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The possibility of existance isdiscussed for pulsars emitting soft y radiation near their magnetic poles upon the
annihilation of ultrarelativistic positrons from the magnetosphere and electrons from the surface of a star. With
anincreasein the energy of incident positrons, the photon energy of this backward radiation tends to a constant
value myc?/2 = 255 keV. This radiation is shown to be directed opposite to the positron flux direction. © 2004

MAIK “ Nauka/Interperiodica” .
PACS numbers; 97.60.Gb; 97.10.Ld; 98.70.Rz

1. A pulsar is a source of electromagnetic radiation
over awide range from radio waves to hard y radiation
up to a photon energy of 108 MeV. Asisknown, y rays
can be emitted due to both ultrarelativistic electrons
and positrons moving in a strong magnetic field and
various collision processes between charged particles.
In the former and latter cases, this radiation is called
bend radiation and collisional bremsstrahlung, respec-
tively. Inthiswork, we analyze the possibility of gener-
ating soft y radiation caused by the annihilation line
formed due to the annihilation of ultrarelativistic
positrons from the magnetosphere and electrons from
the pulsar surface. Since the electron velocities in the
pulsar surface are much lower than the speed of light,
we consider electrons to be at rest. As is known [1],
charged particles in the pulsar magnetosphere move
along magnetic lines of force, because themotioninthe
plane perpendicular to the magnetic field rapidly
becomes impossible due to synchrotron radiation.
Positrons can be accelerated in the pulsar magneto-
sphere by an electric field. However, thisaccelerationis
not possible over the entire magnetosphere, because, in
plasma-filled regions rotating with the pulsar, the con-
dition E - B = 0 for electric E and magnetic B fieldsis
fulfield [2]. Positrons are accelerated toward the pul sar
surface in a gap, i.e., in the region over the magnetic
pole of the pulsar, where E - B # 0 and an electric field
directed along the magnetic field exists. In this work,
the electric field of the pulsar is treated in the Arons
model [3, 4]. In this model, the longitudinal electric
field in the gap is represented in the form

E(h) = %A(hz— Hh), (1)

and, with alowance for the general-relativity effects,

the coefficient A is given by the formula[5, 6]
- 395w
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Here, h < H isthe dtitude over the pulsar surface, H is
the gap altitude determined by the condition for gener-
ating the secondary component of ee* plasma, Q isthe
angular velocity of the pulsar, Risthe pulsar radius, B,

isthe magnetic field at the pulsar surface, €, = J/QR/c
is the pulsar geometric factor, a is the angle between
the magnetic and rotation axes, w = Q Rg'/r3, and @, is
the azimuth angle measured from the direction of the
northern magnetic semiaxis of the pulsar. The mecha
nism considered for generating y radiation can be real-
ized only if E; < 0. According to Eq. (2), there are mag-
netic lines of force on which theinequality E; < Oissat-
isfied. Such lines were previously caled preferable.
Since the second term in Eq. (2) is small, preferable
lines are most magnetic lines of force on which
positrons moving along them are accelerated by field
(1) toward the pulsar surface.

The mechanism of forming the 255-keV annihila-
tion lineis shown in the figure. When moving along the
magnetic lines of force, ultrarelativistic positrons from
the magnetosphere are incident on the pulsar surface,
and y radiation arises due to their annihilation with
electrons. Radiation in the direction of positron motion,
i.e., forward radiation, carriesalmost the entire positron
energy to the pulsar interior, and a soft backward y radi-
ation with an energy of 255 keV is emitted opposite to
the positron beam. The spectrum and angular distribu-
tion of this radiation will be discussed below.

2. Theformation of theannihilation lineis primarily
determined by the two- and three-photon electron—
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M echanism of theformation of annihilation line: | isthe gap
region, where E # O; 11 is the region of open field lines,
where E” =0; and 11 isthe corotation region. The annihila-

tion of a positron from the pulsar magnetosphere and a sur-
face electron is accompanied by the backward emission of
the 255-keV line.

positron annihilation events. In thiswork, three-photon
annihilation affecting the width and wings of the anni-
hilation line [7] is disregarded.

Let us consider the two-photon annihilation kine-
matics in the laboratory frame, where an electron is at
rest. We use the standard kinematic invariants [8]

s = (p_—k)? = (ka—p.)%,
t = (p+p.)° = (kK +Kky)? (3)

U= (p.—k)’ = (k- p.)%

where p_, p,, k;, and k, are the 4-momenta of the elec-
tron, positron, and annihilation photons, respectively.
Let us express the frequencies of annihilation photons
through the angle x between the direction of positron
motion and the photon 3-momentum k, (figure). In the
laboratory frame, the electron and positron have
4-momenta p_ = (m, 0) and p, = (g,, p,), respectively.
Therefore, from Egs. (3) and the 4-momentum conser-
vation law p_ + p, = k; + k,, we abtain

s = (p_—ky)? = (k,—p.)°,
m’ —2mw, = m’ —2p,k,, )

mw; = €,w, —[p.|w,cosx = w,(€, —|p.|cosx).
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From these relations, the desired energies of annihila-
tion photons are expressed as

€, —|p.| cosx
++m—|p,|cosx’

W = (& + m)s

)

m(e, + m)
€, + m—|p, cosx’

w, =

3. Photon energies (5) are functions of two parame-
ters: the energy of an incident positron and the emission
angle x. To determine the angular distribution of anni-
hilation photons, we use the following general formula
for the differential cross section for two-photon annihi-
lation [8]:

dg _ 8mem’ m' , m
ds  t(t—am)’cs—m® u-m>
2 2 2 2 (6)
LOom . m g ls-m +u—mDD

-3 0
Bom? u-nm® 44— s—m?Q

where s, t, and u are the standard kinematic invariants
given by Egs. (3) and r. isthe classical electron radius.
Let us calculate expression (6) in the laboratory frame,
where the electron is at rest. Using the expressionst =
2m(m+ €,) and u — n? = —2mw, and differentiating the
expression s— n? = —2w,(€, — |p.|cosx), we obtain

ds = —2dw,(g, —|p.| cosx) + 2w,|p.|dcosy

ow
= ZB»2|p+| - 556;(8* —|p4| cosx)%d cosy

0 M(e,+m)
L&, + m—|p,|cosx

= - |p+| (7)

_ m(€+ + m)(8+ — |p+| COSX) [Fj_o
(e, + m—|p,cos)® DT

do = 2msin xdx.
Substitution of EQ. (7) into general expression (6) gives

r2G(e., X)

do =
2|p.|

F(e.. x)do, (8)

where

m(e, + m)
€, + m—|p,| cosx

G(e. X) =

_m(e, +m)(e, —|p.|cosx),

[(g, +m) —|p.| cosx]?

€, —|p.| cosx N m

Fe. m) = m €, —|p.|cosx

(9)
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Since the denominators in expressions (9) contain €, +
m— [p.|cosy and €, — |p.|cosy, cross section (8) isnon-
zero only for small angles . Thisproperty isamanifes-
tation of the general property (relativistic aberration) of
radiation from an ultrarelativistic particle [9]. Almost
the entire positron energy is emitted along its direction
of motion. It follows from Egs. (9) that there are two
small-angle regions: theregion x < m/e,, wherenv(e, —

IpsJcosx) > 1, and the region x < ,/m/e,, where
m/(e, + m—|p,|cosy) > 1.

(i) Intheregion x < nve,, the product
—1

G(£+1 X)F(&,, X) = mE’sz + 50
€

> (10)

increases with an increase in the positron energy.

(i) Intheregionm/e, < x < ,/m/e, , Egs. (9) takethe
form

G(e, x) = —2 2m

, FlenX) = —.

_— 11
1+¢e,x%/2m £.X (1)

An increase in the product GF stops due to a decrease
in the quantity m/(e, — |p.|cosy) for these angles.

4. Taking into account the expression obtained for
the angular distribution, we now analyze expressions (5)
for the energies of annihilation photons in the high-
energy limit. For X < m/e,, one can set X = 0in expres-
sions (5). For €, > m, the energy in this case takes the
limiting value

W, = %‘ = 255 keV (12)
and the asymptotic valueis
W, = E,. (13

In the angular region m/e, < x < ,/m/e,, we retain
contributions ~x? in the expansions of expressions (5)
and obtain the photons energiesin the form

2.2
€ €,
W, = X 0 =

= , T e 14
2m+ s+x2 21+ s+x2/2m ()

According to Egs. (12) and (13), photons with energies
w, form the 255-keV annihilation line and y-ray pho-
tons with energy w, have continuous energy spectrum
reflecting the positron energy spectrum. The existence
of alimiting energy of 255 keV in the process under
consideration is the basic result of this work. Photons
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with an energy of 255 keV are emitted opposite to the
positron beam incident on the surface. Indeed, as was
mentioned above, a photon with momentum k., is emit-
ted at asmall angleto the direction of positron motion.
Let us calculate the angle ¢ between the momenta of
annihilation photons. From therelation t = 2m(m+¢,) =
2k;k, = 200,00,(1 — cosq), we obtain

m(m+¢,)

cosp = 1-
¢ W0,

(15)

In view of limiting expressions (12)—(14), formula (15)
yields

1, x<ml,,

[l
cosQ = m> 2m X° m m
o M X Moy /M
E’l ex® & 27 & X €,

(16)

The limiting value of cosg for x — O isequa to—1;
i.e., photonsmovein the opposite directions. Therefore,
the annihilation line is emitted backward, i.e., opposite
to the positron beam.

5. The intensity of the 255-keV annihilation lineis
estimated by expressing it through the quantities refer-
ring to the positron component of plasma. To this end,
we consider a monoenergetic positron beam incident
with energy €, on the pulsar surface. The probability of
positron capture per unit timeis dw(e,, t) = j(&,, t)do,,,
where j(g,, t) is the flux density of positrons with
energy €, and do,, is the cross section for two-photon
annihilation given by Eq. (8). Multiplying the probabil-
ity dw(e,, t) by the photon energy w,(g,, X) and the
number of electrons N, we obtain the intensity dI of
255-keV lineradiation in the form

dl = Ny (e QI ) o, (17)
Integrating this expression with respect to the angles,
one obtains the total intensity of annihilation line. We
take into account only the contribution from the region
X < mve,. According to Eq. (12), w,(€,, X) = m/2. Then,
the integration of Eq. (17) with respect to the angles
yields

m,, -
(e 1) = ZNej(en, 1)0y(EL), (18)
where g, isthetotal cross section for two-photon anni-
hilation. The total intensity of annihilation line is
obtained by summing contributions (18) over the entire

energy spectrum of positrons. Therefore,

o N.m 3 .
119t) = 7_[ f(e.t)j(e., )oy(e.)de,, (19)
Emin
where €., is the lower limit of the positron energy
spectrum and f(e,, t) is the positron energy distribution
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function. We treat N, in Egs. (18) and (19) as the num-
ber of electronsin alayer from which y radiation can be
emitted outside. Therefore, N, ~ n.S, where n, is the
electron density in the pulsar surface, Sis the area of
annihilation region, and L ~ 1/u is the thickness of this
layer, where p ~ o¢n, is the scattering coefficient of y
radiation per unit length (o is the Compton scattering
cross section). Therefore, N, ~ So.. The intensity of
the 255-keV annihilation lineis preliminarily estimated
as follows. Let us take the positron flux density in the
form j(g,, t) ~ &Jg; Where Jg; = QB/2me is the Gold-
reich-Julian density and § is a certain dimensionless
parameter. The cross section o is estimated as the

Thompson cross section a1 ~ 1026 cm?. In this case, the
intensity of 255-keV radiation arising upon the annihi-
lation of a positron beam with energy €, for a pulsar
with rotation frequency Q ~ 1 Hz is equal to I(g,) ~

Eg—] x 10% erg/s. This estimate is obtained without

reg+ard for the absorption and scattering of yradiationin
the pulsar magnetosphere.

6. Inthiswork, we predict the possibility of forming
the 255-keV annihilation linein they spectrum of apul-
sar. As was shown above, this line arises due to the
annihilation of ultrarelativistic positrons and surface
electrons. Annihilation-induced y radiation must be
characterized by a sharply anisotropic angular distribu-
tion. High-energy y-ray photons carry almost the entire
energy of positrons to the pulsar interior. However, soft
y radiation from the surface must be observed. For high
energies of incident positrons, the photon energy of this
radiation approaches 255 keV. Analysis of thisline pro-
videsimportant information about the gap structure and
processes of particle acceleration in the gap. The anni-
hilation line under consideration must undergo alarge
(about 20%) gravitational redshift (see, e.g., [10]),
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which can provide valuable information about the rela-
tion between the masses and radii of neutron stars. The
effect of suppressing the annihilation line by a strong
magnetic field [11] weakens significantly in this case,
because the suppression effect is absent for photons
propagating along the magnetic field and is very weak
for photons propagating at small anglesto the field.

We are grateful to V.S. Beskin, B.M. Morozhenko,
and the referee for stimulating discussions.
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We study the temperature dependence of the monopol e condensate in different Abelian projections of the SU(2)
gauge theory on the lattice. Using the Frohlich-Marchetti monopol e creation operator, we show numerically
that the monopole condensate depends on the choice of the Abelian projection. © 2004 MAIK “ Nauka/Inter-
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The confinement of color in QCD isone of the most
interesting issues in the modern quantum field theory.
Numerical simulations of non-Abelian gauge theories
on the lattice show [1] that the confinement of quarks
happens due to the formation of the chromoelectric
strings spanning between quarks and antiquarks.
Although an analytical derivation of the color confine-
ment is not available, the physical reason of the emer-
gence of the string seemsto be known. According to the
dual superconductor model [2], the vacuum of a non-
Abelian gauge model may be regarded as mediaof con-
densed Abelian monopoles. The monopole condensate
squeezes the chromoelectric flux (coming from the
quarks) into aflux tube due to the dual Meissner effect.
Thisflux tubeisan analogue of the Abrikosov vortex in
an ordinary superconductor.

The basic element of the dual superconductor isthe
Abelian monopole. This object does not exist on the
classical level in QCD, but it can be identified with a
particular configuration of the gluon fieldswith the help
of the so-called Abelian projection [3]. The Abelian
projection uses a partia gauge fixing of the SU(N)
gauge symmetry up to an Abelian subgroup. In the
Abelian projection, the Abelian monopoles appear nat-
urally due to compactness of the residual Abelian
group.

Many numerical simulations show that the Abelian
degrees of freedom in an Abelian projection are likely
to be responsible for the confinement of quarks (for a
review, see, eg., [4]). For example [5], the Abdian
gauge fields provide a dominant contribution to the ten-
sion of the fundamental chromoelectric string (“Abe-
lian dominance”). Moreover, the internal structure of
the string energy, such as energy profile and the field
distribution, are described very well by the dual super-
conductor model [1].

TThis article was submitted by the authorsin English.

Since the qualitative features of the confinement
mechanism in the real QCD with the SU(3) gauge
group and in the SU(2) gauge theory are the same, in
this letter, we restrict ourselves to the simplest case of
the SU(2) gluodynamics. The most convincing results
supporting the dual superconductor scenario were
obtained in the so-called maximal Abelian (MA) pro-
jection [6]. This gauge is defined by the maximization
of the lattice functional (o; are the Pauli matrices),

maXq Ryal UQ] )

T ®
RualU] = ZTr(03U(S, H)asU (s 1)),

s i

with respect to the gauge transformations, U(s, p) —»
US(s, W) = Q(U(s, WQT(s + {1). In the continuum
limit, condition (1) corresponds to the minimization of
the functional [d*x((A;)?+ (A})?. A local condition
of the MA gauge can be written in the form of a differ-
ential equation, (9, + igA>})(A, —iA2) = 0, which is
invariant under the residual U(1) gauge transforma
tions, Q*"¥(w) = diag(€®, '), where wis an arbitrary
scalar function.

The MA gauge is agood candidate for arealization
of the dual superconductor scenario because the MA
gauge makes the off-diagonal gluon fields as small as
possible, reducing their role. Thus, the Abelian domi-
nance [5] is a natural effect in the MA gauge. Accord-
ing to numerical simulations [7-9], the monopol e con-
densate in the MA gauge is formed in the low-temper-
ature (confinement) phase and it disappearsin the high-
temperature (deconfinement) phase, in perfect agree-
ment with the dual superconductor scenario.

Besidesthe MA gauge, there are al so various gauges
which are defined by a diagonalization of certain SU(2)
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functionals X[U] with respect to the gauge transforma-
tions

X [U] — X, JU] =@ "X, [U]Q = diag(Ay, \,). (2)

To define an Abelian gauge, the functional X[U] must
transform into an adjoint representation of the SU(2)
gauge group [3]. After the Abelian projection is fixed,
the matrix X[U] becomes diagonal and the theory pos-
sesses the (residual) U(1) gauge symmetry. The most
popular examples of the diagonalization gauges are the
Abelian Polyakov (AP) gauge and the Abelian field
strength gauge (F,, gauge). The Polyakov gauge corre-
sponds to the diagonalization of the Polyakov line,

Xx[U] = Ux, x4,0Ux, X, +1,0°"" Ux, X4 —1.07

wherex ={x, x,}. The F;, gauge is defined by the diag-
onalization of the 12-plagquette, X,[U] = U, ;,, where
Ux,p\):Ux,pUxH],vUJr U;v-

X+V, i

There are conflicting reports on the gauge indepen-
dence of the dual superconductor mechanism of the
color confinement (areview of the current literature on
this subject can be found in [10]). Needless to say, this
guestion is important for understanding of the proper-
ties of the QCD vacuum. It is natural to think that the
confinement—as a gauge-invariant phenomenon—can-
not be described by a gauge-dependent model. On the
other hand, the Abelian projection by itself can be con-
sidered as just a gauge-dependent tool to associate the
confining gluon configurations with the Abelian mono-
poles. This tool may work well in one gauge and may
not work in another gauge.

Analytical considerations of [10] show that, in the
AP gauge (contrary to the MA gauge), the dual super-
conductor mechanism cannot be realized. It was con-
cluded that the Abelian projection mechanism is pro-
jection-dependent. However, the projection (in)depen-
dence of the monopole condensate could not be proven
within an analytical approach. To check this issue, we
study below the condensate of the Abelian monopoles
in the finite temperature SU(2) gauge theory in the AP
and the F,, projections and compare it with the conden-
sate in the MA gauge.

We study numerically the SU(2) gauge theory with
the standard Wilson action, JU] = —BZ Tr Up, where

P
the sum goes over the plaguettes P and (3 is the lattice
bare gauge coupling related to the continuum gauge
coupling g, B = 1/4g? The SU(2) link field is parame-
trized in the standard way:

U 0y . X L
U = O cosgue ™ sngue™™ g
oo X -ie,, O
O-sng,e ™ cos@,e 0

In an Abelian projection, the allowed gauge trans-
formations have a diagonal form. Under these transfor-
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mations, the diagonal field 0 transformsinto an Abelian
gauge field, the off-diagonal field x changesinto adou-
ble charged matter field, and the field ¢ remains intact:

OXLl — exp + 0y, — Wy, s

Xxp - Xxu Tt wx+ﬂ’

Oy — Pypi-

The SU(2) plaquette action contains [11] various inter-
actions between thesefields aswell asthe action for the
Abelian gaugefield ©:

SIU] = =) BelglcosBp+ ... ©)

Here, 6, = 6, + 6, — 65— 6, is a lattice anal ogue of the
Abelian field strength tensor and B[] is an effective
coupling constant dependent of the fields @ [11].

