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It is shown that new data on the (JPC = 2++) resonances in the mass range M ~ 1700–2400 MeV support the
linearity of the (n, M2) trajectories, where n is the radial quantum number of the quark–antiquark state. In this
way, all the vacancies for the isoscalar tensor  mesons in the range up to 2450 MeV are filled in. This allows
one to fix the broad f2 state with M = 2000 ± 30 MeV and Γ = 530 ± 40 MeV as the lowest-tensor glueball.
© 2004 MAIK “Nauka/Interperiodica”.
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Recent phase space analysis of the process γγ 
KSKS [1] and reanalysis of the φφ spectra [2] observed
in the reaction π–p  φφn [3] have clarified the situa-
tion with f2 mesons in the mass region 1700–2400 MeV.
Hence, now one may definitely speak about the location
of  states on the (n, M2) trajectories [4] (see also [5,
6]). This fact enables us to determine which one of f2

mesons is an extra state for the (n, M2) trajectories.
Such an extra state is the broad resonance f2(2000 ± 30).
According to [2, 7, 8], its parameters are as follows:

(1)

In [4], we have put quark–antiquark meson states with
different radial excitations (n = 1, 2, 3, 4, …) on the (n,
M2) trajectories. With a good accuracy, the trajectories
occurred as linear:

(2)

with a universal slope µ2 = 1.2 ± 0.1 GeV2; M0 is the
mass of the lowest (basic) state. For the (I = 0, JPC = 2++)
mesons, the present status of the trajectories (i.e., with
the results given by [1, 2]) is shown in the figure.

The quark states with (I = 0, JPC = 2++) are defined

by two flavor components,  = (  + )/  and
, with 2S + 1LJ = 3P2, 3F2. Generally, all mesons are a

mixture of the flavor component in the P and F waves.
But, as concerns the f2 mesons with M & 2 GeV, they
are dominated by the flavor component  or  in a
definite P or F wave. The f2 mesons shown in the figure,

¶ This article was submitted by the author in English.

qq

M 2050 30 MeV, Γ± 570 70 MeV 2[ ] ,±= =

M 1980 20 MeV, Γ± 520 50 MeV 7[ ] ,±= =

M 2010 25 MeV, Γ± 495 35 MeV 8[ ] .±= =

M2 M0
2 n 1–( )µ2,+=

nn uu dd 2
ss

nn ss
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which belong to four trajectories, are dominated by the
following states:

(3)

f 2 1275( ) f 2 1580( ) f 2 1920( ) f 2 2240( ), , ,[ ] P3
2nn,

f 2 1525( ) f 2 1755( ) f 2 2120( ) f 2 2410( ), , ,[ ] P3
2ss,

f 2 2020( ) f 2 2300( ),[ ] F3
2nn,

f 2 2340( ) F3
2ss.

The f2 trajectories on the (n, M2) plane; n is the radial quan-

tum number of the  state. The numbers stand for the
experimentally observed f2 meson masses M.

qq
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716 ANISOVICH
The constants of the tensor glueball decay into two mesons in the leading (planar diagrams) and next-to-leading (nonplanar
diagrams) terms of the 1/N expansion. The mixing angles for the η–η' and ω–φ mesons are defined as follows: η =  –

, η' =  +  and ω =  – , φ =  + . Because of the small value of ϕV,
we kept in the table only the terms of the order of ϕV

Channel Constants for glueball decays in the
leading order of 1/N expansion

Constants for glueball decays in the
next-to-leading order of 1/N expansion

Identity factor for
decay products

π0π0 0 1/2

π+π– 0 1

K+K– 0 1

0 1

ηη 1/2

ηη ' 1

η'η' 1/2

ρ0ρ0 0 1/2

ρ+ρ– 0 1

K*+K*– 0 1

0 1

ωω 1/2

ωφ 1

φφ 1/2

nn θcos
ss θsin nn θsin ss θcos nn ϕVcos ss ϕVsin nn ϕVsin ss ϕVcos

GP
L

GP
L

λGP
L

K0K
0 λGP

L

GP
L θ2 λ θ2

sin+cos( ) 2GP
NL θ2 λ

2
--- θ2

sin–cos 
 

2

GP
L 1 λ–( ) θ θcossin 2GP

NL θ λ
2
--- θsin–cos 

  θ λ
2
--- θcos+sin 

 

GP
L θ2

sin λ θ2
cos+( ) 2GP

NL θ λ
2
--- θcos+sin 

 
2

GV
L

GV
L

λGV
L

K*0
K*0

λGV
L

GV
L 2GV

NL

GV
L 1 λ–( )ϕV 2GV

NL λ
2
--- ϕV 1 λ

2
---– 

 + 
 

λGV
L 2GV

NL λ
2
--- 2λϕ V+ 

 
To avoid the confusion, in (3), the experimentally
observed masses of mesons are shown: these are the
magnitudes drawn in the figure but not those from the
compilation [9].

Let us discuss the states that lie on the trajectories of
the figure.

The trajectory [f2(1275), f2(1580), f2(1920),
f2(2240)]. (1) f2(1275). This resonance is almost pure

 state: this is favored by the comparison of the

branching ratios f2(1275)  ππ, ηη ,  with the
quark model calculations. The dominance of the

 component is also supported by the value of
the partial width of the decay f2(1275)  γγ [10, 11].

1 P3
2nn

KK

1 P3
2nn
(2) f2(1580) (in compilation [9], it is denoted as
f2(1565)). About ten years ago, there existed a number
of indications of the presence of 2++ mesons in the
vicinity of 1500 MeV [12–15]. After the discovery of a
strong signal in the 0++ wave related to the f0(1500) [16,
17], as well as correct account being taken for the inter-
ference of the 0++ and 2++ waves, the resonance signal
in the 2++ wave moved towards higher masses,
~1570 MeV. According to the latest combined analysis
of meson spectra [6, 18], this resonance has the follow-
ing characteristics (see Table 1 in [6]):

(4)M 1580 6 MeV, Γ± 160 20 MeV.±= =
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Hadronic decays, together with the partial width in the
channel γγ [10], support the f2(1580) as a system with a
dominant  component.

In [9], the f2(1640) state is marked as a separate res-
onance: this identification is based on resonance signals
at M = 1620 ± 16 MeV [19] (Mark 3 data for J/Ψ 
γπ+π–π+π–), M = 1647 ± 7 MeV [13] (reaction  
3π+2π–), M = 1590 ± 30 MeV [20], 1635 ± 7 MeV [21]
(reaction π–p  ωωn). Without doubt, these signals
are the reflections of f2(1580 ± 20), and the data [19, 20]
do not contradict this fact. In [9], the mass of this state
is determined as 1638 ± 6 MeV, which reflects small
errors in the mass definition in [13, 21].

(3) f2(1920) (in compilation [9], it is denoted as
f2(1910)). This resonance was observed in the signals
ωω [20–22] and ηη ' [23, 24]. In [8], the f2(1920) is seen
as a shoulder in the (I = 0, C = +1)  π0π0, ηη ,

ηη ' spectra in the wave . According to [6, 18],

(5)

A strong signal in the channels with nonstrange mesons
surmises a large  component in the f2(1920).

(4) f2(2240). It is seen in the spectra (I = 0, C =

+1)  π0π0, ηη , ηη ', in the wave  [8]. Accord-
ing to [6, 18],

(6)

The decay of f2(2240) into channels with nonstrange
mesons makes it very similar to the assumption about a
considerable  component.

(5) The next radial excitation on the  trajec-
tory (n = 5) is predicted at 2490 MeV.

The trajectory [f2(1525), f2(1755), f2(2120),
f2(2410)]. This is the meson trajectory with a dominant

 component. The states lying on this trajectory are
the nonet partners of mesons from the first trajectory
[f2(1275), f2(1580), f2(1920), f2(2240)]. This suggests a

dominance of the P wave in these  systems: .

(1) f2(1525). This is the basic state (n = 1), the nonet
partner of f2(1275). The mixing angle of the  and 
components, which can be determined neglecting the
gluonium admixture,

(7)

may be evaluated from the value of the partial widths γγ
and the ratios of the decay channels ππ, , ηη  within
the frame of quark combinatorics (see [5], Chapter 5,

nn

n p

p p

P3
2 p p

M 1920 40 MeV, Γ± 260 40 MeV.±= =

nn

p p

P3
2 p p

M 2240 30 MeV, Γ± 245 45 MeV.±= =

nn

P3
2nn

ss

qq P3
2qq

nn ss

f 2 1275( ) nn ϕn 1= ss ϕn 1= ,sin+cos=

f 2 1525( ) n– n ϕn 1= ss ϕn 1= ,cos+sin=

KK
JETP LETTERS      Vol. 80      No. 12      2004
and references therein). The evaluations given in [1, 10]
provide us with the mixing angle as follows:

(8)

(2) f2(1755). This state belongs to the nonet of the
first radial excitation, n = 2; it is dominantly in the P
wave  state. The mixing angle ϕn = 2 can be evaluated
using the data on γγ  KSKS. Neglecting a possible
admixture of the glueball component, it was found [1]:

(9)

(3) f2(2120). This resonance was observed in the φφ
spectrum in the reaction π–p  nφφ [3]. At small
momenta transferred to the nucleon, the pion exchange
dominates; as a result, we have the transition ππ 
φφ. The f2(2120) resonance is seen in the φφ system in
the S wave with the spin 2 (the state S2). According to
[2], its parameters are as follows:

(10)

where W(S2) is the probability of the S2 wave. The pre-
vious analysis [3], which did not account for the exist-
ence of the broad f2 state around 2000 MeV, provided
the value M . 2010 MeV, Γ . 200 MeV [3]; accord-
ingly, this resonance was denoted as f2(2010) in [9]. At
the same time, there is a resonance denoted in [9] as
f2(2150), which was observed in the spectra ηη , ηη ',

, which assumes a large  component:

(11)

The reanalysis [2] points definitely to the fact that the
resonances denoted in [9] as f2(2010) and f2(2150) are
actually the same state.

(4) f2(2410). It is seen in the reaction π–p  nφφ
[3]. According to the reanalysis [2], its parameters are
as follows:

(12)

ϕn 1= 1° 3°.±–=

ss

f 2 1580( ) nn ϕn 2=cos ss ϕn 2= ,sin+=

f 2 1755( ) nn ϕn 2=sin– ss ϕn 1= ,cos+=

ϕn 2= 10° 10°–
+5° .–=

M 2120 30 MeV, Γ± 290 60 MeV,±= =

W S2( ) . 90%,

KK ss

ηη  25[ ] : M = 2151 16 MeV, Γ±  = 280 70 MeV,±

ηη  26[ ] : 2130 35 MeV, Γ±  = 130 30 MeV,±

ηη ηη ',  27[ ] : 2105 10 MeV,±
Γ  = 200 25 MeV,±

ηη  15[ ] : 2104 20 MeV, Γ±  = 203 10 MeV,±

KK  28[ ] : 2130 35 MeV, Γ±  = 270 50 MeV.±

M 2410 30 MeV, Γ± 360 70 MeV,±= =

W S2( ) . 50%, W D0( ) . 20%, W D2( ) . 30%.
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If the contribution of the broad f2 state in the region
2000 MeV is neglected, the resonance parameters move
to smaller values: M . 2340 MeV, Γ . 320 MeV [3];
correspondingly, in [9], it was denoted as f2(2340).

(5) The linearity of the (n, M2) trajectory predicts the

next  state at 2630 MeV (n = 5).

The states with a dominant  component.
For the time being, we may speak about the observation

of the two states with the dominant  component.

(1) f2(2020). It is seen in the partial wave analysis of

the reactions   π0π0, ηη , ηη ', in the wave 
[8]. According to [6, 18], its parameters are as follows:

(13)

In [9], this meson was placed in the Section “other light
mesons”; it is denoted as f2(2000). This is the basic 3F2

meson (n = 1) with the dominant  component.

(2) f2(2300). It is seen in the partial wave analysis of

the reaction   π0π0, ηη , ηη ', in the wave 
[8]. According to [6, 18], its parameters are as follows:

(14)

This is the first radial excitation of the 3F2 state (n = 2)
with a dominant  component. There is a resonance
denoted in [9] as f2(2300), but this is the state observed
in the φφ spectrum [3], the mass and width of which, in
accordance with the reanalysis [2], are 2340 ± 15 and
150 ± 50 MeV; of course, they are different states (see
the discussion below).

(3) The second radial excitation state (n = 3) on the

trajectory  is predicted to be at M . 2550 MeV.

The state with the dominant  component.
This trajectory is marked only by one observed state.

(1) f2(2340). It is seen in the φφ spectrum [3] and
γγ  K+K– [29] with the mass ~2330 MeV and width
275 ± 60 MeV. According to [2],

(15)

In the previous analysis of the φφ spectrum [3], this res-
onance had a mass of 2300 MeV; in [9], it is denoted as
f2(2300).

(2) The next state on the  trajectory (n = 2)
should be located near M . 2575 MeV.

The broad 2++ state near 2000 MeV—the tensor
glueball. Averaging over the parameters of the broad

P3
2ss

F3
2nn

F3
2nn

p p F3
2 p p

M 2020 30 MeV, Γ± 275 35 MeV.±= =

nn

p p F3
2 p p

M 2300 35 MeV, Γ± 290 50 MeV.±= =

nn

F3
2nn

F3
2ss

M 2340 15 MeV, Γ± 150 50 MeV,±= =

W S2( ) . 10%, W D0( ) . 10%, W D2( ) . 80%.

F3
2ss
resonance using the data in [2, 7, 8] (see (1)) gives us
the following values:

(16)

This broad state is superfluous with respect to the 
trajectories on the (n, M2) plane, i.e., it is the exotics. It
is reasonable to believe that this is the lowest tensor
glueball. This statement is favored by the estimates of
the parameters of the pomeron trajectory (e.g., see [5],
Chapter 5.4, and references therein), according to
which  . 1.7–2.5 GeV. The lattice calcula-

tions result in a close value, namely, 2.2–2.4 GeV [30].

Another characteristic signature of the glueball is its
large width, which was especially emphasized in [31].
The problem is that the exotic state accumulates the
widths of its neighbors resonances due to the transitions
meson(1)  real mesons  meson(2).

Precisely this phenomenon took place with the
lightest scalar glueball near 1500 MeV: the decay pro-
cesses led to a strong mixing of the glueball with the
neighboring resonances; consequently, the glueball
turned into the broad resonance f0(1200–1600) [32–35]
(see also the discussion in [6]). Of course, the width of
this scalar isoscalar state is rather large, though its pre-
cise value is poorly determined: Γ . 500–1500 MeV.
Although the accuracy in the determination of the abso-
lute value is low, the ratios of the partial widths of this
state to the channels ππ, , ηη , ηη ' are well defined

[36]. As a result, the ratios Γ(ππ) : Γ( ) : Γ(ηη) :
Γ(ηη ') tell us definitely that f0(1200–1600) is a mixture
of the gluonium (gg) and quarkonium ( ) compo-
nents being close to the flavor singlet ( )glueball.
Namely,

(17)

with ϕglueball =  . 26°–33°. The mixing
angle ϕglueball is determined by the fact that the gluon
field creates the light quark pairs with probabilities

 :  :  = 1 : 1 : λ and the probability to produce
strange quarks (λ) is suppressed λ . 0.5–0.8 (see [37]
and the discussion in Chapter 5 of [5]). The mixing
angle γ for gluonium and quarkonium components can-
not be defined by the ratios Γ(ππ) : Γ( ) : Γ(ηη) :
Γ(ηη '); it should be fixed by radiative transitions, for
example, γγ  f0(1200–1600); such experimental
information is still missing. One may find a detailed
discussion of the situation in [5, 6].

If the broad resonance f2(2000) is the tensor glue-
ball, it must also be the mixture of components gg and
( )glueball. Then, the decay vertices of f2(2000) 

M 2000 30 MeV, Γ± 530 40 MeV.±= =

qq

M
2++glueball

KK

KK

qq
qq

gg γ qq( )glueball γ,sin+cos

qq( )glueball nn ϕglueballcos= ss ϕglueballsin+

λ /2arctan

uu dd ss

KK

qq
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SYSTEMATIZATION OF TENSOR MESONS 719
ππ, , ηη , ηη ', η'η' and f2(2000)  ωω, ρρ, K*K*,
φφ, φω should obey the constraints shown in the table.

The decays glueball  two  mesons may be
realized through both planar quark–gluon diagrams and
nonplanar ones, the contribution from nonplanar dia-
grams being suppressed in terms of the 1/N-expansion
[38]. One may expect that, in the next-to-leading order,

the vertices are suppressed as /  ~ 1/10,

/  ~ 1/10; in any case, such a level of suppres-
sion is observed in the decay of the scalar glueball
f0(1200–1600) [39]. Therefore, the next-to-leading
terms are important for the channel glueball  ωφ
only; for other channels, they may be omitted.

In particle data compilation [9], there is a narrow
state fJ(2220) with JPC = 2++ or 4++ and Γ . 23 MeV,
which is sometimes discussed as a candidate for a ten-
sor glueball under the assumption J = 2 (see [40] and
references therein). If this state does exist with J = 2, we
see that there is no room for it on the  trajectories
shown in Fig. 1: in this case, it should also be consid-
ered as an exotic state.

In the mean time, there exist two statements about
the value of the glueball width: according to [41], it
should be less than the hadronic widths of the 
mesons, while, following [6, 31], it must be consider-
ably greater. The arguments given in [41] are based on
the evaluation of the decay couplings in lattice calcula-
tions. However, such calculations do not take into
account the large-distance processes such as
meson(1)  real mesons  meson(2) in case of
resonance overlapping. Precisely these transitions are
responsible for the large width of the state, which is
exotic as a result of its origin [31]. The phenomenon of
width accumulation for meson resonances was studied
in [32–35], but, much earlier, this phenomenon was
observed in nuclear physics [42–44]. Therefore, I think
that, at the present time, just the large width of f2(2000)
is an argument in favor of the glueball origin of this res-
onance. However, to prove the glueball nature of
f2(1200), the measurement of the decay constants and
their comparison to the ratios given in the table is
needed.

