in the
C10HNO3 graphite intercalation compound and their
analysis led to the conclusion that the σc conductivity in
the structurally incommensurate phase of this com-
pound has a nonband nature. The transfer of free charge
carriers along the c axis in this phase can occur through
the mechanism of the charge transport along thin high-
conductivity channels shunting the carbon layers adja-
cent to the intercalate.
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Abstract—Based on the averaged atomic model and experimental data on the variations in the unit cell param-
eter and thermodynamic characteristics of the Pd–H binary alloy (the enthalpy of sublimation of palladium,
hydrogen sorption, and phase separation in the Pd–H system), the variation in the shear modulus of palladium
is estimated as a function of the concentration of dissolved hydrogen. The bulk compression and Young’s mod-
uli are also evaluated. The model provides a qualitative agreement with the available data on mechanical mod-
uli. © 2000 MAIK “Nauka/Interperiodica”.
In the hydrogen–palladium system, the local con-
centration of interstitial hydrogen θH can vary over a
wide range from zero to one hydrogen atom per metal
atom [1–4]. The interstitial hydrogen causes the local
deformation of the lattice and, as a consequence, the
variation in mechanical properties of the metal. This
fact is important for palladium membranes, in which a
large concentration gradient of hydrogen can be real-
ized. In addition, the phase state of the metal can
change at temperatures below T ~ 565 K: the α and β
phases are formed at a low and high content of intersti-
tial hydrogen, respectively. It is assumed that the varia-
tion in mechanical properties is responsible for the
presence of the hysteresis-type effects in flow charac-
teristics of membranes, irreproducibility of the experi-
mental data, and an increase in the hydrogen embrittle-
ment of palladium [1–4]. A strong influence of intersti-
tial hydrogen on the mechanical, sorption, and
transport properties of palladium membranes is con-
firmed by numerous investigations [1–4]. However,
these measurements were nonsystematic. Specifically,
the experimental data on the influence of the concentra-
tion of interstitial hydrogen on the mechanical proper-
ties of palladium are actually unavailable. In this work,
we proposed a method for theoretically evaluating the
influence of dissolved hydrogen concentration on the
mechanical properties of palladium. The method is
based on the thermodynamic characteristics and con-
centration dependence of the unit cell parameter for the
Pd–H alloy.

The mechanical moduli of a solid can be expressed
in terms of elastic constants, which are related to the
potentials of interatomic interactions [5, 6]. The poten-
tial energy of the system can be represented in the
form: U = UMM + UMH + UHH, where the first term
1063-7834/00/4207- $20.00 © 21192
describes the metal–metal interactions, the second
term accounts for the metal–hydrogen interactions,
and the third term characterizes the hydrogen–hydro-
gen interactions. Although the question regarding the
form of potential functions for interstitials in metals
was repeatedly discussed in the literature [7–12], it is
still an open question. For this reason, in order to per-
form qualitative evaluations, we introduce the follow-
ing simplifications.

(i) The contribution of vacancies in the metal lattice
can be neglected at relatively low temperatures [5].

(ii) We assume that the pair interactions of all the
components are described by the Lennard-Jones poten-
tial: ϕij(rij) = 4εij[(σij/rij)12 – (σij/rij)6], where εij and σij

are the parameters of the corresponding pair interaction
potentials. Summarizing the contributions of the inter-
actions between atoms ij over the lattice, we obtain the
modified pair Lennard-Jones potential, which can be

written as ϕij(rij) = 4εij[ (σij/rij)12 – (σij/rij)6],

where  allow for contributions from the second
nearest neighbors and more distant ones of the atoms
[13].

(iii) We use the mean values of the unit cell param-
eter for the face-centered cubic (fcc) metal and reduce
the problem to the effective “single-atom” lattice by
assuming that hydrogen atoms make the averaged con-
tribution to the potential curve describing the palla-
dium–palladium interactions.

The potential energy of the system, which is
accounted for by the palladium atom (located in the

S12
ij S6

ij

S12 6,
ij
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site f ), can be written as

(1)

where zf nearest neighbors in the metal lattice surround-
ing the site f are numbered by the g index in the first
summand, zh nearest neighbors in the interstices sur-
rounding the site f are numbered by the h index in the
second and third summands, zf nearest interstices sur-
rounding the interstice h (for the fcc structure, zh = zf /2)
are numbered by the g index in the last summand, and
εeff is the effective metal–metal potential.

Averaging the local distributions of hydrogen atoms
in the neighborhood of the labeled metal atom, we
introduce the mean concentrations of hydrogen θH =

/zf. In this case, the second summand in (1)

can be written as zhθHϕMH(rfh), and the third summand

can be rewritten as zf zhθHHϕHH(rhg)/2. Here,  is the
probability of occurring the hydrogen atoms in the
neighboring interstices. The functional relation θHH(θH)
is known in concrete approximations. These are the
Bethe (quasi-chemical) approximation, which takes
into account the short-range correlation effects, and the
Gorsky–Bragg–Williams (GBW) (mean-field) approx-
imation, which does not take into account these corre-
lations [14, 15]. With allowance made for the aforesaid,
we have

(2)

where Ψij = (σij/rij)12 – (σij/rij)6. The functions

 for atoms ij = MH (index 1) and HH (index 2)

take the form:  = 1 + tHH, where tHH =

/θHH,  = 0.07,  = 0.2,  = 0.002, and  =

0.011 (for a pair of atoms ij = MM,  = 1.011 and

 = 1.20). The minimum of potential (2) corre-
sponds to the distance between the neighboring palla-
dium atoms rmin(θH), which depends on the hydrogen
concentration.

The fcc structure of the Pd–H solid solution has
three independent elastic constants C11, C12, and C44.
Reducing our consideration to the isotropic model of
the structure, we found that the relation between the
shear modulus and elastic constants is given by the for-
mula Cs = C44 [6]. The elastic constants, in turn, can be
expressed through the coefficient of elasticity M of the
metal–metal bonds as C11 = 2M/rmin(θH) and C12 = C44 =

U f z f εeff ϕMM r fg( )
q z f∈
∑ θh

HϕMH r fh( )
h z f∈
∑+= =

+ θhg
HHϕHH rhg( )/2,

g zh∈
∑

h z f∈
∑

θh
H

h z f∈∑

θhg
HH

εeff 4 ε( MMΨMM θHεMHΨMH/2+=

+ zhθHHεHHΨHH/2 ),

S12
ij S6

ij

S12 6,
ij

Sn m,
1 2, dn m,

1 2,

θhg
HH d6

1 d6
2 d12

1 d12
2

S12
MM

S6
MM
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M/rmin(θH), where M (under the assumption that palla-
dium atoms can be displaced in any direction with
equal probability) is described by the parameters of the
interparticle potential (2) as M = 48zfεeff(θH)/[rmin(θH)]2.

In order to evaluate the influence of the concentra-
tion of interstitial hydrogen, we consider the ratio
η(θH) = Gs(θH)/Gs(θH = 0) = εeff(θH)V/εeff(θH = 0),
where V(θH) = [rmin(θH = 0)/rmin(θH)]3. Let us estimate
all the energy parameters εij in equation (2) from the
available data on the enthalpies of the corresponding
processes. The rmin(θH) dependence is considered to be
known from independent experimental measurements.

The εMM parameter can be determined from the data
on sublimation of pure palladium ∆Hsubl = zfεMM
(∆Hsubl ≈ 90 kcal/mol; however, there are rather large
discrepancies in the available data: 93 [16], 89 [17], 85
[12], and even 110 [18] kcal/mol). The εMH parameter
is related to the dissolution (sorption) of the hydrogen
atoms in a pure metal with the formation of the α phase.
The experimental value of enthalpy for this process is
equal to approximately 4.62 kcal/mol [19] (∆Hsor =
zhεMH). The phase separation of the alloy, followed by
the formation of the two-phase α–β system, occurs at
equilibrium conditions with an increase in the hydro-
gen concentration. In terms of thermodynamics, this
process can be treated [19] as the reaction: 2/{θmin(β) –
θmax(α)}PdHβ = 2/{θmin(β) – θmax(α)}PdHα + H2 with
the enthalpy of reaction ∆HR = 9.4–9.8 kcal/mol. The
two-phase region is located between θmax(α) and
θmin(β). In the case of the pair potential of interatomic
interaction, by analogy with [20], it is possible to derive
the heat of sorption under conditions of phase separa-
tion ∆HR = zfεHH/2. Let us use this relationship to esti-
mate the εHH quantity.

1
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Concentration dependences of the relative change in the
shear modulus η(θH) for (1, 2) the equilibrium state of the
system, (3, 4) the nonequilibrium state of the system
η*(θH), and (5) the relative change in the volume per palla-
dium atom V(θH) at 300 K. Curves 1 and 3 are calculated in
the Bethe approximation, and curves 2 and 4, in the GBW
approximation.
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According to [19], the following estimates of the
changes in the unit cell parameter rmin(θH) at 0 ≤ θH ≤ 1
are obtained for different phases: rmin(θH) = 0.3890 +
0.05θH nm for the α phase and rmin(θH) = 0.3915 +
0.018θH nm for the β phase. The rmin(θH) quantity for
the two-phase region was calculated with due regard
for the “lever” rule. The ratio of the specific volumes
V(θH) (per palladium atom) for the complete saturation
of the metal by hydrogen is 0.863.

The figure shows the concentration dependences of
V (curve 5) and η, which are calculated in the Bethe
(curve 1) and GBW (curve 2) approximations.

The proposed model also allows us to estimate the
shear modulus in the case of nonequilibrium states of
isolated local regions of the α phase, in which palla-
dium cannot transform into the β phase because of the
external compression [8]. By assuming V ~ 1, we have
η*(θH) ≈ εeff(θH)/εeff(θH = 0). The dependences η*(θH)
are also presented in the figure. The η* and η curves
variously change with respect to the line η = 1 with an
increase in the interstitial hydrogen concentration. In
other words, the shear modulus for a nonequilibrium
state can differ drastically from its equilibrium value.
For the complete saturation of the α phase by hydrogen
in the compressed state, η*(1) = 1.075.

Within the model considered, the bulk compression
and Young’s moduli are directly proportional to the
shear modulus. The bulk compression modulus,
according to [6], can be expressed in the form Gc(θH) =
4M/3rmin(θH) = 4Gs(θH)/3, and the Young modulus H(θH)
is determined by the standard expression [21]: H(θH) =
9Gc(θH)Gs(θH)/[3Gc(θH) + Gs(θH)] = 2.4Gs(θH).

The model proposed qualitatively agrees with the
very scarce reliable experimental data on the influence
of dissolved hydrogen on the mechanical moduli. The
model adequately predicts a decrease in the Young and
shear moduli upon saturation of the metal by hydrogen
over a wide concentration range. At low hydrogen con-
centrations, the model gives a linear decrease in the
Young modulus, as it was found in [22]. Specifically, up
to θH ~ 0.014, the Young modulus decreases by 0.65 (in
the Bethe approximation) and 0.70% (in the GBW
approximation), whereas the experiment [22] gives the
decrease by 1.1%. For θH = 0.63, the model predicts a
decrease in the shear modulus by 6.3 (in the Bethe
approximation) and 7.0% (in the GBW approxima-
tion), whereas the experiment [23] gives the decrease of
4%. Moreover, the estimates obtained in the GBW
approximation at θH ~ 0.6 in [24] led these authors to
the conclusion that, at high hydrogen concentrations,
when the effects of interactions between interstitial
atoms become significant, the increase in the dynamic
Young modulus in the Pd–H system should reach 8%.
With the proviso that the dynamic character of the
Young modulus stems from the nonequilibrium state of
the metal, this conclusion is in a good agreement with
an increase in η* by 7.4%.
P

Thus, the model proposed permits one to establish
the interrelation between independent experimental
data and gives reasonable estimates for the mechanical
moduli without invoking additional fitting parameters.
In the framework of this model, we can discard the
direct use of the experimental dependence rmin(θH).
Then, by varying the parameters σMH and σHH, we can
quantitatively describe the rmin(θH) dependence and
improve agreement between the model and the experi-
mental values of mechanical moduli. However, in order
to obtain the completely self-consistent parameters for
the potentials of the model, the phase separation curve
in the phase diagram of the Pd–H system should be pre-
liminarily described.
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Abstract—The paper reports the results of investigations of the valence bands for the Fe–Si alloys contain-
ing 50 and 25 at. % Si and the alloys at a metalloid content of 2–20 at. %. The x-ray photoelectron spectra
of the valence bands are compared with the band calculations of the total and partial densities of states for
the stoichiometric alloys by the tight-binding linearized muffin-tin orbital method. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Fe–Si alloys, by virtue of a great variety of physical
properties, have been extensively used in various fields
of modern technology [1, 2]. The electronic structure of
alloys, which is eventually responsible for their charac-
teristics, still remains unclear.

The purpose of the present work was to investigate
the electronic structure of the Fe–Si alloys at a silicon
content of 2–50 at. % and to elucidate how the variation
in the number of silicon atoms surrounding the iron
atom affects the participation of the Fe d electrons in
the Fe–Si bond.

In this work, we studied the Fe–Si system at a met-
alloid content below 20 at. % and samples containing
25 and 50 at. % Si. The last two samples represent the
ordered compounds with the stoichiometric composi-
tions Fe3Si and FeSi, respectively.

2. EXPERIMENTAL TECHNIQUE

The x-ray photoelectron spectra (XPS) were
recorded on an x-ray magnetic spectrometer [3]. The
influence of the technique of cleaning the surface of
impurities on the silicon content in a near-surface layer
was investigated in [4]. The applied technique included
heating, etching by argon ions with an energy of
500 eV, and mechanical cleaning in a spectrometer
chamber. It was demonstrated that ion etching to a
depth of 150 Å decreases the silicon line intensity
related to the total intensity of the iron and silicon lines
(proportional to the silicon content on the sample sur-
face) by 20–30% compared to the samples mechani-
cally cleaned under vacuum. In order to obtain a clean
surface of samples, the mechanical cleaning of the sam-
ples was carried out immediately in the spectrometer
chamber. This treatment did not change the surface
composition. The mechanical cleaning was performed
1063-7834/00/4207- $20.00 © 21196
with a device that provided the removal of surface lay-
ers of the sample with a tungsten brush. The absence of
contamination on the sample surface was checked
against the x-ray photoelectron spectra of the Fe2p,
O1s, and C1s core levels. In order to improve the spec-
tral resolution and contrast range, we used the proce-
dure described in [4]. As a result, the contrast range of
a fine structure in the spectra of the valence bands was
improved to a large extent. The band calculations of the
total and partial densities of states (DOS) for the com-
ponents of the alloys of stoichiometric compositions
were carried out by the tight-binding linearized muffin-
tin orbital (TBLMTO) method.

The samples were prepared by alloying the iron
ingots (99.99% pure) and silicon single crystals (at
least 99.99% pure) in a vacuum furnace.

3. RESULTS AND DISCUSSION

As was shown earlier [5], in the case of hybridiza-
tion of the d(Fe) and p(X) electrons, the form of the
alloy valence band reflects the Fe d electron density dis-
tribution, because the photoionization cross-section of
the d electrons is several tens of times greater than that
of the p electrons. In this case, the structure of the p
electron density distribution of the second component
manifests itself in the form of the alloy valence band;
i.e., the structure of the alloy valence band is similar to
the structure of the valence band of the second compo-
nent.

Let us consider the FeSi alloy (Fig. 1). A compari-
son of the calculations of the total and partial densities
of the d and p states and the x-ray photoelectron spectra
of the valence bands of FeSi shows a good agreement
in the position and relative intensity of maxima in the
curves of fine structure. The exception is the region
near Ef . In this region, the higher intensity in the d DOS
000 MAIK “Nauka/Interperiodica”



        

INVESTIGATION OF THE ELECTRONIC STRUCTURE OF THE Fe–Si SYSTEMS 1197

                                                                    
and in the total DOS indicates that, in addition to the
hybridization of the d and p states, there is a contribu-
tion of the Fe d states not involved in the Fe–Si bond. It
is our opinion that the difference between the x-ray
photoelectron spectrum of the FeSi valence band and
the spectrum obtained in [6] stems from the difference
in methods of cleaning the sample surface.

Note that the theoretical calculation suggests the
presence of the energy gap of width 0.1 eV. Since the
contribution of the Fe d electrons to the density of states
at the valence band top and conduction band bottom is
dominant, the energy gap in the valence band of FeSi
appears as the result of splitting the Fe d band into two
subbands. The fact that the structure of the valence
band spectrum is consistent with the band calculations
of the partial densities of the d(Fe) and p(Si) states indi-
cates their substantial hybridization upon the formation
of the Fe–Si bond. This is also evidenced by the appear-

Binding energy, eV
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k

3d(Fe)DOS FeSi

XPS FeSi

3p(Si)DOS FeSi

XPS FeSi [4]

DOS FeSi

Fig. 1. X-ray photoelectron spectra of the valence bands of
the FeSi alloy and the results of the TBLMTO calculations
of the total and partial densities of states for the alloy.
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ance of the energy gap in the d states, which are char-
acteristic of silicon. This is apparently due to the fact
that the Fe–Si interatomic distance in the FeSi cubic
structure (2.24 Å) is considerably less than that
between identical atoms Fe–Fe (2.75 Å) and Si–Si
(2.27 Å).

For the Fe3Si alloy (Fig. 2), the curves of band cal-
culations and the x-ray photoelectron spectra of the
valence band change in their structure. The intensity
maximum is shifted to Ef by 1–1.3 eV. A fine structure
in the band calculations of the total density of states
agrees closely with the experimental spectrum of the
valence band. We compared these curves with calcula-
tions of the partial densities of the d(Fe) and p(Si) states
in Fe3Si. It is seen that the contribution of the Fe d elec-
trons, which do not participate in the Fe–Si bond,
remains dominant in the vicinity of Ef (maxima a, b,
and c). This leads to the shift of maxima in the curves
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XPS FeSi [4]

Fig. 2. X-ray photoelectron spectra of the valence bands of
the Fe3Si alloy and the results of the TBLMTO calculations
of the total and partial densities of states for the alloy.
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of densities of states toward the Ef region. A consider-
able weakening of the hybridization of the d(Fe) and
p(Si) states can be explained by the increase in the Fe–
Si distance (2.43 Å) compared to the FeSi alloy.

With a further decrease in the silicon content in the
Fe–Si system (21.2, 20.0, 15.0, and 11.5 at. %), the

0
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Fig. 3. X-ray photoelectron spectra of the valence bands of
the Fe–Si alloys.

b
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P

valence band structure remains similar to the structure
of the experimental spectrum of the valence band for
Fe3Si (Fig. 3). This is apparently caused by the fact that
the number of silicon atoms surrounding the iron atoms
remains unchanged. The structure of the valence band
spectra drastically changes with a decrease in the sili-
con content below 10 at. %. For these systems, the
structure of valence bands resembles the valence band
spectrum of pure iron. In this case, the hybridization of
the d(Fe) and p(Si) states is not observed, and the Fe−Si
bond is realized solely through the hybridization of the
p states of iron and the p states of silicon.

Thus, the d electrons of iron atoms can participate in
the hybridized bond only provided that a certain num-
ber of atoms of the second component (Si) are involved
in the environment of the iron atom. This number is
defined by the spatial overlapping of the wave functions
of valence electrons belonging to both components of
the alloy. This constraint is met at a silicon content of
more than 10 at. %, when three silicon atom are
included in the environment of the iron atom.
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Abstract—The method of x-ray spectral line displacement is used for studying the electronic structure, i.e., the
population of the 4f shell of Yb, 5s shells of In and Ag, and 4s shell of Cu, in the YbIn1 – xAgxCu4 heavy-fermion
system (0 ≤ x ≤ 1, T = 300 K; T = 77, 300, and 1000 K for YbIn0.7Ag0.3Cu4). It is shown that Yb is in a state
with fractional valence whose value is independent of x (or on the type of the partner, i.e., In and Ag) in the
entire range of compositions and is equal to  = 2.91 ± 0.01 at T = 300 K. An increase in the population of the

s states of In, Ag, and Cu (as compared to metals) is observed:  = 0.65 ± 0.05 el/at,  =

0.71 ± 0.09 el/at, and  = 0.08 ± 0.02 el/at. A practically linear decrease in the valence of Yb to the value
m(T = 1000 K) = 2.81 ± 0.02 is observed in YbIn0.7Ag0.3Cu4 upon an increase in temperature from T = 77 to
1000 K. © 2000 MAIK “Nauka/Interperiodica”.

m

∆ns In( ) ∆ns Ag( )

∆ns Cu( )
An analysis of microscopic and macroscopic prop-
erties reveals that YbIn1 – xAgxCu4 is a system with an
intermediate (fluctuating) valence (IV); thus, the
“increase in the mass” of electrons in it can be associ-
ated with the emergence of a 4f electron at the Fermi
level (delocalization). The effect of an increase in the
population of the s states of Yb partners is due to the 4f
electron of Yb being hybridized upon a transition to an
IV state (mainly) with 5s electrons of the neighboring
atoms of In, Ag, and (to a smaller extent) Cu, but not
with the Yb electrons. The total increase in the popula-

tion of these states  = 1.0 ± 0.1 virtu-
ally coincides with the observed decrease in the popu-
lation of the 4f shell of Yb upon a transition to the IV
state: ∆n4f = 0.91 ± 0.01.

“Heavy”-fermion systems (HFSs) belong to a spe-
cific class of intermetallic compounds based on rare-
earth and actinide elements [1]. The main indication of
an affiliation to HFSs is an anomalously high value of
the electronic specific heat coefficient γ, which sug-
gests the presence of a very narrow energy band with a
high density of states near the Fermi level in such sys-
tems. The fact that all known HFSs are formed on the
basis of lanthanides and actinides whose f levels are
quite close to the Fermi level, as in systems with an
intermediate (fluctuating) valence (see, for example,
[2]), indicates a significance of atomic properties of the
f shells of these elements in the formation of a heavy-
fermion (HF) state.

∆nΣ In Ag Cu, ,( )
1063-7834/00/4207- $20.00 © 21199
The mechanism of the emergence of a “heavy”
electron band at the Fermi level has not been com-
pletely established. It is not clear whether it is con-
nected with the emergence of the f level at the Fermi
level (in this case, f electrons become delocalized, and
the band width is determined directly by the f-sd
hybridization [3]) or with collective processes, where
the f level is still relatively deep, and the properties of
electrons near the Fermi level can be determined by
collective effects of the type of the Kondo effect, i.e.,
by the resonance scattering of conduction electrons at
localized magnetic moments of f centers [4]. If the
“increase” in the conduction electron mass occurs as a
result of the “emergence” of the f level at the Fermi
level, the states with the f n and f n – 1 + e configurations
(e is the conduction electron) become degenerate, and
a state with a fractional valence is realized. In the case
of the formation of a HFS due to the scattering of con-
duction electrons at localized magnetic moments of f
centers, f electrons lie below the Fermi level, and a
state with an integral valence is realized. Thus, the
fractional or integral valence of f atoms can be
regarded as a manifestation of one of the two mecha-
nisms of the HFS formation.

In the recent 3–5 years, the intermetallic compound
YbIn(Ag)Cu4 possessing unique physical (crystallo-
graphic, electrical, magnetic, thermal, spectral, etc.)
properties have been studied intensely (see, for exam-
ple, [5–9]).
000 MAIK “Nauka/Interperiodica”
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In YbIn1 – xAgxCu4 (x ≈ 0–0.3) under the atmo-
spheric pressure and T ≈ 40–80 K,1 a first-order isos-
tructural phase transition is observed, i.e., the crystal
lattice parameter changes jumpwise by ≈0.13%, the lat-
tice symmetry being preserved (the AuBe5 type before
and after the transition) [5]. The isomorphous Ceγ–Ceα
phase transition in metallic cerium is an analog of such
a transition. The electronic specific heat coefficient of
YbInCu4 γ ≈ 50 mJ/(mol K2) [6] is typical of systems
with an intermediate valence and heavy-fermion sys-
tems (so-called light-fermion systems [10]). Doping
with silver does not change the crystal lattice symme-
try, but the value of γ increases and attains a value of
≈200–250 mJ/(mol K2) for pure YbAgCu4 [8, 9] (mod-
erately heavy fermion system). At room temperature,
the valence of Yb in YbIn1 – xAgxCu4 varies from ~3 to
~2.9, according to various authors [5, 7, 9].

In the present work, the method of x-ray line dis-
placement (XLD) (see, for example, [11, 12]) is used
for studying the population of the 4f shell of Yb, 5s
shells of In and Ag, and the 4s shell of Cu in
YbIn1 − xAgxCu4 (0 ≤ x ≤ 1, T = 300 K; T = 77, 300, and
1000 K for YbIn0.7Ag0.3Cu4). The role of f atoms in the
HFS mechanisms is more or less clear, while the elec-
tronic structure of the s(p) and d partners, as well as
their contribution to this mechanism, has not been stud-
ied on the microscopic level to our knowledge.

1. DISCUSSION OF EXPERIMENTAL RESULTS

Polycrystalline samples of YbIn1 – xAgxCu4 under
investigation were synthesized from YbInCu4 and
YbAgCu4, which in turn were obtained from stoichio-
metric mixtures of pure metals. Melting was carried out
in an induction furnace in tantalum crucibles in a vac-
uum, followed by annealing at T ≈ 700°C. The obtained
samples contained only one phase and had a cubic lat-
tice of the AuBe5 type (C15b structure). The lattice
parameter and its concentration dependence a(x) at
room temperature coincided with the available data [5,
9]. The composition x was controlled by the fluores-
cence analysis.

The displacements of the Kα1 lines of Yb, In, Ag,
and Cu were measured on a specially designed crystal-
diffraction spectrometer according to the Koshua tech-
nique. Fluorescent radiation is excited in the samples
by an x-ray tube (I = 10 mA, U = 140 kV). The experi-
mental setup and the measuring procedure are
described in detail in our previous publications (see, for
example, [11, 13]).

Ytterbium. Valence transformations in rare-earth
elements are associated with a change in the number of
4f electrons. It was proved earlier (see, for example,
[11, 12]) that such changes lead to anomalously large

1 The transition temperature depends on the preparation technology
[poly(single)crystals, the excess (deficiency) of components in
the compound etc.].
P

(as compared to the effects from 6s(p) and 5d electrons)
variations in the energy (displacements) of emission K
lines of the rare-earth element under investigation

(  ≈ 500–600 meV,  ≈ 1500–1700 meV,

and  ≈ 20–80 meV). This make the XLD
method quite sensitive for studying the mechanisms
associated with the rearrangement of the 4f shell
(change in the valence).

The experimental displacements of the Kα1 line of
ytterbium in YbIn1 – xAgxCu4 relative to the bivalent ref-
erence material (metallic Yb) are presented in the table.
The sign and the anomalously large intensity of the
effect unambiguously indicate a decrease in the number
of 4f electrons (increase in the valence) of Yb. The dif-
ference in the number of 4f electrons of Yb in the com-
pound and in the reference material was determined as
∆n4f(x) = ∆E(x)/∆E(Yb3+ – Yb2+), where ∆E(x) is the
experimental displacement and ∆E(Yb3+ – Yb2+) is the
calibration displacement corresponding to the displace-
ment of the Kα1 line of Yb upon a decrease in the pop-
ulation of the 4f shell by unity. The valence of Yb in the
sample under investigation is obviously m = mref +
∆n4f = 2 + ∆n4f. The calibration displacement was mea-
sured for the Yb2O3–Ybmet pair and was found to be
∆E(Yb3+ – Yb2+) = –583 ± 5 meV. The concentration
dependence of the Yb valence m(x) at room tempera-
ture2 is presented in Fig. 1, which shows that the Yb
valence is virtually constant over the entire concentra-
tion range and has a fractional value  =
2.91 ± 0.01.

The fractional value of the valence of an f atom is
typical of the specific class of rare-earth and actinide
compounds with the so-called intermediate (fluctuat-
ing) valence (IV). Macroscopic features typical of
intermediate-valence compounds, i.e., the isostructural
nature of the transition and temperature dependences of
the magnetic susceptibility, electrical resistivity, and
specific heat, etc., are also observed in Yb(In, Ag)Cu4
[5, 8, 9].

The fractional valence m = 2.91 of Yb in Yb(In,
Ag)Cu4 observed by us differs insignificantly from the
“conventional” value of 3 for Yb. However, such a
small difference in the value of m leads to essentially
different conclusions concerning the mechanism of a
transition to the HF state (f–sd hybridization or collec-
tive processes of the Kondo effect type). The expected
valence of Yb upon a transition to the IV state can be
estimated quantitatively from a simple phenomenolog-
ical model of interconfigurational fluctuations [14, 15].
The IV state is regarded as a resonance (fluctuations)
between the initial 4f n and the final 4f n – 1 + e states of
a 4f electron with close energies and is realized when
the condition |Eex| = |En – En – 1| ≤ Γ is satisfied, where

2 The Yb valence is virtually constant and equal to  =
2.93 ± 0.02 at T = 77 K.

∆EKα1 2,

4 f ∆EKβ1 3,

4 f

∆EKα β,

6s p( ) 5d,

m x 0 0.3 1, ,=( )

m 0 x 1≤ ≤( )
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Experimental displacements of Kα1 lines of Yb, In, Ag, and Cu in YbIn1 – xAgxCu4 and ionic compounds at room temperature

Compound
Displacements of Kα1 lines, meV

Yb In Ag Cu

YbIn1 – xAgxCu4

x = 0 –544 ± 5 –28 ± 5 – –1 ± 4

x = 0.2 –531 ± 6 –28 ± 5 –34 ± 9 –8 ± 3

x = 0.3 –530 ± 5 –25 ± 6 –54 ± 12 –10 ± 3

x = 0.4 –516 ± 6 –32 ± 5 –39 ± 10 –4 ± 2

x = 0.6 –527 ± 6 –49 ± 4 –45 ± 9 –13 ± 3

x = 0.8 –527 ± 5 –31 ± 7 –32 ± 9 –1 ± 4

x = 1 –528 ± 6 – –53 ± 12 –2 ± 3

Yb2O3 –583 ± 5 – – –

InCl3 – 133 ± 8 – –

AgCl – – 122 ± 5 [24] –

CuCl – – – 164 ± 5

Note: Reference materials are metallic Yb, In, Ag, and Cu.
En and En – 1 are the energies of these configurations and
Γ is the energy due to the Anderson hybridization of a
4f electron with the electrons from the conduction band
(the width of the 4f energy level). The probability of an
RE atom occupying the 4f n – 1 state is determined by a
Boltzmann-type distribution, taking into account the
mixing interaction,

(1)

where Mn and Mn – 1 are the statistical weights of the fn

and the fn – 1 states. Assuming that jumps of a 4f elec-
tron of Yb in Yb(In,Ag)Cu4 from one site to another
occur only among coinciding (degenerate) energy lev-
els (Eex ≈ 0), which can be identified as an Anderson-
type transition [16], we can find the probability of the
Yb3+ state, which is determined in the present case only
by the statistical weights of Yb2+ (J = 0, Mn = 1) and
Yb3+ (J = 7/2, Mn – 1 = 8) states and is given by
P(Yb3+) = Mn – 1/(Mn – 1 + Mn) = 8/9 corresponding to
the value of m = 2.89, which matches well (for such a
simple model) with our experimental value 2.91 ± 0.01.

The identification of the IV state only according to
the value of m (integral or fractional) is not reliable.
Fractional values of valence are also observed for com-
pounds with a mixed valence, in which f atoms with a
different valence coexist in the crystal lattice, but
occupy nonequivalent positions. The fluctuational
nature of the IV state (Eex, Γ, and fluctuation time) can
be identified unambiguously from the isomeric shift in
the Mössbauer effect. Unfortunately, this method has a
low sensitivity in the case of Yb, since the isomeric shift
is an order of magnitude smaller than the line width
[10].

P En 1–( ) 1
Mn

Mn 1–
-------------

Eex

T Γ+
------------- 

 exp+
1–

,=
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High-temperature experiments can be regarded as
indirect evidence of the IV state of Yb in Yb(In,
Ag)Cu4. The inset to Fig. 1 shows the temperature
dependence of the Yb valence in YbIn0.7Ag0.3Cu4. The
value of m decreases upon an increase in temperature.
Such a behavior can be explained if one assumes that
Eex is a function of temperature T (the theory does not
rule out such a possibility in principle [17]). The effect
of a decrease in the valence of rare-earth atoms at high
temperatures in “classical” systems with an intermedi-
ate valence was observed by us earlier for a wide range
of intermetallic compounds with cerium [18, 19] and
europium in EuRh2 and EuCu2Si2 [20] by the XLD
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0 200 400 600 800 1000
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x

m

Fig. 1. Concentration dependence of the Yb valence m in
YbIn1 – xAgxCu4 at room temperature. The inset shows the
temperature dependence of m for YbIn0.7Ag0.3Cu4.
0
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method and in [21, 22] by the Mössbauer (NGR) tech-
nique in EuCu2Si2. The temperature dependences m(T)
demonstrate a fairly good agreement between the XLD
and NGR spectroscopy data.

Thus, the combination of the microscopic and mac-
roscopic properties of YbIn1 – xAgxCu4 considered
above, as well as the equivalence of positions of Yb
atoms in the crystal lattice, allows us to consider this
system as having an intermediate (fluctuating) valence
and, accordingly, the “increase in the mass” of elec-
trons in it as a result of the f–sd hybridization during a
transition of a 4f electron of Yb to the IV state.

Indium, Silver, and Copper. A crucial point in the
IV (and accordingly HFS) problem is the identification
of the centers at which hybridization takes place. In the
case of Yb(In, Ag)Cu4, a 4f electron of Yb can be
hybridized either with s(p)d electrons of the neighbor-
ing Yb atom,3 or with s(p) electrons of In, Ag, and Cu.
In the latter case, an increase in the population of the
s(p) shells of Yb partners should be observed.

The table contains displacements of the Kα1 lines of
In, Ag, and Cu. All the compositions YbIn1 – xAgxCu4
under investigation display negative displacements rel-
ative to the corresponding metals. We proved earlier
[24] that the removal of valence s(p) electrons4 in
heavy elements leads to positive displacements of the
Kα1 lines (the scale of the effect for the ionic com-
pounds of In, Ag and Cu are illustrated in the table).
Nonzero displacements indicate that the populations of
the outer shell s(p) states of In, Ag, and Cu differ from
the population in metals, while negative values of the

3 We observed this hybridization channel (Sm  Sm) in the IV
system Sm1 – xGdxS [23].

4 Quantitatively, these effects from s and p electrons are practically
equivalent.

                               

1
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x

Fig. 2. Population of 5s states of In and Ag and 4s states of
Cu as a function of composition (at room temperature): (1)
solid line, (2) dashed line, and (3) dot-and-dash line are the
data for In, Ag, and Cu, respectively.
P

effects indicate an increase in the s(p) population upon
the transition from the metallic state to the IV state.

The electronic structure (population of the 5s states
of In and Ag and the 4s states of Cu) was determined
from the experimental displacements of the Kα1 line by
using atomic calculations of the Dirac–Fock type. The
values of ∆n for each YbIn1 – xAgxCu4 sample was
determined from the equation

(2)

where M stands for In, Ag, or Cu, ∆
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by the method described above are presented in Fig. 2.
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0 

 

≤

 

 

 

x

 

 

 

≤

 

 1 are  = 0.65 

 

±

 

 0.05 el/at and  =
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 for copper is also
independent of the composition, but the effect in this
case is approximately an order of magnitude weaker
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The observed considerable increase in the popula-
tion of the outer 5

 

s

 

 orbitals of In and Ag (and 4

 

s

 

 orbitals
of Cu to a smaller extent) can be attributed to one of the
above-mentioned mechanisms of the 

 

f

 

–

 

sd

 

 hybridiza-
tion, namely, the hybridization of a 4

 

f

 

 electron of Yb
with the conduction electrons of the neighbors (In, Ag,
Cu). The version in which a 4

 

f

 

 electron hops between
the states of neighboring Yb atoms (Yb  Yb)
should not, in principle, change the electronic struc-
ture of the neighboring (other than Yb) atoms. On the
other hand, the emergence of an extra electron 

 

e

 

 in the
conduction band upon hybridization of a 4

 

f

 

 electron
with conduction electrons of the neighboring partner
atoms as a result of the transition to the IV state (4

 

f

 

14

 

 –
4

 

f

 

13

 

 + 

 

e

 

) should increase the population of the outer

 

s

 

(

 

p

 

) orbitals of Yb partners in the compound, which is
actually observed in experiments with In, Ag (and Cu
to a smaller extent). The total increase in the popula-
tion of the 

 

s states of Yb partners is virtually indepen-

dent of x [since  ≈ ]; its value is

 = 1.0 ± 0.1 and is close to the
observed decrease in the population of the 4f shell of Yb
upon a transition to the IV state: ∆n4f = 0.91 ± 0.01.

The independence of the value of ∆ns on the type of
the neighbor indicates that a 4f electron has the same
probability of hybridization with 5s electrons of In and
Ag. The difference in the effects (∆ns) in
YbIn1 − xAgxCu4 for In and Ag on the one hand and for
Cu on the other hand can be attributed to the features of
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the crystalline structure of this compound. A unit cell of
YbIn1 – xAgxCu4 consists of two sublattices: the Yb and
In(Ag) sublattice and the Cu sublattice. We assume that
the atoms of the first sublattice are coupled with one
another strongly and with the atoms of the second sub-
lattice weakly [25]; therefore, the exchange of electrons
due to hybridization (and, accordingly, an increase in
ns) is mainly determined by the atoms of the first sub-
lattice (In, Ag).
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Abstract—Low-energy phonons in NdBa2Cu3O7 – x and Bi2Sr2CaCu2O8 + x superconducting single crystals
have been studied by Raman scattering and reflectivity measurements with femtosecond-scale resolution.
Raman scattering provides information on equilibrium thermal phonons, whereas information about a coherent
state of the phonon system is obtained by measuring in the time domain when the phonon system is pumped by
an ultrashort pulse and subsequently probed by a properly gated second pulse. It is shown that both methods
yield similar results for the phonon mode energies, while the energy relaxation and dephasing rates exhibit a
tendency to disagreement. © 2000 MAIK “Nauka/Interperiodica”.
Most of the information regarding the dynamics of
long-wavelength phonon modes in high-temperature
superconductors (HTSC) has until recently been
derived from Raman scattering (RS) and infrared (IR)
spectroscopy studies [1, 2]. Because HTSC crystals are
centrosymmetric, the rule of alternative forbiddenness
limits the information extractable from RS spectra to
even, and from IR spectra, to odd phonon modes. Being
typical representatives of frequency-domain methods,
both types of spectroscopy provide data on equilibrium,
thermal phonons. Progress in laser technology has
made it possible to reduce laser pulse lengths to a few
femtoseconds, thus opening novel prospects of
research. The availability and wide use of fs-scale
pulses coincided in time with the discovery of HTSCs,
thus allowing the investigation of lattice vibrations in
real time. Besides, for pulse lengths smaller than the
reciprocal lattice-vibration frequency, one can produce
and study phonons in a coherent, rather than thermal,
state. Real-time studies, whose typical representative is
the method that involves pumping a given phonon state
with its subsequent probing by two time-separated laser
pulses [pump–probe (PP) method], are now being
actively pursued on many condensed systems [3]. As a
rule, in the time domain, one detects Raman-active
phonons with energies less than the reciprocal length of
the pump pulse, and for HTSCs such studies have been
carried out to date only on the YBa2Cu3O7 – x system
deposited in the form of films on various substrates [4–
6].

In order to follow the similarity and possible dif-
ferences between the information derived from mea-
surements in the frequency and time domains, we
have performed a comparative investigation of the
phonon characteristics of NdBa2Cu3O7 – x (Nd123)
and Bi2Sr2CaCu2O8 + x (Bi2212) single crystals by two
1063-7834/00/4207- $20.00 © 21204
mutually complementing RS and PP, optical methods.
The Nd123 and Bi2212 crystals had the superconduct-
ing transition temperatures Tc = 94 and 91 K; however,
all measurements in this work were made at room tem-
perature. The optical response was studied from the ab
crystal planes. The RS measurements were carried out
in backscattering geometry with a triple-grating spec-
trometer equipped by a multichannel detector, with an
Ar+ laser (λ= 514 nm) used for pumping [7]. Measure-
ments in the time domain made use of phase-sensitive
detection and of a sapphire titanate laser (λ = 800 nm)
that produced pulses less than 50 fs long [6].

Figure 1a shows a typical optical response obtained
by excitation and subsequent probing of a Bi2212 crys-
tal by fs pulses. The excited state of the crystal relaxes
to equilibrium in times of the order of 300–400 fs.
Superposed on this electronic relaxation are fast oscil-
lations presented in the inset to Fig. 1a. This work stud-
ies only the oscillating part of the optical response gen-
erated by the excitation of coherent optical phonons. To
check whether the oscillations observed by the PP
method are related to Raman-active modes of the crys-
tal, the data obtained in the time domain were numeri-
cally transformed to the frequency domain by the Fou-
rier transformation. Figure 1b displays a typical spec-
trum thus obtained, and Fig. 1c shows an RS spectrum
measured on the same crystal in the x'x' polarization.
The two distinct peaks at 60 and 125 cm–1 correspond
to the fully symmetric phonon modes associated with
displacements of the Bi and Cu ions. While lattice
dynamics calculations suggest that both modes origi-
nate from ionic displacements perpendicular to the
CuO2 plane [8], an experimental analysis showed that
the low-frequency mode can be polarized in the CuO2
plane [9]. As follows from a comparison of the results
obtained, the positions of the phonon peaks derived
000 MAIK “Nauka/Interperiodica”
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from measurements in the time and frequency domains
coincide to within experimental accuracy. The relative
peak intensities in the RS spectrum and the Fourier-
transformed time-domain response also do not differ
very strongly. However, the spectral-line half-width ∆ν
extracted from time measurements and, accordingly,
the Q = ν/∆ν parameter (Q = 12 and 22 for the low- and
high-frequency modes, respectively) are always
slightly larger than the corresponding values derived
from RS data (Q = 9 and 17). 

Figure 2 shows a similar set of data for the Nd123
crystal. While the oscillations in Nd123 have a larger
amplitude than those in Bi2212, the oscillation ampli-
tude is smaller than that observed in Y123 films [6].
The RS spectrum of Nd123 is dominated in the low-fre-
quency part by the Ba ion mode at 120 cm–1 [10]. The

0
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(c)

Fig. 1. (a) Time-resolved normalized reflectance for a
NdBa2Cu3O7 – x crystal. The inset shows oscillations.
(b) Fourier-transformed time-domain response. (c) Raman
spectrum.
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intensity of the Cu ion mode at 152 cm–1 is consider-
ably lower, which sets this compound apart from Y123,
where the two low-frequency modes are comparable in
intensity for the given polarization [6, 11]. As in
Bi2212, both modes are fully symmetric and the dis-
placements are polarized perpendicularly to the cuprate
plane. The frequencies of the two low-frequency modes
derived from the Fourier-transformed time-domain
response of Nd123 are similar to those in the RS spec-
trum. Interestingly, the relative mode intensities
observed in the Fourier-transformed time-domain
response approximately coincide with those in the RS
spectrum. Y123 was reported to exhibit considerable
differences between the relative mode intensities in the
frequency and time domains, and most room-tempera-
ture studies found the Cu ion mode to be substantially
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Fig. 2. (a) Time-resolved normalized reflectance for a
Bi2Sr2CaCu2O8 + x crystal. The inset shows oscillations.
(b) Fourier-transformed time-domain response. (c) Raman
spectrum.
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weaker than the Ba mode in time-domain spectra [4–6].
As in Bi2212, the parameter Q observed in the Nd123
crystal in the time domain (21 and 30 for the low- and
high-frequency modes, respectively) is larger than that
in the RS spectrum, where Q = 11 for the low-fre-
quency mode. The difference between the line shape
parameters obtained in the time and frequency domains
is not unexpected, because the two techniques measure
wholly different states of the phonon system; indeed,
femtosecond pump pulses transfer a system to a coher-
ent state, where the phase is a well-defined quantity,
whereas Raman spectroscopy probes a system in the
thermal state with an indefinite phase. Therefore, the
spectral width of the Fourier-transformed response in
the temporal domain characterizes the dephasing rate
(the loss of phase memory), while the phonon linewidth
in a Raman spectrum relates to damping. Phonon
damping is governed by interaction with the reservoir,
which is represented in this case by all the other crystal
modes, the dominant contribution being due to anhar-
monic decay into two modes, which are, as a rule,
acoustic. 

Note that a comparative study of superconducting
Y123 films and semimetals revealed a similar trend for
the Q parameter in both the temporal and frequency
domains [5, 6, 12]. There was also an attempt [5] to
assign the difference in linewidth between the time and
frequency domains to different laser wavelengths used
in experiments (Landau damping) [13]. These experi-
ments also employed different pump wavelengths, and
we therefore cannot exclude such an effect; however,
our previous studies of such crystals made by RS did
not reveal a threshold behavior in the dependence of
linewidth on the pump laser wavelength [11]. It is pos-
sible that the absence of Landau damping in Raman
spectra [14] is associated with structural disorder in the
crystals under study, because there is disorder near the
CuO2 planes in Nd123 and near the Bi planes in Bi2212
[10, 11]. It should also be pointed out that, although
information on the phonon subsystem is extracted in
both techniques from measurements performed in a
photon field, different correlation functions are mea-
sured in the time and frequency domains. The RS is

associated with 〈 ai〉-type correlators, whereas the
optical response in the time domain depends on corre-

lators of the type 〈 ai aj〉 , where  and ai are the
creation and annihilation operators, respectively. In the
time domain, one measures intensity correlations, the
dependence of which on the first-order correlations is
determined by the statistics of the scattering particles
(phonons) [15].

To conclude, we have compared the phonon thermal
and coherent dynamics in NdBa2Cu3O7 – x and

ai
+

ai
+ a j

+ ai
+

P

Bi2Sr2CaCu2O8 + x single crystals by an optical study in
the time and frequency domains. It has been shown that
thermal and coherent phonons coincide in energy, but
the dephasing in a coherent state is slower than the
energy relaxation.
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Abstract—The effect of an electric field E = 120 MV/m in the electrode–insulator–superconductor system on
I–V curves obtained at 77 K on two types of single-crystal samples cut from monolithic superconducting
YBa2Cu3Ox/Y2BaCuO5 has been studied. The Y211 nonsuperconducting phase in the ingot was in the form of
precipitates ≈1 µm in size. It has been found that an electric field applied to samples with a comparatively low
Y211 content (volume fraction 8%) does not affect the critical current Ic while reducing the resistance R at cur-
rents slightly above Ic. In samples containing more than 35% Y211 phase, electric field results in an increase of
Ic and a decrease of R for I > Ic. Data on the critical temperature Tc and the temperature dependence of Ic have
also been obtained. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The problem of a possible effect of an electric field
on the superconducting properties of materials in the
electrode–insulator–superconductor system was con-
sidered as far back as the 1960s [1–3]. The first experi-
mental study [1] on films of thickness d = 70 Å thick
made in a field E = 30 MV/m revealed a change in con-
ductivity and a shift of the critical temperature Tc by
∆Tc ≈ 10–4 K, with the effects in indium and tin being of
opposite signs. The effect of the electric field on Tc was
later observed [4] also on Ba(PbBi)O3 single-crystal
solid solutions, where the maximum value of ∆Tc

reached 0.6 K in a field E = 1 MV/m for d = 0.3–
0.6 mm.

The interest in the field effect intensified after the
discovery of high-temperature superconductors
(HTSC) [5–14], where this effect could be expected to
be considerably stronger because of the lower carrier
concentration. It was finally established that an electric
field applied to an electrode–insulator–superconduct-
ing YBa2Cu3Ox(Y123) film system can affect Tc and the
I–V characteristics both above and below Tc, with the
sign of the effect depending on that of the field. As for
the magnitude of the effect, in most studies made on
films [7–9], it was noticeable only in thin samples. For
example [9], the field effect on conductivity above Tc

practically vanished with d increasing from 1c to 8c,
where c is the lattice constant.

At the same time, many publications reported obser-
vation of the field effect in less perfect samples at still
larger d [4–6, 10–14]. For instance, a reversible change
1063-7834/00/4207- $20.00 © 21207
of the critical current Ic and of resistance R was
observed to occur for I > Ic in the Y123 HTSC ceramics
in an external electric field [10, 12–14]. It was also
found that the field effect and its magnitude depend on
the actual composition and preparation technology of
the ceramic. In particular, in Y123 ceramics, the field
effect disappeared after hydrogen treatment [15] or sil-
ver doping [13, 16].

While the physical nature of the effect in HTSC
ceramics remains unclear, the available experimental
data permit the suggestion [12–14, 16] that it is related
primarily to a possible influence of the field on weak
links at grain boundaries. In thin films containing pur-
posefully introduced weak links, the electric field effect
also increases strongly [17, 18]. It thus appeared of
interest to perform an experimental study on the possi-
ble field effect in HTSC crystals free of the above weak
links.

The present paper reports a study on the I–V charac-
teristics of YBa2Cu3Ox/Y2BaCuO5 crystals, which are
of interest for the investigation and use of the levitation
effect [19], and establishes the effect of an external
electric field on the I–V characteristics at 77 K.

1. EXPERIMENTAL TECHNIQUE

The samples chosen for the study were cut from a
large YBa2Cu3Ox(Y123)/Y2BaCuO5(Y211) single-
domain crystal melt-grown by directional crystalliza-
tion [19, 20], a technique which can be briefly
described as follows. The starting powder mixture of
Y123 (74 wt %), Y211 (24 wt %), and PtO2 (1 wt %)
000 MAIK “Nauka/Interperiodica”



 

1208

        

SMIRNOV 

 

et al

 

.

                                                    
1
2

0.6

0.4

0.2

0

85 90 95 100 105

R/R0

T, K

Fig. 1. Temperature dependences of reduced resistance R/R0
for samples of the upper (1) and lower (2) layers of the
monolithic crystal. R0 is the value of R at 300 K.
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was ball-milled and pressed into 29-mm-wide hexago-
nal pellets. Next a seed, which was a Nd1 + xBa2 – xCu3Oy

single-crystal platelet with transverse dimensions of up
to 1 mm, was deposited on the pellet at its center, after
which the latter was placed in a furnace with a temper-
ature gradient (up to 15°C/cm). After homogenization
at a temperature at which the pellet already melts while
the seed remains a crystal, the system was cooled
slowly, a regime during which a Y123 crystal grew on
the seed in the direction of the temperature gradient.
The final product was a single-domain monolithic crys-
tal of up to 15 mm in height, with the crystallographic
orientation of the seed, namely, with the ab plane par-
allel, and the c axis, perpendicular, to the upper surface
of the monolith.

As for the Y211 phase, it is present primarily in the
form of particles about 1 µm in size, with their volume
fraction being substantially larger in the lower part and
in the periphery of the monolithic crystal [21]. For
instance, the volume fraction of Y211 precipitates var-
ies along the c growth direction from 8 at the top to
35% at a distance of 5 mm away [21]. By contrast,
zones free of Y211 are observed around possible Pt-
based inclusions.

The samples intended for measurement of the super-
conducting characteristics (the I–V curves and the tem-
perature dependence of R) were approximately 2 × 4 ×
1.5 mm in size, respectively, along the a, b, and c direc-
tions, with four indium contacts deposited on their 2 ×
4 mm side surface. X-ray diffraction ω scans showed
the samples to be single crystals with block misorienta-
tion within 2–3°. Optical studies suggest that such
monolithic crystals have a mosaic structure with small-
angle misorientation not over 5°, the small-angle
boundaries being clean and free of microcracks [20].

The experiments on the effect of an external electric
field were performed in an electrode–insulator–super-
conductor system, similar to how this was done in [10],
at 77 K, i.e., for T < Tc. A high negative voltage U
(Umax = 6 kV) was applied to the metallic electrode,
which was isolated from the sample with a teflon film
of thickness t = 50 µm. Transport current I was passed
through the current contacts, and voltage V was mea-
sured across the potential contacts. The critical current
was determined by the 1 µV/mm criterion.

When studying the effect of the electric field, the lat-
ter could be turned on both before the experiment and
during the I–V measurement at a certain current I. I–V
characteristics were measured also in a magnetic field
B ≤ 200 G, which was generated by passing a current
through a coil and along the c axis.

2. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 presents temperature dependences of the
resistance R of different samples (cut from the upper,
U, and close to the lower, L, layers of the monolith).
These layers were at a distance of ≈12 mm from one
HYSICS OF THE SOLID STATE      Vol. 42      No. 7      2000
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another along the crystal height. One readily sees that
the critical temperatures Tc are practically the same for
the U and L samples and equal to ~92.5 K (R = 0), with
a fairly narrow superconducting-transition width ∆T ≤
1.5 K. Such values of Tc were also obtained by the
authors earlier with a standard SQUID magnetometer.

The critical current densities Jc for the U and L sam-
ples were also similar and equal approximately to
200 A/cm2 at 77 K. Note that Jc was magnetic-field
independent (the measurements were carried out up to
B = 200 G).

Figure 2 displays dependences of Ic on T (Fig. 2a)
and on the quantity (1– T/Tc) (curves 1 and 2 in Fig. 2b)
for samples of different types. The point is that the vari-
ation of Ic with temperature in HTSC single crystals is
described primarily by relations of two types [22, 23]:

(1)

for the low-temperature range, and

(2)

for the temperature interval close to Tc. Experimentally,
one finds usually T0 = 20–30 K, and n = 0.5–1.5.

As is seen from Fig. 2a, the Ic(T) relation for the
transport current can be fitted by relation (1) in our case
only within the region of 30–70 K, with T0 = 67 K. As
for (2), this relation fits better to the experimental data
obtained (points 1 and 2 in Fig. 2b) for n = 0.6 within
the temperature region from 30 to 91 K, with n chang-
ing to 1.1 within a very narrow interval of 91.0–91.7 K.

Some authors use a combination of expressions (1)
and (2) in the form [23]

(3)

For this reason, we also present (points 3 in Fig. 2b) the
experimental dependence of the quantity Icexp(T/T0) on
(1 – T/Tc) for L samples taken at T0 = 67 K. One readily
sees that relation (3) yields a variable value of n, which
falls off smoothly with decreasing temperature from
1.1 to zero.

Thus, the experimental data obtained by us on the
temperature dependence of Ic are fitted best of all by
relation (2) in the region studied.

The effect of electric field on I–V characteristics is
demonstrated by Fig. 3 for different samples. The mag-
nitude of Ic in U samples is seen to be practically inde-
pendent of the field, whereas for I > Ic, the field substan-
tially reduces the resistance R (curves 1 and 1'). At the
same time, under a field, the L samples exhibit not only
a decrease in R for I > Ic, but a noticeable increase of Ic

as well (curves 2 and 2').
Figure 4 shows the variation of voltage V in the I–V

characteristics of an L sample occurring when the elec-
tric field is turned on and then turned off at I = const.
We see that in both cases for I ≥ Ic, the application of a

Ic T /T0–( )exp∼

Ic 1 T /Tc–( )n∼

Ic Ico 1 T /Tc–( )n T /T0–( ).exp=

field E = 120 MV/m results in a substantial decrease of
V, up to a transition of the sample from the resistive to
superconducting state (curve 1). Note that the field
effect here is reversible. A similar result is observed in
the U sample, except a region near Ic, where no field
effect is observed.

In other words, application of an electric field E =
120 MV/m to Y123/211 single-crystal samples with a
low content of Y211 precipitates (volume fraction 8%)
does not affect the critical current Ic. At the same time,
at currents slightly above Ic the sample resistance in a
field decreases. If, however, a crystal contains a large
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Fig. 3. I–V characteristics for samples U (1) and L (2) mea-
sured at E (MV/m): (1, 2) 0 and (1', 2') 120.

Fig. 4. Variation of voltage V at the turn on ( ) and off ( ) of
a 120-MW/m electric field applied to the L sample for dif-
ferent values of I (A): (1) 6.1, (2) 6.5.
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fraction of Y211 precipitates (in our case, above 35%),
an electric field brings about an increase of Ic and a cor-
responding decrease of R for I > Ic. In our opinion, the
key factor accounting for the electric field effect in
Y123 crystals with Y211 precipitates is that the latter
do not conduct an electric current.

Thus, our results indicate that the electric-field
effect can also be observed in single crystals, provided
the latter contain a large enough amount of noncon-
ducting inclusions, the effect being more pronounced,
the higher their concentration is.
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Abstract—It is shown that orthorhombic deformations (ODs) in YBa2Cu3O7 – y agree with the hypothesis of
the proper ferroelastic transition in the praphase when the value of y decreases from 0.65 to 0.07. For 0.07 <
y < 0.45, ODs are probably of the improper ferroelastic type. © 2000 MAIK “Nauka/Interperiodica”.
1. The emergence of spontaneous orthorhombic
deformations (ODs) in solid solutions based on
YBa2Cu3O7 – y upon a change in the oxygen concentra-
tion stimulated considerable interest as it was seen as a
possible mechanism of the formation of one-dimen-
sional structures responsible for anomalously high val-
ues of the superconducting transition temperature Tc

[1]. The discovery of tetragonal high-temperature
superconducting (HTSC) materials [2] and the absence
of correlations between the electrodynamic characteris-
tics of HTSC materials [3] and spontaneous deforma-
tions [4] (for example, the magnetic field penetration
depth is independent of the oxygen concentration y
which strongly affects the value of OD) has made this
trend insignificant. However, a detailed experimental
analysis of structural changes induced by ODs in
YBa2Cu3O7 – y has revealed many problems and made
them an interesting object of investigation.

This work is devoted to an analysis of some struc-
tural characteristics of YBa2Cu3O7 – y on the basis of the
Landau phenomenological theory [5].

Several hypotheses concerning the origin of sponta-
neous ODs in YBa2Cu3O7 – y have been put forth. For
example, ODs are often associated with the ordering of
oxygen and vacancies in positions 2(f) referred to the
structure of the tetragonal phase [6] characteristic of
oxygen-deficient compositions. However, the increase
in the value of Tc as a result of ageing of the sample with
0.45 < y < 0.65 in the orthorhombic phase [7], as well
as direct measurements of the time dependence of spon-
taneous ODs and the degree of oxygen ordering [8],
indicates unambiguously that ODs in YBa2Cu3O7 – y are
determined by an independent mechanism of the loss of
stability. Consequently, ODs in YBa2Cu3O7 – y should
be characterized by a separate order parameter (OP).

2. A mechanism of the emergence of spontaneous
deformations that is consistent with the results of [7, 8]
is not quite clear. One of hypotheses suggests that these
are proper ferroelectric deformations of a tetragonal
1063-7834/00/4207- $20.00 © 21211
crystal, which are determined by a one-component OP
[7, 8] η = 2(a – b)/(a + b). According to the Landau the-
ory of second-order phase transitions [5], this hypothe-
sis implies that the square of the amount of deformation
(η2) must be a linear function of the change in the exter-
nal factors inducing the transition. In order to find the
extent to which this hypothesis corresponds to the
observed pattern, we calculate the equilibrium depen-
dences of the quantity 2(a – b)/(a + b) on the oxygen
concentration in YBa2Cu3O7 – y from the values of the
unit cell parameters given in tables and graphs in [7, 9–
15]. Veal et al. [7] studied monocrystalline, as well as
polycrystalline, samples. In [9, 10], the investigated
quasi-monocrystalline films were in chemical equilib-
rium in oxygen with a bulk powder sample. The oxygen
concentration was determined for the powder, while the
unit cell parameters were measured both for the bulk
sample and for the c- and a-oriented films of thick-
nesses 100–300 nm. In these three publications, the lat-
tice parameters were determined by the x-ray diffrac-
tion method. Jorgensen et al. [11], as well as Cava et al.
[12], used neutron diffraction from a powder sample.
Mazaki et al. [13] and Fisher et al. [14] investigated a
powder pressed into pellets and polycrystalline sam-
ples, respectively. A homogeneous polycrystal was
studied by the x-ray diffraction technique in [15]. A
comparison of the data obtained on different objects by
using different methods of determining the oxygen
concentration is required for eliminating possible sys-
tematic errors of the measuring technique. For exam-
ple, the data on oxygen concentration obtained by the
iodometric technique should always be compared with
the limiting saturation of the Y–Ba–Cu–O composi-
tions with oxygen while preserving the 123 structure
[10–12].

3. The results of data processing [10–15] presented
in Fig. 1 show that a transition from the tetragonal to
the orthorhombic phase, which occurs for y = 0.65, is
indeed close to a continuous phase transition; in other
words, it can be considered in the theory of second-
000 MAIK “Nauka/Interperiodica”
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order transitions. The solid straight line in Fig. 1 corre-
sponds to the averaged dependence η2(y) for the exper-
imental points obtained by different authors.

It can be seen from Fig. 1 that the straight line pre-
dicted by the Landau theory for the η2(y) dependence cor-
rectly describes the experimental data for 0.25 < y < 0.68.
However, for 0.07 < y < 0.25, the experimental points
do not fit to the straight line predicted by the theory of
second-order phase transitions.

Another argument in favor of analyzing alternative
hypotheses on the nature of ODs is associated with an
essentially nonlinear dependence Tc(y), including the
60 K plateau existing in the vicinity of y ≈ 0.45. It
should be noted that some ferroelectric structural rear-
rangements are observed for y ≈ 0.45 in YBa2Cu3O7 – y
[16], which probably facilitate oxygen ordering in the
positions (1/2 0 0) and (0 1/2 0).

4. An alternative hypothesis concerning the nature
of ODs is based on the concept of a perovskite-like
praphase of the 123 structure [2, 17–19]. In this hypoth-
esis, the praphase is regarded as an oxygen-deficient
perovskite-type cubic structure disordered in Y–Ba and
having the chemical formula Y1/3Ba2/3CuO3 – x [2, 17]
(the second praphase, according to [18, 19]). The real
structure of YBa2Cu3O7 – y is interpreted as a structure
determined by independent spontaneous breaking of
the praphase cubic symmetry through the Y–Ba order-
ing and spontaneous “longitudinal” deformation speci-
fied by the differences η2 = uxx – uzz and η3 = uyy – uzz.
Ordering of the type …YBaBaYBa… along the four-
fold axis of the cubic cell is responsible for the trebling
of the primitive cell volume of the praphase; at the same
time, it makes the primitive cell of the real structure tet-
ragonal, singling out the n axis. In crystallography, the

13.5

0.4

4.5

0.8
y

η 2 × 106

1
2
3
4
5
6

Fig. 1. Dependence of 2(a – b)/(a + b) on the oxygen con-
centration, calculated from the available data: (1) [10],
(2) [11], (3) [12], (4) [13], (5) [14], and (6) [15].
P

direction corresponding to the maximum period of the
primitive tetragonal cell, i.e., the direction of trebling is
referred to as the parameter c.

The spontaneously emerging deformations η2 and
η3 can induce two types of tetragonal phases irrespec-
tive of the ordering [20]: the elongated phase uxx = uyy ≤
uzz and the phase uxx = uyy > uzz, compressed along the
fourfold axis, which is assumed to be the z axis. If we
disregard the trebling of the primitive cell along n, we
obtain a || x(y), b || y(x) and z || c/3 in accordance with
conventional crystallographic rules for an elongated
tetragonal phase. In the compressed phase, a || z, b ||
x(y), c/3 || y(x).

The interrelation between the Y–Ba ordering and
spontaneous deformations η2 and η3 is such that the n
axis in oxygen-deficient compositions (with y > 0.65) is
parallel to the largest parameter of the primitive cell
and the praphase, i.e., n || c/3 || z. With such a mutual
orientation of the n and c/3 axes, for which the c/3
direction is determined only by spontaneous deforma-
tions of the praphase, the crystal has tetragonal sym-
metry. The emergence of spontaneous ODs in
YBa2Cu3O7 – y for y = 0.65 under the hypothesis con-
cerning the praphase (the T–O transition) is interpreted
in [17] as a proper ferroelastic transition determined by
η2 and η3. The components of the corresponding two-
component OP, which are adapted to the cubic symme-
try of the praphase, have the form of tetragonal (e1 =
(2uzz – uxx – uyy)/61/2) and orthorhombic (e2 = (uxx –
uyy)/21/2) deformation components.

According to the crystallographic rules, the lattice
parameters are referred to in accordance with their
magnitudes as c/3 ≥ b ≥ a. Consequently, while calcu-
lating e1 and e2 from the experimental data for the
orthorhombic phase, one must assume that

(1)

for 2b ≤ a + c/3 and

(2)

for 2b > a + c/3; here, d = (a + b + c/3)/3.
It should be noted that spontaneous deformations of

the unit cell of the praphase, averaged over the unit cell
of the real structure with an ordered Y–Ba cation distri-
bution, are small (<1%). According to the Landau the-
ory of proper ferroelastic transitions in cubic crystals,
the orthorhombic phase for small OPs [20] must exist
in a narrow range of variation of external factors. Then
the tetragonal phase must appear again. As a result of
this sequence of two phase transitions, the tetragonal
phase elongated along the preferred axis (c/3 > a = b)
must be transformed into another tetragonal phase
compressed along the preferred axis (c/3 = b > a). The
situation is complicated in the case of YBa2Cu3O7 – y in

e1 2c/3 a– b–( )/ 61/2d( ); e2 b a–( )/ 21/2d( ),=

e1 2a b– c/3–( )/ 61/2d( );=

e2 c/3 b–( )/ 21/2d( ),=
HYSICS OF THE SOLID STATE      Vol. 42      No. 7      2000
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the presence of the second OP determining the extent of
the Y–Ba ordering. It was mentioned above that the
largest unit cell parameter of the praphase for oxygen-
deficient crystals is directed along n. Consequently,
n ⊥  a in the phase compressed along a, and the crystal
must remain orthorhombic even in the phase that would
be tetragonal in the case of just one proper ferroelastic
OP.

5. For determining the origin of ODs, it is significant
that, according to the Landau theory [5, 20], orthor-
hombicity determined by e2 and the coupling of the
deformation e2 with the Y–Ba ordering must have
another dependence on external factors than the proper
ferroelastic one. In the case in question (where the sec-
ond OP describes the trebling of the crystal), the quan-
tity e2 must be a linear function of an external parame-
ter determining the transition to the compressed tetrag-
onal phase, i.e., oxygen concentration. Note that this is
a necessary consequence of symmetry, and hence this
mechanism of the emergence of improper ODs always
takes place.

Figures 2a and 2b show the results obtained in [10–
15] and processed by using formulas (1) and (2). The
straight line in Fig. 2 is plotted according to the most
reliable (in our opinion [16]) results [9, 10]. This line
was obtained by the least squares method, taking into
account all the experimental points with the same
weight. It follows from these results that the depen-
dence of ODs on y for 0.07 < y < 0.45 is indeed linear,
which corresponds to improper ferroelastic deforma-
tions. The OD variation with y for 0.45 < y < 0.65(0.68)
is in complete accord with the Landau theory of spon-
taneous proper ferroelastic deformations of the

praphase, i.e.,  ~ (y – y0).

Naturally, we can try to approximate by straight
lines the left-hand side of Fig. 2b for such a small num-
ber of experimental points obtained by different
authors. However, the standard deviation in such an
approximation exceeds the standard deviation from the
straight line on the left-hand side in Fig. 2a and on the
right-hand side in Fig. 2b by a factor of five and is larger
than the experimental error indicated in [9–15].

6. It should be noted, however, that in this work we
cannot draw any final conclusions about the nature of
interactions that induce orthorhombicity for 0.07 < y <
0.45. As a matter of fact, improper deformations with
the same dependence on y can be induced, for example,
by oxygen ordering [3, 21]. It should be emphasized
that the orthorhombicity induced by oxygen ordering,
as well as that induced by the Y–Ba ordering, is an
effect associated with symmetry, i.e., existing in all
cases. Moreover, according to [22], the temperature of
oxygen ordering can be elevated in this case due to cou-
pling with spontaneous deformations of the praphase.
In order to determine the actual origin of improper
deformations, i.e., the quantitative contributions from
various interactions, one must identify the lines of all

e2
2
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structural transformations observed on the T–y dia-
grams of YBa2Cu3O7 – y. Such a task, however, is
beyond the scope of the present brief communication.
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Abstract—A study of the Hall and Seebeck coefficients and of resistivity has been carried out on an
Sn0.62Pb0.33Ge0.05Te alloy doped by 5 and 10 at. % In. A superconducting transition with the maximum critical
temperature TC ~ 4 K has been discovered in samples with hole concentrations p ≥ 1 × 1021 cm–3. The depen-
dence of TC on hole concentration has been established to be of a threshold nature. The onset of superconduc-
tivity is accompanied practically simultaneously by a growth of the resistivity and a sharp drop of the Seebeck
coefficient. These features in the experimental data indicate the existence of a band of In resonance states within
the allowed valence-band spectrum and strong resonance hole scattering to impurity states. The threshold char-
acter of the TC(p) dependence is connected with the holes filling the resonance states. A positive correlation
between the resonance scattering intensity and the critical temperature is observed. © 2000 MAIK
“Nauka/Interperiodica”.
This work is a continuation of the studies
on    the    electrophysical properties of In-doped
Sn0.62Pb0.33Ge0.05Te alloys started in [1]. The studies
were carried out on both bulk and film samples. The
bulk samples were prepared by the metalloceramic
method and subjected to homogenization anneal at
650°C for 120 h. They were subsequently used as a
batch to prepare thin layers on mica by pulsed laser
spraying [1]. The measurements of the electrical con-
ductivity and of the Hall and Seebeck coefficients made
on bulk and film samples showed their transport coeffi-
cients to be similar for comparable carrier concentra-
tions. A study was made of the resistivity ρ in the low-
temperature range, 0.4–4.2 K, both in a magnetic field
H ≤ 13 kOe and without it. The hole concentration p
was derived from room-temperature Hall measure-
ments by using the expression

(1)

where R is the Hall coefficient. The samples and layers
investigated had hole conduction with a carrier concen-
tration varying from 3 × 1019 to 6 × 1021 cm–3.