Following [7], we apply the monopole creation
operator of Frohlich and Marchetti [12] to the Abelian
part of non-Abelian action (3). Effectively, thisoperator
shifts the Abelian plaquette variable 6, as follows:

cDmon(X)

4
= exp0Y Bol@1[0S(8, + Wa(x)) ~ cos(B )]0 @
0% 0

where the tensor W, can be written in a compact way
with the help of the differential form formalism on the
lattice [4]. In thisformalism, the d— (d-) operator isthe
backward (forward) derivative on the lattice which
decreases (increases) by one the rank of the form on
which it is acting. The rank of the form is determined
by the dimensionality of the lattice cell on which this
form is defined. For example, a scalar function is a
O-form, the vector function is a 1-form, etc. Suppose
that A is a lattice vector, then dA is a scalar (a lattice
analogue of the divergence, d,A,), while dA is an anti-
symmetric tensor (a lattice analogue of the curl,
0y, A)- The lattice Laplacian is A = &d + do, and A™
denotes the inverse Laplacian. The lattice Kronecker
symbol is denoted as d,: it isascalar function, whichis
equal to unity at the site x and zero otherwise. The
*-operator relatesthe formson the dual and original lat-
tice. For example, if B isascalar function (0O-form) on
the original lattice, then *B is a 4-form on the dual
lattice.

The plaguette function Win Eqg. (4) isdefined asfol-
lows:t W = 2D, — w,). Here, the lattice 1-form
* W, represents the Dirac string attached to the mono-
pole on the dual lattice (thus, w, isa3-form on the orig-
inal lattice). The form *w, is zero outside the string
position, and it isequal to plus or minus unity (depend-
ing on the orientation) on the string. The three-dimen-

1 We omit a lengthy derivation of the tensor W and refer an inter-
ested reader to [12].
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siona form D, is called the “Dirac cloud” because it
represents a lattice analogue of the radially symmetric
(Coulomb) magnetic field of a monopole. This form
satisfies the equation 6*D, = *&,, which isalattice ana-
logue of the Maxwell eguation in continuum,
divH(x) = p(x). Here, p(X) is the density of the mono-
poles. In our case, we introduce one monopole at the
origin of the lattice; therefore, the lattice monopole
density isjust a Kronecker symbol, p = &,.

A partition function of any compact U(1) model can
be rewritten asa sum over closed monopole trajectories
[4, 7]. The quantum average of the operator ®,,,,(X) can
be represented as a sum over all closed monopole tra-
jectories plus one open trgjectory, which beginsat point x.
Thus, this operator does create a monopole at the point
X. The operator is invariant under local gauge transfor-
mations. Another property of operator (4) is that it is
defined up to a complex phase: the operator €°®,,,,(X)
also creates a monopole at the point x. For the sake of
definiteness, we study the positively defined operator (4)
with Im®,,,, and Re®,,,, = 0.

The object of our interest in this paper is the effec-
tive potential on the monopole field. According to [7],
this potential is defined as follows:

V(®) = —InB(P— Ppon(X))H (5)

The minimum of V(®) corresponds to the monopole
condensate.

We simulate the SU(2) on the lattice 162 x 4 with
C-periodic boundary conditions in space directions
[13]. The C periodicity corresponds to the antiperiodic-
ity for the Abelian gaugefields, which isrequired by the
Gauss law [7]. In the case of SU(2) gauge group, the
C-periodic boundary conditions are almost trivial: on
the boundary, we have U, , — Q*U, ,Q, Q =0y,

To get the effective potential, we use 400 configura-
tions of the SU(2) gauge fields. On each configuration,
the distribution of the monopole creation operator is
evaluated at 20 points. Thelogarithm of the distribution
provides us with effective potential (5). To evaluate the
errors of the potential, we use the bootstrap method.

In Fig. 1, we show the effective potential V(®)
(Eq. (5)) at various values of the gauge coupling B in
the MA, AP, and F;, gauges. The potential is shown for
positive real values of the field ®: Re® = 0, Im® = 0.
The minimum of the effective potential corresponds to
the value of the monopole condensate (in lattice units).
Theresultsfor the MA gauge (quoted below) are taken
from [7]. The critical gauge coupling corresponding to
the temperature phase transition at chosen lattice geom-
etry is B, = 2.3. Thus, Figs. 1a-1c correspond to the
confinement phase, while Fig. 1d is plotted for the
deconfinement phase.

First of al, we notethat, for all considered valuesof 3,
(i) the minima of the potentials in the AP and F;,
gauges coincide with each other within numerical
errorsand (ii) the potential inthe MA gaugeisdifferent
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Fig. 1. The potential on the monopole field in the MA, AP,
and F1, gauges at various values of the gauge coupling 3.
The data for the MA gauge are taken from [7].

from AP and F,, potentials. According to Fig. 1a, inthe
strong coupling limit (B = 0.1), the minima of the
monopole potential in all three gauges arelocated at the
same point, ®.,, = 1. However, as one can see from
other figures, this coincidenceislifted asweincrease 3.
As we increase the value of [3, the difference in the
monopol e condensates in the MA gauge and in the AP
and F,, gauges appears evident (Figs. 1b, 1c). More-
over, in the deep deconfinement phase (Fig. 1d), the
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monopole condensate vanishesin the MA gauge, while
inthe AP and F;, gauges, the condensate is nonzero.

Summarizing, we have presented evidence that the
monopole condensates in different Abelian projections
coincide with each other only in the (unphysical) strong
coupling region. Generally, the condensate depends on
the choice of the Abelian projection. Our results are in
contradiction with conclusions of [14], where conden-
sate was found to be projection-independent. Since our
results are based on the well-justified theory of the
Frohlich-Marchetti operator, we suggest that the differ-
ence between the results of our paper and [14] origi-
nates in the improper choice of the monopole creation
operator in [14].

Thiswork was supported by the Russian Foundation
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17456), by RFBR-DFG (grant no. 03-02-04016), by
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We propose the new mechanism of neutrino flavor relaxation to explain the experimentally observed changes
of initial neutrino flavor fluxes. Thetest of neutrino relaxation hypothesisis presented using the data of modern
reactor, solar, and accelerator experiments. The final choice between the standard neutrino oscillations and the
proposed neutrino flavor relaxation model can be done in future experiments. © 2004 MAIK “ Nauka/Inter pe-
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Now, the phenomena of changes in initial neutrino
flavor flux are observed in different neutrino experi-
ments. The SNO experiment [1] evidently detects only
one-third of the initial electron neutrino flux from the
Sun and two-thirds of muon and (or) tau neutrino
fluxes. The KamLAND reactor experiment [2] detected
only 61% of expected el ectron antineutrino eventsfrom
different reactors at a mean distance of 180 km. Con-
vincing evidence of initial neutrino flavor flux changes
isalso observed in Super-K [3] and MACRO [4] atmo-
spheric neutrino data and the K2K [5] accelerator
experiment with muon neutrinos.

The standard way of interpreting these resultsliesin
the neutrino oscillation hypothesis, first proposed by
Pontecorvo [6] and developed in further works [7].

Here, we discuss the aternative mechanism of neu-
trino flavor relaxation, which can also describe the
observed changes of initial neutrino flavor fluxes with
distance.

The proposed mode is similar to the mechanism [8]
of spin relaxation in random fluctuating magnetic field
B with zero average [B(t)[ = 0 and mean square fluctu-
ating field value [B2(t)(3# 0. The spin rel axation process
is described by the Pauli master equation [9].

Let us assume the existence of some small random
fluctuating vacuum field V, causing the transitions

between different lepton flavors. The field V can have
mean zero value, with OV (t)O different from O and I =

" > m,,, m, , m, . Interactions of neutrino

flavors with such vacuum field should lead to flavor
relaxation process.

TThis article was submitted by the authorsin English.

The time evolution of the neutrino states are gov-
erned by the Schrédinger equation:

iZhOD= AOMOT @

where |v(t) O sthe neutrino vector of state and H(t) isthe
time-dependent Hamiltonian of the system, whose
form depends on in what basisit is given.

In flavor basis, the total Hamiltonian in the random
fluctuating vacuum field for rest reference frame can be
written as

He(t) = FAm+Vi(1), )
where
O O
i Dm1 00 0
Hm = D O m2 0 D!
UJ U
00 0 mgO
3

) HVeet) Vau(t) Ver(t)
Vf(t) = Evpe(t) Vpp(t) Vpr(t) E
OVee(t) Vu(t) Vo (H) O
Here, H,, is the free Hamiltonian in mass basis. Note
that, in this model, the neutrino flavor states are

assumed to be the same as their massive states (or, in
other words, the mixing mass matrix is diagonal).

Vo (0 =€, Y, 1) isthe vacuum field potential with
mean value [V, (1)J=0and [V (t))T 0.

The neutrino flavor evolution in time can be
obtained from Egs. (1)—(3), using the density matrix

0021-3640/04/7906-0249%$26.00 © 2004 MAIK “Nauka/Interperiodica’
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approach [10], and is given by the Pauli master equa-
tion:

O n, O

dd o

i

O ny, O
% _(Wpe + Wte) Weu Wer E

= E W, ~(We, + W) W, E 4

|:| WTe WTH (Wer + WHT) |:|

On, O

a <0

x[n, 0,

o g

Un, O

Ve

wheren,(t) (0 =V, v, V;) arethe probability of observ-
ing a neutrino with electron, muon, or tau flavor, W,

corresponds to the neutrino transition rates from flavor
o' to flavor a, and
z ne(t) = 1.

O =V Vy, Yy

The general solution of Eq. (4) is given by the sum
of two exponents and a constant:

Dn tD O, 0O O O~ O

OF pag gbug opeg o
Dn (t)l]— Da2D+Db2De +0c,0e %, (5
O o O O 0 O
Dnt(t)D Dag0 Oby 0cs0
with

3 3 3

a; = 1, bi = O, C = 0. (6)

To illustrate the possibilities of the relaxation
model, the particular “simple” solution can be found
under the following assumptions:

(@) Wey, = Wyer Wi = Wi, Wiir = Wy,

(b) Wye > Wy, W
Now, Eq. (5) appears as

Dn (t)D

DI/BD |:| OD 2wt
Dn (t)%— 01/30+b0 1 0e "
DnT(t)D 0130 0-10
(7)
0_,0
U7 0 _araw,, + Wt
+CE1/2Ee .
01/20

MACHULIN, TOLOKONNIKOV

Fory=E,/m, > 1, the probability P of observing the
neutrino flavor with energy E, at distance r from the
source is given by

dp, (r)O O O O
7PNy gsg 000 nge,
Op, (r)0 = 0O1/30+b0 1 Ce
a ™ -0 0o o o o
OpP, ()0 O30 0O-10
8
O ,0O
U 4 —/\E,
+C% 1/2 Ee )
01/20
where we use the new notation Ay = (2W,;m,)™ and

Ny = 2I3[(Wey + Wer)m ] ™.

Equation (8) can be solved for different initia
experimental conditions of neutrino flavor fluxes.

For initial pure electron neutrino or antineutrino flux
(the case of solar or reactor experiments), P, (0) = 1,

P,,(0) = P, (0) =0, the solutioniis

—IN\E,

P, (r) = 1/3[1+2e "7,

—INE,

P, (r) = 1/3[1-e 1, 9

—/INE,

P, (r) = 1U3[1—e 7.

From KamLAND experiment data[2], it ispossible
to estimate the value of parameter A,. Taking the effec-
tive energy of reactor antineutrino flux to be equa to
4.8 MeV (here, we take into account the threshold of

the KamLAND detector E;_ > 3.4 MeV), mean reactor

distance 180 km, and R = P
0.61, we obtain

Ve(measured) / PGS(expected) =

N1 =43 km/MeV.

Figure 1 illustrates the distance dependence of reac-
tor antineutrino fluxes (for E; = 4.8 MeV).

Thefinal flavor survival probability 1/3 is consistent
with the SNO [1] experimental data with the ratio of
measured neutrino flavor fluxes

g_g = 0.306 + 0.026(stat) + 0.024(syst),

and with the absence of distortion in measured neutrino
spectrum at low energies, while such distortion is pre-
dicted by LMA solution [11].

It al so agreeswith the Homestake results[12] for the
ratio R of observed and predicted by standard solar
model (SSM) [13] neutrino rates: R=0.34 £+ 0.03.

(10)

JETP LETTERS Vol. 79 No.6 2004
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Fig. 1. Probability of observing different flavors from a
reactor for E; = 4.8 MeV.

The deviation from the “simple” relaxation model
exists for Gallium experiments [14, 15] with R =
0.553 + 0.034. But it is worth mentioning that the R
value depends on the accuracy of SSM theoretical pre-
dictions.

For the case of pure initial muon neutrino or
antineutrino flux (like in accelerator experiments),

PVH(O) =1, P, (0) =P, (0) =0, thesolution of Eq. (8)
is

P, (r) = 13[1—€"""],
P, (1) = U3+ 1/2e"" >+ 186 M, (11
P, (r) = 13-1/2¢"™™ + 1/66 """,

Preliminary estimation of parameter /A, can be done
using K2K accelerator experiment data [5]. Taking the
mean energy of muon neutrino flux E, = 1.3 GeV, dis-
tancer = 250 km,

R = Pvu(meamred)/Pvu(expected) = 0.70
we obtain
Ny = 0.21 km/MeV.

Figure 2 illustrates the distance dependence of neu-
trino fluxes from muon neutrino beam (E, = 1.3 GeV).

It is necessary to note that the estimations of neu-
trino relaxation parameters Ay and A, are very prelimi-
nary and were made for illustration of the relaxation
model. More precise calculations can be done also tak-
ing into account atmospheric neutrino data.

Finally, wewould like to emphasize the main differ-
ence between the standard oscillation theory and the
relaxation model proposed here: the dependence of
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Distance from accelerator (km)

Fig. 2. Probability of observing different flavors from an
accelerator muon neutrino beam for E, = 1.3 GeV.

neutrino flavor fluxes on the distance is described by the
sum of aconstant and two relaxation exponents, instead
of the oscillation case. Figure 3 illustrates this differ-
ence for reactor antineutrino experiments.

Forthcoming reactor and accel erator neutrino exper-
iments can provide the data necessary to choose
between the neutrino oscillations and the proposed fla-
vor relaxation model. Of course, the possibility of hav-
ing amixture of neutrino oscillation and relaxation pro-
cesses also exists.

—
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Fig. 3. The ratio of measured to expected \76 flux from
KamLAND [2] and CHOOZ [ 16] reactor experiments: (dot-
ted curve) predictions of the oscillation model with
sin“26 =0.91 and &P = 6.9 x 1075 (eV)2 best-fit parame-
ters from [2]; (solid curve) predictions of the “simple”
relaxation model.
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Quantum theory of two consecutive light-wave parametric interactions with aliquant frequencies produced by
acommon pump wavein acrystal isdeveloped. Using the differentiation method, the unitary evol ution operator
of the system isreduced to an ordered form that allows the calculation of the field state and the statistical char-
acteristics of interacting waves. It is shown that, for theinitial vacuum field state, the created photons obey the
super-Poisson statistics at the interacting frequencies and are in a multiparticle entangled state. © 2004 MAIK

“Nauka/Interperiodica” .
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The object of this letter is to develop the quantum
theory of consecutive nonlinear optical interactions of
waves with aliquant frequencies and analyze the states
of the generated photons. It will be shown that the type
of interaction considered in thiswork can be the source
of multiparticle (multiphoton) entangled states.

In quantum optics, one distinguishes between the
entanglement of individual photons [1], quadrature
field components [2], and Stokes parameters [3] char-
acterizing the polarization state. Entangled quantum
states are finding use both in the experiments on check-
ing the quantum mechanical principles and in various
applications of quantum information science [4].

At present, two-photon entangled states arising in
the course of spontaneous parametric down-conversion
(SPDC) in homogeneous nonlinear crystals lie at the
basis of many applications of entangled states [5]. At
the sametime, for anumber of reasons, the multiphoton
entangled states are of special interest for applications.
For example, when checking the Bell’s inequalities [6]
with two-particle entangled states, the contradiction
withlocal realismtakesplaceonly for statistical predic-
tions[7], whereas, in the case of multiparticle entangle-
ment, it arises for determinate predictions [8]. By now,
the methods of creating three- [9] and four-photon [10]
entangled states using two independent pairs of polar-
ization-entangled photon states and four-photon entan-
gled states arising as a result of the action of a high-
intensity short pump pulse in the course of SPDC have
been suggested [11], together with the method of creat-
ing multiphoton entanglement in optical solitons[12].

In thiswork, anew source of multiphoton entangled
states is considered based on two consecutive three-fre-
quency interactions of waves with aliquant frequencies
Wy, Wy, and w; inthe field of intense classical pumping
with frequency wy,. These interactions consist of the

parametric processin the field of low-frequency pump-
ing

W, = W+, D
and the parametric frequency summation

W + W, = Ws. ()]

Processes (1) and (2) can simultaneously proceed
during the collinear wave interaction in periodically
poled nonlinear crystals, e.g., in an LiNbO; crysta
[13]. In such crystals, the condition for the efficient
energy exchange between the interacting waves (quasi-
phase-matching condition) can simultaneously be met
for processes (1) and (2) by choosing the poling period,
i.e., the modulation period for the nonlinear wave-cou-
pling coefficient [14].

In the approximation of an undepleted pump field,
the simultaneous occurrence of processes (1) and (2)
can be described by the interaction Hamiltonian of the
form

Hin = ifi{ By(a18; —2y8,) +Bo(azas—aa1)}, (3)
where a,-+ (&) isthe creation (annihilation) operator for
a photon with frequency w, 7 is the Planck’s constant,
and 3; isthe effective nonlinear coefficient proportional
to the crystal quadratic susceptibility and pump-wave
amplitude. The boson operators a, and g satisfy the
standard commutation rules [a;, a]= Ok, Where & is
Kronecker delta. The terms containing the coefficient

B, in Eq. (3) account for process (1), and the terms con-
taining the coefficient (3, account for process (2).

0021-3640/04/7906-0253%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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The field state |W(2)0at the output of a nonlinear
crystal is determined by the unitary evolution operator
U(2) = exp[—iH;Z'h]:

¥ (2)0= U(9)|¥(0)) 4)

where |P(0)Listhe initial field state.