I am grateful to L.G. Dakhno, S.S. Gershtein,
V.A. Nikonov, and A.V. Sarantsev for stimulating dis-
cussions, comments, and help. This paper was sup-
ported by the Russian Foundation for Basic Research
(project no. 04-02-17091).
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The refraction of autowaves at the interface between homogeneous regions of a reaction–diffusion medium with
different diffusion coefficients obeys the tangent rule. © 2004 MAIK “Nauka/Interperiodica”.
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Nonlinear self-sustained waves (autowaves) propa-
gating in active reaction–diffusion media specifically
differ from waves in conservative media [1–3]. One of
these differences concerns the refraction law, i.e., a rule
that relates the directions of the propagation of a wave
front on both sides of the interface between homoge-
neous regions of a medium. In this work, it has been
shown that, if the diffusion properties of the homoge-
neous regions are different and the active properties are
identical, autowaves are refracted according to the tan-
gent rule (see below) rather than the sine rule, which
expresses the known Snell’s law for optical refraction.

Let us consider piecewise homogeneous active
media, where the state of homogeneous regions evolves
according to the continuity equation

(1)

and the phenomenological linear diffusion law (Fick’s
law)

(2)

Here, u = u(r, t) is the density of the reagent (activator)
filling the medium at the point r ≡ {x, y, z} at time t,
ut ≡ ∂u/∂t; the activator-production rate f(u) per unit
volume as a function of the density u is continuous and
has the same form over the entire medium; J is the dif-
fusion flux density of the activator; the activator diffu-
sion coefficient D is constant in each homogeneous
region but changes stepwise at the interfaces between
the homogeneous regions; and div and ∇  ≡ grad are the
spatial divergence and gradient operators, respectively.

In homogeneous regions, an evolving autowave is
represented by a family of fronts, i.e., isoconcentration
surfaces u(r, t) = const ≡ uF, where uF is the density at a
front and u(r, t) is the solution of the reaction–diffusion
equation

(3)

which is obtained by substituting Eq. (2) into Eq. (1).
Equation (3) describes, e.g., the diffusion of genes in

ut divJ+ f u( )=

J D∇ u.–=

ut D∆u f u( ) ∆ divgrad≡( ),+=
0021-3640/04/8012- $26.00 © 20721
biological populations [4, 5], temperature and/or den-
sity autowaves in combustible and other autocatalytic
media [6, 7], autowaves of boiling-regime changes in
coolers [8], autowaves of resistance rearrangements in
normal metals and superconductors [9], and the leading
fronts of excitation pulses in electrically excitable bio-
logical media [10].

On surfaces separating homogeneous regions, solu-
tions of Eq. (3) must be joined according to certain join-
ing rules. However, for any such rule, the density fronts
must obviously be refracted on these surfaces, because
the velocities vD = u–1J = –Du–1∇ u of the diffusion
transport of the activator are different in regions with
different D values.

It is convenient to describe refraction phenomena by
the concept of rays that is dual to the concept of fronts.
Rays are curves orthogonal to the one-parameter family
of isochronic fronts that is separated from the two-
parameter family u(r, t) = uF by fixing t. In other words,
rays are integral curves of the vector field of the gradi-
ent of the density u at a given t value. A tangent to a ray
at the point r is determined by any vector collinear to
the vector ∇ u(r, t), in particular, by this vector itself and
the diffusion flux vector J(r, t) = –D∇ u(r, t). Let
regions 1 and 2 be two neighboring regions where the
diffusion coefficients are D1 and D2, respectively, and
which are separated by the surface Π, which is ideally
permeable for diffusion fluxes. Similar to optics, a
smooth ray intersecting the surface Π at a certain point
O ∈  Π is bent at this point; i.e., two smooth components
of the ray, one of which is located in region 1 and the
other in region 2, have two different limiting tangents at
the point O. These tangents are determined by the tan-
gent vectors (∇ u)1 and (∇ u)2 that are obtained from ∇ u
by unilateral limiting transitions at the point O along
the smooth components of the ray in regions 1 and 2,
respectively. The relation between the directions of the
aforementioned tangents s specifies the refraction law
for the autowave. We aim to determine this law.
004 MAIK “Nauka/Interperiodica”
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To find the refraction law, it is obviously sufficient
to reveal the relation between the tangent vectors (∇ u)1
and (∇ u)2 of the ray at the point O. This may be done
using two general reasons: the requirement of the con-
tinuity of the density field u on the surface Π and the
integral continuity equation describing the activator
balance in the medium.1 

Accepting the requirement of the continuity of the
field u on the surface Π, we consider the contour

 shown in Fig. 1. Owing to the continuity,

the u values at the points O1 and  in region 1 are

close to the u values at the respective points O2 and 

in region 2. Therefore, the difference u( , t) – u(O1, t)

is close to the difference u( , t) – u(O2, t). Corre-
spondingly, the spatial derivatives of u calculated at the
points O1 and O2 along the directions tangent to the arcs

 and  are close to each other. In the limit
where the contour shown in Fig. 1 is contracted to the
arc OO' ⊂ Π , we arrive at the boundary condition

(4)

1 The requirement of the continuity of the field u on the surface Π
is justified as follows. A stepwise change in the diffusion coeffi-
cient D when passing through the surface Π simulates the real
physical case where D continuously changes between the values
D1 and D2 in a spatial layer of small nonzero width δ that is adja-
cent to the surface Π from both sides. In this case, the field u is
continuous and must remain continuous in the limit δ  0.
Otherwise, the surface-jump model for D is inadequate for the
physical case.

O1O1' O2' O2

O1'

O2'

O1'

O2'

O1O1' O2O2'

∂u/∂τ( )1 ∂u/∂τ( )2 ∇ u( )1 t⋅⇔ ∇ u( )2 t.⋅= =

Fig. 1. Illustration of the derivation of boundary condition (4).
See the explanation in the main body of the text.

Fig. 2. Illustration of the derivation of boundary condition (6).
See the explanation in the main body of the text.

1

2

Here, ∂/∂τ = t · ∇  is the derivative operator along the
unit vector t tangent to the surface Π at the point O and,
as above, subscripts 1 and 2 stand for the unilateral lim-
its of the quantities on the surface Π. Condition (4) is
valid at any point O ∈  Π for any t and means that the
projection of the vector ∇ u onto any direction tangent
to the surface Π at the point of the intersection of the
surface Π varies continuously. At the same time, the
tangent projection of the vector J = –D∇ u is discontin-

uous as is seen from the equality t · J1 = t · J2,
which is equivalent to Eq. (4).

To obtain a boundary condition relating the normal
projections of the vectors (∇ u)1 and (∇ u)2 on the sur-
face Π, we consider the integral continuity equation

(5)

Describing the activator balance in an arbitrary closed
spatial region V bounded by the surface ∂V, this integral
equation is more general than differential continuity
equation (1): indeed, Eq. (5) is valid not only in homo-
geneous regions, where it evidently reduces to Eq. (1),
but also at the interface Π between these regions, where
Eq. (1) does not hold. On the surface Π, Eq. (5) degen-
erates into the desired boundary condition, which can
be found in the standard way: by applying Eq. (5) to the
cylinder that has the bases S1 and S2 and cuts an arbi-
trary area S on the surface Π (see Fig. 2). When the cyl-
inder is contracted by converging its bases S1 and S2 to
S ⊂ Π , the volume integrals and integral over the lateral
surface of the cylinder in Eq. (5) vanish and Eq. (5)
takes the form

Here, n is the unit vector that is normal to S and directed
towards region 1. Since the area S is chosen arbitrarily,
the latter equality is equivalent to the boundary condi-
tion

(6)

In particular, according to this condition, the projection
of the vector ∇ u onto the direction normal to the surface
Π is discontinuous on this surface. At the same time,
the normal projection of the vector J is continuous onto
this surface. Indeed, Eq. (6) is equivalent to the equality
nJ1 = nJ2.

Boundary conditions (4) and (6) determine the
relation between the directions of the vectors (∇ u)1 and
(∇ u)2 at the points of the surface Π, i.e., the refraction
law. This law is determined in two steps.

First, let us show that three vectors (∇ u)1, n, and
(∇ u)2, which have the common beginning at the point

D1
1– D2

1–

∂
∂t
----- u V J Sd

∂V

∫°+d

V

∫ f u( ) V .d

V

∫=

J1 J2–( ) n Sd⋅
S

∫°
≡ D1 ∇ u( )1 D2 ∇ u( )2–[ ] n Sd⋅

S

∫°– 0.=

D1 ∇ u( )1 n⋅ D2 ∇ u( )2 n.⋅=
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O ∈  Π, are located in one plane (refraction plane). This
can be proved via the decomposition (∇ u)i = Ni + Ti

(i = 1, 2), where Ni and Ti are the normal and tangential
components of the vectors (∇ u)i to the surface Π at the
point O. Since N1 and N2 belong to the straight line
extended along the normal n, the vectors (∇ u)1 and (∇ u)2
lie in planes spanned by the vector pairs {n, T1} and
{n, T2}, respectively. Using the decomposition indi-
cates above, one can rewrite boundary condition (4) in
the form (T1 – T2) · t = 0, which is valid for any vector
t tangent to the surface Π at the point O ∈  Π . Conse-
quently, T1 = T2 and the planes {n, T1} and {n, T2}
coincide with each other and form the refraction plane
containing the three vectors n, (∇ u)1, and (∇ u)2.

Let us consider the refraction plane (the R plane in
Fig. 3), which contains the normal n to the surface Π at
the point O of the ray refraction. We introduce the
orthogonal coordinate system Oxy on the plane R
whose Ox axis is directed along the unit vector t tan-
gent to the surface Π at the point O and the Oy axis is
directed along the vector n (Fig. 3). According to the
above consideration, the plane R contains the vectors
(∇ u)1 and (∇ u)2. It follows from Eq. (4) that the projec-
tions of these vectors onto the Ox axis have the same
sign. It follows from Eq. (6) that the signs of the projec-
tions of these vectors onto the Oy axis are also identical.
Therefore, the vectors (∇ u)1 and (∇ u)2 are placed in the
same quadrant of the plane R. Without the restriction of
generality, we may consider that it is the IV quadrant of
the plane R (Fig. 3). Indeed, this can be made by the
appropriate rotations of the coordinate system about t
and n and/or permutation of the numbers of homoge-
neous regions 1 and 2. The angles ϕ1 and ϕ2 between
the vectors (∇ u)1 and (∇ u)2, respectively, and the Oy
axis are related to the angles ψ1 and ψ2 between the vec-
tors (∇ u)1 and (∇ u)2, respectively, and the Ox axis as
ψi = ϕi – 3π/2 (i = 1 and 2). It is easily seen in Fig. 3 that

(7)

According to these relations and Eqs. (4) and (6), the
desired refraction law (tangent rule) has the form

(8)

We emphasize that this law is local: it describes refrac-
tion near the surface Π rather than far from it. There-
fore, Eq. (8) is valid even when the coefficient D is not
constant in regions 1 and 2 but varies smoothly from
point to point and changes stepwise between the local
values D1 and D2 on the surface.

Tangent rule (8) is applicable to both the unsteady
evolution of a refracting autowave and the steady
refraction regime, when the geometry of fronts and rays
ceases to change. In the latter case, the tangent rule is
consistent with the results obtained in [11] and makes it

ψ1tan ∇ u( )1 t⋅( )/ ∇ u( )1 n⋅ ,=

ψ2tan ∇ u( )2 t⋅( )/ ∇ u( )2 n⋅ .=

ψ1/ ψ2tantan const D1/D2.≡=
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possible to independently reproduce them by additional
analysis.

Taking into account the relation c = csD1/2,2 where
c is the steady velocity of the plane autowave in the infi-
nite homogeneous medium with the diffusion coeffi-
cient D and cs is the dimensional constant independent
of D, one can obtain the following representation of for-
mula (8):

(9)

Here, c1 and c2 are the values of the steady velocity c at
D = D1 and D2, respectively.

According to the tangent rule, the rays and fronts are
bent on the surfaces of the jumps of the diffusion coef-
ficient. Since this rule is a direct consequence of the
general physical laws, these kinks can be eliminated
neither by diffusion nor by special dynamic effects
accompanying the propagation of autowaves, contrary
to the opinion of the authors of [12]. Moreover, exact
formula (9) does not corroborate certain results of the
approximate analysis performed in [13], where the case
of negligibly small diffusion was considered.

The properties presented above concern active
media satisfying Eqs. (1) and (2). Let us briefly discuss
the case of multicomponent active media that contain
several reagents (components)—activators and depres-
sors—and are described by pairs of relations of form
(1) and (2) (the number of pairs is equal to the number
of components). In these cases, tangent rule (8) is valid
for each of the refracted diffusible components. For
these cases, D1 and D2 entering into Eq. (8) are associ-

2 This relation follows from the scale properties of Eq. (3). The cs
value equal to the velocity of a steadily propagating plane auto-
wave for D = 1 is determined only by the form of the kinetic
function f(u) entering into Eqs. (1) and (3) and the system of
physical units.

ψ1/ ψ2tantan const c1
2/c2

2.≡=

Fig. 3. Position of the vectors (∇ u)1 and (∇ u)2 in the refrac-
tion plane R.

1

2
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ated with the refracting component for which this rela-
tion is written.

In contrast to refraction law (8), representation (9)
of this law loses sense for media with several diffusible
components, because the relation c = csD1/2 in such
media is not generally valid. However, if only one com-
ponent diffuses in a multicomponent medium, this rela-
tion is valid for this component. Therefore, the refrac-
tion of this component satisfies both relations (8) and
(9). Biological electrically excitable media [10] such as
a nerve fiber and heart present important examples of
multicomponent active media with one diffusible com-
ponent. In such media, the excitation is transferred
from cell to cell due to the electrodiffusion of the exci-
tation activator—alkali-metal ions—through the inter-
cellular electrolytes and intercellular contacts. The
electrodiffusion coefficient of the ions linearly depends
on the electrical conductivity of the intercellular con-
tacts. Therefore, in the regions of sharp change in this
parameter, an excitation autowave detected by a change
in the difference of the electrical potentials on the cel-
lular membranes must be refracted according to
Eqs. (8) and (9).

The statement that the tangent rule is valid for the
refraction of autowaves in multicomponent media is
associated with the ordinary annihilation regime, where
colliding autowaves are damped without the generation
of reflected waves, which are not taken into account in
the above analysis. The laws of the refraction of auto-
waves under the conditions allowing reflection [14]
require individual analysis.

In summary, we note that the derivation of tangent
rule (8) is independent of the form of the kinetic func-
tion f(u) entering into Eqs. (1), (3), and (5). Therefore,
the refraction law for density and/or temperature fronts,
which is expressed by this rule, is valid even for inho-
mogeneous media without autocatalysis, where sub-
stances and/or heat diffuse and possibly interact with
each other, but autowaves do not propagate. However,
representation (9) of the refraction law in such media is
meaningless, because the values c1 and c2 entering into
Eq. (9) are determined by the kinetic function via the
solution of the problem of the steady motion of a plane
autowave.
In all the cases under consideration, the tangent rule
can directly be verified experimentally.

I am grateful to E.E. Shnol for stimulating discus-
sions and remarks. This work was supported by the
Russian Foundation for Basic Research, project no. 02-
01-00626.
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We are interested in finding the joint distribution function of the real and imaginary parts of the local Green’s
function for a system with chaotic internal wave scattering and a uniform energy loss (absorption). For a micro-
wave cavity attached to a single-mode antenna, the same quantity has a meaning of the complex cavity imped-
ance. Using the random matrix approach, we relate its statistics to that of the reflection coefficient and scattering
phase and provide exact distributions for systems with the β = 2 and β = 4 symmetry class. In the case of β = 1,
we provide an interpolation formula that incorporates all the known limiting cases and excellently fits the avail-
able experimental data as well as diverse numeric tests. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 05.45.Mt; 42.25.Bs; 73.23.–b
Characterizing statistical fluctuations of physical
observables in quantum systems with underlying cha-
otic classical dynamics remains a very active field of
research in theoretical and experimental physics. Con-
siderable progress in understanding the phenomenon
was underpinned by revealing the apparent universality
of the fluctuations in systems of very diverse micro-
scopic nature, ranging from atomic nuclei and Rydberg
atoms in strong external fields to complex molecules,
quantum dots, and mesoscopic samples (see, e.g., [1]).
From the theoretical side, the universality allows one to
exploit the random matrix theory (RMT) as a powerful
tool for analysis of the generic features of the energy
spectra of such systems [2, 3].

In many atomic, molecular, and mesoscopic sys-
tems, the quantity that is readily obtained experimen-
tally is the absorption spectrum for transitions from a
given initial state |g〉  to highly excited chaotic states at
the energy E. For high-resolution experiments, chaotic
spectra consist of well-resolved narrow resonance
peaks, and one can, in principle, study the statistics of
the peak heights and widths, as well as that of the spac-
ings between consecutive peaks. Most frequently, how-
ever, the absorption spectra look practically continuous
due to both the inevitable level broadening and finite
experimental resolution. Then, the relevant statistics
are the distribution and correlation functions of the
absorption probability σ(E) (also known as the strength
function of the dipole operator ), which, in the sim-
plest situation of uniform level broadening Γ, is given

by σ(E) ∝  Im〈g| (E) |g〉  (see, e.g., [4] and the dis-
cussion therein). Assuming the validity of the RMT, the

¶ This article was submitted by the authors in English.

µ̂

µ̂Ĝ µ̂
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problem then amounts to studying the statistical prop-
erties of the resolvent (Green’s function) operator

(E) ≡ (E + iΓ/2 – )–1 associated with the random

matrix , which replaces the actual chaotic Hamilto-
nian. In particular, the imaginary part of the diagonal

entries of (E) is well known in solid-state physics as
the local density of states (LDoS), and, in this capacity,
its statistics have been much studied [4–8].

From the experimental point of view, the same uni-
versality that makes the use of the RMT legitimate pro-
vides one with an attractive possibility to employ sim-
ple model systems for analyzing the generic statistics of
the fluctuating quantities. One of such systems, which
proved to be an ideal medium for investigating a variety
of quantum chaos phenomena, is various microwave
billiards [1]. The billiards are realized as resonators in
a form of electromagnetic cavities shaped to ensure the
chaoticity of internal scattering and coupled to trans-
mission lines or to waveguides. An adequate descrip-
tion is then achieved in terms of the scattering matrix S
relating the amplitudes of the incoming and outgoing
waves. High-resolution experiments are usually per-
formed in low-temperature (superconducting) cavities
with a very high quality factor [9]. The majority of the
experiments are, however, done at room temperature
[10–13]. The inevitable energy losses (absorption)
leading to uniform broadening of the resonances there-
fore play an important role and have to be taken into
account properly when describing the experiments the-
oretically.

