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Abstract—A theory is presented of cyclotron superradiance from an electron bunch rotating in a uniform mag-
netic field and drifting at a velocity close to the group velocity of a wave propagating in a waveguide. It is shown
that, in a comoving frame of reference, the bunch emits radiation at a frequency close to the cutoff frequency
of the waveguide. Superradiance implies the azimuthal self-bunching of electrons, which is accompanied by
coherent emission of the stored rotational energy in a short electromagnetic pulse. Linear and nonlinear stages
of the process are analyzed. The growth rate of the superradiance instability is determined. It is shown that the
maximum growth rate is attained under group synchronism conditions. The peak power and the characteristic
duration of the cyclotron superradiance pulse are determined by numerical simulation. The characteristic fea-
tures of the superradiance pulses are described in the comoving and laboratory frames. The results of theoretical
analysis are compared with experimental data. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Induced emission from a spatially localized electron
ensemble (bunch) whose size significantly exceeds the
emission wavelength but is much smaller than the inter-
action scale length is one of the promising methods for
generating ultrashort electromagnetic pulses. Emission
from such a bunch can be considered a classical analog
of a quantum effect known as Dicke superradiance
[1−3], which is the emission of an electromagnetic
pulse with a duration shorter than the relaxation time of
the emitting atomic ensemble with population inver-
sion. In classical electrodynamics, superradiance (SR)
can be attributed to various mechanisms for induced
emission [4–21]; in particular, SR can be produced by
an electron bunch rotating in a uniform magnetic field
(cyclotron SR) [10–22].

Cyclotron SR implies the azimuthal self-bunching
of electrons, which is accompanied by coherent emis-
sion of the stored rotational energy. The phase self-
locking is related to the relativistic dependence of the
gyrofrequency on the particle energy [23] and is similar
to that occurring in cyclotron resonance masers (CRM).
However, in CRMs, quasi-continuous electron beams
are used; i.e., the electrons that leave the interaction
region are replaced by the electrons continuously
injected from the cathode, thus providing the condi-
tions for steady-state generation. In contrast, SR is
pulsed in character and can be realized when each par-
ticle stays in a moving or resting electron bunch for a
long time (ideally, for an infinitely long time). This fact
also accounts for the absence of an SR threshold [18].

Earlier, we showed [19] that the regime of group
synchronism is the most favorable for the observation
of cyclotron SR. In this regime, the drift velocity of the
1063-7842/00/4507- $20.00 © 20813
electron bunch is close to the group velocity of the elec-
tromagnetic wave:

(1)

The low rate at which the energy outflows from the
electron resonator formed by the electron bunch allows
the maximum growth rate of the SR instability [16, 19].

Condition (1) can be met, e.g., when the radiation
propagates in a waveguide; in this case, the dispersion
curves of the wave and of the electron flux are tangent
(Fig. 1a).1 Note that, in the comoving frame, in which
the bunch as a whole is at rest, the regime of group syn-
chronism corresponds to the emission of radiation at a
frequency close to the cutoff frequency and, therefore,
exhibits several advantages typical of electron–wave
interaction in gyrotrons, in which the operating mode is
also excited at the quasi-cutoff frequency [22]. In par-
ticular, SR at the quasi-cutoff frequency is less sensitive
to the scatter in the electron bunch parameters, includ-
ing the longitudinal bunch spreading caused by both
Coulomb repulsion and the spread in the initial electron
velocities.

Earlier, we reported on the first experimental obser-
vations of cyclotron SR in the millimeter wavelength
range [20, 21]. In those experiments, we used electron
bunches with a length of 5–7 cm, particle energy of up
to 200–250 keV, and current of about 200–500 A. The
electron bunches propagated in a 30-cm smooth cylin-
drical waveguide placed in a uniform magnetic field.
We observed the generation of ultrashort (up to 400 ps)
electromagnetic pulses with the peak power higher than

1 Group synchronism condition (1) can also be met in the case
when an electron bunch propagates in a dispersive medium, e.g.,
in a homogeneous plasma.
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200 kW. SR pulses were recorded only under condi-
tions close to the condition of group synchronism with
various waveguide modes. Far from group synchro-
nism, the generation of SR pulses was absent. Thus, the
experimental results proved that the regime of group
synchronism is optimum for SR.

This paper is devoted to a theoretical study of cyclo-
tron SR in the regime of group synchronism.

1. CYCLOTRON SUPERRADIANCE 
IN THE COMOVING FRAME

1.1. Basic Equations

Let a planar bunch of cyclotron oscillators of length b
move in a cylindrical waveguide at a longitudinal
velocity close to the group velocity of an electromag-
netic wave, so that condition (1) is satisfied. In the lab-
oratory frame, the dispersion curve of the electromag-

netic wave (h = c–1(ω2 – )1/2) and of the electron flux
(ω – hV|| = ωH) are tangent (Fig. 1a). Here, ωc is the
waveguide cutoff frequency and ωH = eH0/mcγ is the
relativistic gyrofrequency.

We consider the emission from the electron bunch in
the comoving frame K ', in which the bunch as a whole
is at rest. The Lorentz transformation for the longitudi-
nal wave number h' is

where Vph = ω/h is the phase velocity of the electromag-

netic wave and γ|| = (1 – /c2)–1/2.

It is well known that, when an electromagnetic wave
propagates in a waveguide, the relationship VgrVph = c2

holds [23]. It is seen from the group synchronism con-
dition (1) that the longitudinal wavenumber vanishes in
the comoving frame. Similarly, the allowance for the
relationship E⊥  = [H⊥ , z0]Vph/c (where z0 is a unit vec-
tor), which is valid for transverse electric (TE)

ωc
2

h' γ|| h
ωV ||

c
2

----------– 
  γ||h 1

V ||

Vphc
2

-------------– 
  ,= =

V ||
2

ω

ωc
ωH

ω'

ωH' = ωc

(a)

h

(b)

h'

Fig. 1. Dispersion curves corresponding to the regime of
group synchronism in (a) laboratory frame and (b) comov-
ing frame.
waveguide modes, yields the following expression for
the transverse component of the magnetic field:2 

Therefore, the regime of group synchronism in the
laboratory frame (the dispersion curves are tangent)
corresponds to the emission of radiation at a quasi-cut-
off frequency in the comoving frame (Fig. 1b).

Thus, in the K ' frame, the bunch electrons rotate in
the magnetic field but the bunch as a whole is at rest.
The linear size of the bunch in the z' direction is b' =
bγ||0. The bunch radiates isotropically in the ±z' direc-
tions. Assuming that the transverse field structure of the
emitted radiation coincides with that of one of the
waveguide modes E⊥ (r⊥ ), we represent the radiation
field in the form

(2)

where ωc is the carrier frequency coinciding with the
cutoff frequency of the operating mode. According to
the dispersion relations, the evolution of the axial field
A'(x', t ') distribution is described by the inhomogeneous
parabolic equation

(3)

The transverse electric current J = 1/π

exciting the electromagnetic field can be found from
the equations of electron motion. Assuming that the
transverse electron velocity is nonrelativistic (  ! c),
these equations can be represented in the form of equa-
tions for nonisochronous oscillators, which are well-
known in the CRM theory:

(4)

Equation (4) describes azimuthal self-bunching of
electrons caused by the dependence of the gyrofre-
quency on the electron energy. In Eqs. (3) and (4), we
use the following dimensionless variables: the

normalized transverse electron velocity  =

exp(iωct)(  + )'/ ;

2 Similar considerations for transverse magnetic (TM) modes show
that the transverse component of the electric field vanishes in the
comoving frame when condition (1) is satisfied. For this reason,
the interaction with TM modes is ineffective in the regime of
group synchronism.

H⊥'  = γ|| H⊥
V ||

c
----- z0 E⊥,[ ]– 

   = γ||H⊥ 1
V ||Vph

c
2

--------------– 
  0.

E' Re E⊥ r⊥( )A' z' t',( ) iωct'( )exp[ ] ,=

i
∂2

a

∂Z'
2

---------- ∂a
∂τ'
-------+ 2if Z'( )GJ .=

β̂+ Θ0d
0

2π

∫

V ⊥'

∂β̂+

∂τ'
-------- iβ̂+ β̂+

2
∆– 1–( )+ ia.=
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βx' iβy' β⊥ 0
'

a 2eA'/mcωcβ⊥ 0
'3( )Jm 1– R0ωc/c( ),=

Z' z'β⊥ 0
' ωc/c, τ' t'β⊥ 0

'2 ωc/2;= =
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the detuning of the unperturbed cyclotron frequency
from the cutoff frequency (in the comoving frame) ∆ =

2(  – ωc)/ωc ; and the form factor

written under the assumption that an annular electron
bunch with the injection radius R0 radiates in a circular
waveguide of radius R, where I0 is the total current in
the laboratory frame, λ = 2πc/ωc = 2πR/νn, m is the azi-
muthal index of the waveguide mode, and νn is the
nth root of the equation (ν) = 0. The function f(Z ')
describes the axial distribution of the electron density.

A uniform (correct to small fluctuations specified by
the parameter r ! 1) initial distribution of the electrons
over cyclotron rotation phases yields the following ini-
tial conditions for the set of equations (3) and (4):

(5)

1.2. The Linear Stage of Cyclotron SR

In the linear approximation, the bunch of cyclotron
oscillators can be regarded as a finite-length active
medium that forms an active resonator exhibiting a dis-
crete eigenmode spectrum. To determine the eigen-
modes, we assume that the electrons are distributed
uniformly in the bulk of a planar electron bunch of

length B = b'ωc/c, so that f(Z ') = 1 at Z ' ∈  [–B/2,
B/2]. The emission field can be presented as a(Z ', t ') =
a(Z ')exp(i∆τ' + iΩτ'), where

in the bulk of the layer and

on the left (the upper sign) and on the right (the lower
sign) of the electron bunch. We linearize Eqs. (3) and
(4) with allowance for the boundary conditions

(6)

corresponding to the continuity of the transverse elec-
tric and magnetic fields at the boundaries of the elec-
tron bunch. As a result, we obtain a characteristic equa-
tion determining the complex eigenfrequencies Ω:

(7)

ωH' β⊥ 0
'2

G
1

4π
------

eI0

mc
3

--------- 1

β⊥ 0

4 β||0γ||0
5

--------------------- λ2

πR
2

---------
Jm 1–

2
R0ωc/c( )

Jm
2 νn( ) 1 m

2
/νn

2
–( )

---------------------------------------------=

Jm'

β̂+ τ' 0= i Θ0 r Θ0cos+( )[ ] ,exp=

Θ0 0 2π,[ ] , a τ' 0=∈ 0.=

β⊥ 0
'

a Z '( ) C1 iχZ '( )exp C2 iχZ '–( )exp+=

a Z '( ) C3 4, iĥZ '+−( )exp=

a{ } ∂a
∂Z '
--------

 
 
 

Z'
B
2
---±=

, 0,=

2iχB–( )exp
ĥ χ+

ĥ χ–
------------ 

 
2

,=
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where  = (Ω + ∆)1/2 and χ = (Ω + ∆ – 4G(Ω – 1)/Ω2)1/2

are the wavenumbers outside and inside the bunch,
respectively.

First, we consider a relatively short electron bunch

h'b' ! 1; (8)

i.e., we assume that the bunch length is much smaller
than the wavelength of the waveguide mode λ' = 2π/h'.

In this case, χB ! 1 and χ/  ! 1, which makes it pos-
sible to reduce the characteristic equation (7) [19] to

(9)

In the regime of exact group synchronism ∆ = 0

(  = ωc), assuming that the bunch is rarefied (G ! 1),
we can neglect cyclotron absorption [the second term
on the left-hand side of Eq. (9)] and find an analytical
solution to Eq. (9). Among the solutions to Eq. (9),
there is a unique solution,

(10)

corresponding to the excitation of a mode that grows in
time (ImΩ < 0) and whose electromagnetic energy flux

is directed to the bunch periphery (Re  > 0). According
to (10), the growth rate of the SR instability is

(11)

or, in the dimension variables,

(12)

Note that, according to Eqs. (11) and (12), in spite
of the fact that the bunch is limited in the longitudinal
direction and there are energy losses due to emission of
radiation, the instability has no threshold, which is
explained by an infinite lifetime of electron oscillators
in the region of interaction with the electromagnetic
field.

Due to a positive electron frequency shift

, (13)

the emission frequency exceeds the cutoff frequency
even at ∆ = 0. As a result, the real part of the longitudi-

nal wavenumber Re  becomes positive. This means
that the group velocity also becomes nonzero, which
causes the energy outflow from the electron bunch.

Figure 2 shows the dimensionless growth rate ImΩ ,

electron frequency shift ReΩ , and real (Re ) and

imaginary (Im ) parts of the wavenumber versus the

ĥ

ĥ
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i
π
5
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2
---ωc

π
5
---sin 

  eI0
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3
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β⊥ 0

2

β||0γ||0
3
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πR
3
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

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=
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detuning parameter ∆. It is seen that detuning from the
cutoff frequency (i.e., the violation of the tangent
regime) leads to a decreasing growth rate. If the detun-
ing is positive (  > ωc), the instability develops at any
arbitrarily large value of the parameter ∆. At ∆ @ 1, the
asymptotics

(14)

corresponding to crossing of the dispersion curves [15],
are valid. In the range of negative detunings (  < ωc),

the instability ceases at ∆ <  ≈ –0.3.

ωH'

Ω GB( )1/2∆ 1/4–
1 i–( ),=

ĥ ∆1/2
GB( )1/2∆ 3/4–

1 i–( )/2,+=

ωH'

∆̇

2

1

0
Imh

ˇ

Reh

ˇ

(a)

Reh, Imh

ˇˇ

ReΩ

0.3

0.2

0.1

0

–0.1

ImΩ

ReΩ, ImΩ

(b)

0 1 2 3 4 ∆

Fig. 2. (a) The real (Re ) and imaginary (Im ) parts of the
longitudinal wavenumber and (b) the electron frequency
shift ReΩ and the growth rate of the SR instability ImΩ ver-
sus the detuning parameter ∆ for a short electron bunch at
GB = 0.01. The dashed curve shows to the space charge
parameter q = 0.015.

ĥ ĥ
Since, in the vicinity of the cutoff frequency, the

longitudinal wavenumber is h' ~ c–1  and
it follows from (10) and (11) that the frequency shift is
of the same order as the growth rate (|ω' – ωc | ~ Imω'),
we can rewrite inequality (8) in the form

(15)

where T ' = (Imω')–1 is the characteristic growth time of
the SR instability (inverse growth rate).

Note that, under condition (15), the characteristic
equation (9) can be obtained by linearizing Eqs. (3) and
(4), in which we should set f(Z ') = Bδ(Z '), where δ(Z ')
is the delta function.

An electron bunch of an arbitrary length exhibits an
infinite number of unstable modes that differ from each
other by the number of field oscillations along the lon-
gitudinal coordinate. Figure 3 shows the growth rate of
the first symmetric and first antisymmetric modes ver-
sus the parameter B at a constant number of particles in
the bunch (constant bunch charge). It is seen that the
first symmetric mode [its growth rate is given by (11) at
B ! 1 has the maximum growth rate at any electron
bunch length. As the bunch length increases, the growth
rates of the other modes get closer to the growth rate of
the first symmetric mode.

In the limiting case of an extended layer (B @ 1), the
characteristic equation (7) can be represented in the
form

(16)

where l = 0, 2, 4, … for symmetric modes and l = 1, 3,
5, … for antisymmetric modes.

If the particle density is sufficiently low (G ! 1), the
first order of the perturbation theory over the small
parameter B–1 yields the following solution to this
equation:

(17)

Expression (17) apparently coincides with a well-
known relationship for the instability growth rate in an
infinitely long bunch of nonisochronous oscillators [24].
The limiting value of the growth rate in Fig. 3 at B  ∞
is determined by the root  j = 3 in (17), corresponding
to the solution that grows in time.

Figure 4 shows the growth rate versus the detuning
parameter ∆ at a fixed total charge and two different
lengths of the bunch. It is seen that the larger the bunch

2ωc ω' ωc–( )

b'
2

λcT'
----------- ! 1,

Ω3 l
2π
B

2
-------Ω2

– 4GΩ– 4G+ 0,=

Ω 4G( )1/3
i
π
3
--- i

2π
3

------ j 1–( )+ 
  ,exp=

where  j 1–3.=
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length, the more pronounced the decrease in the growth
rate with detuning from the regime of group synchro-
nism.

1.3. The Nonlinear Stage of Cyclotron SR

We studied the nonlinear stage of the cyclotron SR
instability under the group synchronism conditions by
numerically solving Eqs. (3) and (4) for the parameters
close to the experimental ones (see above): the operat-
ing mode was TE21; the waveguide radius was about
0.5 cm; the electron injection radius was 0.25 cm; and
β⊥ /β|| ~ 1. The corresponding values of the dimension-
less parameters were G = 0.12 and B = 10. Figure 5a
shows the waveforms of the amplitude of the emission
field at three values of the detunings ∆. It is seen that the
radiation is emitted in the form of a short pulse. The
main part of the transverse oscillatory energy of elec-
trons is transformed into the radiation energy in a time
of a few inverse growth rates. The characteristic dura-
tion of the electromagnetic pulse is determined by the
electron azimuthal phasing and dephasing times.
Indeed, a comparison of Figs. 5a and 5b shows that the
duration of the electromagnetic pulse is almost equal to
the duration of the azimuthal current pulse. For  ~
0.5, the duration the main SR pulse is about ten cyclo-
tron periods. The additional maxima of the radiation
field in Fig. 5a are apparently related to the additional
maxima of the current, which are typical of the inertial
azimuthal bunching of the particles.

According to the linear theory, the growth rate of the
SR instability is maximum at ∆ = 0. However, SR
pulses can be generated at both positive and negative
values of the detuning parameter ∆. Detuning from the
group synchronism condition decreases the growth rate
and slightly lowers the SR peak power.

1.4. Allowance for the Space Charge Field

The transverse Coulomb field arising in the course
of the azimuthal bunching of the particles may signifi-
cantly influence the SR process. This field may give rise
to a “negative” mass effect [25, 26] and sometimes
increase the growth rate of the SR instability.

We consider the effect of the space charge within a
model widely used in the gyrotron theory [22]. If the
radius and length of an annular electron bunch are sub-
stantially larger than its thickness, we can assume that
the space charge field has only a radial component and
that the field structure coincides with that of a planar
charged bunch. The bunch is formed of electrons whose
Larmor-orbit centers lie on one line and that have dif-
ferent azimuthal positions with respect to the guiding
centers. The bunch can be presented as an ensemble of
charged planes consisting of electrons that fall into a
narrow interval of the initial azimuthal angle dψ and
differ from each other by the position of the Larmor-
orbit center. Then the effective force acting on a given

β⊥'
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electron can be found by averaging over the positions
of all the other planes. As a result, the equation of
motion (4) takes the form (see [26] for details)

(18)

where q = 2(ωb/ ωH)2 is the space charge parameter,

ωb =  is the plasma frequency, and ne is the
electron density.

Equation (18) and the excitation equation in its
former representation (3) describe SR with allowance

∂β̂+

∂τ'
-------- iβ̂+ β̂+

2
∆– 1–( )+

=  ia iq
1

2π
------ ψ

β̂+ τ' Θ0,( ) β̂+ τ' ψ,( )–

β̂+ τ' Θ0,( ) β̂+ τ' ψ,( )–
------------------------------------------------------,d

0

2π

∫–

β⊥ 0
'

4πene/m

0.1

0 5

|lmΩ|

B

0.2

0.3

10 15 20

1

2

Fig. 3. The absolute values of the growth rates of (1) the first
symmetric and (2) the first antisymmetric modes as func-
tions of the bunch length B for GB = 0.1.
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0
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|lmΩ|

0.2

0.3

2 4

1

2

31–1 ∆

Fig. 4. The absolute value of the growth rate of the first sym-
metric mode as a function of the detuning parameter ∆ for
the fixed bunch charge GB = 0.1 and bunch lengths of B =
(1) 0.5 and (2) 10.
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for the space charge field. The form of characteristic
equation (7) derived within the linear approximation is
also conserved, but, in the case under consideration, the
wavenumbers outside and inside the electron bunch are

0.1

0

|a|

0.2

0.3

0 302010

0.05

0.10

(b)

(a)

1 2

3

τ

J

Fig. 5. (a) The field amplitude at the edge of the electron
bunch versus time in the comoving frame at B = 10; G = 0.1;
and ∆ = (1) 0, (2) 1, and (3) –0.7. (b) The transverse electron
current in the same cross section as a function of time at
∆ = 0.

0.03

0.02

0.01

0 20 40 60 80 100

|a|

τ

12

Fig. 6. The electric field amplitude in the comoving frame
versus time (1) with and (2) without allowance for the space
charge field in a short-bunch model at GB = 0.01 and
q = 0.015.
given by

(19)

where  = 2q/3π,  = ∆ – 3 , and only the first har-
monic of the space charge field is taken into account.

We will analyze the effect of the space charge in the
case of a relatively short electron bunch satisfying ine-
quality (8), which means that the bunch length b is less
than the wavelength of the waveguide mode. At the
same time, we assume that the bunch length is larger
than the radius of electron cyclotron rotation and use
the right-hand side of (18) to write the expression for
the space charge field. With the use of (19), the charac-
teristic equation (7) transforms into

(20)

The dashed line in Fig. 2 shows the growth rate of
the SR instability as a function of ∆ with allowance for
the space charge field. It is seen that the space charge
slightly increases the growth rate of the SR instability.
This can be attributed to the “negative mass” effect,
which causes the azimuthal bunching of electrons even
in the absence of the radiation field [25]. Numerical
solution of Eqs. (3) and (18) in the case of a short elec-
tron bunch also proves that allowance for the space
charge field leads to an increase in the growth rate and
a slight increase in the peak amplitude of the radiation
field (Fig. 6).

2. CYCLOTRON SR IN THE LABORATORY 
FRAME

It follows from the above analysis that, in the
comoving frame K ', the electron bunch radiates isotro-
pically in both +z ' and –z ' directions along the
waveguide axis. Since, in this frame, the radiation fre-
quency is close to the cutoff frequency, the group veloc-
ities  of the electromagnetic pulses emitted in both
directions are rather low (their difference from zero is
related to the electron frequency detuning, see Section
1.2). In the laboratory frame, the bunch moves with the
longitudinal velocity V|| >  (under the experimental
conditions, V|| ~ 0.7c). If the bunch moves towards a
detector, the radiation emitted in the +z ' (forward)
direction in K ' frame affects the detector earlier than
that emitted in the –z ' (backward) direction. Indeed, it
follows from the velocity addition law that, if the
source (electron bunch) velocity is higher than the elec-
tromagnetic wave group velocity in the source frame,
then, in the laboratory frame, both the radiation compo-
nents propagate in the direction of the source motion.
The group velocity of the “forward” pulse in the labo-
ratory frame is slightly higher and that of the “back-

h Ω ∆̃+( )1/2
,=

χ Ω ∆̃ 4G
Ω 2q̃ 1–+

Ω q̃–( )2
4q̃ q̃ 1–( )–

-------------------------------------------------–+ 
 

1/2

,=

q̃ ∆̃ q̃

i Ω ∆̃– Ω q̃–( )2
4q̃ q̃ 1–( )–{ } 2GBΩ+  = 2GB.

Vgr'

Vgr'
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ward” pulse is slightly lower than the longitudinal
velocity of the electron bunch. Thus, the distance
between the two pulses increases with increasing
observation length.

The shape of the SR pulse at the detector can be
obtained as follows. First, we calculate the field distri-
bution in the (z', t') plane and then determine the field
on the z' = –V||t' + const line, along which the detector
moves. Figure 7a shows the electric field amplitude at
the detector versus time calculated for the case of the
exact group synchronism (∆ = 0). It is seen that the
detector signal has a two-hump shape; i.e., the emitted
radiation consists of two pulses. The first and second
pulses are formed by photons emitted by the bunch in
the K ' frame in the positive and negative directions
along the z'-axis, respectively. Due to the Doppler
effect, the carrier frequency of the first pulse is higher
than that of the second pulse. Hence, the first pulse
turns out to be substantially shorter than the second
pulse. The amplitude of the first pulse is larger, because
it arrives at the detector earlier than the second pulse
and, thus, is less subjected to dispersion spreading.

Note that, for negative values of the detuning
parameter ∆, the difference between the group veloci-
ties becomes negligible. Hence, the signal detected in
the laboratory frame at a given observation length looks
like a single pulse (Fig. 7b).

Therefore, the SR pulse shape can be varied by
changing the observation length at a constant ∆ or/and
changing the detuning parameter at a given observation

0.2

0.1

|a|

0.2

0.1

0 10 20 30 τ

(a)

(b)

Fig. 7. The field amplitude recorded by a detector in the lab-
oratory frame as a function of time at ∆ = (a) 0 and (b) –0.4.

0
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length, which was experimentally demonstrated in
[20, 21].

The radiation power at the detector that is at rest in
the laboratory frame is determined by the vector prod-
uct of the electric and magnetic fields on the trajectory
of the detector motion in the (t', z') plane. These fields
can be obtained by the Lorentz transformation of the
fields in the comoving frame. Integration over the
waveguide cross section yields the following expres-
sion for the power in the laboratory frame:

(21)

Note that (21) is written with allowance for the fact
that the transverse component of the magnetic field is
small in the K ' frame.

CONCLUSIONS

Therefore, we have shown that cyclotron SR can be
used to generate short (about ten cyclotron oscillations)
electromagnetic pulses. The group synchronism regime
appears to be the most favorable for cyclotron SR
observation. A detuning from this regime leads to a
decrease in both the growth rate of the SR instability
and the SR peak power. Note than this decrease is even
more pronounced for positive detunings ∆ if we take
into account the longitudinal dynamics of a real elec-
tron bunch caused by the spread in the initial longitudi-
nal velocities and longitudinal Coulomb repulsion.
These two factors cause relative displacement of elec-
trons in the comoving frame, which may result in sub-
stantial suppression of the SR instability if the displace-
ment is comparable with the wavelength of the
waveguide mode λ' = 2π/h'. Under the exact group syn-
chronism regime (∆ = 0), h' tends to zero, the wave-
length λ' of the waveguide mode becomes infinitely
large, and the radiation is almost independent of the
longitudinal displacement of electrons. However, as ∆
increases (i.e., the regime of group synchronism is vio-
lated), the longitudinal wavenumber increases and,
accordingly, the wavelength of the waveguide mode
decreases and tends to the vacuum wavelength  =
2πc/ω'. In this case, the same longitudinal displacement
can result in substantial suppression of SR. Experimen-
tal results [20, 21] demonstrate almost complete sup-
pression of the microwave signal as the detuning from
the exact group synchronism increases.

Finally, we estimate the parameters of cyclotron SR
pulses in the regime of exact group synchronism under
the conditions close to experimental (see the Introduc-
tion). The pulse duration, which can be found from
Fig. 5, is approximately 300 ps and agrees well with the
experimental data. The corresponding growth rate of
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the SR instability in the comoving frame is equal to
0.9 × 1010 s–1. For the bunch drift velocity V|| = 0.5 s, the
distance corresponding to the e-fold increase in the
power in the laboratory frame is about 1.6 cm. In exper-
iments, such an increase was observed at a distance of
approximately 4 cm. Numerical results predict a peak
power of 8 MW, whereas the experimentally detected
power amounted to 200–300 kW. Such a discrepancy
between the calculated and experimental values of the
growth rate and the peak power can be attributed to the
presence of a spread in the initial electron energies and
pitch angles, which are typical of real electron bunches.
Note also that the emission power reported in [20, 21]
should only be considered a lower estimate, because, at
present, the methods for recording individual subnano-
second electromagnetic pulses require additional
improvement.
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STATEMENT OF THE PROBLEM

Harmonic and biharmonic functions are of frequent
use in technical physics. They are applied in the theo-
ries of elasticity, plasticity, equilibrium figures in a
rotating liquid, etc. An apparatus for expanding the func-
tions over an appropriate basis depends on the body
shape. Most often, spherical functions are used [1].
Spheroidal functions are less known [2]. Spheroidal
bodies are usually characterized by harmonic func-
tions. In [3], we elaborated the biharmonic function
apparatus for spheroidal bodies to tackle a variety of
problems when the bounding surface is close to sphe-
roidal. Spherical bodies, however, can also be treated in
wider mathematical terms than is generally appreci-
ated.

Indeed, in technical physics, we handle not only
scalar characteristics. The tensor character of pressure
and pressure-related parameters is perhaps the most
prominent example. Such an anisotropic analog of
pressure is used in magnetometric prospecting for gas
fields, as well as in exploration of bulk materials, inte-
rior of the Earth and other planets, etc. In star dynamics
and the theory of plasma, the analog of pressure also
exhibits more or less anisotropic properties [4]. The
same is true for applications such as the study of equi-
librium in round elastic bodies. The only difference
here is that gravitational forces are replaced by external
forces applied to the surface [5]. Therefore, it is of
interest to classify spatial distributions of anisotropic
pressure inside a body in terms of symmetry under rota-
tion.

Pressure tensor components will be assumed to be
harmonic or biharmonic functions. Such a restriction
often follows from additional physical conditions
[1, 3]. Then, a random pressure distribution that satis-
fies the harmonicity or biharmonicity condition, as well
as the condition of equilibrium inside the volume, can
be represented as a superposition of simpler distribu-
tions that satisfy certain symmetry requirements.
1063-7842/00/4507- $20.00 © 20821
For the specific case of spherical bodies, the classi-
fication of tensor fields is naturally related to the sym-
metry under rotation of the entire body, in contrast to
the more general case [3], where it may seem somewhat
formal. That is why we consider the spherical case
separately. It requires a solution to the biharmonic
equation ∆∆U = 0 to meet representations of rotation
group [6]. Such representations may be one- or two-
valued, but we are certainly interested in the former.
Each representation is characterized by an index n,
which runs over 0, 1, 2, … values and combines 2n + 1
states of an object into a unified set. Under any rota-
tions, the states are linearly transformed into each
other. One cannot get by with a lesser number of states;
otherwise, new states will arise at some rotations.
A trivial example is the transformation of a single vec-
tor under rotations: in this transformation, all three vec-
tor components are involved. An example of another
sort is the transformation of scalar fields on a sphere. In
this case, the standard basis of representation at fixed
n’s is a set of 2n + 1 spherical harmonics with the same
index [7].

In general, spinor, vector, and tensor fields on a
sphere have been studied by Gel’fand and coworkers,
but the derived formulas are of a rather abstract charac-
ter. They are hard to apply to specific technical prob-
lems, especially if the harmonicity or biharmonicity
condition is additionally set. Therefore, we will address
the problem in a somewhat different way.

CONDITIONS OF EQUILIBRIUM

Of basis states (or vectors) corresponding to a given n,
we shall consider the one which is the easiest to express
in Cartesian coordinates. With scalar fields, experience
suggests that this is the extreme “vector,” which, being
rotated about the polar axis through an angle Θ,
acquires the factor exp(inΘ). In the case of scalar fields,
this vector is called sectorial harmonic.
000 MAIK “Nauka/Interperiodica”
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Let m be the degree of polynomials describing pres-
sure tensor components. A pressure tensor is known to
have the form of a symmetrical matrix

where x, y, and z are Cartesian coordinates and z is the
polar axis.

Since the component Pzz by itself does not change
when rotated about the polar axis, the azimuth depen-
dence must show up through the factor exp(inΘ) or, in
Cartesian coordinates, the factor ϕn [ϕn = (x + iy)n],
where the other factor is some polynomial in z and R2 =
x2 + y2. Hence, if we start with the component Pzz, it
should be sought in the form Pzz = c0ϕn (m = u), Pzz =
c1zϕn (m = n + 1), or Pzz = (c1R2 + c2z2)ϕn (m = n + 2);
for m < n, it is necessary to construct a similar polyno-
mial and put Pzz = 0. It will be shown below that the
case |m – n | > 2 is impossible.

When rotated about the polar axis, the quantity Φ =
Pxx + Pyy , also a scalar, is transformed in a quite similar
way but with other coefficients. We will pursue our
consideration as follows. When rotated about the polar
axis, the components Pxz and Pyz by themselves trans-
form following the same law as the components of a
two-dimensional vector; that is, Pxz  PxzcosΘ –
PyzsinΘ and Pyz  PxzsinΘ + PyzcosΘ. For their
complex combination, we have Pxz + iPyx 
Fexp(iΘ) and Pyz – iPxz  F1exp(iΘ), where F = Pyz +
iPxz  and F1 = Pyz – iPxz.

In this way, the components Pxz  and Pyz by them-
selves transform. Here, account is taken of the fact that,
under rotation, as was noted, a point in space to which
they are related changes when the field as a whole
rotates. Hence, to find these components in a fixed
coordinate system, the factor exp(inΘ) must be
included in the above formulas. Thus, unlike Pzz, the
general expression Pxz ± iPyz must involve the factor ϕn.
The second factor should again be either a polynomial
of the [m – (n ± 1)] degree in z and R2 or zero if the
expression in the brackets is a negative. Finally, the
components Pxx , Pxy , and Pyy transform under rotation
about the polar axis in the same way as the components
of a two-dimensional tensor, that is, in the same way as
pair products of two different vectors. The combina-
tions H = Pxx – Pyy – 2iPyx and H1 = Pxx – Pyy + 2iPyx

show simple properties under rotation. Similar consid-
erations indicate that H and H1 must involve the factors
ϕn ± 2 and ϕn – 2, respectively [if m – (n ± 2) ≥ 0].

The previous argument referred to rotations about
the polar axis. However, they are insufficient to prove
the desired total symmetry of the field. A typical feature
of the extreme state under consideration is that it must

Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz 
 
 
 
 

Pxy Pyx= Pxz Pzx= Pyz, , Pzy=( ),
vanish when the operator Ix + iIy is applied, where Ix

and Iy are the infinitesimal operators of rotations about
the axes x and y, respectively (it is assumed that rota-
tion, viewed from the positive ends of both horizontal
axes, proceeds in the same direction).

For the Ix + iIy operator, the table of action on the
tensor components alone is easily constructed in the
same way as for rotations about the x-axis (with the
changed roles of coordinates). Eventually, six equa-
tions that relate the pressure tensor components are
obtained [6]. On rearrangement (details are omitted),
we come to the following set:

(1)

Equations (1) are basic in our problem. Recall that
we are interested in only those tensor fields satisfying
the mechanical equilibrium condition

where Pxx = pxx + ρV in the presence of self-gravitation;
Pxy = pxy, …; ρ is the material density, which is assumed
to be constant; pxx, pxy, … are the components of pres-
sure as such; and V(x, y, z) is the gravitational potential.
Naturally, P and p coincide in the absence of external
forces.
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After transformation, the equilibrium condition can
be written in the form [3]

(2)

In what follows, we will consider various indexes n
at a given degree m of the polynomials.

DETERMINATION OF THE BASIC 
FUNCTIONS

The extreme case n = m + 2 is the easiest. In this
case, as was noted, the tensor components are free from
the factors exp(inΘ), exp[i(n ± 1)Θ], and exp[i(n +
2)Θ]. Then, H = cϕn remains as the only other-than-
zero combination, so that, with the constant coefficient c
properly selected (c = 4), we have

Notice that this solution automatically satisfies both
the equilibrium and harmonicity conditions. Next, we
take n = m + 1. The factors exp(inΘ), exp[i(n + 1]Θ, and
exp[i(n + 2)Θ] are impossible here, hence Pzz = Φ =
Pxz + iPyz = H1 = 0. However, H = czϕn – 1 and we obtain
Pxz – iPyz = –(c/4)ϕn from the last but one equation in (1).
For example, at c = 8,

Again, the equilibrium and harmonicity conditions
are satisfied automatically. Now let us pass to the case
m = n. The possibility of the factors exp[i(n + 1)Θ] and
exp[i(n + 2)Θ] is eliminated; that is, Pxz + iPyz = H1 = 0.
We can start with the component H = (c1R2 + c2z2)ϕn – 2.
Then, the last but one equation in (1) yields Pxz – iPyz =
(c1 – c2)zϕn – 1/2, and the last equation gives Φ – 2Pzz =
(c1 – c2)ϕn/2. The second equation in (2) yields Φ =
(c2 – 3c1)ϕn/(2n), so that Pzz = (1/4)[(c2 – 3c1)/n – (c1 –
c2)]ϕn.

In the previous calculation, we invoked equilibrium
condition (2). The components remain harmonic or
biharmonic functions. The difference from the preced-
ing cases is that we are dealing with two linearly inde-
pendent solutions. One of them is obtained if the har-
monicity condition is imposed on the components.
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Then, 2(n – 1)c1 + c2 = 0. For example, at c1 = 4 and
c2 = −8(n – 1), we have

The other solution will be essentially biharmonic
rather than harmonic. For c1 = 4(n + 1) and c2 = 4(n + 2),
we have

Consider now the case n = m – 1. Only H1 vanishes
immediately. Let Pzz = czϕn – 1 (according to the general
rule). Then, the first equation in (1) yields Pxz + iPyz =
(c/2)ϕn. We can, however, take H = (c1z3 + c2zR2)ϕn – 3.
Substituting this equality into the last but one equation in
(1) yields Pxz – iPyz = (1/4)[–c2R2 + (2c2 – 3c1)z2]ϕn – 2.

From the last equation in (1), we find Φ = [2c +
3(c2 – c1)/2]zϕn – 1. Finally, the third equation in (1)
relates the coefficients through the expression (c2 –
c1)/2 + c = 0. Eventually, we arrive at Φ = (c2 –
c1)zϕn − 1/2. Taking into account the second equilibrium
condition in (2), one finds the unique relationship
between the coefficients c1 and c2: (n + 2)c1 – (n +
3)c2 = 0. We can take c1 = 4(n + 3), c2 = 4(n + 2), and
c = 2. Then,

Finally, consider the last case n = m – 2. Symmetry
considerations cannot immediately eliminate any of the
combinations. Let us start with the component Pzz =

(cR2 + )ϕn – 2. Then, the first equation in (1) yields

Pxz iPyz– 2 2n 1–( )ϕn 1– , Pxz 2n 1–( )zϕn 1– ,= =
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H 4R
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Pxz + iPyz = (  – c)zϕn – 1. In addition, H = (c1z4 +
c2R2z2 + c3R4)ϕn – 4. After substitution into the last but
one equation of (1), we obtain

From the last equation of (1), it follows that

Return to the second equation in (1). It yields the
relationship H1 = (  – c)ϕn. Finally, the third equation
in (1) relates the coefficients by the expression

(3)

Turn to the equilibrium condition again. The substi-
tution of the functions found above into Eqs. (2) yields
relationships that are partly dependent on the previous
one and on each other. Two independent equations
remain:

(4)

As a result, we have found three relationships for
five parameters; hence, two independent parameters are
actually available. These may be, for example, c1 and
c2. Then, in particular,

Consider the biharmonicity condition. It is nontriv-
ial only for the function H (the other functions under
consideration become biharmonic automatically) and
yields 3c1 + 2(n – 3)c2 + 4(n – 2)(n – 3)c3 = 0.

Combining the obtained relationships with (3) and
(4), we find, with an accuracy to an arbitrary common
coefficient,

and then

It is easy to check that, for n = m + 2, any nonnega-
tive values of m are admissible. In the other cases, m
should be bounded below; otherwise, fractional func-
tions, rather than polynomials, would have been the
result. Specifically, at n = m + 1 or n = m, m should be
≥1 (for n = m, the only variant among those considered
in this work, i.e., the linear combination, remains).
Similarly, for n = m – 1 and n = m – 2, the restriction
m ≥ 3 is imposed.
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2

c2/2 c1–( )z
2

+[ ]ϕn 3– .=

Φ

=  c3
c2

2
----– 2c+ 

  R
2 5

2
---c2 3c1– 2c3– 2c+ 

  z
2

+ ϕn 2– .

c

c c– c3 c1 c2.–+=

2 n 1+( ) c c–( ) 2c3 c2– 4c+ + 0,=

2 n 2+( )c3 nc2– 4 n 1–( )c+ 0.=

c n 4+( ) n 1–( )c c2+[ ] / n 1+( ) n 2+( )[ ] .=

c1 2 n 3–( ) n 2+( ), c2 2n
2

5n– 6–= =

c3
2n

2
2n– 3–

2 n 2–( )
-----------------------------, c–

2n
3

5n
2

– n 6+ +
4 n 2–( )

-----------------------------------------,= =

c
2n

3
5n

2
– 3n– 12+

4 n 2–( )
-----------------------------------------------.=
It is easy to verify that, in all of the cases, the values
of the quadratic form Q = x2Pxx + y2Pyy + z2Pzz +
2xyPxy + 2xzPxz + 2yzPyz give a space field with a
desired type of symmetry; in other words, at a given
r (= (x2 + y2 + z2)1/2), they are proportional to the spher-
ical harmonic of order n.

OPERATOR APPROACH
It would be worthwhile to consider another

approach to constructing found solutions that is based
on the direct construction of the pressure matrix com-
ponents. It uses some initial scalar function ϕn and sym-
metry-preserving operations.

For n = m, we, as expected, have two variants of the

pressure tensor. The first is Pxx = (2  – n – 1)ϕn and
Pxy = (JxJy + JyJx)ϕn, where

are rotation operators [3].
The other components are easily constructed by

analogy.
The second variant for our case is

Consider the case n = m – 1. We have

where U = r2ϕn.
Finally, consider n = m – 2. Then,

where 

In these formulas, the coefficients are such that the
pressure tensor components satisfy biharmonicity and
equilibrium conditions (2). Using the formulas, we per-
formed the necessary calculations to make sure that the
results obtained are in agreement with those reported in
the basic part of the paper (with an accuracy to multi-

Jx
2

Jx = y
z∂

∂
z

y∂
∂

, Jy–  = z
x∂

∂
x

z∂
∂

, Jz–  = x
y∂

∂
y

x∂
∂

–

Pxx 2x
∂ϕn

∂x
--------- n 3+( )ϕn, Pxy– x

∂ϕn

∂y
--------- y

∂ϕn

∂x
---------.+= =

Pxx 2 n 4+( )Jx
∂U
∂x
------- 2xJx∆U ,–=

Pxy n 4+( )Jy
∂U
∂x
------- Jx

∂U
∂y
------- yJx xJy+( )∆U ,–+=

Pxx r
2∂2

U

∂x
2

---------- α x
2∆U– βx

∂U
∂x
------- γU δr

2∆U ,+ + +=

Pxy r
2 ∂2

U
∂x∂y
------------ αxy∆U–

β
2
--- y

∂U
∂x
------- x

∂U
∂y
-------+ 

  ,+=

α 2n 5+
2 n 3+( )
--------------------, β–

2n
2

9n 8+ +
n 3+

------------------------------,–= =

γ 2n
3

15n
2

37n 28+ + +
2 n 3+( )

------------------------------------------------------, δ– 1.–= =
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plying the pressure tensor matrix by an arbitrary fac-
tor).

The agreement occurs for any n but, obviously, is
most readily established for not too large n’s.

Notice the following easy-to-check feature of the
solutions found; namely, the biharmonic solutions for
n = m, m – 1, and m – 2 subjected to the Laplace oper-
ator are transformed, with an accuracy to a constant
factor, into the harmonic solutions for, respectively,
n = m + 2, m + 1, and m (this m differing from the pre-
vious m). This feature can also serve as a means to
check the solutions.

CONCLUSION
Thus, for each m, we can construct only six linearly

independent tensor fields satisfying the equilibrium and
biharmonicity conditions for each of the components.
The six fields refer to five types of symmetry, the dual-
ity of the solutions being observed only at n = m.

Recall that each of the symmetry types is (2n + 1)-
fold degenerate; that is, 2n + 1 linearly independent ten-
sor fields result when the configurations considered
rotate about different axes. Similar degeneracy of sca-
lar, vector, and other fields is frequently encountered in
applications (see, for example, [8]). The symmetry of
internal states is usually due to external conditions.
Naturally, the geometrical symmetry group is narrower
for spheroidal bodies [3]. It is, however, reasonable to
expect that some deeper symmetry formally similar to
the considered symmetry of the fields in spherical bod-
ies will also be found for spheroidal bodies.
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
The constructed stress fields can be useful for repre-
senting equilibrium and vibratory states in elastic and
plastic bodies largely of spherical or close-to-spherical
shape. Certainly, in many applications, it will be neces-
sary to use a superposition of a finite or infinite number
of found solutions.
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Abstract—A Hamiltonian formalism is applied to derive an exact solution to the equation of motion of a
charged particle in the electromagnetic field of a traveling current wave. The particle motion is studied in a
monochromatic magnetic field and in the traveling jump-like front of the magnetic field, and the wave mecha-
nism for betatron acceleration is analyzed. It is shown that, in each of these situations, a charged particle can
be accelerated simultaneously in both the longitudinal and transverse directions. © 2000 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

In present-day relativistic mechanics, only a few
problems relevant to the motion of charged particles in
the field of an electromagnetic wave excited in a real
electrodynamic system are known to possess exact ana-
lytic solutions. Pavlenko et al. [1] solved the equations
of motion of a charged particle in the field of a TEM
wave propagating in a quadrupole waveguide. This
electrodynamic waveguide system, which was first pro-
posed by V. Paul, made it possible to develop a high-
resolution mass spectrometer of nonrelativistic parti-
cles [2, 3]. An analysis of the domains of stable particle
motion showed that quadrupole waveguides can also be
used to focus relativistic particles, to separate them out
by mass and specific charge, and to reduce the spread
in transverse velocities of the beam particles.

In this paper, we derive exact analytic solutions to
the Hamiltonian equations of motion of a relativistic
particle in the electromagnetic field of a traveling cur-
rent wave in an axisymmetric electrodynamic system.
The solutions obtained make it possible to investigate
the stability domains and to determine the kinetic
energy and longitudinal momentum of the particle. We
consider particle acceleration in a monochromatic
magnetic field and in the traveling jumplike front of the
magnetic field. We show that, in the regime of betatron
wave acceleration, a condition analogous to the well-
known 2 : 1 rule should hold. The solution method pro-
posed here is based on the theory of canonical transfor-
mations and applies to any mechanism for field excita-
tion.

ELECTROMAGNETIC FIELD 
OF AN ELECTRODYNAMIC SYSTEM

The 4-potential of the electromagnetic field can be
represented as

(1)A
µ

x( ) e2x( )e1
µ

e1x( )e2
µ

–[ ] B kx( )/2,=
1063-7842/00/4507- $20.00 © 20826
where xµ = (ct, x, y, z);  = (0, 1, 0, 0);  = (0, 0, 1,
0); nµ = (1, 0, 0, 1); kµ = (ω/c)nµ; B(kx) is an arbitrary
function of the argument kx = ωt – ωz/c [4]; the metric
tensor is gµν = diag(1, –1, –1, –1); the scalar product of
two 4-vectors is defined as ab = aµbµ = a0b0 – ab, so that
a2 ≡ aµaµ; and the 4-potential satisfies the wave equa-
tion ∂ν∂νAµ = 0 and the Lorentz gauge ∂µAµ = 0.

The electromagnetic field tensor has the form

where tµν = , f µν =  – , 1µν =

 – , and B' = dB/d(kx).

The electric and magnetic fields are equal to

Obviously, we have EB = 0. Note that, in the case
B = const, potential (1) defines a constant uniform mag-
netic field. The traveling magnetic field Bz = B(ωt –
ωz/c) initiates vortex electric and magnetic fields in the
plane orthogonal to the symmetry axis of the system.
The function B(kx) satisfies the natural boundary con-
ditions: B(kx)  B1 for kx  –∞ and B(kx)  B2
for kx  +∞, where B1 and B2 > B1 are positive con-
stants.

