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Hollow-core photonic-crystal fibers with a special dispersion profile are shown to allow phase-matched nonlin-
ear optical interactions of isolated air-guided modes of high-intensity femtosecond laser pulses confined in the
hollow fiber core. We present theoretical and experimental studies of the four-wave mixing of fundamental and
second-harmonic pulses of a Cr:forsterite laser with an initial pulse duration of about 50 fs and an intensity on
the order of 1014 W/cm2 in waveguide modes of a hollow photonic-crystal fiber with a core diameter of about
13 µm. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Wi; 42.81.Qb; 42.70.Qs
Nonlinear optics of high-intensity ultrashort laser
pulses is one of the most interesting and rapidly grow-
ing areas of optical physics. Nonlinear optical interac-
tions of high-intensity femtosecond laser pulses are at
the heart of several new physical phenomena, including
high-order harmonic generation [1, 2], and allow
unprecedentedly short, attosecond pulses to be synthe-
sized [3–5].

Hollow waveguides [6] are intensely used in modern
high-power laser systems that provide large nonlinear-
optical interaction lengths for intense laser pulses,
thereby improving the efficiency of nonlinear-optical
processes [7]. Such waveguides allow the efficient non-
linear-optical spectral transformations of high-intensity
ultrashort pulses with no damage of the waveguide core
as a result of optical breakdown. Self-phase modulation
[8] and stimulated Raman scattering [9] in a gas filling
the core of a hollow waveguide open the ways to syn-
thesize pulses as short as a few cycles of the optical
field. Hollow waveguides can also radically enhance
high-order harmonic generation [10–12] and improve
the sensitivity of gas-phase analysis based on four-
wave mixing spectroscopy [13, 14].

Air-guided modes in standard hollow waveguides
with a solid dielectric cladding are leaky [6], with the
loss magnitude scaling as λ2/a3 with the fiber inner
radius a and the radiation wavelength λ, which dictates
the choice of hollow waveguides with a core diameter
of 100–500 µm for nonlinear-optical experiments.
Such waveguides are essentially multimode, with
higher-order air-guided modes often having a notice-
0021-3640/04/7909- $26.00 © 20395
able impact on nonlinear-optical interactions of
ultrashort pulses [14, 15].

Optical losses of air-guided modes can be radically
reduced by using hollow fibers with a two-dimension-
ally periodic microstructure cladding—photonic-crys-
tal fibers (PCFs) [16, 17]. The periodic structure of the
cladding in such fibers gives rise to photonic band
gaps—frequency ranges where radiation cannot pene-
trate into the periodic structure. The reflectivity of the
periodic cladding within these frequency ranges is
much higher than the reflectivity of the cladding mate-
rial, substantially reducing the losses of air-guided
modes in the hollow fiber core [16–18]. Hollow PCFs
can support isolated modes guided in the gas filling the
PCF core [17, 18], radically enhancing a broad class of
nonlinear-optical interactions in the gas phase, includ-
ing stimulated Raman scattering [19], four-wave mix-
ing (FWM) [20], and self-phase modulation [21].
Recent experiments [22] have demonstrated a transmis-
sion of megawatt optical pulses in hollow PCFs in the
regime of temporal solitons.

In this work, we will show that hollow-core PCFs
with a special dispersion profile allow phase-matched
nonlinear-optical interactions of isolated air-guided
modes of high-intensity femtosecond laser pulses con-
fined in the hollow fiber core. We will present theoreti-
cal and experimental studies of the four-wave mixing of
fundamental and second-harmonic pulses of a Cr:for-
sterite laser with an initial pulse duration of about 50 fs
and an intensity on the order of 1014 W/cm2 in
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waveguide modes of a hollow PCF with a core diameter
of about 13 µm.

Hollow-core PCFs designed for the purposes of
these experiments had a period of the photonic-crystal
cladding of about 4.6 µm and a core diameter of
approximately 13 µm. A typical structure of the PCF
cross section is shown in inset 1 in Fig. 1. The PCFs
were fabricated with the use of a standard technology,
described in detail elsewhere [18]. Transmission spec-
tra of hollow-core PCFs display characteristic well-
pronounced isolated passbands, related to the photonic
band gaps of the cladding. The passbands in PCF trans-
mission were tuned by changing the structure of the
fiber cladding [23].

To design the dispersion of waveguide modes and
transmission spectra of hollow PCFs, we developed a
numerical procedure solving [24] the vectorial wave
problem for the transverse components of the electric
field, Ex(x, y) and Ey(x, y):
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Fig. 1. The mismatch δβ = β3ω –  –  + βω of the

propagation constants βω, , , and β3ω of air-guided

modes involved in the four-wave mixing 3ω = 2ω + 2ω – ω
(2ω and ω are the frequencies of the pump field) in a hollow
PCF with a period of the photonic-crystal cladding equal to
4.6 µm and a core diameter of approximately 13 µm. The
insets show (1) an image of the PCF cross section and (2)
intensity profiles for the air-guided modes of the hollow
PCF involved in the FWM process.
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where β is the propagation constant, k is the wave num-
ber, ∇ ⊥  is the gradient operator in the (x, y) plane, and
n(x, y) is the profile of the refractive index.

The transverse distribution of the electric field in the
PCF cross section is represented as a series expansion
in a set of orthonormalized Hermite–Gauss polynomi-
als:

(3)

The profile of the refractive index is expanded in
Hermite–Gauss polynomials and a set of orthogonal
periodic functions:

(4)

where Nd and Np are the dimensions of the basis of
expansion functions; Dn, m and Pk, l are constant coeffi-
cients; Tx and Ty are the periods of the structure of the
PCF cladding along the x and y axes, respectively; and
Λ and ω are the spatial scales of the PCF cross section
[24]. Dispersion and mode properties of hollow PCFs
were simulated with field and refractive-index expan-
sions in 80 × 80 Hermite–Gauss polynomials and 150 ×
150 trigonometric functions.

Substitution of series expansions (3) and (4) into
wave equations (1) and (2) reduces the initial problem
to an eigenfunction and eigenvalue problem of a matrix
equation, which allows the propagation constants and
transverse field profiles to be determined for the air-
guided modes of hollow PCFs. Figure 1 displays the
mismatch δβ = β3ω –  –  + βω of the propagation

constants βω, , , and β3ω of air-guided modes in
the PCF involved in the FWM process 3ω = 2ω + 2ω –
ω (2ω and ω are the frequencies of the pump field). The
results presented in this plot indicate a nearly perfect
phase matching for the FWM of the fundamental mode
of fundamental radiation ω of a Cr:forsterite laser, the
fundamental mode of one of the second-harmonic
fields 2ω, a higher order guided mode of the other sec-
ond-harmonic field 2ω, and a higher guided mode of the

∇ ⊥
2

k2
------- n2 x y,( )+ Ey

+
1

k2
---- ∂

∂y
----- Ex

∂ n2( )ln
∂x

------------------ Ey
∂ n2( )ln

∂y
------------------+ 

  β2

k
2

-----Ey,=

Ex ξn m,
x ψn

x
Λ
---- 

  ψm
y
Λ
---- 

  ,
n m, 0=

F 1–

∑=

Ey ξn m,
y ψn

x
Λ
---- 

  ψm
y
Λ
---- 

  .
n m, 0=

F 1–

∑=

n2 x y,( ) Dn m, ψn
x
w
---- 

  ψm
y
w
---- 

 
 
 

n m, 0=

Nd 1–

∑=

+ Pk l,
2πkx

T x

------------ 
  2πly

Ty

----------- 
  ,coscos

k l,

Np 1–

∑

β2ω' β2ω''

β2ω' β2ω''
JETP LETTERS      Vol. 79      No. 9      2004



PHASE-MATCHED FOUR-WAVE MIXING OF ISOLATED WAVEGUIDE MODES 397
Fig. 2. Diagram of the femtosecond laser system for the investigation of nonlinear-optical interactions of high-intensity ultrashort
laser pulses in a hollow photonic-crystal fiber.
nonlinear signal (see inset 2 in Fig. 1). The phase
matching, as can be seen from Fig. 1, is achieved within
a spectral range with a width of about 10 nm, allowing
the highly efficient FWM of broadband, femtosecond
laser pulses. The results of our experiments, presented
below in this paper, are fully consistent with this theo-
retical analysis.

The laser system employed in our experiments
(Fig. 2) consisted of a Cr4+:forsterite master oscillator,
a stretcher, an optical isolator, a regenerative amplifier,
a compressor, and a crystal for frequency doubling. The
master oscillator, pumped with a fiber ytterbium laser,
generated 30–50 fs light pulses with a repetition rate of
120 MHz, a central wavelength of 1250 nm, and a mean
power of about 180 mW. These pulses were then trans-
mitted through a stretcher and an isolator to be ampli-
fied in a Nd:YLF-laser-pumped amplifier. Amplified
pulses with an energy up to 100 µJ were recompressed
to a 50–100 fs pulse duration in a grating compressor.
Approximately 50% of the radiation energy was lost at
this stage. An LBO crystal was used to generate the sec-
ond harmonic of amplified Cr:forsterite-laser radiation.

Femtosecond pulses of 1.25-µm fundamental radia-
tion and 625-nm second-harmonic radiation of the Cr:
forsterite laser with pulse energies ranging from 0.1 up
to 10 µJ were used as pump fields ω and 2ω in the
FWM process 3ω = 2ω + 2ω – ω. These pulses were
coupled into a 5-cm hollow PCF with the period of the
cladding equal to 4.6 µm and a core diameter of about
13 µm, placed on a three-dimensional translation stage,
with a standard microobjective. Fundamental radiation
was focused in such a way as to provide the maximum
efficiency of beam coupling into the fundamental mode
of the PCF (inset 1 in Fig. 3). The second harmonic was
coupled into a mixture of the fundamental and higher-
order air-guided modes (inset 2 in Fig. 3). The FWM of
these two pump fields induced by the third-order non-
linearity of the atmospheric-pressure air filling the PCF
resulted in the generation of a signal with a central
wavelength of 417 nm (Fig. 3). The maximum effi-
ciency of FWM frequency conversion achieved in our
experiments is estimated as 0.2%. Because of a poor
phase matching, direct third-harmonic generation 3ω =
JETP LETTERS      Vol. 79      No. 9      2004
ω + ω + ω, giving rise to a nonlinear signal with the
same central wavelength, was several orders of magni-
tude less efficient in our experiments than the two-color
FWM 3ω = 2ω + 2ω – ω.

Analysis of the transverse intensity profile of the
FWM signal at the output of the hollow PCF shows that
the nonlinear signal is generated in a stable isolated
well-resolved higher-order air-guided mode of the PCF
(inset 3 in Fig. 3). This finding agrees well with our the-
oretical analysis of phase matching for the considered
FWM process in the hollow PCF (cf. inset 2 in Fig. 1
and insets 1–3 in Fig. 3). We can argue, therefore, that
the spatial beam profile of the FWM signal generated in
a PCF as a result of nonlinear-optical interaction of iso-
lated air-guided modes of pump radiation is dictated
and stabilized by phase-matching conditions. This
remarkable property of FWM in a hollow PCF provides
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Fig. 3. The spectrum of the FWM signal generated in the
hollow photonic-crystal fiber by the pulses of fundamental
radiation and the second harmonic of the Cr:forsterite laser
with input energies of 2 and 3 µJ, respectively. The initial
duration of the pump pulses of fundamental radiation is
about 50 fs. The insets show the spatial beam profiles mea-
sured for the fundamental (1) and second-harmonic
(2) pump beams and the FWM signal (3) at the output of the
PCF.
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a high beam quality of the nonlinear signal at the output
of the fiber and suggests an exciting opportunity of
mode-controlled nonlinear-optical processing of high-
intensity laser pulses.

The spatial beam profile of the FWM signal at the
output of the PCF remained stable up to an energy of
input pump pulses of about 6 µJ, corresponding to a
light-field intensity of about 9 × 1013 W/cm2. Spatial
self-action and ionization effects started to play a
noticeable role above this level of input laser intensi-
ties, leading to instabilities and distortions in output
beam profiles of the pump and FWM fields. Laser
pulses with energies exceeding 10 µJ produced optical
damage on PCF inner walls in our experiments, result-
ing in an irreversible degradation of fiber transmission
and a substantial lowering of the FWM efficiency.

The results of experimental and theoretical studies
presented in this paper show that hollow-core photonic-
crystal fibers with a special dispersion profile allow
phase-matched nonlinear-optical interactions of iso-
lated air-guided modes of high-intensity femtosecond
laser pulses confined in the hollow fiber core. Phase
matching of isolated air-guided modes of high-intensity
femtosecond laser pulses involved in nonlinear-optical
interactions in a hollow PCF provides a high efficiency
of frequency conversion for ultrashort laser pulses with
an intensity on the order of 1014 W/cm2 and stabilizes
the spatial intensity profile of the output FWM signal.
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ment Foundation (CRDF, project no. RP2-2558),
INTAS (project nos. 03-51-5037 and 03-51-5288), and
the European Research Office of the United States
Army (contract no. 62558-03-M-0033).
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Measurements of X-Ray Absorption Spectra
by the Prism Spectroscopy Method
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X-ray absorption spectra of a number of samples were measured in the range 5–30 keV by the prism spectro-
photometry method. The spectral decomposition was performed using an optically polished diamond prism
with an opening angle of 90°. The absorption spectra of liquid bromonaphthalene are presented as an example.
An energy resolution of 100–130 eV was achieved in the energy range of ~10 keV, providing the unambiguous
identification of elements by jumps in the K photoabsorption. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 07.85.Nc; 41.50.+h
The possibility of the spectral decomposition of
X radiation using a diamond prism has been substanti-
ated in recent works [1–3] and experimentally tested
through recording intense X-ray tube emission spectra.
It is evident, however, that only the possibility of deter-
mining the sample composition from the absorption
spectra is a criterion for the practical importance of the
suggested method.

In this work, an improved spectrometer scheme is
described that provides a manyfold increase in the sen-
sitivity and accuracy. It was used to record the X-ray
absorption spectra of a number of samples by the prism
spectroscopy method.

It is known that the width of the K-absorption jump
is ∆EK ~ ΓK [4], where ΓK is the width of an atomic level
in the K shell (1s state). According to [5], ΓK varies
within 0.5–50 eV for the majority of chemical ele-
ments. The energy shift ∆EC caused by the chemical
bonding of atoms ordinarily does not exceed 1–4 eV [6,
7]. At the same time, the difference ∆EB = EK(Z + 1) –
EK(Z) in the K-electron binding energies of atoms of the
neighboring elements in the periodic table is equal to
0.5–2.5 keV for Z > 20. That is, ∆EB @ ∆EK and ∆EB @
∆EC. Thus, measurements of the positions of K-absorp-
tion jumps with a resolution no worse than ∆EB/2 allow
the practically unambiguous identification of elements
entering the sample composition. With minor reserva-
tions, this statement can be extended to the L-absorp-
tion jumps for the elements with Z > 50.

The X-ray optical scheme of a prism spectrometer in
the measurement plane is shown in Fig. 1. Sharp-focus
X-ray tube 1 with a copper anode serves as a radiation
source. The sizes of the focus projection onto the plane
normal to the analyzed beam are 40 µm in the measure-
ment plane and 8 mm in the perpendicular direction.
Two X-ray goniometers 5 and 11 are placed in the beam
0021-3640/04/7909- $26.00 © 20399
path. A diamond prism with the opening angle α = 90°
between the refracting faces is placed at the axis of the
first goniometer. The prism is made from a single crys-
tal of natural diamond. The angle of incidence ϕ of a
primary beam on the prism entrance face was chosen to
be ~1 mrad. With these values of α and ϕ, the radiation
passes through the entrance face almost without deflec-
tion, so that the beam glancing angle relative to the exit
face is θ = ϕ. The advantages of this spectrometric
geometry were substantiated in our work [3]. The area
of the refracting face is 12 mm2. The first goniometer is
designed for the prism angular tuning against the spec-
ular reflection from the refracting face. The tuning is
accomplished using detector 10, ahead of which a
monochromator 8 is placed to set off the CuKα line
(0.154 nm). The second goniometer serves for the
angular displacement of main detector 13 containing a
1-mm-thick NaI(Tl) crystal and a photomultiplier. This
provides a ≥90% efficiency of quantum detection in the
energy range E < 30 keV.

Fig. 1. Scheme of a prism spectrometer: (1) X-ray tube;
(2, 3) collimator slits; (4) sample; (5, 11) goniometers;
(6) diamond prism; (7) absorbing screen; (8) monochroma-
tor; (9, 12) receiving slits; (10, 13) radiation detectors;
(14) pumped-out collimator.
004 MAIK “Nauka/Interperiodica”
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The distances from the X-ray-tube focus to the prin-
cipal axes O1 and O2 of goniometers 5 and 11 are equal
to 330 and 1161 mm, respectively, and from the axes O1

and O2 to detector slits 9 and 12 are equal to 225 and
192 mm, respectively. Since the spectrum is decom-
posed on the O1 axis, while the detector is rotated about
the O2 axis, the scheme provides a factor-of-(L + R)/R =
5.3 increase in the angular resolution for the indicated
recording scheme. A sample 4 under study was placed
between the collimator exit slit and the diamond prism.
To minimize losses caused by the attenuation and scat-
tering of X radiation in air, a vacuum collimator (14)
960 mm long with windows made from a 0.2-mm-thick
Be foil was placed between the O1 axis and receiving
detector 13. The collimator provided a more than one
order of magnitude increase in the intensity of the
detected signal in the energy range E < 6 kV. Measure-
ments were made with a voltage of 35 kV on the X-ray
tube. The angular step and the exposure time at the
angular points were 0.0002° and 1.8 s, respectively.

The angular dependences I(Ψ) of the intensity of
refracted radiation on the deflection angle before and
after the introduction of a bromonaphthalene sample
(C10H7Br) are shown in Fig. 2 (curves 1 and 2, respec-
tively). The deflection angle Ψ is measured counter-
clockwise from the axis of the primary beam. Curves 1
and 2 were obtained for the glancing angle θ = 0.218°
between the primary beam and the prism refracting
face.

The intense lines in the spectra correspond to the
copper anode characteristic emission CuKα (8.05 keV)
and CuKβ (8.90 keV). A well-defined absorption fea-
ture appears in the angular spectrum upon the passage
of radiation through the bromonaphthalene sample. To

Fig. 2. Angular dependences I(Ψ) of the intensity of
refracted radiation: (1) before the introduction of a bro-
monaphthalene (C10H7Br) sample; (2) after the introduc-
tion; (3) dI/dΨ derivative of curve 2.

CuKα
CuKβ

K jump
simplify its location, it is convenient to use the deriva-
tive of the angular spectrum I(Ψ) (curve 3).

By using the expression for the refractivity decre-
ment [4] and the small-angle approximation for Snell’s
law, we obtain the relationship

(1)

where ΨK is the experimentally measured angular posi-
tion of the K jump in the I(Ψ) curve and E0 and δ0 are
the energy and refractivity decrement, respectively, of
the reference line. The energies of the characteristic
CuKα and CuKβ lines emitted by the tube copper anode
can be taken as reference points. Let us consider a
multicomponent sample containing m chemical ele-
ments. The expression for the relative change in the sig-
nal intensity before and after absorption at energies
higher (E+) and lower (E–) than the given absorption
jump edge can be written in the form of the products of
exponentials

(2)

(3)

where I0( ), I0( ) and I( ), I( ) are the

intensities in the spectra of the direct and absorbed
beams at energies  and  measured before and

after the introduction of the sample, respectively; µ and
ρ are the mass attenuation coefficient and the partial
density, respectively, of the element whose energy at
the absorption jump edge is equal to EK; µj and ρj are
the partial mass attenuation coefficients and densities of
other elements in the sample; and L is the sample size
along the direct beam. It is known that, far from the
absorption jump, µ(E) is a smooth and monotonically
decreasing function. For this reason, the ratio of the
exponential factors containing the summation sign
tends to unity at   EK and   EK. The

function µ(E) changes jumpwise in the EK region.
Then, taking the logarithm of Eqs. (2) and (3) and
dividing their left- and right-hand sides, one gets

(4)

If the length L is known, the partial density or the
weight content of the element of interest can be deter-
mined from Eq. (4); for the known cross-sectional area
of the direct beam, the partial mass of the element in the
irradiated volume can be found.
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This is an important advantage of the suggested
method over the emission X-ray fluorescence analysis,
which when used requires the introduction of compli-
cated corrections.