Various statistics related to the scattering matrix of
chaotic systems with losses were the subject of a num-
ber of recent papers [14–19]. Explicit analytical results

Ĝ Ĥ

Ĥ

Ĝ
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were available, however, only for the simplest case of
systems with no time-reversal invariance (TRI) corre-
sponding to the so-called β = 2 symmetry class of the
RMT. At the same time, the majority of the billiard-type
experiments are performed in systems which are time-
reversal invariant (β = 1 symmetry class of the RMT).
A similar situation holds for the statistics of the local
Green’s function, in particular, for the LDoS. For the
β = 2 case, the corresponding expressions were
obtained by various methods in [5–7, 20]. An attempt
[8] to provide an expression for the LDoS distribution
for the β = 1 case cannot be considered as particularly
successful, as the general expression was given in the
form of an intractable fivefold integral. Finally, it is
worth mentioning the existence of the β = 4 symmetry
class describing time-reversal invariant chaotic systems
with half-integer spin. This situation may occur in
quantum dots with strong spin–orbit scattering [21]and
in Rydberg atoms driven by microwave fields [22] and
can be efficiently simulated in some other models of
quantum chaotic systems [23].

Here, we are going to concentrate on the simplest
case of a single one-channel antenna experiment. To be
able to employ the RMT methods, it is conventional to
represent the resonant part of the S matrix in the follow-
ing form (see, e.g., [24]):

(1)

where K(E) = V† (E)V is the so-called K matrix. The

Hamiltonian  of the closed chaotic cavity gives rise
to N eigenfrequencies En characterized in the relevant
range of the scattering energy E by the mean level spac-
ing ∆. The column-vector V describes the energy-inde-
pendent amplitudes coupling the corresponding eigen-
modes to the propagating mode in the antenna. We
again see that the study of the statistical properties of
the scattering matrix amounts to knowing the statistics
of the diagonal element G11 of the Green’s function of
the closed system in some basis. In fact, in the present
context, the function iK ≡ Z has the direct physical
meaning of the electric impedance Z of the cavity,
which linearly relates the voltages and currents at the
antenna port [11].

Without absorption, Γ = 0 and the scattering matrix
is unimodular: r ≡ 1. At finite absorption, when Γ > 0,
the reflection coefficient r and the scattering phase θ
have nontrivial distributions, which have been recently
measured in experiments [10, 13]. On the other hand,
universal fluctuations of both the real and imaginary
parts of the cavity impedance Z have been recently
investigated experimentally in [11]. Since the imped-
ance matrix Z is related to the eigenmodes and eigen-
frequencies of the closed cavity, the study of Z is in
some sense complementary to that of S.

The fundamental quantity that determines the full
statistics of S or Z is the joint distribution function

S E( ) 1 iK E( )–
1 iK E( )+
------------------------ reiθ,= =

Ĝ

Ĥ

3(u, v) of the real u = ReK and imaginary v  = –ImK >
0 parts of K. Generally, one can always write K =
κ(N∆/π)G11 in the RMT. The effective coupling con-
stant κ = π||V||2/N∆ > 0 enters the S matrix statistics
only through the so-called transmission coefficient T ≡
1 – | |2 (=4κ/(1 + κ)2 in the middle of the spectrum,
E = 0) (see, e.g., [24, 25] for details).

A convenient starting point of our analysis is the
observation that, in the case of the so-called “perfect
coupling,” T = 1, the distribution 3(u, v) must always
have the following general form:

(2)

with x = (u2 + v 2 + 1)/2v  > 1. It initially emerged in [26]
in the course of explicit calculations for the β = 2 sym-
metry class, but neither the origin nor the generality of
such a form were appreciated. Here, we show that
Eq. (2) is the direct consequence of two fundamental
properties of the case considered: (i) the statistical inde-
pendence of the S matrix modulus r ≡ (x – 1)/(x + 1) and
its phase θ; and (ii) the uniform distribution of θ ∈  (0,
2π). Both these properties can be verified using the
methods of [27]. The joint distribution P(x, θ) then fac-
torizes to P0(x)/2π. Choose now the new variable y ≡
ReS/ImS =  instead of θ so that |dθ/dy| = (1 +
y2)–1. Noticing that y = (u2 + v 2 – 1)/2u, and, evaluating
the corresponding Jacobian |∂(x, y)/∂(u, v)| = (1 + y2)/v 2

of the transformation from x and y to u and v, we come,
after a simple calculation, to (2).

The explicit form of P0(x) at arbitrary absorption for
various symmetry classes will be given and discussed
below. Having P0(x) at our disposal, it is easy to find the
distribution of the imaginary part v  (the LDoS is nor-
malized for convenience to have the unit mean value):

(3)

The distribution is normalized to 1 and has the first

moment unity, 〈v 〉  ≡ v3(v ) = 1, automatically

due to the invariance of the integrand with respect to the
change v   1/v. Similarly, one can find the distribu-
tion of the real part u to be

(4)

Although u has no direct physical meaning in the con-
text of solid-state mesoscopic systems, both 3u(u) and
3v(v ) are directly measurable in microwave cavities
[11].

Let us now discuss the explicit forms of P0(x) for
various symmetry classes: β = 1, 2, 4. For the simplest

S

3 u v,( ) 1

2πv 2
-------------P0 x( ),=

θ( )cot

3v v( ) 2
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----+ 

 + .d

0

∞

∫=

vd
0

∞∫
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case of broken TRI (β = 2), an exact result is available
at arbitrary values of the dimensionless absorption
strength γ ≡ 2πΓ/∆ [16–18]. Scaling the absorption
parameter for subsequent use as α ≡ γβ/2, we can rep-
resent the β = 2 result as follows:

(5)

with the α-dependent constants A ≡ eα – 1 and B ≡ 1 +
α – eα and the normalization constant 12 = 1.

For the case β = 4, the exact form became available
very recently [28] by exploiting important advances in
the RMT [29]. The explicit derivation will be given
elsewhere, the final result being [28]:

(6)

where (x) is the distribution (5) for β = 2 taken,
however, at α = 2γ and C(x, γ) ≡ γ2(x + 1)2/2 – γ(γ +
1)(x + 1) + γ.

Unfortunately, for the most interesting case β = 1,
the explicit formula for P0(x) is not available yet, apart
from the limiting cases of weak or strong absorption:

(7)

The first line here results from the following relation
[14, 16]: 2/(x + 1) = 1 – r ≈ γτ at γ ! 1 between the
reflection coefficient and the (dimensionless) time-
delay τ and the known time-delay distribution [24, 30]
for all β = 1, 2, 4: 3τ(τ) = [(β/2)β/2/Γ(β/2)]τ–β/2 – 2e–β/2τ.
In the opposite case γ @ 1, the known limiting Rayleigh
distribution [15] P(r) . (γβ/2)e–rγβ/2 yields the second
line in Eq. (7).

In the absence of a general expression for β = 1, the
natural idea is to try to invent a formula that interpolates
between the known limiting cases [13]. We suggest
Eq. (5) to be the appropriate natural candidate with the
normalization constant being 1β = α/(AΓ(β/2 +1, α) +

Be–α), where Γ(ν, α) = tν – 1e–t. Indeed, such a

form correctly reproduces Eq. (7) as both limits are
determined solely by the first (universal) term in (5).
One needs, however, to keep B in order to properly han-
dle the case of moderate absorption (α ~ 1).

The figure shows the results of numerical simula-
tions with random matrices drawn from the Gaussian
orthogonal (GOE, β = 1), unitary (GUE, β = 2), or sym-
plectic (GSE, β = 4) ensemble. The overall agreement
of Eq. (5) with the data at β = 1 is nearly as good as for
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the exact cases β = 2, 4. Another check was performed
in [13], which measured the distributions of the reflec-
tion coefficient and the scattering phase in a broad
range of system parameters and found very good agree-
ment with the corresponding expressions following
from Eq. (5) (see also Eq. (16) below).

We now discuss the behavior of 3v(v ) and 3u(u).
Performing the integration in Eq. (3), we arrive for
β = 2 at

(8)

3v
gue

v( ) γ/16π( )1/2v 3/2– γ v v 1–+( )– /4[ ]exp=

× 2 γ
2
---cosh v v 1– 2/γ–+( ) γ

2
---sinh+ ,

The distribution P0(x) (Eq. (5)) at different values of the
absorption parameter α = βπΓ/∆. The solid lines correspond
to the β = 1 (GOE) and 2 (GUE) cases and to the exact β =
4 (GSE) result (Eq. (6)). The symbols stand for the numer-
ics performed for 400 realizations of 500 × 500 random
matrices.

α = 5
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which is exactly the LDoS distribution obtained earlier
in [5]. For the case β = 1, we get the following result:

(9)

with a ≡ (  + 1/ )2 and Kν(z) being the Mac-

Donald function. It is instructive to consider the asymp-
totic behavior of these functions in the limits of small
or large absorption. At γ ! 1, the distribution 3v(v)
becomes very broad having a maximum at v  ~ γ and a
power-law bulk behavior and an exponential cutoff at
the far tails:

(10)

where constants ~1 are omitted. This result can be
physically interpreted in the single-level approximation
[5, 8] when the bulk and tail behavior is governed by
spectral and wave function fluctuations, respectively.
As γ increases, the number of levels contributing to v
grows as ~γ; consequently, 3v(v ) tends to the limiting
(almost Gaussian at γ @ 1) distribution

(11)

which has a peak at v  ~ 1 of width ∝ 1/  ! 1 in agree-
ment with the earlier result [8].

As to the distribution 3u(u), equation (4) leads after
the integration to the following exact β = 2 result:

(12)

where  ≡ . Integrating the interpolation for-
mula for the case β = 1, we obtain

(13)

where D(z) ≡  is intro-

duced for convenience. The limiting forms of 3u(u) at
weak and strong absorption follow readily as

(14)
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and describe a crossover from the Lorentzian to the
Gaussian distribution as the absorption grows. This
type of behavior, as well as the trend of 3v(v) to the
Gaussian (11), was recently observed in the experimen-
tal study of the cavity impedance [11].

Finally, let us mention that the case of nonperfect
coupling, T < 1, can be mapped [31, 32] onto that of the
perfect one by making use of the parameterization [33]

S0 = (S – )/(1 – S). Here, S0 is the scat-
tering matrix of the system in the perfect coupling case.
Now, x and θ do correlate, and, after the evaluation in
parameterization (1) of the corresponding Jacobian, the
joint distribution P(x, θ) is found to be

(15)

with g ≡ 2/T – 1. Complementary to Eq. (2), equation (15)
provides an access to scattering observables. The inte-
gration there over x yields the scattering phase distri-
bution. In particular, when the absorption vanishes,
x  ∞ (r  1) and P0(x)  δ(1/x) readily give
P(x, θ) = ρ(θ)δ(1/x) with the phase density ρ(θ) =

[2π(g – cosθ)]–1, which was found earlier [32].
As another example, the distribution of the reflection
coefficient in terms of P0(x) is given at arbitrary cou-
pling by (cf. Eq. (5) in [18] and see also [13, 17] in this
respect)

(16)

In conclusion, although rigorous analytical treat-
ment of the β = 1 case remains a theoretical challenge,
it is worth stressing, however, that the suggested inter-
polation formulas should be sufficient for most practi-
cal purposes of comparison to the data.1 

Moreover, all the physically interesting limiting
cases, e.g., Eqs. (10), (11), and (14), are already repro-
duced from the exact limiting statistics (7) and are in
agreement with the available experimental data
[11, 13].
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The interaction of femtosecond laser pulses with SiO2 aerogel targets has been analyzed by x-ray spectroscopic
methods. The use of an aerogel target with transparent grains makes it possible to considerably reduce the
requirements on laser-pulse contrasts for which heating occurs without the formation of a preplasma. A nano-
plasma with a density sevenfold higher than the solid-state density has been detected. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 52.50.Jm; 52.70.La
1. Investigations of the interaction of intense
ultrashort laser pulses with solid and gas targets have
become particularly urgent in recent years. Such inves-
tigations, first, enable one to study the fundamental
properties of matter under extreme conditions and, sec-
ond, give new approaches for solving a number of
applied problems such as the initiation of nuclear
fusion, the acceleration of electrons and heavy ions,
and the creation of sources of intense x-ray radiation for
medical and biological purposes and lithography (see,
e.g., [1–4]). According to the first experiments with
solid targets, the contrast of a laser pulse, i.e., the ratio
K = Ppulse/Pprep of the power of the main laser pulse to
the power of the prepulse, is a very important parameter
determining the interaction of ultrashort laser pulses
with matter. In particular, the formation of a superdense
plasma turned out to be possible only with the use of
pulses of very high contrast K ~ 1010, when the heating-
radiation flux density in the prepulse is insufficient for
the formation of preplasma and the main-pulse energy
is absorbed immediately in a solid (see, e.g., [5–11]).
However, as was experimentally shown in [5], the
requirements for the contrast are weaker when targets
transparent to heating laser radiation are used.

The role of the contrast becomes particularly impor-
tant when spatially inhomogeneous targets with the
nanometer characteristic size of inhomogeneities are
used. Among such targets are cluster targets where the
0021-3640/04/8012- $26.00 © 20730
cluster sizes vary from fractions of a nanometer to hun-
dreds of nanometers and porous targets with approxi-
mately the same inhomogeneity parameters. The use of
such targets, first, ensures the efficient absorption of
energy in the target regions with a high density and,
second, owing to the decreased average density of the
target, increases the energy contribution per one atom
of the target substance and improves the conditions for
the observation and diagnostics of the radiation from
the irradiated region. The features of nanostructure tar-
gets can be completely manifested if the duration of a
heating laser pulse lies in the subpicosecond range and
is not larger than the time of gas-dynamic scattering of
clusters and the contrast of the laser pulse is high
enough so that a preplasma that could destroy the spa-
tially inhomogeneous structure of the target is not
formed. In other words, if τ ! R/C(T), where τ is the
duration of the laser pulse, R is the radius of a nanopar-
ticle, and C(T) is the bulk speed of sound, then the
nanoparticle is heated and a solid-density plasma is
formed when the radiation power is sufficient [5–11].
Similar properties were observed for pulsed x-ray radi-
ation [12].

After the heating stage, the formed nanoplasma
decays and its average density begins to decrease. One
can expect that, upon the volume heating of the nano-
particle at the early stage of decay, the central part of
the nanoplasma will first be compressed due to ablation
004 MAIK “Nauka/Interperiodica”
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pressure and certain plasma regions at certain times
will have density higher than the solid-state density.
However, such a compression of nanotargets has not yet
been observed.

In this work, to increase the effective contrast of the
laser pulse, aerogel targets with grains transparent to
heating laser radiation are used. This enables us to obtain
nanoplasma with a density sevenfold higher than the
solid-state density upon the heating of an aerogel target
by femtosecond laser pulses of moderate contrast.

2. Experimental investigations were carried out on a
laser setup at the Saclay Research Center (France) [13].
A Ti–Sa laser with a wavelength of 800 nm and a repe-
tition frequency of 20 Hz was used. The energy of the
laser pulse reached 40 mJ and its duration varied in the
range 50 fs–1.2 ps due to the change in the distance
between the compressor grids. The time contrast of the
laser pulse was equal to 3 × 106 and 104 in the nanosec-
ond and picosecond ranges, respectively. Figure 1
shows the scheme of the experiment. The interaction of
the laser pulses with SiO2 aerogel targets was studied.
The targets were made of a porous substance with cubic
pores with a size of about 20 nm formed by chains of
SiO2 grains each about 3 nm in size. A continuous flow
of an aerogel powder [14] with particles of sizes 50–
500 µm was supplied due to gravity to the interaction
region from a conic funnel with an opening angle of
100° and an outlet hole 0.9 mm in diameter. The laser
radiation was focused onto a spot whose diameter was
equal to about 15 µm so that the heating radiation flux
density varied in the range 1016–4 × 1017 W/cm2. In
each pulse, the substance was degraded in the irradia-
tion region. However, since the displacement of the tar-
get substance between the pulses was equal to several
millimeters, the next pulse of laser radiation was
focused on the fresh substance.

The x-ray spectra was detected in the range 6.1–
6.4 Å by an FSSR spectrograph [15–17] with a spheri-

cally bent quartz crystal 10 1 (2d = 6.6 Å) with a cur-
vature radius of R = 150 mm and a 15 × 50-mm working
region. X rays were detected by an RAR-2492 Kodak
film, which was protected from visible and ultraviolet
radiation by two layers of a polypropylene film that had
a thickness of 1 µm and was covered with an aluminum
layer 0.2 µm thick. The dispersion scheme was adjusted
for work in the first reflection order (the distance from
the plasma source to the crystal was equal to 210 mm,
the Bragg angle was equal to Θ = 69.4°, and the dis-
tance from the crystal to the film was equal to
64.9 mm). This scheme allowed the observation of the
Lyα resonance line of the hydrogen-like Si XIV ion and
its dielectron satellites with a spectral resolution of
λ/δλ ~ 5000. The spectra were detected with a one-
dimensional spatial resolution of about 20 µm, and the
laser beam propagated in the plane of spatial resolution
(see Fig. 1). Figure 2 shows the density patterns of the
resulting spectra.

1
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3. The spectra detected for the Lyα resonance line of
the hydrogen-like Si XIV ion and its dielectron satel-
lites make it possible to estimate the parameters of the
produced plasma. As is known (see, e.g., [18]), the ratio
of the intensities of the resonance line and its dielectron
satellites is sensitive to the electron plasma temperature
Te and the structure of the intensities of the satellites is
sensitive to the electron plasma density Ne (see also
[19]). Figure 3 shows the results of calculation of the
spectra using the FLY package based on the stationary

Fig. 1. Scheme of the experiment.

Fig. 2. Density patterns obtained for the (a) duration τlas =
(1 and 7) 54, (2) 110, (3) 500, (4) 1100, and (5 and 6) 55 fs
and (b) energy Elas = (1) 34, (2) 39, (3) 36, (4) 28, (5) 23,
(6) 11, and (7) 4 mJ of a laser pulse.
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radiative–collision kinetic model [20–22]. As is seen in
this figure, the structure of the intensities of the satellite
lines is nearly independent of the temperature and
changes significantly when the density changes, and the
sensitivity of the spectrum to the density remains at
Ne ~ 1025 cm–3.