SOLUTION OF THE EQUATIONS 
OF MOTION

We describe the particle trajectory in parametric
form: xµ = xµ(τ), where τ is the intrinsic time. The

4-velocity of the particle is  = ( , ); the superior
dot indicates the derivative with respect to τ, so that we

have  = γ(c, v), where γ = [1 – v2/c2]–1/2. We solve the

e 1( )
µ

e 2( )
µ

F
µν

t
µν

B kx( ) e1x( )1
µν

e2x( ) f
µν

–[ ] B'/2,+=

e 2( )
µ

e 1( )
ν

e 1( )
µ

e 2( )
ν

e 1( )
µ

k
ν

k
µ
e 1( )

ν

e 2( )
µ

k
ν

k
µ
e 2( )

ν

E yk0B'/2 xk0B'/2– 0, ,( ),=

B xk0B'/2 yk0B'/2 B, ,( ), k0 ω/c.= =

ẋ
µ

cṫ ẋ

ẋ
µ
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equations of motion of a charged particle in terms of the
Hamiltonian formalism. The particle motion in the
electromagnetic field defined by the 4-potential (1) is
described by the Hamiltonian [5]

(2)

Taking into account the relationship [xµ, pν] = –gµν

for the fundamental Poisson bracket, we arrive at the
equations

(3)

(4)

with the boundary conditions xµ(0) = (0, x0, y0, z0) and

(0) = uµ, where uµ = γ0(c, v0) and γ0 = [1 – (v0/c)2]−1/2.
Equations (3) and (4) have three integrals of motion.
One of the integrals can be obtained by taking the scalar
product (convolution) of Eq. (4) with the 4-vector kµ:
kp = mku. Then, taking the convolution of Eq. (3) with
kµ yields the second integral of motion:  = ku, which
can also be written in terms of coordinates as

(5)

We thus obtain the wave phase along the particle tra-
jectory: kx = kuτ + kx0. The third integral of motion for

Eqs. (3) and (4) has the form  = c2 or

(6)

Resolving Eqs. (5) and (6) in  and , we obtain

(7)

The integral of motion (5) is actually a consequence
of Eqs. (3) and (4) taken with µ = 0.3:

(8)

Since the increment E = mc2  in the particle kinetic
energy is governed by the vortex electric field, we can
write

(9)

Equations (3) and (4) taken with the integral of
motion (5) and µ = 1.2 can be reduced to the Hamilto-
nian system

(10)

(11)

H x p,( ) 1/2m( ) p e/c( )A x( )–[ ] 2
– mc

2
/2.+=

ẋ
µ

x
µ

H,[ ] , mẋ
µ

p
µ

e/c( )A
µ
,–= =

ṗµ pµ H,[ ] , ṗµ e/c( ) ẋα∂A
α
/∂x

µ
,= =

ẋ
µ

k ẋ

cṫ ż– nu.=

ẋ
2

cṫ( )
2

ẋ
2

– ẏ
2

– ż
2

– c
2
.=

ṫ ż

cṫ nu/2 1/2nu( ) c
2

ẋ
2

ẏ
2

+ +( ),+=

ż nu/2– 1/2nu( ) c
2

ẋ
2

ẏ
2

+ +( ).+=

mcṫ p0, mż pz,= =

ṗ0 e/c( )k0 yẋ xẏ–( )B'/2,=

ṗz e/c( )k0 yẋ xẏ–( )B'/2.=

ṫ

dE/dτ cẋE, dE/dτ eω/c( ) xẏ yẋ–( )B'/2.–= =

mẋ px c/c( )yB σ( )/2,+=

mẏ py c/c( )xB σ( )/2,–=

ṗx e/c( ) ẏB σ( )/2, ṗy e/c( ) ẋB σ( )/2,–= =
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where σ(τ) = kuτ + kx0. Equations (10) and (11) are
generated by the part of Hamiltonian (2) that is inde-
pendent of the momentum components p0 and pz:

(12)

The first integral of Eqs. (10) and (11) is the projec-
tion of the generalized particle momentum onto the z-
axis:

in which case law (9) describing how the particle
kinetic energy increases becomes

From Eq. (8), we find cdpz/dτ = dE/dτ, which allows
us to draw the important conclusion that the longitudi-
nal momentum of the particle increases simultaneously
with its energy.

Equations (10) and (11) can also be solved by carry-
ing out a sequence of canonical transformations (CTs).

First, we make the CT x, y, px , py  x', y', ,  such
that

(13)

In the new variables, Hamiltonian (12) becomes

(14)

Now, we eliminate the second term in (14) by per-
forming the CT

(15)

which puts the Hamiltonian in the form

(16)

The solution to the canonical equations

H12 1/2m( ) px
2

py
2

+[ ] e/2mc( ) y px x py–[ ] B σ( )+=

+ e
2
/8mc

2( ) x
2

y
2

+( )B
2 σ( ).

Mz m xẏ yẋ–( ) e/2c( ) x
2

y
2

+( )B σ( ),+=

dE/dτ e
2ω/8mc

2( ) x
2

y
2

+( ) B
2( )' eωMz/mc.–=

px' py'

x = 1/2m( )1/2
x' y'+( ), y = i 1/2m( )1/2

x' y'–( ),–

px = m/2( )1/2
px' py'+( ), py = i m/2( )1/2

px' py'–( ).

H12' px' py' ie/2mc( ) y' py' x' px'–( )B+=

+ eB/2mc( )2
x'y'.

x' iβ/2–( )x1' , y'exp iβ/2( )x2' ,exp= =

px' iβ/2( ) p1' , py'exp iβ/2–( ) p2' ,exp= =

β τ( ) e/mc( ) ΘB σ Θ( ) ,d

0

τ

∫=

H12'' p1' p2' eB/2mc( )2
x1' x2' .+=

dx1' /dτ p2' , dx2' /dτ p1' ,= =

d p1' /dτ  = eB/2mc( )2
x2' , d p2' /dτ–  = eB/2mc( )2

x1'–
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can be represented as

(17)

where a1 and a2 are constants. The function wτ is a
complex solution to the oscillator equation

(18)

with the initial condition w = (2/ω1)1/2exp(–iω1τ/2)
(where ω1 = eB1/mc) for τ  –∞. The Wronskian of
the two functions w and w* is independent of τ:  –

 = 2i. We substitute (15) and (17) into (13) to
arrive at the solution to the equations of motion (10)
and (11):

(19)

In order to determine the functions t(τ) and z(τ), we
insert (19) into (7). Below, we will be interested only in
the solutions to Eq. (18) in the limit τ  ∞, in which
the function B(kx) approaches a constant value B2. In
this case, we can use the asymptotic expressions

(20)

Let us make two remarks.
(i) The coefficients C1 and C2 can be found from the

solutions known in quantum mechanics, because
asymptotics (20) are consistent with the problem of
particle scattering by a one-dimensional potential.
According to [6], the quantities 1/C1 and C2/C1 play the
role of the amplitudes of the forward and backward
waves into which the wave that is incident on the poten-
tial from the right is scattered. Let 1/p be the character-
istic scale on which the function B(σ) varies. Then, if
this function changes adiabatically, |dB(σ)/dτ | !
pkuB(σ), we can see that the ratio C2/C1 ~
exp(−πω1/pku) is exponentially small [6].

(ii) Since the Wronskian of the linearly independent
solutions w and w* is equal to 2i, solution (17) is a
CT ,   xn = an, pn =  (n = 1, 2) whose gen-
erating function depends on both the old and new vari-
ables [5]:

x1' 1/2( )1/2
wa1 w*a2*+( ),=

x2' 1/2( )1/2
wa2 w*a1*+( ),=

p1' 1/2( )1/2
ẇa2 ẇ*a1*+( ),=

p2' 1/2( )1/2
ẇa1 ẇ*a2*+( ),=

d
2
w/dτ2

eB σ( )/2mc[ ] 2
w+ 0=

wẇ*
ẇw*

x 1/ m( )Re wa1 w*a2*+( ) iβ/2–( )exp[ ] ,=

y 1/ m( )Im wa1 w*a2*+( ) iβ/2–( )exp[ ] .=

w = 2/ω1( )1/2
C1 iω2τ /2–( )exp C2 iω2( )τ /2exp+[ ] ,

ω2 eB2/mc.=

xn' pn' ian*

pn' ∂F1/∂xn' , pn ∂F1/∂xn,= =

F1 1/w*( ) ẇ*x1' x2' i 2 x1' x2 x2' x1+( )– wx1x2+[ ] .=
With this Wronskian, the Hamiltonian transformed
to the new coordinates using the above procedure, h =

 + ∂F1/∂τ, is identically zero.

PARTICLE MOTION IN THE TRAVELING 
JUMPLIKE FRONT OF THE MAGNETIC FIELD

Of particular importance is the magnetic field (1),
for which the function

takes on the limiting values  and  and has a max-

imum in the range  >  – . In quantum mechan-
ics, this function is known as the Eckart potential [6].
The most interesting case here is pku @ ω1, which cor-
responds to a sharp jump in the function B(σ). Setting
B0 = 0, we arrive at a function such that B(σ) ≈ B1 for
σ < σ0 and B(σ) ≈ B2 for σ > σ0. Since the relationship
σ – σ0 = ku(τ – τc) with τc = (σ0 – kx0)/ku > 0 holds
along the trajectories of a particle, we can integrate the
second-order differential equations following from
(10) and (11) over a small vicinity of the point τ = τc in
order to obtain the boundary conditions in the form of
the incremental velocity components (ω2 –
ω1)y(τc)/2 and  = –(ω2 – ω1)x(τc)/2. In accordance
with (20), the solution to Eq. (18) can be written as

(21a)

(21b)

Let us set x0 = 0, y0 > 0, z0 = 0, and v0 = (v1, 0, 0). Then

(0) = (cγ0, u1, 0, 0), u1 = γ0v1, and β = ω1τ follow.
Substituting (21a) into (19) and setting τ = 0 gives
(mω1)–1/2a1 = iR and (mω1)–1/2  = i(y0 – R) with R =
u1/ω1. In the interval 0 ≤ τ ≤ τc, the particle trajectory is
described by the equations x(τ) = Rsinω1τ, y(τ) =
Rcosω1τ + (y0 – R), and z(τ) = 0; i.e., the trajectory is a
circle of radius R centered at (0, y0 – R, 0). Inserting
(21b) into (19), we obtain the solution to Eqs. (10) and
(11) in the interval τ > τc: x(τ) = Rex+ and y(τ) = Imx+,
where x+(τ) = x + iy, which can also be written as

H12''

B
2 σ( ) 1/2( ) B1

2
B2

2
+( ) 1/2( ) B2

2
B1

2
–( )+=

× p σ σ0–( )[ ]tanh B0/2chp σ σ0–( )[ ] 2
+

B1
2

B2
2

B0
2

B2
2

B1
2

∆ ẋ
∆ ẏ

w 1( ) 2/ω1( )1/2
iω1τ /2–( ), τexp τc;≤=

w 2( ) 2/ω1( )1/2
D iω2τ /2–( )exp S iω2τ /2( )exp+[ ] ,=

τ τc,≥

D S, D0 S0,( ) iω1τc/2– iω2τc/2±( ),exp=

D0 S0, 1/2( ) 1 ω1/ω2±( ).=

ẋ
µ

a2*

x+ τ( ) i D0R iω1τc–( )exp S0 y0 R–( )+[ ]=

× iω2 τ τc–( )–[ ]exp i S0R iω1τc–( )exp D0 y0 R–( )+[ ].+
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Setting [D0Rexp(–iω1τc) + S0(y0 – R)] = R2exp(–iη)
yields the components of the 4-velocity:

(22)

The kinetic energy T = E – mc2 (where E = mc2 ),
and the longitudinal momentum pz =  can be found
from (7):

(23)

This indicates that the particle moves along a spiral
trajectory of radius R2, with the axis lying at a distance
r2 = |S0Rexp(–iω1τc) + D0(y0 – R)| from the z-axis. Note
that, for v1 = 0, we have (τ) = ω2R2cosω2(τ – τc),

(τ) = –ω2R2sinω2(τ – τc), R2 = S0y0, and r2 = D0y0. In
the other particular case, y0 = R, we obtain (τ) =
ω2R2cos[ω2(τ – τc) + ω1τc],

From (23), we can see that, after the particle passes
through the magnetic field front, its energy becomes
higher.

PARTICLE MOTION IN A MONOCHROMATIC 
FIELD

We consider the function B(kx) = B0 + bcoskx.
Then, from (18) we obtain the Hill equation

Setting

we arrive at the Hill equation in the standard form:

(24)

The exponential index in (15) is equal to

In the case q2 ! q (or b ! 2B0), we arrive at the
Mathieu equation [7, 8]. The theory of Mathieu func-
tions implies that, in the plane of the parameters (µ, q),
there are regions that correspond to either bounded or
unbounded solutions [7]. In the region of small µ and q
in the (µ, q) plane, the solution to Eq. (24) is finite in
the first stability domain, which is located to the right
of the curve µc0(q) = –q2/2 + 7q4/128 + … and is

ẋ τ( ) ω2R2 ω2 τ τc–( ) η+[ ] ,cos=

ẏ τ( ) ω2R2 ω2 τ τc–( ) η+[ ] .sin–=

ṫ
mż

cṫ cγ0 ω2R2( )2 ω1R( )2
–[ ] / 2cγ0( ),+=

ż ω2R2( )2 ω1R( )2
–[ ] / 2cγ0( ).=

ẋ
ẏ

ẋ

ẏ τ( ) ω2R2 ω2 τ τc–( ) ω1τc+[ ] ,sin–=

R2 D0R, r2 S0R.= =

d
2
w/dτ2

1/4( ) Ω0 ω0 σ τ( )cos+[ ] 2
w+ 0,=

Ω0 eB0/mc, ω0 eb/mc.= =

2s kuτ kx0, µ+ Ω0
2 ω0

2
/2+( )/ 4ku( )2

,= =

q ω0Ω0/ 4ku( )2
, q2 ω0/8ku( )2

,= =

d
2
w/ds

2 µ 2q 2scos 2q2 4scos+ +( )w+ 0.=

β τ( ) Ω0τ ω0/ku( ) kuτ kx0+( )sin kx0( )sin–[ ] .+=
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bounded by the curve µc1(q) = 1 – q – q2/8 + … in the
upper half-plane (q > 0) and by the curve µc1(q) =
µc1(−q) in the lower half-plane (q < 0).

Of particular interest is the case of parametric reso-
nance, in which it may be expected that the energy and
longitudinal momentum will increase significantly at
µ = 1, 4, 9, …. An analysis of the stability domains
allows us to conclude that charged particles can be
accelerated in the regime of parametric resonance and
can be separated out by specific charge.

BETATRON ACCELERATION REGIME

It is well known that particle losses can be prevented
by a focusing magnetic field which decreases away
from the axis of the system. We consider particle
motion in a traveling nonuniform magnetic field
defined by the following components of the 4-potential
in cylindrical coordinates:

where kx = ωt – ωz/c.
The Lagrangian describing the motion of a relativis-

tic particle can be written in terms of the intrinsic time
(in SI units) as [9]

The Euler–Lagrange equations have the first inte-
grals (5) and (6): kx = σ(τ) and σ(τ) = kuτ + kx0. We
solve the equations of motion by analyzing the acceler-
ation cycle on a cylindrical surface of constant radius.

Setting  = Ω and ρ = R, we obtain the equations

(25)

(26)

(27)

(28)

where Φ is the total magnetic flux through a membrane
bounded by the particle orbit.

From (26) and (27), we obtain the equation dΦ/dτ =
2πR2dB/dτ. We supplement this equation with the ini-
tial conditions B(R, σ) = 0 and Φ(σ) = 0 at τ = 0 and
integrate it over the acceleration cycle. As a result, we
arrive at an analogue of the “betatron rule”: Φ(σm) =

A0 Aρ  =  A z 0, A ϕ 1/ ρ( ) ρρ B ρ kx ,( ) , d 

0

 

ρ

 ∫ = = =

L m/2( ) ρ̇2 ρ2φ̇
2

ż
2

c
2
ṫ

2
–+ +[ ]=

+ eφ̇ ρρB ρ ωt ωz/c–,( ).d

0

ρ

∫

φ̇

dE/dτ eΩω/2π( )dΦ/dσ,–=

Φ σ( ) 2π ρρB ρ σ,( ),d

0

R

∫=

0 mΩ eB R σ,( ),+=

mR
2
dΩ/dτ e/2π( )dΦ/dτ+ 0,=

md
2
z/dτ2

eΩω/2πc( )dΦ/dσ,–=
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2πR2B(R, σm), where σm = kuτm + kx0. Substituting Φ
and Ω into (25) and (28), we find the kinetic energy T =
E – mc2 and the z-component of the 4-velocity:

We denote the maximum magnetic field strength by
B(R, σm) = Bm and assume that (0) = 0. Then, we have
γ0 = 1, so that the particle kinetic energy at the end of

the acceleration cycle is T(τm) = e2R2 /(2m). Since
ecRBm = 300[R(m)Bm(T)] MeV, the kinetic energy
T(τm) can be represented as T(τm) =

45[R2(m) (T)/mc2 (MeV)] GeV. For proton accelera-

tion, we have Tp(τm) = 45[R2(m) (T)] MeV; and, for
electron acceleration, we have Te(τm) =

90[R2(m) (T)] GeV. Note that, in the regime of con-
ventional betatron acceleration, the kinetic energy of a
particle is equal to T(τm) = [(mc2)2 + (ecRBm)2]1/2 –
mc2 ≈ ecRBm.
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Abstract—One-quantum bound–bound transitions between high-excited states of a hydrogen atom are consid-
ered. Electron wave functions involving an electromagnetic field even in a zero-order approximation are con-
structed semiclassically. With these functions, it is shown that transitions accompanied by violation of the
dipole selection rules are possible in strong fields. The probability of such transitions is a nonlinear function of
electromagnetic field intensity. © 2000 MAIK “Nauka/Interperiodica”.
The probability of transitions between states of
hydrogen-like atoms under the action of an electromag-
netic field has been studied in detail (e.g., [1–4]). Basi-
cally, the available tables of oscillator forces [1] and the
values of reduced matrix elements for the dipole
moment [2–4] make it possible to calculate the proba-
bilities of one-photon transitions between arbitrary
states of a hydrogen-like atom in the dipole approxima-
tion. However, such calculations are valid for moder-
ately strong electromagnetic fields weakly perturbing
the corresponding atomic states. Therefore, stationary
wave functions for the Coulomb problem are used as
wave functions in the zero-order approximation [1, 5].
As follows from classical treatment, such an approach
is valid for electromagnetic field strengths bounded by
the inequality

(1)

where Eat = M2e5/"4 is the atomic field strength; e and
M are the electron charge and mass, respectively; and
ni, f  are the principal quantum numbers of the initial
and final states.

In this paper, we consider the probability of one-
photon transitions between high-excited states of a
hydrogen atom with large orbital angular momenta. In
contrast to the standard approach [1–4], quasistationary
wave functions describing an electron in the field of
both the Coulomb potential and a high-frequency elec-
tromagnetic wave are used as wave functions in zero-
order approximation (we will further refine the condi-
tion on the field frequency). Taking into account the
electromagnetic field in the zero-order wave function
makes it possible to relax constraints on the strength of

E0 ! 
Eat

2ni f,( )2
------------------,
1063-7842/00/4507- $20.00 © 20831
the external electromagnetic field and fall outside the
framework of perturbation theory. As we will show, the
dipole selection rules for the orbital quantum number
are violated in strong fields (the selection rules for the
magnetic quantum number holds true), and the proba-
bilities of one-photon transitions become nonlinear
functions of the electromagnetic field intensity.

Since high-excited states are semiclassical, an elec-
tron in such a state is located basically in the vicinity of
its classical trajectory. Therefore, it is worthwhile to
consider the motion of a classical electron in a wave
field in more detail. It is well known that, if in the
absence of an electromagnetic field, an electron moves
in a path r(t), then in a field with strength E(t) and fre-
quency ω and under the conditions 

(2)

(3)

where 

and T is the period of the unperturbed electron motion,
it will move in the quasistationary path (see the figure)

(4)

Thus, the influence of a high-frequency wave is
basically reduced to the appearance of oscillations
about unperturbed electron trajectory r(t) (for more
details, see [6, Section 30]). This trajectory formally
coincides with the electron trajectory in the absence of
the external field in a noninertial reference frame with
coordinates related to the initial ones by (4). Therefore,

min r t( ) @ max a t( ),

ω @ 
1
T
---,

a t( ) eE t( )
mω2
-------------,=

r' t( ) r t( ) a t( ).–=
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we may semiclassically conclude that the electron wave
function in the wave field is approximately represented
by the Coulomb wave function in the noninertial refer-
ence frame:

(5)

where A(t) is the vector potential of the external elec-
tromagnetic field in the dipole approximation, c is the
speed of light, and Ψc(r, t) is the Coulomb wave func-
tion.

Note that (5) is a state with indefinite energy and
orbital angular momentum. However, it is convenient to
characterize it by the number triple (nlm), which refers
to the corresponding Coulomb wave function.

Relation (5) can be obtained more accurately. The
Hamiltonian of an electron in both the Coulomb and
electromagnetic fields has the form

The Hamiltonian of the system can be represented
as follows:

(6)

(7)

One can readily see that (4) is the solution of the
classical equations of motion resulting from Hamilto-
nian (6). Thus, precisely (6) basically determines the
electron trajectory in the wave field. Therefore, expres-
sion (6) is the Hamiltonian in the zero-order approxi-
mation, whereas (7) should be considered as a small

Ψ r t,( ) Ψc r a t( )– t,( ) i
"
--- τe

2A2 τ( )
2Mc

2
-------------------d

∞–

t

∫–
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,exp=

H
P̂

e
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2

2M
-------------------------------

e
2

r
-----.–=

H H0 V int,+=
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e
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Figure.
perturbation. The validity of dividing the Hamiltonian
into the principal term H0 and perturbation Vint also fol-
lows from comparison of the magnitudes of (6) and (7)
(they are treated classically here) in the trajectory r(t).
Indeed, one can consider Vint as a small perturbation if
it is much less than H0. Using the virial theorem, it is
sufficient to ascertain that (7) is much less than the sec-
ond term in (6). Since the latter is proportional to 1/|r |
at large distances, whereas (7) is proportional to 1/r2,
one can easily see that (7) is small when (2) is satisfied.
Since the Feynman paths located in the vicinity of a
classical electron trajectory make a major contribution
to the evolution of a high-excited electron (due to the
semiclassical nature of the state), the division of the
Hamiltonian into the principal term H0 and perturbation
Vint holds true from the quantum-mechanical point of
view as well. Therefore, the solutions of the Shrödinger
equation with the Hamiltonian H0

(8)

should be used as wave functions in the zero-order
approximation.

Immediate substitution implies that function (5) sat-
isfies Eq. (8), while Ψc(r, t) is the subject to the
Shrödinger equation in the Coulomb problem:

Using well-known formulas of the Coulomb prob-
lem, we represent criteria of the applicability of (2) and
(3) to the model in the form

(9)

(10)

where ωat = Me4/"3 is the atomic frequency and n and l
are the principal and orbital quantum numbers.

Since the interaction of an atom with the field is
considered in the dipole approximation (vector poten-
tial A(t) is independent of coordinates), conditions (9)
and (10) should be complemented with a condition set-
ting an upper bound on the field frequency:

i"
∂Ψ r t,( )

∂t
-------------------- H0Ψ r t,( ).=

i"
∂Ψc r t,( )

∂t
---------------------- P̂

2

2M
-------- e

2

r
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  Ψc r t,( ).=

E0

Eat
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ωat

ω
------- 

 
2 1

n
2

1 1
l
n
--- 

 
2

–– 
 

------------------------------------------- ! 1,

ωat

ω
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3
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ω
c
----max r t( )  ! 1,
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or, alternatively,

(11)

The more the orbital quantum number l, the better
inequalities (9) and (11) are satisfied, since this is the
very case when the electron is located far from the
nucleus with overwhelming probability. Furthermore,
due to the semiclassical nature of the state that implies
l @ 1 along with n @ 1, we will assume n, l @ 1 here-
after. For a state with l/n ~ 1, conditions (9) and (11)
can be represented in the form

(12)

(13)

Conditions (9)–(13) are consistent in a wide range
of parameters. Note that inequalities (9) and (12)
bounding the electromagnetic field strength essentially
differ from similar inequality (1), which determines the
applicability region of the standard perturbation theory.
Expressions (9) and (12) reflect the fact that the influ-
ence of the field on electrons increases with decreasing
field frequency, so that, in the limiting case of ω = 0
(stationary field), perturbation theory is no longer valid.

We consider the transition from the initial atomic
state Ψi(r, t) characterized by quantum numbers (nilimi)
to the final state Ψf(r, t) with quantum numbers (nf l fmf).
According to the above discussion, wave functions of
the considered states in the wave field have the form
(5). Operator Vint defined by (7) is the operator that
mixes states Ψi(r, t) and Ψf(r, t). Thus, the transition
amplitude takes the form

We consider a circularly polarized electromagnetic
field. We also assume that the atom is oriented in such
a manner that the quantization axis is perpendicular to
the polarization plane of the external electromagnetic
field. Choosing the coordinate frame where the quanti-
zation axis is directed along the 0z-axis, we represent
the electromagnetic field strength in the form

where ex and ey are the unit vectors directed along 0x
and 0y, respectively.

Taking into account the explicit form of the Cou-
lomb wave functions Ψc(r, t), after a simple change of

n
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1 1
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the integration variable and some transformations we
obtain

(14)

(15)

(16)

where (x) is the associated Legendre polynomial,

 is the Wigner 3j-symbol, index i (f)

means that the corresponding magnitude refers to the
initial (final) state, and Rnl(r) is the radial part of the
Coulomb wave function.

It is worth noting here that integral (16) can be cal-
culated analytically, but we do not present the result
here because it is rather cumbersome (detailed calcula-
tion of integrals of the form (16) is presented in the
mathematical appendix in [5]).

The properties of the Wigner 3j-symbols (e.g., [5])
and zeros of Legendre polynomials

imply that transition amplitude (14) is nonzero if the
following conditions are satisfied:

(17)

(18)

(19)

(20)

Expression (17) implies that the number of photons m
coincides with the difference between the magnetic
quantum numbers of the final and initial states. This
corresponds to the well-known selection rule for mag-
netic quantum numbers in dipole transitions under the
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action of circularly polarized radiation. Furthermore,
we will restrict our consideration to one-photon transi-
tions and, hence, take m = 1 in (14) and (15). In this
case, it follows from (20) that l should be an odd num-
ber. Taking (19) into account, one can conclude that
the difference between the orbital quantum numbers
of the final and initial states should be an odd number
as well:

(21)

Otherwise, the probability of transition turns out to
be zero. The term with the smallest l satisfying the pre-
sented conditions makes the major contribution to the
sum in (14). According to the summation rule for angu-
lar momentum (18), the smallest l is

(22)

On this basis, the transition amplitude takes the final
form

(23)

Here, l is defined by (22) and the denominator in
(23) is assumed to be nonzero.

In the case lf = li ± 1 (l = 1), the obtained expressions
coincide with those describing one-photon transitions
in ordinary perturbation theory when the transition
operator is expressed in the “acceleration representa-
tion” (e.g., [7]). Such transitions are dipole-allowed in
perturbation theory, and they are the most likely. How-
ever, as expression (21) shows, transitions between the
states with l = |lf – li | = 2p + 1, where p = 1, 2, 3, …, are
also possible. It is clear that such transitions are dipole-
forbidden in the standard approach.

Since the transition probability is proportional to the
intensity of the exciting field to the l power, as is seen
from (16) and (23), the transition probability becomes
a nonlinear function of the field intensity for l ≥ 3. This
fact essentially differs from the result of the standard
perturbation theory where the probability of a one-pho-
ton transition is proportional to the intensity to the first
power. Therefore, the observation of nonlinear depen-
dence of the probability of the process on the intensity
of the applied electromagnetic field can be an experi-
mental verification of the results obtained in this paper.
Note that |nf – ni | @ 1, as follows from both condition
(10) and a natural assumption that quantum "ω is of the
order of the energy level spacing between the initial and
final atomic states.

l f li– 2 p 1, p+ 0 1 2 …., , ,= =

l l f li– .=

Aif t( ) C fi
l1

M fi
l α0( )

i
"
--- ε f εi– "ω–( )t 

 exp 1–

ε f εi– "ω–
---------------------------------------------------------------.=
We present some numerical estimations. For exam-
ple, for the ratio of matrix elements η =

(α0)/ (α0) (see (16)), we obtain η ~ 10, where

(α0) defines the amplitude of the ordinary dipole
transition from the state ni = 10, li = 5, and mi = 0 to the

state nf = 30, lf = 6, and mf = 1; and (α0) determines
the amplitude of the forbidden dipole transition from
the same initial state to the final state nf = 30, lf = 8, and
mf = 1 for E0 = 9 × 105 V/cm, ω = 1014 s–1. Thus, the
probability of the forbidden dipole transition turns out
to be only 102 times less than the probability of the
ordinary dipole transition in the perturbation theory.

The above consideration of bound–bound transi-
tions in a high-frequency electromagnetic field is an
advance outside the framework of perturbation theory
(compare criteria (12) and (1)). It became possible due
to a more accurate account of the interaction of the
atom with the wave field compared to a standard
approach, even at the beginning of solving the problem,
i.e., in the zero-order wave functions (5). Note that sim-
ilar wave functions for the states of continuous spec-
trum were considered in multiphoton ionization of
atoms [8–11]. This made it possible to fall outside the
framework of perturbation theory and obtain the limit-
ing case of atom ionization by a stationary field (it is
well known that perturbation theory is inapplicable to
the case of a stationary field, since the radius of conver-
gence for the corresponding series is equal to zero).
Note also that the obtained results are applicable not
only to a hydrogen atom but to multielectron atoms as
well. Since for n @ 1, an electron is located on average
far from the atomic residual, the influence of the latter
can be taken into account by replacing n by n – δl,
where δl is the quantum defect.

The resonance case (εf – εi = "ω) has remained
beyond consideration since it requires other mathemat-
ical methods. The problem is complicated by the fact
that, in the resonance case, the standard two-level
approximation is no longer valid for two reasons: the
electron quickly leaves the selected two-level system,
and the wave packet spreads due to strong mixing of the
states coupled by transitions accompanied by violation
of the dipole selection rules. From the classical point of
view, this means that electron motion in the wave field
becomes stochastic (for more details, see [12]).
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Abstract—Processes involved in positron–matter interaction are studied. The stopping power and mean free
path are calculated for positrons with an energy of about 1 eV, which are scattered mostly by phonons. The mean
free path and range of positrons in tungsten, as well as the stopping power of tungsten, are calculated for
positron energies between 0.025 and 10 eV. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Low-energy positron sources are finding wide appli-
cation in atomic physics, solid-state physics, physics
and chemistry of surfaces and thin films, materials
technology, study of lattice defects, etc. One of the
methods for producing high-flux low-energy positron
beams is the use of a charged particle accelerator. This
method has been implemented, for example, in the
SPring-8 complex [1]. Superconductive wiggler mag-
nets installed in the electron–positron storage ring
generate high-power synchrotron radiation with a pho-
ton energy significantly higher than the pair-production
threshold. The positrons thus produced are thermalized
by passing through a decelerator. The process of
positron deceleration should be taken into account to
properly assess the thermalization efficiency and yield
of slow positrons.

The ionization processes have been well studied
both theoretically and experimentally [2], whereas the
intricate lattice processes (collective excitations, inter-
action with holes and phonons) have not yet been sub-
jected to adequate experimental study. The goal of this
work was to calculate the parameters of positron scat-
tering by phonons in tungsten. Calculations were made
using the existing theoretical models of positron–
phonon interaction and experimental data on the
positron energies in metals.

KINETIC EQUATION FOR POSITRONS

Positron interaction with matter involves different
processes depending on the positron energy. High-
energy positrons induce ionization [2]; positrons with
an energy higher than the plasmon-production thresh-
old may cause collective excitations [3]; positrons with
lower energies may cause, production of electron–hole
pairs; and those with an energy of about 1 eV experi-
ence mostly phonon scattering.
1063-7842/00/4507- $20.00 © 20836
The kinetic equation for positron distribution func-
tion f(r, p, t), where p is the positron wave vector, is

(1)

Here, λb is the rate of annihilation of delocalized pro-
tons; κ is the rate of positron trapping by lattice defects;
fi is the source function; and []s is the rate of scattering

(2)

where R is the scattering amplitude.
The intensity of low-energy positron scattering by

conduction electrons can be calculated in terms of the
random-pulse approximation for electron–positron
interaction [4]:

(3)

where a0 is the Bohr radius, kF is the Fermi wave vector,

m* is the positron effective mass, and (E, T) =
{exp[(E – EF)/kBT] + 1}–1. The random-pulse approxi-
mation can be applied if the positron energy is lower
than the ionization threshold (about 10 eV).

A comprehensive review of the theory of positron–
matter interaction and its applications to materials tech-
nology is given in [5].
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POSITRON–PHONON INTERACTION

Thermalized positrons are scattered mainly by lon-
gitudinal acoustic phonons. In the Debye approxima-
tion with E(k) = "sk, the expression for scattering
amplitude takes the form [2]

(4)

where s is the sound velocity, ωD = s(6πn)1/3 is the

Debye frequency, and (E, T) = [exp(E/kBT) – 1]–1 is
the Bose–Einstein distribution function. The first sum-
mand in equation (4) represents phonon emission; and
the second summand, phonon absorption. Feynman
diagrams of the processes of phonon emission and
absorption are given in Fig. 1.

The positron–phonon coupling constant in the
deformation potential approximation is given by

(5)

where ρ is the density, Ed is the deformation potential
given by

(6)

and E+ is the total energy of a crystal with a positron at
the lowest energy level (k = 0). Experimental [6] and
theoretical data [7] for the deformation potentials of
several materials are given in the table.

For tungsten, E+ = –1.31 eV. It belongs to the same
group as molybdenum. Therefore, Ed ≈ –11 eV.

POSITRON RANGE

In Eq. (4), R depends only on the absolute values
p = |p |, q = |q |, and ∆ = |p – q |. Therefore, Eq. (2) can
be written as

(7)

Integrating with respect to ∆ yields

(8)
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where R1(p, q)dqdt is the probability that a positron will
pass from the state with the wavenumber p to the state
with the wavenumber between q and q ± dq in a time dt.

Using Eq. (4) and removing delta functions, we
obtain

(9)

where

(10)

Substituting (10) into (9), we come to

(11)

Now consider the energy distributions using the
energy variable yp = "2p2/2mkBT:

(12)

The values of ymin and ymax are determined from the
conditions
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and are equal to
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where yD = ("ωD)/(kBT).
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Fig. 1. Feynman diagrams for phonon emission and absorp-
tion.
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Fig. 2. Mean free path of positrons in tungsten with regard
for positron scattering by phonons at T = 200–1000 K.
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Fig. 3. Stopping power of tungsten with regard for positron
scattering by phonons at T = 300 K.
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Fig. 4. Positron range in tungsten calculated with regard for
positron scattering by phonons at T = 300 K.
Consider the energy range where positron backscat-
tering does not occur; i.e., xmin(max) = yp ± yD. This is the
case when

The mean time between interactions is

(15)

where

(16)

Therefore, the mean free path is

(17)

where E is the positron kinetic energy.

The energy loss is given by

(18)

and the stopping power by 

(19)

Let us calculate the same parameters for phonons in
tungsten. For tungsten (in the system of units c = 1),
|Ed | = 11 eV, ωD = 3.534 × 1013 s–1, ρ = 19.3 g cm–3 =
2.917 × 1065 eV s–3, s = 1.112 × 10–5 = 3.33 km s–1, and
γ2 = 1.865 × 10–59 eV s3.

Putting T = 293 K, we obtain kBT = 0.0252 eV, yD =
0.9230, and ! = 0.8819.

The range under consideration is E > 4.58 eV.
Within this range, calculations yield ([Ep] = eV)

(20)

To calculate the mean time between interactions and
the energy loss in the entire range, the following
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equations should be used:

(21)

where

Assuming E @ ms2, we obtain
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Deformation potential Ed determined by Eq. (6) and positron
lifetime for several materials

Material , eV , eV E⊥ , eV τ, ps

Al –6.7 –7.70 –4.41 166

Cu –9.4 –9.45 –4.81 106

Ag –11 –9.48 –5.36 120

Mo –16 –14.3 –1.92 111

W –1.31 100

Au –4.59 10

Ed
exp Ed

th
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where

(25)

The temperature dependences of dE/

 

dx

 

 and positron
range 

 

L

 

tot

 

 are involved only in the expressions for sound
velocity and Debye frequency. In the approximation
used and within the temperature range under consider-
ation, these values can be regarded as temperature-
independent.

The mean free path of a positron in tungsten and the
stopping power of tungsten were calculated for
positron energies between 0.025 and 10 eV and temper-
atures ranging from 200 to 1000 K. A plot of the mean
free path vs. positron energy is presented in Fig. 2; the
stopping power vs. energy, in Fig. 3; and the positron
range vs. energy, in Fig. 4.

CONCLUSION

Thermalized positrons are scattered mainly by
acoustic phonons. The Debye approximation allows the
phonon contribution to positron scattering to be esti-
mated. In this work, the mean free path of a positron in
tungsten and the stopping power of tungsten were cal-
culated for the positron energies 0.025–10 eV and tem-
peratures 200–1000 K.
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Abstract—It is shown that, as the velocity of the flow around a charged drop of viscous liquid increases the
drop charge value critical for the occurrence of drop instability rapidly decreases. It is found that, for some
domains of values of the charge, the ratio of densities of the media, and the ambient velocity, the even and odd
modes of the drop capillary oscillations pairwise couple with each other, which represents drop vibrational
instability against the tangential discontinuity of the velocity field at the drop surface. At medium velocities
larger than those associated with such domains, the instability growth rates for odd modes exceed the incre-
ments of even modes with smaller orders, which corresponds to the parachute-like deformation of the drop in
the flow. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The instability of a charged viscous drop moving
relative to a medium is manifested in a number of aca-
demic, engineering, and technological problems. The
problem of stability against the tangential discontinuity
of velocity field at the drop free surface arises in oper-
ation of various drip–jet devices, in paint sputtering,
and in the atomization of liquid fuels [1–3]. This prob-
lem is of considerable interest for studying thunder-
storm electricity in the context of investigation of the
physical mechanism of lightning initiation: lightning
may start with corona discharge in the neighborhood of
a free-falling, large, water-bearing hailstone [4–6]. The
instability of a drop either falling in the atmosphere or
moving with a constant speed in a medium with higher
density was studied in a large number of papers [7].
Nevertheless, the conditions of occurrence of the insta-
bility against the tangential discontinuity of the veloc-
ity field at the surface of a drop moving relative to a
medium are still poorly understood. The same problem
in the case of a charged drop is almost unstudied. Insta-
bilities of two types must evidently occur in this case:
the instability of the drop against its charge [3, 8] and
the instability of the drop–medium interface against the
tangential discontinuity of the velocity field, i.e., the
instability of the Kelvin–Helmholtz type [9, 10].

Therefore, it is of interest to study the conditions for
occurrence of instability of a charged viscous-liquid
drop moving with a constant speed in a medium. We
solve the problem treating the surrounding medium as
a perfect liquid.

1. Let a perfect incompressible dielectric liquid of
density ρ1 and dielectric constant ε move with the con-
stant velocity U relative to a spherical drop that consists
of a perfectly conducting liquid with density ρ2 and
1063-7842/00/4507- $20.00 © 20840
kinematic viscosity ν2 and has radius R and charge Q.
Let us find the critical conditions for instability of the
drop capillary oscillations under these assumptions. We
will use spherical coordinates with the origin at the cen-
ter of the drop and employ the linear approximation in
the perturbation value ξ(Θ, t) of the equilibrium spher-
ical surface of the drop that is caused by the capillary
wave motion of the liquid. The equation for the per-
turbed surface of the drop is taken in the form r(Θ, t) =
R + ξ(Θ, t).

The set of hydrodynamic equations modeling the
capillary motion of the liquid in the system includes the
Euler equation for the potential (curlV1 = 0) motion of
the medium and the Navier–Stokes equation for the
drop

(1)

(2)

continuity equations

(3)

with the boundary conditions

(4)

(5)

(6)

(7)
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(8)

the condition reflecting the invariance of the volumes of
both media

(9)

and the following condition meaning that the center of
mass of the system is fixed:

(10)

Hereafter, subscript 1 relates to parameters of the exter-
nal medium; subscript 2 relates to the parameters of the
drop; n and t are the unit vectors, respectively, normal
and tangent to the drop–medium interface; Vj(r, t) and
Pj(r, t) are the velocity and pressure fields, respectively;
Pσ is the following perturbation of the pressure of the
surface tension forces [9]:

(11)

where σ is the surface tension at the interface; ∆Ω is the
angular part of the Laplacian in the spherical coordi-
nate system; PE is the following perturbation of the
electric field pressure related to the perturbation of the
drop surface [11]:

(12)

where (Θ, ϕ) are the normalized spherical func-
tions; and dΩ is the solid angle element.

The term proportional to ~  was retained in (1),
because it includes the first- and second-order terms.
Conditions (9) and (10) set a lower bound on the spec-
trum of the system capillary oscillations [11].

2. To simplify the solution procedure, it is appropri-
ate to go over from the dimensional MTL basis, where
M, L, and T are the units of mass, length, and time,
respectively, to another, more convenient, basis reduc-
ing the number of the model parameters. In this basis,
the units of the volume density ρ2 of the constituent
substance of the drop, drop radius R, and surface ten-
sion σ are taken as the basic units and are equated to
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unity: ρ2 = R = σ = 1. The characteristic scales corre-
sponding to the new basis have the form

We denote the dimensionless quantities as ν2 ≡ ν1
and ρ1 ≡ ρ.

Taking into account the axial symmetry of the prob-
lem, we will ignore the dependence of the quantities on
the angle ϕ. This means that the velocity field has no
azimuthal rotational component, which is of no inter-
est, because it does not couple with the potential
and rotational poloidal velocity components [11] and
does not affect the drop stability. The velocity field V2
in the drop is represented as the sum of two orthogonal
fields [11]:

(13)

where the first term defines the potential part of the
velocity field and the second one is the rotational poloi-
dal part.

In accordance with [9, 10], the velocity field in the
medium in a neighborhood of the unperturbed surface
of the spherical drop is written in the form

(14)

where Ψ1, Ψ2, and ϕ are the first-order quantities.

3. Scalar functions Ψ1(r, t), Ψ2(r, t), and ϕ(r, t)
appearing in the expression for the velocity fields of liq-
uid motion in the medium and in the drop, as well as the
perturbation ξ(r, t), are sought in the form

(15)

We solve the problem (1)–(15) by using the scalar-
ization method described in detail elsewhere [11] and
applied to particular problems in [12–15]. Omitting inter-
mediate calculations, we write the following final system
of algebraic equations for unknown amplitudes Zn of the
liquid capillary motion forming the contour of the per-
turbed interface:
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(16)

where in(x) represents the spherical Bessel functions.

In the limit of a nonviscous drop, the problem under
consideration transforms to the problem of motion of a
perfect-liquid drop with constant velocity U in a perfect
medium, which was solved in [10]. Since Fn(x) also
tends to zero at ν  0 [11], Eq. (16) reduces to the
corresponding equation obtained in [10]. In the case
when ρ = 0, the problem transforms to the problem of
capillary oscillations of a charged viscous drop in vac-
uum, which was solved in [11, 12], and Eq. (16)
reduces to the equation derived in these papers. At U = 0,
we have the problem of capillary oscillations of a
charged drop in a dielectric medium. This problem is
the limiting case of the problem studied in [15] at ν1 = 0.
Thus, the problem correctly reduces to simpler limiting
cases.

4. In the limiting case of a drop of low-viscosity liq-
uid, one can analytically study the effect of viscosity on
the natural frequencies of capillary oscillations, their
damping rates, and the growth rate of instability. In this
case, x @ 1 and we use the following asymptotic expan-
sion of the spherical Bessel functions at large values of
argument [11]:

Then, the ratio of the Bessel functions has the
asymptotic behavior

and the second term in the braces in (16) depends on the
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viscosity ν and the frequency S as

Retaining in (16) the terms of no higher than the first
degree in ν and neglecting the coupling of modes, we
obtain the dispersion equation

(17)

Solutions to (17) are as follows:

Three different cases can be realized:

(a) If

(18)

the quantity S determines the natural frequencies ωn of
the surface oscillations for the charged drop of low-vis-
cosity liquid. These frequencies coincide with the nat-
ural frequencies of oscillations of the drop of perfect
liquid; and the allowance for viscosity results in the
appearance of the damping decrement βn of the drop
surface natural oscillations, which is proportional to the
viscosity:

(b) If the condition opposite to (18) is valid, S
describes the rising rate δn for instability of the charged
drop of low-viscosity liquid, 

where δn0 = |ωn | is the rising rate of instability of the
charged drop of perfect liquid.

(c) As in the case of perfect liquid [10], equality in
(18) determines both the boundary separating stable
and unstable solutions and the critical relation between
the charge of the drop and its velocity with respect to
the medium.

5. To analyze the case of a high-viscosity liquid, i.e.,
x  0, we use the following asymptotic expansion of

2νFn x( )S 2νFn0S 2ν νs,–∼

Fn0
1
n
--- n 1–( ) 2n 1+( ).=

κnS
2

2νFn0S ρU
2
Mn– γn+ + 0.=

S ν n 1–( ) 2n 1+( ) nρ
n 1+( )

----------------- 1+ 
  1–

–=

± n n 1–( ) W n 2+( )–[ ] nρU
2
Mn+[ ] nρ

n 1+( )
----------------- 1+ 

  1–

.

W n 2+( ) 1
n 1–( )

----------------ρU
2
Mn,–<

S βn– iωn± ν n 1–( ) 2n 1+( ) nρ
n 1+( )

----------------- 1+ 
  1–

–≡=

± i n n 1–( ) n 2+( ) W–[ ] nρU
2
Mn–[ ] nρ

n 1+( )
----------------- 1+ 

  1–

.

S δn δn0 βn– ωn βn,–≡= =
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the spherical Bessel functions for small argument [11]:

(19)

Substituting (19) into (16), neglecting the coupling
of modes, and collecting the terms with the same pow-
ers in S, we obtain the following dispersion equation in

x
2
---

in x( )
in 1+ x( )
----------------- 1–

1– 2
2n 1+( )

-------------------- 1
x

2

2n 1+( ) 2n 5+( )
-----------------------------------------–≈

+
x

4

2n 1+( ) 2n 5+( )2
2n 7+( )

----------------------------------------------------------------… .
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the approximation of high viscosity:

(20)

Solutions to (20) have the form

An
nρ

n 1+( )
-----------------+ S

2
BnSν nρU

2
Mn– nγn+ + 0,=

An
3 4n

3
8n

2
6n 3+ + +( )

2n 1+( )2
2n 5+( )

-----------------------------------------------------,=

Bn
2 n 1–( ) 2n

2
4n 3+ +( )

2n 1+( )
-------------------------------------------------------.=
(21)S Bnν– Bnν
2

4 An
nρ

n 1+
------------+ n n 1–( ) W n 2–( )–[ ] nρU

2
Mn+[ ]+± An

nρ
n 1+
------------+

1–

.=
Let us analyze the dependence of these solutions on
the parameter W.

(a) If condition (18) is fulfilled and the radicand is
negative, the expression for S becomes complex. The
imaginary part of S determines the frequencies ωn of
the surface natural oscillations, and the absolute value
of the real part represents damping decrements βn: 

Therefore, the drop surface undergoes damped
oscillations.

(b) If condition (18) is valid and viscosity ν is large
enough so that the radicand is positive, both roots of
equation (21) are negative. Their absolute values deter-

mine damping decrements  and  of the pertur-
bation of the drop surface. The time dependence of the
amplitude of the perturbation described by the
nth-order spherical function Yn(Θ) in (15) has the form
of the sum of two exponents

At small values of time t (t  0), the perturbation
damping is characterized by the smaller decrement

, because the exponent with the larger value 
vanishes faster.

The condition that the radicand in (21) is equal to
zero separates the periodic and aperiodic, decaying in

S βn– iωn.±=

βn
1( ) βn

2( )

Zn C1 βn
1( )

t–( )exp C2 βn
2( )

t–( ).exp+=

βn
1( ) βn

2( )
time solutions

(22)

Equation (22) determines the bifurcation points, i.e.,
the values νkp of viscosity for given drop charge Q and
oscillation mode order n such that the oscillation fre-
quency ωn vanishes and, instead of one damping decre-

ment βn, two decrements,  and , appear. The
numerical calculations with W = 0, ρ = 0, and U = 0
yield the following critical values of dimensionless vis-
cosity at which the capillary oscillations vanish: ν ≈
2.1, 2.66, 3.15, 3.57, 3.96, and 4.31 for n = 2, 3, 4, 5, 6,
and 7, respectively. It is seen from (22) that, as the Ray-
leigh parameter W and velocity U of the medium
increase, the critical value of the dimensionless viscos-
ity ν decreases. The increase of the relative density of
the medium results in the increase of the critical value
of the dimensionless viscosity ν for low velocity val-
ues, i.e., when U ≤ 1, and leads to the decrease of the
critical value for high velocity values.

(c) If the condition opposite to (18) is valid and the
roots of (21) are real and have opposite signs, the drop
surface is unstable, because solutions exponentially ris-
ing in time appear. The positive root determines the rate
δn of instability rising, which depends strongly on vis-
cosity as follows:

n n 1–( ) n 2 W–+[ ] nρU
2
Mn–[ ] νkp

2–

=  
Bn

4
----- An

nρ
n 1+
------------+

1–

.

βn
1( ) βn

2( )
δn Bnν
2

4 An
nρ

n 1+
------------+ n n 1–( ) W n 2+( )–[ ] nρU

2
Mn+[ ] Bbν–+ An

nρ
n 1+
------------+

1–

.=
Therefore, as in the limiting cases of perfect and
low-viscosity liquids, the equality in (18) in the case of
high-viscosity liquids describes both the boundary
between stable and unstable solutions and the critical
relation between the charge of the drop and its velocity
with respect to the medium.

6. Let us return to the general case of arbitrary vis-
cosity. The condition necessary and sufficient for the
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existence of nontrivial solutions to homogeneous sys-
tem (16) is that the determinant composed of the coef-
ficients of desired amplitudes Zn be equal to zero:

(23)

χ2 ρUSI2 ρU
2
J2 0 …

ρUSL3– χ3 ρUSI3 ρU
2
J3 …

ρU
2
K4 ρUSL4– χ4 ρUSI4 …

0 ρU
2
K5 ρUSL5– χ5 …

… … … … …

0,=

χ j κ jS
2

2νF j ρU
2
M j– γ j;+ +=

j 2 3 4 5 …., , , ,=
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Fig. 1. Real ReS(U) and imaginary ImS(U) parts of the
dimensionless frequency S of the drop capillary oscillations
against dimensionless ambient velocity U for ρ = 10–3, ν =
0.1, and W = 0.