In conclusion, we present a two-dimensional image
of the refraction pattern obtained for the direct beam at
a distance of 255 mm from the diamond prism (Fig. 3a).
An FDI X-ray camera (Photonic Science) with a two-
dimensional array containing 1300 × 1030 pixels was
used as a radiation receiver. A Gd oxysulfide layer
served as a scintillator. The pixel size was 6.7 µm, and
the exposure time was 1 s. Since the photons with dif-

1000

100

I, arb. units
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Specular
reflection

Direct
beam
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N, pix

(a)

(b)

Refracted
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Fig. 3. (a) Two-dimensional image of the refracted X-ray
beam pattern. (b) Dependence of the signal intensity on the
pixel number for the image in Fig. 3a: (left) peak of specular
reflection from the refracting face (N = 23); (center) direct
beam (N = 210–250); and (right) bremsstrahlung spectrum
(N > 250) and the CuKβ (N = 320) and CuKα (N = 335)
lines.
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ferent energies are spatially separated after passing
through the prism, the spectrum measurement time is of
no importance. The radiation flux P through the spec-
trometer entrance aperture is the only important param-
eter, because it provides the acceptable signal-to-noise
ratio for the image. The dependence of the signal inten-
sity on the pixel number in the central row of the detect-
ing array is shown in Fig. 3b. The integrated refracted-
radiation flux P0 detected at the right side of the image
in Fig. 3a was equal to ~106 quantum/s. This signifies
that, at P ≥ P0, the X-ray pulse spectra can be detected
by a prism spectrometer without any restrictions on the
pulse duration.

This work was supported by the Russian Foundation
for Basic Research, project no. 03-02-16976.
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A junction between two ferromagnetic metal layers with fixed spins in one of them and free spins in the other
(spin valve) is considered. The junction is placed in an external magnetic field that orients the free layer oppo-
sitely to the fixed layer. It is shown that the spin-polarized electron flow from the fixed layer to the free layer
gives rise to stable motionless magnetic domains in the free layer, provided that the magnetic field and the thick-
ness of the free layer are large enough. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Cn; 75.70.Kw
In recent years, considerable interest has been
shown in so-called magnetic junctions, i.e., layered
structures composed of at least two ferromagnetic con-
ducting layers (with fixed spins in one of them and free
spins in the other) separated by an ultrathin nonmag-
netic film. The junctions of this type exhibit interesting
phenomena associated with the transport of spin-polar-
ized electrons. It has been shown in recent works [1–3]
that current exerts a certain effect on the magnetic state
of the free layer. This effect consists in the switching of
the relative magnetization orientation of the free layer.
The nature of this switching is as yet little understood.
Nevertheless, it is clear that the switching is induced
not merely by the current magnetic field but rather by
the s–d-exchange interaction of spin-polarized charge
carriers. One of the possible reasons for switching is
that current injects spins into the free ferromagnetic
layer. Due to the s–d exchange, these spins interact with
the lattice magnetization vector and change its orienta-
tion. It was shown in [4] that the original magnetization
orientation becomes unstable at a rather high current
density and changes jumpwise. A detailed theory of this
phenomenon is given in [5]. Estimates of the switching
threshold made in [4, 5] are in good agreement with the
experimental estimates [1–3].

In this communication, we would like to draw atten-
tion to one more important feature of the switching
effect that was described in [4, 5]. In those works, the
free layer was switched uniformly, i.e., as a whole.
Such a switching corresponds to the experimental con-
ditions used in [1–3]. However, the uniform switching
becomes impossible upon a certain change in the exper-
imental conditions, so that the switching becomes non-
uniform. Let the external magnetic field H in the
absence of current magnetize the free layer oppositely
to the fixed layer. Let us now switch on current in the
direction such that electrons pass from the fixed to the
0021-3640/04/7909- $26.00 © 20402
free layer. The density of nonequilibrium (current-
injected) spins decreases with distance from the inter-
face on the scale of free-layer spin-diffusion length l. In
the case of the free-layer thickness L @ l and a high
absolute value of field H, the uniform switching would
be accompanied by a considerable loss in Zeeman
energy. For this reason, the free layer is switched only
in the region of thickness ~l that is adjacent to the fixed
layer (injector), thereby minimizing the s–d-exchange
energy. The rest of the free layer remains unswitched.
As a result, magnetic domains arise in the free layer.
The boundary between these domains occupies a cer-
tain stable equilibrium position determined by the cur-
rent density j and the field H. For the typical parameters
of metal layers, the domain boundary can execute small
oscillations about its equilibrium position with a fre-
quency lying in the range from several to tens of giga-
hertz. In what follows, the conditions for the formation
of such domains are obtained in the form of a relation-
ship between L and H.

1. Model and calculations. To simplify the calcula-
tion, we will use the model of magnetic junction shown
in Fig. 1. All layers in this figure have infinite sizes in
their developed planes perpendicular to the x axis.
Spins in ferromagnetic layer 1 are fixed. This means not
only that the magnetization vector M1 of the layer is
fixed and can be disturbed neither by field nor by cur-
rent but also that the spins of moving electrons are
fixed, i.e., that they belong only to one of the spin sub-
bands. Such a situation is ideally realized in so-called
half-metals [6]. It is also relevant to the Co films, which
are the only ones that are as yet used in experiments on
current-induced switching.

Spins in ferromagnetic layer 2 are free. It is assumed
that this layer is divided into domains with oppositely
oriented magnetization vectors (–M2) and M2 and that
004 MAIK “Nauka/Interperiodica”
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(–M2) || M1 and M2 || H. The technological interfaces
between the layers coincide with the planes x = 0 and L,
and the domain boundary coincides with the plane x =
W. These boundaries are assumed to be thinner than the
spin-diffusion length l. At room temperature, it is esti-
mated as l ~ 10–100 nm. Such thin technological
boundaries can be obtained in practice in structures
with spin-dependent transport and spin injection. As to
the thickness of domain wall, it is determined, in prin-
ciple, by the processes in layer 2; this item will be dis-
cussed somewhat later in this work. Layer 3 is a non-
magnetic conductor that is necessary for closing the cir-
cuit in the system.

The calculation is based on a system of coupled con-
tinuity equations for the concentrations n+ and n– of
spin-up and spin-down charge carriers, respectively, in
layer 2. The partial current densities in these equations
are

(1)

where E(x) is the local electric field; µ± and D± are the
partial mobilities and diffusion coefficients, respectively;
and e is the carrier charge. The total current density

(2)

is independent of the coordinate x under the stationary
conditions considered in this work. Moreover, due to
the neutrality condition that holds for metals, the total
concentration n = n+(x) + n–(x) is also independent of x.
Using Eq. (2), the field E(x) can be eliminated from for-
mulas (1) for partial currents and from the continuity
equations. It should also be taken into account that, due
to the neutrality conditions, only one of the two func-
tions n±(x) in the continuity equations is independent. It
is convenient to take the degree of polarization P(x) ≡
(n+(x) – n–(x))/n as the only unknown function.

In what follows, we are interested only in small
deviations of P(x) from its equilibrium value , i.e., in
“low” injection levels. By introducing the deviation
∆P(x) ≡ P(x) –  and taking into account that |∆P| !

, we arrive at the following main equation:

(3)

where

(4)
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are the diffusion coefficient, the drift velocity, and the
spin-diffusion length, respectively; σ = (σ+ + σ–) is the
equilibrium conductivity; σ± = µ±; and τ is the spin-
relaxation time.

Let us compare, by the order of magnitude, the two
last terms in Eq. (3). The weak-current condition

(5)

is well fulfilled in the considered structures with metal
layers. Due to this condition, the first-derivative term
accounting for the spin drift in Eq. (3) can be dropped.
Note, however, that this does not imply that the charge-
carrier drift is fully ignored. Indeed, the diffusion
length l, according to Eq. (4), depends on the mobilities
µ±, i.e., on the drift. The carriers in the two subbands
move in a common field that renders their motion cor-
related to ensure neutrality. This situation is analogous
to ambipolar diffusion in semiconductors [7].

The desired solutions to Eq. (3) must satisfy the
boundary conditions at the points x = 0, W, and L of
layer 2. Following, e.g., works [8, 5], we take one such
boundary condition in the form of a requirement that
the spin flux be continuous at each of the indicated
points,

(6)

where Q = (σ+ – σ–)/σ. As the second boundary condi-
tion at the points x = W and L, we require that the dif-
ference in the chemical potentials of spin subbands be
continuous,

(7)

where N = (n/2)[ ( ) + ( )]; g±( ) are the car-

rier densities of state in each of the subbands; and  is
the equilibrium chemical potential, identical for all sub-
bands and layers.

en±

j ! jD
enl
τ

-------- 1010 A/cm2≥≡

Js x( ) "/2e( ) Qj enD̃
d∆P
dx

-----------– 
  ,≡

ζ+ ζ–– N∆P,=

g+
1– ζ g–

1– ζ ζ

ζ

Fig. 1. Model of magnetic junction: 1, 2, 3 are the layer
numbers in the junction; x = 0, L are the technological inter-
faces between the layers; and x = W is the domain wall.
Arrow indicates the sense of vector. Electron flow j/e is
directed along the x axis.
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The solutions to linear Eq. (3) with boundary condi-
tions (6) and (7) can be found by the standard method.
The resulting formulas for the injected-spin distribution
∆P(x) are rather cumbersome, and we do not present
them here. We only note that, at a large distance from
the injector, namely, at x > l, the function ∆P(x) tends to
zero, following a law close to exponential. This func-
tion will be used below to calculate the s–d-exchange
energy

(8)

where α ~ Aa3/  is the dimensionless exchange-
interaction parameter; A is the exchange energy (typi-
cally, A ~ 0.1–10 eV); the parameter a is on the order of
the lattice constant, so that one can take a3 ~ 10–23 cm–3

for estimates; and µB is the Bohr magneton. This gives
α ~ 1.8(104–106) @ 1.

Apart from contribution (8), the total magnetic
energy Utot includes the Zeeman energy UH in the exter-
nal field H

(9)

where  = M2 + µBn  is the magnetization in layer 2
with allowance for the charge-carrier contribution. The
anisotropy axis is assumed to be parallel with the field
H and magnetization M2, so that the anisotropy energy
can make a contribution only to the domain-boundary
energy γ. Therefore, the total energy has the structure
Utot = Us–d + UH + γ. Then, the direct calculation brings
about the following expression for the total energy:

(10)

where we use the dimensionless quantities

(11)

For all quantities, the lower numerical indices indicate
their belonging to layers 1, 2, or 3. Equation (10) is
obtained on the assumption that the thickness of layer 2
is large enough so that λ @ 1. The parameter ν accounts
for the connection to external conductors and, in par-
ticular, for the injection efficiency from layer 2 into
layer 3. The value of this parameter is immaterial to us.
One can set, e.g., ν @ 1. Then, no distortions of spin
equilibrium will occur near the boundary x = L of layer 2.

Us–d αµBn M2 x( )∆P x( ) x,d
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λ L/l; w W /l; ν jD3/ jD( ) N2/N3( ).= = =
2. Domains inside the free layer. According to
Eq. (10), the energy U(w, J) has a minimum at

(12)

It follows from this expression that, if the conditions

(13)

are met, the energy minimum will occur inside layer 2.
Let us take the parameters for layer 2 corresponding to
the parameters of a Co film [1–3], and let the thickness
of this layer be large enough so that Q1 = 0.35, Q2 =
0.15, and λ = 5 (L ~ 50–500 nm). For the typical exper-
imental current densities J = 1 (j ~ 107/cm2) [1–3], the
minimum occurs inside layer 2 at magnetic fields
12 kOe > H > 28 Oe, quite attainable in the experi-
ments.

Thus, we have demonstrated that stable motionless
domains separated by a domain boundary perpendicu-
lar to the current can exist inside layer 2. This possibil-
ity has a clear physical meaning. The domain boundary
inside layer 2 is subjected to two magnetic fields: the
exchange field Hs–d ≡ δUs–d/δM2(x) = –αµBn∆P(x) and
the external field H. The exchange field tends to mini-
mize the energy Us–d (8). It exerts pressure on the
domain boundary, which can be called “spin wind.”
This pressure tends to move the domain boundary away
from the injector, i.e., in the direction of increasing
coordinate x. However, as x increases, the spin wind
weakens because of a decrease in ∆P(x), i.e., decrease
in the spin injection. At the same time, the external field
is oriented so that it tends to maintain the antiparallel
orientation of magnetization and, hence, move the
boundary in the opposite direction. These two actions
balance each other at the point w = w0 (13).

One can thus draw an important conclusion about
the structure of our domain boundary: due to the mutual
compensation, the fields Hs–d and H have only little
effect on this boundary. More precisely, one can ignore
the influence of these fields if the compensation condi-
tion

(14)

(Ha is the anisotropy field) is met inside the domain
wall of thickness δ. Under condition (14), the thickness
δ was estimated for ferromagnetic Ni in [9] to show that
δ ~ 10 nm. Since we have, typically, Ha ~ 103 Oe in our
structures, condition (14) can easily be fulfilled. The
above estimate suggests that the condition for a “sharp”
(δ < l) domain boundary can also be fulfilled in our
case.

3. Domain-wall oscillations. If the domain wall
shifts from its equilibrium (energy-minimum) position

w w0 h/J( )=

≡
4Q2

Q1 Q2–
------------------ 1

4Q2h

Q1 Q2–( )2J
-----------------------------+ 1–

 
 
  1–

.ln

2 Q1 Q2+( ) h/J 2 λ–( )exp Q1 Q2–( )>>

Hs–d x( ) H+ dHs–d/dx x W0–∼
∼ H δ/l( ) ! Ha,
JETP LETTERS      Vol. 79      No. 9      2004



CURRENT-INDUCED DOMAIN FORMATION IN MAGNETIC JUNCTIONS 405
w = w0, the energy increases, i.e., a restoring force
arises, and, hence, the domain wall can execute free
oscillations. To estimate the frequency of these oscilla-
tions, we use the Döring model [10]. According to this
model, the domain-wall motion in a crystal without pin-
ning centers obeys the equation

(15)

where m is the domain-wall mass per unit area and β is
the friction coefficient.

By linearizing the right-hand side of Eq. (15) in the
vicinity of equilibrium, we arrive at the equation of lin-
ear oscillator with eigenfrequency

(16)

For not too strong fields h ! J, Eq. (16) is simplified

and reduced to ω = . The dependence on current
J is weak. Taking the typical values M2 ~ 103 G, m ~
10−10 g/cm2, and l2 ~ 10–6 cm, one has the estimate ω ~
1011 s–1; i.e., the frequency lies in the range from several
to tens of gigahertz.

The Q factor of ferromagnetic oscillations in the
metal films under study can strongly vary, as evidenced
by the experimental data for the FMR line widths: ∆H ~
20–1000 Oe. The oscillation decay time can be esti-
mated as τm ≡ β/m ~ (γ∆H)–1. Inserting the value of
gyromagnetic ratio γ ~ 3 × 106 Hz/Oe into this expres-
sion, one finds τm ~ (2 × 10–7–3 × 10–10) s. Hence, the Q
factor is ωτm ~ (2 × 104–3 × 10) @ 1; i.e., the oscilla-
tions decay rather slowly.

We note additionally that the estimate τ ≥ 3 × 10–13 s
obtained earlier for the room-temperature spin-relax-
ation time corresponds to the diffusion length l2 ≥
10 nm. The estimate made in this work for the fre-
quency indicates that the condition ωτ ! 1 for the
applicability of static diffusion Eq. (3) can also be ful-
filled.

4. Conditions for domain formation and discus-
sion. Let us now discuss the conditions for spontaneous
nucleation of a domain boundary inside layer 2. It was
shown in [4, 5] that the original uniform state of layer 2
with the antiparallel orientation of its magnetization
becomes unstable at a sufficiently high current density,
namely, at J > Jth ~ (h + ha)λ/2Q1 ~ 1, where the dimen-
sionless anisotropy field ha = Ha/4πM2 ! 1. The devel-
opment of this instability results in the uniform switch-
ing of layer 2, so that the state with parallel orientation
is the only possible state for λ ≤ 1 [4]. However, two
final states are possible for an arbitrary λ: (1) a uni-

m
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formly switched state with energy [U(λ, J) – Γ] and
(2) a nonuniformly switched state with energy U(w0, J).
For this reason, the condition for the nonuniform
switching with the domain formation inside layer 2 can
be written as

(17)

For the domain-boundary energy γ ~ 10–7 J/cm2 [10],
the parameters are h ~ 10–2, J ~ 1, and λ ≈ 5. Then, con-
dition (17) reduces to λ ≥ Γ/h. For l ~ 30 nm, one finds
that domains can form even in fields H ~ 120 Oe, at cur-
rent densities j ~ 107 A/cm2 (which is quite realistic; see
[1–3]), and in layer 2 of thickness satisfying the condi-
tion L ≥ 50–100 nm.

The current dependence of the domain-boundary
position or, what is equivalent, of the thickness w0 of
the switched region is shown in Fig. 2. The domain
boundary nucleates at the point where the current
reaches its threshold value, whereupon it increases with
current. However, with decreasing current, the domain
boundary does not disappear at the nucleation threshold
but persists down to very small currents and eventually
reaches the injector. Thus, switching with the domain-
boundary formation has a hysteretic character. The very
existence of domains in layer 2 is, basically, unrelated
to the instability of the uniform antiparallel state of this
layer.

The latter conclusion seems to be highly important,
because it demonstrates the possibility of initiating
static domains by weak currents. In this connection, we
would like to draw attention to the experiments on the
initiation of traveling domains in ferrite films (see
review [11]) and to work [12], where it is proposed that
the domain boundary should be initiated through the
introduction of structural inhomogeneity into the film.
It is conceivable that closely related approaches will
allow the initiation of static domains in magnetic junc-
tions.

We are grateful to A.I. Krikunov, A.V. Medved’, and
A.F. Popkov for discussions. This work was supported
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Fig. 2. The thickness w0 of the switched region inside
layer 2 vs. the injected current J for h = 10–2, Q1 = 0.35,
Q2 = 0.15, and λ = 3 (in the dimensionless variables).
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A giant increase in the static dielectric constant and a giant dielectric relaxation are predicted for a heteroge-
neous medium consisting of matrix-isolated spheroids and described by the Maxwell-Garnett formula. The pos-
sibility of observing collective dielectric resonance in such a medium is also discussed. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 78.20.Ci; 77.22.Gm
1. Dielectric constant of 0–3 composites. Compos-
ites with the connectivity of 0–3 type (according to the
classification [1]) in the form of a polymer matrix con-
taining isolated inclusions with volume concentration η
and dielectric constant (DC) εinc far exceeding the
matrix DC εm (e.g., inclusions of ferroelectric ceram-
ics) are widely used in modern technology. Neverthe-
less, some problems associated with both the theoreti-
cal description and practical use of such composites
still remain to be understood. The possibility of obtain-
ing and using very high (giant) DCs ε is among such
problems. One such possibility associated with dispers-
ing inclusions with a high DC in a conducting matrix is
considered in this work.

2. Maxwell-Garnett formula. The use of the Max-
well-Garnett (MG) formula [2, 3] for a matrix contain-
ing spheroidal inclusions with the aspect ratio ξ = c/a
(a = b ≠ c are the spheroid semiaxes) strongly different
from unity is at the basis of our theoretical approach.
The MG formula is widely used for matrix systems and
yields the most reliable results in the limiting cases of
very small (η  0) and very high (η  1) inclusion
concentrations. In the case of spheroids with identically
oriented principal axes and an electric field directed
along one of their axes (c), this formula can be derived
in various ways. The simplest of them consists in the
replacement of the sphere depolarization factor 1/3 in
the MG formula for spherical inclusions [2] by the
spheroid depolarization factor 0 < Ac(ξ) < 1, which
depends on the aspect ratio ξ and corresponds to the
electric-field orientation along the spheroid c axis. For
0021-3640/04/7909- $26.00 © 20407
the DC in the c direction, the MG formula for the com-
posite is [3]

(1)

In agreement with the numerous experimental data
[4] and theoretical results [3, 5], the DC calculated by
Eq. (1) increases monotonically with η in the absence
of or for small dielectric loss.