Fig. 3. Radiation spectra of the silicon plasma near the Lyα
line of the Si XIV ion as calculated for the (a) temperature
Te = (1) 500, (2) 600, (3) 700, (4) 900, and (5–8) 800 eV and

(b) density Ne = (1–4) 6.24 × 1023, (5) 1022, (6) 1023,

(7) 1024, and (8) 1025 cm–3 of the plasma.

Fig. 4. (1) Experimental spectrum detected for qlas = 3.6 ×
1017 W/cm2 and (2) calculation for Ne = 4.4 × 1024 cm–3

and Te = 900 eV.
The comparison of the experimental spectra shown
in Fig. 2 with the calculated spectra (Fig. 3a) shows that
the observed structure of the satellites cannot be
described under the assumption that the plasma density
is equal to (or less than) the solid-state density. For Ne =

 = 6.24 × 1023 cm–3, the intensity of the group of
triplet satellite transitions 2p2 3P–1s2p3P for all the Te

values does not exceed the intensity of the singlet satel-
lite 2p2 1D2–1s2p1P1, whereas experiment shows the
inverse relation to be particularly pronounced for the
maximum fluxes of heating laser radiation. Detailed
comparison of the experimental and calculation spectra
shown in Fig. 4 indicates that the plasma density in the
experiments is higher than the solid-state density and is
equal to ~(0.6–4.4) × 1024 cm–3. The table presents the
results obtained in several experiments with various
energies and durations of the laser pulse. As is seen in
the table, the measured Ne values are determined prima-
rily by the laser-radiation flux density and, in particular,
the plasma has the same density in two experiments
with significantly different energies and durations but
with the same flux.

The table also presents the Te values measured from
the ratio of the intensities of the resonance line and sat-
ellite structures. Note that the accuracy of the determi-
nation of Te is much lower than that for Ne, because the
observed spectrum is an integral in time and contains
contributions from all the plasma-evolution stages
including the stage of the decay of the dense plasma. At
this stage, the plasma is nonequilibrium due to recom-
bination and its radiation is determined primarily by
recombination processes (radiative and three-particle)
that quite efficiently excite the resonance line but do not
affect the intensities of the dielectron satellites. This
additional contribution to the intensity of the resonance
line is disregarded in the calculation model. As a result,
the calculated intensity is somewhat overestimated; i.e.,
the electron temperature of the plasma is somewhat
overestimated. On the contrary, the error in the calcula-
tion of the intensities of the dielectron-satellite spec-
trum is determined only by the accuracy of the atomic
constants used, and, according to our estimates, the
error in the measurement of Ne does not exceed (but is
likely much better than) 20%.

As is seen in the table, when the laser flux decreases,
the characters of the decrease in the plasma temperature
are different in two cases: first, when the flux changes
due to a decrease in the energy of a pulse whose dura-
tion is constant and, second, when this change occurs
due to a change in its duration with a fixed energy. In
the first case (experiments 1, 5, and 6), the temperature
decreases rapidly from 900 to 600 eV when the flux
decreases by one third. In the second case (experiments
1, 2, and 3), when the flux decreases even by an order
of magnitude, the temperature decreases only to
800 eV. This property is also clearly seen in Fig. 2,
according to which the plasma luminosity decreases

Ne
solid
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Parameters of the plasma for various parameters of a heating laser pulse. The experiment number corresponds to the spectrum
number in Fig. 2

No.
Laser pulse parameters Plasma parameters

Energy, mJ Duration, fs Flux, W cm–2 Te, eV Ne, cm–3

1 34 54 3.6 × 1017 900 4.4 × 1024

5 23 54 2.4 × 1017 700 2.2 × 1024

2 39 110 2 × 1017 900 2.2 × 1024

6 11 55 1.1 × 1017 600 (1–1.5) × 1024

3 36 500 4.1 × 1016 800 8 × 1023

4 28 1100 1.4 × 1016 600 6.2 × 1023
sharply and smoothly with a decrease of the energy of
the laser pulse and an increase in its duration, respec-
tively. Such a behavior of the temperature (and, there-
fore, the luminosity) of the plasma is simply explained.
If the plasma is heated quite rapidly so that the process
is isochoric, then its temperature is determined by the
energy absorbed rather than by the laser radiation flux
density. Therefore, the plasma temperature drops when
the energy of the pulse decreases (experiments 1, 5, and
6). At the same time, it is nearly unchanged when the
duration of the pulse increases (experiments 1, 2, and
3). The process becomes nonisochoric only when the
pulse duration increases to 0.5–1.1 ps. In this case, the
plasma has time to expand significantly in the heating
process, its density decreases, and a portion of the laser
pulse passes through it without absorption. A decrease
in the energy contribution results in a corresponding
decrease in the temperature (experiments 3 and 4).
Therefore, a rough estimate of the time τd of the exist-
ence of a superdense plasma region is determined by
the maximum duration of the laser pulse for which the
plasma temperature does not noticeably decrease. For
the conditions under consideration, τd ~ 100–500 fs.

Thus, a nanoplasma with density sevenfold higher
than the solid-state density was detected in this work
upon the heating of an aerogel target by femtosecond
laser pulses. In a previous work [11], an aluminum
plasma with an electron density of 1024 cm–3, which is
also higher than the solid-state value, was observed
upon the heating of a flat solid target by a 150-fs laser
pulse with a much higher time contrast of 1010. The use
of an aerogel target with transparent glass grains makes
it possible to considerably reduce the requirements for
laser-pulse contrasts for which heating occurs without
the formation of a preplasma.

This work was supported in part by the program
Access to Research Infrastructure Action of the Improving
Potential Program, contract no. HPRI-CT-2002-00191.
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The nonlinear interaction between the electron–positron pairs produced by an electromagnetic wave in plasma
and the wave leads to damping of the wave, frequency upshift, change of polarization, and particle accelera-
tion. The case of a circularly polarized wave is investigated in the framework of the relativistic Vlasov equa-
tion with a source term based on the Schwinger formula for the pair creation rate. © 2004 MAIK “Nauka/Inter-
periodica”.
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The effect of particle creation in vacuum by an
external field was first used to investigate the produc-
tion of electron–positron pairs in a constant, spatially
homogeneous electric field [1–3]. It is often referred to
as the Schwinger mechanism and is considered as one
of the most intriguing nonlinear phenomena in quan-
tum field theory. The effect lies beyond the reach of the
perturbation theory, and its experimental verification
would test the validity of the theory in the region of
strong fields. It is believed that the most probable way
of detecting this effect is connected with e+e– pair pro-
duction by lasers under the action of a time-varying
electromagnetic (EM) field [4–7], especially, in view of
the recent developments in laser technology [8]. In
addition, several methods for reaching the critical
intensity ISch = 4.6 × 1029 W/cm2 (which corresponds,
for a laser pulse with the wavelength ≈1 µm, to an elec-
tric field equal to the critical Schwinger field ESch =
1.32 × 1016 V/cm) with presently available systems
have been proposed recently [9, 10].

However, we should note that, in [1–7], the mutual
interaction of the particles produced and the effect of
these particles on the original electric field (backreac-
tion) are not taken into account. The problem of the
backreaction of the produced particles on the back-
ground field was discussed extensively in a number of
papers on the particle formation process in high-energy
hadronic interactions [11–13] as well as under the
action of electric fields [14]. It was understood that, in
solving a dynamical problem with a strong initial elec-
tric field, the effect of the produced particles on the
electric field (the backreaction) should be taken into
consideration. A kinetic equation coupled to Maxwell

¶ This article was submitted by the authors in English.
0021-3640/04/8012- $26.00 © 20734
equations was used to solve this problem. However, the
spatially homogeneous time-dependent electric field
that was used is not a solution of Maxwell equations in
vacuum. We also note that, in [11–14], special attention
was paid to the properties of the emerging plasma,
while the properties of the background field were not
studied in detail.

In the present paper, we consider the process of e+e–

pair production in a cold collisionless plasma by an EM
field, which is an actual solution of the Maxwell equa-
tions (a similar approach was used in [15, 16]), as well
as the backreaction of the produced pairs on the back-
ground field. In doing so, we use the kinetic equation
with a source term obtained from the pair production
rate [11, 12]. In order to elucidate the role of the mag-
netic field component of the EM wave on the e+e– pair
production, we consider a planar, circularly polarized
wave propagating in an underdense collisionless
plasma1 For the sake of simplicity, we consider an e+e–

plasma:

(1)

where A0, ω, and k are the wave amplitude, frequency,
and wave vector, respectively, and t' is the time in the
laboratory frame. In the case of a planar wave in a
plasma, the first field invariant ^ is not equal to zero
due to the different dispersion equation with respect to
that in vacuum:

(2)

1 In the following, we use the c = 1 and " = 1 convention.

A A0 ex ωt' kz–( )cos ey ωt' kz–( )sin+[ ] ,=

^
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where Ω = [8πe2n0/(m2 + P2)1/2]1/2 is the Langmuir fre-
quency, which enters the dispersion equation for the
EM wave propagating in the plasma in the laboratory
frame:

(3)

and P is the momentum of the plasma particles. There-
fore, in a plasma, e+e– pairs can be produced by a planar
EM wave as was shown in [15]. The nonlinear EM
wave in plasmas is also characterized by the depen-
dence of its phase and group velocity on the plasma
parameters and on the wave amplitude (v ph = ω/k, v g =
∂ω/∂k; see Eq. (3)). In this case, a Lorentz transform to
the reference frame moving with the group velocity v g

of the wave transforms the EM field into a purely elec-
tric field that rotates with constant frequency and with
no associated magnetic field

(4)

Further, we shall use the notation E = ΩA0 ≡ (Ω/ω)E0.
Although this transformation reduces the problem
under consideration to the situation where the pairs are
produced by a time-varying electric field, the effects of
the wave magnetic field are incorporated rigorously
into our model (see also [17, 18]).

We consider the propagation of a circularly polar-
ized EM wave in an underdense collisionless plasma in
the boosted frame of reference. The relativistic kinetic
equation

(5)

describes the dependence on time and momentum of
the positron (electron) distribution function fα(p, t) in
the boosted frame where a spatially homogeneous elec-
tric field E(t) is present. The distribution function is

normalized in such way that (p, t)d3p/(2π)3 = nα

gives the number nα of positrons or electrons per unit
volume and eα is their electric charge with α = + for
positrons and α = – for electrons. The source term in
Eq. (5) is proportional to the quasi-classical probability

(6)

of tunneling through the gap between the lower and the
upper continuum of the electron energy spectrum in the
presence of the constant electric field. However, the
naive estimation of the characteristic time of the pair
production c/lc, lc = "/mc, as well as the quasi-classical
tunneling time ttun = 1/aω [6, 15], where a = eA/mc, is
negligible with respect to the wave period. Thus, it is
possible to use expression (6) for the time-varying elec-
tric field with the time playing the role of a parameter.
In addition, following the reasoning of [11, 12], we
assume that the pairs are produced at rest; i.e., the

ω2 k2 Ω2,+=

E ΩA0 ex Ωtsin ey Ωtcos–( ).=

∂ f α

∂t
--------- eαE t( )

∂ f α

∂p
---------+ qα E p,( ),=

f α∫

π m2 p⊥
2+( )

eE t( )
---------------------------–exp
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momentum distribution of the source term is taken to be
proportional to the Dirac delta function

(7)

This assumption is reinforced by the fact that the
momentum distribution in Eq. (6) has a width p⊥  ~
(|eE(t)|)1/2 = m(|e(t)|)1/2 ! m, which is negligible with
respect to the momentum that the electrons (positrons)
acquire in the electric field. Here, e = E/ESch ! 1 is the
normalized electric field and ESch = m2/e is the critical
Schwinger field. The source term has been normalized
in such way that

(8)

where W(E) gives positrons (electrons) produced
according to the Schwinger formula.

We solve Eq. (5) by integrating it along the particle

characteristics. Introducing a function A(t) = – (s)ds,

we obtain the distribution function

(9)

where fα, 0(p||, p⊥ ) is the distribution function of the ini-
tial plasma positrons (electrons) before the passage of
the EM wave. Let us assume that, at the initial time t =
0, the plasma is cold; consequently, fα, 0 =
n0(2π)3δ(p⊥ )δ(p|| – p||, 0), where p⊥  and p|| are the compo-
nents of the particle momentum perpendicular and par-
allel to the direction of the EM wave propagation and
p||, 0 is its initial value, which arises from the Lorentz
transform from the laboratory to the boosted frame.

The modification of the kinetic equation given by
the source term in Eq. (7) must also be accompanied by
a change of the source term in the Maxwell equations.
The e+e– pair production leads to the appearance of a
time-dependent electric dipole that generates a polar-
ization current. Thus, the current density in the Max-
well equation for the electric field acquires an addi-
tional term with respect to the situation when no pair
production is present [12]:

(10)

qα E p,( ) 2e2 E t( ) 2 πm2

eE t( )
----------------– δ p( ).exp=

W E( ) qα E p,( ) d3 p

2π( )3
-------------∫ eE 2

4π3
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eE
----------– ,exp= =

E
0

t∫

f α f α 0, p|| p⊥, eαA t( )+[ ]=

+ qα p⊥ eα A t( ) A s( )–[ ]+ s,{ } s,d

0

t

∫

dE
dt
------- 4πjtot– 4π jcond jpol+( ).–= =
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Fig. 1. Time evolution in the moving frame of the x and the y components of the dimensionless vector potential for different initial
amplitudes: a = 1.4 × 105 (a), a = 1.5 × 105 (b), a = 1.9 × 105 (c) with the initial plasma density n0 = 1019 cm–3 in the moving frame;
vg ≈ 1, γg = 10. The upper row shows the x component of the vector potential; the lower, the y component. On the x axis, the time

is measured in seconds; a = 1 corresponds (for a 1 µm wavelength pulse) to an intensity of 1018 W/cm2 and a = 4.6 × 105, to the
Schwinger intensity.
Here, the conduction and polarization [11] currents are

(11)

where % = (m2 + p2)1/2. Using the distribution function
(9), the dimensionless vector-potential a = eA/m, and
the normalized electric field e = eE/m2, we obtain a sys-
tem of equations for the electric field evolution in the
presence of the pair production

jcond t( ) e f α p t,( ) p
%
---- d3 p

2π( )3
-------------,∫

α + –,=

∑=

jpol t( ) E t( )
E t( ) 2
--------------- qα p t,( )% d3 p

2π( )3
-------------,∫

α + –,=

∑=

da t( )
dt

------------- me t( ),–=

Fig. 2. Trajectories of the projections of the electric field
polarization vector for the same set of initial conditions as
in Fig. 1.
(12)

Here, P = m[1 +  + a2(t)]1/2 (see the definition of Ω
given above),  ≡ p||0/m and κ = 8πe2m4, where the
factor m4 stands for the inverse of the invariant Comp-

ton 4 volume m4 = c/  ≈ 0.14 × 1053 cm–3 s–1.

Numerical solutions of this system are presented in
Fig. 1 for different initial amplitudes. We can see that
the process of e+e– pair production leads to the damping
of the wave in the plasma and to the nonlinear upshift
of its frequency. The damping occurs due to the fact that
each event of the pair creation takes a portion of the
field energy equal to 2mc2 and the amount needed for
the particle acceleration. The upshift of the field fre-
quency is due to the increase of the plasma density and
thus of the Langmuir frequency as new pairs are created
(see also [18]). This frequency upshift is seen in Fig. 1
and bears a strong resemblance to the blue shift of an
EM wave that propagates in a medium that becomes
ionized, as was investigated theoretically in [19] and
experimentally in [20].

Since the pair production rate depends on the field
amplitude exponentially, an unbalanced damping of the
field components can occur and lead to a change of the

de t( )
dt
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Fig. 3. The electron distribution functions versus px and py in the moving reference frame for the same set of initial conditions as in

Fig. 1 at the time 2 × 10–10 s. The particle momenta are normalized on the dimensionless vector-potential amplitude a multiplied
times 105. The black circles correspond to the initial plasma particle distribution at the time 2 × 10–10 s.

Fig. 4. The electron distribution functions versus p|| in the laboratory reference frame for the same set of initial conditions as in

Fig. 1 at the time 2 × 10–10 s. The momentum is measured in the same units as in Fig. 3. The vertical lines correspond to the distri-
bution of the initial plasma particles.
field polarization. These properties of the electric field
are shown in Fig. 2, where the projections of the polar-
ization vector are presented for the same set of initial
parameters as in Fig. 1. In Fig. 2a, we see the damping
of the x component of the electric field and the transi-
tion from circular to elliptic polarization with the major
axis of the ellipse directed along the y axis. In addition,
in Fig. 2b, we see a rotation of the principal axes of the
ellipse. The situation shown in Fig. 2c is different from
the previous situation. In this latter case, the pair pro-
duction rate at the beginning of the field evolution is so
large that the first wave oscillation cycle cannot be
completed, which leads to oscillations of the x compo-
nent of the wave vector potential around a nonzero
mean value determined by the balance between the
time-averaged parts of the first two terms on the right-
hand side of the second of Eqs. (12). This shift of the
center of the oscillations of the x component of the vec-
tor potential leads to a reduction of the oscillation fre-
quency of this wave component, so that, in this case, the
x and the y components of the wave oscillate at different
frequencies.
JETP LETTERS      Vol. 80      No. 12      2004
The difference between the above three cases is
clearly illustrated by the different shapes of the particle
distribution functions in the px–py plane (note that the
electron and the positron distributions are the mirror
image of each other). In cases (a) and (b), electrons and
positrons are mostly created at the maxima of the elec-
tric field |E| (and thus of the vector potential |A|). Since
at birth p⊥  = 0, in the case of a circularly polarized elec-
tric field, this should lead to a ring-type distribution.
However, since the wave polarization becomes ellipti-
cal because of the backreaction due to the pair creation,
the distribution function of each population consists (in
the canonical momentum p⊥  + eaA plane) mainly of
two blobs at ±eaAmax. In the px–py plane, these blobs
move according to the time evolution of the vector
potential A. On the contrary, the position of the initial
distribution function (denoted by a dark dot in the fig-
ure) corresponds to p⊥  + eaA = 0. In case (c), the pairs
are created mostly at the start at p⊥  + eaA = eaA(t = 0).
Since the time evolution of A(t) is ergodic, as shown in
Fig. 3, their distribution tends to be randomized in the
px–py plane.
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The particle distribution function is shown in Fig. 4
versus the parallel momentum p|| in the laboratory
frame. Note that, in case (c), the strong damping of the
wave due to the pair creation and the resulting nonadi-
abatic interaction led to a strong acceleration of the par-
ticles in the initial plasma. Such large values of the lon-
gitudinal momentum of the electrons (positrons) in the
laboratory frame are due to the transverse acceleration
of the electrons (positrons) in the moving frame. Per-
forming the Lorentz transform back to the laboratory
frame, we obtain for the longitudinal momentum in the
laboratory frame of the initial electrons and positrons

p|| = γg[p||0 + v g(1 +  + |a2|)1/2] ≈ γgv g|a|, where we
used |a| @ |p||0|.