50
This equality represents the dispersion equation
describing the spectrum of the drop capillary oscilla-
tions depending on the dimensionless physical param-
eters W, U, ρ, and ν. Variation in these parameters
changes the spectrum of capillary oscillations: at defi-

nite values of W, U, and ρ, certain solutions  vanish
and become positive with further variation of the
parameters. Amplitudes of the corresponding capillary
oscillations increase exponentially in time; i.e., the
drop becomes unstable and decomposes [3]. The zero
solutions to the dispersion equation appear under the
condition that the free term in equation (23) vanishes.
This condition determines the relation between the
charge and velocity of the drop that is critical for the
drop instability occurrence, and it can be easily
obtained by putting S = 0 in (23). The numerical calcu-
lation for the resulting equation demonstrates that the
desired critical relation between W and U differs little
from the analytical form obtained by neglecting the
coupling modes:

(24)

As ρU2 increases, the W parameter value critical for
occurrence of the drop instability against drop charge
rapidly decreases, which gives reason to revive the phys-
ical model of lightning initiation developed in [4–6].
This model is based on the idea that the corona dis-
charge lights in the neighborhood of a large melting
hailstone freely falling in a thundercloud. The results
obtained above enable us to derive correct numerical
estimates and to fit the model of discharge initiation to
real thundercloud parameters using measured values of
charge, velocity of falling drops, and strength of elec-
tric field inside the cloud.

Successive-approximation numerical calculations
for dispersion equation (23) reveals that the frequency
S = S(U) of the drop capillary oscillations as a function
of the velocity of the incident flow has the same quali-
tative character for various modes at W = 0 and ν = 0.1;
it is shown in Fig. 1 for the first six modes at ρ = 10–3.
Curves 2 to 7 display the respective modes. Curve 1 is
absent, because the corresponding mode is responsible
for the translational displacement of the drop [9]. Note
that the second mode couples with the third; and the
fourth mode couples with the fifth, which results in the
appearance of oscillatory solutions 8 and 9, respec-
tively. The parts ReS > 0 of the curves ReS = ReS(U)
correspond to the rate of instability rising of relevant
modes of the drop capillary oscillations. Thus, for the
velocity region associated with curves 8 and 9, the
vibrational instability of the drop takes place that is typ-
ical of the Kelvin–Helmholtz type instabilities [9, 10,
16]. Curves 10 and 11 correspond to the aperiodic rota-
tional polar motion of liquid. This motion does not
affect the instability of the drop and was analyzed in
more detail in [13, 15].

It is of interest that, to the right of the velocity region
where the second and third modes couple with one

Sn
2

Wn n 2+( ) n 1–( ) 1– ρUMn
2
.–=
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another, the rising rate for aperiodic instability of the
third mode is larger than that of the second mode. The
same is true for the fourth and fifth modes. This fact can
be explained on the basis of Eqs. (16) with neglect of

the coupling of modes. Indeed, the derivative of 
with respect to ρU2 determines the rate of Sn increase
with varying U and is proportional to nMn ~ n3. It means
that, even in the absence of the coupling of modes, the
rising rate for the instability of high modes against
increasing ambient velocity increases with the order of
modes. An analysis of the classical Kelvin–Helmholtz
instability at the plane free surface of a liquid also
revealed the increase in the wave number of the most
unstable mode with the velocity of the displacement
flow [9, 16].
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Fig. 2. The same as in Fig. 1, but for ρ = 0.1. The curves for
polar motions are not shown.
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The above-mentioned difference between rising
rates for the second and third modes must be phenom-
enologically manifested in the pattern of the decompo-
sition of the unstable drop. If the second fundamental
mode has the maximum instability rising rate at given
drop and medium densities and ambient velocity
(velocity of the drop falling in the rest medium), the
unstable drop takes a shape close to the spheroid
defined by the second Legendre polynomial P2(cosΘ)
and then decomposes as described in [8, 17]. If the third
mode has the maximum instability rising rate, the
unstable drop takes the parachute-like shape defined by
the third Legendre polynomial P3(cosΘ) and decom-
poses into a wealth of small, and several large, frag-
ments [7]. The vibrational instability of a free falling
drop was also observed in experiments [7].
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Fig. 3. The same as in Fig. 1, but for ρ = 1.
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Numerical calculations reveal that, as the medium
density increases, the critical value of dimensionless
velocity U ensuring the instability of the nth mode
decreases and the variety of liquid motions slightly
changes. The vibrational instability resulting from the
coupling of the second and third modes takes place over
the entire region U > 12. The domain of the Kelvin–
Helmholtz type instability is extended, and the frequen-
cies corresponding to given solutions increase. In all
other respects, the curves S = S(U) are qualitatively
similar to the curves in Fig. 1.

Figures 2 and 3 show the functions S = S(U) calcu-
lated for ρ = 0.1 and 1, respectively, and demonstrate
that only the even modes are unstable. The damping
decrements of the odd modes of capillary motions in
the domain where these modes should be unstable rap-
idly increase with the ambient velocity.

The critical velocities at which various modes of the
drop capillary oscillations become unstable against the
tangential discontinuity of the velocity field at drop sur-
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Fig. 4. The same as in Fig. 1, but for the drop charge W = 3.5
subcritical in the Rayleigh sense. Curves 2–7 display
respective modes. Curve 10 results from the coupling
between modes 6 and 7. Curves 11 and 12 correspond to the
rotational polar motions of the liquid.
face, as well as the spectrum of unstable oscillations,
depend on the ratio of densities of the media. It is seen
from Figs. 2 and 3 that only the even modes are unsta-
ble at ρ = 10–1, whereas both the even and the odd
modes are unstable at ρ = 1 and at smaller values of the
velocities. As the velocity of the medium increases, the
amplitudes of all unstable modes first increase aperiod-
ically and then, at larger velocities, the instability
becomes vibrational. The many-valued functions in
Figs. 2 and 3 correspond to the aperiodically unstable
branches.

If the drop carries a charge subcritical in terms of the
Rayleigh stability (see Fig. 4), the basic features of the
function S = S(U) coincide with those described above.
The charge presence only decreases the critical velocity
values at which the drop becomes unstable, which is in
agreement with the analytical result (24). 

Figure 5 presents the pattern for the case when the
drop charge is slightly supercritical (W = 4.5) in terms
of the Rayleigh instability (the drop becomes unstable
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Fig. 5. The same as in Fig. 4, but for the drop charge W = 4.5
supercritical in the Rayleigh sense. The curves for polar
motions are not shown.
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at W = 4 [3]). The function S = S(U) in this figure is sim-
ilar to that given in Fig. 4, but, as compared to Fig. 4,
the critical velocity value at which the drop is unstable
in the Kelvin–Helmholtz sense is lower and the second
mode is initially unstable.

The function S = S(U) for highly supercritical
charge W = 10 is plotted in Fig. 6. In contrast to the
cases considered above, the rising rate for the funda-
mental mode takes the minimum value as compared to
the values of instability rising rates for higher modes
whose instability is vibrational or aperiodic (depending
on velocity U) and determines the drop decomposition.
It is of interest that nonsequential, i.e., third and sixth,
modes couple with one another, which results in the
formation of the branch of the vibrational instability.

Numerical calculations reveal that both decrements
and frequencies of liquid capillary motions decrease
only slightly with increasing ρ. Figure 7 shows the real
and imaginary parts of the frequency as functions of the
ratio of the densities of the medium and the drop for the
supercritical drop charge value W = 4.5. Curves 8 and 9
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Fig. 6. The same as in Fig. 4, but for the drop charge W = 10
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polar motions are not shown.
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represent the motions resulting from the coupling of
modes. Curves 8 and 9 correspond to the vibrationally
unstable and oscillatory damped motions, respectively.

CONCLUSIONS

A charged drop in a flow around it can decompose
into highly charged drops when the drop charge is less
than that in the rest of the surrounding medium. This
behavior is due to the composition of two instability
types: the instability of the drop free surface against the
tangential discontinuity of the velocity field and the
instability against the drop charge. Depending on the
ratio of the densities of the drop and the medium, the
drop charge, and ambient velocity, the drop can decom-
pose due to both aperiodic and vibrational instabilities.
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U = 1, and W = 4.5. Curves 2–7 display respective modes.
Branches 8 and 9 are formed due to the coupling of modes.
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Owing to the aperiodic instability at low ambient veloc-
ities, the drop is deformed to a stretched spheroid and,
because of the electrostatic repulsion, decomposes
either via the Rayleigh mechanism [8] or into several
fragments of comparable dimensions [17]. The aperi-
odic instability at high ambient velocities leads to the
instability of odd modes; as a result, the drop is
deformed to a parachute-like shape and, due to the
aerodynamic forces, decomposes into a wealth of
small, and several large, drops. The results of the study
are in qualitative agreement with experimental data [7].
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Abstract—It was shown that, under certain conditions, the growth of a new phase becomes much like a coope-
rative optical phenomenon during which the heat of phase transition evolves as a sequence of superradiance
pulses (phase-transition radiation). The optical control of new-phase growth and the effect of optical properties
of substances on the kinetics of phase transitions are considered. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The phenomenon of strong near-infrared above-
thermal radiation of boiling-up water has been
described in [1]. The radiation intensity from the
water–glass interface at a wavelength λ = 1.7–1.8 µm
is approximately two orders of magnitude greater than
that of absolutely black body at 100°C. This effect
was related to the evolution of condensation heat as a
nonequilibrium radiation, which was called phase-
transition radiation. A similar phenomenon also takes
place upon the boiling up of metals [2]. In metallurgy,
the condensation and solidification of metal vapors
are known to be attended with a burst of radiation at
frequencies that are considerably higher than that of
the heat radiation peak at the phase transition temper-
ature. The bursts were also observed at the crystalliza-
tion of alkali halides and sapphire from the melt [3, 4].
The spectra of the above-thermal radiation were rela-
tively wide (of the order of 1013 s–1) and free of emis-
sion lines and bands. The photon energy in the peak of
the spectra corresponded to the melting heat of the
substance per molecule. It was found that the intensity
of the above-thermal radiation depends on melt cool-
ing conditions, and the leading and trailing edges of
the burst do not necessarily coincide with the begin-
ning and completion of crystallization. The radiant
energy of the burst includes a significant part of the
total radiant energy of a crystallizing melt. Note that
the spectrum of the phase-transition radiation of boil-
ing-up water [1] contains the fundamental absorption
bands and the radiation peak is shifted to the short-
wave spectral range.

Although experimental evidence on phase-transi-
tion radiation is still poor, the mere fact of its occur-
rence is surprising. This phenomenon does not follow
1063-7842/00/4507- $20.00 © 20849
from the available phase-transition conceptions and is
not considered in analysis of the transition kinetics.

THE FORMATION OF PHASE-TRANSITION 
RADIATION PULSES

Three stages of new-phase growth (fluctuation
nucleation, extension of nuclei, and coalescence) are
usually recognized. Here, the second stage is the con-
cern. Let us assume that, in a single-component super-
cooled melt, nuclei grow to the point where the transi-
tion heat and temperature take macroscopic values. For
metals, this is attained at r0 > 20 nm [5], where r0 is the
nucleus radius. As chemical bonds form, each molecule
or atom relaxes from the melt-related state to the crys-
tal-related one. The former condition can be treated as
excited in relation to the latter.

We estimate the probability of excitation energy
being converted to light emission at phase transition.
For a free molecule in the excited state, its optical life-
time (the longitudinal relaxation time) is equal to T1 =
10–7–10–8 s. For transitions in the near-infrared range at
T ~ 103 K, the nonradiative multiphonon relaxation

time in solids is  & 10–9 s [6]. Then, the probability

of light emission p ~ /T1 ! 1. Therefore, most of the
transition energy is converted to heat. It is assumed here
that bonding does not change the position of a particle
passing from the melt into the crystal. Hence, in accor-
dance with the Franck–Condon principle, the optical
transition to the crystal ground state is allowed and the
probabilities of optical transitions to the excited states
of the crystal are small. Actually, the particle position
may vary and the transition to the crystal ground state

T1*
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may go through a number of intermediate states, for
which multiphonon relaxation is more essential [6].
Then, the probability of light emission will be still
lower. Phase transitions with p ! 1 will be called
nonradiative.

For a radiative phase transition with p ~ 1, the
time T1 of the optical transition between the melt and
crystal ground states has to be less than or comparable
to the nonradiative relaxation time . This is obtain-
able in a great ensemble of particles. The feasibility of
radiative phase transition in an ensemble of particles
was originally treated in terms of quantum electrody-
namics even before the phenomenon of collective spon-
taneous radiation (or superradiation) had been experi-
mentally discovered [7, 8]. As is known, the phenome-
non of superradiation is that a system of excited
particles undergoes the optical transition to the lower
state due to their interaction with each other through the
common radiation field, the transition time being much
shorter than the radiative decay time of an individual
particle [9]. Next, the feasibility of radiative phase tran-
sition will be considered in terms of the theory of
superradiation, where the semiclassical approach is
often employed [10].

Let us have an ensemble of K (K @ 1) particles that
surround nuclei in a melt area of size l ! λ, where λ is
the wavelength of radiation corresponding to the spe-
cific (per particle) transition heat. Also, let parameters
T2 and  stand for the dephasing times of the wave
functions of excited particles due to uniform and non-
uniform line broadening (the parameter T2 is also
referred to as the transverse relaxation time). For cubic
crystals with homogeneous line broadening, T2 = 10–10–
10–9 s; for noncubic and impure crystals with inhomo-
geneous broadening,  = 10–11–10–10 s [6]. Thus, the

condition  ! T2 <  < T1 is met. We assume that
the optical transitions of particles from the ground state
of the melt to that of the crystal are allowed. For super-
radiation to take place, its pulse duration τ should be
much less than the dephasing times T2 or  and the
photon transit time through the melt area of size l
should be much less than τ; that is, l/c ! τ, where c is
the velocity of light (we assume that the refractive
index of the medium n ~ 1). The initial level Q0 of
noncoherent spontaneous radiation at a transition
frequency ω0 depends on the new-phase growth

rate K/ :

(1)

where " is Planck’s constant (thermal radiation from
the melt is neglected). The time T1 is conventionally

T1*

T2*

T2*

T2* T1*

T2*

T1*

Q0 p"ω0K /T1*∼ "ω0K /T1,=
related to the dipole matrix element d of the transition

as T1 = 3"c3/4 |d |2 .

With no regard for transverse relaxation and in the
adiabatic approximation, the dynamics of radiation Q
and the inversion ∆K of the system (∆K = K – Kc, where
Kc is the number of particles passed to the ground state
of the crystal) are written as in [10]:

(2)

where V is the domain volume, t is time, and  =

−8π|d |2∆Kω0/"V is the square of the so-called cooper-
ative frequency of the medium.

The solution of system (2) has the form

(3)

The superradiation pulse duration τ = T1/K is K
times shorter than that of the spontaneous radiation
from an individual particle. The maximum power
Qmax = "ω0K/4τ, varying in proportion to K2, is approx-
imately K times higher than the initial spontaneous
radiation level Q0 and is achieved within the delay time
td = τ ln[Qmax/Q0] or, in view of Eq. (1),

(4)

In our case, the superradiation mode is realized only
if td < T2, . Assuming that T1 = 10–7 s,  = 10–9 s,

and T2 = 10–10 s and taking into account (4), we arrive
at the requirement for the threshold number of particles
Kt * 105 for uniform-broadening media (cubic crys-
tals). This requirement is readily met even for one
nucleus. The lumped model of superradiation (l ! λ) in
media with nonuniform broadening seems to be
unlikely [9]. In this case, phase-transition superradia-
tion may occur in a melt transparent at the frequency ω0,
when the radiation propagates from one nucleus to
another practically without loss and superradiation
pulses are simultaneously generated from the whole
melt area of size l * λ. The radiation dynamics in this
system is similar, most of the energy being radiated
along the greatest extension of the area. In the melts of
cubic metals having a high conductivity, the penetra-
tion depth of radiation with the frequency ω0 is about
102 nm [11]. Hence, if the internuclear distance is much
greater than this value, each nucleus is able to indepen-

ω0
3

dQ
dt
-------

4π2
Qωc

2
V

3ω0λ
3

------------------------,
d∆K

dt
-----------–

2Q
"ω0
---------,–= =

ωc
2

∆K K t td–( )/2τ[ ] ,tanh–=

Q "ω0K /4τ t td–( ) 2τ( ) 1–[ ]cosh
2
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K
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4
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dently generate superradiation pulses with a duration of
τ & 10–12 s.

NEW-PHASE COLLECTIVE GROWTH 
IN THE SUPERRADIATION MODE

The nonradiative growth rate ν of a nucleus, which
is defined as the number of new-phase particles formed
in a unit time, equals K/ . Therefore, there is a

threshold value for this rate, νt = Kt/ , that marks the
beginning of the superradiative process. If ν < νt, the
new phase grows nonradiatively; if ν exceeds νt, after a
delay time td, a superradiation pulse is generated and a
nucleus grows up jumpwise. In this case, most of the
transition heat is removed from the nucleus into the
ambient melt by radiation and the heating of the inter-
face limits the growth rate to a lesser degree. Then,
other superradiation pulses may form. In the case of
high-melting crystals, the thermal radiation from the
melt is essential for the initiation of a superradiation
pulse. The orientation ordering of the dipole moments
of molecules due to the reradiation field at the second-
harmonic frequency may also contribute to the new-
phase growth rate [9].

The classical theory of new-phase growth suggests
that the maximum growth rate is observed when, at
some temperature, an optimum relation between the
supercooling of the melt and its viscosity is set. Actu-
ally, for the majority of substances, the crystal growth
rate turns out to be well above the theoretical value and,
in addition, does not vary over a wide temperature
range [12]. This inconsistency is still left unexplained.
Within the framework of our model, it finds a natural
explanation. Indeed, if the phase transition is radiative,
the growth rate considerably increases and the temper-
ature, supercooling, and viscosity at the interface are
governed not by external conditions but by transport of
radiation inside the crystal.

Consider bulk crystallization in a supercooled metal
melt. Let the bulk of the melt have nuclei of radius r0 >
20 nm. If the nonradiative growth rate of a nucleus or a
number of nuclei in an area of size l ! λ reaches νt, then
a delay time td later, a superradiation pulse forms. We
assume roughly that, if this pulse, acting on other
nuclei, reaches the level of Q0, they also start to super-
radiate. At T1 = 10–7 s,  = 10–9 s, and K = 105, the
value of Qmax will exceed Q0 approximately by a factor
of 105. During a superradiation pulse, a nucleus with
r0 = 20 nm increases its radius by less than 1 nm. If non-
linear adsorption is neglected, the radiation flux density
falls with distance r as (r0/r)2exp(–kr), where k is the
absorption factor of the melt at the frequency ω0. Put-
ting r0 = 20 nm and k = 0.01 nm–1, we will find that the
initial (driving) pulse has an effect up to the distance
a ≈ 500 nm. Then, the maximum interface velocity in
such a melt will be a/td ≈ 5 × 106 cm/s. The evolution of

T1*

T1*

T1*
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crystallization heat results in the partial melting of
nuclei, and levels for new superradiation pulses arise.
Heat transfer in the melt becomes due to radiant heat
conduction. This equalizes the temperature in the melt,
and the heat is quickly removed toward the crystallizer
walls. At the stage of coalescence, when growing grains
come closer together, polaritonic solitons and the effect
of self-induced transparency [10] may add to the rate of
heat removal from the melt.

Because of the temperature spread ∆T of an actual
phase transition [13], the integrated-over-time spec-
trum of phase-transition radiation broadens by a value
of ∆ωi ~ ∆Hf∆T/"TNA (∆Hf is the transition heat per
mole of a substance, T is the average temperature of
transition, and NA is Avogadro’s number), which may
be far in excess of the linewidth ∆ω ≈ τ–1 of an individ-
ual superradiation pulse (in [4], ∆ωi ≈ 1013 s–1). More-
over, when passing through the medium, phase-transi-
tion radiation may broaden further due to nonlinear
optical effects [14].

As shown in [15], optical radiation is stimulatory to
the formation of large-scale density fluctuations (dila-
tons and compressons) and new-phase nuclei. Because
of this, phase-transition radiation, acting on an area free
of nuclei, makes for nucleation and fast growth of the
new phase over the medium. This point calls for special
investigation and is beyond the scope of this article.

In melts transparent at the frequency ω0, the super-
radiation pulses will appear from large regions if the
temperature distribution over them is rather uniform
(∆T & NA"T/τ∆Hf). When the parameter l/c becomes
comparable to τ, superradiation may appear as a train of
pulses with decreasing height (the oscillatory mode).
At l/c > T2, superradiation may change to superlumi-
nescence (when Qmax ~ K) and the radiation becomes
induced [10]. The duration of such pulses is of the order
of l/c, and light emission, in this case, carries away no
more than half the energy stored by excited levels
(induced amplification occurs at ∆K > 0).

The oscillation threshold is defined by the condition
β/α = 3λ2KT2l/4πVT1 > 1, and the transition to the
superluminescence mode is observed when
3λ2Kτl/8πVT1 > 10 [16]. Cooling a melt transparent to
the radiation at the frequency ω0 generates a train of
superradiation pulses, which cause nuclei to grow
jumpwise with each pulse.

OPTICAL CONTROL OF NEW-PHASE 
GROWTH

If the melt is inside an optical resonator, the emerg-
ing radiation increases and crystallization proceeds
faster. For instance, if a superradiating medium with
α = 10–3 and β = 10–1 is placed into a resonator with
plane-parallel semitransparent mirrors with a reflectiv-
ity ρ = 0.8, the radiation peak increases and the delay
time is reduced by almost one order of magnitude [16].
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In this case, the pulse width decreases by a factor of
1/lnρ–1 ≈ 4.5. For media with nonuniform broadening,
the influence of the resonator on the radiation parame-
ters is qualitatively similar; that is, the resonator can be
used to provide the superradiation condition td < T2, .
On the contrary, the use of the resonator at superlumi-
nescence will result in a decrease in the radiation peak
intensity [16] and rate of crystallization. Notice that
generators of phase-transition radiation are radically
distinguished from those of coherent radiation, which
are known in quantum electronics; namely, in the
former case, pumping can be performed by low-grade
heat (ordinary heating) rather than by electric current,
high-power gaseous-discharge lamp, etc. This may also
be essential in designing low-grade heat utilizers.

The use of laser pulses or continuous infrared radi-
ation from a high-power source (laser, arc lamp, globar,
etc.) to promote superradiation is another way of con-
trolling the crystallization rate. Optical control of the
crystallization rate seems to be rather intriguing in pro-
ducing materials not only with desired properties but
also with desired grain size distribution (for instance, in
devices of gradient optics). In this case, it should be
taken into consideration that coarse grains will enhance
radiation scattering in the melt and the oscillatory mode
may eventually break down.

Optical control would be also appropriate for use in
the case of vapor–liquid transitions taking place in gas
liquefiers and solid–solid transitions in the technology
of producing different crystal modifications.

A considerable rise in the phase-transition rate due
to the radiative processes should cut the lifetime of
metastable states such as supercooled vapor and liquid.
It is evident that a high crystallization rate associated
with the radiative phase transition inhibits the occur-
rence of the vitreous state under rapid cooling of the
melt. One can substantially reduce the radiative growth
rate or even break down the superradiation mode by
adding impurities that absorb the radiation at the fre-
quency ω0 or cause significant nonuniform broadening
of a radiation line into the melt. This effect should be
allowed for in technologies of glasses and Pyroceram-
like materials.

The complex crystal structure, polymorphism, a
great discrepancy between maxima in the temperature
dependences of the nucleation rate and crystal growth
rate, high viscosity of the melt, rapid cooling, and the
absence of foreign inclusions are all thought to cause
the formation of amorphous solids. It follows from our
consideration that the parameters k and T2 or , as
well as the system geometry, which specifies the
parameters K, α, and β, play a key role in the formation
of amorphous substances. In many cases, they become
deciding. The amorphous phase is most difficult to
form in substances with low k and high T2, that is, in
salts with the cubic crystal lattice (NaCl, KCl, KJ, etc.),
which are transparent to the radiation at the frequency

T1*

T2*
of transition. In substances with large values of k and T2
(that is, in metals with the cubic crystal lattice) or with
low values of k and  (that is, in noncubic crystals,
such as Si, Ge, Al2O3, etc., which are transparent at the
frequency of transition), the amorphous phase is more
plausible. Finally, the amorphous phase readily forms
in substances with large k and low , that is, in dielec-
trics with the noncubic crystal lattice (SiO2, B2O3,
GeO2, etc.), which are opaque at the transition fre-
quency. While amorphous substances of the first group
are unknown, the substances of the second and third
groups have been obtained amorphous only under
superfast cooling of the melt or in the form of films,
small particles, and gels; the substances of the fourth
group form glasses when the melt solidifies. The sub-
stances of the fourth group crystallize from the melt,
solution, or vapor exclusively nonradiatively, that is,
particle by particle and comparatively slowly. Small
particles and thin films (water drops, metal and semi-
metal films, carbon black particles, Al2O3, etc.) are
fairly prone to vitrification or supercooling, because the
requirement for Kt is not met here.

Phase transitions occurring with energy absorption
(evaporation, melting, and polymorphous transforma-
tions) may likewise bear some resemblance to a coop-
erative optical phenomenon, However, in this case, it is
associated with energy collective absorption, or super-
absorption. It is this phenomenon that can apparently
explain experiments where substances melted when
exposed to &1-ps (subpicosecond) laser pulses.

Our method of analyzing new phase growth can be
extended to the more general case of multicomponent
systems, as well as to a number of related (in our opin-
ion) phenomena: chemical reactions (including self-
propagating high-temperature synthesis), explosive
crystallization, polymorphous transformations, sonolu-
minescence, explosive emission, etc.
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Abstract—The dependence of the mean size of dispersed phase particles on the physical parameters of a sys-
tem (temperature, density, and sound velocity in a substance) was found. The generalized Fokker–Planck equa-
tion was used to calculate the particle size distribution. The obtained binary distribution function was proved to
adequately describe a large array of experimental data in actual physical conditions. It was shown rigorously
that the fine-grain phase (powder) results when the viscocrystalline phase is subjected to shear loads. The shape
of the distribution turned out to be independent of external actions, i.e., remained the same both on sedimenta-
tion and at pressure drop. © 2000 MAIK “Nauka/Interperiodica”.
Interest in the properties of fine-grain powders
stems largely from the fact that many industrial tech-
niques are intimately related to powder metallurgy. It is
particularly remarkable that theoretical findings are
quickly employed in practice in this field. The problem
discussed below also has a direct bearing on powder
technology, since its solution physically justifies a
number of processes and makes it possible to produce
high-quality fine powder.

Let us have a viscocrystalline phase where the vis-
cous liquid and crystalline phase occupy 85–95 and 5–
15 vol.%, respectively. A very thin (δ = 10–4–10–6 cm)
near-surface layer of this substance is subjected to a
shear load F (Fig. 1). Upon being stripped off, this layer
is released to a thermostat and is converted into a pow-
der. The first question immediately arises as to what
forces are behind the formation of the fine-grain phase.
To tackle the question, imagine the following situation
(Fig. 2a). Let a ∆x-long thin layer of a viscocrystalline
structure be dropped into a thermostat. Because of tem-
perature fluctuations δT in the thermostat, each piece of
the structure is under its own temperature T + δT(x) that
differs from others. The characteristic range of x has a
very small dimension R on the order of δ. As follows
from Fig. 2b, “icicles” that form under the action of the
gravity force began to nonuniformly “freeze” from the
lower end. The freezing process is in no way related to
heat conduction (we are dealing with very short times!)
but is due to the phonon transfer of the given local tem-
perature by a distance on the order of R. The transfer
time τ = R/cs, where cs is the sound velocity in the solid
phase (for example, polipropylene or metal). The upper
portion (lower end) of an icicle thus cooled for a time τ
begins to “pool” the as yet liquid lower portion (upper
end). This results in necking, and the neck eventually
1063-7842/00/4507- $20.00 © 0854
breaks. As a result, many fine pellets with a character-
istic linear size R are produced.

To describe this picture mathematically, we should
first elucidate how the shape of the pellet size distribu-
tion depends on R. For simplicity and without loss of
generality (as will be seen later), we will assume the
pellets to be spherical.

Initially, the pellets were absent. This means that the
distribution function at t = 0 (t is time) equals zero and,
hence, no equilibrium (or quasi-equilibrium) distribu-
tion function existed. It appeared at times on the order
of τ, when thermostatic control due to phonons set in.
The situation when phonons do not interact and are free
to move from boundary to boundary is known as Knud-
sen situation [1]. This would have been the case if the
pellets had roughly equal sizes. Actually, however, the
dispersed phase derived is highly nonuniform and con-
tains pellets of different sizes. Then, along with the
Knudsen mechanism, one must also take into consider-
ation phonon interaction. Formally, this means replac-

ing the time τ by τ*, where 1/τ* =  + . (Here,
τ0 is used instead of τ.). The time τ1 can be given by the

τ0
1– τ1

1–

F

1

2

3

δ

Fig. 1. Fine powdering process: Vsh, shear rate; δ, removed
layer thickness; (1) shear stress; (2) viscocrystalline sub-
stance; and (3) thermostat.
2000 MAIK “Nauka/Interperiodica”
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formula

(1)

where λ depends on the ambient temperature T.1

This function is readily determined if a specific
mechanism of phonon interaction is known (see, for
example, [2]). Here, consideration must be given to one
important point. In a “normal” crystalline substance,
the time τ1 is proportional to N/V, where N is the number
of atoms in the lattice and V is the crystal volume.
Therefore, as applied to our case (highly nonequilib-
rium state), the assumption (as yet purely hypothetical)
should be made that the core of a forming pellet has a
fixed number of atoms (of the already crystalline struc-
ture!). Then, we can introduce into consideration a
phonon gas and treat volume as a parameter that fluctu-
ates. This is included in formula (1). It will be shown
below that this assumption makes possible the exact
determination of the distribution function with allow-
ance for a spread in particle sizes. Running ahead, we
notice that the distribution function obtained by solving
the generalized Fokker–Planck equation has two peaks.

Thus, for the time τ*, pellets can grow up only to a
certain (limiting) size. This circumstance is reflected in
the macroscopic equation

(2)

where λ is a parameter (that will be discussed later) and
〈R〉  is the limiting radius of the pellets.

CALCULATION OF THE DISTRIBUTION 
FUNCTION

For our specific problem, the general form of a
kinetic equation that takes into account gravity forces
or pressure drops must have the form

(3)

where f = f(R, p, t) is a desired distribution function and
F is an external force acting on pellets.

In the case of sedimentation (motion in a gravita-
tional field),

(4)

and in the case of a pressure drop,

(5)

1 Notice that ballistic (collisionless) phonon movement from
boundary to boundary is actually an n-fold process. Phonons
striking one boundary pass to it a part of their energy, reflect,
reach another boundary, pass to it a part of the energy again, etc.
The process is repeated n times until the phonons are thermalized
and acquire the mean kinetic energy. Such phonons in combina-
tion are nothing else than a thermostat. As the pellet size R grows,
phonon interaction comes into play. Generally, at a certain (criti-
cal) size Rcr, phonon collisions become competitive with the τ0
mechanism (the condition τ1 @ τ0 is violated). In this case, the
formula 1/τ* = 1/τ0 + 1/τ1 is valid.

1/τ1 λ R
3
,=

dR/dt γR R
2〈 〉 R

2
–( ),=

∂f /∂t dR/dt( )∂f /∂R F∂f /∂p+ +  = Lp f{ } f /τ*,+

F mg 6πηRu,–=

F P1 P2–( )πR
2n.=
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In formulas (3)–(5), n is the normal to the spherical
pellet surface, p = mu is the pellet momentum, m is the
pellet mass (m = ρν, where ρ is the pellet density and
ν = 4πR3/3 is the pellet volume), and u is the pellet
velocity.

The operator Lp{f} describes the particle velocity
distribution (see, e.g., [3, 4]). Its form is typical of the
Fokker–Planck equation:

(6)

where k and D are coefficients.

The solution of (3) should be sought only for the
case ∂f/∂t = 0. In fact, for times less than τ, the classical
consideration fails and the problem must be treated as
purely quantum. For times comparable to τ, the pellet
distribution function has already been established and
only the steady-state solution should be found. In con-
nection with this, we put f = f1{u}f2{R} and, after sep-
aration of variables, obtain

(7)

Equation (7) is solvable if the right- and left-hand
sides equal some constant B. The simple mathematics

in view of the relationship 1/τ* =  +  yields the

Lp f{ } ∂ D∂f /∂p kpf+( )/∂p,=

∂ f 2/∂R( )γR R
2〈 〉 R

2
–( ) f 2

1–
1/τ*–[ ]

=  f 1
1–

Lp f 1{ } F∂ f 1/∂p–[ ] .

τ0
1– τ1

1–

Vsh

(a)

(b)

∆x/Vsh = ∆t $ τ = R/cs

1

∆x

T(x) = T + δT(x)

∆x

1
2

3

Fig. 2. (a) Origination of fine powder: ∆x, small displace-
ment of viscocrystalline phase 1 for a time τ0 (τ0 = ∆x/cs)
and R, radius of formed crystalline structure. (b) Early stage
of icicle formation: (1) neck; (2) grain; and (3) finely dis-
persed phase.
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desired pellet size distribution function:

(8)

where A is a normalizing constant, which is found from

the conservation-of-mass condition {R}dR = M

(M is the total mass of one removed layer); µ = (cs +
λ〈R〉4)/2γ〈R〉  + B/2γ; and ν = –µ.

f2{R} curves for cases of practical value are demon-
strated in Fig. 3. Their extrema are found by solving the
algebraic equation of the fourth order

(9)

where

f 2 R{ } AR
B/γ–

R〈 〉 R+( )µ
R〈 〉 R–( )ν

=

× cs/γR( )– λR/β( )–{ } ,exp

f 2∫

x
4

ax
3

ax
2

ax– b+ + + 0,=

x R/ R〈 〉 , a B/λ R〈 〉 3
, b cs/λ R〈 〉 4

.= = =

(a)

(b)

f2(R)

1

2

3

4

cs/2γ RR

RRRmin = 2BR2/cscs/2γ

Fig. 3. (a) Particle size distribution function for B < [cs +

λ〈R〉4]/〈R〉 . (1) Peak at R1 max = 〈R〉(1 – ε) for ε = 0.25 +
b/4(1 – a), B < 0, a < 0; (2) B < 0, b ! 1, a < 0, R1 max =

4〈R〉b1/2/3, R2 min = 〈R〉(1 – ε), and R3 min = 3〈R〉/4. (b) Dis-

tribution function for B > [cs + λ〈R〉4]/〈R〉: (3) B > 0, a > 0,

B ! 1, R1 max + 4〈R〉b1/2/3, and R2 min = 〈R〉(1 – ε); (4) B >
0, equation (9) has four real roots. In this case, an analytic
solution is impossible to find, and the distribution function
vs. radius curve is shown schematically.

f2(R)
Two cases are possible: B < 0 (a < 0) and B > 0
(a > 0). In the former case, the distribution function has
either one maximum or two maxima and one minimum
(Fig. 3a); in the latter, either one maximum and one
minimum or two maxima and two minima (Fig. 3b). In
both cases, the distribution function reflects the actual
physical situation dealt with in the process of powder
production.

Now we turn to the constant γ, involved in (1). The
formation of a crystalline structure is known [5] to be a
highly nonequilibrium process. Under such conditions,
crystallization formally depends on two temperatures:
thermostat temperature T and crystallization tempera-
ture Tcr . As the temperatures are close to each other in
our given case, the coefficient γ, which characterizes
the rate of nucleus growth, depends on their difference.
The growth rate can be related only to the viscosity of
the system. The latter is known [6, 7] to be described by
the expression

(10)

where ∆ is the energy gap and η0 is the viscosity at
T = ∞.

The nucleation rate (the rate at which a hydrody-
namic viscous flux adheres to the basic crystalline
structure) must be inversely proportional to η. The only
possible relation in this case has the form

(11)

where the kinematic viscosity ν and dynamic viscosity
η are conventionally related as η = νρ (ρ is the density).

The velocity u0 is defined by the exchange interac-
tion integral Jex and mean interatomic spacing 〈a〉; i.e.,

(12)

where " is Planck’s constant.
Eventually, the desired growth rate of a microscopic

nucleus is given by

(13)

This expression adequately covers real situations,
since it includes all the basic physical parameters
needed for growth description at both the micro- and
macroscopic levels.

THE EFFECT OF A HIGH-FREQUENCY 
ELECTRIC FIELD ON THE FORMATION 

OF THE DISPERSED STRUCTURE

When the molten material is exposed to an ac elec-
tric field whose frequency satisfies the inequality

(14)

(K is the rate of a chemical reaction that specifies the
exchange interaction), the exchange integral dimin-
ishes, affecting the crystallization process [see, e.g.,
[8, 9]). This is associated with the fact that exchange

η η0 +∆/kB T Tcr–( )( ),exp=

γ u0
2
/ν ,=

u0 Jex a〈 〉 /",=

γ Jex a〈 〉 /"( )2
/ν .=

ω @ K
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coupling sets in because the wave functions of elec-
trons of neighboring atoms overlap. Since the electrons
strongly interact with the ac field, the exchange energy
becomes frequency-dependent. It is significant that the
frequency range where this takes place is rather narrow
and only specific frequencies of the field can influence
the exchange energy. From the physical standpoint,
condition (14) merely indicates that the chemical reac-
tion has no time to be completed during the cycle of the
electric field; hence, exchange coupling weakens.

If the field begins to act from the instant that the
entire substance represents a viscocrystalline structure,
it must act to the end of crystallization. Only then can
one expect the realization of the above effect: dispersed
pellets become still finer (exchange interaction weak-
ens); and their agglomerate, more homogeneous.

As follows from the above formulas, the structure
will be homogeneous if (1) the substances to be dis-
persed are selected such that the sound velocity is as
low as possible, (2) the relaxation time τ1 is as long as
possible, (3) the melting (crystallization) point is as
high as possible, and (4) the applied field frequency is
such that the exchange interaction does not show up
[8, 9]. The field frequency ω must be such that electron
bonds have no time to form; that is, it must exceed K,
where K is the chemical reaction rate.
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Abstract—The photoelectric phenomena and orientational nonlinearity induced by nanosecond laser pulses in
planar layers of liquid crystals oriented by silicon oxide (SiO) and activated with polymethine dyes were inves-
tigated. These phenomena are due to the photogeneration of surface and bulk charges in the liquid crystal cell,
their spatial distribution between the grating vector and the beam propagation directions, and the electrohydro-
dynamic instability. © 2000 MAIK “Nauka/Interperiodica”.
Previously [1, 2], we have observed the phenome-
non of static grating recording in the planar layers of
nematics oriented with silicon oxide and activated with
dyes such as phthalocyanines, bisanthenes, and poly-
methines used for the passive Q-switching of ruby
lasers [3, 4] and laser wave front inversion [5, 6]. The
gratings were recorded at a radiation power of 5 ×
106 W/cm2 and had a spatial frequency of not less than
500 line/mm. They existed for a long time (several
weeks) and could be erased either by heating liquid
crystals above the temperature of transition to the iso-
tropic state or by applying an electric voltage of about
30 V. The lattices represented the regions of “domains,”
where the director orientation deviated from the initial,
surrounded by disclinations [7, 8]. Study of the reorien-
tation in these regions by means of polarization micros-
copy and dynamic holography revealed a number of
spectral features connected with the photorefractive
properties of dye-activated liquid crystals.

The experimentally observed photorefraction in liq-
uid crystals (LCs) [9,10] is of considerable interest due
to the unusually large nonlinear response of the
medium. By now, various mechanisms for the photore-
fraction phenomena observed in nematics activated
with dyes [9,10], fullerene C60 [11], and discotic nem-
atics [12] have been proposed. A space charge field
induced by the interference field of continuous wave
gas lasers at a small static voltage (1–2 V) can be
explained by diffusion, drift, or transport of the photo-
generated charges or by anisotropy of the dielectric per-
mittivity and conductivity (Karr–Helfrich effect).
Another possible reason for the photorefraction can be
the photovoltaic effect in LC cells reported in [13, 14].

We have used nanosecond ruby laser emission
pulses to record orientational dynamic holograms of
high diffraction efficiency in nematics activated with
ionic polymethine (cyanine) dyes [15]. The accompa-
1063-7842/00/4507- $20.00 © 20858
nying photoelectric phenomena were studied in this
work.

LIQUID CRYSTAL SAMPLES

The experiments were performed with planar ori-
ented liquid crystals of two types. Samples of the first
type had both conducting and orienting coatings, while
those of the second type had only the orienting coating.
The orientation was performed by the oblique vacuum
deposition of SiO layers with a thickness of about
300 Å. Director slope angle to the substrate surface var-
ied within 1°–3°. Stoichiometry of the near-surface sil-
icon oxide layer to a depth of 14 Å was studied by
means of X-ray photoelectron spectroscopy using an
ESCA spectrometer (EMgKα1, 2 = 1253.6 eV). A maxi-
mum attributed to Si4+, characteristic of silicon dioxide,
was observed in the Si2p electron band. After the ion
sputter cleaning, an additional maximum shifted by
0.5 eV, which is characteristic of SiO, was observed as
well. The ratio of oxygen to silicon was equal to
approximately 1.2. Such an inhomogeneous structure
contains oxygen vacancies, which favor the formation
of local energy levels in the bandgap of the dielectric
SiO film. We must also note that the evaporated films
exhibit some absorption at the ruby laser wavelength
(λ = 694.3 nm), with the absorption coefficient equal to
α ≈ 1.5 cm–1. To study the conductivity, we used LC
cells with transparent evaporated electrodes of indium
oxide In2O3 covered with a SiO film.

We used nematics with a small positive dielectric
anisotropy such as 5TsB (∆ε = 5) and a mixture of
ZhK-440 (∆ε < 0) with up to 15 wt. % ZhK-497
(∆ε > 0) (NIOPIK, Moscow). Figure 1a shows the
structures of polymethine dyes PK-686 and PK-742
(Institute of Organic Chemistry, Kiev) used as the acti-
vating agents. The absorbtion dichroism of PK-686 and
PK-742 additives in 5TsB was equal to 0.02 and 0.33;
000 MAIK “Nauka/Interperiodica”
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and that in the ZhK-440+ZhK-497 mixture was 0.46
and 0.69, respectively. The LC cell thickness was equal
to 50 µm.

INTRINSIC CONDUCTION OF LC ACTIVATED 
WITH IONIC POLYMETHINE DYES

LCs activated with ionic dyes represent weak elec-
trolyte solutions. In polar LC solvents, polymethine
dyes dissociate into organic cations and iodine anions
(J–). In the stationary case, when the electric current
density satisfies the condition dj(t)/dt = 0, the conduc-
tivity is determined by the well-known equation [16]

(1)

where e is the carrier charge; µ± are the positive and
negative ions mobilities; n = n+ = n– is the concentration
of charge carriers; n0 is the impurity concentration; and
γD(E) and γR are the constants of dissociation and
recombination, respectively (γD depends on the field
strength in strong electric fields).

The conductivity measurements were performed
using the scheme presented in Fig. 1b. The value of σ
was determined as σ = dU'/[SRH(U – U')], where d is
the layer thickness, S is the sample cross section
through which the current flows, RH is the load resis-
tance, U is the source voltage, and U' is the voltmeter
reading. The perpendicular conductivity component
σ⊥ (j ⊥  L, L being the layer director) was measured dur-
ing the study of planar layer. The parallel component δ||
was 1.5 times larger. Figure 2 shows a typical current–
voltage characteristic of an LC activated with polyme-
thine dyes and the plots of conductivity versus voltage
across the sample for various dye concentrations. As is
seen, the current increases slowly and the conductivity
remains virtually constant and equal to σ ≈
10−9 Ω−1 cm–1 in the range of voltages from 0 to 1 V.
Note for comparison that the intrinsic conductivity of
5TsB is σ0 ≈ 2 × 10–11 Ω–1 cm–1 and that of the
ZhK-440 + ZhK-497 mixture is approximately 5 ×
10−11 Ω–1 cm–1. 

Already at a small voltage (~0.1 V), the LC cell
exhibits the properties of a galvanic cell. This might be
evidence of the electric double layer existence in the
vicinity of the electrode. According to the formula for
the Debye screening radius, the layer thickness is rD =
(Dε/4πσ)1/2, where D is the diffusion coefficient. For
the molar concentrations of impurities typically used in
experiments (10−4…10–3 mol/l), the screening radius is
usually smaller than 1 µm [17]. Taking this into
account, we obtain the value of diffusion coefficient D =
10–6 cm2 s–1 for the conductivity value σ = 10–9 Ω–1 cm–1.
Using the Einstein relationship D = kBTσ/ne2 for the
diffusion coefficient, we may estimate the concentra-
tion of carriers n = 1.4 × 1013 cm–3. It is also possible to

σ e µ+ µ–
+( )n

±
=

=  e µ+ µ–
+( ) γD E( )n0/γR[ ] 1/2

,
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Fig. 1. The structure of polymethine dye (a) and the scheme
of conductivity measurements in LCs activated with poly-
methine dyes (b).
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calculate the mobility of the carriers µ = σ/2en = 2 ×
10−5 cm2 V−1 s–1. The mobilities and diffusion coeffi-
cients of ions are not the same because of a consider-
able difference in size (iodine ion radius is  ≈ 2.19 Å,
while that of the organic cation is rOC+ ≈ 20 Å). A rela-
tionship between the mobility of ions and the viscosity
of a liquid insulator established by Walden [18]
gives µχ = e/6πr, where χ is the viscosity. This allows
one to estimate µ± and D± using the ratio /rOC+.

The final values are µ– = 1.8 × 10–5 cm2 V–1 s–1, µ+ =
2 × 10–6 cm2 V–1 s–1; D– = 9 × 10–7 cm2 s–1, and D+ =
10−7 cm2 s–1. Then the parameter ν = (D+ – D–)/(D+ + D–)
characterizing the relative mobility of ions is 0.8, which
is considerably higher than the values in other photore-
fractive LCs [9, 10]. In practice, this value is slightly
smaller than the estimate due to the different degrees of
cation and anion coupling with the molecules of sol-
vent.

In contrast to the region of voltages below 1 V,
where the current grows slowly, both conductivity and
current increase rapidly in the interval from 1 to 2 V.
This is due to the growing role of dye ionization with
increasing electric field strength in accordance with the
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Fig. 3. The plots of photoconductivity versus energy density
at various α, cm–1: (1) 14; (2) 48; (3) 154. The inset shows
the plots of photocurrent versus absorbance in (1) the
absence and (2) the presence of voltage across the cell elec-
trodes. U = 1.6 V.
Onsager theory σ ~ exp(E)1/2 [18]. The conductivity of
a solution with the concentration n0 = 3 × 1017 cm–3

rises from 10−9 to 9 × 10–9 Ω–1 cm–1, and the concentra-
tion of carriers also grows by almost one order of mag-
nitude to reach n = 1.3 × 1014 cm–3. At a large current,
the concentrational emf causes saturation of the cur-
rent–voltage characteristic.

PHOTOINDUCED CONDUCTION IN LIQUID 
CRYSTALS ACTIVATED WITH POLYMETHINE 

DYES

The conductivity of LC cells increased as a result of
pulsed excitation by radiation of the ruby laser (pulse
duration, 60 ns). The radiation beam was expanded
with a lens to fit the size of the sample, after which the
energy density was equal to ~0.1 J/cm2. The photocur-
rent was measured by means of an oscillograph
(Fig. 1b) using the maximum value in a pulse response.
In the presence of a static electric field, the current
relaxed to its stationary value within a time period of
about 10 ms. Here we can see a steady growth of the
photoconductivity with an increase in the solution con-
centration and the voltage across the electrodes (Fig. 2,
curves 1'–3'), which makes these curves different from
the initial ones (Fig. 2, curves 1–3). One of the possible
reasons for the photoconductivity growth is the addi-
tional dissociation of excited molecules into ions,
which are distributed in the cell volume in accordance
with formula ρ(z) = ρ0exp(–αz), where α is the absorp-
tion coefficient. Here, the z axis is parallel to the beam
propagation and perpendicular to the layer director L
and the substrate. This is confirmed by the growth of
conductivity with an increase in the absorption coeffi-
cient and radiation intensity (Fig. 3). For the cell with
α = 154 cm–1, the number of carriers increases from
1.3 × 1014 up to 2 × 1014 cm–3. We may describe the
dependence of the photoconductivity on the radiation
intensity I and the absorption coefficient α under some
simplifying assumptions. The balance equation of the
photoinduced ion production is as follows [9]:

(2)

where γR = D±e2/kBT, I = I0exp(–αz), and a = a0α is a
constant characterizing the photodissociation effi-
ciency.

The dissociation of the excited dye molecules can
occur in the presence of states with large lifetimes,
where the probability of collisions with molecules of
the crystal matrix is sufficiently large. On the other
hand, the intercombination conversion from a triplet
level increases the temperature in a local interaction
region and also results in a growth of the degree of dis-
sociation. Study of the kinetics of interaction of pulsed
ruby laser radiation with polymethine dyes in LCs
showed that dye molecules radiate via a three-level
scheme involving a metastable state with a lifetime of

∂n
∂t
------ γRn

+
n

–
+ aI z( ),=
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~1.5 µs [19]. Thus, the main processes of ion recombi-
nation and dissociation occur after termination of the
laser pulse. Then the balance equation (2) splits into
two parts:

(3)

(4)

where τ is the pulse duration.
The first equation gives the number of radiation-

induced charge carriers  = aI0exp(–αz)τ. The second
equation allows us to determine variation of the
induced charge density with time after the laser pulse:

(5)

For the parameters γR ≈ 5.7 × 10–13 cm3 s–1, t = 100 µs
(the moment the maximum current amplitude is
reached), and  ≈ 0.7 × 1014 cm–3 (the maximum num-
ber of induced charge carriers under our experimental
conditions) we obtain the value γRt ≈ 0.004, which is
much less than unity. Taking into account Eqs. (1) and
(5), the photoinduced conductivity can be expressed as

(6)

Here, the function σ'{αI0exp(–αd)} is in fact close
to linear, which is illustrated in Fig. 3 (curves 1'–3').