The measurements of the ρ(T, H) dependences
showed that only samples with hole concentrations p ≥
1 × 1021 cm–3show a transition to the superconducting
state (see Fig. 1). The critical temperature TC of the
superconducting transition was determined at the 0.5ρN
level (where ρN is the residual resistivity before the
superconducting jump). The dependence of TC on hole
concentration displayed in Fig. 2 follows a distinct
threshold pattern.

p eR( ) 1–
,=
1063-7834/00/4207- $20.00 © 21215
Note that SnTe, GeTe, and the related solid solutions
without an In impurity also undergo a superconducting
transition. However, it occurs at critical temperatures
and critical magnetic fields that are smaller by an order
of magnitude, with the TC(p) relation passing through a
broad smooth maximum [2].

3.00
T, K
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0

25

50

75

100

ρ, arb. units
1 23

Fig. 1. Temperature dependence of the resistivity ρ of
Sn0.62Pb0.33Ge0.05Te : In samples with hole concentrations

p (1021 cm–3): (1) 1.5, (2) 2.25, and (3) 3.1, respectively.
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The onset of superconductivity in
Sn0.62Pb0.33Ge0.05Te : In alloys at p ≥ 1.5 × 1021 cm–3

cannot be associated with the Fermi level εF falling into
an additional valence-band extremum. The ∆ extre-
mum, closest in hole concentration in the valence band,
could act as such an extremum. However, by [1], its fill-
ing by holes starts at p ≥ 4.5 × 1020 cm–3 (Fig. 2),
whereas the hole concentration at which superconduc-
tivity sets in the alloys studied is p ≈ 1 × 1021 cm–3. A
threshold character of the TC(p) dependence, and just as
high superconducting parameters TC and HC2 were
observed earlier in SnTe : In [3] and PbTe : Tl [4], and
assigned to the Fermi level falling into the band of the
impurity resonance states of In and Tl, respectively [5].
Therefore, it appears only natural, as this was done in
[3, 5], to assign the onset of superconductivity in the
Sn0.62Pb0.33Ge0.05Te : In alloy to impurity resonance
states.

0
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TC, K
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1021 1022

0.4 K

LΣ

Σ

Fig. 2. Dependence of (a) critical temperature TC and
(b) density-of-states function g in Sn0.62Pb0.33Ge0.05Te : In
alloys on hole concentration p. The samples identified by
points at T < 0.4 K did not become superconducting.
P

The data on the resistivity and the Seebeck coeffi-
cient presented in Fig. 3 may serve as additional argu-
ments for the existence in the Sn0.62Pb0.33Ge0.05Te : In
alloy of a band of indium resonance states with an edge
at p ≈ 1 × 1021 cm–3. As seen from Fig. 3, for p ≥ 1 ×
1021 cm–3, the onset of superconductivity in the alloys
is accompanied practically simultaneously by a consid-
erable decrease in the Seebeck coefficient and an
increase in the resistivity at similar hole concentrations.
These data agree with the concept of the existence of a
band of impurity resonance states and of resonant hole
scattering into these states [5]. Indeed, one of the char-
acteristic signatures of impurity resonance states is effi-
cient resonant-carrier scattering into an impurity band,
which produces a characteristic minimum in the energy
dependence of the relaxation time τ(ε) (Fig. 3). The
minimum in τ(ε) results in the appearance of a maxi-
mum in the ρ(εF) dependence, because ρ ~ 1/τ(εF), and
of a deep minimum in S(εF); in the case of a quadratic

0
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S, µV/K
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p, cm–3

0
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ρ, Ω cm

(b)

4 × 1021

0.004
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0.002

Fig. 3. Dependences of (a) the Seebeck coefficient and
(b)  resistivity in Sn0.62Pb0.33Ge0.05Te : In alloys on hole
concentration of temperatures T (1) 300 and (2) 120 K.
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dispersion law, the Seebeck coefficient in a degenerate
sample is given by the expression

(2)

Therefore, as the Fermi level falls into the resonance-
state band, one should observe a rise in the resistivity
and a drop in the Seebeck coefficient. These model con-
cepts agree with the experimental data obtained for the
Sn0.62Pb0.33Ge0.05Te : In alloy (Fig. 3). It should also be
pointed out that one observes a clearly pronounced pos-
itive correlation between resonance scattering and the
superconducting transition with a critical temperature
record high for semiconductors, TC ~ 3–4 K.

Thus, our study indicates the existence of a band of
In resonance states within the allowed hole spectrum in
the Sn0.62Pb0.33Ge0.05Te : In solid solution. It has been
established that the drop in the Fermi level into the In
impurity band is accompanied by the observation of

S
k0

e
----π2

3
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k0T
εF

-------- d τln
d εln
-----------

ε εF=

3
2
---+ 
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resonant hole scattering and the onset of superconduc-
tivity with critical temperatures TC ~ 3–4 K.
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Abstract—The effect of dilatational stresses of grain boundaries on the atomic structure rearrangement near
these boundaries in high-temperature superconductors is discussed. The concentration profiles characterizing
the spatially inhomogeneous distribution of oxygen near small-angle tilt boundaries in Bi–Sr–Ca–Cu–O super-
conductors are calculated. © 2000 MAIK “Nauka/Interperiodica”.
Polycrystalline superconductors with a high super-
conducting transition temperature Tc are characterized
by values of the critical transport current density (Jc)
that are much smaller (by several orders of magnitude)
than its values in monocrystalline samples of the same
chemical composition (see, for example, [1–5]). Such
low values of Jc in polycrystalline HTSC are due to the
presence of grain boundaries which “suppress” super-
conductivity (see reviews [3, 4]). Despite a consider-
able body of experimental data having been accumu-
lated on the effect of grain boundaries on the critical
density of transport current in HTSC, the physical
mechanisms behind this effect have yet to be deter-
mined unambiguously [3, 4].

We believe that spatially inhomogeneous dilata-
tional stress fields of grain boundaries cause local vari-
ations of the stoichiometry in grain boundaries and
their surroundings, which may play a significant role in
the deterioration of superconducting properties of poly-
crystalline HTSC. This assumption corresponds to the
modern concepts on the influence of defects on the
inhomogeneities of chemical composition in poly-
atomic solids (see, for example, [6]) and conforms (at
least qualitatively) to the following experimental facts
pertaining to HTSC: (1) The local departure from the
stoichiometric composition in grain boundaries and
their surroundings [3, 7, 8]. (2) The existence of regions
with specific properties of the electron subsystem in the
vicinity of grain boundaries [3, 9]. (3) The change in
superconducting properties along grain boundaries [3,
4]. This paper aims mainly to provide a theoretical
quantitative description of structural (stoichiometric)
inhomogeneities induced by dilatational stress fields of
small-angle tilt boundaries in the superconducting
materials Bi–Sr–Ca–Cu–O.
1063-7834/00/4207- $20.00 © 21218
1. EFFECT OF DILATATIONAL STRESSES 
ON SPATIAL DISTRIBUTION OF ATOMS

IN POLYATOMIC SOLIDS

High-temperature superconductors are polyatomic
crystalline solids. In a perfect (defect-free) polyatomic
solid free from stress fields, the atoms of various chem-
ical elements are arranged in order according to their
chemical nature and concentration. The presence of
defects that are responsible for the emergence of stress
fields may cause local violations of the ideal distribu-
tion of atoms in polyatomic solids, since different
atoms respond in different ways to applied stress fields.
The dilatational stresses exert the strongest influence
on the spatial distribution of atoms characterized by
different atomic volumes in crystals subjected to elastic
stresses [6]. Large (small) atoms tend to move towards
regions with tensile (compressive) stresses.

Grain boundaries are planar defects capable of pro-
ducing spatially nonuniform stresses (including dilata-
tional ones) and, consequently, can cause a redistribu-
tion of atoms in the adjoining regions in the polyatomic
material. However, the superconducting properties of
HTSC materials are sensitive to their nonstoichiometry.
Among other things, the value of Jc depends heavily on
the concentration of oxygen in the Y–Ba–Cu–O super-
conductor [3, 10]. Hence, local departures from the sto-
ichiometry induced by dilatational stresses of grain
boundaries can significantly affect the value of Jc char-
acterizing the superconducting current in polycrystal-
line HTSC.

Let us consider the structural inhomogeneities
induced by dilatational stresses of small-angle tilt
boundaries in the vicinity of these boundaries. Small-
angle tilt boundaries are walls of edge dislocations peri-
odically distributed over the crystal lattice [11]. The
misorientation θ of the tilt boundary is connected with
000 MAIK “Nauka/Interperiodica”
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the geometrical parameters of edge dislocations
through the Frank relation [11]

(1)

where 

 

b

 

 is the magnitude of the Burgers vector of a dis-
location and 

 

d

 

 is the separation between adjacent dislo-
cations in the wall. In a reference frame with the 

 

z

 

 axis
parallel to dislocation lines and the 

 

x

 

 axis parallel to the
Burgers vectors, the fields of dilatational stresses 

 

σ

 

xx

 

,

 

σ

 

yy

 

, and 

 

σ

 

zz

 

 generated by the edge dislocation wall can
be defined as follows [11]:

(2)

(3)

(4)

(5)

Here, 

 

G

 

 is the shear modulus and 

 

ν

 

 is the Poisson ratio.
The elastic interaction between dislocations in the

wall and large/small atoms (whose atomic volume is
larger/smaller than the average size of an atom) causes
a redistribution of atoms in a polyatomic medium. This
interaction between atoms of the 

 

i

 

th type and the stress
field is characterized by the energy [6]

(6)

Here, 
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 is the dif-
ference between the volume 

 

V

 

i

 

 of an atom of the 

 

i

 

th
type and the average atomic volume 

 

〈

 

V

 

〉

 

 in a poly-
atomic solid.

 

1

 

 In the model situation, when the poly-
atomic medium is an ideal solid solution, the elastic
interaction (6) leads to the following equilibrium distri-
bution of the atoms of the 

 

i

 

th type [6]:

(7)

where 

 

k

 

 is the Boltzmann constant, 

 

T

 

 is the absolute

temperature, and  is the concentration of atoms of
the 

 

i

 

th type in the absence of stress fields. The distribu-
tion (7) corresponds to the minimum elastic energy of
an ideal solid solution.

 

1

 

In the general case, the unit cells in polyatomic solids (including
high-temperature superconductors) are characterized by a vari-
able stoichiometry. Hence, it is expedient to use in formula (7) the
atomic volume 

 

〈

 

V

 

〉

 

 averaged over the entire crystal (and not just
over a unit cell).
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2. SPATIAL DISTRIBUTION OF OXYGEN ATOMS 
NEAR SMALL-ANGLE TILT BOUNDARIES 

IN HIGH-TEMPERATURE SUPERCONDUCTORS

In order to describe the real situation with poly-
atomic superconductors, we must impose certain phys-
ical constraints on using formula (7), which are based
on the experimental data. For example, the results of
experiments show [7, 8] that local variations of the
chemical composition in the vicinity of the grain
boundaries in the Y–Ba–Cu–O superconductors are cor-
related. To be more precise, the atomic structure rear-
rangement near grain boundaries occurs primarily on
account of a redistribution of small Cu and O atoms. As
a result of the redistribution, the characteristic numbers
of Cu and O atoms in a unit cell of the Y–Ba–Cu–O
superconductor change by not more than unity. In other
words, the local rearrangement of atoms occurring
in the vicinity of grain boundaries is predominantly of
the type

Y1Ba2Cu3O7  Y1Ba2Cu2O8, (8a)

Y1Ba2Cu3O7  Y1Ba2Cu4O6, Y1Ba2Cu3O6. (8b)

Large Y and Ba atoms are also redistributed in the
vicinity of the grain boundaries. However, this redistri-
bution is rarer in occurrence than that of small atoms
and leads only to insignificant variations of the local Y
and Ba concentrations [7, 8].

Such peculiarities in the local transformations of the
atomic structure of Y–Ba–Cu–O compounds can be
explained naturally as follows. The displacements of
small atoms (Cu, O) are characterized by low activation
energies (since moving small atoms cause an only
insignificant displacement of the surrounding atomic
structure) and, hence, occur more frequently than for
large atoms (Y, Ba), which have high activation ener-
gies. Since HTSC are usually characterized by high
concentrations of vacancies [3, 10], the redistributions
of Cu and O atoms take place effectively through the
vacancy mechanism.

The Cu and O atoms are also small atoms in the Bi–
Sr–Ca–Cu–O superconductors, while the Bi, Sr and Ca
atoms are comparatively large. Hence, the redistribu-
tion of small atoms (Cu and O) occurs much more fre-
quently than for large atoms. Moreover, significant
variations (by more than unity) in the characteristic
numbers of Cu and O atoms in unit cells of oxide
ceramics are unlikely on account of factors of a chemi-
cal nature. Hence, in our subsequent estimates, we shall
confine the analysis to such rearrangements for which
the characteristic numbers of Cu and O atoms change
by not more than unity in the unit cells of the Bi–Sr–
Ca–Cu–O superconductors. In other words, we shall
consider only the following rearrangements in the unit
cells of these superconducting materials:

CunOm  Cun + 1Om – 1, CunOm – 1, (9a)

CunOm  Cun – 1Om + 1, (9b)
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where n and m characterize an HTSC unit cell in the
absence of stress fields.2 

Taking into consideration the experimental data pre-
sented in [7, 8], we used formula (7) to calculate the
distribution CO of oxygen atoms in the

2 It should be noted that copper atoms exhibit variable valency in
high-temperature superconductors with different stoichiometry
[12]. Hence, the emergence of spatial inhomogeneities in the sto-
ichiometry does not lead to spatial inhomogeneities in the distri-
bution of the ionic charge in the crystal lattice, and is not accom-
panied by any significant variation in its electrostatic energy.
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Fig. 1. Distribution of oxygen in units of CO/  near a

periodic small-angle tilt boundary with different misorien-
tation angles θ in the Bi2Sr2Ca2Cu3O10 superconductor.
θ (deg) : (a) 3, (b) 6, and (c) 9.
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Bi2Sr2Ca2Cu3O10 superconductors in the vicinity of
small-angle tilt boundaries (see Fig. 1). The following
characteristic values of parameters were used: b =

0.39 nm, G ≈ 34.2 GPa [13], ν ≈ 0.2 [13],  = 10/19,
T = 77 K, ∆V = VO – (VCu + VO)/2, VO = 0.0017 nm3, and
VCu = 0.0089 nm3 (where the atomic volumes VCu and
VO of copper and oxygen, respectively, are calculated as
volumes of spheres with radii specified in [14]). The
cores of edge dislocations (described here as cylinders
of radius r0 ≈ 1.5b and characterized by a certain posi-
tive dilatation according to [15]) are treated as regions
with a reduced concentration of oxygen (see Fig. 1).

The following peculiarities are observed in the dis-
tribution of atoms: Each period of the small-angle tilt
boundary contains two regions with nonideal stoichi-
ometry. The first of these regions consists of the cores
of tilt lattice deformations (see Fig. 1). In the second
region, which lies between the dislocation cores, the
dilatational (tensile or compressive) stresses σxx , σyy,
and σzz (defined by formulas (2)–(4)) are caused by
departures from ideal stoichiometry.

Thus, the dilatational stresses at grain boundaries
significantly affect the local stoichiometry in the vicin-
ity of small-angle tilt boundaries in HTSC. The lattice
edge dislocations constituting small-angle tilt bound-
aries play a decisive role as sources in dilatational
stresses. The existence of local stoichiometric varia-
tions induced by dilatational stresses in the vicinity of
grain boundaries may considerably affect the experi-
mentally observed suppression of superconducting
properties of polycrystalline HTSC.

It should be noted that the effect of local stoichio-
metric variations is just a part of the overall effect of
grain boundaries on high-temperature superconductiv-
ity. Other factors responsible for a variation in the crit-
ical current in polycrystalline HTSC include the struc-
ture of cores of grain boundaries and adjoining regions
[16–18], the d symmetry of the order parameter [19,
20], and the texture [21]. Further experimental and the-
oretical studies are required for a quantitative analysis
of the role of all factors in HTSC containing small-
angle and large-angle tilt and twist grain boundaries.
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Abstract—The photoconductivity relaxation and the stationary photoconductivity in the n-Cd0.8Hg0.2Te com-
pensated polycrystalline layers at T = 300 K have been investigated as a function of the light intensity and the
strength of applied electric field E. It is demonstrated that, at low excitation intensities, the saturation of station-
ary photoconductivity and a decrease in the relaxation time with an increase in E are caused by the minority
carrier extraction. The effect of minority carrier extraction is analyzed with due regard for the internal electric
field of potential barriers in intergranular layers. It is assumed that the features of nonequilibrium-carrier recom-
bination, which proceeds through several channels and depends on the excitation intensity and extraction elec-
tric field strength, can stem from the polycrystalline structure of the Cd0.8Hg0.2Te layers. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The lifetime of nonequilibrium charge carriers in
crystals and layers of the CdxHg1 – xTe semiconductor
solid solutions depends on the structural perfection of
samples and the quality of finishing their surface. The
experimental conditions also can affect the character of
light-induced processes. In particular, the extraction of
minority charge carriers from the bulk of samples can
be observed in strong electric fields. This leads to the
change in stationary and kinetic characteristics of the
photoconductivity with an increase in the strength of
applied electric field [1–4]. In general, the kinetics of
photoconductivity depends on the light intensity,
because, at high excitation intensities, an increase in the
concentration of nonequilibrium charge carriers brings
about the modification of energy bands in a semicon-
ductor and a change in the mechanism of nonequilib-
rium-carrier recombination [4, 5]. In most cases, the
photoconductivity relaxation curves, from which the
lifetime of nonequilibrium charge carriers can be
directly determined, have a complex behavior and con-
sist of several exponents corresponding to different
recombination channels [6, 7]. The temperature depen-
dences of the characteristic time for different compo-
nents of the photoconductivity relaxation indicate that
the fast component is caused by channels competing
with the bulk recombination, rather than by the electron
recombination [7]. These channels are associated with
structural macrodefects such as the sample surface,
grain and block boundaries, composition inhomogene-
ities, clusters, etc. In polycrystalline semiconductors,
the grain boundaries can fulfill the function of efficient
sinks for residual impurities and intrinsic point defects
1063-7834/00/4207- $20.00 © 21222
[8]. The intergranular layers produce potential barriers
for nonequilibrium charge carriers due to an increased
electric activity or can serve as regions of their
enhanced recombination and, thus, can be responsible
for electric and photoelectric properties of polycrystal-
line semiconductors [5, 9].

The aim of the present work was to investigate the
relaxation characteristics of photoconductivity at dif-
ferent excitation intensities in the Cd0.8Hg0.2Te poly-
crystalline layers, which were grown on GaAs sub-
strates and exhibited high photosensitivity at room tem-
perature [5], and also to elucidate how the strength of
applied electric field affects the light-induced and
recombination processes in the prepared layers upon
excitation by nanosecond laser radiation pulses.

2. EXPERIMENTAL TECHNIQUE

The Cd0.8Hg0.2Te polycrystalline layers ~20 µm
thick were grown by the “evaporation–condensation–
diffusion” technique on GaAs(100) semi-insulating
substrates using a CdTe buffer layer under isothermal
conditions. According to the electron probe microanal-
ysis of the surface, the sample structure was identical to
the polycrystalline structure of the substrate with a
grain size of ~30 µm. The growth of the CdxHg1 – xTe
layers is accompanied by the formation of oxides due
to doping intergranular layers by background impuri-
ties and substrate components. This leads to the forma-
tion of the grain boundary layer depleted in majority
charge carriers and causes a high resistivity of inter-
crystalline regions. Indium contacts were applied to the
as-etched surface of the Cd0.8Hg0.2Te layer. The 1 × 3 ×
000 MAIK “Nauka/Interperiodica”
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3-mm samples were high-resistance (ρ ≈ 2 × 103 Ω cm)
and strongly compensated. They possessed the n-type
conductivity with the effective electron concentration
neff = 3.2 × 1013 cm–3 and the effective electron mobility
µeff = 1.0 × 102 cm2/(V s) at T = 300 K. The studied lay-
ers had a high photosensitivity in the spectral range
0.4–1.6 µm at T = 77 and 300 K [5].

The characteristic times for different photoconduc-
tivity relaxation components that corresponded to dif-
ferent channels of nonequilibrium-carrier recombina-
tion were calculated from the relaxation curves of pho-
tocurrent (nonstationary photoconductivity) excited by
a neodymium laser radiation (hν = 1.7 eV; pulse length,
20 ns) with a linear variation in the intensity I. The
intensity of photocarrier generation was changed using
calibrated neutral gray filters. The stationary photocon-
ductivity was measured according to the standard pro-
cedure at a constant modulation frequency of 400 Hz
upon excitation by the monochromatic radiation with
the photon energy hν = 1.17 eV by using an MDR-3
diffraction spectrometer and an incandescent lamp. The
light intensity was of an order of 1012 photon/(cm2 s).
The dependences of the photoelectric characteristics on
the excitation intensity I and the strength of applied
electric field E were examined at T = 300 K in the
ranges I = 1 × 1021–1.5 × 1025 photon/(cm2 s) and E =
6–250 V/cm.

3. RESULTS AND DISCUSSION

3.1. Features of photoconductivity relaxation at
different excitation intensities. The photoconductiv-
ity relaxation curves for the CdxHg1 – xTe polycrystal-
line layers depend on the excitation level and extraction
electric field strength. In our earlier work [5], it was
found that, upon exposure of the studied samples to
ruby or neodymium laser radiation at T = 300 K, the
current–illuminance characteristics consist of two por-
tions with slopes of ~0.5 and ~1 at radiation intensities
below and above I0 ~ 4 × 1023 photon/(cm2 s), respec-
tively. Figure 1a shows the photocurrent relaxation
curves at a low excitation intensity (the slope of the cur-
rent–illuminance characteristic is 0.5) for two electric
field strengths E = 70 (curve 1) and 250 V/cm (curve 2)
and at a high excitation intensity (the slope of the cur-
rent–illuminance characteristic is equal to 1) for E =
70 V/cm (curve 3). It should be noted that, at high exci-
tation intensities I > I0, the shape of the photoresponse
did not depend on the extraction electric field strength
over the entire range covered.

The kinetics of photoconductivity in the polycrys-
talline layers under consideration shows a complex
behavior, because the nonequilibrium-carrier recombi-
nation proceeds through several channels. Figure 1b
depicts the same relaxation curves (Fig. 1a) on a semi-
logarithmic scale. This enables us to reveal several
exponents: three exponential portions of the photocur-
rent decay curve are observed at low excitation intensi-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
ties (Fig. 1b, curves 1, 2), and two portions, at high
excitation intensities (Fig 1b, curve 3). In the latter
case, the slow component of the photoconductivity
relaxation is absent.

The presence of several exponential portions in the
relaxation curves of photocurrent pulses can be
explained by the nonequilibrium-carrier recombination
in the bulk (inside the grains) and at different inhomo-
geneities, namely, at the surface inhomogeneities and
internal macrodefects (grain boundaries, dislocations,
etc.), which represent natural sinks of nonequilibrium
charge carriers with a recombination rate exceeding the
rate of bulk recombination [10]. As is known [5–9], the
intergranular layer is the region in which the internal
electric fields create potential barriers for charge carri-
ers. Upon excitation of photocurrent in the CdxHg1 – xTe
layers by pulsed laser radiation with intensity I ≤ I0, the
internal field of barriers induces the efficient spatial
separation of photogenerated electron–hole pairs, pre-
vents their recombination and electron transport toward
the grain boundaries (sinks), and, thus, favors the
development of recombination processes within the
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and (b) their representation on a semilogarithmic scale at (1,
2) low [I = 1 × 1023 photon/(cm2 s)] and (3) high [I = 1 ×
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mium laser pulses with the photon energy hν = 1.17 eV.
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grain whose structure is more perfect than that of the
intergranular layer [5]. This increases the contribution
of the bulk recombination channel to photocurrent
relaxation and gives rise to the slow component (curves
1, 2 in Fig. 1b).

Therefore, in the CdxHg1 – xTe polycrystalline layers
at low excitation intensities I ≤ I0, the decay of photo-
current signal JPC with time t is provided by three chan-
nels [6, 7], which are associated with the nonequilib-
rium-carrier recombination at the surface, internal mac-
rodefects (primarily, at the grain boundaries), and in the
bulk (inside the grain)

(1)

These channels correspond to the exponential portions
in the photoconductivity relaxation curves (Fig. 1b)
with the characteristic times τ1 = 0.14 µs (fast compo-
nent), τ2 = 0.41 µs (intermediate component), and τ3 =
1.60 µs (slow component) at the applied electric field
E = 70 V/cm (curve 1) and the characteristic times τ1 =
0.07 µs, τ2 = 0.15 µs, and τ3 = 0.44 µs at E = 250 V/cm
(curve 2).

At high excitation intensities I ≥ I0, when the con-
centration of nonequilibrium charge carriers becomes
higher than the equilibrium concentration of electrons,
the electric field of photoexcited carriers shields the
potential barriers of intergranular layers, which
impeded the escape of nonequilibrium charge carriers
into the sinks [5], and the recombination processes pre-
dominantly proceed at the grain boundaries. The rate of
nonequilibrium-carrier recombination at the macrode-
fects is higher than that in the bulk (inside the grain),
and, hence, the contribution of the latter process to pho-
toconductivity relaxation in this case becomes rela-
tively small, which manifests itself in the disappear-
ance of the slow component in the photocurrent relax-

JPC t( ) A t/τ1–( )exp=

+ B t/τ2–( ) C t/τ3–( ).exp+exp

0.5
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Fig. 2. Dependence of the nonequilibrium-carrier lifetime
on the intensity of excitation by neodymium laser pulses
with the photon energy hν = 1.17 eV.
P

ation curve (Fig. 1b, curve 3). Consequently, the
contributions of recombination channels are redistrib-
uted in such a way that the surface recombination and
the recombination in intergranular layers become pre-
dominant in the photoconductivity relaxation. These
two channels correspond to the two exponential por-
tions in curve 3 (Fig. 1b) with the characteristic times τ'
= 0.02 and 0.05 µs and give rise to the photocurrent sig-
nal at high excitation intensities I ≥ I0

(2)

Earlier [5], we demonstrated that, at the laser exci-
tation intensity I = I0, which provides the generation of
nonequilibrium charge carriers in the concentration
sufficient for the shielding of potential barriers at the
grain boundaries, the slope of the current–illuminance
curve abruptly changes from 0.5 (characteristic of the
quadratic nonequilibrium-carrier recombination in the
grain) to 1.0. This indicates a linear generation of carri-
ers and their linear recombination, which is typical of
homogeneous (without internal barriers) highly doped,
compensated samples of the corresponding composi-
tion [11]. Additional evidence for the suppression of
potential barriers, whose electric field efficiently sepa-
rates the electron–hole pairs and ensures the long pho-
tocarrier lifetime τ at I ≤ I0, is a sharp decrease in τ at
the radiation intensity I = I0 (Fig. 2). This dependence
of the nonequilibrium-carrier lifetime, which was esti-
mated from the slow component of the photocurrent
relaxation, was measured at the electric field strength
E = 70 V/cm.

This result essentially differs from the data obtained
by Ivanov-Omskiœ et al. [4] in similar experiments with
the n-Cd0.3Hg0.7Te homogeneous crystals at T = 77 K,
in which the photoconductivity relaxation time did not
depend on the light intensity. The threshold change in
τ, i.e., its sharp decrease at I = I0 (Fig. 2), coincides in
excitation intensity with an abrupt change in the slope
of the current–illuminance characteristic [5]. This con-
firms a decisive role of the potential barriers at the grain
boundaries in recombination processes in the
Cd0.8Hg0.2Te polycrystalline layers at T = 300 K.

3.2. Effect of electric field strength on the photo-
conductivity relaxation. The electric field decreases
potential barriers in the crystal matrix, changes the rate
of nonequilibrium-carrier transfer to recombination
macrodefects and the bending of energy bands, and, at
high strengths, brings about the extraction of minority
carriers from the bulk of samples [1–4]. These effects
most strongly manifest themselves for inhomogeneous
samples [7]. Apart from the general regularities
observed for the CdxHg1 – xTe structurally perfect crys-
tals [1–4], the investigation of the stationary photocon-
ductivity and the photoconductivity kinetics in the
Cd0.8Hg0.2Te polycrystalline layers as a function of the
extraction electric field strength at different excitation
intensities demonstrates that the materials under con-
sideration are characterized by a number of specific

JPC' t( ) A' t/τ1'–( )exp B' t/τ2'–( ).exp+=
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features. The dependence of the photocurrent ampli-
tude JPC on the pulsed radiation intensity of ruby or
neodymium laser for the studied layers exhibits a typi-
cal linear behavior. The slope of this dependence
decreases with an increase in the current passing
through the sample. As was shown earlier for the
n-Cd0.3Hg0.7Te crystals at 77 K [4], such behavior is
typical of highly sensitive materials and is not observed
for crystals with a low photosensitivity. In our case, this
suggests the evolution of recombination processes in
the bulk of structurally perfect grains (polycrystallites)
and an insignificant contribution of the recombination
channels associated with the intergranular layers and
the sample surface at low excitation intensities.

The stationary photocurrent ∆i increases propor-
tionally with the strength of applied electric field (Ohm
law) and becomes saturated at E > 70 V/cm (Fig. 3,
curve 4). This field dependence of the photocurrent is
characteristic of crystals with a high photosensitivity;
however, the saturation of the photocurrent ∆i in the
polycrystalline layers under study is observed at higher
electric field strengths compared to the CdxHg1 – xTe
crystals [3, 4]. The saturation of the stationary photo-
current with an increase in the electric field strength is
explained by the extraction of minority carriers from
the bulk, which should be accompanied by a decrease
in the photoconductivity relaxation time [1–4]. This
decrease in τ was experimentally observed and brought
about the above decrease in the amplitude of nonsta-
tionary photocurrent JPC with an increase in the current
passing through the sample at a constant intensity of
pulsed laser radiation.

Figure 3 displays the dependences of the photocur-
rent relaxation time on the electric field strength for the
fast (curves 1, 1'), intermediate (curves 2, 2'), and slow
(curve 3) components at low (curves 1–3) and high
(curves 1', 2') excitation intensities corresponding to
those presented in Fig. 1. At low excitation intensities,
the field dependences for all three photocurrent relax-
ation components have a similar behavior: the relax-
ation times increase at weak fields (up to E = 70 V/cm),
pass through a maximum, and decrease with an
increase in the electric field strength E. At high electric
field strengths (E > 200 V/cm), the τ(E) curves slightly
descend and tend to saturation (curves 1–3), which can
be associated with variations in the rate of nonequilib-
rium-carrier transfer to the recombination macrode-
fects and a substantial change in the bending of energy
bands [2]. As mentioned above, the relaxation times of
photocurrent components at high excitation intensities
(curves 1', 2') remain constant over the entire range of
electric field strengths under study and are equal to the
characteristic times corresponding to the minimum
field strength applied in the experiment (E = 6 V/cm).
The distinctive feature of the τ(E) dependences at low
excitation intensities is the presence of ascending por-
tions in the range of weak electric fields (curves 1–3).
This is likely caused by the internal electric field of
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
potential barriers at the grain boundaries, which, in
turn, is affected by the applied external field [5].

A decrease in the photocurrent relaxation time
(curves 1–3) and the saturation of the stationary photo-
current (curve 4) with an increase in the extraction elec-
tric field strength (E > 70 V/cm) can be explained
within the theory of extraction of minority carriers (in
our case, holes) from the bulk of samples. According to
the extraction theory [1], the photoconductivity relax-
ation time measured is the effective time τeff, which is
related to the nonequilibrium-carrier lifetime τ and the
flight time l/µaE by the expression

(3)

where µa is the ambipolar mobility, and l is the charac-
teristic distance. The effective time coincides with the
nonequilibrium-carrier lifetime when the latter time is
considerably less than the flight time; i.e., τ ! l/µaE. As
was shown in [5], the nonequilibrium-carrier recombi-
nation in the Cd0.8Hg0.2Te polycrystalline layers pre-
dominantly occurs through the Auger mechanism char-
acterized by the same lifetimes of electrons and holes,
which is typical of strongly compensated semiconduc-
tors and responsible for the bipolar photoconductivity.
This is the reason why µa is used in relationship (3).
Since the photoconductivity relaxation in the studied

1
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τ
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Fig. 3. Field dependences of the characteristic relaxation
time for (1, 1') fast, (2, 2') intermediate, and (3) slow com-
ponents of the photoconductivity at (1–3) low and (1', 2')
high excitation intensities (see Fig. 1). (4) The field depen-
dence of the relative stationary photocurrent upon excitation
by a continuous monochromatic radiation with the photon
energy hν = 1.17 eV.
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layers at low excitation intensities (Fig. 1b, curves 1, 2)
is governed by three recombination channels with the
corresponding characteristic times, relationship (3) can
be written for each component, namely, fast (µ1), inter-
mediate (µ2), and slow (µ3) components. Note that the
time τeff is the effective time of photocurrent relaxation
resulting from the recombination of nonequilibrium
carriers at the surface for the fast component, at internal
macrodefects (grain boundaries) for the intermediate
component, and in the bulk (inside the grain) for the
slow component. The characteristic distance in rela-
tionship (3) written for each of the components τ1, τ2,
and τ3 has the following meaning: (1) for the surface
recombination, it is the distance from the point of the
electron–hole pair generation to the surface, which can
be taken as the absorption depth of exciting radiation
(~1 µm), because this value is larger than the thermal
diffusion length for Cd0.8Hg0.2Te [11]; (2) the mean
grain size (~30 µm) for the recombination at the grain
boundaries; and (3) the distance between current con-
tacts in the case of bulk recombination.

Let us analyze the last case, which is of the greatest
practical importance. Since the photoconductivity is
determined by the slow component of the photocurrent
relaxation, τ in relationship (3) represents the nonequi-
librium-carrier lifetime. Earlier [5], it was shown that
the nonequilibrium-carrier lifetime in the Cd0.8Hg0.2Te
polycrystalline layers with potential barriers at the
grain boundaries is given by

(4)

where k is Boltzmann’s constant, Eτ is the potential bar-
rier height, and τr is the nonequilibrium-carrier recom-
bination time in the absence of spatial separation of
electrons and holes by the internal electric field of bar-
riers. Then, taking into account formula (4), relation-
ship (3) for the effective relaxation time takes the form

(5)

The external electric field enhances the separation
of electron–hole pairs and, thus, prevents their recom-
bination [9]. This can be treated as an increase in the
potential barrier height Eτ in expression (5), which, as
is evident from the first term, leads to an increase in the
measured value of τeff. On the other hand, an increase
in the strength of external extraction electric field E
favors the transfer of nonequilibrium carriers to the
macrodefects (including the grain boundaries) and
brings about the extraction of minority carriers from the
sample, which results in a decrease in the nonequilib-
rium-carrier lifetime. A decrease in τeff with an increase
in E follows from the second term in relationship (5).
The competitive contribution of these processes (an
increase in the potential barrier height and the extrac-
tion effect) to the overall process of photoconductivity

τ τ r

Eτ

kT
------ 

  ,exp=

1
τeff
------- 1

τ r Eτ /kT( )exp
---------------------------------

µaE
l

---------.+=
P

relaxation with an increase in the strength of applied
electric field is responsible for the shape of the τeff(E)
dependence (Fig. 3, curve 3). Similar considerations
can be applied to curves 1 and 2. It is quite probable
that, at weak electric fields E < 70 V /cm, an unusual
increase in τeff is associated with a predominant
increase in the potential barrier Eτ. As the electric field
strength E increases above 70 V/cm, the predominant
contribution to τeff [see formula (5)] is made by the sec-
ond term accounting for the extraction effect. As a
result, the time τeff decreases proportionally with 1/E
(curves 1–3), which is characteristic of the highly sen-
sitive CdxHg1 – xTe crystals [3, 4]. In order to determine
the explicit form of the dependence of the potential bar-
rier height Eτ on the electric field strength E, it is nec-
essary to perform further investigations. However, it is
obvious that, as the applied electric field E increases, Eτ
also increases and reaches the saturation at E = 70
V/cm. This manifests itself in maxima in the τeff(E)
curves for different components of the photocurrent
relaxation (curves 1–3). A further increase in the
strength of applied electric field leads to a decrease in
the flight time, which, according to relationship (5),
results in a decrease in the effective nonequilibrium-
carrier lifetime. This fact explains the saturation of the
stationary photocurrent with an increase in E (curve 4),
which is easy to see by writing the photocurrent ∆i in
the form [7]

(6)

where e is the electron charge, β is the quantum yield, I
is the intensity of incident radiation, α is the absorption
coefficient, and b is the ratio between the mobilities of
electrons and holes. In this case, expression (6) for the
stationary photocurrent can include τeff only for the
long-term component, because the time τ for the inter-
mediate and fast components of the photocurrent relax-
ation is considerably shorter. The analytical depen-
dences under consideration are in qualitative and quan-
titative agreement with the experimental data.
According to relationship (6), the saturation of photo-
current ∆i is observed at τeff ~ 1/E. As follows from
expression (5), this situation takes place when the flight
time of nonequilibrium carriers becomes shorter than
their lifetime τ. The estimates show that this situation
occurs at the electric field strength E = 70 V/cm, at
which the stationary photocurrent is saturated (curve 4),
and the field dependence of the characteristic time of
photoconductivity relaxation begins to decay (curve 3);
the flight time is equal to ~0.2 µs, whereas the lifetime
τ is 0.37 µs. Here, the lifetime was taken to be τeff at the
minimum extraction electric field E = 6 V / cm, at
which the carrier extraction is not observed.

The characteristic relaxation times of photoconduc-
tivity components  and  at high excitation intensi-
ties do not depend on the strength of applied electric
field (Fig. 3, curves 1', 2'). In this case, the nonequilib-

∆i eβIαµa b 1+( )Eτeff,=

τ1' τ2'
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rium-carrier recombination at the grain boundaries pre-
dominantly contributes to the photoconductivity relax-
ation, because the potential barriers at the grain bound-
aries appear to be shielded by the electric field induced
by a large number of photogenerated carriers [5]. As
already mentioned, the internal field of barriers associ-
ated with the intergranular layers efficiently separates
the electron-hole pairs and impedes the escape of carri-
ers toward the grain boundaries and their recombina-
tion. This is responsible for the slow component of the
photoconductivity relaxation (Fig. 1b, curves 1, 2) and,
hence, for the high sensitivity at low excitation intensi-
ties in contrast to the case of high excitation intensities
(Fig. 1b, curve 3).

At high excitation intensities, the nonequilibrium-
carrier lifetime determined by the second component of
the photocurrent relaxation (Fig. 3, curve 2') is equal to
0.05 µs, which is less than the flight time at any electric
field strength studied. According to relationship (5), the
extraction of nonequilibrium charge carriers is not
attained. This is observed in the experiment—the time

 is independent of E (curve 2'), because this quantity
is determined by the first term in expression (5) with
due regard for the suppression of the potential barrier
Eτ by the electric field created by a large number of
photogenerated carriers. Taking into account the
shielding of barriers at the grain boundaries, the dis-
tance l in calculations was taken as the distance
between contacts, as for homogeneous samples [3, 4].
The independence of the photoconductivity relaxation
time from the strength of applied electric field at high
excitation intensities for the Cd0.8Hg0.2Te polycrystal-
line layers is typical of the CdxHg1 – xTe crystals with a
low photosensitivity [4].

τeff'
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Abstract—The electrical resistance ρ and thermopower S of the (PbS)0.59TiS2 single-crystal compound with
mismatched layers and the TiS2 crystals have been investigated at room temperature in high-pressure chambers
with synthetic diamond dies. The decrease in ρ and |S| observed in (PbS)0.59TiS2 under the pressure P ≈ 2 GPa
is associated with the structural transformation of PbS from the cubic phase into the orthorhombic phase. The
jumps of ρ and |S| are presumably caused by the increase in the electron concentration in the TiS2 layers. For
P ≥ 4 GPa, at which the gap is absent in the electronic spectrum of TiS2, a decrease in ρ(P) is observed for the
(PbS)0.59TiS2 samples. © 2000 MAIK “Nauka/Interperiodica”.
Layered transition-metal dichalcogenides and their
intercalates are promising materials for electronics.
This explains considerable interest in studies of their
properties [1–4]. The (PbS)0.59TiS2 crystals, which
belong to these materials, consist of PbS and (TiS2–
TiS2) alternating layers (Fig. 1) and can be considered
as an intercalation of PbS into TiS2 [1, 2]. The PbS lat-
tice is distorted in the plane of layers as compared to the
bulk crystal, which has the structure of a rock salt (a =
5.936 Å), and TiS2 practically retains the structure of
the bulk material (Fig. 1) [2]. The parameters of PbS
and TiS2 lattices coincide along the b axis (b =
5.783 Å), whereas in the perpendicular direction a,
they are incommensurate: a = 5.761 Å for PbS and a =
3.390 Å for TiS2 [1, 2]. Each layer of TiS2 has a “sand-
wich” structure, in which Ti atoms are located between
two interlayers of sulfur atoms (Fig. 1); as in the TiS2
crystal, the layers are linked together by a weak van der
Waals interaction [1–3].

A strong anisotropy of the electrical and mechanical
properties is observed in the (PbS)0.59TiS2 crystals in
the (ab) plane and in the perpendicular direction c [1,
2], as well as in the commensurate (b) and incommen-
surate (a) directions [4]. Since these crystals consist of
mismatched layers, one can expect unusual behavior of
the properties under the hydrostatic compression. The
aim of this work was to study the influence of pressure
P on the electrical resistance ρ and thermopower S of
the (PbS)0.59TiS2 crystals. For comparison, similar stud-
ies were carried out on TiS2 crystals, which exhibit sim-
ilar temperature dependences of ρ and S along the plane
(ab) of the layers at atmospheric pressure [1, 2].

The measurements were performed in high-pressure
chambers with dies made of a BK6 hard alloy (up to
8 GPa) [5] and synthetic diamond (up to 30 GPa), in
1063-7834/00/4207- $20.00 © 21228
several cycles of the increase and decrease in P [6–8].
The values of P in a pressure-transferring medium
(pyrophyllite, catlinite) were estimated from the cali-
brated dependences, which were drawn according to
the phase transitions in the reference species (Bi, GaP,
etc.) [6–8]. The (PbS)0.59TiS2 single crystals (~15 ×
1.0 × 0.01 mm in size) were grown by the method of
gas-transport reaction with a slight excess of sulfur as a
carrier [4]. The lattice parameters of samples coincided
with those given in [2]. The initial batch contained Pb
(99.9%), S (99.99%), and TiS2 powder in the ratio
0.59 : 0.59 : 1 [4]. The electron concentration deter-
mined from the Hall effect in the temperature range T =
77–350 K was n = 3 × 1021 cm–3.

The samples in the form of plates ~0.5 × 0.2 ×
0.01 mm in size were placed in an orifice with a diam-
eter of 0.3 mm in a container made of catlinite (dia-
mond chamber) or pyrophyllite (hard-alloy chamber
[5]) at an angle to the plane of dies, which served as
heaters and coolers in the thermopower measurements
[6, 7]. The clamping electrical probes were the Pt–Ag
ribbons 5 µm thick. The geometry of the experiments
actually corresponded to the measurements of ρ and S
along the (ab) plane. The relative errors in measure-
ments of ρ and S (without regard for the change in the
sample shape under compression) were ~5 and ~20%,
respectively [4, 5].

The pressure dependences of ρ and S for each of the
studied materials, which were measured in diamond
and hard-alloy chambers, qualitatively coincide
(Figs. 2a, 2b; the data on ρ(P) are presented only for the
hard-alloy chamber). The drop of ρ and |S| is observed
in the (PbS)0.59TiS2 sample at P ≈ 2 GPa, and one more
decay, at P ≥ 4 GPa. The dependences ρ(P) and S(P) for
TiS2 samples have no anomalies (Fig. 2). In [9], TiS2
000 MAIK “Nauka/Interperiodica”
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samples with the low electron concentration n <
1021 cm–3 near P = 4–5 GPa showed the same decay of
ρ as for the (PbS)0.59TiS2 crystal.

The sharp changes in ρ and S for (PbS)0.59TiS2 crys-
tals can be induced by the phase transformations in PbS
and TiS2 layers. In bulk TiS2 at P up to 9 GPa, the struc-
tural transformations were not established [9–11]; PbS
under a pressure of 2.5 GPa transforms from the phase
with a NaCl structure into the orthorhombic phase with
the parameters a = 11.28 Å, b = 3.98 Å, and c = 4.21 Å
[12–14], and at 21.5 GPa, PbS transforms into the
phase with a bcc CsCl structure [15]. Thus, the jumps
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Fig. 1. Projection of the (PbS)0.59TiS2 crystal structure
along the [100] axis [2]. The unit cell is shown by the dashed
line. Solid lines represent the bonds in PbS and TiS2 layers,
and dotted lines are the bonds between these layers. Rhombs
designate the positions of octahedral holes. Dark symbols
correspond to the positions of atoms in the figure plane, and
open symbols, to the positions of atoms in the lower-lying
plane.
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of ρ and S in (PbS)0.59TiS2 at ~2 GPa can be connected
with the phase transition in the PbS layers. Simulta-
neous decays of ρ and S in the (PbS)0.59TiS2 crystals
upon structural transformations in the PbS layers show
that the conduction electron concentration increases.
This can be due to an increase in the content of Ti atoms
(which supply electrons in the conduction band [1, 2,
9]) in the van der Waals gap between TiS2 layers.
Indeed, at a high sulfur pressure, there is a tendency
toward the transition TiS2  TiS3 [16]. The electron
concentration can also change by “readjusting” the TiS2

lattice to PbS due to matching of the layers [1, 2, 15].
Note that the identation of similar (PbS)0.59TiS2 sam-
ples led to a strong residual deformation along the
incommensurable direction [4], which could be a con-
sequence of structural transitions in the PbS layers
upon penetration of a diamond indenter [17, 18].

The drop of ρ in (PbS)0.59TiS2 at P > 4 GPa (Fig. 2)
can be related to the semiconductor–semimetal transi-
tion in TiS2 layers, which was predicted by the calcula-
tions of electronic structure [10] and experimentally
observed in dependences of ρ(P) and S(P) [9]. Accord-
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Fig. 2. Dependences of (a) the resistance and (a, b) the ther-
mopower on pressure for (PbS)0.59TiS2 and TiS2 crystals
along the plane of layers at T = 293 K. Measurements are
made in (a) a hard-alloy chamber and (b) a diamond chamber.
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1230 SHCHENNIKOV et al.
ing to the x-ray data [10], the pressure results in the
compression of interlayers between TiS2 layers and in
the thickening of the layers themselves (Fig. 1). This
corresponds to an increase in the charge density
between the layers and the strengthening of the bonds
between sulfur atoms [10]. According to the calcula-
tions made in [10] for P = 6–8 GPa, the conduction
band of TiS2 overlaps with the valence band. The elec-
tronic structures of TiS2 and (PbS)0.59TiS2 in the model
of weakly interacting layers likely are similar [19, 20].
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Abstract—The spatial structure of a vacancy and the properties of its electronic energy levels in a semiconduc-
tor with a lattice possessing point symmetry Td are considered for an arbitrary relationship between the Jahn–
Teller stabilization energy (associated with the F2 vibrational mode) and the t2–a1 splitting (∆) caused by the
cubic crystal field. The position of the minimum of the adiabatic potential and the distortion of the electronic
density are calculated for the vacancy ground state for different relative values of ∆ and coupling constants of
the vacancy to the F2 vibrational mode. It is shown that, if the ground state of a carrier bound to a vacancy is a
t2 state, the trigonal symmetry of the environment of the vacancy persists for any values of ∆, but the amount
of displacements of atoms near the vacancy and the localization of the wave function of the bound carrier on
the broken bond earmarked by the Jahn–Teller effect can depend heavily on ∆ and are maximal at ∆  0.
This is also the case when the ground state of the vacancy is the a1 state, but the magnitude of ∆ does not exceed
a certain value, which is determined by the coupling constants and the elastic constant. The relation between ∆
and the coupling constants is also shown to affect the properties of trigonal vacancy–shallow-donor complexes.
For these complexes, calculations are performed of the dependence of the dipole direction determining the opti-
cal properties of the vacancy defect on the distortion of vacancy orbitals caused by the donor entering into the
complex. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is known that, for some defects in cubic semicon-
ductors, the initial electronic state with its energy lying
in the forbidden gap is the triply degenerate t2 state. An
example of such a defect is a vacancy in silicon [1, 2]
or in III–V and II–VI semiconductors [3, 4]. The local
electronic states of the vacancy are formed by hybrid-
ization between the four broken bonds from its four
nearest neighbor atoms. As a result, two states arise in
the cubic crystal field, one of which is a singlet of a1
symmetry, while the other is a triplet of t2 symmetry.
The energy levels of these states are split by the crystal
field, the splitting being of the order of 1 eV, according
to theoretical estimations [1–6]. The t2 state may also
be split by virtue of the Jahn–Teller effect [7, 8], the
amount of this splitting may be tens or hundreds of mil-
lielectron-volts and be comparable to splitting due to
the crystal field. However, when analyzing the proper-
ties of such Jahn–Teller defects, the crystal field effect
is usually assumed to be much stronger than the Jahn–
Teller effect and the mixing of the a1 and t2 states is
ignored.

The objective of this paper is to calculate the charge
density distribution and the spatial structure of an iso-
lated vacancy in a cubic crystal for arbitrary relative
values of the Jahn–Teller stabilization energy EJT and
the crystal field splitting ∆. Besides, it is of interest to
1063-7834/00/4207- $20.00 © 21231
determine the direction of the optical dipole of the
vacancy defect, in which one of the vacancy’s four
nearest neighbor atoms is replaced by a foreign atom,
for example, by a donor, as in vacancy–shallow-donor
complexes.

1. VACANCY

The simplest model that can be used to describe
vacancies in Si and III–V semiconductors is a quasi-
molecule that consists of a vacancy and its four nearest
neighbor atoms situated at lattice sites at the apexes of
a tetrahedron. This molecule has six vibrational degrees
of freedom.

The Jahn–Teller effect can be due to the coupling of
electrons to nontotally symmetrical doubly degenerate
E2 vibrational modes or triply degenerate F2 vibrational
modes. Since the experiments show that, in a number of
cases (e.g., Zn vacancy in ZnSe [9] and Ga vacancy in
GaAs [10]), the coupling to F2 modes plays a leading
part, we consider only this case in what follows.

The simplest is the case where in vacancy orbitals
there is only one charge carrier, electron or hole. The

former corresponds to  in Si or  in GaAs, while
the latter means that seven electrons are localized in the
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vacancy orbitals and corresponds to  in Si or  in
GaAs.

The wave functions of the electron states that arise
as the result of hybridization of four broken bonds of
the vacancy in the crystal field of the Td symmetry have
the form

(1)

for the a1 state and

(2)

for the t2 state. Here, CS and Ct are the normalization
constants and ϕi are the functions describing the broken
bonds from each of the vacancy’s four neighbor atoms.

The coupling of charge carriers to the F2 vibrational
mode leads to the splitting of the t2 state and mixing of
the t2 and a1 states. Phenomenologically, the Hamilto-
nian describing this effect can be written in the form

(3)

where ∆ is the splitting of the t2 and a1 energy levels in
the crystal field; Q4, Q5, and Q6 are the generalized
coordinates of the F2 modes; and b and d are the cou-
pling constants of a localized carrier to these modes.
The ground state is the t2 state at ∆ > 0 and the a1 state
at ∆ < 0.

The adiabatic potential (AP) W of the system under
study is the sum of the eigenvalue ε(Q4, Q5, Q6) of the
Hamiltonian (3) and the energy of elastic vibrations U0,
which can be written in the harmonic approximation as

(4)

where k is the elastic constant for the F2 mode.

In the adiabatic approximation, the equilibrium con-
figuration of the quasi-molecule is determined by the
position of the minimum of the adiabatic potential
W(Q4, Q5, Q6).

Calculations by the method of Opik and Pryce [11]
show that, in the space of the generalized coordinates
Q4, Q5, and Q6, the absolute minimum of the AP lies on
the axes of the 〈111〉  type, depending on the relative
values of b, d, and ∆; that is, at the AP minimum, we
have

(5)
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Since the generalized coordinates Q4, Q5, Q6 corre-
spond to the spatial coordinates X, Y, Z, this means that,
in the general case, the symmetry of the quasi-molecule
is lowered to the trigonal one, as in the case of ∆ 

+∞. Since the directions [111] and [ ] are nonequiv-
alent in the initial tetrahedral quasi-molecule, the AP
minima correspond to the molecule distortions only
along four directions of the [111] type. These equiva-

lent directions are [111], [ 1], [ 1 ], and [1 ] or

the other four equivalent directions [ ], [11 ],

[1 1], and [ 11]. In order to analyze the position of
the AP minimum as a function of the parameters b, d,
and ∆ we find the variation of the AP along the

[ ]direction in the space of the generalized coordi-
nates. In this case, W depends only on the one variable
Q = Q4 = Q5 = Q6, and we obtain four branches of the
AP described by the expressions

(6)

(7)

The Wi(Q) dependence is exemplified in Fig. 1 (in

terms of the dimensionless quantities  and X = Q)

for positive and negative values of ∆. Analysis of (6)
and (7) reveals that, for any values of the parameters,
the AP reaches its absolute minimum in the W3 branch.
In the W1, 2 and W4 branches shown in Fig. 1, the min-
ima correspond to saddle points in the space of Q4, Q5,
and Q6 at ∆ > 0. When ∆ < 0, the point Q0 at which the
AP reaches its minimum in the W3 branch shifts
towards the point Q = 0 (Q4 = Q5 = Q6 = 0) with an
increasing ∆ magnitude and comes to this point in a
jump when the following inequality becomes true:1

. (8)

This is accompanied by the appearance of a minimum
at Q ≠ 0 in the W4 branch of the AP; that minimum cor-
responds to an equilibrium distortion of the t2 state due
to the Jahn–Teller effect. Since the mixing of the t2 state
with the a1 state corresponding to the W3 branch and
having a lower energy is already weak in this case, the
equilibrium distortion of the quasi-molecule is zero in
the a1 state. The absolute minimum of W3 is situated on

1 This jump occurs because the second minimum in W3 (Fig. 1)
becomes the absolute minimum when condition (8) is fulfilled.
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Fig. 1. Adiabatic potentials [(1) W1 and W2, (2) W4, and (3) W3] of the vacancy with one bound electron (or hole) as a function of

Q for d/b = 2 and different values of the parameter S = ∆k/d2: (a) 1.5, (b) 0.5, (c) –0.5, and (d) –1.5.
the negative or positive Q semiaxis, depending on the
sign of d; Q0 > 0 if d > 0 and Q0 < 0 if d < 0.

The ∆ dependence of the point Q0 of the AP abso-
lute minimum is presented in Fig. 2, where a = d/b and
the quantities X0 = (k/d)Q0 and S = (∆k/d2) are dimen-
sionless. At d < 0, the Q0(∆) dependence is the mirror
reflection from the ordinate axis of the Q0(∆) curve for
d > 0 shown in Fig. 2. From this figure, it is seen that
the departure of the quasi-molecule from its initial tet-
rahedral form caused by the Jahn–Teller effect
decreases with the increasing magnitude of the crystal
field splitting ∆ (all other parameters being fixed).
When ∆  +∞ and, hence, the ground state of the
quasi-molecule is the t2 state not mixed with the a1

state, we have Q0  2d/3k. This agrees with the
known result [12].

A distortion of the spatial structure of the quasi-
molecule produces a change in the wave functions of
the ground state compared to the wave functions of the
Td symmetry [expressions (1) and (2)]. In the adiabatic
approximation, at the four points of the AP absolute
minimum, the wave functions are determined by the
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
Hamiltonian (3) and have the form

(9)

Φ1 C0 κϕ1 ϕ2– ϕ3– ϕ4–{ } ,=

Φ2 C0 κϕ2 ϕ1– ϕ3– ϕ4–{ } ,=

Φ3 C0 κϕ3 ϕ1– ϕ2– ϕ4–{ } ,=

Φ4 C0 κϕ4 ϕ1– ϕ2– ϕ3–{ } ,=
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Fig. 2. Position of the minimum of the adiabatic potential
for the ground state of the vacancy as a function of S for dif-
ferent values of the ratio between the coupling constants
a = d/b: (1) 1, (2) 2, and (3) 10.
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Fig. 3. Coefficient κ as a function of S for different values of
a: (1) 1, (2) 2, and (3) 10.

Fig. 4. Coefficients Y1 (1, 3, 5) and Y2 (2, 4, 6) as a function
of S for different values of a: (1, 2) 1, (3, 4) 2, and (5, 6) 10.

Fig. 5. Coefficients J1 (1, 4, 7), J2 (2, 5, 8), and J3 (3, 6, 9)
as a function of S for different values of a: (1, 2, 3) 1, (4, 5,
6) 2, and (7, 8, 9) 10.
P

where C0 is a normalization constant and κ is a coeffi-
cient characterizing the localization of the carrier wave
function in the broken bond earmarked by the Jahn–
Teller effect and directed along the trigonal axis of the
distorted quasi-molecule.

The dependence of κ on S is presented in Fig. 3. It is
seen that κ is maximum at ∆ = 0, that is, when the
quasi-molecule of the Td symmetry is maximally dis-
torted. In the limit ∆  +∞, we have κ = 3 and the
functions Φ1, Φ2, Φ3, and Φ4 coincide with the wave
functions of the four equivalent configurations in the
case where EJT ! ∆ [13]. At ∆ < 0, as the magnitude of
∆ is increased, the coefficient κ decreases and, when
inequality (8) becomes true, it drops discontinuously to
the value κ = –1 (much as the coordinate Q0 does).

2. VACANCY–DONOR COMPLEX

Vacancy–shallow-donor complexes were observed
in Si [8, 14], gallium arsenide [15, 16], and a number of
II–VI semiconductors [9, 17]. In many of these com-
plexes, the donor atom substitutes for one of the four
nearest neighbor atoms of the vacancy [8, 14–17]. An
example of this type of defect is the VGaTeAs complex in
n-GaAs : Te [16]. In this paper, we restrict ourselves to
a calculation of the influence of the donor in such a
complex on the direction of the dipole characterizing
the optical properties of the defect in the ground state;
the defect is assumed to have one bound carrier (an
electron or a hole) in the vacancy orbitals.

The angle defining the dipole direction is deter-
mined by the off-diagonal components of the Hamilto-

nian  describing the effect of the donor. For this rea-

son, we assume the diagonal components of  to be
zero. Hence, this Hamiltonian can be written in the
form

(10)

where µ and ν are phenomenological parameters.
The total Hamiltonian of the system H '' can be writ-

ten as

(11)

where the parameter ∆ involved in H ' [see (3)] may
include the effect of the donor on the diagonal compo-
nents.

We assume that the effect of the donor is less strong
than the Jahn–Teller effect and the level splitting in the
cubic crystal field and calculate the deflection angle θ
of the optical dipole from its initial direction [111] in
the isolated vacancy by the Opik–Pryce method to the

H̃

H̃

H̃

0 ν ν ν
ν 0 µ µ
ν µ 0 µ
ν µ µ 0 

 
 
 
 
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second order of perturbation theory in the small param-
eters µ and ν. The result is

(12)

where µ' = kµ/d2 and ν' = kν/d2. In (12), it has been
taken into account that the angle between the [111] and
[110] directions is equal to 35.2°.

The dependence of Y1, Y2, J1, J2, and J3 on the rela-
tive values of the crystal-field splitting and Jahn–Teller
effect are presented in Figs. 4 and 5 for different values
of a.

At ∆  +∞, we have (Figs. 4, 5) Y1  3/2,
J1  –21/4, Y2  0, J2  0, and J3  0. When
∆is negative and increases in magnitude to the value at
which inequality (8) becomes true and the coordinate
Q0 of the AP minimum point vanishes in a jump, all the
coefficients Y1, Y2, J1, J2, and J3 become equal to zero.
However, formula (12) for the deflection angle of the
optical dipole is invalid in this case, because the Jahn–
Teller stabilization energy becomes zero and, hence,
perturbation theory is inapplicable. From Figs. 4 and 5,
it is seen that, at S ≥ 5, the coefficients in the terms
involving the parameter ν and describing the effect of
the donor on the a1 state are small when compared to
the coefficients in the terms involving µ. Therefore, in
this case, when calculating the direction of the optical
dipole, the influence of the donor on the a1 state can be
neglected in comparison to its influence on the t2 state.
The value of S affects the coefficients Y1 and J1.

At a < 1, the coefficients Y2, J2, and J3 are also close
to zero in a wide range of positive values of S. However,
the S range in which Y1 is comparable to Y2 and J1 is
comparable to J2 and J3 becomes wider. For example,
at a = 0.3, this range extends from S ≈ 0 to 40.

35.2° θ–( )tan

=  
1

2
------- 1 Y1µ'– Y2ν'– J1µ'2– J2ν'2– J3µ'ν'–{ } ,
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Abstract—The results of studying the kinetic coefficients of β-FeSi2 in the temperature range 4.2–300 K are
considered. The resistivity decreases upon heating in the entire temperature range under investigation. The tem-
perature dependences of the resistivity and thermal conductivity exhibit a break at ~20 K. In the range of 4.2–
20 K, the resistivity is a linear function of temperature. The thermo-emf increases rapidly upon cooling and
attains values exceeding 15 mV/K. The temperature dependence of the thermo-emf exhibits a break at ~40 K.
The observed set of temperature dependences of the kinetic coefficients apparently cannot be explained by a
superposition of the known effects only. A new effect probably exists that is associated with a strong electron–
phonon interaction in FeSi2 and which requires a further investigation. © 2000 MAIK “Nauka/Interperiodica”.
It is well known that the materials based on the low-
temperature (semiconducting) phase of iron disilicide
β-FeSi2 are among the cheapest thermoelectric materi-
als; this circumstance has essentially dictated the need
to study their kinetic properties. Such investigations
revealed the peculiar nature of the conductivity mecha-
nism in β-FeSi2. One such peculiarity is the exponential
increase in thermo-emf with temperature in the interval
100–300 K [1]. Some samples exhibit a slight increase
in thermo-emf upon cooling to 77 K. This, in turn, stim-
ulated an investigation of the kinetic coefficients of
β-FeSi2 at low temperatures, right to the liquid helium
temperature. The preliminary results were reported by
us in [2].

The samples for investigations were prepared in
three stages. At the first stage, the components were
melted directly in aluminum oxide crucibles in argon
atmosphere. At the second stage, cylindrical ingots of
the metallic high-temperature α phase of iron disilicide
were prepared by casting in a vacuum [3]. The third
stage involved the transformation of the material into
the semiconducting β phase as a result of prolonged
(~100 h) annealing at a temperature ~700 K.

The resistivity of the samples was measured by the
standard two-probe technique with a margin of error of
approximately 5%. The thermo-emf and the thermal
conductivity were measured in the steady-state heat
flux with a margin of error of 5–10%. The temperature
gradient varied in conformity with the average temper-
ature of the sample and did not exceed 10% of its value.

The temperature dependences of the resistivity,
thermo-emf, and thermal conductivity of an iron disili-
cide sample are shown in Fig. 1 (see curve 2 in Fig. 2).
X-ray diffraction studies revealed that this sample is a
1063-7834/00/4207- $20.00 © 21236
well-formed single-phase β-FeSi2 polycrystal. Two
striking features are noteworthy in Fig. 1a: a sharp
increase in the thermo-emf upon a decrease in temper-
ature below 40 K, and a break on the temperature
dependence of the resistivity at ~20 K. The thermo-emf
thereby attains very high values typical of charge car-
rier drag by acoustic phonons. However, the consider-
able increase in the resistivity (by more than four orders
of magnitude in the region of thermo-emf growth) dur-
ing cooling from room temperature to the liquid helium
temperature cannot be attributed to the phonon drag
effect. It should be stated that the singularity in the tem-
perature dependence of the thermal conductivity corre-
sponds to the break on the temperature dependence of
the resistivity at ~20 K.

The temperature dependence of the thermo-emf for
the same sample is shown in Fig. 1b on the double log-
arithmic scale. In the temperature range of 40–100 K,
this dependence has a well-defined linear segment
which can be described by the relation

(1)

where α is the thermo-emf and T is the temperature.
The low-temperature segment of the dependence is also
linear but has a larger slope relative to the abscissa axis.
The temperature dependence of the thermo-emf on this
segment can be described by the formula

(2)

This dependence is quite close to the characteristic
dependence for the drag of charge carriers by acoustic
phonons: α ∝  T–7/2 [4]. These relations apparently do
not describe the freezing out of charge carriers, which
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Fig. 1. (a) Thermo-emf α, resistivity ρ, and thermal conductivity κ of polycrystalline β-FeSi2 in the temperature range of 4.2–300 K.
(b) Temperature dependence of the thermo-emf α of polycrystalline β-FeSi2 in the temperature range of 15–100 K. Segment 1 is
described by formula (1), and segment 2, by formula (2).

Fig. 2. Resistivity of some iron disilicide samples (labelled as in the table): curves 1–4 correspond to experimental data, while the
solid curves are the calculated dependences. The inset shows the ratio between the parameters appearing in (4) as a function of Tc.
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Values of parameters appearing in formulas (3) and (4) and of temperature Tc

No. a, Ω · cm K–1 ρ0, Ω · cm log(ρ1, Ω · cm · K–b) b Tc , K –a/ρ0, K–1

1 –128000 2300000 8.44 –3.05 17.7 0.0556

2 –138000 2980000 8.40 –3.13 21.5 0.0462

3 –696 10500 5.83 –2.66 14.3 0.0659

4 –3540 53900 6.62 –2.68 14.2 0.0658
corresponds to an exponential increase in the thermo-
emf with decreasing temperature.

Figure 2 shows the temperature dependences of
resistivity for a number of iron disilicide samples with
different concentrations of an uncontrollable impurity.
The temperature dependence of the resistivity ρ for all
the samples in the region of 20–200 K is correctly
described by the expression

(3)

At temperatures from 15 to 20 K, the temperature
dependences of resistivity for all the samples display a
break corresponding to the transition from the expo-
nential to a linear dependence ρ(T) (Figs. 2 and 3). The
temperature dependence of resistivity for all the sam-
ples at low temperatures is successfully described by a
linear function of the form (see Fig. 3)

(4)

The solid curves in Fig. 2a correspond to depen-
dences (3) and (4). The temperature Tc corresponding to

ρ ρ1T
b
.=

ρ ρ0 aT .+=

T, K
20

ρ,
 1

06  Ω
 · 

cm

15105

0.5

0

1.0

25
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2.0

2.5
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1
2

Fig. 3. Temperature dependence of the resistivity of samples
1 and 2 on a linear scale.
P

the point of intersection of curves of the type (3) and
(4), as well as the values of the parameters ρ0, ρ1, a, and
b ensuring the best agreement between the theory and
the experiment, is given in the table.

Figure 2 shows that the absolute values of resistivity
for different samples differ significantly. However, the
ratio of the parameter a to the parameter ρ0 depends on
the absolute value of resistivity only slightly (see table)
and exhibits a linear dependence on Tc (see Fig. 2b).
This dependence can be described by the relation

(5)

i.e., we can assume with a high probability that all the
investigated samples display the same effect, which has
slightly different manifestations for reasons unknown
as of yet.