In summary, the production of e+e– pairs by the elec-
tromagnetic wave propagation in the plasma leads to
the upshifting of the wave frequency and to the damp-
ing of the wave amplitude and changes the polarization
state of the wave.
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Russian Foundation for Basic Research (project no. 03-
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Ministry of Industry, Science, and Technology (grant
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A quantum theory of the interaction of the atomic Bose condensate with external optical fields has been devel-
oped for a two-beam Λ-scheme close to resonance. Regimes have been obtained where the coefficients of Kerr
nonlinearity and nonlinear absorption reach giant values and even become negative, which gives rise to the
effect of nonlinear electromagnetically induced transparency. The possibility of the efficient generation of
quadrature-squeezed light under the condition of the nonlinear compensation of optical losses has been shown.
© 2004 MAIK “Nauka/Interperiodica”.
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Interest in investigation of electromagnetically
induced transparency (EIT) has considerably increased
recently [1, 2]. This effect is the propagation of a probe
pulse without damping and with the conservation of an
envelop shape in a three-level atomic medium with the
inversion of populations created by optical pumping. A
fundamental property of this effect is a considerable, up
to 17 m/s [1], decrease in the group velocity of the
probe pulse under the conditions of the propagation of
dark and bright polaritons. Such a behavior of an
atomic–optical system with memory can be used for
processing and transmission of quantum information.
At the same time, strong quantum correlations of
polaritons can give rise to the generation of nonclassi-
cal entangled atomic-optical states [3, 4]. In principle,
the possibility of the generation of giant nonlinearity
values in the Λ-interaction regime with the use of
coherent media was experimentally shown in [5].

In this work, we solve the problem of the interaction
of the three-level atomic condensate with external opti-
cal fields under the condition of EIT. In this problem,
we consider the effects of both linear (in the Jaynes–
Cummings approximation) and nonlinear (Kerr) polar-
izations of condensate atoms.

The optical properties of the atomic Bose conden-
sate upon its Λ-interaction with the pumping optical
field of frequency ωc and test field ωp (Fig. 1) with the
inclusion of the nonlinear polarization of atoms can be
described in terms of its index of refraction n = n0 +
n2|Ap|2 and absorption coefficient α = α0 + α2|Ap|2. Here,

(1a)

(1b)

n0 1
1
2
---Re χAT

1( )( ), α0+ βpIm χAT
1( )( ),= =

n2
3
8
---Re χAT

3( )( ), α2
3
4
---βpIm χAT

3( )( ).= =
0021-3640/04/8012- $26.00 © 20739
Here,  are the linear and Kerr resonance suscepti-
bilities of the atomic condensate, respectively. Using
the standard density-matrix formalism and the relation
P = Nµ32  [6, 7] for polarization induced in the

atomic medium, where N is the atomic density,  is
the matrix element for the |3〉   |2〉  transition, and µ32

is the corresponding dipole moment, we obtain the fol-
lowing expressions for the resonance susceptibilities
(cf. [1, 5]):

(2)

χAT
1 3,( )

ρ32

ρ32

χAT
1( ) N µ32

2

"ε0
----------------- 1

Γ
---,=

χAT
3( ) 2i

3
-----

N µ32
4

ε0"
3

-----------------Γ* Γ–

Γ Γ 2
---------------- 1

γopt
-------- 1

γmag
---------+ 

  .=

Fig. 1. Λ-scheme of interaction for 23Na atomic energy
levels.
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Here, Γ = ∆ – iγopt + |g1|2/(iγmag – ∆), where g1 = |µ31|Ec/"
is the Rabi frequency for the |1〉   |3〉  transition
induced by the transparency field Ec; γopt = γ32 + γ31 and
γmag = γ12, where γmn with m, n = 1, 2, 3 describe the
spontaneous transitions from the corresponding levels
and determine the natural width of the radiation lines
for the cold atoms in the condensate; ∆ = ω – ωp; and δ
= ω – ω12 – ωc.

Figure 2 shows the nonlinear index of refraction n2
and the nonlinear absorption coefficient α2 as functions
of the frequency detuning ∆ of the test field upon the Λ-
interaction and in the presence of the strong pumping
field Ec for the atomic density N = 3.3 × 1012 cm–3

according to the experiment [1]. In this case, the dipole
transition element |µ32| is equal to 22 × 10–30 C m, and
the Rabi frequency g1/2π = 21.5 MHz for the intensity
of a transparency field is calculated for an intensity of
Ic = 55 mW/cm2 with the use of the relation Ac =

. In the absence of the Doppler broadening of
the radiation lines in the condensate, the rate γmn of the
spontaneous decay of atoms is determined by their
relaxation time τmn ≈ 2π/γmn. They are equal to τ32 =
0.2 µs, γ31/2π = γ32/2π = 5.1 MHz, and the decay rate on
the magnetic levels |1〉  and |2〉  corresponds to γ12/2π =
38.2 kHz and the relaxation time τ12 = 26 µs cm [7].

As is seen in Fig. 2, the parameters n2 and α2 can
take giant values and be negative. The existence of
regions with n2 < 0 is important for the practical prob-
lems of the generation and control over the parameters
of nonclassical light. At the same time, the presence of

2Ic/cε0

Fig. 2. Frequency dependences of the (solid line) nonlinear
index of refraction n2 and (dashed line) nonlinear absorp-

tion coefficient α2 for the 23Na condensate upon the Λ-
interaction with external optical fields. The condensate
parameters are N = 3.3 × 1012 cm–3, γopt/2π = 10.2 MHz,
and γmag/2π = 38.2 kHz. The intensity of a transparency

pulse is equal to Ic = 55 mW/cm2.
negative nonlinear absorption α2 < 0 in Fig. 2 leads to
the change of the linear absorption regime for optical
radiation in the Bose gas to the regime with effective
enhancement when reaching the corresponding thresh-
old intensity of the test field. When α ≡ 0, light is not
absorbed by the atomic medium, which can be treated
as the effect of the EIT of the Bose condensate.

Thus, control over the intensity Ip of the test field
and its detuning ∆ from the resonance makes it possible
to change the relation between the relative contribu-
tions of the linear and nonlinear effects for the field
propagating in the condensate. This property is respon-
sible for the realization of diverse regimes.

Let us discuss the quantum properties of the test
field and their effect on EIT. In the adiabatic approxi-
mation, where the population regime for atoms of con-
densate modes can be considered as steady, the state of
the atomic system is given [2]. This approximation is
valid if the relaxation time for the lower levels of the
scheme satisfies the condition τ12 ≥ τd [2], where τd =
ng(l/c) determines the delay time of a pulse passing
through the resonance condensate medium with a
group index of refraction ng = n + ωp(dn/dωp). In this
case, the Hamiltonian of the interaction between the
condensate atoms and test field can be obtained using
the corresponding transition matrix element multiplied
by the atomic–optical interaction constant: Hint =

−(k0/2)(  + ), where k0 = µ32  and V is
the characteristic interaction volume. With allowance
for nonlinear effects based on the cubic susceptibility
χ(3), the matrix element  can be expanded in a series

in the Rabi frequency of the test field in the form  ≅

g1 + |g1|2g1. Finally, the interaction Hamilto-
nian has the form

(3)

where a(a+) is the annihilation (creation) operator of
the test-field photons. The first term in Eq. (3) corre-
sponds to the interaction of the condensate with the test
field in the framework of the Jaynes–Cummings model.
The second term in Eq. (3) is determined by the nonlin-
ear polarization of the atomic system.

To describe the behavior of quantum fluctuations of
the test field, we use the Bogoliubov method, which is
extensively applied both in statistical physics for study-
ing quasiparticles in mesoscopic quantum systems [8]
and in quantum optics for describing the spontaneous
parametric scattering of light in the approximation of a
given classical pumping field [6]. In this work, the
application of this method to analysis of the quantum
characteristics of the test field is justified by the adia-

ρ32 ρ23 ω/2"ε0V

ρ32

ρ32

ρ32
1( ) ρ32

3( )

H int

k0
2

2
---- ρ32

1( )a+ ρ23
1( )a+( )–=

–
k0

4

2
---- ρ32

3( ) a+( )2
a ρ23

3( )a+ a( )2+( ),
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batic approximation when the properties of both the
atomic system and transparency (pumping) field are
given (see Eq. (3) and cf. [2]). We represent the annihi-
lation operator of a test field of photons in the form a =
f + ∆a, where f determines the classical amplitude
(〈a〉  = f ) and the operator ∆a ≡ c = a – 〈a〉  determines
the small fluctuation part of the field, so that 〈∆a〉  ≡
〈c〉  = 0. Using Eq. (3) in the Heisenberg representation,
we arrive at the following system of equations for the
mean field f and quantum-noise operator c:

(4)

where k1 =  and k2 =  are the coefficients
determining the linear and nonlinear energy transfer
in the system, respectively; and θ = k2 f * + f and
η = k2 f.

The second of Eqs. (4) is linearized with respect to
the small-fluctuation operator c. It is valid under the
condition 〈c+c〉  ! | f |2, and its solution can be repre-
sented in the form (cf. [6, 8])

(5a)

(5b)

where ξ = ( f *)2 + ( )2 f 2 + |k2|2| f |2 and c0 ≡ c(t)|t = 0.
The operators of annihilation c and creation c+ of qua-
siparticles satisfy the usual commutation relations [c;
c+] = |µ|2 – |ν|2 = 1 and characterize small quantum per-
turbations of the test field—bright polaritons propagat-
ing in the atomic medium under the conditions of EIT.
In this case, the mean number of test-field photons Nf =
〈a+a〉  = | f |2 + 〈c+c〉  can change both due to a change in
the mean-field intensity and in the process of the para-
metric enhancement of quantum noise (quasiparticles),
which becomes possible for ξ < 0.

Figure 3 shows the time dependence of the mean
number Nf of photons in the probe pulse for various ini-
tial numbers of photons at the condensate entry. The
detuning frequency of the probe pulse with a duration
of 1 µs is taken close to the resonance and is equal to
∆/2π = 2.66 MHz. In this case, the coefficients α0 > 0
and α2 < 0 have different signs, which makes it possible
to analyze the competition between the linear damping
and nonlinear enhancement of the test field in the sys-
tem under consideration (see Fig. 2). In this case, the
threshold intensity Nf of the test field is equal to 25 pho-
tons. Figure 3 demonstrates two fundamentally differ-
ent evolution regimes for the mean number of photons
in the probe pulse. First, when the initial mean number
of photons is equal to Nf = | f |2 = 26, the nonlinear
enhancement threshold is exceeded and a parametric
increase in the test-field intensity is observed. Second,
when the initial mean number of photons is equal to

df
dt
----- i

k1

2
----

k2*

2
----- f 2 k2 f 2++ 

  ,
dc
dt
------ i θc ηc++( ),= =

k0
2ρ32

1( ) k0
4ρ32

3( )

k2*

c µc0 νc0
+,+=

µ ξ t( )cos i
θ
ξ
--- ξ t( ), νsin+ i

η
ξ
--- ξ t( ),sin= =

k2
2 k2*
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Nf = | f |2 = 19, the enhancement threshold is not reached
and energy is transferred between the field and conden-
sate in the regime of competition between the linear and
nonlinear effects. Each regime is represented by two
lines of which one corresponds to the dynamics of the
mean field | f |2 and the other presents the dynamics
including quantum noise. It is seen that the relative

number 〈 〉 /| f |2 is always small in the regime below
the threshold. At the same time, the regime of the
enhancement of the mean field leads to a fast increase
in this number, which corresponds to the parametric
enhancement of quantum noise. Since 〈c+c〉  = |ν|2, the
latter case corresponds to the change of sign of the
expression for ξ and a hyperbolic increase in ν [see
Eq. (5)]. However, even for the case where the initial
intensity of the test field is lower than the threshold, the
presence of quantum noise in the system can lead to a
change in the regime beginning with a certain time—to
the enhancement of the test field. It is important that the
increase in the mean number of photons shown in Fig. 3
is limited by the pumping intensity, which is treated as
classical and inexhaustible. Thus, the approach under
consideration implies the condition

(6)

where Nc is the number of photons in the pumping field.

Let us determine the Hermitian quadratures Q = a +
a+ and P = i(a+ – a) of the test field. In view of Eqs. (5),

their dispersions are represented as  = |µ + ν*|2 and

 = |µ – ν*|2. Figure 4 shows the time dependences of

 and  for the test field with Nf = 26. Quadrature-

ĉ+ĉ

c+c〈 〉  ! f 2
 ! Nc,

σQ
2

σP
2

σQ
2 σP

2

Fig. 3. Time dependence of the photon number Nf of the test

field (solid lines for | f |2) in the mean-field approximation
and (dashed lines) with inclusion of quantum fluctuations.
The parameters of the system are the same as for Fig. 2. The
detuning frequency is equal to ∆/2π = 2.66 MHz. The initial
photon number Nf is indicated near the lines.
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squeezed light is generated when either  or  is
smaller than unity, which corresponds to the coherent
state of the test field at the atomic-system entry. In this
case, the efficient suppression of quantum fluctuations
of the quadrature Q can be experimentally observed on
the characteristic time scale τsq ≈ 40 µs. In particular, if
the squeezing time for fluctuations is approximately
equal to the pulse delay time τd, i.e., τsq ≅  τd, then the
optimum length lopt of the active region of the conden-
sate is equal to 7.7 cm, which corresponds to both ng =
1.56 × 105 and the regime of “slow” light for the probe
pulse with a group velocity of about 2000 m/s. In this
case, for fluctuations of the probe pulse of a duration of
τp to be efficiently squeezed, it is necessary to satisfy
the condition τsq > τp, which is the case for the micro-
second pulse. Finally, we note that conditions (6) are
valid over the entire time interval for the dependences
shown in Fig. 4. The inset in Fig. 4 shows the results of
quadrature squeezing for various numbers of photons
of the test field at the condensate entry. It is seen that the
enhancement regime for the test field is preferable over
competitive regimes for efficient squeezing; see line 1
in Fig. 3.

In the linear case, when  =  ≡ 0, the param-

eter k2 = 0, so that the quadrature dispersions 

σQ
2 σP

2

ρ23
3( ) ρ32

3( )

σQ P,
2

Fig. 4. Time dependences for quadrature dispersions 

and . The parameters of the system are the same as for

Fig. 3. The initial number of photons is equal to Nf = 26.

Inset: the time dependences of  for Nf = (solid line) 26

and (dashed line) 19.

σQ
2

σP
2

σQ
2

remain at the initial level of fluctuations of the coherent
field. In this case, the time dependence of the photon
number Nf is not sensitive to the initial number of pho-
tons at the entry: in the absence of the competition
between the linear and nonlinear effects of the energy
transfer in the system, either absorption or enhance-
ment of the pulse is observed in dependence on the
detuning ∆.

In summary, we note that the optimum length lopt of
the atomic–optical interaction can be reached using
cigar-shaped condensates obtained in strongly asym-
metric traps. The use of optic fibers doped with reso-
nance atoms or fibers filled with the atomic gas conden-
sate is no less interesting and a practically promising
possibility of realizing the Λ-interaction for the optical
pulses in these fibers. Such an approach makes it possi-
ble, first, to sharply increase the nonlinear characteris-
tics of a waveguide, which is the most important point
in experiments with squeezed light, and, second, to
adjust the scheme so that the forced optical losses are
minimal.
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Experimental and theoretical study of superconductor–ferromagnet–superconductor junctions (SFS junctions)
showed that, in a certain range of parameters (e.g., the length of the ferromagnet dF, the exchange field Eex), the
ground state of the SFS junction corresponds to a superconducting phase difference π or 0. The phase diagram
of an SFS junction with respect to π and 0 states is investigated in this letter in Eex, dF, T space. It is shown that
the phase diagram is very sensitive to the geometry of the system, in particular, to the amount of disorder in the
junction. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.50.+r; 74.80.–g; 75.70.–i
Recently, many interesting phenomena have been
investigated in superconductor–ferromagnet–super-
conductor Josephson contacts. One of the most interest-
ing effects is the so-called π state of SFS junctions [1–
11] in which the equilibrium ground state is character-
ized by an intrinsic phase difference π between the two
superconductors.

Theoretical study of SFS junctions [1–3] showed
that, if Eex is fixed in the ferromagnet, then the π state

appears at 0 <  < dF < ,  <  < dF < ,

etc., and, near  (i = 1, 2, …), the critical current
Ic(dF) has a cusp. Recent experiments [4, 5] showed that
the critical current–temperature curve in SFS junctions

at dF ≈ , where i = 1, 2, also has a cusp. The temper-
ature of the cusp was identified with the π–0 transition
temperature. These experiments became the motivation
for the theoretical investigations of the Ic(T) curves and
phase diagrams of SFS junctions. It was shown in [8, 9]

that, if dF ≈  (i = 1, 2, …) in very short ballistic SFS
junctions (dF ! ξ0 = "vF/∆(T = 0)), then there is a π–0
transition at a certain temperature and the π state is
always (for all i) at higher temperatures than the 0 state.
This prediction is in contradiction with the experimen-
tal data and calculations of the phase diagram in dirty
SFS junctions based on linearized Usadel equations
(see [5] and references therein), where the order of π
and 0 phases with respect to the temperature is one at

dF ≈  and the opposite at dF ≈ . The SFS junc-
tions investigated in [5] were dirty. At the first glance,
it may seem that disorder strongly influences the phase

¶ This article was submitted by the author in English.
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diagram of SFS junctions. This is exactly so. It is shown
in this letter that the phase diagram of SFS junctions is
rather sensitive to the geometry of the system, in partic-
ular, to amount of disorder in the junction.