We observed the phenomenon of photocurrent exci-
tation in the absence of any external static electric field.
This effect qualitatively differs from that discussed
above. In the presence of an external field, the photo-
current polarity follows the polarity of the applied volt-
age, while without the field, the polarity of the signal on
the load resistor RH is determined by the direction of the
incident light beam. The photocurrent flows from the
illuminated electrode to the dark one (i.e., cations move
from the bulk of the crystal toward the input electrode).

High-power laser radiation (~106 W/cm2) may give
rise to the injection of electrons from the electrode (this
effect was observed experimentally) and to the genera-
tion of charges on the surface of silicon oxide films.
Combined thermal and field effects of the laser radia-
tion will result in the accumulation of negative charge
at the film surface [20]. This process is favored by the
existence of local energy levels in the bandgap of insu-
lating SiO film, by the light absorption in the film, and
by the injection of charge carriers from the electrode.
Recombination of the free charge carriers and cations
of the solution at the relief film surface [15] will cause
the formation of radical ions of dye molecules. These
ions can settle as defects on the surface, which is one of
the possible reasons for the formation of disclinations,
bounding the regions with different orientations

∂n
∂t
------ aI0 αz–( ) for texp τ ,<=

∂n
∂t
------ +γRn

+
n

–
0 for t τ ,>= =

n0'

n' t( )
n0'

n0' γRt 1+
----------------------.=

n0'

n0'

σ' t( ) e µ+ µ–
+( )a0α I0 αz–( )z.exp≈
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induced in the bulk of the LC by the interference radia-
tion field as a static lattice of domains.

The relaxation time of the induced charge was of the
order of milliseconds. The Debye relaxation time of the
volume charge is τD = ε⊥ /4πσ⊥ . For ε⊥  = 10 and σ⊥  = 3 ×
10–9 Ω–1 cm–1, this formula gives τD = 0.3 ms, which is
smaller by one order of magnitude than the value
observed in experiment. Thus, inhomogeneous distri-
bution of the volume charge along the beam direction
up to a depth exceeding the electric double layer thick-
ness arises as a result of the photoinduced unipolar
injection of charge carriers at the surface and the disso-
ciation of dye molecules. This leads to the appearance
of a photoinduced electric field Ez. Photogeneration of
the volume charge also results in the electric double
layer destruction and more intensive growth of the cur-
rent beginning with very small voltages, as can be seen
in Fig. 2 (curves 1'–3').

DIFFRACTION GRATINGS IN LIQUID 
CRYSTALS ACTIVATED WITH POLYMETHINE 

DYES
The orientational photorefractive nonlinearity in

LCs induced by the pulsed radiation of the ruby laser
operating in the TEM00 mode (pulse energy E = 60 mJ,
pulse duration τ ≈ 60 ns) was studied by means of
dynamic holography using the radiation of a He–Ne
laser as a probe. The geometry of experiment in which
the direction of the lattice vector q coincides with that
of the director L (see Fig. 4a) was selected from a num-
ber of various possible geometries. If the polarization
vectors of the pumping waves E1 and E2 and the prob-
ing wave E3 are parallel to the director L, the diffraction
efficiency of the gratings is 2–3 times greater than in
the case of E1, 2 || L, E3 ⊥  L and an order of magnitude
larger than that for E1, 2 ⊥  L. The director is mainly
reoriented in the xz plane.

The radiation field generates charges inhomoge-
neously distributed in space along the x-axis (with a
grating constant Λ) and along the z-axis (Fig. 4b). In the
absence of an external static electric field, a photoin-
duced field Ez arises in the region of diffraction maxima
along the z-axis and the diffusion of induced charges is
observed along the x-axis with a lattice relaxation time
τD = Λ2/4π2D. Weak electric current accompanied by
the gradient of positive ion concentration along the
z direction might cause isotropic electrohydrodynamic
instability. The mechanism of this instability formation
under conditions of unipolar injection was considered
by Felici [21]. Figure 4b shows a model describing the
mechanism of instability in our case. Due to inhomoge-
neous charge density distribution, both in the laser
beam direction and along the substrate, an electrostatic
force F = δρEz arising in the bulk of the layer will cause
the formation of two vortices over a length equal to the
grating constant Λ. Rotation of the director as a result
of the hydrodynamic flow will have a period close to
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Fig. 4. Schematic diagrams showing (a) the interaction
geometry and (b) a model of the electrohydrodynamic insta-
bility formation in LCs activated with polymethine dyes.
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Fig. 5. Osscillograms of the first-order diffraction intensity
for the probing beam of a He–Ne laser in LC cells oriented
with (a–e) silicon oxide and (f) polyimide. Time scale
(ms/div): (a) 0.1, (b) 5, (c–f) 100; α = 14cm–1; (e) lattice
relaxation in the presence of electric field U = 1.2 V (higher
amplitude) and in the absence of the field.
the cell thickness [22]. The threshold voltage of insta-
bility of an LC with ∆ε > 0 may be lower than that of a
electrohydrodynamic instability of the anisotropic type
according to the Karr–Helfrich model [16].

In the presence of a static electric field E0, the inter-
ference field of the laser radiation gives rise to the pho-
toinduced field Ex (Fig. 4b) due to anisotropic conduc-
tivity (the conductivity is equal to σ|| along the x-axis
and to σ⊥  along the z-axis. In accordance with the Karr–
Helfrich model, the field Ex is determined by the for-
mula [23]

(7)

where Θ is the angle of director deviation in the xz
plane.

Electrohydrodynamic instability of the anisotropic
type arises if there is an initial disturbance of the direc-
tor orientation in the layer, which can be induced by an
isotropic instability. The rotation of the layer director is
enhanced when the direction of the static field E0 coin-
cides with the direction of the induced field Ez. The
period of sinusoidal deformation of the director
remains the same and is close to the layer thickness.

Typical oscillograms of the first-order diffraction in
the LC cells oriented with SiO without electrodes are
presented in Fig. 5. Two types of the characteristic
relaxation time are observed, the first being the thermal

diffusion time τT = ρ0 Λ2/4π2λT (equal to 0.5 ms, see
Fig. 5a) and the second, the orientational time, which is
determined essentially by the charge diffusion τD =
Λ2/4π2D (Figs. 5b–5f). Typical values of the LC param-
eters are as follows: ρ0 = 103 kg/m3, χ = 7 × 10–2 kg/(m s),
Cp = 1500 J/(kg K), λ1 = 0.16 J (K s m), D = 10–6 cm2/s.
For a grating constant of Λ = 40 µm the time constants
τT and τD are equal to 0.5 ms and 400 ms, respectively,
in good agreement with experiment. The orientational
component is observed after vanishing of the thermal
component and has a buildup period of 20 ms (a), while
the relaxation time varies from 0.4 to 1 s. The time
parameters of the holograms depend not only on the lat-
tice constant and properties of LC media, but on the
conditions of orientant deposition and the laser radia-
tion intensity as well, which results in the formation of
both dynamic and static gratings. A typical oscillogram
of variation of the probing beam of a rectangular shape
in the case of equilibrium of the hydrodynamic and ori-
entational moments is shown in Fig. 5d. A grating con-
stant Λ close to 40 µm is the optimum value for effec-
tive gratings (Fig. 6). The diffraction efficiency η grows
with increasing radiation intensity and absorption coef-
ficient, reaching a maximum at αI0 = 16 J/cm3 (Fig. 7a).
With the further growth of αI0, the value of η drops as
a result of convective motions in the bulk of the cell.
Heating of the liquid crystal does not affect the diffrac-
tion efficiency but results in a decrease of the relaxation

Ex σ,
σ|| σ⊥–( ) Θ Θsincos

σ|| Θcos
2 σ⊥ Θsin

2
+

------------------------------------------------E0,–=

Cp
2
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time τΘ = χΛ2/4π2 K from 600 (T = 20°C) to 150 ms
(T – Tis = 1°C), which corresponds to the reduction in
viscosity χ (in the isotropic phase, this time is 50 ms).
The maximum diffraction efficiency of the gratings was
equal to 3–4%.

The efficiency of the gratings can be increased using
an additional static field. Typical oscillograms of the
diffraction beam intensity with and without voltage
across the cell electrodes are presented in Fig. 5e. Here,
no relaxation of the cell to the initial state is observed
because of a static grating formation. The character of
the diffraction efficiency variation as function of the
absorbed radiation αI0 is not altered in the presence of
the field (Fig. 7b). The results of our study reveal sev-
eral subsequent stages in the variation of η with
increasing voltage. The efficiency does not change con-
siderably in the region below 0.6…0.8 V, where the
conductivity and also exhibits no significant variation
(Fig. 2). The range 0.6…1.3 V reveals the growth of

3.0

2.0

1.0

η, %

10 20 30 40 50 60
Λ, µm

Fig. 6. The plot of diffraction efficiency η versus grating
constant Λ.
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both η and conductivity. Here the value of η is approx-
imately three times greater than the value without bias
voltage. At U = 1.4 V, which is close to the Fredericksz
transition (for our LCs, the threshold voltage is UFr ≈
2 V), η decreases, because the geometry of experiment
does not provide for the formation of electrohydrody-
namic instability. The diffraction efficiency in the pres-
ence of electric field was equal to 10%. 

As a result of comparative experiments involving
nonionic dyes and other orienting substances, we may
conclude that the reorientation described above has
remarkable features in the ionic compositions LC + dye
with orienting SiO layers. Figure 5 compares orienta-
tional components for the LC cells with SiO and poly-
imide orientants. The conductivity and the grating
appear in the LC cells without a static electric field and
are only enhanced by the external field. Apparently, we
initially observe an isotropic electrohydrodynamic
instability with a lower threshold and then the instabil-
ity of anisotropic character, which is similar to the opti-
cal Karr–Helfrich effect in liquid crystals. Our experi-
mental conditions provide for the observation of these
effects [22]. Indeed, the efficiency of gratings in planar
layers is maximum when the grating constant Λ is close
to the cell thickness. In addition, the cells exhibit a pos-
itive anisotropy of conductivity (σ|| ≈ 1.5σ⊥ ). Finally,
the effect in LCs with positive dielectric anisotropy
(∆ε > 0) is observed at voltages U < UFr . Dynamics of
the orientational grating shows that reorientation
occurs within a period of ~20 ms simultaneously with
the photocurrent relaxation (10 ms) and the onset of
macroscopic mobility in the liquid crystal volume.

Thus, the photogeneration of surface and bulk
charges in the LC cell, the distribution of these charges
in space in the beam direction and along the grating
vector, and the interaction of photoinduced fields with
the applied static field result in the phenomena of elec-
10 20 30

(a)

5.0

4.0

3.0

2.0

1.0

0

η, %

4

3

2

1

0.5 1.5 2.0

(b)

5.0

4.0

3.0

2.0

1.0

0

1'

αI0, J cm–3
1.0

U, V

2'

Fig. 7. The plots of diffraction efficiency versus (a) parameter αI0 and (b) voltage for α = 14 (1), 48 (2, 1'), 154 cm–1 (3, 4, 2') and
U = 0 (1–3), 1.2 V (4). 

η, %
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trohydrodynamic instability and effective reorientation
of the LC layer director.
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Abstract—Analogs of the Brewster effect and total internal reflection were investigated for cylindrical waves
passing through a cylindrical interface. It was found that, in the case of cylindrical geometry, the Brewster effect
is also observed but weakens with decreasing moment of momentum of a cylindrical wave. Wave reflection
from a small-radius cylindrical interface is analyzed. Asymptotic expressions for the reflection factor of a cylin-
drical wave are obtained when the radius of the interface tends to zero. It was found that, as the radius the inter-
face decreases, the reflection factor of a cylindrical wave with a nonzero moment of momentum approaches
unity from the left but does not reach this value. © 2000 MAIK “Nauka/Interperiodica”.
.INTRODUCTION
The incidence of a plane light wave on the planar

interface between two media with refraction indices n1
and n2 seems to be the physical phenomenon that has
been investigated in most detail [1, 2]. The Brewster
effect (the reflection factor is exactly equal to zero
when a p-polarized wave is incident at an angle θBR that
satisfies the relationship  = n2/n1) and total
internal reflection (the reflection factor is exactly equal
to unity when n1 > n2 and the angle of incidence
exceeds the critical value sinθtot = n2/n1) are finding
wide application in technology. In the last few years,
designers have been trying to use cylindrical structures
in various optoelectronic devices [3, 4]. Several theo-
retical papers are devoted to the propagation of cylin-
drical waves in laminated cylindrical structures and
through a cylindrical interface [5–7]. However, a num-
ber of intriguing features, such as an increase in the
reflection factor when the radius of the interface is
small and the dependence of optical properties on the
light polarization, call for further investigation. In this
paper, we try to contribute to the study of these effects.

RESULTS AND DISCUSSION
Consider a cylindrical light wave with a frequency ω

that propagates perpendicularly to the axis of structure
symmetry (z-axis) and is incident on the cylindrical
interface between two media with refraction indices n1
(internal medium) and n2 (external medium). The
media are assumed to be infinite along the z-axis
(Fig. 1). Cylindrical waves of arbitrary polarization can
be represented as a superposition of E (electric field E
is parallel to the axis of symmetry) and H (magnetic
field H is parallel to the axis of symmetry) waves [7].
The reflection amplitude factor rd (introduced as the

θBRtan
1063-7842/00/4507- $20.00 © 20865
ratio between the tangential electric field components
in the reflected and incident waves) for the E- and H-
polarized cylindrical light waves scattered from a cylin-
drical interface of radius ρ is given by [7]

(1)

and

(2)

respectively. Here,  = (nlKρ)/ (nlKρ),

(nlKρ) is the Hankel function, K = ω/c, c is the
speed of light, and the derivative sign means differenti-
ation with respect to the whole argument and not just
to ρ.

Figures 2 and 3 show the variations of the phase and
squared absolute value of the reflection amplitude fac-
tor for the E-polarized cylindrical wave scattered from
the interface between media with refraction indices of
1.0 and 3.0. In the figures, the three curves correspond
to moments of momentum m = 0, 2, and 5. Figure 2
illustrates the situation when the external medium is
optically denser, while in Fig. 3, the situation is
reversed. Figures 4 and 5 present the same for the H-
polarized wave.

In a cylindrical wave, Poynting’s vector is radially
directed when m = 0. When the moment of momentum
is nonzero, the angle Θ between Poynting’s vector and
the radius depends on ρ and satisfies the approximate
relationship

(3)

rd

n2Cm2
1( )

n1Cm1
1( )

–

n1Cm1
2( )

n2Cm2
2( )

–
-----------------------------------,=

rd

n2/Cm2
1( )

n1/Cm1
1( )

–

n1/2Cm1
2( )

n2/Cm2
1( )

–
-------------------------------------------,=

Cml
1 2,( )

Hm
1 2,( )'

Hm
1 2,( )

Hm
1 2,( )

Θsin m/nKρ,=
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Θ2
Θ1

ρ

n1

n2

Θ2
Θ1

ρ

n2

n1

(a) (b)

Fig. 1. Trajectory of energy transfer in a refracted cylindrical wave for ρ = 0.55*(2π/K) and m = 5: (a) n1 = 3 and n2 = 1 and (b)
n1 = 1 and n2 = 3.
The azimuth component of Poynting’s vector being
proportional to m/ρ. Within a small portion of the inter-
face, one could consider an incident cylindrical wave as a
plane wave incident on the plane interface at an angle Θ.
This, however, may yield qualitatively false results, as
demonstrated below.

As ρ increases, the azimuth component of Poynt-
ing’s vector vanishes and angle Θ approaches zero; i.e.,
the incidence of a cylindrical wave on a cylindrical
interface of large radius is equivalent to the normal
incidence of a plane wave on a planar interface [7].
Indeed (Figs. 2–5), for large ρ’s, the square of the
reflection factor magnitude tends to 25% and its phase
approaches zero or π, depending on medium alterna-
tion, for both polarizations.

1

0 0.5 1.0 1.5
ρK/2π

(a)

(b)

π

19π/20

ϕ
R

1

2 3

32

1

Fig. 2. (a) Phase and (b) square of the absolute value of the
reflection amplitude factor for the E-polarized scattered
cylindrical wave vs. interface radius. n1 = 1, n2 = 3, and m =
(1) 0, (2) 2, and (3) 5.
As ρ decreases, the angle Θ determined by (3)
increases. When n1 > n2 and a light wave comes from
the internal medium, total internal reflection is
observed if ρ = ρtot and Θ = Θtot. The critical value of
the radius ρtot is determined by the formula Kρtot =
m/n2. When n1 < n2, total internal reflection must be
absent.

The above considerations are in conflict with the
following properties of cylindrical waves. First, using

(1), one can show (taking into account that  is the

complex conjugate to ) that the reflection intensity
factor does not depend on the sequence of layers, as in
the case of the normal incidence of a plane wave on a
planar interface (Figs. 2–5) [7]. Second, after the wave
crosses the interface, Θ determined by (3) does not

Cml
1( )

Cml
2( )

1

0 0.5 1.0 1.5
ρK/2π

(a)

(b)

π/4

–π

ϕ
R

1

2 3

3

2

1

0

Fig. 3. The same as in Fig. 2 for n1 = 3 and n2 = 1. 
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depend on the refraction index of the layer from which
the wave comes. However, the angles Θ on both sides
of the interface are formally related by Snell’s law
[1, 2] [see (3)].

In fact, when the radius ρ of the interface decreases
and reaches a certain m-dependent characteristic value
(m is assumed to be nonzero), the reflection intensity
factor starts increasing, asymptotically approaching
unity from the left (see Figs. 2–5 and Appendix). This
phenomenon, briefly described in [5], was called total
reflection at small radius. It was indicated that the
reflection amplitude factor is equal to (−1)m + 1i at a
small (but nonzero!) radius. According to our calcula-
tions, the absolute value of the reflection factor, while
approaching unity as ρ tends to zero, always remains
less than unity at any nonzero ρ. The phase of the
reflection factor behaves in a quite different way,
approaching π. A small variation of the reflection factor
magnitude from unity may affect the observed optical
properties of an actual cylindrical structure only
slightly. However, being involved in the phase of the
reflection factor, such an error radically changes the
calculated spectrum of the optical eigenmodes in the
cylindrical system.

Thus, total internal reflection is not observed for
cylindrical waves propagating perpendicularly to the
axis of symmetry, which can be explained in simple
physical terms.1 In the plane case, when total internal
reflection occurs, light passes through the interface into
the lower index medium, turns, and comes back to the
higher index medium. Such is not the case in cylindri-
cal systems, because the curvature of the interface
exceeds that of the light “trajectory.”

For H-polarized waves, one can find, for every m, a
radius ρBR such that Θ determined by (3) will be equal

1 Note that the situation under consideration has nothing to do with
light propagation in fibers, where total internal reflection takes
place for light waves propagating along the axis of symmetry.

1

0 0.5 1.0 1.5
ρK/2π

(a)

(b)

10π/9

8π/9

ϕ
R

1

2 3

1 2 3

Fig. 4. The same as in Fig. 2 for the H-polarized cylindrical
wave.
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to the Brewster angle ΘBR. It is easy to check that this
“Brewster radius” satisfies the relationship

(4)

Figures 4 and 5 demonstrate that, when m ≠ 0, the
dependences of the reflection factor for the H-polarized
wave on interface radius have minima located close to
those predicted by (4). This fact enables us to argue that
these minima reflect the Brewster effect. In the minima,
the reflection factor is other than zero but the minimum
for m = 5 is deeper than for m = 2. This can be explained
if we take into account that the Brewster effect is a
result of the transversality of electromagnetic waves
[1, 2]. Hence, this effect must be weaker in the case of
cylindrical waves, whose Poynting’s vector is locally
transverse. As the moment of momentum m increases,
the Brewster radius grows, the curvature of the surface
decreases, the situation more and more resembles the
plane case, and the minimum becomes deeper.

Our analysis demonstrates that, for cylindrical
structures, a phenomenon similar to the Brewster effect
is observed but, instead of total internal reflection, the
reflection factor grows at a small radius.

APPENDIX

Asymptotics of the Reflection Factor 
for the Small-Radius Interface

The reflection factor of the E-polarized wave scat-
tered from the interface between media 1 and 2 is rep-
resented by

KρBR m n1
2–

n2
2–

+ .=

r
n2Cm2

1( )
n1Cm1

1( )
–

n1Cm1
2( )

n2Cm2
1( )

–
-----------------------------------.=

1

0 0.5 1.0 1.5
ρK/2π

(a)

(b)

π

–π/3

ϕ
R 1

2

3

1

2

3

Fig. 5. The same as in Fig. 3 for the H-polarized cylindrical
wave. 
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Replacing the Hankel functions by combinations of
the Bessel (Jm) and Weber (Ym) functions in the formula

for , one can use the approximate expressions

(1A)

and

(2A)

as the argument of the functions approaches zero. This
is valid, since, at small arguments, the Weber function
tends to infinity, while the Bessel function approaches

zero (or unity when m = 0). The formula for  can

be written in the form (x) = F(x) + iG(x). When
m = 0, F(x) and G(x) are defined by

(3A)

(4A)

For m = 1,

(5A)

(6A)

where γ is the Euler constant.

For m ≥ 2,

(7A)

(8A)

The reflection amplitude factor of the E-polarized
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wave can be written in the form

(9A)

At m = 0, this yields for the reflection amplitude (r)
and intensity (R) factors

(10A)

and

(11A)

respectively.2 
For m = 1,

(12A)

and

(13A)

For m ≥ 2,

(14A)

and

(15A)

The reflection amplitude factor of the H-polarized

2 For m = 0, one should prefer exact formula (1) rather than the
asymptotic approximation, which is too awkward.
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wave can be represented in the form

(16A)

which, at m = 0, yields [9]
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For m ≥ 2,

(21A)

and

(22A)
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with a High-Power Pulse Electron Beam

B. A. Demidov, V. P. Efremov, M. V. Ivkin, I. A. Ivonin, 
V. A. Petrov, and V. E. Fortov

Russian Research Centre, Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 Russia
Received July 6, 1999

Abstract—The evolution of the glow of the energy-release zone in porous transparent aerogel, with a density
of 0.03–0.25 g/cm3, which is irradiated by a high-power pulse electron beam, is studied experimentally. In
addition to a fast (τ ≤ τbeam) and a luminescent (τ ≈ 10–6 s) glow components, a slow glow component (τ ≈ 2 ×
10–5 s) has been revealed. The appearance of this slow component is associated with an aerogel rarefaction wave
and its destruction (cracking) arising after its isochoric bulk heating by electron radiation, which may occur due
to an electrostatic field induced under irradiation. The discovered glow is utilized to visually determine the cur-
rent position of the rarefaction wave front. The sound velocity measured as a function of the density of SiO2
aerogels with porosities of 10–100 allowed us to experimentally determine the percolation parameter of the
aerogel equation of state. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Porous condensed media are widely used to solve
numerous important problems in science and technol-
ogy. They are promising materials for damping short-
term impact loads, are used as radiation converters on
heavy-ion accelerators, and are included in targets for
inertial thermonuclear fusion [1, 2].

Shock-induced compression of porous substances
has long been used in shock-wave physics for con-
structing equations of state [3, 4]. The effects of intense
energy fluxes on condensed substances are being inves-
tigated in many laboratories [5, 6], but the analysis of
the action of pulse radiation fluxes on porous media is
incomplete; the models for describing such media
under isochoric heating and formation of shock waves
under these conditions have not been considered.

The interaction of a high-power high-current pulse
electron beam with a highly porous material (SiO2
aerogels) was studied in [7–9]. In these experiments,
the aerogel was a homogeneous medium, because the
typical irradiation and rarefaction time was sufficient
for the pressure in the aerogel structural elements to be
equalized. In experiments performed in [10], the inter-
action of high-power pulse laser radiation with an
“Agar-agar”-type (C14H18O7) low-density porous sub-
stance (irregularly alternating cavities and particles of
various shapes and normal solid-state density) was ana-
lyzed. Therefore, under pulse irradiation [10], “Agar-
agar” is a heterogeneous medium. The absorption of
intense radiation fluxes, energy transfer mechanisms,
and hydrodynamic processes in homogeneous and het-
erogeneous porous media have specific features and are
currently attractive to researchers [11, 12].
1063-7842/00/4507- $20.00 © 20870
Upon impact compression of porous aerogels, the
temperature behind the shock wave front with an
amplitude of about 10 kbar is large enough to cause an
intense glow. In this case, the glow front position virtu-
ally coincides with the position of the shock wave front,
which is used for determining the shock adiabat of the
weakly ionized plasma that appears [13]. However, the
most interesting physical effects manifest themselves
in studies of aerogels under pressures of 1 to 50 kbar,
when aerogels preserve the features of their internal
structure. In this loading range, an aerogel with a high
optical transparency is able to emit light in the visible
region under irradiation by an intense electron beam.
This allows one to use convenient optical diagnostics
for obtaining information on the equation of state of an
aerogel with a porosity that changes several times
under rarefaction [8]. A nonlinear self-consistent equa-
tion of state representing fractional properties of highly
porous materials was modeled in precisely this way. In
particular, this equation allowed one to calculate the
velocities of the flying-apart irradiated and rear aerogel
parts, which differ by two orders of magnitude, under
irradiation with a high-power pulse electron beam [9].

The objective of this study is to analyze the glow
evolution along the beam radius and into the depth of
an aerogel irradiated by a high-power pulse electron
beam, as well as to investigate the interaction of the
electron beam with targets of complex configurations
consisting of several aerogel layers of different densi-
ties.

This work also aims to study the sound velocity as a
function of the density of porous SiO2 aerogels with a
porosity Π = ρ0/ρ – 1 in a porosity range of 10–100 in
order to directly verify the power dependence of the
000 MAIK “Nauka/Interperiodica”
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sound velocity in an aerogel on its porosity and to
directly determine the percolation coefficient that can
be used in the equation of the aerogel state [9].

EXPERIMENTAL CONDITIONS

The behavior of transparent porous SiO2 aerogels
with a density ρ = 0.03–0.25 g/cm3 under fast isochoric
heating was studied experimentally on the Kal’mar
electron accelerator operating with the following
parameters of the electron beam: the current is I = 10–
15 kA, the electron energy is U = 270–300 keV, and the
current pulse FWHM duration is τ = 150 ns. Aerogel
samples 5–34 mm thick with cross sections of 25–
50 mm were exposed to the electron beam. The sample
under study was placed in a vacuum chamber of the
Kal’mar accelerator behind the anode foil. Figure 1
shows the arrangement of the diagnostic equipment.

An electron beam with an effective diameter of 11–
12 mm passed through the 10-µm-thick aluminum foil
(the accelerator anode) and hit the sample positioned
immediately adjacent to the foil or at a 5-mm distance
from it. A 10-µm-thick aluminum foil set up on the rear
of the aerogel served to reflect a diagnostic laser beam.
The following diagnostic devices were used: an FÉR-7
streak camera with slit scanning that allowed us to
obtain a time-scanned aerogel glow intensity distribu-
tion in the radial and longitudinal directions; a differen-
tial laser interferometer (based on an LGN-215 laser)
with an interference period of 26 m/s that records the
time of arrival and mass velocity of a disturbance at the
rear surface of the aerogel; an MDR-2 monochromator
with a special cassette extending the range of the emis-
SICS      Vol. 45      No. 7      2000
sion spectrum under study; a spall particle detector for
measuring the velocity of split-off fragments by using
the time-of-flight technique; an X-ray detector for reg-
istering the instant of the interaction between the elec-
tron beam and aerogel; and cameras for recording the
trajectories of flying-away glowing fragments in the
integral regime. The velocity of the elastic disturbance
propagation in the aerogel was measured under modi-
fied experimental conditions. The anode aluminum foil
was replaced by a 4.5-mm-thick stainless steel disk
with a diameter of 90 mm, to which an aerogel sample
was attached by a special holder. A pulse electron beam
excited a short pressure pulse in the metallic anode,
which was transmitted to the aerogel sample and prop-
agated in it as an elastic disturbance. The instant at
which this disturbance reached the free aerogel surface
was recorded by a differential laser interferometer.

EXPERIMENTAL RESULTS

The time dependence of the aerogel glow along the
radius is shown in Fig. 2 presenting photochronograms
of the interaction process between the electron beam
(j = 15 kA/cm2, U = 300 keV) and aerogels of different
densities. The entrance slit of the FÉR-7 streak camera
was positioned perpendicular to the electron beam axis
and, in both cases, was focused 2–3 cm from the irradi-
ated sample surface.

The dynamics of electron beam interaction with lay-
ered aerogel targets is illustrated by the photochrono-
grams in Fig. 3 (here, the FÉR-7 entrance slit is parallel
to the electron beam axis). The photochronogram in
Fig. 3a refers to the action of the electron beam (j =
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Fig. 2. Time-dependent aerogel glow along the radius of the zone of the electron-beam energy release; ρ = 0.25 (a), 0.034 (b) g/cm3.
15 kA/cm2, U = 300 keV) on a four-layer target with
the following aerogel densities: ρ1 = 0.08, ρ2 = 0.15,
ρ3 = 0.05, and ρ4 = 0.15 g/cm3 with the corresponding
thicknesses h1 = 4, h2 = 4, h3 = 4, and h4 = 3 mm. The
layers are numbered from the front (irradiated) target
surface.

Figure 3b shows a photochronogram for the interac-
tion of the electron beam (with the same parameters)
with a three-layer target at a faster scan. The target con-
sists of the following aerogel layers: ρ1 = 0.05 g/cm3,
h1 = 10 mm; ρ2 = 0.25 g/cm3, h2 = 2.5 mm; and ρ3 =
0.05 g/cm3, h3 = 9 mm.

The photochronogram in Fig. 3c shows the interac-
tion dynamics between the electron beam and a three-
layer target, in which the first layer has the highest den-
sity (ρ1 = 0.25 g/cm3, h1 = 5 mm; ρ2 = 0.034 g/cm3, h2 =
10 mm; and ρ3 = 0.25 g/cm3, h3 = 5 mm).

The studies performed with the MDR-2 monochro-
mator have shown that the aerogel emission from the
zone of the electron-beam energy release spans the
entire visible spectrum region. For example, Fig. 4
shows a part of the emission spectrum for an aerogel
with ρ = 0.034 g/cm3 exposed to the electron beam (j =
10 kA/cm2, U = 270 keV). The slit of the monochroma-
tor is adjusted to the region of the electron-beam energy
release. The bright lines in the upper part of the spec-
trum are the reference lines of a mercury lamp.

The electron beam interacts with the aerogel and
excites a shock wave with a velocity reaching 500–
600 m/s in dense aerogels. Arriving at the free aerogel
surface, the shock wave causes a spall destruction.
Figure 5a shows aerogel samples with a density of
0.25 g/cm3 with a cross section of 25 × 25 mm and an
initial thickness of 22.5 mm after being exposed to the
electron beam (j = 15 kA/cm2, U = 300 keV). As a
result of the separation of a split-off plate, the sample
thickness decreased by 5 mm. For a low-intensity irra-
diation mode (j = 8 kA/cm2, U = 250 keV), irreversible
effects occur in the bulk of a similar aerogel sample,
resulting in its turbidity. However, the spalling effect is
absent (Fig. 5b) and the sample thickness remains
unchanged.

The velocity of flying-apart fragments at constant
parameters of the electron beam (j = 15 kA/cm2, U =
290 keV) depends heavily on the aerogel thickness and
density. For example, the velocity of spalled fragments
of an aerogel sample with a density of 0.16 g/cm3

changes from 500 m/s at a 5.5-mm sample thickness to
80 m/s at a 14.6-mm thickness.

Figure 6 shows a set of interferograms characteriz-
ing the propagation velocity of elastic disturbances in
aerogels of various densities under the same parameters
of the electron beam producing pressure pulses in the
metallic anode of the accelerator. The densities of the
aerogels under study were as follows: ρ1 = 0.02, ρ2 =
0.057, ρ3 = 0.076, ρ4 = 0.13, ρ5 = 0.16, and ρ6 =
0.25 g/cm3. The sample thicknesses were h1 = 22, h2 =
34, h3 = 30, h4 = 18, h5 = 25, and h6 = 26 mm, respec-
tively (1–6 in Fig. 6).

The results of processing the interferograms are pre-
sented in Fig. 7 in the form of a plot of the propagation
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
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Fig. 3. Time-dependent aerogel glow along the depth of multilayer targets: (a) four-layer target and (b, c) three-layer target.
velocity of an elastic disturbance as a function of the
aerogel density.

ANALYSIS OF EXPERIMENTAL 
RESULTS

The comparison of the photochronograms shown in
Figs. 2a and 2b allows us to conclude that the aerogel
density appreciably affects the character of the glow in
the region of the electron-beam energy release. In con-
trast to Fig. 2b, three stages of the aerogel glow with
significantly differing durations are clearly observed in
ECHNICAL PHYSICS      Vol. 45      No. 7      2000
Fig. 2a. The first glow stage lasts τ1 ≈ 10–7 s; and the
durations of the second and third stages are 10–6 and
2 × 10–5 s, respectively. The duration of the first glow
stage coincides with that of the electron-beam action,
causing a glow through the excitation of aerogel atoms
and molecules (mainly by secondary electrons) and
subsequent reemission in the visible spectrum region
[14, 15]. Changes in the intensity of this glow along the
target radius show that the electron-beam current den-
sity decreases from the center to the periphery, making
it possible to estimate the effective electron-beam
diameter (11–12 mm).
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Fig. 4. Integrated spectrum of the glow in the blue-green wavelength region in the zone of the electron-beam energy release.

Fig. 5. Aerogel samples exposed to an electron beam: (a) high-intensity and (b) low-intensity irradiation modes.
The glow induced by the direct action of the elec-
tron beam on optically transparent dielectric media can
be divided into two stages, taking into account the
degree of its origin and decay delays. The first, most
intense glow stage has virtually no time lag (τ ≈ 10–12–
10–10 s) and is directly associated with cascade cooling
of high-energy secondary electrons with energies ε ≈
εg ≈ 10–15 keV. The second stage, with a time lag τ ≤
1 µs, is determined by the slow relaxation of the excited
atoms and molecules with excitation energies of about
εg and is responsible for the luminescence effect.

The third stage of the aerogel glow revealed in our
experiments has the longest time lag and is of the great-
est interest. This glow propagates in the radial direction
from the central region of the target to its periphery
with a velocity of 500–550 m/s. The measured velocity
is close to the maximum propagation velocity of the
region with a glow duration τ ≈ 20 µs from the zone of
the electron-beam energy release to deep into the target
[9]. Hence, this glow coincides with the pattern of the
aerogel dynamic rarefaction, with the mass compres-
sion wave propagating deep into the aerogel.

The high bulk electrization of the aerogel, which
arises under its irradiation by a pulse electron beam, is
evidently responsible for the appearance of the slow
glow component. Experiments on recording the profile
of the fast glow component in an aerogel with the initial
density ρ ≤ 0.2 g/cm3 [8] have revealed a strong influ-
ence of the aerogel electrization on the formation of the
zone of electron-beam energy release. In experiments
with high-porosity aerogels, the internal electrostatic
field reaches the maximum possible threshold field
Eth ≈ 70–80 kV/cm for high-energy secondary elec-
trons with energies of the order of the optical phonon
energy ε ≈ (hω – εg). Therefore, a mass rarefaction
wave propagating into the aerogel (≈1 cm) may lead to
an increase in the electrostatic electron energy, with a
subsequent excitation and reemission of atoms in the
optical wavelength region.

When a highly porous aerogel was irradiated with
an electron beam (Fig. 2b), the FÉR-7 entrance slit was
adjusted to the beginning of the energy-release zone (in
contrast to the experiment in Fig. 2a). Therefore, the
aerogel rarefaction in the slit zone began immediately
after termination of the irradiation, and no pronounced
separation of the second and third glow stages was
observed.

The photochronograms shown in Fig. 3 also confirm
a great influence of the induced electrostatic field on the
glow evolution during the interaction between the elec-
tron beam and the aerogel. Experiments with a depth-
inhomogeneous aerogel directly point to the existence
of internal rarefaction waves due to inhomogeneities
causing a prolonged glow of the aerogels' interfaces,
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
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which are clearly seen in Fig. 3. The glow duration of
the aerogels' interfaces in Figs. 3a and 3b is longer than
that of the interfaces in Fig. 3c. This is explained by the
first layer in the layered targets in Figs. 3a and 3b being
a highly porous aerogel, which ensures a higher electri-
zation at the interface of aerogels and, correspondingly,
a longer glow. Note that the difference in the interface
glow durations for various layered targets shows only
an insignificant contribution of the plasma in the accel-
erator diode chamber to the glow.

The integrated aerogel-emission spectrum pre-
sented in Fig. 4 is actually continuous. In the short-
wavelength region, a system of bands typical of molec-
ular spectra is observed. Fairly intense isolated Si lines,
which could help diagnose macroscopic parameters of
the aerogel, are absent. In order to extract quantitative
information from spectroscopic data, further experi-
mental and theoretical investigations are necessary.

Figure 5 shows spalling phenomena in porous
media, which are nontrivial for such media. It is clear
that such phenomena have a threshold effect that
depends on the medium porosity.

Figure 7 shows a linear dependence of the propaga-
tion velocity of an elastic disturbance in the aerogel on
its density. This velocity can be considered as the sound
velocity Cs, at least for comparatively dense aerogels.

According to the cluster model of the equation of
state for a porous medium [16], thermodynamic param-
eters depend on the density according to a power law.
In particular, the sound velocity in the aerogel can be
represented by the dependence Csi = Csk(ρi/ρk)(γ – 1)/2,
where ρi and ρk are the densities of different porous
aerogel samples and γ is the percolation coefficient
characterizing the aerogel structure. For porous metals,
the power law for the sound velocity and the percola-
tion coefficient were determined in [17]. The revealed
linear dependence of the sound velocity in the aerogel
on its density confirms a power dependence of the
sound velocity in the aerogel on its porosity and allows
us to directly determine the percolation coefficient,
which was found to be equal to 3. The measured coef-
ficient was close to the value γ = 3.2 utilized in [9] in
the numerical hydrodynamic simulation of an aerogel
exposed to intense irradiation.

NUMERICAL SIMULATION

In order to determine the induced electrization of
highly porous aerogels, we numerically calculated the
interaction of the electron beam from the Kal’mar
accelerator with aerogels.

When an electron beam is absorbed by an aerogel,
strong electric fields arise in it, leading to its breakdown
and a charge flow from the volume of the energy-
release zone to the aerogel surface. These electric fields
may significantly distort the electron energy-release
profile [8, 9]. To correctly determine the effect of these
fields on the formation of the energy-release zone
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
requires an allowance for the high-energy conductivity
[14, 15] of dielectrics, which is brought about during
the absorption of electron radiation.

The high-energy conductivity in wide-gap dielec-
trics is determined by the fact that, when electrons are
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Fig. 7. Elastic disturbance velocity in an aerogel as a func-
tion of its density.
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cooled to an energy ε ≈ 1.5εg of the order of magnitude
of the forbidden zone εg ≈ 10–20 eV, the energy loss
rate abruptly falls (by a factor of 1000), because it
becomes impossible to continue exciting electrons
from the forbidden zone to the conduction band. The
main cooling channel [14, 15] for electrons with ener-
gies ε in a range {T, hω} < ε < 1.5εg is the interaction
with optical phonons and with electrons thermalized at
the temperature T with the energy loss rates

respectively.

Here, ω0 is the optical phonon frequency; (NT a3) ≈
10–11W{(x, t)T 3/2(x, t)}1/2 is the number of thermalized
electrons in an elementary cell a3 determined by binary
collisions; W(x, t) [J/(cm3 ns)] is the energy-release rate
of the electron beam at a depth x and moment t; and µ =
(m/M)1/4 ≈ 0.1 is the series expansion parameter [15].
The electron heating power in the induced electrostatic
field E in the prebreakdown regime is evaluated as

where me is the electron mass.

With further electron cooling, ε < hω0, the emission
of optical phonons becomes impossible and only the
interaction of electrons with acoustic phonons and traps
(defects of the crystal lattice) is efficient. The latter
effect depends heavily on the dielectric features and
determines the slow charge relaxation after the irradia-
tion is completed [14, 15]. Since the experimentally
measured time lag of the slow glow component in the
aerogel is rather large, we neglect this low-energy con-
ductivity.

Qd0 µω0hω0 ε/hω0( )1/2≈

QT ω0/µ5
NTa

3( )hω0 hω0/ε( )1/2
,≈

QE eE 2e/me( )1/2
,≈

0.30
smax, 1/(Ω cm)
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Fig. 8. Profile of the maximum induced conductivity during
aerogel irradiation. 
Thus, the high-energy conductivity is

where τ⊥  ≈ τd0 ≈ µω0(T/ηω0)(ε/ηω0)1/2 is the relaxation
time of an electron pulse and F(ε) is the nonequilibrium
distribution function for high-energy electrons, which
can be estimated from the energy balance

where G(x, t) ≈ W(x, t)/1.5εg is the volumetric genera-
tion rate for high-energy electrons and the expression in
the square brackets approximately describes the den-
sity of energy states.

The F(ε) singularity (zeroing of the expression in
the braces) corresponds to the high-energy breakdown
that develops at the breakdown field Ebr [8],

which is several orders of magnitude lower than the
equilibrium value. Here, we take into account that
(ε*/ηω0) < (εg/ηω0) ≈ µ–2 and (1 + Π)1/3 is the correc-
tion for the material porosity (discontinuity) Π.

The specific energy release of the electron beam as
a function of the Lagrangian coordinate of the absorp-
tion depth and irradiation time was calculated in the
diffusion approximation [18] taking into account the
quasistationary generation of electric fields, as well as
actual oscillograms of the current and voltage of the
Kal’mar accelerator and the dependence of the electron
path depth on the electron energy taken from [19].

Numerical calculations have shown that, at an irra-
diation power J0 = 15 kA/cm2, U = 300 keV, the high-
energy breakdown intensity Ebr = (70–80) kV/cm is
reached at the moment of termination of the irradiation
in almost the entire energy-release zone. In highly
porous aerogels with a depth R ≈ 2 cm of the energy-
release zone, the electrostatic energy becomes compa-
rable with the energy of primary electrons, thus
strongly affecting the formation of the energy-release
zone [8, 9] in an aerogel with a density of 0.03 g/cm3.
The calculated profile of the maximum conductivity,
which is induced during irradiation, corresponding to
this regime is shown in Fig. 8.

CONCLUSIONS

(1) The spatial glow of an aerogel irradiated by a
high-intensity pulse electron beam is studied experi-
mentally.

σ e
2

me

------ F ε( )τ⊥ ε( ) ε,d

max T ηω0,{ }

1.5εg

∫≈

Qd0 ε( ) QT ε( ) QE ε( )–+{ } F ε( )

=  G x t,( ) 1 ε/1.5εg( )3/2
–[ ] ,

Ebr µ ω0/e( ) meηω0( )1/2
1 ηω0/ε*( )1/2

+[≈

× NTa
3
/µ6( ) ] / 1 Π+( )1/3

200/ 1 Π+( )1/3
 kV/cm[ ] ,≤
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(2) Along with the classical glow of a transparent
dielectric medium exposed to an electron beam, a slow
glow component (≈2 × 10–5 s) is revealed, which coin-
cides with the pattern of dynamic aerogel rarefaction—
with a compression wave propagating deep into the
aerogel.

(3) The origin of the slow glow component is evi-
dently due to the significant volumetric electrization of
a highly porous aerogel arising under its irradiation by
an electron beam.

(4) Experiments with layered targets have con-
firmed the existence of internal rarefaction waves from
aerogel inhomogeneities.

(5) Direct experiments have confirmed a power
dependence of the sound velocity in the aerogel on its
density and helped determine the percolation coeffi-
cient, the value of which (γ = 3) agrees satisfactorily
with the value γ = 3.2 utilized in previous calculations.
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Abstract—Polarization holographic recording and the reconstruction of the field of a nonstationary object
wave are considered theoretically. Expressions for the nondiffracted beam, as well as the virtual and real
images, formed by a space–time polarization hologram are analyzed. It is shown that, under certain conditions
imposed on the isotropic, anisotropic, and gyrotropic responses of a polarization-sensitive medium, one can
adequately reconstruct the space structure, time waveform, and polarization characteristics of the field of a non-
stationary object in the virtual image. © 2000 MAIK “Nauka/Interperiodica”.
Recently evolved so-called time holography,
extending the holographic method to recording and
reconstructing the time behavior of nonstationary wave
processes, has attracted considerable interest. This
direction represents a great heuristic contribution to
completing the construction of holography fundamen-
tals [1, 2]. The concept of holographic recording and
reconstruction of nonstationary wave fields was first
put forward in [3]. It is based on the unambiguous rela-
tion between the time waveform of a nonstationary pro-
cess and its frequency spectrum [4, 5]. A rigorous the-
oretical substantiation of space–time holography for
the scalar description of nonstationary waves was given
in [6].

In this work, the developed theoretical approach is
extended to the case when the state and degree of polar-
ization of nonstationary electromagnetic wave fields
are treated rigorously. Earlier, in order to prove the fea-
sibility of recording and reconstructing the state and
degree of polarization of arbitrary electromagnetic
waves, the holographic method was modified for sta-
tionary wave fields [7–9].

We represent the field from a nonstationary object in
the paraxial approximation of the Kirchhoff vector dif-
fraction integral modified for the case of nonstationary
wave fields [10]: 

(1)

where c is the velocity of light; ω is the frequency; (x0,
y0, z0, t0) and (x, y, z, t) are the space and time coordi-
nates of object and observation points, respectively; r is
the distance between these points; S0 and T0 are the
space and time intervals occupied by the object; and
dS0 = dx0dy0.

Eob x y z ω t, , , ,( )
i

2πc
--------- ω

r
----Eob x0 y0 z0 t0, , ,( )

T0

∫
S0

∫≈

× iω t t0–( ) 1
c
---r– dt0dS0,exp
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In (1), Eob(x0, y0, z0, t0) is the field immediately
behind the object. It is formed when a totally polarized
monochromatic wave of frequency ω0 with the Jones
vector [11]

(2)

propagates along the z axis through a nonstationary
object with the Jones matrix [11]

In the following, the properties of the nonstationary
object are assumed to be independent of the frequency
of illuminating light; that is, (x0, y0, z0, t0) ≠ f(ω0).
Such a limitation, not being fundamental, makes it pos-
sible to substantially simplify subsequent calculations.
Clearly, for actual media, the condition of object inde-
pendence of the light frequency is an approximation
similar to the “black screen” approximation used in
[12, 13].

The nonstationary object depolarizes the illuminat-
ing monochromatic wave, which is assumed to be ini-
tially totally polarized. In the general case, the wave
transmitted through the object is partially elliptically
polarized. The modified Jones vector for the transmit-
ted wave immediately behind the object can be repre-
sented in the form of partially coherent elliptically
polarized orthogonal components [14]:

(3)

E0 Ê0x exp
iω0z

c
---------- 1

iε 
  , 0– ε≤

E0y

E0x

-------- 1≤= =

Mob x0 y0 z0 t0, , ,( )

=  
m̂11 x0 y0 z0 t0, , ,( ) m̂12 x0 y0 z0 t0, , ,( )
m̂21 x0 y0 z0 t0, , ,( ) m̂22 x0 y0 z0 t0, , ,( ) 

 
 

.

m̂ij

Eob x0 y0 z0 t0, , ,( ) ÊAxMob x0 y0 z0 t0, , ,( ) 1
iε 

 =

⊕ ÊByMob x0 y0 z0 t0, , ,( ) iε
1 

  iωt0,exp
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where ε = EAy/EAx = EBx/EBy; 0 ≤ ε ≤ 1; ⊕  is the symbol
designating noncoherent summation of amplitudes (it
was introduced in [14], where the Jones vector–matrix
method was formally extended to partially polarized

light);  is the complex amplitude of a component of

basis A; and  is the complex amplitude of a compo-
nent of basis B orthogonal and noncoherent to basis A.

For the reference illuminating wave, we use a wave
passed through an infinitely narrow time gate with a
δ-shaped transmission. It is known that the interruption
of a wave train changes the wave frequency: an initially
monochromatic train becomes nonmonochromatic
after passing the gate. In this case, according to the def-
inition of the δ function, the passed wave has a contin-
uous spectrum, with the spectral density constant over
the entire frequency range [15]. In addition, the gate
totally depolarizes an initially polarized wave. Then,
the modified Jones vector of the reference wave can be
represented as an orthogonal basis of elliptically polar-
ized components [14]:

(4)

where ε = E0y/E0x  and E0x, E0y and ϕ, Ψ are the respec-
tive amplitudes and initial phases of two mutually non-
coherent components.

In polarization holographic recording, mutually
coherent components of the orthogonal basis of the ref-
erence and object waves independently interfere with
each other at corresponding frequencies and the result-
ing fields are summed up noncoherently (additively).
The net field in the hologram plane has the form

(5)

ÊA

ÊB

Eor E0x iϕ 1
iε 

 exp E0x i Ψ π
2
---– 

  iε
1 

 exp⊕=

× iω t
1
c
---z– 

 exp

EΣ x y z t, , ,( ) = Eor Eob+  = E0x iϕ iω t
1
c
---z– 

 expexp




+
i

2πc
--------- ω

r
---- ÊAxMob x0 y0 z0 t0, , ,( )

T0

∫
S0

∫

× iω t t0–( ) 1
c
---r– dS0dt0exp



 1

iε 
 

⊕ E0x i Ψ π
2
---– 

  iω t
1
c
---z– 

 expexp




+
i

2πc
--------- ω

r
---- ÊByMob x0 y0 z0 t0, , ,( )

T0

∫
S0

∫
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The intensity of the electric vector of the net wave is
described by the real part of expression (5) [16]:

(6)

where the parameters p and q of the net ellipse are
determined in terms of polarization ellipse components
for the bases A and B according to the rules [14]

(7)

In order to record net wave (5), we use a polariza-
tion-sensitive medium [17, 18]. We assume that both
the recording medium and the nonstationary object are
spectrum-nonselective in the entire frequency range.