3. Giant increase in dielectric constant. Since the
conductivities γinc and γm of the components are always
nonzero, the inclusion DC εinc =  + iγinc/ω and the

matrix DC εm =  + iγm/ω (ω is the circular frequency
of a harmonic electric field) become complex and fre-
quency-dependent. After the substitution of the com-
plex values of εinc and εm into Eq. (1) and analysis of the
concentration dependence of the complex DC ε = ε' +
iε'' of the composite, one finds that the ε'(η) dependence
becomes nonmonotonic (Fig. 1). At η  0 (or,
depending on the γinc/γm, at η  1), the static DC ε0 of
the composite with oblate (ξ ! 1) spheroids drastically
(by more than an order of magnitude) increases. The
physical mechanism of a giant dielectric enhancement
is the same as for the 2–2 composites with layers
arranged in series [6, 7]; for instance, at η  0, a free
electric charge is efficiently accumulated at the bound-
aries of a strongly conducting matrix with thin weakly
conducting oblate inclusions.

A giant increase in the composite DC is observed
only at low frequencies. As the frequency ω increases,
a giant dielectric relaxation occurs in the system, anal-

ε εm 1 η
1 η–( )Ac εm/ εinc εm–( )+

--------------------------------------------------------------+ .=

εinc'

εm'
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ogous to the Maxwell–Wagner relaxation in layered 2–
2 composites [6]. The dielectric spectrum has the
Debye character, and the relaxation time

(2)

depends on η, Ac(ξ), and the ratios between the DCs
and conductivities of the inclusions and matrix, while
the low-frequency (static, ωτ ! 1) and high-frequency
(ωτ @ 1) real parts ε' of DC are strongly different. The
fragments of the frequency-dependent DC ε = ε' and
conductivity γ = ωε'' of the composite near the relax-
ation frequency (ωτ ≈ 1) are shown in Fig. 2. A DC pla-
teau at ωτ ! 1, a sharp decrease in ε', and increase in γ
near ωτ ≈ 1 are seen in the figure. Upon further increase
in frequency, ε  ε∞, and the ratio of static to high-
frequency DC of the composite ε0/ε∞  160; i.e., a
giant dielectric relaxation takes place. Therefore, the
accumulation of a volume charge at the matrix and
inclusion boundaries can be used in the fabrication of
materials with a very high DC and giant dielectric
relaxation.

4. Collective dielectric resonance. An alternative
possibility of a giant increase in the DC of a 0–3 com-
posite, called collective dielectric resonance, has
recently been described by Oraevskiœ in [8]. In the case
of the collective resonance in a heterogeneous material
composed of matrix-isolated ellipsoids, the concentra-
tion dependence ε'(η) has the resonance character even
for real εinc and εm: ε  ±∞ at a certain critical inclu-
sion concentration ηc dependent on the inclusion shape
and DCs εinc and εm. Such a behavior is well known for
solid solutions of ferroelectrics; it describes a morpho-
tropic phase transition from the paraelectric to the fer-
roelectric phase [9], which is observed neither in con-
ventional insulators nor in their composites. As in this
work, Oraevskiœ [8] used the MG formula. For this rea-

τ
1 η–( )Ac εinc εm–( ) εm+
1 η–( )Ac γinc γm–( ) γm+

------------------------------------------------------------=

Fig. 1. Dependence of the static dielectric constant ε0 of a
0–3 composite on the concentration of oblate spheroids for

c/a = 0.01, Ac = 0.9845,  = 500, and  = 5000: (1)

γm = 10–6 Ω–1 m–1 and γinc = 10–12 Ω–1 m–1, and (2) γm =

10−10 Ω–1 m–1 and γinc = 10–12 Ω–1 m–1.

εm' εinc'
son, the anomalous behavior of ε'(η), as well as the con-
clusion [8] that the imaginary part of the composite DC
becomes negative (ε'' < 0) upon exceeding a certain
value of η in an absorbing matrix, i.e., that the compos-
ite transforms into an amplifying medium, can be
ascribed to the drawbacks of the MG formula.

In our opinion, the discrepancy between our results
and the results obtained in [8] is caused by the fact that
the MG formula used by Oraevskiœ, which, as can easily
be shown, has the form

(3)

is incorrect. Contrary to Eq. (1), the denominator in
Eq. (3) contains the term η/3 instead of ηAc; i.e., along
with the spheroid depolarization factor Ac, the sphere
depolarization factor 1/3 is used in Eq. (3), thereby mis-
representing the spheroid dipolar interaction and ren-
dering the use of Eq. (3) unjustified for the spheroidal
inclusions (we use the standard values for Ac [10] that
are half as large as those used in [8]). Equation (3) coin-
cides with Eq. (1) only for the spherical inclusions
(Ac = 1/3) and at η  0. In both Eqs. (1) and (3), the
DC can be complex. According to Eq. (1), the denomi-
nator turns to zero for none of the inclusion concentra-
tions 0 < η < 1 if the real part of DC is positive and 0 <
Ac < 1. For this reason, a collective dielectric resonance,
as well as negative values ε'' < 0 of the composite,
should not occur.

Figure 3 shows the concentration dependences of
the real and imaginary parts of the composite DC ε =
ε' + iε'', to demonstrate that the collective resonance is

impossible for the numerical values of εinc, , and 
used in [8]. One can see in Fig. 3 that the composite DC
ε calculated for the prolate spheroids (ξ ≈ 5.4, Ac =
0.05) using MG formula (1) increases monotonically

ε εm 1 η
Ac η /3–( ) εm/ εinc εm–( )+

---------------------------------------------------------------+ ,=

εm' εm''

Fig. 2. Frequency dependences of the dielectric constant ε
and conductivity γ = ωε'' of a 0–3 composite for η = 0.01,

c/a = 0.01, Ac = 0.9845,  = 500,  = 5000, γm =

10−6 Ω–1 m–1 and γinc = 10–12 Ω–1 m–1: (1) ε' and (2) γ
(10−12 Ω–1 m–1).

εm' εinc'
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from εm at η = 0 to εinc at η = 1 if  =  = 0. A sharp
resonance ε/εm  ±∞ predicted by Eq. (3) at ηc =
0.483 and the negative values of composite DC at large
inclusion concentrations η > ηc = 0.483 do not occur in
the MG approximation.

εinc'' εm''

Fig. 3. Dependence of the effective dielectric constant of a
0–3 composite on the concentration of prolate spheroids for

 =  = 0: (1) ε'/  × 10 calculated by formula (1) and

(2) ε'/  calculated by formula (3); c/a ≈ 5.4, Ac = 0.05, and

/  = 10.

εinc' ' εm' εm'

εm'

εinc' εm'
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The mechanism of transition of a Bose gas to the superfluid state via thermal fluctuations under the condition
of external cooling at a temperature above the transition point is considered. The probability of formation of
such critical fluctuations (instantons) is calculated; it is found that this probability increases as the system
approaches the transition temperature. It is shown that the evolution of an individual instanton is impossible
without the formation of vortices in its superfluid part. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.75.Nt; 67.40.Vs
The ideas of the kinetics of phase transitions have
been thoroughly developed for first-order phase transi-
tions and envisage the existence of the metastable phase
itself and an equilibrium critical nucleus. The corre-
sponding theory was worked out in [1, 2] and described
in detail in [3]. However, theoretical concepts concern-
ing the kinetics of second-order phase transitions,
where these two facts do not exist, have been developed
insufficiently. Lifshits [4] proposed a certain special
model for the formation of an ordered phase after the
fast phase-transition stage in the “short-range” order in
the presence of only two types of ordering.

The interest in the problem of a phase transition
upon a fast change in external parameters (e.g., temper-
ature) has been aroused in connection with the cosmo-
logical ideas of the Big Bang, where the rapidly
expanding Universe must be cooled and pass through a
series of phase transformations accompanied by a
change in the symmetry of physical fields [5]. It was
proposed that the kinetics of these transformations can
be modeled in condensed matter [6].

Zurek [7] proposed a theory of the second-order
phase transition upon a rapid change in temperature in
liquid He4. The main assumption in the proposed mech-
anism is about the “critical retardation” of all processes
in the vicinity of the transition temperature and “fast”
formation of the nuclei of a new phase upon the subse-
quent cooling. This gives rise to a large number of
defects on the order of the number of fluctuations far
above the transition point.

However, no retardation in the formation of a new
phase has been detected experimentally; the critical
retardation is associated with the duration of the equil-
ibration process at macroscopic distances, which is
insignificant for the nonuniform process of formation
of a new phase.
0021-3640/04/7909- $26.00 © 20410
In this work, we consider the transition to a new
phase via the evolution of fluctuations on scales much
smaller than the correlation length, which can occur
quite rapidly even in the vicinity of the critical temper-
ature. The transition kinetics in this case are found to be
directly related to the cooling process itself. We will
consider the formation of a condensate in the model of
a weakly nonideal Bose gas with external cooling and
demonstrate a certain analogy with the first-order phase
transitions.

The standard theory of a weakly nonideal Bose gas
involves a Hamiltonian of the form

(1)

where a0 is the scattering amplitude having the atomic
scale and m is the atomic mass. The properties of such
gas for a small density n (the smallness is determined

by the gas parameter η =  ! 1) are close to the
properties of an ideal Bose gas with the transition tem-
perature [8]

(2)

At temperatures below the transition point, the ideal
Bose gas has a pressure depending only on the temper-
ature,

(3)

which corresponds to zero isothermal sound velocity.

Ĥ
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Considering that the scattering amplitude differs
from zero, we can write the qualitative equation of state
below the transition point:

(4)

We omitted the insignificant constant factor in the sec-
ond term.

The entire kinetics is essentially determined by the
Bose-gas cooling mechanism. We will consider a sim-
ple model where the Bose gas is in a certain solid
matrix with which it only slightly interacts. Such a sit-
uation may take place, for example, for the exciton gas
in a crystal. The crystal can be rapidly cooled to a low
temperature; in this case, the Bose-gas cooling pro-
ceeds via phonon emission. Assuming that the heat
capacity of the crystal is large compared to the Bose
gas, we can disregard the presence of thermal phonons
in the crystal and their effect on the Bose gas. As a
result, we obtain a uniform energy-loss mechanism,
which is described by a phenomenological quantity
T/τph. The other models of cooling necessitate the anal-
ysis of heat transfer at the sample boundaries, which is
a much more complicated problem. The loss rate 1/τph
is determined by the collisions of particles with each
other and by the interaction with phonons, which will
be regarded as weak,

Since 1/τph ~ nvTσph and 1/τtr ~ nvT  (vT is the thermal

velocity), this means that

where σph is the cross section for scattering with
phonon emission, which corresponds to the weak inter-
action of Bose gas with the crystal.

In view of the smallness of quantity 1/τph, the evolu-
tion of the Bose system is slow; in particular, we
assume that the acoustic wavelength cτph ~ vTτph is

large compared to the characteristic length ~ ,
where χ is the thermal diffusivity,

(l stands for the mean free path). This makes it possible
to assume that the fluctuation evolution occurs at a con-
stant pressure that coincides with the thermodynami-
cally equilibrium pressure.

It follows from Eq. (4) that the density variation δn
in the fluctuation region is related to a change in tem-
perature by

(5)

P Pid T( )
"

2a0n2

m
----------------.+=

1/τph ! 1/τ tr.

a0
2

σph ! a0
2,

χτ ph

χτ ph

v Tτph
-------------- l2

v T
2 τ trτph

-------------------
τ tr

τph
------  ! 1∼ ∼

δn
n

------
δT
T

------ 1

η1/3
---------.–=
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The relative density fluctuation is large compared to the
relative temperature fluctuation in the temperature
range T < Tc. This leads to a rapid increase in the recip-
rocal phonon time

(6)

(where 1/  = nvTσph) with decreasing temperature
and enhancement of cooling in the fluctuation region.
For this reason, we will disregard the phonon emission
in the region far from the developed fluctuations,
assuming that

(7)

where U(Tc – T) = 1 for δT = T – Tc < 0 and U(Tc – T) =
0 for T – Tc > 0.

This allows us to consider the problem of fluctuation
kinetics within the framework of the theory of hydrody-
namic fluctuations by supplementing the hydrody-
namic equations with the energy flux carried away as a
result of phonon emission:

(8)

where 1/τph = (1/ )(1/η1/3). In view of the constancy
of pressure, we can describe the evolution of tempera-
ture fluctuations by the heat conduction equation

(9)

where the energy flux carried away by phonons is
added, κ is the heat conductivity, and cp is the specific
heat per particle under a constant pressure. This equa-
tion contains the drift term with mass velocity v(r),
which appears due to the high density in the fluctuation
core. In the following analysis, this term will be omitted
as a higher-order term in fluctuation. We are interested
in the temperature-field fluctuations and their time evo-
lution. To analyze these fluctuations, we must introduce
random heat fluxes q [3, 9], i.e., the Langevin term ∇ q.
These fluxes are delta-correlated (i.e., correlated at dis-
tances and time intervals smaller than the hydrody-
namic scales). In the case considered, this is ensured by

the fact that the time  and distance  (χ is
thermal diffusivity) are larger than the microscopic
characteristics. It is well known that the probability
Wt(T(r)) of realizing the given configuration T(r) of
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fluctuation field at time t obeys the Fokker–Planck
equation in variational derivatives [10]:

(10)

In the absence of the interaction with phonons, the sta-
tionary solution to this equation coincides with the
result obtained in the thermodynamic theory of fluctu-
ations. The quantity

(11)

is the temperature-variation rate upon the deviation
from the mean value T = T∞.

We assume that fluctuations occur at a fixed temper-
ature T∞ > Tc. Fluctuations with ∆T = T – T∞ ! T∞ occur
quite frequently and are characterized by a certain (in
fact, stationary) spatial distribution that determines the
value of Wt(T). In view of the normalization, the latter
quantity gives the number of small fluctuations in a unit
volume. However, rare large-amplitude fluctuations
with ∆T ~ Tc – T∞ (T < Tc) also sometimes occur, initi-
ating the effective cooling by phonons, so that the fluc-
tuation becomes irreversible and the nucleus of a new
phase appears. Our goal is to calculate the probability
of such fluctuations in a unit volume per unit time.
Since they are infrequent and the distribution at small
T∞ – T is stationary, one can use the method of charac-
teristics to determine the exponentially low probability
of formation of such a nucleus (instanton for the Fok-
ker–Planck equation). An important difference from the
theory of nucleation in the first-order phase transition is
that the probability of instanton formation in this case
is determined by the cooling process.

To clarify the situation, let us consider the instanton
solution in the case of one degree of freedom, for which
the Fokker–Planck equation has the form

(12)

where D is the constant diffusion coefficient and v(x) is
the macroscopic variation rate of the quantity x with
allowance for its relaxation upon the deviation from
equilibrium and for an external effect (analogue of
phonon emission). Setting W = eS and assuming that the
moduli of S and its first derivative are large, we obtain,
to leading terms, the equation

(13)

∂
∂t
-----W

δ
δT r( )
--------------

χT∞
2

ncp

----------∇ 2 δ
δT r( )
--------------W∫–=

+ χ∇ 2T U Tc T–( )
T Tc–

τph
---------------+ W d3r.

χ∇ 2T U Tc T–( )
T Tc–

τph
---------------+ ∂T

∂t
------=

∂W
∂t

--------
∂
∂x
------ D

∂W
∂x
-------- v W– 

  ,=

∂S
∂t
------ D

∂S
∂x
------ 

 
2

v
∂S
∂x
------–

∂v
∂x
-------.–=
This is the Hamilton–Jacobi equation with the Hamil-
tonian (∂S/∂x = p)

The Hamilton equations are the characteristics of this
equation in partial derivatives,

The contribution of the velocity divergence to the
Hamiltonian is significant only in the vicinity of the
point at which v  = 0. We are interested in the special
solution that passes through the equilibrium point p = 0,
v  = 0. In the 1D Fokker–Planck equation, one can elim-
inate the term with a first derivative by substitution; in
this case, we have an analogy with quantum mechanics
and can use the well-known results. Nevertheless, we
will use direct estimates in the vicinity of v  = 0.

In the Hamilton equation, the energy is conserved.
In view of the smallness of the divergence term, this
gives H = –Dp2 + pv  = 0, whence p = v /D and

We assume that the velocity v(x) is a convex-down
function with two zeros (stable at zero and unstable at
x*). Such a shape of the function v(x) is ensured by the
entire cooling process, including phonon emission. For
x > x*, the solution tends to larger values of x, while the
action is gathered from zero to x*, where v  < 0. In the
vicinity of x*, we must take into account the quantity
dv /dx. For large values of x, p2 can be ignored, yielding

p ≈ – /v ; consequently,

where v 0 is the effective velocity in the region where
the solutions for x < x* and x > x* match. The solution

itself has the form eS ≈ (v 0/v) , and current j ≈ v 0 .
One can estimate the value of v 0, assuming that all
terms in the Hamiltonian H are of the same order of
magnitude:

which gives

(14)
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In the many-dimensional case, the situation is the
same,

where p = 0 at the beginning and p  0 at the end of
the trajectory. Consequently, |p| reaches its maximal
value somewhere on the trajectory. At this point, the
matrix ∂v i/∂xk has one zero eigenvalue and p is tangent
to the corresponding eigenvector; subsequently, the tra-
jectory passes to the neighborhood of the point corre-
sponding to zero velocity v. This leads to the definition
of the critical fluctuation (instanton) as a solution pass-
ing through the point x = p = 0, whereupon p  0 for
|x |  ∞ as 1/v, retaining the probability flux at a con-
stant level.

An analogous procedure can be carried out for the
field as well. In this case, the Hamiltonian has the form,
in accordance with (10),

(15)

with the Hamilton equations

(16)

(17)

Here, p = δS/δT(r). Equations (16) and (17) define the
critical fluctuation and can be reduced to dimensionless

variables by the substitutions ξ = r/ , τ = t/τph,

where Θ and Π are the new dimensionless fields. In this
case, the dimensionless equations have the form

(18)

(19)

The solution should be found from the conditions
Πξ → ∞  0, Πτ → –∞  0, Θτ → –∞  1, and
Θξ → ∞  1 and pass through the neighborhood of
∂Θ/∂τ ≈ 0 and Π ≈ 0 at τ  τ*, after which ∂Θ/∂τ ≈
∇ 2Θ + ΘU(–Θ) and the fluctuation is developed
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through cooling, while the random fluxes can be
neglected. Since H = 0, the action is given by

≈ (20)

The negative constant s0 can be determined from the
numerical solution to Eqs. (18) and (19). It is a univer-
sal number corresponding to the largest action S0 and is
independent of the values of physical constants and the
difference T∞ – Tc.