This paper is organized as follows: most of the paper
is devoted to investigations of phase diagrams of SFS

junctions near the first cusp of Ic(dF) (at dF ≈ ), and

the case dF ≈ , where i > 1, is discussed at end.

The superconducting SFS junction that is investi-
gated here is sketched in Fig. 1. A barrier (e.g., an insu-
lator layer) is situated at the position x = a from the
junction center.

First, we will considered ballistic SFS junctions. I
assume the following: the exchange energy of the ferro-
magnet Eex ! EF; there is no barrier at the SF bound-

dF
1( )

dF
i( )

Fig. 1. A sketch of an SFS junction. A barrier (e.g., insulator
layer I) is situated at the position x = a from the junction
center.
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aries: the probability of Andreev reflection of sub-
gapped Bogoliubov quasiparticles from an SF bound-
ary is equal to unity; and the variation of the
superconducting gap in S near the boundary will be
neglected (this is a correct approximation if our SFS is
a quantum point contact [12, 13]; in other cases, this
approximation can be used because it usually leads to
mistakes of only a few percent in the Josephson cur-
rent). Then, the Josephson current can be found, for
instance, using scattering matrix method [8, 12]:

(1)

where

(2)

I ϕ( ) 2e
"
------1

2
--- T ∂ϕ g ω ϕ σ, ,( ),ln

ω
∑

σ ±1=

∑=

g ω ϕ σ, ,( ) 2ω2 ∆2+( ) Φ( )cosh=

+ 2ω ω2 ∆2+ Φ( )sinh 7 ϕ 5 β.cosh+cos+

Fig. 2. Critical current–temperature relation in two short
SFS junctions with the same normal conductance and dF ≈

: (a) ballistic junction, (b) dirty one. The insets show
the “phase diagrams” of the junctions. The current scale
I0 = Nche∆0/", where Nch is the number of open channels in
the junction. The thick curve in (a) corresponds to the same
Θ = 0.18 as in (b); the other curve in (a) corresponds to Θ ≈
0.5. It is seen that the π state in a ballistic SFS junction is at
higher temperatures than the 0 state; the opposite phenom-
enon takes place in a dirty SFS junction.

dF
1( )
Here, ϕ is the phase difference between the supercon-
ductors; ∆ is the bulk superconducting gap; ω =
2π(n +1/2), n = 0, ±1, …; Φ = 2dF(ω + iEexσ)/"vFcosθ,
β = 4a(ω + iEexσ)/"vFcosθ and 7 = t↑t↓, 5 = r↑r↓,
where (t↑)2 and (r↑)2 are the transmission and reflection
probabilities of the barrier for spin-up electrons, and θ
is the angle between the trajectory and the X axis.
Equations (1) and (2) can be generalized if the ratio
Eex/EF is arbitrary. Then, for example, Φ =

ImdF{  – },
β can be written in a similar way. The ω dependence of
Φ was neglected in [7–9] because, there, dF was much
smaller than ξ0. Physically, the ballistic model of an
SFS junction could be realized, for example, in gated
heterostructures [14] or in the break junctions [15] in an
external magnetic field producing Zeeman splitting of
Andreev levels [16].

The case a = 0 (then, the scattering potential of the
junction is symmetric), dF & ξ = "vF/∆ was considered
in papers [7–9]. This model is important because, on a
qualitative level, it describes SFS junctions well where
F is a ferromagnetic granule or a spin-active interface
(see [7] and references therein). It was shown that, if

dF ≈ , β < 1, and one fixes Eex and changes the tem-
perature, then the π state of a ballistic SFS junction usu-
ally appears at higher temperatures than the 0 state. The

opposite phenomenon appears at dF ≈  if the junc-
tion is dirty and there is no other scattering potential in
the junction than the impurity potential. (I make this
statement after solving self-consistently Eilenberger
quasi-classical equations with impurities and analyzing
Josephson current evolution with temperature in wide
range of parameters.) To illustrate this point of view, I
consider the Josephson current in two similar SFS junc-
tions with the same dimensionless normal conductance
per channel, the same ∆, Eex, and the same number of
open channels, etc. The only difference between the
junctions is that, in the first one, the normal conduc-
tance is provided by an insulator layer with a flat sur-
face at the center of the ferromagnet as in Fig. 1 and, in
the second one, by nonmagnetic impurities in the ferro-
magnetic region. The following parameters were cho-
sen: dF = ξ0 = "vF/∆0, ∆0 = ∆(T = 0); Θ = 2dFEex/πξ0∆0
= 0.18. The disorder strength in the second junction was
∆0/τ = 10, where τvF is the mean free path. The trans-
mission probability of the insulator layer in the first
junction was D(θ) = D0cos2θ/(1 – D0 + D0cos2θ),
where D0 = 0.127. The current scale is I0 = Nche∆0/",
where Nch is the number of open channels in the junc-
tion. The thick curve in Fig. 2a corresponds to the same
Θ = 0.18 as in Fig. 2b; the other curve in Fig. 2a corre-

sponds to Θ ≈ 0.5. Note that dF ≈  in Fig. 2. It is seen
that the π state in the ballistic SFS junction is at higher
temperatures than the 0 state; the opposite phenomenon
takes place in dirty SFS junctions. If there is an insula-

2m EF iω Eexσ+ +( ) 2m EF iω– Eexσ–( )

dF
1( )

dF
1( )

dF
1( )
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tor barrier in a ballistic short SFS junction and we add
nonmagnetic impurities to it, the transition from the
case shown in Fig. 2a to the case shown in Fig. 2b is
expected to occur when l/dF ~ D, where l is a mean free
path. Josephson current calculations in ballistic junc-
tions were performed using Eqs. (1)–(3) with t↑ = t↓ =

; in dirty junctions, using the Ricatti form of the
Eilenberger quasi-classical equations [17].

A “short” SFS junction with dF & ξ0 was considered
above. What may happen if dF > ξ0 is illustrated in
Fig. 3. The junction is ballistic (with the same normal
conductance corresponding to D0 = 0.127), and dF ≈
3ξ0. The inset shows the “phase diagram” of the junc-
tion. Hence, by freezing the long SFS junction (in the
proper range of Eex) starting from Tc, one can go through
a sequence of phase transitions: 0  π  0. In gen-
eral, one can make a junction phase diagram similar to
any of the phase diagrams depicted in Figs. 1–3 by the
proper choice of the position of the insulator barrier and
the length of the junction. For example, if I make D0 = 1,
then the phase diagram in Fig. 1 will transform to the
phase diagram shown in Fig. 2b (the junction is ballis-
tic!). This is shown in Fig. 4. The same transformation
of the phase diagram occurs due to impurities as shown
by the numerical calculations.

Below, a short description of the numerical calcula-
tion procedure that was used for creation of Fig. 2b is
given. The calculations were performed using the
Ricatti representation of the Eilenberger quasi-classical
equations (because Eilenberger equations are unstable)
[17]. The quasi-classical Green’s functions can be
parameterized via the new functions a and b; therefore,

D

Fig. 3. Critical current–temperature relation in a long df ≈
3ξ0 ballistic SFS junction with D0 = 0.127, Θ ≈ 0.445. The
inset shows the “phase diagram” of the junction. If impuri-
ties were added to this type of junction, then the phase dia-
gram would finally look as in Fig. 2b. If I make D0 ≈ 1 (see
Fig. 4), then the phase diagram will become similar to the
phase diagram shown in Fig. 2b.
JETP LETTERS      Vol. 80      No. 12      2004
(3)

The amplitudes a and b change according to the Ricatti
equations

(4)

where ∆R = ∆ + 〈 f 〉/2τ,  = ∆* + 〈 〉 /2τ, and ωR =
ωn + iσEex + 〈g〉/2τ. Here, 〈…〉  denotes averaging over
the directions of the quasi-classical trajectories, and τ is
the mean free path of an electron in the impurity poten-
tial. Equations (4) were solved numerically self-consis-
tently; the Josephson current density was evaluated as
follows:

(5)

where ν is the normal density of states. I tried to expand
the Ricatti equations over τ–1 in the first order to find
analytically how disorder influences the phase diagram
of a short SFS junction. My calculations showed no
effect in the first order.

The discussion above may lead to the conclusion
that, in dirty Josephson junctions with ferromagnet lay-
ers between superconductors, the phase diagram
always looks similar to Fig. 2b. It seems that this state-
ment is true for short SFS junctions when Eex is not too
large, but it is not true in general. To prove it, I shall
give below an example (more examples and a detailed
discussion will be given in the extended version of this
letter). Consider a dirty SFIFS junction (e.g., as in

f
2a

1 ab+
--------------- ω, gsgn

1 ab–
1 ab+
--------------- ω.sgn= =

vF∇ a 2ωRa ∆̃Ra2 ∆R–+ + 0,=

vF∇ b 2ωRb– ∆Rb2– ∆̃R+ 0,=

∆̃R f̃

j iπeνT vFg〈 〉 vF
,

σ
∑

ω
∑–=

Fig. 4. Critical current–temperature relation in a long df ≈
3ξ0 ballistic SFS junction with D0 = 1, Θ ≈ 0.42. The inset
shows the “phase diagram” of the junction. The phase dia-
gram (and the current temperature relation) in a short dirty
SFS junction (Fig. 2b) looks quite similar to the one shown
in Fig. 5.
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Fig. 1). The Josephson current can be found from
Usadel equations [17]. In general, Usadel equations are
nonlinear over quasi-classical Green’s functions. But,
near the critical temperature of the junction or if the
superconductors and ferromagnets are weakly coupled
in some sense, the Usadel equations can be linearized.
Then, the linearized Usadel equations in the ferromag-
nets for an anomalous function f look similar to

(6)

where D1, 2 is the diffusion constant and J1, 2 are the
exchange energy in the left (right) ferromagnetic layer.
If the magnetizations of the ferromagnetic layers are

∂2 f
2 ω 2iJ1 2, σ ωsgn+

D1 2,
------------------------------------------------ f– 0,=
collinear, then the f function to the left of the insulator

layer I (see Fig. 1) is f = (A  + B ), and

to the left, f = (C  + D ). Here, κ1, 2 =

, where ρ1, 2 is the resistiv-
ity of the ferromagnets. The amplitudes A, B, and … are
not independent, but they are connected by boundary
conditions [18] that I write here in the matrix form:

(7)

1

κ1/ρ1

-------------------- e
κ1x

e
κ1x–

1

κ2/ρ2

-------------------- e
κ2x

e
κ2x–

ω 2iJ1 2, σ ωsgn+( )/D1 2,

B

C 
 
 

S A

D 
 
 

,=
(8)S
e

2κ1a κ̃1 κ̃2– κ̃1κ̃2R–
κ̃1 κ̃2 κ̃1κ̃2R–+
-------------------------------------- e

κ1 κ2–( )a κ̃1κ̃2

κ̃1 κ̃2 κ̃1κ̃2R–+
--------------------------------------

e
κ1 κ2–( )a κ̃1κ̃2

κ̃2 κ̃1 κ̃1κ̃2R–+
-------------------------------------- e

2– κ2a κ̃2 κ̃1– κ̃1κ̃2R–
κ̃2 κ̃1 κ̃1κ̃2R–+
--------------------------------------

 
 
 
 
 
 
 

,=
where S is the “scattering matrix” of the F–F boundary
(the diagonal elements of S play the role of “reflection”
amplitudes; the off-diagonal, “transmission” ampli-
tudes).

Here,  = κ1, 2/ρ1, 2; R is the resistance of the F–F
boundary. When R = 0, the scattering matrix S is similar
to the quantum mechanical scattering matrix of a poten-
tial step. At the SF interface, the boundary conditions
resemble

κ̃1 2,

Fig. 5. Critical current–temperature dependence in a dirty
SFIFS junction with the following parameters: J1 = –1.9Tc,

J2 = 3Tc, dF/ξ = 1, a/ξ = –0.2, D1 = D2 (ξ = ),

R/ρ1ξ = 0.1. The critical current is normalized on its value
in the maximum of Ic(T) corresponding to the 0 state.

D/Tc
(9)

(10)

(11)

where ∆L(R) = ∆exp(±iφ/2) are the gaps of the left (right)

superconductors and Ω = , RL(r) are the resis-
tances of the SF boundaries. From Eqs. (7)–(11),
I obtain

(12)

The approach applied above is similar to the scattering
matrix method used in [12] for calculation of the
Josephson current in SNS junctions. Then, the Joseph-
son current density can be found: j =

T {  – }, where Tr is taken over

spin degrees of freedom and (ω) = f *(–ω). Figure 5
shows the critical current–temperature dependence in
the dirty SFIFS junction with the following parameters:
J1 = –1.9Tc, J2 = 3Tc, dF/ξ = 1, a/ξ = –0.2, D1 = D2 (ξ =

) R/ρ1ξ = 0.1. Linearization of the Usadel equa-

A

D 
 
 

Sb
B

C 
 
 

Deff,–=

Sb
e

2κ1dF 0

0 e
2κ2dF 

 
 
 

,=

Deff
∆Le

κ1dF/ΩRL

∆Re
κ2dF/ΩRr 

 
 
 

,=

∆ 2 ω2+

A

D 
 
 

SbS 1–( ) 1– Deff.=

σNπi
2e

------------ Trω∑ f̃ ∂f f∂ f̃

f̃

D/Tc
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tions is correct at these parameters. Figure 5 is similar
to Fig. 3 corresponding to a ballistic SFS junction.

The phase diagrams were considered above in (T,
Θ) ~ (T, Eex) space at fixed dF. If one fixes Eex near the
first cusp of Ic(Eex) and changes dF, one will obtain sim-
ilar figures.

Above, I considered only phase diagrams of SFS

junctions near the first cusp of Ic(dF) (at dF ≈ ).
Below, I will briefly discuss the phase diagram in the
general case. Figure 6 shows three phase diagrams. In
all the figures, 2Eex/π∆0 = 1. The first and the second
diagrams (Figs. 6a, 6b) correspond to the ballistic SFS
junctions described by Eqs. (1) and (2) with D0 = 1
(there is no layer I in Fig. 1) and D0 = 0.127, respec-
tively. The role of impurities can be seen in Fig. 6c.
There, D0 = 1 and "/∆0τ = 10. At dF/ξ0 = 1, the normal
conductance of the junction in Fig. 6c becomes equal to
the normal conductance of the junction shown in Fig.
6a. If I use the linearized Usadel equations to describe
the phase diagram of an SFS junction, I should get a
graph resembling that in Fig. 6c. The phase diagram in
Fig. 6c qualitatively agrees with the experimental
results in [5], which state that the order of the π and 0
phases with respect to the temperature is one at dF ≈

 and the opposite at dF ≈ .

dF
1( )

dF
1( ) dF

2( )

Fig. 6. This figure illustrates how the geometry of an SFS
junction and disorder could influence the shape of the phase
diagram. In all the figures, 2Eex/π∆0 = 1. The first and the
second diagrams (a, b) correspond to ballistic SFS junctions
described by Eqs. (1) and (2) with D0 = 1 (no layer I in
Fig. 1) and D0 = 0.127, respectively, and a = 0. The role of
impurities can be seen in (c). There, D0 = 1 and "/∆0τ = 10.
At dF/ξ0 = 1, the normal conductance of the junction in
(c) becomes equal to the normal conductance of the junc-
tion shown in (a). If I drew the phase diagrams for the SFS
junctions in Θ, Tc space, they would look similar to as in the
figure.
JETP LETTERS      Vol. 80      No. 12      2004
In conclusion, π–0 transitions in Josephson junc-
tions with ferromagnetic layers are investigated in this
letter. It is shown that the phase diagram is very sensi-
tive to the geometry of the system, in particular, to the
amount of disorder in the junction.
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Inverted EPR Signal from Nitrogen Defects in a Synthetic 
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Electron paramagnetic resonance (EPR) in diamond single crystals was studied. The crystals were grown using
apparatuses of the “split-sphere” type in a Ni–Fe–C system using the temperature gradient method with a sub-
sequent high-temperature high-pressure treatment. It was found that, after the high-temperature high-pressure
treatment of a diamond sample, the EPR signal from the lattice defects containing nitrogen atoms became
inverted with the growth of the microwave power in an H102 resonator. In a constant polarizing magnetic field,
when the microwave power applied to the diamond was low, a resonance absorption by the nitrogen defects took
place, whereas, when the microwave power was high, an emission was observed. The inversion of the EPR lines
of a single nitrogen atom substituting for a carbon atom at a diamond lattice site could be caused by the presence
of a nickel atom with an uncompensated magnetic moment at the adjacent tetrahedral interstitial site. In syn-
thetic diamond crystals that were not subjected to high-temperature high-pressure treatment, the inversion of
the EPR signal from nitrogen atoms (P1 centers, nitrogen in the C form) was absent. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 76.30.–v; 84.40.Ik
In solid-state masers (paramagnetic amplifiers), the
working medium is usually cooled down to cryogenic
temperatures [1]. Diamond crystals have never been
considered as a promising working medium for masers
(see, e.g., reviews [2–5]).

An inverted population of spin levels (an inverted
EPR signal) in thermally treated oxygen-containing sil-
icon crystals [6] and maser radiation in a ruby [7] were
observed at liquid helium temperatures. We note that
the inversion of the EPR signal by paramagnetic centers
of a Si crystal surface was detected only with an inter-
band illumination at liquid-nitrogen temperature [8].
The optically induced inversion of the EPR signal in Ib-
type diamond crystals was observed at cryogenic tem-
peratures under illumination with a photon energy
lower than the energy gap [9, 10].