The photoanisotropy and photogyrotropy induced in
the photosensitive recording medium are related to the
polarization characteristics of the inducing light via the
relationship obtained in [19, 20]. This relationship con-
tains complex coefficients of the light-induced ellipti-
cal birefringence; and the vector photoresponse of the
polarization-sensitive medium is described by the func-
tions of isotropic, , anisotropic, , and gyrotropic,

 responses. In our work, we assume that the func-

tions , , and  do not depend on the frequency of
incident radiation.

The light-induced anisotropy and gyrotropy of the
polarization-sensitive medium can be described by
Jones matrices [8, 11]. In [20], rules of constructing the
Jones matrix for a polarization-sensitive medium were
formulated for the case of partially polarized inducing
radiation. With these rules and the relationship
obtained in [20], we come to the resulting expression
for the Jones matrix:

(8)

where

In formula (8), κ = 2π/λ; λ is the wavelength of the
initial illuminating wave; d is the thickness of the
recording medium;  is the complex refractive index

× iω t t0–( ) 1
c
---r– dS0dt0exp



 iε

1 
  .

Re EΣ( ) p ωtcos q ωt,sin+=

p Re EΣ( )A Re EΣ( )B⊕ pA pB,⊕= =

q Im EΣ( )A Im EΣ( )B⊕ qA qB.⊕= =

ŝ ν̂L

ν̂G

ŝ ν̂L ν̂G

M 2iκdn̂0–( ) M11 M12

M21 M22 
 
 

,exp=

M11 22, 1
iκd
2n̂0
-------- ŝ I1 I2+( )A ŝ I1 I2+( )B+[–=

± ν̂L 2ΘA I1 I2–( )Acos ν̂L 2ΘB I1 I2–( )B ] ,cos±

M12 21,
iκd
2n̂0
-------- ν̂L 2ΘA I1 I2–( )Asin[–=

+ ν̂L 2ΘB I1 I2–( )Bsin iν̂G I± I+−–( )A+−

−+ iν̂G I± I+−–( )B ] .

n̂0
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of the medium in the initial (unilluminated) state; (I1 +
I2)A and (I1 + I2)B are the first Stokes parameters, (I1 –
I2)A and (I1 – I2)B are the second Stokes parameters, and
(I± – )A and (I± – )B are the fourth Stokes parameters
for A and B components, respectively; and ΘA and ΘB

are the orientation angles (measured counterclockwise
from the x axis) of the major axis of the polarization
ellipse for A and B components, respectively.

Expressing the Stokes parameters appearing in (8)
in terms of the parameters pA , pB , qA, and qB [8], we
obtain the formula for the holographic matrix repre-
sented as the sum of three matrices in the entire fre-
quency range:

(9)

Here, M0 is the matrix responsible for the undiffracted
beam,

(10)

M–1 is the matrix responsible for the virtual image,

(11)

with matrix elements 

I+− I+−

M M0 M 1– M+1.+ +=

M0 2iκdn̂0–( ) 1 iκdŝ
n̂0

----------- 1 ε2
+( )E0x

2
– 1 0

0 1 
 
 

;exp≈

M 1–
κd

4πcn̂0
--------------- 2iκdn̂0–( ) M 1–( )11 M 1–( )12

M 1–( )21 M 1–( )22 
 
 

exp≈

M 1–( )11 22,
ω
r
---- ÊAx ŝ ν̂L±( ) m̂11 iεm̂12+( )[{

Ω
∫

T0

∫
S0

∫=

– iε ŝ ν̂L+−( ) m̂21 iεm̂22+( ) ]E0x iϕ–exp ÊBy+

× ŝ ν̂L+−( ) m̂22 iεm̂21+( ) iε ŝ ν̂L±( ) m̂12 iεm̂11+( )–[ ]

× E0x i–exp Ψ π
2
---– 

 




i
ω
c
----zexp

× iω t0   +  1 
c
 ---  r  

  –exp  d ω dt 0 dS 0 ,

M 1–( )12 21,
ω
r
---- ÊAx ν̂L ν̂G±( ) m̂21 iεm̂22+( )[{

Ω
∫

T0

∫
S0

∫=

– iε ν̂L ν̂G+−( ) m̂11 iεm̂12+( ) ]E0x iϕ–exp ÊBy+

× ν̂L ν̂G+−( ) m̂12 iεm̂11+( )[

– iε ν̂L ν̂G±( ) m̂22 iεm̂21+( ) ]E0x i–exp Ψ π
2
---– 

 




× i
ω
c
----z iω–expexp t0  +  1 

c
 ---  r  

  d ω dt 0 dS 0 ;                        
and M+1 is the matrix responsible for the real image,

(12)

with matrix elements 

In the above formulas,  ≡ (x0, y0, z0, t0) are the
coordinate- and time-dependent elements of the two-
dimensional matrix of the nonstationary object. In this
work, we do not analyze convolutions. Under certain
relationships between the response functions, namely,
for

(13)

expressions (11) and (12) are simplified. It should be
noted that conditions (13) are satisfied with a high
accuracy for many polarization-sensitive media [8].

Then the matrices M–1 and M+1 are given by

(14)

M+1
κd

4πcn̂0
--------------- 2iκdn̂0–( ) M+1( )11 M+1( )12

M+1( )21 M+1( )22 
 
 

exp–≈

M+1( )11 22,
ω
r
---- ÊAx* ŝ ν̂L±( ) m̂11

*   –  i ε m  ̂ 12 * ( )[




 

Ω

 ∫  

T

 

0

 ∫  

S

 

0

 ∫=

+ iε ŝ ν̂L+−( ) m̂21
*  – iεm̂22

*( ) ]E0x iϕexp ÊBy*+

× ŝ ν̂L+−( ) m̂22
*  – iεm̂21

*( ) iε ŝ ν̂L±( ) m̂12
*   –  i ε m  ̂ 11 *( )+  [ ]

×

 

E

 

0

 

x

 

i

 

exp

 

Ψ π

 

2
---–

 

 
 





 

i
ω
c
----z iω t0

1
c
---r+ 

 exp–exp

× dωdt0dS0,

M+1( )12 21,
ω
r
---- ÊAx* ν̂L ν̂G±( ) m̂21

*  – iεm̂22
*( )[





Ω
∫

T0

∫
S0

∫=

+ iε ν̂L ν̂G±( ) m̂11
*  – iεm̂12

*( ) ]E0x expiϕ ÊBy*+

× ν̂L ν̂G±( ) m̂12
*  – iεm̂11( )[

+ iε ν̂L ν̂G+−( ) m̂22
*  – iεm̂21

*( ) ]E0x iexp Ψ π
2
---– 

 




× i
ω
c
----z iω t0

1
c
---r+ 

  dωdt0dS0.exp–exp

m̂ij m̂ij

ŝ ν̂L, ν̂L ν̂G,–= =

M 1–
κd ν̂L

2πcn̂0
--------------- 2iκdn̂0–( ) ω

r
----MobP

Ω
∫

T0

∫
S0

∫exp≈

× iω t0
1
c
--- r z–( )+ dωdt0dS0,–exp
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(15)

Expressions (14) and (15) involve the object matrix
Mob and matrix P, which is

where 

and P* and  are Hermitian conjugates.

Let us illuminate the obtained hologram by a recon-
structing nonpolarized wave with complex amplitudes

expiϕ' and E0yexpiΨ' (ε' = / ) and a fre-
quency ω':

(16)

The transmitted wave takes the form

(17)

where S is the hologram area and r' is the distance
between a point on the hologram surface and the obser-
vation point.

Sequentially substituting expressions (10), (14), and
(15) into formula (17), we determine the nondiffracted
beam and the virtual and real images formed by the
hologram. Now it is necessary to determine which
wave should be used to reconstruct the object field in
the virtual image. Evidently, this requires the determi-
nation of the eigenvectors (and their related eigenval-
ues) of the matrix P. It has been found that, correct to a
constant factor, the eigenvectors of the matrix P are

 and  and the eigenvalues are (1 + ε2)  and

(1 + ε2) . This implies that the reconstructing wave
should be identical to the reference wave used in
recording.

M+1
κd ν̂L

2πcn̂0
--------------- 2iκdn̂0–( ) ω

r
----P*Mob*

Ω
∫

T0

∫
S0

∫exp–≈

× iω t0
1
c
--- r z–( )+ dωdt0dS0.exp

P â ε2
b̂+ iε â b̂–( )–

iε â b̂–( ) ε2
â b̂+ 

 
 
 

,=

â ÊAxE0x iϕ , b̂–exp ÊByE0x i Ψ π
2
---– 

 –exp= =

Mob*

E0x' E0y' E0x'

Erec E0x' iϕ' 1
iε' 

 exp E0x' i Ψ' π
2
---– 

  iε'
1 

 exp⊕=

× iω' t'
1
c
---z– 

  .exp

E x' y' z' t', , ,( )
i

2πc
--------- ω'

r'
-----MErec i

ω'
c
-----r' S,d–exp

S

∫=

1
iε 

  iε
1 

  â

b̂
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For the nondiffracted wave, we obtain

(18)

and the virtual and real images are given, respectively,
by

(19)

and

(20)

where

The integrals in formulas (19) and (20) will be taken
in the linear approximation for distances r and r' and
infinitely large domains of integration S, S0, T0, and Ω .
The integrals over the domains S and Ω are essentially
space and time δ functions. Calculations similar to
those performed in [6] lead to the final expressions for
the images formed by the space–time polarization holo-
gram.

E0 2iκdn̂0–( ) 1
iκdŝ

n̂0
----------- 1 ε2

+( )E0x
2

–exp≈

× E0x iϕ 1
iε 

 exp E0x i Ψ π
2
---– 

  iε
1 

 exp⊕

× iω t'
1
c
---z'– 

  ,exp

E 1– x' y' z' t', , ,( )
iκd ν̂L

2πc( )2
n̂0

---------------------- 2iκdn̂0–( )E0x
2

1 ε2
+( )exp≈

× ω2

r'r
------ ÊAxMob x0 y0 z0 t0, , ,( ) 1

iε 
 

Ω
∫

T0

∫
S0

∫
S

∫

⊕ ÊByMob x0 y0 z0 t0, , ,( ) iε
1 

  iωexp

× t' t0–( ) 1
c
--- r' r+( )– dωdt0dS0dS

E+1 x' y' z' t', , ,( )
iκd ν̂L

2πc( )2
n̂0

----------------------– 2iκdn̂0–( )E0x
2

exp≈

× ω2

r'r
------ PA*Mob* x0 y0 z0 t0, , ,( ) 1

iε 
 

Ω
∫

T0

∫
S0

∫
S

∫

⊕ PB*Mob* x0 y0 z0 t0, , ,( ) iε
1 

  iωexp

× t' t0+( ) 1
c
--- r' r– 2z+( )– dωdt0dS0dS,

PA* iϕP*, PB*exp i Ψ π
2
---– 

  P*.exp= =
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For the virtual image, we obtain from (19) at z' = z0 

(21)

It follows from formula (21) that this expression,
correct to a constant factor, describes the complete
reconstruction of both the space–time structure and
polarization characteristics of the nonstationary object
wave field.

For the real image, we obtain from (20) at z' = 2z – z0 

(22)

One can see from formula (22) that, at the distance
z' = 2x – z0, the image with the pseudoscopic spatial
structure of the object field is formed symmetrically to
the virtual image about the hologram plane. It has an
inverted time waveform with a time delay due to pass-
ing the distance 2z = z' + z0 from the observation point
to the real image. Its polarization state is transformed

according to the matrices  and .

In conclusion, the capability of the polarization
holographic method to reconstruct the spatial structure,
time waveform, and polarization state of the initial field
of a nonstationary object ultimately extends the poten-
tialities of the holographic method.
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Abstract—We analyzed the possibility of improving the efficiency of microwave devices operating with rela-
tivistic electron beams in systems with particle postacceleration in the interaction space. The fundamental fea-
ture of this approach is the formation of the accelerating-potential profile with the inherent electric field of a
high-current electron beam. It is shown that the use of the space-variant beam-potential sag helps raise the esti-
mated efficiencies of relativistic Cherenkov TWT and BWO up to values of about 50%. © 2000 MAIK
“Nauka/Interperiodica”.
Facilities with postacceleration of an electron beam
in the interaction space are a promising version of pow-
erful RF devices. This kind of acceleration helps
increase the average energy of previously formed elec-
tron bunches, as in Reltron [1], simultaneously reduc-
ing the relative energy spread, and thus effectively
achieve a high output RF power. Applying an accelerat-
ing electric field to the electrons captured by a synchro-
nous electromagnetic wave also provides the mode of
their adiabatic deceleration [2, 3]. In this case, the elec-
tron-beam potential energy in the accelerating static
field is actually converted to RF radiation.

Note that, as a rule, electron postacceleration is per-
formed by introducing supplementary high-voltage
electrodes which need intricate and bulky insulation
and are unsuitable for transporting the electron beam.
At the same time, for high-current electron beams
focused by a longitudinal magnetic field, the particle
energy is likely to be controlled by the beam-inherent
fields. Powerful relativistic microwave devices are con-
ventionally used when the electron currents account for
an appreciable fraction of the limiting vacuum value.
The inherent fields of this electron flux are rather
strong, and, therefore, the potential difference between
the beam and the transport-channel wall ∆U is large. In
this connection, the particle energy in the beam E =
e(Ua – ∆U) may noticeably differ from the peak energy
determined by the anode (accelerating) voltage Ua. The
drop of potential ∆U depends on the beam current, its
configuration, and position in the transport channel. For
example, for a circular cross section of the drift channel
and a narrow tubular (circular) electron beam, we have

(1)∆U
2J R/r( )ln

ν
-------------------------,=
1063-7842/00/4507- $20.00 © 0883
where J is the beam current, ν is the electron velocity,
and R and r are the anode and electron-beam radii.

One can easily see that, as the ratio R/r changes, i.e.,
as the beam approaches or recedes from the transport-
channel wall, the electron energy in the beam may vary
within wide margins. This control of the beam position
can be attained by creating the required configuration
of the lines of force of the static magnetic field focusing
the high-current electron beam. For instance, diverging
field lines (magnetic field decreasing along the chan-
nel) maintain a constant electron acceleration.

Let us estimate the possibilities of controlling the
particle energy under changes of the “beam-potential
sag.” The electron energy in the stationary beam is min-

imum Emin = mc2(  – 1) when the current has the lim-
iting value for this transport channel

(2)

where e and m are the electron charge and mass, γa =
1 + eUa/mc2, and Ua is the accelerating voltage. If the
electron energy in the initial beam state is close to the
minimum value, the possible relative increment in their

kinetic energy is (eUa – Emin)/Emin = (  + 1). It is
evident that the particle energy in the transport chan-
nels can be increased three times even for slightly rela-
tivistic (γa  1) flows. This acceleration technique
seems to be best suited to relativistic-electron beams,
whose potential profile, defined by relation (1), is virtu-
ally unchanged during their interaction with the RF
field because of the weak energy dependence of the rel-
ativistic particle velocity.

Now we analyze the usability of electron-beam
postacceleration for specific tasks. By way of example,

γa
1/3

J lim

mc
3 γa

2/3
1–( )

3/2

2e R/r( )ln
-------------------------------------,=

γa
1/3 γa

1/3
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consider the relativistic Cherenkov traveling-wave tube
(TWT) and the backward-wave oscillator (BWO). For
simplicity, we use a one-dimensional TWT (BWO)
simulation in which the particle acceleration is taken
into account by means of an additional force that is
dependent on the longitudinal coordinate. Electron tra-
jectories are assumed to coincide with the lines of the
guiding magnetic field. This approximation is valid if
the radius and pitch of the Larmor electron spiral in the
magnetic field are small with respect to the characteris-
tic scale of the focusing-field-strength variation. Under
these assumptions, the force acting on the electron that
moves along the field line of force r(z) is defined with
relation (1):

(3)

where ϕ = /Hz) ! 1 and Hr and Hz are the
vector components of the focusing-magnetic-field
strength. The interaction of an ultrarelativistic electron
beam (γ = E/mc2 @ 1) with a synchronous wave is
described by a system of nonlinear equations [4], sup-
plemented with the accelerating force G(z):

(4)

Here, w = γ/γ0 is the electron energy normalized by
the initial value; γ = (1 – ν2/c2)–1/2 is the relativistic
mass factor; ϑ  = ωt – kz is the particle phase with
respect to the synchronous wave; F = 2eγ0Ez/mcωα;

g = 2γ0G/mcω; ζ = kz/2 ; k = ω/c; δ = 2 (h/k – 1)

G z( ) e
dU
dr
------- ϕsin

2eJ
ν

---------1
r
---dr

dz
-----.≈=

(Hrarctan

dw
dζ
------- Re αF iσ e

iϑ ϑ 0d
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 
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iϑ ϑ 0.d

0

2π

∫+−= =

γ0
2 γ0

2

1.0

0.8

0.6

0.4

0.2

0

50

40

30

20

10

0

g(ζ) η, %

1 2 3 4 5 6 7 8 9 100
ζ

η

g

Fig. 1. The efficiency and the effective accelerating force
versus the longitudinal coordinates in the TWT with elec-
tron postacceleration.
is    the initial detuning of synchronism; I =

( eJ/πω2mP)|Ez/α |2; α2 = |Ez |2/2h2P is the coupling
resistance of electrons with the wave; P is the power
transferred by the wave; h is its longitudinal wave num-

ber; σ = 4γ0T(eJ/mc3)/π(  – 1)3/2 is the coefficient of
space charge; T is the depression coefficient; e and m
are the electron charge and mass.

To give specific expressions to the dependences
α(ζ) and σ(ζ), we assume that the electrodynamic sys-
tems of the TWT and BWO are circular corrugated
waveguides. In this case, α = α0I0(χr)/I0(χr0); σ =
σ0T(r)/T(r0), where r0 is the initial beam radius; χ is the
transverse wave number of the synchronous harmonic;
T(r) = I0(pr)[I0(pR)K0(pr) – I0(pr)K0(pR)]/I0(pR); I0 and
K0 are the modified zero-order Bessel function; and p =

k/ . Sign (–) in expressions (4) corresponds to
the case when the electrons and the energy in the wave
(TWT) move in the same direction, and the sign (+)
corresponds to their counterpropagation (BWO). If
the beam entering the interaction space is not modu-
lated, the boundary conditions in (4) are written as fol-
lows:

(5)

where ξk is the dimensionless length of the interaction
space.

While simulating the TWT, the configuration of the
guiding-magnetic-field lines was selected so that the
electrons were postaccelerated in the region where a
compact bunch of electrons had already been formed.
For simplicity, the accelerating force was assumed to be
constant in this region and a specific dependence r(ζ),
needed for evaluating α(ζ) and σ(ζ), was found
from (3). Note that the beam radius should be varied
adiabatically smoothly in order to avoid a significant
loss of electrons from the bunch produced. A solution
of Eqs. (4) is shown in Fig. 1 as the interaction effi-
ciency versus the longitudinal coordinate

. (6)

Simultaneously with the postacceleration, an
increase in the beam radius causes the coupling coeffi-
cients and the space charges to change (Fig. 2). In this
case, the relative change in the kinetic energy of elec-
trons due to postacceleration is ∆E/E0 = 0.75. The peak
efficiency achieved in this case is nearly 50%.

In high-current devices, the space charge signifi-
cantly affects the electron-bunching process in the

γ0
3

γ0
2

γ0
2

1–

w 0( ) 1, ϑ 0( ) ϑ 0 0 2π,[ ] ,∈= =

F 0( ) F0 TWT( ) or F ζ k( ) 0 BWO( ),= =

η 1
1

2π
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w ζ( ) ϑ 0d

0

2π

∫
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field of a synchronous wave, preventing the formation
of a compact bunch. The advantage of the postaccel-
eration scheme in question is that the beam broaden-
ing results in the attenuation of the space charge and
reduction of the repulsive forces, favoring formation
of a dense electron bunch. Moreover, bringing the
beam closer to the walls of the waveguiding system in
Cherenkov devices is accompanied by an increase in
the synchronous-harmonic amplitude, which provides
more effective deceleration of the electron bunch by
the wave.

The feasibility of beam postacceleration in the
BWO was similarly analyzed. It is interesting to com-
pare these results for the BWO with the coupling-resis-
tance jump [5]. As in [5], the interaction space in the
BWO with postacceleration can be functionally divided
into two parts. The electron bunching predominantly
occurs in the part with reduced coupling resistance and
relatively low electron energy; in the other BWO part,
energy is taken up from the bunched flow. Analyzing
the electron phase distribution, we see that the bunch is
not formed until ζ ≈ 1.5 and the average electron energy
slightly changes up to this moment (Fig. 3). The elec-
trons then reach the region of stronger coupling with
the field, where the bunch gives up most of its energy to
the wave. In contrast to [5], the coupling of the elec-
trons with the wave varies smoothly and is accompa-
nied by the postacceleration of the electron bunch.
When α(ζk)/α(0) = 3, ζk = 3.25, and ∆E/E0 = 1, this
BWO has an efficiency of 48.2%. It is important that,
without the postacceleration, this drop of the coupling
resistance provides a significantly lower efficiency
(18.4%) of the BWO with the given parameters.

Now we discuss the features in using the method
with finite magnetic fields, when particles may move
across the magnetic-field lines of force. Note that,
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Fig. 2. Variations in the coupling and space-charge coeffi-
cients in the TWT with postacceleration of the electron
beam.
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
when implementing the postacceleration principle, the
configuration of the static magnetic field confining the
electron beam corresponds to beam decompression,
which helps maintain the microwave-device efficiency
for finite values of the magnetic field [6]; therefore,
similar estimates are used. The longitudinal motion is
assumed to govern until ν⊥  ! cγ–1, where ν⊥  is the
transverse electron velocity [4]. When a coaxial diode
with magnetic insulation is used to form the electron
beam, those particles emitted by the cathode side have
the maximum transverse velocity; their Larmor radius
is defined by the relation R⊥ 0 = ν⊥ /ωHc = (mc2/e)Ec /Hc,
where ν⊥  corresponds to the drift velocity in the
crossed radial electric field at the cathode side Ec and
focusing magnetic field close to the cathode Hc. As the
magnetic field changes, the peak-to-peak amplitude of

transverse oscillations increases as R⊥  ≈ R⊥ 0 ;

hence, ν⊥  ≈ ωHR⊥  = (c/γ)Ec / . Therefore, the

transverse velocities are small when Ec ! .
Naturally, this condition is more stringent than that
with a homogeneous magnetic field which is equal to
the field at the cathode; however, the difference is only

 times.

Thus, the calculations corroborate the feasibility of
using particle postacceleration to increase the sensitiv-
ity of microwave devices with relativistic electron
beams. The advantage of the postacceleration scheme
is that the longitudinal distribution of potential required
for its implementation is formed by the electron beam
itself. In addition, the space charge of the beam
decreases, and the coupling between electrons and the
wave increases during the interaction. However, it is
important that just imparting additional kinetic energy
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to electrons, i.e., postacceleration, plays the decisive
role in raising the device sensitivity.
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Abstract—Dispersion dilution of the beam emittance in a linear accelerator due to the initial uncorrelated
spread of the particle energy in a bunch is considered. Both coherent beam oscillations and the case of the dis-
turbed central trajectory and its local correction are treated. Emphasis is given to the analytic description of the
dispersion dilution of the beam emittance. Exact analytic expressions derived for the emittance evolution along
the accelerator are strengthened by the numerical simulation of particle tracks in the main linear accelerator of
the future electron–positron collider. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The achievement of ultimately small electron
(positron) beam emittances in the future electron–
positron collider is a key challenge in obtaining high
luminosity at the collision site [1–3]. In the main linear
accelerator of the collider, where particles are acceler-
ated from several GeV to several hundred GeV, the nat-
ural emittance, in the ideal case, must shrink as much
as possible because of the adiabatic damping of trans-
verse particle oscillations. Actually, however, the tra-
jectories of the particles are disturbed because of toler-
ances imposed on elements of the electron–optic sys-
tem of the accelerator and transverse wake fields
arising in accelerating sections [4, 5]. In addition, a
bunch has an energy spread both correlated with the
particle longitudinal coordinate (because of the interac-
tion with the accelerating structure) and uncorrelated
(because of beam preforming). The Balakin–
Novokhatsky–Smirnov method [6] allows one to sup-
press an increase in the emittance due to the correlated
energy spread and wake fields within a bunch if so-
called particle autophasing conditions are met [7, 8].
However, the remaining uncorrelated energy spread
causes beam emittance dispersion dilution (BEDD).
This poses major problems for obtaining energetic
beams with ultimately small lateral and vertical emit-
tances.

An increase in the emittance of a beam with an ini-
tial energy spread is associated both with coherent beta-
tron oscillations of a beam with nonzero initial ampli-
tudes (deflection and angle of deflection) of its center of
gravity and with the disturbed central trajectory. The
disturbance of the trajectory stems from quadrupole
lens misarrangement. When passing through the focus-
ing system of the accelerator, particles having different
energies acquire a phase incursion of betatron oscilla-
tions and, if the central trajectory is nonzero, separate
1063-7842/00/4507- $20.00 © 20887
on the phase plane, resulting in BEDD. In this case, the
Liouville theorem is invalid and the beam emittance is
defined statistically as the root-mean-square (rms)
spread of particles over the phase plane of transverse
oscillations.

BEDD has been treated from various standpoints
[9–17]. Both the analytic characterization of the phe-
nomenon and numerical simulation of particle trajecto-
ries in a linear accelerator have been performed. Phys-
ically, BEDD in linear accelerators is well understood
(see, e.g., [9, 13, 15]); however, the unified approach to
the problem that makes possible the rigorous analytic
characterization of the beam emittance in the presence
of an initial spread of the particle energies is lacking in
the literature. Let us consider in detail two important
issues.

First, the two-particle model of bunch is obviously
inappropriate for the analytic description of BEDD
when the spread of the particles is large. Indeed, if the
relative phase incursion of betatron oscillations of a
nonequilibrium particle is 2π (one turn of the nonequi-
librium particle about the phase ellipse with respect to
an equilibrium particle), the rms emittance goes to
zero. In reality, however, as the particles spread, the
entire phase ellipse of the transverse betatron oscilla-
tions of the center of gravity of a beam becomes occu-
pied by particles with nonequilibrium energies. There-
fore, in the analytic description of BEDD, one should
rely on the actual energy distribution of the particles in
a bunch.

The second remark concerns BEDD numerical sim-
ulation when the central trajectory is disturbed and
associated corrections are made. Note that lens misar-
rangement can be taken into account only by specifying
the offsets of the quadrupole lenses relative to the
accelerator axis. The offsets are presented as a random
set of uncorrelated displacements with a known rms
000 MAIK “Nauka/Interperiodica”
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alignment precision. However, the disturbed central
trajectory may significantly (by several orders of mag-
nitude) differ for two sets [18, 19]; hence, it is neces-
sary to average the BEDD effects over many sets of the
displacements of focusing components from the zero
trajectory. As shown in [20], by introducing the rms
area of the disturbed machine phase ellipse, one can
rigorously describe the rms disturbance of the central
trajectory (along the accelerator) to which particle
tracks converge when averaged over many sets of lens
misarrangements. Virtually, the analytic description
provides the exact averaging of the rms beam parame-
ters over all possible trajectories of particles in a bunch.

In this work, we study the BEDD effect in linear
accelerators that is due to the uncorrelated initial parti-
cle energy spread in a bunch. First, we will consider
coherent betatron oscillations with the central trajec-
tory disturbed because of quadrupole lens misarrange-
ment. Then, the case when a dipole corrector in each of
the quadrupole lenses compensates for central trajec-
tory distortions by determining the position of the cen-
ter of gravity of a beam will be discussed. Results for
FODO (F, focusing lens; O, open gap; D, defocusing
lens) periodicity cells for various phase incursion vs.
particle energy dependences along the accelerator [8,
21] will be presented. Analytic expressions for rms
beam emittance are compared with simulations of par-
ticle trajectories in the main accelerator to be used in
the SBLC thermal linear collider (accelerating field fre-
quency 3 GHz) and the TESLA superconducting linear
collider (accelerating field frequency 1.3 GHz) [22].

EQUATIONS OF MOTION AND PHASE 
DISPERSION OF BETATRON OSCILLATIONS

As usual, we assume that the focusing system of an
accelerator consists of many FODO cells (periods),
each having two accelerating sections. Particles in a
bunch experience the same acceleration with a constant
gradient γ', so that the equilibrium energy of the parti-
cles varies linearly along the accelerator: γ(z) = γ0 + γ'z,
where γ0 and γ(z) are, respectively, the initial and
instantaneous Lorenz factors of an equilibrium particle
and z is the particle position γ. It is assumed that the
phase incursion of betatron oscillations per cell varies
with energy as [8]

(1)

where µn is the phase incursion in the nth cell, gn =
γ0/γn, γn = γ0 + (n – 1)∆γ is the energy of a particle enter-
ing the nth cell, ∆γ is the energy gain per FODO cell,
Kn = ec(∂B/∂x)/E is the normalized strength of quadru-
pole lenses, e is the electron charge, c is the speed of
light, ∂B/∂x is the gradient of the lens magnetic field, E
is the instantaneous energy of an equilibrium particle,
and Lq is the quadrupole lens length.

µn

2
-----tan

1
4
---KnLq βn max βn min–( )

µ1

2
-----gn

α
,tan= =
Note that the above formula is nothing else than the
cell chromaticity, which defines a relative change in the
phase incursion of betatron oscillations per period for a
nonequilibrium particle. The parameter α specifies the
law of phase variation with particle acceleration
(energy). Thus, the phase incursion µ1 during the first
period and parameter α uniquely characterize the
focusing systems of an accelerator and linear optics of
an electron beam if it is assumed that lateral and verti-
cal oscillations are uncoupled. Such an approach is
applicable to all possible beam trajectories. As shown
below, the BEDD effect to a great extent depends on the
phase incursion at the beginning of an accelerator and
its variation along the accelerator. It is significant [8]
that, with the focusing system defined in such a way,
the particle autophasing conditions are met and the
exponent α in formula (1) equals 0.5.

The linearized equation for transverse motion of a
nonequilibrium particle in a linear accelerator where
quadrupole lenses are displaced from the axis has the
form

(2)

where x is the transverse (vertical or lateral) displace-

ment of the particle, x0 = x(0, δ0) and  = x'(0, δ0) are
the initial amplitudes, δ(z) = δ0γ0/γ(z) is an accelera-
tion-dependent change in the uncorrelated relative
energy deviation, δ0 = ∆E/E0 (δ0 ! 1) is the initial
uncorrelated energy deviation, Kx is the lens strength,
and xq(z) = xqk are random displacements of the quadru-
pole lenses from the axis. The derivative is taken with
respect to the coordinate z along the accelerator axis.

The general solution of the equation of motion is
represented as the sum of betatron oscillations xb and
the disturbed trajectory xd:

(3)

The explicit form of these solutions is found by
applying Twiss matrix formalism [23–25]:

(4)

(5)

where the  element of the Twiss matrix for a non-
equilibrium particle is given by

(6)

Here,  = β + ∆β and  = µ + ∆µ are the amplitude β
function and phase of betatron oscillations for the par-
ticle, respectively; ∆β and ∆µ are their changes relative
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to the equilibrium values β and µ; and ab and ϑb are the
initial transverse deflection and angle of deflection (at
the exit to the accelerator), respectively. It can be shown
that ∆β and ∆µ are expressed through the parameters of
the focusing system as [23, 24]

(7)

(8)

Thus, the mean change in the amplitude function in
linear accelerators can be ignored, unlike magnetic res-
onance accelerators [24]; on the other hand, the mean
increase in the phase incursion causes beam spreading
on the phase plane and, hence, an increase in the rms
beam emittance. The current emittance ε is defined sta-
tistically as the rms spread of particles on the phase
plane of transverse oscillations [26]:

(9)

where ∆x = x – ; ∆x' = x' – , and  and  are the
position and angular coordinate of the center of gravity
of a beam.

Averaging is accomplished over all particles in a
bunch. We are interested in the averaged (over the
instantaneous phases of betatron oscillations) emit-
tance along the accelerator. Then, ε = 〈∆x2〉/β if the dis-
persion of the betatron function is absent.

The uncorrelated particle energy spread in a bunch
is observed when the bunch is injected into the main
linear accelerator. The spread is the consequence of the
beam forming history (storage ring and bunch com-
pressor). If all of the particles have the same accelera-
tion in a given cross section of the bunch, the spread is
inversely proportional to the energy of an equilibrium
particle. Then, in the thin-lens approximation, the mean
change in the phase incursion for a nonequilibrium par-
ticle that has the relative initial energy deviation δ0 is
given as the sum over periodicity cells:

(10)

For our representation of the focusing system, this
formula is recast as

(11)

which is the energy integral at a slow energy variation
along the accelerator (∆γ/γ ! 1). In terms of the accel-
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erator parameters, it is given by

(12)

An important parameter of the machine is its chro-
maticity ξ. For linear high-energy accelerators, it can
be defined as a change in the number of betatron oscil-
lations of a nonequilibrium particle with the rms energy
deviation σe from the equilibrium energy after a single
transit of a bunch through the accelerator: ξ = ∆µs/2π.
In linear accelerators, chromaticity is virtually respon-
sible for beam spreading on the phase plane of trans-
verse betatron oscillations. The beam spread, as evi-
denced by the foregoing, depends on the initial rms
energy deviation in the beam, energy gain per cell,
phase incursion in the first cell, and a variation of phase
incursion along the accelerator.

Figure 1 shows the growth of the chromaticity along
the main accelerator in the SBLC thermal and TESLA
superconducting colliders with constant betatron phase
incursions per period (α = 0) of π/2 and π/3, respec-
tively [22]. Notice that the small phase incursion per
period of the focusing system and the relatively large
particle energy gain per period (~900 MeV) in the
TESLA design are key factors that specify the small
chromaticity of the machine. This, as demonstrated
below, is significant for retaining the natural beam
emittance in the main linear accelerator.

COHERENT OSCILLATIONS 
OF THE BEAM

To begin with, we will consider the dynamics of par-
ticles in a bunch with an uncorrelated initial Gaussian
energy spread of coherent betatron oscillations entering
into a linear accelerator (x0 and  are the initial trans-
verse amplitudes). The focusing system is assumed to
be perfectly arranged with respect to the accelerator
axis. With the amplitude dispersion ignored, betatron

∆µ 2δ0
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2
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γ0

∆γ
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α
--- 1 g

α
–( ).tan–=

x0'
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Fig. 1. Beam chromaticity vs. particle energy in the main
accelerator of the (a) SBLC (δ0 = 0.01) and (b) TESLA
(δ0 = 0.014) colliders.
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oscillations of a particle with a small initial relative
energy deviation δ0 from the equilibrium value [the
term xb in (3)] can be written as

(13)

where

(14)

Here, a0 and ϑ0 define the initial position of the center
of gravity of the bunch on the phase plane (x, x') and aβ
and ϑβ define the initial position of the particle relative
to the center of the bunch.

Then, the instantaneous center of gravity  and rms
size σx = 〈∆x2〉1/2 of the bunch are defined as the means
over energy spread and initial coordinates of the parti-
cles in the bunch:

(15)

x z δ,( ) xc z δ,( ) xβ x δ,( ),+=

xc β, z δ,( ) a0 β, β z( )
γ0

γ z( )
---------- 

 
1/2
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× µ z( ) ∆µ z δ,( ) ϑ 0 β,–+[ ] .cos

x
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Fig. 2. Phase ellipse splitting in the invariant phase plane
(x, x') for beam coherent betatron oscillations in the main
accelerator of the SBLC. The phase ellipses of equilibrium-
energy particles (solid line) and those with higher (dashed
line) and lower (dotted line) energies are shown. E =
(a) 3.15, (b) 25, (c) 100, and (d) 250 GeV.
(16)

where P0(δ) is the initial uncorrelated particle energy
distribution. Let it be Gaussian with the rms devia-
tion σe.

Averaging yields the expression that locates the cen-
ter of gravity of a beam in the accelerator:

(17)

where ∆µs is the mean shift of the betatron phase of a
nonequilibrium particle for the initial rms energy devi-
ation σe [see (12)].

The rms size of the bunch is found similarly:

(18)

where σβ is the initial rms transverse size of the bunch.
The mean contribution to the increase in the rms

emittance is determined by averaging the obtained
expression over the instantaneous phase of betatron
oscillations µ within (0, 2π). Ignoring the dispersion of
the amplitude betatron function, we will have for the
dispersion dilution of the bunch emittance:

(19)

where εβ and ε are the natural and rms instantaneous
beam emittances.

If it is taken into account that  is the area of the
initial central phase ellipse, the emittance dilution is
limited by the half-area of the ellipse of coherent beta-
tron oscillations of the beam:

(20)

where αx , βx , and γx are the Twiss matrix parameters at
the exit to the accelerator.

Note that the BEDD effect does not depend on the
natural emittance. At a high beam spread, the effect
becomes a crucial factor if the vertical emittance is
small, since the machine ellipse may considerably
exceed the beam natural emittance. Hereafter, it will be
supposed that the initial phase ellipse of coherent beta-
tron oscillations coincides with the natural phase
ellipse, or, in other words, that the initial amplitudes
(deflection and angle) of the center of gravity lie on the

one-sigma contour (  = εβ0). Figure 2 shows the evo-
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lution of the normalized phase ellipses of particles with
different energies in the main linear accelerator of the
SBLC collider. As the particles are accelerated, the
ellipses in the phase plane are split so that low-energy
particles are ahead of equilibrium particles in phase,
while high-energy ones lag behind. Bunch particles
tend to occupy the machine phase ellipse of coherent
betatron oscillations irrespectively of the initial oscilla-
tion phase (Fig. 3). Of importance here is that the center
of gravity of the beam approaches the accelerator axis
and the coherent betatron oscillation amplitude expo-
nentially drops with increasing BEDD, which is associ-
ated with Landau collisionless damping [5]. For an
uncorrelated initial Gaussian particle energy spread in
a bunch, the expression for Landau damping parameter
follows from formulas (12) and (17):

(21)

At small beam spreads (ξ ! 1), the BEDD effect can
be approximated as

(22)

The BEDD evolution along the main linear acceler-
ator in the SBLC and TESLA colliders [see (19)] are
shown in Fig. 4 (dashed line). The solid line stands for
the BEDD numerical simulation in the accelerator. The
analysis and numerical simulation are seen to be in
good agreement. The same is also true for the variation
of the Landau damping parameter with particle acceler-
ation. Thus, the derived formulas can be thought of as
the rigorous analytic description of uncorrelated BEED
for the case of coherent betatron oscillations in linear
accelerators. Note that, if the autophasing condition
(α = 0.5) [8] is met, the uncorrelated BEDD is mark-
edly suppressed, as follows from the data for the SBLC
design (Fig. 4, dotted line). It is also worthy to notice
that the BEDD effect at coherent oscillations is revers-
ible. As shown in [17], an increase in the emittance can
be almost totally avoided if particles on the phase plane
are redistributed in a dispersionless positive-chromatic-
ity arc that is placed in the injection stage.

DISTURBANCE AND CORRECTION 
OF THE CENTRAL TRAJECTORY

We now proceed to a study of the disturbance term
in the equation of motion. Recall that disturbance is due
to lens misarrangement. Let us first consider the distur-
bance of the central trajectory with regard for random
lens offsets from the accelerator axis. In view of (3),
(5), and (6), the partial solution (of the equation of
motion) that corresponds to the disturbed central trajec-
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tory (δ0 = 0, x0 = 0,  = 0) can be represented in the
form

(23)

where quantities with the subscript k refer to the corre-
sponding values in the kth quadrupole lens.

x0'
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Fig. 3. Machine phase ellipse (M) and actual phase portrait
(A) of a beam after particle spreading in the phase plane at
beam coherent oscillations in the SBLC linear accelerator.
E = 250 GeV.
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Fig. 4. Relative dilution of the rms emittance of a bunch at
beam coherent oscillations. Solid line, particle tracing;
dashed line, analytic description. (a) SBLC (δ0 = 0.01) and
(b) TESLA (δ0 = 0.014).
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The random lens offsets are assumed to be mutually
uncorrelated; hence, cross terms make no contribution
to the rms displacement of the central trajectory
(〈xqkxql〉  = 0 at k ≠ l). As for free betatron oscillations,
we introduce the rms disturbed instantaneous phase
ellipse of the beam [20]:

(24)

The area of the disturbed ellipse (divided by 2π) is
given by

(25)

Here, αx , βx, and γx are instantaneous Twiss matrix
parameters and Lc is the FODO cell length. In deriving
(25), we made use of the following relationships for the
amplitude functions of a symmetric FODO cell [25]:

(26)

Notice that the rms displacement of the lens and tol-

erance aq are related through the relationship  =

3〈 〉 . As shown in [20], expression (25), which relates
the area of the rms disturbed phase ellipse to the key
accelerator parameters, yields the exact rms distur-
bance of the central trajectory for uncorrelated random
lens offsets. The variation of the disturbed phase ellipse
area along the main accelerator in the SBLC and
TESLA designs is depicted in Fig. 5. The rms phase
ellipse areas converge to the exact solution after aver-
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Fig. 5. Area variation for the rms disturbed machine ellipse
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100 sets of random lens displacements from the axis. The
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(3, 4) analytic description.
aging the particle track over 100 or more sets of random
lens offsets.

In the presence of an initial uncorrelated particle
energy spread in a bunch, nonequilibrium particles will
tend to occupy the disturbed phase ellipse of the accel-
erator. For a nonequilibrium particle with an initial
energy deviation δ0, its trajectory will then be defined
by the expression

(27)

where

(28)

is the phase shift of the betatron oscillations for the
nonequilibrium particle under the action of the kth qua-
drupole lens.

Assuming, as before, the Gaussian initial particle
energy distribution and performing averaging over par-
ticle energies and positions, we will obtain the expres-
sion for the rms transverse beam size:

(29)

where ∆  is now the phase shift of the betatron oscil-
lations for the nonequilibrium particle with the rms
energy deviation.

In deriving the rms beam size, averaging was also
performed over the instantaneous phase µ(z) within
(0; 2π). On averaging, account was taken of the fact
that the undisturbed trajectory averaged over the initial
amplitudes (aβ, ϑβ) goes to zero and the rms deviation
is coincident with the instantaneous undisturbed rms

beam size 〈 〉  = . Supposing that a single cell
makes a negligible contribution to the phase shift
(which is justified for ∆γ/γ ! 1), the rms beam size can
be represented as the sum over the periodicity cells:

(30)

Passing from the sum to the energy integral, one
obtains the fairly good approximation for an increase in
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the admittance (provided that the beam spread is
small):

(31)

Note the very strong dependence of the BEDD on
the phase incursion per period of the focusing system
µ1 and the energy gain per periodicity cell ∆γ. Figure 6
compares the relative emittance increase along the
main accelerator for the SBLC and TESLA colliders.
The rms beam sizes were averaged over 100 sets of lens
offsets. Clearly, the central trajectory of the beam needs
correction.

Let us correct the central trajectory by measuring
the position of the center of gravity of the beam and find
the rms BEDD. We assume that beam position monitors
are embedded in each of the quadrupole lenses with a
misarrangement bk relative to the center of the kth lens.
Let the kth lens be randomly displaced by xqk from the
accelerator axis. The misarrangements of the accelera-
tor components are assumed to be constant. Once the
center of gravity in the kth lens has been determined,
the trajectory of subsequent bunches is corrected
toward the lens center by previous dipole correctors
with a resolution dk. In so doing, the central trajectory
remains disturbed, but the disturbance does not grow
along the accelerator. The center-of-gravity displace-
ment in the kth quadrupole lens after correction, xck, is
given by

(32)

Note that all of the quantities are random and mutu-
ally uncorrelated. The rms deviation of the center of
gravity along the accelerator is expressed as

(33)

where 〈 〉1/2 is the rms deviation of the lenses from the

accelerator axis, 〈 〉1/2 is the rms deviation of the
beam position monitors from the centers of the lenses,

and 〈 〉1/2 is the rms resolution of the monitors.

It is easy to check that, correct to the first order in
energy deviation (δ0 ! 1), the displacement of a non-
equilibrium particle from the disturbed central trajec-
tory, ∆x = xδ – xc, satisfies the equation

(34)

where Gx(z) = ecB(z)/E = 1/ρs(z) is the instantaneous
curvature of the central trajectory disturbed by the
dipole correctors.
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As usual, we will assume that the additional disper-
sion function due to dipole correctors goes to zero at the
end of the accelerator and does not contribute to the rms
beam emittance. Then, the solution of (34) using the
Twiss matrix element M12 [see (6)] appears as

(35)

With the above correcting technique, the BEDD
exact value can be found if, for any given set of random
quantities xqk , bk , and dk along the accelerator, the dis-
turbed central trajectory xc(z) is represented as a
smooth function of coordinate z, F(z), with the exten-
sion F(zk) = xck. The square of the relative displacement
of a nonequilibrium particle averaged over instanta-
neous phases and energy deviations is then given by

(36)

where the quantity 〈 〉  = 〈 〉  + 〈 〉  depends
only on the arrangement accuracy of the correctors and
their resolution.

Passing to integration in view of formulas (26) for
the amplitude functions, we come to the expression for
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the relative dilution of the emittance along the acceler-
ator:

(37)

Note that the correction of the central trajectory
considerably diminishes its smearing even in compari-
son with free betatron oscillations of a beam. Figure 7
shows the relative dilution of the beam lateral emittance
for the SBLC and TESLA designs after such a correc-
tion. Again, the results of particle tracing are averaged
over 100 sets of center-of-gravity random displace-
ments from the accelerator axis. Since the vertical emit-
tance is, as a rule, markedly smaller than the lateral, the
accuracy of arrangement of the lenses and correcting
system in the vertical plane must be much higher. With
the autophasing condition fulfilled (α = 0.5) and the
same correcting system used, the uncorrelated BEDD
considerably decreases, as before (the dashed line for
the SBLC design).

CONCLUSION

The exact analytic expressions for BEDD in high-
energy linear accelerators were derived for the case
when the betatron oscillation phase randomly varies
with the equilibrium particle energy. Free coherent
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Fig. 7. BEDD in the linear accelerator for the corrected cen-
tral trajectory. Averaging over 100 sets of monitor displace-
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lutions are, respectively, 0.1 and 0.01 mm for the SBLC and
0.5 and 0.05 mm for the TESLA. Dashed line, analytic
curve.

0

betatron oscillations, the disturbance of the central tra-
jectory, and the correction of the disturbed trajectory
were investigated. The obtained expressions allow
researchers to precisely estimate the beam quality and
predict its behavior in high-energy linear accelerators,
as well as to optimize the focusing and correcting sys-
tems. Under the conditions of the energy-dependent
betatron phase incursion, autophasing was shown to
considerably suppress the uncorrelated BEDD.
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Abstract—A theoretical and experimental study of spatial and temporal current oscillations in a magnetron
injection gun is presented. Basic features of the device operation are ascertained. Complicated system dynamics,
namely transitions from regular to chaotic oscillations in response to changing the system parameters, is
revealed. The conclusions are drawn based on the analysis of the computed electron trajectories and output-
current waveforms and spectra. Experimentally, the spectra of the beam-current oscillations, noise-intensity
spectral density, etc., are obtained. Strong broadband microwave oscillations of the output current are observed
for a wide range of the lengths of the emitting and the nonemitting portions of the cathode. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Complicated dynamical phenomena (particularly,
dynamical chaos) in nonlinear oscillators have attracted
considerable interest for many years due to their signif-
icance for both basic research and various applications.
Nevertheless, among a large number of papers devoted
to numerical and experimental investigations of chaos,
only few studies concern the dynamics of systems with
distributed parameters or many degrees of freedom.
This fact stems from serious difficulties faced by any-
one who tries to construct realistic models of such sys-
tems under the conditions where they behave in a com-
plicated fashion. By now, a lot of papers have been
devoted to the dynamical chaos of oscillations in elec-
tron flows without a magnetic field (O-type tubes);
however, there are few papers in which analogous phe-
nomena were studied in the presence of the crossed
electric and magnetic fields (M-type tubes). As early as
in [1, 2], it was noted that M-type tubes can produce
intense internal noise, which makes them promising for
practical applications.