We are not in a position to compare our results on
the kinetic coefficients of β-FeSi2 at low temperatures
with the available data, since we are not aware of the
results of investigations of the thermo-emf and thermal
conductivity of β-FeSi2 at temperatures below the liq-
uid nitrogen temperature. Lisunov et al. [5] reported
the data on the resistivity of β-FeSi2 single crystals at
low temperatures down to 1.4 K, but they studied alu-
minum-doped samples whose resistivity at 20 K is
approximately equal to one fourth of that for the sam-
ple with the lowest resistivity among all the samples
investigated by us. The results of investigation of a
β-FeSi2 single crystal with a higher resistivity are
reported in [6], but its resistivity was unfortunately
measured only in the temperature range from 30 to
300 K. In the interval 30–60 K, the temperature depen-
dence of the resistivity for this sample almost coin-
cides with the temperature dependences of the resistiv-
ities for samples 1 and 2.

At the present time, we cannot unambiguously
interpret the effects observed in β-FeSi2 at low temper-
atures. The observed set of temperature dependences of
the kinetic coefficients apparently cannot be described
by a superposition of known effects only. In all proba-
bility, there exists a new effect associated with a strong
electron–phonon interaction in iron disilicide, which
requires further investigations.

a/ρ0 0.105– 2.737 10
3–
Tc;×+=
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Abstract—The paper reports the observation and studies of the birefringence in porous silicon samples
obtained onto different crystallographic planes of silicon single crystals. © 2000 MAIK “Nauka/Interperiod-
ica”.
Although the optical properties of porous silicon
were studied in several works [1–5], we have no infor-
mation regarding the observation of refractive index
anisotropy. This can be explained by the fact that, on
the one hand, silicon belongs to the cubic system and
does not exhibit optical anisotropy, and, on the other
hand, the coral-like structure of porous Si would seem
by itself to possess the averaged isotropic properties.1

Nonetheless, we revealed that, in the samples grown
onto certain crystallographic planes, a well pronounced
refractive index anisotropy is observed in the visible
range of the spectrum. The results of measurements of
this anisotropy and their interpretation will be given
below.

The samples of porous silicon in the form of thin
plates were obtained by the electrochemical etching
(current density about 60 mA/cm2) of p-Si single crystals
with a resistivity of 0.02 Ω cm in a solution of concen-
trated hydrofluoric acid with ethanol in the ratio 1 : 1 at
room temperature. The time of etching varied from 0.5
to 2 min. The thickness d of the samples for these etch-
ing periods of time varied from 1.5 to 7.5 µm. For more
prolonged etching, the plates became defective and
unsuitable for optical studies. The separation of sam-
ples from single crystals occurred as a result of an
abrupt change in the current density. Then, they were
thoroughly washed in distilled water and picked out
onto a glass substrate. All further measurements
referred to the samples, which were in the optical con-
tact with a substrate.

The porous Si plates obtained by the electrochemi-
cal etching of the {211}, {110}, {100}, and {111}
crystallographic planes of the same single-crystal Si
ingot grown in the 〈111〉  direction were studied. The
thicknesses of samples were measured on a Linnik
interferometer or an electron microscope with an accu-
racy of about 15%. For studies of the refractive index
anisotropy and its spectral dependence, the samples

1 The birefringence observed sometimes in crystalline Si in the IR
range is associated with the mechanical stresses induced by the
nonuniform impurity distribution over the bulk of crystals.
1063-7834/00/4207- $20.00 © 21240
between the crossed polarizers were rotated at an angle
of 45° with respect to the position of the complete dark-
ening. All measurements were carried out at room tem-
perature, at about 20°C.

A qualitative study of the porous silicon samples in
a polarizing microscope revealed that the samples
obtained on the {211} and {110} planes exhibit a pro-
nounced birefringence, whereas in the samples
obtained on the {100} and {111} planes, no indications
of the refractive index anisotropy are observed. The
spectral dependence of the birefringence was measured
for the samples grown on the {211} crystallographic
planes.

The figure shows the ratio between the transparency
T⊥  for three samples of different thickness, which were
placed between crossed polarizers and rotated at an
angle 45° with respect to the position of complete dark-
ening, and the transparency T|| of the same samples
between parallel polarizers. As is seen from the figure,
the ratio T⊥ /T|| in the range 0.6–0.8 µm increases with
an increase in the sample thickness. Such T⊥ /T|| behav-
ior is caused by the birefringence in the samples.2 

It is known that the intensity J of the light signal
measured in this case is the result of the interference of
two beams with the refractive indices n1 and n2 and can
be described by the expression

where λ is the wavelength of the incident light, and d is
the sample thickness.

Actually, all the experimental points can be approx-
imated by this formula, provided that the data in the fig-
ure are measured in the range of light absorption by the
plates. In this range, the refractive index shows a con-
siderable dispersion, and, consequently, the dispersion
of its anisotropy is quite significant. To a first approxi-

2 The absorption spectra measured for porous silicon samples at
ordinary and extraordinary beams coincide within the accuracy of
the experiment.

J
π n1 n2–( )d

λ
---------------------------- 

  ,2sin≈
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mation, the dispersion can be taken into account by the
formula

where A and B are constants.
The results of the calculation at A = 0.022 and B =

0.287 (shown by solid lines in the figure) demonstrate
a good fit to the experimental data. We note that the
refractive index anisotropy is rather large and, at λ =
0.5 µm, is only four times less than that of Iceland spar
(n1 – n2 = 0.0472 and 0.186, respectively).

It is our opinion that the anisotropy observed is due
to the anisotropic etching of Si single crystals. The
etching rate differs for different crystallographic direc-
tions. As a result, the pores in porous silicon are elon-
gated in the direction of the larger etching rate and pre-
dominantly oriented in the direction perpendicular to
the etching plane. This leads to the violation of the
cubic symmetry, which is characteristic of silicon sin-
gle crystals for sizes exceeding the size of the structural
unit of porous silicon. Upon etching the {111} and
{100} planes of the sample, the structure obtained
should possess the threefold and fourfold symmetry
axes, respectively. Consequently, the refractive index
being the second-rank tensor should be isotropic in the

n1 n2– A 1 B

λ 2
-----+ 

  ,=
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plane of these samples. Upon etching the {112} and
{110} planes, the structure obtained possesses only a
twofold axis, and the refractive index should be aniso-
tropic.
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Abstract—The spectra of ultrathin free samples of hexagonal CdSe in a magnetic field up to 8 T are studied at
1.7 K. The fan-shaped diagram contains information on weak (the Zeeman effect and diamagnetic shift), as well
as strong fields (transitions between Landau levels). As a result of the application of two theoretical models for
combined interpretation of strong- and weak-field experimental data, two sets of (band and polaron) parameters
are calculated for hexagonal CdSe in the quasi-cubic approximation. The values of the obtained polaron/band
parameters are: the electron effective mass me = 0.125/0.116m0, the Luttinger parameters γ1 = 1.5/1.72, γ =
0.29/0.37, κ = –0.63, and the effective electron g-factor ge = 0.7. © 2000 MAIK “Nauka/Interperiodica”.
Interest in wide-band hexagonal semiconducting
materials has grown substantially in recent years in
conjunction with numerous effects to design a short-
wave semiconducting laser emitting in the indigo–blue
range. Recently synthesized structures with planar
inclusions of the type of CdSe “quantum dots” in the
ZnSe matrix [1] are being studied intensely and are
seen as promising for short-wave lasers [2].

However, the band structure of hexagonal crystals
(including CdSe) has been studied quantitatively much
less comprehensively than the structure of cubic semi-
conductors. Magnetooptics, which is a recognized tool
for obtaining the most reliable information on band
structure, was used for studying hexagonal CdSe crys-
tals as far back as in the early 1960s [3]. Optical absorp-
tion spectra for free excitons in weak magnetic fields
(the Zeeman effect and diamagnetic shift) were ana-
lyzed and interpreted, and the values of the effective
masses and g-factors of charge carriers were deter-
mined. However, Dimmock and Weeler [3] carried out
their theoretical analysis on the basis of a semiphenom-
enological model that described the exciton states of
various valence bands independently. The spectra of
magnetic absorption of a strong magnetic field, which
is due to exciton states associated with transitions
between Landau levels, were studied much later [4].
The magnetoabsorption spectra were interpreted on the
basis of the theory of Landau levels in hexagonal crys-
tals with large spin–orbit splitting, and the applicability
of the quasi-cubic approximation was demonstrated.
However, effective parameters were not determined,
due to the absence of methods for calculating the bind-
ing energy for excitons belonging to various transitions
between Landau levels. This problem was solved later
in a series of papers devoted to relatively wide-band
semiconducting materials [5–7]. An analysis of magne-
tooptical spectra in strong fields and the calculation of
1063-7834/00/4207- $20.00 © 21242
a set of band parameters for CdSe were carried out
recently in [8, 9]. The obtained results were distin-
guished by the values of the effective masses of charge
carriers differing significantly from those obtained in
[3]. A theory of the energy structure of excitons for hex-
agonal semiconductors in weak magnetic fields was
developed recently in the quasi-cubic approximation
[10].

The present work aims to study magnetoabsorption
spectra for hexagonal CdSe in weak, as well as strong,
magnetic fields and to jointly interpret the results in the
quasi-cubic approximation.

1. SAMPLES AND EXPERIMENTAL TECHNIQUE

In experiments, we used monocrystalline plates of
cadmium selenide with the optical axis in a plane par-
allel to the sample surface. We studied single crystals
from the “ultrapure” series with a low concentration of
impurity (below 1014 cm–3). These crystals were grown
by the Frerichs method (from the gaseous phase; the
transport gas is hydrogen or hydrogen sulfide). The typ-
ical sample size was as follows: the thickness d = 0.3–
3 µm and the area S = 0.5 mm2. Since the samples had,
as a rule, a smooth weakly corrugated surface, no addi-
tional treatment (e.g., annealing, polishing, or etching)
was carried out. The samples for measurements were
directly immersed in liquid helium during pumping in
free form. The experiments were conducted mainly on
a batch of 0.3–0.6 µm thick samples.

We obtained detailed experimental spectra of exci-
ton absorption for these samples in a magnetic field up
to 8 T at the temperature T = 1.7 K (Fig. 1).The oscil-
lating structure of the spectra is clearly seen for the A
exciton in relatively weak magnetic fields for the polar-
ization E ⊥  C (C is the hexagonal axis), but the A exci-
000 MAIK “Nauka/Interperiodica”



        

MAGNETIC ABSORPTION OF HEXAGONAL CRYSTALS CdSe 1243

                                                                           
1 T
2 T
3 T
4 T
5 T
6 T
7 T
7.5 T

H = 0 T2, 3nB = 1

nA = 1

CdSe T = 1.7 K H ⊥ C E || C

1.82 1.83 1.84 1.85 1.86 1.87 1.88
EA

g EB
gPhoton energy, eV

nA = 1 2, 3

CdSe T = 1.7 K H ⊥ C E || C H = 0 T

1 T

2 T

3 T

4 T
5 T

6 T

7 T

7.5 T

O
pt

ic
al

 d
en

si
ty

1.82 1.83 1.84 1.85 1.86 1.87 1.88

EA
g EB

g

O
pt

ic
al

 d
en

si
ty

Fig. 1. General form of the absorption spectra of CdSe in various magnetic fields for the two polarizations, E || C and E ⊥  C; notation
is given in the text.
ton spectrum ceases being informative as we go over to
stronger fields due to the superposition onto the series
of lines for a B exciton. In the E || C configuration, the
ground state of the A exciton almost completely disap-
pears, since in this configuration such a transition is
forbidden in the first approximation.

2. SEPARATION 
OF STRONG- AND WEAK-FIELD DATA

The observed variety of lines and their behavior in a
magnetic field cannot be solely identified with the well-
studied Zeeman effect and the diamagnetic shift of
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
three-dimensional exciton series A and B. For example,
the form of their energy shift upon an increase in the
magnetic field contradicts the simple model. The lines
corresponding to ordinary exciton states must be
shifted towards high energies in proportion to the
square of the field, the shift being stronger, the larger
the principal quantum number of the state is. The fan-
shaped diagram plotted on the logarithmic scale
(Fig. 2) clearly shows that the shift of a series of lines,
which is quadratic in a weak magnetic field, is trans-
formed into a linear shift in a strong field. On the other
hand, the spectral line cannot be interpreted as transi-
tions between the Landau levels of an electron and a
0
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hole, since the approximation of the dependences of the
positions of the lines to zero magnetic field H = 0 gives
an energy lower than that corresponding to the band
edge. It is natural to assume that we observe here the
exciton series under Landau levels, i.e., a manifestation
of diamagnetic (quasi-one-dimensional) excitons.

The ratio of the squared exciton radius aexc to the
squared magnetic length L,

where L = (c"/eH)1/2, e is the electron charge, and c is
the velocity of light, can be regarded as a criterion sep-
arating the weak- and strong-field modes. The condi-
tion β < 1 corresponds to a weak field, while for a
strong field, the condition β @ 1 must be satisfied [the
Elliot–Loudon (EL) criterion]. However, the EL crite-

β aexc L⁄( )2,=

0.5
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Fig. 2. Fan-shaped diagrams of magnetoabsorption in CdSe
in the logarithmic coordinates. The most intense lines of the
magnetooptical spectrum are shown. The notation reflects
the serial number and affiliation to the A or B series; the ini-
tial energy (being subtracted) corresponds to the energy
positions of the relevant discrete states of an exciton in a
zero field.
P

rion in pure form is barely satisfied in wide-band semi-
conductors, and one has to use its modification for
excited states of the exciton series, i.e., βn*2 @ 1, where
n* is the highest excited exciton state observed experi-
mentally or induced upon the application of a magnetic
field. Thus, in real magnetooptical spectra and in mag-
netic field dependences, one can simultaneously
observe the regions corresponding to the two modes: a
weak field for the ground and lower excited states, and
a strong field for higher states. This boundary will nat-
urally be displaced depending on the field used in the
experiment, since the value of β itself is proportional to
H and can be regarded as a reduced magnetic field.

3. THEORY OF MAGNETOABSORPTION
IN HEXAGONAL SEMICONDUCTORS IN WEAK 

AND STRONG FIELDS IN THE QUASI-CUBIC 
APPROXIMATION

At the present time, there exists no exact solution of
the complete problem for an exciton in an arbitrary
magnetic field, even for semiconductors with a simple
parabolic conduction band and a nondegenerate
valence band. The main difficulty lies in the require-
ment of simultaneous inclusion of the motion of an
electron and a hole in the magnetic field, as well as the
Coulomb interaction between the electron and the hole
in an exciton. The problem is considerably simplified
for weak or strong magnetic fields. In weak magnetic
fields (β < 1), the problem of relative motion of the
electron and hole in an exciton can be solved by consid-
ering the magnetic field as a perturbation. The effect of
the magnetic field in this case is reduced to the linear
Zeeman splitting of energy levels and to a quadratic dia-
magnetic shift [11]. In strong magnetic fields (β @ 1),
the problem is simplified in the case when the variables
can be separated adiabatically [12]. At first, we con-
sider the motion of electrons and holes in a plane per-
pendicular to the magnetic field (which leads to the for-
mation of Landau levels). The subsequent inclusion of
the Coulomb interaction between an electron and a hole
leads to the formation of a quasi-one-dimensional dia-
magnetic exciton [12].

3.1. Direct-Exciton Model

Hexagonal semiconductors with a wurtzite structure
are characterized by an axial symmetry with a sixfold
axis C. The Hamiltonian describing the relative motion
of an electron and a hole in a magnetic field in such
semiconductors has the form

(1)

Ĥexc k( ) Ĥe k
e

"c
------A+ 

  Ĥh k–
e

"c
------A+ 

 –=

–
e

2

ε0
||ε0

⊥
x

2
y

2
+( ) ε0

⊥ 2
z2+

-------------------------------------------------------,
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where the direction of the z axis is chosen parallel to the
hexagonal C axis of the crystal, k is the wave vector of
the relative motion, r = (x, y, z) is the relative coordinate
of the electron and the hole, A = (1/2)[H × ] is the vec-

tor potential of the magnetic field, and  and  are the
values of the permittivity in the directions parallel and
perpendicular to the C axis, respectively. If we disre-
gard the relativistic terms linear in the momentum, the

Hamiltonian  for an electron in the conduction band
(having the Γ7 symmetry at the center of the Brillouin
zone) has the form

(2)

where  and  are the effective masses of an elec-
tron near the bottom of the conduction band in the
directions parallel and perpendicular to the C axis,
respectively, µB = e"/2m0c is the Bohr magneton, m0 is

the mass of a free electron,  and  are the effective
values of the electron g-factor in the conduction band
for the magnetic field directions H || C and H ⊥  C, and
Se = 1/2 is the electron spin. We will describe the
motion of a hole in the quasi-cubic approximation [13],
disregarding the relativistic terms linear in the momen-
tum. In this case, the hole in the valence band is
regarded as a quasiparticle with the intrinsic orbital
angular momentum I = 1 and the spin Sh = 1/2, and can
be described by the effective Luttinger Hamiltonian for
cubic semiconductors [14], in which the hexagonal
crystal field is simulated by the effective field of defor-
mation directed along the [111] axis of the cubic crystal
(and coinciding with the z axis):

(3)

Here, γ1 and γ = γ2 = γ3 are the parameters introduced by
Luttinger, κ is the Luttinger magnetic constant [14],
g0 ≈ 2 is the g-factor for a free electron, ∆so is the spin–
orbit splitting of the valence band in the absence of
crystal field splitting, and ∆cr is the crystal-field split-
ting in the absence of the spin–orbit interaction. In zero

magnetic field, the Hamiltonian  describes three
doubly degenerate valence subbands: A (with the sym-
metry Γ9 at the center of the Brillouin zone), B (Γ7 sym-
metry), and C (Γ7 symmetry). For k = 0, the separation
between the bottom of the conduction band and the top
of the upper valence subband A is equal to the forbid-
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den band width , while the distance between the
upper subband A and the subbands B and C (∆ΑΒ and
∆AC, respectively) are given by [13]

(4)

The effective masses of holes in the valence subbands
A, B, and C near the center of the Brillouin zone are
connected with the Luttinger parameters and the values
of the spin–orbit and crystal-field splitting through the
following relations [13]:

(5)

The value of the spin–orbit interaction in CdSe is
much larger than the crystal-field energy (∆so @ ∆cr and
∆AC @ ∆AB), and the separation between the bottom of
the conduction band and the top of the second valence

subband B can be defined approximately as  =  +

∆AB ≈  + 2/3∆cr. In this case, the expressions for the
effective masses of holes in the subbands B and C can
be considerably simplified, and the masses themselves
are determined only by the Luttinger parameters:

(6)

3.2. Structure of Exciton Energy Levels in a Weak 
Magnetic Field: Perturbation Theory Method

The method of the perturbation theory enabling one
to determine the energy level structure for an exciton in
a weak magnetic field was first developed in [15, 16]
for cubic semiconductors and recently extended to hex-
agonal semiconductors in a quasi-cubic approximation
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[10]. Following [15, 16], we can write the Hamiltonian
(1) in the form

(7)

where the zeroth-approximation Hamiltonian H0 has
the form

(8)

The eigenfunctions of the Hamiltonian H0 describe
noninteracting hydrogen-like states of excitons of the
series A, B, C in the zeroth approximation and have the
form

(9)

where  are the wave functions of the discrete

(quantum number n =1, 2, …) and continuous (contin-
uous variable t) spectra of the hydrogen atom, l is the
orbital quantum number, m is the magnetic quantum
number, and the functions uα, i (α = A, B, C; i = 1, 2) are
the Bloch functions corresponding to the tops of the
valence subbands A, B, and C. The corresponding ener-
gies of the discrete spectrum in the zeroth approxima-
tion are given by

(10)

The Hamiltonian Hint contains the terms describing
the interaction of the valence subbands, the anisotro-
pies of the effective masses of an electron and holes,
and the anisotropy of the permittivities, which can be
taken into account in the perturbation theory. The small
parameters in this case are the quantities (µ0/µ1),
(µ0/µ3), and (1 – η), where

(11)

The Hamiltonians Hl and Hq contain terms linear and
quadratic in the magnetic field, respectively, which can
also be taken into account in the perturbation theory for
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states with a characteristic binding energy R0/n2 much
higher than the cyclotron energy "ω0 = 2µBH for a free
electron. The energy levels of excitons of the series A,
B, and C in a weak magnetic field can be written in the
final form

(12)

where α = A, B, C and βe = ±1/2, βh = ±1/2. For the
zero-field corrections ∆En, α, effective g-factors for

holes  and , and the diamagnetic shifts

 and  of the ground (n = 1) and excited (n =
2, 3) states of excitons of the S- and P-symmetry, we
derived analytical expressions to the second order in
the perturbation theory. These expressions contain
numerical functions that depend on the separation ∆AC

and ∆AB between the valence subbands. The expres-
sions similar to (12) for the ground-state energy of exci-
tons from the A and B series in zero magnetic field were
obtained earlier in [17], taking into account the cou-
pling of only two valence subbands.

3.3. Theory of Landau Levels in a Strong Magnetic 
Field in the Quasi-Cubic Approximation

It was noted above that in the case of a strong mag-
netic field, one should first solve the problem of the size
quantization levels for electrons [the solutions for the

Hamiltonian (k)] and holes [the solutions for the

Hamiltonian (k)] moving in a plane perpendicular
to the magnetic field and then take into account the
Coulomb interaction between electrons and holes. For
hexagonal semiconductors with ∆so @ ∆cr, the problem
of the Landau levels for electrons and holes was first
solved in [4], where the relativistic terms in the electron
and hole Hamiltonians, which are linear in momentum,
were additionally taken into consideration, and it was
assumed that the effective mass and the g-factor for the
electron is anisotropic and that the magnetic field is
directed along the z axis. In the quasi-cubic approxima-
tion disregarding the term linear in the momentum, the

expressions for the Landau levels  and El, λ for elec-
trons and holes derived in [4] for kz = 0 are similar to
the expressions for the Landau levels in diamondlike
semiconductors (see [11, 12, 18]) and can be reduced to
the following formulas:

En α, βe βh,( ) En α, ∆En α,+=

+ µBH || ⊥, βege
|| ⊥, βhgh n α, ,
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+( ) Dn α,
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⊥

Ĥe

Ĥh
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(13)

where n and l are the indices of Landau levels for elec-
trons and holes, respectively; δ = ∆cr /"ω0; and λ and the
quantity λ1 = 4λ(λ2 – 5/2)/3 associated with it assume
the values λ = ±3/2, ±1/2 and λ1 = ±3/2, ±1/2. If we
disregard the Coulomb interaction, the motion of elec-
trons and holes along the magnetic field remains free,
and the dependences of the energy levels on the wave
number kz allow us to determine the longitudinal effec-
tive masses of holes at Landau levels [11, 12]. The clas-
sification of the Landau levels for electrons and holes
and the analysis of selection rules for optical transitions
between them in hexagonal semiconductors with a
strong spin–orbit splitting are presented in [4].

3.4. Binding Energies for Diamagnetic Excitons

The Coulomb interaction between an electron and a
hole at Landau levels in a strong magnetic field leads to
the formation of a diamagnetic exciton. The binding
energy Rn, M, λ of diamagnetic excitons formed by the
electron Landau level with the index n and the Lut-
tinger level for the hole with the index l = n – M + 1/2,
which are determined by the component of the exciton
magnetic moment along the magnetic field direction
(M = ±1/2, M = ±3/2) can be determined in the adia-
batic approximation from the one-dimensional
Schrödinger equation [5, 11]

(14)

where  is the reduced longitudinal mass for the
electron and the hole at the Landau level with the index
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2
-------------------------
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-------------=
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 
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ψ z( ) Rn M λ, , ψ z( ),–=

µl λ,
||
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l from the series λ (λ = ±1/2; ±3/2), and the quasi-one-
dimensional potential of equation (14) can be obtained
as a result of averaging the Coulomb potential for the
wave functions Φn, M, λ describing the motion of exci-
tons in a plane perpendicular to the magnetic field [12]:

(15)

Here, ξ = ρ2/2L2, ρ, and ϕ are the polar coordinates of
the relative motion of the electron and the hole in the
plane. The adiabatic potential Un, M, λ contains an infi-
nite series of one-dimensional states of a diamagnetic
exciton, adjoining the corresponding transition
between Landau levels. The complete spectrum is
given by

(16)

where l = n – M + 1/2 with the corresponding selection
rules. The values of the binding energy for a diamag-
netic exciton in CdSe calculated by the variational
method are given in Table 1 with reference to the series
and the Landau quantum number for an optical transi-
tion. It can be seen that the binding energy for a dia-
magnetic exciton in the fields under investigation is
considerably smaller than the binding energy of the
ground state of an exciton in zero magnetic field (R0 =
15.6 meV), which is a consequence of the fulfillment of
the EL criterion for excited states of the exciton only. It
should also be noted that the calculated binding energy
of the exciton states for the zeroth Landau level has an
approximate value and differs from the actual binding
energy by almost 50%, given the violation of the EL
criterion for these states. The energy of excited states
can be calculated almost exactly, since the EL criterion
starts being observed for the first excited state (2S) of
an exciton in fields of the order of H = 5 T and for the
second excited state (3S), even at H = 2 T. The binding
energy for a diamagnetic exciton increases slowly with
the field and decreases slowly upon an increase in the
Landau quantum number.

Un M λ, ,
e2

ε0
---- 1

L
--- ϕ ξd

2ξ z2 L2⁄+
------------------------------ Φn M λ, , ξ ϕ,( )

2
.∫d

0

2π

∫–=

En M λ, ,
±

En
±

El λ, Rn M λ, , ,–+=
Table 1.  Binding energy (meV) of the ground states of diamagnetic excitons in CdSe at H = 7.5 T

Landau level no. b– a– b+ a+ b– a– b+ a+

0 5.8 6.1 12.0 11.9 11.2 9.6 6.1 7.6

1 5.3 5.6 8.1 8.2 7.9 6.6 5.4 6.5

2 4.8 5.1 6.5 6.2 6.5 5.5 4.9 5.8

3 4.5 4.7 5.7 5.4 5.7 4.9 4.5 5.2

4 4.2 4.4 5.1 4.8 5.1 4.5 4.2 4.8

Note: Calculations were based on polaron parameters presented in Table 2.
0
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4. ANALYSIS OF EXPERIMENTAL RESULTS 
AND CALCULATION OF BAND PARAMETERS 

4.1. Strong-Field Spectra Processing and Calculation 
of the Electron Effective Mass

The results considered in Section 3.3 show that Lan-
dau levels in hexagonal CdSe (in the quasi-cubic
approximation neglecting the terms linear in the
momentum) are described in analogy with Landau lev-
els in diamondlike semiconductors. It is well known
(see, for example, [11]) that, in the latter case, the sys-
tem of Landau levels for holes consists of four
sequences (ladders) of doubly degenerate hole levels
(denoted by a± and b±) and two ladders for electrons
differing in the sign of the spin component ±1/2
(denoted by ac and bc). In the calculations based on
(13), the system of Landau subbands for holes of a hex-
agonal semiconductor splits into two systems displaced

by the interval  – . In this case, the low-energy
system of four subbands is formed by hole states with
the angular momentum component ±1/2, while the
high-energy system is formed by four ladders of states
with ±3/2. A similar splitting of hole subbands also
takes place in cubic diamondlike semiconductors as a
result of the action of an elastic axial deformation,
which induces a splitting of the top of the valence band.
(Such a case is considered in detail in [6] for thin sam-
ples of CdTe cubic crystals glued to a “thick” glass sub-
strate.)

Thus, strong-field magnetooptical spectra for hex-
agonal semiconductors CdSe in the given approxima-
tion can be interpreted and processed as the spectra of
model deformed cubic semiconductors with the initial

forbidden gap Eg = (  + )/2 and with the deforma-

tion-induced splitting ∆e =  – . In this case, we
can use formulas (13), as well as other formulas
describing the spectrum of Landau levels in diamond-
like semiconductors, e.d., Pidgeon–Brown (PB) deter-
minant equations [19] written by Aggarwal [20] in a
modified form, taking into account the shear deforma-
tion. In this case, the effective mass of an electron is
expressed in terms of the square of the interband matrix
element of the angular momentum between the conduc-
tion and the valence band (P) and the correction F, tak-
ing into account the interaction between the conduction
band and higher energy bands:

(17)

where Ep = (2m0/"2)P2. Such a representation automat-
ically takes into account the nonparabolicity effects and
are widely used in magnetooptical investigations of
diamondlike semiconductors.

The appropriate procedure of the data processing
and the calculation of the electron effective mass can be
described as follows. At first, a “bare” exciton spectrum
for the maximum field (H = 7.5 T) used in the experi-

Eg
B

Eg
A

Eg
A

Eg
B

Eg
B

Eg
A

m me⁄ 1 2F Ep 2 Eg⁄ 1 Eg ∆so+( )⁄+( ) 3⁄ ,+ +=
P

ments is constructed by using the PB modified determi-
nant equations [11] with the introduction of the experi-

mental value (  – ) as the deformation-induced
splitting and with the application of the appropriate
selection rules and calculated values of the binding
energy for a diamagnetic exciton. The choice of the ini-
tial band parameters is based on the available band
energies for k = 0, effective masses of an electron at the
bottom of the conduction band, and longitudinal and
transverse masses of holes determined using relations
(6). Then the spectra are interpreted in terms of the
cubic approximation (transitions a±ac and b±bc in the
Faraday configuration, H || q). The next step is recon-
structing the actual position of transitions between Lan-
dau levels through the summation of the calculated val-
ues of the binding energy with the experimental values
of energy corresponding to absorption peaks. After this,
we can use one of the known methods for determining
band parameters [11, 12]. In the present work, we
applied the approach involving the direct calculation of
cyclotron energies of electrons and holes with due
account of the fact that the selection rules for two cir-
cular polarizations in the general form differ by 2: ∆n =
+1 for RCP (right circular polarization) and ∆n = –1 for
LCP (left circular polarization). Choosing two transi-
tions from the same hole level to different electron lev-
els with the Landau quantum numbers nc and nc + 2, we
obtain the double cyclotron energy of an electron for
the average energy Ec(nc + 1) equal to the difference
between the chosen transition energies for coinciding
fan-shaped diagrams for the A and B series. For exam-
ple, for the total coincidence of the initial points of the

“fan” for H = 0, the quantity (  – )/2 is added to
and subtracted from the series A and B respectively.

Figure 3 shows the general form of the fan-shaped
diagrams obtained for the A and B series of CdSe, in
which the reconstructed positions of transitions
between Landau levels are indicated, and the identifica-
tion of magnetoabsorption spectral lines is given in the
quasi-cubic approximation. Subtracting the corre-
sponding energies of the RCP spectrum from transition
energies between Landau levels for the states of the
LCP spectrum, we obtain the doubled cyclotron energy
for the electron, Ee, H = "ω0(m0/me):

(18)

since the same hole level is involved in these transi-
tions. The average value of the electron effective mass
near the bottom of the conduction band calculated by
using (18) amounted to me = (0.116 ± 0.005)m0. This
value is considerably smaller than the most frequently
used value me = 0.13m0 [3]. It should be borne in mind
that the value of the effective mass obtained by the
above method corresponds to the band electron mass,
while the value determined in [3] is essentially the

Eg
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Eg
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Eg
B

Eg
A
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n 1–( ) 2Ee H, n( ),=
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Fig. 3. General form of a fan-shaped diagram of the interband magnetoabsorption in CdSe. Solid lines present reconstructed energies
of transitions between Landau subbands for holes and electrons. The experimental points are connected by dashed lines for better
visualization. Combined data obtained in experiments with different polarizations and recording conditions are depicted. The cor-
responding points are denoted by different triangles. The difference can be neglected in this paper. The brackets and arrows on the
left ordinate axis indicate series of exciton states from A and B. On the right ordinate axis, the spectra of transitions for a diamagnetic
exciton are identified. The following notation typical of cubic semiconductors is used: (n) a+(l)ac(l ± 1), (s) a–(l)ac(l ± 1), (×)
b+(l)bc(l ± 1), (d) b–(l)bc(l ± 1), l stands for the Landau quantum number, a+, a–, b+, b–, ac, and bc is the notation for ladders of light
and heavy holes and electrons, respectively; (l + 1) and (l – 1) transitions correspond to the left- and right circular polarizations,
respectively.

B1
polaron mass (since the binding energy of an exciton is
lower than the energy of optical phonons ELO =
26.1 meV [21]). The value of the polaron mass corre-
sponding to the obtained value of the band electron
mass can be defined taking into account the electron–
phonon interaction as mep = me(1 + αFe/6), where αFe =

e2(  – )(me/2ELO"2)1/2. Using the average valuesε∞
1– ε0

1–
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of static (ε0) and the high-frequency (ε∞ = ) per-

mittivities (  = 10.16,  = 9.29,  = 6.2, and  =
6.15 [21]), we found that the polaron effective mass is
mep = (0.125 ± 0.005)m0.

A similar procedure can be applied for determining
the cyclotron energies and effective masses of heavy
and light holes in a model cubic semiconductor [22].

ε∞
|| ε∞

⊥

ε0
|| ε0

⊥ ε∞
|| ε∞

⊥

0
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Table 2.  Preferable bond and polaron parameters of the energy spectra of electrons and holes obtained in the present work

Parameters Ep, eV F ge γ1 γ κ

Polaron 18 0 0.125 0.7 1.5 0.29 –0.63 1.08 0.56 0.48 0.83

Band 19 –1.2 0.116 0.7 1.7 0.37 –0.63 1.01 0.48 0.41 0.75

me

m0
------

mA
||

m0
-------

mA
⊥

m0
-------

mB
||

m0
-------

mB
⊥

m0
-------
However, this procedure has a low sensitivity to the
mass of the heavy hole, since its contribution is smaller
than that from the electron and is close to the experi-
mental error. With regard to light holes, their exact
parameters cannot be determined, due to the absence of
the required number of points of the A spectrum that are
not superimposed on the B spectrum. The average val-
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Fig. 4. Dependence of the optical transition energy of the
excited state n = 2 for an A exciton on the magnetic field
H || C.

Fig. 5. Dependence of the optical transition energy of the
ground state n = 1 for A and B excitons on the magnetic field
H ⊥  C.
P

ues of hole masses obtained by this method and conse-
quently also being band masses are mlh = 0.24m0 and
mhh = 0.63m0 for light and heavy holes, respectively.
However, these values are not quite reliable due to the
above factors. The effective Luttinger constants and the
corresponding values of effective masses of holes will
be determined below by processing the weak-field
spectra.

4.2. Processing of Weak-Field Spectra 
and Determination of Effective Luttinger Parameters

In order to describe the obtained magnetoabsorption
spectra of CdSe in weak magnetic fields, we calculated
the energies of the 1S, 2S, 2P, and 3S states of A and B
excitons. The values of the effective g-factor for a hole
and of the diamagnetic shifts for an exciton in all the
states were calculated for magnetic fields directed par-
allel and perpendicular to the C axis. The calculations
were based on the above anisotropic values of static
permittivities and the isotropic value of the electron
mass coinciding with the value of the polaron mass

determined earlier:  =  = 0.125m0. All the
remaining parameters for attaining the best coincidence
with the experimental data varied.

The most informative magnetooptical spectra in
weak magnetic fields H || C were obtained for states of
an A exciton with the principal quantum number n = 2
(Fig. 4). The linear and quadratic dependences of these
states on the magnetic field formed the basis of the fit-
ting procedure. An analysis of the Zeeman splitting of
states of a B exciton in a magnetic field H ⊥  C (Fig. 5)
enabled us to directly determine the Luttinger magnetic
constant κ from the transverse effective g-factor for a
hole, which differs from zero in the case of a B exciton.
The parameters that are the most suitable for these two
configurations were used for verification purposes in
analyzing the remaining cases.

It should be noted that the Luttinger γ parameters
required for calculating the exciton energies in weak
magnetic fields and determining the masses of a hole
are of the polaron type, like the electron mass. In the
course of fitting, we took into account the relations
between the Luttinger band and polaron parameters γ
presented in [22], as well as the well-known relation
between the Luttinger magnetic constant κ and the
band parameters γ1 and γ: κ = (–2 + 5γ – γ1)/3.

me
||

me
⊥
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As a result of fitting, we determined the parameters
leading to the best agreement in describing exciton
spectra in a weak magnetic field: Luttinger polaron
parameters γ1 = 1.5 and γ = 0.29 (the corresponding
Luttinger band parameters are γ1 = 1.7 and γ = 0.37), the
Luttinger magnetic constant κ = –0.63, the effective

electron g-factors  =  = 0.7. The complete set of
parameters, together with the values of hole masses in
valence subbands A and B [calculated by formulas (6)],
is given in Table 2.

The obtained set of band and polaron parameters
(Table 2) was subsequently used for checking the cal-
culation of the spectrum of Landau levels and diamag-
netic excitons in strong magnetic fields (Fig. 6). The

ge
||

ge
⊥

binding energies of diamagnetic excitons were calcu-
lated by using polaron parameters, while the spectrum
of the Landau levels was constructed in accordance
with the band parameters. The observed agreement
between the theoretical and experimental spectra can
be seen as confirmation of the correctness of the chosen
calculation method and as an estimate of the accuracy
of the obtained parameters.

Thus, the results obtained in direct magnetooptical
experiments on the optical transmission of ultrathin,
free and highly perfect CdSe samples at T = 1.7 K in
magnetic fields up to 8 T were assumed to contain weak-
and strong-field information simultaneously. The cor-
responding regions of the spectra were interpreted in
the quasi-cubic approximation with the help of the the-
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Fig. 6. Experimental fan-shaped diagram of a CdSe sample in the Faraday geometry of the LCP and RCP polarizations at  T = 1.7 K.
Solid lines are plotted for better visualization. The positions for transitions of a diamagnetic exciton calculated by using the obtained
set of band and polaron parameters of CdSe for the A and B series are shown on the right. The frame on the right contains the quasi-
cubic notation for transitions between Landau levels.
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oretical models developed for CdSe hexagonal crystals.
Both models (for weak and strong fields) make it pos-
sible to calculate the sets of basic parameters of the
band structure of the crystal, which were found to differ
considerably. The Landau level spectroscopy makes it
possible to calculate the band masses and the parame-
ters. This method provides the most reliable value of
the effective band mass for electrons, while the values
of hole masses, as well as the corresponding band
parameters, are not quite reliable for the reasons men-
tioned above. At the same time, weak-field data do not
allow one to separate the electron and hole contribu-
tions and provide direct information on polaron param-
eters only. The combined interpretation of weak- and
strong-field experimental data made it possible to
determine the band and polaron parameters of CdSe
hexagonal crystals self-consistently.
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Abstract—For a one-dimensional nonlinear optical medium with a periodic refraction index, new two-param-
eter soliton solutions of electrodynamics equations have been found. These solutions represent two interacting
waves that propagate in two opposite directions. The oscillation frequency of each wave may fall either into the
forbidden gap in the linear spectrum or outside it, and the group velocity may vary from zero to a maximal value
that is determined by the parameters of the medium. Algebraic soliton solutions have been found as the limit of
the nonlinear solutions, when the nonlinear wave frequency tends to the frequency of one of the linear-spectrum
branches. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The existence of gap (Bragg) solitons was predicted
theoretically by Mills, Trullinger, and Chen [1, 2] when
studying the nonlinear Maxwell equations for nonlin-
ear waves in the optical medium of spatially periodic
refraction index. However, only motionless gap soli-
tons of the frequency falling in the gap of a linear-wave
spectrum (LWS) were found by them. Such nonlinear
excitations may appear in other modulated systems as
well, e.g., in crystals with complex unit cells [3–6] and
in multi-sublattice magnets [7]. In [8–10], the possibil-
ity of more complex standing solitons of frequencies
located near the gap in LWS was pointed out (“near-
gap” solitons). Obtaining an explicit solution for soli-
tons moving in modulated media is a more difficult
problem. Such solutions for gap optical solitons were
first discussed in [11, 12], and later, for moving elastic
gap solitons, in [13].

In this work, the moving near-gap solitons are con-
sidered for the case of nonlinear optical medium with a
modulated refraction index. Such solutions belong to
the type of two-parameter solitons and represent local-
ized excitations on the background of a nonlinear wave
that does not decay at infinity. Envelope solitons move
at a group velocity of linear waves. We have also con-
sidered the limiting case of immovable and so-called
“algebraic” solitons, i.e., solitons whose parameters lie
in one of the LWS branches separating the gap (in the
linear limit) and near-gap solitons.

1. BASIC EQUATIONS

Let us consider a one-dimensional optical medium
with a periodical refraction along the x axis, index
n(x) = n0 + n1cos(2β0x). The refraction-index modula-
tion results in a series of gaps in the dispersion law for
1063-7834/00/4207- $20.00 © 21253
linear waves ω = ck/n0, the gaps being associated with
wave numbers km = mβ0 (m = 1, 2, …). The width of the
first gap is found to be proportional to the modulation

amplitude n1, and, in the general case, to . We will
study nonlinear waves with wave numbers and frequen-
cies lying in the vicinity of the main gap, i.e., at k ~ β0
and ω ~ β0c/n0. The dynamical equation for the electric
field intensity of the nonlinear wave that propagates in
the medium under consideration can be written in the
form

(1)

where γ is the Kerr nonlinear coefficient.

We seek the solutions of (1) in the form of superpo-
sition of two waves EF and EB propagating in opposite
directions, which corresponds to a so-called two-wave
approximation [12, 13]

(2)

If the modulation amplitude of the refraction index
n1 and the field amplitude E are assumed to be small

, (3)

then the amplitudes EF and EB are smooth (slow) func-
tions of the coordinate x and time t, i.e., ∂E/∂x ! βE
and ∂E/∂t ! ωE. Therefore, substituting (2) in (1), we
may restrict ourselves to the first derivatives with
respect to the coordinate and time only. As a result, we

n1
m

c
2∂2

E

x
2∂

--------- ∂2

t
2∂

------ n0
2
E 2n0n1 2β0x( )E γ E

2
E+cos+{ } ,=

E EF x t,( ) iβx( )exp[=

+ EB x t,( ) iβx–( )exp ] iωt–( ) c.c.+exp

n1   !  n 0 , γ E 
2

 n 0
2
  !  1 ⁄         
000 MAIK “Nauka/Interperiodica”
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arrive at a set of first-order partial differential equations
for EF and EB

(4)

(5)

In zeroth approximation with respect to the small
parameters (3), equations (4) and (5) define the spec-
trum of the linearized problem in absence of modula-
tion ω0 = cβ/n0. From (4) and (5), it follows also that
solution (2) is true, when |β – β0 | ! 1/a, where a is the
characteristic length of localization of the soliton solu-
tion. Introducing the notation κ = β0n1/2n0, α =

β0γ/2 , v = c/n0 and putting β = β0, we obtain

(6)

In a linear approximation, the spectrum of this set of
equations is as follows:

(7)

where k = β – β0.
Renormalizing the amplitudes, coordinates, and time:

e1 = EF , e2 = EB, κx  x, vκt  t,
we come to the equation in dimensionless variables

(8)

We look for a solution of (8) in the form

(9)

where the frequency departure Ω from the gap center is
one of the parameters of the two-parameter family of

EF∂
x∂

---------
ωn0

2

c
2β

---------
EF∂
t∂

---------+
i

2c
2β

-----------EF c
2β2 ω2

n0
2

–( )–=

+ i
n0n1ω

2

2c
2β

-----------------EB 2i β β0–( )x–( )exp

+ i
γω2

2c
2β

----------- EF
2

2 EB
2

+( )EF,

EB∂
x∂

---------–
ωn0

2

c
2β

---------
EB∂
t∂

---------+
i

2c
2β

-----------EB c
2β2 ω2

n0
2

–( )–=

+ i
n0n1ω

2

2c
2β

-----------------EF 2i β β0–( )x( )exp

+ i
γω2

2c
2β

----------- EB
2

2 EF
2

+( )EB.

n0
2

EF∂
x∂

---------
1
v
----

EF∂
t∂

---------+ iκ EB iα EF
2

2 EB
2

+{ } EF,–=

EB∂
x∂

---------–
1
v
----

EB∂
t∂

---------+ iκ EF iα EB
2

2 EF
2

+{ } EB.–=

ω ω0 v κ 2
k

2
+ ,±=

2α κ⁄ 2α κ⁄

e1∂
t∂

-------
e1∂
xd

-------+ ie2
i
2
--- e1

2
2 e2

2
+{ } e1,–=

e2∂
t∂

-------
e2∂
xd

-------– ie1
i
2
--- e2

2
2 e1

2
+{ } e2.–=

ei Fi iΩt( ), exp=
P

                          

solutions. Moreover, we propose the Fi amplitude
dependence on the coordinate and time to be of the
form Fi = Fi(x – Vt), i.e., we seek the soliton envelopes
in the form of traveling waves with the group velocity
V. In this case, equations (8) can be rewritten as

(10)

For this set of equations, the spectrum of linear
waves F ~ exp(iΩt – ik(x – Vt)) is presented in the form

where V = ∂ω/∂k is the group velocity.

Below, we will present the soliton solutions of these
equations for both V = 0 (immovable solitons) and V ≠ 0
(moving solitons).

2. IMMOVABLE SOLITONS

Immovable solitons in modulated media were ana-
lyzed time and again [1–10]. So, we will not dwell on
this question, but consider only the particular case of
near-gap solitons [8–10], which comprise the main sub-
ject of our work.

Putting V = 0 in (10), we obtain the equations

(11)

Further, it is convenient to introduce real variables

(12)

With respect to these variables, we have the follow-
ing equations:

(13)

An analysis of these equations was performed in
detail in [3, 7]. They have an “integral of motion”

(14)

1 V–( )
F1∂
x∂

-------- iF2 iΩF1–
i
2
--- F1

2
2 F2

2
+{ } F1,–=

1 V+( )–
F2∂
x∂

-------- iF1 iΩF2–
i
2
--- F2

2
2 F1

2
+{ } F2.–=

Ω kV– 1 k
2

+± 1 V
2

– ,±= =

F1∂
x∂

-------- iF2 iΩF1–
i
2
--- F1

2
2 F2

2
+{ } F1,–=

F2∂
x∂

--------– iF1 iΩF2–
i
2
--- F2

2
2 F1

2
+{ } F2.–=

g F1 F2, f+ i F1 F2–( ).= =

g∂
x∂

----- f 1 Ω+( )–
3
8
--- f g

2
f

2
+( ),–=

f∂
x∂

------– g 1 Ω–( ) 3
8
---g g

2
f

2
+( ).–=

E 1 Ω+( ) f
2

1 Ω–( )g
2

+–
3
16
------ g

2
f

2
+( )

2
.–=
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We will be interested in near-gap solitons at Ω < –1.
In this case, the soliton solutions are

(15)

At Ω  –1, the solutions transform into the so-
called “algebraic” soliton featured by a power-law
decrease of the amplitudes at infinity

(16)

This solution separates the gap and near-gap solitons.

At the initial variables F1 and F2, the near-gap soli-
ton takes the form

(17)

3. MOVING NEAR-GAP SOLITONS

To analyze the moving near-gap solitons, we return
to equation (10). Replacing the variables

, (18)

we arrive at the following effective “dynamical system”
in terms of u1, u2, s, q:

(19)

g
8
3
--- 1 Ω+( )1 Ω– 2 1– Ω– x( )cosh±

Ω 2 1– Ω– x( ) 1+cosh
2

-------------------------------------------------------------------,=

f
8
3
--- Ω 1 Ω+( ) 2 1– Ω– x( )sinh=

× 1 Ω– 2 1– Ω– x( )cosh±
Ω 2 1– Ω– x( ) 1+cosh

2
-------------------------------------------------------------------.

g*
4 2

3
---------- 1

1 4x
2

+
-----------------, f *

4 2

3
---------- 2x

1 4x
2

+
-----------------.= =

F1 F2
*=

=  2
3
--- 1– Ω– Ω– 2 1– Ω– x( )cosh 1–

Ω– 2 1– Ω– x( )cosh 1+
-------------------------------------------------------------------–

× i
Ω

1 Ω+
------------- 2 1– Ω– x( )sinh 

 arctan– .exp

F1 u1 iq is+( ), F2exp u2 iq is–( )exp= =
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u2 2s( )sin
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2s( )cos

1 V
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–
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1 V+( )u2
2

1 V–( )u1
2

+
2u1u2

-----------------------------------------------------=

–
Ω

1 V
2

–
---------------

3 u1
2

u2
2

+( ) V u2
2

u1
2

–( )–

4 1 V
2

–( )
---------------------------------------------------------+ 0,=
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From the first two equations, we obtain the integral
of motion

(20)

where the constant C is defined by the relation between
the amplitudes u1 and u2 at infinity (x  ±∞). For gap
solitons, this constant is equal to zero, because both
fields fall to zero at infinity in these solitons. In near-
gap solitons, one or both fields may have nonzero
asymptotics at infinity, which corresponds to so-called
“solitons-on-platform.” Thus, for these solitons, the
constant C, in general, may be nonzero. In this case, it
is the third independent parameter of the soliton (the
first two ones are the frequency Ω and the velocity V).
In this work, we restrict ourselves to a discussion of
two-parameter solitons. Three-parameter solitons will
be studied at a later time.

To study the properties of two-parameter solitons,
we put the constant C equal zero in (20) and obtain the
relation between the amplitudes u1 and u2:

(21)

Introducing the renormalized coordinate z = (x –

Vt)/  and excluding, we obtain the following
equations for u1, s, and q:

(22)

where

,

and

The first two equations may be isolated. They repre-
sent the effective Hamiltonian system characterized by
the Hamiltonian

(23)

q∂
x∂

-----
2s( )cos

1 V
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–
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1 V+( )u2
2

1 V–( )u1
2

–
2u1u2
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–
VΩ

1 V
2

–
---------------

u1
2

u2
2

–( ) 3V u2
1

u2
2

+( )–

4 1 V
2

–( )
---------------------------------------------------------+ 0.=

1 V–( )u1
2

1 V+( )u2
2

– C,=

u2
1 V–
1 V+
-------------u1.=

1 V
2

–

du1

dz
-------- u1 2s( ),sin=

ds
dz
----- 2s( )cos ν– α V( )u1

2
,–=

dq
dz
------ νV– δ V( )u1

2
,–=

ν  = Ω 1 V
2

– , α V( )⁄  = 3 V
2

–( ) 2 1 V+( ) 1 V
2

–⁄

δ V( ) V 1 V+( ) 1 V
2

– .⁄=

H 2s( )cos ν–[ ]u1
2 α

2
---u1
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0
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s0–s0 0 s

C

C '

u1 (a)

π/2–π/2 s

C

C '

u1 (b)

π/2–π/2

B

B'
0

Fig. 1. Phase portrait of system (22). (a) –  < Ω <  (the frequency and the wave vector lie inside the region bounded

by two branches of the LWS). The coordinates of the saddle points are u1 = 0 and cos(2s0) = ν. (b) Ω < –  (the frequency

and the wave vector lie under the lower branch of the LWS). The coordinates of the saddle points are  u1 = ±  and s =
±π/2.

1 V
2

– 1 V
2

–

1 V
2

–

1– ν–( ) α⁄
1

–1

1–1 V

Ω

A

B

Fig. 2. Region of existence of soliton solutions in the param-
eter plane (Ω , V). The circle corresponds to the dispersion

law of the linear waves Ω = ± . The shaded region
A inside the circle corresponds to the gap solitons, the lower
arc of the circle, to the “algebraic” solitons, and the band
under the circle (region B), to the near-gap solitons.

1 V
2

–

P

for the canonically conjugated generalized coordinate

2s and the momentum . The existence of the integral
of motion H allows one to integrate system (22).

The phase portraits of this system for different val-
ues of the frequency Ω are shown in Figs. 1a and 1b. At

Ω >  (which corresponds to the value ν > 1),
there are no singular points in the (u1, s) phase plane
and, hence, there are no soliton solutions in this region.

At Ω = , i.e., when ν = 1 (which corresponds
to the upper branch of the LWS), a single singular point
is the point s = u1 = 0, which is split into four singular
points lying in the interval –1 < ν < 1 (these are centers

s = 0, u1 = ± , and saddles s = ±0.5 ,
u1 = 0). In this interval (region A in Fig. 2), there are
moving gap solitons, which correspond to separatrices

C and C ' in Fig. 1a. In the case Ω < – , i.e.,
when ν < –1 (region B in Fig. 2), each saddle point is
split into two points given by the coordinates s = ±π/2,

u1 = ± , which corresponds to a nonzero
field of the system at infinity. The separatrices C, C', B,
B', which connect these points, describe two types of
moving near-gap solitons of the frequencies lying
under the lower branch of the LWS. The solutions for

u1
2

1 V
2

–

1 V
2

–

1 ν–( ) α⁄ νarccos

1 V
2

–

1– ν–( ) α⁄
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such near-gap solitons have the form

(24)

After substituting (24) into the equation for the vari-
able q, we obtain an explicit expression for this func-
tion

(25)

Using (9), (18), and (24) and returning to the initial
variables, we obtain

(26)

where ζ = 2 (x – Vt)/ .

The near-gap solitons found represent the so-called
“solitons-on-platform,” which move with the same
velocity as the nonlinear waves of the constant ampli-

s
ν

1 ν+
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1
α
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tude do. It can be easily verified by considering the
solution asymptotics at infinity

(27)

which coincide with the solution of (8) for spatially
uniform nonlinear waves.

When the coordinate ζ varies from –∞ to +∞, the
phase of the soliton high-frequency “contents” acquires
the shift ∆ = π(3 + 2V – V2)/(3 – V2).

Of special interest is the limit passage from moving
near-gap solitons to moving gap solitons. In the limit

ν  –1, i.e., when Ω  – , (26) transforms
to the expression for an “algebraic” soliton

(28)

It is natural that this solution can also be obtained from
the expression for the gap solitons in the limit ν  –1.

Putting V = 0 in (26) and going over to the variables
f, g (see (12)), we obtain the above expressions for
immovable “algebraic” soliton (16).

CONCLUSIONS

In this work, the soliton solutions for nonlinear opti-
cal medium with a modulated refraction index were
derived and analyzed. The soliton parameters fall either
into the LWS gap (so-called gap solitons) or outside it
(near-gap solitons). We have pioneered an analytical
expression for moving near-gap solitons, which repre-
sent the localized excitations on the background of the
nonlinear waves of an amplitude which does not
decrease at infinity (so-called “solitons-on-platform”).
The velocity of the near-gap soliton is equal to the
group velocity of the background nonlinear wave.

We had considered the case of so-called focusing
nonlinear optical medium, which is characterized by
the positive coefficient γ in (1). In this case, the near-
gap soliton solutions exist in the region under the lower
branch of the LWS. In the case of the negative γ (defo-
cusing medium), the character of the soliton solutions

e1 2,
∞

i
2 1 V±( )

3 V
2

–
--------------------- 1 V

2
–– Ω–±=

× iΩt i
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2
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2
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–
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× i 2
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2

–
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does not change qualitatively, but near-gap solitons
exist in the region above the upper branch of the LWS.
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Abstract—The effect of temperature on the 6.05-eV absorption band in α-Al2O3 has been studied in the 80–
515 K region. The data obtained are analyzed in terms of a one-coordinate model with strong electron–phonon
coupling. This band is shown to be formed by two peaks at 5.91 and 6.22 eV (T = 293 K) originating from
absorption at the F+ and F centers, respectively. An analysis of the experimental temperature dependences has
allowed us to calculate the energies of effective phonons responsible for the broadening and shift of the peaks.
The energies calculated agree with the data obtained in other studies and lie in the region of corundum acoustic-
vibration frequencies. The Huang–Rhys factors have been evaluated for both centers and found to be close to
the estimates made by other authors. The results are discussed in detail and compared with independent data on
optical absorption and luminescence of anion centers in colored and irradiated α-Al2O3 single crystals. © 2000
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Anion-defective α-Al2O3 crystals belong to a class
of materials used in development of high-sensitivity
detectors of ionizing radiation [1, 2]. Defects on the
oxygen sublattice play the key role in the behavior of
the optical, spectral, and temperature characteristics of
these materials, as well as in their response to irradia-
tion [3–6].

Anion off-stoichiometry in corundum can be
obtained by thermochemical coloring or by irradiating
it by particles [1, 7–9]. Optical absorption spectra of
such crystals in the UV range are well studied, and they
exhibit a strong 6.05 (6.1) eV band associated with the
F center (oxygen vacancy with two trapped electrons)
[2–4], as well as a band at 4.8 eV and a strongly polar-
ized one at 5.4 eV, which are assigned to absorption by
the F+ center (oxygen vacancy with one trapped elec-
tron) [3, 4]. Besides the optical absorption by anion
centers, comprehensive spectral luminescence studies
have recently been made on α-Al2O3, with peaks found
at 3.0 eV (luminescence of the F center) and at 3.8 eV
(radiative transitions involving the F+ center) [3–6, 10–
12]. Models were proposed for these processes, in
which the oxygen-vacancy centers were considered as
isolated [3, 4] or involved in charge transfer [13].

At the same time, it should be pointed out that,
despite the enormous amount of papers dealing with
this problem, very few of them systematically study the
effect of temperature on absorption spectra of α-Al2O3.
While data obtained at room and cryogenic tempera-
tures [2–5] and information on the annealing of F and
F+ centers and on the corresponding optical bands [2, 7,
9] are certainly available, an overall analysis of temper-
1063-7834/00/4207- $20.00 © 1259
ature effects in the dynamics, like the one done, for
instance, for the F+ center luminescence [4, 5], is lack-
ing. Such an approach permits one, however, to directly
isolate and take into account the electron–phonon inter-
action, which plays a substantial part in α-Al2O3.
Besides, absorption spectra are, as a rule, a starting
point in a discussion of many properties, including irra-
diation-induced ones, of the oxygen-deficient corun-
dum. Therefore, one should know and bear in mind the
transformation of these spectra under heating.

This work was aimed at investigating the effect of
temperature on the behavior of the 6.05-eV absorption
band in spectra of α-Al2O3 single crystals with oxygen
vacancies and at establishing the main parameters of
the center(s) responsible for this band.

1. SUBJECTS OF THE INVESTIGATION

We studied nominally pure α-Al2O3 single crystals
grown by the Stepanov method in an atmosphere which
was strongly reducing due to the presence of graphite
(thermochemical coloring). A detailed description of
the growth conditions can be found in [14]. The con-
centrations of iron and of other impurities having
absorption bands in the spectral region under study
were so low as not to affect the results of the experi-
ment [15]. The final samples were 0.8-mm-thick pol-
ished disks 5-mm in diameter, with surfaces of optical
quality. Note that the α-Al2O3 single crystals used in
this work are employed in fabrication of thermolumi-
nescent radiation detectors (TLD-500K, TU 2655-006-
02069208-95). The samples to be used in the measure-
ments were chosen at random from the lot having dif-
2000 MAIK “Nauka/Interperiodica”
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ferent sensitivities to radiation. The instrumental and
methodological aspects of estimation of the sensitivity,
which was determined preliminarily from thermolumi-
nescence yield, were discussed in [16].

All measurements were carried out on a Specord-
M40 spectrophotometer in a vacuum cryostat within
the temperature range of 80 to 515 K. The experiment
covered the 4–6.45-eV UV range.

30

20

10

0

4.8 eV

1

2

3

Absorption coefficient, cm–1

4 5 6 7
Photon energy, eV

Fig. 1. Optical absorption spectra measured at T = 293 K on
samples differing in sensitivity: (1) moderate sensitivity
≈4.5 × 108 quanta/Gy, (2) high sensitivity ≈8.5 ×
108 quanta/Gy, and (3) low sensitivity ≈1.9 × 108 quanta/Gy.
P

2. EXPERIMENTAL RESULTS

In the first stage of the work, room-temperature
optical absorption spectra were measured on samples
with different sensitivities (Fig. 1). All the samples are
seen to have a clearly pronounced band at 6.05 eV. The
sample with moderate sensitivity exhibits the strongest
peak (curve 1). Besides, all samples show a weak band
in the 4.8-eV region. This peak is assigned to the
1A  1B transition of the F+ center [4]. The variation
in peak intensity from one sample to another is associ-
ated with the nonuniformity of the defect concentration
distribution along the starting corundum rod from
which the samples were cut [14]. It is also worth noting
that we are not aware of any data on a correlation
between this sensitivity of α-Al2O3 single crystals and
the band intensity in the absorption spectrum. Such
studies are of independent interest and are beyond the
scope of the present work.

Subsequent temperature measurements were per-
formed only on sample 1. Figure 2 shows absorption
spectra taken in the 80–515 K range. The positions of
the band maximum Em are given in Table 1 for all tem-
peratures. As seen from Fig. 2 and Table 1, the band
half-width increases, and the value of Em remains prac-
tically constant, with increasing temperature. Let us
analyze the observed variation of the shape and the
temperature behavior of the 6.05-eV peak under study.
30

20

10

0

Absorption coefficient, cm–1

5 6 7
Photon energy, eV
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0
765

84 K

40

84 K
180 K
293 K

514 K

Fig. 2. Optical absorption spectra measured at different temperatures.
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3. DISCUSSION

3.1. The Band Shape

Note, first of all, that the absorption bands in Fig. 2
are asymmetrical, with the high-energy wings being
smoother and extended. This is particularly clearly seen
in the inset showing an 84-K spectrum. The dashed line
in the inset is a Gaussian centered at 6.05 eV, which fits
accurately to the low-energy side of the band while
deviating from its high-energy wing. The spectral
region beyond 6.2 eV is certainly outside the limits of
the spectrophotometer used. However, the observed
asymmetry is not the result of measurement errors and
is present in numerous independent works done on var-
ious α-Al2O3 samples [2–5, 8, 9, 11].

Figure 3 compares the results obtained in the
present study with the data of other authors relating to
room temperature measurements on additively colored
single crystals, where F centers are of growth origin
(Fig. 3a), and on samples irradiated by particles
(Fig. 3b), where the concentration of these centers is
also high. To simplify the comparison, the spectra are
normalized to their maxima. With the exclusion of [11],
where the band half-width is noticeably larger, all the
bands agree very well not only in the peak position, but
in shape as well, a point which appears significant.

The spectral shape suggests that, in this region,
more than one center can absorb radiation, as already
pointed out in some papers [4, 5, 10]. Another feature
of the 6.05-eV band (see Fig. 2, Table 1) is that the
maximum does not shift to lower energies with increas-
ing T, as is the case with most crystals [17]. The
absence of any band maximum shift in α-Al2O3 under
heating was reported in [5]. The temperature-indepen-
dent behavior of Em can also be due to the existence of
several absorbing transitions.

Accordingly, the experimental spectra obtained at
different temperatures were decomposed into indepen-
dent Gaussians (linear electron–phonon coupling
model). This operation yielded two sets of peaks, G1
and G2 (Fig. 4), which most closely reproduce the
observed profile of the 6.05-eV band. The value of Em,
the half-width H, and the approximation error (the sum
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
of squared differences) are given in Table 1 for all tem-
peratures. As seen from Fig. 4, at low temperatures
(84 K) the peaks resolve clearly, whereas at room tem-
perature and higher, the G1 peak is overlapped by the
G2 peak. Hence, at high T, the behavior of the 6.05-eV
band is determined by the dominant G2 maximum.

1.0

0.5

0

Normalized absorption

Photon energy, eV

(a)This work
[7]

[11]

1.0

0.5

0

(b)This work
[4] protons

[8] electrons

4 6 8

[9] neutrons

Fig. 3. Comparison of the results of this work with data from
independent experiments: (a) additively colored α-Al2O3
single crystals and (b) irradiated crystals. The particles used
to irradiate the starting α-Al2O3 single crystals are specified
after the reference numbers.
Table 1.  Spectral characteristics of decomposition into Gaussians

T, K
6.05-eV band Peak G1 Peak G2 Error, 

(cm–1)2
Em, ±0.03 eV Em, ±0.005 eV H, ±0.010 eV Em, ±0.012 eV H, ±0.012 eV

84 6.08 5.975 0.355 6.263 0.540 0.085

180 6.05 5.952 0.366 6.242 0.589 0.051

240 6.05 5.935 0.389 6.237 0.635 0.056

293 6.05 5.908 0.410 6.221 0.683 0.030

364 6.05 5.889 0.434 6.212 0.723 0.021

435 6.08 5.852 0.449 6.183 0.771 0.020

514 6.05 5.820 0.490 6.174 0.825 0.020
0
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It is essential that the decomposition of the optical
bands at room temperature made for other samples
shown in Fig. 1 also yield pairs of Gaussians with the
same Em and H within experimental errors (see
Table 2).

Thus, by analyzing the 6.05-eV band in the absorp-
tion spectrum of the anion-defective α-Al2O3, one can

40

20

0

Absorption coefficient, cm–1

Photon energy, eV

(a)
84 K

4 6 8

30

10

G2

G1

20

(b)293 K30

10

G2

G1

0

Fig. 4. Decomposition of the 6.05-eV absorption band into
independent Gaussians: circles are the experiment, dashed
lines are independent Gaussians, and the solid line is a cal-
culated resultant curve.

Table 2.  Parameters of decomposition into Gaussians for
different samples and T = 293 K

Sam-
ple no.

Peak G1 Peak G2
Error, 

(cm–1)2Em, 
±0.005 eV

H, 
±0.010 eV

Em, 
±0.005 eV

H, 
±0.010 eV

1 5.908 0.410 6.221 0.683 0.030

2 5.917 0.405 6.233 0.682 0.018

3 5.918 0.391 6.235 0.726 0.020
P

obtain a set of two Gaussians, whose superposition
reproduces with a high accuracy the measurements
made at different temperatures and on different sam-
ples. The dominant peak is G2 (Em = 6.22 eV, H =
0.68 eV for 293 K), while peak G1 (Em = 5.91 eV, H =
0.41 eV for 293 K) is substantially weaker and becomes
totally absorbed by G2 at high temperatures.

Prior to identifying the peaks obtained with specific
centers, let us analyze the spectral parameters given in
Table 1 as functions of temperature.

3.2. Analysis of Temperature Dependences

The shift of the peak position with increasing T can
be approximated by the relation of Fan for the variation
of the gap width under phonon-induced energy-level
displacement [18]

(1)

where Em(0) is the position of the maximum at zero
temperature, A is the Fan parameter, which depends on
microscopic characteristics of the material [19] and is
related to the second-order deformation-potential con-
stant [20], and 〈ns〉  = [exp("ωs/kT) – 1]–1 is the Bose–
Einstein factor for phonons of energy "ωs responsible
for the energy-level shift. The universality and applica-
bility of relation (1) to a variety of materials, both crys-
talline and not, has been discussed earlier [20–22].
Note that expression (1) for the energy level shift takes
into account only the contribution due to electron–
phonon coupling. The contribution of thermal lattice
expansion is not explicitly included. It was shown how-
ever, that, for α-Al2O3, this contribution is negligible
within the temperature range under study [4]. Besides,
for high temperatures, where kT @ "ωs, expression (1)
is linear, and the linear contribution due to thermal
expansion turns out to be implicitly included [23].

The temperature dependence of the peak half-width
is described, in its turn, by the well-known relation
(see, e.g., [4, 5, 17])

(2)

where H(0) is the peak half-width at zero temperature,
and 〈nb〉  is the Bose–Einstein factor for phonons of
energy "ωb responsible for level broadening. Expres-
sion (2), which is cast here intentionally not in the tra-
ditional form through the hyperbolic cotangent but,
identically, through the average number of occupied
phonon states, is obviously equivalent to (1). The fact
that the temperature dependences of the shift and
broadening of energy levels are formally the same and
proportional to the Bose–Einstein factor is discussed in
considerable detail in [19]. We also note that both these
expressions can be directly derived using the dynamic
disorder parameter, i.e., the rms deviation of atoms
from their equilibrium positions [20]. The band-maxi-

Em T( ) Em 0( ) A ns〈 〉 ,–=

H2 T( ) H2 0( ) 2 nb〈 〉 1+( ),=
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mum shift and homogeneous broadening are connected
with the thermal disorder.

Figure 5 presents fits to the experimental character-
istics Em(T)and H(T) made for both peaks with expres-
sions (1) and (2). The calculated curves are seen to
approximate the observed relations well. Table 3 lists
the values of the parameters for both relations, which
were obtained by the fitting. Note that the effective
phonons responsible for the shift and broadening for
both peaks differ in energy, with "ωs < "ωb in both
cases. This implies that the processes under study
involve interaction with different vibration modes, and
should be characterized by different one-coordinate
models of the center. Note that the values "ωb = 424
and 328 cm–1 obtained here are close to the acoustic
vibration energies of corundum, 432 and 378 cm–1 [24].
This is a logical and physical result indicating that oxy-
gen vacancies interact with long-wavelength modes of
their closest neighbors, the heavy aluminum atoms.
Besides, the one-phonon model used and the Gaussian
peak shape permit estimation of the Huang-Rhys factor
S = H2(0)/("ωb)28ln2. The values thus obtained are
listed in Table 3.