However, the general form of a direct action of the
unitary operator on theinitial state cannot be calculated
without the preliminary transformation of this operator.
For this reason, we introduce the anti-Hermitian opera-
tors

_ + 4
04 = (a—aay),
_ + +
0, = €(aza; —a33y), 5)

_ +_+
0, = —€(a,83 —a,a,),

wherethe coefficient € = 3,/3; is chosen to bereal with-
out loss of generality. The auxiliary operator o, for-
mally describes the generation process for frequencies
w, and ws in apump field with frequency w, + w,;. The
operators gy, 0, and g, obey the SH(3) algebra [15];
i.e., they form aclosed set with respect to the commu-
tation operations:

[Od’ o-u] =040,—0,04 = Oy,

(6)

2
[0-617 0-d] = _Guv [O-L]! Oa] =& Gd'

In the new notation, the unitary operator can be rep-
resented in two equivalent forms:

Z(Gd + Gu)

u(Q) =e
= exp[a({)ag] exp[n (€ )o.] exp[E (C)al],

where = 3,zand a({), n({), and &({) arethe unknown
functions to be determined by the differentiation
method [16]. In this method, the differentiation of both
sides of the equality with respect to { isfollowed by the
operator transformations of U({) to set it off on the
right-hand side of the equality and by equating the coef-
ficients of operators o4, 0, and o, Note that the
sequence of exponential operators on the right-hand
side of Eq. (7) isdictated by the convenience of solving
the problem.

To determine the functions a (), n(¢), and &({), we
obtain the following system of nonlinear differential
equations:

a’'({) —€€'(¢)sinh(n(Q)e) = 1,
n'(Q)cosh(@(@) + &'(¢)cosh(n(¢)g)sinh(@(@)) = 0. (8)
n'(Q)sinh(a(Q)) +&'(¢)cosh(n(¢)e)cosh(a(d)) = 1

with theinitial conditions a(0) = n(0) = &(0) = 0.

One can verify that the solutionto Eq. (8) fore <1
is given by the functions

RODIONOV,

CHIRKIN
0sinh6
a(C) = arctanhﬁzfez,
n) = s’larcsinhse_z(l—coshei), 9

C
_ c.cosh[a(x)]
¢(Q) = Imdx,

where 6 = /1 —¢®. The particular form of the function
&(¢) isimmaterial to our analysis.

Next, we apply the ordering procedure to each expo-
nential operator in Eqg. (7). The ordered form of the
operator exp[a(§)oy] is presented, e.g., in [17]. As a
result, we obtain the following final ordered expression
for the unitary evolution operator:

U(Q) = exp[tanh(a)a;a;]
x exp[-In(cosh(a))(1 + aja, + aa,)]
x exp[-tanh(en)a,az] exp[—tanh(a )a,a,]
x exp[ tanh(en)tanh(a)asa,]

x exp[~In(cosh(en))(1+ a2, + asas)]  (10)

x exp[ tanh(e€)a;a,]
x exp[tanh(en)a,as] exp[ tanh(en )tan(e€)a, a,]
x exp[~In(cos(&&))(ara; — asas)]

x exp[~tan(e€)ajag],

where o = a((), n = n((), and & = §().

Assume that only the intense pump wave isfed into
anonlinear crystal, whiletheinitial states of the w,, w,,
and w; fields are the vacuum states; i.e., theinitial state
vector is |\W(0)0= |0Gj|o0J|0d = [0, 0, Ol According to
Eq. (10), the state at the crystal output is

__ 1 1 i m
|LIJ(Z)|:|_ COShG(Z) Cosh(en(z))m’nzzo(tanha(Z))

(a1)
tanh n +n)!
e D A m me

Here, mis the number of photons with frequency wy,
m + n isthe number of photons with frequency w,, and
n is the number of photons with frequency w;. The
states [m, m + n, nOform the orthogonal basis in the
space of Fock’s states. In fact, Eq. (11) fully determines
the solution to our problem. Using state vector (11), one
can write the expression for the density matrix p =
|[W(Q)I¥ (¢)] and calculate the statistical characteristics
of the generated radiation at the crystal output.
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ENTANGLED PHOTON STATES

The photon-number distribution functions P;(N) =
Sp(p,N ), where N is the photon-number operator and

P; isthg density matrix of the field w, are given by the
expressons
_ tanh”™(a Q)
cosh’(en ()’
1
cosh’(a(2)) cosh’(en ()

x %l + tanhz(sr](Z))DNtanth(a(Z)),
sinh*(a(2)) -

P1(N)

P2(N) =

(12)

P,(N) = t_fi”_flz;(f_'lﬁ))
cosh”(en(?))

It follows that the statistics of generated photons
has, in the general case, a super-Poisson character (the
photon-number variance is much greater than the mean
photon number). However, for small interaction lengths
(B,z< 1), itisclose to the Poisson statistics.

One has for the mean photon numbers

[hy(Q)0 = sinh’ar € ) cosh®(en(2)),

hy(Q)0= sinh’€n € ), (13)
[h,(¢)0 = Thy (Q)0+ hy(O)H
Taking into account Eqg. (9), one obtains
A2 32
h,(Q)d =08 “sinh™(87), (14)

[hy(2)0 = € °67*(cosh(82) — 1)°.

According to Eg. (13), the mean number of photons
increases exponentially at € <1 (B isredl). In this case,
B, > B,; i.e., the pump-photon decay into the photons
with frequencies w, and w, is more efficient than the
photon creation at frequency ws. In the opposite case
(B1 < By, € > 1), the hyperbolic functions in Egs. (9)
should be replaced by the trigonometric functions
(sinh — sin, cosh — cos, and 62 — (€2 — 1)),
while the statistical parameters depend on the interac-
tion length in an oscillatory manner.

According to Eq. (11), the field at the crystal output
isin the entangled state [18], because it cannot be rep-
resented in the factorized form |Wz |W,00W 00
|50 where |WOis the field state at frequency .
Assume that one can set off, e.g., afield with two pho-
tons with frequency w,. Then, the normalized vector of
the corresponding state is

[W(Qldbng = N{020(L)[2, 2,00

(15)
+ qll(Z)llv 27 10+ qOZ(Z)lov 2! 2[} .
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Fig. 1. Probability amplitudes Cy of two-photon generation
at frequency w, and j and k photons at frequencies w; and
Wy, respectively, as functions of the reduced interaction
length { = B4z for € = B,/ = (a) 0.5 and (b) 0.75.

The coefficients g; are determined from Eg. (11), and

N2= (00(Q) + A1 () + (€)™ is the normalization
factor. For the frequencies w; and w;, we have an ana-
logue of athree-level system for thisset of photon num-
bers. Such field states can probably be used as qutrits.
An aternative method of obtaining qutritsisconsidered
in[19].

The probability amplitudes Cy({) = Nq(() are
shown in Fig. 1 as functions of the interaction length.
One can seethat the probability amplitudesfor thefield
configurations considered differ only slightly at some
interaction lengths. Estimates show that the value ¢ =
Bi1z=1inan LiNbO; crystal of length 1 cmisachieved
for the pump intensity | ~ 10% W/cm? (e — eeinterac-
tion type).

To characterize the coupling of the wy;, w,, and w,
photons, the three-photon correlation coefficient

[hyn,n4]
Ch,O0h, 0]

_ 2[2+3sinh’a () + tanh’(en ()]
sinhza(Z) + tanhz(sr](Z))

was cal cul ated, which can be measured in atriple-coin-
cidence scheme. The typical dependence of g® on the
interaction length is shown in Fig. 2. It follows from
thisfigure that thereisa strong nonclassical correlation
between the wy,, w,, and w; photons at the initial inter-
action stage, and this correlation weakens as the inter-
action length increases. Indeed, g® = 1 for the coherent

(3) —
g7 (ng, Ny, n3) =

(16)
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Fig. 2. Three-photon correlation coefficient g(3)(n1, n,, Ng)
as a function of the reduced interaction length { = 34z for
€= [32/[31 =0.5.

and statistically independent fields. At the same time,
g® =6 for thefully statistically dependent fields obeing
Gaussian statistics[20]. With an increasein theinterac-
tion length, the coefficient g©® approaches this value
from itslarger values.

In conclusion, it should be emphasized that the main
result of our theory consists in the derivation of the
ordered expression for unitary evolution operator (10)
describing consecutive nonlinear optical interactions
with aliquant frequencies and in the derivation of
Eq. (12) for the field-state vector at the output of a non-
linear crystal with thevacuuminitial state. Equation (11)
clearly demonstrates that the created photons are in the
entangled state. For the photon numbers m and M at,
respectively, frequencies w; and w,, n photons are gen-
erated at the frequency w;, with n = M —m, and the
numbers mand n can take valuesfrom 0 to M. Thus, the
nonlinear optical interactions considered in this work
can serve as a source of multiphoton entangled states.

We are grateful to S.P. Kulik for helpful discussion
of theresultsand to V.l. Man'ko for the fruitful discus-
sion on the group theory. This work was supported by
the Russian Foundation for Basic Research (project
no. 04-02-17554) and INTAS (grant no. 01-2097).
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Transformation of Director Configuration
upon Changing Boundary Conditionsin Droplets
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The transformation of the director configuration upon changing boundary conditions from planar to homeotro-
pic for bipolar nematic droplets dispersed in apolymeric matrix was studied. The characteristic textural patterns
are presented for droplets with different concentrations of homeotropic surfactants, and their orientational
structure isidentified. The scenario predicted earlier by G.E. Volovik and O.D. Lavrentovich (ZhETF 85, 1997
(1983)) for the transformation of orientational structure of nematic droplets from bipolar to radial, without the
formation of additional disclinations, isrevealed. It is shown that, by using the computational method of mini-
mization of the director elastic-strain energy in the droplet bulk and by introducing the inhomogeneous bound-
ary conditions, one can obtain orientational structures that are analogous to the observed ones.© 2004 MAIK

“ Nauka/Interperiodica” .
PACS numbers: 61.30.Gd; 61.30.Eb

INTRODUCTION

Topological anaysis is a rather efficient tool for
studying spatially inhomogeneous structuresin orienta-
tionally ordered systems, including variousdirector and
disclination configurationsin liquid crystals (LCs). The
classification of thetopologically stable defectsin nem-
atic LC droplets has shown [1, 2] that the planar (tan-
gential) orientation of nematic molecules at the inter-
faceis characterized by the bipolar direction configura-
tion, with two point defects (boojums) arranged at the
opposite sides of the droplet surface. In the case of a
normal (homeotropic) nematic anchoring, the radial
director ordering with a point defect (hedgehog) at the
droplet center is the equilibrium structure, in accor-
dance with the experimental observations|[3, 4].

Thetheoretical analysis[2] of nematic dropletswith
varying boundary conditions suggests two possible sce-
narios for the interconversion of the bipolar and radial
configurations. In the first case, one of the boojumsin
the bipolar structure gradually disappears and another
transforms to a hedgehog, which subsequently breaks
away from the surface and moves to the droplet center.
In the second case, both boojums undergo changesin a
similar manner, but the structure interconversion is
accompanied by the formation of additional, including
linear, disclinations.

In [2], a nematic with a lecithin impurity was dis-
persed in glycerol and taken for the experimental study.
The surface anchoring of LC molecules in this system

could be varied from homeotropic to planar by varying
temperature in the range of nematic phase. In this case,
the second structure-transformation scenario was real-
ized with the formation of additional disclinations.
However, considering that this composite consists of
spherical LC droplets dispersed in an isotropic liquid
matrix [2], one cannot assert that the observed scenario
for the interconversion of orientational structures is
universal for other objects aswell, e.g., for the films of
polymer-dispersed liquid crystal (PDLC) films that
have been intensively studied in the last years. At the
same time, a change in the boundary conditions by
varying temperature is not the only approach to the
study of this problem; adirect method is also possible.
Namely, one can fabricate a set of samples with differ-
ent concentrations of the required surface-active mate-
rial and perform comparative analysis of their structural
organization. Thiswork was aimed at the detailed study
of the director configurations in nematic droplets dis-
persed in a polymeric matrix, with the boundary condi-
tion varying as aresult of varying concentration of the
corresponding surfactant.

EXPERIMENTAL
The well-known  4-n-pentyl-4'-cyanobiphenyl
(5CB) nematic liquid crystal with the transition temper-

atures “crysta ZX nematic =% isotropic liquid”
was chosen for the study. At T = 22°C and A =

0021-3640/04/7906-0257$26.00 © 2004 MAIK “Nauka/Interperiodica’



Fig. 1. The sequence of director configurations in nematic
droplets with different lecithin content. The arrows are
directed toward the increase in the surfactant content.
(a) Bipolar droplet; (b) droplet with a destructed |eft boo-
jum; (c) monopolar droplet; (d) surface hedgehog structure;
and (e) radial structure.

0.589 um, the refractive indices of 5CB are n = 1.725
and n; = 1.534 [5]. Poly(vinyl butyral) (PVB) of the
1PP type was used as a polymeric matrix. This polymer
is transparent in the visible region and provides planar
anchoring to the molecules of mesomorphic akylcy-
anobiphenyl derivatives [6]. The refractive index of
PVBisn,=1492at T,=22°Cand A = 0.589 um.

The homeotropic L C orientation at the interface was
produced using lecithin—surface-active substance
relating to the class of phospholopids. In the LC drop-
lets with lecithin impurity, the long axes of surfactant
molecules are arranged perpendicular to the surface in
such a way that their polar groups are directed toward
the interface, while the nonpolar fragments (flexible
alkyl chains) are directed toward the bulk of the LC. As
a result of such structural ordering, the lecithin mole-
cules provide the homeotropic orientation of LC mole-
cules at the interface.

Using acommon solvent (ethyl acohol) for all com-
ponents, a set of samples with an LC content of 55%
were prepared by the solvent-induced phase-separation
method with the PV B and lecithin concentrations vary-
ing within 41.5-45.0 and 0-3.5 wt %, respectively. The
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ethanol evaporation rate was controlled so asto provide
the same morphological parameters for the samples of
composite film studied. The LC droplets formed a
monolayer with a size dispersion of 4-16 um.

The textural patterns of PDLC films were studied
using a polarizing microscope baoth in the geometry of
crossed polarizers and in the linearly polarized light
with a switched-off analyzer. Observations showed that
the textures of all dropletsin a composite film without
lecithin are typical for the bipolar director configura-
tion (Fig. 1a). In the crossed polarizers, two symmetri-
cally arranged hyperbola-shaped extinction bands are
seen (Fig. 2a) that emanate from the droplet poles
(point defects) and are gradually expanded. In the
geometry with one polarizer, point defects are clearly
seen as dark spots because of a strong optical inhomo-
geneity and, hence, intense local light scattering near
the defects for any light polarization. For the same rea-
son, the sections of droplet boundaries, where the light
polarization coincides with the local director orienta-
tion and the gradient of refractive index n—n, islarge,
arealso clearly seen. By contrast, the boundary sections
with the orthogonal arrangement of director and light
polarization are seen least distinctly, because the gradi-
ent of refractive index ny —n, isminimal in this region.

The sequence of director configurations arising in
the nematic droplets upon an increase in the fraction of
lecithin in the composite is schematicaly illustrated in
Fig. 1. In the PDLC films with 0.08% lecithin, one of
the boojums disappears in most (about 70%) of droplet
ensemble. Thisis clearly seen in the bottom region of
the droplet in Fig. 2b. The extinction band near the
decaying boojum expands rather than narrows. In the
remaining region of the droplet, the textural pattern has
a form similar to the bipolar structure. The director-
field distribution in these droplets can be represented by
the configuration shown in Fig. 1b. It should be noted
that the boundary conditionsin this case are inhomoge-
neous. Here, the director in the bottom region of the
droplet is oriented homeotropically. When moving
along the surface to the remaining point defect, the
director orientation becomestilted and, finally, planar.

In samples with a higher lecithin content, the region
of homeotropic and tilted director orientations
increases and the director lines further straighten out
(Fig. 1c), so that the structure, in essence, becomes
monopolar. In [2], such a structure transformation was
treated as “a continuous defect destruction accompa-
nied by turning the size of itsnucleusto infinity.” In the
crossed polarizers with the geometry presented in
Fig. 2c, only one extinction band is seen in the droplet
with such a director configuration. It emanates at the
top of the point defect, strongly expands, and fills
almost the entire lower half of the droplet. The texture
of the upper half of the droplet is also analogous to the
bipolar structure.

As the lecithin concentration increases, droplets
with the surface hedgehog structure (Fig. 1d) and radial
JETP LETTERS Vol. 79
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Fig. 2. Textural patterns of the 5CB L C nematic droplets dispersed in poly(vinyl butyral) with different lecithin concentrations Cie.

(bottom) Microphotographs in the geometry of crossed polarizers (shown by white arrows) and (top) photographs in the polarized
light (the polarizer direction is shown by black arrows). (a) Bipolar droplet with symmetry axisdirected at o = 11° with the polarizer,
Ciec = 0%; (b) droplet with a destructed bottom boojum, a = 11° and C,. = 0.08%; (c) monopolar droplet, o = 0° and Cjg = 0.1%;
(d) droplet with the surface hedgehog structure, a = 0° and Cj; 2.0%; and (€) droplet with the radial structure, Cje. = 2.6%.

structure (Fig. 1e) appear. Droplets with the new struc-
ture appear and gradually increase in number. In this
case, dropletswith different director configurations can
be observed simultaneously in the same PDLC film
sample (Figs. 1la—1e), likely because of the inhomoge-
neous | ecithin distribution over thefilm volume and due
to some other factors, such as droplet shape, structure
of the transition layer at the droplet surface, etc.

In the sequence of orientational structures from
monopolar (Fig. 1c) to the surface hedgehog (Fig. 1d),
the director field transforms in a smooth manner. One
should identify these structures with care, because their
textural patterns are, on the whole, similar. The distinc-
tions in these textures are most clearly seen in the
observation geometry shown in Figs. 2c and 2d. Here,
only one extinction band is seen in the monopolar drop-
let. Three extinction bands are observed in the droplet
with a surface hedgehog (Fig. 2d). The central band
goes aong the droplet symmetry axis, but it is much
narrower than in the monopolar structure. Two side
bands emanate from the point defect at an angle of
approximately 50° to the symmetry axis on both its
sides. As aresult, such droplets are cone-shaped in the
crossed polarizers (photographs of such textures were
presented earlier in [7]), although they are, in fact, cir-
cular. The appearance of the three aforementioned
extinction bands can be understood from the consider-
ation of the corresponding director configuration
shown in Fig. 1d. For the switched-off analyzer, the
droplet boundaries adjacent to the defect are clearly
seen for the monopolar structure if the light polariza-
tion is parallel to the symmetry axis (Fig. 2c). By con-
trast, the boundaries in the droplet with a surface

JETP LETTERS  Vol. 79
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hedgehog are seen most distinctly for the light polar-
ized perpendicular to the symmetry axis (Fig. 2d).