The reason for an anomalously high noise level in
M-type tubes is still poorly understood. For M-type
diodes and guns, an attempt to explain the internal
noise in terms of the complicated dynamics of an elec-
tron stream in crossed fields has been made in [3]. Here,
we extend this approach to the magnetron injection gun
(MIG), which may be useful for designing high-power
microwave noise sources [4].
1063-7842/00/4507- $20.00 © 20896
DESCRIPTION OF THE MODEL 
AND THE CONDITIONS OF THE NUMERICAL 

SIMULATION

A schematic of a MIG is shown in Fig. 1. It is seen
that a real MIG is a fairly complicated device; there-
fore, the studying of the processes occurring in it is a
rather intricate problem. Hence, when modeling the
dynamics of the electron flow in such a device, we will
use a simplified model shown in Fig. 2. We consider a
plane-electrode diode in a magnetic field; the dimen-
sions of the cathode and the anode in the x- and z-direc-
tions are assumed to be much larger than the interelec-
trode spacing. Our numerical analysis of the electron
motion employs a version of a particle method (see,
e.g., [5]) in which we allow for the forces acting on a
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Fig. 1. Schematic of the magnetron injection gun: (1) cath-
ode (the dashed line shows the boundary of the emitting
region), (2) injection region, (3) helical electron beam,
(4) control electrode, and (5) anode.
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particle in the y- and the z-directions only. The only y-
component of the space charge field is taken into
account. The general concept of the model was formu-
lated in [5], and its application to the problem of
dynamical chaos was reported in [3]. Neglecting the
edge effects, the configuration under study implies the
following structure of the fields. The alternating elec-
tric field has the Ez component. In the z-direction, a
drawing field Ez is also applied, whose amplitude
depends on y as Ez = Py and is constant along the z-
direction. The magnetic field is uniform and has only
one component Bz = B0. Thus, the crossed static fields
Ey and B0 govern the motion of emitted electrons in the
(x, y) plane, whereas the drawing electric field controls
the electron motion along the z-axis.

With allowance for the above assumptions, the
equations of electron motion in a M-type MIG [3] must

xy

z

E

B

Fig. 2. Plane-electrode diode (a simplified model of a real
device).
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be supplemented with the equation of motion along the
z-axis:

(1)

where z and y are dimensionless coordinates and P is
the ratio between the amplitudes of the longitudinal and
transverse components of the electrostatic field.

Computer simulations of the complicated electron
dynamics in an MIG involved the following control
parameters: the emission current, the cathode length,
the drift length (i.e., the length of the nonemitting por-
tion of the cathode), and the parameter P = Es/Ea (the
ratio between the longitudinal, Es, and transverse, Ea,
components of the electric field). The fixed parameters
were the magnetic induction, the initial electron veloc-
ity, the interelectrode spacing, etc. Note that such
parameters as the emission current, the cathode length,
and the drift length are also used in the models of a
magnetic diode and an M-type gun.

The numerical simulation yielded graphic represen-
tations of electron trajectories, waveforms of the output
and induced currents, and spectral charts (Figs. 3–6).

RESULTS OF NUMERICAL 
SIMULATIONS

Numerical simulations revealed transitions to
intense chaotic electron motion, which resembles tur-
bulence and manifests itself in chaotic noiselike oscil-
lations of the output current. The parameters of these
oscillations are very sensitive to the above control
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Fig. 3. Numerical simulation: the MIG output-current spectrum at a small emission current (ωp/ωc = 0.16) for the cathode length
Lc = (a) 1, (b) 2, (c) 5, and (d) 10 mm.
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Fig. 5. Numerical simulation: electron trajectories for different values of the cathode length.
parameters: I0 (the maximum emission current), Lc (the
cathode length), Ldr (the drift length), and P.

The scenario of the transition to chaos is very simi-
lar to those for a magnetic diode and an M-type gun [3]
but is quite different from those for systems with few
degrees of freedom.

For small values of the emission current, a transition
to the chaotic regime of electron motion occurs and the
oscillations of the output current appear with an
L PHYSICS      Vol. 45      No. 7      2000
increase in the cathode length or/and a decrease in the
parameter P = Es/Ea. Figure 3 displays the normalized
noise spectral density (NSD) as a function of the fre-
quency (normalized to the cyclotron frequency) for dif-
ferent values of the cathode length. Figure 4 shows how
the electron trajectories and NSD vary as the parameter
P increases.

Figure 3 demonstrates that an originally excited
periodic oscillation becomes quasi-periodic and then
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Fig. 6. Numerical simulation: (a, d) the output oscillation spectra and (b, c, e) waveforms of the gun current (Ig) and induced current
(Iind) for I0 = (a, b) 1.442 (c) 1.443–1.449, and (d, e) 1.450 A.
chaotic. Note that the energy of chaotic oscillations
concentrates in the lower frequency region. The excita-
tion and development of this type of oscillation stem
primarily from the oscillations of the beam boundary
due to the modulation of the time required for different
groups of electrons to reach this boundary. The beam
boundary is formed by the groups of electrons (each
group consisting of large number of particles) simulta-
neously occurring in this spatial region. Figure 5 shows
the evolution of the electron motion with an increase in
the cathode length. One can see the onset of chaotic
oscillations of the beam boundary (Figs. 5a, 5b), the
expansion of chaos (Fig. 5c), and the eventual estab-
lishment of turbulence in the entire interelectrode space
(Fig. 5d).

As the emission current increases (ωp/ωc > 0.5,
where ωp and ωc are the plasma frequency and the
cyclotron frequency, respectively), the output current
exhibits oscillations due to the development of turbu-
lence in the electron flow (Fig. 5d). Starting from a cer-
tain value of the emission current, the electron trajecto-
ries begin to drift as a whole in the longitudinal direc-
tion under the action of an accumulated space charge,
their behavior is transformed completely, and a kind of
fluid turbulence arises in a fraction of the electron flow;
there is a drift motion of a jet, on which a disordered
motion of each of the other individual jets is superim-
posed. The spectrum of such oscillations is fairly wide,
and their intensity concentrates in the lower frequency
region (Fig. 3d). As the emission current increases fur-
ther, chaos sets in at smaller drift lengths, appearing as
a strong and broadband output current oscillations
(Fig. 6a).

The transition to chaos resemble Landau’s scenario
for the onset of turbulence. However, there is some dif-
ference. At certain values of the parameters, the MIG
produces a stationary current. As some parameter var-
ies, quasi-periodic (sometime, single-frequency) oscil-
lations are excited. As the parameter is varied further,
the number of spectral components increases (the noise
appears). The further variation in the parameter leads to
a decrease in the number of spectral components; then,
the noise level increases again, and so on. Finally, the
transition to the regime of strong turbulence occurs. We
also revealed that, at certain intermediate values of the
parameter, the oscillations of the MIG current may dis-
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
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appear completely so that the output current becomes
time independent. This occurs in a narrow parameter
range. After some time, quasi-stationary oscillations
appear again; further, they may transform into turbu-
lence and then terminate. Such a termination (quench-
ing) of oscillations may recur several times (Fig. 6). For
the fixed parameters, we observed up to three quench-
ings.

Under fully developed chaos, the NSD in an MIG
was found to exceed the spectral density of the Schot-
tky noise in electron guns by six to seven orders of
magnitude (Fig. 7).

We also carried out the stability analysis of the solu-
tions for different ranges of the control-parameter val-
ues. In particular, we studied the dependence of the nor-
malized bandwidth on the step size (expressed in frac-
tions of π) and on the number of the layers between any
two successively extracted layers (Figs. 8, 9). It was
found that the solution is the most stable if the layers
are extracted at each step (or at least every fifth or sixth
step) and if the step size (expressed in fractions of π) is
15–30 (an optimum value is 25). Such a large step size
was dictated by computational problems.

EXPERIMENTAL RESULTS

The experiments were carried out with a model MIG
schematically shown in Fig. 10. The device includes a
conic cathode with a 1.5-mm-wide porous metallic
thermionic emitter, control electrodes, and an anode.
The anode–collector spacing is 3 mm. The angle of the
cathode face with the axis is 15°.

The NSD in the MIG beam was measured with an
analyzer, which was a segment of a slow-wave helix
attached to a shield by means of ceramic rods and
matched with an output coupler. Behind the analyzer,
there was an electron collector (microwave probe),
which was connected to the output coupler via a match-
ing unit. The collector was designed as a segment of
coaxial cable, which allowed us to measure the NSD.
The MIG was placed into a demountable vacuum
assembly under continuous evacuation [6]. The mag-
netic field was produced by permanent magnets; the
maximum magnetic field strength was 2000 Oe.

The setup scheme allowed us to move the magnetic
focusing system in both the longitudinal and transverse
directions. The measurements were carried out in a
pulsed regime (anode modulation). The other elec-
trodes were connected to dc voltage sources. The sig-
nals from the probes (the helix and the collector) were
examined with an S4-60 spectrum analyzer, which
operates in the range 200 MHz to 19 GHz, and with a
high-frequency S1-74 spectrum analyzer. The analyz-
ers were exploited in conjunction with high-Q filters
(the passband being 2 to 4 MHz), which offer the 1- to
2-GHz and 2- to 4-GHz tuning ranges; the detected out-
put signals were recorded by an EPP-09 recorder.
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
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Fig. 7. Numerical simulation: the noise spectral density
S vs. the maximum emission current I0 for (1) fully-devel-
oped chaos and (2) Schottky noise.

5
0

2

f/f0

n

10
15
20
25
30

4 6 8 10 12 14

Fig. 8. Numerical simulation: the normalized bandwidth
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Fig. 10. Schematic of the model gyrotron MIG: (1) cathode,
(2) emitter, (3) control electrode, (4) anode, (5) electron
beam, (6) slow-wave helix, (7) absorber, (8) output coupler,
(9) high-frequency probe (collector), and (10) inner conduc-
tor of the collector.
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Fig. 11. Experiment: the oscillation spectra of the electron beam for (a, b, g, h) U/U0 = 1.0 and I/I0 = 1.0, (c, d, i, j) U/U0 = 0.57 and
I/I0 = 0.43, and (e, f, k, l) U/U0 = 0.33 and I/I0 = 0.11. Panels (a–f) refer to 0.2 < F < 2.0 GHz, and panels (g–l) refer to 2.0 < F <
6.0 GHz.
Figure 11 presents typical spectra of stochastic
oscillations in the beam, measured in the 200 MHz to
6 GHz range in different operating regimes. It is seen
that the intensity of oscillations is the highest at lower
frequencies (400–500 MHz). The higher frequency
components grow with an increase in the accelerating
voltage and the beam current.

Figure 12 displays the chaotic spectra for different
values of the beam current, the latter being varied via
the change in the heater voltage. Note that, by varying
the heater voltage, we could change the structure of the
oscillation spectrum and vary the amplitude of oscilla-
tions in a wide range.

Thus, chaotic oscillations may arise in a high-cur-
rent beam produced by an MIG. The chaos stems from
the presence of virtual cathodes. The properties of the
excited oscillations can be controlled via the voltages
applied to the electrodes, the magnitude and distribu-
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
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Fig. 12. Experiment: the oscillation spectra of the electron beam for different values of the heater voltage: (a) U/Uh = 0.39 with I/I0 =
0.11, (b) U/Uh = 0.47 with I/I0 = 0.35, (c) U/Uh = 0.72 with I/I0 = 0.71, and (d) U/Uh = 1.0 with I/I0 = 1.0.
tion of the magnetic field, and the magnitude and har-
monic content of an external signal (single-frequency,
multifrequency, or noise-like signal) that comes from a
microwave source or from the output of the slow-wave
helix through a feedback loop.

DISCUSSION

Figure 13 shows the NSD at frequencies of f = 5 and
10 GHz versus the normalized heater voltage Uh = Uh0,
where Uh0 is the heater voltage corresponding to the
space-charge–limited current. The figure also shows
the spectral density S(Uh/Uh0) of Schottky noise. It is
seen that the intensity of oscillations at the output of the
anode is much higher than the intensity of Schottky
noise (by six to seven orders of magnitude) and does
not fall and even rises at the heater voltages higher
than Uh0.

Note that the variations in the heater voltage Uh and
the accelerating voltage U0 in the experiment corre-
spond to the variations in the emission current I0 and
the parameter P in numerical simulations. Therefore,
we can point out a qualitative agreement between the
behaviors of the experimental and computed spectra
when the relevant parameters are varied. We also note
that, in both the experiment and numerical simulations,
the NSD in the MIG current is higher by six to eight
orders of magnitude than the intensity of Schottky
noise.

The measured dependences of the spectra of cha-
otic current-density oscillations on the electric and
magnetic parameters in MIG-based systems allowed
us to reveal the mechanism for the excitation and sus-
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
taining of oscillations in the MIG beams and explain
why the measured noise level is higher than the theo-
retical one. Specifically, two factors should be high-
lighted. The first factor is the formation of a virtual
cathode (a minimum of the potential) near the MIG
cathode; the influence of this factor increases with an
increase in the width of the emitting belt at the cath-
ode. The second factor is the formation of a magnetic
mirror in the region where the magnetic field
increases. A substantial radial component of the mag-
netic field in this region gives rise to a second virtual
cathode. The chaotic oscillations in high-current MIG
beams result from a decreased drift velocity of elec-
trons and a significant scatter in the beam electron
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Fig. 13. Experiment: the NSD at the output of the anode vs.
the normalized heater voltage at frequencies of (1) 5 and
(2) 10 GHz; curve 3 refers to Schottky noise.
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velocity as well as from oscillations of the parameters
of the virtual cathodes.

CONCLUSIONS

The results of numerical and experimental studies
show that, in an MIG, chaotic oscillations whose spec-
tral intensity is higher than the intensity of Schottky
noise can arise. The numerical and experimental results
are in good qualitative agreement. Thus, the theoretical
model presented can adequately describe the processes
occurring in real devices. Quantitative discrepancies
between the theory and the experiment (including a
higher noise level measured) may be attributed to the
assumptions of the model (such as replacing a realistic
gun configuration with a plane-electrode diode and
neglecting the cycloidal motion of electrons).

Finally, the results obtained allow us to infer that the
anomalously high noise level observed previously (see,
e.g., [3]) has a dynamical nature. We think that such
MIGs could serve as high-power sources of broadband
signals.
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Abstract—The effect of thermal annealing on properties of carbon films deposited on nickel electrodes by the
electrodeposition method was studied. It has been shown that annealing at a temperature of 300°C results in the
formation of nanosize diamond clusters. With an increase in the annealing temperature, the size of diamond
clusters diminishes. At an annealing temperature of 900°C, all of the carbon enters into reaction with nickel,
thus forming nickel carbide. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

A number of properties of diamond-like films
(transparency in the visible and infrared spectral
ranges, chemical stability, high hardness and good heat
conduction) make them an attractive material for use in
various technological fields. Characteristics of the dia-
mond-like carbon films largely depend on the method
and conditions of growth. Earlier, we developed a new
technique of producing diamond-like carbon films
using the electrolytic process. Description of this
method and some properties of the obtained coatings
are given in [1, 2]. In this work, results of studies of the
electrodeposited films annealed at various temperatures
by the methods of Raman scattering, infrared absorp-
tion, and Auger spectroscopy are presented.

SAMPLE PREPARATION AND MEASUREMENT 
TECHNIQUES

The films were prepared by the electrolytic method
at a low (–40°C) temperature. As an electrolyte, acety-
lene solution in liquid ammonia was used. The electrol-
ysis was carried out at a voltage of 10 V for 15 h.
The film deposition technique is described in more
detail elsewhere [2]. Under these conditions, fairly
thick (1–2 µm) smooth light-brown high-ohmic films
were obtained. Properties of as-deposited films and
films annealed at 300, 600, and 900°C were studied.
The annealing was carried out for 1 h in quartz
ampoules pumped out to pressures not higher than
10−4 Pa. Raman scattering spectra in the range of 1000–
1800 cm–1 at room temperature were registered using
the RAMALOG-44 spectrometer (wavelength of inci-
dent radiation λ = 514.5 nm). IR spectra in the range
1000–4000 cm–1 were taken with the PERKIN-
ELMER 180 instrument in reflection geometry at room
temperature. Auger spectra were registered with the
PERKIN-ELMER PHI-660 spectrometer.
1063-7842/00/4507- $20.00 © 20905
EXPERIMENTAL RESULTS

A vacuum anneal of carbon films results in visually
detectable modifications of the surface. A film annealed
at 300°C changes in color from light-brown to almost
black and remains physically intact. Annealing at
600°C makes the film still darker: it becomes black and
glassy. After annealing at 900°C, the film becomes
transparent. For all samples of the Raman scattering
(RS) spectra, infrared (IR) spectra and spectra of Auger
electrons were taken.

(a) As-deposited film. An RS spectrum of the as-
deposited film with a broad asymmetric band in the fre-
quency range 1200–1700 cm–1 is shown in Fig. 1. In
Fig. 2, an IR absorption spectrum of the same film fea-

Intensity, arb. units

D

G

1000 1200 1400 1600 1800
Raman shift, cm–1

Fig. 1. Raman spectrum of the as-deposited film.
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turing two broad absorption bands peaking at 1580 and
1350 cm–1 is shown. In an Auger spectrum of the film
in Fig. 3, besides the carbon peak, peaks due to nitro-
gen, oxygen, and nickel are present.

(b) Film annealed at 300°C. An RS spectrum of this
film is shown in Fig. 4. It is generally similar to the
spectrum of the previous sample, except for some
enhancement of the scattering intensity at lower fre-
quencies. The IR spectrum of the annealed film differs
only slightly from that of the as-deposited film. There
are also no significant differences in the Auger spectra
of these samples.

(c) Film annealed at 600°C. In the Raman spectra of
this film (Fig. 5), further enhancement of the relative
intensity of the scattering band in the vicinity of
1350 cm–1 can be seen. The Auger and IR spectra of the
samples remain practically unchanged.

(d) Film annealed at 900°C. Spectral characteristics
of the film annealed at this temperature show consider-
able transformations. In the RS spectrum, the scattering

Transmittance, arb. units

1000 1200 1400 1600 1800
Wave numbers, cm–1

Fig. 2. IR absorption spectrum of the as-deposited film.
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Fig. 3. Auger spectrum of the as-deposited film.
bands in the 1000–1800 cm–1 range disappear. Consid-
erable changes are seen in the Auger spectra as well
(Fig. 6). The lines due to nitrogen are missing and,
besides, significant changes are found in the shape of
the low-energy part of the carbon peak (inset in Fig. 6).

DISCUSSION

Raman spectra of the two known crystalline forms
of carbon, graphite (sp2 hybridization), and diamond
(sp3 hybridization) have been considered in detail in
[3]. For monocrystalline and polycrystalline diamond,
only one peak at a frequency of 1332 cm–1 is observed.
The spectrum of monocrystallyne graphite also con-
sists of a line in the 1590–1600 cm–1 range. The Raman
spectrum of polycrystalline graphite consists of two
bands. A G-line (graphite line) is localized around
1600 cm–1 and a D-line (disordered graphite) in the
vicinity of 1355 cm–1. The D-line in the scattering spec-
trum is due to the presence of small-sized crystallites of
graphite which causes the violation of the selection
rules. The ratio of integrated intensities of the D- and
G-lines (ID/IG) is inversely proportional to the size of
crystallites [3]. The Raman spectra of carbon films con-
taining carbon in sp2 hybridization are similar to spec-
tra of finely crystalline carbon [4]. The absence in the
RS spectra of the diamond line, even in those cases
where X-ray diffraction analysis indicates the presence
of diamond, is usually explained by the fact that the
efficiency of Raman scattering for diamond is lower by
a factor of 55 than for graphite. Therefore, the quantity
of the sp3-hybridized carbon is judged by indirect evi-
dence. Therefore, the spectral position of the G-line
gives an indication of the ratio of carbon in sp2 and sp3

hybridization states in a sample [5]. Contributions to
the profile of the RS line of a carbon film may come
from other vibrations related to sp3 hybridization car-
bon. For example, the spectrum may contain the fol-
lowing lines: a line due to disordered sp3-bonded car-
bon at 1140 cm–1; a line due to distorted sp3-bonded
carbon at 1488 cm–1; and a line due to hexagonal mod-
ification of diamond (lonsdaleite) at 1305 cm–1 [6].

Thus, RS spectra of carbon films can be represented
as a superposition of Gaussian curves, with peak posi-
tions, integrated intensities, and halfwidths as fitting
parameters. By comparing the obtained results with
published data, one can make judgments about the
types of chemical bonds in the compounds comprising
the films under study, their relative content, as well as
the degree of perfection of the crystalline structure.

The experimental spectra could be approximated in
most cases by four Gaussian curves under the assump-
tion that two of the curves are related to sp2- and two
more, to sp3-hybridized carbon. The spectrum of the
film prior to annealing is best described with two
Gaussian curves centered at 1352 cm–1 (D-line) and
1568 cm−1 (G-line). This shift of the G-line from the
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
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asymptotic position for graphite at 1600 cm–1 towards
smaller wave numbers may be caused by the presence
of sp3-hybridized carbon. According to [7], the position
of the G-line at 1568 cm–1 corresponds to a 70%-con-
tent of sp3-hybridized carbon. The ratio of integrated
intensities of the D- and G-lines is equal to 0.5. This
value is characteristic of hydrogenated amorphous sili-
con films (usually in the range 0.3–3.0), and its change
is due to the difference in the number and/or size of the
graphite clusters. The halfwidth of the D- and G-lines
is equal to 180 cm–1. The same value is characteristic of
carbon films containing small graphite clusters.

The presence in the IR absorption spectrum of
bands in the region from 1350 to 1600 cm–1 suggests
that part of the carbon atoms has been replaced by
nitrogen. This conclusion is based on an observation
that, in the IR range, vibrations related to sp2-bonded
carbon are inactive. Substitution of nitrogen for part of
the carbon lifts this prohibition [8]. The presence of
nitrogen in the film is confirmed by the nitrogen line in
the Auger spectra. Regrettably, qualitative determina-
tion of nitrogen in the film from available data is not
possible. It can only be hypothesized that the nitrogen
content does not exceed 5–10 at. %.

It is highly probable that, at room temperature, the
film consists of small graphite clusters doped with
nitrogen and uniformly distributed in the matrix of
amorphous hydrogenated carbon.

After annealing at 300°C, the D- and G-components
of the Raman scattering spectrum become narrower
and shift towards positions asymptotic for graphite
(Fig. 4), which is evidence of the structural ordering of
sp2-hybridized forms of carbon. The number and size
of the graphite clusters do not change because the ratio
of integrated intensities ID/IG remains equal to about 0.5.
Besides, components related to the sp3-hybridized car-
bon appear in the film spectrum; a broad line centered
at 1320 cm–1 (curve 1 in Figs. 4, 5), which can be
related to finely dispersed diamond, and a line centered
at 1440 cm–1 (curve 2 in Figs. 4, 5), which can be
related to distorted sp3-hybridized carbon [6]. The for-
mation of the diamond form of carbon in the films at
atmospheric pressure does not run counter to the gener-
ally accepted view of the stability of allotropic modifi-
cations of carbon (graphite and diamond) in the
ultradisperse state. For example, according to estimates
in [10], carbon clusters with size !10 nm at room tem-
perature and normal pressure are stable in diamond
modification, whereas the bulk material representing
the stable phase under these conditions is graphite.

The RS spectrum of the film annealed at 600°C is
also composed of four Gaussian curves (Fig. 5). The
lines centered at 1350 cm–1 (D) and 1593 cm–1 (G) can
be ascribed to polycrystalline graphite; the line cen-
tered at 1480 cm–1 (curve 2) to distorted sp3-hybridized
carbon; and the line at 1280 cm–1 (curve 1) to finely dis-
persed diamond. The ratio (ID/IG) at this temperature
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
also remains equal to 0.5. Halfwidths of the lines D and
G decrease considerably, down to 90 cm–1 and 70 cm–1,
respectively. Also, the position of the G-line is close to
the asymptotic position for graphite. This indicates the
greater perfection of the structure of existing graphite
clusters. The observed shift of the position of the “dia-
mond” line (curve 1) towards smaller wave numbers
and the simultaneous increase of the integrated inten-
sity and the halfwidth of the line relating to the dis-
torted sp3-hybridized carbon (curve 2) indicate that the
size of diamond clusters decreases as the temperature is
raised.
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Fig. 4. Raman spectrum of the film annealed at 300°C.
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Fig. 5. Same as Fig. 4, at 600°C.
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It is very likely that during the annealing of the film
at 900°C, the interaction of carbon with finely dis-
persed nickel, present in the film bulk, takes place. As a
result of this interaction, nickel carbide is formed. An
Auger spectrum of such a film shown in the inset in
Fig. 6 is very much like that of the pure nickel carbide.

CONCLUSIONS

Analysis of the obtained data warrants a conclusion
that the film that is not subjected to heat treatment con-
sists of nanosize graphite clusters uniformly distributed
in a matrix of hydrogenated amorphous carbon in
which a part of the carbon atoms has been replaced by
nitrogen atoms. It has been established that quite a large
quantity of nickel and some oxygen are present in the
film. Therefore, the electrolytic method under given
conditions yielded films of rather complex composition
containing 70–80 at. % of carbon. Analysis of the

100 200 400 600 900
Kinetic energy, eV

800700500300
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O Ni
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230 250 270 E, eV

C
252

260

Fig. 6. Auger spectrum of the film annealed at 900°C.
Raman spectra suggests that annealing at 300°C,
besides producing a higher degree of order in the film,
causes the formation of nanosize diamond clusters.
With a further increase of the annealing temperature,
the crystal structure of the graphite clusters becomes
more perfect, and the size of diamond clusters dimin-
ishes. At temperatures above 600°C, the interaction of
carbon with nickel in the film bulk takes place. As a
result, all carbon reacts with nickel thus forming nickel
carbide.
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Abstract—The determination of the equilibrium atomic structure of a nanotribocontact, formed by a hard
probe to be viewed as a paraboloid of revolution and subjected to an external load, with the soft surface modeled
by a set of parallel atomic planes is considered. Structural, energy, and load characteristics are calculated. In
addition, dissipative static adhesive friction as a function of the normal load and the radius of probe curvature
for the diamond–graphite system is derived. A number of approximations of the interatomic potentials is used.
It is shown that an allowance for the deformation of the contact area causes the adhesive frictional force in the
tensile (negative) load range to decrease. For positive loads in a range of 0–80 nN, the variation of the frictional
force (when deformation is taken into account) depends on the radius of the probe curvature and
the used approximation of the interaction potential. The dependence of friction on the radius of the probe cur-
vature is close to a direct proportionality. The calculated results are compared with the available experimental
data. © 2000 MAIK “Nauka/Interperiodica”.
The achievements of scanning probe microscopy
have stimulated the advent and development of the
novel promising fields of research in physics, such as
nanotribology and nanolithography [1–3], that makes it
necessary to detail the nanostructure friction mecha-
nisms. According to present-day concepts, the fric-
tional force involves deformation and adhesive compo-
nents, the latter being theoretically described in the
most difficult manner. There are two main approaches
to solving this problem. They are based on the macro-
scopic contact theory [4–6] and molecular-dynamics
methods [7–11]. In the first case, the theory uses the
values of elastic characteristics known at the mac-
rolevel and a semiempirical relationship of Bowden
and Tabor for the frictional force [4]

where τ is the shear strength and A is the actual contact
area. Generally speaking, both quantities lose their
meaning on the atomic scale; therefore, the results
derived by means of the contact theory must be treated
critically. In this case, in addition, the physical mecha-
nism of friction-related irreversible energy losses is not
revealed. Numerical simulations have shortcomings as
well, since one has, first of all, to limit the number of
particles involved in the process of the dynamical relax-
ation that makes it difficult to evaluate the fraction of
the energy dissipated into the heat. This is especially
the case if a “thermal” model of the system is initially
considered. In molecular-dynamics calculations, inevi-
tably, it is necessary to consider only the finite number

F τA,=
1063-7842/00/4507- $20.00 © 20909
of atoms of both the nanoprobe and surface; therefore,
during the dynamical relaxation, the energy is
“trapped” in the contact area, whereas it must be actu-
ally dissipated into the bulk of the contacting bodies via
vibrational modes. As a result, when loading a contact,
the response of the simulated system may significantly
differ from that of an actual one. There are certain dif-
ficulties in a qualitative determination of the contribu-
tion of the “internal” and “external” frictions [9–11],
which are associated with energy dissipation into the
bulk of the rubbing bodies and governed by the dissipa-
tive component of lateral forces. Finally, the temporal
and velocity scales for the numerical experiments
(typical values are 1–1000 m/s) significantly differ
from the scanning velocities in the probe microscopy
(10–4–10–7 m/s). In [12], we suggested a “quasistatic”
adhesive friction model for the nanoprobe slipping
along the atomically flat surface, in which each elemen-
tary slipping act (“microslip”) is accompanied by a
drastic disruption of existing adhesion bonds between
atoms of the tip and surface and, on the other hand, by
the avalanche-like process of creating new bonds. The
residual potential atomic energy of disrupting and new
arising bonds is further transformed into the heat via
vibrational modes. According to this model, we have
the following expression for a dissipative static (veloc-
ity-independent) adhesive frictional force

(2)F

∆wm

m

∑
∆x

---------------------,=
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Fig. 1. (a) Schematic diagram of the contact area between
the tip of a probe microscope and the surface and (b) the
shift directions of atoms of the top atomic plane of a mate-
rial due to deformation. 
where ∆wm is the change in energy of the mth bond due
to a microslip and ∆x is the corresponding travel of the
probe. The initial position of the nanoprobe corre-
sponds to the minimum of the tribosystem energy. The
experiments performed with frictional microscopes
demonstrate that a typical travel ∆x is approximately
equal to the surface lattice constant independently of
dimensions of the contact area. In the framework of the
model under consideration, this fact has a simple geo-
metric explanation, since the total number of the adhe-
sive bonds and the probe–surface interaction energy
quantitatively display the periodicity of the surface
atomic structure for a lateral travel of the probe apex,
and its equilibrium position corresponds to the mini-
mum of the tribosystem energy and is separated by a
spacing equal to the lattice period from other neighbor-
ing positions. To overcome the corresponding potential
barrier, each microslip needs an “activation energy”
accumulated in the form of the elastic deformation
energy in the cantilever–probe–surface system as the
movable part of the microscope scans along the surface. 

In [12], we considered a simplified contact model
regardless of the deformation of the contact area, which
is justified only for fairly large distances of the probe
apex from the surface. In this study, we take the defor-
mation into consideration by means of a geometric
model allowing us to find the form of the contact area
and the arrangement of atoms in it by minimizing the
energy of the system. Further, we calculate the fric-
tional force using formula (2). The particular numerical
calculations are performed for the contact between a
20
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Fig. 2. The single contributions and the total contact energy
for a diamond–graphite system for the probe with R = 15 nm
as a function of the vertical shift of the top graphite
plane, h1. The height of the probe with respect to the non-
shifted position of the top plane is h = – 0.2 nm.
hard diamond probe and a (0001) graphite surface. The
choice of this system is governed by simplicity (identi-
cal atoms) and the possibility of applying the rather
simple approximations of interatomic potentials. In
addition, the graphite was used as a standard test-object
in nanoprobe microscopy. 

The diamond probe is assumed to have the form of
a paraboloid of revolution with a radius of curvature R.
It is oriented by the symmetry axis [111] along the nor-
mal to the surface, which is modeled by a set of atomic
planes separated by a spacing h0. Figure 1a shows an
approximate deformation of the surface, when an exter-
nal normal force P is applied to the probe. The shift
directions of atoms of a single atomic plane (initial
atom sites are shown by the dashes) are given in Fig. 1b.
We assume that the shape of the deformed atomic lay-
ers replicates the axial probe symmetry and may be
defined by a model function z(r). In specific calcula-
tions, we used the functions 

(3)

where R is the radius of the probe curvature, m is the
serial number of the atomic plane (counting inward of
the sample), and a and b are the variational parameters. 

Equation (3) automatically takes into account the
fact that the radius of curvature of the top atomic plane
at r = 0 is R and with rising m (at a > 1), the planes
become more and more “smooth.” The suggestion
about the radius of curvature, however, is not basically

z r( ) b
4

2R r
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b
2
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2m
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important. With allowance for the above suggestions,
the relation between the (x, y) coordinates of an atom

on the nondeformed plane and (x', y', z'( )) on
the deformed one is given by equation (3), in which the
(x, y) coordinates are replaced by the “primed” ones,
and the formulas

(4)

where A = b4/2R and B = bam. 
Let us represent the contact energy as the sum of

three main contributions

(5)

where W1 is the change in the energy of planes due to
deformation of the covalent bonds, W2 is the change in
the coupling energy between planes, and W3 is the
probe–surface coupling energy. 

For the covalent carbon bond energy in the planes,
we used the Morze approximation

(6)

where d0 = 0.142 nm is the equilibrium bond length,
U0 = 3.68 eV, and α = 3.093/d0. The small bond defor-
mation energy for this choice of constants is 35.2(d –

d0)2/  eV in agreement with [13]. The probe–surface
coupling and the interaction of carbon atoms of differ-
ent planes were calculated in the approximation of the
pairwise interactions using the C–C potential evaluated
by means of the electron gas model [12] and with the
Lennard–Jones potential in the form

(7)

where C6 = 3.745 × 10–18JA6 is the dispersive coupling
constant for carbon atoms in their nonvalent states and
r0 = 3.81 A. A combined potential was also applied,
which coincides with the electron gas model at r <
0.25 nm and smoothly changes to the potential (7) at
r > 0.25 nm. In this case, both the short-range repulsion
and long-range attraction are taken into account more
correctly. The corresponding approximations to the
potentials are numbered by the indices 1, 2, and 3. 

The equilibrium characteristics of the contact were
calculated by minimizing the energy W over the param-
eters a and b at fixed values of R and h for each partic-
ular lateral position of the probe apex with respect to
the surface (Fig. 1a). The value of h was assumed to be
positive if the probe was shifted upwards with respect
to the top nondeformed graphite plane; otherwise, it
was negative. The load P of the contact and the normal
contact hardness were found by differentiation of the
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energy (minimized over parameters a and b) with
respect to h. The friction was evaluated with formula (2) at
given values of a, b, and h. 

Figure 2 shows generic dependences of individual
contributions and the total contact energy on the verti-
cal shift of the top atomic plane, h1, at the point r = 0
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Fig. 3. The dependence of the parameter b on the height h of
the probe apex above the top nonshifted graphite plane for
several radii of the probe curvature corresponding to the
energy minimum of the probe–surface system. Calculated
curves correspond to the potential 3. For positive h, the sur-
face of graphite determined by equation (3) is “heaved”
upwards, tending to form a connective neck with the probe.
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Fig. 4. The dependence of the normal load at the contact on
the apex height for several probe radii. The calculations cor-
respond to the potential 3.
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Fig. 5. The friction–load dependences for the potentials
(a) 1, (b) 2, and (c) 3. The radius of the probe curvature is
5 nm. Curves 1 and 2 are plotted without and with allowance
for the contact deformation, respectively.
(Fig. 1a). In this case, the probe apex height (R =
15 nm) above the upper nondeformed graphite plane
was equal to –0.2 nm. The parameters b and h1 are con-

nected by the relationship b = . It is seen that
the dependence W3(h1) follows the dependence of the
pairwise interaction potential r; i. e., it has a minimum,
a sharp rise at h1  0, and a smoother increase with
the zero asymptotic at h1  –∞. The sum of energies
W1 + W2, on the contrary, changes monotonically, since
the deformation of atomic planes and their excess inter-
actions increase with the rise in b. As a result, the total
energy W always possesses the pronounced minimum
if we take into account the limitation |h | ≤ |h1 |, at which
the probe does not actually “puncture” the nearest
plane shifted downwards. 

The parameter a characterizes the degree of relax-
ation of the atomic layer displacements with the dis-
tance inward of the sample. The minimum over a is
more flattened and depends slightly on the probe radius
and distance h. In our evaluations, a = 1.054 was
obtained. The amplitude of the vertical plane shifts was
decreased by a factor of 10 at m = 22. 

Figure 3 shows the dependences b(h) for the energy
minimum of the contact for different radii of the nano-
probe. In Fig. 4, the dependences of the normal load P
on h are given. The range of positive values of h corre-
sponds to the separation of the probe in its lifting from
the surface. In Figs. 5a and 5b are shown the calculated
friction-force dependences on the normal load for the
potentials 1 and 2 (corresponding to the approxima-
tions of the electron gas model and Lennard-Jones,
respectively) with and without allowance for the defor-
mation of the contact area. For both cases, the radius of
curvature was equal to 5 nm. The nonmonotonic char-
acter of the calculated points in the range of small loads
is determined by the discreteness of an atomic struc-
ture. In this case, the dependence W(a, b) reveals a vari-
ety of fairly close minima, making it difficult to deter-
mine the most probable structure, since even a small
probe shift in the vertical direction may give rise to a
nonmonotonic variation in the coupling energy. Thus,
as a whole, the approximation 1 leads to higher values
of the friction force as compared with the approxima-
tion 2. In addition, the allowance for deformation of the
contact area causes the frictional force to increase. For
the potential 1, this increase is several times in the
range of positive loads. For the potential 2, it lies in the
interval between 0 and 50% within a load range of 0 to
60 nN. For negative loads, the potential 2 with the
allowance for the deformation gives somewhat smaller
values of the pulloff probe forces (in magnitude) than
in the opposite case. 

Figures 6a and 6b show the friction–load depen-
dences for the nanoprobes with radii of 5, 10, and
15 nm using combined potential 3. A comparison of the
corresponding curves in Figs. 6a and 6b for the probe
with a radius of curvature of 5 nm shows that, for loads

2R h1
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of 0–80 nN, the regard for deformation gives rise to
somewhat lesser values of the frictional force than in
the opposite case. Conversely, for a larger probe radius,
the frictional force is greater when deformation is taken
into account. The calculation results also indicate that
the frictional force is approximately proportional to the
radius of probe curvature. 

Unfortunately, the lack of information makes it
impossible to compare in detail our results with exper-
imental ones. Among the known studies devoted to
measuring “dry” adhesive friction in a vacuum by
means of a scanning frictional microscope, one can
notice papers [14–16] in which the friction–load depen-
dences for a number of contacts are given. These are Si
(probe)—NbSe2 (the radii of the probe curvature are 12
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Fig. 6. The friction–load dependences for the probes of var-
ious radii. The calculated curves are obtained for the poten-
tial 3 in two cases: (a) without and (b) with allowance for
deformation of the contact area. 
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
and 48 nm), diamond (probe)—tungsten carbide (the
radius of the probe curvature is 110 nm), and Pt
(probe)—mica (the radius of the probe curvature is
140 nm). 

In analyzing the dependences given in these studies,
one can, as is in our calculations, note an irregular char-
acter of the experimental points for small loads. These
irregularities are more pronounced at a small probe
radius when the discreteness of the structure is more
strongly exhibited. Note that in the absence of the con-
tact area deformation, the theoretical dependences are
smooth (compare a and b in Fig. 6). The results of our
calculations at R = 10 nm and the data from [15] for
Si−NbSe2 at R = 12 nm are close qualitatively. In the
quantitative respect, our values of frictional forces are
two to three times greater. The discrepancy may be
caused by a different kind of interacting atoms and, cor-
respondingly, load characteristics of tribosystems, by
an error of formula (2), and (or) experimental data. 

The conclusion about the proportionality of the fric-
tional force to the radius of the probe curvature is con-
firmed by the comparison of the experimental data from
[14, 15] with each other, since the friction for the
Pt−mica contact (R = 140 nm) in [14] is higher by an
order of magnitude than that for the Si–NbSe2 contact
(R = 12 nm). In [16], however, the values of the fric-
tional force are anomalously small for the large probe
radius (110 nm), and, therefore, too small for such a
stiff contact shear stress value (238 MPa) calculated in
the Derjaguin–Muller–Toporov contact approximation
[6]. Since the probe profile was uncontrolled, the
results may be explained by the fact that the probe tip
in actuality was considerably smaller (provided that the
friction was the same). It is possible that the radius of
the tip curvature was about 10 nm.
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Abstract—Emission from fullerene molecules excited by means of electron impact in crossed beams under
conditions of single collisions between electrons and C60 molecules in a kinetic energy range Ee from 25 to
100 eV was studied experimentally. Emission spectra in a wavelength range from 300 to 800 nm; the emission
excitation functions and the temperature of emitting molecules as a function of Ee were measured with a reso-

lution of 1.6–3.2 nm. The contribution to emission from ionized  molecules has been determined and data

on the emissivity of the  ion have been obtained. It has been shown that the emission spectra can be well
approximated with the spectral distribution of thermal emission from a black body (Planck’s formula), taking
into account the lowering of emissivity for a small particle. The emission can be observed starting with electron
energy of about 27 eV; the emission excitation function is of a nonresonant form, peaking at an energy of Ee ≈
70 eV. As Ee is increased, the temperature of emitting particles rises and reaches its maximum value of 3100–
3200 K at Ee ≈ 47 eV. © 2000 MAIK “Nauka/Interperiodica”.

C60
+*

C60
+*
INTRODUCTION

In previous investigations at our laboratory, emis-
sion from microparticles of condensed matter (clusters
of molecular gases (CO2)n, (N2O)n, (H2O)n, and (N2)n

formed in supersonic jets under excitation by means of
electron impact) was studied [1–3]. It was found that
the energy of vibrational [1] and electronic [2, 3] exci-
tations is quickly dissipated through the heating of the
cluster. The rate of return from excited states back to
the ground states rises dramatically with the cluster
size, and the emission spectrum corresponds to emis-
sion from electron-excited states of molecules ejected
from the cluster. A similar picture was observed under
the laser excitation of vibrational degrees of freedom of
SF6 molecules in clusters [4]. Thus, the ejection of mol-
ecules in excited states and the evaporation are the
major cooling channels in weakly bound clusters [5],
and the effect of radiation cooling is not observed. Still,
there is indirect evidence that radiation cooling in
molecular systems plays an important part, for exam-
ple, in gas-phase ion-molecular processes [6]. Corre-
spondingly, ion-molecular processes in clusters can
also proceed with the participation of radiation cooling.

Tightly bound clusters (clusters of less volatile sub-
stances) were found to display radiation cooling with a
continuous emission spectrum similar to Planck’s spec-
trum [7, 8]. The temperature of emitting clusters, as in
the case of tungsten clusters Wn with n > 200, could be
as high as 3800 K [8]. The clusters were heated by
means of an oxidation reaction (Nbn clusters in [7]) or
by laser irradiation (Nbn, Wn, and Hfn clusters [8]).
1063-7842/00/4507- $20.00 © 20915
The discovery in 1985 of fullerenes possessing a
unique stability with respect to fragmentation stimu-
lated investigations of highly-excited fullerene mole-
cules in the gas phase [9–17], in particular of electron-
induced processes [10, 11, 14, 17]. It has been found
that the primary excitation of fullerene molecules, like
that of other complex molecules and clusters, initiates
cascades of secondary processes, while the complex
energy spectrum of the excited states (including collec-
tive excitations) facilitates the rapid dissipation of the
primary excitation and attainment of partial or com-
plete thermalization. However, the basic distinction
between fullerenes and most other microsystems lies in
the extreme stability of the carbon cage [8]. Because of
this high stability, fragmentation, which is the domi-
nant cooling channel of an excited “excessive” com-
plex system (it is monomolecular disintegration in the
case of a molecule and evaporation of structural units in
the case of a cluster), is impeded by the relaxation of
the excited fullerene. As a consequence, competing
(not evaporating) molecule cooling processes of com-
parable intensity come to the foreground, namely, elec-
tron and photon emission (analogues of macroscopic
processes of thermionic emission and thermal emis-
sion, respectively). For example, in [13, 14], a continu-
ous emission spectrum was registered in the visible
range from a flux of C60 molecules heated in various
ways. The molecules were either vaporized from a solid
sample by laser radiation [13] or excited by an electron
impact [14].

In this study, thermal emission from fullerenes was
excited in crossing beams of C60 and low-energy elec-
000 MAIK “Nauka/Interperiodica”
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trons. A continuous emission spectrum was observed
after excitation by means of electron impact in a wave-
length range from 300 to 800 nm (the results given here
were obtained with spectral resolution ∆λ = 3.2 nm;
check measurements at ∆λ = 1.6 nm yielded identical
spectra). The spectrum could be described by Planck’s
formula for emission from a sphere of much smaller
diameter than the emission wavelength, d ! λ [19].

EXPERIMENTAL TECHNIQUE

The procedure and the experimental setup for the
generation of the molecular beam and excitation of C60
by electrons was identical to the ones used in experi-
ments on the measurement of the absolute cross sec-

tions of  and  [11, 17, 20]. For emission regis-
tration, the setup was equipped with an optical system.
The schematic of the experiment is shown in Fig. 1.

The effusion molecular beam was formed by vapor-
izing fullerenes from source 1 heated to T0 = 800 K and
intersected by an electron beam at an angle of 90°. The
beam of electrons emitted from oxide cathode 2 was
formed by a system of apertures 3–5, collimated with
the magnetic field (300 G) of magnets 6 and registered
at collector 7 of the Faraday cup type. The current of
electrons did not exceed 60 µA and the density of mol-
ecules in the region of crossing of the beams was of the
order of 1010 cm-3. In this way, a pairwise interaction of
electrons and molecules was ensured. The energy of
electrons in the beam Ee varied in the range from 0 to
100 eV.

The emission from the intersection region of the two
beams was collected at right angles to the electron
beam; the angle with the molecular beam direction was
40°. A system of short-focus lenses imaged the emis-
sion onto the entrance slit of an MUM monochromator
(MC) (200–800 nm, reciprocal dispersion 3.2 nm/mm)

C60
–

C60
+

6

7

DP

8

1

5
4
3

2
6

F
PM

PM

MC

Fig. 1. Schematic of the experimental setup.
and, following spectral dispersion, it was registered
with an FEU-79 photomultiplier (PM). The spectral
sensitivity of the system of optical diagnosis was cali-
brated using a CI 10–300 lamp as a standard emitter. In
order to determine the flux of photons I(λ), the regis-
tered spectra were normalized using a curve of relative
spectral sensitivity η/(λ). The integrated intensity was
registered by a photomultiplier, with the monochroma-
tor replaced by a ZS-8 broad-band filter (F). Under
these conditions, the integrated spectral sensitivity
curve had a maximum at 500 nm and a halfwidth of
150 nm. The spatial resolution of the detecting system
(the size of the spot from which the emission was col-
lected) was determined using a point radiation source.

To isolate the contribution from  ions to the
total emission, an electric field was applied to the
region of beam crossing which was produced by two
deflecting plates (DP) placed along the axes of molec-
ular and electron beams. With increasing electric field
strength ξ between the plates, the time spent by the ions
in the field of view diminished. Because of the mag-
netic collimation of electrons, there was no distortion
of the electron beam by the field ξ. To verify this, we
measured in the same setup the emission due to short-

lived states of  (B , λ = 391 nm) and found that
their emission intensity did not depend on the strength
of the pulling electric field.

Generally speaking, contributions to emission may
also come from fragments, both neutral, , and

charged, . But the threshold for fragmentation
under electron impact suffers a significant kinetic shift,
being observed at 42–44 eV, and at Ee < 100 eV, the
fraction of fragments does not exceed 5–7% [10, 12].
Taking this into account and also considering the char-
acter of I(Ee) plots obtained in this work, we conclude
that the emission is due mainly to unfragmented
fullerene molecules.

Contributions to emission from other sources was
eliminated in the following ways. The electron-induced
emission from the background gas and other possible
sources was measured while the beam source aperture
was closed with shutter 8. The contribution to the signal
of thermal radiation from heated parts of the fullerene
source was eliminated by modulating the electron
beam; it was chopped at a frequency of 80 Hz, and the
photomultiplier signal was measured in the lock mode
at the chopping frequency.

RESULTS AND DISCUSSION

In Fig. 2, typical spectra are shown (curves 1) of
emission, generated as a result of electron impact on the
fullerene molecule in crossing beams at electron ener-
gies 66 (a) and 30 eV (b). In order to obtain these
curves, the contribution of the background gas was sub-
tracted from the total PM signal (curve 2); then the dif-

C60
+*

N2
+ Σ2 +

u

C60 2n–*

C60 2n–
+*
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Fig. 2. Electron-induced radiation spectra. Dashed line is an approximation of the experimental data by formula (1).
ference signal (desired signal, curve 3) was corrected
for the spectral sensitivity of the optical system
(curve 4).

Let us compare this spectrum with the one that is
due to the thermal emission of a small spherical particle
heated to a temperature T. The rate of photon emission
Ith in the wavelength range [λ, λ + ∆λ] from a heated
body is described by Planck’s formula

(1)

where S is the emitting area and ε(λ, T) is the emissivity
of a solid. It follows from the emission theory for small
particles [19] that the emissivity of a sphere of diameter
d ! λ is ε(λ) ∝  d/λ (because photon emission comes
from the bulk of the particles instead of their surface).
The C60 molecule is spherically symmetrical and hol-
low; for this geometry, the function ε(λ) ∝  λ–1 will
obviously be valid. The outer diameter of the electron
shell of a molecule is d ≈ 1 nm. Below we assume

(2)

where ε0 is a numerical constant.

In order to derive the internal energy Eν of a
fullerene molecule corresponding to the temperature of
emitting molecules, we calculated, following [13], the
vibrational energy in the approximation of harmonic
intramolecular vibrations of C60. Contributions of all
the 46 vibrational modes were summed up, taking into
account their degree of degeneration. The results of cal-
culations with the use of data on frequencies presented
in [21] practically coincided with calculations in [12].

I th λ T,( )

=  2πcS∆λε λ T,( )/ λ4 hc
λkT
---------- 

 exp 1– 
  ,

ε λ( ) ε0
d
λ
---,=
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At T > 1500 K, the curve of Eν(T) is well approximated
by a linear function Eν(eV) ≅  13.9 + 0.0143(T – 1500).