Thus, the temperature dependences of the spectral
characteristics of peaks G1 and G2 have been fitted by
relations (1) and (2). The energies of the effective
phonons responsible for the broadening and shift of
both peaks lying in the region of the acoustic vibrations
of α-Al2O3 have been obtained. The Huang-Rhys fac-
tors have been calculated.

3.3. The F and F+ Centers

A comparative analysis of our results and of the
numerous data taken from independent studies permits
the following conclusion. The G1 peak is due to
absorption by the F+ center, while the G2 peak is con-
nected with the F center. Consider the main arguments
underlying this conclusion.

Peak G1 (5.91 eV)  F+ center:
1. It is not the main peak. At high temperatures, it is

fully dominated by the main peak. An earlier analysis
of the F+-center optical properties already suggested
that this center absorbs in the 5.9–6.3 eV region, but
that its band is obscured by the stronger band of the F
center [4, 5, 10].

2. Under excitation by light with 6.05 eV (at T =
293 K) [6] and 6.4 eV (at T = 77 K) [5], one observed
strong 3.0-eV luminescence associated with the F cen-
ter and a weak luminescence at 3.8 eV assigned to the
F+ center. This agrees with Fig. 4, if one recalls that the
oscillator strength f for the F+center is twice as small
(see Table 3).

3. The excitation spectrum of the 3.8-eV lumines-
cence obtained at 77 K has a shoulder at 5.9 eV [5].
This indicates F+-center absorption in this region.
Steady-state and time-resolved excitation spectra of the
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
same luminescence produced by synchrotron radiation
at T = 10 and 297 K exhibit a band at 5.95 ± 0.03 eV,
which was assigned to the F+ center [25]. These data
are in a good agreement with our results.
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Fig. 5. Temperature dependences of the spectral character-
istics of peaks G1 and G2. The symbols refer to the corre-
sponding experimental values. Solid lines are fits done using
formulas (1) and (2).

Table 3.  Parameters derived from temperature behavior of
the peaks

Parameters Peak G1 (F+ center) Peak G2 (F center)

Em(0), eV 5.976 ± 0.005 6.265 ± 0.010

"ωs, cm–1 268 ± 20 171 ± 20

A, eV 0.18 ± 0.03 0.06 ± 0.005

"ωb , cm–1 424 ± 20 328 ± 20

400 [4]

340 ± 20 [5]

H(0), eV 0.356 ± 0.004 0.546 ± 0.008

S 8.26 35.8

8.65 [4]

12 [5]

N, ×1016 cm–3 5.73 9.24

10.7 [4] 18.5 [4]

f 0.66 [4] 1.33 [4]
0
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4. The values "ωb = 424 cm–1 and S = 8.26 obtained
in this work agree well with the results derived from the
temperature behavior of the F+-center luminescence
peak at 3.8 eV, namely, 400 cm–1 and 8.65, respectively
(Table 3) [4].

5. The G1 peak observed by us can be associated
with the 1A  2B electronic transition of the F+ cen-
ter, whose energy was reported as 6 eV in [10] and
6.3 eV in [4], while theory [26] predicted 5.15 eV.

Peak G2 (6.22 eV)  F+ center:

1. It is a dominant peak. Above room temperature, it
forms the 6.05-eV band, whose behavior is connected
unambiguously with the F centers present in α-Al2O3
[3–7].

2. See argument 2 above for peak G1.

3. The value H = 0.54 eV, which we obtained for G2
at T = 84 K, is close to the half-width of the 6.05-eV
band in polarized light (0.67 eV at T = 77 K) [4]. For
the polarization used (E ⊥  c, the 1A  2B electronic
transition of the F+ center has a low oscillator strength

 = 0.020 [4]. For the other polarization (E || c),

 = 0.935, and the half-width of the 6.05-eV band

increases to 0.78 eV [4].

4. The calculated Huang-Rhys parameter S = 35.8 is
close to the values obtained for the F center in MgO
(S = 39) and in LiF (S = 41) [27].

5. Note that all excitation spectra of the 3.0-eV
luminescence known to us always exhibit a peak at
6.1 eV, rather than at 6.22 eV, as is the case in our work.
This may be due to an error in the determination of Em

for G2, because the spectrum was measured only up to
6.45 eV, and higher-energy peaks present [8, 11, 25]
may affect the final estimate of the peak position.

In our opinion, the arguments presented here are in
favor of the above peak assignment.

Knowing the oscillator strengths (see Table 3), we
can use Smakula’s formula to estimate the concentra-
tion N of the corresponding defects in the sample under
study. The values of N thus obtained are compared in
Table 3 with the results quoted in other works. Note
that, in other studies,  was estimated from the 4.8-

and 5.4-eV bands, while NF was calculated from the
total 6.05-eV band, which, according to the present study,
could bring about overestimated figures. We also calcu-
lated the concentrations of the F-type centers in samples
2 and 3 (Fig. 1) and obtained  = 4.89 × 1016, NF =

7.37 × 1016 for sample 2 and 2.61 × 1016 and 4.38 ×
1016 cm–3, respectively, for sample 3. These values of N
provide one more argument for the F and F+ centers
being distributed nonuniformly over the starting ingot,
and for their concentration varying from one sample to
another.

f
F

+

f
F

+

N
F

+

N
F

+

P

Our results permit a suggestion that for  @ NF

the 6.05-eV band has two maxima. Indeed, it was
observed in [28] that, in the absorption spectrum of sin-
gle-crystal corundum with /NF = 2, the 6.05-eV

band transformed to a band peaking at 6.33 eV and a
shoulder at 5.95–6.10 eV. We see that this agrees well
with our data. Interestingly, in [28], the 6.33-eV peak
was assigned to absorption by F+ centers, and the
shoulder, to traces of a band due to F centers present at
lower concentrations. Our results suggest, however,
that one has here a reverse situation.

CONCLUSION

Thus, we have studied absorption spectra of oxy-
gen-deficient corundum within the 4–6.45-eV region at
temperatures from 80 to 515 K. Using the linear elec-
tron–phonon coupling model, we succeeded in show-
ing that the band at 6.05 eV can originate from absorp-
tion by F and F+ centers with maxima at 6.22 and
5.91 eV, respectively, at room temperature. The result-
ant curve of these peaks very accurately reproduces the
shape of the 6.05-eV band obtained at different temper-
atures and in samples with a different anion-defect con-
centration ratio. The results obtained can be used to
interpret the transformation of absorption spectra in
samples dominated by F+ centers.

We have calculated the energies of phonons respon-
sible for the broadening and shift of the peaks. The cal-
culated values "ωb = 424 and 328 cm–1 for the F+ and F
centers, respectively, lie in the region of corundum
acoustic vibration frequencies. The Huang-Rhys fac-
tors obtained for the F and F+ centers (S = 35.8 and
8.26, respectively) agree with independent estimates of
other works.
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Abstract—The ligand hyperfine interaction (HFI) of Gd3+ ions in α-LiIO3 single crystals is studied by the
method of rf discrete saturation, and the tensor components of ligand HFI are determined. The model of a para-
magnetic center is proposed on the basis of the analysis of the obtained results, and the mechanism of lattice
distortion is discussed. © 2000 MAIK “Nauka/Interperiodica”.
Single crystals of lithium iodate α-LiIO3, which
possess unique nonlinear optical properties, are among
the quantum electronics materials that have been stud-
ied intensively in recent years by various methods,
including radiospectroscopy. By the end of the 1980s,
the EPR spectra of almost all the ions of the iron group
in this crystal had been studied by various authors. The
investigations of ligand hyperfine interactions using the
rf discrete saturation (RFDS) technique [1–3] enabled
us to unambiguously establish the models of implanta-
tion of these ions in the lattice.

Quests to enhance the stability to laser radiation of
materials for optical transformations led to the synthe-
sis of lithium iodate single crystals doped with certain
elements of the rare-earths group in the late 1980s. We
studied EPR spectra and determined the spin–Hamilto-
nian parameters of Er3+ and Gd3+ ions in α-LiIO3 [4,5].
In this work, we present the results of investigating
ligand HFI of Gd3+ ions and discuss the model of a
paramagnetic center.

1. EXPERIMENTAL TECHNIQUE

The RFDS technique, which is a pulse analog of the
electron–nuclear double resonance, is described in
detail in [6]. Experiments were carried out on a 3-cm
superheterodyne spectrometer at liquid helium temper-
ature. Single crystals of lithium iodate were grown by
vaporizing the solution at a temperature of 40–50°C at
the Kirovokan Chemical Plant. The investigations of
EPR spectra revealed that annealing of crystals
increases the intensity of EPR lines of Gd3+ almost by
an order of magnitude. Since lithium iodate is ther-
mally unstable at temperatures above 75°C, a technique
was developed to increase the annealing temperature to
200°C. Single crystals of α-LiIO3 were placed in a
high-pressure bomb made of a thick-walled hollow
bronze cylinder with a screw cap having a sealing gas-
1063-7834/00/4207- $20.00 © 21266
ket made of annealed copper. Along with the samples,
the bomb also contained iodine crystals whose subli-
mation created an excess pressure of iodine vapor. The
bomb was immersed in a container with glycerine and
heated to the required temperature. The experiments
were carried out on samples subjected to annealing for
two hours at a temperature of 200°C, followed by nat-
ural cooling with the bomb. The concentration of Gd in
the charge varied from 10–3 to 10–2 mol % (limiting
concentration for rare-earth elements).

2. CRYSTAL STRUCTURE

The hexagonal modification (α phase) of lithium
iodate belongs to the space group P63. The crystal
structure consists of covalent IO3 complexes in the
form of right trigonal pyramids whose principal axes
coincide with the sixfold axis c. A strong interaction
between adjacent IO3 groups leads to the formation of
a strong three-dimensional net with lithium ions in the
octahedral voids. Figure 1 shows the projections of the
crystal lattice on two planes parallel and perpendicular
to the c axis of the crystal.

3. DISCUSSION OF EXPERIMENTAL RESULTS

We studied the RFDS spectra only for lithium nuclei
because their ligand HFI are known to be of a purely
dipole type, while a significant covalent contribution is
observed in the case of iodine nuclei. The spectra were
measured in a magnetic field B || c for various electron
transitions, and the angular dependences for the spectra
were obtained by rotating the magnetic field in a plane
perpendicular to c. The dots in Fig. 2 describe such an
angular dependence for the electron transition M =
−5/2  M = –3/2. It can be seen clearly that this plot
is qualitatively similar to the analogous angular depen-
dences obtained for ions of the iron group (see, for
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example, [1, 2]). In the case of Gd3+, however, the lines
A and B corresponding to lithium nuclei on the c axis
[Li(3) and Li(4)] are not isotropic. Calculations show
that this anisotropy is connected to the angular depen-
dence of the resonant magnetic field of the EPR spec-
tral line associated with the presence of fine-structure
terms in the electron Hamiltonian of Gd3+ and does not
contain a contribution from the off-diagonal elements
of the ligand HFI tensor.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
We choose a reference frame with the origin at the
nucleus Li(0), the Z axis coinciding with the hexagonal
axis c of the crystal, and the X axis being along the
Li(0)–Li(8) direction (see Fig. 1). According to [1], the
angular dependence of the RFDS lines of equivalent
pairs of lithium nuclei Li(5) and Li(8) in the plane Z =
0 and pairs Li(11) and Li(14), as well as Li(17) and
Li(20), lying in the planes Z = ±c0/2, respectively, for

each electron state  of the transition   
is described by the formula

M| 〉 M| 〉      M'| 〉 
(1)ν γB S⊥
M

Axx–( )
2

S⊥
M

Axz( )
2

+{ } ϕ γB S⊥
M

Ayy–{ }
2

ϕ2sin+2cos ,=
where Axz = 0 for Li(5) and Li(8) nuclei. Here, Aik are

the components of the ligand HFI tensor,  =

 is the effective magnetic quantum number,

 is a linear combination of the state with the projec-
tion of the electron spin M (S = 7/2 for Gd3+) that diag-
onalizes the total electron Hamiltonian of Gd3+ [4]. The
angular dependences of the remaining pairs of ions are
obtained by replacing ϕ with ϕ ± 60° in (1).

The spectrum of the nuclei Li(3) and Li(4) (A and
B), lying on the same axis c with Gd3+, is described by
the formula

(2)

Quadrupole splitting Q = 51 kHz is observed for the
nucleus A (I = 3/2 for Li7), while quadrupole splitting is
not resolved for the remaining Li nuclei.

It was mentioned that the slight angular dependence
of the spectral lines A and B is associated only with the
angular dependence of the EPR line in a plane perpen-
dicular to the c axis, and Gd3+ is the only ion among all
those investigated in α-LiIO3 by the RFDS technique
for which such a dependence is observed. This circum-
stance makes it possible to draw conclusions about the
direction of the crystal electric field and the distortion
of the coordination oxygen octahedron of the magnetic
ion. For this purpose, we analyzed the RFDS spectra by
defining the magnetic field in (1) in an analytical form
through the approximating formula

(3)

where B1 and B2 were determined by the least squares
method from the angular dependences of the EPR spec-
tra of Gd3+ presented in [4]. The parameters B1 =
296.96 and B2 = 1.49 mT approximate this dependence
with a high degree of precision for the transition
−5/2  –3/2. Since the HFI tensors Aik are defined in
the above reference frame and the X' axis of the crystal
field is not known a priori (the Z ' axis coincides with
the c axis), we introduce the parameter ∆ϕ in formula
(3), viz., the angle between X and X ', which is deter-

S⊥
M

M Ŝx M

M| 〉

ν γB S⊥
M

Axx.–=

B B1 B2 3ϕ ∆ϕ+( ),2cos+=

                                                                      
                                                       

mined from an analysis of the RFDS spectra, along
with the components Aik of the HFI tensors.

Processing the spectra involves using a computer to

minimize the dispersion  taken over
all the experimentally measured points in the orienta-
tions B || c and B ⊥ c. Minimization was carried out
over all the parameters, including primarily the param-
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Fig. 1. Crystal structure of α-LiIO3 in two projections, par-
allel (A  A') and perpendicular (B  B') to the c axis.
(a) (A  A') the solid lines indicate the IO3 groups in
which iodine atoms lie in the plane of the cross section; (b)
(B  B') the solid lines indicate the IO3 groups in which
oxygen atoms lie in the plane of the cross section. The
remaining groups are shown by dashed lines. The numbers
correspond to lithium atoms for which ligand HFI was mea-
sured; a0 = 5.4815, c0 = 5.1709 Å.
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eter ∆ϕ. The effective magnetic quantum numbers 

and  were calculated from the wave functions
obtained by diagonalizing the total electron Hamilto-
nian of Gd3+ with parameters described in [4]. The vari-

ation of  associated with the angular dependence of
the EPR spectrum is less than 0.01% and was disre-
garded in computations.

The values of the components of the ligand HFI ten-
sors for all the nearest lithium nuclei are presented in
the table. These tensors have a dipole form and zero
traces within the limits of the experimental error. Since
lithium ions are in the S state, we assumed the interac-
tion to be of a purely dipole type and calculated the
absolute displacements from the equilibrium position
of the nearest lithium ions, which are presented in the
table. It should be mentioned that spectra from the lith-

S⊥
M

SZ
M

S⊥
M

C
D

0.1 (åHz)

0

10

20

30

40

50

60

4 5 6

ϕ, deg

ν, MHz

C CD D DC

A AB B

Fig. 2. Angular dependence of the RFDS spectrum of lith-
ium nuclei for α-LiIO3 in the plane perpendicular to the c
axis. Curves A, B, C and D correspond to Li(3), Li(4), Li(5)–
Li(10), and Li(11)–Li(22), respectively. Curves A have a

quadrupole splitting Q = 51 kHz,  = –1.4811, and  =

–2.4885.

S⊥
M

S⊥
M'
P

ium nuclei closest to the Gd3+ nuclei along the c axis
were not observed, which indicates the presence of
vacancies compensating the excess charge of the para-
magnetic ion. Thus, the paramagnetic center model of
the rare-earth ion Gd3+ is completely identical to the
ions of the iron group investigated earlier.

The value of ∆ϕ was found to be +38.8 ± 1.6°. Let
us consider the local lattice distortions using the sim-
plest billiard ball model based on the crystal structure
data [7]. We choose the oxygen ion radius to be 1.38 Å
[8], the value following from the crystal structure of
α-LiIO3 under the assumption that the oxygen ions are
in contact in the I  complex. The ionic radii for Gd3+

and Li+ are 0.938 and 0.68 Å, respectively. The octahe-
dral voids in the oxygen lattice of α-LiIO3 are capable
of accommodating ions with a radius smaller than
0.74 Å; hence, a Gd3+ ion substituted for lithium [say,
Li(0)] must push apart the oxygen ions. It was assumed
by Karthe [9] that I  complexes rotate as a whole
around iodine in the vertical plane passing through the
c axis, making room for the substituting paramagnetic
ion. We would like to substantiate another mechanism
according to which the IO3 complexes rotate around
iodine through an angle δ in the plane perpendicular to
the c axis. Calculations show that replacing Li(0) by a
Gd3+ ion causes the six nearest IO3 groups associated
with the coordination oxygen octahedron of gadolin-
ium to rotate around the c axis through an angle δ =
13.3° (clockwise, as shown in Fig. 1). In this case, the
oxygen octahedron rotates as a whole through an angle
–8.9°. The X' axis of the crystal electric field in the
undistorted crystal forms an angle 45.6° with the X
axis. This gives the value 36.7° of the angle for Gd3+ :
α-LiIO3, which is quite close to the value 38.8°
obtained by us. The displacements of Li(3) and Li(4)
ion must also be accompanied by a distortion of the
oxygen surroundings. According to the model we pro-
posed, a displacement of Li(3) by 0.57 Å towards the
vacancy Li(1) corresponds to a rotation of six IO3 com-
plexes through an angle –11.9°, while a displacement

O3
–

O3
–

                   
                                                                                                            

Components of ligand HFI tensors Aik (MHz) and absolute displacements ∆ (Å) of lithium ions

Nucleus Azz Axx Ayy Axz ∆

Li(3) 0.633 ± 0.004 –0.313 ± 0.002 –0.313 ± 0.002 0 ∆z = –0.57

(0.626) (–0.313) (–0.313)

Li(4) 0.512 ± 0.003 –0.252 ± 0.002 –0.252 ± 0.002 0 ∆z = 0.22

(0.504) (–0.252) (–0.252)

Li(5)–Li(10) –0.179 ± 0.002 0.352 ± 0.002 –0.172 ± 0.002 0 ∆x = 0.1

(–0.176) (0.352) (–0.176)

Li(11)–Li(22) – 0.195 ± 0.002 –0.313 ± 0.002 0.154 ± 0.006 ∆x = 0.06

(–0.053) (0.182) (–0.129) (0.153)

Note: Theoretical dipole values taking lattice distortions into account are shown in parentheses.
HYSICS OF THE SOLID STATE      Vol. 42      No. 7      2000
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of Li(4) by 0.22 Å towards the vacancy Li(2) corre-
sponds to a rotation through the angle –7.4°.

The approximate nature of the model we used does
not allow us to draw unambiguous conclusions about
the mechanism of distortions. However, the closeness
of the computed direction of the crystal field to the
experimentally obtained value serves as a weighty
argument in favor of the lattice distortion mechanism
that we proposed.
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Abstract—A phenomenological theory of the transformation of multicomponent solid solutions with the hier-
archy of atomic mobilities of the components has been developed within the local-equilibrium approximation.
At the hydrodynamic stage, the evolution of these solutions is treated as a sequence of quasi-equilibrium states,
for which only a part of conditions for the complete equilibrium are fulfilled. The equations describing the evo-
lution of the distributions of “fast” components in the quasi-equilibrium solid solutions at arbitrary stages of
the transformation are derived within the generalized lattice model accounting for the specific volumes of com-
ponents by using the separation of “fast” and “slow” components of diffusion and the method of contracted
descriptions. The conditions of the stability of quasi-equilibrium solutions against the spinodal decomposition
are determined, and the equations for the metastability boundaries in these systems are obtained. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The actual solid solutions are nonequilibrium sys-
tems virtually on any time scale, because the processes
of their transformation are rather slow. Of possible
forms of nonequilibrium such as mechanical, thermal,
and chemical, the chemical nonequilibrium in con-
densed systems is the slowest and, hence, as a rule, is
most essential. Another property inherent in the major-
ity of multicomponent solid solutions is the hierarchy
of atomic mobilities of components [1, 2] and, as a con-
sequence, the hierarchy of relaxation times of different
components.

Among the experimental evidences on the atomic
mobilities of components in the solid solutions, a prom-
inent example illustrating the hierarchy of mobilities is
provided by the diffusion of noble metals (Au, Ag, and
Cu) in the matrix of low-melting metals (Sn, Pb, In, and
Tl), in which the diffusion rate of the former metals is
8–12 orders of magnitude greater than the self-diffu-
sion rate [3]. Such a well-known phenomenon as the
inhibition of the martensite decomposition by carbide-
forming elements is the consequence of considerable
differences in the atomic mobilities of components [4].

The hierarchy of the atomic mobilities of compo-
nents allows one to treat the transition of a nonequilib-
rium solution to the complete equilibrium as a
sequence of quasi-equilibrium states [5, 6], for which
only a part of conditions for the complete equilibrium
are met on the appropriate time scale. An arbitrary
quasi-equilibrium state is described by equilibrium dis-
tributions of high-mobility components and fixed dis-
tributions of low-mobility (on a given time scale) com-
ponents, which play the role of a nonequilibrium
1063-7834/00/4207- $20.00 © 21270
“medium.” To put it differently, the quasi-equilibrium
(intermediate) states of multicomponent systems with
the hierarchy of atomic mobilities can be described by
way of separating “fast” and “slow” components of the
transformation [separating fast and slow variables in
kinetic equations (see, for example, [7–11])]. Particu-
larly, the quasi-equilibrium states of solid solutions
were treated within the local-equilibrium approxima-
tion [5, 6], and the problems associated with the stabil-
ity of solutions in these states were studied in the
framework of the generalized lattice model [12, 13]
(see also [14]). Note that the description of quasi-equi-
librium solutions was thermostatic in character, which
did not allow one to study the evolution of a solution
from one quasi-equilibrium state to another quasi-equi-
librium state.

In the present work, I continued to develop the the-
ory of quasi-equilibrium states in multicomponent
solid solutions. The aim of this work was to derive the
evolution equations describing the diffusion kinetics of
quasi-equilibrium solutions on different time scales and
to examine the stability of these systems against the
spinodal decomposition.

The first section of the paper presents the thermody-
namic formalism of the proposed approach and the
general phenomenological scheme for the derivation of
closed systems of equations describing the evolution of
solid solution from one quasi-equilibrium state to the
next quasi-equilibrium state. The approach is based on
the contracted descriptions of nonequilibrium systems
with the hierarchy of relaxation times (see, for exam-
ple, [15, 16]), which goes back to the Bogolyubov
works [17].
000 MAIK “Nauka/Interperiodica”
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In Section 2, the approach is illustrated with the
generalized lattice model, which enables one to take
into account the volume effects by introducing specific
atomic volumes of components and the long-range part
of interatomic interactions within the effective-field
approximation.

The inclusion of interatomic interactions in the evo-
lution equations makes it possible to describe not only
the homogenization processes in the system, but also
the kinetics of the precipitation of new phases in the
quasi-equilibrium solutions. In Section 3, within the
framework of the generalized lattice model, the stabil-
ity of the quasi-equilibrium solid solution against the
spinodal decomposition is investigated using the con-
centration wave method proposed by Krivoglaz [18]
and Khachaturyan [19] and extended by Olemskoœ [20–
22]. Moreover, the equation for the boundaries of
quasi-equilibrium metastability in this system is
deduced.

1. METHOD

At the hydrodynamic stage, the evolution of m-com-
ponent solid solution can be described by the following
set of equations:

(1)

where ni(r, t) is the local particle number density of the
ith component of the solution, Ji(r, t) is the local flux of
the ith component, and the spatial variable r is taken in
the “hydrodynamic” sense. When the relation between
the distributions of densities and fluxes of components
is known, the set of continuity equations (1) with due
regard for initial and certain boundary conditions deter-
mining the specificity of a particular problem uniquely
describes the solution transformation within the diffu-
sion approximation. The appearance of fluxes of matter
in the chemically nonequilibrium solution is caused by
nonzero gradients of local chemical potentials. Within
the linear theory of irreversible processes, the above
relation has the form

(2)

where Lij are the Onsager coefficients, µj(r, t) is the
local chemical potential of the jth component (depen-
dent on the local densities of all the components), and
T is the temperature in energy units. Therefore, the dis-
tributions of components of chemically nonequilibrium
solution can be obtained as solutions of the following
system of equations:

(3)

ni r t,( )∂
t∂

------------------ divJi r t,( )+ 0, i 1 m–=( ),=

Ji r t,( ) Lij—
µ j r t,( )

T
---------------- 

  ,
j 1=

m

∑–=

ni r t,( )∂
t∂

------------------ div Lij—
µ j n1 r t,( ) … nm r t,( ), ,( )

T
------------------------------------------------------ 

 
j 1=

m

∑
 
 
 

,=

i 1 m–=( ).
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For the uniqueness of the solutions of system (3), we
complement it with the initial conditions

(4)

and, thus, formulate the Cauchy problem.

Allowance made for the hierarchy of atomic mobil-
ities of solution components by separating fast and
slow diffusion components leads to the fact that the
evolution of the solution on different time scales will
be represented in a form essentially differing from sys-
tem (3).

Let us number m components of the solution in the
decreasing order of their atomic mobility. Introduce the
set of the characteristic times τ1, τ2, …, τm – 1, which
play the role of relaxation times and satisfy the system
of the inequalities τ1 ! τ2 ! … ! τm – 1. The evolution
of the solution to the first quasi-equilibrium state is
accompanied by the appearance of diffusive fluxes of
the two fastest (on the τ1 time scale) components in the
nonequilibrium medium of the remaining slow compo-
nents. In this case, the distributions of slow solution
components have no time to change considerably as
compared to the initial distributions. For this reason,
the variables n3(r, t), …, nm(r, t) slow on the τ1 time
scale are the pseudointegrals of motion with respect to
the fast variables n1(r, t) and n2(r, t). Consequently, the
slow variables entering into the evolution equation (3)
for the fast variables can be treated as fixed parameters
defined by the initial conditions (4); i.e.,

(5)

Then, at the first transformation stage, the evolution of
the local densities of the fast components in the given
solution is described by the following closed system of
equations:

(6)

at 0 ≤ t ≤ τ1. The solutions of system (6) with the initial
conditions (4) are unique and completely determine not
only the evolution of the fast components, but also per-
mit us to represent the evolution of the slow compo-
nents in an implicit form. Actually, by using system (3)
and the initial conditions (5), we obtain the closed (rel-
ative to the slow variables) system of (m – 2) equations
describing the evolution of the local densities of the

ni r t,( ) f i r( )=

ni r t,( ) ni r 0,( ) f i r( ), i 3 m–=( ).≡≈

ni r t,( )∂
t∂

------------------ div Lij—
j 1=

m

∑




=

×
M j n1 r t,( ) n2 r t,( ) f 3 r( ) … f m r( ), , , ,( )

T
--------------------------------------------------------------------------------------- 

 




,

i 1 2,=( )
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slow components at the first stage of the solution trans-
formation

(7)

where Ci are the constants determined from the initial
conditions (4), and n1(r, t) and n2(r, t) are the known
solutions of system (6). By analogy with the Haken ter-
minology [15], the reduced equations of system (7) will
be referred to as the “subordinate” equations. It should
be emphasized that the time dependence of the solu-
tions of the system of subordinate equations (7) is
determined by the solutions of system (6) describing
the diffusion kinetics of the fast variables in the
solution.

Therefore, on the first characteristic time scale at the
hydrodynamic stage of transformation, the evolution of
the fast solution components is described by the solu-
tions of system (6), and the time dependence of the den-
sities of the slow components is represented by the
solutions of subordinate equations (7).

The first stage of the solution transformation is com-
pleted with the disappearance of fluxes of the fast com-
ponents, which, according to (6), gives

(8)

Note that, within the diagonal approximation, relation-
ships (8) go over into the usual conditions of chemical
equilibrium with respect to the fast variables (the con-
stancy of the corresponding chemical potentials). This
agrees with the definition of the quasi-equilibrium
(intermediate) states of the solid solution, which was
introduced earlier in the thermostatic description of
locally equilibrium systems [5, 6]. In the general non-
diagonal case resulting in the inclusion of “cross
effects,” the attainment of a quasi-equilibrium state,
according to (8), is not reduced to the constancy of the
corresponding chemical potentials, but is determined
by a linear dependence of the gradients of local chemi-
cal potentials (the equality of the “resultant” of gener-
alized thermodynamic forces to zero). However, owing
to the known smallness of nondiagonal elements of the
matrix of kinetic coefficients, the diagonal elements
make the decisive contribution to relationships (8).

The second stage of the transformation of the quasi-
equilibrium solution is connected with the change to a
new rougher time scale and exhibits a number of fea-
tures as compared to the first stage. Indeed, on the τ2
time scale, in addition to two fast components, it is nec-
essary to take into account the third fastest component
and its flux J3(r, t). The less mobile components con-
tinue to fulfill the role of the nonequilibrium medium.

Lij—
µ j n1 r t,( ) … nm r t,( ), ,( )

T
------------------------------------------------------ 

 
j 1=

m

∑ Ci,=

i 3 m–=( ),

Lij—
µ j n1 r τ1,( ) n2 r τ1,( ) f 3 r( ) … f m r( ), , , ,( )

T
------------------------------------------------------------------------------------------- 

 
j 1=

m

∑ 0,=

i 1 2,=( ).
P

Therefore, at the second transformation stage, the evo-
lution of the densities of the fast solution components
is described by the system involving three equations of
type (6). In this case, the number of slow variables and
control equations (7) decreases by unity, which agrees
with the Bogolyubov hypothesis of contracted descrip-
tions of nonequilibrium systems with the hierarchy of
relaxation times. It should be remembered that the ini-
tial conditions at the second transformation stage are
changed in comparison with the initial conditions (4) at
the first stage. Actually, the initial distributions of the
first two components on the new τ2 time scale are deter-
mined as the limiting values  of the solutions

of system (6) describing the first stage of the solution
transformation, and the initial conditions for the densi-
ties of the remaining components are derived from the
asymptotics of the solution of the system of control
equations (7). As a result, the transformation of the
solution from one quasi-equilibrium state to the next
quasi-equilibrium state is a typical “non-Markovian”
process, because the behavior of the nonequilibrium
system under consideration, in general, appears to be
dependent on the prehistory, which is characteristic of
the hydrodynamic regime as a whole.

In the framework of the advanced thermodynamic
approach, the subsequent transformation stages are
described in a similar way: a further change to a
rougher time scale leads, on the one hand, to an
increase in the number of fast variables and evolution
equations of type (6) and, on the other hand, to a
decrease (reduction) in the number of control equations
(7). The initial conditions for each stage are determined
by the asymptotic distributions of the solution compo-
sition at the preceding stage.

The given approach is general in character for
locally equilibrium systems, because an explicit depen-
dence of the chemical potentials on the local densities
of components is not specified. We now invoke the
generalized lattice model to illustrate the developed
approach.

2. EVOLUTION EQUATIONS 
FOR QUASI-EQUILIBRIUM SOLUTIONS 

WITHIN THE GENERALIZED LATTICE MODEL

In the framework of the generalized lattice model,
the relation between the constant chemical potentials
and the spatial distributions of components of the
chemically equilibrium solution is given by [6]

(9)

where the first term is the variational derivative of the
configurational part of the Helmholtz energy functional
(written within the self-consistent field approximation
with allowance made only for pair interactions) with

ni r t,( )
t τ1→
lim

µi ν ij r r'–( )n j r'( ) V'T
ni r( )
n r( )
---------- 

  ωiΨ r( ),–lnd∫
j 1=

m

∑=
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respect to the local density of the ith component, νij(r –
r') is the long-range part of pair interatomic potentials,
the second term is the variational derivative of the
entropy part of the Helmholtz energy functional within
the regular solution approximation, n(r) is the total
local particle number density, the integration is per-
formed over the entire volume of the solution V, ωi is
the specific volume of the ith component, and Ψ(r) is
the Lagrange undetermined multiplier. The appearance
of the undetermined multiplier in system (9) is con-
nected with the minimization of the Helmholtz energy
functional with inclusion of the additional relationship
between the local densities

(10)

which, hereafter, will be termed the close packing con-
dition.

Generally speaking, at the hydrodynamic stage of
the solution transformation, the gradients of chemical
potentials still differ from zero, but the quantities {µi}
and {ni} already obey relationships of type (9). Note
that µi and ni are functions of coordinates and time. By
using relationships (9) for the locally equilibrium sys-
tem, within the given lattice model, it is possible to
obtain a set of evolution equations describing the trans-
formation of the solid solution from the (s – 1)th quasi-
equilibrium state to the next quasi-equilibrium state on
an τs arbitrary characteristic time scale.

On the characteristic time scale τs, the evolution of
the m-component solution is described by the (s + 1)
fast variables and the (m – s – 1) slow variables. From
relationships (6) and (9), we have the set of equations
representing the evolution of the fast solution compo-
nents within the generalized lattice model approxima-
tion

(11)

where

(12)

Note that only s equations in system (11) are lin-
early independent. Actually, from the close packing
condition (10) and continuity equations (1), we obtain
the equation relating the fluxes

(13)

ωini r( )
i 1=

m

∑ 1,=

ni r t,( )∂
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------------------ div Lij—
1
T
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s 1+
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s 1+
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– 0.= =
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The absence of fluxes at infinity allows us to simplify
equation (13)

(14)

From relationships (1), (11), and (14), one obtains
the system of (s + 1) evolution equations for the fast
variables at the given stage of the solution transfor-
mation

(15)

It should be remarked that the local densities of the
slow components in system (15) [as in equations (11),
(12), and (14)] are the time-independent parameters,
which, according to (5), are determined from the initial
conditions.

The system of nonlinear integro-differential equa-
tions (15) is closed and, at the specified initial condi-
tions (4), uniquely describes the evolution of the fast
components of the solid solution on the given time
interval.

Unlike ordinary diffusion equations, the equations
deduced are nonlocal [see, equation (12)]. Note also
that the Onsager kinetic coefficients entering into the
equations of system (15) are the functions of the tem-
perature and the local densities of all the components

(16)

and the character of the dependence on these arguments
cannot be established within the given semimicro-
scopic approach.

The presence of interatomic potentials [see, rela-
tionships (12)] in the system of evolution equations
(15) provides a way to study the homogenization of the
quasi-equilibrium solution and its separation on arbi-
trary time scales.
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3. CONDITIONS OF STABILITY 
AND BOUNDARIES OF METASTABILITY

OF QUASI-EQUILIBRIUM SOLUTION

Let us use system (15) to investigate the stability of
the solid solution in an arbitrary quasi-equilibrium state
against spinodal decomposition. It is expected that the
nonequilibrium medium consisting of slow compo-
nents should considerably affect the solution stability
and the phenomena under consideration should exhibit
a nonequilibrium behavior.

With the aim of examining the solution stability
against small fluctuations of mobile components, we
consider the transition from the homogeneous to inho-
mogeneous distribution of components. The local den-
sities of (s + 1) fast components at the initial instant of
the given transformation stage can be written as

(17)

where δni(r, 0) is the infinitesimal deviation of the local
density of the ith component from the equilibrium

value . Furthermore, assume that all the nonequilib-
rium slow components are also quasi-homogeneously

distributed over the system and fluctuate about the 
values. This assumption enables us to represent the
local densities of all the components (both fast and
slow) by using relationships (17). The linearization of
system (15) with respect to the fluctuations of the fast

components δni(r, t) = ni(r, t) –  (i = 1 – (s + 1)) and
the fluctuations of the slow components δfi(r) = fi(r) –

 at i = (s + 2) – m [according to conditions (5), δfi(r)
do not depend on the time] gives the linear [with
respect to δni(r, t)] inhomogeneous system of integro-
differential equations

(18)

where
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(19)

Note that, when the fluctuations of the slow compo-
nents are absent, system (18) becomes homogeneous.

Applying the spatial Fourier transform to system
(18), we obtain the linear [with respect to 

 

δ

 

(

 

p

 

, t)]
inhomogeneous system of ordinary differential equa-
tions

(20)

where, according to (19),

(21)

[here, (p) are the Fourier transformers of the long-
range parts of pair interatomic potentials].

It is worth noting that the quantities (p) resulting
in the inhomogeneity of system (20) do not depend on
the time; hence, there exists a particular solution of
inhomogeneous system (20), which is time indepen-
dent (but dependent on the p parameter). This particular
solution of the inhomogeneous system shifts the gen-
eral solution of system (20) by the time-independent
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ñi
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function p and does not affect the conditions for the sta-
bility of the quasi-equilibrium solution. However, this
does not mean that the solution stability is unaffected
by the slow components, because, according to (19),

the kinetic coefficients  in system (20) depend on
the distribution of all the components, including the
slow components.

The solutions of the homogeneous system corre-
sponding to system (20) take the form

(22)

Substitution of solutions (22) into system (20) at

(p) ≡ 0 leads to the linear [with respect to δ (p, 0)]
homogeneous system of (s + 1) algebraic equations

(23)

where

(24)

The characteristic equation in α is found from the
condition that the determinant of linear system (23) is
equal to zero:

(25)

The set of (s + 1) roots {αj(p, t)} is the solution of this
characteristic equation.

The homogeneous distribution of components of the
quasi-equilibrium solution becomes unstable in the
small when the real part of even if one root of charac-
teristic equation (25) becomes positive at any p. In
other words, as long as

(26)

the local density fluctuations (22) tend to disappear;
otherwise, the quasi-equilibrium solution turns out to
be unstable toward the spinodal decomposition.

All the components of the system are indiscrimi-
nately involved in the evolution processes at the last
stage of the solution transformation, and the condition
determining the equation of the metastability boundary
is changed qualitatively. Hence, we first treat the last
stage as the special case, and then turn to general con-
siderations.
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k 1=

s 1+

∑
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At the last stage of the solution transformation, α =
0 is always one of the m roots of the characteristic equa-
tion, because the close packing condition (10) leads to
the linear dependence of the density fluctuations
{δ (p, t)}

(27)

In this case, the Wronskian of system (23) with contin-
uous coefficients is zero, and, at the stability boundary,

 = 0 is the double root. At the last trans-

formation stage, the equation for the boundary of solu-
tion metastability has the form [13]

(28)

At an arbitrary stage of the transformation of the s
fast components, a linear dependence of the density
fluctuations of fast components is absent, because

(29)

and the Wronskian of system (23) is nonzero. There-
fore, α = 0 is not the root of characteristic equation
(25), and, at the stability boundary,  = 0

is the simple root. Then, taking into account condition
(26), the equation for the boundary of quasi-equilib-
rium metastability is written as

(30)

Thus, the equation for the boundary of the solid
solution metastability essentially depends on the trans-
formation stage, is determined by condition (30) up to
the last evolution stage, and degenerates into condition
(28) at the last evolution stage.

The metastability boundary can be described by the
equation of type (30) only at intermediate transforma-
tion stages in multicomponent condensed systems with
the hierarchy of atomic mobilities of components until
the complete chemical equilibrium of the quasi-equi-
librium system is attained. The true (equilibrium) meta-
stability boundary is described by equation (28).

In conclusion, let us summarize the main results
obtained in this work.

(1) The evolution equations describing the transfor-
mation of quasi-equilibrium solid solutions are derived
within the diffusion approximation without regard for
the mobility of nonequilibrium slow components.

(2) An arbitrary step of the hydrodynamic stage of
transforming the quasi-equilibrium solid solution with
inclusion of volume effects is described in the frame-
work of the generalized lattice model.

ñi

ωiδñi p t,( )
i 1=

m

∑ 0.=

α j p T,( )
j{ } p{ },
limmax

∂
α j∂

-------- detA p T α j n1
0 … nm

0, , , , ,( )[ ] 
 

α j 0=j{ } p{ },
lim 0.=min
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(3) The stability of quasi-equilibrium solutions
against the spinodal decomposition is studied, and the
equations for the metastability boundary in these sys-
tems are deduced for different stages of the diffusion
kinetics.
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Abstract—Polarization studies of low-frequency Raman spectra of solid solutions of p-dichlorobenzene with
p-bromchlorobenzene (50% p-dichlorobenzene) were carried out. Analysis of the lattice vibration spectra of
these mixed crystals shows that vacancies can be present in their structure. The presence of vacancies is respon-
sible for the emergence of additional lines, including those in the 70 cm–1 region. The calculation of the diffu-
sion activation energy in a mixed crystal proves that its magnitude is determined by the spatial arrangement of
p-bromchlorobenzene molecules in the lattice, their orientation relative to parahalides, and (to a lesser extent)
temperature variations. © 2000 MAIK “Nauka/Interperiodica”.
The application of low-symmetry organic crystals in
molecular electronics has increased significantly. These
materials are promising in information recording and
data processing [1]. The crystals for practical applica-
tions may contain defects such as vacancies. The pres-
ence of vacancies in a crystal leads to diffusion imped-
ing a decrease in the area of information recording [2].
The diffusion rate depends on the temperature variation
as well as on the impurity distribution in the crystal (for
mixed crystals).

The presence of vacancies in a crystal can be deter-
mined with the help of low-frequency Raman scatter-
ing, since their presence affects lattice vibrations and is
manifested in the spectra. An analysis of spectra for
mixed crystals consisting of centrosymmetric mole-
cules (p-dichlorobenzene with p-dibromobenzene)
reveals additional low-intensity lines whose emergence
is associated with a disorder in the distribution of impu-
rity molecules and the presence of vacancies [3].
Besides, the activation energy in these mixed crystals
depends on the temperature variation and on the crys-
tallographic direction to a lesser extent than in the com-
ponent crystals.

It would be interesting to find out whether this
dependence is preserved for solid solutions in which
noncentrosymmetric molecules constitute one of the
components.

For our experiments, we chose isomorphic crystals
of p-dichlorobenzene (α modification) and p-bro-
mchlorobenzene forming solid solutions for any con-
centration.

According to the x-ray diffraction data [4] and NQR
data [5], noncentrosymmetric molecules of p-bro-
mchlorobenzene, as well as p-dichlorobenzene (α
modification), are crystallized in the centrosymmetric
space group P21/a with two molecules in a unit cell
1063-7834/00/4207- $20.00 © 21277
owing to statistically disordered distribution of mole-
cules relative to parahalides. The spectra of lattice
vibrations for such crystals must contain six high-inten-
sity lines associated with orientational vibrations and
three lines associated with translational vibrations.

Figure 1a shows the lattice vibration spectrum (the
xz component of the scattering tensor) for a mixed crys-
tal of p-dichlorobenzene with p-bromchlorobenzene
with 50% of p-dichlorobenzene.

The experimental spectrum contains six high-inten-
sity lines three of which are of the Bg type (25.1, 44.4,
and 100.7 cm–1) and the remaining three, of the Ag type
(45.4, 50.1, and 92.5 cm–1) as well as a series of low-
intensity lines (19.5, 29.5, 38.4, 62.2, 72.3, and
83.0 cm–1).

In order to interpret the experimental spectra, we
calculated the lattice vibration spectrum for a mixed
crystal of p-dichlorobenzene with p-bromchloroben-
zene (50% p-dichlorobenzene). It was assumed that the
p-bromchlorobenzene molecules in the structure of the
mixed crystal are distributed at random relative to para-
halides as in pure p-bromchlorobenzene.

The molecular structure was assumed to be per-
fectly rigid. The interaction between the molecules was
described by the atom–atom potentials method [6]. The
coefficients in the interaction potential were the same
as in analysis of the frequency spectra of p-dichlo-
robenzene and p-dibromobenzene [3]. The spectra of
disordered crystals were calculated by Dean’s method
[7], which allows one to determine the eigenvalues for
high-order matrices. The results of calculations were
used to plot histograms that indicate the probability of
the emergence of spectral lines in the chosen frequency
range.
000 MAIK “Nauka/Interperiodica”
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Figures 1b and 1c show the histogram of the fre-
quency spectrum of lattice vibrations for a mixed crys-
tal without vacancies and in the presence of vacancies,
respectively. In the latter case, additional lines emerge
in the region of 70 cm–1, which agrees with the experi-
mental data.

(a)

(b)

(c)

0 40 80 120
ν, cm–1

Fig. 1. Experimental low-frequency spectrum for a mixed
crystal of p-dichlorobenzene with p-bromchlorobenzene
containing 50% p-dichlorobenzene [(a) the xz component of
the scattering tensor] and histograms obtained from calcula-
tions (b) in the presence of vacancies in the structure and (c)
in the absence of vacancies.

Values of the energies EL, Er, Ef, Em , and Ed (kcal/mol) at
100 and 300 K

5% p-dichlorobenzene 
and 95% p-bromchlo-

robenzene

95% p-dichlorobenzene 
and 5% p-bromchlo-

robenzene

T 300 100 300 100

EL 15.55 17.0 16.4 17.43

Er 0.55 0.56 0.58 0.68

Ef 15.0 16.44 15.82 16.75

4.0 4.2 4.8 4.9

19.0 20.64 20.62 21.65

3.3 3.4 3.1 3.3

18.3 19.84 18.92 20.05

Em
001[ ]

Ed
001[ ]

Em
010[ ]

Ed
010[ ]
P

An analysis of eigenvectors revealed that all vibra-
tions are mixed with dominating translational or orien-
tational vibrations. It was found that the lines in the
vicinity of 29.5, 38.4, and 62.2 cm–1 are associated pre-
dominantly with translational vibrations. This agrees
with the IR absorption data for p-bromchlorobenzene
(26.0, 32.0, and 54.0 cm–1) [8]. Therefore, the emer-
gence of extra lines in the region of 70 cm–1 is due to
the presence of vacancies.

We calculated the energies of the lattice, of vacancy
formation, and of migration of molecules of mixed
crystals of p-dichlorobenzene with p-bromchloroben-
zene at 300 and 100 K. The analysis was carried out for
two cases of low impurity concentrations. In the first
case, 5% of p-bromchlorobenzene were added to the
lattice of p-dichlorobenzene, and second, 5% of
p-dichlorobenzene were added to the lattice of p-bro-
mchlorobenzene.

The table contains the calculated values of lattice
energy (EL) for a mixed crystal without vacancies at
300 and 100 K for the two cases of component concen-
trations.

In order to determine the arrangement of molecules
in the lattice of a mixed crystal with vacancies, the free
energy was minimized in the orientations and displace-
ments of the centers of mass of the molecules under
investigation. In view of relaxation, the energy of the
mixed crystal changed by Er . The table also contains
the calculated value of the energy of vacancy formation
Ef.

In an analysis of the energy of migration, a molecule
was displaced step by step from the position (0, 0, 0)
along a chosen direction towards a vacancy. The length
of a step was 0.2 Å. After each step, the crystal energy
was minimized in accordance with the above-described
procedure. The results of calculations are presented in

Fig. 2 and in the table, where  is the energy for
migration of an impurity molecule along the crystallo-

graphic direction [001] and  is the same along the
direction [010]. The calculated values of the activation
energy Ed are also presented in the table. The activation
energy increases upon cooling, which is manifested in
a change in the diffusion rate. The energy for migration
changes insignificantly in this case. This is also
observed for mixed crystals consisting of centrosym-
metric molecules (p-dibromobenzene with p-dichlo-
robenzene) [3].

The curves in Fig. 2 show the variation of the poten-
tial energy upon a displacement of an impurity mole-
cule in the lattice of a mixed crystal of p-dichloroben-
zene with p-bromchlorobenzene along the crystallo-
graphic directions [001] (Fig. 2a) and [010] (Fig. 2b).

Curves 1 in Fig. 2 correspond to the concentration of
a mixed crystal (5% of p-dichlorobenzene and 95% of
p-bromchlorobenzene), while curves 2 correspond to

Em
001[ ]

Em
010[ ]
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the 5% p-bromchlorobenzene and 95% p-dichloroben-
zene concentrations of the components.

In view of the disordered arrangement of p-bro-
mchlorobenzene molecules in the lattice of the mixed
crystal, the environment of a migrating molecule is dif-
ferent at different points of the crystal, which is mani-
fested in the energy for migration. By way of an exam-
ple, Fig. 2c graphically shows the potential energy vari-
ation upon a displacement of a p-dichlorobenzene
molecule in the mixed crystal (with 95% of p-bro-
mchlorobenzene) for a uniform distribution of mole-
cules over the crystal volume, but for different orienta-
tions of p-bromchlorobenzene molecules relative to
parahalides.

It can be seen from the figures that the energy for
migration can vary over a wide range. This distin-

1

24

2

0

(a)

1 2

(b)
4

2

0

∆U, kcal/mol

1

1

0

2

4

6
R, Å

0
2 4

(c)

Fig. 2. Variation of potential energy upon the displacement
of a migrating molecule towards a vacancy in crystallo-
graphic directions (a) [001] and (b) [010]. (c) Energy varia-
tion for various distributions of p-bromchlorobenzene mol-
ecules over p-positions.
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guishes mixed crystals formed by noncentrosymmetric
molecules from those composed of centrosymmetric
molecules, in which the variation of the energy for
migration from cell to cell depends only on the distri-
bution of impurity molecules over the crystal volume.

While comparing the experimental results on the
activation energy of mixed crystal with the calculated
values, one must apparently consider the averaged
energy values along the chosen direction. However, we
are not aware of any experimental results on the diffu-
sion activation energy in mixed crystals of p-dichlo-
robenzene with p-bromchlorobenzene.

Thus, we have proved that the structure of mixed
crystals of p-dichlorobenzene with p-bromchloroben-
zene contains vacancies. Their presence is manifested
in the emergence of extra spectral lines in the vicinity
of 70 cm–1. The analysis of migration energy in these
mixed crystals reveals that its magnitude depends not
only on the spatial distribution of an impurity over the
crystal volume, but also on the arrangement of p-bro-
mchlorobenzene molecules relative to parahalides. For
a certain distribution of molecules in the structure of
the crystal consisting of a mixture of noncentrosym-
metric and centrosymmetric molecules, the variation of
the migration energy with temperature is insignificant;
this is also observed for mixed crystals consisting of
centrosymmetric molecules.
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Abstract—The features of solid-phase synthesis of highly nonstoichiometric carbides with controlled concen-
tration of structural vacancies in the carbon sublattice have been considered. Four main stages are distinguished
in the synthesis of nonstoichiometric carbides by the solid-phase sintering technique. It is shown that the inho-
mogeneity of highly nonstoichiometric compounds leads to the broadening of diffraction reflections. The ana-
lytical relation between the broadening and the inhomogeneity is obtained for the first time, and the method
based on diffraction measurements is proposed for the quantitative evaluation of the degree of homogeneity of
nonstoichiometric compounds. As an illustration of the advanced approach, the degree of homogeneity of non-
stoichiometric niobium carbide is evaluated from the experimental data on the width of x-ray diffraction peaks.
The heat treatment conditions providing the preparation of nonstoichiometric Group IV and V transition metal
carbides in the disordered and ordered states are determined. © 2000 MAIK “Nauka/Interperiodica”.
The precise stoichiometric composition is the
exception rather than the rule for crystalline com-
pounds, because real crystals always contain defects.
However, the defect concentration in many compounds
over a wide range of temperatures and pressures is so
low that falls outside the current possibilities of compo-
sition determination. Since absolutely defect-free crys-
tals cannot exist at T > 0 K, the presence of defects by
itself is an indication of the nonstoichiometry. The evi-
dence of the nonstoichiometry is the inconsistency
between the chemical composition and the concentra-
tion of lattice sites occupied by components of a com-
pound. The nonstoichiometry brings about the appear-
ance of vacant lattice sites, i.e., structural vacancies h.

In many binary and more complex compounds, the
concentration of defects (vacancies or interstitials) is suf-
ficiently low and, at 300 K, does not exceed 0.01 at. %,
the distance between the nearest defects is very large
and can be as great as tens of nanometers and more,
and, therefore, the defects do not interact with each
other. However, the absence of interaction between
defects directly results from their low concentration,
and, at concentrations higher than 0.1 at. %, defects
interact. The compounds with structures involving
defects of the structural vacancy type and with homo-
geneity regions characterized by such vacancy concen-
trations that ensure the interaction between defects are
referred to as the highly nonstoichiometric compounds.
The homogeneity region is the region of existence of
the nonstoichiometric compound, in which the type of
1063-7834/00/4207- $20.00 © 21280
its crystal structure remains unaltered with a change in
its composition. The similar notion “highly nonstoichi-
ometric phases” was first used by Anderson [1] in con-
sideration of the nonstoichiometry in chalcogenides
and sulfides. The group of highly nonstoichiometric
intercalation compounds involves carbides, nitrides,
and lower oxides of transition metals MXy with the B1-
type structure; hexagonal carbides and nitrides M2Xy

with the L'3 (W2C) structure; and some related ternary
compounds [carbosilicides M5Si3Cx, siliconitrides
M5Si3Nx, and silicoborides M5Si3Bx with the D88
(Mn5Si3) structure and aluminidonitrides M2AlNx and
M3Al2Nx with the Cr2AlC and Al3 (β-Mn) structures].
Substantial deviations from the stoichiometry with the
formation of vacancies in the metal sublattice are
observed in wüstite Fe0.88O, iron sulfide Fe0.85S, and
copper sulfide Cu1.73S.

In the highly nonstoichiometric intercalation com-
pounds, the structural vacancies are analogues of inter-
stitials, i.e., are quasiparticles and, in its sublattice, play
the role identical to that of atoms occupying the sites of
the same sublattice. Hence, the homogeneity region
associated with the deviation from the stoichiometry is
treated as a substitutional solid solution whose compo-
nents are atoms and vacancies. The concept consider-
ing the vacant site as a crystal structure element similar
to the occupied site was introduced in analysis of the
nonstoichiometry and the ordering in oxides, sulfides,
and chalcogenides [1, 2]. The distribution of atoms and
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature conditions for the solid-phase vacuum synthesis of TiCy, ZrCy, HfCy, VCy, NbCy, and TaCy carbides: (1) degas-
sing and evacuation, (2) preliminary sintering, (3) metal–carbon interaction and carbide formation, and (4) carbide homogenization.
vacancies over the sublattice sites can be disordered
(random) or ordered. In the nonstoichiometric com-
pound MXy with a disordered distribution, the proba-
bility that the atom X occupies a particular site in the
nonmetallic sublattice is equal to its atomic fraction y.

The highest concentration of vacancies is observed
in Group IV and V transition metal carbides MCy

(MCyh1 – y). The concentration of the structural vacan-
cies h in the compounds corresponding to the lower
boundary of the homogeneity region can be as high as
30–50 at. %; i.e., the compounds can exist when up to
half the number of nonmetallic sublattice sites are
vacant.

The disordered carbides MCy exhibit extremely
wide homogeneity regions, namely, from MC0.48–0.70 to
MC1.00 [3], within which the carbon atoms C and the
structural vacancies h form the substitutional solution
in the nonmetallic sublattice. Structural analysis of the
highly nonstoichiometric carbides MCy allows one to
distinguish two opposite tendencies—the ordering and
the disordering [4–7]. The ordered distribution of the
vacancies is more probable at low temperatures,
whereas the disordered distribution is observed at high
temperatures when the entropy contribution to the free
energy of the nonstoichiometric compound is suffi-
ciently large [8]. The completely ordered and com-
pletely disordered distributions are the limiting states
of the nonstoichiometric carbide. The ordering leads to
the appearance of one or several ordered phases in the
homogeneity region of the nonstoichiometric com-
pound. These ordered phases also can have the homo-
geneity regions [7, 9, 10].

Therefore, it is this nonstoichiometry that is a pre-
requisite for the disordered or ordered distribution of
atoms and vacancies in the structure of highly nonsto-
ichiometric carbides. The atomic and vacancy ordering
considerably affects the structure and properties of the
highly nonstoichiometric carbides MCy [3, 4]. At the
same time, the investigation into such a fine physical
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
process as the ordering and accompanying effects
requires the preparation of homogeneous carbide sam-
ples with precisely known and different (within the
homogeneity region) carbon contents. Only in this
case, it is possible to obtain reliable and reproducible
results.

Traditionally, the transition metal carbides are pre-
pared by the thermal carbon reduction of oxides. This
method is rather simple and most frequently used for
the synthesis of the MC1.0 carbides of stoichiometric
composition. However, the thermal carbon reduction
gives no way of producing high-purity carbides MCy

that have the controlled carbon content, contain no oxy-
gen and free (chemically unbound) carbon impurities,
and are suitable for the physical investigation of the
atomic and vacancy ordering and related effects. Car-
bides obtained by the self-propagating high-tempera-
ture synthesis are characterized by an inhomogeneous
microstructure and call for further heat treatment for
reaching a homogeneous state. According to Lund-
ström et al. [11], single crystals of high-melting car-
bides with various carbon content cannot be prepared at
all because of the presence of thermodynamic restric-
tions. In the best case, within a very wide homogeneity
region, it is possible, in principle, to obtain only single
crystals of the MC1.0 stoichiometric carbide and the
MCy carbide that corresponds to the maximum melting
temperature in the phase diagram of the M–C system.
Moreover, the preparation of single crystals does not
solve the problem of impurities and homogeneity of
carbides. In addition, the single crystals of nonstoichi-
ometric carbides are cracked after the homogenizing
annealing used for obtaining the ordered state [12].

The direct interaction between the metal and carbon
in mixtures of their powders at high temperatures under
vacuum is the optimum solid-phase technique for syn-
thesizing the homogeneous nonstoichiometric carbides
with the controlled content of structural vacancies in
0
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the carbon sublattice and the minimum impurity con-
tent [13].

Figure 1 shows the temperature regimes for the vac-
uum synthesis of nonstoichiometric carbides. The first
stage of heating for 1 h provides evacuation of the
batch. The second stage involves the preliminary solid-
phase sintering of the batch, which is attended by the
removal of adsorbed impurity oxygen in the form of
gaseous oxide CO. At the third stage, the metal and car-
bon chemically interact to give the MCy carbide. The
homogenization of carbide with the formation of disor-
dered state and its annealing occur at the last stage. The
duration and the temperature of the homogenization
stage depend on the character (congruent or incongru-
ent) and the rate of evaporation of the nonstoichiomet-
ric carbide [14] and are chosen in such a way as to pre-
vent changes in the carbide composition in the course
of homogenization.

So far, the homogeneity has been considered a qual-
itative characteristic. However, by using the diffraction
data and interpreting the inhomogeneity as a lattice
imperfection, i.e., as a structural defect, it is possible to
treat the homogeneity as a quantitative characteristic.
Actually, the inhomogeneity is the fluctuation of the
concentration c in a certain volume V of solid solution
or nonstoichiometric compound. In the crystal, the con-
centration fluctuations at the points r are described by
the continuous fluctuation distribution δc(r), which can
be expanded into the Fourier series

where ck = c(r)exp(ikr)dV, and k is the fluctua-

tion wave. Since the fluctuations reduce only to the
redistribution of the concentration among different

crystal regions without its change, c(r)dV = 0. The

concentration fluctuations in the crystal give rise to the
inhomogeneities, which lead to various static displace-
ments.

In diffraction experiments, structural defects in
polycrystals are identified from the broadening of dif-
fraction reflections. The defects of any type lead to the
displacements of atoms from the lattice sites and (or)
the change in the scattering power of atoms. Krivoglaz
[15] obtained the known relationship for the intensity
of Bragg reflections for defect crystals, which makes it
possible to conventionally separate all defects into two
groups. The defects of the first group only decreases the
intensity of diffraction reflections without their broad-
ening. The defects of the second group are responsible
for the broadening of reflections. The broadening can
be brought about by the small size D of crystallites (D
< 150 nm) and the packing defects. In these cases, the
broadening is proportional to . The broadening
caused by the microstrains and randomly distributed

δc r( ) ck ikr–( ),exp
k

∑=

1
V
--- δ∫

δ∫

θsec
P

dislocations is proportional to . The general
method usually used for examining the size of crystal-
lites and the distribution of distortions in them from the
data of x-ray scattering in polycrystals is the Fourier
analysis of the diffraction reflection shape, which was
developed by Warren and Averbach [16] and extended
in [17, 18].

In the nonstoichiometric compounds MXy, which
have been extensively studied only in the last decades,
there is one more reason for the broadening—the inho-
mogeneity of compound composition over the bulk of
a sample. The influence of small inhomogeneity in
solid solutions due to impurity atoms with the concen-
trations c ≤ 0.01 on the x-ray scattering was considered
by Krivoglaz [19]. However, the x-ray effects associ-
ated with the inhomogeneity of phases containing from
1 to 30–50 at. % of defects were not discussed.

Let the polycrystal be a set of crystallites with dif-
ferent compositions y and sizes exceeding several hun-
dreds of nanometers. Moreover, assume that the crys-
tallites are spatially distributed in a randomly disor-
dered manner. In this case, the broadening of
reflections is determined by the fluctuations of the
number of defects in different crystallites. As a result of
these fluctuations, the mean deformations and shifts in
maxima of ideal reflections upon introduction of
defects into the crystal turn out to be different for dif-
ferent crystallites. Since the reflections for different
crystallites merge, the resultant distribution of the
intensity appears to be broadened in the neighborhood
of reciprocal lattice sites.

As an example, let us consider the nonstoichiomet-
ric carbide M  with the B1 structure. In the case
when the distribution of the carbon concentration y in
carbide is described by the normal distribution law

(1)

[where y0 is the relative carbon content in carbide, and
∆y is the half-width of the distribution function g(y)],
the composition of the M  carbide is given with the
accuracy y = y0 ± ∆y, and the quantity ∆y is the degree
of inhomogeneity of carbide. Note that the usual nor-

malizing conditions are met: dy = 1 and

g(y)dy = y0. Let us now turn from the distribution

in y to the distribution in the diffraction angle θ by
using the Bragg reflection formula written for the first-
order diffraction reflections in the form θ0 =

 =  [here, dhkl

is the interplanar spacing for the (hkl) reflection with
the diffraction angle θ0, aB1(y) is the composition
dependence of the lattice spacing for the MCy carbide,

θtan

Cy0

g y( ) 1/ ∆y 2π( )[ ] y y0–( )/ 2∆y2( )–[ ]exp=

Cy0

g y( )
∞–

∞∫
y

∞–

∞∫

λ
2dhkl y( )
-------------------arcsin

λ h2 k2 l2+ +
2aB1 y( )

----------------------------------
 
 
 

arcsin
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and λ is the wavelength of the diffracted radiation].
Then, distribution (1) takes the form

(2)

where θy = ∆y, and K(θ0) =

. The experimental intensity of

the diffraction reflection I(θ) = (θ' – θ)g(θ')dθ' is

the convolution of the distribution function g(θ) with
the instrumental resolution function R(θ) =

(1/θR )exp[–(θ – θ0)2/(2 )] and has the form

(3)

From relationship (3), it is clear that the half-width θexp
of the experimental function can be found from the
equation

(4)

and the broadening β =  is represented as

(5)

Taking into account the angular dependence of the
coefficient K(θ0), from formula (5), it follows that the
broadening brought about by the inhomogeneity ∆y is
proportional to (sin2θ)/cosθ. The size and deformation
broadenings are proportional to secθ and tanθ. There-
fore, different angular dependences permit one to sepa-
rate three different contributions to the broadening.

In the absence of the size and deformation broaden-
ings, the inhomogeneity ∆y can be determined from the
broadening of the diffraction reflections from the rela-
tionship

(6)

Hereafter, the quantity (1 – ∆y) will be termed the
degree of homogeneity. It is evident that the closer the
quantity (1 – ∆y) to unity, the higher the homogeneity
of the crystal of the nonstoichiometric compound. In
formulas (4) and (6), the half-width θexp of the experi-
mental function and the half-width θR of the resolution
function are expressed in terms of angles θ. For a Gaus-
sian distribution, the half-width θR expressed in terms
of θ and the full width at half maximum FWHMR ≡
∆(2θR) measured in terms of 2θ are related by the

g θ( ) 1/∆y 2π( ) θ θ0–( )2/ 2θy
2( )–[ ] ,exp=

aB1' y( )
y y0=

K θ0( )
---------------------------

πλ h2 k2 l2+ +
360

-------------------------------------
θ0cos

θ0sin
2

---------------

R
∞–

∞∫

2π θR
2

I θ( ) 1/ 2π θR
2 θy

2+( )[ ]=

× θ θ0–( )2/ 2 θR
2 θy

2+( )[ ]–{ } .exp

θexp
2 θR

2 θy
2+ θR

2
aB1' y( )

y y0=

K θ0( )
---------------------------∆y

2

,+= =

θexp
2 θ0

2–

β
aB1' y( )

y y0=

K θ0( )
---------------------------∆y.=

∆y
K θ0( )

aB1' y( )
y y0=

--------------------------- θexp
2 θR
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known expression θR(θ) = ∆(2θR)/(2 × 2.35). This for-
mula can be easily obtained by integrating a function
described by the Gaussian distribution.

In order to collaborate the drawn conclusions on the
possibility of evaluating the degree of homogeneity of
nonstoichiometric compounds from the broadening of
diffraction reflections, we carried out the experimental
investigations of the TiCy, ZrCy, HfCy, VCy, NbCy and
TaCy nonstoichiometric carbides belonging to the
group of highly nonstoichiometric compounds.

Now, we evaluate the degree of homogeneity of dis-
ordered nonstoichiometric niobium carbide NbC0.83
prepared by the solid-phase sintering under a vacuum
no worse than 0.0013 Pa according to the procedure
represented in Fig. 1. The carbide was synthesized from
high-purity powders of metallic niobium and MT-900
carbon black with an ash content of less than 0.04 wt %.
The total impurity content in niobium was less than
0.1 wt %. The contents of particular impurities were as
follows (wt %): 0.01 Ta, 0.005 Fe, 0.003 W, 0.003 Mo,
0.002 Si, 0.001 Ti, 0.002 Al, 0.0003 Ni, 0.055 O,
0.016 C, and 0.010 N. According to the chemical anal-
ysis, the synthesized niobium carbide had the composi-
tion NbC0.83 and contained 90.20 wt % Nb, 9.72 wt %
C, 0.05 wt % O, and 0.01 wt % N. No free carbon was
found. The microscopic examination showed that the
grain size in bulk samples of the NbCy disordered
carbide ranges from 1–2 µm at y ≈ 1.0 to 10–15 µm at
y ≤ 0.70. Therefore, the size broadening of diffraction
reflections is absent. In order to relieve stresses, the
samples were additionally annealed at a temperature of
800 K. The structural characterization performed on
Siemens D-500 and STADI-P (STOE) x-ray automated
diffractometers by using the powder method indicates a
high degree of homogeneity of the carbides synthe-
sized: the splitting of the Cu  doublets is observed
even for reflections at small 2θ angles and with small
Miller indices. Figure 2 displays the x-ray diffraction
pattern of the disordered nonstoichiometric niobium
carbide NbC0.83, for which the doublets are split already
beginning with the (311) reflection, suggesting a high
degree of homogeneity of the carbide. The diffraction
pattern was taken on a Siemens D-500 automated dif-
fractometer (CuKα radiation, Bragg–Brentano geome-
try). The half-width θR of the instrumental resolution
function was determined in special experiments with a
single crystal of hexagonal silicon carbide 6H-SiC and
stoichiometric tungsten carbide WC. For the Cu
radiation, θR = 0.0301° at θ = 35°. By using the compo-
sition dependence of the lattice spacing aB1(y) for the
NbCy disordered carbide taken from [4], we obtain

(y)|y = 0.83 = 0.01655 nm. For the first component of

the (311) doublet in the case of the Cu  radiation,
the experimental full width at half maximum ∆(2θexp) is
equal to 0.15°. Therefore, the experimental half-width

Kα1 2,

Kα1

aB1'

Kα1
0
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Fig. 2. X-ray diffraction pattern of disordered nonstoichiometric niobium carbide NbC 0.83.
θexp(θ) = ∆(2θexp)/(2 × 2.35) measured in terms of θ for
the (311  reflection is equal to 0.0319° [note that the
half-width measured in terms of 2θ is θexp(2θ) =
∆(2θexp)/2.35]. For the (311  reflection at the diffrac-
tion angle θ0 = 35°, the coefficient K(θ0) is equal to
0.636 nm/rad (0.0111 nm/deg). The above values of
K(θ0), (y)|y = 0.83, θexp, and θR allow us to determine
the inhomogeneity ∆y from the broadening of the
(311  reflection, which appears to be equal to 0.007;
i.e., the degree of homogeneity of the NbC0.83 nonsto-
ichiometric carbide synthesized is equal to 0.993 and
close to unity. The estimates made with other reflections
result in the same degree of homogeneity (1 – ∆y) =
0.993 for the NbC0.83 niobium carbide. The MCy nons-
toichiometric carbides with such small inhomogeneity
cannot be produced by other techniques. As follows
from the estimates for carbides obtained using the ther-
mal carbon reduction or the self-propagating high-tem-
perature synthesis, the inhomogeneity ∆y varies from
0.015 to 0.02 and even more.