CALCULATION OF DIRECTOR
CONFIGURATION

The problem of determining the director configura-
tion through the minimization of the orientational part
of free energy

F = 5[KIO M) + (@ xn)av @)

of the LC volume with agiven boundary conditions can
be solved analytically for some simple geometries, e.g.,
for the plane-parallel cells. Here, n isthe nematic direc-
tor and K is the elastic constant. For the droplet struc-
tures, the problem becomes more complicated, so the
director field in this case is calculated numerically [8].

The transition structures described above (Figs. 1b—
1d) were calculated within the framework of a three-
dimensional model using the method developed in [9,
10] for the study of Friedericksz transitions in bipolar
nematic droplets with rigidly fixed poles. The problem
was solved in a one-constant approximation with the
elastic modulus K = (Ky; + K, + K33)/3. The K;; values
weretaken from [11]. The minimum of F in Eq. (1) was
found by the variational method in the Cartesian coor-
dinate system using the experimentally observed
boundary conditions.

For exampl e, to determine the director configuration
for the texture shown Fig. 2b, the anchoring was
assumed to be rigid and planar for all surface points
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Fig. 3. The director configuration in the diametrical cross
section passing through the symmetry axis of a spherical
nematic droplet, as obtained by theoretical calculation
within the framework of a 3D model with inhomogeneous
boundary conditions. The dashed line near the surface
shows the region with a specified planar director orienta-
tion.

Fig. 4. Theoretically calculated texture of a spherical nem-
atic droplet in crossed polarizers for the director configura-
tion shownin Fig. 3 and an angle of 11° between the dropl et
symmetry axis and polarizer.

whose X coordinates fell within the interval —0.8R <
X £ +R. Theazimuthal director direction in this surface
region corresponded to the bipolar configuration with
defects at the points —-R and +R on the X axis. The
boundary conditions were not specified for the rest of
the surface with the coordinates —-R < X < -0.8R; i.e,,
the director orientation in this region was determined,

PRISCHEPA et al.

as in the droplet volume, from the condition that the
free energy be minimal. The resulting distribution of
director field (Fig. 3) was similar to the configuration
presented in Fig. 1b. In this distribution, the surface
director orientation is also homeotropic near the point
-R. When moving away from the symmetry axis, the
orientation becomes tilted and then smoothly changes
to planar.

Next, thisinformation was used to cal cul ate the cor-
responding textural patterns in crossed polarizers by
applying the theoretical approach described in [12].
One can see (Fig. 4) that the theoretically calculated
texture agrees well with the microphotograph of nem-
atic droplet (Fig. 2b), taken for the same angle of incli-
nation a of the symmetry axis to the polarizer.

CONCLUSIONS

Thus, a set of orientational structures intermediate
between the bipolar and radia director configurations
have been revealed for nematic dropletsin PDLC film
samples with various lecithin content. The data
obtained are evidence that the change of surface
anchoring from planar to homeotropic resultsin agrad-
ual transformation of the bipolar structure of nematic
droplets into the radial structure through a sequence of
equilibrium director configurations without the forma-
tion of additional disclinations, as was predicted previ-
ously by the topological analysisin [1, 2]. Clearly, the
approach described above alows the observation of
only the equilibrium director configurationsin different
samples, whereas the temperature-induced variations
of boundaries[2] allow oneto trace the droplet restruc-
turization dynamics. However, it should be remem-
bered that not only the boundary conditions change in
the second case but so do the elastic moduli that
strongly influence the distribution of director field,
thereby hampering the interpretation of the experimen-
tal results.

It should be emphasized that the surface anchoring
in nematic droplets with intermediate configurationsis
inhomogeneous. Due to the use of the realistic inhomo-
geneous boundary conditionsin our numerical calcula-
tion, the obtained director configurations and textural
patterns of nematic droplets proved to be analogous to
the experimentally observed ones.

Thiswork was supported in part by the Presidium of
the Russian Academy of Sciences (project no. 8.1), the
Section of Physical Sciences of the Russian Academy
of Sciences (project no. 2.10.2), and the Siberian Divi-
sion of the Russian Academy of Sciences (integration
project no. 18 and youth project no. 14).
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A relativistic generalization of the semiclassical theory of tunneling and multiphoton ionization of atoms and
ionsin the field of a high-intensity electromagnetic wave with linear, circular, and elliptic polarization is con-
structed. The exponentia factor in the ionization probability is calculated for arbitrary values of adiabaticity
parameter y. In the case of low-frequency laser radiation, an asymptotically exact formulaisderived for theion-
ization rate of the satomic level, including the Coulomb, spin, and adiabatic corrections and the preexponential

factor. © 2004 MAIK “ Nauka/Interperiodica” .
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1. Rapid progress in laser physics and technology
has made it possible to attain the highest intensities J ~
10?2 W/em? [1, 2]; it is planned to increase these val ues
by one to two orders of magnitude [3]. In such strong
fields, atomicionswith charge Z ~ 40-60 will form; the
binding energy E, = m.c> — E, of electron energy levels
in such ions becomes comparable to the rest energy
m.C2. Inthis case, the tunneling electron motion leading
to the ionization can no longer be regarded as nonrela-
tivistic, and the generalization of the Keldysh ioniza-
tion theory [4-8] is required (this is the subject of this
communication). Below, the equations defining the
underbarrier trgjectory in a wave field and the ioniza-
tion rate of the s level are written for al values of the
adiabaticity parameter y. The case of ionization by a
low-frequency laser field (y < 1), important for appli-
cations, is considered and some critical remarks con-
cerning the recently published article[9] are a so made.

In our calculations, we will use the imaginary-time
method (ITM) providing a pictorial description of the
tunneling process, especially in the case of passage
through atime-varying barrier [6-8]. As arule, hence-
forthhi=m,=c=1.

2. A plane electromagnetic wave with linear polar-
ization is defined by the potentials

A= -0, & ¢=0, @

where €, isthewave-field amplitude, € = # =€, a'(n),
n = w(t —x), the x axis is chosen along the wave-prop-
agation direction, the electric field is directed along the
y axis, and the magnetic field is directed along the z
axis. The function a(n) defines the pulse shape. For

example, a(n) = sinn corresponds to the monochro-
matic laser light, a(n) = n corresponds to a constant

crossed field, a(n) = tanhn corresponds to a soliton-

like pulse €(t, X) = €4/ cosh’n , and so on. The equa-
tions of motion for the e ectron 4-momentum p' = (p, E)
have the form

Py = €€v,, P, = €é(1-v,),

. : @)
p, =0, E=e(8v) = eév,,

where the dot denotes the derivative with respect to the
laboratory time t. For any dependence €(n), there
exists an integral of motion [5]

J=E-p, = (1-v)lJ1-v® = nlwt, ()

where T = [ J/1-v?dt is the particle intrinsic time.
The second equation in Egs. (2) gives

d
Pr=Sta(n), py(n) = Sam) = —eAn) (4

(while choosing the integration constant, we took into
account that the light-front variable n and the momen-
tum p, become purely imaginary quantities after the
transition to the imaginary time, t — it; cf. [10-12]).
Next, we find that

_1dy_p(M)
n Jwdt Jw

dy

eé !
: Wn)=3E!am)dn,(5
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and the quantities p(n) and x(n) are defined analo-
gously. Note that the solution can be obtained in the
explicit form for any wave-field dependence on n.

The explicit form of the tunnel trgjectory for mono-
chromatic laser radiation in the case a(n) = sinn is

1 sinh2n,
4p23H 2n,

p(n) = — cosh2nt,

p,(n) =ip ‘sinhn,
in__pinh2n,  sinh2n (6)

X = ,
4wp3?E 2n, 2n O
=1 _ -
y = w[}J(COShnO coshn), z=0,

where B = w/eé, and the substitution n — in corre-
sponding to the ITM is made. Here, ny = —iwt, where
ty istheinitial (imaginary) instant of time for the tun-
neling motion.

The quantities ny and J appearing in Egs. (6) can be
determined from the initial condition [8, 10]

E(No) = JPi+P;+1 =€, PN =e=J (7)

(here, e = E/mc? 0< e <1, and E,istheinitial energy
of the energy level, including the electron rest energy);
this gives

2
sinhzno - V21_f€J:J ’
—€
| 2 ®
sinh2n, _ l+2y21_‘]
2N, 1-¢€?

whereyisthe adiabaticity parameter, whichisarelativ-
istic generalization of the well-known Keldysh param-
eter [4]
(&)
= wl, = —
y W t e%o
and T, is the characteristic tunneling time in electric
field €,. Equations (7) and (8) are used to determine n,
and J as functions of the parametersy and e.

By calculating the “truncated action” function [8]

1-€, (9)

W = J'{—A/l—V2+e(AV)+e} dt

To

] [l
= [DL-e(Ap) - S __Mdrt
OD 1-vO
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1.0
g)
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0.92

0.90 | 1 1 ]

Fig. 1. Functions g(y, €g) from formula (11) for monochro-

matic light (linear polarization). The curves correspond to
theinitial energy e — 1 (nonrelativistic case), 0.9, 0.75,
0.5, 0.25, and O (from top to bottom).

along thetunnel trajectory, we obtain theionization rate
of the relativistic bound state with an exponential accu-

racy,

2
2mg.C

0]

Wg O exp(—27 " Imw) = exp%— No(J —e)% (10)
O O

or

O 2 0
W U exp D—3—F9(V, €)X, (11)
0 0

2 1
where g = DD11+§EZ—§E4/22\H%(J —€), €5 =

m_ c3/ef = 1.32 x 10 V//cm is the so-called Schwinger
field, characteristic of QED [13, 14], F = €%, and
the characteristic field defined by the initial energy of
the level isintroduced:

_ (B8’ [ 1, [z 2
o = 1+EZ%S’ E—[l—ée(/\/e +8—e)} L (12)

Thevalue of €, increases monotonically with decreas-
inge, i.e., withincreasing level depth. Inthe nonrelativ-
istic limit, €4, = (21)¥%€,, where €, = 0%, a = 1/137,
and | istheionization potential (in atomic units). Inthis
case, relation (11) transforms into the well-known
Keldysh formula[4, 15]. Equations (8)—(11) generalize
thisformulato the case of deep levelsand can easily be
solved by computer methods (Fig. 1).
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Fig. 2. Function g(y) in the case of linear and circular polar-
ization (curves | and c, respectively) for a hydrogen-like
atom with Z = 60.

Anaogously, we can calculate the level ionization
rate by awavewith eliptic E_)OI arization (general case of
monochromatic radiation).” Instead of system (8), we
obtain the equations

sinh’n o — p°(coshn, — sinng/n,)’

=V [1+(J-€)?(1-€Y)],

(13)
(1-p?)sinh2ny/2n, + p[2(sinhng/ne)* —1]

= 1+2y*(1-J39)/(1-€Y),

where p isthe light ellipticity (-1<p <1, p =0 corre-
spondsto linear polarization and p = +1 corresponds to
circular polarization). In this case, formula (10)
remains valid for ImwW, however, the quantities n, and
J should now be determined from Egs. (13). These
equations are simplified in the case of linear (see
Eq. (8)) and circular polarizations, when p? = 1 and

2
(sinhng/ne)? = 1+y?2=L,
1-€ (14)
sinh2n,/2n, = 1+y2::LL_€‘2]
—€

Numerical calculation gives for function g the curves
depicted in Fig. 2. With increasing €ellipticity, function
g = g(y, €, p) monotonically increases and the ioniza-
tion probability accordingly decreases; in other words,
we have gualitatively the same situation as in the non-
relativistic case [6].

LInthis case, the equations of motion are used in the ITM. A more
elegant method for solving this problem is associated with the
application of the intrinsic-time method developed in Fock’s
remarkable paper [16]. The application of Fock’'s method makes
it possible to consider the general case of a wave with elliptic
polarization and leads to Egs. (13); however, this requires a spe-
cia consideration.

POPOV et al.

After rather cumbersome calculations, Egs. (10) and
(13) lead to the expansion

1-p°/3
10(1—-£%/3)

whichisvalidintheadiabatic regiony < 1 (fory= 0.5,
this expression has an accuracy of afew percent). Inthe

nonrelativistic limit, when & ~ a./I < 1, this formula
isin accord with [6] for an arbitrary ellipticity p, while
in the case of circular polarization, it fits to the result
obtained in[5, 6]. Equation (15) directly showsthat the
increasein light ellipticity reduces the ionization prob-
ability wg; conversely, adecreasein e, i.e., increase in
the depth of a bound level, increases this probability
(for afixed value of reduced field F, which is itself a
function of the level energy).

3. The exponential factor in Eq. (11) isindependent
of the particle spin. In the framework of the ITM, the
spin correction to the action function is given by [17]

ie
6SSpin = E—rﬁEGaBAHIFGBu)\SHdT

a(y,€,p) = 1- y+oyh, (15

(16)
= mic_[{ (sH) — (vs)(VH) + [vs] €} dt.

Considering that the tunnel trajectory (6) liesin the (x,
y) plane and € = %€, we obtain

0
eé
35 = S s(N)(1- v,
to
No

_[sxa'(n)dT-
0

(17)
€é,J
- mc

Spin rotation in auniform external field is described by
the Bargmann—-Michel-Telegdi equation [18]; for
crossed fields, this equation implies that s(t) = const
and

8y = s lsaling). ar)

In the case of a constant field, we have a(ing) =
o |38
€EoN(1+E%)
account the change in the exponential factor in Eq. (11)
owing to the splitting of level €, in a magnetic field,
because this factor contains magnetic moment p of a
bound electron, which differs from the Bohr magneton

if Za ~1[19, 20]. Asaresult, we obtain the spin factor
in the level ionization rate in a constant crossed field:

in addition, we must aso take into

o /3 0
S eXth[—Ez(l—u/uB)D, (18)
U J1+E& 0
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where the signs +7/2 correspond to the spin projections
onto the direction of 7€; for this reason, the states with
different values of s, are characterized by different ion-
ization rates.

An aternative method for calculating spin correc-
tion to the action is based on squaring the Dirac equa-
tion. Thisapproachissimilar to that used in[21, 22] for
the relativistic Coulomb problem with Z > 137. In this
case, instead of Eq. (17), we obtain

/38 pd 38 1
UJ1+¢ “ED 1+ ,/1+8°

and S = 1/S,. Expressions (18) and (18" are close
numerically. According to Breit [19], for example, we
have u = 0.933 p; for the 1s;;, ground level in ahydro-
gen-like atom with charge Z = 60, whence S, = 1.046

and S, differs from it by only 1.5%; for Z = 92, we

have S, = 1.121, and so on. Thus, the results of these
two (independent) calculations virtually coincide.

For Za < 1, wehave S, = S/ =1 +0((za)¥); i e,
the tunneling probability isindependent of the electron
spin projection. This is not surprising since operator s
commutes with the Schrédinger Hamiltonian and the
spin component splits off.

4, Maximal intensities J are attained for IR lasers;
for this reason, the case with y < 1 deserves special
consideration. For the tunneling ionization rate of the s
level, we can derive an asymptotically exact formulain
the limit of aweak (€, < €, or F < 1) field:

S, _1+0

exp Er o= (18"

E _(2v—
Wg = #’|CA|2DF (2v=32
(19)
2
xexpg__z_%]_____y__z_%1
0 3FY 10(1-8%3)
where E, = mc?(1 —¢€) isthe binding energy of the level,

1-¢€°

effective principal quantum number n* = Z/./21 , and
C, isan asymptotic (at infinity) coefficient of the free-
atom wave function (in the absence of the wave field).
Generally speaking, this coefficient can be obtained
only numerically from the Hartree—-Fock—Dirac equa-
tions; however, for a hydrogen-like atom, there exists
an analytic solution (see, e.g., [23]). For example, for
the 1s,,, ground level and any Z, we have

= v =4J1- (Za

Finaly, the factor D = D(e, Z) is independent of the
wave amplitude and has arather cumbersomeform, and
it will not be given here. It should be noted that the Cou-

v = Zae/ is the relativistic analogue of the

, C2 = 2*7Yr(2e +1). (20)
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lomb factor Q [11] arising when the Coulomb interac-
tion between an electron and the atomic core (with
charge Z) is taken into account is calculated using the
semiclassical perturbation theory [7]. For the eliptic
radiation polarization, the exponential factor in Eq. (19)
should be replaced in accordance with Eq. (15), while
thefield index F (in the preexponential factor) inthe case
of circular polarization should be replaced by 1 —2v.

In the nonrelativistic limit, Eq. (19) assumes the
form

_ 2.2 |3F o0t —1-2n g 2 1
w_KcKﬁz F expa—3F%I. 10\/%,(21)

wherewe now have F = €/k3, y= wk/€,isthe Keldysh

parameter, K = /21 , and atomic units are used (in the
case of circular polarization, we must omit factor

~/3F/1t and replace coefficient 1/10 in the exponent by
1/15). The generalization of formula (21) to the states
with an arbitrary orbital angular momentum | is given
in[6].

L et us assess the range of application of the nonrel-
ativistic theory of ionization. With an exponential accu-
racy, we obtain from Egs. (11) and (21)

We O exp{ —2(/38)*€J3(1+E)Eq , (22

WnR

CE - oo dan-0)HE
4 22)

Setting heree = 1 — %GZKZ = J1-(Za)* and taking
into account the expansions

K = Z[1+%(Za)2+ }

J3E = ak +7—72(ou<)3+ = Za+§(2a)3+

we obtain

0
Wyr/Wg = expg—g%(Za)S%E, Za<1l. (23

It can be seen that the range of applicability of the
Keldysh nonrelativistic theory is “extended” to quite
large values of Z. For example, for Z = 40, 60, and 80
and for the radiation intensity J = 10% W/cm?, the val-
ues of wyg and wy, differ by a factor of 1.15, 3, and 65,
respectively. Using the formulas derived above, we can
easily refine this estimate and make it more exact
(Fig. 3). For want of space, we postpone the discussion
of this question to a more detailed publication.
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Fig. 3. Theratio R = wygr/Wg for the 1s;,, ground level asa
function of Z for various intensities of laser radiation. The
figures on the curves indicate the values of logJ [W/cm?].

Theionization of areativistic bound state by a con-
stant crossed field was considered by Nikishov and
Ritus [5]. Using the Klein—-Gordon equation, they cal-
culated the ionization probability wg for the s level
bound by short-range forces (Z = 0) in the case of apar-
ticle with zero spin. For Z = v = 0O, expressions (19),
(22), and (25) coincide with those obtained in [5], but
they are written in a more compact form. The coinci-
dence of the results obtained by two independent meth-
ods is very important for the ITM. Although this
method possesses a heuristic potential and physical
clearness, it cannot be regarded as rigorously substanti-
ated, in spite of some attempts made in this direction
[17].