To estimate the temperature-variation rate, one can
take

In this case, in accordance with Eq. (14), one can write
for the probability flux in the transition region

The constant ν cannot be estimated from the theory of
hydrodynamic fluctuations [11]. This quantity gives the
number of small equilibrium fluctuations with δT ! T
on the atomic scale in a unit volume. As an estimate, we
can use the relation ν = n/T∞. Thus, the number of crit-
ical fluctuations arising per unit time in a unit volume is

Thus, the nuclei of a new phase are intensely formed
as T∞ approaches Tc and then grow rapidly. We have
considered the initial phase of critical-fluctuation
growth and restricted our analysis only to the heat
transfer via heat conduction, disregarding the superflu-
idity effects at this stage. This approximation can be
justified by the fact that the largest contribution to the
action comes from the region lying far from the region
of low velocities v, where p(r) = δS/δT(r) becomes
small and the fluctuation contribution can be neglected

because W ~ v –1 .
Analysis of the subsequent growth of the instanton

requires the solution of hydrodynamic equations for a
superfluid liquid, because a superfluid core appears in
the developing fluctuation. We will qualitatively con-
sider the phenomena that arise in this case. Proceeding
from the assumption that the value of τph is high, we
assume that the motion in this region is quasi-stationary
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and tuned to the slow cooling by phonons. We will use
the hydrodynamic equations for a superfluid liquid in
the vicinity of the transition point in the form proposed
by Khalatnikov [12]:

Here, σ is the entropy per particle, n is the number of
particles per unit volume, and ρ is the density. The sub-
scripts n and s correspond to the normal and superfluid
components, respectively; the constant Λ is the relax-
ation parameter; and we introduced the term that
accounts for the phonon-induced energy removal in the
equation for entropy. Here, the specific chemical poten-
tial µs for the superfluid density should ensure the con-
densate equilibrium density that is obtained by equat-
ing to zero the relaxation right-hand side of the equa-
tion for ρs. In our model of a weakly nonideal Bose gas,
we can define phenomenologically 

so that ρs = m(n – n(T) = mδn in the equilibrium. Here,
n(T) is the number of particles outside the condensate.
We assume that the quantity Λm/" is large and Tc – T is

large enough for the approximate equality µs + /2 ≈
0 to be satisfied (we disregard quantity v n, which is
small compared to v s); this gives

(21)

In this case, it follows from the hydrodynamic equa-
tions that µ ≈ µ(P, T) = const,

∂vs

∂t
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v s
2

2
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i v n
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T
∂nσ
∂t

---------- Tdivnσvn+
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.= =

T
∂nσ
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cpTρs
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and the momentum conservation law gives

In view of the smallness of v s compared to the sound
velocity and the smallness of ρs, we will neglect these
corrections to pressure P ≈ P0. In this case, only the
equation for entropy is significant. Assuming that the
derivative ∂nσ/∂t is small, according to the assumption
that the process is quasi-stationary (low temperature-

variation rate  ~ ), we find that the

stationary regime divnσvn = –cpρs/mτph should approx-
imately take place and that the mass flux should be zero
(ρsvs + ρnvn = 0). Considering that ρn ≈ ρ, we obtain the
equation

where σ is the entropy per particle. This equation deter-
mines the heat transfer in the fluctuation superfluid
core. Using Eq. (21), we obtain

By introducing the dimensional distance ξ = cpr/σuτph,
we arrive at the equation

(22)

The singular points of this differential equation are

the latter point being a focus with the eigenvalues λ =

1 ± . Since the velocity v  must vanish at ξ = 0, v  ≈

ξ for small ξ and increases faster than by the linear

law, with the derivative dξ/dv  vanishing at v  = 1/
and at a certain ξ = ξ*, whereupon the derivatives
assume negative values upon the further increase in v.
Thus, a regular superfluid flow cannot be continued
after the point ξ* (the constant is on the order of unity
and can be determined numerically). The physical
length

can be smaller than ; it should also be noted that
1 – v 2 > 0 (i.e., a singularity appears in the superfluid

∂
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core). This singularity indicates that the quasi-station-
arity conditions are violated at ξ * ξ*, and a complex
nonstationary superfluid flow with the intense vortex
formation in an instanton should appear upon the tran-
sition to the normal liquid at T > Tc. Similar effects are
observed in a superfluid liquid in the gravitational field,
where Tc is a function of one (vertical) coordinate and a
fixed heat flux from the superfluid to the normal liquid
takes place [13]. We are dealing with a similar situation
arising due to the nonuniform cooling as the critical
temperature in the superfluid nucleus is approached.
The results of numerical calculation [14] and experi-
mental data [15, 16] indicate the formation of a “vor-
tex” superfluid phase with a higher but finite thermal
conductivity without a superfluid transport. The mech-
anism of vortex formation and the vortex phase of this
kind have been poorly studied both theoretically and
experimentally.

Thus, we have shown that, in contrast to [7], a tran-
sition to the superfluid phase can occur through an inde-
pendent growth of critical fluctuations (instantons) at
temperatures above the critical point (T > Tc) immedi-
ately in the course of external cooling. These fluctua-
tions subsequently transform into macroscopic forma-
tions. The growth of the nucleus of the superfluid state
is accompanied by vortex generation in its external
part. Consequently, vortex defects appear both due to
the independent nucleation with an arbitrary phase
upon cooling (the Zeldovich–Kibble hypothesis) and
directly during the growth of each superfluid nucleus.
This vortex-generation mechanism during the growth
of an instanton significantly differs from the mecha-
nism determined in [17], where the existence of a
superfluid flow interacting with the heated normal
regions was presumed. In [17], an attempt was made to
explain the results of experiments [18], in which 3He
was bombarded by neutrons. As a result, regions heated
to temperatures above Tc appeared. These regions were
cooled by the surrounding superfluid 3He, and the for-
mation of vortices was detected. Thus, nonuniform
cooling took place that differs considerably from the
model used in our study. In the critical fluctuation con-
sidered here, heating takes place due to its nonsuper-
fluid surroundings. Consequently, it is advantageous
for the fluctuation to preserve its spherical symmetry to
reduce this heating. In the case of cooling of a heated
region with superfluid surroundings [18], the interface
must obviously be unstable against its shape distor-
tions, because this leads to a faster cooling. However,
the stability, as well as the phase-transition mechanism
itself, under such conditions (which, in contrast to [17],
JETP LETTERS      Vol. 79      No. 9      2004
are not associated with the existence of an external
superfluid flow) calls for detailed investigations.
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A physical model is proposed for a single CdSe nanocrystal coated with a ZnS shell which can explain the
power-law statistics of its experimentally observed intermittent photoluminescence. If the localized electron–
hole pairs (excitons) form in the nanocrystal, this suggestion alone will suffice to explain why the on-time dis-
tribution follows the law close to t–1.5 found experimentally. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.55.Et; 78.67.Bf
1. The question of why the fluorescence of a single
CdSe quantum dot (QD) with a ZnS shell is intermittent
was raised seven years ago [1]. At the same time, the
problem of a blinking QD was theoretically explained
in [1, 2] based on a model of the Auger ionization of the
QD followed by its neutralization. Though the model
proposed in [2] allowed the intermittent fluorescence of
a polyatomic object, such as a QD, to be explained, it
predicted an exponential distribution of the duration of
on- and off-time periods. It is this distribution of the on-
and off-time periods that is commonly observed in the
luminescence of single molecules [3–5].

However, it was already noted in the first studies of
the intermittent fluorescence of QDs and nanocrystals
[1, 6] that the on/off-time distribution is evidently non-
exponential. Therefore, the off-time distribution mea-
sured three years ago in [7] for the fluorescence of
CdSe nanocrystals, which exhibited a power-law
behavior 1/t1 + m with m = 0.5–0.6 when the time varied
within five orders of magnitude, was a clear challenge
to the theory. Further investigations showed that the
power-law behavior of the off-time distribution is
inherent not only in CdSe nanocrystals [6–9] but in
CdTe [8] and CdS [10] nanocrystals as well.

The most surprising was that the on-time distribu-
tion in a CdSe nanocrystal measured in [8], as well as
the off-time distribution, was also described by the law
close to t–1.5. The authors of [7] suggested that there
exists a certain universal reason for the appearance of
the power-law dependence with such an exponent in the
on- and off-time distributions. Below, a physical model
is proposed that can describe the power-law statistics of
both off- and on-time periods in the photoluminescence
of semiconductor nanocrystals.

2. The number of electron–hole (e–h) pairs in a QD
excited by a CW laser is determined by the equation
N = NaLT1, where Na is the number of atoms in the QD,
0021-3640/04/7909- $26.00 © 20416
L designates the creation rate of an e–h pair, and 1/T1 is
its radiative recombination rate. Even for moderate
pumping obeying the condition LT1 ! 1, the number of
e–h pairs existing in a QD under continuous pumping
can be significantly greater than one.

Consider a QD that contain several localized e–h
pairs (excitons) numbered by the subscript j and several
traps in the system QD + shell numbered by the sub-
script k. In the case of Auger ionization, the recombina-
tion of one e–h pair is accompanied by the ejection of
an electron of another pair from the QD. Then, taking
for definiteness the Auger ionization as the ionization
mechanism [1, 2], one can write the following system
of equations describing the ionization and neutraliza-
tion dynamics of a single QD:

(1)

where

(2)

Here, ρ0 is the probability of finding N e–h pairs in the
QD; ρj is the probability of finding the jth pair (whose
electron is subsequently captured by a trap) in addition

to the N e–h pairs;  is the probability of finding an
electron of the jth pair in the kth trap and the QD with
N–1 e–h pairs. It is evident that Γjk is the probability of
the jth e–h pair decay with the capture of its electron by
the kth trap, and γk is the probability of the kth trap neu-
tralization. It is evident that ρ0 and ρj describe the fluo-
rescent states of a neutral QD, that is, the probability

ρ̇ j 1/T1 Γ j+( )ρ j Lρ0,+–=

ρ̇0 ρ j/T1 Lρ0– γkρ jk,
k

∑+=

ρ̇ jk Γ jkρ j γkρ jk,–=

Γ j Γ jk.
k

∑=

ρ jk
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that the QD resides in the on-state; ρjk describe the
states of the ionized QD, for which fluorescence is
absent, that is, the probability that the QD is in the off
state. It follows from Eqs. (1) and (2) that the probabil-
ities are connected by the following relationship: ρ0 +

ρj +  = 1. The system of Eqs. (1) describes the
dynamics of the QD ionization and neutralization pro-
cess and allows the fluorescence autocorrelation func-
tion g(2)(t) to be calculated by the recipe described in
[11]. However, of my interest is to calculate the on/off-
time distribution functions. A recipe for finding equa-
tions for calculating the on/off-time distribution func-
tions was also proposed in [11].

On states. To find equations for the on-time distri-
bution functions, it is necessary to neglect the term in
Eq. (1) that describes the transition to the on state from

the off state, that is, the following term: .
Then, the two first equations containing the populations
of fluorescent states are separated from the others and
the on-time distribution function can be found from
these two equations

(3)

In a QD containing Na atoms, the same number of e–h
pairs can be generated. The subscript j numbers any of

the possible e–h pairs. It is evident that  = ρ0 + ρj is
the probability of residing in the on state with the pos-
sibility of this state decaying via the jth channel. Con-
sidering that LT1 ! 1 and being interested in the slow
dynamics, one can set  = 0. In this approximation,
the first equation of the system of Eqs. (3) gives

(4)

By adding the equations of system (3), one obtains the
following equation:

(5)

where

(6)

is the decay rate of the on state via the jth channel. The
summation over all decay channels of the fluorescent
QD state leads to the following expression for the on-
time distribution function:

(7)

ρ jkk∑

γkρ jkk∑

ρ̇ j 1/T1 Γ j+( )ρ j Lρ0,+–=

ρ̇0 ρ j/T1 Lρ0.–=

ρ j
on

ρ̇ j

ρ j

LT1

1 Γ jT1+
--------------------ρ0.=

ρ̇ j
on

L jρ j
on,–=

L j L
Γ jT1

1 Γ jT1 LT1+ +
------------------------------------=

won t( ) 1
Na

------ L je
L jt–

.
j 1=

Na

∑=
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The experimental data [8] indicate that e–h pairs
with various ionization times differing by three orders
of magnitude can exist in a CdSe QD.

Off states. To find equations for the off-time distri-
bution functions, it is necessary to neglect the term in
Eq. (1) that describes the transition to the off state from
the on state, that is, the term Γjkρj. Then, the third equa-
tion of the system of Eqs. (1) is independent of the first
two equations and the off-time distribution function can
be found from the following equations:

(8)

By solving these equations, one finds the following

expression for the probability  =  of find-
ing the system in the ionized state after the electron
capture by the kth trap:

(9)

The off-time distribution function under the condition
that an electron is captured by any trap takes the follow-
ing form:

(10)

where Nt is the number of traps that can be achieved
upon the QD ionization. The experimental data [8]
indicate that traps with various ionization times differ-
ing by three orders of magnitude and more can exist in
a CdSe QD.

3. Physical model of the on/off states. The band
gaps of the CdSe and ZnS crystals, which served as the
nanocrystal and the shell in [1, 8], are 1.85 and 3.84 eV,
respectively. The photons of an Ar+ laser with an energy
of 2.54 eV create free electrons and holes. If the QD is
considered as a perfect nanocrystal, the excitons with a
wave function encompassing the entire QD will be the
lowest energy states of the e–h pairs. However, a real
QD can involve substantial disorder. The authors of [9]
speak about “colloidal CdSe QD.” Electrons (holes) in
a disordered system will have wave functions that are
localized on several atoms or, maybe, even on one
atom. The ionization rate constant Lj describes the tran-
sition from the jth atom or a group of atoms to any trap
located in the shell. The resulting Coulomb field
quenches the luminescence of the remaining e–h pairs.

By passing in Eq. (7) from summation to integra-
tion, one obtains the following expression:

(11)

Here, Non describes the distribution of the excited local-
ized e–h pairs in the QD. Because the distribution of

ρ̇ jk γkρ jk.–=

ρk
off ρ jkj 1=

Na∑

wk
off γke

γkt–
.=

woff t( ) 1
Nt

----- γke
γkt–

,
k 1=

Nt

∑=

won t( ) L j( ) L j( )t–[ ] Non j( ) j.dexp

j1

j2

∫=



418 OSAD’KO
rates Lj covers several orders of magnitude, it is reason-
able to take it in the following form:

(12)

To clarify the physical meaning of variable j, the fol-
lowing change of the integration variable should be
made:

(13)

After this change, the integral in Eq. (11) takes the fol-
lowing form:

(14)

where x = r/r0 and

(15)

Here, Lmin = L0 ×  and Lmax = L0 × .
Let us consider the QD as a sphere of radius r0 and

the variable r as the radial variable of an atom in the
QD. Then, Eq. (15) shows that the e–h pairs located at
the QD periphery have the highest ionization rate. It is
evident that the function Non taken in the form Non(x) =
3x2 determines the number of atoms in the case of their
uniform distribution over the QD. The results calcu-
lated by Eq. (14) with the function Non(x) = 3x2 are pre-
sented in Fig. 1. If the time period between the shortest
ionization time 1/Lmax and the longest time 1/Lmin is
larger than the time period studied experimentally,

L j( ) L0 10 j–× .=

j = j1 a r0 r–( ), j2+  = j1 ar0, L0+  = Lmax 10
j1× .

won t( ) L r( ) L r( )t–[ ] Non r( ) rdexp

0

r0

∫=

=  L x( ) L x( )t–[ ] Non x( ) x,dexp

0

1

∫

L x( ) Lmin Lmax/Lmin( )x
.=

10
j2–

10
j1–

Fig. 1. On-time distribution calculated by Eq. (14) for (tri-
angles) Lmax = 102 s–1 and Lmin = 10–3 s–1 and (squares)

Lmax = 101 s–1 and Lmin = 10–2 s–1. The solid line corre-

sponds to the t–1.5 function.
then, as triangles show, Eq. (14) gives a result close to
the power-law behavior t–1.5. If this condition is not ful-
filled, then, as squares show, a deviation from the power
law appears.

The experimental data for the on-time distribution
of the fluorescence of a CdSe nanocrystal coated with a
ZnS shell [8] are presented in Fig. 2. The probability
distribution displayed in Fig. 3 was used in the calcula-
tion. It follows from the data presented in Fig. 2 that,
even though the on-time distribution is close to the
power law t–1.5, it substantially depends on the excita-
tion intensity and temperature. From the data in Figs. 2
and 3, it also follows that satisfactory agreement with
the experiment can be achieved under the suggestion
that the density of the e–h pairs generated by light and

Fig. 2. On-time distribution in a CdSe QD coated with a
ZnS shell under various physical conditions [8]. Solid lines
correspond to calculation by Eq. (14) with Lmin = 10–2 s–1,

Lmax = 103 s–1, and various Non(x) functions depicted in Fig. 3.

Fig. 3. Distribution of the light-excited atoms in the QD
used in the calculation of curves 1, 2, and 3 in Fig. 2. The
dashed line is the 3x2 distribution function corresponding to
a uniform density.
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participating in the ionization process is higher at the
QD periphery. This is demonstrated by a comparison of
curves 1, 2, and 3 with the dashed curve in Fig. 3.

The temperature dependence of the on-time distri-
bution most likely indicates that the Auger ionization
mechanism is not the only one. Considerations in favor
of the thermal ionization were presented in [6]. It is
conceivable that both mechanisms are efficient in a real
nanocrystal. Analysis of the kinetic equations for a
nanocrystal with the thermal-ionization mechanism
shows that this mechanism also leads to Eqs. (7) and
(10). However, the ionization rate constant Lj will then
depend on temperature.

It is evident that Eq. (10) for the off-time distribu-
tion function can be transformed to the following form:

(16)

Here, n(k) is the density-of-states function normalized
to unity. Now, let us find the form of the γ(k) and n(k)
functions that provides the power-law distribution. It is
assumed that the traps are located in the shell material.
Because γ(k) is the neutralization rate of the kth trap
and, according to the experimental data, can vary by
several orders of magnitude, it will be taken in the form
γ(k) = γ0e–λ = γ0 × 10–k; that is, a tunneling character of
the QD neutralization will be assumed. The smaller λ,
the higher the transparency of the potential barrier sep-
arating the trap and the QD. It is evident that γmax = γ0 ×

 and γmin = γ0 × . The numerical calculation
shows that the integration in Eq. (16) with the probabil-
ity distribution n(k) = Amγm(k), where Am is a normaliza-
tion constant, will give a power-law distribution

(17)

under the condition that the (1/γmax, 1/γmin) interval
exceeds the time period for which the off-time distribu-
tion functions are investigated. Therefore, the power
law t–1.5 measured in [7, 8] can be found using the fol-
lowing probability distribution: n(k) = A0.5γ0.5(k) ∝

woff t( ) γ k( )e γ k( )t– n k( ) k.d

k1

k2

∫=

10
k1–

10
k2–

woff t( ) t 1 m+( )–∝
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10−k/2 = e–λ/2. This means that the majority of the traps
have a high neutralization rate; that is, they are located
near the QD surface. Our model for traps resembles the
model considered in [10]. The exponent m in our model
is independent of temperature, in agreement with the
experiment.

4. Thus, the assumption about the formation of
localized e–h pairs in the nanocrystal explains the
closeness of the on-time distribution to a power law in
the photoluminescence of a CdSe nanocrystal coated
with a ZnS shell. The best agreement with the experi-
ment is achieved if one suggests that the light-generated
e–h pairs are mainly concentrated at the nanocrystal
periphery, whereas the traps are located in the shell
material and the majority of the traps are located near
the nanocrystal surface.

This work was supported by the Russian Foundation
for Basic Research (project no. 04-02-17024).
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It is demonstrated that the quasi-relativistic dynamics of antiferromagnetic vortices in a quasi-relativistic
domain boundary of yttrium orthoferrite are caused by the unusually strong gyroscopic force. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 75.60.Ch
The study of the properties of spin vortices in mag-
netically ordered substances is of obvious interest for
understanding the mechanisms of nonlinear dynamics,
magnetization, and magnetization reversal.

In our previous works [1–3], we have observed and
studied antiferromagnetic vortices (AFVs) moving in a
dynamic domain boundary (DB) of yttrium orthofer-
rite. These vortices were observed by the agency of
attendant solitary flexural waves that were detected
using the Faraday effect in plates cut perpendicular to
their optical axis. The AFV dynamics were studied by
the method of real-time two-snap digital ultrahigh-
speed photography.

The theory of spin-vortex gyroscopic dynamics in
the DBs of ferrimagnets was developed by Sonin et al.
in [4, 5]. The authors of those works predicted the exist-
ence of flexural waves near the vertical Bloch lines in
the DBs. The dynamics, results of pair collisions, and
soliton-like behavior of spin vortices in the DBs of epi-
taxial ferrite garnet films were studied experimentally
in [6, 7] using the solitary flexural waves accompanying
these vortices. The theoretical interpretation of these
experimental results was performed in [8, 9] on the
basis of numerical solutions to the Slonczewski and
Landau–Lifshitz equations. The oscillations of subdo-
main boundaries in the wide DBs of a ferrite garnet
plate with cubic anisotropy were studied experimen-
tally in [10, 11]. The authors of those works assumed
that the subdomain boundaries are the Bloch lines in a
DB of a width on the order of several microns between
two neighboring domains.

The possible existence of antiferromagnetic vortices
in the DBs of orthoferrites was theoretically predicted
in [12, 13]. However, they were not observed experi-
mentally before our works. We have shown that the
dynamics of antiferromagnetic vortices in the DBs of
yttrium orthoferrite are quasi-relativistic, with a limit-
ing velocity equal to the velocity of spin waves
(20 km/s) at the linear portion of their dispersion curve,
0021-3640/04/7909- $26.00 © 20420
as also are the DB dynamics in an external magnetic
field. Therefore, the antiferromagnetic vortex is quasi-
relativistic in the quasi-relativistic DB of yttrium ortho-
ferrite. This work reports the experimental results on
determining the amplitudes of the attendant solitary
flexural waves as functions of their velocity along the
DB. The amplitudes of solitary flexural waves accom-
panying antiferromagnetic vortices proved to be pro-
portional to their velocity along the DB. This result is
known for ferrite garnet films, where, however, the
spin-vortex velocities do not exceed several tens of
meters per second. The result obtained in this work for
yttrium orthoferrite confirms the gyroscopic nature of
AFV dynamics in the DBs of weak ferromagnets with
the Dzyaloshinski interaction.