Thus, the described regimes of solid-state vacuum
synthesis (Fig. 1) make preparing the TiCy, ZrCy, HfCy,
VCy, NbCy, and TaCy high-purity homogeneous car-
bides in the form of bulk samples and powders with the
specified carbon content y possible with an accuracy no
worse than ±0.005–0.007. The powders of nonstoichi-
ometric carbides are characterized by a narrow size dis-
tribution of particles: the grain-size analysis demon-
strates that the size of 80% of particles is equal to 2–
3 µm. The size of grains in the bulk samples of the MCy

)α1

)α1

aB1'

)α1
P

disordered nonstoichiometric carbides varies from 1–
2 µm at y ≈ 1.0 to 10–20 µm at y ≤ 0.70.

In the x-ray experiment with the use of the Cu
radiation, the splitting of diffraction reflections indi-
cates the homogeneity of nonstoichiometric com-
pounds. The splitting of reflections into the α1 and α2
components is observed when the distance ∆(2θ(α1,
α2)) between the α1 and α2 peaks is larger than twice
the half-width of the experimental function (Fig. 3);
i.e., ∆(2θ(α1, α2)) ≥ 2θexp(2θ) = ∆(2θexp)/1.175. Hence,

(7)

Taking into consideration equation (4) and the fact that
θexp = ∆(2θexp)/4.7 and θR = ∆(2θR)/4.7, inequality (7)
representing the condition for the splitting of doublets
in the x-ray diffraction pattern can be rewritten in the
form

(8)

Inequality (8) enables one to evaluate the inhomogene-
ity ∆y of the MXy compound from the distance
∆(2θ(α1α2)) between the α1 and α2 components of the
first split reflection.

Special heat treatment conditions are used for the
preparation of nonstoichiometric carbides in the
ordered and disordered states (Fig. 4). The quenching
from 1850–2300 to 300 K at a rate of 2000 K/min
(regime a) is applied to obtain carbides in a disordered

Kα1 2,

∆ 2θexp( ) 1.175∆ 2θ α1 α2,( )( ).≤

∆ 2θR( )[ ]2 4.7
aB1' y( )

y y0=

K θ0( )
---------------------------∆y

2

+

≤ 1.175∆ 2θ α1 α2,( )( )[ ]2.
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Fig. 3. Splitting of the (311) diffraction reflection into α1 and α2 components as a function of the degree of homogeneity ∆y for
NbC0.83 nonstoichiometric carbide (the smaller value of ∆y corresponds to more homogeneous carbide).

Fig. 4. Heat treatment conditions used for obtaining TiCy, VCy, NbCy, and TaCy carbides in the disordered and ordered states:
(a) quenching for preparation of disordered carbides and (b, c) annealing for preparation of nonstoichiometric carbides with different
degree of long-range order.
state metastable at room temperature. Regimes b and c
are employed for preparing carbides in equilibrium
ordered states with a long-range order in the arrange-
ment of carbon atoms and structural vacancies. These
regimes are prolonged (up to 100 h) annealings with a
slow decrease in the temperature from 1000–1600 K
(depending on the kind of metal atoms in carbide)
down to 600–800 K. The cooling rate is equal to 0.05–
0.20 K/min. Compared to regime b, regime c (with a
lower cooling rate) furnishes a way of producing the
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
nonstoichiometric carbides with larger long-range
order parameters.

As follows from experimental investigations, the
use of the annealing regimes makes it possible to obtain
the TiC0.50–TiC0.58 carbides with the Ti2C-type order
and the long-range order parameter η = 0.74 [20], the
VC0.79 and VC0.83 carbides with the V6C5-type order
and η ~ 0.80 [21], the VC0.87 carbide with the V8C7-type
order and η ~ 0.96 [12, 21], the NbC0.83 carbide with the
0
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M6C5-type order and η ~ 0.85 [4], and the TaC0.83 car-
bide with the M6C5-type order and η ~ 0.65 [22]. Anal-
ysis of structure and superstructure x-ray diffraction
reflections for ordered carbides made it possible to
determine the degree of homogeneity of ordered phases
and to confirm the absence of disordered phases in the
samples.

Therefore, it was demonstrated that the inhomoge-
neity of the nonstoichiometric compounds leads to the
broadening of diffraction reflections. Analysis of the
broadening allows one to evaluate the degree of homo-
geneity and, by using this quantitative parameter, to
control and optimize the conditions of preparing the
highly nonstoichiometric carbides with the high degree
of homogeneity. The degree of homogeneity is the use-
ful parameter for the characterization of carbides in the
ordered state, because it provides a way of differentiat-
ing the inhomogeneous and two-phase samples. The
quantitative characteristic of the degree of homogene-
ity is applicable to all the compounds characterized by
the nonstoichiometry and the substitutional solid solu-
tions (alloys).
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Abstract—The effect of complete restoration of the ice surface after indentation in the temperature range 243–
268 K has been detected and studied. The observed effect lies in the growth of new ice grains on the faces of
the indent during several hours after the removal of the indenter. The rate of restoration is found to increase
considerably after the microindentation of the boundary of an initial grain of polycrystalline ice. Possible mech-
anisms of this phenomenon are considered. © 2000 MAIK “Nauka/Interperiodica”.
The mechanisms of dent formation during indenta-
tion, the role of defects of various dimensions, and the
structure of the deformed region remain subjects of dis-
cussion [1–9]. The nature of secondary phenomena
accompanying indentation and structural relaxation,
e.g., polymorphic phase transformations in the pricking
region [6, 7] and partial restoration of the indent [2, 9],
is also not completely clear. The restoration of the
indent normally involves the bending of its faces; the

relative change in the indent volume ξ = |V – V0|
(where V0 and V are the volumes of the initial and
relaxed indents, respectively) does not exceed 10% as a
rule when the indent depth  ≥1 µm [2]. In this work, we
report the discovery of the effect of complete restora-
tion of the indent region (ξ ≈ 1) after the microindenta-
tion of the surface of polycrystalline ice in the premelt-
ing temperature range T/Tm = 0.90–0.98 (where T is the
temperature at which the tests were carried out and
Tm = 273 K is the melting point of ice).

The sample of polycrystalline ice grown from dis-
tilled water (with an average grain size  = 800 µm)
were subjected to microindentation by the Vickers pyra-
mid according to the standard technique on the PMT-3M
equipment in a refrigerating chamber whose temperature
varied from –5 to –30°C. The microhardness of ice under
these thermal conditions amounted to (5–8) × 107 Pa.
After removing the indenter, we observed the kinetics
of restoration of the indent region. It was found that the
indents disappear completely with the average linear
rate of restoration  = h0/  ≈ 0.1 µm/min, and the
average bulk restoration rate  = V0/  ≈ 10 µm3/s,
where h0 is the depth of the initial indent and  is the
average restoration time [for example, an indent with a
diagonal of 180 µm disappears completely  = 5 hours
after pricking at a temperature of –20°C (Fig. 1)].
Microscopic observations of the restoration process for
more than 100 indents show that the restoration occurs

V0
1–

d

νh τ
νV τ

τ

τ
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due to the “filling” of the indent by “new” ice grains. A
new “grain” having a size of 20–30 µm appears at the
lower part of one of the faces just two or three minutes
after pricking (Fig. 2). The number of such grains first
increases, after which some of them start growing due
to absorption of smaller grains (in analogy to the coa-
lescence stage during first-order phase transitions [10]),
and ultimately two or three “new” grains with a size
commensurate with the diagonal of the initial indent
remain in the region of the almost completely healed
indent. Besides, the effect of initial grain boundaries of
polycrystalline ice on the kinetics of restoration of the

~ ~
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0 1 2 3 4 5 20
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Fig. 1. Kinetics of the restoration of an indented ice surface

at the center of a grain at T = –25°C in the  vs.

t coordinates (where V0 – V is the restored volume, V0 is the
initial volume of the indent, and t is the time in hours after
unloading). The inset shows the cross section of the initial
(1) and partially restored (2) indent region.
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Fig. 2. Filling of the indent after microindentation at T = –7°C: (1) initial surface of polycrystalline ice containing a grain boundary;
an indent after a time (2) t = 10 s following pricking and t (min): (3) 5, (4) 10, (5) 20, (6) 40, (7) 55, (8) 140, and (9) 150.
indent region is revealed: after pricking a grain bound-
ary, the bulk restoration rate increased by ten percent as
compared to the indent restoration rate in the central
region of the grain, while the restoration rate after
pricking the triple joint showed a manifold increase (by
a factor of 2 or 3 at T = –(5–20)°C).

In order to estimate the effect of crystallization of
supercooled vapor on the filling of the indent, the sam-
ple surface was covered in some experiments with a
thin glass plate whose perimeter was sealed meticu-
lously a few seconds after the withdrawal of the
indenter. In the entire range of variation of the experi-
mental conditions (the range of indent diagonals and
experimental temperatures), the presence of the glass
plate did not affect the kinetics of restoration of the
indent region significantly.

Let us consider possible mechanisms of the
observed effect.

(1) In view of the high mobility of lattice defects at
premelting temperatures, the relaxation of the pit left
after pricking can lead to a radical rearrangement of the
dislocation structure of the lattice, for example, as a
P

result of the annihilation of dislocations of opposite
polarities and the alignment of dislocations of the same
polarity into polygonal walls. Under the effect of resid-
ual elastic stresses, dislocation pileups of the same
polarity can emerge at the surface of the indent, thus
forming a protrusion, viz., the outer part of a “new
grain”. Thus, residual elastic stresses can be the driving
force of such a relaxation process, while the dominat-
ing mechanism may be the premelting-temperature
recrystallization annealing of the dislocation pit left
after pricking.

(2) It is well known that polycrystals start melting
along grain boundaries [11]. Therefore, it is likely that
not only the walls of grain-boundary dislocations, but
also dislocation pileups in the pit left after pricking are
high-entropy perturbations of the crystal lattice with an
anomalously high local value of chemical potential,
and hence, a lower melting temperature. The liquid
phase formed in the rays of a dislocation pit is squeezed
out by capillary forces and/or residual elastic stresses to
the outer surface of the indent face, accompanied by the
formation of ice granules (“new grains”). The fact that
the rate of filling of the indent with “new” ice grains is
HYSICS OF THE SOLID STATE      Vol. 42      No. 7      2000
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significantly higher in the case where a grain boundary
and especially a triple joint are pricked speaks in favor
of the mechanism involving dislocation pileups (and/or
dislocation walls) being in the premelting state.

(3) Ice is known to have a complex P–Tm phase dia-
gram (where P is the hydrostatic pressure). A distin-
guishing feature of hexagonal ice Ih is that its melting
temperature decreases with increasing pressure, which
is known as rejection, i.e., melting under pressure [12].
According to estimates, a liquid-phase domain may be
formed under the indenter in the indentation pit in the
range of temperatures and stresses under investigation.
Another important feature of ice Ih is the presence of a
quasi-liquid layer of thickness ~0.1 µm on its surface
[13]. Consequently, new ice “grains” can appear as a
result of crystallization of water due to ice rejection or
as a result of quasi-liquid layer flowing into the indent
under the action of capillary forces. Additional experi-
ments are required to make a proper choice between
these mechanisms.

It should be noted, in conclusion, that in the region
of premelting temperatures, the crystal is a nonlinear
object due to a strong anharmonism of lattice vibra-
tions, which is responsible for the emergence of a num-
ber of anomalous preliminary effects [14, 15]. The
introduction of a strongly nonequilibrium dislocation
structure of the indentation pit into the crystal creates
conditions favoring the emergence (self-organization)
of new structures. Filling the indent by the grains of
“new” ice is essentially a morphogenesis of such a
structure. However, the question arises of whether the
observed effect is associated with peculiar features of
ice, such as the presence of a quasi-liquid layer on its
(outer and inner) surface and rejection, or it is typical of
various materials in the premelting region and, hence,
is of a universal thermodynamic origin due to a combi-
nation of strong deviation from equilibrium and the
nonlinearity of the initial structure of the damaged
region with a high mobility of its structural and kinetic
elements. The answer to this question requires further
systematic investigations into the mechanisms of
indentation, the structure of the deformed region and its
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
relaxation in the case of high-temperature indentation
of a wide class of materials.
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Abstract—Computer simulation technique is used for studying the plastic flow at the tip of an arrested crack in
lithium fluoride crystals. Two stages of the dislocation structure formation at the tip of a crack are analyzed: the
formation of slip lines at the instant of crack arresting, and their evolution after sample unloading and partial heal-
ing of the crack. The size and the number of dislocations in a slip line are determined as functions of the loading
force at the instant of crack arresting and on frictional stresses. It is shown that, during sample unloading and heal-
ing, some dislocations emerge at the plane of the crack under the action of mutual repulsion and image forces, so
that the dislocation density attains its maximum value at a distance from the crack tip. A finite region free of dis-
locations exists in the immediate vicinity of the crack tip. © 2000 MAIK “Nauka/Interperiodica”.
The fracture of most crystalline solids is accompa-
nied by a plastic deformation whose intensity and
extent of localization are determined by the rate of
crack evolution [1, 2]. Partial or complete arrest of a
crack in alkali-halide crystals is accompanied by the
formation of plastic regions in the form of a typical
“dislocation cross” [3]. The emitted dislocations create
a plastic opening [4] and bend the banks of a crack,
which hampers its healing after unloading [5]. In this
work, we attempt to estimate the emissive capacity of a
crack in lithium fluoride crystals. Experiments with
such crystals reveal various etching figures at the tip of
a crack depending on the conditions of its deceleration
and arrest. In the case of an asymmetric cleavage, both
completely symmetric slip lines and those having a for-
ward direction are detected. For cracks propagating
jumpwise under the action of a pulsed load, slip lines
and bands normally have the direction opposite to the
direction of movement of the crack. As a rule, the total
number of dislocations does not depend significantly
on the way the crack is arrested. For this reason, we will
consider the simplest version of a plastic region typical
of a jumpwise propagating crack, namely, the slip in
half-planes adjoining the crack surface.

We present the plastic region by solitary slip lines
symmetric about the crack plane (Fig. 1) and distin-
guish between the two stages of the formation of the
dislocation structure at the crack tip; the formation of
slip lines at the instant of crack arrest when the sample
remains loaded, and their evolution after unloading.

We assume that the crack lies in the (010) plane and
that it moved in the [100] direction before it was
arrested. While writing the equilibrium equations for
dislocations emitted by the crack in the slip plane, one
1063-7834/00/4207- $20.00 © 21290
must take into account the image forces (exerted on a
dislocation by the crack) as well as the interaction of
dislocations and the resistance offered by the crystal to
shear. For the case of a plastic flow (Fig. 1), the equilib-
rium equations have the form

where τT(xn) are the stresses created by the crack in the
slip plane, τD(xn, xj) are the stresses exerted on the nth
dislocation by the jth dislocation and the one conjugate
to it, τS are frictional stresses of the lattice, and τi are the
stresses created by the image force [6].

τT
xn( ) τ D

xn x j,( ) τS– τ i–∑+ 0, n 1 2 … m,, , ,= =

------------
45°

[010]

[100]

[001]

x

Fig. 1. Schematic of a plastic flow at the crack tip.
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The emission of dislocations ceases when the max-
imum magnitude of frictional stresses becomes smaller
than the stresses initiating the plastic flow.

The system of equilibrium equations was solved
numerically by a successive overrelaxation method [7].
It was proven that the dislocation density ρ(x) = ∆N/∆x
(curve 1 in Fig. 2) in the tailing part of a slip line adjoin-
ing the crack amounts to ≈106 m–1. In the region of lead-
ing dislocations, its value decreases by more than an
order of magnitude.
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0 200 400

ρ, 105 m–1
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Fig. 2. Dislocation density in a slip line: (1) loaded sample
and (2) after unloading.
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Fig. 3. Number of dislocations in a slip line as a function of
wedging forces P, N: (1) 6, (2) 5, and (3) 4 (curves 4–6 cor-
respond to unloading).
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The total number of dislocations in a slip line
depends on the load at the instant of crack arresting, as
well as on the frictional stresses, and may vary over
wide limits (Fig. 3). In the general case, a decrease in
the resistance offered by the crystal to the motion of
dislocations leads to the removal of leading disloca-
tions to large distances from the crack, thus reducing
the value of stresses blocking the dislocation source.
The total number N of dislocations increases in this
case. For a constant value of τS, the number of disloca-
tions in the slip line increases with the wedging force p;
i.e., a more intense plastic flow should also be expected
in crystals with a large surface energy γ in view of an
increase in the value of stresses at the crack tip.

The length l of slip lines (curves 1–3 in Fig. 4)
exhibits approximately the same dependence on p (or γ)
and τS. The path length of a leading dislocation varies
from tens of micrometers to ≈2 × 10–3 m for the values
of load and frictional stresses used in our calculations.

It is interesting to note that τT(x) < τS at the head of
a dislocation pileup; i.e., the contribution to the path
length of leading dislocations from mutual repulsion of
dislocations in a slip line is larger than that from the
shear stress due to the crack. Indeed, if we confine the
size of the plastic region by the condition τT(x) = τS, we
obtain the expression l* = (K/τS)2  for the pileup length,
where K is the stress intensity factor. The values of l*
calculated according to this expression are presented in
Fig. 4 (curves 4–6). It can be seen that l* is always
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Fig. 4. Dependence of the slip line length on frictional
stresses P, N: (1) 6, (2) 5, and (3) 4 (curves 4–6 correspond
to unloading).
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smaller than l, the difference between them increasing
with the pileup length (or the number of dislocations in
the pileup).

The above-mentioned fact is obviously of general
nature and is manifested when dislocations are gener-
ated at any structural inhomogeneity creating a local
stress concentration. The plastic region size in this case
is controlled by the amplitude value of shear stresses
rather than by the spatial distribution of the stressed
state.

Next, we analyzed the second stage of the formation
of the dislocation structure at the crack tip, i.e., the
transformation of the pileup calculated above after the
removal of the external load and partial healing of the
crack. Dislocations can move from their initial posi-
tions under the action of their mutual repulsion and
image forces (the calculation procedure at this stage is
similar to that used in [8]). The dislocations for which
the magnitude of the acting forces does not exceed the
frictional forces are regarded as stationary. Some dislo-
cations may leave the crystal and emerge at the crack
surface if they approach the crack to a distance r = A/τS

during their motion (here, A = Gb/4π(1 – ν), G is the
shear modulus, b is the Burgers vector for a dislocation,
and ν is the Poisson ratio), at which image forces
exceed frictional forces. Thus, the relaxation of the
pileup changes not only the spatial arrangement of indi-
vidual dislocations, but also their number.

Calculations showed that the arrangement of dislo-
cations at the pileup head (dislocations with numbers
j ≤ 37) remained unchanged. However, the number of
dislocations in the region adjoining the crack decreased
and their mutual separation changed. The distribution
of dislocation density over the pileup length also
changed significantly (see curve 2 in Fig. 4). The
dependence of ρ on x is no longer monotonic, but has a
complex form with an extremum at a considerable dis-
tance from the crack tip. The maximum value of the
dislocation density is 2 × 105 m–1.

Figure 3 (curves 4–6) gives information on the num-
ber of dislocations remaining in the crystal after
unloading. The general situation corresponds to the
emergence of ~40% of dislocations at the crack sur-
face; in other words, a noticeable reversible plastic
deformation is observed along with a one-way flow.
The amount of plastic opening is determined by the
number of dislocations emitted by the crack in the
〈110〉 {110} slip system. As the sample is unloaded, the

crack opening decreases by δ = n1b, where n1 is the
number of dislocations emerging at the cleavage sur-
face. The final opening is determined by the number of
dislocations remaining in the crystal at the tip of the
crack.

If the plasticity at the tip of a crack being arrested is
insignificant and δ < 20 nm, its banks can converge (as
a result of the emergence of dislocations at the crack

2

P

surface) to distances short enough for restoration of
ionic bonds. In this case, self-healing takes place.

We also studied the variation of plastic flow param-
eters at the crack tip for the cases when the deformed
region could be presented by a set of several slip lines.
We assumed that the slip lines are spaced at small dis-
tances such that the interaction of a dislocation with
those on adjacent planes can be taken into account by
increasing the Burgers vector in proportion to the num-
ber of slip lines. The total Burgers vector for disloca-
tions in a slip line is approximately conserved: b1N1 ≅
b2N2 ≅  b3N3; i.e., plastic opening of the crack does not
depend on whether the plastic region is modeled by dis-
crete lattice dislocations or by superdislocations with
the Burgers vector B = nb. The slip line length
decreases with increasing Burgers vector of disloca-
tions; hence, l1 > l2 > l3. The relative decrease in the
plastic region size is also small; for example, a three-
fold increase in the Burgers vector of a dislocation
reduces the slip line length approximately by 10%.

It should be noted that the separation between the
Nth dislocation and the crack tip is much larger than the
distance between this dislocation and the (N – l)th dis-
location; i.e., a finite dislocation-free region exists in
the immediate vicinity of the crack tip. The existence of
these regions was confirmed in [8] for shear cracks. In
order to explain the experimentally observed features
of the dislocation distribution at the crack tip, Shu-Ho
and Li [9] considered a model of plastic flow in the
form of a slip line on the continuation of the crack. In
contrast to the flow model developed in [10], which
predicts no dislocation-free region, the authors of [8]
proposed that the emission of dislocations by a crack
ceases when the stress intensity factor at the crack tip
decreases to a preset value (zero in [10]). Thus, they
actually considered a slip line at the crack tip in which
the number of dislocations is insufficient for blocking
the crack tip as a source of dislocations. In this
approach, the existence of a region free of dislocations
is a natural consequence of sample unloading, when a
fraction of dislocations emerges at the cleavage surface
under the action of their mutual repulsion and image
forces.
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Abstract—The penetration of helium atoms into amorphous films extended to fracture in liquid helium has
been investigated. It is found that helium atoms penetrate into the eutectic alloy films Pd84.5–Si15.5 in 3He
(T = 0.5 K) and Ni78–Si8–B14 in 4He (T = 4.2 K). The spectra of helium liberation from these materials after
deformation are obtained upon dynamic (4–5 K/min) annealing at T = 293–1323 K. The maximum amount of
helium is observed in the regions of local plastic microshears running across the whole width of films and also
in the sample regions containing fracture macrocracks and isolated groups of slip bands. The spectra of helium
liberation from different regions of destroyed samples show several peaks that correlate with the temperatures
of crystallization and melting of the studied films. The data obtained are interpreted within the model of mech-
anochemical penetration of helium atoms through the dynamically excited dislocation-like defects, which are
typical of the amorphous films under consideration. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigations into the dynamic dislocation pipe dif-
fusion [1–4]—the penetration of atoms (molecules or
their fragments) into crystalline materials in the course
of their plastic deformation through nucleating and
moving dislocations—bring up the question about the
generality of this phenomenon for different-type solids.
Earlier [5], it was shown by the example of a helium
medium that, under plastic deformation, helium atoms
penetrate not only into crystalline materials with differ-
ent-type lattices, but also into polymer materials such
as fluoroplastic. As is known [6], the plastic deforma-
tion of polymer materials can be described by the
Somigliana dislocations with the variable Burgers vec-
tor. Therefore, the same approach can be applied to the
penetration of impurity atoms of a medium into these
materials.

The question as to whether the particles of the sur-
rounding medium penetrate into amorphous metallic
materials, namely, metallic glasses (for example, films
without crystal structure), in the course of their plastic
deformation is of crucial importance. In order to
answer this question, we studied films of the Ni78–Si8–
B14 and Pd84.5–Si15.5 eutectic amorphous alloys (Vac-
uum Schmelze, Germany) prepared by the liquid-phase
technique—the quenching from the melt.

2. RESULTS

The film samples Ni78–Si8–B14 (10 × 60 × 0.125 mm)
and Pd84.5–Si15.5 (2 × 60 × 0.06 mm) were extended to
1063-7834/00/4207- $20.00 © 21294
fracture at a rate of 0.02 mm/min in liquid 4He at T =
4.2 K (the former film) and in liquid 3He at T = 0.5 K
(the latter film) by using a special mechanical testing
machine [7]. The strain diagrams of these objects rep-
resent the straight lines. However, prior to fracture (at
σ ≈ 0.8σf, where σf is the fracture stress), the diagrams
exhibit a number of small jumps associated with the
appearance of single slip bands or groups of several slip
bands 0.1–3 mm long. The fracture of films is accom-
panied by their separation into two or more parts and
the macroplastic deformation in the form of 1–2 corru-
gations (wrinkles), which run across the whole width of
the samples and have sizes of an order of ~1 mm. The
corrugations arise from the joint action of elastic waves
generated during the propagation of a destroying main
crack, i.e., longitudinal unloading waves reflected from
sample grips in the form of compression and flexural
waves [8].

It should be noted that one side of the film surface
has many technological macrodefects (stress concen-
trators)—craters or cavities (extended along the film
length) with rough edges and also other smaller-sized
surface defects (Fig. 1a). A large number of very thin
plastic shears (slip bands) are found on this surface in
the Pd84.5–Si15.5 films after their fracture. The slip bands
are partially located in cavities or enclose them
(Fig. 1b) and also emerge in the form of fans or bundles
from different defect surface regions on both sides of
the film (Fig. 2a). The branched slip bands are also
observed along the front of macrocrack propagation
and fringe them throughout the length (Fig. 2b). Com-
000 MAIK “Nauka/Interperiodica”
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pared to the Pd84.5–Si15.5 films, the Ni78–Si8–B14 films
have a lower plasticity and a higher strength. The frac-
ture stresses for the Ni78–Si8–B14 films (σf ≈ 2600 MPa)
are approximately twice as large as those for the Pd84.5–
Si15.5 films (σf ≈ 1200 MPa). In the Ni78–Si8–B14 films,
the slip bands (apart from corrugations) are predomi-
nantly observed in the vicinity of the fracture macroc-
racks, and their number on the rest of the film surface is
small. The shear in the slip bands was measured with an
interference microscope. Its magnitude was found to be
large and equal to 1.5. In the film regions with a mac-
roshear (corrugation) running across the whole width
of films, the shear magnitude was measured from the
sample bending in these regions and reached 5.

It can be seen that, according to [8, 9], the studied
films remain plastic even at liquid-helium tempera-
tures, and their fracture is viscous in character. Conse-
quently, the helium atoms can penetrate into the regions
of the local shears—the slip bands arisen upon loading
and the subsequent fracture of the films.

Different regions of the fractured films were ana-
lyzed using a magnetic resonance mass spectrometer
with a high resolution and a high sensitivity (the thresh-
old of sensitivity is equal to ~ 5 × 109 atoms for 4He and
~105 atoms for 3He [10]). Moreover, the film parts were
cut with the aim of separating the regions with slip

(b)

(a)

Fig. 1. (a) Surface relief and (b) ring slip bands enclosing
the crater-type defect in the Pd84.5–Si15.5 film extended to
fracture at T = 0.5 K (magnification, × 750).
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
bands and cracks or only those with large shears (cor-
rugations) running across the whole width of the sam-
ples. The results obtained are listed in the table. As fol-
lows from the table, helium is found in all the studied
parts of samples nos. 1 and 2 of the Ni78–Si8–B14 films
and sample no. 3 of the Pd84.5–Si15.5 films. The smallest
amount of helium is observed in parts nos. 1 and 2
(marked by asterisk), which are shared in the grips. The
presence of helium in these parts can be explained by a
very small local plastic deformation, which does occur
because of the slip of films in the grips upon their load-
ing. Examination under an optical microscope reveals
the presence of a small number of local slip bands that
are randomly arranged in the films over the entire sur-
face of grips.

Next, we investigated the film parts involving groups
of local shears (0.1–3.0 mm in length), one macroshear
(corrugation) running across the whole width of the film,
single macrocracks with fringing slip bands, and fan-
shaped groups (bundles) of slip bands. The helium con-
tents (averaged over all the samples) in different film
parts are as follows: 4 × 109 atoms/cm2 in parts nos. 1
and 2 shared in the grips, 40 × 109 atoms/cm2 in parts
nos. 3–7 containing macrocracks and slip bands, and
160 × 109 atoms/cm2 in parts nos. 8, which contain cor-
rugations. As can be seen, among different film regions,

(b)

(a)

Fig. 2. (a) Fan-shaped bundles of slip bands emerging from
surface defects and (b) slip bands fringing the fracture
region in the Pd84.5–Si15.5 film extended to fracture at T =
0.5 K (magnification, × 750).
0
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the maximum helium amount is observed in the corru-
gation regions (see table) containing a large number of
slip bands, which occupy almost their entire surface
area.

Let us now turn to the spectra of helium liberation
from amorphous films, which were obtained upon
dynamic annealing (at a rate of 4–5 K/min) in the tem-
perature range 293–1323 K. For samples nos. 1 and 2
of the Ni78–Si8–B14 films, a number of peaks of helium
liberation from different sample parts are observed at
the same temperatures T = 573–623, 723, 1123–1143,
and 1223 K (Figs. 3, 4). The location of a peak at T =
773 K virtually coincides with the crystallization tem-
perature of the film (Ts = 713–753 K), and the location
of a peak at T = 1223 K agrees with the melting temper-
ature of the film. The latter peak, like some other peaks,
exhibits a three-point structure, which suggests an
explosive character of the helium liberation (the
booster effect). The height of peaks at T = 573–623 K
depends on the helium content in the initial parts of the
film. The spectrum of helium liberation from the Pd84.5–
Si15.5 film (Fig. 4, curve 8) differs only slightly from
that for the Ni78–Si8–B14 film. The temperatures of two
peaks at 573–593 and 880 K coincide for both films
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Fig. 3. Spectra of helium liberation from sample no. 1
(Ni78–Si8–B14) upon dynamic annealing of its different
parts containing (4, 5) macrocracks with fringing slip bands,
(6, 7) group of slip bands of different lengths (0.2–3.0 mm),
and (8) corrugations (macroshear) running across the whole
width of the film (see table).
P

(Figs. 3, 4). For the Pd84.5–Si15.5 film, the location of the
third main peak at T = 820°C correlates with the melt-
ing temperature (Tm ~ 1100 K), and the location of a
peak at T = 630 K corresponds to the crystallization
temperature (Ts = 630–650 K). However, the total num-
ber of peaks for the Pd84.5–Si15.5 film is less than that for
the Ni78–Si8–B14 film.

It can be assumed that, upon heating up to 290 K,
holding, and subsequent dynamic annealing of samples
up to ~1270 K, helium penetrated into the films due to
the plastic deformation is redistributed among energy
traps (including bubbles) different in depth and config-
uration. The appearance of peaks at T = 570–590 and
860–880 K for both types of films is likely caused by
the presence of helium traps with identical energy char-
acteristics even with the differences in their initial
structure and composition. At the same time, these dif-
ferences are responsible for the difference in the char-
acter of helium liberation from films of both types (the
shape of the spectra and the location, width, and height
of peaks) and also for the presence of additional peak at
T = 860°C for the Ni78–Si8–B14 film. In order to obtain
an unambiguous answer to this problem, it is necessary
to determine the energy parameters of some traps and
the depth of their occurrence in the bulk of films upon
dynamic and isothermal annealing at different rates and
temperatures. Solving this problem calls for further
investigations.

3. DISCUSSION

The above experiments showed that helium is
retained in the Pd84.5–Si15.5 and Ni78–Si8–B14 amorphous
films upon heating up to their melting temperatures and
can be liberated even from the melt (Figs. 3, 4). As fol-
lows from the mass-spectrometer measurements, the
helium content in the samples strained in liquid helium
remains constant even after their heat treatment at 290 K
for five years. This suggests that helium penetrates into
the studied materials through a nonadsorption mecha-
nism and the energy traps for helium are sufficiently
deep. These facts can be explained under the assump-
tion that helium atoms are trapped and chemically
bound to the atomic amorphous structure of films dur-
ing their dynamic interaction in the regions in which
the slip bands and attendant micro- and macrocracks
Helium content N × 10–9 atoms/cm2 in Ni78–Si8–B14 and Pd84.5–Si15.5 amorphous films

 Sample no. Film
Sample part no.

1 2 3 4 5 6 7 8

1 Ni78–Si8–B14 5.2* 4.4* 28 25 67 53 10 237**

2 Ni78–Si8–B14 6.2* 1.2* 75 17 55 114**

3 Pd84.5–Si15.5 6.5* 120**

*Sample parts with grips. 
**Sample parts with corrugations (empty squares correspond to the absence of measurements).
HYSICS OF THE SOLID STATE      Vol. 42      No. 7      2000
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Fig. 4. Spectra of helium liberation from (3, 4) sample no. 2 (Ni78–Si8–B14) and (8) sample no. 3 (Pd84.5–Si15.5) (dashed line) upon
dynamic annealing of the sample parts containing (3, 4) macrocracks with fringing slip bands and (8) corrugation.
originate and propagate. The presence of chemical
bonds between helium atoms and atoms of crystal lat-
tice was experimentally demonstrated with ionic crys-
tals by helium flaw detection [11].

According to [1–4], the penetration of particles
(atoms, molecules, or their fragments) of the surround-
ing medium into crystalline materials in the course of
their plastic deformation occurs through nucleating and
moving dislocations. In the unstrained amorphous film,
defects of the dislocation type in the explicit form are
absent. However, as was shown in [12, 13], the amor-
phous structure of eutectic alloys strained at T = 20–
300°C transforms to the crystal structure in the regions
of local slip bands, and the slip bands exhibit compres-
sion and tension regions arisen from the short-range
stresses, which gives rise to an x-ray diffraction con-
trast and spots in the electron diffraction patterns. Con-
sequently, we cannot rule out the presence of disloca-
tions and disclinations in slip bands, even though the
shape, sizes, and density of these defects should con-
siderably differ from those in the crystal structures sub-
jected to tensile strain. Moreover, the preparation of
amorphous films is accompanied by the formation of a
large number of point defects (vacancies and intersti-
tials) and their complexes. Therefore, the loose and dis-
ordered atomic structure of amorphous films substan-
tially facilitates the penetration of helium atoms.

Now, we consider two contributory factors for this
process: the presence of high internal stresses in amor-
phous films [14–17] and a strong local heating of the
slip bands during the plastic deformation of films in liq-
uid helium [9].

The atomic structure of metallic films is formed by
the metal–metalloid clusters, which, in the case of
nonisomorphous clusters, are characterized by the
internal stress tensor components σik of the disclination
type with shearing and bending stresses [15]. This pro-
vides the plasticity and, as a consequence, the ductile
fracture of the amorphous films studied. The internal
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
stresses in the films increase with a decrease in the tem-
perature, which leads to the anomalous dependence
σf = f (T) with a maximum at T = 2 K [8, 9]. Within the
disclination approach, the values of σik for the Ni78–
Si8–B14 films at T = 1 K were estimated at about 0.01G
(where G is the shear modulus) [8].

As was shown earlier in [9], the plastic deformation
and fracture of the Pd84.5–Si15.5 and Ni78–Si8–B14 films
at T = 4.2–0.5 K are accompanied by a strong local
heating (up to the melting temperature) of the regions
in which the slip bands, microcracks, and macrocracks
are formed. This conclusion is confirmed by the theo-
retical estimates of the local heating of films in the
regions of slip bands under adiabatic conditions at liq-
uid-helium temperatures (the adiabatic heating of slip
bands was evaluated in [18]) and the fractographic
investigation into the fracture surface of amorphous
eutectic alloy films extended in liquid helium [9]. A
large number of “veins” (necks) formed upon fracture
of the samples were found at the fracture surface.
Moreover, balls of the materials itself were also
observed at the fracture surface, which indicates the
melting of the material.

Thus, the initial structure of amorphous films that is
strongly disordered on the atomic level undergoes rad-
ical changes in the regions of slip bands. This is
explained by considerable displacements of atoms and
their groups at the expense of both external mechanical
stresses in the field of high local internal stresses and
the local heating of slip bands up to the melting temper-
ature of the film. These factors are responsible for the
efficient penetration of helium atoms into the amor-
phous films through the dislocation–vacancy defects
inherent in the metal–metalloid clusters whose number
in the slip bands sharply changes in the course of plastic
deformation.

The helium atoms penetrated into the above defects
can fix and stabilize these high-energy atomic struc-
tures. Hence, it is not surprising that a considerable
0
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amount of helium was found in the studied films after
their testing in liquid helium and prolonged holding at
room temperature.1 

The data obtained demonstrate that the atoms of the
surrounding medium penetrate not only into crystalline
materials, but also into metallic glasses (eutectic amor-
phous alloys) during their plastic deformation in liquid
3He and 4He. Therefore, in metallic glasses, the phe-
nomenon of dynamic dislocation pipe diffusion, which
is characteristic of crystalline materials, transforms to
the phenomenon of mechanochemical penetration of
particles from the surrounding medium through defects
of other types considered above. Consequently, the car-
riers that provide the penetration of helium atoms into
solids under plastic deformation can be both the nucle-
ating or moving dislocations and different chemically
active defect centers—localized states of atomic (or
molecular) groups. The electronic structure of these
states experiences dynamic transformations. This
brings about a decrease in potential barriers of their ini-
tial atomic structure due to the plastic deformation or
other dynamic processes, which result in a change in
the energy parameters of the correlated interactions
between atoms and molecules of solid subjected to
external forces of different physical nature.
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Abstract—Room-temperature recrystallization of KCl single crystals, both pure and doped with 0.02 and
0.06 wt % Sr, deformed preliminarily at 250°C is studied. It is found that annealing of the original single crys-
tals at 650°C results in the precipitation of the SrCl2 phase from the solid solution. X-ray diffraction studies
reveal that the deformed crystals undergo ageing at room temperature, which is accompanied by a change in
the phase composition. In the first place, particles of the KSr2Cl5 phase are formed instead of the phase SrCl2
observed in the original and deformed crystals. These particles, which are located at the boundaries of growing
recrystallized grains (twins of the original single crystal) occupying not more than 8% of the volume, impede
the motion of grain boundaries and hamper further recrystallization. Second, it is shown that post-deformation
ageing occurring in the remaining 92% of the deformed crystal region that has not undergone recrystallization
lends stability to the strain-hardened state of alkali halide crystals over a period of at least two years at room
temperature. © 2000 MAIK “Nauka/Interperiodica”.
Investigations of the recrystallization of alkali
halide crystals (AHC) have revealed not only the exist-
ence of several mechanisms of recrystallization [1–6],
such as the nucleation and growth of recrystallized
grains having large-angle boundaries of the general
type [2, 5] or special twin boundaries [5, 6], migration
of grain boundaries growing from the deformed matrix,
and their coalescence [2], but also the difference in the
kinetics of AHC recrystallization under different condi-
tions of deformation [1–6]. It was shown in a number
of works [1, 2] that at temperatures above 0.45Tm (Tm is
the melting point of the crystal), the growth of grains
under dynamic or static recrystallization in ionic crys-
tals of KCl is in many respects similar to the analogous
process in metals. However, it was established that in
many cases recrystallization of AHC also occurs at
much lower homologous temperatures (0.3Tm) [3–6].
Experiments show that a characteristic feature of
recrystallization of AHC at lower temperatures (close
to room temperature, RT) is the growth of recrystal-
lized grains with twin orientation relative to the original
single crystal [5, 6]. The emergence of recrystallized
grains with twin orientations at RT was detected in
AHC doped with chlorides of divalent metals after
deformation up to 70% [3, 6] and in undoped KCl after
reversible polymorphic transformation B1  B2 [5].

This work is mainly devoted to investigating phase
composition transformations in deformed KCl crystals
doped with small quantities of strontium, and the effect
of post- deformation ageing on the recrystallization of
these crystals.

                       
1063-7834/00/4207- $20.00 © 21299
1. MATERIALS AND EXPERIMENTAL 
TECHNIQUE

We studied single crystals of KCl, both pure and
doped with strontium chloride, grown by the Czochral-
ski method. The chemical composition of the samples
for a number of elements is presented in the table.

The samples were deformed by upsetting on the
Instron test machine in air in a closed chamber at a
deformation temperature Td = 250 ± 5°C at the rate of
ε' = 0.1 mm/min. Samples of size 3 × 3 × 7 mm
intended for testing by compression were chipped out
along the cleavage planes {100}. In order to detect
grain boundaries on a metallographic section, a mixture
of saturated aqueous solution of KCl and ethyl alcohol
was used for etching. The volume fraction of the struc-
tural components in the deformed crystals was deter-
mined by using Glagolev’s dot technique [7] during the
ageing process at RT. The microhardness of structurally
inhomogeneous samples was measured on the PMT-3
device under a load of 20 g.

Qualitative phase analysis was carried out on a
DRON-3.0 diffractometer, using the monochromatized
MoKα radiation for recording. The error in the mea-
surement of diffraction angle was ≤

 

0.02

 

°

 

. The x-ray
diffraction analysis was carried out for single crystals
and hence, not all the lines of the phase being deter-
mined were observed. The reliability of the determina-
tion of relatively weak diffraction lines was evaluated
by using the Student’s criterion for comparing the
intensity distribution in the vicinity of the peak with the
surrounding background. The texture of the samples
was studied with the help of pole figures (PF) obtained
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on the automated texture-diffractometer by the Shultz
(slope) method [8], the maximum slope was 65°, while
the step in polar (ϑ) and azimuthal (ϕ) angles was ∆ϑ  =
∆ϕ = 5°. The characteristic size of the spot being illu-
minated on the sample surface was (3–5) × (8–16) mm.
The size and position of the spot on the sample depends
on the angles ϑ  and ϕ, respectively. Soller slits were
used for collimation of the incident and diffracted
beams. The level of the intensity of reflexes at each PF
is a fraction of the maximum value recorded over the
entire PF, taking into account the correction for the
background and defocusing. In order to estimate the
anisotropy of diffuse scattering, the recording was
made under conditions analogous to the PF recording,
but with the counter installed at an angular separation
1–3° from the exact position of the diffraction peak. In
the following, the patterns of intensity distribution will
be termed as “diffuse scattering patterns (DSP)”. The
samples were observed in transmitted polarized light
by using the optical Docuval microscope. The experi-
mental results presented here are based on an analysis
of the behavior of more than 20 samples, 30 diffraction
patterns, 80 PF and DSP.

2. DISCUSSION OF RESULTS

The crystals of pure and strontium-doped KCl,
which were grown from the melt, were subjected
(before deformation) to annealing in a furnace at a tem-
perature Tan = 600°C for eight hours, followed by slow
cooling with the furnace. Figures 1a and 1b show the
diffraction patterns of Sr-doped single crystals of KCl
after such a thermal treatment. The surface of the sam-
ple on which diffraction patterns were recorded was
perpendicular to the diffraction vector. It can be seen
from the figures that, apart from the diffraction peaks

Concentration of some impurity elements in a KCl sample
according to the results of atomic emission analysis with the
specimen ionization in the inductively coupled ICP–AES
plasma on the ICAP-61 device (Thermo Jarral Ash., USA)

Ele-
ment

Sensitivity 
of mea-

surement, 
µg/g

KCl, 
µg/g

KCl : 0.02 wt % 
Sr, µg/g

KCl : 0.06 wt % 
Sr, µg/g

Sr 0.10 2 200 590

Ca 1 <1 5 3

Na 2 <2 8 3

Rb 0.09 0.64 – –

Br 6 79.4 – –

Cs 0.01 0.22 – –

Note: The results of analysis show that the concentration of other
impurities characteristic of alkali halides, viz., Mg, Cd, Ti,
Mn, Cu, I and Pb, is lower than the measurement sensitivity
which does not exceed 1 µg/g. The accuracy of the method
is ±5% (1 µg/g corresponds to 10–4 wt %). 
P

                                   

corresponding to the single crystal of KCl, the diffrac-
tion pattern also contains some additional lines. The
angles of diffraction at which these intensity peaks
appear do not correspond to any of the possible condi-
tions of reflection from the lattice planes of KCl. It is
quite possible that the positions of additional lines in
the case of the doped and annealed single crystals cor-
respond to the planes {111} and {311} for 

 

β

 

-SrCl

 

2

 

 as
indicated in Figs. 1a and 1b. Apart from these two lines,
an additional line {331} for 

 

β

 

-SrCl

 

2

 

 (06–0537 accord-
ing to the JCPDS catalog) was also observed for a num-
ber of samples.

After deformation of single crystals up to 70% at a
temperature 

 

T

 

d

 

 = 250

 

°

 

C, the {200} KCl lines and their
multiples continue to be the lines with the highest
intensity on the diffraction patterns obtained from
untilted surfaces of the samples containing 0.02 and
0.06 wt % Sr. However, samples held at room tempera-
ture undergo a change in the orientation of the crystal-
lites of the KCl host matrix, as well as in the phase
composition of the samples. Apart from the KCl dif-
fraction lines {200} and {400} corresponding to the
orientation of the initial single crystal and the texture of
deformation [2, 6], the diffraction pattern also displays
peaks {111}, {222}, {220}, and {420} for the KCl lat-
tice (Figs. 2a and 2b), thus pointing clearly towards a
transformation of the single crystal into a polycrystal. It
also follows from the diffraction patterns shown in
these figures that with the passage of the time of hold-
ing at RT, the lines corresponding to the 

 

β

 

-SrCl

 

2

 

become weaker and finally vanish altogether. Instead,
additional lines appear after 1–2 months holding time,
their position corresponding in all probability to the
reflexes (022) and (044) of the KSr

 

2

 

Cl

 

5

 

 phase (39–1136
according to JCPDS). The diffraction patterns of Sr-
doped KCl crystals acquire up to five different lines
corresponding to the KSr

 

2

 

Cl

 

5

 

 phase after deformation
and holding at RT. Attempts at phase identification with
the help of diffraction patterns recorded for specially
prepared powders proved futile, both for doped and
annealed single crystals, as well as for deformed and
aged crystals, since diffraction lines not corresponding
to KCl could not be observed in the powders. Appar-
ently, there exist orientational relations between the
KCl lattice and the lattices of Sr-containing phases.
Unfortunately, we were not able to establish these rela-
tions.

While observing the recrystallization process in sam-
ples by transmission optical electron microscopy in
polarized light, we discovered particles of the precipi-
tated phase, which could be observed owing to their opti-
cal anisotropy against the background of optically isotro-
pic KCl (Fig. 3a). The volume fraction of these particles
in a deformed and aged crystal of KCl : 0.06 wt % Sr

 
2+

 
,

measured from the fraction occupied by them on the
metallographic section is 

 

α

 

 = 0.06

 

 ±

 

 0.01%. The aver-
age diameter of particles in this phase is about 5 

 

µ

 

m. It
can be seen from Figs. 3a and 3b that the particles of the
second phase precipitated during the ageing of crystals
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Fig. 1. Diffraction pattern for a KCl : 0.06 wt % Sr2+ single crystal after annealing at Tan = 650°C, face {100}; (a) segment of the
diffraction pattern 2ϑ  = 10–12 deg and (b) segment of the diffraction pattern 2ϑ  = 18–22 deg.
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Fig. 2. Diffraction pattern for a metallographic section of the KCl : 0.06 wt % Sr2+ crystals parallel to {100} after deformation ε =
70%, Td = 250°C and subsequent ageing for eight months at room temperature.
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are located at the boundaries of the growing recrystal-
lized grains, which are in twin orientations relative to
the initial orientation of KCl {100}〈001〉  [6].

According to the estimates made on the basis of the
model [9] assuming the presence of particles of
KSr2Cl5 crossed by dislocations (the phase density
determined by the x-ray studies is 2.176 g/cm3), the
volume fraction of such particles in a deformed and
subsequently aged crystal of KCl : 0.06 wt %Sr may be
as high as 0.05% for the observed diameter of about
5µm of the deformed grain, which agreed with our
experimental data.

According to our estimates, the diffusion coefficient
for strontium in such crystals is about 10–11 cm2/s,
which is an order of magnitude higher than the diffusion
coefficient for divalent cations in KCl in the investigated
temperature range [10]. The diffusion coefficient D ~ λ2τ
was estimated by using the experimentally obtained val-
ues of the diffusion length λ ≅  0.015 cm (the average
radius of the recrystallized grain) and the diffusion time
τ ≅ 5 × 106 s (two months, during which the phase com-
position changed after deformation). Such high values
of D are apparently due to faster-diffusion channels
provided by the KCl lattice defects including grain
boundaries.

Measurements of microhardness in crystals of
KCl : 0.06 wt % Sr2+ after deformation under the
above-mentioned conditions and subsequent “biva-
lent” holding at RT recorded that the microhardness in
the recrystallized grains falls to values characteristic
of pure undeformed KCl and amounts to 135 MPa,
while the microhardness of non-recrystallized matrix
is equal to 185 ± 5 MPa, which means that the increase
in microhardness due to both doping and subsequent
deformation is preserved almost entirely. Judging by the
softening effect, the composition of the material in the
recrystallized grains becomes close to pure KCl. The
volume fraction of the recrystallized material in such
crystals held at room temperature for two years does not
exceed 8%.

The entire body of data obtained from the x-ray dif-
fraction analysis, the measured microhardness of
recrystallized grains and the deformed matrix, as well
as measured and estimated volume fraction of the
observed particles, suggests that the particles precipi-
tated near the boundaries of the recrystallized grains
and visible in polarized light are just the particles of the
KSr2Cl5 phase.

According to [9], the effective deceleration of the
growth of grains by the particles of the second phase
precipitated along the boundaries can be ensured if the
Zener criterion

(1)

is satisfied. This is indeed true for the case of KSr2Cl5
particles of diameter d = 5µm (having a volume fraction
α = 0.06%) precipitated along the boundaries of recrys-
tallized grains of diameter D = 300 µm (Figs. 3a and 3b).

d/D 3α /2≤
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This means that one of the reasons for the durability of
these materials is a restriction on the increase in the vol-
ume fraction of the recrystallized material due to an
impediment to the growth of new recrystallized grains
by the second phase particles in accordance with the
Granato–Lücke theory [11].

A noticeable factor in the analysis of diffraction pat-
terns of deformed and aged Sr-doped KCl crystals (see
Figs. 2a and 2b) is that prolonged holding at room tem-
perature not only changes the orientations of the KCl
matrix and the phase composition as mentioned above,
but also causes the emergence and gradual intensifica-
tion of the line {111} of KCl, which is usually quite
weak (with a relative intensity 1%) or is not observed at
all for the KCl phase (41–1476 according to the JCPDS
catalog).

Apart from carrying out the phase analysis, we also
analyzed a number of DSP of crystals in the initial,
deformed, and aged state, recorded in the vicinity (1°–3°)
of a reciprocal lattice site. The distribution of the inten-
sity of diffuse background in the DSP of the initial sin-
gle crystal, recorded in the vicinity of the Bragg peak
{220}, displays a fourth-order symmetry (Fig. 4).
Apparently, such a symmetry is associated with the
nature of intensity distribution in the vicinity of diffrac-
tion peaks of single crystals. The symmetry pattern
changes as a result of deformation. The DSP recorded

(a)

(b)

Fig. 3. Metallographic section of a KCl : 0.06 wt % Sr2+

crystal parallel to {100} after deformation ε = 70%, Td =
250°C and subsequent ageing for ten months at room tem-
perature: (a) as seen in polarized light; (b) etching pattern.
0
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under the same conditions now shows a twofold sym-
metry of the intensity of diffuse background (Fig. 5).
The intensity of diffuse peaks is 4–5 times as high in the
DSP of the initial doped single crystals, thus pointing
towards a difference in the origin of the diffuse back-
ground symmetry in such cases and the absence of a
connection between the symmetry of diffuse peaks of a
deformed crystal and its orientational symmetry. As the
holding time of the sample at RT is increased to two
months, the diffuse scattering pattern changes, and a
threefold symmetry is observed in the distribution of
the intensity peaks (Fig. 6). The threefold symmetry of
DSP is preserved upon subsequent holding at room
temperature. A noticeable increase in the intensity and
the emergence of threefold symmetry in the distribu-
tion of the diffuse scattering intensity peaks are
observed in the vicinity of the Bragg reflexes. Accord-
ing to Huang [12, 13], this is the region in which the
diffuse scattering of x-rays is observed at substitutional
and interstitial point defects as well as their clusters.
The emergence of the {111} KCl line on the diffraction
patterns and of the threefold symmetry on DSP in the
vicinity of the {220} KCl site were always observed
simultaneously in our experiments. The simultaneous
emergence of the threefold symmetry on diffraction
patterns and on DSP leads to the assumption of the
existence of yet another ageing mechanism for
deformed Sr-doped KCl crystals, involving the interac-
tion of the KCl lattice defects and the impurity. In par-
ticular, the contribution to the observed diffuse scatter-
ing pattern may come from impurity atmospheres,
which interact with small- and medium-angle bound-
aries of deformed subgrains, dislocations and their pile-
ups, as well as stacking faults, and thus ensure the sta-
bility of the deformed reinforced matrix.

v = 70°

0.1

0.3

0.5

0.3

0.8

Fig. 4. Distribution of the diffuse scattering intensity in a
KCl : 0.06 wt % Sr2+ single crystal, ϑ  = 19.4 deg. The num-
bers in Figs. 4–6 show the intensity levels in fractions of the
maximum value recorded on the given DSP.
P

The change in the symmetry of the light scattering
indicatrix (λ = 550 nm) was observed earlier in ageing
crystals of KCl : 0.01 mol % Sr [14], where the emer-
gence of threefold symmetry in the scattering pattern
was attributed by the authors of [14] to phase precipita-
tion in a plane parallel to {111} KCl.

Thus, the measurements of mechanical properties
reveal that under the combined action of strontium dop-
ing in amounts slightly exceeding the solubility limit
(~0.01% [12]) and deformation under conditions which
rule out dynamic recrystallization, it is possible to
obtain a metastable structure, which is stable for 24
months, with a yield stress and hardness that are,

0.5

0.3

0.1

ν = 60°

0.5

Fig. 5. DSP for a KCl : 0.06 wt % Sr2+ crystal after defor-
mation ε = 70%, Td = 250°C and ϑ  = 19.4 deg.

ν = 60°

0.1

0.3

0.5

Fig. 6. DSP for a KCl : 0.06 wt % Sr2+ crystal after defor-
mation ε = 70%, Td = 250°C and subsequent ageing for one
month at room temperature, ϑ  = 19.4 deg.
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respectively, 2.5 and 1.5 times the corresponding
strength characteristics for pure KCl single crystals.

The main results of our investigations can be sum-
marized as follows.

At least two ageing mechanisms are realized simulta-
neously in KCl : 0.02 wt % Sr2+ and KCl : 0.06 wt % Sr2+

crystals over a period of two months from the moment
of their deformation (ε = 70% for Td = 250°C), which
ensure the preservation of high strength properties,
acquired as a result of deformation, at least two years
during which the crystals were held at room tempera-
ture.

The first mechanism of ageing is associated with the
precipitation of particles of the KSr2Cl5 phase (39–
1136 in JCPDS) along the boundaries of growing
grains during recrystallization. These particles impede
the growth of recrystallized twin grains, thus prevent-
ing the increase of the volume fraction of the recrystal-
lized material beyond 8%.

The second type of ageing, reflected in the simulta-
neous emergence of the {111} KCl line on the diffrac-
tion patterns and an increase in the intensity of diffuse
scattering according to Huang’s mechanism, involves
the interaction of KCl lattice defects with the impurity,
ensuring stability of the matrix reinforced by deforma-
tion.
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Abstract—The features of precession of the magnetic moment of a film near ferromagnetic resonance are
investigated which are due to the magnetic-moment nutation in the effective field and to the frequency-doubling
effect. The contribution to this precession from harmonics with frequencies which are multiples of the basic
resonance frequency is analyzed for a garnet ferrite film of the (111) type in a perpendicular bias magnetic field.
© 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Nonlinear dynamics of the magnetization in mag-
netically ordered crystals is of interest because of the
variety of nonlinear effects that occur when the dissipa-
tive spin system is subjected to a microwave (MW)
pumping field [1–3]. One of the manifestations of the
nonlinear behavior of the magnetization at large pre-
cession angles is the frequency-doubling effect, which
takes place only when the MW field is linearly polar-
ized. Only this nonlinear effect, as a rule, is considered
in the case of the uniform magnetization precession in
a transverse MW field. In this paper, however, it is
shown that, for certain symmetry of the anisotropy field
of the material, which is correlated with the crystallo-
graphic symmetry, higher harmonics of the basic pre-
cession frequency are dominant in the dynamics of the
magnetic moment in its nutation under ferromagnetic-
resonance (FMR) conditions. The behavior of the mag-
netization in the case of large angles of its precession is
also of interest, because this phenomenon can be used
for modulation of laser radiation, the effectiveness of
which depends on the precession angle [4–6]. In this
paper, we consider the features of the dynamics of the
magnetization vector under nonlinear FMR conditions
in a film of a cubic crystal in the case where the [111]
crystallographic axis is perpendicular to the plane of
the film.

There are two mechanisms of the energy transfer to
spin waves from the uniform magnetization precession
in a perpendicular bias magnetic field [2, 3]. One of
these mechanisms is associated with a three-magnon
process, in which one magnon (with wave vector k = 0)
is destroyed and two magnons are created with wave
vectors k and –k, respectively, and the frequency ωk =
ω/2, where ω is the frequency of uniform precession.
The other mechanism is associated with a four-magnon
process, in which two magnons with k = 0 are
destroyed and other two magnons are created with
1063-7834/00/4207- $20.00 © 1306
wave vectors k and –k and the frequency ωk = ω.
Therefore, for the angles of uniform precession to be
large, its frequency must coincide with the lowest fre-
quency of the spin wave spectrum, that is, with the fre-
quency of spin waves the wave vector of which is par-
allel to the bias field and k = 0 (the FMR frequency).
In this case, neither of the two mechanisms of energy
transfer from uniform precession to spin waves oper-
ates. In [7, 8], it was shown that, at the FMR frequency,
the precession angles are as large as φ . 20°–25° in a
Y2.9La0.1Fe3.9Ga1.1O12 garnet ferrite film grown on a
gadolinium gallium garnet substrate.

1. BASIC EQUATIONS AND RELATIONSHIPS

Epitaxial garnet ferrite films are monocrystalline
and have a cubic crystal lattice. In this paper, the direc-
tion [111] is assumed to be normal to the film surface
and is taken as the x axis, while the y and z axes are par-

allel to the directions [11 ] and [ 10], respectively.
The polar and azimuthal angles θ and ψ of the magne-
tization vector M are measured from the x and y axes,
respectively. The dynamics of the magnetization in an
external static (H) and a time-dependent (h) magnetic
field (which are assumed to be mutually perpendicular,
H ⊥  h, in what follows) is described by the following
equations of motion, written in the spherical coordinate
system [2]:

(1)

where γ is the gyromagnetic ratio, λ is the damping
parameter, and F is the free energy density. Solving
these equations allows one to find the precession fre-
quency of the magnetic moment about its equilibrium

2 1

ψ̇M θsin γ∂F
∂θ
------ λ

M
----- 1

θsin
----------- ∂F

∂ψ
-------,+=

θ̇M
λ
M
-----∂F

∂θ
------ γ 1

θsin
----------- ∂F

∂ψ
-------,–=
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direction and the time dependence of the angles ψ and
θ for given geometry of applied fields and a given time-
dependent external field. The resonance frequency ωr is
given by

(2)

where the second derivatives of the free energy density
are taken for equilibrium angles θ0 and ψ0, which are
found from the conditions ∂F/∂θ = 0 and ∂F/∂ψ = 0.
For the orientation of the crystallographic axes indi-
cated above, the free energy density has the form

(3)

where Ku and K1 are the growth-induced and crystalline
anisotropy constants, respectively. Substituting (3) into
(2), the resonance frequency can be found for an arbi-
trary orientation of the equilibrium magnetization.

The character of precession of the magnetization
depends heavily on its amplitude (which is a function
of the amplitude and polarization of the MW field), as
well as on the strength and type of magnetic anisotropy.
When the precession angle φ is small, the linear FMR
occurs at frequencies ω ≈ ωr, for which the time depen-
dences θ(t) and ψ(t) can be found from the equations of
motion linearized with respect to small deflections of
the magnetization vector from its equilibrium position.
As the precession angle increases, the contribution to
these dependences from higher harmonics of the basic
precession frequency grows and nutation of the vector
M becomes significant. In this case, the linear approxi-
mation to equations (1) is inadequate. In order to qual-
itatively evaluate the nonlinear effects, we expand the
time-dependent precession angle φ(t) into the series

(4)

At small precession angles, φ(t) is approximated with a
high degree of accuracy by the constant angle φ0, and
higher harmonics can be neglected when describing the
magnetization motion. Solving the equations of motion
shows that, when the MW field is linearly polarized and
the precession angle of the magnetic moment is large,
the nonlinear frequency-doubling effect [2] becomes
significant and leads to the growth of the second har-
monic φ2ω in (4). Approximate analytical expressions
for this effect can be obtained by writing the projection
of the magnetization onto its equilibrium direction in
the form Mφ = 0 . M – m2/2M (valid for m ! M) and sub-
stituting the instantaneous MW magnetization m calcu-
lated from the linearized equations of motion. As a
result, we obtain the following expression for the pre-

ωr γHeff
γ

M θsin
---------------- FθθFϕϕ Fθϕ

2–( )1/2
,= =

F M H h+( ) Ku 2πM2–( ) θ K1+sin
2

+–=

× 1
4
--- θ 1

3
--- θ 2

3
------- θ θ 3ψcoscossin

3
+cos

4
+sin

4

 
  ,

φ t( ) φnω iωnt( )exp .∑=
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cession angle oscillating with the double frequency
when the precession amplitude is large:

(5)

where θ is the initial phase of nutation, which depends
on the orientation of the linearly polarized MW field in
the plane perpendicular to the direction of the equilib-
rium magnetization vector. In this case, the average
precession angle φ0 and the amplitude of oscillations
are given by

(6)

where χ = χ' – iχ'' and χa =  – i  are the diagonal
and off-diagonal complex components, respectively, of
the high-frequency susceptibility tensor, which deter-
mines the linear relationship between the MW field and
magnetization. In the resonance, we have χ' = M/2Heff,

 = 0, χ'' = Mωr/2γHeff, and  = M2γ/2λHeff.

2. NUMERICAL ANALYSIS

In order to further analyze the features of the mag-
netization precession and to treat the effects of the crystal
structure, the type of magnetic anisotropy of the film,
and the amplitude and polarization of the MW field,
one has to solve equation (1) numerically. In what fol-
lows, we consider a structure with parameters that are
approximately equal to those of a concrete garnet fer-

φcos φ0
m
M
----- 2ωt θ+( ),cos–cos=

φ0cos 1
h2

4M2
---------- χ 2 χa

2+( ),–=

m
h2

4M
-------- χ2 χa

2–( ),=

χa' χa''

χa' χa''

0.85
60 1200

0.90

0.95

1.00

t, ns

mx

1

2

3

4

Fig. 1. Time dependence of the longitudinal component of
the magnetization precessing under FMR conditions in an
MW field of h = 2, 2.5, 3, and 3.5 Oe and a bias field of H =
616, 613, 611, and 607 Oe (curves 1 to 4, respectively).
0
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rite film [9]: 4πM = 214.6 G; γ = 1.755 × 107 (Oe · s)–1;
λ = 3 × 106 s–1; Ku = –103 erg/cm3; and K1 .
−103 erg/cm3. For the sake of simplicity, we assume
that the static magnetic field H is normal to the film sur-
face and its magnitude is such that the equilibrium
magnetization vector is also normal to the film (θ0 = 0).
In this case, the resonant precession frequency turns out
to be ωr = γHeff, where, according to (2), the effective
field is given by

(7)

Figure 1 shows the time dependence of the reduced
longitudinal component mx = Mx/M of the magnetization
vector precessing with the FMR frequency ωr = 6.3 ×
109 s–1. The MW field is assumed to be linearly polar-
ized and applied along the y axis. In order to fulfill the

Heff 0( ) H 4πM–
2
M
----- Ku

2
3
---K1– 

  .+=

0

0

0.5

–0.5 0.5

(b)

1 2 3 4

mz

my

0.91

0.96

0.86

(a) 1

2

3

4

mx

Fig. 2. Projections mα = Mα/M onto (a) the xz plane and (b)
the yz plane of the magnetization which precesses along a
stationary orbit in a field H parallel to the [111] axis normal
to the film surface. The curves are labeled as in Fig. 1.
P

resonance conditions, the crystalline anisotropy constant
is adjusted using (7) for each of the magnetic-field values
of Fig. 1 and lies in the range K1 ≈ –1000 ± 60 erg/cm3.
The results presented in Fig. 1 show that, for the mate-
rial parameters chosen, the precession orbit of the mag-
netic moment becomes stationary within 60–120 ns,
depending on the precession angle; nutation of the
magnetic moment becomes more pronounced with an
increase in the precession amplitude. Figure 2 presents
the projections of the magnetic moment onto the coor-
dinate planes xz (Fig. 2a) and yz (Fig. 2b) as calculated
for the stationary precession orbits in magnetic fields of
Fig. 1. From the shape of the trajectories, it follows
that, for the given FMR geometry, the third harmonic of
the resonance frequency ωr is dominant in the nutation
of M. The numerical analysis also reveals that the
change in the direction of MW field oscillations in the
yz plane has no effect on the orientational contribution

H, Oe
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3
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Fig. 3. Contributions to the precession angle from the differ-
ent harmonics φnω (n = 0 for dashed lines; and n = 1, 2, 3 for
solid lines) as a function of bias magnetic field H for (a) the
linear polarization and h = 3 Oe and (b) the circular polar-
ization and h = 1.5 Oe of the MW field.
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from the third harmonic φ3ω to the magnetization pre-
cession, but affects the orientational contribution from
the second harmonic [6], as is seen from (5). Thus,
under the FMR conditions, both the shape and the ori-
entation of the trajectory of the magnetic moment
depend only slightly on the direction of the MW field
for the orientation of the bias magnetic field and of the
crystallographic axes in question.

Figure 3 shows the average precession angle φ0
(dashed lines) and the contributions to the magnetic-
moment nutation from the first three harmonics φnω
(n = 1, 2, 3, solid lines 1–3, respectively) as a function
of the bias magnetic field H; the MW field is linearly
polarized along the y axis and has an amplitude of h =
3 Oe (Fig. 3a) or is circularly polarized in the yz plane
and has an amplitude of h = 1.5 Oe (Fig. 3b). In both
cases, the crystalline anisotropy constant is the same
and equal to K1 = –103 erg/cm3. It is seen that, although
the MW field amplitudes are significantly different, the
amplitudes of the fundamental harmonics of the preces-
sion angle for the linear and circular field polarizations
are virtually equal (φ0 ≅  24°). At the resonance fre-
quency, where φ0 is maximum, the magnitude of the
third harmonic φ3ω far exceeds those of the first (φω)
and second (φ2ω) harmonics. This is the case for both
the linear and circular polarizations of the MW field.
Away from the FMR, for the linear MW field polariza-
tion, only the frequency doubling effect is noticeable
and the second harmonic dominates. However, the
magnitude of the latter is virtually independent of the
bias magnetic field and is small (φ2ω . 0.1°) for the
given MW field amplitude. In the case of the circular
polarization of the MW field, the contribution from the
second harmonic to the magnetization vector nutation
is roughly equal to that from the first harmonic and can
be neglected in all range of the field H covered.

The nutation amplitude increases with the preces-
sion angle, but the contribution from the third harmonic
only becomes significant near the resonance. Figure 4
shows the dependence of the zeroth harmonic  of the
resonant magnetization precession on the static field H.
As before, for each value of H, the crystalline anisot-
ropy constant K1 is adjusted to fulfill the resonance con-
ditions at frequencies ωr/2π = 1, 0.975, and 0.95 GHz
(curves 1 to 3, respectively). The amplitude of the lin-
early polarized MW field is h = 3 Oe (solid lines) and
h = 2.5 Oe (dashed lines). We also note that the dashed
lines coincide with the curves calculated for the circu-
larly polarized MW field with h = 1.5 Oe. Similar
curves are also obtained when K1 is kept fixed, while Ku
is adjusted to fulfill the resonance conditions. For the
MW field with a given frequency, polarization, and
amplitude, the angle of resonant precession is maxi-
mum only at certain values of the static and induced
and crystalline anisotropy fields. As the amplitude of
the MW field is increased, the peak of the (H)
dependence shifts to lower H values and becomes more
pronounced.