Under normal conditions (at room temperature in air
in the dark), the weakly pronounced inversion of the
EPR signal was observed in polycrystalline diamond
films grown on silicon crystals by chemical gas-phase
deposition from a methane–hydrogen mixture [11]. (In
one of the EPR spectra presented in [12] for natural dia-
mond crystals at room temperature, one can notice
hints of the inversion of some of the resonance para-
magnetic absorption lines.) The results of these studies
suggest that one can obtain an inverted population of
spin levels in synthetic diamond single crystals, for
which the type of impurity-defect associates (and their
paramagnetic relaxation times [13]) can be controlled
to a certain extent.
0021-3640/04/8012- $26.00 © 20748
EXPERIMENT

By the EPR method, we studied two synthetic dia-
mond single-crystal samples (a half-octahedron in the
form of a square pyramid) with a mass of ≈0.5 carat
each. The diamonds were grown in an apparatus of the
split-sphere type (the Adamas enterprise at Belarussian
State University) in the Ni–Fe–C system by the temper-
ature gradient method at temperatures of 1750 to
1800 K under pressures of 5.4–5.5 GPa.

Diamond sample 1 (the initial sample) had para-
magnetic and optical properties typical of crystals
grown by the aforementioned method. The concentra-
tion of single paramagnetic nitrogen atoms at the dia-
mond lattice sites (in the C form) was on the order of
3 × 1019 cm–3.

Diamond sample 2 was subjected to high-tempera-
ture high-pressure treatment for 12 h under a pressure
of 6.8 GPa at a temperature of 2250 K. (Before this
treatment, the properties of samples 1 and 2 were iden-
tical.) The high-temperature high pressure treatment of
the diamond changed its color from light brown to yel-
low green. The optical properties of such crystals were
described in [14], where it was found that, as a result of
high-temperature high-pressure treatment, the residual
Ni (metal catalyst) that was present in the synthetic dia-
mond “reacted” with nitrogen.

The EPR spectra of samples 1 and 2 were recorded
at room temperature in the dark in air by a RadioPAN
SE/X-2543 spectrometer with an H102 resonator (a fre-
quency of 9.311 GHz) with a modulation (a frequency
004 MAIK “Nauka/Interperiodica”
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of 100 kHz and an amplitude of 0.1 mT) of the polariz-
ing magnetic field; the sensitivity of the spectrometer
was ≈3 × 1012 spin/mT. The induction of the polarizing
magnetic field was measured by an NMR magnetome-
ter, and the frequencies in the microwave resonator, by
a frequency meter. For the purposes of controlling the
resonator quality factor, tuning the phase of the mag-
netic field modulation, and calibrating the H1 compo-
nent of the microwave radiation, we used a ruby crystal
(Al2O3:Cr) fixed on the wall of the resonator. The dia-
mond samples under investigation were placed at the
center of the H102 resonator.

We used a standard way of recording the EPR spec-
tra with an automatic klystron frequency control by the
measuring H102 resonator. The choice of the modulation
amplitude and measuring time constant was determined
by the known requirement that the first derivative of the
resonance absorption signal with respect to the mag-
netic induction be undistorted in the course of the mea-
surement [15]. By varying the time of recording of each
single EPR spectrum from 1 to 30 min, we noticed no
considerable changes in the shape of the resulting spec-
tra for sample 1, as well as for sample 2. The nonreso-
nance absorption of microwave radiation by samples 1
and 2 was negligibly small.

RESULTS AND DISCUSSION

The EPR spectrum of sample 1 (similar to the spec-
trum of sample 2 shown in Fig. 1a) exhibits a character-
istic signal from a P1 paramagnetic center (i.e., C cen-
ter) represented by a nitrogen atom substituting for a
carbon atom in the diamond lattice. The g factor of the
central line of the EPR spectrum is equal to 2.00221 mT,
and the width is 0.17 mT. For an arbitrary orientation of
the induction B of the polarizing magnetic field with
respect to the crystallographic directions in the dia-
mond, symmetrically positioned low-field (–) and high-
field (+) satellites of the central EPR line of the P1 cen-
ter are observed (±3.07 and ±4.08 mT for B || [111]).

Note that, when the microwave power exceeds
3 mW, the EPR spectrum of sample 1 exhibits two addi-
tional lines (at ±1.5 mT with reference to the central
line of the spectrum), which are caused by the exchange
interaction between nitrogen atoms when their concen-
tration is high (>2 × 1018 cm–3) [16].

Thus, for the initial diamond sample 1, we have a
spectrum of P1 centers that is in good agreement with
the literature data [16–18]. As is known [18], the EPR
spectrum of these centers is formed by the hyperfine
interaction between an unpaired electron and a 14N
nitrogen nucleus with a spin equal to unity.

From studying sample 2 under the same conditions,
we have found that (Fig. 1) an increase in the level of
the microwave power supplied to the sample leads to an
inversion of the EPR spectrum lines. This inversion is
caused by the population inversion in the spin system
(paramagnetic centers of the P1 type) and is unrelated
JETP LETTERS      Vol. 80      No. 12      2004
to the conditions of passing through the resonance. At a
low power (70 µW), the uninverted signal is symmetric,
whereas, at a high power (70 mW), an asymmetry of the
inverted EPR signals (both the central line and its satel-
lites) is observed.

We have also found that, when the induction B of the
external polarizing magnetic field is perpendicular to
the (111) plane, the low-field lines (satellites) of the
EPR spectrum of sample 2 lie 0.03 mT closer to the
central line than the corresponding lines observed for
the initial sample 1 (see Fig. 1a).

Note that, in sample 2, as in sample 1, the signal
from exchange-coupled pairs of nitrogen atoms mani-
fests itself only when the microwave power exceeds
3 mW. However, in sample 2 subjected to high-temper-
ature high-pressure treatment, unlike the initial sample 1,
the EPR signals from exchange-coupled pairs of nitro-
gen atoms manifest themselves only when the induc-
tion of the magnetic field is parallel to the (100) plane
of the crystal. In addition, in sample 2, the amplitude of
the high-field EPR line of the exchange-coupled pairs is
approximately twice as great as the amplitude of the
low-field line irrespective of the microwave power.

Figure 2 shows the amplitude A of the EPR signal
from nitrogen (P1 centers) as a function of the strength
H1 of the magnetic component of the microwave radia-
tion in the H102 resonator for samples 1 and 2. The sig-
nal from the P1 centers exhibits a saturation with
increasing microwave power, and this saturation occurs

Fig. 1. EPR spectra of sample 2 of a synthetic diamond sin-
gle crystal at a temperature of 300 K for three levels of
microwave power: (a) 70 µW, (b) 7 mW, and (c) 70 mW; the
magnetic induction vector B is parallel to the [111] crystal-
lographic direction; the microwave radiation frequency is
9.311 GHz. The shifts of the low-field (–) and high-field (+)
satellites with respect to the central line are indicated in the
plot (g = 2.00225; a width of 0.12 mT).
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in different ways in the two samples, which means that
the paramagnetic relaxation times [19] in these samples
are different.

The mechanisms of the aggregation of nickel, iron,
and nitrogen atoms and atomic lattice defects in syn-
thetic diamond are still not clearly understood (see,
e.g., [20–25]). Therefore, in discussing the results of
our measurements, we use model representations.

Presumably, the inversion of the EPR signal in the
diamond sample 2 subjected to high-temperature high-
pressure treatment is related to the interaction of single
N atoms located at the diamond lattice sites with Ni
atoms located at the tetrahedral interstitial sites adja-
cent to them. The magnetic field of a Ni atom (with an
uncompensated magnetic moment, which, however,
does not show any EPR activity in the magnetic field
region where the signal from the P1 centers is
observed) shifts the low-field satellites of the central
line of P1 centers by 0.03 mT toward greater values of
magnetic induction. In this case, a spin–spin correlation
manifests itself; i.e., the magnetic moment of the Ni
atom, being oriented along the direction of the external
polarizing magnetic field, “stabilizes” the opposite ori-
entation of the unpaired spin of the nitrogen atom (P1
center) after the resonance absorption of microwave
radiation by the nitrogen atom takes place. The correla-
tion between the magnetic moments of N and Ni atoms
possibly suppresses the spin relaxation of the unpaired
electron of the nitrogen atom (see [26–28]). Thus, in the
EPR measurements, the magnetic field of the nickel
atom not only locally screens the external polarizing

Fig. 2. Amplitude A of the central EPR line (normalized to
its maximal value Am) for sample 1 (the initial one) and
sample 2 (subjected to high-temperature high-pressure
treatment) vs. the strength H1 of the magnetic component of
the microwave field in the H102 resonator; the value of H1m
corresponds to a microwave power of 70 mW.
magnetic field but also increases the life time of the
upper spin level of the nitrogen atom located near the
nickel atom. Therefore, the low-field satellites of the
central line of a P1-type paramagnetic center are
observed at a higher magnetic induction (see Fig. 1) as
compared to the case where the effect of nickel on the
P1 center can be ignored. (The effect of the magnetic
moment of the Ni atom on the high-field satellites of the
central EPR line of the P1 center is less pronounced.)
This interpretation of our results is indirectly supported
by the results reported in [25]: it was found that, in a
synthetic diamond crystal, Ni atoms are EPR-active in
the region of magnetic induction values lower than
those characteristic of P1 centers; i.e., the total mag-
netic moment of a Ni atom is greater than the magnetic
moment of a nitrogen atom at a diamond lattice site. In
principle, in the diamond lattice, Fe or Co atoms could
play the role of Ni atoms. However, presumably, in the
diamond subjected to high-temperature high-pressure
treatment, only Ni atoms have the crystal chemical pre-
requisites (see, e.g., [18]) to be dissolved rather than to
be pushed out to the surface of the single crystal or to
form inclusions.

We are grateful to G.A. Gusakov for discussing the
problems of the synthesis and characterization of dia-
mond single crystals. This work was supported by the
program “Low-Dimensional Systems” of the Ministry
of Education of the Republic of Belarus.

REFERENCES
1. N. T. Cherpak, Distributed-Type Quantum Amplifiers

(Masers) in the Microwave Waveband (Naukova
Dumka, Kiev, 1996) [in Russian].

2. M. P. Vaœsfel’d, Zh. Éksp. Teor. Fiz. 89, 1280 (1985)
[Sov. Phys. JETP 62, 741 (1985)].

3. R. J. Trew, J.-B. Yan, and P. M. Mock, Proc. IEEE 79,
598 (1991).

4. V. S. Vavilov, Usp. Fiz. Nauk 167, 17 (1997) [Phys. Usp.
40, 15 (1997)].

5. Special Issue on Wide Bandgap Semiconductor Devices,
Proc. IEEE 90 (6) (2002).

6. V. M. Babich, N. P. Baran, A. A. Bugaœ, et al., Pis’ma Zh.
Éksp. Teor. Fiz. 44, 513 (1986) [JETP Lett. 44, 660
(1986)].

7. A. I. Stetsenko and N. T. Cherpak, Pis’ma Zh. Tekh. Fiz.
7, 105 (1981) [Sov. Tech. Phys. Lett. 7, 45 (1981)].

8. V. V. Kurylev and S. N. Karyagin, Phys. Status Solidi A
21, K127 (1974).

9. J. H. N. Loubser and J. A. van Wyk, Rep. Prog. Phys. 41,
1201 (1978).

10. J. Harrison, M. J. Sellars, and N. B. Manson, J. Lumin.
107, 245 (2004).

11. N. M. Lapchuk, N. A. Poklonskiœ, S. A. Vyrko, et al., in
Abstracts of VIII International Conference, Sudak,
Crimea, 2003 (IHSE, Kiev, 2003), p. 792.

12. M. Ya. Scherbakova, E. V. Sobolev, and V. A. Nadolin-
nyœ, Dokl. Akad. Nauk SSSR 204, 851 (1972) [Sov.
Phys. Dokl. 17, 513 (1972)].
JETP LETTERS      Vol. 80      No. 12      2004



        

INVERTED EPR SIGNAL FROM NITROGEN DEFECTS 751

                                           
13. E. C. Reynhardt, G. L. High, and J. A. van Wyk, J. Chem.
Phys. 109, 8471 (1998).

14. A. V. Mudryœ, T. P. Larionova, I. A. Shakin, et al., Fiz.
Tekh. Poluprovodn. (St. Petersburg) 38, 538 (2004)
[Semiconductors 38, 520 (2004)].

15. J. A. Weil, J. R. Bolton, and J. E. Wertz, Electron Para-
magnetic Resonance—Elementary Theory and Practical
Applications (Wiley, New York, 1994).

16. J. H. N. Loubser, W. P. van Ryneveld, and L. du Perez,
Solid State Commun. 3, 307 (1965).

17. W. V. Smith, P. P. Sorokin, I. L. Gelles, and G. J. Lasher,
Phys. Rev. 115, 1546 (1959).

18. The Properties of Natural and Synthetic Diamonds, Ed.
by J. E. Field (Academic, London, 1992).

19. R. C. Barklie and J. Guven, J. Phys. C: Solid State Phys.
14, 3621 (1981).

20. Y. V. Babich, B. N. Feigelson, and A. P. Yelisseyev, Dia-
mond Relat. Mater. 13, 1802 (2004).
JETP LETTERS      Vol. 80      No. 12      2004
21. A. Yelisseyev, S. Lawson, I. Sildos, et al., Diamond
Relat. Mater. 12, 2147 (2003).

22. K. Bharuth-Ram and M. F. Hansen, Physica B (Amster-
dam) 321, 29 (2002).

23. A. T. Collins, Diamond Relat. Mater. 9, 417 (2000).
24. R. N. Pereira, W. Gehlhoff, A. J. Neves, and N. A. Sobo-

lev, J. Phys.: Condens. Matter 15, 2493 (2003).
25. R. I. Mashkovtsev and Yu. N. Pal’yanov, Solid State

Commun. 111, 397 (1999).
26. L. A. Shul’man, V. K. Bezobchuk, and A. B. Brik, Fiz.

Tverd. Tela (Leningrad) 24, 1488 (1982) [Sov. Phys.
Solid State 24, 849 (1982)].

27. K. A. Kikoin and V. N. Fleurov, Transition Metal Impu-
rities in Semiconductors: Electronic Structure and Phys-
ical Properties (World Sci., Singapore, 1994).

28. P. Fulde, Electron Correlations in Molecules and Solids
(Springer, Berlin, 2002).

Translated by E. Golyamina



  

JETP Letters, Vol. 80, No. 12, 2004, pp. 752–756. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 80, No. 12, 2004, pp. 884–888.
Original Russian Text Copyright © 2004 by Shulga, Bashkin, Krestinin, Martynenko, Zvereva, Kondratieva, Ossipyan, Ponyatovsky.

                                                  
Spectrum of Gases Liberated upon the Stepwise Heating
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The mass spectra of gases liberated from single-walled carbon nanotubes saturated with deuterium under a
pressure of 5 GPa at temperatures up to 500°C (10.8 wt % D) have been measured at different steps of heating
to 550°C in a vacuum. Hydrocarbons were found to dominate in the spectra at temperatures up to 400°C,
whereas the D2 and HD molecules became the main components of the spectra at 500–550°C. Changes in the
spectra with temperature are consistent with the hypothesis that the major portion of hydrogen in the single-
walled carbon nanotubes hydrogenated under pressure and reverted to normal conditions was present in the
molecular form. The low temperatures of the hydrocarbon liberation are indicative of lower kinetic barriers in
the reaction paths of the hydrocarbon liberation as compared with the liberation of D2 molecules. Spectral-peak-
shape analysis demonstrates the high hydrophilicity of hydrogenated single-walled carbon nanotubes, whereas
the sorption of atmospheric oxygen is insignificant as compared with the sorption of water. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 61.46.+w; 61.48.+c; 62.50.+p; 78.30.Na
Previously [1], samples with a hydrogen content of
6.7–7.0 wt % H were prepared by the thermal treatment
of single-walled carbon nanotubes and graphite nanofi-
bers at 450°C and a hydrogen pressure of 9 GPa fol-
lowed by liquid nitrogen quenching. The measurements
of the pressure of a gas evolved into a closed volume on
continuously heating the hydrogenated single-walled
carbon nanotubes demonstrated that a small portion of
the gas (0.45 wt % on a pure hydrogen basis) escaped
from the sample at temperatures lower than ~50°C,
whereas the liberation of the major portion of gaseous
products began at about 500°C and reached a value of
5.6 wt % on a hydrogen basis at 650°C. According to
elemental analysis data, after the hydrogenation of sin-
gle-walled carbon nanotubes under pressure and rever-
sion to normal conditions, the concentration of hydro-
gen was noticeably higher (6.8 wt % H). Therefore, it
was assumed that a portion of the hydrogen could be
released on heating as hydrocarbons with an atomic
ratio of H/C > 2. The partially and fully degassed prod-
ucts were studied by IR spectroscopy and x-ray diffrac-
tion analysis [1]. It was found that covalent C–H bonds
in nanostructures hydrogenated under pressure were
responsible for the addition of no more than 40% of the
absorbed hydrogen. The major portion of hydrogen
occurred in the state that was inactive in IR spectra.

The aim of this work was to determine the composi-
tion of the gases evolved on heating hydrogenated sin-
gle-walled carbon nanotubes by mass spectrometry. In
0021-3640/04/8012- $26.00 © 20752
addition to information on the character of the gas evo-
lution, these data allow us to reveal the state of the
hydrogen in single-walled carbon nanotubes. In this
study, we used a heavy isotope of hydrogen (deuterium)
for the saturation of single-walled carbon nanotubes in
order to decrease and, as far as possible, take into con-
sideration the contribution of the ambient atmosphere
and other experimental factors. In contrast to the previ-
ous work [1], we reduced the pressure of saturation
with hydrogen to 5 GPa.

EXPERIMENTAL PROCEDURE

The carbon nanotubes were synthesized by an elec-
tric arc method using a nickel–yttrium catalyst. The pri-
mary condensation products containing 10–15 wt %
single-walled carbon nanotubes were purified by
repeated oxidation in air at temperatures up to 550°C
alternated with washing in hydrochloric acid for the
removal of amorphous carbon and the metal catalyst.
According to microprobe analysis data, the metal impu-
rities in the purified nanotubes were Ni and Y catalysts,
as well as Cu and Zn, in the ratio Ni : Y : Cu : Zn = 1 :
1.5 : 0.6 : 0.7. The total metal concentration was no
higher than 1 wt %. The incombustible residue upon the
combustion of a weighed sample in oxygen was consis-
tent with the total oxide amount to within ±30%. The
structures of the condensation and purification products
were studied previously using high-resolution electron
microscopy, optical microscopy, and optical absorption
004 MAIK “Nauka/Interperiodica”
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spectroscopy over the range 200–1400 nm [2, 3]. The
sensitivity of the absorption spectra in the near-IR region
to the purity of products [3, 4] was used for the quantita-
tive determination of the amount of single-walled car-
bon nanotubes, which was equal to 80–85 wt % in the
test samples of the given batch. According to the elec-
tron-microscopic data, graphitized black particles and
graphite blocks up to 10–15 µm in size were the main
impurities in the material and the nanotubes exhibited a
narrow diameter distribution with an average value of
1.5 nm. The nanotubes occurred in the sample in a
strongly aggregated state as strands, microcrystal films,
and polycrystalline covers.