A two-snap high-speed photograph of a moving DB
together with solitary flexural waves moving along it is
presented in Fig. 1. The DB moves from top to bottom.
Its first position is shown by the transition from light to
dark, and the second position is shown by the transition
from dark to light. The delay time between two light
pulses of a duration of 250 ps is equal to 6 ns.

Two-snap high-speed digital photographs of solitary
flexural waves similar to those shown in Fig. 1 make it
possible to determine the DB velocity v, the AFV
velocity u along the DB, and the total vortex velocity w.
The experimental u(v) curve is shown in Fig. 2. It is
highly nonlinear and reaches a maximal value u =
16 km/s at v  = 12 km/s, after which the AFV velocity
along the DB decreases and asymptotically tends to
zero above v  = 20 km/s. At the maximum and after it,
the relationship u2 + v 2 = c2 is valid for the depen-
dence u(v ).

The experimental dependence w(v) of the total AFV
velocity on the DB velocity is presented in Fig. 3; it is
also highly nonlinear. The total vortex velocity
increases nonlinearly with v  and is saturated at v  =
12 km/s on a level of 20 km/s, which is equal to the
004 MAIK “Nauka/Interperiodica”
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velocity of spin waves at the linear portion of their dis-
persion curve. In the ascending portion of the u(v)
curve, the equality w2 = u2 + v 2 is valid. Thus, the AFV
dynamics in the DBs of yttrium orthoferrite are quasi-
relativistic with a limiting velocity of 20 km/s equal to
the velocity of spin waves at the linear portion of their
dispersion curve. Thus, the studied antiferromagnetic
vortices are quasi-relativistic in the quasi-relativistic DB.

The dependence of the amplitude a of the attendant
solitary flexural wave on the DB velocity is shown in
Fig. 4. Like the u(v) dependence in Fig. 2, it is highly
nonlinear. The a(v) and u(v) curves are almost the
same in the region where u increases to its maximum.
Hence, the relation between a and u, as seen in Fig. 5,

100 µm
v

Fig. 1. Two-snap high-speed digital photograph of a
dynamic domain boundary with the antiferromagnetic vor-
tices and attendant solitary flexural waves moving along the
domain boundary in an yttrium orthoferrite plate cut per-
pendicular to its optical axis.

Fig. 3. Dependence of the total AFV velocity w on the DB
velocity v.

w

v
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is linear and extrapolated almost exactly to zero. After
the maximum in the u(v) curve, the situation is qualita-
tively analogous to the situation described above. The
only difference is that the accuracy of determining the
amplitudes of solitary flexural waves accompanying
antiferromagnetic vortices is slightly lower than in the
ascending portion of the u(v) curve. In our opinion,
these experimental results confirm the gyroscopic
nature of AFV dynamics in a moving DB of yttrium
orthoferrite.

The theory of quasi-relativistic DB dynamics in an
external magnetic field was developed in [14, 15]. The
theory of nonlinear quasi-relativistic AFV dynamics
has not been developed as yet. An experiment confirm-
ing the gyroscopic nature of AFV dynamics in a mov-

Fig. 2. Dependence of the AFV velocity u along the domain
boundary on the DB velocity v  in a 40-µm-thick yttrium
orthoferrite plate cut perpendicular to its optical axis.

Fig. 4. Dependence of the amplitudes a of solitary flexural
waves accompanying antiferromagnetic vortices in a domain
boundary of yttrium orthoferrite on the DB velocity v.

v

v
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ing DB of yttrium orthoferrite is required for construct-
ing such theory.

The existing theory of gyroscopic force is linear
with respect to the DB velocity v  and is based on the
results of works [16–18]. This force is zero in the
Lorentz-invariant systems. In a magnetic field Hb

directed along the orthoferrite axis b, it is proportional
to the magnetic moment mb along this axis. Under the
conditions of our experiment, this force is very small
and cannot explain the results of experiment [19]. In
addition to the fact that the vector l is offset from the ac
plane under the action of field Hb, the vectors l and m
in the DB are offset from the ac plane to even a much
greater extent. This result was obtained by Bar’yakhtar
and Ivanov [20] and Papanicolaou [21]. In the order of
magnitude, mb in this case is comparable with the value
of a weak ferromagnetic moment induced by the Dzya-
loshinski–Moriya interaction. For a moving DB, the
value of mb was also confirmed by N.A. Usov through
the numerical solution to the Landau–Lifshitz equation.
However, a contribution of this dynamical sublattice
canting to the gyroscopic force has not yet been theo-
retically calculated.

Our experimental results on the nonlinear gyro-
scopic quasi-relativistic AFV dynamics in yttrium
orthoferrite differ markedly from what is known about
the gyroscopic dynamics of Bloch lines in garnets,
where the velocity of these lines is proportional to the
DB velocity.

In summary, quasi-relativistic AFV dynamics in a
quasi-relativistic DB of yttrium orthoferrite are due to
the action of a gyroscopic force that has not found any
theoretical explanation as yet.

This work was supported by the Russian Foundation
for Basic Research (project nos. 01-02-17120 and
04-02-16572).

Fig. 5. Dependence of the amplitude a of a solitary flexural
wave accompanying antiferromagnetic vortex in a domain
boundary of yttrium orthoferrite on the velocity u of the lat-
ter along the domain boundary.
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Cascade of Phase Transitions in GdFe3(BO3)4
¶
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Cascade of phase transitions in GdFe3(BO3)4 at 156, 37, and 9 K has been detected by specific heat measure-
ments and further studied by Raman scattering and Nd3+ spectroscopic probe method. A weakly first-order
structural phase transition at 156 K is followed by a second-order antiferromagnetic ordering phase transition
at 37 K and a first-order spin-reorientational phase transition at 9 K. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 65.40.Ba; 71.70.Gm; 75.30.Et; 75.40.Cx; 78.30.Hv; 75.30.Kz
† Borates with general formula RM3(BO3)4, where R
stands for a rare earth or yttrium and M = Al, Ga, Fe, or
Sc, have attracted considerable attention because of
their good luminescent and nonlinear optical properties
combined with excellent physical and chemical charac-
teristics. Crystals of YAl3(BO3)4 and GdAl3(BO3)4
doped with neodymium are used for self-frequency
doubling and self-frequency summing lasers [1–3].
Concentrated NdAl3(BO3)4 crystals are efficient media
for minilasers [3].

Rare earth ferroborates are the least studied com-
pounds of the RM3(BO3)4 family. At room temperature,
GdFe3(BO3)4 crystals have the trigonal structure with

the space group  (R32 [4]). FeO6 octahedra linked
together by their edges form spiral chains running
along the c axis. Gd3+ ions reside in D3 symmetry posi-
tions situated between three such chains and link the
chains together. GdO6 prisms are isolated from each
other, having no oxygen atoms in common. Each oxy-
gen atom at a vertex of the GdO6 prism belongs also to
a BO3 triangle. An indication of a structural phase tran-
sition at 174 K has been found recently by specific heat
measurements on a powder sample [5].

Measurements of the magnetic properties of
GdFe3(BO3)4 were performed in [5, 6], and an anoma-
lous behavior of magnetization was detected at about
40 and 10 K. In the present communication, we report
on the temperature-dependent specific heat, Raman,
and optical absorption measurements on GdFe3(BO3)4

† Deceased.
¶ This article was submitted by the authors in English.
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single crystals, pure or doped with 1 at. % of Nd intro-
duced as a spectroscopic probe.

Crystals of GdFe3(BO3)4 and Nd0.01Gd0.99Fe3(BO3)4
were grown using a K2Mo3O10-based flux, as described
in [6]. Big transparent single crystals of ferroborates
were green in color and had a good optical quality. Thin
plates 5–10 mm in size with different thickness
(between 2.2 mm and 150 µm) were prepared for opti-
cal measurements. Specific heat in the range 5–300 K
was measured by a “Termis” relaxation-type microcal-
orimeter. Raman measurements were made on a Jobin-
Yvon T64000 spectrometer with nitrogen-cooled CCD
camera in backscattering geometry. The scattering was
excited by the second harmonic of a Nd:YAG laser at
532 nm, with a typical power of 10 mW. The sample
was attached by silver paste to a cold finger of an
Oxford Instruments helium flow cryostat “Microstat.”
Optical absorption spectra in the spectral region 4000–
20000 cm–1 at a resolution of 0.2 cm–1 were registered
by a Fourier-transform spectrometer BOMEM
DA3.002 with InSb liquid nitrogen cooled detector and
Si detector at sample temperatures between 4.2 and
300 K.

The temperature dependence of the specific heat of
GdFe3(BO3)4 is shown in Fig. 1. Three distinct peaks
are seen in this dependence. Two of them, namely, at 9
and 156 K, are very narrow and almost symmetric,
while that at 37 K is much broader and asymmetric.

The (zx) polarized Raman spectra of GdFe3(BO3)4
are shown in Fig. 2. At about Tc = 156 K, several new
vibrational modes appear, abruptly manifesting a struc-
tural phase transition into a less symmetric phase. The
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Specific heat of GdFe3(BO3)4 vs. temperature.

Fig. 2. Raman spectra of GdFe3(BO3)4 above and below the
temperature of a structural phase transition Tc = 156 K. Inset
shows the temperature dependence of the intensity of the
lowest-frequency new mode when cooling (balls) and heat-
ing (stars).

Fig. 3. Temperature dependence of the frequency of the
lowest new Raman mode that appears in GdFe3(BO3)4
below Tc = 156 K.
small difference in Tc determined from specific heat and
Raman measurements is due to a heating of the sample
by light that excites Raman scattering. The inset to
Fig. 2 illustrates the hysteretic temperature dependence
of the intensity of the lowest-frequency new mode. All
the modes shift with decreasing temperature, typically
1–2 cm–1 in the range of temperatures between Tc and
2.5 K. The lowest-frequency new mode demonstrates
an unusually big shift. Its frequency changes from
26 cm–1 at Tc to 55 cm–1 at 2.5 K and has a peculiarity
at 37 K (see Fig. 3).

To further study the observed phase transitions, we
used the Nd3+ ion introduced as a spectroscopic probe.
An energy level of the Nd3+ ion with the total momen-
tum J is split into (J + 1/2) Kramers doublets by a crys-
tal field of any symmetry lower than a cubic one. Nd3+

substitutes for Gd3+ in the lattice of GdFe3(BO3)4. The
number of lines in the spectra of GdFe3(BO3)4:Nd(1%)
corresponds to only one position for a rare earth, both
above and below the temperature 156 K of the struc-
tural phase transition. For example, for T > 40 K, there
are two spectral lines due to the optical transitions from
the ground state to the crystal-field sublevels of the 4F3/2
level. Figure 4 shows the lowest frequency of these two
lines at different temperatures. The growing splitting of
the line below 37 K is due to the splitting of Nd3+ Kram-
ers doublets caused by an internal magnetic field that
appears at the sites of the Nd3+ ions in a magnetically
ordered state of GdFe3(BO3)4. Maximum four lines
should appear at an optical transition between two split
Kramers doublets, and these are clearly seen at low
temperatures. Two low-frequency ones freeze out with
a further decrease in temperature due to an emptying of
the upper component of the split ground Kramers dou-
blet of Nd3+. Figure 5 displays the temperature depen-
dence of the line splitting and of the relative intensities
of two high-frequency components of the split spectral
line. Sharp changes of these two quantities are observed
between 9.5 and 8 K.

Each of the three phase transitions observed in
GdFe3(BO3)4 is of a different nature. A very strong nar-
row peak in the temperature dependence of specific
heat and an abrupt appearance of new Raman modes
exhibiting hysteretic behavior with a narrow hysteresis
loop and a strong hardening of one mode with a further
decrease in the temperature evidence a weak first-order
structural phase transition at about 156 K.

Specific heat in GdFe3(BO3)4 and Nd3+ spectral
probe data in Nd0.01Gd0.99Fe3(BO3)4 suggest a second-
order magnetic ordering phase transition at about 37 K.
Through the magnetoelastic interaction, the magnetic
ordering also affects Raman modes and manifests itself
as an aforementioned peculiarity in the shifts of these
modes. Judging from the temperature dependences of
magnetization given in [6], one can state that the anti-
ferromagnetic ordering takes place at 37 K. It seems,
however, that this ordering does not affect the rare earth
JETP LETTERS      Vol. 79      No. 9      2004
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subsystem much, which remains paramagnetic down to
lowest temperatures. In particular, this follows from the
fact that the hyperbolic increase of magnetic suscepti-
bility survives below the Neél temperature [6]. The
value of magnetic entropy released at this transition,

 = 37 J/(mol K), is close to that estimated for Fe3+

(s = 5/2) subsystem ordering only (  = 44 J/(mol K)).
Taking into account that the Fe3+ subsystem in
GdFe3(BO3)4 is of a reduced dimensionality, it is possi-
ble to assume that some part of magnetic entropy is
released above the Neél temperature.

When a magnetic ordering occurs within a d-metal
subsystem, the f-metal subsystem gets polarized due to
the f–d exchange. For a rare earth ion, the exchange
splittings and, hence, the spectral line splittings are
mainly due to the exchange interactions with d ions,
while the line width depends on the dipole–dipole inter-
actions with neighboring f ions [7, 8]. In the case of
Nd3+ probe in Nd0.01Gd0.99Fe3(BO3)4, the splitting and
narrowing of Nd3+ spectral lines manifest a magnetic
ordering of the Fe subsystem and polarization of the Gd
subsystem below 37 K.

At 9 K, a sharp peak in specific heat characteristic of
first-order phase transition is seen. The Nd3+ probe
spectrum changes at this temperature, showing the
superposition of high-temperature and low-temperature
spectra in a narrow range in the vicinity of 9 K. Such
changes are typical for a first-order spin-reorientational
phase transition when two different magnetic phases
coexist in a narrow range of temperatures [8]. The mag-
netic susceptibility data [6] evidence a sharp increase of
the signal at T < 9 K in a magnetic field oriented per-
pendicular to the c axis. At the same time, spin-flop
transitions observed below 9 K in a magnetic field par-
allel to the c axis indicate that the antiferromagnetic
sublattices in GdFe3(BO3)4 are oriented along the c
axis. Therefore, the whole of the experimental data sug-
gest that a spin-reorientational phase transition takes
place at 9 K. Above this temperature, the iron magnetic
moments are oriented perpendicular to the c axis, while
below this temperature, the iron moments are oriented
along the c axis. In accordance with this inference, the
magnetic susceptibility at T > 9 K is almost isotropic,
which is typical for an easy-plane antiferromagnet.

In summary, we have registered by specific heat
measurements three phase transitions (at 156, 37, and
9 K) in GdFe3(BO3)4. We further studied these transi-
tions by Raman and optical absorption measurements.
The absorption spectra of the Nd3+ ion introduced as a
probe into the GdFe3(BO3)4 matrix were registered. The
transition at 37 K was found to be a second-order mag-
netic-ordering phase transition. All the remaining tran-
sitions are first-order ones. At 156 K, the appearance of
new Raman modes manifests a change of the crystal
structure to a less symmetric one. The spectra of Nd3+

probe evidence a spin-reorientation at 9 K.
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nents (stars) for the Nd3+ probe in GdFe3(BO3)4.
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A pressure-induced change in the order of magnetic phase transition observed for CoS2 in [1] is explained using
the exchange-striction ferromagnet model allowing for the first- and second-order magnetoelastic interactions.
It is shown that this model offers a satisfactory quantitative explanation of the majority of experimental facts
observed in CoS2. The magnetic phase diagram of CoS2 is calculated in the vicinity of a tricritical point in the
temperature (T), pressure (P), and magnetic-field (H) variables. The critical behavior of the thermodynamic
quantities near the tricritical points of phase-diagram wings is discussed. © 2004 MAIK “Nauka/Interperiod-
ica”.

PACS numbers: 75.30.Kz; 75.40.Cx
Goto et al. [1] have recently found that the Curie
temperature (Tc) of CoS2 decreases with a buildup of
pressure and that the order of magnetic phase transition
changes from second to first at P ≥ 0.4 GPa. The mag-
netization curves at P ~ 1 GPa demonstrate the meta-
magnetic behavior in a narrow temperature region
above Tc. The experimental data obtained in [1] were
analyzed using the theory of metamagnetism of collec-
tivized electrons [2, 3]. However, it was pointed out in
[4] that some of the experimental data obtained for
CoS2 are inconsistent with this theory. Meanwhile, it is
known [5] that the magnetoelastic interaction (MEI) or
the strong dependence of exchange integral on distance
can be responsible for a change in the order of magnetic
phase transition under pressure.

In this work, one of the variants of the exchange-
striction ferromagnet model [6] is used for calculating
the magnetic phase diagram of CoS2 under pressure in
the presence of an external magnetic field. In [6], the
equations of state were obtained for the magnetic and
elastic subsystems of a ferromagnet in the mean-field
approximation of the Heisenberg model. Contrary to
the majority of exchange-striction models, an MEI of
the second order in deformation was taken into account.
It will be seen in what follows that this interaction is
responsible for the magnetic properties of CoS2 under
pressure. The critical behavior of the thermodynamic
quantities in the (T, H) plane near the (Tcr, Hcr) point,
where the first-order magnetic phase transition
(FOMPT) curve terminates, will also be analyzed.

When calculating the magnetic properties, we will
use the equation of state derived in [6] for the magnetic
0021-3640/04/7909- $26.00 © 20427
and elastic subsystems of a ferromagnet. These equa-
tions have the form

(1)

(2)

Here, BS(x) is the Brillouin function for spin s; m is the
reduced magnetization; µ is the Bohr magneton; ω =
∆V/V is the relative change in volume V; k is the Boltz-
mann constant; n is the number of magnetic atoms in
unit volume; γ and ε are the first- and second-order
MEI constants, respectively; B0 and Bm are the bulk
moduli without regard for the MEI and the constant
magnetization, respectively; H is the external magnetic
field; and P is the hydrostatic pressure.

Equations (1) and (2) differ from the conventional
molecularfield equations for a ferromagnet in that the
exchange integral in Eq. (1) depends on the volume
strains,

(3)

while Eq. (2) contains the term ω(P = 0) determining
the spontaneous volume magnetostriction. To take
account of the influence of MEI on the magnetic prop-
erties, one should substitute the expression for volume
strains in Eq. (2) into Eq. (3) and the exchange integral
in Eq. (3) into equation of magnetic state (1). To con-
struct the magnetic phase diagram, it suffices to retain
in Eq. (1) the terms no higher than fifth order in m. By
using the high-temperature expansion of the Brillouin
function and expanding all magnetization-dependent

m BS x( ); x 2µsH 2s2Jm+( ) kT( ) 1– ,= =

ω ns2m
2γ P–( )Bm

1– ; Bm B0 εs2m
2
n/3–( ).= =

J J0 γω εω2/6,+ +=
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quantities in power series in m, one arrives at the fol-
lowing equation of state:

(4)

where

(5)

(6)

(7)

The value s = 1/2 in these equations corresponds to the
cobalt magnetic moment µCo ≈ 1 µ. It is also known that

 = 121 K, B0 = 1.5 × 1012 erg/cm3, and n = 2.4 × 1022

cm–3 for CoS2 [1, 4]. One can see from Eqs. (5)–(7)
that, to calculate the magnetic phase diagram, the
knowledge of the numerical values of the constants γ

Am Bm3 Cm5+ + h,=

A T Tc P( )–( )/T ;=

Tc p( ) Tc
0 2kB0( ) 1– γP– 12kB0

2( )
1–
εP2;+=

Tc
0 J0/2k; h µH/kT ,= =

B 1/3 Tc P( )/T( )3 8kT B0( ) 1– n γ*( )2;–=

γ* γ εP/3B0,–=

C
1
8
--- n

kT B0
------------

Tc P( )
T

-------------- 
 

2

γ*2 1
64
------ n2ε

kT B0
2

-------------γ*2–
2
15
------

Tc P( )
T

-------------- 
 

5

.–

Tc
0

Fig. 1. The magnetic phase diagram of a CoS2 ferromagnet
in the P–T plane. The solid and dashed lines are calculated
by the formulas given in the text; the dotted line is calcu-
lated for B = 0 by formula (5); (s) and (h) are the experi-
mental data for Tc taken from [1, 4] and [7], respectively.
(d) Experimental data for the temperature at which the
metamagnetic transition disappears [1, 4].
and ε is required. The constant γ can be estimated from
Eqs. (2) and (5) using the experimentally determined
[4] value ω(P = 0) ≈ (3–6) × 10–4 or from the value
∂Tc/∂P = –(2kB0)–1γ ≈ (5–9) K/GPa measured in [4, 7].
Both these estimates are consistent with the value γ =
2 × 10–13 erg used in our numerical calculations. It is
known [8] that the phase-transition order changes from
second to first when the coefficient B in Eq. (3)
becomes negative. The estimates by Eq. (6) indicate
that B > 0 at γ = 2 × 10–13 erg, so that the second-order
phase transition (SOPT) should occur, as is observed
for CoS2 at the normal pressure. The coefficient B turns
to zero at P ≈ 20 GPa if ε = 0. For this reason, to explain
the experimental data for CoS2, one should assume that
ε ≠ 0. This is also evidenced by a strongly nonlinear
pressure dependence of Tc in CoS2, which, as is seen
from Eq. (5), is due to the term with ε ≠ 0. In what fol-
lows, we take γ = 2 × 10–13 erg and ε = –5 × 10–10 erg.
The value ε = –5 × 10–10 erg is chosen to obtain a value
of about 1 GPa for the pressure at the tricritical point
(A = 0, B = 0), as occurs in the experiment with CoS2.
Interestingly, the same signs and a similar relation
between the absolute values of γ and ε were determined
in [6] from the experimental data for iron–nickel and
iron–platinum invars.