φ0
r( )

φ0
r( )
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Thus, the analysis has shown that, in a film of a
cubic crystal, when the magnetic moment precesses
with a large angle about the crystallographic axis [111]
at the FMR frequency, the dominant contribution to the
magnetization nutation is from the third harmonic of
the basic precession frequency. This is the case for both
the linear and circular polarizations of the MW field.
Since the [111] axis is a threefold symmetry axis, one
can expect that, when the magnetic moment precesses
about a fourfold symmetry axis of the [100] type, the
third harmonic will make only a negligible contribution
to the magnetization nutation, whereas the fourth har-
monic will be dominant.
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Abstract—The temperature dependences of the electrical conductivity, thermopower, and magnetoresistance
for single crystals of lead-substituted lanthanum ferrimanganites are investigated. The data on the magnetic
microstructure obtained by Mössbauer spectroscopy are analyzed. An inversion of the magnetoresistance sign
with an increase in temperature and the giant positive magnetoresistance are found for one of the samples. The
magnetoresistance quadratically depends on the field, and its temperature dependence exhibits a maximum.
© 2000 MAIK “Nauka/Interperiodica”.
In the present work, we measured the temperature
dependences of the electrical parameters and magnetic
susceptibility for two samples of lead-substituted lan-
thanum ferrimanganites (see table) and obtained the
Mössbauer spectra of these samples. The principal dif-
ference between these samples and the diamagnetically
substituted rare-earth manganites, which have been
studied in many works (see, for example, [1]), lies in
the partial substitution of the Fe3+ ions for Mn3+ ions in
the 3d sublattice. The second important difference is
that both samples were single crystals, whereas the
majority of the aforementioned works dealt with the
ceramic samples or thin films. This circumstance is
essential, because the assumption on the structural
imperfection of polycrystalline samples is of funda-
mental importance in the models describing unusual
kinetic phenomena in manganites [2].

The measurements of the magnetic susceptibility at
room temperature demonstrated that the susceptibility
χ is less than 10–4 for both crystals. This result is unex-
pected, because, according to [1], the La0.6Pb0.4MnO3
compound, which is close to our samples in the degree
of diamagnetic substitution, represents the ferromagnet
with Tc = 370 K. In order to refine the character of mag-
netic ordering at T = 295 K, we measured the Möss-
bauer spectra for these crystals. The Mössbauer spec-
trum of the first sample shows a hyperfine magnetic
structure (Fig. 1a). The spectrum treatment gave two
sextets with the effective fields Heff(1) = 515 kOe and
Heff(2) = 505 kOe. The low magnetic susceptibility and
the data of Mössbauer spectroscopy indicate an antifer-
romagnetic ordering in sample 1. The Mössbauer spec-
trum of the second crystal at T = 295 K exhibits a para-
magnetic doublet (Fig. 1b).

The electrical properties of the ferrimanganites stud-
ied in this work also substantially differ from those of the
La1 – xDxMnO3 manganites (D = Ca2+, Sr2+, Pb2+, …).
1063-7834/00/4207- $20.00 © 21310
The resistivity of ferrimanganites is several orders of
magnitude greater than that of manganites with the
same degree of diamagnetic substitution (the table).
The semiconductor-type conductivity is observed for
both the magnetically ordered sample 1 and paramag-
netic sample 2 over the entire temperature range under
investigation (290–700 K). The thermopower sign for
both samples corresponds to the hole-type conductiv-
ity. However, the thermopower of the first sample is
almost independent of temperature, whereas this quan-
tity for the second sample has a maximum at 370 K. A
variation in the activation energy of conduction for this
sample is observed at approximately the same temper-
ature (table).

The electrical properties of our samples drastically
differ from those of the rare-earth manganites, which are
close to our samples in the degree of diamagnetic substi-
tution. In our opinion, this difference can be explained
within the model of the magnetic two-phase state of
these objects [1]. In the case of rare-earth manganites,
when the concentration of doubly charged ions (Ca, Pb,
etc.) is equal to 0.3 per formula unit, the ferromagnetic
phase with a high conductivity is the main magnetic

Electrical parameters of studied samples

No. Composition Ea, eV Θ, µV/K R, kΩ cm

1 La0.67Pb0.33Mn0.63Fe0.37O3 0.24 26 8.02

2 La0.67Pb0.33Mn0.78Fe0.22O3 0.14 250* 5.95

0.25

3 – – 0.2

4 – – 10–6

*Thermoelectric coefficient Θ at a maximum.
**According to the data from [1].

LaMnO3**

La0.6Sr0.4MnO3
**
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Mössbauer spectra for (a) sample 1 and (b) sample 2.

Fig. 2. Magnetoresistance of sample 1: (a) temperature dependence and (b) dependence of the resistivity on the magnetic field. Tem-
perature, K: (1) 290, (2) 345, (3) 382, and (4) 427.
phase. However, upon a partial substitution of the Fe3+

ions for Mn3+ ions in the 3d sublattice, the antiferromag-
netic “dielectric” phase with inclusions of the ferromag-
netic phase in the form of small clusters (“ferrons”) is
stabilized in the samples. A possible reason for this phe-
nomenon is a high degree of indirect exchange interac-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
tion in the Fe–O–Fe and Fe–O–Mn chains compared to
the Mn–O–Mn exchange interaction [3].

The behavior of magnetoresistance is also unusual.
This parameter was measured in magnetic fields of
0−7 kOe in the range from room temperature to 500 K.
In order to quantitatively describe the effect of magne-
0
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toresistance, we chose the ratio of the difference in resis-
tivities in the presence of the external field and without
field to the resistivity in the presence of the external field.
This ratio is conventionally used for describing the giant
magnetoresistance effect.

The measurements for the La0.67Pb0.33Mn0.78Fe0.22O3
sample demonstrated an increase in the resistivity in the
magnetic field, i.e., the positive magnetoresistance,
over the entire range of magnetic fields and tempera-
tures. The magnetoresistance did not exceed 4% for all
temperatures (290–500 K) and magnetic fields; i.e., no
giant magnetoresistance was observed.

A radically different situation is observed for the
La0.67Pb0.33Mn0.63Fe0.37O3 sample (Fig. 2). The magne-
toresistance is negative at temperatures equal or close
to room temperature. Although the magnetoresistance
is not giant, its value is one order of magnitude greater
than the magnetoresistance of nonmagnetic semicon-
ductors. The magnetoresistance decreases in absolute
value with an increase in temperature and changes the
sign at T = 310 K. The magnetoresistance is positive at
a temperature above 310 K, reaches a maximum at T =
365 K, and decreases at higher temperatures. The max-
imum positive magnetoresistance reaches ~100%. As
far as we know, our findings are the first experimental
observations of the positive magnetoresistance in oxide
magnets whose magnetoresistance is two orders of
magnitude greater than the typical effect observed for
“classical” semiconductors.

In many works (see, for example, [1]) concerned
with the theoretical justification of the giant magnetore-
sistance effect in manganites and the related com-
pounds, the electrical parameters of samples are con-
sidered in the temperature range below the Curie (Néel)
temperature when the magnetoresistance is negative.
An attempt to describe the behavior of the electrical
parameters for a magnetic semiconductor in both the
spin-wave and paramagnetic regions by using an uni-
fied approach was made in [4]. In order to describe the
interrelation between the electrical properties of sam-
ples and the magnetic ordering, the magnetoelectric
parameter Γ was introduced in [4]. This parameter
modifies the permittivity ε

(1)

where ζ is the “effective” permittivity. It is precisely
this quantity which appears in the expression for the
density of states in the band tails and in the formula for
the charge carrier concentration

(2)

ζ ε 1 Γ–( ),=

n g ζ( ),∼
P

as well as in the expression for the relaxation time of
carrier momentum τ, that is,

(3)

Since the resistivity is a function of the charge carrier
concentration and time τ, it depends on Γ. For the mag-
netically ordered sample,

(4)

i.e., the Γ parameter and, consequently, the sample
resistivity ρ monotonically decreases with an increase
in the external field. As a result, the magnetoresistance
of the sample is negative and linearly depends on the
field, as is the case in sample 1.

On the other hand, the magnetoelectric parameter in
the paramagnetic region is quadratic in the field (or
increases as the square of the magnetic moment M),
which leads to the positive magnetoresistance of the
sample,

(5)

The Γ parameter in the paramagnetic region should
decrease with an increase in temperature due to a
decrease in the magnetic susceptibility χ of the sample.
In this case, the magnetoresistance passing through a
maximum remains positive and decreases in magnitude
decreases. Such behavior is observed experimentally in
sample 2 over the entire temperature range under inves-
tigation and in sample 1 at temperatures above the
inversion point of the magnetoresistance sign.
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Abstract—The parameters of the electron paramagnetic resonance (EPR) spectra of S ion pairs in diamagnetic
crystals are analyzed. A relation between the spin Hamiltonian constants is established for solitary ions and
pairs for (CH3)4NCdCl3 : Mn2+ crystals. In contrast to solitary ions, an additional contribution (which is a linear
function of the exchange field) to the “single-ion” spin Hamiltonian constants appears in the case of pairs. It is
shown that anisotropic exchange mechanisms do not play a significant part in the formation of the axial constant
of the spin Hamiltonian for this crystal. Some aspects of the method of studying “single-ion” anisotropy pre-
dicted by the two-ion model are developed with the help of an isostructural diamagnetic analog with impurity
concentration of the paramagnetic ions of a magnetically concentrated substance sufficiently high for observing
the EPR spectrum of the pairs. It is found that the microscopic quantities determined partially from the EPR
spectra for pairs and solitary Mn2+ ions in (CH3)4NCdCl3 are in accord with the experimental value of the effec-
tive field for the (CH3)4NMnCl3 crystal anisotropy which can be described primarily by the dipole and “single-
ion” mechanisms of the exchange origin. © 2000 MAIK “Nauka/Interperiodica”.
1. The discrepancy between magnetic anisotropy
microscopic theories and experiments with compounds
containing S ions prompted the computations based on
the two-ion models [1]. These computations differ from
those carried out using the existing theories of magnetic
anisotropy in that they have different values of ionic
spins in the excited and the ground states. In this model,
anisotropy appears in the third order of the perturbation
theory and is a linear function of the exchange interac-
tion energy and a quadratic function of the spin–orbit
interaction energy. It was noted in [1] that the “single-
ion” anisotropy of the exchange origin, which emerges
from the two-ion mechanism, may play a significant
role in the description of experimental data. The exist-
ence of the “single-ion” exchange anisotropy was stud-
ied experimentally in [2, 3].

A detailed theoretical analysis of the two-ion anisot-
ropy was carried out by Moskvin et al. [4]. Among
other things, they explained the behavior of the of
anisotropy energy hematite in a wide temperature range
by using the two-ion model. Moskvin et al. [4] suc-
ceeded in the removal of approximately 23%-discrep-
ancy between the theoretical and experimental curves
(describing the antiferromagnetic resonance fre-
quency) in the high-temperature range, which existed
according to the results obtained in [5]. The tempera-
ture dependence of anisotropy was described in [4]
with the help of four fitting parameters (three of which
were employed for normalizing the anisotropic
exchange contributions).

The available publications on the two-ion mecha-
nism facilitated an advance in understanding the origin
of anisotropy in magnetically-ordered crystals with S
ions; however, more detailed studies are required to
1063-7834/00/4207- $20.00 © 21313
determine anisotropy sources conclusively. A more
comprehensive investigation of anisotropy requires a
quantitative comparison of the results of calculations
with experiment. At the present stage, an attempt of
such a comparison can be made using the EPR data for
the S-ion pair spectra in diamagnetic analogs isostruc-
tural to magnetically-concentrated substances. It is
assumed that the equality of lattice parameters is a suf-
ficient condition for identical values and the same sym-
metry of paired interactions in these crystals. Accord-
ing to Rudenko [6], the necessary condition for the
coincidence of the axial constants of the spin Hamilto-
nian for solitary ions in rhombohedral crystals is the
equality of the ratio cH/aH of the hexagonal lattice
parameters.

However, several conditions must be satisfied for
carrying out such investigations.

(1) The relation between the constants in the spin
Hamiltonian of pairs and solitary ions should be estab-
lished, which is not observed in the literature.

(2) The main mechanisms governing the formation
of the constants in the spin Hamiltonian for pairs in a
given diamagnetic compound should be determined.

(3) A magnetically-concentrated crystal, having an
isostructural diamagnetic analog (with close values of
the ratio cH/aH) and a preferably simple magnetic struc-
ture, should be chosen.

(4) The constants of the spin Hamiltonian for pairs
in a diamagnetic and a magnetically-concentrated crys-
tal should be put in correspondence.

(5) Reliable and detailed information on the effec-
tive anisotropy fields in the magnetically-concentrated
crystal and for the constants of the spin Hamiltonian for
000 MAIK “Nauka/Interperiodica”
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pairs and solitary ions of the diamagnetic crystals must
be available.

Conditions (3) and (5) are satisfied for
(CH3)4NMnCl3 and (CH3)4NCdCl3 : Mn2+, and the most
comprehensive analysis of the EPR spectra for pairs of
S ions has been carried out for (CH3)4NCdCl3 : Mn2+

crystals [7]. These crystals belong to the hexagonal sys-

tem with the space group . A structural fragment
important for EPR studies comprises chains of octahe-
dra formed by Cl– ions arranged along the sixfold axis
of the crystal. The local symmetry of the positions of
the Cd2+ ions in the octahedra is C3i. The separation
between Cd2+ ions in a chain is 3.36 Å, while the sepa-
ration between the chains is 9.13 Å [7]. The lattice
parameters are aH = 9.138 Å and cH = 6.723 Å [8]. The
compound (CH3)4NMnCl3 crystallizes into the
(CH3)4NCdCl3 structure [8, 9]. The ratio of hexagonal
unit cell parameters is [cH/aH] = 0.710 [9]), which is quite
close to the value [cH/aH] = 0.736 [8]) for (CH3)4NCdCl3.
The magnetic structure of (CH3)4NMnCl3 is that of a
quasi-one-dimensional antiferromagnet, the spins lie in
the basal plane, the Néel temperature TN is 0.835 K, and
the exchange interaction parameter [J/k] is 13 K.

2. The Hamiltonian for Mn2+ paired ions in a
(CH3)4NCdCl3 crystal in the strong-exchange approxi-
mation disregarding the hyperfine interaction can be
written in the form [7, 10]

(1)

where H is the external magnetic field; S = Si + Sj is the
spin operator; S is the total spin which can assume the
values S = Si + Sj, Si + Sj – 1, …, Si – Sj; Si = Sj = 5/2;
Ds = 3αsDe + βsDc; αs = (1/2){[S(S + 1) – 4Si(Si +
1)]/[(2S – 1)(2S + 3)]}; βs = {[3S(S + 1) – 3 – 4Si(Si +
1)]/[(2S – 1)(2S + 3)]}; De = DE + Ddip; DE being the

C6h
2

* = gβHS J /2( ) S S 1+( ) Si Si 1+( )– S j S j 1+( )–[ ]+

+ Ds Sz
2 1/3( )S S 1+( )–[ ] ,

8

6

4

2

0
1 2 3 4 5 S

–DS, kOe

Fig. 1. Dependence of the axial constant Ds of the spin
Hamiltonian, which is determined for pairs in
(CH3)4NCdCl3 : Mn2+ on the total spin S (according to [7]).
P

anisotropic exchange constant; Ddip = –g2β2/ ; and Dc

the “single-ion” constant. The Hamiltonian (1) can
describe the experimental results for crystals with a
dipole and single-ion anisotropy (including that of the
exchange origin) and with an anisotropic exchange
described by a second-order invariant in the spin oper-
ators. However, the fourth-order anisotropic exchange
terms calculated in [1, 4] are not taken into account in
(1).

Expression (1) shows that each multiplet of a pair
with spin S is in an exchange field which can be
directed along the z axis of the reference frame (z || C6)
if H = Hz. This means that the quantization axis for the
total spin moment is directed along z. With this orienta-
tion of the exchange field, each ionic spin (for multip-
lets) will be regarded as lying in the xz plane and
deflected from the x axis towards the z axis. In this case,
the expression for the exchange field can be written as

 = –[(1/gβ)∂Es/∂Sz] = –(J/gβ)(Sz + 1/2) = –(J/gβ)(S +
1/2), where the Es are exchange energy levels of the
Hamiltonian (1).

The experimental results [7] for this crystal are plot-
ted in the form of a graph in Fig. 1.

We present Ds in the form Ds = 3αs  + βs(P1 +
P2S), where Pk are fitting parameters (k = 1, 2). The
parameters P1 and P2 are used for describing the linear
dependence of the “single-ion” constant Dc of the spin
Hamiltonian on the exchange field. A dependence of this
type was obtained in [2, 3] for the system of magneti-
cally concentrated crystals MnCO3, FeBO3, and
α-Fe2O3. The expression for  is written taking into
account additional dipole contributions emerging as a
result of deviation from the point model and delocaliza-
tion of the electrons of paramagnetic ions due to cova-
lent effects [11]. It is also assumed that exchange–stric-
tion interactions [11] do not play any significant role in
this crystal. Note that the exchange–striction model
was used in [7, 12] for describing the experimental data
obtained for a (CH3)4NCdCl3 : Mn2+ crystal. However,
the fitting parameters used by the authors of [7, 12] led
to a lattice distortion upon a change in the spin number
S that was too strong.

Let us estimate  from the experimental data for
Ds. Since β3 has a small value, we can write  ≈
[D3/3αs] = –398.1 Oe. Fitting the value of Ds with the
help of the parameters P1 and P2 by the least square tech-
nique, we obtain  = {[D3 – β3(P1 + P2S)]/3αs} =
−391.4 Oe. Expressing the “single-ion” constant from

Ds and plotting Dc =  + S' as a function of (S')
(S' = S + 1/2) with a subsequent fitting, we find that the
experimental points indeed fall well on the theoretical
dependence that is a linear function (Fig. 2) with the
parameters  = 619.8 ± 25 Oe and  = –110.2 ± 7 Oe.

rij
3

Hz
ex

Ddip'

Ddip'

Ddip'

Ddip'

Ddip'

P1' P2' Hz
ex

P1' P2'
HYSICS OF THE SOLID STATE      Vol. 42      No. 7      2000



MAGNETIC ANISOTROPY OF ANTIFERROMAGNET 1315
The parameter  can be obtained by extrapolating the
curve in Fig. 2 to zero exchange field for the multiplets
of a pair and should be equal to the sum of the constant
Dcf = 43.9 Oe of the spin Hamiltonian for a solitary ion
[7] and the contribution Dc0 due to the distortion of the
(CH3)4NCdCl3 lattice by “foreign” pair. In order to
compare the effect of lattice distortions produced by a
pair on Dc0, we consider the slopes of the linear depen-
dence of the spin Hamiltonian constant for a solitary
Fe3+ ion in GaBO3, InBO3, LuBO3, and ScBO3 crystals
[6] and Dc0 relative to cH/aH. We shall assume that local
lattice distortions can also be described by the parame-
ter cH/aH. For the most precisely determined value of
∆(cH/aH), for Dc0, we obtain ∆(cH/aH)[(Dcf –

)/∆(cH/aH)] = –2.2 × 104 Oe. For the set of diamag-
netic crystals investigated by us, we have
[∆Dcf /∆(cH/aH)] = –2.6 × 103 Oe. These quantities have
the same sign and can be comparable even for the
actual lattice distortions in (CH3)4NCdCl3.

The obtained results can be used for calculating the
magnetic anisotropy of a (CH3)4NMnCl3 crystal. The
“single-ion” constant of the spin Hamiltonian for a
magnetically concentrated crystal can be written in the
form

Here, Dex is the contribution of the two-ion mechanism
to the “single-ion” constant of the spin Hamiltonian for
the magnetically-concentrated crystal and  is the
exchange field at the multiplets of a pair, which corre-
sponds to definite parameters of the magnetically-con-
centrated crystal.

In order to find the relation between the exchange
energy parameters of a magnetically-concentrated
crystal in the molecular field approximation and of a
pair, we carry out the following calculations. We write
the exchange interaction energy of the ith ion for a
magnetically-concentrated crystal at T = 0 K in the
form Emc(T = 0 K) = –nJSiSj, where n is the number of
the magnetically-active nearest neighbors of the ith ion.
Putting n = n0 = 1 and equating

(2)

we establish the value of the effective spin number Sn0 for
a pair, which corresponds to the energy Emc(T = 0) of the
lower level for the ith ion in the magnetically-concen-
trated crystal. The solution of the quadratic equation (2)
gives the value of the spin number Sn0 = 1.8. Further, car-
rying out the summation over the pair bonds of the ith
ion, we find the exchange energy Emc(T = 0) = nEs(Sn0) of
interaction of the ith ion with its nearest neighbors for
the magnetically-concentrated crystal at T = 0 K in
terms of Si, Sj, Sn0, and n. The energy Emc(T = 0) corre-

sponds to the exchange field  = –2.3n(J/gβ). For the

P1'

P1'

Dmc Dcf Dex+ Dc Hzn
ex( ) Dc0.–= =

Hzn
ex

Emc T 0= n0,( ) ES,=

Hzn
ex
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corresponding exchange field of the (CH3)4NMnCl3
crystal, the value of the “single-ion” constant of the
spin Hamiltonian can be defined as Dmc = [Dcf +

/(J/gβ)] = Dcf – 0.00115 . The slope cal-
culated for the dependences for MnCO3, FeBO3, and

α-Fe2O3 crystals [2, 3] is given by tanα = [Dex/ ] =
–0.00048. The obtained values of the slopes of the
straight lines describing the constants of the spin
Hamiltonian as functions of the exchange field are quite
close, indicating that the obtained results reflect the
actual pattern of the interaction.

Thus, the results presented above lead to the follow-
ing conclusions.

(1) The “single-ion” constant of the spin Hamilto-
nian in zero exchange field at the multiplets of a pair is
equal to the constant of a solitary ion plus the contribu-
tion Dc0 due to distortions emerging when a “foreign”
pair appears in a diamagnetic crystal.

(2) In contrast to solitary ions, pairs acquire an addi-
tional contribution to the “single-ion” constant of the
spin Hamiltonian, which is a linear function of the
exchange field. This contribution is determined by the
two-ion mechanism.

(3) The anisotropic exchange mechanisms calcu-
lated and estimated in [4] as very strong for hematite do
not play any significant role in the formation of the spin
Hamiltonian constant in (CH3)4NCdCl3 : Mn2+ and
(CH3)4NMnCl3 crystals.

Taking into account the uniaxial anisotropy, we can
write the thermodynamic potential in the form

(3)

where m = (M1 + M2)/M, l = (M1 – M2)/M, and M =
2|M1| = 2|M2|.

The contribution of the dipole interaction at T = 0 K
is estimated as HA,dip = 5.39 kOe [13]. In accordance
with (3) and [6], the “single-ion” contribution to the

P2' Hzn
ex Hzn

ex

HE'

Φ 1/2( )Bm2 1/2( )alz
2,+=

500

400

300

200

100

0
1 2 3 4 5 6

Dc, Oe

Hz
ex(S'), –(J/gβ)units

Fig. 2. Dependence of the “single-ion” constant Dc of the
spin Hamiltonian on the exchange field for spin multiplets
of a pair.
0
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uniaxial anisotropy constant at T = 0 K can be written
in the form

where the spin Hamiltonian constants are expressed in
energy units. Substituting the available data, we find
the contributions of the single-ion and two-ion
exchange mechanisms to HA,cf = [acf(0)/M(0)] = 0.18–
2.02 = –1.84 kOe, which gives HA(0) = HA,cf (0) +
HA,dip(0) = 3.55 kOe. The experimental results obtained
for (CH3)4NMnCl3 by using various methods and com-
piled in [14] give the following values of HA(0): 3.31,
3.89, and 4.73 kOe, which are, on the average, in good
agreement with the estimate presented above.

3. It should be noted, in conclusion, that the expres-
sion for the magnetic anisotropy constant can be used
for any magnetically-concentrated crystal of an appro-
priate symmetry, which contains paramagnetic Mn2+

ions; the pairwise anisotropic interactions between
these ions in the diamagnetic analog are described by
the dipole and the “single-ion” constants of the spin
Hamiltonian. It is also assumed that the exchange–
striction contribution to these constants is insignificant.
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Abstract—It is shown that the penetration of standing spin waves into a layer with high damping is one of the
channels of energy dissipation of these waves. The line broadening of spin wave modes due to this layer
increases with the mode index and may be much larger than the natural linewidth associated with a layer having
low damping. The linewidths of spin wave modes are found to be anisotropic, which is due to the dependence
of the penetration depth of spin waves into the high-damping layer on the orientation of the external magnetic
field with respect to the film. A theoretical model is proposed, which is consistent with the experimental data.
© 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Investigations of relaxation processes in magnetic
spin systems are of current interest because, in particu-
lar, considerable attention is now focused on magnetic
multilayer films, having the potential for device appli-
cations (see, e.g., [1–4]).

According to ferromagnetic-resonance and spin-
wave (SW) theory [5–7], the linewidth 2∆H of SW
modes excited in a film by a microwave field of a con-
stant frequency is independent of the mode index n.
The relaxation process in the layer where SWs are
excited does not render their spectral linewidths depen-
dent on the mode index. However, experimentally, the
SW linewidths are often observed [8–12] to be depen-
dent on n; namely, 2∆H increases with n in all such
cases.

In [8], spin-wave resonance (SWR) was investigated
in amorphous and polycrystalline films and it was
found that the dependence of 2∆H on n showed a kink,
the position of which was related in [8] to the fluctua-
tion correlation radius of magnetic parameters. Unfor-
tunately, in [8], as well as in other papers, no account
was taken of the influence on 2∆H of SW energy dissi-
pation in the high-damping layers of multilayer struc-
tures.
1063-7834/00/4207- $20.00 © 1317
The objective of this paper is to investigate the influ-
ence of this channel of SW energy dissipation on the
effective damping parameter and the linewidths of SW
modes.

1. EXPERIMENT

The SWR spectra were measured on bilayer and
trilayer single-crystal films of garnet ferrites, the layers
of which had various values of the thickness h, Gilbert
damping parameter α, and magnetization 4πM. The
films were produced by the liquid-phase epitaxy
method on the (111) surface of gadolinium gallium gar-
net substrates by successively immersing them in dif-
ferent solutions in melt. The films had the following
structure. The lower layer (closest to the substrate) had
a high damping parameter α ≥ 0.12 (α = ∆Hγ/ω, where
∆H is the half-width of the absorption line, γ is the
gyromagnetic ratio, and ω is the circular frequency of
the microwave field). In this layer, the spins were
pinned. The next layer had a low damping parameter
(α ≤ 0.003). Spin waves were excited in this layer. In
contrast to bilayers, the trilayers had one more (upper-
most) layer with a high value of α.

For the measurements and control of the parame-
ters, single-layer analogs were grown on clean sub-
Parameters of multilayer films

Sample Layer Composition h, µm γ, 107 Oe–1 s–1 α 4πM, G , Oe

1 1* Y2.98Sm0.02Fe5O12 1.08 1.76 0.003 1740 –1715

2* (LaEr)3(FeGa)5O12 1.2 1.66 0.84 450 –78

2 1* Y3Fe4.97Ge0.03O12 0.36 1.76 0.0009 1680 –1620

2* (YSmCa)3(FeGe)5O12 2.0 1.74 0.12 560 980

Note: 1* is the excitation layer of harmonic spin wave modes and 2* is the pinning layer.

Hk
eff
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strates for every single layer of bilayers and trilayers.
The thickness of a layer was considered equal to the
thickness of its single-layer analog, which was mea-
sured by the interference method and also determined
from the time required for its complete etching. The
film parameters are listed in the table. In all samples,
the thickness of the “pinning layer” was 1 to 2 µm,
which is much larger than the penetration depth of spin
waves into the layer, as calculations and experimental
data show [13]. The SWR spectra were recorded at
room temperature for the microwave field frequency
equal to 9.34 × 109 Hz. The magnetic field was mea-

1

2
200

100

0 1 2 3

2∆H, Oe

k1, 105 cm–1

1

2
400

200

0 2 4 6

2∆H, Oe

k1, 105 cm–1

Fig. 1. Spin wave mode linewidth 2∆H as a function of the
wavenumber k1 for sample 1 for the different excitation layer
thickness h1, µm: (1) 1.08 and (2) 0.4. The dots are experi-
ment and the lines are calculations for β = 5.5 × 1010 cm–2.

Fig. 2. Dependences of 2∆H on k1 for sample 2 for (1) per-
pendicular and (2) parallel orientations of the magnetic field.
The dots are experiment and the lines are calculations for dif-
ferent values of β, cm–2: (1) 4 × 1011 and (2) 1.8 × 1011.
P

sured by an NMR magnetometer. In the figures, for the
sake of convenience, the linewidths of SW modes are
plotted not against the mode index n, but against the
wave number k1, the values of which are close to (n +
1/2)π/h1 for a bilayer film or to (2n + 1)π/h1 for a
trilayer film [14]; here, n = 0, 1, 2, …, and h1 is the
thickness of the “excitation layer.” 

We note that, in sample 1, the dissipative mecha-
nism of spin pinning [15] was dominant. This mecha-
nism operates in multilayer films the layers of which
differ dramatically in the damping parameter. Even
under uniform-resonance conditions, the precession
angle of the magnetization vector M in a layer with a
high damping parameter α2 is smaller than in a layer
with a low damping parameter α1 by a factor of α2/α1.
Because of this and owing to the exchange coupling
between layers, when the oscillatory magnetization is
excited, one of the nodes of the standing spin wave is
situated at the interface between the layers or near this
interface. The dissipative mechanism of spin pinning
differs qualitatively from the dynamic mechanism in
that its operation is independent of the orientation of
the external magnetic field H with respect to the film,
which is due to the isotropic damping parameter α.
According to the data available in the literature and to
our experimental results, the possible anisotropy of α
of garnet ferrite films does not exceed 6%, the measure-
ment error of this parameter. Since the region where
standing harmonic spin waves are excited is localized
in the low-damping layer for any orientation of H, the
SWR spectrum will be virtually isotropic if the dissipa-
tive mechanism of spin pinning is dominant. We note
that the dispersion and reactive (elastic) properties of
the high-damping layer also affect the spin pinning.

The experimental results we obtained are as follows.
In bilayers in which the layers differ drastically in the α
value (sample 1), the linewidth of SW modes noticeably
increases with the wavenumber k1 (curve 1 in Fig. 1).

With a decrease of the thickness of the layer where
standing harmonic spin waves are excited, the depen-
dence of 2∆H on k1 becomes sharper (curve 2 in Fig. 1).
In the case of a trilayer film, where there are pinning
layers both above and below the excitation layer, the
dependence of 2∆H on k1 is stronger. At the same value
of k1, the broadening of the SW mode line (difference
between the linewidth of the nth SW mode and
2α1ω/γ1) in a trilayer is nearly twice as large as that in
a bilayer.

The linewidths of SW modes are found to be aniso-
tropic. If the dissipative mechanism of spin pinning
dominates (as in samples like sample 1), the 2∆H(k1)
dependences are identical (within the margin of mea-
surement error of 2∆H, 6%) for the perpendicular and
parallel orientations of H with respect to the film; how-
ever, these dependences become essentially different
from each other when the dissipative mechanism ceases
to be dominant. This is illustrated in Fig. 2, where the
2∆H(k1) dependences are shown for sample 2.
HYSICS OF THE SOLID STATE      Vol. 42      No. 7      2000
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2. THE LINEWIDTHS OF SPIN WAVE MODES

In order to explain the measured 2∆H(k1) depen-
dences, we analyzed the influence of the region of the
pinning layer, where standing SWs decay, on the SW
mode linewidth. It can be shown that, for both dissipa-
tive and dynamic mechanisms of spin pinning, the pen-
etration depth l of an SW into the pinning layer depends
on the wavenumber k1 of the part of the SW that is har-
monic in space and localized in the excitation layer.
This is seen from Fig. 3, where the real ( ) and imag-

inary (  = 1/l) parts of the wavenumber in the pinning
layer, as well as the wavenumber k1 in the excitation

layer, are shown as a function of H. The values of 

and  are found from an equation following from the
dispersion relation [16]. For the perpendicular orienta-
tion of H with respect to the film plane, this equation
has the form

(1)

where  is the effective uniaxial anisotropy field and
A2 is the exchange constant in the second layer.

In (1),  and  are related by the equation [16]

(2)

where β' = α2ωM2/4A2γ2. From Fig. 3, it is seen that k1

and  increase, while  = 1/l decreases with decreas-
ing H. Therefore, l increases with k1. It should be noted
that variation of the SW configuration with n may also
occur in a thin surface layer if one assumes spin pinning
to be due to surface anisotropy and ignores the thick-
ness of the surface layer. Whatever the mechanism of
spin pinning, the standing SW can considered as con-
sisting of two exchange-coupled parts, one of which is
harmonic and localized in the excitation layer, while
the other, damped part, is in the pinning layer.

Of interest to us is the relaxation characteristic, the
SW mode linewidth 2∆Hn, which can be written as

(3)

where  is an effective damping parameter depend-
ing on α, 4πM, and γ of each of the layers and on the

configuration of the SW mode, and  is the effective
gyromagnetic ratio for the nth mode.

The calculation of  was performed as follows.
As is known, damping in an oscillatory system can be
characterized by the quality factor Q = W/P, where W is
the energy of the system and P is the dissipated energy
per cycle. The Q factor of a magnetic spin system is
related to the Gilbert damping parameter α by the equa-
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tion Q = 1/2α [16]. Therefore, P can be expressed in
terms of α and W.

Let us consider a magnetic film consisting of two
layers with different values of α. SW modes are
excited in the low-damping layer (with parameter
α(α1)), while spin pinning occurs in the high-damping
layer (with parameter α(α2)). From the above discus-
sion, it follows that the energy of a standing SW
excited in this film can be written as the sum of the
energy of the harmonic part of the wave localized in
the excitation layer and the energy of the damped part
in the pinning layer, W = W1 + W2. Accordingly, the
dissipated energy per cycle is written as P = P1 + P2,
or

(4)

On the other hand, we can write

(5)

where W = W1 + W2. Combining (4) and (5) yields

(6)

For the sake of convenience, the Wi are considered
as the energies per unit area of the film in what follows.
We can write these energies as

(7)

where Ui is the (volume) energy density of spin oscilla-
tions, which includes the energy of nonhomogeneous
exchange interaction U ', as well as the sum of the Zee-
man energy, anisotropy energy, and demagnetizing-
field energy U '' [16]. In the case of a film with uniaxial

P 2 α1W1 α2W2+( ).=

P 2α effW ,=

α eff α1W1 α2W2+
W1 W2+
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Fig. 3. Dependences of the wave numbers in the layers (1) k1,

(2) , and (3)  on H for sample 1 for the perpendicular

orientation of H with respect to the film. H01 and H02 are the
uniform-resonance fields for the corresponding layers.
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anisotropy and of the perpendicular orientation of H,
where spin waves have a circular polarization, we have

or

(8)

where

In resonance with the nth SW mode, the frequency
ω0 is equal to the microwave field frequency ω and we
have

(9)

It is also an easy matter to obtain an expression for
U in the case where spin precession is elliptical, which
takes place, for instance, for the parallel orientation of
H with respect to the uniaxial film.

With (7) and (9), expression (6) for  takes the
form

(10)

where h1 and h2 are the thicknesses of the correspond-
ing layers.

For a standing SW, excited in the bilayer, the distri-
bution of the magnetization m in the excitation and pin-
ning layers can be written as

(11)

respectively, where Bn and Cn are constants and the z =
0 plane is the free boundary of the excitation layer.

It should be noted that, if 2∆H(k1) is calculated
using  obtained from (1) and (2) (Fig. 3), the results
do not agree with the experimental data. One of the rea-
sons for this discordance may be the fact that, when a
spin wave decaying in space in the high-damping layer
is excited by spin oscillations localized in the low-
damping layer, the configuration of this wave is deter-
mined not only by the layer parameters (α2, A2, M2,

) and the value of H, but also, to a large extent, by
the wavenumber k1 of the harmonic part of the spin

U'
A

M2
-------k

2
m2, U''

1
2M
-------- H Heff+( )m2= =

U
1

2M
-------- H Heff 2A

M
-------k2+ + 

  m2 1
2M
--------

ω0

γ
------m2,= =

ω0 γ H0 Heff 2A
M
-------k2+ + 

  .=

Ui
1

2M
--------ω

γi

----mi
2.=

αn
eff

αn
eff

α1

γ1M1
------------ m1n

2 z
α2

γ2M2
------------ m2n

2 zd

h1

h1 h2+

∫+d

0

h1

∫

1
γ1M1
------------ m1n

2 z
1

γ2M2
------------ m2n

2 zd

h1

h1 h2+

∫+d

0

h1

∫
-----------------------------------------------------------------------------,=

m1n z( ) Bn k1z,cos=

m2n z( ) Cn i k2' ik2''–( ) z h1–( )–[ ] ,exp=

k2''

H2
eff
P

wave excited in the low-damping layer by a microwave
field. The calculated 2∆H(k1) dependences can be fitted
to the experimental data if one assumes that the pene-
tration depth of the spin wave into the pinning layer
varies in proportion to k1 and, hence,  has the form

(12)

where β is a constant. The value of β at which the
agreement between the experimental and calculated
2∆H(k1) dependences is the best is close to the value of
β' = α2ωM2/4A2γ2 involved in expression (2), which

relates  to  (  = β'/ ). For instance, for sample 1,
we have β = 5.5 × 1010 and β' = 7.2 × 1010 cm–2.

We ignored  in calculating 2∆Hn in the case
where the dissipative mechanism of spin pinning is
dominant. The possible values of the wavenumber and
the relation between Bn and Cn can be found from the
boundary conditions [14]

(13)

and expressions (11). The result is

(14)

(15)

Here, p = A2 /A1 = A2β/A1k1 is a parameter, which
determines the degree of spin pinning and is inversely
proportional to the penetration depth of a spin wave
into the pinning layer. In the case of the dissipative
mechanism of spin pinning, the value of p is deter-
mined fundamentally by α2, A2, 4πM2, and k1. It is
worth noting that, if the values of γ in the layers are dif-
ferent, a standing SW will be characterized by an effec-
tive quantity γeff, which, as well as αeff, is dependent on
the mode index. It can be shown that, for spin waves
under study, we have

(16)

3. DISCUSSION OF RESULTS

The 2∆H(k1) dependences calculated from (3) and
(10) are presented in Figs. 1 and 2. The figures show
good agreement between the calculations and the
experimental data. From Fig. 1, it is seen that the line-
width increases with the wavenumber (or with the
mode index, for k1 ~ n). This is due to an increase in the
relative contribution from the damping region to 2∆Hn.
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In the numerator in (10), the first integral (normalized
to Bn) varies with n only slightly, whereas the second
integral increases. When α2 @ α1, the contribution from
the second term to αeff becomes quite large. It is also
seen from Fig. 1 (curve 2) that the relative contribution
from the damping region to the SW mode linewidth
increases as the thickness of the excitation layer
decreases. For the calculated linewidth 2∆H(k1) of a
trilayer, where there are two damping regions and the
boundary conditions are symmetrical, the line broaden-
ing is twice as large. This was experimentally observed
for all trilayers investigated.

Figure 2 shows the calculated and experimental
2∆H(k1) dependences for sample 2, in which the
dynamic and dissipative mechanisms of spin pinning
make comparable contributions. The clearly defined
anisotropy of the SW mode linewidths in sample 2 is
due to the strong dependence of the SW penetration
depth l into the pinning layer on the orientation of H
with respect to the film. For the perpendicular orienta-
tion, the pinning layer is a reactive (elastic) medium for
spin waves in the field range where the SWR spectrum
was observed (H > H02). In this case,  far exceeds 
and its value is large. This is due to the fact that the uni-
form-resonance fields in the layers differ dramatically
in value (H01 – H02 = 2330 Oe); hence, the dynamic
mechanism of spin pinning is highly effective and
causes a considerable decrease in the penetration depth
l. In the pinning layer, the oscillatory magnetization
component steeply falls off with distance from the layer
interface. The varying magnetic moment of the damp-
ing region decreases, and so does the dissipated energy
in this region. The decrease in l in the case of the per-
pendicular field orientation causes the degree of spin
pinning to increase, as indicated by numerous modes
observed in this case.

At the parallel field orientation, the SWR spectrum
is observed in a field range below H02 and, therefore,

 < . In this case, the pinning layer is a dispersive
(transparent) medium for spin waves. These are har-
monic waves and decay by an exponential law. The
penetration depth l is determined only by dissipation
and is much larger than in the case of the perpendicular
field orientation. Therefore, the damping region has a
larger oscillatory magnetic moment, which leads to
broader SW mode lines. In calculating 2∆H(k1) for
sample 2, the factors indicated above were taken into
account by choosing appropriate values of β.

CONCLUSIONS

Thus, in this paper, it was found that spin wave
damping in the pinning layer is one of the channels of
energy dissipation of spin waves. The broadening of the

k2'' k2'

k2'' k2'
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SW mode lines due to this damping increases with the
mode index and can be many times larger than the nat-
ural SW linewidth of the excitation layer.

The SW mode linewidths were observed to be aniso-
tropic, which is due to the dependence of the SW pene-
tration depth into the pinning layer on the orientation of
the external magnetic field with respect to the film.
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Transition from the Kondo Regime to Long-Range Magnetic 
Order in the FexV1 – xS System
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Abstract—A study is reported on the electrical and magnetic characteristics of the FexV1 – xS solid-solution
system with x ≤ 0.5. A maximum in the temperature dependence of resistivity ρ(T) characteristic of the Kondo
effect has been observed for small x (x < 0.01). For x > 0.1, long-range magnetic order sets in in the system with
TK ~ 100 K. Near x = 0.05, the Fe2+ impurity behavior crosses over to a magnetically ordered phase. The elec-
tronic properties of FexV1 – xS are typical of those of strongly correlated electronic systems. Both the electrical
and magnetic data imply that carrier delocalization is the strongest at x = 0.4. © 2000 MAIK “Nauka/Interpe-
riodica”.
Many vanadium compounds differing in crystalline
structure, such as oxide spinels LixMe1 – xV2O4 (Me
stands for Zn and Mg) [1], perovskites SrxLa1 – xTiO3
[2], and NiAs-type sulfides with a superstructure, such
as MexV1 – xS (with Me standing for a 3d metal) [3, 4],
undergo a metal–insulator transition and are studied
intensely to understand specific features of the elec-
tronic and magnetic states in strongly correlated elec-
tronic systems. Spin fluctuations play a prominent part
in such electronic systems.

This paper reports a temperature study of the electri-
cal resistivity ρ and magnetization σ of the FexV1 – xS
system with compositions 0 < x ≤ 0.5 in the 4.2–300 K
temperature range. The concentration dependences of ρ
and σ for compositions with 0.1 ≤ x ≤ 0.5 are presented
in [3].

1. EXPERIMENTAL TECHNIQUES

The preparation technology of polycrystalline
FexV1 – xS samples, which is the same for all composi-
tions studied, is described in [3].

The resistivity was measured by the four-probe dc
potentiometric method. The samples intended for resis-
tivity measurements were pressed to 10 × 5 × 2-mm
parallelepipeds and fired in evacuated quartz ampoules
at 1200 K for an hour.

The magnetization was measured in an automated
vibrating-sample magnetometer with a superconduct-
ing coil in magnetic fields of up to 0.1 T.

Temperature measurements of the real part of the
initial magnetic susceptibility χ' were carried out on a
setup including an inductance bridge and a phase-sen-
sitive detector.
1063-7834/00/4207- $20.00 © 21322
The magnetic and resistivity measurements were
done on the same samples.

2. EXPERIMENTAL RESULTS

2.1. X-ray Diffraction Characterization and DTA

X-ray diffraction studies of FexV1 – xS compounds
with isomorphous substitution of Fe for V were per-
formed at T = 300 K and showed them to be isostruc-
tural with V5S8 (monoclinic superstructure F2/m–C3)
for 0.1 ≤ x ≤ 0.5 [3]. The compositions with low iron
concentrations x = 0.005, 0.01, 0.02, and 0.05 had a dis-
torted superstructure close to that of V5S8. All the com-
positions studied revealed in DTA curves two revers-
ible endothermic effects at 800–900 K falling into the
metal–insulator transition region of the starting mono-
sulfide VS [3]. In the present work, the DTA range was
extended to 1300 K, which allowed the determination a
peak at 1020–1100 K in DTA curves obtained on 0.1 ≤
x ≤ 0.5 compositions. The peak corresponded to the
Curie temperature θC, and its observation provided an
indirect method for measuring this temperature.

2.2. Electrical Resistivity

The concentration dependence of the electrical
resistivity obtained at 80 and 300 K exhibits a strong
increase of ρ to 0.6 Ω cm for x = 0.1 at room tempera-
ture, with its subsequent drop by an order of magnitude
with increasing iron concentration, which evidences
the electron localization to be the strongest at x = 0.1.
Figure 1 presents ρ(T) curves for compositions with
low iron concentrations. As is seen from Fig. 1a, the
ρ(T) dependence obtained for the x = 0.005 composi-
tion (0.25 at. % Fe) passes through a maximum at T ~
90 K. Such ρ(T) behavior was observed for dilute metal
000 MAIK “Nauka/Interperiodica”
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alloys with low concentrations of paramagnetic impu-
rities in the lattice in the absence of magnetic order, i.e.,
the Kondo effect [5]. The amplitude of the peak in ρ(T)
was found to depend on the paramagnetic impurity con-
centration and external magnetic field and to become
suppressed as the latter increase.
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Fig. 1. Temperature dependences of the electrical resistivity
of FexV1 – xS samples for compositions with (a) x = 0.005
and (b) x = 0.05.

Fig. 2. Temperature dependences of the electrical resistivity
of FexV1 – xS samples for compositions with x: (1) 0.1, (2)
0.2, (3) 0.3, (4) 0.4, and (5) 0.5.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
As the iron concentration increases to x = 0.05, the
general resistivity increase by more than two orders of
magnitude is accompanied by the disappearance of the
ρ(T) peak, although traces of the temperature anomaly
can still be detected around 90 K (Fig. 1b). For T > 90 K,
the ρ(T) curves follow a close-to-activated behavior for
both compositions.

The influence of a further increase of the iron con-
centration can be seen from Fig. 2, which shows that
the ρ(T) dependence levels off with increasing x, to
approach a semimetallic conduction pattern at x = 0.4
throughout the temperature range studied.

2.3. Magnetic Properties

Measurements of the low-frequency magnetic sus-
ceptibility χ'(T) did not reveal long-range magnetic
order in samples with iron concentration x < 0.1.

As for compositions with higher iron contents, the
saturation field, as seen from the magnetization curves
displayed in Fig. 3, is approximately the same for all
samples with x ≥ 0.1, with the magnetization varying
noticeably in magnitude. It is apparently the high val-
ues of θC that account for the fact that the values of
σ(H) measured at 68 and 300 K differ by not more than
5%. The fact that the magnetization curves reach satu-
ration at magnetic fields of about 0.1 T, as well as the
high values of the magnetization, suggests that the
exchange interaction has a ferromagnetic component,
which is buttressed by the observation of hysteresis
loops with a coercive force HC ~ (3–5) × 10–4T.

The magnetic moments M per iron atom derived
from the magnetization curves are displayed in Fig. 4,
and Fig. 5 presents the values of θC obtained for various
compositions. We note with interest a correlation
between these two dependences within the concentra-
tion range studied.
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Fig. 3. Magnetization curves of FexV1 – xS samples for x:
(1) 0.1, (2) 0.2, and (3) 0.4.
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3. DISCUSSION OF RESULTS

As follows from the x-ray diffraction data, FexV1 – xS
and V5S8 with ordered vacancy layers have similar
structures and the substitutional Fe atoms are ordered
in hexagonal layers. An analysis of the electronic struc-
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Fig. 4. Concentration dependences of the magnetic moment
M per Fe atom.

Fig. 5. Concentration dependences of the Curie temperature
θC.
P

ture [3] showed that, at low concentrations, each iron
atom forms a localized magnetic impurity with S = 1. It
is carrier scattering from such impurities that produces,
as is well known, the Kondo effect, and therefore, its
manifestation in ρ(T) curves with x = 0.005 does not
appear strange. For x ≥ 0.1 there is long-range magnetic
order, where the Kondo effect is suppressed. The cross-
over between the Kondo regime and long-range mag-
netic order occurs at an impurity concentration xC such
that TK ~ xCθC [5], where TK is the Kondo temperature
and θC is the Curie temperature of a concentrated mag-
netic system. In our case, TK ~ 100 K and θC ~ 1000 K,
so that xC ~ 0.1. Indeed, for x = 0.05, as seen from
Fig. 1b, ρ(T) follows an intermediate behavior with a
pronounced spin fluctuation contribution for T > 100 K,
i.e., this composition apparently lies near the crossover
from one regime to the other.

At x ~ 0.1–0.2, the magnetically ordered phase is
characterized by magnetic moments localized on Fe
atoms which evidences strong d-electron correlations
in Fe. As x increases still further, the wave-function
overlap of the d electrons becomes enhanced to give
rise to their partial delocalization, which is seen from
the sharp drop of the magnetic moment of Fe atoms and
the leveling off of the temperature dependence ρ(T).
Judging from both electrical and magnetic measure-
ments, the delocalization is strongest near x = 0.4.
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Abstract—The process of domain structure formation and evolution after magnetization of a small area of a
garnet ferrite film to saturation was examined with the use of modified two-step high-speed photography. It was
found that the radial deformation caused by magnetizing coil breaks the uniaxial anisotropy of the specimen
and results in formation of the axially oriented stripe domain structure inside the magnetization reversal area.
The period of this domain structure decreases with the increasing amplitude of the pulsed field. The formation
of the axially oriented stripe domain structure occurs under the axially symmetrical magnetostatic field. © 2000
MAIK “Nauka/Interperiodica”.
In recent years, together with ordered domain struc-
tures, such as hexagonal lattices of bubble domains [1],
lattices of dumbbell-like domains [2], and stripe
domain structures [3], the magnetic states that exhibit a
partly or fully disordered domain structure (DS) attract
great interest. These magnetic states may be exempli-
fied by spiral domains [4] and closely-packed struc-
tures of spiral domains [5]. In uniaxial garnet ferrite
films (GFFs) with the easy magnetic axis normal to the
film surface, the specific character of anisotropy allows
no preferable direction and is favorable for disordering
domain wall (DW) arrangement [6].

In this work, we investigate the formation and
evolution of a domain structure in GFFs after a small
area of the specimen is magnetized by a coil, pasted
directly on the specimen. We examined the
(BiLaTm)3(FeGa)5O12 garnet ferrite films with the fol-
lowing characteristics: 4πMs = 100 G and the mobility
µ = 120 cm/(s Oe). The plane of the film substrate was
perpendicular to the [111] axis. In our experiments, we
used the modified method of two-step high-speed pho-
tography [7]. This method allows one to fix two succes-
sive positions of a DW at two time instants. The time
interval between two light pulses (∆t) was created by
electronic delay line. It might be varied from 1 to
1000 µs. In our work, in contrast to the classic method
of two-step high-speed photography [8], we registered
the DS image with a TV camera. The further image pro-
cessing and its visualization were performed using a
personal computer, which allowed the image to be reg-
istered at any given point in time. An additional advan-
tage of the modified method is that the results are seen
directly in the process of work, which provides the pos-
sibility of an adaptable control in the course of experi-
ment.

We investigated GFFs in pulsed magnetic fields of a
frequency of several hertz and an amplitude Hi exceed-
ing the saturation field. In our experiments, we used
1063-7834/00/4207- $20.00 © 21325
field pulses the duration of which can be varied in the
interval from 1 to 10 µs. The field was produced by a
round coil of the radius, which was substantially
smaller than the specimen size. The coil was pasted
directly on the specimen.

When the pulse duration was 10 µs, the specimen
magnetization reached saturation in the first 8 µs. The
system held this magnetization during several micro-
seconds after the pulse was turned off. To describe fur-
ther evolution of the system, the time t was measured
from the instant the pulse was cut off. After several tens
of microseconds from the pulse cutting-off, on the
periphery of the region covered by the coil, an axially
symmetrical stripe DS starts to develop with domains
oriented along the coil radius. In Fig. 1, a two-step view
of the axially oriented DS is shown in the first several
microseconds of its development. In this figure, bright
domains correspond to the DS after 60 µs following the
field pulse cut-off (t = 60 µs). Dark areas near rounded
ends of the bright domains are the sections that were
passed by the DW during the time between two light
pulses (∆t = 5 µs). The domain walls move predomi-
nantly along the coil radius. The rate with which the DS
growths into the coil (V = 8 m/s) remains constant up to
the instant the stripe domains come together at the cen-
ter of the coil. In the figure, the swellings are seen at the
ends of the stripe domains at both the time t and t + ∆t.
In addition, it is evident that the DW moves not only to
the coil center. The small narrow white regions near the
bright domain illustrate the compression of the stripe
domain ends.

We recall that the classic method of two-step high-
speed photography allows one to observe DW displace-
ment during a certain time, but it is impossible to obtain
information about the initial state of the DS in that case.
In the classic method, the light pulses of the equal
intensity are used. In Fig. 1, besides DW displacing
during the time ∆t, the formation of a domain structure
000 MAIK “Nauka/Interperiodica”
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is seen well. To achieve this, we used the light pulses of
different intensity.

In Fig. 2, the view of the DS is presented at time t =
85 µs. The period of the stripe DS is approximately 1.5
times smaller than the period of a labyrinth DS in the
case of zero external field. At t = 140 µs, the stripe
domains come together at the coil center and form
quasi-static axially symmetrical stripe DS (Fig. 3). This
structure remains unchanged up to the instant of the
next field pulse coming. It is seen in the figure that
some neighboring domains merge with each other in
the process of evolution. As the amplitude of field
pulses increases, the period of the axially oriented
stripe DS decreases.

It is known that, with an increase of the in-plane
field amplitude in a GFF, the period of DS decreases
[9]. But when the normal component of the pulse field
increases, the in-plane component of this field
increases as well. This fact explains the above-men-
tioned dependence of the period of the axially oriented
DS on the pulse field amplitude.

The qualitative explanation of the above-described
results is as follows. Due to the radial tensile deforma-
tion, which is caused by the magnetizing coil pasted on
the specimen, a correction Fσ to the free energy arises
[10]. This addition equals Fσ ≈ λ110σ, where λ110 is the
magnetostriction constant along the [110] axis (λ110 =
1.4 × 10–6) and σ is the mechanical stress arising in the
coil when the current is nonzero. For the used speci-
mens, Fσ is several percent of the anisotropy energy.

100 µm

Fig. 1. Evolution of the axially symmetrical DS in the GFF
during the time between two light pulses (∆t = 5 µs). The
displayed initial DW position corresponds to time instant
60 µs after the field pulse was cut off. The pulse was of ampli-
tude Hi = 520 Oe (Hs = 160 Oe) and of a length ti = 10 µs.
P

Thus, under the radial deformation, the easy magnetic
axis deflects from the normal to the film plane through
a small angle along each radius. The set of these axes
forms the easy magnetization cone.

After the area of the specimen that is covered by the
coil is magnetized to saturation, the axially symmetri-
cal magnetostatic field is generated in the specimen.
This field determines the way of evolution of the radi-
ally oriented stripe DS. The existence of this field
explains nucleation and development of axially sym-
metrical stripe domains in the specimen.

The crucial role of the radial deformation in the for-
mation of the axially oriented stripe DS was verified
experimentally in the following way. The magnetic
field was applied by using not a coil pasted on the spec-
imen, but Helmholtz coils with the air gaps between the
coils and the specimen being equal to ≈0.5 mm. In this
case, the DS reconstruction occurs basically because of
randomly arising regions with a labyrinth DS. For this
reason, the uniform orientation of domains did not
occur.

Thus, when the specimen was magnetized to satura-
tion with the pulse field generated by the pasted coil,
the radial tensile stress in the specimen caused by this
coil determined the orientation of the stripe DS. With
this conclusion in mind, to create the stripe DS, we used
the magnetic field generated by a rectangular coil of the
internal size 1.5 × 7 mm, which was pasted on the spec-
imen as before. The stripe domains of the period, which
is approximately 1.4 times smaller than the period of a

100 µm

Fig. 2. Evolution of the axially symmetrical DS in the GFF
during the time between two light pulses (∆t = 2 µs). The
displayed initial DW position corresponds to time instant
85 µs after the field pulse was cut off. The pulse was of ampli-
tude Hi = 520 Oe (Hs = 238 Oe) and of a length ti = 10 µs.
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labyrinth DS in absence of any external field, were
aligned along the normal to the region covered by the
coil. In the center of the coil, the domains intergrowing
from the opposite sides of the coil do not merge when
they come together; in this case, the domains that are
magnetized in a specific direction and intergrow from
one side, stand opposite to the domains that intergrow
from the other side and are magnetized reversely. When
the pulse field is turned off, the stripe DS remains
unchanged. Some negligible distortions of the DS may
arise only in the area, where domains that intergrew
from the opposite sides are within short distances of
each other. The results of our experiment are in good
agreement with the qualitative explanation of the for-
mation of a radially oriented stripe DS generation.

When the pulse field amplitude exceeds the satura-
tion field only slightly, nuclei of reversed magnetiza-
tion may arise chaotically in the magnetically saturated
specimen. These nuclei are bubble domains the radius
of which increases with time t under the action of the
axially symmetrical demagnetizing field. After the
radius reaches its maximum value, the bubble domain
is distorted and takes the elliptical form. With the pas-
sage of time, it acquires branching appendices with the
central part of the domain being compressed. In this
process, a labyrinth domain structure arises. In Fig. 4,
the two-step view of the DS illustrates the development
of nuclei of reversed magnetization. The bright area is
a reversed domain within 25 µs after the pulse field was
turned off (t = 25 µs). The black region around this

200 µm

Fig. 3. Axially oriented stripe DS of the specimen 140 µs
after the field pulse was cut off. The pulse was of amplitude
Hi = 255 Oe (Hs = 238 Oe) and of a length ti = 10 µs.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
domain displays the pathway traversed by the DW dur-
ing the time ∆t between the first and the second light
pulses (∆t = 3 µs). In the process of above-described
evolution of nuclei of reversed magnetization, the DW
velocity did not exceed 8 m/s. The domains similar to
the reversed domain presented in Fig. 4 were described
in [11].

Our investigations revealed that the domain growth
takes place in the main on the boundaries of a nucleus
of reversed magnetization. At a certain instant, together
with chaotically arising regions of labyrinth DS, axially
oriented stripe domains occur in the specimen. In the
process, the regions of labyrinth DS are enlarged with
concurrent development of stripe domains in the way
described above. Such coexistence of DSs of different
types lasts up to the axially oriented stripe DS forma-
tion being completed. It is the axially symmetrical
magnetic field that causes the development both of the
regions of a labyrinth DS and of axially-oriented
domains.

It is likely that the generation of nuclei of reversed
magnetization in the specimen after the turning-off of
the field pulse of an amplitude that is close to the satu-
ration field is due to nondemagnetized regions
remained inside the specimen after the pulse action.
These regions are nuclei of reversed magnetization, and
their random array is responsible for the random distri-
bution of reversed domains. If the amplitude of the

100 µm

Fig. 4. Evolution of a nucleus of reversed magnetization in
the GFF during the time between two light pulses (∆t = 3 µs).
The displayed initial DW position corresponds to time instant
25 µs after the field pulse was cut off. The pulse was of ampli-
tude Hi = 193 Oe (Hs = 110 Oe) and of a length ti = 10 µs.
0
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pulse field is high enough, the specimen is fully demag-
netized, and the described effect is not observed.

With use of modified method of two-step high-
speed photography, we were fortunate to trace and fix
the development of axially oriented stripe DS. In the
result of our experiments, it was revealed that the orien-
tation of such DS is uniquely determined by radial ten-
sile deformation, which was caused by the coil directly
pasted on the specimen, when it experienced a pulse
current flow, and by axially symmetrical magnetostatic
field.
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Abstract—The optical and dielectric properties and the structure of crystalline and ceramic perovskite CdTiO3
modifications have been investigated. The multiplication of the unit cell along three perovskite axes is found.

The new possible space groups of symmetry  and  are determined. It is elucidated how small radiation
doses affect the structure and properties of crystalline and ceramic perovskite modifications. Analysis of the
intensities of diffraction reflections demonstrate that the defect formation leads to an increase in the antiparallel
displacements of Cd atoms in the unit cell. © 2000 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Among the double oxides ATiO3 (where A is Ba, Pb,
Sr, Ca, and Cd), cadmium titanate CdTiO3 is distinctive
in that it exhibits either a perovskite structure or
ilmenite-type structure depending on the crystallization
conditions [1, 2]. In a series of oxide niobates ANbO3
(where A is Ag, K, Na, and Li), the AgNbO3, KNbO3,
and NaNbO3 compounds always have a perovskite struc-
ture, and LiNbO3 exhibits an ilmenite-type structure [3].
Up to now, all attempts to change LiNbO3 (and LiTaO3)
to the perovskite modification by using any possible
methods of additional treatment have been unsuccessful,
whereas CdTiO3 can be readily transformed from the
ilmenite-type structure to the perovskite structure by
high-temperature annealing [2]. So far, it remains
unclear whether this reconstructive phase transition is
monotropic or enantiotropic (reversible). The low-tem-
perature ferroelectric phase transition in the perovskite
CdTiO3 modification at 50–60 K was first observed by
Smolenskiœ [4] and, more recently, by Sugai and Wada
[5]. Since that time, the investigations into the structure
and physical properties of this phase have received con-
siderable attention of many researchers [6–12]. The
ilmenite-like modification of CdTiO3 is still not clearly
understood [13, 14], even though it, like LiNbO3 and
LiTaO3, can possess the ferroelectric properties with a
high Curie temperature. By now, the features in optical,
dielectric, and other physical properties of CdTiO3 over
wide ranges of temperatures and frequencies of measur-
ing electric fields have not been adequately explored.
The structural features of two CdTiO3 modifications,
their temperature transformations, and the influence of
different defects on their physical properties and struc-
ture are also poorly known; furthermore, the low-tem-
perature transition has never been structurally investi-
gated.
1063-7834/00/4207- $20.00 © 1329
In the present work, we studied the features of crys-
tal structure and a number of optical and dielectric
properties of the CdTiO3 single crystals of perovskite
modification.

2. EXPERIMENTAL TECHNIQUE

Single crystals of CdTiO3 were grown from solu-
tions in the melt of mixtures NaBO2 + KBO2 + CdTiO3
by Proskuryakov and Spinko. Polycrystalline samples
of CdTiO3 were prepared from the stoichiometric mix-
tures of CdO and TiO2 according to the standard solid-
phase synthesis procedure. The x-ray powder diffrac-
tion analysis of the CdTiO3 samples revealed that the
ilmenite-like CdTiO3 modification is formed at synthe-
sis temperatures of 800–900°C. Upon annealing of the
samples at 1100°C in air, this phase transforms to the
perovskite modification.

The crystals and powders of the perovskite and
ilmenite CdTiO3 modifications were checked for sto-
ichiometry by the x-ray fluorescence analysis on an
EDAX-DX-95 instrument with the use of reference
mixtures of CdO and TiO2.

The x-ray structure investigations of the CdTiO3
single crystals were carried out on a WBG-2 goniome-
ter and a DRON-3M diffractometer (CuKα radiation).
The optical properties of the CdTiO3 crystals were
examined with a MIN-8 polarizing microscope and a
special setup (at the Silesian University), which made it
possible to measure the birefringence and its tempera-
ture dependence in small regions of the crystal.

The dielectric properties of the CdTiO3 crystals (the
temperature–frequency dependences of the permittiv-
ity) were measured in the temperature range 20–310°C
at measuring field frequencies from 100 Hz to 20 kHz.
Note that no pyroelectric and piezoelectric effects were
observed in polycrystalline samples of both CdTiO3
modifications.
2000 MAIK “Nauka/Interperiodica”
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Fig. 1. Etch profile of the CdTiO3 crystals.
3. RESULTS

3.1. Optical Investigations

The etch profile of the studied crystals is closely
similar to the structure of 180-degree domains revealed
by the etching in the BaTiO3 and PbTiO3 crystals and
other perovskite ferroelectrics. These small-sized
[(1−2) × 10–4 cm] configurations are oriented in two
mutually perpendicular directions in parallel to the
crystal faces (Fig. 1). Crystals of the perovskite CdTiO3
modification are orthorhombic and, hence, can be char-
acterized by the refractive indices nA, nB, and nC for the
corresponding orientations of the optical indicatrix. In
our case, the [010] direction, as a rule, is normal to the
surface of the scaly CdTiO3 crystals, which allowed us
to determine the birefringence ∆n = nA – nC. Figure 2
displays the temperature dependence of the birefrin-
gence for the CdTiO3 crystal. It should be noted that the
∆n(T) dependence exhibits a small kink at temperatures
of 200–250°C.

3.2. Structural Investigations

At the first stage of structural studies, the CdTiO3
crystal was examined by the rolling-crystal and rotat-
P

ing-crystal methods. It was revealed that the [010] crys-
tallographic direction of the perovskite structure is
aligned along the axis of suspension (rotation). Analy-
sis of the reflection shape demonstrated that the crystal
is not twinned but, at the same time, has a developed
microblock structure. Then, the crystal was examined
on the diffractometer by using separate scanning of the
crystal (ω) and a detector (2Θ). This enabled us to
determine the angles between the blocks, which are
equal to several angular minutes. The rotating-crystal
x-ray photographs clearly demonstrate superstructure
(with respect to perovskite) layer lines that correspond
to the doubling of the parameter bp = 3.803(4) Å of the
perovskite unit cell. The following results were
obtained from the indexing of the zeroth, first, and sec-
ond layer lines by the Weissenberg method. First, the
parameters ap and cp of the monoclinic perovskite cell
are doubled: ap = cp = 3.790(3) Å and βp = 91.0(3)°.
Taking into account the superstructure, the true symme-
try of the CdTiO3 crystal can be considered orthorhom-
bic with the unit cell parameters A0 = 2bp, B0 = 2(ap + cp),
C0 = 2(ap – cp), A0 = 7.606(4) Å, B0 = 10.607(5) Å, and
C0= 10.831(5) Å, which, within the limits of experi-
mental error, is in agreement with the results obtained
HYSICS OF THE SOLID STATE      Vol. 42      No. 7      2000
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Fig. 2. Temperature dependence of the birefringence for the CdTiO3 crystal.
by Megaw [1] but contradicts the conclusion that the
multiplication of the orthorhombic superstructure cell
along the Y0 and Z0 axes is absent [9, 10]. Second, the
diffraction reflections observed obey the following reg-
ularities: among the H0, K0, and L0 reflections, there
occur only the reflections with K0 + L0 = 2n; among the
0K0L0 reflections, only the reflections with K0 = 2n and
L0 = 2n; among the H0K00 reflections, only the reflec-
tions with K0 = 2n; and for two observed reflections of
the 0K00 type, only the reflections with K0 = 4n. These
regularities correspond to the space symmetry groups

with the base-centered orthorhombic cells  =

Abm2,  = Aba2,  = Abam, and  = Abmm,
which are indistinguishable in absences. The prelimi-
nary analysis of the intensities of x-ray diffraction
reflections and the absence of clearly pronounced indi-
cations of the piezoelectric and pyroelectric effects at

room temperature indicates that the  and  cen-
trosymmetric groups are more probable.

The diffractometric investigations of the CdTiO3

crystal revealed that the intensities of superstructure

reflections of the  type increase with an increase in
H0 (from 1 to 7) and, at the large vectors H of the recip-
rocal lattice, are of the same order of magnitude as the
intensities of the main (perovskite) reflections. This
suggests considerable antiparallel displacements of
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22
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atoms along the y axis of the perovskite cell (i.e., along
the X0 axis of the superstructure cell).

In order to verify the hypothesis concerning the
influence of radiation-induced defects on the structural

Variations in the intensities of x-ray diffraction reflections for
the CdTiO3 crystal under α- and γ-irradiation

Perovskite reflections Superstructure reflections

H0K0L0 H0K0L0 I0 Ir

2 2 2 420 350 1 2 2 30 170
4 2 2 40 40 3 2 2 16 20
6 2 2 1060 1040 5 2 2 40 40
8 2 2 230 160 7 2 2 88 88
2 4 4 50 40 1 4 4 280 280
4 4 4 50 40 3 4 4 18 15
2 6 6 400 380 5 4 4 45 44
4 6 6 90 90 7 4 4 43 97
2 8 8 10 10 1 6 6 345 320
0 2 2 390 380 3 6 6 217 240
0 4 4 1950 1150 5 6 6 185 185
0 6 6 240 80 1 8 8 540 520
0 8 8 750 90
2 0 0 770 500
4 0 0 2530 2160
6 0 0 620 500
8 0 0 1490 1320

Note:  and Ir are the counting rates (s–1) prior to and after the

irradiation, respectively.

I0
* Ir

*

I0
*

0
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Fig. 3. Temperature dependences of the permittivity for the CdTiO3 crystal (a) prior to and (b) after γ-irradiation. Frequencies
f  (kHz): (1) 0.1, (2) 0.2, (3) 0.4, (4) 0.8, (5) 1, (6) 2, (7) 4, (8) 10, and (9) 20.
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state of CdTiO3 crystals, we investigated how the crys-
tal structure is affected by small dozes of α- and γ-radi-
ation (~1013 cm–2) from a 239Pu source. The results
obtained are listed in the table.