Figure 3 shows the measured emission intensity of
the fullerene as a function of energy Ee. Here curve 1 is
an integrated emission (measured in “filter + photomul-
tiplier” scheme); curve 2 is the emission at a wave-
length λ = 540 nm, ∆λ = 3.2 nm. Curve 3 in Fig. 3 is the
dependence of the temperature of emitting particles
T(Ee) obtained by fitting the spectral data with formula
(1) using the least squares method. It can be seen that
as Ee is increased to about 47 eV, the temperature T
rises in proportion to Ee. At Ee > 47 eV, the temperature
of emitting particles rises to a maximum value of T* ≈
3100–3200 K corresponding to the internal energy of
the C60 molecule Eν ≅  36 eV. Taking into account that
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Fig. 3. Plots of the emission intensity (1, 2), the temperature
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the main emission source is the ionized molecule (ion-
ization potential Ui = 7.6 eV [11, 18]) and that the ther-
mal energy of the C60 molecule in the effusion beam
Eν, 0 = Eν(T0) ≅  4.6 eV, we obtain that the energy trans-
ferred to the molecule by an electron (Eν + Ui – Eν, 0)
amounts to 39 eV. Thus, the primary and secondary
electrons take away only 8 eV. The transfer of such a
great amount of energy to the C60 molecule implies a
multielectron excitation process.

The existence of a limit for the temperature increase

of the  molecule can be explained by competition
between the radiation cooling of the molecule heated
by an electron and an alternative cooling process by

evaporation of C2 through the process  

 + nC2, the rate constant of which has a stronger

C60
+*

C60
+*

C60 2n–
+*

Fig. 4. Plots of the emission intensity (1, 2) and the calcu-
lated ion transit time (3) versus the electric field strength.
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Fig. 5. Experimental (s, n) and calculated (dashed lines)
plots of the emission intensity of molecules, ion transit time
(I) and their ultimate temperature (II) against the electric
field strength (values of ε0 are indicated at the curves).
temperature dependence [9]. Note, at this point, that the
sum kT* + Uf, where Uf is the ionization potential of
C58, turned out to be close to the threshold energy Ee for
the dissociative ionization [10, 12, 18].

Shown in Fig. 3 (curve 4) is the dependence [10] of

the current due to  ions generated as a result of the

metastable fragmentation of  during the time inter-
val 7.7–31.2 µs lapsed after interaction with an electron
for an initial thermal energy of the molecule Eν, 0 ≈
4.5 eV. It is seen that the threshold for the generation of
the fragments is indeed close to the energy Ee, at which
the temperature rise of emitters ceases, i.e., hotter mol-
ecules, apparently, rapidly loose energy through the
evaporation of C2.

Heating the C60 molecule causes not only its frag-
mentation but also the thermal emission of an electron,
which is a faster process [9]. Therefore, the main emis-
sion source at Ee ≥ 40 eV, as shown earlier by the

present authors [22], is provided by the ionized 
molecules. In Fig. 4, the integrated intensity I is plotted
as a function of the strength ξ and polarity of the elec-
tric field between the deflecting plates at energies Ee =
40 (curve 1) and 65 eV (curve 2). Also shown in this

figure is the time of stay of a  ion in the emission
region under observation (curve 3) calculated for an ion
produced in the center of electron beam and having the
starting velocity equal to the velocity of a C60 molecule
in the effusion beam. The asymmetry of the curves is
related to the fact that the optical axis and the molecule
velocity are not collinear (the angle between them is
40°).

It can be easily shown that, at strong pulling fields,
the time of stay of the ions in the region under observa-
tion tr and, consequently, their emission intensities I+

are proportional to ξ–1/2. By plotting I(ξ) in coordinates
I(ξ) – ξ–1/2 and extrapolating to the origin of the coordi-
nates, we find that the contribution to emission from
neutral particles does not exceed 16 and 4% for Ee = 40
and 65 eV, respectively. These values are shown in
Fig. 4 by horizontal lines 1' and 2'.

Data in Fig. 4 allow estimates to be made of the

emissivity of . For this purpose, we subtracted
from the total emission I the contribution of neutral par-
ticles. In Fig. 5, the symbols correspond to data for the
ion emission I+(ξ) derived from the left-hand branches
of curves 1 and 2 in Fig. 4. The calculated dependence
of time tr on ξ is shown in Fig. 5, curve I.

The emission at small ξ (corresponding to large val-
ues of time tr) does not vary in proportion to tr. We
relate this behavior of I+(ξ) to the radiation cooling of

the  ion during its stay in the region under observa-
tion. In order to derive the dependence of the emission

C58
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intensity on the cooling rate, we integrate the emission
flux energy q = (hc/λ)Ith with respect to λ. Taking ε(λ)
in the form of (2), we get, as a result of integration, an
expression similar to the Stephan–Boltzmann formula
for a small particle

(3)

where σc = 24.888 2πhc2Sd(k/hc)5.
Making use of

(4)

and integrating (4), we get variation with time of the

temperature of 

(5)

where Ti is the initial ion temperature.
Substituting (5) into (1), we get an expression for

the ion emission intensity  as a function of the time
in transit t and the initial temperature Ti. The integral of

(t) over the ion trajectory with account taken of the
spatial variation of the sensitivity of the optical system
η(r)

(6)

represents the number of photons registered by the opti-

cal system per one emitting  ion. As the rate of for-

mation of  ions does not depend on the field ξ, the
N+(ξ) dependence to within a constant A coincides with
the measured signal I+(ξ).

Depicted by a dashed line in Fig. 5 are the calcula-
tion results for N+(ξ) at Ti = 3150 K and λ = 540 nm for
several values of the constant ε0. For illustration pur-
poses, the calculated N+(ξ) curves have been normal-
ized at their maxima in the region of large times tr . In
comparing the experimental data points for I+(ξ) with
calculated N+(ξ) curves, the differences between N+ and
I+ values were minimized using the least squares
method with constants A and ε as fitting parameters. It
was found that the best agreement with the model is
observed at ε0 = 5.7 for Ee = 40 eV (triangles) and ε0 =
6 for Ee = 65 eV (open circles). The final temperature Tf

of  ions exiting the region under observation for
ε0 = 6 is shown by curve II in Fig. 5.

A qualitative confirmation of the temperature varia-

tion of the quantity T( ) has been obtained from
measurements of the emitting region profiles along the
direction perpendicular to the optical observation axis
and the axis of the electron beam for emission from

q ε0σcT
5

=

qdt CdT ,–=

C60
+*

T t Ti,( ) Ti 1 t 4ε0σcTi
4[ ] /C+{ }

1/4–
,=

I th
+

I th
+

N
+

I th
+ η r t( )( ) td

0

∞

∫=

C60
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+*

C60
+*

C60
+*
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nitrogen ions (B , λ = 391 nm) and  ions.
The obtained distributions of the emission intensity are
shown in Fig. 6. Maxima of I+ curves in Fig. 6 have
been made equal. Note that in these measurements,
nitrogen was leaked in the chamber to a pressure of

10−4 Pa. The lifetime of the state is B  ~ 0.1 µs; i.e.,

the thermal motion of the excited  ions during a
radiative lifetime can be neglected. In this case, the
measured emission intensity is given to within a device
constant by the integral

(7)

Here, |rs | is the distance from the optical axis to the
electron beam axis, and the integration is carried out
over the region where both the excitation level P(r) and
the sensitivity of the registration system η(r) are non-
zero. For a fullerene, taking into account the radiation
cooling, we get

(8)

where t(r – r0) = |r – r0 |/ |v0 | is the time of ion transit and
v0 is the starting velocity vector (measurements were
carried out at ξ = 0).

The emission profile of  calculated by formula (7)
and the emission profile of the fullerene derived using
formulas (1), (5), and (8) at ε0 = 6 are shown in Fig. 6
as solid curves. It can be seen that the shift of the
fullerene emission profile relative to that of nitrogen is

N2
+ Σ2 +

u C60
+*

Σ2 +
u

N2
+

In rs( ) d
3
rη r rs–( )P r( ).

P r( ) η r( ) 0≠,
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× d
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Fig. 6. Transverse profiles of the electron-induced emission
(Ee = 70 eV) from nitrogen ions (open circles) and fullerene
molecules (solid circles). Symbols show the experimental
results, and solid curves show the results of calculations.
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Emissivity of fullerenes

Emitting particle Coefficient ε Process considered References

0.5–1.2 × 10–4 Cooling of heated molecules in a beam [5]

2–4.4 × 10–2 Metastable fragmentation [8]

~1.2 × 10–4 Thermionic emission [9]

1.0–1.1 × 10–2 Optical emission This study

C60
*

C60 2n–
+*

C60
–*

C60
+*
well described by our model of the radiation cooling

of .

Previously [12, 15, 16], in studies of relaxation pro-
cesses in a gaseous fullerene, estimates of emissivity
have been made. However, in analyzing these data, the
following points should be taken into consideration.
Firstly, indirect estimates of the radiation cooling con-
stant are strongly influenced by the choice of the rate
constants of competing processes, mechanisms of
which are not quite well understood. Secondly, in [12,
15, 16], experimental determinations were carried out
of the loss rates of the internal energy q in different
temperature ranges and the ε values were “recovered”
under certain assumptions differing from those adopted
in this work. For example, the dependence of ε on λ
was ignored [12, 15], and it was assumed [16] that q ∝
T7.6 or ε(λ) ∝  (d/λ)3.6. In view of the above, we have
used the data of [12, 15, 16] for the rate of radiative
energy loss q(T) and recovered the values of ε using
formulas (2) and (3). Values of ε for λ = 540 nm and
d = 1 nm are given in the table.

Note that our values of ε are much higher than those
of indirect estimations. This is probably due to the dif-
ference in temperatures (in [12, 16] the temperature of
particles did not exceed 1800 K), which can have a two-
fold effect. Firstly, as the temperature is increased, the

cooling rate of  can rise because of the evaporation
of C2. However, this effect appears to be not strong
enough because the observed cooling rates are the same
at energies 40 and 65 eV, whereas fragmentation at
40 eV is practically zero (curve 4 in Fig. 3; see also
[10, 12]). Secondly, the possibility that ε depends on T
cannot be excluded. In our calculations above, this
dependence was neglected because of a rather small

temperature drop observed during crossing by the 
ion of the region under observation (curve II in Fig. 5).

The most complicated issue is the formation mech-
anism of the Planck’s emission spectrum of a nanopar-
ticle. In ordinary media, the continuous thermal emis-
sion spectrum is formed as a result of the transfer of
resonant emission under conditions of photon reab-
sorption [23]. It is evident that because of the low den-
sity of C60 molecules in the beam, the reabsorption does
not take place. The absorption spectrum of unexcited

C60
+*

C60
+*

C60
**
C60 displays a resonant character typical of molecular
spectra [24] and showing that, in this place, the number
of optically active states is small. The continuous char-
acter of the electron-induced emission of highly excited
fullerene molecules can possibly be explained by opti-
cal transitions between electron-excited states whose

density is high [25]. The shape of the observed 
emission spectra indicates that the highly excited
fullerene molecule is large enough for complete ther-
mal equilibrium between emission modes to be
achieved.

CONCLUSIONS

In this work, the emission of fullerene molecules
excited by electron impact in crossing beams under
conditions of single inelastic collisions C60 + e– in the
range of collision energies from 25 to 100 eV was stud-
ied, and the following results have been obtained.

Collisions between C60 and electrons produce emis-

sion from  molecules and  ions at electron
energies starting from ≈27 eV. The major contribution

to the emission comes from  ions, which form after
the fast thermal emission of electron.

The emission excitation function I(Ee) has been
derived. The function has a nonresonant character and
reaches a maximum at an energy Ee ≈ 70 eV.

It has been found that the spectrum of electron-
induced emission of fullerene molecules is described
by Planck’s formula for radiation from small particles
of sizes much smaller than the radiation wavelength.
The temperature of molecules determined from emis-
sion spectra rises in proportion to Ee as the electron
energy is increased to ≈47 eV and then stays constant at
T ≈ 3150 K. Considering the distribution of tempera-
tures of the molecules, the heating can be as high as
Tm ≈ 3800 K.

The kinetics of radiation cooling of  has been
investigated and the emissivity value obtained: ε ≈ 10–2

at λ = 540 nm and d = 1 nm. The results of works [7, 8,
13, 14] and of this study show that the method of exci-
tation of metal clusters and C60 molecules has no effect

C60
**

C60
* C60

+*

C60
+*

C60
+*
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on the emission spectrum; metal particles and fullerene
molecules produce Planck’s spectrum for thermal
emission. This is probably the common property of
tightly bound clusters and molecules.
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Abstract—Experimental studies on the self-organization of dissipative dynamic systems have shown that this
property is inherent to the structure of the discharge leader. © 2000 MAIK “Nauka/Interperiodica”.
In recent years, interest in studying the self-organi-
zation phenomenon in living and physical systems has
quickened. The latter are especially promising in this
respect because of their simplicity and the availability
of well-developed experimental methods and tools. At
present, few systems where self-organization is known
to take place are the objects of investigation. A wider
coverage of dissimilar systems would be of great value
for the in-depth analysis of the self-organization mech-
anisms and properties.

In this work, the self-organization of the discharge
leader on the water surface (LOW) was discovered.
This study is an extension of [1], where an arc discharge
initiated on the water surface was used as a source of UV
radiation to deactivate microorganisms [2].

When a cylindrical cathode was partially immersed
in water (vertically) and the anode tip was above the
water surface at a distance of 1–3 cm from the cathode
[1], the formation of the leader was found to shunt the
water resistance in the gap and cause nonlinear current
feedback (between the gap voltage and resistance) to
occur. In other words, if the LOW is initiated by a
capacitor, an R(t)C discharge arises in the circuit and an
exponential current and voltage decay is not observed.

Further studies of LOW [3, 4] under creeping dis-
charge conditions (Fig. 1) have shown that the LOW
may be quasi-one- or quasi-two-dimensional depend-
ing on whether the cathode is one- or two-dimensional
(Fig. 2). The leader core is driven by the potential dif-
ference between it and the water surface in front of it.
The leader structure forms by repeatedly splitting the
core because of its flattening. The LOW structure thus
obtained is fractal with the fractal dimension D = 0.96
and 1.85 for quasi-one- and quasi-two-dimensional dis-
charges, respectively. Their evolution is self-consistent
[4, 5].

Here, we report additional information that provides
a deeper insight into the role of a corona in the leader
evolution. Based on these data and also in view of self-
organization signs [3–5] found in nonequilibrium
dynamic dissipative systems [6, 7], we establish the
fact of LOW self-organization. The self-organization
signs are, specifically, the spontaneous and threshold
1063-7842/00/4507- $20.00 © 20922
character of structuring and structure breakdown, as
well as the relation between the dissipated power and
structuring.

CONDITIONS FOR LOW STRUCTURING

LOW structuring is demonstrated more distinctly
with the two-dimensional LOW [4]. The setup for
LOW study (Fig. 1) is essentially a 1.5-cm-high cylin-
drical glass cuvette 1 of diameter 9 cm, two-thirds full
of tap water 2 with a conductivity of ≅ 1 × 10–4 Ω–1 cm–1.
Cathode 3, an 0.05-cm-thick brass disk 7 cm in diame-
ter was placed concentrically to the cuvette 0.3 cm
below the water surface. The end of a stainless steel
wire 7.5 × 10–3 cm in diameter served as anode 4. The
anode was 0.1–0.3 cm above the water surface at the
center of the cuvette.

In experiments, we used 0.1-µF-storage capacitor 5,
which was charged to the initial voltage U0 = 3–6 kV.
A discharge was initiated by shortening air gap 6.
Oscillograms of the capacitor voltage Uc and discharge
current i (Fig. 3) were obtained using resistive voltage
divider 7 and shunt 8. The discharge was photographed
with camera 9. The experimental conditions were
detailed in [3, 4].

At the initial voltage U0 = 3–6 kV (positive anode 1
in Fig. 4), cone-shaped corona 3 was initiated in air
gap 2. As soon as the corona cone base reached the
water surface, from three to six initial leaders 4 began
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Fig. 1. Experimental setup.
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to develop over it. The onset of the discharge in the gap
was indicated by the current passing through the dis-
charge circuit. Its value increased from that typical of
coronas to i0 = 3 A (U0 = 6 kV) (Fig. 3, curve 2). The
final value was set after the corona cone had touched
the water surface. During this stage (≈100 ns), cathode
layer 5 (Fig. 4), necessary for passing the conduction
current, formed in the anode–water gap near the water
and the initial corona was successively changed to
glow, abnormal glow, and arc discharges 6. The current
value i0 equals U0/R0, where R0 is the discharge circuit
resistance, which includes the plasma resistance in the
anode–water gap and the resistance of the water layer
between the cathode and corona cone. A further
increase in the current is due to the LOW evolution,
specifically, an increase in the leader area and water
layer under the leader structure. This water layer
defines the discharge circuit resistance at this stage of
the discharge [4].

In [3], the structure of a quasi-one-dimensional
leader was represented as consisting of a channel, arms,
and branches. Streamers at the leader core, though

1 cm

1 cm

(‡)

(b)

Fig. 2. (a) Two-dimensional discharge and (b) the end of a
one-dimensional discharge.
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expected, were absent in the photograph of the entire
leader. According to [8], it was assumed that they are
comparable in size with the core radius and remained
unresolved. However, in the photograph taken with a
greater magnification from a one-dimensional leader
developed in the gap (Fig. 2b), filament-like formations
against the diffuse background are seen in the last cen-
timeter of the channel on both of its sides. Away from
the core, branches are observed. The filaments were
observed most distinctly in a microscope with a 16×
magnification. The filament length increased from
150 µm at the core to 400 µm at 1 cm from it. The spac-
ing between the filaments was 100 and 30 µm, respec-
tively. The filament diameter was found to be 20–30 µm
throughout the channel. The angle between the channel
and filaments increases from 20° at the core of the
leader to 80° at its end. However, streamers ahead of
the leader were not observed either in the photograph or
in the microscope. Here, it should be taken into consid-
eration that the photograph of the entire leader is iden-
tical to the original only at the end part of the stopped
leader. Away from the core, the image of the leader,
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Fig. 3. Time dependences (oscillograms) of the (1) capacitor
voltage, (2) discharge current, and (3) discharge circuit
resistance. U0 = (a) 6 and (b) 3 kV.
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including that observed in the microscope, is the con-
tinuous superposition of its previous images.

With regard for data for pulse coronas [8, 9], one
may suppose that the observed filaments are streamers
arising when the moving core displays corona.

The leader core is driven by the Coulomb force,
which is proportional to the potential difference
between the core and water surface in front of it, U =
ϕc – ϕw (Fig. 5). In addition, the core motion is closely
related to a plasma generated at the core front. It has
been suggested [3] that the plasma is generated largely
in the cathode layer, the voltage drop across which is
0.3–0.4 kV. Therefore, the core stops when ∆U = 0.

However, the observed corona of the core and the
coincidence (within the experimental error) of the
corona threshold voltage in air (2.3 kV [10]) with the
potential of the core at the instant it stops (2 kV) for any
of the initial voltages in the range 3–6 kV strongly sug-
gests that the corona discharge significantly contributes
to plasma generation. On the other hand, it follows
from the above that streamers would arise only ahead of
the moving core if its potential exceeds 2.3 kV. Hence
the absence of streamers in front of the stopped core in
the photograph.

The major role of the core corona in the evolution of
the leader is also strengthened by the decrease in the
core velocity from (1–2) × 105 to (1–2) × 104 cm/s when
the core potential drops to ≈3 kV (Fig. 5). This is also
the threshold potential for the evolution of the leader,
this threshold being of synergistic nature. The neces-
sary value of the anode potential is the sum of the
threshold potential for the corona discharge initiated
from the tip, 2.3 kV, and the threshold voltage drop
across the cathode layer, 0.3–0.4 kV. The core moves
with a velocity of (1–2) × 104 cm/s (∆U ≥ 0.4 kV) also
because of plasma generation in the cathode layer. Only
when this layer breaks down (∆U ≤ 0.3 kV) does the
core stop. Note that, when the leader core stops, the rest
of the channel may continue to display corona and,
accordingly, the surrounding cathode layer may remain
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Fig. 5. (1) Core potential, (2) water surface potential, and
(3) core–water potential difference vs. the leader length.
intact, since the channel potential near the anode is still
relatively high. However, as the capacitor and anode
voltages drop, the leader core moves towards the anode
and the leader shortens.

Thus, the LOW evolution proceeds at two levels. It
begins in the plasma of the corona cone near the water
surface (the microlevel), where initial leaders, early
macroelements, start to form (Fig. 4). However, the
evolution of the macrostructure through the movement
of the cores and their splitting are also provided by
microprocesses taking place in the corona and cathode
layer. The appearance of the corona and cathode layer
has a threshold character. Hence, LOW structuring also
has the voltage threshold.

LOW STRUCTURE AND POWER DISSIPATION 
IN THE DISCHARGE CIRCUIT

The other sign of true self-organization in dynamic
dissipative systems is the growth of dissipated power
during self-organization. As noted, the LOW structure
develops from three to six initial leaders by repeatedly
splitting their cores.

Each of the cores in the LOW structure moves
through the interaction with the net field of polarization
charges on the water surface and with elements sur-
rounding the water. Therefore, the leading cores at the
periphery of the structure move in the radial direction,
while those lagging behind and being at the center of
the structure move according to the randomly directed
local field of the structure.

A combination of the determinate (radial) and ran-
dom movements of the core makes the structure spa-
tially stochastic and fractal [5]. The fractal dimension
D of the structure does not depend on the number of ini-
tial leaders and on the initial voltage in the 4–6 kV
range (the range being studied). The fractal dimension
of the structure is related to the full length L of its ele-
ments in a given radius r; namely, L ~ r D. In our case,
the radius of the structure equals the length of the lead-
ers l, l ~ t1/2 [3, 4]; hence, L ~ tD/2. At the same time, the
discharge circuit resistance is defined by that of the
water layer under the structure, that is, depends on the
structure size and element density. Eventually, R ~
1/L ~ t–D/2. As the structure develops, the voltage across
the capacitor reduces insignificantly (Fig. 3); therefore,
the current in the circuit i = U0/R ~ tD/2, and the power
dissipated in the discharge circuit is P ~ i2R ~ tD/2. That
is, the power dissipated in the circuit at the stage of cur-
rent growth is proportional to the full length of the
structure elements.

As stated above, when the corona ceases, the core
slows down, and when its potential becomes equal to
that of the water, the core stops. The current ceases to
grow, the power balance in the channel is violated, the
plasma in the core breaks down, and the structure
shrinks. This, in turn, causes the current, and hence,
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
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power in the discharge circuit to decrease further,
etc. [3].

The analysis of the origination and evolution of the
LOW structure, as well as its relation to the power dis-
sipated in the discharge circuit, allows us to argue, by
analogy with self-organization in nonequilibrium
dynamic dissipative systems [6, 7], that the LOW struc-
ture evolution represents one more example of dissipa-
tive system self-organization.

STRUCTURE SELF-ORGANIZATION

Once the fact of self-organization is established, it
makes sense to treat this phenomenon at length. We
proceed from the assumption that system elements pro-
vide necessary conditions for structuring and structure
evolution.

By elements of the well-developed LOW structure,
we will mean leader channels in the region from the
corona cone to the most remote (along the radius) core,
side arms emerging from the channels or larger arms to
the core most remote from them, and arms emerging
from the last bifurcations together with their cores. The
role of branches in LOW self-organization is insignifi-
cant, and they will be excluded from consideration.
A specific feature of LOW structure self-organization
is that these structure elements appear immediately
during LOW evolution and self-organization.

As noted, at the early stage of structuring, areas with
an elevated charge density, which give rise to cores,
appear in the boundary layer of the corona nonequilib-
rium plasma. These areas move, because the charged
plasma is unstable in the electric field. When moving,
the cores leave behind them a conducting plasma chan-
nel, which transfers the corona cone potential to the
cores. The resulting core–channel plasma formation is
the initial macrostructure element, a leader nucleus. Its
further development implies core splitting and the
emergence of side arms, which are new structure ele-
ments. As the number of structure elements grows and
the system becomes unstable, self-organization at the
macrolevel starts. Here, the early channels become the
first (basic) ordering parameters. The side arms and
branches of leaders set up the final hierarchy of order-
ing parameters in LOW structuring.

Leader core splitting is certainly the key process in
LOW structuring. In [5], core splitting was associated
with a like residual charge present in front of a core. As
the core moves, the charge builds up, so that the core
front flattens at points where it touches the channel
envelope. It appears, however, that the residual charge
may not be a decisive factor in core splitting. Indeed, a
streamer core is not split, as a rule, but retains its shape
(self-sharpens) [11]. This self-consistent process can be
explained by a decrease in the energy density in the
streamer channel with distance from the core; accord-
ingly, the rate of ionization drops, and the channel nar-
rows. On the contrary, a leader channel expands with
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
distance away from the core; hence, the core must flat-
ten on its axis. One can argue, in this case, that the
plasma formation (a cylindrical channel and a hemi-
spheric core) cannot be dynamically stable. According
to the type of core–electrode coupling, the formation
will necessarily be converted either to a streamer with
a narrowing channel or to an expanding leader. There-
fore, analysis of streamer or leader evolution within the
cylindrical model will inevitably cause errors.

Generally, self-organization in a system occurs
when it is necessary to enhance the energy flux through
it from an external source with a growing gradient at
the system boundaries. Under such conditions, a mech-
anism of energy transfer through the system changes to
a higher-rate one. In liquids, for example, heat conduc-
tion changes to Benard cellular convection, and in
lasers, spontaneous lasing changes to induced lasing. In
our case, the system cannot enhance the energy flux by
locally increasing the process rate, since the water con-
ductivity remains unchanged. Here, the energy flux
grows owing to the extensive development of the sys-
tem in the form of LOW structuring. Remarkably, not
only LOW structure elements are produced but also the
nonlinear interaction of the entire system with the
energy source to sustain structure instability is pro-
vided.

It is known that positive feedback (PF) arising in a
system is a sign of its instability. In our case, it shows
up (at the stage of current growth) as a continuously
maintained unambiguous correspondence between the
length of a leader and the current through it (l–i corre-
spondence) [3], i.e., between the radius of the structure
and the current through it. This correspondence reflects
the relation between the leader core potential and the
anode (corona cone) potential. This relation sets in
through the channel, whose conductivity depends on
the passing current. Note that PF is inherent in leader
evolution and can be considered as an immanent prop-
erty in developing each of the structure elements.

As the cores are split, the number of structure ele-
ments increases and so does the charge interaction
between them. This interaction appears as negative
feedback (NF), which is inherent in the entire structure.

It is obvious that the PF prevails early in structuring;
therefore, the number of structure elements doubles
within 0.2 cm (Fig. 6). Then, NF comes into play, and
the rate of element production diminishes. Subse-
quently, the partial contributions of NF and PF to the
overall process presumably vary, as follows from the
varying number of elements (Fig. 6, curve 1). This
combined action continues until all structure elements
develop over the entire structure area and depends on
the element position in the structure. It is responsible
for the competitive growth of the elements and their
selection by formation rate and, hence, length. Eventu-
ally, the structure becomes hierarchically self-similar,
i.e., fractal [5].
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However, the space–time characteristics of the
structure also depend on other factors. Since each of the
elements is subjected to the determinate and random
fields and the element position specifies their combined
action on it during the structure evolution, the LOW
structure exhibits time-variant stochasticity. On the
other hand, the nonstationarity of the energy source and
the absence of limits for structuring make the system
spatially irregular, unlike Benard cells and laser modes,
i.e., space-stochastic.

In the foregoing, LOW self-organization after the
appearance of several initial leaders was considered.
However, a mechanism of their appearance, i.e., pro-
cesses in the plasma layer at the water surface, is also
of great interest. This nonequilibrium plasma layer
forms when the corona cone base comes in contact with
the water surface. The diameter of the layer is close to
that of the cone base (0.1–0.3 cm, depending on U0),
and its thickness is comparable to the core diameter,
≈10–2 cm. As the current through the layer grows when
contracted along the anode–water gap axis, so does
(within ≈100 ns) the energy flux through the layer. This
may induce ionic–acoustic vibrations in the plasma
layer. Charge density crests at the layer periphery may
initiate the nucleation of initial leaders.

Another possible initiation mechanism is the occur-
rence of a planar double electric layer at the instant
when the positively charged cone base touches the neg-
atively charged water surface (Fig. 4). Further, this
layer serves as the cathode layer to provide a discharge
in the anode–water gap. Its diameter and thickness are
0.1–0.3 and ≈10–3 cm, respectively [10]. With regard
for the planar geometry of the cathode layer, oppositely
moving electrons and ions in it, and a drastic increase
in the energy flux when the current contracts, a current
structure of Benard cell type may form in this layer.
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Fig. 6. Number of elements vs. radius: (1) actual structure,
(2) doubled number, and (3) averaged curve to calculate D.
Current stratification observed in the cathode layer of a
glow discharge [10] and cathode spot ordering [12] are
indirect evidence for this supposition. In this case, the
current structure in the cathode layer will modulate the
charge density in the plasma layer adjacent to it on the
anode side (Fig. 4), and the crests of the charge density
at the boundary of this layer will give rise to initial lead-
ers.

In both mechanisms, the charge density varies in a
regular manner, including in the periphery of the layer,
which provides the symmetric arrangement of initial
leaders. Note that the symmetry is also a necessary con-
dition for the resulting structure to be electrically sta-
ble.

The nucleation of initial leaders may follow the
third possible scenario. Since the l–i correspondence,
acting as PF, is universally present in the system, radial
charge-density microfluctuations in the corona plasma
layer at the water surface may be brought to the mac-
rolevel. The competition between (and eventually the
selection of) macrofluctuations will cause radial split-
ting (contraction) of the current into several channels
(Fig. 4), and the charge interaction between the macrof-
luctuations will provide the electrical stability of the
channels.

Obviously, the above scenarios are not mutually
exclusive and may coexist during self-organization at
the microlevel. The early stage of LOW structuring
calls for further investigation. It would be useful for
finding determinateness limits at the early stage of self-
organization in any system. In our opinion, the phe-
nomenon of LOW structuring offers a greater scope for
experimentation than other physical systems.

Our studies of LOW structuring and structure evolu-
tion [3–5] can be summarized as follows.

(1) LOW structuring exhibits all of the signs of self-
organization in nonequilibrium dynamic dissipative
systems [6, 7].

(2) LOW self-organization proceeds in two stages.
First, the radial charge-density structure forms in the
disk-shaped layer of the nonequilibrium plasma near
the water surface; then, the LOW current channels
evolve from the charge density structure.

(3) The evolution and self-organization of the LOW
structure impose limits on the specific power (power
per element) dissipated in the system. This leads to a
rise in the number of structure elements by splitting
and, hence, the total dissipated power; in other words,
the self-organization proceeds in the extensively devel-
oping system.

(4) A structure element moves because of the move-
ment of its core, which is driven by the source potential.
The source potential is transferred to the core through
the channel. Hence, the cores and channels fulfil differ-
ent functions during the process.

(5) The self-organization of the structure is gov-
erned by a combined action of PF, the immanent prop-
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
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erty of each of the elements, and NF, the immanent
property of the structure as a whole. This leads to the
competition between structure elements, their selec-
tion, and the fractality of the structure. In addition,
dynamic self-consistency between the structure and
power source is provided.

(6) The nonstationarity of the power source and the
unrestrictedness of LOW structuring are responsible
for the space–time stochasticity of the structure.

(7) Based on items 1–4, LOW self-organization can
be considered as a universal evolutionary model.
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Abstract—Experimental results on the melting of aluminum nitride heated by an electric arc burning in a nitro-
gen atmosphere at a pressure of 0.2–0.3 MPa are presented. A qualitative explanation of the dissociation sup-
pression mechanism under arc heating is proposed. It has been shown that the suppression is possible at atmo-
spheric pressure due to the photoactivation of aluminum on the sample surface by resonant radiation of alumi-
num vapors present in the electric arc. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Aluminum nitride (AlN) is a promising material
possessing a combination of properties valuable for
practical use [1]. Their full utilization is possible for
mono- or polycrystalline AlN. Dense crystalline alumi-
num nitride can be obtained either by gas-phase growth
[2] or by crystallization from melt [3, 4]. The latter
method is more productive but its implementation is
extremely difficult. Heating of aluminum nitride at
atmospheric pressure results in intensive dissociation
and complete destruction of the sample (transition from
solid to gas phase) already at 2400–2700 K, which is
much lower than its melting point Tm = 3070 ± 100 K
[5]. Therefore, to determine the melting parameters of
aluminum nitride and produce it in polycrystalline
form, growth from melt at elevated nitrogen pressure is
used in order to suppress the thermal dissociation of
AlN. For example, laser melting requires a nitrogen
pressure not lower than 10 MPa [3], while in a con-
tainer melting, it is 0.5 MPa [4].

In [6] an experiment on heating a porous AlN
ceramics by an ac electric arc at nitrogen pressures 0.2–
0.3 MPa was carried out. The arc was initiated under
the AlN sample and the current was 60–80 A. Indica-
tions of aluminum nitride melting were observed.

The choice of the alternating current arc as a heater,
the porous ceramics as an AlN sample, and the scheme
of heating from the bottom is not accidental. The alter-
nating field confines Al+ ions [7] and having the arc
under the sample reduces the carry-over of aluminum
vapor forming as a result of AlN dissociation from the
reaction zone by convection currents. However, heating
from the bottom poses the problem of melt confine-
ment. The porous sample structure through the capil-
lary enables a sufficient amount of molten AlN phase to
be accumulated for unambiguous instrumental proof of
the fact of melting. In these conditions, samples have
been obtained with a clearly distinguishable remelted
1063-7842/00/4507- $20.00 © 20928
surface layer having properties differing from those of
the starting material and possessing high hardness.
X-ray phase analysis has shown that the dominant
phase (up to 99%) in the molten layer is a perfectly
crystallized aluminum nitride. Detailed description of
the experiment as well as of the preceding studies has
been given in [6].

This paper considers the suppression mechanism of
AlN dissociation as well as the specific conditions of
the electric arc heating favoring the AlN melting. The
possibility of melting aluminum nitride at atmospheric
pressure has been shown.

DISSOCIATION SUPPRESSION 
MECHANISM

Suppose that the surface of an AlN sample is heated
to melting point Tm. However, for the melting really to
occur, it is necessary that a dynamic equilibrium
between the condensed aluminum nitride and the gas
phase products of its decomposition be established
according to the reaction

AlNc  Al + 1/2N2 (1)

(c denotes the condensed state). Otherwise, if the par-
tial pressures of nitrogen and aluminum vapors are too
low, instead of melting, an intensive dissociation will
take place. The constant of reaction (1) given by

K = P(Al)P1/2(N2) (2)

at thermodynamic equilibrium can be expressed, for
example, in terms of constants of the reactions
AlN(c)  Al + N and N2  2N, which can be
found in [8]; at T ≅  3000 K, it is equal to 0.12 MPa3/2.
This means that at a partial nitrogen pressure P(N2) of,
say, 0.1 MPa, the equilibrium pressure of aluminum
vapors should be 0.38 MPa, which is impossible since
the saturated vapor pressure of aluminum at this tem-
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perature is only 0.24 MPa [8]. If P(Al) = 0.24 MPa, the
equilibrium nitrogen pressure will be equal to P(N2) =
0.25 MPa as it follows from (2).

Thus, the aluminum nitride can be melted only at
nitrogen pressures of no less than 0.25 MPa. In this
case, if P(N2) is not too high, the aluminum vapor
should be close to saturation, which is difficult to pro-
vide technically since, in the absence of the hermeticity
of the heated volume, the vapor will intensively diffuse
to colder regions and condense there. To reduce P(Al)
by a factor of n while maintaining the equilibrium of
process (1), it is necessary to increase the nitrogen pres-
sure by a factor of n2. Therefore, the melting of AlN can
be achieved only at pressures that are high enough.

The conclusion made above is true for the condi-
tions of thermal excitation of aluminum atoms. In the
process of AlN dissociation, excited aluminum atoms
Al* are released, presumably to the first excited state
4s(2S) with energy E* = 3.14 eV [9]. Therefore, the
reaction that is actually taking place is

AlN(c)  Al* + 1/2N2, (3)

and the reaction constant can be written in the follow-
ing form

K* = P(Al*)P1/2(N2), (4)

where P(Al*) is the partial pressure of aluminum atoms
in the 4s(2S) state.

At T = 3000 K, the equilibrium pressure of excited
atoms is

(5)

Here g* = 2 is the statistical weight of the excited state;
Σ is the statistical sum of an atom, which at a specified
temperature is actually equal to the statistical weight
g = 6 of the ground state 3p(2P). As a result, we obtain
K* = 210Pa3/2; that is, at atmospheric nitrogen pressure,
P(Al*) = 0.7 Pa.

After dissociation by (3), aluminum atoms pass to
the ground state and an equilibrium between the ground
and excited states sets up. Only then, if excitation/de-
excitation of the atoms in the near-surface gas layers
results from collision processes, the direct and reverse
reactions (3) (as well as (1)) may come to an equilib-
rium making the melting possible. This will occur at the
extremely high equilibrium gas phase pressures speci-
fied above, although the vast majority of aluminum
atoms in the ground state are not involved in the pro-
cesses (3). In this case, the number of excited alumi-
num atoms arriving at a sample surface element ds in

     

P Al*( ) P Al( ) g*
Σ T( )
------------ E*

kT
-------– 

 exp=

=  1.77 10
6–
P Al( ).×
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time dt and maintaining equilibrium in (3) is deter-
mined by the expression

(6)

where M is the mass of the aluminum atom. It is
assumed that in the near-surface gas layer of a thickness
of the order of the atom free path, the temperature is
close to the surface temperature Tm.

If the occupation of the excited states is governed by
some nonthermal process and is in excess of that given
by (5), only the equilibrium in (3) (but not in (1)) is of
importance. In that case, the melting is possible at
lower gas phase pressures.

When a sample is heated by arc, the excitation of
aluminum atoms at the surface can be caused by radia-
tion from the arc. Then, the condition for equilibrium in
(3) and therefore, the possibility of melting, can be
described as follows. After dissociation by (3), alumi-
num atoms pass to the ground state and escape to the
arc plasma. The density of aluminum vapors in the arc
plasma increases until the intensity of radiation from
the arc due to the aluminum resonant transition
4s(2S)  3p(2P) becomes high enough for excitation
of such a number of aluminum atoms at the sample sur-
face that an equilibrium between the direct and reverse
reactions in (3) is established. To estimate the minimum
required aluminum vapor density in the arc, the number
of resonant photons arriving at the sample surface
should be no less than that given by (6). Expressing
P(Al*) from (4) and substituting into (6), we obtain that
the flux density of resonant photons emitted by the arc
should be no less than

(7)

At the same time, the flux density of aluminum
atoms coming to the sample surface should be no less
than the value given by (7), and all these atoms can be
considered to be in the ground state. For this to occur,
the aluminum vapor pressure in the near-surface layer
should be no less than the equilibrium partial pressure
of excited atoms at the melting temperature, which is
given by equation (4).

The flux density of photons at an emission wave-
length λ is

(8)

where A is the transition probability (Einstein coeffi-

cient); f is the oscillator strength; and  and Na are
the densities of excited atoms and the total density of
aluminum atoms in the radiating plasma layer of thick-
ness l

 

 at a temperature 

 

T

 

a

 

, respectively.

dN
P Al*( )
2πMkTm
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j
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For the transition under consideration, f = 0.12 [10].
To make an estimation, assume that the temperature Ta

and electron density ne in the arc are independent of the
aluminum vapor density; that is, the desired minimum
density Na is low enough. We take Ta = 12000 K and
ne = 1017 cm–3 [11]. Thus, it is assumed that the density
of aluminum ions is less than 1017 cm-3. Assume also
that the arc plasma is transparent for the resonant radi-
ation; i.e., the characteristic transverse dimension of the
arc l can be taken equal to ≈0.5 cm.

Based on the assumptions made and equating (7)
and (8), we obtain

where the nitrogen pressure is measured in Pa and the
aluminum atom density, in cm–3.

From the Saha equation, it is easy to determine that
the aluminum ion density is Ni ≈ 30Na. At atmospheric
nitrogen pressure, Na ≈ 6 × 1012 cm–3 and Ni ≈ 2 ×
1014 cm–3 < 1017 cm–3, as was assumed. In the condi-
tions under consideration, the broadening of spectral
lines is of the Stark type and the resonance line has a
Lorenz contour with a halfwidth ∆λ = 0.016 nm [12].
For the Lorenz contour, the adsorption coefficient at the
center of the line is

and at nitrogen pressures approaching the atmospheric
pressure, the optical thickness kλl ~ 0.1; that is, for the
resonance aluminum line, the arc plasma is transparent.
Therefore, the assumptions made are valid.

At an aluminum vapor density Na + Ni ≈ 2 ×
1014 cm–3, the respective partial pressure in the arc is
about 30 Pa. Taking into account that aluminum comes
from the AlN dissociation at the sample surface and the
fact that, with heating from the bottom, convective cur-
rents return the aluminum vapors to the sample surface,
it can be assumed that, near the surface, the vapor pres-
sure will be not lower than in the arc. The latter exceeds
the equilibrium partial pressure of excited atoms at
Tm = 3000 K, which is of the order of 1 Pa as follows
from (5). Therefore, the second condition for suppress-
ing the dissociation will be fulfilled as well.

CONCLUSIONS

In [6], it has been experimentally shown that it is
possible to suppress the dissociation of aluminum

Na
2 10

15×
P N2 Tm,( )

-----------------------------,≈

kλ
e

2λ 2
Na f

mc
2∆λ

---------------------=
                                       

nitride and melt it by an electric arc in a nitrogen envi-
ronment at pressures close to the atmospheric pressure.
In this study, relying on the analysis of the dissociation
mechanism, it has been shown that, even at aluminum
vapor partial pressure in the arc of the order of 10–
100 Pa, the conditions for the photoactivation of the
number of Al atoms necessary to suppress the AlN dis-
sociation are ensured and the melting of aluminum
nitride at atmospheric nitrogen pressure is made possi-
ble. This is a result of aluminum photoactivation at the
AlN sample surface at the melting temperature by res-
onant radiation of the aluminum vapor from the hot
zone of the arc. It is important, therefore, that the arc be
positioned under the AlN sample; otherwise the con-
vective currents would carry aluminum vapors away
from its surface and the necessary vapor density may
not be attained.

The method considered can also be successfully
applied in melting other easily dissociating high-melt-
ing-temperature nonmetallic nitrides, like nitrides of
boron, silicon, and others.
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Abstract—A new model of a quantum magnetometer based on the principle of Cs–K tandem was developed
and experimentally tested. The specific features of the magnetometer are a single absorption cell containing Cs
and K vapors, digital synthesis of the potassium resonance frequency by multiplying the cesium resonance fre-
quency by a conversion factor (the ratio of the atomic constants), and the use of four-quantum resonance in
potassium atoms. Device readings were found to be insensitive (within 10 pT) to variations of the main operat-
ing parameters even if the variations go far beyond the normal service variability. © 2000 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

Since the late 1950s, the absolute values of mag-
netic fields falling into the geophysical range have been
usually measured with optically pumped quantum
magnetometers. Optically pumped magnetometers
(OPMs) are significantly more sensitive and faster than
conventional proton (precession) magnetometers
[1−3]. In addition, the recently developed OPM models
provide a higher accuracy of measurement than the pro-
ton instruments. Many OPM models of different mea-
suring accuracy, resolving power, speed, working
range, power consumption, weight, dimensions, price,
etc., have been described in the literature. In view of a
wide variety of OPM applications, it is hardly probable
that they will ever be covered by one unified multipur-
pose OPM design. Therefore, the development of new
OPM models best suited to specific types of measure-
ment remains a topical problem.

The goal of this work is to describe a new OPM
model intended largely for observatory measurements
of the magnetic field magnitude in the geomagnetic
range. The model is distinguished by high speed (0–
100 Hz band) and high resolution (~10 pT/Hz1/2) in
combination with the record-breaking long-term stabil-
ity (reading variations within 10 pT) and a strictly lin-
ear dependence of the resonance frequency on mag-
netic induction. Although such good characteristics
have previously been achieved in some other types of
OPMs, the model under consideration is the first to
combine all of these advantages. Note also that, in the
field of metrology, it is always worthwhile to develop a
device based on an essentially new approach even if its
metrological performance is not superior to that of pre-
vious models.
1063-7842/00/4507- $20.00 © 20931
PRINCIPLE OF OPERATION

In metrology, the problem of combining high accu-
racy with high speed is usually solved by integrating
two different measuring devices into a single system so
that the readings of a high-speed device are corrected
with a slower-speed but high-precision device. This
principle is used, for example, in modern time-keeping
systems and was proposed to be applied in precise mea-
surements of the magnetic induction magnitude [4].
A magnetometer built around this principle is often
called tandem. It consists of OPMs of two types: a spin
generator with the output frequency proportional to the
external magnetic induction (Mx–OPM) and a passive
radio spectrometer where a feedback loop is employed
for holding a selected resolved magnetic resonance line
(Mz-OPM). The latter OPM provides a higher accuracy
of resonance frequency measurement, whereas
Mx-OPM oscillates near the center of gravity of a group
of unresolved lines and, therefore, is prone to large sys-
tematic errors.

In the early tandem model, the atomic vapor of the
rubidium isotope 87Rb was used in both components.
However, 87Rb proved to be a poor choice, because its
magnetic resonance spectrum contains a group of lines
the spacing between which in the slightly disturbed
magnetic field of the Earth is only several times larger
than their widths. A Cs–K tandem [5] (cesium is used
in the Mx component; and potassium, in the Mz compo-
nent), developed many years after its Rb counterpart, is
free from this disadvantage, because the magnetic res-
onance spectrum of potassium is completely resolved
in the whole range of the earth’s magnetic fields. This
prevents the interference of adjacent spectral lines.
000 MAIK “Nauka/Interperiodica”
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The distinguishing features of the OPM tandem
described in this work are as follows: (1) the absorption
cell, containing a mixture of Cs and K vapors, is shared
by the component magnetometers and (2) the potas-
sium Mz-OPM uses the four-quantum (4Q) magnetic
resonance line corresponding to the transition between
the sublevels |F = 2, mF = 2〉 ⇔ |F = 2, mF = –2〉 .

The common absorption cell by both magnetome-
ters eliminates the systematic error caused by a differ-
ence in the magnetic fields in two separate cells. In
addition, this reduces the size of the device. The use of
four-quantum magnetic resonance allows the device
resolution to be increased many times. Another advan-
tage is that the dependence of the four-quantum reso-
nance frequency on the magnetic induction is strictly
linear. As shown in [6, 7], the high-order resonance line
n = 2F is prominent in the spectrum of n-quantum tran-
sitions like ∆F = 0, ∆mF = |n |. The frequency of this res-
onance is almost independent of the alternating mag-
netic field intensity H1. Moreover, this resonance line is
the narrowest and has the highest intensity. In the case
of potassium, the maximum value of the total angular
momentum F equals 2. Therefore, the multiplicity of
the high-order resonance is 4. At optimum values of the

–1000 0 1000 f – f0, Hz

Fig. 1. Calculated dependence of the pump light absorption
by 39K vapors on the frequency f of RF field H1(f).
magnetic field intensity H1, the four-quantum reso-
nance width can be as small as several hertz, whereas
the other resonance lines are significantly broadened.
This allows the problem of searching and holding the
required resonance line (the total number of resonance
lines is 10) to be easily solved. An example of the
potassium magnetic resonance spectrum calculated for
the case of pumping with circularly polarized D1-line
light is shown in Fig. 1. The curve represents the super-
position of multiquantum resonances of multiplicity 1–
4 in a strong magnetic field H1. The underlying discrete
spectrum shows four single-quantum resonances in a
weak field H1. The abscissa is f – f0, where f is the fre-
quency of the radio-frequency (RF) alternating mag-
netic field applied and f0 is the four-quantum resonance
frequency. The continuous spectrum was calculated for
the static magnetic field 50 µT and the relatively high
amplitude of the alternating magnetic field H1 (γH1 =
200Γ0, where γ = 7 Hz/nT is the gyromagnetic ratio and
Γ0 is the width of the single-quantum resonance line).
The (discrete) spectrum of slightly excited potassium
atoms is calculated for the weak alternating magnetic
field H1 such that γH1 = Γ0. This spectrum consists of
four almost equidistant lines corresponding to mF ⇔
mF + 1 transitions for F = 2. Their width is far less than
the distance between them and cannot be resolved in
the scale of the figure. It is seen that the two spectra
diverge significantly. That of potassium excited by the
strong magnetic field is characterized by the extraordi-
narily narrow four-quantum resonance line and reso-
nance lines of multiplicity n = 1–3, broadened by the
magnetic field.

The block diagram of the device is shown in Fig. 2.
The detector of the magnetometer incorporates an evac-
uated spherical glass bulb 80 mm in diameter. The inner
surface of the bulb is covered by a paraffin film. The
bulb has an extension containing a globule of the
cesium–potassium alloy. Thus, at a temperature of
about 50°C, the densities of Cs and K vapors inside the
bulb are kept close to each other.
RF coils

CsK
Cell

K

H

Cs

Ref.

PhD

Modulation
Fmod = 5Hz

KRF

CsRFPhase
control

PhD VCO

Ref.

Frequency
synthesizer

Fout = Fin × 2.002

Frequency counter

Fig. 2. Simplified functional diagram of the Cs–4QK tandem.
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The bulb is illuminated by beams of circularly
polarized light from cesium- and potassium-discharge
lamps. Only the 

 

D

 

1

 

 lines of resonance doublets are
used. The potassium light is aligned with the static
magnetic field, whereas the cesium beam makes an
angle of ~45

 

°

 

 with the field direction. After passing
through the cell, both beams are detected with silicon
photodiodes. The resulting photocurrents are amplified
and applied to the inputs of two phase detectors (PhDs).
The cesium spin generator is based on the principle of
self-tuning of the voltage-controlled oscillator (VCO)
frequency to the cesium resonance frequency. For this
purpose, the signal from the cesium beam photodetec-
tor is applied to one of the inputs of the phase detector.
The reference signal is generated by the VCO. If the
frequency of the VCO, feeding the RF induction coil, is
close to the cesium resonance frequency, the pump
beam, having passed the bulb, becomes amplitude-
modulated at the VCO frequency. The modulation
phase depends on how close the VCO frequency is to
the resonance frequency. The signal from the VCO is
applied to the second input of the phase detector. In
turn, the VCO frequency is controlled by the output
voltage of the phase detector. In this manner, the VCO
is tuned to the resonance frequency.