Equations (4)–(7) allow one to quantitatively calcu-
late the magnetic phase diagram in the T, P, H variables
and compare it with the experiment. A fragment of this
diagram is shown in Fig. 1 for H = 0. The second-order
phase-transition curve (dashes) is determined from the
expression A = 0 (B > 0). The tricritical point t at Pt =
1.16 GPa and Tt = 97 K is determined from the equa-
tions A = 0 and B = 0 (dotted curve in Fig. 1), and the
solid line corresponding to the FOMPT is found from
the equation A = 3(B2/C)/16 (B < 0). The short dashes
in Fig. 1 correspond to the equation A = 9(B2/C)/20. As
will be seen below, this curve is the projection of the
line of critical points onto the H = 0 plane. The two lat-
ter curves bound the region in the (T, P) plane where the
FOMPTs (i.e., metamagnetic behavior) are possible at
H ≠ 0. The experimental data shown for CoS2 in this fig-
ure agree satisfactorily with the calculation. The calcu-
lated Pt pressure is higher and the pressure dependence
of Tc is steeper than in the experiment. In this connec-
tion, it is pertinent to note the following. In [1, 4] and
review [3], the point where the MPT in CoS2 changes
its order was not considered as tricritical and the char-
acteristic behavior of the thermodynamic quantities in
its vicinity was not taken into account when determin-
ing its position. As a result, the coordinates of this point
were determined in [1, 4] only approximately. More-
over, the Curie points in the FOMPT region were
obtained in [1, 4] by extrapolating the Hc(T) depen-
dence of the critical magnetic field to its zero value
Hc(Tc) = 0 (these data are shown in Fig. 1), whereas,
when determining Tc from the ac susceptibility data, the
Tc(P) curve becomes steeper, as is demonstrated also by
JETP LETTERS      Vol. 79      No. 9      2004
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our calculation. Hence, if the experimental data are
revised in the light of the results of our work, then it
may well be that our calculation will give a better quan-
titative agreement with the experiment. Note also that,
in addition to the aforementioned agreement of the
experimental data with the calculated volume magneto-
striction and Tc(P) dependence at low pressures, the
agreement with the experiment is observed for the val-
ues of critical magnetic field and pressure dependence
of magnetization. For instance, at a pressure of 1.3 GPa
and temperature Tc + 1 K, the observed FOMPT-induc-
ing magnetic field is Hc ≈ 0.2 T [4]. The corresponding
calculation by formula (1) gives the same value for the
magnetic field. For the logarithmic derivative of mag-
netization ∂lnM/∂P at low temperatures, one has from
[4] a value of 9.3 × 10–3 GPa–1, while calculation by for-
mula (1) yields a value of 6 × 10–3 GPa–1 at P = 0.5 GPa
and T = 10 K. Nevertheless, the experimentally mea-
sured temperature dependence of bulk modulus should
play the decisive role in the verification of the feasibil-
ity of our calculations for the explanation of the CoS2
properties. According to formula (2) for Bm and the
adopted numerical values of ε, the bulk modulus of
CoS2 must markedly (by approximately a factor of 1.5)
increase upon the transition from the paramagnetic to
ferromagnetic state.

In [9], Griffits defined the tricritical point as a point
at which three SOPT lines converge. Two SOPT lines
bounding the FOPT surface at H ≠ 0 and B < 0 have
come to be known as critical points of phase-diagram
wings. Using Eqs. (4)–(7) and the expression for the
thermodynamic potential corresponding to equation of
magnetic state (4), one can find (see, e.g., [10, 11]) the
critical values of parameters at A > 0, B < 0, and C > 0

(8)

which determine two lines of critical points bounding
the first-order phase-transition surface. The equilibrium
phase diagram in the vicinity of the tricritical point t of
a ferromagnet is shown in Fig. 2 in the variables T, P, H.
It was calculated using Eqs. (4)–(8). Three SOPT lines
(dashes) converge at the point t. The heavy solid lines
are the FOPT lines for P = const (lines of the DF type)
and H = 0 (tD curve). These curves were obtained on
the condition that the thermodynamic potentials of the
ferromagnetic and paramagnetic phases are equal to
each other. The projections of the FOPT surface onto
the coordinate planes are shown. The shapes of the
phase-diagram wings can be judged from the last equa-
tion of Eqs. (8). According to this equation, hcr ~ B5/2,
while the calculations show that the coefficient B
(Fig. 1) can be approximated by a straight line near the
tricritical point in the (P, T) plane. For this reason, the
wing projection onto the P = const plane is a parabola
hcr ~ (T – Tt)5/2.

Acr 9/20( ) B2/C( ); mcr
2 3/10( ) B/C( );–= =

hcr 6/25( ) B2/C( )mcr,=
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Let us consider the behavior of thermodynamic
quantities in the vicinity of the (Tcr, hcr) point. In the

variables  = m/mcr,  = A/Acr, and  = h/hcr, equation
of state (3) can be written as

(9)

To analyze the equation of state in the vicinity of the
critical point, we introduce the notation η = (m –
mcr)/mcr, h* = (h – hcr)/hcr, and t = (T – Tcr)/Tcr, with
which Eq. (9) takes the following form after omitting
the higher powers of t and η:

(10)

This equation coincides with the equation of state for a
liquid–gas system near the critical point after replacing
m by the particle number density and h by the pressure
(see [8], Section 152, p. 551). Thus, the FOMPT curve
in a magnetic field terminates at the (Tcr, hcr) point (P =
const). All conclusions about the behavior of paramag-
netic and ferromagnetic phases near this critical point
can be found in [8]. The critical point of a ferroelectric
in an electric field is the electrical analogue of the liq-
uid–gas critical point [11, 12].

Equation (10) does not contain any unknown coeffi-
cients and can be used for the quantitative estimates.
For example, it follows from Eqs. (10) and (8) that, for
P = 1.4 GPa, one has Tc = 87.7 K, Tcr = 89.4 K, Hcr =
0.34 T, and mcr = 0.26 and that the latent heat of phase

m̃ Ã h̃

15 Ãm̃ 10m̃3– 3m̃5+ 8h̃.=

15α t 15α tη 20η3+ +  = 8h*; α  = Tcr Tc–( )/Tcr.

Fig. 2. The equilibrium magnetic phase diagram of a CoS2
ferromagnet in the P, T, H coordinates. Dashes are the SOPT
curves. The solid lines denote the FOMPT surface; the lines
of the FD type are calculated for P = const and the tD line
is calculated for H = 0. The fine lines in the coordinate
planes are the projections of the FOMPT surface and the
SOPT curve.
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transition q = T(∂H/∂T)(M1 – M2), where M1, 2 =
2µsnm1, 2 are, respectively, the magnetizations of the
ferromagnetic and paramagnetic phases on the phase-
equilibrium curve, turns to zero at Tcr following the law
q = 2.4 × 108(–t)1/2 erg/cm3 = 5.8(–t)1/2 cal/cm3.

To our knowledge, the critical phenomena in the
vicinity of the critical points of phase-diagram wings
have not been experimentally studied for ferromagnets
so far. Experiments of this kind are possible for ferro-
magnets with the FOMPT at zero pressure. The critical
points in a magnetic field can be observed for ferrimag-
netic compounds undergoing FOMPTs [13].

This work was supported by the Russian Foundation
for Basic Research (project no. 04-02-96082p 2004
ural-a) and the State Scientific and Technical Program
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A nonstationary electron magnetotransport is studied for electrons with a partially inverted distribution formed
in the passive region after an ultrashort interband photoexcitation and the emission of a cascade of optical
phonons. In the case of a peaked distribution in the passive region, the conductivity is positive because of the
greater contribution from the decreasing part of the distribution, while the inverted part of the distribution may
give rise to a negative magnetoresistance in classical fields. If the energy of photoexcited electrons in the c zone
is a multiple of the optical phonon energy, a pair of half-peaks occurs at the boundaries of the passive region.
In this case, the contribution from the inverted part of the distribution (with an energy close to the phonon
energy) leads to a total negative conductance and a considerable change in the magnetotransport. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 72.20.My; 72.40.+w
1. The problem of total negative photoconductance
had been discussed as early as in the 1960s [1, 2]. To
our knowledge, this effect cannot be observed with a
stationary photoexcitation, neither in bulk materials [3]
nor in heterostructures. Presumably, this fact is associ-
ated with the slowness of the interband recombination,
which leads to the accumulation of low-energy elec-
trons, and with the effective Coulomb scattering of
high-energy electrons by the low-energy ones [4]. The
situation is different in the case of an ultrafast interband
photoexcitation, where the recombination affects the
transient response only at long times while the elec-
tron–electron scattering is ineffective at a low excita-
tion level. Despite the rapid development of high-time-
resolution spectroscopy in the last few decades [5], the
characteristic features of the transient photoconductiv-
ity and nonequilibrium electron magnetotransport in
the passive region have been poorly investigated.

The nonstationary magnetotransport of photoex-
cited electrons with the distribution function fεt in a
probe field E of frequency ω (Eexp(–iωt) ⊥  wc, where
wc is the cyclotron frequency) is determined by the
diagonal and off-diagonal components of the conduc-
tivity tensor, σd and σ⊥ . The latter are determined by the
formula

(1)

where ρ(ε) is the density of states of electrons in the
quantum well or in the bulk (l = 2 or 3, respectively) and
the momentum relaxation frequency νε takes into
account the elastic scattering and the relaxation due to

σd

σ⊥

2e2

lm
-------- ερ ε( )εd

νε iω–( )2 ωc
2+

------------------------------------
νε iω–

ωc

∂ f εt

∂ε
---------– 

  ,

0

∞

∫=
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the spontaneous emission of optical phonons, so that νε
drastically increases in the active region ε > "ωo. Let us
consider the response to a static field (ω = 0) and inte-
grate by parts in Eq. (1). The contribution of the active
region to the conductivity is small, and σd, ⊥  are deter-
mined by the elastic scattering in the passive region (the
contribution from the integral over ε < "ωo) and by the
contribution due to the jump in νε at the boundary:

(2)

Thus, the negative contributions arise in Eq. (2) both
because νε increases with energy in the passive region
owing to the factor dνε/dε and from the boundary of the
passive region ε = "ωo. If the peak is inside the passive
region, the contribution from the boundary vanishes
and νε increases insufficiently fast for the negative con-
ductivity to occur. However, the magnetic-field depen-
dences change and, owing to the second term in !ε, a
negative magnetoresistance is observed, its evolution
being determined by the quasi-elastic relaxation time
due to acoustic phonons. If the electrons are excited
near the boundaries of the passive region, a negative
conductivity appears owing to the high-energy elec-
trons with an inverted distribution. In this case, the time
evolution is determined by both quasi-elastic relaxation
and fast emission of optical phonons by the electrons
brought into the active region. The character of the
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response time evolution is considered below for this
case using the narrow-distribution approximation for
the photoexcited 2D electrons.

2. We first consider the case of distribution evolution
in the passive region, where, due to the emission of a
cascade of optical phonons by excited electrons in the
region ε < "ωo, a peak with width ∆ε and the shape
described by the function δ∆ε(ε – εex) appears near the
energy εex. Assuming that ∆ε ! εex, "ωo – εex (narrow-
distribution approximation) and using the variable ξ =
ε – εex, we consider the peak evolution due to the quasi-
elastic scattering by acoustic phonons by using the fol-
lowing equations:

(3)

∂ f ξ t

∂t
---------- D

∂2 f ξ t

∂ξ2
------------ v

∂ f ξ t

∂ξ
----------,+=

f ξ t 0=

nex

ρex

-------δ∆ε ξ( ), f ξ ∞ t±→ 0.= =

Fig. 1. (a) Modification of magnetic-field dependences of
the conductivity tensor components, and (b) the negative
magnetoresistance and the Hall coefficient for the parame-
ter α = (1) 0, (2) 1/3, (3) 2/3, and (4) 1.

σ d
/σ

ex
σ ⊥

/σ
ex

ρσ
ex

R
H

/R
ex

ωc/νex
Here, nex is the concentration of photoexcited electrons;
ρex ≡ ρ(εex); and the energy diffusion and drift coeffi-
cients, D and v, are independent of ξ. Since we limited
our consideration to the times within which fξt does not
reach the boundaries of the passive region, we used
above the zero boundary conditions for ξ  ±∞.

The solution to Eq. (3) has the form

(4)

where we introduced the Green’s function gt(∆ξ) =

exp[–(∆ξ)2/4Dt]/  and the quasi-elastic relax-
ation frequency νqe = v 2/4D; in the case of the scatter-
ing by equilibrium phonons, the quantity D/v  should be
replaced by their temperature. If δ∆ε(ξ) is a Gaussian
function, the integral along the ξ axis can readily be
taken to yield a Gaussian distribution, whose shift is
determined by the argument ξt = ξ + v t and width

increases with t as ∆εt = :

(5)

Substituting Eq. (5) into Eq. (2), we obtain a simple
expression for the conductivities σd, ⊥ :

(6)

where the column Aξ = (εex + ξ)l/2  is introduced.

At zero time, we can use the approximation ∆ε !
εex, so that the integral in Eq. (6) is replaced by Aξ = 0,
which depends on the parameter α =
[(2ε/lνε)dνε/ . Figure 1a shows the dimensionless
dependences of the conductivities σd, ⊥ /σex on the
cyclotron frequency ωc/νex, where σex = e2nex/mνex and
νex = . As α increases, the Lorentzian magnetic-
field dependence of σd exhibits the ascending portion at
ωc/νex  0, while the corresponding dependence of
σ⊥  exhibits a minimum at small values of ωc/νex. The
negative magnetoresistance and the Hall coefficient (in
units of Rex = 1/|e|nexc) with a strong magnetic-field
dependence for ωc/νex ≤ α are shown in Fig. 1b. Note
that, for α > 1, the negative conductivity regime could
be realized; however, α is small for 2D electrons and
α = 1/3 or 2/3 in the case of the scattering of bulk elec-
trons by uniformly distributed phonons or by zero-point
oscillations [6]. The boundaries of the passive region do
not affect the time evolution if the following conditions
are satisfied: v t < εex and ∆εt < (εex, "ωo – εex). These
conditions can be represented in the form νqet <
{vεex/4D, [("ωo – εex)/4D]2}, so that the magnetic-field
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dependences presented in Fig. 1 take place for times

noticeably exceeding .

3. Now, let us consider the evolution of a pair of
half-peaks excited at the boundaries of the passive
region. Such an initial distribution arises as a result of
the photoexcitation of electrons with the energy multi-
ple of the optical phonon energy; in this case, after the
emission of a phonon cascade, half of the electrons rap-
idly fall into the low-energy region and their subse-
quent relaxation is insignificant. To describe the high-
energy electrons, we introduce the distribution func-

tions in the passive and active regions,  and , and
take into account the spontaneous emission of optical
phonons at ξ > 0, which is characterized by the relax-
ation frequency νo. Then, for |ξ| ! "ωo, we obtain the
set of equations

(7)

At ξ = 0, this set is complemented with the continuity

conditions for the function  =  and the

derivative ( /∂ξ)ξ = 0 = ( /∂ξ)ξ = 0. We also use
the zero boundary conditions at ξ  ±∞ and the ini-
tial condition of problem (3) with εex = "ωo.

By introducing the concentrations of high-energy

and low-energy electrons,  = ρ2D  and  =

nex – , we represent σd, ⊥  in the form

(8)

where Aj is given by the column !ε from Eq. (2) at the
energies on the order of ∆ε for j = l and "ωo for j = u.

Thus, the response evolution is described by the

quantity , which determines the structure of the
transient layer formed due to the competition between
the diffusion to the active region and the fast emission

of optical phonons, and by the concentrations  sat-
isfying the condition for the particle number conserva-
tion. By integrating Eqs. (7) over the region ξ < 0, we

obtain the equation for :
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with the initial condition  = nex/2. Then, the com-
ponents σd, ⊥  given by Eq. (8) are expressed through

 and its derivative at ξ = 0.

Applying the time Laplace transform to Eqs. (7), we
obtain a set of equations with constant coefficients for

 and . Its solutions are expressed in terms of the

fundamental solutions exp(± ξ) and

exp(± ξ) with the aforementioned bound-
ary conditions. After the inverse Laplace transform, we
obtain

(10)

and solution (9) reduces to 

(11)

Here, we introduced the function wξ =

(nex/ ρ2D∆ε)exp[–(ξ/∆ε)2 + vξ/2D] and used gt(ξ)

from Eq. (4) and the condition v /  ! 1.

The functions χt and ψt in Eqs. (10) and (11) are
determined as

(12)

where f(s) =  + . The integrals in
Eqs. (12) are expressed through the contributions from
the cut along Res between –∞ and –νqe, so that
Eqs. (10)–(12) yield exact solutions in the narrow-peak
approximation.

For the asymptotic behavior at νot ! 1 and νot @ 1,
we obtain the interpolation formulas for Eqs. (12):

(13)
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where ψt is written for the region t < . Within this
time interval, the integrations with respect to ξ and τ in
Eqs. (10) and (11) are separated and, on the condition
that ∆ε ≥ 4D/v, we obtain simple expressions

(14)

Thus, in the interval  < t < ,  decreases as
an inverse square root of time, while the concentration

 varies with time only weakly. Taking into account
that the parameter α introduced in Fig. 1 is small in the
case of 2D electrons and substituting Eqs. (14) into

νqe
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Fig. 2. Magnetic-field dependences of σd, ⊥  for νl/νu =
(a) 0.7 and (b) 1.4 and for times t/τu = 0.1, 0.3, and 0.5 (the
solid, dashed, and dotted lines, respectively).
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/σ

l
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/σ
l

Eq. (8), we obtain the following equation for the σd, ⊥
components:

(15)

where Ωj = ωc/νj and the conductivity σl = e2nex/mνl is
determined by the mobility of low-energy electrons. To
describe the inverse-square-root time dependence of

, we also introduced the characteristic time τu =
("ωo/∆ε)2/πνo.

Thus, at ωc = 0, the negative conductivity regime is
realized at times shorter than τu/(1 + νu/νl)2; in this
interval, the condition νqet < 1 is usually met, so that
long times can be ignored. At νu = νl, time dependences

(15) are described by the factor (2 – ) and the
magnetic-field dependences have their usual form. For
the case νu ≠ νl, the dependences are shown in Fig. 2;
here, the negative conductivity and the magnetotrans-
port features prove to be more pronounced for νl > νu.

4. The above consideration demonstrates that the
characteristic features of the transient response of pho-
toexcited electrons with a partially inverted distribu-
tion can be observed on the nanosecond time scale. In
addition to the negative photoconductivity and magne-
toresistance considered above, a negative cyclotron
absorption is possible. In the resonance approximation
|ω – ωc| ! ωc, the conductivity tensor components dif-
fer from those given by Eq. (2) in that ωc is replaced by
the frequency deviation ω – ωc. In the case of the pho-
toexcitation in the passive region, a dip appears in the
middle of the cyclotron peak, while in the case of the
excitation near the boundaries of the passive region, a
negative absorption occurs at the cyclotron frequency.
These features of the transient response were recently
revealed upon the photoexcitation of bulk Si and Ge
[7]; however, this phenomenon can be quantitatively
described only if the characteristic features of photoex-
citation and relaxation in multivalley semiconductors
are taken into account.