It is worth noting that a decrease in the intensity of
the perovskite diffraction reflections due to irradiation
is accompanied by both an increase and a decrease in
the intensity of a number of superstructure reflections.
This allows us to assume that even a small amount of
radiation-induced defects in the CdTiO3 crystal brings
about an increase in the antiparallel displacements of
atoms (primarily, the Cd atoms [1]). The irradiation
results in an increase in the perovskite unit cell param-
eters: ap = 3.7774(3) Å and bp = 3.8011(3) Å prior to the
irradiation and ap = 3.7809(3) Å and bp = 3.8035(3) Å
after the irradiation. Details of structural investigations
will be described in a separate paper.

4. DIELECTRIC INVESTIGATIONS
Figure 3 demonstrates the results of dielectric mea-

surements performed with the CdTiO3 single crystal of
perovskite modification. Noteworthy are the following
features in the temperature–frequency dependences of
the permittivity ε for the CdTiO3 crystal prior to and
after γ-irradiation on a B-25/30 betatron (Eγ = 23 MeV;
dose, ~103R).

First, these two states of the crystal are character-
ized by a strong dependence of the permittivity ε on the
frequency of measuring electric fields, specifically in
the frequency range from 100 Hz to 1 kHz. The permit-
tivities ε appear to be sufficiently large and can reach
20000 in the temperature range 200–300°C.

At the same time, no sharp maxima of the permittiv-
ity ε are observed in the given temperature range. The
permittivity exhibits weak maxima at a temperature of
approximately 280°C only upon heating of the crystal.
It is quite probable that these anomalies are explained
by the presence of defects (charged particle traps) with
appreciable relaxation times in the structure.

Second, at relatively low frequencies, the tempera-
ture dependences of the permittivity ε upon cooling
after the heating are shifted toward the high-tempera-
ture range for the unirradiated CdTiO3 crystal and
toward the low-temperature range for the irradiated
CdTiO3 crystal. It can be assumed that, in the former
case, the growth defects of the crystal are annealed at
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
high temperatures. In the latter case, in addition to the
structural changes, the γ-irradiation generates defects
of another type, which are responsible for the features
observed in the ε(T) dependences. The elucidation of
the origin of strong low-frequency dispersion is a sepa-
rate problem that calls for further investigations.
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Abstract—The anomalies of polarization (mismatch of hysteresis loops for several first repolarization cycles,
the absence of specific coercive field, etc.) in quasi-static and dc electric fields have been found in the strontium
barium niobate relaxor ferroelectric. The anomalies are associated with a highly inhomogeneous structure of
the crystal, which is considered a clearly defined nonergodic system with a random distribution of strong local
internal fields. The energy distributions of potential barriers for the polarization and the depolarization are
obtained at different electric field strengths and temperatures. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Crystals with a perovskite structure and inhomoge-
neous composition were the first materials termed the
relaxor ferroelectrics [1]. More recently, other com-
pounds with a tungsten bronze structure, in particular, the
SrxBa1 – xNb2O6(SBN) solid solutions (0.75 ≥ x ≥ 0.25),
were assigned to this class of materials [2]. The relaxor
ferroelectrics are promising materials for the use in
piezoelectric technology, nonlinear optics, and holog-
raphy [3, 4]. The physical properties of these com-
pounds are characterized by a number of features. The
anomalies of properties due to the transition of stron-
tium barium niobate from the nonpolar phase (point
group D4d [5]) to the polar phase (point group C4v [2])
are substantially smeared in temperature. For example,
the permittivity ε in a weak electric field exhibits a
broad maximum at a specific temperature Tm. In the
range of Tm, the characteristic dispersions of ε and
dielectric loss are observed in the low-frequency range.
Narrow, “extended” dielectric hysteresis loops occur
over a wide range of temperatures below and above the
Tm point and slowly degrade on heating [6, 7]. An
increase in the Sr concentration [2] and doping of stron-
tium barium niobate by rare-earth elements [3, 8] bring
about a drastic decrease in Tm, and the characteristic
properties of relaxors become more pronounced.

The smearing of the phase transition and the fea-
tures of physical properties stem from the structural
disordering and composition fluctuations [1, 2, 7],
which induce local symmetry distortions and internal
electric fields over a wide temperature range, including
the Tm point. For strontium barium niobate, this disor-
der is associated with the disordering of strontium ions
over two cation sites. As a result, the crystal can be con-
sidered a nonpolar matrix with randomly embedded
inclusions of small spontaneously polarized regions
(nanodomains) [7].
1063-7834/00/4207- $20.00 © 1334
As a rule, the dielectric properties of relaxors have
been investigated in ac electric fields [1, 2, 7]. In the
present work, we studied the polarization of strontium
barium niobate in slowly varying (quasi-static) and dc
electric fields, which made it possible to take into
account the contribution of the longest-lived relaxation
centers whose low-frequency boundary of polarizabil-
ity dispersion is as low as 10–5 Hz.

2. EXPERIMENTAL TECHNIQUE

The SrxBa1 – xNb2O6crystals (x = 0.61) containing
rare-earth elements were grown by the Czochralski
method at the Research Center for Laser Materials and
Technology, Institute of General Physics, Russian
Academy of Sciences. The SrxBa1 – xNb2O6 composi-
tion with x = 0.61 is congruent and possesses the best
optical quality [9]. The polarization was investigated
using the SrxBa1 – xNb2O6single crystal (x = 0.61)
doped with 1 wt % La and 0.01 wt % Ce in the melt
(0.44 mol % La and 0.023 mol % Ce in the crystal
[10]). Cerium was introduced in small amounts in order
to perform the investigations of photorefractive effects
in this crystal as the most promising material for
dynamic holography [4]. The crystal has the lowest
temperature Tm. Therefore, the anomalous behavior
expected for polarization near Tm is more conveniently
examined by the precision electrometry whose applica-
tion requires the relatively large electrical resistance R of
the sample, which decreases with an increase in the tem-
perature. According to our estimates, R ~ 9.8 × 1012 Ω at
0°C and ~22 × 1012 Ω at 20°C. Figure 1 depicts the
temperature dependences of the permittivity ε33 for the
studied and undoped strontium barium niobate crystals
(x = 0.61) at a measuring field of ~ 0.5 V/cm. It can be
seen that the doping leads to an considerable shift in Tm,
smearing of the maximum of ε33, and dispersion of ε33.
2000 MAIK “Nauka/Interperiodica”
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The polarization P was measured under the follow-
ing conditions of changing the external electric field E
and temperature T: (i) a slow stepwise change in T at
E = 0 or E ≠ 0 in measurements of the pyroelectric
effect, (ii) a slow stepwise cyclic change in E with a
period of ~1 h at different temperatures T = const in
measurements of the hysteresis loops, and (iii) instan-
taneous application or removal of dc electric field E at
T = const in measurements of the polarization relax-
ation. Prior to each measurement, the sample was
heated above the Tm temperature and then was cooled to
a specific temperature.

The main element of a setup involved an equal-arm
bridge with a V7-29 electrometer as a null indicator.
The minimum measured voltage was equal to 20 µV,
and the minimum charge was 4 × 10–6 µC. The voltage
in a diagonally opposite pair of junctions of the bridge
was compensated with a step of 0.15 mV by a program-
simulated method on a personal computer and periph-
eral controlled blocks. The relaxation measurements
were carried out in the real time mode. The setup and
its operation were described in detail in [11]. In order
to measure the hysteresis loops, the setup was addition-
ally equipped with a B5-50 controlled voltage source
(0–300 V) with the variable output polarity and a pro-
gram-driven unit. This made it possible to sequentially
measure several repolarization cycles with a voltage
step multiple of 1 V and a time step multiple of 1 s. The
maximum number of steps was equal to 1200. The volt-
age step, its duration, and the maximum voltage could
be changed in the course of measurements. The electric
field polarity for the initial part of the hysteresis loop
was specified prior to measurements.

For measurements of the pyroelectric effect, the
setup was equipped with an Shch-300 voltmeter for
measuring the voltage across a differential thermocou-
ple (melting ice—sample holder) and also with a pro-
gram-driven unit providing the processing of tempera-
ture data. The temperature was calculated in the pro-
gram-driven unit with the use of the polynomial of
degree 4.

The ground sample of the polar section had the
shape of a rectangular plate 4 × 4 × 0.7 mm in size. The
large faces of the plate were coated with a conducting
silver paste. The error in the regulation of thermostat
temperature was equal to ~0.03 K.

3. RESULTS AND DISCUSSION

In any crystal, a change in the polarization with a
variation in the temperature in the absence of the exter-
nal electric field E (pyroelectric effect) first of all indi-
cates the spontaneous polarization Ps and, in the case of
inhomogeneous structure, the nonequality of the vol-
umes of regions with mutually opposite directions of Ps
(unipolarity). The variation in the polarization ∆P upon
cooling and heating of the strontium barium niobate
sample in the temperature range below Tm at E = 0 and
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
E ≠ 0 is displayed in Fig. 2. The directions of the field
E and the initial polarization P0 coincide. The time of
cooling from point A to point B or heating from point B
to point A is equal to ~160 min. The temperature hys-
teresis suggests the presence of long-lived metastable
states in the crystal. As a result, after the cycle of cool-
ing and subsequent heating, the polarization exceeds its
initial value. Upon cooling to a higher intermediate
temperature (point C), the temperature hysteresis
decreases, and, upon heating, the curve ∆P(T) runs
below.

20
T, °C

40 60 80 100

6

8
ε33, 103

1

2

3

4

20

30

10

0

ε33, 103

270 280 290 300 310

–6

–8

∆P, µC/cm2

1

2
B

A

C

320
T, K

–4

–2

Fig. 1. Temperature dependences of the permittivity ε33 for
the (1–3) doped and (4) undoped strontium barium niobate
crystals. Frequency, kHz: (1) 0.1, (2) 1, and (3) 20.

Fig. 2. Variation in the polarization ∆P upon cooling and
heating of the strontium barium niobate crystal. Field
strength E, V/cm: (1) 0 and (2) 300.
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P

5

The dielectric hysteresis loops P versus E exhibit a
specific shape. Figure 3 demonstrates the loops in the
cases when, in the first quarter of the period, the direc-
tions of the polarization P induced by the field E and
the initial nonzero spontaneous polarization P0 are
opposite (Fig. 3a) and identical (Figs. 3b–3d) at three
temperatures: 274 (Figs. 3a, 3b), 250 (Fig. 3c), and
236 K (Fig. 3d). The onset of the repolarization process
is marked by filled squares, and the limiting values of P
that correspond to the maximum fields E are designated
by filled circles and numerals in the temporal order.

Unlike the hysteresis loops of standard homoge-
neous ferroelectrics, all the loops under consideration
are characterized by the common feature—the mis-
match of the P trajectories for the preceding and suc-
ceeding cycles of variation in E. This effect is espe-
P

cially pronounced for the first cycle of variation in E
when the polarizations P at the beginning and at the end
of the period differ considerably. After many times
repeated cycles, the P trajectories virtually follow each
other (merge together), the loops take the usual form,
and the loop amplitude of variation in P becomes con-
siderably lesser as compared to that for the first cycle.
The loops are shifted along the P axis; i.e., the sample
has the initial polarization P0 ≠ 0 (unipolarity), whose
direction (sign) coincides with the direction of P0
observed in measurements of the pyroelectric effect
(Fig. 2). As the amplitude of E decreases, the loop does
not change its shape and remains alike but with a
smaller amplitude of variation in P (hatched region in
Fig. 3). A decrease in the temperature leads to an
HYSICS OF THE SOLID STATE      Vol. 42      No. 7      2000
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Parameters of the relaxation and distribution functions g(τ) for strontium barium niobate crystal

Process T, K E, V/cm P0, µC/cm2 Pe , µC/cm2 a, min n τm , min S

300 4.69 4.5 ± 0.016 3.724 ± 0.012 0.045 ± 0.001 82.2 ± 0.3 0.14

274 400 0.98 6.97 ± 0.019 4.35 ± 0.013 0.038 ± 0.001 114.5 ± 0.4 0.11

600 2.69 8.41 ± 0.013 4.799 ± 0.007 0.058 ± 0.001 82.74 ± 0.2 0.16

Polarization 274* 400 6.809 7.09 ± 0.065 11.75 ± 0.11 0.0149 ± 0.0001 788 ± 10 0.03

274 1.0767 2.18 ± 0.01 3.942 ± 0.011 0.061 ± 0.001 64.7 ± 0.2 0.18

288 500 2.3486 1.97 ± 0.008 1.207 ± 0.006 0.081 ± 0.001 14.8 ± 0.09 0.29

293 1.7522 .522 ± 0.005 0.679 ± 0.01 0.201 ± 0.001 3.38 ± 0.06 0.56

500 1.75 .217 ± 0.003 0.82 ± 0.06 0.273 ± 0.004 2.98 ± 0.26 0.65

Depolarization 274 650 2.77 .874 ± 0.004 0.38 ± 0.02 0.157 ± 0.001 2.40 ± 0.14 0.47

800 4.328 .866 ± 0.006 0.094 ± 0.004 0.081 ± 0.001 1.16 ± 0.06 0.29

Note: The temperature was stabilized after cooling or heating (*) of the crystal.
increase in the unipolarity (polarization P0) and a
decrease in the amplitude of variation in P (Figs. 3c, 3d).

The features of the dielectric properties confirm the
proposed concepts of relaxor structure [1, 2, 7]. The
disordered distribution of Sr ions in the lattice results in
the gradient of their concentration, a local lowering of
symmetry, the internal electric field, and, as a conse-
quence, the asymmetric dependence of the local free
energy F on the polarization P with two minima (see
inset in Fig. 3) [7]. The depths of minima FA and FB (at
points A and B in the inset) are randomly distributed
over the bulk of the crystal. Since the mutually opposite
directions of equilibrium P are equiprobable, there
should occur the regions in which either the inequality
FA < FB or the inequality FA > FB is met. In general, the
volumes of these regions are not equal, and, hence, in
the absence of the electric field E, the nonzero, summa-
rized (over the sample) polarization and the pyroelec-
tric effect (Fig. 2) can be observed even under equilib-
rium conditions.

The probability of the slow thermally activated,
local repolarization from a metastable state to a stable
state is determined by the barrier height (the value of FA
or FB). The external field E of a certain orientation and
magnitude decreases the barrier heights and accelerates
the repolarization. If the barrier in the field E disappears
(for example, FA = 0), the avalanche-like (over-the-bar-
rier) transition to the state with FB < 0 takes place. The
hysteresis loops in Fig. 3 indicate that, in the strontium
barium niobate relaxor, there are the regions with a con-
siderable asymmetry of F(P) (FA @ FB or FA ! FB),
which is retained in the electric fields applied. As a
result, the first cycle of the field variation changes many
crystal regions to the equilibrium states that correspond
to deep minima of F(P) and, in actual fact, prevents
their further participation in the repolarization. There-
fore, upon subsequent cycles, the volume of repolar-
ized regions and the amplitude of variation in P
decrease substantially. The difference in the polariza-
P

tions P at the beginning and at the end of the first cycle
gives an estimate of the unipolarity observed in the
crystal even prior to the application of the field. As the
temperature decreases, all the barrier heights increase,
and the features of hysteresis loops become less pro-
nounced.

More detailed data on the structure of potential bar-
riers in the relaxor were obtained in the investigation
into the kinetics of polarization and depolarization
upon instantaneous application and removal of the dc
electric field E. The main results of this study are given
below. With an abrupt change in the field of any magni-
tude (smaller and larger than the half-width of the hys-
teresis loop), the polarization P always changes, first,
jumpwise (over-the-barrier process) and, then, slowly
through the mechanism of thermal activation. The slow
change in the polarization P with time t in the course of
both polarization and the depolarization follows the
empirical power law

(1)

where P0 is the initial polarization at t = 0 (P0 is the sum
of polarizations arisen from the unipolarity and the
jump observed upon abrupt change in the field E); Pe is
the equilibrium polarization; and a, n, and Pe are the
parameters dependent on T and E.

Under the assumption that relaxation centers
(microdomains) are independent, their contribution to
the polarization can be treated as additive. In this case,
the dimensionless polarization can be written as

Here, f (τ) is the normalized distribution function of

relaxation times τ, dτ = 1, related to p(t) by the

Laplace transform. The distribution has the form f (τ) =

p t( ) Pe P t( )–( )/ Pe P0–( ) 1/ 1 t/a+( )n
,= =

p t( ) f τ( ) t/τ–( )exp τ .d

0

∞

∫=

f τ( )
0

∞∫
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{an/Γ(n)}(1/τ)n + 1exp(–a/τ), where Γ(n) is the gamma
function. Generally, it is more convenient to use the
dimensionless function

(2)

which characterizes the density of distribution lnτ for
the sample or the distribution of the barrier energies U
related to lnτ by the Arrhenius law ln(τ/τ0) = U/kT
(where τ0 is the kinetic coefficient). The function g(τ)
has a maximum at τm = a/n [12].

The experimental data on P(t) were approximated
with the power function (1) by the least-squares method
according to the standard program with three free
parameters Pe, a, and n. In Fig. 4, the experimental data
are depicted by different symbols, and the results of
calculations are displayed by the solids lines. The hori-
zontal dashed lines represent the equilibrium values Pe
or Pe – P0, to which the measured quantities asymptot-
ically approach. The insets in Figs. 4a and 4f show the
initial portions of the time dependences of P upon
abrupt switching of the field E, which precedes the slow
thermally activated relaxation. The jumps of P that cor-
respond to over-the-barrier processes are seen in the
figures. The curves of the distribution function g(τ)
defined by formula (2) contain the points at which τ is
equal to the maximum time tmax of measurements. It is
evident that the fraction of processes directly observed
in the experiment is insignificant; it is equal to the area
S under the curve g(τ) in the range between the short
time τ = τ0 and tmax. Hence, the other portions of the
curves of distribution functions g(τ) were obtained by
the extrapolation of the experimental data to the large
relaxation times τ. The relaxation parameters Pe, a, n,
and τm and the areas S for all the studied cases are listed
in the table. The errors (dependent on the duration of
measurements) in determination of the parameters
were evaluated in the same fashion as in [12].

Let us now consider the main features of the distri-
bution spectra of potential barriers for the relaxation
centers in the strontium barium niobate crystal. For the
fields of no more than the half-width of the hysteresis
loop, the spectra remain virtually unchanged. However,
an increase in E leads to an increase in the equilibrium
polarization Pe (Fig. 4b). At the same time, in the case
of stabilizing a given temperature after the heating
(rather than cooling) of the sample, the changes in the
distribution spectra are noticeable: the relaxation rate
dP/dt decreases, because the processes of switching
over higher barriers are involved in the relaxation
(Figs. 4a, 4b, curves 4). An increase in the sample tem-
perature brings about a decrease in the relaxation rate
dP/dt and the equilibrium polarization Pe (Fig. 4c).
Nonetheless, the processes characterized by lower bar-
riers begin to predominantly contribute to the distribu-
tion (Fig. 4d). At the early stage, the depolarization
occurs at a relatively high rate (see table and Fig. 4f).
However, the stronger the field E of the preliminary
polarization of the crystal, the larger the equilibrium

g τ( ) τ f τ( ) 1/Γ n( )( ) a/τ( )n a/τ–( ),exp= =
PHYSICS OF THE SOLID STATE      Vol. 42      No. 7      200
polarization Pe and the more the broadening of the dis-
tribution, which is predominantly contributed by the
giant relaxation times τ and high barriers (see table and
Figs. 4f, 4g). This means that the crystal virtually never
approaches its equilibrium state at the large value of Pe.

The above findings on the polarization relaxation
and the features of hysteresis loops for strontium bar-
ium niobate are in agreement with the concepts of local
lowering of symmetry, internal electric field, and asym-
metric dependence of the free energy F with two min-
ima (Fig. 3, inset) [7]. The ratio between the depths of
minima varies over the bulk of the crystal in a wide
range. Upon cooling to the given temperature, one part
of the crystal appears to be in the stable state with a
deep minimum, whereas the other part occurs in the
metastable state with a shallow minimum of F. Upon
application of the external field E, some regions
undergo over-the-barrier (or thermally activated) tran-
sition to stable states (the probability of the transition
from these states is virtually equal to zero), and the
other regions, to metastable states, which, in turn, trans-
form to the stable states upon removal of the field (upon
depolarization). An increase in the field E and its subse-
quent removal lead to an increase in the number of these
long-lived states (crystal memory) and the mean (over
the sample) equilibrium polarization (Figs. 4a, 4f). The
form of the energy distribution of barriers and their
quantitative estimates upon polarization in fields E with
different strengths and upon depolarization can be
obtained within the above phenomenological approach
to the kinetics of these processes (see table and Fig. 4).
Certainly, the metastable state of the crystal, as a whole,
changes and virtually regains its initial form upon
repeat heating (annealing) and subsequent cooling of
the crystal, as evidenced by the decrease in the barrier
height with an increase in the temperature (Fig. 4d) and
also a satisfactory reproducibility of the data on the
pyroelectric effect.

First and foremost, the results obtained in the inves-
tigation into the polarization of strontium barium nio-
bate crystal indicate that this crystal and, most likely,
other relaxors over a wide range of temperatures are not
ferroelectrics in the strict sense, because they exhibit
neither particular coercive field Ec nor typical macro-
scopic domain structure. The features of polarization
and inhomogeneous macroscopic structure of relaxors
provide an example of anomalous properties of a
clearly defined nonergodic system whose space of all
possible states consists of nonoverlapping subspaces
with the volume ratio dependent on the electric field. In
this respect, it is of particular interest to investigate the
polarization of relaxors in strong electric fields.
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Abstract—The electron paramagnetic resonance (EPR) and dielectric properties of Pb5Ge3O11 crystals acti-
vated by copper ion are investigated. It is shown that Cu2+ ions replace Pb2+ in trigonal symmetry positions and
occupy three off-center positions displaced from a crystal lattice site in a plane perpendicular to the polar axis
C. The temperature variation of EPR spectra and dielectric properties indicates the presence of thermally acti-
vated jumps of Cu2+ ions between off-center positions. The EPR and dielectric data are used to determine the

activation energy W = 0.24 eV and the eigenfrequency  ~ 1012 Hz of local dynamics of Cu2+ ions. © 2000
MAIK “Nauka/Interperiodica”.

τ0
1–
It is well known that the influence of defects is most
strongly manifested for crystalline systems undergoing
structural phase transitions [1]. Among the various
types of defects, off-center impurity ions whose posi-
tion is displaced from crystal lattice sites have garnered
considerable attention [2, 3]. Impurity ions can jump
between structurally equivalent off-center positions.
The frequencies of such jumps are considerably lower
than the eigenfrequencies of lattice vibrations and often
lie in the working range of radiospectroscopy. There-
fore, radiospectroscopic methods are most effective for
studying such system, since they make it possible to
study static and dynamic phenomena associated with
off-center positions of impurity ions to a high degree of
accuracy owing to the local nature of magnetic reso-
nance [3].

The off-center position of copper impurity ions in
the structure of lead germanate was reported earlier by
Vazhenin et al. [4]. The crystal of Pb5Ge3O11 is well
known as a model uniaxial ferroelectric undergoing a
transition from the paraelectric (space symmetry group

) to the polar phase (  group) at TC = 451 K [5, 6].
The present work is devoted to the study of EPR and
dielectric properties of Pb5Ge3O11 : Cu (0.2, 0.5 wt %)
crystals. The experimental single crystals grown by the
Czochralski method have the shape of hexagonal prisms
having a diameter of ~1 and a length of up to 10 cm. The
crystals are transparent and are characterized by a high
optical quality and green tint, the intensity of which
increases with the impurity concentration. The EPR
spectra were recorded in the X range with the help of a
commercial radiospectrometer. We used samples in the
form of 3 × 3 × 3 mm parallelepipeds with the faces
perpendicular to the crystal axes. The dielectric proper-

C3h
1 C3

1

1063-7834/00/4207- $20.00 © 21341
ties were measured by the bridge technique. In this
case, the samples were cut in the form of plane-parallel
plates of a thickness ~0.3 mm, on which platinum elec-
trodes were subsequently deposited by the vacuum
sputtering method.

1. ANGULAR AND TEMPERATURE 
DEPENDENCES OF EPR SPECTRA FOR CU2+

The recorded spectrum was typical of Cu2+ ions in
the ground state 2D5/2 (S = 1/2, I = 3/2). The orienta-
tional dependences of the positions of resonance lines
measured at T = 287 K are shown in Fig. 1. The rotation
of the magnetic field B in the crystallographic planes of
orthogonal orientation leads to the emergence of three
hyperfine quartets having identical angular depen-
dences and turned through an angle π/3 about the trig-
onal axis C3 || c relative to one another. The spectra
were described by using the spin Hamiltonian (SH),
taking into account the electron Zeeman and hyperfine
interactions:

(1)

While choosing magnetic axes corresponding to ulti-
mate orientations of the field B, the principal axis Z
was taken along the direction in which the g-factor and
the hyperfine splitting have the largest values. For the
three hyperfine quartets observed by us, the axes Zi (i =
1, 2, 3 enumerate the magnetically nonequivalent cen-
ters) lie in the crystallographic plane (ab) and are
turned through an angle 2π/3 relative to one another in
view of the central symmetry of the magnetic spectra.
In the chosen orientation, the axes Xi line in the (ab)
plane perpendicular to the corresponding Zi, while Yi

* βBg= S SAI.+
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Angular dependences of the spectra of Cu2+ in Pb5Ge3O11 for the magnetic field B rotating in crystallographic planes (T =
287 K). Circles, rhombi, and triangles correspond to positions of the components of three hyperfine quartets; solid curves are calcu-
lated on the basis of relations (1) and (2).
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Fig. 2. Temperature variation of the EPR spectra of Cu2+:
(a) below ~320 K, the LT spectrum is observed in the form

of three hyperfine quartets with centers at ; (b) above
~350 K, the spectrum consists of a broad HT line [its inten-
sity is magnified 51 times as compared to the LT spectrum
in (a)]. B || Z (∠ Bb = 4°, B ⊥  c).

BC
i( )
P

are identical and parallel to c. The principal values of
the tensors g and A (in the magnetic field units A/gβ)
are defined as

(2)

For B || X, Y, the hyperfine splitting becomes indistin-
guishable from the intrinsic width of the individual
components. Hence, formula (2) contains the upper
limits of the values of AX, AY obtained by taking into
account the intrinsic width of the individual lines δB ~
2 mT and the number of components in the hyperfine
structure. The theoretical angular dependences
obtained by using formulas (1) and (2) are shown by
solid curves in Fig. 1.

The exact measurement of the positions of hyperfine
lines shows that the components of quartets are not
equidistant. The difference in the intervals can be
described in the second order of the perturbation theory
taking into account the off-diagonal matrix elements of
hyperfine interaction and including the nuclear electric
quadrupole interaction IPI [7] in the SH (1). According
to the estimate we obtained, the contributions of the
second-order effects are ~0.5% of the diagonal terms of
the hyperfine interaction, and the orientation depen-
dence of spectra (Fig. 1) can be described quite accu-
rately by calculations to the first order of the perturba-

gZ 2.410, gX 2.066, gY 2.069;= = =

AZ 10.85 mT;=

AX AY 0.5 mT; Zb∠≤≈ 4°, Y c.||=
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tion theory. The anisotropy and multiplicity (kM = 3) of
hyperfine quartets indicate a structural equivalence and
a common position (C1) of the paramagnetic centers in
the unit cell of the ferroelectric phase of lead germanate
[6, 8].

The Cu2+ spectra were measured in the temperature
range 200–400 K. Below ~260 K, doubling of hyper-
fine components (Fig. 2a) is observed, which is due to
the presence of 63Cu and 65Cu isotopes. For this reason,
the SH parameters (2) should be regarded as the quan-
tities averaged for the two isotopes. As the temperature
increases, the low-temperature (LT) triclinic spectral
lines are broadened (Fig. 3), and the hyperfine quartets
of three magnetically nonequivalent centers become
indistinguishable for T > 320 K. Above ~350 K, the
high-temperature (HT) spectrum consisting of a single
broad line (Fig. 2b) with an unresolved hyperfine struc-
ture is formed. The position and width of the HT line
are characterized by an axial anisotropy. The values of
the g-factor are given by

(3)

the magnetic axis being directed along c. The unit mul-
tiplicity (kM = 1) and the preferred direction of the ZTA

are features of the trigonal (C3) position symmetry of
active centers [6, 8]. The transformation of LT spectra
into the HT line is observed most clearly for the mag-
netic field B oriented in the (ab) plane. For B || c, hyper-
fine LT quartets merge into a single narrow line (see
Fig. 1) which does not change significantly in the entire
temperature range under investigation. The parameters
obtained for the LT and HT spectra agree with the
results obtained by Vazhenin et al. [4].

The averaging of three low-symmetry spectra into a
single trigonal spectrum demonstrates the presence of
dynamic transitions of copper centers between three
equivalent states with a temperature dependent fre-
quency [9, 10]. The triclinic hyperfine quartets can be
measured up to ~320 K. As the temperature increases
above ~350 K, the HT spectrum acquires a quite defi-
nite shape, and the parameters of a solitary line can now
be measured approximately. The temperature depen-
dences of the width and position of LT and HT spectral
lines are presented in Figs. 4a and 4b for the magnetic
field orientation B || Z (∠ Bb = 4°, B ⊥  c). In the tem-
perature range 320–350 K, the determination of spec-
tral parameters is hampered by the superposition of
broadened hyperfine components of LT spectra and the
HT resonant signal.

We can derive analytic expressions for the width and
position of resonance lines depending on the relation
between the transition rate and the magnitude of fre-
quency splitting between low-symmetry spectra [9,
10]. At low temperatures, the slow-motion approxima-
tion is valid, in which the broadening of the LT spectral
components is uniform and inversely proportional to
the mean lifetime τ' in one of the low-symmetry states.
The simulation of the spectral contour by a convolution

g||
TA 2.07, g⊥

TA 2.19; ZTA c,||≈≈
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of the Lorentzian with the Gaussian has allowed us to
exactly reproduce the experimental spectrum by the
theoretical spectrum and to obtain the temperature
dependence of the homogeneous contribution to the
hyperfine line width of the LT spectrum (Fig. 5a).
Under the assumption of an exponential temperature
dependence τ = τ'/3 = τ0exp(W/kBT) of the mean life-
time in the three low-symmetry positions, the tempera-
ture dependence of the line broadening of the LT spec-
trum was described as

(4)

The fitting of this expression to the experimental data
was carried out in the temperature range 210–300 K.
The values of the parameters appearing in (4) were
δB0 = 0.68, A = 6.9 × 103 mT, and the values of the acti-
vation energy W are given in the table. The theoretical
curve is presented by the solid curve in Fig. 5a. Since
the temperature interval under investigation is quite
broad (~100 K), we must obviously justify the choice
of the background frequency δB0 as a constant quantity.
In our opinion, this is important since, presuming a
considerable broadening due to the spin–lattice interac-
tion, we can interpret the observed deviation of δB(T)
from the exponential dependence as a result of the tem-
perature dependence of the activation energy W(T).
Figure 2b shows the residual spectrum consisting of
low-intensity lines against the background of a broad
HT line. The positions of these lines correspond to the
positions of the LT hyperfine quartets averaged upon
heating. We can assume that the copper centers respon-

δB δB0 A
W

kBT
---------– 

  .exp+=

240 250 B, mT

210.2

221.2

230.9

235.5

244.4

252.7

256.6

264.6

272.5

276.3

284.0

292.0

T, K

Fig. 3. Broadening of the low-field hyperfine line m1 = 3/2
with increasing temperature.
0
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sible for the low-intensity spectrum are in the same
positions, but they do not participate in transitions
between low-symmetry positions in view of a certain
perturbation. In this case, the line width of the residual
spectrum is determined by the same mechanisms of the
spin–lattice interaction, but does not contain the
dynamic contribution associated with transitions, i.e.,
can serve as a measure of δB0. It can be seen from
Fig. 2b that the lines of the residual spectrum do not
show visible broadening: the isotopic splitting is well
resolved even at 400 K. Consequently, disregarding the
temperature dependence of the background width δB0

is justified.

With increasing temperature, the rate τ –1 of transi-
tions between low-symmetry positions increases and
becomes comparable to the frequency analog of the
separation between the centers of hyperfine quartets

∆B = (  – ) ~ ∆ν (Fig. 2a) The spectra corre-BC
2 3,( ) BC

1( )

300

260

BC, mT

(b)

6

2

δB, mT

(a)

10

20

1
2

200 300 400
T, K

Fig. 4. Temperature dependences of (a) the width of the
hyperfine component of the LT spectrum (1) and the HT line
(2); and (b) positions of hyperfine quartets of the LT spec-
trum (1) and HT line (2).
P

sponding to individual positions are displaced towards
one another, their convergence being determined by the

mean lifetime of low-symmetry configurations (∆  –
∆B2(T))1/2 ~ τ –1, where ∆B0 stands for the separation
between hyperfine quartets in the absence of transitions
[9, 10]. The temperature dependence ∆B(T) is shown in
Fig. 5b. As the temperature increases up to ~240 K, the
splitting ∆B increases almost linearly due to the ther-
mal expansion of the crystal lattice. Starting from about
250 K, the separation ∆B rapidly decreases. The exper-
imental dependence of the splitting was described by
the formula

(5)

The temperature drift of the separation between hyperfine
quartets in the absence of transitions was approximated
by the straight line ∆B0 [mT] = 31.05 + 8.9 × 10–4 T

B0
2

∆B ∆B0
2 C

2W
kBT
---------– 

 exp– .=

2

1

δBL, mT
(a)

31.0

30.5

∆B, mT
(b)

300200 T, K

Fig. 5. Temperature dependences (a) of the homogeneous
contribution δBL to the hyperfine line width of the LT spec-
trum and (b) of the separation ∆B between the centers of
hyperfine quartets of the LT spectrum. The circles corre-
spond to experimental results and the solid curves are calcu-
lated by formulas (3) and (4).
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(dashed line in Fig. 5b). The theoretical curve obtained
by fitting (5) to the experimental data corresponding to
the temperature interval 260–320 K is presented by the
solid curve in Fig. 5b. The proportionality factor in (5)
is C = 7 × 109 mT2, and the value of the activation
energy W is given in the table.

Upon further heating under the condition τ ~
1/(2π∆ν), low-symmetry spectra merge into a single
HT signal (see Figs. 2 and 4) [9, 10]. The HT line width
decreases (Fig. 4a) in inverse proportion to the transi-

tion rate (δBTA – δ ) ~ τ. In the temperature range
350–400 K, the HT line has an asymmetric shape (see
Fig. 2b), and its width can be estimated only qualita-
tively. Although the estimate of the activation energy
from the narrowing of the HT line is quite rough, it
agrees with the values obtained from the temperature
variation of the width and position of the lines of LT tri-
clinic spectra to within the experimental error.

2. DIELECTRIC FEATURES INDUCED
BY CU2+ IMPURITY IONS

If the low-symmetry positions are associated with
the emergence of dipole moments, we can expect that
the dielectric properties of Pb5Ge3O11 : Cu2+ are char-
acterized by the presence of additional features of the
temperature and frequency dependence ε(T, ω) [11].
The results of measurements made for E || a in the tem-
perature range 80–300 K are presented in Fig. 6. The
obtained dependences are characterized by a stepwise
increase in the permittivity ε(T) and a peak of the
dielectric loss tangent tanδ(T), which are displaced
towards higher temperatures upon an increase in the
measuring field frequency. These features are anisotro-
pic, since they are observed for directions of the mea-
suring field E lying in the (ab) plane and are not mani-
fested along the polar axis for E || c. In order to find the
parameters of the observed relaxation dynamics, we
describe the experimental dependences by the Debye
dispersion relation

(6)

where the static permittivity varies with temperature
according to the Curie law ε0 = ε∞ + C/T, and the relax-
ation time is described by the Arrhenius law. The activa-
tion energy W and the eigenfrequency , which are
independent in the Debye model, were determined by
the dependences tanδ(T) measured at various frequen-
cies. A comparison of experimental dependences with
the theoretical curves (see Fig. 6) indicates the Debye
nature of peculiarities in ε*(T). The activation energy for
the relaxation process under investigation is presented in
the table, the eigenfrequency is  = 2 × 1012 Hz, and the
Curie constant C = 170 K.

It should be noted that in order to describe the exper-
imental curves correctly, we must take into account two

B0
TA

ε* ε∞
ε0 ε∞–
1 iωτ+
------------------,+=

τ0
1–

τ0
1–
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more relaxation features. These features are manifested
in the dependences in Fig. 6 as a distortion of the high-
temperature wing of the high-intensity peak of tanδ(T)
and a weak peak in the region of ~240 K. The experi-
ments with various directions of the measuring field
proved that the additional peaks of tanδ(T) correspond
to residual contributions of relaxation processes that
are observed mainly along the polar axis c and are char-
acterized by the activation energies of 0.4 and 0.8 eV.
The experiments with pure and doped crystals indicate
that these features can hypothetically be attributed to

Values of activation energy obtained from the temperature
behavior of EPR spectra and from dielectric measurements

Measured characteristics Activation 
energy W (eV)

LT spectral line broadening 0.23 ± 0.01

Displacement of the LT spectral line position 0.26 ± 0.02

Narrowing of HT line 0.16 ± 0.1

Dependence tanδ(T, ω) 0.24 ± 0.02

22

20

ε

100 300
T, K

(a)

100 300

0.03

0

tanδ
1

2

3

(b)

T, K

Fig. 6. Dependences ε(T) (a) and tanδ(T) (b) for the mea-
suring field direction E || a and frequencies f = 1 (1), 4 (2),
and 15 kHz (3). The circles correspond to experimental
results and solid curves are the results of calculations.
0
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associated dipole complexes on the basis of OH–

groups [12, 13].
The anisotropy of EPR spectra and dielectric prop-

erties, as well as a comparison of activation energies
(see the table), confirm that the relaxation features of ε
and tanδ in the (ab) plane (see Fig. 6) are determined
by the local dynamics of Cu2+ centers. The existence of
a dielectric response indicates that low-symmetry dis-
tortions of copper complexes are associated with the
emergence of local dipole moments.

3. DISCUSSION OF RESULTS 
AND MAIN CONCLUSIONS

The temperature averaging of triclinic LT EPR spec-
tra demonstrates the existence of dynamic transitions of
active centers between three positions. The probability
of jumps of active centers between structurally equiva-
lent low-symmetry (C1) lattice sites is apparently very
low. Consequently, the trigonal HT spectrum carries
information on the symmetry of positions of the ions
being replaced. Six structurally inequivalent lead ions
(Pb2A, Pb2B, Pb3A, Pb3B, Pb4, and Pb5) are arranged
at the trigonal symmetry sites in the cation subsystem
of the unit cell of the ferroelectric phase of Pb5Ge3O11.
According to the notation adopted in [6], indices A and
B define the positions associated with the pseudoplane
of specular reflection and become equivalent in the
paraelectric phase. Consequently, the substitution of

1010

106

τ–1, Hz

2 4 6 103/T, K–1

1
2
3
4

Fig. 7. Rate τ–1 of the jumps of Cu2+ ions between off-cen-
ter positions as a function of 1/T, obtained from the temper-
ature dependence of uniform broadening of hyperfine lines
of the LT spectrum (1), separation between the centers of
hyperfine LT quartets (2), narrowing of the HT line (3), and
the dielectric loss tangent (4). The solid line is obtained with
the help of the parameters described in the text.
P

copper for Pb2 and Pb3 ions must be equiprobable for
A and B positions. In this case, two structurally equiv-
alent spectra (corresponding to A and B) should be
observed, which contradicts the experimental results.
Therefore, we can speak of the substitution of Cu2+ cen-
ters for lead ions in positions Pb4 or Pb5 located in tri-
hedral prisms formed by oxygen ions [6]. A compari-
son of the directions of magnetic axes of the triclinic
spectra with lead–oxygen bonds suggests the substitu-
tion of copper centers for ions in Pb5 positions.

The anisotropy of LT spectra indicates the presence
of triclinic distortions of the coordination complex of
active centers. The nearest neighbors of Pb2+ at trigonal
sites are determined by O–2 ions constituting quite rigid
germanium–oxygen tetrahedrons [6], which form the
structural skeleton of a whole range of germanium
oxide compounds. For this reason, the deformation of
oxygen surroundings of Cu2+ centers is hardly proba-
ble. On account of the isovalence of the substitution of
Cu2+ ions for Pb2+, the possible presence of a mobile
defect in the neighborhood of all active centers is not
associated with its charge state and is also doubtful. We
can assume that copper ions occupy three off-center
positions displaced from a trigonal site in a plane per-
pendicular to the c axis with equal probability. This
assumption agrees with the dielectric response of local
dipoles induced by impurity centers, which was
detected in the (ab) plane. A noticeable difference in
the ionic radii of the ion being substituted and the sub-
stituting ions (  = 1.32 Å and  = 0.70 Å) also

confirms the off-center arrangement of Cu2+ ions in
Pb2+ positions. The reason behind the off-center posi-
tion in the structure is apparently associated with the
crystal field symmetry and quasi-degeneracy of the
orbital states of Cu2+ and is a consequence of the Jahn–
Teller pseudoeffect.

The results of EPR and dielectric measurements
make it possible to obtain the temperature dependence
of the rates of jumps between off-center positions. In
Fig. 7, the rate τ–1 is plotted in semilogarithmic coordi-
nates as a function of the reciprocal temperature. While

processing the EPR data, we used the parameter 
determined from the dielectric measurements. Taking
into account the spread in the obtained parameters, we
find that the equality of the jump rate and the frequency
splitting τ–1 ~ ∆ν ≈ 979 MHz between hyperfine quar-
tets of the LT spectra is observed in the temperature
range 330–360 K. Consequently, the eigenfrequency

 ~ 1012 Hz determined from the dielectric data
agrees in the order of magnitude with radiospectro-
scopic results and makes it possible to explain the tem-
perature behavior and the qualitative transformation of
EPR spectra.

In the temperature range under investigation, the
experimental data indicate an exponential temperature
dependence of the jump rate (see Fig. 7). As a rule, such

r
Pb2+ r

Cu2+

τ0
1–

τ0
1–
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behavior presumes that the jumps occur above the bar-
riers. At the same time, the exponential temperature
dependence is also possible in the case of tunneling
between potential wells from excited vibrational states
[3]. In the latter case, the exponent indicates the split-
ting between the ground and excited vibrational levels,
and the preexponential factor is determined by the fre-
quency of tunneling. The values of the activation

energy W/kB ≈ 3000 K and the eigenfrequency  ~
1012 Hz indicate that the jumps of Cu2+ ions between
off-center positions can be regarded as a classical
above-the-barrier process. This conclusion is con-
firmed by the results of calculating the Debye tempera-
ture from the thermal and elastic properties of lead ger-
manate (ΘD = 210–220 K), which corresponds to lattice
frequencies ~4 × 1012 Hz [14].

Summarizing what has been said above, we con-
clude that an analysis of the EPR and dielectric proper-
ties of Pb5Ge3O11: Cu2+ crystals demonstrates the off-
center position of copper ions. The temperature depen-
dence of the probability of jumps between off-center
positions leads to the transformation of the EPR spectra
and to the emergence of typical features in dielectric
properties. The results of measurements of local spec-
tral and macroscopic dielectric characteristics agree to
a high level of accuracy, thus confirming the reliability
of the obtained parameters of the local dynamics of
copper centers.
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Abstract—The phonon spectra, Born effective charges, and dielectric constants ε∞ for the hAlF3, hGaF3, and
hInF3 crystals (where h is a vacancy) have been calculated in terms of the generalized Gordon–Kim method.
The calculated spectra of lattice vibrations contain no imaginary vibrational frequencies. This suggests the sta-
bility of the cubic phase of these compounds but contradicts the observable structural transition from cubic to
rhombohedral phase. It is assumed that such a transition in the hAlF3, hGaF3, and hInF3 crystals is brought
about by structural defects. The calculated spectrum of lattice vibrations of the “completely defective” crystal
MhF3 (M = Al, Ga, and In) indicates a strong instability of the cubic phase. Within the mean crystal approxi-
mation, the cubic phase of MxM1 – xF3 crystals appears to be unstable at small x ≤ 0.05. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Structural phase transitions and the nature of insta-
bility in compounds with a perovskite-type structure
have been studied experimentally and theoretically
over many years. The majority of the theoretical inves-
tigations were dedicated to oxide compounds with a
perovskite-type structure. Calculations of the band
structure, crystal lattice dynamics, and static mechanics
of ferroelectric and antiferroelectric phase transitions
in terms of the density functional method yielded the
satisfactory results (see, for example, [1–6]). These cal-
culations provided a deeper insight into the origin of
crystal lattice instability and the nature of ferro- and
antiferroelectricity in oxide compounds with a perovs-
kite-type structure. At the same time, halide com-
pounds with a perovskite structure, in which the struc-
tural phase transitions, as a rule, are associated with the
crystal lattice instability toward antiferroelectric distor-
tions, have received little attention in the ab initio cal-
culations.

The crystals hMF3 (M = Al, Ga, and In; h is a
vacancy) are structurally isomorphic with the ReO3
compound. The ReO3 compound has the simplest per-
ovskite-like structure. The metal ion is located at the
center of an octahedron whose vertices are occupied by
the anions (Fig. 1a). The centers of anionic cubooctahe-
dra are empty. The MF3 crystals undergo a phase tran-
sition from cubic to rhombohedral phase due to a “rota-
tion” of the octahedron around the threefold symmetry
axis of the cubic cell [7–9]. The phase transition and
lattice dynamics of the AlF3, GaF3, and InF3 crystals
were the subjects for a few experimental and theoretical
works, including the structural investigations by x-ray
diffraction, calorimetric studies, measurements of the
cutoff Raman-active frequencies of lattice vibrations in
the distorted rhombohedral phase, and calculations of
1063-7834/00/4207- $20.00 © 21348
the phonon spectrum of the cubic phase within the rigid
ion model with adjustable parameters describing the
short-range interactions [8, 9]. Information on the over-
all phonon spectrum of the crystal is of crucial impor-
tance for investigations into displacive phase transi-
tions and the understanding of the nature of crystal lat-
tice instability.

M
F

(a)

(b)

Fig. 1. Unit cells of (a) hMF3 crystals and (b) MhF3 hypo-
thetical crystals.
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The purpose of this work was to calculate the
phonon spectra, Born dynamic charges, and rf permit-
tivities of the AlF3, GaF3, and InF3 crystals in terms of
the microscopic ionic-crystal model, which takes into
account the ion deformability and polarizability [10].
The calculation procedure is briefly described in Sec-
tion 2. Section 3 presents the results of calculations. It
is shown that, within the model employed, the calcu-
lated spectrum of lattice vibrations in the cubic phase of
the crystals under consideration exhibits no vibrations
with imaginary frequencies and, thus, indicates the sta-
bility of the cubic phase at zero temperature. However,
the vibrational spectrum contains a branch (between
the R and M points in the Brillouin zone) with anoma-
lously low vibrational frequencies. We calculated the
vibrational spectrum of an MhF3 hypothetical crystal
with the same cubic lattice in which the cations are
located at the centers of cubooctahedra (Fig. 1b). The
vibrational spectra of the hypothetical crystals show a
large number of vibrations with imaginary frequencies.
Within the mean crystal approximation, we also calcu-
lated the vibrational spectrum of the MxM1 – xF3 crys-
tals. It is found that the cubic phase of these crystals is
unstable at small x ≤ 0.05.

2. CALCULATION PROCEDURE

In the present work, the vibrational spectrum of the
crystal lattice was calculated within the ionic crystal
model proposed by Ivanov and Maksimov [10]. This
model generalizes the Gordon–Kim approximation
with due regard for the influence of crystalline environ-
ment on the ion deformability and polarizability. The
total electron density of the crystal in this model is writ-
ten as

Here, the summation is performed over all ions in the
crystal. The total lattice energy within the pair interac-
tion approximation has the form

(1)

where Z is the charge of the ith ion,

(2)

the E{ρ} energy is calculated within the Thomas–
Fermi approximation and in the local approximation
for the kinetic and exchange-correlation energies [10],

ρ r( ) ρi r Ri–( ).
i
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i
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=  E ρi r Ri–( ) ρ j r R j–( )+{ }
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and  is the self-energy of the ion. The elec-
tron density of an individual ion and its self-energy are
calculated with allowance made for the crystal poten-
tial, which was approximated by the charged sphere
(Watson’s sphere)

Ei
self

Rw
i( )

ν r( )
Zi

ion
/Rw r Rw<

Zi
ion

/r r Rw,>



=

0
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Fig. 2. Dependences of the total lattice energy on the vol-
ume. Curves 1 and 2 correspond to the hMF3 and MhF3
structures, respectively. The energies are reckoned from (a)
–14965.6141, (b) –61438.7235, and (c) –168862.7272 eV.
0
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Table 1.  Equilibrium values of the lattice parameters, Born effective charges (Z*), rf permittivity ε∞, and ion polarizabilities
αM and αF

Crystal a0, Å 
(calculation)

a0, Å 
(experiment) Z*(M) (F) (F) ε∞ αM, Å3 αF, Å3

hAlF3 3.42 3.56a 3.08 –0.66 –1.76 1.86 0.03 0.65

hGaF3 3.80 3.69b 2.87 –0.78 –1.32 1.64 0.12 0.69

hInF3 4.11 4.07b 2.99 –0.79 –1.41 1.59 0.37 0.72

Note: a [8]. b [7].

Z ⊥* Z ||*

Table 2.  Calculated frequencies of modes at the Γ(0, 0, 0) and R(π/a, π/a, π/a) points of the Brillouin zone (PIB is the breathing
ion model, and PPIB takes into account the ion deformability and polarizability)

Mode
hAlF3 hGaF3 hInF3 MhF3

PPIB PIB RI PPIB PIB RI PPIB PIB Al Ga In

2Γ10(3)

LO 651 735 765 521 564 553 449 495 465 407 357

TO 521 558 641 466 504 513 399 456 401 375 337

LO 307 503 481 245 374 392 200 304 350 306 294

TO 222 401 378 185 259 278 154 201 362i 27 44i

Γ9(3) 194 240 219 152 172 194 126 137 225i 148i 143

R1(1) 645 644 669 486 558 585 433 499 340 328 300

R10(3) 445 446 487 265 267 265 193 195

R4(3) 449 376 311

R3(2) 372 407 481 424 424 418 400 403 289 269 247

R4(3) 246 415 383 210 305 338 189 195 272i 97 119

R5(3) 58 79 50 68 73 50 63 65 490i 359i 253i

Note: The results of calculations within the rigid ion (RI) model [9] are presented for comparison. The parenthetic numerals indicate the
mode degeneracy. Frequencies are given in cm–1.
where Rw is the radius of the Watson sphere. The radius

of the sphere  for each ion is determined from the
condition of the minimum total energy of the crystal.

In order to calculate the crystal lattice dynamics,
equation (2) should contain additional terms that
describe the change in the energy upon displacements
of the ions from their equilibrium positions. Moreover,
the calculations of the vibrational spectrum allowed for
the ion polarizability and deformability caused by the
change in the crystal environment. The expression for
the dynamic matrix was given in [11].

3. RESULTS AND DISCUSSION

The equilibrium unit cell parameters of the crystals
under consideration were determined from the condi-
tion of the minimum total energy of the crystal as a
function of the volume (Fig. 2). Table 1 presents the
equilibrium lattice parameters, experimental data, and
the calculated values of ion polarizability, rf permittiv-

Rw
i

P

ity ε∞, and the Born effective charges. For the metal
ions, the effective charge tensor is isotropic and close in
magnitude to the nominal charge of the ion (+3). The
fluorine ion is characterized by two tensor components,
namely, (F) and (F), which correspond to the
displacements of the F– fluorine ion in the directions
parallel and perpendicular to the M–F bond, respec-
tively. As is seen from Table 1, there is a substantial dif-
ference between (F) and (F) components, as for
oxide compounds with a perovskite structure, but the

(F) values are considerably less than (O).

The calculated phonon spectra of the AlF3, GaF3,
and InF3 crystals are shown in Figs. 3–5. For compari-
son with the calculations within the rigid ion model [9],
Table 2 lists the frequencies of vibrations at the Γ(0, 0, 0)
and R(π/a, π/a, π/a) points of the Brillouin zone. Table 2
also presents the vibrational frequencies calculated in
the present work in terms of the “breathing” ion model,
i.e., without regard for the ion polarizability. It follows

Z ||* Z ⊥*

Z ||* Z ⊥*

Z ||* Z ||*
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Fig. 3. Calculated phonon spectrum of the hAlF3 crystals.

Fig. 4. Calculated phonon spectrum of the hGaF3 crystals.
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Fig. 5. Calculated phonon spectrum of the hInF3 crystals.
from Table 2 that the results of calculations within the
rigid ion model with adjustable parameters describing
the short-range interactions are in good agreement with
those obtained in the breathing ion model, i.e., without
adjustable parameters. At the same time, the inclusion
of ion polarizability substantially affects the frequen-
cies of lattice vibrations, in particular, significantly
reduces the LO–TO splitting for frequencies of the
IR-active modes.

As can be seen from Figs. 3–5 and Table 2, the
vibrational spectra of all the studied crystals exhibit no
imaginary frequencies but contain a weakly dispersive
branch (between the M and R points in the Brillouin
zone) with anomalously low frequencies (≈60 cm–1).
The same result was obtained within the rigid ion
model [8, 9]. Therefore, our calculations of the lattice
dynamics within the method employed indicate that the
cubic phase in the AlF3, GaF3, and InF3 crystals
remains stable to T = 0. However, this result is contra-
dictory to the experiment, which revealed the structural
phase transition in these compound at a finite tempera-

Table 3.  Coulomb contribution of points charges C and con-
tribution of short- and long-range dipole–dipole interactions
S in ω2(R5) for MF3 in two structures

Constant hMF3 MhF3

C 0.68346 –0.82566

Al –0.65178 –0.83688

S Ga –0.62259 –0.17220

In –0.61643 0.25450
P

ture. The instability of the cubic phase in the crystals
under study can be explained by the disturbance of the
hMF3 perfect structure when a small number of metal
ions occupy vacant sites at the center of a cubooctahe-
dron. In order to verify this assumption, we calculated
the phonon spectra of the “completely defective” hypo-
thetical structure MhF3 (M = Al, Ga, and In). The total
lattice energy in this structure considerably exceeds the
energy in the hMF3 structure (Fig. 2). The calculated
phonon spectra of the AlhF3, GahF3, and InhF3 hypo-
thetical crystals essentially differ from the spectra of
the hAlF3, hGaF3, and hInF3 crystals. For the defective
structure, the phonon spectrum exhibits many imagi-
nary frequencies of vibrations, and the unstable modes
occupy the whole phase space in the first Brillouin
zone. The calculated frequencies of lattice vibrations in
the MhF3 crystals at the Γ(0, 0, 0) and R(π/a, π/a, π/a)
points of the Brillouin zone are given in Table 2. As fol-
lows from this table, the “softest” mode is the threefold
degenerate mode R5, which belongs to the boundary
point of the Brillouin zone. The eigenvector of the R5
mode corresponds to the “rotation” of the octahedron
whose center, in this case, is free from metal ion. The
phase transition experimentally observed in the AlF3,
GaF3, and InF3 compounds is associated with the con-
densation of just this R5 mode, and, hence, this mode
alone will be discussed below. The frequency of the R5
mode in two structures (hMF3 and MhF3) is described
by the same analytical expression

ω2
R5( ) 4πe

2

ΩMF
------------ S C+( ),=
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where Ω is the unit cell volume, and MF is the mass of
fluorine. The constant C describes the contribution of
point charges to ω2(R5), and the constant S accounts for
all short- and long-range dipole–dipole interactions.
The constants C and S for the three crystals under con-
sideration are listed in Table 3. It is seen from this table
that, for the hMF3 structure, the sum of the C and S con-
stants is positive but small in magnitude for all the crys-
tals. On the other hand, the sum of the contributions for
the MhF3 structure is negative but large in magnitude
for all the crystals. It can be assumed that, in real crys-
tals, a small number of metal ions occupy vacant sites
at the center of the cubooctahedron formed by fluorine
ions, and this imperfection results in the instability of
the cubic phase. In order to make a rough estimate of
the defect concentration at which the cubic phase
becomes unstable, we calculated the vibrational spec-
trum of the “mean crystal” MxM1 – xF3 (M = Al, Ga, and
In). The dependence of ω(R5) on the concentration x for
the mean crystals is displayed in Fig. 6. It is seen that
the cubic phase at zero temperature appears to be unsta-
ble at a rather low concentration of defects.

Thus, we calculated the lattice dynamics of the
hAlF3, hGaF3, and hInF3 crystals with a perovskite-
type structure. The calculations were performed within
the generalized Gordon–Kim model, which takes into
account the ion polarizability and deformability. It was
found that, for all the crystals at T = 0, the spectra of lat-
tice vibrations contain no vibrations with imaginary

ω, cm–1

80

0.02

40

–40

0

–80

–120

0.06 0.08
x

1

2

3

0.04

Fig. 6. Dependences of the frequency ω(R5) on the concen-
tration x for the MxM1 – xF3 crystals: (1) M = Al, (2) M = Ga,
and (3) M = In. Negative value of ω signifies the imaginary
quantity.
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frequencies, which suggests the stability of the cubic
phase in these crystals. In our opinion, the structural
phase transition from cubic to rhombohedral phase,
which is experimentally observed in these crystals, can
be associated with structural defects when a number of
metal ions are located at the centers of cubooctahedra
that are vacant in the perfect structure. The origin of
these defects remains unclear. Since the total lattice
energy in the completely defective structure consider-
ably exceeds the energy of the perfect structure, the for-
mation of defects of this type at the expense of temper-
ature is unlikely. However, these defects apparently can
arise upon crystal growth. The above assumption on the
origin of instability of the cubic phase in the MF3 crys-
tals requires the experimental verification.
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Abstract—A method for calculating the volume fractions of phases in a system with several simultaneously
growing phases is proposed. A solution of the problem is obtained for two- and three-dimensional spaces. The
approximation of independent phases is considered, in which expressions for volume fractions have the sim-
plest form. The high accuracy of this approximation is demonstrated. © 2000 MAIK “Nauka/Interperiodica”.
The kinetics of phase transformation in the case
when only one new phase is formed can be successfully
described by well-known expressions derived by Kol-
mogorov [1] and by Johnson, Mehl, and Avrami [2–4]:

(1)

where X(t) is the volume fraction of the growing phase,
I(t) is the rate of nucleation of the new phase, V(t', t) is
the volume at the instant t of a freely growing nucleus
generated at the time t',

(2)

u(t) is the nucleus growth rate, R(t', t) is the nucleus
radius, D is the dimensionality of space, and g is a geo-
metrical factor, g = 2, π, and 4π/3 for D = 1, 2, and 3,
respectively.

In addition to this type of phase transformations, the
phase transformations occurring through simultaneous
growth of two or more different phases are also possi-
ble. An example of such processes is the solidification
of a supercooled liquid with the competing formation
of crystalline and amorphous phases in it. The idea con-
cerning the formation of “anticrystalline” clusters in a
liquid along with crystalline clusters and the role of the
former clusters in the glass-formation process was
apparently put forth by Ubbelohde [5]. The kinetics of
the solidification of a liquid with the competing forma-
tion of two or more phases in it was calculated in [6, 7].

In this connection, the problem of calculating the
volume fractions of phases in such systems, i.e., the
generalization of expression (1) to this case, is of con-
siderable interest. In contrast to the single-phase case,
one encounters here specific difficulties associated with
different growth rates of the phases. In the present
work, a geometrical–probabilistic approach is devel-
oped for solving this problem. Exact solutions are

X t( ) 1 I t'( )V t' t,( ) t'd

0

t

∫– ,exp–=

V t't( ) gRD t' t,( ), R t' t,( ) u τ( ) τ ,d

t'

t

∫= =
1063-7834/00/4207- $20.00 © 21354
obtained for volume fractions in spaces with D = 2 and
3 (under constraints existing in the Kolmogorov model
[1, 4]) and simpler expressions are also derived in the
independent phase approximation (IPA). An analysis of
the solution obtained proves the high accuracy of IPA
expressions.

1. SINGLE PHASE

We will carry out a description of the proposed
method, which can be referred to as the “method of crit-
ical regions”, using the example of a single-phase
transformation; in other words, we will derive expres-
sion (1) in a way differing from that in [1, 2].

We shall determine the probability dX(t) of the
absorption of a randomly chosen point O in the system
by the growing phase during the time interval [t, t + dt].
The following two conditions are necessary and suffi-
cient for this event to occur: (a) point O has not been
absorbed before the instant t and (b) a nucleus of a new
phase capable of absorbing point O during the time inter-
val [t, t + dt], appears at a certain instant t' (0 ≤ t' ≤ t).
Such a nucleation center will be referred to as critical.
We will denote by Q(t) and dP(t) the probabilities of the
former and the latter events, respectively. Let us con-
sider the space–time diagram of realizing such a pro-
cess, in which both conditions are satisfied.

We select a region with the center at point O and the
radius R(t', t) (critical region). At the instant t', the
boundary of this region moves at a velocity u(t') so that
the radius decreases from the maximum value R(0, t) to
R(t, t) ≡ 0. The fulfillment of condition (a) implies that
the emergence of the new phase that centers in the region
is ruled out through the entire time interval 0 ≤ t' ≤ t. On
the basis of this condition, the value of Q(t) is calcu-
lated directly [1]. On the other hand, Q(t) can be deter-
mined from condition (b).

The critical nucleation center emerging at the
instant of time t' must be separated from point O by a
distance R(t', t) and situated in a ring of width
000 MAIK “Nauka/Interperiodica”
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dR(t ', t) = (∂R(t ', t)/∂t)dt. Consequently, the probabil-
ity of the emergence of such a center is

(3)

where  ≡ ∂V(t ', t)/∂t. The probability of the
emergence of the critical center in the time interval 0 ≤
t ' ≤ t is defined by the integral

(4)

Thus, the simultaneous fulfillment of conditions (a)
and (b) leads to the following condition for dX(t):

(5)

It can be easily seen that X(t) = 1 – Q(t). Consequently,
(5) is a differential equation for X(t), whose solution
under the initial condition X(0) = 0 is given by (1).
According to the geometrical definition of the probabil-
ity [8], X(t) gives the fraction of transformed substance
and Q(t) is the fraction of the initial phase.

2. SEVERAL PHASES

In the case when the number of phases in a system
is greater than one, the premises of the Kolmogorov
model [1, 4] are assumed to hold for each phase. We
also assume that the shape of phase nuclei is spherical
and remains unchanged during the growth of a nucleus.
The latter assumption appears to be natural, since the
growth occurs due to processes at the interface, namely,
through the addition of matter from the initial phase.
Consequently, the boundary of a nucleus of the ith
phase is displaced parallel to itself over a time dt
through a distance δri = ui(t)dt.

Let us first consider the two-phase case. We suppose
that two phases are growing in the initial medium,
which will be denoted by indices 1 and 2. The rates of
nucleation of the phases are Ii(t) and the growth rates
are ui(t), i = 1, 2, where u2(t) > u1(t) for all t. We deter-
mine the probability dX1(t) [dX2(t)] of the event that an
arbitrary point O is absorbed by phase 1 (2) in the time
interval [t, t + dt].

Generalizing the one-phase case, we define two
regions, 1 and 2, with their centers at point O and with
radii R1(t', t) and R2(t', t), respectively (Fig. 1):

(6)

We shall refer to the ring of width ∆R(t', t) = R2(t', t) –
R1(t', t) confined between the boundaries of the regions
1 and 2 as the 1–2 region.

dP t' t,( ) I t'( )dt'V̇ t' t,( )dt,=

V̇ t' t,( )

dP t( ) I t'( )V̇ t' t,( ) t'd

0

t

∫ 
 
 

dt.=

dX t( ) Q t( ) I t'( )V̇ t' t,( ) t'd

0

t

∫ 
 
 

dt.=

Ri t' t,( ) ui τ( ) τ .d
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t

∫=
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Let us consider conditions (a) and (b) as applied to
phase 1. The necessary and sufficient conditions for
point O to be absorbed during the time interval [t, t +
dt] by phase 1 are: (a) it is not absorbed by any of the
phases before the instant t [the probability of such an
event is Q(t)] and (b) a critical nucleation center of
phase 1 appears at a certain instant t', 0 ≤ t ' ≤ t.

The fulfillment of condition (a) implies that the
emergence of nuclei of phase 1 in the entire time inter-
val 0 ≤ t ' ≤ t is ruled out for the entire region 1. Outside
region 1, such nuclei can appear without any limita-
tions, since they cannot reach the point O by the instant
t (Fig. 1). Besides, nucleation centers of phase 2 cannot
appear in region 2. The fulfillment of condition (b)
implies that a nucleation center of phase 1 must appear
at a certain instant t' at the boundary of region 1. The
probability of this event is defined by (4). Conse-
quently, for dX1(t), we have

(7)

For the phase 2, condition (a) remains unchanged.
Consequently, we consider only condition (b). If the
1−2 region contained no grains of phase 1, this condi-
tion would have led to an equation for the volume
fraction of phase 2 that is identical to equation (7)
with index 1 replaced by 2. However, the presence of
grains of phase 1 in this region means that a critical
nucleation center of phase 2 can appear only in a part
dV2(t', t) of the volume. Therefore, we obtain the fol-
lowing expression for the probability of this event:

(8)

where q(1)(t', t) is the probability that the point on the
boundary of region 2, at which a critical nucleation cen-

dX1 t( ) dt( )⁄ Q t( ) I1 t'( )V̇1 t' t,( ) t'.d

0

t

∫=

dP2 t( ) I2 t'( )V̇2 t' t,( )q 1( ) t' t,( ) t'd

0

t

∫ 
 
 

dt,=

O 1–2R1(t', t)R2(t', t)

Fig. 1. Critical regions in the two-phase problem. Dark cir-
cles depict nuclei of phase 1 in the 1–2 region.
0
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ter of phase 2 appears at the instant t', lies in the
untransformed region.

Accordingly, the expression for the volume fraction
of the second phase has the form

(9)

Since Q = 1 – (X1 + X2), the integration of the system of
equations (7) and (9) leads to the following expressions
for the required volume fractions:

(10)

(11)

(12)

Going over to the case of n > 2 phases, where un(t) >
un – 1(t) > … > u1(t), we supplement Fig. 1 with the
regions 3, 4, …, n having the radii Ri(t', t) (6). Condition
(a) implies that nucleation centers of phase i can appear
only outside the region i. Consequently, the (i – 1)–i ring
between the boundaries of the regions i – 1 and i con-
tains nuclei of the phases 1, 2, …, i – 1, and only the
fraction q(i – 1)(t', t) of volume dVi(t', t) is accessible for

dX2 t( ) dt⁄ Q t( ) I2 t'( )V̇2 t' t,( )q 1( ) t' t,( ) t'.d

0

t

∫=

Q t( ) I1 t'( )V1 t' t,( ) t'd

0

t

∫–exp=

– τ t'I2 t'( )V̇2 t' τ,( )q 1( ) t' τ,( )d

0

τ

∫d

0

τ

∫ ,

X1 t( ) τQ τ( ) t'I1 t'( )V̇1 t' τ,( ),d

0

τ
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0

t

∫=

X2 t( ) τQ τ( ) t'I2 t'( )V̇2 t' τ,( )q 1( ) t' τ,( ).d
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Fig. 2. Evaluation of the function q(1)(t', t). Solid curves are
the boundaries of regions 1 and 2 at the instant t', and dashed
curves, at the instant t'' < t': |OA| = R1(t', t), |OB| = R1(t'', t),
|OO'| = R2(t', t), and |OC| = R2(t'', t). The region of volume
v(t'', t', t) (16) is marked by bold lines.
P

the emergence of a critical center of phase i. Thus, for
the volume fraction of phase i, we have

(13)

i = 1, 2, …, n, q(0) ≡ 1.