The cesium resonance frequency is a rough measure
of the external magnetic field intensity. However, its
value needs correction because of significant system-
atic errors. The correction is performed by bringing an
additional loop for controlling the VCO frequency in
the device circuit through the signal of four-quantum
potassium resonance. The doubled frequency of cesium
resonance deviates only by 0.1% from the four-quan-
tum potassium resonance frequency throughout the
range of geomagnetic fields. This allows the potassium
resonance frequency to be synthesized by merely mul-
tiplying the VCO frequency by a constant factor of
2.002395 …. Along with the frequency multiplication,
provision is made for a slow (at a frequency of 5 Hz)
frequency modulation of the VCO signal. The signal
induced by the potassium beam is synchronously
detected at the modulation frequency. This allows the
error signal for correcting the VCO frequency (

 

f

 

VCO

 

) to
be obtained (provided that 

 

f

 

VCO

 

 lies within the cesium
resonance line width). Thus, the output frequency
dynamics is measured using the fast cesium magnetom-
eter; then, the obtained data are corrected with regard
for the narrow potassium resonance frequency mea-
sured with the slower potassium magnetometer.

The frequency 

 

f

 

K

 

 of four-quantum resonance in
potassium atoms depends on the magnetic field inten-
sity 

 

H

 

 as 

(1)

where 

 

µ

 

B

 

 is the Bohr magneton; 

 

g

 

j

 

 and 

 

g

 

i

 

 are the elec-
tron and nuclear 

 

g

 

 factors for potassium, respectively;
and 

 

h

 

 is Planck’s constant.

f K HµB g j 3gi+( )/ 4h( ),=

METROLOGICAL PERFORMANCE 
OF THE MAGNETOMETER

The absolute values of the constants involved in
equation (1) are known with an accuracy to ~10–7. Tak-
ing the values of gj and gi for the potassium isotopes 39K
and 41K from [8]:

and that of µB/h from the CODATA Recommendations,
(1997):

we obtain for proportionality factor fK/H 

(2)

Formally, the absolute accuracy of the tandem is
limited by an error involved in scaling factor fK/H (2).
However, in terms of reproducibility of device read-
ings, the absolute accuracy of the tandem can go
beyond these limits. Equation (1) relates the output fre-
quency of the magnetometer to the magnetic field
intensity through the atomic and fundamental constants
and, therefore, imposes no limitations on the reproduc-
ibility. The limitations occur when the parametric
dependence of the four-quantum resonance frequency
on the following factors is taken into account: the spec-
tral composition and intensity of the pump light, the
amplitude of the resonance-inducing alternating mag-
netic field, the density of potassium vapors, and the
static magnetic field intensity. Magnetization of mag-
netometer parts and an imperfect procedure for deter-
mining the resonance peak position can also contribute
to systematic errors.

In four-quantum resonance OPMs, the systematic
errors are expected to be lower than in conventional sin-
gle-quantum resonance instruments because of a
smaller resonance width and higher resolution. The res-
olution may, however, be increased at the expense of
reproducibility due to reduced pump light intensity. It is
well known that pumping causes optical shifts of the
resonance frequency. These are of two types [9]. One
occurs when RF coherence is transferred from the
atomic ground state to the excited state [10]. An optical
shift of this type is not observed in the case of four-
quantum resonance, since the coherence cannot be
transferred to the excited state at single-quantum opti-
cal excitation. The second component of the optical
shift is the Stark shift [11]. It is typical of four-quantum
resonance but can be linearly decreased by reducing the
pump light intensity or even completely eliminated by
selecting the appropriate spectrum of pump light.

Experimental study of the long-term stability of the
magnetometer is extremely difficult because of the lack

g f 2.00229421 24( ),=

g39
i 1.14193489 12( )– 10

4–
,×=

g41
i 0.7790600 8( )– 10

4–×=

µB/h 13.99624677 94( ) Hz/nT,=

f K/H 7.00466137 58( ) Hz/nT.=
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of standards of the desired accuracy. Also, it is hard to
produce a sufficiently stable magnetic field. To tackle
the problem, we placed the magnetometer into the sta-
bilized magnetic field and measured changes in its
readings induced by variations in pump light intensity,
RF-field strength, operating cell temperature, and
phase modulation parameters. These variations can be
made sufficiently fast, so that the drift of the magnetic
field intensity can be neglected.

The magnetometer resolution is basically limited by
the performance of the cesium spin generator. In the

experiments, however, the magnetometer sensitivity
was limited by a number of other factors, including the
magnetic field stability. Hence, the obtained value is
merely the lower limit of sensitivity. Figure 3, charac-
terizing the device resolution, shows the scatter in the
device readings at a rate of 10 counts per second in a
stabilized magnetic field of about 0.5 Oe. The disper-
sion of counts is 18 pT. Averaging over one second
decreases the dispersion almost tenfold. This means
that the shot noise of the photocurrent does not limit the
device sensitivity (i.e., theoretically, the sensitivity can
be increased).
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Fig. 3. Cs–K tandem resolution. H0 = 49574.500 nT, σ (0.1 s) = 18 pT.
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Fig. 4. Effect of variations in the cesium lamp intensity on the readings of the Cs–K tandem (filled circles) and cesium magnetometer
(open circles). H0 = 49574.470 nT, I1 = 3.0 µA, and I2 = 1.5 µA.
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The effect of variations in the cesium lamp intensity
on OPM readings is shown in Fig. 4 (filled circles indi-
cate the tandem readings; open circles, readings of the
cesium magnetometer decoupled from the potassium
magnetometer). The intensity of the cesium lamp was
subjected to stepwise twofold variations (alternate two-
fold increase and decrease). For the tandem, no effect

on its readings was expected. It can be seen that they
remain unchanged within a random error of about
10 pT (abrupt changing in the light intensity causes
transient overshoots). On the contrary, the readings of
the cesium spin generator alone drift with time and
change abruptly by approximately 0.2 nT in response to
the changes in the intensity of the cesium lamp.
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Fig. 5. Effect of variations in the potassium lamp intensity on the readings of the Cs–K tandem. H0 = 49574.470 nT, I1 = 7.6 µA,
and I2 = 4.6 µA.
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Fig. 6. Dependence of the Cs–K tandem readings on the amplitude of the RF field inducing resonance in potassium atoms. H0 =
49574.470 nT and H2 = 2H1.
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The variations in the potassium lamp intensity were
expected to bring about small changes in the tandem
readings. The experimental curve is shown in Fig. 5. It
is hard to perceive any systematic variation in the tan-
dem readings (within the limits of 10 pT) against the
background of noise and drift, which is caused, in all
probability, by the imperfect magnetic field stabilizer.

A more pronounced effect on the tandem readings is
exerted by variations in the RF field inducing four-
quantum resonance in potassium atoms (Fig. 6). It can
be seen that a 1.5-fold increase in the RF-field ampli-
tude makes the device readings larger by 10–20 pT. As
expected, the RF-field variations had no effect on the
device readings in the case of cesium resonance.

Generally, OPM readings strongly depend on the
absorption cell temperature. The temperature depen-
dence of the tandem readings is shown in Fig. 7. The
device readings remain constant within 10 pT within an
uncommonly wide temperature range of 45–65°C. At
higher temperatures, potassium resonance is not
observed.

High absolute accuracy of the new magnetometer is
especially difficult to verify by experiment. To do this
requires a sufficiently stable and uniform magnetic
field and a high-precision reference instrument. In our
experiments, a certified alkali–helium magnetometer
[12] was used for this purpose. Within the magnetic
induction range 30–60 µT, the discrepancy between the
readings of the tandem and alkali-helium magnetome-
ter did not exceed 0.5 nT.

CONCLUSION

Testing of the Cs–K tandem supported its high met-
rological performance. It was found that, within the
limits of about 10 pT, the device readings were virtually
independent of the pump light intensity, RF-field
strength, and absorption cell temperature, even if
changes in these parameters went far beyond the nor-
mal service variability. The most pronounced effect on
the tandem readings was found to be exerted by the
variations in the RF field inducing four-quantum reso-
nance in potassium atoms. In this connection, it is rec-
ommended to use the instrument as a stationary mea-
suring device. In this case, the (normal) projection of
the alternating magnetic field H1 on the direction of the
magnetic field H0 to be measured is relatively easy to
maintain at a constant level.
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Abstract—The dependence of the threshold current of a double-contact low-inductance interferometer on the
capacitance of a Josephson contact and geometric inductance was found. © 2000 MAIK “Nauka/Interperiod-
ica”.
The miniaturization of electrodes and striplines in
superconducting electron devices is known to increase
the circuit impedance. Therefore, the design of low-cur-
rent switches is of great importance. Interference
devices, which offer higher sensitivity to a magnetic field
than isolated Josephson contacts, seem to be the most
appropriate in this respect. Also, interference devices
made by advanced submicron technology allow for a
considerable decrease in the contact capacitance [1].

A double-contact interferometer is the simplest
device whose critical current depends on an applied
magnetic field [2]. Memory cells on isolated contacts
with the use of double-contact interferometers were
and remain to be the best candidates for superconduct-
ing computers. Double-contact interferometers are also
the basis for high-speed parallel analog-to-digital con-
verters. A variety of nonlinear properties inherent in
double-contact interferometers makes possible the cre-
ation of other pulse [3] and digital [4] devices. In [3],
for example, a double-contact interferometer was used
as a short strobe driver.

In double-contact interferometers, switching
between various states strongly depends on the external
(supply) current Ie, the capacitance parameter β of a
Josephson contact, and the geometric inductance l.

Here, β = 2πIc C/Φ0 (C is the capacitance; RN is the
resistance in the normal state; and Φ0 is a magnetic flux
quantum, Φ0 = "/2e), and l = 2πLIc/Φ0. As was noted
[2], there always exists the threshold current IQ of the
interferometer (which depends on l, β, and critical cur-
rent ratio / ) such that, at Ie > IQ, the system is
switched into the resistive (R) state. At Ie < IQ, the sys-
tem passes to the superconducting (S) state.

In spite of the considerable progress into fabricating
Josephson-contact circuits with double-contact inter-
ferometers, a dependence of the threshold current IQ on
l and β still remains unclear. In our opinion, this prob-
lem is also closely related to the problem of nonde-

RN
2

Ic1
Ic2
1063-7842/00/4507- $20.00 © 20937
structive data readout [5] and the need for using exter-
nal clocked power supplies in pulse-actuated circuits
[6, 7]. With this in mind, we evaluated the threshold
current in a balanced double-contact interferometer in
the low-inductance approximation.

It is known that, in the low-conductance limit, a bal-
anced double-contact interferometer behaves as a sin-
gle Josephson contact with a critical current

and an effective phase ϕ = (ϕ1 + ϕ2)/2. For closedness,
the equation for total magnetic flux,

(1)

where ϕe = 2πΦe/Φ0, must be added.
At low l’s (l ! 1) and in view of (1), the supply cur-

rent (in terms of contact critical current) within the
resistive model is given by

(2)

In deriving an analytic dependence of the threshold
current on l and β, we ignore a similar dependence for
the supply current, since it is negligible in comparison
with the desired one. We will also ignore decay in the
contacts, assuming β–1 to be a small parameter. With
these assumptions met, the transition free energy is
expressed as

(3)

where Ec = Φ0Ic/2π.

IM 2Ic

ϕ1 ϕ2–
2

-----------------cos=

ϕ1 ϕ2– ϕe l
ϕe

2
----- ϕ ,cossin–=

ie

Ie

Ic

---- 2
ϕe

2
----- ϕsincos

l
2
---

ϕe

2
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2
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

= =
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,
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Resistive losses in energy per cycle (2π) are calcu-
lated by the formula

(4)

The expression for (ϕ) is found from (3):

(5)

where e = E/Ec.

The infinite phase variation is possible only if e ≥
4cos(ϕe/2). At a fixed current, the energy delivered
from the power source is found as

(6)

The mean voltage (  = ϑ) is determined by equat-
ing energies (4) and (6). The supply current at which
Josephson oscillation ceases is found from the limit of
(5) at e = 4cos(ϕe/2):

(7)

In this case, integral (4) is calculated by expanding

Wi Ec ϕ̇ ϕ( ) ϕ .d

0

2π

∫=

ϕ̇

ϕ̇ 2
β
--- 

 
1/2

e 2
ϕe

2
----- 1 ϕcos–( )cos–





=

–
l
4
---

ϕe

2
----- 1 2ϕcos–( )sin

2





1/2

,

We Ec ie ϕd

0

2π

∫ 2πEcie.= =

ϕ.

ie
1

2π
------ ϕ̇ ϕ .d

0

2π

∫=
(5) in the small parameter l; eventually, we obtain

(8)

It follows from (8) that the value of IQ/2Ic decreases
at l = 0 and ϕe = 0, as in the case of the recovery current
for a single contact [2]. Along with the critical current,
the threshold current of a balanced double-contact
interferometer turns out to be modulated by an external
magnetic field. With the inductance l fixed, the thresh-
old current vanishes at some flux Φe. This means that,
for Ie ≠ 0 and large β's, the system will always change
over to the R state.
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Abstract—A study is made of the effect of the magnetic self-field of a relativistic electron beam propagating
in the ion focus regime on the transverse dynamics of plasma electrons. For Gaussian radial profiles of the beam
and the ion density in the channel, the maximum deviation of the plasma electrons from the axis of the beam–
plasma system is determined as a function of the space-charge neutralization fraction, the ratio of the charac-
teristic beam radius to the channel radius, and the net beam current. © 2000 MAIK “Nauka/Interperiodica”.
Recently, much attention has been devoted to the
problem of the propagation of a relativistic electron
beam (REB) in the ion focus regime (IFR) [1–8]. The
IFR arises when the ion line density Ni in the plasma
channel is lower than the line beam density Nb. At the
entrance to a preformed plasma channel, the electric
self-field of the beam front expels the plasma electrons
from the channel, so that the ions remaining in the
channel focus and guide the beam, thereby preventing
its transverse dispersion.

The main onset condition of the IFR implies a suffi-
ciently low pressure of the background gas–plasma
medium. In this case, the electrons that are produced in
a preformed plasma channel or a channel created
directly by the electron-beam ionization of a gas and
are pushed away from the beam path by the transverse
component of the collective electric field cause no addi-
tional ionization of the background plasma. This situa-
tion occurs under the condition

(1)

where λi is the characteristic scale length on which the
avalanche ionization develops and Rb is the characteris-
tic beam radius.

For the space charge of an REB to be neutralized in
the IFR, the transverse component of the electric field
of the beam front should rapidly expel the background
electrons away from the beam path. However, the pro-
cess of charge neutralization can also be affected by the
magnetic self-field of the beam, which may, to a sub-
stantial extent, prevent the background electrons from
leaving the beam region.

In this paper, assuming that the radial profiles of the
beam and the ion density in the channel are Gaussian in
shape, we investigate how the parameter η = Rb/Ri

(where Rb and Ri are the characteristic radii of the beam

λ i @ Rb,
1063-7842/00/4507- $20.00 © 20939
and ion channel, respectively) influences the transverse
collisionless dynamics of the plasma electrons in the
process of charge neutralization at the beam front in the
IFR. In considering situations with different η values,
we also study how the escape of plasma electrons away
from the beam region is affected by the magnetic self-
field of the beam with a current in the range Ib = 5–
50 kA. Note that the case η = 1 was examined by
Briggs and Yu [4] for a Bennet beam and a Bennet pro-
file of the ion density in the channel.

We consider a paraxial monoenergetic REB guided
with a preformed plasma channel in the IFR. We direct
the z-axis of the cylindrical coordinate system (r, θ, z)
along the channel axis and assume that the electron and
ion densities in the channel obey Gaussian distribu-
tions,

(2)

where the subscripts b and i stand for the parameters of
the beam and ion channel, respectively, and Nb and Ni

are the line densities of the beam electrons and the ions
in the channel.

We also assume that the z-component of the collec-
tive electric field, Ez, is small, the net beam current Ib is
time independent, and the electron motion in the chan-
nel is collisionless. Under all the above assumptions,
the energy equation yields

(3)
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where m and e are the mass and charge of an electron,
β = vz/c, vr and vz are the radial component and the
z-component of the beam electron velocity, Ib is the net
beam current, c is the speed of light, fc = Ni/Nb is the
effective space-charge neutralization fraction, γ is the
Lorentz factor, and t is the time.

Note that the right-hand side of (3) incorporates the
contribution of the radial component Er of the electric
field of both the beam electrons and the ions in the
channel.

Assuming that the plasma electrons are initially
immobile, from (3) we obtain

(4)

where  = 17β [kA] is the Alfvén current for γ = 1 and

r0 = r at t = 0, E1(z) = exp(–µ)/µ is the integral

exponential function, and

(5)

On the other hand, taking into account the paraxial
character of the beam, we turn to formula (2) and the
z-component of the equation of motion of a plasma
electron to obtain

(6)

Note that the right-hand side of (6) incorporates the
contribution of the θ-component of the magnetic self-
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Fig. 1. Dependence of rm/Rb on fc for η = Rb/Ri = (1) 5,
(2) 2, (3) 1.5, (4) 1, (5) 0.5, and (6) 0.1.
field of the beam. With allowance for the relationship

(7)

from (5) we find

(8)

where  = Ib/  and the notation R(ξ) = R(r, r0, ξ) is
introduced for brevity.

The maximum deviation of a plasma electron from
the axis of the beam–plasma system is defined as the
distance rm between the electron stopping point (vr = 0)
and the axis and can be found from the equation

(9)

Figure 1 shows the dependence of rm/Rb on fc for dif-
ferent values of η = Rb/Ri at Ib = 5 kA and r0/Rb = 0.1.
Note that a curve analogous to curve 4 was obtained by
Briggs and Yu [4] for Bennet profiles nb and ni of the
beam and the ion density in the channel. Figure 2 shows
the dependence of rm/Rb on Ib for η = 0.5, 1, and 1.5 at
fc = 0.5. From Fig. 1, we can see that the divergence of
the ion channel (η < 1) has a significant impact on the
escape of plasma electrons from the beam region. In
particular, for η = 0.1, the maximum deviation of the
plasma electrons from the system axis in the neutraliza-
tion phase (up to fc . 0.6) is rm/Rb > 102. For larger val-
ues of the parameter η (η > 1), in the range fc > 0.2, the
maximum deviation rm is much smaller. A comparison
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Fig. 2. Dependence of rm/Rb on Ib for η = (1) 1.5, (2) 1, and
(3) 0.5.
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of curves 1–3 with curve 4 (η = 1) confirms the quali-
tative conclusion that the beams with larger radii more
efficiently prevent the escape of plasma electrons in the
radial direction. That is why, for the same value of fc,
curves 1–3 lie below curve 4. It is seen from Fig. 2 that
the magnetic self-field of the beam, Bθ, which is pro-
portional to the net beam current Ib, may, to a substan-
tial extent, prevent the background electrons from leav-
ing the beam region.
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Abstract—The problem is studied of how multiple Coulomb scattering and the external longitudinal magnetic
field affect the resistive sausage instability of a relativistic electron beam propagating in a gas–plasma medium
with nonzero ohmic conductivity. It is shown that these factors significantly reduce the amplitude of the sausage
mode. © 2000 MAIK “Nauka/Interperiodica”.
In recent years, much attention has been paid to the
dynamics of relativistic electron beams (REBs) propa-
gating in gas–plasma media [1–12]. Among the prob-
lems associated with the guiding of REBs, of special
interest is that of investigating the large-scale resistive
instabilities of the beams. Along with the resistive fire-
hose instability (the mode with the azimuthal wave
number m = 1), an important role is played by the resis-
tive sausage instability (the mode with the azimuthal
wave number m = 0), which manifests itself as axisym-
metric perturbations of the beam radius. Physically, the
mechanism for the onset of the resistive sausage insta-
bility (RSI) is governed by the phase delay between the
eddy currents induced by these perturbations and the
oscillating component of the beam current density. The
RSI of an REB was studied in a number of papers [3–
5, 9, 10], which, however, did not treat the often
encountered effects of multiple Coulomb scattering of
the beam electrons by the atoms and molecules of the
background gas and did not take into account the exter-
nal longitudinal magnetic field.

In this paper, we use analytic methods to derive the
perturbed beam radius as a function of the background
gas density and the strength of the external longitudinal
magnetic field.

We consider an axisymmetric paraxial REB propa-
gating along the z-axis of the cylindrical coordinate
system (r, θ, z) in a scattering gas–plasma medium with
a high ohmic conductivity σ such that 4πσRb/c @ 1,
where Rb is the characteristic beam radius and c is the
speed of light. We assume that the beam is completely
charge-neutralized and that the magnetic self-field of
the beam (or, in other words, the beam current) is neu-
tralized only partially, the degree of neutralization
being fm. We also assume that the beam propagates
along a steady-state external uniform magnetic field of
strength B0.
1063-7842/00/4507- $20.00 © 20942
The transverse dynamics of such an REB is
described by the following equations for the doubled
root-mean-square beam radius R2 and the root-mean-
square beam emittance E2 [1, 3, 5]

(1)

(2)

Here, U = 〈 〉  is the generalized perveance of the
beam (where the angle brackets stand for averaging
over the radial profile of the beam current density);

 is the squared betatron wavenumber of the beam

electrons;  = eB0/γmc3 is the cyclotron wavenumber
of the beam electrons in a longitudinal magnetic field of
strength B0 (where e and m are the charge and mass of
an electron and γ is the Lorentz factor); Pθ is the θ-com-
ponent of the generalized momentum of the beam elec-
trons in the beam segment under consideration; αph is
the phase-mixing coefficient of the beam electrons [8];
σ1 is the transport cross section for multiple scattering
of the beam electrons by the background gas atoms;
and ng is the density of gas atoms.

Assuming that, in the linear stage of the RSI, the
perturbed quantities are small (in particular, δR = R –
R0 ! 1, where R0 is the doubled equilibrium beam
radius), from (1) and (2) we find
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(4)

where the zero subscript denotes unperturbed parame-
ter values.

Assuming that, during the RSI, the perturbations of
the beam radius are self-similar, we can obtain

(5)

where

(6)

Ib is the net beam current, and Jb(r) is the radial profile
of the beam current density.

We will work under the condition

(7)

where

(8)

Condition (7), which implies that, in the positive
direction along the z-axis, the equilibrium root-mean-
square beam radius changes much more gradually than
the perturbed beam radius δR, allows us to solve equa-
tions (3) and (4) over distances of z ≤ Lz0 by taking the
Laplace transform

(9)

where F is a function of z.
In this way, equations (3) and (4) yield

(10)

Here,

(11)

(12)

where S = 2σ1ng , U0 = Ib/IA, IA is the limiting Alfvén
current, and

(13)

with fm as the degree of current neutralization and Ψ as
the form-factor defined in (6). Taking the inverse
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Laplace transform and assuming ∂δR/∂z(0) = 0, we
obtain

(14)

where i is the imaginary unit, Λsc = 4S/ , and 5 =
U0/E0.

Clearly, the integral over Ω in (14) can be evaluated
by the method of residues. In the particular case with no
scattering (Λsc = 0), we readily obtain

(15)

where Ω0 is defined by (13) and

(16)

Expression (15) is a generalization of the analogous
expression derived by Lee [5] to the case B0 ≠ 0. From
(15), we can easily see that the processes of phase mix-
ing partially suppress the RSI on the spatial scale Lph ~
2E0/(αphU0).

With allowance for multiple Coulomb scattering
(Λsc ≠ 0), the poles of the integrand in (14) can only be
found by solving the cubic equation

(17)
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forming laborious manipulations, we obtain

(18)

where

(19)

(20)

(21)

(22)

(23)

(24)

In order to illustrate the results obtained, we con-
sider an REB with a Bennet radial current-density pro-
file truncated at r = Rb (αph = 0.62). The figure shows
the z-profiles of δR obtained from formula (18) for the
cases
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under the conditions R0 = 1 cm and U0 = 2 × 10–3. The
value Λsc = 2.3 × 10–3 cm–3 in (27) corresponds to the
case in which the scattering gas is nitrogen at atmo-
spheric pressure, the beam particle energy being E =

5 MeV. The value of  in (26) corresponds to B0 =
100 G at γ = 10.

From the figure, we can see that the external longi-
tudinal magnetic field and the processes of multiple
scattering and phase mixing all act to suppress the
radial perturbations of the beam during the RSI. This
conclusion agrees with the results of experiments, in
which no undamped axisymmetric perturbations of the
beam radius were observed.
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Abstract—The atomic mechanism of self-diffusion in a face-centered cubic structure (exemplified by alumi-
num) is simulated by the molecular-dynamics method without resorting to a priori information. No confirma-
tion of vacancy-jump mechanisms of diffusion has been obtained. The cooperative mechanism of diffusion sug-
gested previously by Khait and Klinger and based on the assumption of possible local melting near vacancies
(within one–two nearest coordination shells) appears to be valid. As a result, the preexponential factor proves
to depend on the temperature and heat of melting, and the exponential factor depends on the heat of melting
and the current temperature. © 2000 MAIK “Nauka/Interperiodica”.
1. Atomic diffusion in solids is one of the fundamen-
tal phenomena which is a base for understanding a lot
of effects. But, strange as it may seem, there is no uni-
fied point of view on the diffusion mechanisms that
were devoid of internal contradictions. The quantities
entering into the equations for diffusion parameters
become meaningful only when the atomic mechanism
of the process is known. As a rule, some conclusions on
these quantities can be made by measuring the energies
controlling the process. For simple metals far from the
melting point, such a parameter is the energy of
vacancy self-diffusion, which counts in favor (but by no
means proves) of the widely used model of diffusion
through vacancy jumps. As other possible mechanisms,
the following are usually listed: direct exchange, cyclic
exchange (ring mechanism), simple interstitial mecha-
nism, interstitialcy mechanism, crowdion mechanism,
etc. [1]. “First-principles” calculations based on these
models underestimate the diffusion rates by tens and
even hundred of times and have a rather heuristic sig-
nificance. The inconsistencies appearing in such an
“individual” description of diffusion phenomena led
Frenkel’ [2] to the idea that in a self-consistent diffu-
sion theory, the interacting particles had to be consid-
ered as a coherent system, like in the Debye theory of
heat capacity.

An attempt to build such a theory was undertaken by
Khait [3]. In his opinion, the application of the standard
theory of fluctuations has been unsuccessful because of
the incorrect consideration of thermal-energy fluctua-
tions as small corrections to the equilibrium distribu-
tion function in spite of the correct estimations of mac-
roscopic parameters. The thing is in that although the
short-lived fluctuations that involve a limited number of
particles give a negligible contribution to the averaged
equilibrium parameters, they nevertheless may play an
important part in some kinetic processes. In application
to diffusion through the vacancy mechanism, this
1063-7842/00/4507- $20.00 © 0945
means the following. A diffusion jump may occur when
a fluctuation in the atomic distribution appears around
a vacancy. After relaxation of the given fluctuation, one
of the atoms surrounding the vacancy may occupy the
vacancy position.

A similar approach was developed, e.g., by Klin-
ger [4]. In his opinion, the temperature in some region
around a vacancy may exceed, due to a fluctuation, the
melting (more correctly, quasimelting) temperature of
the crystal. Upon the subsequent solidification, the
vacancy may occupy another site of the restored crystal
lattice. It is very important that Klinger obtained an
expression for the diffusion coefficient as a function of
the temperature and heat of melting

(1)

where ν is the mean frequency of atomic vibrations; d
is the length of a diffusion jump; Tm, the melting tem-
perature; λm, the heat of melting; n, the number of

atoms of the second phase; , the surface tension at
the liquid–crystal interface; VL, the volume per atom in
the liquid phase; and k, the Boltzmann constant.

Agreement with experiment for simple metals is
obtained when n = 12–20, i.e., at local disordering
within 1–2 coordination shells. This agrees with the
generalized coordinate relation for the self-diffusion
energy E = 15λm [1].

In this work, we used the molecular-dynamics
method (MDM) to qualitatively test the ideas devel-
oped in [1–4]. The method consists in a numerical solu-
tion of the Newton equations of motion when pairwise
interaction potentials (PIP) are known. Its main advan-
tage is the minimum of physical information taken
a priori [5].
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It should be noted that the work requires a lot of
computer time, since diffusion processes are very slow
on the MDM scale.

2. Several approaches are used in MDM to study
diffusion phenomena.

1. Determining diffusion coefficients by calculating
mean-square displacements

(2)

where xj(τ) is jth coordinate of an atom at the time
moment τ and 〈 〉  stands for averaging over all atoms.
The method is integral and does not allow one to deter-
mine the atomic mechanism of diffusion.

2. Determining the diffusion barrier by “squeezing”
a diffusing atom through a fixed lens of atoms in the
direction toward a vacancy.

3. The same as in 2, but with atomic relaxation.
4. The same as in 2, but with “shooting” the diffus-

ing atom through the lens.
In the last three methods, the model of diffusion is

actually specified. The corresponding energies differ in
a ratio of 1 : 0.1 : 0.3, respectively.

We propose a substantially different approach. At a
fixed temperature, we construct a crystallite with this or
that defect. Then, we let the atoms in the equilibrium
state perform free vibrations and jumps and fix their
coordinates in the computer memory after certain time
periods. After executing an elementary diffusion act, a
return to the preceding time moment was made, and the
process was repeated with a more detailed analysis of
the parameters of atoms surrounding the defect (kinetic
and potential energies, velocity vectors of atoms in the
structure, etc.). Thus, no model assumptions on the
mechanism of the diffusion act is done in the computer
experiment, except for specifying the interatomic inter-
action.

We used a PIP of the Morse type for aluminum cut
at 0.7 nm (Fig. 1), which provided stability of the face-
centered cubic lattice, and an MDM20 computer code
[5]. A crystallite with cyclic boundary conditions was
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Fig. 1. Pairwise interaction potential for aluminum.
formed having the face-centered cubic (fcc) lattice and
containing ~1500 sites (one of which was vacant). At
first, all of the atoms were given the same velocity (cor-
responding to a given temperature) with random direc-
tions. After that, no intervention to the system was
made. After a period of ~10–12 s, an equilibrium state
with a Maxwell distribution of velocities was reached.
The criterion of a jump was an atomic translation to
another Wigner–Seitz cell constructed for the ideal lat-
tice. Obviously, some of the jumps were reversible and
did not contribute to the diffusion. These jumps were
not taken into account. All the atoms were numbered
and their positions were traced in time. The average
jump time was ~10–13 s. About 100 jumps occurring
according to a common scheme were observed. The
melting temperature for a given PIP was ~1100 K. One
could hardly expect better agreement when using a
model potential. We believe that the main purpose
when using the MDM should be the investigation of
atomic mechanisms of diffusion (at least qualitatively)
rather than fitting numeric results to experimental data.

3. The temperature in the experiment was 900 K.
This choice was accounted for by two reasons: (a) at
lower temperatures, there were no jumps at all or their
numbers for the time periods used (10–11 s) were insuf-
ficient for reliable statistical analysis; (b) at higher tem-
peratures, double and triple jumps took place along
with common single jumps, which led to deviations
from the Arrenius law.

By assuming that an elementary act of vacancy dif-
fusion occurs as the overcoming of a potential barrier
by one of the surrounding atoms and the subsequent
relaxation of this fluctuation of thermal energy, we can
expect the existence of some characteristic jump fre-
quency and a uniform distribution of jumps in time.
However, they proved to occur as series consisting of
5–10 acts for 10–12 s. This agrees with the estimations
of the theory of short-lived large-energy fluctuations
(SLEF) [3, 4].

Analysis of velocity vectors and kinetic and poten-
tial energies of diffusing atoms revealed that there is
neither increase in the velocity in the vacancy direction
before a jump, nor a pronounced potential barrier to be
overcome when moving away from the four-atomic
lens.

Figure 2 displays the kinetic and potential energies
before and after a single diffusion act for two nearest-
neighbor coordination shells around a vacancy. One
can see that the kinetic energy increases by a factor of
~4, but the potential energy varies within the range of
common fluctuations. The atomic structure around a
vacancy is typical of liquid. The vacancy location can-
not be identified reliably. The fluctuation disappears for
~10–12 s, and the vacancy may occupy any site of the
crystal lattice after the solidification of the “quasimol-
ten” region. So, a cooperative mechanism of diffusion
is realized, in which the number of atom jumps, includ-
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
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ing nonreversible ones, is much more that in the tradi-
tional theory.

4. In conclusion, we would like to notice that the
whole body of the results obtained suggest that a coop-

arb. units
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(a)

T, 103 K

0

1 2 3 t , 10–13 s

4

2

(b)

0

Fig. 2. Dependence of (a) the kinetic and (b) the potential
energies (in temperature units) per atom near a vacancy (1st
coordination shell) before and after jump. The conditional
moment of the jump occurrence is indicated by an arrow. 
TECHNICAL PHYSICS      Vol. 45      No. 7      2000
erative mechanism of diffusion is preferable. It can be
interpreted as the quasimelting of the nearest surround-
ings of a vacancy due to rather small kinetic energy
fluctuations (with 20–100 atoms being involved in the
process). Then, diffusion according to a nonbarrier
mechanism, close to the diffusion mechanism in liquid,
takes place; i.e., this is an anharmonic process in which
the peculiarities of interatomic interaction become a
decisive factor [5].
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Abstract—It is shown that ionization density due to a fast charged particle influences the light output of a scin-
tillator through the relaxation transition of an electron from an impurity atom to a host-material ion. © 2000
MAIK “Nauka/Interperiodica”.
(1) In organic scintillators, regardless of their
nature, the ratio of light outputs due to α particles and
electrons (α/β ratio) is known to be about 0.1 [1, 2].
The same has also been observed in inorganic scintilla-
tors [3]. The independence of the α/β ratio on the scin-
tillation material and impurity type suggests that this
effect is related to general, rather than specific, proper-
ties of scintillators. Hence, the explanation of the
α/β ratio uniqueness must rely on general scintillation
laws and mechanisms. A uniqueness mechanism for the
α/β ratio was not considered earlier; however, the effect
has been supposed to be associated with molecule–
molecule and molecule–ion interactions [4].

(2) When exposed both to electrons and to α parti-
cles, organic scintillators in the pure state scintillate
weakly and the scintillation intensities are close to each
other. This indicates that the α/β ratio depends on the
states taken by scintillation impurities under the action
of electrons and α particles. The effects fast electrons
and heavy α particles have on a material differ in that a
heavy particle passing through the substance creates a
much higher ionization density than a light electron. It
seems therefore natural to look for an explanation of
the unique α/β ratio through the effect of ionization
density on impurities.

(3) A host atom ionized by a moving particle may
appear near an impurity atom. Usually, the ionization
potential of the latter is lower than that of the former. In
other words, the energy level of a valence impurity
electron is above that of a host-atom electron; hence,
the capture of a bound impurity electron by a host ion
is energetically favorable. Such a capture may occur at
any relaxation process in the excited state. A bound
impurity electron may also be trapped by a host ion if
an impurity atom was excited during scintillation. The
ionization of an impurity atom changes the occupancies
of excited electron states and shifts their energy levels.
1063-7842/00/4507- $20.00 © 20948
Both factors decrease the light output at the fundamen-
tal frequency.

(4) Consider now how the ionization density influ-
ences the fraction of ionized impurities. An increase in
the ionization density raises the average number of ions
per unit volume and, thus, shortens the average interi-
onic distance and the distance between host ions and
impurity atoms. Eventually, the probability that a
bound impurity electron will be trapped by a host ion
increases. Consequently, the fraction of ionized impu-
rity grows with the ionization density and the light out-
put drops.

(5) The α/β ratio is the same for different scintilla-
tors, because the energetically favorable capture of a
bound impurity electron by a host atom may attend any
relaxation process. Therefore, for a given ionization
density, this capture has only a weak dependence on the
energy levels of excited impurity atoms and host-mate-
rial properties. 

(6) It follows from the above that the qualitative fea-
tures of the light output vs. particle-induced ionization
dependence (the existence of the unique α/β ratio and
the emission at other frequencies when the ionization
density rises) can be accounted for within a single
mechanism. According to this mechanism, the capture
of a bound impurity electron by a host ion affects the
state of scintillation impurities.

(7) It should be noticed that, when an insulator is
doped by impurities in which electrons are bound more
weakly than in host atoms (in particular, scintillation
impurities [5]), the number of displaced atoms in a
heavy particle track decreases [6]. Thus, two effects
(loss in light output for heavy particles and atomic dis-
placement in heavy particle tracks) result from the
000 MAIK “Nauka/Interperiodica”
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same process: the capture of a loosely bound impurity
electron by a host ion.
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Abstract—Phase-transformation waves that may arise in a conductor in the course of an electrical explosion
are considered. An estimate allowing one to predict the possibility of occurrence of several phase transforma-
tions at the front of the single wave is proposed. Mathematical simulation results are presented. © 2000 MAIK
“Nauka/Interperiodica”.
The problem of calculating the electrical explosion
of the skin layer in a gap for the one-dimensional case
in Cartesian coordinates was considered in [1]. This
paper is devoted to the simulation of the early stage of
the electrical explosion of cylindrical copper conduc-
tors. We use a model similar to that employed in [2];
i.e., we solve the one-dimensional set of magnetohy-
drodynamics equations supplemented with the circuit
equation; the electrical conduction in the solid and liq-
uid states is described by a semiempirical equation [3]
and in the plasma state, by an equation proposed in [4]
for dense plasma. Following [5], we assume that at ρ/ρ0

= 0.2 conduction vanishes completely.

Variation of the distribution of both the local param-
eters of the conductor (density, temperature, pressure,
and electrical conductivity) and the integral ones (cur-
rent, voltage, resistance, and wire radius) is caused by
the propagation of the phase-transformation waves
through the conductor [6–8]. Figure 1 displays curves
describing the current-density and temperature distri-
butions over the radial coordinate of a copper wire (l =
15 mm and r0 = 0.1 mm) at various instants at the fol-
lowing circuit parameters: L = 5 nH, C = 25 nF, and
U0 = 40 kV. The curves are shown in two panels of
Fig. 1 in order to separate an explosion stage specified
by the propagation of only one current wave (Fig. 1a)
caused by the redistribution of the current in the con-
ductor due to melting wave propagation through it from
another stage in which entire loss of the conduction in
the outer layers occurs (Fig. 1b).

In Fig. 1a, numerical-calculation results for instants
of 13, 16, and 17 ns are shown. The arrows near the
abscissa indicate solid–melt phase transition. It can be
seen that their locations correspond to the trailing edge
of the current wave. At the instant of 17 ns, another
phase transition occurs (it is indicated by the upper
arrow) at which the conduction entirely vanishes; at the
same time, one more peak in the current-density curve
1063-7842/00/4507- $20.00 © 20950
is formed. The descending slope of the peak corre-
sponds to a new phase transition.

Figure 1b displays numerical calculation results
corresponding to instants of 17.1, 17.4, 17.7, and
17.8 ns. The bottom arrow indicates the solid–liquid-
metal transition. It can be seen that the region of this
phase transition is virtually not displaced (during the
time interval pointed out in the plots); therefore, the
first current wave is stationary.

The upper arrows indicate the transition of the metal
into the nonconducting state; in accordance with them,
the front of the second current wave is located at the
same instants.

It is clear seen that the second current wave, which
“takes in” the rest of the current that has remained in
the molten conductor layers, moves with a velocity
much higher than the first wave (v2 varies roughly from
7 × 104 to 2 × 105 m/s while v1 ~ 5 × 103 m/s), catches
up the latter, joins it, and after that, the joint current
wave propagates. Its further propagation gains specific
features of skin layer explosion [1] with the only dis-
tinction that, in an axially symmetric system, any pro-
cesses proceed more intensely (in accordance with [1]
v2 = 104 m/s). This phenomenon features the explo-
sions whose energy characteristics may cause fast heat-
ing of the molten layers of a conductor up to the tem-
perature of the next phase transition.

Such a process will be observed if a matter in some
phase state (f) is heated up to a temperature at which the
next phase transition proceeds so fast that the both
phase transitions may occur at a single wave front. In
this case, the lifetime of the intermediate phase state is
much less than the time necessary for the phase transi-
tion wave to travel a distance equal to the phase thick-
ness. The lifetime of any phase state can be evaluated
as the time necessary for heating the medium from the
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Distributions of the current density (solid lines) and the temperature (dashed lines) over the radial coordinate at various
instants of time (the instants expressed in nanoseconds are denoted by numbers near the curves).

00
temperature of the preceding phase transition to that of
the next phase transition:

(1)

Here, cf is the specific heat of the medium at the phase
state considered; ρf is the density; σf is the electrical
conductivity; j is the current density; ∆T = T1f – T2f is
the difference between the temperatures of the succes-
sive phase transitions; and τλ is the phase lifetime
which must be less than the time required for the phase-
transition wave front to travel through the conductor
τw = r0/u (here u is the velocity of the phase-transition
wave front).

If one uses the estimate for the phase-transition
front velocity proposed in [8], then, for superfast
regimes at τλ ! τw, it is possible to write

(2)

Here δj = (0.5µσfω)–1/2 is the skin depth; µ is the mag-
netic permeability; and ω = I–1dI/dt. According to [9],
the existence of the second current wave (in the case of
explosion of a copper wire with r0 = 0.1 mm) is possible
for ω > 107 s–1; it follows from (2) that a regime at
which several phase transitions may proceed at the
front of a single wave becomes possible at higher rates
of the current variation ω @ 1010 s–1. The regime pre-
sented is the limiting one for the second condition
since, for the given parameters, ω ≈ 1010 s–1. For this
particular reason, the liquid metal at first occupies a
rather extended region ~r0 (it can be seen from the tem-
perature curves, for example, at the moment of the sec-
ond current wave formation) and then it practically dis-
appears when the waves merge into a single one at t ≈
17.8 ns.

Further on, the melting wave first moves toward the
center and, only after it reaches the symmetry axis at

c f ∆Tρ f j
2τλ /σ f .∼

c f ∆T
λ f

------------- ! 
r0

δj

----.
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the instant of 21 ns, does the next phase transition wave
start to move towards the center, causing the conduc-
tion to vanish (in accordance with [9], the phase transi-
tion wave may move only under a certain condition).
When this takes place, the current wave moves together
with the melting wave crest.

If the stored energy is not sufficient for the regime
described to be achieved (for example, for the same
parameters and C = 20 nF), then only a single current
wave is formed and travels similarly to the process
shown in Fig. 1a. In this regime, some conduction
remains in the expanded outer layers, which results in
nonzero current density there. It is only after the melt-
ing wave reaches the central layers that a new phase
wave is formed in the outer layers which causes the
metal conduction to vanish; when this takes place, only
a single current-wave crest, which accompanies the
wave of the first solid–melt phase transition, is clearly
seen.

CONCLUSIONS

The simulation results demonstrate that regimes of
the ultrafast (nanosecond) electrical explosion of a con-
ductor differ from ones of the fast (microsecond) [2]
explosion (from the standpoint of the phase transition
dynamics) in the relation between the running time of
the wave of the material phase transition moving from
the outer boundary to the center and the lifetime of the
phase state considered. In ultrafast regimes, the lifetime
of intermediate phases may be much less than the time
of the phase boundary displacement from the conductor
periphery to its center; therefore, it becomes possible to
realize such regimes in which a phase wave catches up
to the front of the preceding phase transition and, fur-
ther on, several phase transitions occur at a single wave
front. Exactly in this case (ω @ 1010 s–1), one can con-
ventionally assume that the conductor material trans-
forms from the condensed state immediately into the
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dense plasma. Probably, the products of such an explo-
sion have a more uniform size.
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Abstract—The Kirchhoff waveguide theorem provides an adequate description of an electrodynamic system
of a high-sensitivity microwave radiometer with wideband detector. A transition from the general analytical re-
presentation of this theorem to a particular case is analyzed. This transition is equivalent to a transition from the
Planck distribution to the Rayleigh–Jeans approximation. A simple relationship is derived that determines, for
a preset accuracy, the high-frequency boundary for the above transition as a function of the temperature. © 2000
MAIK “Nauka/Interperiodica”.
The development of nonlinear superconducting ele-
ments led, on the one hand, to the creation of novel
devices with unique parameters [1] and, on the other
hand, to the formulation of new radiophysical prob-
lems. This is true, in particular, for the so-called
Josephson’s edge junctions representing one type of the
nonlinear superconducting elements [2].

A theoretical basis for experimental investigations
[2–4] of the detector properties of the edge junctions
was provided by [5, 6]. In particular, Zavaleev and
Likharev [6] calculated the detector characteristics of a
junction included into a wideband electrodynamic sys-
tem modeled by a long line. However, unsatisfactory
agreement of the calculated characteristics with exper-
imental results allows us to decline the above model in
favor of the Kirchhoff waveguide theorem [7].

One term in the analytical expression of the Kirch-
hoff theorem represents the average energy of a quan-
tum oscillator described, to within the zero-oscillation
energy, by the formula

(1)

where h is the Planck constant, k is the Boltzmann con-
stant, and T is absolute temperature.

Equation (1) allows significant simplification in the
extremal cases when hν ! kT and hν @ kT. From the
standpoint of the Kirchhoff waveguide theorem appli-
cation, only the first case is of interest. Thus, the Kirch-
hoff theorem can be expressed in two forms: the gen-
eral, corresponding to rigorous equation (1), and an
asymptotic, following from equation (1) in the limit of
hν ! kT.

It should be noted that a transition from the general
formulation of the Kirchhoff theorem to the asymptotic
case is equivalent to the transition from the Planck dis-
tribution to that described by the Rayleigh–Jeans law
(referred to below as the Rayleigh–Jeans approxima-
tion). The Rayleigh–Jeans approximation usually pro-

ε〈 〉 P hν hν/kT( )exp 1–( ) 1–
,=
1063-7842/00/4507- $20.00 © 20953
vides considerable simplification of the computation,
which makes this approach preferred to that based on
the Planck distribution. However, this simplicity can
sometimes be reached at the expense of lower preci-
sion. In particular, Karlov and Chikhachev [8] were
among the first researchers pointing out that the Ray-
leigh–Jeans approximation is inapplicable to the
description of the radiation sources operating at ~4.2 K
even in the millimeter wavelength range.

The purpose of our work was to elaborate a criterion
for determining, for a preset accuracy, a high-frequency
boundary for the correct transition from the Planck dis-
tribution to the Rayleigh–Jeans approximation.

In this context, let us consider equation (1) for the
average energy of a quantum oscillator. In the limit
hν ! kT, this expression coincides, to within a factor
describing the number of oscillators insignificant for
the following analysis, with that provided by the Ray-
leigh–Jeans approximation:

(2)

In order to obtain the desired criterion, let us com-
pare expressions (1) and (2). Note that all ν > 0 and
T > 0 obey the inequality

(3)

which can be readily checked by expanding the expo-
nent into a Maclaurin series. On introducing the nota-
tion

(4)

we may rewrite inequality (3) in the following form:

(5)

ε〈 〉 RJ kT .=

kT hν hν/kT( )exp 1–( ) 1–
,>

x hν/kT ,=

x
1–

xexp 1–( ) 1–
.>
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Introducing a coefficient β such that 0 ≤ β < 1, this
expression can be transformed to an equation relative
to x:

(6)

The coefficient β possesses the following proper-
ties. First, this quantity represents a methodological
uncertainty caused by using the Rayleigh–Jeans
approximation instead of the Planck distribution.
Indeed, using equations (1), (2), (4), and (6), we may
express β as

(7)

Second, any permissible β value at a given fixed
temperature divides the frequency interval into two
parts, one of which is conveniently interpreted as the
region of applicability of the Rayleigh–Jeans approxi-
mation. Indeed, relationship (6) can be used to define β
as function of x:

(8)

A physical domain for the expression (8) is the
interval (0, ∞), in which the function β(x) is a monoton-
ically increasing function of x with the range (0, 1).
Therefore, an arbitrary ordinate in the plot of β(x)
determines a level uniquely corresponding to certain x.
Since the x and ν values obey a linear relationship (4)
at a fixed temperature T, any β level uniquely defines a
certain frequency νβ.

Thus, on the one hand, the β value defined above
represents a level determining the certain boundary fre-

1 β–( ) xexp 1–( ) x.=

β ε〈 〉 RJ ε〈 〉 P–( )/ ε〈 〉 RJ ∆ ε〈 〉 RJ/ ε〈 〉 RJ .= =

β 1 x/ xexp 1–( ).–=

Table

β
νβ, GHz

T = 10 K T = 80 K T = 300 K

0.001 0.4212 3.370 12.64

0.005 2.087 16.70 62.66

0.010 4.181 33.45 125.4

0.050 21.20 169.6 635.9

0.100 43.16 345.3 1294
quency νβ. On the other hand, by virtue of the proper-
ties of the β(x) function, this quantity is a measure of
the maximum uncertainty appearing in the frequency
interval (0, νβ) when the Rayleigh–Jeans approxima-
tion is used instead of the Planck distribution. In this
context, the β value is expediently termed the error
level of the transition from the Planck distribution to
the Rayleigh–Jeans approximation and the νβ fre-
quency, the high-frequency boundary for the Rayleigh–
Jeans approximation for the β uncertainty level.

Solving equation (6) and taking into account for-
mula (4), we obtain the following expression:

(9)

which completes the analytical description.
A quantitative pattern corresponding to equations

(6) and (9) is illustrated by data in the table.
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