5. In conclusion, we must consider the article by
Milosevic, Krainov, and Brabec “Semiclassical Dirac
Theory of Tunnel lonization” [9], which contains for-
mula (8) for the ground-state ionization rate w; in con-
stant crossed fields. This formula (which is treated in
[9] asthe“mainresult” of that study) can easily bewrit-
tenintheform

W, = C;PQEXxp, i=m=c = 1, (24)
where the factors Exp and P identically coincide with
the corresponding expressions from [5, 10, 11],

0243865  _1[1-8BE
PO 1+€2%D’ g 3+EZ%S,( )

while the Coulomb factor Q differs from our expres-
sion (formula (35) in [11]) only in that the exponent
n=v-= ZoelJ1-€” is replaced by the level energy e.
The difference between Q and Q isdueto the fact that,
in[9], aspecial case of ionization of the 1s;,, level with

energy € = A/l—(ZO()2 was considered and the wave
function had the ssimplest form [23]. This can be done

Exp = ex

POPOV et al.

if the atom has only one electron in the K shell, while
the remaining electrons are stripped (hydrogen-like
atom with nuclear charge Z). In this particular case,

n=eand Q =Q, while the asymptotic coefficient is
defined by formula (20) and corresponds to [9]. How-
ever, our formulafor Q is considerably more general; it
appliesto multicharged ionswith an arbitrary degree of

ionization if the atomic-level parameters e and C; are

taken from independent calculations for a free (€ =
7€ = 0) atom or directly from the experiment, asin the
nonrelativistic theory of ionization [5-8].

In [9], neither spin factor (18) in the tunneling prob-
ability nor correction (15) on the order of y?in the expo-
nent were calculated and the adiabatic correction [6]
changing the power of field in the preexponential factor
was hot taken into account. For this reason, formula (8)
from[9] could refer only to constant fields. However, in
this case the authors of [9] assume, in fact, that the

Dirac bispinor S defined in the vicinity of atomic
nucleus does not changein the course of e ectron tunnel
motion (this obvioudy follows from the comparison of
formulas (1), (2), and (5) in [9]), which is not correct.
The word combination “Dirac theory” appearing in the
title of [9] isalso surprising sinceit isonly the normal-

ization factor Cf mentioned in all textbooks on quan-
tum mechanics [23] (which, in addition, differs from

unity by only afew percent; e.g., Cf =1forsmall Zand

C? = 1.039 for Z = 60) that is related to the Dirac the-

ory, while the factors P, Q, and Exp are independent of
the particle spin and can be calculated on the basis of
the Klein—Gordon equation, asin [5, 10-12].

The formulas given in [9] literaly reproduce the
corresponding formulas® from [10-12] with the same
notation (including the transition from the energy € to
the convenient variable & introduced in [10] and natu-
raly arising in the ITM). The origina contribution of
the authors of [9] lies in the multiplication of factors

Exp, Q, P, and C., which were previously known.
Thus, article[9] isacompilation of the studies[10-12]
carried out (and published) several yearsearlier (which,
however, is not mentioned in [9]). At the same time, it
is stated in [9] that “for the first time a quantitative
description of tunnel ionization of atomic ions’ or “the
first quantitative determination of tunneling in atomic
ionsin relativistic regime” is given in that work (itali-
cized by us); see abstract and the text preceding for-
mula(9) in[9].

Reference [11] in [9] shows that our publications
were familiar to the authors. However, our studies are
treated as the “analytic solution of the Klein—-Gordon

2 See, for example, Egs. (17), (35), and (50) in [11]. While compar-
ing these formulas with formula (8) from [9], it should be borne
in mind that eF = €/F, Fo, =€5=1e and p=Za (for A =m=
c=1).
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equation for TT atoms in static electric and magnetrc
fields,” although we never mentioned 1T atoms. 3Onthe
contrary, it isrepeatedly emphasized in [10-12] that our
goal isthe generalization of the imaginary time method
to the case of relativistic tunnel electron motion and its
application to the theory of ionization of deep levels
(including the K shell) in heavy atoms.

One of the authors of this paper (V.P) was obliged
to note (in connection with the so-called ADK theory
[24]; see [25] for details) a certain tendency to use the
results obtained by other authors without the appropri-
ate citation. The “main result” in [9] was obtained by
simply rewriting the formulas from original publica-
tions[5, 10-12].
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The dependence of the polarization- and intensity-modulation group delay on the polarization of electromag-
netic wave was studied experimentally for different transitions between the hfs components of the 8Rb D,
absorption line. It was found that the polarization-modulation delay strongly depends on the degeneracy struc-
ture of resonant transition and, in the general case, on the elipticity of light-wave polarization. It is demon-
strated that the polarization-modulation delay does not occur for the transitions not involving dark states. The
polarization delay was studied as afunction of the polarization ellipticity angle. Theintensity-modulation delay
was measured for the resonance radiation to show that it is observed for all 8Rb D,-linetransitions and isinde-
pendent of polarization. © 2004 MAIK “ Nauka/lInterperiodica” .

PACS numbers: 42.25.Ja; 42.50.Gy

The discovery of coherent population trapping
(CPT) and electromagnetically induced transparency
(EIT) has stimulated the study of resonance nonlinear
effects in media with induced atomic coherence [1-3].
The appearance of atransparency window upon theres-
onant wave-field interaction in multilevel systems is
accompanied by the appreciable lengthening of laser
radiation path. The strong medium dispersion under the
EIT conditions brings about anomalously strong delay
of asignal pulsein the pump-wavefield. For the special
radiation-controlled regime, “light stop,” i.e., in fact,
implementation of optical memory, is possible [4, 5].
The combination of a low velocity of wave-packet
propagation and increase in the wave-interaction path
under resonance conditions renders the EIT regime
promising for the observation of various nonlinear
effects.

Degenerate schemes have gained the widest accep-
tance in theimplementation of the CPT and EIT effects.
Thisiscaused by both the widespread occurrence of the
degenerate systems and their obvious advantages. In
particular, due to the fact that the frequencies of the
fields used in these schemes are equal in the case of
exact resonance, the Doppler broadening of the EIT-
inducing two-photon transition can be reduced, in
effect, to zero, and, in addition, the possibility of using
a common generation source for the interacting waves
allowsthe coherence of excitation eventsto be substan-
tially improved. For this reason, degenerate systems
prove to be suitable for the observation of EIT and,
therefore, are widely used in experiment. In particular,
the so-called light stop was observed for the 8Rb 5s,,,
F =2 — 5py,, F =1 transition [4]. It should also be
noted that the EIT phenomenon in the systems with

magnetic quantum number degeneracy is suggested for
use in magnetic-field measurements [6-9].

The CPT in degenerate systems is caused by the
polarization-induced separation of excitation channels.
In such a situation, the behavior of the system depends
on the mutual orientation of the polarizations of optical
fields. The population trapping occurs in the so-called
dark state representing a sublevel superposition nonin-
teracting with field. The occurrence of a dark state and
the population trapping in this state are the common
property of degenerate systems and are well under-
stood. In particular, the CPT in amagnetically degener-
ate two-level system interacting with a polarized radia-
tion was studied in detail in the early works devoted to
the theory of this phenomenon [10, 11].

For the EIT in degenerate systems, the traditional
scheme of studying the behavior of aweak signal wave
in the field of an intense pump wave becomes conven-
tional, because the corresponding wave polarizations
are chosen arbitrarily. In theoretical work [12], a gen-
eral approach was suggested to the study of the evolu-
tion of a wave with slowly varying polarization inter-
acting resonantly with a medium of degenerate atoms
under CPT conditions. It has been shown that a change
in the light-wave polarization propagates through such
amedium with agroup velocity that is much lower than
the velocity of light and dependent on the wave polar-
ization and the transition type.

Another effect inherent in multilevel systems con-
sistsin the delay of a change in the intensity of areso-
nant light wave asaresult of population pumping out to
the long-lived levels noninteracting with field [13]. Evi-
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dently, a dark state can play the role of such leve in
degenerate systems.

In this work, the group delay of a change in polar-
ization and intensity was studied as a function of the
electromagnetic-wave polarization for different transi-
tions between the hfs components of the 8Rb D,
absorption line. To reduce the influence of disturbing
factors such as spurious magnetic fields, measurements
were performed in a pure rubidium vapor without a
buffer gas and with a relatively high laser intensity
(100 mW/cm?) [8]. The delay times under these condi-
tions were relatively short (0.5-2 us, which corre-
sponds to a mean group velocity of 25-100 km/s) but
sufficient for the measurements of their dependence on
polarization.

The scheme of the experimental setup for studying
the group delay of achangein polarization is presented
in Fig. 1a. An external cavity diode laser 1 was used as
a source of monochromatic radiation. The radiation
was linearly polarized at the laser output. The polariza-
tion was additionally controlled by polarizer 2. The
light-wave polarization was varied from linear to circu-
lar using a Pockels cell 3 and modulated about its mean
value with a frequency of ~60 kHz and a modulation
depth of ~10%. A laser beam with a cross section of
2 x 5 mm passed through a cylindrical cell 4, 56 mmin
diameter and 55 mm in length, filled with rubidium
vapor. To prevent the influence of the laboratory mag-
netic field, magnetic screen 8 was used. The rubidium
concentration in the cell was varied using heater 9. The
signal was detected using the scheme consisting of
guarter-wave plate 5, polarizer 6, and photodiode 7.
Quarter-wave plate 5 and polarizer 6 could rotate about
the axis, allowing the modulation to be detected near
the arbitrary dliptic radiation polarization.

Among the hfs transitions of the D, absorption line
(Fig. 2), theF =1 — F'=2transition does not involve
adark state, theF=1— F =1landF=2 —F'=2
transitionsinvolve asimple one-dimensional dark state,
and the F =2 — F' = 1 transition has a double (two-
dimensional) dark state, which isto say that, for every
light-wave polarization, the lower-level sublevels have
atwo-dimensiona space noninteracting with the reso-
nant electromagnetic field [10, 11]. Measurements
showed that the delay in the propagation of polarization
structure is absent for the F = 1 — F' = 2 trangition.
The group delay of a change in polarization was
observedfortheF=1-—F =1andF=2—»F =2
transitions. This delay did not depend on the azimuthal
rotation angle of polarization because of the axial sym-
metry of the system. Thedelay fortheF=1—F'=1
transition did not depend on the dlipticity. For the F =
2 — F' = 2 transition, the delay of the polarization-
modulation propagation was found to be dependent on
the mean dlipticity of light-wave polarization; the
delay was maximal for the linear polarization and min-
imal for the circular polarization. These data are in
agreement with the theoretical ideas developedin [12].
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Fig. 1. (a) Scheme of the setup for measuring the polariza-
tion-modulation delay: 1 laser, 2 polarizer, 3 Pockelscell, 4
87Rb vapor cell, 5 quarter-wave plate, 6 polarizer, 7 photo-
diode, 8 magnetic screen, and 9 heater. (b) Setup for study-
ing the intensity-modulation delay: 1 laser, 2 polarizer,
3 Pockels cell, 4 polarizer, 5 quarter-wave plate, 6 8’Rb
vapor cell, 7 photodiode, 8 magnetic screen, and 9 heater.
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Fig. 2. (a) Hyperfine structure scheme of the 8Rb D, line.

(b) Transitions between the hfs levels of the &Rb D, line.

The magnetic sublevels of the corresponding levels are
shown. The magnetic quantum numbers are numbered and

the arrows indicate the allowed transitions for the right o*
and left o~ circular polarizations.

The situation with the F = 2 — F' = 1 transition
proved to be more complicated; in addition to the delay
of polarization structure, it changed and the radiation
was depolarized. Such a behavior is apparently caused
by the complex structure of the dark state of thistransi-
tion and callsfor further analysis. It isworth noting that
the pol arization modulation with afrequency of 60 kHz
and adepth of 10% did not change the absorption at this
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Fig. 3. Dependence of the group delay T of a change in
polarization on the mean ellipticity angle € of the electro-
magnetic-wave polarization resonant with the F =2 —
F' = 2 transition of the 8’Rb D absorption line.

transition, indicating the adiabatic character of the
dark-state rearrangement in our experiment [3].

The maximal delay in the propagation of polariza-
tion structure at the F = 2 — F' = 2 transition was
observed for a rubidium concentration of ~2 x 10* cm 3,
The corresponding dependence of the group delay 1 of
achange in polarization on the mean dllipticity angle e
is shown in Fig. 3. One can see that the delay in the
propagation of polarization structure for the linear
polarization e = 0° is more than three times larger than
the delay for the circular polarization e = 45°. With an
increase in the concentration, the delay decreased,
likely due to the radiation trapping, i.e., breaking of
atomic coherence in the reemitted light [14-16]. The
group delay measured under the same conditions for
the polarization structure at theF =1 — F' = 1 transi-
tion was independent of the radiation polarization and
equal t0 0.75+ 0.10 ps.

Along with the delay of achangein polarization, the
delay of a change in the intensity of a resonant light
wave, analogous to that observed previously in ruby
crystal [13], was also studied in our experiment. The
scheme of the setup for studying the intensity-modul a-
tion delay isshown in Fig. 1b. The radiation from laser
1 passed through linear polarizer 2 and fell on Pockels
cell 3, to which an ac voltage with a frequency of
60 kHz and a bias voltage were applied. Upon passing
through polarizer 4, the laser beam acquired linear
polarization and amplitude modulation. A quarter-wave
plate allowed the radiation polarization to be changed
from linear to circular. The radiation passing through a
cell with 8Rb vapor inside magnetic screen 8 with
heater 9 was detected using photodiode 7. The inten-
sity-modul ation delay was studied for the resonant light

AKHMEDZHANOV, ZELENSKY

wave and different transitions between the hfs compo-
nents of the 8Rb D, line.

Our studies showed that the intensity-modulation
delays in the polarization-delay experiments (laser
intensity ~100 mW/cm? and rubidium concentration
~2 x 10* cm) did not exceed 0.5 s for al &Rb D,
transitions. Measurements with a higher concentration
(~5 x 10* cm3) and lower laser intensity (50 mW/cm?)
gave the following results: 1.2 + 0.2, 0.4 £ 0.2, 1.2 +
0.2,and2.0+ 0.2 usfortheF=1—F=2,F=1—~
F=1,F=2—F'=2andF=2— F'=1transition,
respectively. The small delay fortheF=1— F =1
transition is caused by its low oscillator strength (one-
fifth of the other transitions). It was found that the
intensity-modulation delay is independent of the radia-
tion polarization within the measurement accuracy.
Note that the delay of a change in intensity occurs for
the F =1 — F' = 2 transition, for which no delay of
polarization structure was observed. This is probably
due to the population pumping to the F = 2 |evel.

In summary, the polarization- and intensity-modul a-
tion group delay have been studied for a light wave
interacting resonantly with a medium consisting of
degenerate atoms. It has been shown that the evolution
of resonance radiation depends on the degeneracy
structure of transition. For the transitions not involving
a dark state, the polarization modulation was not
delayed. For the transitions involving a one-dimen-
sional dark state, the polarization-modulation group
delay was observed, much as the el ectromagnetic-wave
propagation is retarded under EIT conditions. In the
simplest configuration (F =1 — F' = 1 transition), the
polarization delay does not depend on the radiation
polarization. For the transitions with a more complex
degeneracy structure, the polarization-modulation
decay depends on the polarization of a resonant wave.
Due to this dependence, the shape of the polarization
pulse can be distorted upon its propagation in medium.
These results are in close agreement with the conclu-
sions of theoretical work [12]. For the transitions
involving a two-dimensional dark state, the delay of
polarization structure was accompanied by its change
and the radiation depolarization. Evidently, such a
behavior is caused by the complex structure of a dark
state and calls for further investigation. The delay of a
change in the laser-radiation intensity was observed for
all the transitions studied. The delay in the propagation
of a change in intensity is caused by the population
pumping out to the long-lived levels noninteracting
with the field. Both the dark state and the long-lived
nonresonance levels can play the role of such levels. It
should be noted that the delay of a change in intensity
does not depend on the polarization and, under analo-
gous conditions, is several times shorter than for the
polarization delays.

These results can prove to be important for the solu-
tion of various fundamental and applied problems in
nonlinear optics and, in particular, the problem of data
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storage and processing of optical and, in the future,
guantum information.

We are grateful to L.A. Gushchin, A.G. Litvak, and
V.A. Mironov for helpful discussions. This work was
supported by the Russian Foundation for Basic
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The laser-radiation self-action dynamics in the electromagnetically induced transparency band were studied
analytically and numerically for an atomic gaswith the A-type energy-level scheme. The self-consistent system
of equations describing the spatiotemporal evolution of afinite-amplitude wave packet in the field of auniform
pump wave was derived. The self-action in the presence of competing diffraction, nonlinear dispersion, and
radiation absorption in the system was qualitatively analyzed; in particular, the conditions for self-focusing of
a probe beam were determined. The results were confirmed by the numerical simulation of wave-packet spa-
tiotemporal evolution. © 2004 MAIK “ Nauka/Interperiodica” .

PACS numbers: 42.50.Gy; 42.65.Jx

The studies of interference phenomena[1-3] of the
type of coherent population trapping (CPT) and elec-
tromagnetically induced transparency (EIT) in multi-
level atomic ensembles have culminated in the inten-
sive development of a new direction in nonlinear reso-
nance optics. It is characterized by a negligible
absorption of resonance radiation upon its parametric
interaction with a medium. As a result, the traditional
nonlinear effects can be observed for exceedingly low
intensities of interacting waves (at alevel of afew pho-
tons) and with less stringent phase-matching require-
ments.

The guantum interference effects are responsible for
some unusual features in the propagation of a bichro-
matic resonance radiation in a system of three-level
atoms. A broad class of self-consistent two-pul se struc-
tures were found in a one-dimensional case. In the
absence of phase-coherence relaxation in a medium
with the A-type energy-level scheme, they propagate
without any noticeable change in shape at a distance
much greater than the absorption length of an individ-
ual wave packet (see [4-6] and references cited
therein). Of particular interest is the study of stationary
self-action (self-focusing) of the bichromatic radiation
[7-10] in amedium with EIT.

In this work, the self-action dynamics are consid-
ered for spatially restricted laser pulses under the EIT
conditions in a medium of A-type atoms. The density
matrix formalismisused to obtain a self-consistent sys-
tem of equations describing the self-action dynamics of
a bichromatic radiation in a system with long-lived
phase coherence. The spatiotemporal evolution of a
finite-amplitude wave packet in the field of a strong
pump wave is qualitatively examined and the condi-

tions under which the radiation self-focusing is possi-
ble are determined. The results of qualitative consider-
ation are confirmed by the numerical simulation of self-
action dynamics.

1. Let us consider the spatiotemporal evolution of
the bichromatic laser radiation

E = E\(rp z t)exp(iwt —ik,2)
+Ey(r o, z t)exp(iw,t —ik,2z)

(€
interacting resonantly with athree-level system (Fig. 1)
containing a metastable state |2[] We assume that the
wave-packet frequencies (w;, w,) coincide with thefre-
guencies of atomic transitions, w; = w3 and w, = W3,
so that a two-photon resonance takes place. For a rar-
efied gas, the relation between the wavenumbers and
frequencies can be taken in the form of the dispersion
relation in vacuumk; , = w; ,/C.