This leads to the following expression for the vol-
ume fraction of the untransformed substance:

(14)

3. EVALUATION OF FUNCTIONS q(i)(t ', t)

In order to determine the function q(1)(t', t), we shall
use the geometrical diagrams shown in Fig. 2. The
problem can be formulated as follows: find the proba-
bility that an arbitrary point O' lying on a circle of
radius R2(t', t) is in the initial phase. This event must
take place when the condition imposed earlier is satis-
fied: point O also lies in the initial phase before the time
t. Thus, for point O', we modify the single-phase prob-
lem by an additional condition. We denote by 1' a
region of radius R1(t'', t'), 0 < t'' < t', around the point O'.
For the above-mentioned event to take place, the emer-
gence of phase-1 nucleation centers in this region is
ruled out in the entire interval 0 ≤ t '' ≤ t'. The additional
condition also rules out the emergence of such centers
in region 1, i.e., in the region of radius R1(t'', t) with the
center at point O. Consequently, we must take a part of
region 1', which lies outside region 1. We denote the
volume of this region by v(t'', t', t) (Fig. 2). Analyzing
the intersection of two spheres of radii r1 and r2 with a
separation h between their centers in the 3D space, we
can easily obtain the following expression for the part
of volume of the second sphere outside the first sphere:

(15)

where r1 > r2; r1 – r2 ≤ h ≤ r1 + r2. Using this formula,
we can find v(t'', t', t):

(16)

Using the result of the single-phase problem (1), we
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now obtain q(1)(t', t):

(17)

The overlapping of regions 1 and 1' takes place if the
condition r1 + r2 > h is satisfied, i.e.,

(18)

and is observed starting from an instant of time 
defined by the equation

(19)

In the time interval 0 < t' < , these regions do not over-
lap as long as the radius R1(0, t') is quite small. For t' >

, the regions overlap in the time interval 0 < t'' < ,
after which the overlapping disappears since the
boundaries move with a velocity u1(t''), i.e., the radii
R1(t'', t') and R1(t'', t) decrease at a given rate. The time
instant  can be found from the equation

(20)

For constant rates of growth uk, condition (19) has the
form

(21)

whence

(22)

In the limiting case u1 ! u2 or α ! 1, we have  ≈ t.
Therefore, overlapping is absent in almost the entire
interval 0 < t' < t, and v(t'', t', t) = V1(t'', t').

In this case, q(1) becomes a function of t' only, and
expression (10) is simplified as follows:

(23)

The functions q(i)(t', t) for i > 1 can be calculated in
a similar way. For example, q(2)(t', t) is the fraction of
the untransformed substance in the region extending to
the distance R3(t', t) from point O. Since the 2–3 region
contains nuclei of the first and second phases, we can
calculate this function by using the result (10) of the
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two-phase problem, taking into account the above-
described correlation with point O:

(24)

where

(25)

4. INDEPENDENT-PHASE APPROXIMATION

It can be seen that the calculation of the functions
q(i)(t', t) is a cumbersome procedure. Consequently, it
would be expedient to obtain approximate but simpler
expressions for volume fractions. Let us consider the
simplest of all possible approximations. We disregard
the existence of phases between the boundaries of
regions (i – 1) and i, i.e., we put q(i – 1) = 1, i = 2, …, n.
In this case, the expressions for the volume fractions
become identical:

(26)

which gives

(27)

(28)

For constant rates of nucleation and growth, the
integrals can be evaluated easily:

(29)

(30)

where ki ≡ (g/(D + 1))Ii .

In this approximation, all the phases are equivalent in
spite of the difference in the rates of growth. Equation
(26) for the volume fraction of the ith phase has the same
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form as in the single-phase case, and expression (27) for
the fraction of the untransformed substance splits into

the product of similar quantities  = exp(–Yi(t)) for
each phase in the corresponding single-phase problem
[Yi(t) is the integral in (27)]. For these reasons, the given
approximation can be referred to as the “independent-
phase approximation.”

We now have to find the magnitude of the error
introduced by this approximation. Let us first derive
some preliminary inequalities. If we calculate the func-
tions q(i)(t', t) in the IPA and replace vj(t'', t', t) by Vj(t'', t')
in them, these functions acquire the form

(31)

Let us use Qex(t) and  to denote the values of vol-
ume fractions calculated by formulas (14) and (13),

respectively, and Qap(t) and  to denote the volume
fractions calculated by the same formulas, but with
functions (31) instead of exact functions, where

(32)

This leads to the following inequalities:

(33)

(34)

In order to obtain estimates, we will assume that the
nucleation and growth rates are constant. Let us first
consider the two-phase case. Expression (32) in this
case assumes the form

(35)

where

The function ϕ(1)(t) specifies the difference between
Qap(t) and Q0(t). Its expansion into a power series in t
has the form

(36)

where A = 20 and 70, B = 168 and 990 for D = 2 and 3,
respectively.

For the difference ∆Q(t) = Qap(t) – Q0(t), we have

(37)
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P

It should be noted that ∆Q(t) < exp(–k1tD + 1) in view of
the fact that ϕ(1)(t) < k2tD + 1. It follows, hence, that
∆Q(t) tends to zero for large t. Besides, ∆Q(0) = 0. Con-
sequently, the function ∆Q(t) is not monotonic but has
a peak. In order to estimate the peak value ∆Qmax of the
function, we replace it by a simpler function ∆Q(ξ) and
confine expansion (36) to the first two terms only:

(38)

where a = , b = , and  = ki/(k1 + k2)
are the volume fractions of the phases in the IPA in the
final state (t = ∞). The maximum values of the coeffi-
cients a and b are as follows: max(a) = 1/4A and
max(b) = 4/27B. These are small quantities even in a
two-dimensional space. The substitution of ∆Q(ξ) for
∆Q(t) is justified by the smallness of the coefficients a
and b. Thus, max(∆Q(ξ)) < 4ae–2 < e–2/A, and we have
the following estimate for ∆Qmax:

(39)

ε ≈ 7 × 10–3 and 2 × 10–3 for D = 2 and 3, respectively.

Let us also calculate the correction to the volume
fraction of the first phase, obtained in the IPA, in the
final state:

(40)

After the substitution ξ = (k1 + k2)tD + 1, we have

(41)

In view of the smallness of the coefficients a and b,
this integral can be replaced by

(42)

where δ = 2a – 6b. This leads to the following estimate
for δ: δ < 2a ≤ 1/2A.

The estimates ξ, δ ! 1 together with inequalities
(33) and (34) show that the exact values of volume frac-
tions in the two-phase system are virtually the same as
those calculated in the IPA.

Going over to the case of n phases, we can easily
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write by induction the following expression for Qap(t):

(43)

(44)

The expansion of ϕ(n – 1)(t) has the form

(45)

Repeating the above procedure of obtaining estimates
for the given phase, we substitute the variables ξ = (k1 +
k2 + … + kn)tD + 1. Accordingly, the coefficients a and b
now have the form

(46)

We can easily find that max(fA( , …, )) = (n –
1)/2n < 1/2; consequently, a < 1/2A, and the above esti-
mates with ε and δ twice as large as in the two-phase
case hold.

Thus, the difference of the expressions obtained in
the IPA from the exact expressions for a system with an
indefinitely large number of phases can be regarded as
negligibly small.

Returning to the case of an arbitrary time depen-
dence of the nucleation and growth rates, it is worth-
while to note the following fact. The expansion of the
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function Vi(t ', t)dt ' into a power series

in t starts from tD + 1, while the expansion of the function

Vi(t ', t)[1 – qi – 1(t ')] starts from t2(D + 1).

Consequently, the given case does not differ in princi-
ple from that considered above.

5. DISCUSSION OF RESULTS

The main results obtained in this work are the
expressions for the volume fractions of competing
phases, as well as the substantiation of the application
of the IPA. Besides, the proposed geometrical–probabi-
listic method itself can be useful for solving other prob-
lems associated with the calculation of volume frac-
tions.

It should be noted that this problem can also be
solved by any of the two well-known approaches, viz.,
the Kolmogorov [1] and the Johnson–Mehl methods
[2]. The latter approach is most visual, as it deals
directly with nuclei of phases. For this reason, it would
be interesting to analyze the solution (10)–(14) from
the viewpoint of this method.

The following two assumptions are crucial in the
Johnson–Mehl approach: (1) nuclei can grow into one
another without changing their shape, and (2) new
nucleation centers can emerge in the entire volume of
the system, including the transformed region (fictitious
centers). It is important that, in the single-phase case,
these assumptions simplify the solution of the problem
considerably without distorting the pattern of the actual
process, and expression (1) is exact. In the case of two
competing phases (u2 > u1), assumption (2) distorts the
actual pattern: fictitious nuclei of the rapidly growing
phase within the slowly growing phase emerge with
time in the untransformed region and contribute to the
increase in the actual volume. The IPA expressions dis-
regard this effect and, hence, overestimate the volume
fraction of the rapidly growing phase. At the same time,
expressions (10)–(14) take this effect into consider-
ation: the factor q(i – 1)(t', t) compensates the contribu-
tion to the volume fraction of the ith phase from the fic-
titious nucleation centers. These expressions can also
be obtained in the Johnson–Mehl approach reformu-
lated in terms of the probability theory. This, however,
is beyond the scope of the present publication.

The analysis of the solution proves that the effect of
fictitious nucleation centers is negligibly small. The
reason is that this effect “cannot” manifest itself. This
is obvious for short periods of time. For longer periods,
the effect of fictitious nuclei is restricted on account of
the exhaustion of the untransformed volume. For this
reason, the IPA expressions are virtually exact within
the limitations of the model.

Yi t( ) Ii t'( )
0

t∫=

Ỹ i t( ) Ii t'( )
0

t∫=
0
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Abstract—Localization corrections to the longitudinal (δρ) and Hall (δρH) resistivities of a two-dimensional
disordered system are calculated in all ranges of classical magnetic fields, up to the values at which the mean
free path of charge carriers l is less than or of the order of the cyclotron radius Rc. It is shown that the physical
reason for the departure of the l dependence of these resistivities from the logarithmic law ∝ ln(lB/l)) (lB is the
magnetic length) at lB ! l ! Rc is the nonlocal process of diffusion in the Cooper channel, rather than the tran-
sition to a quasi-ballistic regime. Analytical expressions are obtained that allow one to analyze the interference
effect in δρ and δρH in quantizing magnetic fields (Rc ! l), including the quantum limit. Contrary to popular
opinion, the localization corrections to ρH are shown to be nonzero. They have a sign opposite to that of the
charge carriers and lead to a decrease in the magnitude of the Hall resistivity. Their field dependence has the
same features and their relative magnitude is of the same order as in the case of the longitudinal resistivity. The
quantum corrections to the Hall resistivity are due to the Larmor precession of the closed paths that electrons
follow in the process of their multiple scattering by randomly distributed impurities. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Quantum corrections to the electrical conductivity
(due to weak electron localization) are the result of the
quantum interference of electronic waves subjected to
multiple scattering by randomly distributed impurities.
The theory of these corrections [1] is the most com-
pletely developed and experimentally verified part of
the theory of disordered systems. One of the most
important results of this theory is the explanation of the
negative magnetoresistance (NMR) [2, 3], which is
observed in low-dimensional semiconducting struc-
tures [4]. For the past twenty years, significant progress
has been made in this area. The quantitative theory of
the NMR was developed, which is valid in a wide range
of classical magnetic fields (l ! Rc) [5–9] and consis-
tently includes the major contributions to this effect to
the first order in the small parameter 1/kFl [6, 9]. The
quantum corrections to the electrical conductivity of
disordered systems were adequately interpreted in
terms of the quasi-classical theory [9, 10].

However, some important problems remain
unsolved. There is no theory of quantum corrections in
the range of quantizing magnetic fields (Rc ! l),
although some steps have been made in its development
[10, 11]. In our opinion, no physical explanation was
provided for the departure of the quantum corrections
to the electrical conductivity from the diffusion approx-
imation [1], which takes place at short phase diffusion
times τϕ and strong magnetic fields, lB ! l.

The interference contributions to the Hall resistivity
ρH were shown [12] to be zero to the first order in 1/kFl.
1063-7834/00/4207- $20.00 © 21361
For this reason, it is believed that the dominant quan-
tum corrections to ρH are due to the electron–electron
interaction [3, 13–15].

In this paper, we calculate the interference quantum
corrections to the longitudinal (ρ) and Hall (ρH) resis-
tivities by the method developed in [5, 7, 9]. The
expressions obtained are valid in a wide range of mag-
netic fields, including quantizing ones. It is shown that,
contrary to the wide-spread opinion, the localization
corrections to the Hall resistivity δρH are nonzero to the
first order in 1/kFl. The physical nature of δρH is eluci-
dated, analytical asymptotic expressions are obtained,
and a numerical analysis is conducted of the field
dependence of these corrections.

The cooperon, which determines the localization
corrections to the transport coefficients, is shown to
hold its diffusion propagator form in the particle–parti-
cle channel in virtually the entire range of classical
magnetic fields, l < Rc. However, at higher magnetic
fields, one should take into account the spatial and time
nonlocality (dispersion) of the generalized diffusion
coefficient. A departure from the diffusion propagator
form occurs at relatively high fields and is associated
with the violation of the time reversal invariance, rather
than with the crossover to the ballistic regime [8, 9].

1. BASIC EQUATIONS

Let us consider a two-dimensional degenerate gas of
electrons that are elastically scattered by static impuri-
ties having a concentration nI and distributed by a Pois-
000 MAIK “Nauka/Interperiodica”
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son distribution in the sample. The one-electron Hamil-
tonian of the problem under study has the form

(1)

where A = (0, Bx) is the vector potential of the magnetic
field in the Landau gauge. We assume that an impurity
localized at a point R is characterized by a short-range
potential, which can be approximated by a δ function,
U(r – R) = U0δ(r – R). This approximation is valid if
the radius of action of the impurity potential r0 is small
compared to the de Broglie wavelength of an electron
at the Fermi energy level %F. We also assume that the
scattering of an electron by an isolated impurity is weak
and treat it in the first Born approximation.

The electrical conductivity tensor of the system
under study has a single independent circularly polar-
ized component σ, for which we have Reσ = σxx and
Imσ = σyx. We write this component in the form (" = 1)

(2)

Here, σ0 = ne2τ/m, ωc = |e |B/mc is the cyclotron fre-
quency; V± = Vx ± iVy are the circularly polarized com-
ponents of the electron velocity operator in the mag-
netic field; R±(%) = (% – * ± i0)–1 is the resolvent of the
Hamiltonian (1); δR± = R± – 〈R±〉 , where the angular
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Fig. 1. Contributions to quantum corrections to σ from (a)
coherent backward scattering and (b) scattering through
arbitrary angles. The wavy line represents the sum of maxi-
mally crossed diagrams.
P

brackets 〈…〉  denote configuration averaging (the vol-
ume of the system is taken equal to unity):

(3)

where Σ±(%) is the electron self-energy operator, deter-
mining the shift ∆ and width Γ = 1/τ of one-electron
energy levels in the random field of impurities.

The first term in (2) is the electrical conductivity
calculated in terms of classical electron transport the-
ory, which is valid in a wide range of magnetic fields up
to classically strong ones (but not quantizing ones,
ωcτ & 1). The quantum corrections to σ, which repre-
sent the weak-localization effects or the NMR, are
included in the second term in (2). They are due to the
interference of the wave functions of electrons that
move along closed paths in opposite directions in the
process of multiple scattering by impurities. It was
shown [6] that, in strong magnetic fields, the dominant
contribution to these corrections is from processes of
the two types corresponding to skeleton diagrams in
Figs. 1a and 1b, respectively. A detailed analysis
revealed [9] that, as the phase diffusion time τϕ
decreases or the magnetic field increases, the relative
contribution from the processes represented by the dia-
grams in Fig. 1b grows, and these processes should be
included when the weak-localization effects are calcu-
lated.

Using the identity

(4)

and passing over to the coordinate representation, we
write the quantum corrections to σ as

(5)

where ∆ = ∆a + ∆b,

(6)

Here, C(r', r) is the cooperon, equal to the series of
maximally crossed (fan-shaped) diagrams and repre-
sented by a wavy line in Fig. 1. In (6), we have explic-
itly written out the corrections that correspond to the
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diagrams in Fig. 1a and to the first of the two fan-
shaped diagrams in Fig. 1b; the correction correspond-
ing to the second fan diagram is written in much the
same way. Using the quasi-classical interpretation [9]
of quantum corrections to the electrical conductivity, it
can be shown that, in contrast to the correction ∆a,
which is associated with an anomalous increase in the
backward-scattering amplitude (θ ≈ π), the correction
∆b also contains a comparable contribution from scat-
tering through all other angles 0 < θ < π.

Experimentally measured quantities are the longitu-
dinal (ρ) and Hall (ρH) resistivities related to σ by the
equations ρ = Reσ–1and ρH = Imσ–1. Assuming the
localization corrections to the conductivity to be small

enough (|δσ| ! ), we calculate the reciprocal of (2)
to the first order in ∆ and obtain the following quantum
corrections to ρ and ρH (in units of 2π2/e2)

(7)

where ρ0 = 1/σ0 and  = ρ0ωcτ = B/enc. As expected,

expressions (7) do not contain factors like 1/(1 + τ2).
Indeed, in terms of the classical theory, such factors
appear in the components of the conductivity tensor (2)
and (5), because the paths of electrons are bent under
the action of a magnetic field; that is, the factors are of
kinematic origin. However, in degenerate semiconduc-
tors with one group of carriers, as is well known (see,
e.g., [16]), this does not affect the resistivity tensor.
Hence, in the one-electron model we consider here, the
field dependence of δρ and δρH is determined solely by
the localization corrections to the electrical conductivity
in the entire range of classical magnetic fields (ωcτ & 1).
This circumstance is of critical importance in interpret-
ing the experimental data.

2. THE ONE-ELECTRON GREEN’S FUNCTION

Our further calculations are based on the averaged
one-electron Green’s function in the coordinate repre-
sentation G±(r, r', %) = 〈r |G±(%) |r'〉 , which is propor-
tional to the probability amplitude for finding an elec-
tron at point r' if its last collision was at point r. In a
zero magnetic field, this function has a simple asymp-
totic form, valid for ρ = |r – r' | > λF,

(8)

where l = νFτ is the mean free path of the electron.1 In a
weak magnetic field (ωcτ ! 1), expression (8) should be
multiplied by the phase factor exp(–iΦ) = exp[–i(x +

1 If phase diffusion takes place, the quantity 1/τ should be replaced
by 1/τ + 1/τϕ in all expressions for the one-electron Green’s func-
tions.
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x')(y – y' )/2 ], where lB =  is the magnetic
length.

In [5–7, 9], approximation (8) was used to analyze
the NMR in strong magnetic fields B @ Btr = c/2|e |l2.

This can be done if ωeτ ! 1 (or l ! Rc, where Rc = kF

is the cyclotron radius) and one can neglect the bending
of quasi-classical electron paths in a magnetic field.
However, in stronger fields (l * Rc), account should be
taken of both the phase change and the fact that the free
electron motion is confined to a ρ < 2Rc

 

 region. Appro-
priate approximations can be obtained from the exact
expression for the retarded Green’s function 
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where the exponent is given by

(12)

and, at kFl = ∞, is equal to the action corresponding to
the electron transition r  r' along the short arc of the
cyclotron orbit.

Approximation (11) to the one-electron Green’s
function is accurate to within terms of the order of
ωc/%F ~ 1/kFRc and min(lB, λF)/ρ and has a simple phys-
ical interpretation. The common factor in (11), to
within the Fermi momentum replaced by its radial

component kF , coincides with the preex-
ponential factor in (8). The first term in the square
brackets in (11) is associated with the classical electron
motion from r to r' along the short (S) arc of the cyclo-
tron orbit, while the second term corresponds to the
electron motion along the long (L) arc [10]. The factors
1 + exp(±2πia+) in the denominators are the result of
the summation of the probability amplitudes of the
r  r' transition after electron making n turns (n = 0,
1, 2, …) in the cyclotron orbit. The moduli of these fac-
tors are minimal at the energies %/ωc = n + 1/2, corre-
sponding to the centers of the collision-broadened Lan-
dau levels. Thus, in the region accessible to classical
motion, the retarded Green’s function (11), in contrast

ξ+ kFρ
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-------+=
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3

Fig. 2. Probability density for finding an electron at a dis-
tance ρ from the point of its last collision as calculated using
approximation (11) for kFRc= 10.0 and different values of
l/Rc: (1) 0.5, (2) 0.75, and (3) 1.0. The dashed line is calcu-
lated for l/Rc = 1.0 ignoring the contribution from reflected
waves and describes the 2πρlP(ρ) dependence in the region
inaccessible to classical motion (ρ > 2Rc).
P

                              

to (8), is the sum of the diverging wave  and barrier-

reflected converging wave . As the magnetic field is
decreased, the amplitude of the latter wave exponentially
decreases [as ∝ exp(–Rc/l)] compared to the former.
Therefore, at l ! Rc and ρ ! Rc, the bending of electron
paths caused by the magnetic field can be ignored and
(11) reduces to the asymptotic expression (8).

In the region inaccessible to classical motion (ρ >
2Rc), into which electrons penetrate owing to the tun-
neling effect, the probability amplitude falls off expo-

nentially [as ∝ exp(–ρ2/4 )] with increasing ρ. In this
case, the asymptotic behavior of G+(ρ; %) is well
described by the first term in (11).

The localization corrections to the conductivity in
classically strong fields (l & Rc) are expressed in terms
of the quantity P(ρ) = W|G±(ρ)|2, which is proportional
to the probability density of an electron being found at
the distance ρ from the point of its last collision. The
asymptotic expression (8) corresponds to the exponen-
tial distribution P(ρ) = exp(–ρ/l)/(2πρl) [5, 7], which is
valid only in the limit B  0. Approximation (11) is
more convenient, because it allows one to calculate
P(ρ) in a wide range of magnetic fields, up to kFRc ≈ 10,
and of distances min(lB, λF) < ρ < +∞, including the
vicinity of the classical turning point ρ ≈ 2Rc.

3 

Figure 2 shows the 2πρlP(ρ) dependence as calcu-
lated from the asymptotic expression (11) for different
values of the ratio l/Rc. At l ! Rc, the dominant contri-
bution to P(ρ) is from the electron motion along the
short arc of the cyclotron orbit. In this case, in the
region ρ < Rc, the 2πρlP(ρ) dependence is approxi-
mately described by its asymptotic expression in weak-
field range, ∝ exp(–ρ/l), but at ρ > 2Rc the exponential

falloff becomes sharper, ∝ exp(–ρ2/2 ). As the ratio
l/Rc is increased, the relative contributions to (11) both
from the electron motion along the long arcs of cyclo-
tron orbits and from turns in these orbits increase. As a
consequence, in P(ρ) terms that are due to the interfer-
ence of waves that traveled different paths up to the
given point appear. The P(ρ) dependence becomes
oscillatory in the 0 < ρ < 2Rc range, with oscillations
being clearly defined even at l ~ Rc.

These and some other features of the one-electron
Green’s function manifest themselves in the behavior of
the localization corrections to the transport coefficients
in the range of strong magnetic fields, where ωcτ ~ 1.

3 It is worth noting that if the analytic continuation kF  kF(1 +

i/kFl)1/2 is not carried out, that is, if kFl = ∞, then from (11) we

have G(ρ; %) ∝  ρ–1/2(1 – ρ2/4 )–1/4 [10], which is valid only

for ρ ! 2Rc, l.
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3. THE COOPERON BEYOND THE CLASSICAL 
DIFFUSION APPROXIMATION

The quantum corrections (5) and (6) to the conduc-
tivity are proportional to the cooperon C(r, r'), which is
represented in a diagrammatic notation by a series of
fan-shaped diagrams (Fig. 1). Since the system under
study is invariant under translations (on the average) in
a zero magnetic field, it is convenient to use the
momentum representation, in which the summation of
fan-shaped diagrams is readily performed and we
obtain

(13)

where q = |q| = |p + p'|, k± = k ± q/2, s = 1 + τ /τϕ.
In the long-wavelength limit (ql ! 1) and at a long

enough phase diffusion time (τ ! τϕ), we have P(q) =

(1 + τ /τϕ + q2D0τ)–1, where D0 = τ/2 is the classical
diffusion coefficient for a two-dimensional electron
system; hence, expression (13) has a conventional dif-
fusion approximation form [1]. In the opposite limit,
we have |P(q)| ! 1, and for this reason, it is generally
believed [7, 9] that the diffusion approximation to the
cooperon (13) is invalid beyond the ql ! 1 and τ ! τϕ
ranges. Indeed, at ql @ 1, the first several fan-shaped
diagrams dominate. These diagrams represent closed
paths of a small length ~ l, with a small number of col-
lisions. The electron motion along such paths is quasi-
ballistic, rather than diffusive, in character. However,
in the general case (with the proviso that q ! kF  and
τϕ%F @ 1), expression (13) also has the form of a diffu-
sion approximation propagator, namely,

(14)

where D(q, i/τϕ) is a generalized diffusion coefficient
(dependent on wavenumber q and frequency ω = i/τϕ),
calculated in the ladder approximation [18],

(15)

This is consistent with a general result [19] accord-
ing to which the presence in the irreducible four-leg
vertex of a diffusion pole such as in (14), with the exact
generalized diffusion coefficient, is due to the time
reversal invariance and conservation of the number of
particles. Therefore, the electron propagation remains
diffusive, but becomes nonlocal in character in the q
and τϕ ranges in question. The nonlocality is enhanced
with increasing relative contribution to the cooperon
from closed electron paths of small lengths, which
takes place for large values of q and 1/τϕ. The electron
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motion does cease to be diffusive, but this occurs on
atomic spatial and time scales (q ~ kF, τϕ%F ~1), where
electrons obey quantum-mechanical laws. Substituting
(15) in (14), we obtain an expression for the cooperon

C(q, ), which exactly coincides with that used in [5–
7]. For this reason, we focus here only on the physical
interpretation of the cooperon at large momenta.

In the presence of an external magnetic field, the
system ceases to be invariant under translations. In this
case, it is more convenient to treat the cooperon in the
coordinate representation, in which the following inte-
gral equation takes place:4 

(16)

where the kernel is given by

(17)

Obviously, the cooperon C(r, r') has the same struc-
ture; namely, it is the kernel of an integral operator
being diagonal in the basis of its eigenfunctions

(r), which describe a particle of charge 2e moving
in the magnetic field B. Its part invariant under transla-
tions has the form

(18)

Here, we have introduced the notation

(19)

where (x) is a generalized Laguerre polynomial

[Ln(x) = (x)].

Expressions (18) for the cooperon were derived by
Kawabata [5] for the case of a weak magnetic field
(ωcτ ! 1). However, they remain valid in the range of
quantizing magnetic fields (ωcτ @ 1) [11],5 if the one-
particle Green’s functions are calculated in the Landau
basis. This allows one to investigate the quantum cor-

4 Here and henceforth, the time dependence of the phase diffusion
time τϕ is not explicitly indicated for the sake of convenience.

5 Unfortunately, the expression used in [11] for Pn is true only for
large quantum numbers, n @ 1.
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rections to the conductivity tensor for both weak and
strong magnetic fields, up to the quantum limit.

The relation between the cooperon (18) and the dif-
fusion propagator can be easily obtained considering
the asymptotic expression for the cooperon in the range
of weak magnetic fields, where the coefficients Pn (as
may be inferred from the asymptotic behavior of the
Laguerre polynomials for n @ 1 [20]) tend to the Fou-
rier transform of the function P(ρ)

(20)

calculated at discrete values of the wavenumber qn =

/lB, where Jn(x) is the Bessel function of
order n.

The asymptotic expression (20) is valid with the

proviso that l2/  !  ! RckF = 2%F/ωc. The first
inequality determines the order of smallness of the cor-

rections to (20), which is ~l/( qn), while the second
inequality determines the lower limit (atomic spatial
scale) of the spatial region, ρ = |r – r'| @ λF, in which
the cooperon C(ρ) has the form of the diffusion propa-
gator. The second equality in (20) is obtained using (13)
and (14), which relate P(q) to D(q), the generalized dif-
fusion coefficient of electrons in a classical magnetic
field. The latter coefficient can be calculated indepen-
dently, by solving the transport equation in the relax-
ation time approximation. For the two-dimensional
system in the magnetic field we consider here, this
yields the following result:

(21)

In classical magnetic fields, expression (21) and the Fou-
rier transform (20), calculated using (11), coincide up to
the terms of the order of ωc/%F and q/kF. The classical
diffusion approximation to the cooperon in a magnetic
field is obtained by expanding (20) and (21) in a power
series in τ/τϕ and q2 and keeping the lowest-order terms.
This yields expression (14), in which D(q) is replaced by

DB = D0/(1 + τ2); hence, this approximation ignores
spatial dispersion of the diffusion coefficient and is valid

with the proviso that DB(4n + 2)τ/  !1.

Thus, in a magnetic field, the cooperon has the form
of the diffusion propagator (14) with the generalized
diffusion coefficient dependent on the discrete wave-

number qn = /lB, imaginary frequency i/τϕ, and
magnetic field B if, in the series in (18), the terms cor-
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responding to the range l2/  !  ! RckF are domi-
nant. As the magnetic field is increased, this range
becomes narrower and the cooperon gradually ceases
to have the diffusion propagator form. This is certain to

be the case in strong magnetic fields l2/  ~ RckF (or
ωcτ ~ 1), where the asymptotic expression (20) for the
coefficients Pn ceases to be true. At a fairly low mobility
of charge carriers [or large values of Btr = c"/(2|e|l2)],
this occurs well before the onset of the quasi-ballistic
propagation regime in the particle–particle channel and
is associated with the violation of the time reversal
invariance in a magnetic field.

4. QUANTUM CORRECTIONS TO THE 
LONGITUDINAL AND HALL RESISTIVITIES

An explicit calculation of the parameters ∆a and ∆b,
which determine the quantum corrections to the longi-
tudinal and Hall resistivities (7), is similar to that per-
formed in [9, 10]. For this reason, we will discuss only
the most important points, without going into detail.

Strictly speaking, all orders of multiple scattering,
starting from the second, contribute to ∆a and ∆b. How-
ever, the second-order scattering is insensitive to a
change in the magnetic field, because the closed paths
described by electrons envelop the zero area [6]. In this

case, the corrections are δρ(2) = O(B0) and δ  = O(B)
and, hence, they can be included in the longitudinal (ρ0)
and Hall ( ) resistivities at B  0, respectively. It
should be noted that, in strong magnetic fields, this can
be done, because expressions (7) for δρ and δρH
involve no kinematic factors.

When calculating the vector vertices

(22)

(ϕ is the polar angle of the vector r – r'), involved in the
quantum corrections (6), the noncommutativity of the
components of the velocity operator is ultimately
ignored in all theoretical studies on the NMR, including
the first papers [2, 5, 12, 14]. In terms of classical
mechanics, this is equivalent to ignoring the Lorentz
force acting on electrons moving in a magnetic field.
No wonder that such an approximation only slightly
affects quantum corrections to the longitudinal resistiv-
ity, but leads to zero corrections to the Hall resistivity.
This result was first obtained by Fukuyama [12] and is
now widely believed to be a characteristic feature of the
manifestation of localization effects in the galvano-
magnetic coefficients of disordered systems. Moreover,
scaling [21] and self-consistent [22] theories of the
Anderson localization predict that the relation ρH =
B/enc takes place near the mobility threshold on the
metal side of the metal–insulator phase transition (d > 2).
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The function K(ρ) is given by the following exact
expression:

(23)

where G+(ρ; %) is the translation-invariant part of the
one-electron Green’s function (9). In magnetic fields
weak enough for the asymptotic expression (11) for the
one-electron Green’s function to be valid, its variation
along an electron path is predominantly due to rapidly
oscillating phase factors ∝ exp(±iξ). In this case, the
first term in (23) is proportional to the radial component
of the electron velocity at the distance ρ from the point

of its last collision Vr =  = m–1∂ξ /∂ρ.
The second term is proportional to the tangential com-
ponent Vt = ωcρ/2, which is due to the Larmor preces-
sion of the electron path in the magnetic field. It is this
component of the vector vertex that was not taken into
account in the papers mentioned above. This compo-
nent is purely imaginary and depends on the sign of the
charge carriers; it leads to nonzero quantum corrections
(7) to the Hall resistivity. It is clear that the tangential
component in (23) leads to corrections to δρ in (7) of
the second order in the small parameter l/Rc in the range
of classical magnetic fields.

Further calculations are basically the same as in [9,
10], and we present only the final results:

(24)

where z = B/Btr = 2l2/ ,

(25)

In principle, these expressions allow one to analyze the
localization corrections to the resistivity tensor in the
entire range of magnetic fields, from classically weak
(ωcτ ! 1) to quantizing ones (ωcτ @ 1). In the latter
case, all calculations should be performed in the Lan-
dau basis. The results of [9, 10] for δρ follow from (24)
and (25) if, in the integrands in (25), one neglects rap-
idly oscillating terms involving the products G±G± of
one-type Green’s functions. This yields the approxi-
mate expressions
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which are true until the asymptotic expression (11) of
the one-electron Green’s function is determined by the
contributions from short arcs of cyclotron orbits. The
numerical results presented above (see Fig. 2) show
that this is a good approximation to 
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 2Rc/3. Thus,

strictly speaking, this inequality gives the upper limit of
the region where the corresponding results of [9, 10]
are valid. The tangential component of the vector ver-
tex (23) leads to the emergence of a nonzero imaginary
part in expression (24) for ∆. This is a new result,
which, contrary to popular opinion [3], predicts non-
zero localization corrections to the Hall resistivity.

In weak fields B ! Btr, the series in (24) converges
rather slowly. In this case, it is sufficient to replace the

coefficients An and  (25) by their asymptotic expres-
sions for n @ 1. Thus, we obtain the following expres-
sions for the corrections to the longitudinal and Hall
resistivities:

(27)

where Pn = P(qn), defined in (13) and (20). The first
terms in the square brackets in (24) and (27) are associ-
ated with coherent backward scattering, while the sec-
ond and third terms are due to scattering through arbi-
trary angles. The first equation in (27) is identical to the
corresponding equation derived in [9]. At B  0, the
sum in (27) can be replaced by an integral, which yields
asymptotic expressions that are logarithmically depen-
dent on temperature (through τϕ ~ T–p, with p ranging
from 1 to 2)

(28)

In the range of fairly weak magnetic fields (l ! lB !
lϕ, Rc), the field dependences of the corrections to the
longitudinal and Hall resistivities are also logarithmic,

δρ/ρ0 ~ δρH/  ∝  ln( /l2). In the opposite limit (lB !

l ! Rc), they change over to power laws δρ/ρ0 ∝  B–1/2
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[5, 6] and δρH/  ∝  B–3/2. The relative values of the
quantum corrections to the transport coefficients are of
the same order, (δρ/ρ0)/|δρH/ | ~ 1. The correction
δρ is always positive, whereas the sign of δρH is oppo-
site to that of charge carriers. In other words, the local-
ization corrections decrease the Hall resistivity in mag-
nitude.

Figures 3 and 4 show numerical calculations of the
quantum corrections to the longitudinal and Hall resis-
tivities for τ/τϕ = 10–2 and kFl = 10, which corresponds
to the carrier mobility µ ≈ 1.5 × 104 cm2 V–1 s–1 if their
concentration is 2πn = 1012 cm–2. If the contribution
from long arcs to the one-electron Green’s functions
(11) is neglected, the field dependences of ∆ρ/ρ(0) and

ρH0

ρH0

∆ρH/ρH(0) in the ωcτ < 1 region only slightly differ
from those calculated on the basis of the asymptotic
expression (8). In fields higher than those satisfying the
condition ωcτ ≈ 0.5, the longitudinal and Hall resistivi-
ties exhibit Shubnikov oscillations, which imposes an
upper limit on the validity range of our approximations.
In fairly strong fields (B > Btr), the field dependences
depart from logarithmic ones, but pure power laws
δρ/ρ(0) ∝  B–1/2 and δρH/ρH(0) ∝  B–3/2 are not observed,
because, for the parameters chosen, they take place
when B/Btr > 102 [8], i.e., far beyond the range of actual
fields.6 

5. DISCUSSION OF RESULTS

It was indicated above that, physically, the localiza-
tion corrections to the Hall resistivity are due to the pro-
cession of electron paths in the magnetic field. Its direc-
tion coincides with that of the cyclotron motion of elec-
trons, which leads to an increase in the Hall current or,
what is the same, to a decrease of ρH in magnitude. The
variation of δρH with increasing magnetic field is deter-
mined by two competing factors: on the one hand, a
decrease in the probability of coherent scattering due to
magnetic dephasing effect, and on the other, a increase
in the Larmor precession frequency.

At first glance, the statement that the localization
corrections to the Hall resistivity should be equal to
zero (at least, in the first order in 1/kFl) is physically
well founded (see, e.g., [3]). The point is that the inter-
ference effects do not lead to a change in the carrier
concentration, while the corresponding quantum cor-
rections to the transport relaxation time cancel each
other in the expression for ρH. This reasoning is quite
correct in the case where the Hall component of the
conductivity σyx has the form following from the clas-
sical kinetic equation in a magnetic field [see the first
term in (2)]. However, as was first shown in [23], σyx
contains terms for which there is no analog in the clas-
sical transport theory. The general structure of these
terms was analyzed in detail by Gerhardts [24]. It is
easy to verify that, to the first nonvanishing order in the
small parameter ωcτ, expression (5) for quantum cor-
rections to the Hall conductivity has the same form as
the first term on the right-hand side of equation (3.24)
in [24].

Thus, in contrast to the longitudinal resistivity, the
localization corrections to the Hall resistivity cannot be
explained by interference terms in the transport relax-
ation time [9]. These corrections are proportional to the
mean linear velocity of Larmor precession of closed
sections of electron paths, VL = 〈ωcρ/2〉 . We will illus-
trate this by the example of quantum corrections to the

6 Estimations show that, in classical fields (ωcτ < 1), these field
dependences may be observed in perfect heterostructures in
which, at a carrier concentration of 2πn = 1012 cm–2, their mobil-
ity is as high as µ ~ 105–106 cm2 V–1 s–1.
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Fig. 3. Negative magnetoresistance ∆ρ/ρ(0) = (ρ(B) –
ρ(0))/ρ(0): (a) contribution from coherent backward scatter-
ing, (b) contribution from scattering through arbitrary
angles, and (c) total. The curves are calculated from the
asymptotic expression (11) for G±(ρ) ignoring the contribu-
tion from long arcs of cyclotron orbits.

Fig. 4. Same as in Fig. 3 for the Hall resistivity ∆ρH/ρH(0) =
(ρH(B) – ρH(0))/ρH(0).
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Hall resistivity corresponding to Fig. 1a. They can be
written as

(29)

Here, Wn(r) is the probability density of an electron
enduring n collisions and then being found at the dis-
tance r from the point of its first collision [7]. A similar

expression can also be obtained for δ . Naturally,
there is no analog for these corrections in the classical
transport theory, because in that theory the processes
contributing to the transport relaxation time are consid-
ered as momentary events. The ratio VL/VF in (29) may
be thought of as being related to an additional Hall
angle, 2VL/VF = tanθWL, which is caused by the Larmor
precession of closed electron paths and differs from the
classical Hall angle, tanθ = ωcl/VF. In other words, in
the process of multiple scattering, there occurs accu-
mulation of an additional shift of electrons in the direc-
tion perpendicular to the current direction.

In our opinion, the results obtained in this paper
offer a clearer view of the physical nature of quantum
transport phenomena in disordered systems. In particu-
lar, they open up possibilities for the theoretical study
of these phenomena in the range of quantizing mag-
netic fields, in which some interesting experimental
data were recently obtained [25]. At the same time, they
raise a number of problems that remain to be solved.
For instance, in order to interpret the experimental data
more accurately, one should take a fresh look at the rel-
ative contributions from electron–electron interaction
and localization to the transport coefficients of two-
dimensional disordered systems [3, 15]. Also, the ques-
tion again arises on the behavior of the Hall coefficient
in the vicinity of the metal–insulator phase transition.
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Abstract—The effect of electronic-shell repulsion and electron–phonon interaction among atoms of an adsorp-
tion complex on the initial ion velocity is considered. © 2000 MAIK “Nauka/Interperiodica”.
The relaxation model of electron-stimulated desorp-
tion (ESD) [1] assumes that a description of the motion
of a desorbing ion should take into account the effect of
the local substrate field generated by the redistribution
of the electronic density after the adsorption bond rup-
ture. It was shown [2] that taking into account short-
range repulsion of electronic shells of the ions in an
adsorption complex (consisting of ion 1, coupled by an
adsorption bond to the metal surface, and ion 2, which
interacts directly only with ion 1) considerably affects
the energy distribution of the ESD ions. The energy dis-
tribution of ESD ions within the “classical” relaxation
model [1, 3], which only takes into account the Cou-
lomb interaction of ions with the image force, is
strongly asymmetric with the maximum shifted toward
lower kinetic energies; the inclusion of repulsion
results in an almost bell-shaped distribution and shifts
the maximum toward higher energies [2].

The effect of short-range repulsion of electronic
shells was taken into account in [2] parametrically, by
introducing a nonzero initial velocity v0 of the desorb-
ing ion. We are going to show here that a nonzero initial
ion velocity may arise not only as a result of short-
range repulsion, but due to electron–phonon interaction
in the adsorption complex as well, and to estimate the
magnitude of v0.

Consider first the short-range repulsion. We assume
that at the instant of time t = 0 the desorbing ion is acted
upon only by the potential

(1)

where r0 is the equilibrium position of ion 2. Then for
the equation of motion of this ion one can write

(2)

with the initial conditions r(0) = r0 and (0) = 0. Here
and in what follows, we use a dimensionless system of
units [3] in which all distances are measured in units of
the bond length d between the metal and atom (ion) 1
and time is in units of  = (Md3/e2)1/2 (M is the mass of

V rep r( ) B b r r0–( )–[ ] ,exp=

ṙ̇ bV rep r( )=

ṙ̇

t

)
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the desorbing ion and e is the positronic charge). Solu-
tions to this equation are

(3)

It thus follows that the limiting velocity acquired under

the action of the short-range potential is v0 = . It
is this value that we shall accept for the upper estimate
of the initial velocity.

As a specific example, we consider the adsorption of
alkali-metal atoms (Li, Na) on a monolayer silicon film
deposited on a tungsten or an iridium ribbon [4, 5].
Recalling that, in the Morse potential, whose first term is
potential (1), the binding energy is B, the latter quantity
can be equated to the desorption energy Edes. Because the
experiment [6] shows that, for desorption of alkali metals
from a monolayer silicon coating on tungsten, Edes dif-
fers only by one to two tenths of an electron-volt from
that for clean tungsten, we accept Edes(Li) = 2.98 and
Edes(Na) = 2.53 eV [7]. We thus obtain v0(Li) = 9.05 ×
103 and v0(Na) = 4.56 × 103 m/s. These values coincide
in order of magnitude with the sound velocity in a solid.
The effect of recoil processes on the initial velocity is
considered in Appendix 1.

We are turning now to another mechanism of the
formation of the initial velocity, namely, to the elec-
tron–phonon one. We shall consider interaction of a
one-electron atom with a metal surface using a Hamil-
tonian of the form

(4)

where

(5)

is the Hamiltonian of the metal,

(6)

r t( ) r0
2
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is the adatom Hamiltonian with inclusion of electron–
phonon interaction,

(7)

is the Hamiltonian describing the adatom interaction
with the metal, and, finally,

(8)

is the phonon Hamiltonian. Here, εk is the metal elec-
tron dispersion law; εa is the position of the adatom
quasilevel; γ is the electron–phonon coupling constant;
g is the hybridization constant between the metal and
adatom states; M is the desorbing adatom mass; ω0 is
the vibration frequency of the adatom located at a dis-
tance d0 from the metal and having the occupation num-

ber n0; and  and a+ are the operators of electron cre-
ation in the metal and at the adatom, respectively. Note
that this Hamiltonian was used to describe the elec-
tronic and structural rearrangements in an adsorbed
layer [8–10] and surface reconstruction of metals [11]
and semiconductors [12, 13].

Using Eqs. (5)–(8), one can show [8, 9] that as the
adatom filling by electrons changes from n0 to n =
〈a+a〉 , the equilibrium adatom–metal distance changes
from d0 to d, so that

(9)

Thus, it follows that a decrease of the adatom occupa-
tion number should be accompanied by an increase of
its distance from the metal, i.e., by outward relaxation.

An estimate of the parameter ζ = (γ/M ) made in
Appendix 2 shows that ζ ≅  2–4 Å, a far from insignifi-
cant figure. It should also be borne in mind that the
electron–phonon Hamiltonian (4) is written for small
variations of the adatom occupation number, so that
directly applying expression (9) to the case of abrupt
adatom ionization is generally not valid. It may, how-
ever, be conjectured that the sign of the relaxation (out-
ward or inward) is correctly predicted by (9). Note that
such a structural rearrangement should occur with a
velocity close to the velocity of sound. If this occurs
after the bond connecting atoms 1 and 2 with masses
M1, 2 has ruptured, the latter atom acquires a velocity of
the order of (M2/M1)v1, where v1 is the velocity with
which atom 1 collides with atom 2.

Thus, theoretical estimates show that the initial
velocity of an ESD ion is of the order of the sound
velocity. It is interesting that in [14] the temperature
dependence of the ESD ion yield in the Na–Si/W sys-
tem was obtained for a reversible desorption mecha-
nism within the relaxation model, i.e., with inclusion
not only of the initial velocity v0 but of the Coulomb
forces as well. By fitting this temperature dependence
to experiment, the initial velocity of an ESD ion was

Ham g ck
+a h.c.+( )

k

∑=

Hph Mω0
2/2( ) d d0–( )2 M/2( ) ḋ( )2

+=

ck
+

d d0– γ/Mω0
2( ) n n0–( ).–=

ω0
2
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found to be 1.39 × 103 m/s, which also coincides in
order of magnitude with the sound velocity. Thermal
vibrations can likewise contribute to the initial impact
ejecting ion 2 out of its adsorption fragment [14].
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APPENDIX 1
Consider a system consisting of a linear diatomic

“molecule” adsorbed on a metal surface. Let atom (ion) 1
closest to the surface be located at point r = d0, and
atom (ion) 2 be at point r = r0 (the distance r is mea-
sured from the metal surface). Before the system exci-
tation by outer electrons, the interaction of atom 1 with
a surface metal atom can be described by the Morse
potential V1 of the form

The interaction of atom 1 with atom 2 can be written as

After the action of the outer shell electrons has rup-
tured the bond between atoms 1 and 2, the former atom
feels only repulsion from atom 2, i.e., only the first
component of the potential V2(r). Based on the equilib-
rium condition, one can show that atom 1 transfers to a
new equilibrium position d, with

where r ≥ r0 is the coordinate of the desorbing atom.
For r  ∞, atom 1 tends to return to the initial posi-
tion d0.

For C ! 1, we obtain δd = C/αd0 and v0 = [1 –
(b/2α)C]. Thus, taking into account the recoil effects
reduces the initial velocity. Note that the maximum
value C = bB/2αD may be anything but small in the
case of a surface molecule, where the binding energy of
atoms 1 and 2 considerably exceeds that of atom 1 with
the metal (B @ D).

APPENDIX 2
In [15], it was shown how one can calculate the ζ =

(γ/M ) parameter, which is the coefficient of propor-
tionality in (9), within Harrison’s model of bonding

orbitals [16]. Recalling that M  = k, where k is a force
constant describing the response to a change in the

V1 r( ) = D 2α r d0–( )–[ ] 2 α r d0–( )–[ ]exp–exp{ } .

V2 r( ) B b r r0–( )–[ ]exp 2
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bond length between an atom of the substrate and a sil-
icon atom, we obtain

Here, V2 is the covalent bound energy, αc is the cova-
lency, s = 7/2, and n = 4 [17]. The calculations were car-
ried out for silicon atoms adsorbed on tungsten and iri-
dium. Two cases were considered, namely, of the sub-
strate atom d orbital connected (a) with the silicon-
atom p orbital and (b) with the silicon sp3 orbital. The
values obtained for the Si/W system are as follows:
(a) ζ = 1.46 and (b) ζ = 1.22 Å. In the Si/Ir case, ζ is (a)
4.25 and (b) 2.36 Å.
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Abstract—The linewidths (inverse lifetimes) Γe–e of Be(0001) and Mg(0001) surface electronic states are cal-
culated as the projection of the imaginary part of the self-energy operator of a quasiparticle onto the state. The
screened Coulomb interaction is calculated using a model potential, which takes into account the energy gap in
the band structure and a surface state located in this gap. The wave functions and energies of electron states are
calculated by a self-consistent film pseudopotential method. It is shown that Γe–e essentially depends on the
position of the surface state in the Brillouin zone. The difference between the calculated values of Γe–e and those
obtained in a homogeneous electron gas model is shown to be basically due to transitions from surface bands.
© 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Angle-resolved photoemission spectroscopy
(ARPES) is widely used for studying various properties
of solids [1]. From the energy positions of peaks in
spectra obtained by this method, one can directly deter-
mine the three-dimensional energy band structure of
bulk materials, as well as the surface band dispersion.
In addition, photoemission spectra provide a great deal
of information about multi-body effects in the electron
system. For instance, an experimentally measured line-
width Γexp of surface states contains contributions from
inelastic electron–electron scattering, electron–phonon
interaction, and electron scattering by crystal structure
defects and impurities [1–8]. Also, the results depend
on the instrumental resolution [8] and experimental
conditions. Therefore, the experimentally measured
linewidths are determined by a variety of factors. Inves-
tigating the influence of these factors on measured
spectra is of great importance. Recently, some experi-
mental papers have been published [5–7] in which the
effect of surface imperfections and temperature on the
linewidths was studied. For copper, the contributions
from electron–phonon interaction and electron scatter-
ing by defects to the linewidth of surface states were
determined [5–7], which allowed one to find the surface
state linewidth Γe–e due to inelastic electron–electron
interaction. A comparison of these experimental values
and the results obtained in a homogeneous electron gas
(HEG) model in the framework of the Fermi liquid the-
ory by Landau [9] showed that, in spite of the precision
measurements, the experimental values of Γe–e of
Cu(111) surface states were 4–6 times higher than the
theoretical value [5–7]. Similar discordances were also
observed for surfaces of other noble [10, 11], as well as
1063-7834/00/4207- $20.00 © 21373
simple, metals. For example, for a Be(0001) surface
state at the center of the Brillouin zone, the experimen-
tal linewidths are 350–440 meV at room temperature
[12–14]. Using the temperature dependence of the lin-
ewidth Γexp presented in [13], and assuming that the
contribution from defects is similar to that in the case
of the Cu(111) surface [6], one may evaluate the Γe–e for

a Be(0001) surface state at the  point to obtain a value
of about 300 meV. As with copper, this value is signifi-
cantly higher than a theoretical value of Γe–e = 92 meV
obtained in the HEG model [9] for the parameter rs =
1.87 corresponding to bulk beryllium. For another sim-
ple metal, Mg, ARPES measurements of the (0001)

surface state linewidth at the  point gave values of
about 200 [15] and about 500 meV [16], which greatly
differ from each other and are much higher than Γe–e =
60 meV, obtained in the HEG model.

This raises the question of whether the discordance
is due to the measurement accuracy not being enough
or to a weakness of the theory. It is possible that, an
extra damping mechanism, such as that considered in
[7], operates in this case. (In [7], an additional broaden-
ing of the surface state line is attributed to electron scat-
tering by a particular kind of defects that cannot be
detected by the low-energy electron diffraction
method). In [9], calculations were performed in the
framework of the HEG model, which does not take into
account the energy band structure of the metal and the
surface effects. In this model, in the vicinity of the
Fermi level EF, the linewidth Γe–e of a quasiparticle
associated with electron–electron interaction is propor-
tional to the squared deviation of the quasiparticle

Γ

Γ
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energy E from EF,

(1)

where Γ0 is a parameter, which depends only on the
electron gas density of the metal in question [3] (the lin-
ewidth Γe–e is related to the lifetime τ of a quasiparticle
by the Heisenberg relation Γe–eτ = 1 a.u. = 660 meV fs).

In this paper, we calculate the natural linewidth Γe–e
of surface states with due account of the three-dimen-
sional atomic structure of the crystal. The method
employed here is a generalization of that used in [17]
for calculating the linewidth of the states of the image
potential. These states are located predominantly out-
side the crystal [18, 19]. Therefore, the calculation of
the linewidth of these states in the quasi-homogeneous
approximation is justified. Compared to the image
states, the surface states overlap with bulk electron
states much more generously and, hence, the surface
roughness should affect the linewidths of the surface
states more strongly. We calculate the initial and final
states of quasiparticles by a self-consistent film pseudo-
potential method, while the screened Coulomb interac-
tion is calculated as in [17]. Using this approach, we
find the natural linewidth Γe–e of Be(0001) and
Mg(0001) surface states. As is well known, the elec-
tronic structure of Mg is adequately described in terms
of the approximation of nearly free electrons. The
pseudopotential of magnesium is fairly weak, and its
energy band structure has narrow gaps [20]. Mg(0001)
surface electron states are weakly localized near the
surface atomic layer and extend deep into the metal [21,
22]. In contrast, the energy band structure of Be differs
essentially from that of free electrons. For instance, in
bulk beryllium, the density of states at the Fermi level
is very low and, in this respect, Be is more like a semi-
conductor than a metal [23]. The dissimilarity of beryl-
lium from typical nontransition metals is due to its
strong ionic pseudopotential. The surface electronic
structure of beryllium is characterized by wide energy
gaps near the Fermi level, within which well-defined
surface states are localized [12, 22–25]. Therefore,
using these two s–p metals as an example, one may
investigate two extreme cases of the influence of the
energy band structure and of the surface on the lifetime
of surface states.

1. CALCULATION TECHNIQUE

The natural linewidth Γe–e, which is equal to the
reciprocal of the lifetime τ of a quasiparticle (hole, in
our case) in a state characterized by wave vector ,
energy , and wave function , is determined
as the projection of the imaginary part of the self-

Γ e–e Γ0 E EF–( )2,=

q
E0q Ψ0q r( )
P

energy operator Σ of a quasiparticle onto the state,

(2)

Here and henceforth, we use the standard notation in
which two-dimensional vectors are marked with an
overscribed bar, G = { , Gz}, and also, the atomic
units are used in which e2 = " = me = 1. The self-energy
operator Σ is calculated in the GW approximation [26],
in which only the first-order term is retained in the
expansion of Σ in powers of the screened Coulomb
potential W. Replacing the Green’s function G by its
zero-order approximation (Green’s function for the
system of “noninteracting” particles), ImΣ is easily
obtained to be

(3)

where the summation is carried out over all states char-
acterized by wave functions (r) and energies  in

the range from the energy  to the Fermi energy EF.
The screened Coulomb potential W(r, r'; E) is given by

(4)

Here, ε–1(r, r''; E) is the inverse dielectric function and
V(r'' – r') is the Coulomb potential. In the random phase
approximation, ε–1 and the response function χ are
related by an equation, which can be symbolically writ-
ten as

(5)

Thus, in order to calculate the linewidth Γe–e by for-
mula (2), we need to find the wave functions and ener-
gies of the states and the dielectric function ε. These
quantities are calculated in the model of thin films,
which are regularly arranged one above another parallel
to the surface under study and separated by equal vac-
uum gaps. The number of atomic layers is taken to be
20 and 26 for Be(0001) and Mg(0001), respectively.
The origin of coordinates is at the center of a film, with
the z axis being normal to the surface.

The wave functions and energies of the initial and
final states are calculated by the self-consistent pseudo-
potential method. The exchange-correlation potential is
written in the local-density approximation [27, 28]. The
nonlocal and norm preserving pseudopotentials of
beryllium and magnesium are constructed according to
[29, 30]. In the expansion of the wave functions

(6)

Γ e–e τ 1–=

=  2 r r'Ψ0q
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-------- cnk G( ) i kr Gr+( )( )exp
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∑=
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we keep all plane waves with energies up to 15 Ry for
Be and 5 Ry for Mg. In (6), Ω is the crystal volume and
G is a reciprocal lattice vector.

An ab initio calculation of the screened Coulomb
potential W for a surface with due account of the three-
dimensional atomic crystal structure is a very labor
intensive computational problem. For this reason, we
calculate W by a method proposed in [17], using a one-
dimensional model potential [31, 32]. This potential
reproduces the energy gap at the  point of the surface
Brillouin zone and the proper binding energies of the
surface state and of the first image state and allows one
to adequately describe the dependence of the screened
Coulomb potential W on the coordinate z. Ignoring the
x and y dependences in calculating W does not signifi-
cantly affect the calculated linewidths because, as was
demonstrated in [17], Γe–e does not depend critically on
the form of approximations to W. Thus, we write W as
a Fourier series

(7)

where L is the normalization length and  is a two-
dimensional wave vector. Similar Fourier series are
also written for V and χ, and we obtain the following
expression for W(z, z'; ; 0):

(8)

Here, V(z, z'; ) and χ(z, z'; ; E) are the two-dimen-
sional Fourier transforms of the Coulomb potential and
response function, respectively. In the random phase
approximation, χ(z, z'; ) obeys the integral equation

(9)

where χ0(z, z'; ; E) is the response function of “non-
interacting” particles. We use the following expression
for this function [33]:

(10)

Γ

W r r'; E,( ) 1

L
2

----- W z z' q; E, ,( ) iq r r'–( )( ),exp
q

∑=

q

q

ImW z z'; q; E,( ) dz1 dz2V z z1; q,( )∫∫=

× Imχ z1 z2; q; E,( )V z2 z'; q,( ).

q q

q

χ z z'; q; E,( ) χ0
z z'; q; E,( ) dz1∫+=

× dz2χ
0

z z1; q; E,( )V z1 z2; q,( )χ z2 z'; q; E,( ),∫

q

χ0
z z'; q; E,( )

=  Ell' q; E( )ϕ l z( )ϕ l' z( )ϕ l z'( )ϕ l' z'( ),
l' 1=

∞

∑
l 1=

EF

∑
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where

and

Here, η is an infinitely small parameter, θ is the Heavi-
side function, and  is a two-dimensional reciprocal
lattice vector. The wave functions ϕl(z) and energies εl

in (10) are found by solving the Schrödinger equation
with a one-dimensional model potential [31, 32] con-
structed for the films used in calculations. When calcu-
lating W, we use the double Fourier transformation

(11)

Here, –T/2 < z, z' < T/2; g = 2πn/T (n = 0, 1, 2, 3, … for
cosine transformations and n = 1, 2, 3, … for sine trans-
formations); and T is the length of the unit cell along
the z axis.

Using the approximations and expansions men-
tioned above and converting the sum in (3) to an inte-
gral, we perform the summation of (2) over a set of
points of the Brillouin zone and arrive at the following
expression for Γe–e:

(12)

Fll' q; E( ) 1

L
2

----- f Q l,
1

qQ q2/2 εl– εl' E iη+ + + +
--------------------------------------------------------------------





–=

+
1

qQ q2/2 εl– εl' E– iη–+ +
-------------------------------------------------------------------





f Q l, 2θ EF εl– Q
2

2
------– 

  .=

Q

W z z' q; E, ,( ) Wgg'
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g g',
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g g', 0≠
∑

Γ e–e
1

2S
------ 1

NR
------- wn k( )

E0q E
nk EF≤ ≤

∑
k

∑=

× Wgg'
c q Rk GA; E0q Enk–+–( )

g g',
∑





GA

∑
R

∑

× Bn0
+ q Rk; GA g,,( )Bn0

+ q Rk; GA g',,( )

+ Wgg'
s q Rk GA; E0q Enk–+–( )

g g', 0≠
∑

× Bn0
– q Rk; GA g,,( )Bn0

– q Rk; GA g',,( )




,

0



1376 SILKIN, CHULKOV
where we have introduced the notation

(13)

In (12), the summation is performed only over an irre-

ducible part of the surface Brillouin zone, with  run-
ning over an 18 × 18 set of points [34]; S is the area of
a surface unit cell; NR is the number of elements R of

the point symmetry group; and wn( ) are the weight
factors of the Brillouin zone points, normalized to N/ 2,
where N is the number of electrons in a unit cell. In the
energy range under consideration, the matrix elements

( , E) and ( , E) rapidly decrease as the

vector  increases in magnitude. Therefore, in the sum

over the two-dimensional reciprocal lattice vectors 
in (12), one may keep only several vectors of the small-
est magnitude. In the sum over g, terms are kept up to

 = 5 Ry for Mg and  = 7 Ry for Be, which cor-

responds to matrices Wc and Ws of rank 70. The results
remain unchanged with increasing rank of the matrices.
In (13), the expansion coefficients (G) correspond-

ing to vectors G of smallest magnitude are dominant
and there is no need to keep all the G for which the
energy spectrum is calculated. Checking the calcula-
tions shows that it is enough to keep about ~500 differ-
ent G in (13) for the results to converge.

Bn0
± q Rk; GA g,,( ) cnk G( ) c0q RG GA+ ,([

G

∑=

Gz g+ ) c0q RG GA+ Gz g–,( )± ] .

k

k

Wgg'
c k Wgg'

s k

k

GA

gmax
2

gmax
2

cnk

–1
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É ää
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Energy, eV

Fig. 1. Electronic structure of the Be(0001) surface. The
shaded regions are the projection of bulk states. Surface and
resonant states are indicated by dashed lines. Arrows sym-
bolically indicate possible transitions that make a significant

contribution to the surface state damping at the  and 
points.

Γ M
P

2. RESULTS AND DISCUSSION

Figure 1 shows the electronic structure of the
Be(0001) surface calculated by the pseudopotential
method. It is seen that, in the vicinity of the Fermi level,
there are wide energy gaps, in which surface states are
localized. The wave functions of the surface state at the

 point and of the upper surface state at the  point
are strongly localized near the surface layer and only
slightly penetrate into the bulk of the crystal [22]. The
lower surface state at the  point has a much less pro-
nounced surface character; the charge density is maxi-
mal near the third surface atomic layer [22]. In the fig-
ure, the arrows symbolically indicate possible electron
transitions involving the surface states at the  and 
points. For example, the linewidth of the state at the 
point is determined fundamentally by electron transi-
tions from bulk states and by intraband transitions from
this surface state. The contribution to the linewidth of
this state from transitions from the surface states near
the  point does not exceed 2% of the calculated total
linewidth and will not be considered in what follows. A
negligibly small contribution is also made to the line-
width of the upper surface state at the  point from the
lower surface state band. For Be(0001), the linewidth of
the surface state at the  point calculated by the
method described in the previous section is obtained to
be 315 meV. For the upper and lower surface states at
the  point, the calculated values of Γe–e are 95 and
110 meV, respectively. In order to investigate the
dependence of the linewidth of states on their binding
energy, similar calculations of Γe–e are performed for
the surface states at a number of  points along the
symmetry directions , , and . From Fig. 1,
it is seen that the surface state band near the  point, as
well as the upper state band near the  point, extends
up to the Fermi level and above. This allows one to
investigate the behavior of the calculated linewidth as
the Fermi level is approached. It was shown in [22] that,
as one moves across the energy gaps, the spatial charge
density distribution in all three surface states changes
only slightly. In this case, the change in the calculated
values of Γe–e with variations in the energy of the state
is determined fundamentally by the phase space acces-
sible for damping. Figure 2 presents the energy depen-
dence of the linewidths of the three surface states cal-
culated for different  vectors (and, hence, for different
binding energies). The experimental values of the line-
width of the surface state at the  point are also indi-
cated in the figure. It is seen that the calculated line-
width for this point agrees with the experimental data.
As was noted above, subtracting the contributions due
to electron–phonon interaction and surface defects
from the experimental values Γexp will lead to some
decrease in the latter, and the agreement with the calcu-
lations will become even better. It is evident from Fig. 2
that, at the same energy, the Γe–e for different states dif-
fer greatly in value, by a factor of two or three for bind-
ing energies higher than about 0.6 eV. By comparison,
Fig. 2 also shows the Γe–e(E) dependences calculated in
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the HEG model [9] for the value of the parameter rs cor-
responding to Be. It is seen that, for two surface states,
the calculated Γe–e values are two or three times as large
as the HEG values at the same energies. At the same
time, the linewidth of the lower state at the  point is
close to that calculated in the HEG model.

To elucidate the reason for this difference, in Fig. 2a,
we present the energy dependences of the contributions
to the linewidth of the surface state near the  point
from bulk states and from intraband transitions from
this surface state. It is seen that, for this state, the dom-
inant contribution (as large as 75% of the line broaden-
ing) is from intraband transitions from this surface
state. At the same time, the contribution from bulk
states is close to its value in the HEG model [9].
Approximating the calculated Γe–e(E) dependence by
the power law

Γe–e = β(E – EF)α (14)

gives α ≈ 1.95, which is close to the value 2 obtained
for the exponent in the HEG model.

Figures 2b and 2c show analogous energy depen-
dences of the linewidth of the upper and lower surface
states near the  point, respectively. In contrast to the

state near the  point, the linewidth of these surface
states is dominated by several contributions that are
comparable in value. For the upper state, three contri-
butions are dominant: the bulk contribution, the one
from the state near the  point, and the one due to intra-
band transitions from the closest state to the surface.
For the lower state, there is also an additional contribu-
tion from transitions from the upper surface state near
the  point. The energy dependence of the linewidth
Γe–e(E) of these states, as well as that of the surface state

at the  point, is closely approximated by the power
law (14) with an exponent α close to 2. However, for
these surface states, in contrast to the state at the 
point, the contributions due to transitions from bulk
states are noticeably smaller than those obtained in the
HEG model [9]. For the lower state, this contribution is
dominant, because this state has a less pronounced sur-
face character [22].

For the Mg(0001) surface, the variation of the line-
width of surface states with the point in the Brillouin
zone is different. Figure 3 shows the electronic struc-
ture for this surface near the Fermi level [22]. It is seen
that there is a single surface state in each of the narrow
energy gaps in the vicinity of the  and  points. The
energy dependences of Γe–e of these surface states are
presented in Fig. 4. From this figure, it is seen that, for
this surface, the Γe–e of the surface states differ from
each other only slightly in the same energy range and
differ from their values in the HEG model much less
than in the case of beryllium [9]. This figure also shows
the energy dependences of different contributions to the
linewidth. It is seen that, in contrast to the case of Be,
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the linewidth of these states is dominated by the bulk
contribution. For both states, the contributions from the
transitions from surface states are virtually equal in
value. As in the case of Be(0001), the bulk contribution
to Γe–e of the surface state at the  point is close to its
value obtained in the HEG model for the parameter rs =
2.65, corresponding to magnesium. The values of Γexp
obtained for the surface state at the  point from the
experimental photoemission spectra, Γexp ~200 [15]
and ~500 meV [16], are significantly larger than Γe–e =
92 meV, calculated in this paper, and than Γe–e = 60 meV,
given by the HEG model. Taking into account our
results for the Be(0001) surface and the dramatic dis-
cordance between the experimental data, we believe
that the principal causes of this disagreement between
the theory and experiment are inappropriate experi-
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Fig. 2. Dependence of the linewidth of Be(0001) surface

states on the binding energy for (a) the state at the  point,
(b) the upper and (c) lower states at the  point: (1) the lin-
ewidth Γe–e; (2, 3) the contributions to Γe–e due to transi-

tions from the surface state band at the  point and due to
interband transitions from bulk states, respectively; (4) the
contributions to Γe–e due to transitions from the upper sur-

face state band at the  point; (5) the contribution to Γe–e
due to intraband transitions from the lower surface state
band at the  point; and (6) the linewidth Γe–e in the HEG
model [9]. Triangles are experimental values of the surface

state linewidth at the  point [12–14].
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Fig. 3. Same as in Fig. 1, for the Mg(0001) surface.
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Fig. 4. Dependence of the linewidth of Mg(0001) surface

states on the binding energy for the states (a) near the  point
and (b) near the  point: (1) the linewidth Γe–e; (2, 3) the
contributions to Γe–e due to transitions from the surface state

band at the  point and due to interband transitions from
bulk states, respectively; (4) the contributions to Γe–e due to

intraband transitions from the surface state band at the 
point; and (5) the linewidth Γe–e in the HEG model [9].
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mental conditions and the fact that the experimental
values Γexp were strongly affected by the line broaden-
ing due to electron–phonon interaction and surface
defects. For this reason, it would be desirable to con-
duct photoemission spectrum measurements for this
surface using advanced sample preparation techniques.

Thus, the calculations performed for the Be(0001)
and Mg(0001) surfaces demonstrated that the transi-
tions from surface state bands play an important role in
the formation of the linewidth of these states. For both
surfaces, the major part of the difference between the
linewidths calculated in this paper and those obtained
in the HEG model [9] is due to these transitions. For
surface states situated in wide energy gaps, the contri-
bution from surface state bands increases the calculated
values of Γe–e by a factor of two or three. In the case of
the Be(0001) surface state at the  point, the inclusion
of this contribution allows one to obtain a Γe–e value
that agrees well with the recent experimental data [5–7]
and thus clears the discordance between the theory and
experiment. For the Mg(0001) surface, the band struc-
ture effects are much weaker, and the calculated line-
widths of surface states are much less divergent from
their respective values given by the HEG model. For
both surfaces in question, the linewidths of surface
states vary as the square of energy, with coefficients of
proportionality differing from those in the HEG model
and depending on the surface and the type of the sur-
face state.
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