For the deuterium saturation, a 95-mg sample of sin-
gle-walled carbon nanotubes and 130 mg of AlD3 (the
source of the deuterium) were placed in a copper
ampule and separated with a hydrogen-permeable
membrane of palladium foil 0.02 mm in thickness. An
anvil cell was used to produce a high pressure. The
decomposition of the AlD3 was performed by heating
the ampule to 350°C at a pressure of 1.5 GPa; then, the
pressure was increased to the final value of 5 GPa. The
single-walled carbon nanotubes were deuterated during
a two-step exposure at T = 350°C for 21 h and then at
T = 460–490°C for 9 h. Thereafter, the cell was cooled
to room temperature and unloaded. The single-walled
carbon nanotubes were loaded into and removed from a
copper ampule in air; the samples were kept hermeti-
cally sealed during the rest of the time before the test-
ing. The hydrogenation procedure was described in
more detail in [5], where it was applied to the synthesis
of C60 hydrofullerenes.

The composition of the deuterated samples was ana-
lyzed by the combustion of a weighed portion of 3 mg
in a flow of oxygen at 1100°C followed by the gravi-
metric determination of the resulting CO2 and D2O. No
correction for hydrogen impurity was made. According
to the results of the two tests, the deuterated single-
walled carbon nanotubes contained 10.8 ± 0.1 wt % D.

The mass spectra of the gases liberated from the test
sample upon heating in a vacuum were measured with
the use of an MI 1201V mass spectrometer. A 70-eV
electron beam was used for the gas ionization in the ion
source of the spectrometer. To obtain the gas phase, a
weighed portion of the deuterated single-walled carbon
nanotubes (about 80 mg) was placed in a quartz ampule
of a pyrolyzer. This ampule was connected to the injec-
tion system of the mass spectrometer through a fine
control valve. The quartz ampule with the sample was
evacuated to a pressure of about 2 × 10–5 Pa in order to
remove the surface and weakly bound impurities from
the sample. After the evacuation, the ampule was iso-
lated from the vacuum system and the sample was
heated to 550°C in five steps. At each of the steps, the
sample was kept at a fixed temperature for 3 h; next, the
fine control valve was opened and the mass-spectro-
metric analysis of the gas collected in the ampule was
performed. After the analysis, the quartz ampule was
JETP LETTERS      Vol. 80      No. 12      2004
again evacuated to a high vacuum, the valve was closed,
and the sample was heated to the next temperature. The
measurements were performed over the range 1 ≤ m/z ≤
90, where m is the atomic mass and z is the ion charge.
The resolution of the spectrometer was approximately
equal to 0.08%.

RESULTS AND DISCUSSION

Figure 1 shows the mass spectra of gases liberated at
various steps during the heating of deuterated single-
walled carbon nanotubes. A hydrocarbon mixture was
the main constituent of the gas phase at temperatures to
400°C. Both deuterated hydrocarbons (as evidenced by
the high intensities of the peaks with m/z = 17–20 and
31–36) and compounds including the light isotope
(because peaks with odd mass numbers were present in
the spectra) were the constituents of this mixture. The
former of these facts implies that the measured spectra
describe the properties of the sample rather than the
contributions of experimental factors. The latter fact is
an indication that the impurities of the light hydrogen
isotope or its compounds (which participated in the
reactions in the course of the thermal treatment) were
present in the parent single-walled carbon nanotubes or
in the AlD3 source of the deuterium.

The presence of a minor impurity of protium in both
the parent single-walled carbon nanotubes and AlD3
was found in special experiments. Because the AlD3
and the single-walled carbon nanotubes were separated
by a Pd membrane in the course of the deuteration, the
impurity of the protium or its compounds in the AlD3
(total concentration of about 2%) did not complicate

Fig. 1. Mass spectra of the gas phase over a sample of deu-
terated single-walled carbon nanotubes measured under
stepwise heating to specified temperatures. The spectra are
restricted to the value of m/z = 60, because the intensities of
the peaks due to heavy ions are insignificant. The most
intense peaks are identified tentatively (see the text).
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the interpretation of the spectra in this work. The sol-
vents and gas atmospheres used at the stages of the
preparation and purification could have been a source
of impurities in the single-walled carbon nanotubes. A
peak with m/z = 31 (corresponding to the [CH3O]+ ion)
exhibited a maximum intensity in the spectrum of the
parent single-walled carbon nanotubes; intense peaks
with m/z = 45, 59, and 74 were also detected. The origin
of these peaks should be attributed to the fragmentation
of diethyl ether. The presence of an acetone impurity
also cannot be excluded. Both of the solvents were used
at the stage of drying of the single-walled carbon nano-
tubes. At 200°C or higher, the peaks with m/z = 44
([CO2]+) and 28 ([CO]+) became most intense. In the
spectra of deuterated single-walled carbon nanotubes in
Fig. 1, the peaks with the above values of m/z exhibit
low or zero intensities. Therefore, impurities of this
type can be primarily considered as the source of
protium.

The dramatic difference between the compositions
of gas mixtures collected below 400°C and at higher
temperatures is most pronounced in the spectra shown

Fig. 2. Peak structures at m/z = (a) 17 and (b) 18 in the mass
spectrum measured upon heating to 100°C.
in Fig. 1. The concentration of D2 molecules in the gas
phase increased as the temperature was increased from
100 to 400°C. In the spectra measured after heating to
500 and 550°C, the peaks with m/z = 4 and 3 were the
most intense peaks. Consequently, D2 and HD mole-
cules were mainly present in the gas phase at these tem-
peratures. This change in the shape of the spectra with
the temperature is consistent with the previous hypoth-
esis [1] that the major portion of the hydrogen was
present in the molecular form in the single-walled car-
bon nanotubes hydrogenated under pressure. Indeed,
based on thermodynamic data [6], we can calculate that
the 0.47CH4 : 0.53H2 atmosphere with a minor impu-
rity of other hydrocarbons is an equilibrium atmo-
sphere in the C–H system at T = 500°C and a pressure
of about 0.1 MPa. If deuterium were attached to carbon
fragments by covalent bonds in the samples, it would be
expected that the fractions of deuteromethane and D2

molecules in the high-temperature spectra would be
comparable. We experimentally observed that the frac-
tion of CD4 decreased to almost zero at 500–550°C.
This is indirect evidence for not only the absence of
covalently bound deuterium but also the almost com-
plete absence of the chemical etching of nanotube walls
by deuterium.

Let us consider the structure of the spectra in more
detail. Below 400°C, two groups of peaks with maxi-
mum group m/z ratios of 20 and 36, which correspond
to deuteromethane and deuteroethane, respectively, can
be recognized in the spectra. The peaks with m/z > 52
(deuteropropane) were insignificant in terms of their
intensity. In the first group, two peaks (m/z = 17 and 18)
exhibited a pronounced internal structure, which can be
reliably interpreted.

The spectrum near m/z = 17 (Fig. 2a) is adequately
described as a superposition of two Gaussian peaks
centered at m/z = 17.00275 and 17.03598, respectively.
The more intense peak was due to [CHD2]+ ions with
the tabulated value of m/z = 17.03602913 [7, 8] (hence-
forth, the tabulated values from [7] are italicized). The
doubly charged ions [C2D4H2]2+ (17.03602913) and
[C2D5]2+ (17.03525555) can make small contributions
as well. The smaller peak corresponds to [OH]+ ions
with the tabulated value of m/z = 17.00274019. The
peak intensity of the [OH]+ ion was about 5% of the
base peak intensity. The following conclusion can be
drawn from these data: Singly charged [CHD2]+ ions,
which include both deuterium and protium, make the
major contribution to the peak with m/z = 17, because
the intensities of the peaks with m/z = 17 in Fig. 1 are
similar to the intensities of the peaks with m/z = 34. The
water content of the sample was very low (water was
either initially present in the single-walled carbon nan-
otubes or trapped during manipulations with the sample
in the open air). According to previously obtained data
[1], the gas evolution upon heating from room temper-
JETP LETTERS      Vol. 80      No. 12      2004
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ature to 400°C was no higher than 2% of the total gas
evolution in the range to 550°C.

The spectra near m/z = 18 exhibited an analogous
peak shape with a shoulder (Fig. 2b). Decomposition
into Gaussians gave two peaks centered at m/z =
18.0093 and 18.04348, respectively. We attributed the
latter more intense peak in Fig. 2b to the ions [CD3]+

(18.04230666) and [CH2D2]+ (18.04385482). Taking
into account the intensity of the peak that was attributed
above to [OH]+ ions, we can explain the peak intensity
at m/z = 18.0093 by the presence of only [H2O]+ ions
(18.0105654). In this case, the contribution of [DO]+

ions (18.00901722) can be disregarded even though the
value of m/z is appropriate. This follows from the fact
that the peak centered at m/z = 20.05 has no peculiari-
ties, whereas the resolution of the spectrometer allowed
us to reliably distinguish between peaks corresponding
to the ions [CD4]+ (20.05640888) and [D2O]+

(20.02311946). Analogously, the peak with m/z = 19
has no peculiarities that could be associated with the
presence of HDO molecules.

The above consideration of the peak structure
excludes the participation of impurity water molecules
in the process of the deuterium exchange in the course
of the thermobaric treatment. In this case, the absorp-
tion of water by the deuterated sample from the atmo-
sphere is the most likely mechanism of the appearance
of an H2O impurity. This fact is quantitative evidence
for the hydrophilicity of hydrogenated carbon nano-
structures.

We turn our attention to the most intense peak in
spectra 1–3 (Fig. 1). This is the peak with m/z = 32. It
would be expected that, in addition to hydrocarbon
ions, such as [C2D4]+ (32.05640888), [C2D3H2]+

(32.05795704), and [C2D2H4]+ (32.05950520), [O2]+

ions (31.98983004) also contribute to the intensity of
this peak. The O2 oxygen molecules, as well as water
molecules, can be sorbed on the sample on contact with
air. The spectrum profile near m/z = 32 shown in Fig. 3
appears as a single peak centered at m/z = 32.0572. The
minor peculiarity at m/z = 31.986 (inset in Fig. 3) could
be attributed to the presence of oxygen; however, its
intensity is comparable to the background level and
lower than 0.5% of the base peak intensity. Conse-
quently, the sorption of oxygen molecules by deuter-
ated single-walled carbon nanotubes from the atmo-
sphere is less effective than the sorption of water.

The peaks due to hydrocarbons and their fragments
(Fig. 1) exhibited higher intensities in all of the spectra
at the steps of heating from 100 to 400°C, and the frac-
tion of molecular deuterium in the gas phase became
overwhelming only at 500°C. Deuterated hydrocarbons
were likely formed at the stage of the saturation of sin-
gle-walled carbon nanotubes with deuterium. They
were retained by the sample during prolonged evacua-
tion at room temperature; however, they were removed
at lower temperatures as compared with the D2 mole-
JETP LETTERS      Vol. 80      No. 12      2004
cules. Consequently, the kinetic barriers in the reaction
paths of the hydrocarbon liberation should be lower
than those for D2 molecules. This suggests a difference
in the positions of the hydrocarbon molecules and D2

molecules in the structure of deuterated single-walled
carbon nanotubes.

A comparison between the intensities of the peaks
with even and odd mass numbers revealed one more
property. The table, which summarizes the absolute and
relative intensities of the peaks due to ions with m/z =
1, 2, 3, and 4, illustrates this property. It can be seen that
the relative fraction of ions in which a deuterium atom
is replaced by protium decreased as the temperature of
the gas collection was increased. Similar changes with
temperature can be observed by comparing the inten-
sity ratios between the neighboring peaks of the hydro-
carbons in the spectra corresponding to 100–400°C in
Fig. 1. This property may be attributed to the greater
mass of the D isotope and, correspondingly, to the
longer time taken to diffuse from the sample rather than
to the selectivity of single-walled carbon nanotubes for
the absorption of isotopically different molecules.

Fig. 3. Same as in Fig. 2 but at m/z = 32.

Experimental peak intensities corresponding to deuterium
and hydrogen ions. Values (%) normalized to the peak inten-
sities of [D2]+ in the corresponding spectra are given in
parentheses

T, °C
m/z = 1 m/z = 2 m/z = 3 m/z = 4

[H]+ [H2]+, [D]+ [HD]+ [D2]+

100 1.5 (2.1) 15.3 (21) 17.5 (24) 73.1 (100)

200 2.7 (1.6) 19.8 (12) 42.7 (26) 166.2 (100)

400 2.5 (0.5) 22.6 (5) 134.1 (27) 489.7 (100)

500 4.5 (0.2) 37.1 (2) 349.3 (17) 2056.6 (100)

550 3.4 (0.1) 43.1 (1) 667.2 (15) 4553.1 (100)
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In Memory of Our Authors
R. Z. Levitin et al., Cascade of Phase Transitions
in GdFe3(BO3)4, JETP Lett. 79, 423 (2004).

Rudol’f Zinov’evich Levitin, a Moscow State Uni-
versity professor, passed away on February 26, 2004.
He was a charming person, well-known scientist, phys-
icist and experimentalist, and specialist in magnetism.

Levitin’s scientific style was characterized by deep
insight into the physical essence of the phenomena
under investigation, strict and clear statement of exper-
imental procedures, and clearness in his presentation of
results. He obtained fundamental results that consider-
ably expanded the physical understanding of the nature
of magnetism and mechanisms of phase transitions in
rare-earth ferro-, ferri-, and antiferromagnets. Levitin’s
works on magnetoelastic effects are fundamental to the
physics of magnetic phenomena and have made a con-
siderable contribution to the microscopic theory of
magnetoelasticity. The complex investigations of the
magnetism of rare-earth and uranium substances car-
ried out by Levitin with a group of scientists from Mos-
cow State University and institutions of the USSR
Academy of Sciences were awarded a State Prize of the
USSR. The phenomenon of giant magnetostriction
studied by him in rare-earth and uranium compounds
was heralded as a discovery.

Levitin’s works have been highly valued, and his
extensive and fruitful contacts with foreign scientists
promoted the integration of Russian science into the
world scientific community. The scientific results
obtained by Levitin were summarized in two mono-
graphs and a cycle of fundamental reviews that are used
for educating new specialists in magnetism. Rudol’f
Zinov’evich won respect and widespread fame in the
scientific world due to his devotion to science, great sci-
entific achievements, exclusive erudition in solid state
physics, curiosity and openness to new knowledge, and
his highly valued qualities as a human being.
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I. L. Karpikhin et al., Search for P-odd Asymme-
try of Prompt Neutron Emission in 235U Fission
Induced by Cold Polarized Neutrons, JETP Lett. 80
(11), 675 (2004).

Igor’ L’vovich Karpikhin, a leading electronic engi-
neer at the Institute of Theoretical and Experimental
Physics (ITEP, Moscow, Russia), passed away unex-
pectedly on March 8, 2004, at the age of 66.

Karpikhin joined ITEP upon graduation from an
instrumental engineering college on March 8, 1960.
Then, working at the ITEP, he received his higher edu-
cation at the Moscow Power Engineering Institute.
Beginning with the creation of simple lamp circuits, he
was later involved in the development, adjustment, and
exploitation of the overwhelming majority of devices
that were created and commissioned at the Laboratory
of Neutron Physics. In particular, his talent was
directed into all the devices for studying the effects of
spatial-parity violation in nuclear interactions, into beta
NMR spectrometers, and into a setup for studying grav-
itational effects. He worked as a physicist and experi-
mentalist with neutron beams at the ITEP; St. Peters-
burg Nuclear Physics Institute (PNPI, St. Petersburg,
Russia); Moscow Engineering Physics Institute; Laue–
Langevin Institut (Grenoble, France); and Berliner
Zentrum für Neutronenstreuung, Hahn–Meitner Insti-
tut (Berlin, Germany). He was a coauthor of numerous
works on fundamental nuclear physics.

Igor’ L’vovich was a versatile individual: he liked
music and poetry and knew literature and history well.
He was a considerate and responsive person and a reli-
able friend, who was always ready to help with advice
and action. He was the soul of the group and an active
organizer and a participant in all the public meetings at
the laboratory. His foreign colleagues, as well as the
physicists at the ITEP, the Laboratory of Neutron Phys-
ics at JINR, and PNPI, loved and respected him.
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Erratum: “Pentaquark Decay Is Suppressed by Chirality 
Conservation” [JETP Lett. 80, 386 (2004)]

B. L. Ioffe and A. G. Oganesian

PACS numbers: 12.38.–t, 12.39.–x
In the article “Pentaquark Decay Is Suppressed by
Chirality Conservation” there are the following mis-
prints:

The local 5 quark current ηθ given by Eq. 1 in fact
corresponds to isospin T = 1 not to T = 0, as was stated
in the paper. For this reason, the sum rules presented in
the paper refer to T = 1 uudd  pentaquark state and not
to the observed Θ+(1540) state with the isospin T = 0.
The current corresponding to the sum of two terms in
(1), which was erroneously referred to as current T = 1,
is in fact a mixture of states T = 0 and T = 2. There are
certain errors in Eq. 7: the last term in the first set of
square brackets, –4msa, should be replaced by
−(20/3)msa; in the second set of the second square

s
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brackets, the term (1/2)γ should be replaced by (5/6)γ;
and in the fourth line of Eq. 7, the term (13/3)γ should
be replaced by (25/3)γ. There is also a misprint in Eq.
7: in the first term in the curly brackets, the factor 1/a
was lost. These errors alter the curves in Fig. 1 within
the limit of their accuracy, but the agreement of the two
curves in Fig. 1a became a bit worse. As a result, a def-
inite conclusion could not be obtained on the existence
of the pentaquark state with the isospin T = 1.

These errors clearly do not influence the main result
of the paper—the suppression of pentaquark decay by
chirality conservation and the estimation of Γθ.

We are grateful to M. Nielsen, N. Kotchelev, and
H.-J. Lee, who directed our attention to the errors.
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