Let us now discuss the approximations used above.
Classical formula (1) is suitable for describing the tran-
sient response at times exceeding the collision time that
is on the order of "/∆ε for slow electrons; i.e., this
approach is valid if ∆ε > "νo. In Eq. (2), only the con-
tributions of the passive region and its boundary are
taken into account, because  ! νo and the fξt

variation scale at the boundary (exceeding ; see
Eq. (7)) is greater than the width (quantum spreading of
the step density of states) of the interval in which the
optical phonon emission is initiated. The results of Sec-
tion 2 apply to electrons in both quantum well and bulk,
as long as the distribution remains narrower than "ωo,
so that the energy dependences of D and v  are insignif-
icant. The consideration of the time evolution of the

1
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negative photoconductivity in Section 3 is limited to the
simpler case of 2D electrons, where the relaxation fre-
quency due to optical phonons is constant. In the bulk

case, νξ ∝   for the deformation mechanism of inter-
action with optical phonons, so that the conditions for
the realization of the transient negative photoconduc-
tivity become less stringent. To avoid the photoexcita-
tion nonuniformity in the bulk of direct-gap semicon-
ductors, one can use a two-photon pumping.

In closing, it should be noted that the photoexcita-
tion of electrons in the negative conductivity regime
leads to their instability. When analyzing the high-fre-
quency transient response in the negative absorption
regime, one may reveal the possibility of realizing the
stimulated transient-radiation regime, the frequency
interval being limited by only the condition ω ! ωo;
i.e., emission in the terahertz spectral band is possible.
The analysis of these problems requires special investi-
gation.

I am grateful to F. Koch for discussing the results
of [7].

ξ
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If the condition εσ(p) = ε–σ(–p + nI/vF) for magnetic nesting is fulfilled for the electron dispersion law with
spin σ along a certain preferential direction n, ferromagnetism and the inhomogeneous superconducting state
can coexist up to a very high magnetization I. This fact was used to explain the coexistence of ferromagnetism
and superconductivity for layered cuprates of the RuSr2GdCu2O8 type, which possess a finite, though rather
high, critical magnetization, because the conditions for magnetic nesting are fulfilled only approximately.
© 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Ha; 74.81.-g
1. The phenomena of superconductivity and ferro-
magnetism are seemingly antagonistic with respect to a
magnetic field: superconductor expels magnetic field
(Meissner–Ochsenfeld effect), whereas ferromagnet,
quite the opposite, concentrates it. The problem of the
possibility of these states coexisting was studied by
Ginzburg [1] in 1956 even prior to the appearance of the
microscopic BCS theory [2].

According to [1], this coexistence is possible if the
critical magnetic field Hc is higher than the magnetic
induction I. From the microscopic point of view [2], the
value of Hc in most cases is determined through the
influence of a magnetic field (and induction) on the pair
orbital motion. In addition, due to the pairing of oppo-
sitely directed spins, the Zeeman splitting also
quenches superconductivity (paramagnetic effect), and
this is precisely the factor that plays the decisive role
[3].

If the superconducting transition temperature Tc is
much higher than the ferromagnetic transition temper-
ature Tm, the magnetic state in the coexistence region is
inhomogeneous [4] (the current theoretical and experi-
mental results are discussed in [5]).

When Tc ≤ Tm, a narrow magnetization (I) interval
exists where the superconducting state is inhomoge-
neous under the coexistence conditions [6, 7].

In recent years, much work has been devoted (see,
e.g., [8, 9]) to the observation of the coexistence of fer-
romagnetism and superconductivity in layered
RuSr2GdCu2O8 cuprates, in which Tm is appreciably
higher than Tc (Tm = 132 K and Tc = 46 K). Such a ratio
between Tm and Tc is intolerable for the simple spherical
Fermi surface underlying the model considered in [6,
7]. In contrast to the homogeneous state, which is
0021-3640/04/7909- $26.00 © 20436
insensitive to the shape of the Fermi surface [2, 3], the
inhomogeneous superconducting state can exist in a
wider magnetization interval, provided that the nesting
condition is approximately fulfilled [10, 11].

It is shown in this work that the processes of hop-
ping to the centers of the third sphere, which were dis-
regarded in [10, 11], though superior to the second-
sphere hopping in cuprates, dramatically change the
coexistence situation. It is also shown that the super-
conducting state with a large total pair momentum [12]
can coexist with the ferromagnetic state in the presence
of a sufficiently high magnetization.

For certain hopping parameters optimal from the
coexistence viewpoint, the condition for magnetic nest-
ing

(1)

can be fulfilled.

The coexistence of ferromagnetism and supercon-
ductivity is possible up to a very high magnetization
(vF is the Fermi velocity). Therefore, the orbital mech-
anism considered in [1] is the main magnetization-
induced superconductivity-quenching mechanism in
this situation.

2. As a simple model satisfying magnetic-nesting
condition (1), we choose a two-dimensional model of
electron spectrum with the isoenergetic lines in the
form of squares in a certain interval of energies (on the
order of the cutoff energy ω of attractive interaction V).
Assuming that ω (ω = ωph for the electron–phonon
interaction) is small compared to the Fermi energy εF,
we write the equation for the order parameter ∆ (∆(r) =

εσ p( ) ε σ– p nI/v F+–( )=
004 MAIK “Nauka/Interperiodica”
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|∆|eiqr and q is the pair momentum) at T = 0 in the BCS
form 

(2)

where ε = , λ = VN, N is the density of states
at the Fermi level, n(ε) = (eε/T + 1)–1, and Q = qvF/2.

The solution with a certain preferential q corre-
sponds to the appearance of a homogeneous current
state [7]. Below, we formally restrict ourselves to this
case, with an eye to summing over all equivalent states
of momentum q [6], as a result of which the homoge-
neous current disappears.

3. Setting Q = 0 in Eq. (2), we obtain the equation
for |∆|:

(3)

If I < ∆, the quasiparticle distribution functions
n(ε + I) and n(ε – I) are zero and the solution to Eq. (3)
is ∆ = ∆0. In the opposite case of I > ∆, one has

(4)

Hence, the solution to Eq. (3) has two branches. In
addition, the trivial solution ∆ = 0 corresponding to the
normal state always exists.

One can easily show that the solution increasing
with I corresponds to a local free-energy maximum,
i.e., to the unstable state. The energy difference
between the superconducting and normal states is given
by the expression

(5)

Hence, it follows that the solution ∆ = ∆0 is energet-
ically more favorable for I < Ic, where

(6)

after which a first-order phase transition occurs from
the superconducting phase ∆ = ∆0 to the normal phase
∆ = 0; i.e., superconductivity is quenched. These results
coincide with the results for a system with the isotropic
quadratic dispersion law [3].

4. In 1964, it was shown [6, 7] that the supercon-
ducting phase in superconductors with the quadratic
dispersion law can appear at I > Ic, but the correspond-
ing order parameter ∆(r) is inhomogeneous. The new

1
λ
---

ξd

ξ2 ∆ 2+
------------------------ 1

1
2
--- n ε I Q+ +( )[–





0

ω

∫=

+ n ε I Q–+( ) n ε I– Q–( ) n ε I– Q+( ) ]+ +




,

ξ2 ∆ 2+

1
λ
---

ξd

ξ2 ∆ 2+
------------------------ 1 n ε I+( )– n ε I–( )–{ } .

0

ω

∫=

∆
∆0 2I ∆0–( ) for ∆0/2 I ∆0,< <
0 at I ∆0.>




=

Us Un–
N
2
---- 2I2 ∆0

2–( ).=

Ic ∆0/ 2,=
JETP LETTERS      Vol. 79      No. 9      2004
phase (FFLO phase) arises through the first-order phase
transition and exists in a narrow field interval

(7)

Let us consider the inhomogeneous state using
Eq. (2). We first analyze the most intriguing case where
the I-induced spin splitting in the spectrum is compen-
sated by the condensate momentum satisfying condi-
tion (1):

(8)

At temperature T = 0, only the terms n(ε – I – Q) ≡
n(ε – 2I) are nonzero, and we find from Eq. (2) the
equation for δ = ∆/∆0,

(9)

or the equivalent equation

(10)

One can easily see that Eqs. (9) and (10) have no zero
solutions. The dependence of the order parameter δ on

the magnetization  is shown in Fig. 1. In the interval

 <  < 1 (  = 2 × 3–3/4 ≈ 0.87,  > δ), this dependence
has a two-valued character and becomes single-valued

at  > 1, where δ decreases monotonically with increas-

ing , though remaining finite.

The existence of the solution for ∆ ≠ 0 at  > δ is due
to the fact that, under condition (1), the excitation
energy for a pair with Q = I turns to zero at the line
(instead of points in the case of isotropic dispersion law
[6, 7]). A decrease in ∆ with increasing I is due to the
fact that the line of zeros (line for which the condition
εσ(p) = ε–σ(–p + nI/vF) = 0 is met) becomes shorter.

0.707 I/∆0 0.754; Qc<< 0.897∆0.=

I Q, 2I ∆.>=

δ Ĩ Ĩ
2 δ2–+( ) 1, Ĩ 2I/∆0=( )=

2δĨ 1 δ4.+=

Ĩ

Ĩc Ĩ Ĩc Ĩ

Ĩ

Ĩ

Ĩ

Fig. 1. Dependence of the order parameter δ on the magne-

tization .Ĩ
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The energy difference between the inhomogeneous
superconducting state and the normal state can be cal-
culated by the standard method:

(11)

It follows from this expression that, at  > δ, the inho-
mogeneous superconducting state is energetically more

favorable than the normal state. However, at  < ,
the energy of the inhomogeneous state in Eq. (11)
should be compared with the energy of the homoge-

neous state in Eq. (5). They are equated at  and δ0 val-
ues satisfying the system of Eq. (10) together with the
equation

(12)

Analysis shows that the solution to Eq. (10) at δ ≤ δ0

and  >  can be written, to a good accuracy, as

(13)

By using expressions (13) for δ0 and , we obtain
from Eq. (12) the approximate equation

(14)

which yields  =  ≈ 1.36 and δ0 ≈ 0.36.

Thus, a system with magnetic nesting undergoes at
I > 0.68∆0 the first-order phase transition from the
superconducting state with a homogeneous order
parameter ∆ = ∆0 to the inhomogeneous state with |∆| =
0.36∆0. As I increases, the order parameter decreases
monotonically according to Eq. (13), and energy differ-

ence (11) at  >  is given by the expression

(15)

Note that energy difference (15) also exceeds at I =
∆0 the corresponding maximal value for the FFLO
phase by two orders of magnitude.

We now turn to the situation with Q > I and Q – I > ∆.
It is in this interval of parameters that the FFLO phase
is realized. Using Eq. (2), we obtain the following equa-
tion for ∆:

(16)
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Ĩ Ĩ0
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One can see that, in contrast to Eq. (9), this equation has
a solution with ∆ = 0. However, analysis of the solu-
tions to Eq. (16) is of no interest, because they are ener-
getically unfavorable. Indeed, the energy difference

(17)

is always positive. This result is evidence that the opti-
mal situation occurs at Q ≤ I and I – Q < ∆, where super-
conductivity is highly stable against the action of the
exchange ferromagnetic field up to very large magneti-
zations.

5. The above calculations were carried out for the
idealized situation where the Fermi contour is a square
and the spectrum satisfies condition (1). The spectrum
of actual HTSC cuprates (including those containing
ferromagnetic layers, e.g., RuSr2GdCu2O8) can be cal-
culated with a high accuracy using the tight-binding
approximation with allowance for three coordination
spheres,

(18)

The typical literature values of hopping integrals are
t = 0.5 eV, t1 = –0.3, and the parameter t2 varies in a
rather broad range from 0 to 0.8. Such a choice of the
dispersion law allows the explanation of the experimen-
tally observed Fermi-contour shape near half-filling.
Since the turn of Fermi contour (compared to the near-
est-neighbor approximation) and magnetic nesting (1)
are largely determined by the overlap integral t2 with
the third neighbor, the subsequent calculations will be
carried out for various values of t2. In [11], only the sec-
ond neighbors were taken into account (i.e., t2 = 0) and
t1 was taken to be twice as large as its commonly
accepted value to ensure the turn of Fermi contour and
bring it closer to a square with rounded corners. It
seems to us that, to accomplish this end, such a choice
is less realistic than the inclusion of t2. In this case, the
experimentally observed corrugation of the Fermi con-
tour can also be explained. The magnetization shifts
dispersion curve (18) for one of the spin directions by a
value of I.

Earlier, it was pointed out that the superconducting
stability effect is caused by a large length of the εσ(k) =
ε–σ(k + q) – I line of energy-excitation zeros. In the sim-
plest model considered above, εσ(k) perfectly coincides
with ε–σ(k + q) – I on a portion of the Fermi- contour,
whereas the coincidence is only approximate in the real
dispersion law. Nevertheless, the difference between
these lines can be small enough on a wide energy inter-
val. Below, we will not assess the effect of field I by
solving the self-consistency equation for ∆ but restrict
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ourselves to the calculation of the Fermi-contour length
L where magnetic-nesting condition (1) is approxi-
mately fulfilled with a given accuracy. The algorithm
for calculating L is as follows: for a given filling factor
n, Eq. (18) is used to determine the Fermi energy, the
corresponding isoenergy line (Fermi contour) ky =
F(kx), and its length L0. Thereupon the energy γ =
|εσ(k) – ε–σ(k + q) – I | of a particle with the opposite
spin is calculated on the Fermi contour with allowance
for the magnetic splitting I and wave vector shift q
(nonzero pair momentum). The departure from the
magnetic-nesting condition will be characterized by the
parameter γ = |εσ(k) – ε–σ(k + q) – I |, while the Fermi-
contour length L, for which γ < γ0, where γ0 is a certain
given (small) value, will be used as a final value.
Although the value of γ0 is determined, in principle, by
a set of parameters (e.g., by the cutoff parameter), we
will be interested only in some general trends that are
insensitive to the particular details. Roughly speaking,
L/L0 is the estimate for the expression in braces in self-
consistency Eq. (2). It is close to zero in the FFLO
model and finite (of order 0.5) in Eq. (2).

At first, we use the above algorithm to estimate how
much the distinction between real spectrum (18) and
the ideal spectrum with square isoenergy lines shows
up in the possibility of superconductivity coexisting
with ferromagnetism. Figure 2 illustrates the depen-
dence of L on the wave vector q in the upper right quad-
rant of the momentum plane (for q directed along the

q = (q, q) diagonal, as in the case considered above)

as calculated for I = 0.02 eV, γ0 = 0.001 eV, various val-

1

2
-------

Fig. 2. Plots of the length L on which the magnetic-nesting
condition is fulfilled vs. the wave vector q for I = 0.02 eV,
γ = 0.001 eV, and various values of parameter t2. Inset:
Fermi-contour shape.
JETP LETTERS      Vol. 79      No. 9      2004
ues of t2, and filling factor n = 1.14. The corresponding
isoenergy lines are shown in the inset. The presence of
sharp maxima is the salient feature of these curves. For
a nonzero value of t2, two maxima appear due to the
coincidence (after shifting by I and q) of the different
regions on the complicated Fermi contour. Only the
states corresponding to the absolute maximum of L(q)
can be realized. One can see from Fig. 2 that Lmax

increases with t2 and has a maximum at t2 = 0.2. This is
caused by the fact that the Fermi-contour shape for this
value of t2 is closest to a square (flat segments appear in
the contour; see inset in Fig. 2). The maximal value of
Lmax/L0 is 0.65.

The Lmax(I) dependences qualitatively analogous to
the ∆(I) dependence given by Eq. (11) are shown in
Fig. 3 for different values of t2 and filling factors of 1.14
(electron doping) and 0.86 (hole doping); the corre-
sponding dependences for the wave vector qmax are
shown in the inset. It is worth noting that Lmax is larger
for the electron filling and exceeds for t2 = 0.2 a value
of 0.2 up to I ≈ 0.2. Of interest is to reveal whether the
advantage of electron filling is absolute, i.e., whether it
occurs for any t2 or not. The Lmax(t2) dependences for
I = 0.05 and filling factors of 0.86 and 1.14 are pre-
sented in Fig. 4. It follows from this figure that the hole
filling is optimal only in a rather narrow interval of t2

values, and in the remaining region, the electron filling
dominates.

Similar results are obtained for q = (0, q), although
the absolute values of Lmax are slightly smaller than for

Fig. 3. Plots of length Lmax vs. magnetic shift I for the (2, 4,
6) electron and (1, 3, 5) hole doping and various values of
t2. Inset: optimal value of the wave vector qmax(I).
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the Fermi contours shifted along the q = (q, q) diag-

onal.
Of interest is to clarify whether the coexistence of

superconductivity and ferromagnetism is possible in
the situation where the pairing occurs with a nonzero
momentum K even in the absence of ferromagnetism
[12]. In this case, the so-called kinematic-constraint
region formed by the intersection of the ε(k) < εF and
K-shifted ε(k + K) < εF regions plays the decisive role.
One should then consider the coincidence between the
kinematic-constraint regions upon shifting by the
momentum q and energy I. The coincidence of the q
and K directions is optimal in this case. Although the
meaning of the L0 quantity is different than for the case
of K = 0 considered above in that this length would
enter the self-consistency equation in a different way,
nevertheless, the L/L0 ratio also characterizes the ferro-
magnetically induced superconductivity quenching.
The kinematic-constraint region occupies a part of the

1

2
-------

Fig. 4. The Lmax(t2) dependences for the electron (n = 1.14)
and hole (n = 0.86) doping; I = 0.05 eV.
Fermi surface in a certain sector directed along K =
(0, K). For this reason, when calculating L (and L0), one
should restrict oneself only to this sector. The resulting
value of L0 is smaller than the corresponding value
obtained for K = 0, while the L/L0 ratio proves to be
larger. Therefore, the finite-K pairing is most favorable
from the viewpoint of the coexistence of ferromag-
netism and superconductivity.
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We propose and analyze an experimental scheme of quantum nondemolition detection of monophotonic and
vacuum states in a superconductive toroidal cavity by means of Rydberg atoms. © 2004 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 03.65.Ta; 03.67.-a; 32.80.-t
One of the key directions of modern physics is the
following challenging problem of understanding the
essence of the process of quantum measurement. Of
special interest in this respect are experiments with
individual quantum objects. Such applications as quan-
tum computing, quantum cryptography, and quantum
teleportation, which have recently been attracting
increasing attention [1], have their roots in this field.
Quantum measurements and particularly experiments
on the interaction of individual atoms and ions with the
quantum field in a cavity are usually associated with the
optical domain. With the development of the Rydberg
atom technique, however, impressive results have been
obtained in the microwave region [2]. This technique
allows preparation and nondestructive (quantum non-
demolition) repetitive measurements of Fock states
with a small number of quanta in a high-Q supercon-
ductive cavity [3, 4].

In 1994, Braginsky and Khalili [5] proposed an ele-
gant scheme employing Rydberg atoms which allowed
nondestructive detection of vacuum and monophotonic
states. The idea of the experiment is to use a cavity with
a geometry such that the flying atom can interact twice
with the field. A composite resonator comprising two
sandwiched coaxial leucosapphire disks with whisper-
ing gallery modes was proposed initially with the atoms
flying in between near the surfaces of the disks along
their diameter. If the atom’s velocity and the geometry
are chosen such that the interaction time takes one half
of the Rabi cycle, then the atom and the field may effec-
tively exchange photons with a probability close to
100%. Dual interaction ensures that an atom leaves the
cavity unexcited in both cases when the cavity is in vac-
uum and one-photon state. The only difference is the
state of the atom in the central area of the cavity
between the two interactions. It was suggested initially
[5] that an inhomogeneous dc field be applied in this
region. This electric field detects states nondestruc-

¶ This article was submitted by the authors in English.
0021-3640/04/7909- $26.00 © 20441
tively (state-dependent deflection). A simpler scheme
for realizing nondestructive state detection was pro-
posed later [6], and we discuss here a practical scheme
for a quantum nondemolition (QND) quantum bit
detector (QBD), based on the initial idea [5] with a tor-
oidal superconductive cavity instead of sapphire disks.