The evolution of wave packets E; ,(rg, z t) is
described by the reduced equations

. E 10E
2|kj5%31+(—:-5t—%+ADEJ = 4K’TiP,, )

where P; isthe complex polarization amplitude induced
by thefield E; (j = 1, 2). It is determined by the nondi-
agonal elements of density matrix p;s:

P, = Nbs;p;s, (3

where N is the atomic density and dy are the electric
dipole moments of allowed transitions.
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The specific features of wave-packet interaction in
the case considered are caused by thefact that the rel ax-
ation rate I" of low-frequency coherence is much lower
than the upper-level decay ratey, ' < y. Therelaxation
processesin this system are conditioned by the strongly
different characteristic times. Clearly, the population ng
of the upper level |30and the coherences p;5 and pys
reach their stationary values most rapidly. For wave
fields smoothly varying at times

T E > V_ls (4)

the corresponding density-matrix elements are
assumed to be quasi-stationary. The resulting dynamic
equations for the density-matrix components of a
N-type atom [1, 2] take the form

in, = —(g1pz —C.C.) +iyng, ©)
in; = —(g,Ps—C.C.) +iyng, (6)

iP12 = —01P2+ 05 P13—iM P (7)

The quasi-stationary components n, p;3, and py; are
determined from the following relationships:

—0:1(N3—Ny) + QP12 = 1Y Pi3, (8)
—02(N3—Ny) +91pxn = 1Y P, 9)
(10)

Here, n;, n,, and n; are the popul ations of the respective

levels, p;; = p}; arethenondiagonal density-matrix ele-
ments, and g; = d.E;/# are the Rabi frequencies. Expres-
sion (10) ensures the particle-number conservationin a
three-level system.

One can readily find from Egs. (5)—10) that thetime
of establishing stationary populationis

I :Eﬁ91|2+|92|2D_l
NT [ y a e

n,+n,+n; = 1.

(11)

while the relaxation time of the low-frequency coher-
ence p,, is given by the expression

e 9"+ gl
y O

It then follows that characteristic times (11) and (12)
shorten with strengthening field and become equal
under the CPT conditions (|g,|* + |g,]? > Ty).

Let us consider the long-time evolution of a“weak”
wave packet (|g.f? < |g,]?) in more detail. We assume
that the radiation at frequency w, is continuous and uni-
form; i.e., g, = const = g. The field amplitude g is much
smaller than the saturation amplitude for the optical
transitions in the A-type scheme (g < y). In the case of
a slowly varying (on the relaxation time scale (11),
(12)) wave field g,, we will determine the polarization
P, using the adiabatic approximation. The calculation

(12)
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Fig. 1. Energy-level scheme of aA-type atom. The wave E;
is resonant with the |10«~—— |3Ctransition, the E, wave is

resonant with the |20<— |30transition, and the low-fre-
quency |10~—— |20ransition is forbidden.

of the time derivatives in Egs. (5)—7) by the perturba-
tion method brings about equation

109, L0, i
cot bz 2k, Ao
2
_Ea_gl_u +2_u|gl|a_gl (13)

g ot 921 g' ot

which describes the wave-field evol ution under the con-
ditions of electromagnetically induced transparency
(¢ > Ty). Here, the field E; is expressed through its

Rabi frequency g, and the parameter p = 4T[N(x)di3 lhc

is introduced. The first term on the right-hand side of
Eq. (13) accounts for the well-known decrease in the
propagation velocity of aprobe pulse in the A-type sys-
tem. The second and fourth terms are responsible for
the pulse dissipation on the propagation path; a “uni-
form” (along the pulse length) wave-packet decay (sec-
ond term) is determined by therelaxationrate I" of low-
frequency coherence, and the decay inthecaseof I' =0
is due to the diffusional wave-packet spreading (fourth
term). The nonlinear third term appears because the
group velocity of a wave packet in the A-type system
depends on theweak amplitude g,. Finally, thelast term
on theright-hand side of Eq. (13) accounts for the wave
dlsperson in the electromagnetic transparency win-
dow.! One can see from Eq. (13) that the dissipative
effects in the wave packet with a smal (|g;] < |g)),

though finite amplitude, predominate over the disper-
sion effects. Of al the dissipative effects, we will con-
sider only the dissipation associated with the finite

I Note that the dispersion relation obtained and analyzed in [11]
follows from Eq. (13) in the linear approximation.
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Fig. 2. |WtField isolinesfor the initial distribution Y(z=0) =
1.5exp(—0.5(r/5)% — 0.5(1/20)2 — 0.15it) and various dis-
tances from the entrance into amedium with electromagnet-
ically induced transparency.

width of the EIT window (i.e, I = 0in Eq. (13)) and
introduce the dimensionless variables

W = 0ufgm T = 2g5(t—2/v)ly,

Vg = (Uc+WE) ", Zoew = 4uGn2lg'y,

Frew = 20mn/2R11(G°AY),

where g,, is a free parameter on the order of the maxi-
mal field value g,, ~ max(g,(§, 2)) in the wave packet.
Asaresult, we arrive at the equation

% ay+ilpPgE + .‘; Y=o (W
which describes the wave-packet self-action dynamics
in the coordinate system associated with the pulse
group velocity v, . Inthe experiments, the group veloc-
ity, as arule, is much lower than the velocity of light
[3], and the deceleration v,/c = g?/c is determined by
the medium parameters and the pump-wave amplitude.

In the one-dimensional case (A = 0), the self-action
dynamics are governed by the competition of the non-
linearity introduced by the amplitude dependence of
group velocity with the dissipation and are manifested
in the steepening of the pulse leading edge.

2. Toillustrate the salient features of self-action, we
consider the spatial evolution of a continuous radiation
at the frequency detuned by Q from the resonance fre-

ZHAROVA et al.

guency. By substituting the field Y = G(z, r)exp(iQT)
into Eq. (14), we obtain the equation

—|?+A G-Q|G’G-iQ°G = 0.

(15)
It accounts for the radiation self-action in a medium
with cubic (Kerr) nonlinearity and dissipation. The
nonlinear term is proportional to the frequency shift,
and, for the negative detuning from the resonance (Q <
0), the nonlinearity in the A-type scheme is focusing.
The absorption coefficient of a monochromatic radia-
tion in the transparency window increases as Q?, so that
the nonlinear effects predominate over the dissipation
at small values of detuning |Q| < 1. The condition for
the predominance of the nonlinear wave-beam refrac-
tion over the diffraction in the axially symmetric case
implies that the power is higher than its self-focusing
critical value. In the dimensional variables, one obtains
for the self- focusing critical power

clg/*

P = 5585 e

(16)

Evidently, the critical power decreases with increasing
the detuning Q. However, the frequency shift Q must
not exceed the width of EIT window; i.e.,

QI <g’ly. (17)

Accordingly, the critical power cannot be smaller than
its minimal value

mln _ Clgl Y
P, = 585==- B’ (18)
Critical power (18) decreases also with decreasing
amplitude |g| of the controlling field, but it is bounded
from below by the EIT condition g > yI. In redlity, the
critical power of aprobewave may become greater than
(18) due to the finite pulse duration.

3. Below, we present the results of numerical simu-
lation of the self-action dynamics performed for afinite
EIT band using Eq. (14). The evolution of an axialy
symmetric distribution of the form

W(r,T,z2=0) = Ayexp(—1°/2a° —r’/2a> +iQ1) (19)

was studied, where A, is the field amplitude, a, and a,
are the characteristic scales of the distributions in the
respective coordinates, and Q is the detuning from the
resonance in the A-type scheme.

First of all, it should be noted that, in the case of ini-
tial Gaussian distribution with zero frequency shift
(Q = 0), field strengthening (focusing) was attained for
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none of the amplitudes A,. The calculations with a pos-
itive shift (Q > 0) point to additional defocusing and a
more rapid decrease in the field amplitude.

Of greater interest is the behavior of the distribution
with a negative frequency detuning. The evolution of
theinitial distribution with parameters A, = 1.5, a, =5,
and a, = 20 and negative frequency shift Q = -0.15is
demonstrated in Fig. 2. At the first stage, the field self-
focusing occurs against the background of leading-
edge steepening, typical of nonlinear dispersion. The
rise in the maximal field amplitude is stabilized as the
spectrum broadens during the processes of leading-
edge modification and spectral harmonic generation
outside the transparency band. A dissipative decreasein
the wave-field power to a value smaller than critical
subsequently brings about wave-packet spreading
mainly in the transverse direction. Inasmuch as the
strong decay occurs on the paths of lengths on the order
of the breaking length, the radiation self-focusing dis-
tance can be estimated using one-dimensional Eq. (14).
It iswell known that the profile of the shock-wave type

appears in this case on the paths z = 1,/ AS , Where 1, is
the pulse duration and A, is the maximal field ampli-
tude. For the parameters used in our numerical calcula
tion, this estimate gives z = 9. A somewhat smaller
value, z = 8, obtained in the numerical simulation
(Fig. 3) islikely caused by the increase in the maximal
field on the axis of the system upon self-focusing. As
theinitial amplitude A, increases, the self-focusing pro-
ceeds more intensely; i.e., field strengthening with
respect to theinitial level becomes more and more pro-
nounced (insetin Fig. 3). It should also be noted that the
detuning interval where the radiation self-focusing
occursin the A-type scheme becomes noticeably wider
with an increasein amplitude; theincreasein the ampli-
tude A, of the initial distribution from 1.5 to 1.7 (solid
and dashed curvesin theinset) doubles thisinterval.

4. Our study of the laser-radiation self-action
dynamicsunder the EIT conditions has revealed anum-
ber of special features of this process. It should prima:
rily be noted that the self-action in the case of resonant
wave-field interaction is determined by the amplitude
dependence of the wave-packet group velocity. In this
case, the pulse leading edge steepens upon pulse prop-
agation. For a spatially nonuniform (with respect to the
transverse coordinate) initial field distribution, the
group-velocity dispersion brings about horseshoe dis-
tortion of the leading edge of wave packet.

If the radiation frequency is detuned from reso-
nance, the nonlinear effects in the A-type scheme
appear as the Kerr-type nonlinearity, resulting in the
radiation self-focusing (self-defocusing). Due to the
finiteness of the transparency band (determined by the
pump-wave field), these processes proceed under con-
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Fig. 3. Dynamics of the maximal field amplitude Ay and the

total energy E for the sameinitial conditionsasin Fig. 2. All
quantities are normalized to their initial values. Inset: the
dependence of the maximum field strengthening Ny =

|Wmaxl/Ag On theinitial frequency shift Q. The solid curveis
for theinitial field amplitude Aq = 1.5, and the dashed curve
isfor adightly larger amplitude Ag = 1.7.

ditions of increasing (with increasing frequency shift)
absorption.

Appreciable radiation self-focusing is possible in
the case of negative wave-field detuning from the reso-
nance frequency. For Gaussian beams, it occursonly in
the frequency range Q < 0, i.e,, in half of the transpar-
ency window. Inthe other half of the EIT band, the radi-
ation self-focusing takes place. The competition of the
nonlinearity and absorption in the transparency band
gives rise, in particular, to the optimal frequency shift
for which the self-focusing critical power is minimal.
Expression (18) for the self-focusing critical power can
conveniently be represented in the form

where p = P,,,/L? is the pump power density, Py, is
the pump power, L is the transverse size of the pump
field, A isthe wavelength, and Q. = (8riNwd¥/#A)V? isthe
cooperative frequency of the “probe”’ transition. With
the parameters of the EIT experiment carried out in [3]
(y=10" st w = 10% st, Q. = 10° — 10 s?), the
self-focusing critical power for beams of size L equal to
several thousand wavelengthsis on the order of (107°—
102)Ppymp-

We are grateful to M.D. Tokman for helpful discus-
sions. Thiswork was supported by the Russian Founda-
tion for Basic Research (project nos. 01-02-17388 and
04-02-17147).
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It isshown theoretically that the Luttinger liquid can exist in quasi-one-dimensional conductorsin the presence
of impuritiesin aform of acollection of bounded Luttinger liquids. The conclusion is based on the observation
by Kane and Fisher that alocal impurity potential in Luttinger liquid acts, at low energies, as an infinite barrier.
This leads to a discrete spectrum of collective charge and spin density fluctuations, so that interchain hopping
can be considered as a small parameter at temperatures below the minimum excitation energy of the collective
modes. The results are compared with recent experimental observation of a Luttinger-liquid-like behavior in
thin NbSe; and TaS; wires. © 2004 MAIK “ Nauka/Interperiodica” .

PACS numbers; 71.10.Pm; 71.27.+a; 71.45.Lr; 73.21.Hb

Electronic properties of one-dimensional (1D) met-
as are known to be very different from those of ordi-
nary three-dimensional (3D) metals (for a review, see
[1-3]). 3D electron gas is well described by Landau’s
Fermi-liquid picture, in which interaction modifiesfree
electrons, making them quasiparticles that behave in
many respects like noninteracting electrons. In contrast
tothe 3D case, in 1D electronic systems, the Fermi-lig-
uid picture breaks down even in the case of the arbi-
trarily weak interaction. In 1D metals, single-electron
guasiparticles do not exist, and the only low energy
excitations turn out to be charge and spin collective
modes with the sound-like spectrum. These modes are
dynamically independent, giving rise to a spin-charge
separation in 1D systems. Furthermore, correlation
functions at large distances and times decay as a power
law with interaction-dependent exponents. Such a
behavior has been given the generic name L uttinger lig-
uid [4].

The concept of Luttinger liquid isof great interestin
view of its application to real physical systems, such as
carbon nanotubes and semiconductor heterostructures
with aconfining potential (quantum wires and quantum
Hall effect edge states). The case of specia interest is
quasi-1D conductors, i.e., highly anisotropic 3D con-
ductorswith chainlike structure. Numerous experimen-
tal studies of both organic and inorganic quasi-1D con-
ductors at low temperatures typically demonstrate bro-
ken-symmetry states, like superconductivity, spin- or
charge-density wave (CDW) states, and a metallic
behavior above the transition temperature with nonzero
single-particle density of states at Fermi energy. For
instance, the most studied inorganic quasi-1D metals

TThis article was submitted by the author in English.

undergo the Peierls transition from a metalic state
either to a semiconducting CDW dtate (e.g., blue
bronze K, 3M00;, TaS;, (TaSe,),l €tc.) or to semimetal -
lic CDW state (NbSe;) [5]. Typically, these transitions
occur in the temperature range 50-250 K. From the the-
oretical point of view, the formation of Luttinger liquid
in quasi-1D conductors at low enough temperatures is
also problematic because of the instability towards 3D
coupling in the presence of arbitrarily small interchain
hopping [6-10]. So, the interchain hopping induces a
crossover to 3D behavior at low energies, while Lut-
tinger liquid behavior can survive only at ahigh enough
energy scale whereit is not affected by 3D coupling.

In contrast to the interchain hopping, the Coulomb
interaction between the electrons at different chains
does not destroy the Luttinger liquid state, the main dif-
ference from the 1D case being the absence of simple
scaling relations between the exponents of the various
correlation functions [11-14].

However, in recent experimental studies of temper-
ature and field dependence of conductivity of TaS; and
NbSe; in nanosized crystals, a transition from room-
temperature metalic behavior to nonmetallic one
accompanied by the disappearance of the CDW state at
temperatures below 50-100 K was observed [15-17].
The low temperature nonmetallic state was character-
ized by power law dependences of the conductivity on
voltage and temperature like that expected in Luttinger
liquid, or by a stronger temperature dependence, corre-
sponding to the variable-range hopping. Similar depen-
dences of conductivity were also reported in focused-
ion beam processed or doped relatively thick NbSe,
crystals[17].

In order to account for such behavior, we study the
possibility of impurity-induced stabilization of a gap-

0021-3640/04/7906-0277$26.00 © 2004 MAIK “Nauka/Interperiodica’
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less Luttinger liquid state in quasi-1D metals. Impuri-
tiesin Luttinger liquid are known to act as infinite bar-
riers, forming the effective boundaries for low energy
excitations [18-20]. This leads to a dimensional quan-
tization and, consequently, to a minimal excitation
energy w,. As aresult, the interchain hopping does not
destroy the Luttinger liquid phase at temperatures T <
w,, producing only small perturbations of the 1D pic-
ture. To show this, we consider first the gapless 1D
Tomonaga-L uttinger (TL) model with impurity poten-
tial included and make certain that the system with
impurities breaks up into a set of independent segments
described as bounded Luttinger liquid with discrete
spectrum. Then, we calculate corrections caused by the
interchain hopping to thermodynamic potential and to
the one-particle Green’sfunction and find that such cor-
rections are small at low temperatures. Finaly, we dis-
cuss modifications introduced by generalization of the
TL model to the more realistic case of Coulomb poten-
tial and compare our results with experimental data.

First of all, we start with the TL model, ignoring
interchain hopping integral t; in order to formulate the
problem in the zeroth approximation in t;. Electronic
operators for right (r = +1) and left (r = —1) moving
electrons with spin s are given in terms of phase fields
as(see[1, 3))

irkex

. e iA
ro(X) = lim—=—=n, & ',
b9 = lim =~
L (€
A = =[O, —Tr®, + (0, —rd;)].

2

Here, phase fields ®,(x) are related to charge (v = p)
and spin (v = 0) densities, whilefields ©,(X) arerelated
to the momentum operators 1, = (1/1)d,0, canonically
conjugateto ®,. Further, n, sareMajorana(“rea”) Fer-
mionic operators that assure proper anticommutation
relations between electronic operators with different
spin s and chirality r, and the cut off length a is
assumed to be of the order of the interatomic distance.

We describe the intrachain properties of the system
by the standard TL Hamiltonian [1, 3] with added 2k
impurity backscattering term [2]. In the bozonized
form, it reads

Dr[vK
ZIdD 2 2m<(aq°)D
v @

+ zvodé(x— X;) COS(,/2P, + 2KeX) cos(//2P4(X)),

where v, are velocities of the charge (v = p) and spin
(v = 0) modes, K, = v¢/v, isthe standard L uttinger lig-
uid parameter, describing the strength of the interac-
tion; and V, and d ~ a are amplitude and radius of the
scattering potential, respectively.

ARTEMENKO

Kane and Fischer [18] found that the backscattering
impurity potential for repulsive potential (K, < 1) flows
to infinity under scaling. Their arguments were gener-
alized by Fabrizio and Gogolin [21] to the case of many
impurities. It was shown that the impurity potential can
be considered as effectively infinite, provided that the
mean distance, |, between impurities satisfies the con-
dition

1 |:|D|:|2/(l Kp)
| > = kF G/, 1 , 3

where D isthe bandwidth. We assume that the impurity
potential isof atomic scale, V, < D, and the interaction
between electrons is not too weak (i.e., K, is not too
closeto 1). Then, condition (3) is satisfied for | > 1/ke ~
o, which is of the order of interatomic distance. So, the
limit of strong impurity potential should be a good
approximation in a wide range of impurity concentra-
tions.

Further, I, ©,, and ®, must obey the commutation
relations (see [1-3]) ensuring anticommutation of elec-
tronic operators (1). Using then the analogy of Eg. (2)
with the Hamiltonian of an elastic string strongly
pinned at impurity sites, we can write solutions for the
phase operators ®, and ©, in the region between impu-
rity positionsat x =x, and x, , ; as

— K, N
CDV(X) - Zlf\/%(bn"'bn)annx

XP;, = (X=1) P X
+ 7 dyp— ZT[ANVJ- _T[AN‘”Ii’ 4

j<i

- [1 . »
@V(X) = 2 m(bn_bn)cosqnx-}'ev’
n=1' "

where X =X —X, l; =% .1 —X, g, = Tn/l;, and &, isthe
modulo 2t residue of 2kgx. Further, AN, = (AN,; +

N,)/~/2,ANg = (AN,;—N,;)/ /2, and AN,; (AN,;) isthe
number of extra electrons with spin up (down) in the
region between ith and (i + I)th impurities; and finally,
0,; is the phase canonically conjugate to AN,; ([6y,
ANy] =1).

Excitation spectra of the eigenmodes are w, =
nw; , = v,0,, Where w, , = Tv,/l; is the minimum exci-
tation frequency for modev.

Note that, if we consider the open boundary condi-
tions at the sample ends, x = 0, and x = L (instead of
periodic boundary conditions that are commonly used)
then operators n. in Eq. (1) are the same for electrons
going right and left. In this case, the electron field oper-
ator, Py(X) = Ws(X) + Ws (X), vanishes at impurity posi-
tions, x = x, and expressions for the phase fields
between the impurity sites turn out to be similar to

JETP LETTERS Vol. 79 No.6 2004
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those found for bounded 1D Luttinger liquid in [21—
23], the main difference being the summation over j <i
that ensures proper commutation relations between the
electron operators related to different segments
between impurities. Thus, the system breaks up into a
set of independent segments described as bounded L ut-
tinger liquid with discrete spectrum.

Now, we consider the role of interchain hopping
adding to (2) the hopping Hamiltonian

HD = tD Z J.dxw:,s,m(x)q*'r,s,n(x) + HC

mn,r,s

It r,s,n"Ir,s,m :
3 Idx%[sn(Ar,m—Ar,n) 5)

mn,r,s

+9N(A, n— A+ 2irkex) ],
where indices n and m, denoting the chain numbers
related to the nearest neighbors, are added.

Arguments by Schulz [8] on instability of the Lut-
tinger liquid in the presence of the interchain hopping
were based on calculations of temperature dependence
of the thermodynamic potential at low temperatures.
So, we calculate the contribution of the interchain hop-
ping to the thermodynamic potential per unit volume
given by the standard expression [24]

T

O O
AQ = —TInEIV, S= TTeXpE)—J' HD(T)dt%, (6)
0

where V is the volume, T, stands for imaginary time
ordering, and [l..0means thermodynamic averaging
over the unperturbed state.

At temperatures T > w, ,, the discreteness of the
excitation spectrum can be neglected; hence, according
to [6-10], interchain hopping is expected to make sig-
nificant contributions, destroying the Luttinger liquid.
We examine the opposite limit, T < w; ,, which does
not exist in pureinfinite Luttinger liquid.

Consider first the second order correction int-. The
leading contribution to [80in Eq. (6) is given by items
inwhich the term related to a given chain contains con-
tributions from the electrons with the same chirdity, r,
only,

2

th :
did —-A.
erBT[z—CXZJ’ 1d20T exp{i[A; m(1) — Ar n(1)]} -

i(r=r)ke(x—Xp)

x exp{ _i[Ar,m(z)_Ar',n(z)]}De ’
wherel={x;, 1;} and2={Xx,, T,}. Other itemsinwhich
the terms related to the same chain contain contribu-
tions from electrons moving both left and right make
small a contribution, and we do not discuss them in
detail.
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Then, weuse Eq. (4) in (1) and calculate the average
in (7) using the relation

Drr exp{ [ Ar, m(l)} exp{ i Ar, m(2)} 0

1

O
= &L 51+ Aln(2) ®

C2T A, (DA, (2100
0

Neglecting small corrections [ exp[—w, ,/T] due to
Planck’s distribution functions, we find for the average
in the exponent

O A(DA(2D

(K, + K1Y ©)
(coshz—cosy ) *

_ }In{(coshz—c:osy+)(KV_Kv )}
|
€ — cosy._
wherey, = Ti(X; + X,)/l;, z=T(a + v,|T; — T,))/I; (chain
indices are dropped for brevity here).

Intheintegration over 1 and 2, the leading contribu-
tionscomesfromtheregion1=2ie,ly|<1,z<1
where expression (7) reduces to

tZmL cos[ (r —r')ke(x_)] dx_dt_
T M ()’ + (da)]

vV=p,0

—, (10

v

where e, = v,/Ttq, §, = %(Kv +1UK,—-2), T_=|1, -1y,

X_= Xq — X, and misthe number of the nearest-neighbor
chains. Contribution to expression (7) from integration
over theregion |y | = 1, z= 1, issmall, ~(a/l,)%®, 5 =
d, *+ 04, because d is not too small in the assumed case
of the not too small interaction (cf. Eq. (3)).

Additional itemsin [$in Eq. (6), in which theterms
related to the same chain contain contributions from
electronsmoving both left and right, issmaller than that

given by Eq. (10) by afactor of ~(a/l, )Kp+ “* . For rea-
sonable values of K, this contribution is small and can
be neglected.

Similarly, the leading contribution to AQ from
higher-order terms in series expansion of the exponen-
tial in Eq. (6) was found to come from even powers 2n
inty that can be represented asasum of (2n—1)!! items
like (7) with almost coinciding times and coordinates.
Therefore, summing up the leading contributions and
inserting them into Eq. (6), we can calculate the varia-



280

tion of the thermodynamic potential per single chain
and per unit length

t2m

Ve
(1 + cos2k-ax)dxdrt

[ [(L+T/K)+ Yo

a=J’
vV=p,0

For moderate repulsion, d ~ 1, a ~ 1. In the limit of
strong repulsion, K, < K, ~ 1, aissmall, a~ K2 .

Thus, AQ is much smaller than the thermodynamic
potential of purely 1D Luttinger liquid, Qq ~ (UK, +
VKo)erke,

AQ = —a

(11)

25,

(fo
AQ/Q, 0 G0
and temperature-dependent corrections to Eqg. (11) are
determined by small thermally activated contributions
0 expl-wy, /T].
Now, we calculate modification of the one-particle
Green's function due to the interchain hopping

G(1,1) = - p(1)P(1)SIEl (12)

Again, we consider the low-temperature limit, T <
wy ,, NOt existing in a pure infinite system. Consider
first the second order correction in ty to the Green's
function of apure 1D system, Gy(1, 1),

Gy(1,1) = - w(1)P(1)SH
+ (1) P(1)HE0

Calculation issimilar to that considered above (cf. (7)—
(9)). However, in contrast to the case of the thermody-
namic potential, where the leading contribution was
made by regions of almost coinciding values of times
and coordinates, such contributions from two termsin
(9) cancel each other. So, the second-order correctionis
estimated as

(13)

' ﬂﬂlmzﬂ_x[ﬁé .

G,(1,1) = o0 6o Go(1,1").
Estimation of the fourth-order correction in t; gives
G, ~ (tl/ve)3(a/)?G,. Therefore, we conclude that at
T < w,, theinterchain hopping gives small corrections
to the one-particle Green's function, provided that

colp’ o™ koo
O, 000 ~OoOo
where we estimated the cut-off parameter asa ~ 1/k.

So far we considered the TL model in which inter-
action is described by coupling constants related to for-
ward- and backscattering. In order to make a compari-
son with experimental data, we must consider a more

26-2

<1, (14)
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realistic Coulomb potential. It is reasonable to assume
that the long-range part of the interaction is dominated
by the Coulomb potential, while the backscattering is
described by relatively small coupling constant g,. This
enabl es us to concentrate on the spin isotropic case and
to ignore the possibility of the spin gap. The problem of
the long-range Coulomb potential on an array of chains
was solved in [11-13]. It was found that interaction of
electrons on a given chain is screened by the electrons
on other chains, and the Coulomb interaction can be
described by the TL Hamiltonian with coupling con-
stants dependent on wave vector,

2
4me

s*(qf) + exd)

where sis the lattice period in the direction perpendic-
ular to the chains and e is a background diel ectric con-
stant for the transverse direction. Coupling constantsin
spin channel remain unaffected. In principle, the cou-
pling constants must be determined by matrix elements
of Coulomb potential that depend on the details of wave
functions and on chain arrangement and must contain
an infinite sum over transverse reciprocal lattice vec-
tors. So, expression (15) is not universal and depends
on material.

Equation (15) leads to g-dependent velocities

0> =04 = (15)

Ve

W, = K_pqu’
1 O 8¢’ (16)
— 2.2 _
K_ = /\/1 + VN 0 =« s = W,
P s'(q +endn) F

wherek isthe inverse Thomas—Fermi screening length.

We do not perform explicit calculations, restricting
ourselves to estimations. For the case of g-dependent
coupling, expressions for the thermodynamic potential
and Green's functions contain various integrals of cor-
relation functions over gy One can show that the
results obtained above can be generalized qualitatively
to the case of long-range Coulomb interaction if we
substitute gy in Eq. (16) for its characteristic value,
gp ~ TUs. For example, integrals for corrections to the
thermodynamic potential are dominated by close val-
ues of coordinates and times, similar to Eqg. (10), and
coupling parameters should be substituted by their
averages over

1 — JE—
0= Z(Kp+1/Kp+k0+1/K0—4)

2 2
1| sdqg 10
0= ————E< +=H 2|
4“ (2m? B K }

Note that [0 = 8a(c/vg), where a is the fine structure
constant. Since v is much smaller than the velocity of
light, the factor O islarge. For v =2 x 107 cm/s, which
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isatypica value for transition metal trihal cogenides,
O ~ 90. This corresponds to the case of strong interac-
tion and leads to quite large values of coupling param-

eters, 1/K, ~ J/O/en ~3-8,0~ 1/2-2.

Now, we discuss conditions for observation of the
Luttinger liquid in quasi-1D conductors stabilized by
impurities. First, we discuss the condition for the tem-
perature limiting from above the region where the Lut-
tinger liquid can exist. This condition reads T < w, ,,.
Theminimal excitation energies, w, ,, can be estimated
as

h

| DsFEk |D1/K

Wy, Oerc1/K,,

where ¢; stands for dimensionless impurity concentra-
tion corresponding to number of impurities per one
electron. As Fermi energy in NbSe; and TaS; is about
1eV, wefind that w, , is about 100 K for an impurity
concentration of ¢, ~ 102-10-3,

Another condition to be fulfilled is the smallness of
corrections to the Green's function due to interchain
hopping. According to Eq. (14), the corrections are
small, provided that

e

If theinteraction is strong enough, & = 1, thiscondition
isno stricter than the condition for the limiting temper-
ature discussed above. For lower strength of interac-
tion, d < 1, this condition reads

1/(2-26
c>dD( ).

Ce ]

Estimating t; as being of the order of the Peierlstransi-
tion temperature, Tp ~ 100-200 K ~ 0.01¢,, wefind that
this condition can be fulfilled easily even at & = 1/2 for
relatively small impurity concentration, ¢; > 1072,

Thus, we find that Luttinger liquid can be stabilized
by impuritiesin relatively pure linear-chain compounds
at rather high temperatures corresponding to experi-
mental observation [15-17] of the transition from
metallic to nonmetallic conduction characterized by
power law dependences of conductivity and by conduc-
tivity resembling the variable-range hopping. However,
in order to make a detailed comparison with the exper-
imental data, calculation of the conductivity in a ran-
dom network made of weakly coupled bounded Lut-
tinger liquidsis needed.
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The Raman and luminescence spectra are studied in superlattices consisting of carbon layers separated by thin
SiC barrier layers. It is shown experimentally that, upon the avalanche annealing of an initially amorphous
superlattice, the carbon layers can crystallize into either a diamond-like or graphite-like structure, depending
on the geometrical parameters of the superlattice. A method is proposed for obtaining carbon films with a spec-
ified crystal modification within a unified technology. © 2004 MAIK “ Nauka/Interperiodica” .
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To date, a great many investigations have been
devoted to studying the physical properties of carbon
structures and technological processes providing the
basis for their formation. This is connected with the
wide variety and unique properties of carbon com-
pounds, which have determined their widespread prac-
tical use in areas from nanoelectronics to spacecrafts.
However, the preparation of various carbon modifica-
tionswithin aunified technology isacomplicated prob-
lem, which still remains unsolved [1].

Previoudly [2], the authors have shown that the peri-
odic potential arising as a result of the alternation of
layers differing in the band gap can affect the modifica-
tion in which the substance crystallizes. The grown
superlattices are also characterized by the existence of
a periodic potential, which can be favorable to the for-
mation of a specific carbon modification.

In this work, it is proposed that the annealing of
amorphous superlattices based on carbon and a broad-
band semiconductor (here, SIC) with varying layer
thicknesses be used to obtain various carbon madifica-
tions. It is assumed that, upon pulse annealing, carbon
in these structures will transform to a certain modifica-
tion determined by the superlattice parameters.

Multilayer periodic structures C/SiC with specified
thicknesses of the C and SiC layers were manufactured
for these experiments. The thickness of carbon layers
was chosen to be a multiple of the lattice constant of a
known carbon structural modification. Thus, the thick-
nesses of carbon layers for the graphite- and diamond-
like structures were 1.34 and 0.8 nm, respectively. It
was assumed that carbon in the structures with the
graphite-like thickness will crystallize in the course of
annealing into a graphite-like crystalline configuration,
whereas carbon in the structures with the diamond-like
thickness will transform into a diamond-like structure.
Our Raman scattering and luminescence studies con-

firmed that the annealing of the grown sampl es resulted
in the formation of a graphite-like or diamond-like
structure in the samples of superlattices with the corre-
sponding thickness of carbon layers.

Thus, we proposed and implemented a method for
obtaining carbon films with a desired crystal modifica-
tion. It is presumed that this method will allow speci-
fied carbon modifications to be obtained in a controlled
way within a unified technology.

Radio-frequency sputtering was used to obtain car-
bon superlattices. The C and SiC deposition rates were
0.7 and 3.3 nm/min, respectively. Graphite and poly-
crystalline silicon carbide served as the targets for
obtaining the carbon and SiC layers. The substrate was
KEF-4.5 (100) silicon. A Co layer ~50-nm thick, which
was necessary for the subsequent annealing of the as-
grown superlattice, was sputtered on the substrate. The
layer thicknesses were controlled by the sputtering
time, because the deposition rate in this method
remained constant during the entire technological pro-
cess and did not depend on the thickness of the depos-
ited film. The details of the process and the growth fea-
tures for such superlattices are givenin [2].

The conventional thermal annealing is unsuitable
for short-period superlattices, because the mutual diffu-
sion of layer atoms in the course of annealing leads to
the mixing of layers and the degradation of the super-
lattice. Therefore, asin [2], a Co underlayer was used
in annealing. Upon short-term low-temperature heat-
ing, this underlayer transformed from an amorphous
state to a crystalline state in a time of ~101'-10%° s
with heat evolution. This heat is necessary for the
superlattice annealing. The new type of annealing pro-
posed in [2] was based on the fact that the internal
energy of alayer in an amorphous (disordered) stateis
higher than the energy of the same layer in acrystaline
or polycrystalline modification. Thisdifferencein ener-
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gies is evolved upon layer transition from an amor-
phous to crystalline state. However, for an amorphous
phase to transform to the crystalline phase, it is neces-
sary to overcome an activation barrier. For anumber of
materials, for example, Co, thisbarrier isnot very high
and can be overcome by the short-term (~1-2 min) low-
temperature (300—400°C) heating of this material. The
transition rate of a material from an amorphous state to
the crystalline state is on the order of the sound veloc-
ity, and the amount of evolved heat is proportional to
the mass of this material. As was shown in [2], the
mutual diffusion of superlattice layer atoms does not
proceed under this type of annealing. This type of ava-
lanche annealing is in many ways similar to the pulse
laser annealing.

It should be noted that, according to [2], two pro-
cesses can take place during avalanche annealing. The
first oneis a simple annealing of the C and SiC layers.
Depending on the thickness of the C layers, carbon
transforms to either a diamond-like (diamond-like
superlattice, DSL) or graphite-like (graphite-like super-
lattice, GSL) modification if the number of carbon
atoms corresponds to only an integer number of mono-
layers of these two modifications. Note that, because of
the difference in the densities of the deposited carbon,
diamond, and graphite, it is diamond-like and graphite-
like modifications, rather than pure crystalline diamond
or graphite structures, that can be obtained in the course
of annealing. By varying the thickness of the carbon
layers, it is possible to achieve the synthesis of predom-
inantly diamond or graphite structures. It is not incon-
ceivable that certain intermediate crystalline carbon
states can exist that have not been synthesized previ-
oudly. It should be noted here that the thicknesses of
carbon layersin an SR must be small, because the dif-
ference between the DSL and GSL will disappear asthe
thickness increases. On this basis, carbon SLs were
grown with carbon layer thicknesses of 0.8 nm (the dia-
mond-like layer with d ~ 4a, where a = 0.205 nm isthe
interplanar spacing in diamond in the (111) direction)
and 1.34 nm (the graphite-like layer with d ~ 4a, where
a = 0.335 nm is the interplanar spacing in graphite in
the (002) direction).

The second process that can proceed during the
course of SL annedling is associated with the one-
dimensional periodic SL potential arising as aresult of
the alternation of materials differing in the band gap
and its action on the crystallization process. As was
shownin[2], inthe course of annealing, when superlat-
ticeatomsarein anonequilibrium state, the superlattice
potentia is the only strong potentia in the structure
being annealed. This potential, by analogy with the
Kronig—Penny (KP) potential, will strongly influence
the formation of electronic and crystal structures of the
sample. Inthe case of Si/SiO, superlatticeswith asmall
period (of order 1.0-1.5 nm), it was found that the one-
dimensional periodic potential formed, in effect, the
superlattice crystal structure, resulting in a materia
with hexagonal symmetry and lattice parameters differ-

JETP LETTERS  Vol. 79

No. 6 2004

283
Table
C thickness | SiC thickness Number
Sample no. A) A) of periods
1 14 32 20
2 14 16 20
3 13.4 16 20
4 8 16 20

ing from both Si and SIO,. The parameters of the peri-
odic SL potential in the case of carbon SLs are deter-
mined not only by the C and SiC band gaps but also by
the SL thicknesses. To provide a stronger effect of this
potential, the parameters of superlattice potential
should be brought closer to the parameters of the KP
potential. For this purpose, we manufactured SLs with
narrow barriers (1.6 nm), whose periodic potential was
similar to the KP potential, and with wide SiC barrier
layers (3.2 nm), for which the difference of the super-
lattice potential from the KP potential was more pro-
nounced.