The scheme of the proposed experiment is given in
Fig. 1. A Rydberg atom prepared in a particular state
enters the toroidal superconductive cavity. If initially
the cavity is in the vacuum state of the photon field |0〉 ,
the state of the atom does not change in the first inter-
action region and the central RF field (resonant with
auxiliary transition) lowers the atom state to the auxil-
iary lowest level. If, however, the initial state of the cav-
ity is the one-photon state |1〉 , the atom absorbs the cav-
ity photon. To provide 100% absorption of the photon,
the interaction time has to be equal to one half of the

Fig. 1. Scheme of the quantum bit detector. The cavity is
shown in section.

|1〉 |0〉

|1〉

|0〉

Ch. 2
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Rabi cycle ( L/v  = π/2, where  is the effective Rabi
frequency, L is the interaction length, and v  is the
velocity of the atom). When the atom is in the upper
state, the central field is not resonant and the state is
unchanged. During the second interaction, the atom
returns the photon back to the cavity. In this way, the
information about the cavity quantum state is recorded
in the atomic state and the quantum state of the cavity
is not destroyed. The information recorded in the
atomic state can easily be read by the state-selective
detector based on field ionization.

The transition between 61D5/2 and 63P3/2 levels of
the 85Rb Rydberg states, the cavity mode (21.456 GHz),
and 61D5/2  59F7/2 (21.122 GHz) for the probe are
planned to be used in the experiment.

The theory of the QBD based on the Jaynes–Cum-
mings model and the standard master equation
approach can be created in the same way as the theory
of the micromaser field (see details in [7–9]). The basic
difference is that atoms are prepared not in the excited
but in the ground state and that interaction between the
cavity and the atoms is more complicated.

The complete initial state P of the system atom in
the ground state plus the cavity field can be written in
the form

(1)

Three sequential interactions (the first with quantum
field in the cavity in the first interaction region; the sec-
ond with intermediate classical field transforming |g〉

g g

P g n,| 〉ρnm g m,〈 | .
n m,
∑=

Fig. 2. Dependence of steady states of electromagnetic field
in the QBD on the Rabi phase φ with atom rate r = 3000 s–1,
temperature T = 1.4 K (  = 0.92), and Q = 2 × 109. The
lower curve is the mean number of photons 〈n〉 , and the
upper curve is the Fano factor Qf.

n

into the auxiliary state |f 〉 , which is off-resonant; and,
finally, the third with quantum field) will transform to

(2)

This transformation is considered ideal here, though
finite efficiency can also easily be accounted for. If, as
in micromaser theory, we are interested only in the evo-
lution of the state in the cavity, ignoring the states of the
atoms, we can trace over the atom states ρ(n) 
tratomPafter, obtaining after some transformations

(3)

The first term here states that the atom left the first
interaction unexcited and was transformed to the auxil-
iary state; the second one, that the atom absorbs the
photon and returns it back to the cavity; and the third is
the probability of the atom leaving the cavity in excited
state.

Taking into account the interaction of the cavity
field with the heat bath between atom flights [7, 8], we
obtain the following master equation:

(4)

Here, γ = ω/2πQ is the decay constant of the cavity and
 = [exp("ω/kT) – 1]–1 is the mean number of photons

in the cavity for the thermal state at temperature T. Each
of the six terms in the master equation corresponds to
the probability of transition to or from the level n
caused by the atom or heat bath. The first three terms
can be transformed to the last three terms with the
replacement n  n + 1 and a change of sign. Taking
into account that these first three terms also become
zero for n = 0, one can easily obtain a steady-state solu-
tion for the QBD when ∂ρ/∂t = 0:

(5)

The results of numerical calculations of the mean
photon number 〈n〉  and relative variance (Fano factor)
Qf = (〈n2〉  – 〈n〉2)/〈n〉  according to (5) for the set of
parameters achievable in the experiment are presented
in Fig. 2. As is clearly seen, the QBD works as an effec-
tive cooler for the cavity field. For most of the Rabi
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phase values, the state in the cavity is close to the vac-
uum state, except peaks corresponding to multiples of
π/2. For these values of the phase, sub-Poissonian sta-
tistic of the field (Qf < 1) is observed with minima of the
Fano factor. This is the regime of the QND state selec-
tor. Large maxima of the Fano factor correspond to
Rabi phase resonance for two-photon states, and small
maxima, to three-photon states (correspondingly, φ =

kπ/(2 ) and φ = kπ/(2 )).

If we now start monitoring the state of the atoms
leaving the cavity with the velocity chosen to satisfy
condition φ = π/2, we can distinguish in a quantum-
nondemolition way two lowest quantum n states |0〉  and
|1〉—quantum bit. If dissipation in the system is absent,
every new measurement of the state (every new atom)
will provide the same result as the first measurement,
since QND measurements are repetitive and the initial
state will be preserved. If the Q factor is limited and the
temperature is not zero, then, due to interaction with the
heat bath, the cavity can lose and acquire photons and
the lifetime of n states is limited; if, however, the rate of
atoms r @ γ, repetitive measurements are still possible
and, plotting the dependence of the atom state on the
time of measurement, we will observe characteristic
steps of comparable length, corresponding to thermal
transitions between the |0〉  and |1〉  states.

Figure 3 presents the results of a Monte Carlo simu-
lation of this possible experiment.

Toroidal cavities with the TE(001) mode were found
to be most suitable for the experiment. The lines of
electric field are wrapped around the center, vanishing
on the cavity walls. The mode provides good atom–
field coupling (Rabi frequency 47 kHz) and has axial
symmetry, avoiding difficulties with mode orientation.
The geometrical factor of the cavity is Γ = 408 Ω. Sev-
eral cavities made of pure niobium (99.9%) were man-
ufactured and tested. The cavities comprised two parts,
a cup and a cover, welded by electron beam welding,
chemically etched, and baked in ultrahigh vacuum at
1800°C. The cover has a membrane for tuning the res-
onant frequency by mechanical and piezo squeezing.
The internal dimensions of the cavities are as follows:
inner diameter, 21 mm; outer diameter, 38 mm; height,
12.7 mm. The cavities were tested at 1.4 K, and a Q fac-
tor of 2 × 109 was observed. These obtained parameters
were used in the theoretical calculations and simula-
tions of the previous section. The measured frequency
intervals for mechanical adjustment of the cavities
(10 MHz) and piezo fine tuning (250 kHz) are appro-
priate for the achieved precision of cavity manu-
facturing.

The experimental setup for the QBD in general is
similar to that described in [2, 9] and consists of a
pumped 4He cryostat (achievable T = 1.3 K) and laser
system. A beam of Rb atoms is produced in an atomic
oven connected to the cryostat. The cavity and tuning
mechanism are fixed to the cold finger attached directly

2 3
JETP LETTERS      Vol. 79      No. 9      2004
to the helium bath of the cryostat. The state-selective
atom detector, mounted a few centimeters behind the
resonator, allows atoms to be detected either in the
ground and excited states or in the auxiliary and ground
states. It consists of an electrostatic system creating
gradient ionizing field and two channeltron electron
detectors [2, 3].

The laser system for preparing the Rydberg excited
state is based on a cw ring dye laser and external stabi-
lized intracavity frequency doubler with a UV power
output of about 15 mW at a wavelength of 297 nm.
Since the experiment requires a defined interaction
time, Doppler velocity selective excitation is employed
with the laser beam inclined at an angle of about 11° to
the normal angle. The laser frequency is stabilized on
the same Rydberg transition using an auxiliary chamber
with atomic beam.

To prepare atoms in the ground state, required for
the final QBD experiment, the same laser setup can be
used with the addition of an auxiliary Stark field to
allow forbidden 52S1/2  612D5/2 transitions.

In preliminary experiments, the beam of Rydberg
atoms in the excited state was guided through the cavity
and detected. Count rates up to 30000 atoms/s were
measured.

To sum up, the parameters already achieved in the
experiment open the possibility of demonstrating repet-
itive QND detection of vacuum and single-photon
states of a microwave field.

Fig. 3. Simulation of quantum bit detection regime at φ =
π/2. The parameters used in the calculations are the same as
in Fig. 2. The upper curve is the state of the atoms detected,
the central curve is the mean number of photons in the cav-
ity 〈n〉 , and the lower curve is the standard deviation of the

QBD σn = .n
2〈 〉 n〈 〉 2

–
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Three fundamentally new experimental prototypes of optical fiber quantum-cryptography schemes are
described. They are appreciably simpler than the available prototypes, contain fewer optical fiber components,
and do not require adjustment during key generation. These cryptosystems can naturally be called quantum
time-shift cryptography. They realize the B92 protocol and use a pair of nonorthogonal single-photon states as
information states. One such scheme does not use fiber-optic Mach–Zehnder interferometers and, therefore,
provides natural realization of the multiplex secure-key distribution regime. © 2004 MAIK “Nauka/Interperi-
odica”.

PACS numbers: 03.67.Dd; 42.50.–p
Single-key cryptosystems provide the possibility of
creating absolutely secure coding systems [1, 2]. In
quantum cryptography, the secure key distribution
between remote legitimate users is ensured by funda-
mental natural laws rather than by the limited computa-
tional or technical capabilities of an eavesdropper [3,
4]. The unconditional security of quantum cryptogra-
phy in the nonrelativistic region is based, in essence,
only on the Heisenberg uncertainty principle or, more
formally, on the impossibility of simultaneously mea-
suring observables described by noncommuting opera-
tors. In terms of a pair of state vectors into which clas-
sical information about the key is encoded, this means
that it is impossible to gain any information about the
transmitted quantum states without distorting them,
provided that the latter are nonorthogonal [5]. Another
fundamental quantum-mechanical exclusion closely
connected to the preceding exclusion is the impossibil-
ity of copying an unknown quantum state [6]. Several
various prototypes of quantum cryptosystems based on
fiber-optic communication lines have been develop to
date [7]. The maximal secure-key distribution distances
in a quantum cryptosystem with the so-called self-com-
pensation using Faraday fiber-optic reflectors were
achieved by Japanese (100 km) [8] and Swiss (67 km)
[9] groups. The available prototypes of quantum cryp-
tosystems are mainly based on the following principles:
(i) information about the key is encoded into the polar-
ization degrees of freedom [10]; (ii) phase coding for
which a Mach–Zehnder interferometer is used and
information is encoded into the phase shift accumu-
lated at the receiver and transmitter arms of the interfer-
ometer [11, 12]; (iii) quantum cryptosystems with car-
0021-3640/04/7909- $26.00 © 20445
rier-frequency modulation [13]; and (iv) coherent-state
quantum cryptography with the homodyne detection at
the receiving end [14]. The greatest progress has been
achieved in the phase-coding cryptosystems with self-
compensation [8, 9] using Faraday reflectors [15]. The
first local quantum cryptographic network was tested in
Boston for the secure key distribution between users
over a distance of 10 km (this project was ordered by
the Defense Advanced Research Projects Agency) [16].
The prototypes of free-space quantum key distribution
are also known [17, 18]. Among the available data [19],
the longest distance is equal to 23.4 km in both daytime
and at night. Quantum cryptosystems are aimed at gen-
erating and distributing secure keys between ground-
based objects and satellites or between ground-based
objects via satellites (this is not secreted in the western
projects) [17]. According to the assessment of develop-
ers, such a system will be realized in near future,
because the current level of technology is rather high
and the estimated cost is quite acceptable. The above
cryptosystems, particularly the schemes with phase
coding and self-compensation, are difficult to realize.

Below, we describe the operation of the proposed
scheme (Fig. 1). The input pulses are formed by a pulse
generator circuit that excites a 1310-nm single-mode
laser. This laser forms a synchronizing pulse, to which
single-photon pulses of a 1550-nm single-mode laser
are time-locked in a fiber-optic line (time diagram in
Fig. 1). This laser sends information-state pulses, atten-
uated to a level of about 0.1 photons per pulse, to the
fiber-optic communication channel. The delay circuit
for selecting 0 or 1 is triggered by a clock generator to
produce pulses that are time-shifted with respect to the
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Layout of a fiber-optic quantum cryptosystem based on time shifts according to the B92 protocol.

-

1310-nm synchronizing pulse and excite the 1550-nm
laser. The time shift between the states 0 and 1 is equal
to the difference in the passage times through the long
and short paths in the transmitting arm of the interfer-
ometer (Fig. 1). Then, the state is fed into the input of a
50/50 fiber-optic beam splitter. Since the optical paths
are different, a double-peak state (superposition of two
halves of a single-photon state that are shifted due to
the difference between the optical paths in the interfer-
ometer arm) arises. After the second beam splitter, the
double-peak state is led to the communication channel
in the wake of the synchronizing pulse from the
1310-nm laser. The synchronizing pulse in each bit is
first to be led to the communication channel, and the
time in each bit is measured from it. This pulse is clas-
sical (multiphoton) and is fed into a photodetector,
which actuates the threshold circuit. The latter is
required to exclude the spurious random triggering of
the generator trigger circuit in the time–amplitude con-
verter (TAC) circuit. After the arrival of the synchroniz-
ing pulse and the actuation of the threshold circuit, an
avalanche-photodiode (APD) single-photon detector is
“started.” The detector operates in the trigger mode
(Geiger photon-count mode). To reduce the probability
of dark counts, back bias is applied to the detector at the
time of arrival of information pulses. After the detec-
tion of the information pulse, the signal from the APD
detector is led to the TAC, which detects the time of
triggering the APD detector. Correspondingly, the time
of triggering the APD detector allows one to distinguish
between states 0 and 1 (see above). According to the
detection time, there are domains of conclusive result
for states 0 and 1 (with the probability less than unity,
because the states are nonorthogonal) and domains of
inconclusive result (see time diagram in Fig. 1).

Some numerical estimates for the parameters of the
system are as follows. This scheme does not require
unduly accurate balance of the interferometer arms at
the receiver and transmitter ends. Since the pulse dura-
tion l ! L (L is the shift, i.e., the difference between the
long and short (upper and lower) paths in the interfer-
ometer arms), the perfect balance of the arms between
the receiver and transmitter ends of the interferometer
is not required. In other words, the halves of a state at
the receiver end need not be exactly combined to form
a state localized in the time window l. The shift due to
the difference in the arm lengths at the receiver and
transmitter ends must only not exceed L in order to dis-
tinguish between 0 and 1 in the corresponding time
windows. In particular, if the duration of the input pulse
is l ~ 1 ns, the shift between the halves is T ~ 10 ns. This
shift arises due to the difference between the lengths of
the long and short paths in the interferometer arm at the
transmitter end. When recalculated to the difference
between the paths in an optical fiber, it becomes L =
T(c/n) = 200 cm (n = 1.42 is the index of refraction of
JETP LETTERS      Vol. 79      No. 9      2004
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Fig. 2. Same as in Fig. 1 but without interferometers.

Fig. 3. Same as in Fig. 1 but for a multiplex fiber-optic quantum cryptosystem.

-

-

the optical fiber). The joining of two halves at the receiver
end requires the same difference in the arm lengths, with
an accuracy on the order of the duration of an individual
half. When recalculated to the length, it is l ~ 20 cm.
P LETTERS      Vol. 79      No. 9      2004
Since the time-shift scheme does not use phase rela-
tions and uses only the fact of overlapping, an interfer-
ometer need not be used to ensure overlapping. This
possibility is a further radical simplification.
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The schemes shown in Figs. 2 and 3 are also based
on the time-coding idea. They differ from the above
scheme only in the choice of information states. The
clock pulse generator excites the laser with a wave-
length of 1310 nm and the pulse duration l. After a ran-
dom delay chosen between the two values, the 1550-nm
CW laser is turned on. Roughly speaking, the CW laser
is a source that either continuously operates and has a
given output power or is nearly turned on (is slightly
below the generation threshold). Under direct modula-
tion, the application of an additional voltage step with
the duration L @ l to the CW laser induces a signal in
the fiber-optic communication line (see time diagram in
Fig. 2). Thus, a voltage step shifted with respect to the
synchronizing pulse in different bits gives rise to a pair
of nonorthogonal (overlapping) states in the communi-
cation channel (see Fig. 2). The line width in good CW
lasers with quantum wells can reach several hundred
kilohertz. For our purposes, a duration of 20 ns (corre-
spondingly, a CW laser line width of 107 Hz) suffices
for the information state. It is senseless to take too long
information states, because the APD detector must be
back biased during this time, which increases the prob-
ability of spurious dark counts.

The block scheme operates in a similar way. The
clock generator excites through the pulse-forming cir-
cuit the 1310-nm laser that produces a short synchro-
nizing pulse. The sampling circuit for information
states is simultaneously turned on. Depending on the
state (0 or 1) of the random number generator, this cir-
cuit forms a driving current pulse that is shifted with
respect to the synchronizing pulse by different time
delays. When the synchronizing pulse arrives at the
receiver end, the threshold circuit is triggered. It syn-
chronizes the start of the TAC and applies back bias to
the APD detector. The instant of time at which the APD
detector comes into action is recorded through the TAC
to memory.

This scheme can be naturally generalized to the
multiplex case with the separation of channels accord-
ing to wavelengths. Figure 3 shows the layout of a mul-
tiplex cryptosystem operating similarly to the scheme
described above. The only change is the introduction of
a multiplexer (diffraction grating on a waveguide array)
that allows the states with different wavelengths to be
led to one fiber-optic cable at the transmitter end and
separated into different channels at the receiver end.

Let us give a brief comparative analysis of two fiber-
optic schemes of quantum cryptography that are based
on phase coding. At present, these schemes provide the
maximal communication distances. The main advan-
tage of this scheme over the phase-coding scheme,
where the information is encoded into the phase differ-
ence, i.e., into the difference in the differences between
the arm lengths of the interferometers at the receiver
and transmitter ends, is that the accuracy of this differ-
ence must be a fraction of a wavelength. In other words,
the difference of the differences between the arm
lengths of interferometers located several tens of kilo-
meters apart must be a fractions of a micron; otherwise,
the scheme will not operate. Because of the strict
requirements to the accuracy of path difference, polar-
ization control must be used, which complicates the
scheme and reduces its operation speed. The birefrin-
gence, responsible for different propagation speeds of
radiation beams with different polarization compo-
nents, leads to a spurious phase incursion. If this incur-
sion is not compensated, the phase-coding scheme does
not work at long distances. To remove this spurious
effect, additional Faraday reflectors are used. Compar-
ison should be made for the phase-coding scheme with
self-compensation using Faraday reflectors. The maxi-
mal distances in quantum cryptosystems are reached in
the schemes with self-compensation using Faraday
reflectors. Besides the aforementioned fine items in
realization, these schemes include additional optical
fiber components. The Faraday reflectors solve the bire-
fringence problem. The spurious phase incursion
acquired by the different polarization components
propagating from the transmitter to the receiver ends is
compensated in the back passage. The above require-
ments to the arm adjustment are retained in this
scheme. The scheme can operate at long distances (up
to 100 km, as was demonstrated by the Japanese group)
owing to the elimination of the spurious birefringence
effects. However, due to the two-pass character of the
scheme, it is more sensitive to attenuation, because it
doubles the effective length of the optical fiber for the
same physical distance of key transmission. Therefore,
this scheme is more complicated and expensive than the
preceding phase-coding scheme without self-compen-
sation. One more drawback of the quantum cryptosys-
tem with self-compensation using Faraday reflectors is
its lower cryptoresistance to the specific Trojan-horse
attack.

Note that the phase-coding schemes cannot be sim-
ply generalized to the multiplex case, because the
phase-difference incursions are different for different
wavelengths. Thus, the above schemes of quantum
cryptographic prototypes have the following funda-
mental advantages over the available schemes:

Simplicity of the fiber-optic interferometer (Fig. 1)
that does not require accurate (to a fraction of a micron)
balance of its arms and continuous adjustment in oper-
ation. Electronics for the control of optical phase mod-
ulators in the interferometer arms are not required.

Time-coding schemes can be designed even without
the use of fiber-optic Mach–Zehnder interferometers
(Figs. 2 and 3). Schemes without interferometers can
naturally be extended to the multiplex regime, which
can increase the key transmission rate due to an
increase in the number of frequency channels and
makes it possible to use a cryptosystem in local net-
works, where each receiver has its own wavelength.
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Since the thermal stabilization and the adjustment of
interferometer arms are not required, the key-genera-
tion rate is higher than in the phase-coding schemes.

Since the scheme has the one-pass character and,
therefore, the losses in the optical fiber are lower, the
length of the fiber-optic quantum-communication
channel can be increased.
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