Porous structures were prepared from all obtained
SLs by anodic etching. It is known that anodic etching
starts (and predominantly continues) at defects. Previ-
ously, we showed that porous films could form with a
lower concentration of crystal defects and doping
impurity [3] than in the starting crystal. Moreover, in
some cases [3], anodic etching is accompanied by the
formation of nanocrystalline objects, whose properties
are also of great interest.

The parameters of the synthesized samplesare given
in the table.

The Raman spectra of the synthesized samples are
shown in Fig. 1. The Raman spectra of the sputtered
C/SIC SLs are dmost identical in shape (Fig. 1a), and
their shape corresponds to the Raman spectrum of a
strongly disordered carbon film (Fig. 1c). After anneal-
ing, the spectra of the samples under study became
noticeably different (Fig. 1b). The Raman spectrum of
sample 1 with the largest thickness of the SiC layers
changed insignificantly (Fig. 1b, curve 1). The spectra
of the other samples exhibit shoulders in the region of
D (~1350 cm™) and G (~1580 cm?) bands (see lower
spectrum in Fig. 1c) differing in the intensity ratios.
These bands correspond to the presence of sp® and sp?
bonds, respectively, in the carbon material [4]. The
Raman spectra of the annealed samples subjected to
anodic etching are shown in Fig. 1c. As was aready
noted, atoms with a lower binding energy (defects,
impurities, etc.) are removed first upon anodic etching.
Therefore, the remaining part of the material can have
amore perfect crystal structure [3]. We observe asimi-
lar picture for the structures under study aswell. The D
and G bands are clearly seen in the Raman spectrum of
the etched annealed samples (Fig. 1c); however, these
bands have different halfwidths and intensities. We note
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Fig. 1. Raman spectra of (a) sputtered SL samples, (b) samples after avalanche annealing, and (c) porous annealed samples. The
Raman spectra of adisordered graphite (two lines) and a carbon film obtained by the decomposition of hydrocarbons (broad asym-
metric band) are given at the bottom of graph (c) for comparison. In all graphs, the Raman spectra are shifted vertically with respect
to each other for convenience. The numbers at the curves correspond to the sample number.
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Fig. 2. PL spectraof (a) sputtered samples, (b) samples after avalanche annealing, and (c) annealed samples after anodic etching.

two features of the observed Raman spectra. First, the
smallest change in the bandshape is observed for sam-
ple 1, in which the thickness of the SIC layersis twice
as large asin the other samples. This fact suggests that
the interaction between carbon layers influences the
process of carbon structure formation. Second, the
bandshapes of the Raman spectra of samples 2 and 3
differ substantially after annealing and anodic etching
(Fig. 1c, curves 2, 3), athough the thicknesses of the
carbon layers differ by only 5% (1.4 and 1.34 nm). We
add that the spectrum of graphite-like sasmple 3 (Fig. 1c,

curve 3) became similar to the Raman spectrum of a
strongly disordered graphite.

The photoluminescence (PL) spectra of the synthe-
sized samples are shown in Fig. 2. Note that the PL
spectra of sample 1 remained virtually unchanged after
annealing and etching and, hence, are not given in the
figure. The spectra of the starting samples were almost
identical (Fig. 2d). After annealing, the luminescence
intensity of sample 4 increased significantly (Fig. 2b,
curve4). Thethickness of the carbon layersin this sam-
pleis close to the size of a diamond monolayer. Previ-
No. 6
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ously, we showed [5] that the simultaneous presence of
the sp? and sp? bonds is necessary for the luminescence
of carbon nanostructures. It can be assumed that the
number of sp* bonds appeared in sample 4 upon anneal-
ing was greater than in the other samples, which led to
theincreasein the PL intensity. After anodic etching, the
PL intensity of sample 2 increased (Fig. 2c, curve 2).
We believe that this sample must be intermediate in
relation to the number of sp? bonds. In fact, the spectra
demonstrate that graphite-like sample 3 has the lowest
PL intensity, diamond-like sample 4 has the highest PL
intensity, and sample 2 isintermediate in PL intensity.

Hence, based on the data of Raman and PL spectra,
it may be stated that the crystal structure of carbon lay-
ers formed upon the avalanche annealing of superlat-
tices depends on the superlattice geometrical parame-
ters.

In summary, a method has been proposed and
implemented for obtaining carbon films with a pre-
scribed crystal modification within a unified technol-
ogy. It has been shown experimentally that various
modifications of the carbon crystal structure can be
obtained in the superlattice layers by choosing the
appropriate thickness of these layers. On the basis of
this effect, the technology can be devel oped for obtain-
ing carbon nanostructures with prescribed properties.

We are grateful to Prof. N.N. Sibel’din for useful
discussions.
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The behavior of the electronic system of heavy-fermion metals is considered. We show that there exist at |east
two main types of the behavior when the system is near quantum critical point, which can be identified as the
fermion condensation quantum phase transition (FCQPT). We show that the first type is represented by the
behavior of a highly correlated Fermi liquid, while the second type is depicted by the behavior of a strongly
correlated Fermi liquid. If the system approaches FCQPT from the disordered phase, it can be viewed as a
highly correlated Fermi liquid which at low temperatures exhibits the behavior of Landau Fermi liquid (LFL).
At higher temperatures T, it demonstrates the non-Fermi liquid (NFL) behavior which can be converted into the
LFL behavior by the application of magnetic fields B. If the system has undergone FCQPT, it can be considered
asastrongly correlated Fermi liquid which demonstrates the NFL behavior even at low temperatures. It can be
turned into LFL by applying magnetic fields B. We show that the effective mass M* diverges at the very point
that the Nedl temperature goes to zero. The B—T phase diagrams of both liquids are studied. We demonstrate
that these BT phase diagrams have a strong impact on the main properties of heavy-fermion metals, such as
the magnetoresistance, resistivity, specific heat, magnetization, and volume thermal expansion. © 2004 MAIK

“Nauka/Interperiodica” .
PACS numbers: 71.27.+a; 71.10.Hf; 71.10.Ay

In heavy-fermion (HF) metals with strong electron
correlations, quantum phase transitions at zero temper-
ature may strongly influence the measurable quantities
up to relatively high temperatures. These quantum
phase transitions have recently attracted much attention
because the behavior of HF metalsis expected to follow
universal patterns defined by the quantum mechanical
nature of the fluctuations taking place at quantum criti-
cal points(see, e.g.,[1, 2]). Itiswidely believed that the
proximity of the electronic system of an HF metal to
quantum critical points may lead to non-Fermi liquid
(NFL) behavior. The system can be driven to quantum
critical points (QCPs) by tuning control parameters
other than temperature, for example, by pressure, by
magnetic field, or by doping. When asystemiscloseto
a QCP, we are dedling with the strong coupling limit
where no absolutely reliable answer can be given on
pure theoretical first principle grounds. Therefore, the
only way to verify what type of quantum phase transi-
tion occurs is to consider experimental facts which
describe the behavior of the system. Only recently have
experimental facts appeared which deliver experi-
mental grounds to understand the nature of quantum
phase transition producing the universal behavior of
HF metals.

TThis article was submitted by the author in English.

It is the very nature of HF metals that suggests that
their unusual properties are defined by aquantum phase
transition related to the unlimited growth of the effec-
tive mass at its QCP. Moreover, a divergence to infinity
of the effective electron mass was observed at a mag-
netic field-induced QCP [3-5]. We assume that such a
guantum phase transition is the fermion condensation
guantum phasetransition (FCQPT), an essential feature
of which is the divergence of the effective mass M* at
its QCP [6, 7]. FCQPT takes place when the density x
of a system tends to the critical density Xgc, so that
M* [0 1/r, wherer isthe distance from the QCP, r = [x —
Xec |- Such a behavior does not qualitatively depend on
the system’s dimensions and is valid in cases of both
two-dimensional (2D) and three-dimensional (3D)
Fermi systems[8, 9]. Beyond FCQPT, the system pos-
sesses fermion condensation (FC) and represents anew
state of electron liquid with FC [7, 10]. As soon as
FCQPT occurs, the system becomes divided into two
quasiparticle subsystems: the first is characterized by

quasiparticles with the effective mass Mg, while the
second one is occupied by quasiparticles with mass
M7 . The quasiparticle dispersion law in systems with
FC can be represented by two straight lines, character-
ized by the effective masses Mg and M and inter-
secting near the binding energy E,. Properties of these
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new quasiparticles with Mg are closely related to the

state of the system, which is characterized by the tem-
perature T, pressure P, or by the presence of supercon-
ductivity. We may say that the quasiparticle system in
the range occupied by FC becomes very “soft” andisto
be considered as a strongly correlated liquid. Nonethe-
less, the basis of the Landau Fermi liquid theory [11]
survives FCQPT: the low energy excitations of the
strongly correlated liquid with FC are quasiparticles,
while this state can be considered as a quantum protec-
torate [6]. The only difference between the Landau
Fermi liquid and Fermi liquid after FCQPT is that we
have to expand the number of relevant low energy
degrees of freedom by introducing anew type of quasi-

particles with the effective mass M%. and the energy

scale B, [6]. Itispossibleto provide aconsistent picture
of high-T. metalsasthe strongly correlated Fermi liquid
[12].

When a Fermi system approaches FCQPT from the
disordered phase, itslow energy excitations are Landau
quasiparticles which can be characterized by the effec-
tive mass M*. This mass strongly depends on the dis-
tance r, temperature, and magnetic fields B [8]. At low
temperatures, it becomes a Landau Fermi liquid with
the effective mass M*, provided that r > 0. This state of
the system, with M* strongly dependingon T, r, and B,
resembles the strongly correlated liquid. In contrast to
the strongly correlated liquid, there is no energy scale
E, and the system under consideration is the Landau
Fermi liquid at T — 0. Therefore, this liquid can be
called a highly correlated liquid. Such a highly corre-
lated Fermi liquid was observed in nonsuperconducting
La ;Srp3Cu0, [8, 13].

In this Letter, we continue to show that, within the
framework of FCQPT, it is possible to understand the
NFL behavior observed in different strongly and highly
correlated Fermi liquids such as high-T, superconduc-
tors[12] and HF metals. We apply the theory of fermion
condensation to describe the behavior of the electronic
system of HF metals and to show that there exist at least
two main types of the behavior. If the system
approaches FCQPT from the disordered phase, it can
be viewed as the highly correlated electron liquid and
the effective mass M* depends on temperature, M* [J
T-Y2. Such adependence of M* leadsto the NFL behav-
ior of the electronic system. The application of a mag-
netic field (B — By) = B*(T) O T¥* restores Landau
Fermi liquid (LFL) behavior. Here, B.isacritica mag-
netic field. At (B — B,) = B*(T), the effective mass
depends on the magnetic field, M*(B) O (B — B,) %3,
being approximately independent of the temperature at
T<T*(B) O (B-B)*. At T = T*(B), the T-Y? depen-
dence of the effective mass and the NFL behavior are
reestablished. At T — 0, the system becomes LFL
with the effective mass M* [0 1/r. When the system has
undergone FCQPT, it becomes a strongly correlated
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electron liquid and the effective mass behaves as M* [J
UT, leading to the NFL behavior even at low tempera-
tures. The application of a magnetic field (B — B,) =
B*(T) O T2 restores the LFL behavior. At (B — B,) =
B*(T), the effective mass M*(B) O (B — B2, being
approximately independent of the temperature at T <
T™(B) 0 /B—B,. At T = T*(B), both the /T depen-
dence and the NFL behavior are reestablished. We
show that the effective mass M* diverges at the very
point that the Nedl temperature goes to zero. It isdem-
onstrated that obtained B-T phase diagrams have a
strong impact on the main properties of HF metals,
such as the magnetoresi stance, resistivity, specific heat,
magnetization, and volume thermal expansion.

We start with the case of ahighly correlated electron
liquid when the system approaches FCQPT from the
disordered phase. FCQPT manifestsitself in the diver-
gence of the quasiparticle effective mass M* asthe den-
sity X tends to the critical density X or the distance
r—0[8,9]

1 1
* -
M D4/|X_XFC -

Since the effective mass M* isfinite, the system exhib-
its the LFL behavior at low temperatures T ~ T*(x) U
X — Xc|* [8]. The quasiparticle distribution function
n(p, T) is given by the equation

3Q 1-n(p,T)
an(p, T) n(p, T)
The function n(p, T) depends on the momentum p and

thetemperature T. Here, Q = E—TS—pN isthe thermo-
dynamic potential and p is the chemical potential,

whileg(p, T),
_ OE[n(p)]

S(p, T) - an(p’ T) ' (3)
is the quasiparticle energy. This energy is a functional
of n(p, T) just like the total energy E[n(p)], entropy

9n(p)], and the other thermodynamic functions. The
entropy §n(p)] is given by the familiar expression

SIn(p)] = ~2[[n(p, T)Inn(p, )
dp (4)
(2m)*

which results from purely combinatorial consider-
ations. Equation (2) is usually presented as the Fermi—
Dirac distribution

(D)

=e(p, T)—(T)=TlIn = 0.(2

+(1-n(p, T))In(1-n(p, T))]

1
n(p,T) =+ e[ ERDWE )
U [

At T — 0, one gets from Egs. (2), (5) the standard
solution ne(p, T— 0) — B(p: —p), with e(p = pg) —
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M = pe(p — pr)/M*, where pg is the Fermi momentum,
B8(p= — p) is the step function, and M* is the Landau
effective mass [11]
1 _ 1de(p, T—0)

T (6)

M* p dp P = Pr
Itisimplied that, in the case of LFL, M* ispositive and
finite at the Fermi momentum pg. As a result, the
T-dependent corrections to M*, to the quasiparticle
energy £(p), and other quantities start with T? terms
being approximately temperature-independent. The
Landau equation relating the mass M of an electron to
the effective mass of the quasiparticles is of the form
[11]
P _

p
M M+IFL(D P, X)0, N (pl)(2 ) (7)

Applying Eqg. (7) at T < T*(x), we obtain the common
result
me = — M &)
1-NoF (x)/3

Here, N, is the density of states of the free Fermi gas

and Fﬁ(x) is the p-wave component of the Landau
interaction. At X —= Xg¢, the denominator in Eq. (8)
tends to zero and one obtains Eq. (1). The temperature
smoothing out the step function 8(p: — p) a pr =
(x/31®)Y2 induces the variation of the Fermi momentum
Ape ~ TM*/pe. We assume that the amplitude F| has a
short range g, < pe of interaction in the momentum
space. It isacommon condition leading to the existence
of FC and nearly localized Fermi liquids[7, 14]. If the
radius is such that g, ~ Ape ~ ToM*/pg, corrections to
the effective mass are proportional to T at T ~ T,. Here,
To U [X—Xec| isacharacteristic temperature at which the
system’s behavior is of the NFL type. On the other
hand, at T*(x) < T,, we have g, > T*(X)M*/p. and the
system behavesas LFL at T ~ T*(x), so that the correc-
tions to the effective mass start with T? terms. We can
also conclude that the transition region is rather large
compared with T*(x), being proportional to T,,.

Inthe case of T ~ T,, we again can use Eq. (8) with
FL (Pr — Ape) ~ FL(Pe) + AApE, where A 0 dF( (x)/dx.

Substituting this expansion of Fﬁ(pF + App) into
Eqg. (8), wefind that

M M
rap. DT )

*
M= D M*T

In deriving Eq. (9), we assumed that the system is close

to FCQPT, so that (1 — NyF; (pe)) < NyAAp. We can
say that, at T ~ Ty, Ape induced by T becomes larger

than the distance r from FCQPT, Ap: > |pr- — pel,
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where pr° corresponds to x=c. Solving Eq. (9) with
respect to M*, we obtain [8]
1
M*(T) O —. 10
(T) T (10)

The behavior of the effective mass given by Eq. (10)
can be verified by measuring the thermal expansion
coefficient, which is given by [15]

1@(ogV)n _ _ x @(SIX)

oM =305t 0, ° 3k0 ox O,

(11)

Here, P isthe pressure and V is the volume. Substitut-
ing Eq. (4) into Eq. (11), one finds that in the LFL the-

ory coefficient is of the order of a(T) ~ M} T/ pi K. By
employing Eqg. (10), onefindsthat, at T ~ T, [16],

a(T) DaJ/T +bT, (12)

with a and b being constants. This result is in good
agreement with experimental facts obtained in mea-
surements on CeNi,Ge, [17].

The application of magnetic fields B leads to Zee-
man splitting of the Fermi level. As aresult, two quasi-

particle distribution functions with Fermi momenta pé
and p; appear, sothat pe < pe < pz and Ape = (pg —

pﬁ) ~ HoBM*/pe. Here, |, is the electron magnetic
moment. In the same way Eq. (10) was derived, we can
obtain the equation determining M*(B) [8]. The only
difference is that there are no contributions coming
from the terms proportional to Apg, and we have to take

into account terms proportiona to (Apg)?. Assuming
that the system is close to the critical point, we obtain

M*(B) OM e
(B

At T ~ T*(X), Eqg. (13) is valid as long as M*(B) <
M*(x); otherwise, we have to use Eg. (1). It follows
from Eq. (13) that the application of magnetic fields
reduces the effective mass. If there exists a magnetic
order in the system which is suppressed by magnetic
field B = B, then the quantity (B — By) plays therole
of zero field, and Eq. (13) has to be replaced by the
equation

(13)

2/3

cdj

At high magnetic fields, we expect Eq. (14) to be
invalid, because Apr becomes too large, so that Apg >
Qo In that case, the effective mass still depends on the
magnetic field, but the proportionality given by Eq. (14)
is not preserved, and the dependence on the magnetic
field becomes weaker.

M*(B) 0 s 1 (14)
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At elevated temperatures T ~ T, the effective mass
starts to depend on both the temperature and the mag-
netic field. A crossover from the B-dependent effective
mass M*(B) to the T-dependent effective mass M*(T)
takes place at atransition temperature T* (B) as soon as
M*(B) = M*(T). This requirement and Egs. (10) and
(14) give

T*(B) O (B-B,)"". (15)

At T > T*(x), Eq. (15) determines the line on the B-T
phase diagram which separates the region of the LFL
behavior taking placeat T < T*(B) from the NFL behav-
ior occurring at T > T*(B). At T < T*(B), the system
behaves like LFL with the effective mass M*(B) and
corrections to the effective mass start with T2 terms. In
accordance with the LFL theory, the specific heat ¢ =
yT, with

y(B) OM*(BYJ (B—Bg) ", (16)

Theresistivity p behavesas p = p, + A(B)T?, where the
coefficient

A(B) O (M*(B))T1 (B-B,) ™" (17)

It follows from Egs. (16) and (17) that the Kadowaki—
Woodsratio K = A/y?[18] isconserved. All theseresults
obtained from Egs. (14)—(17) are in good agreement
with experimental facts observed in measurements on
the HF metal YbAgGe single crystal [19]. The critical
behavior of the coefficient A(B) O (B—Bg)f at B —
B, described by Eq. (14) with 3 =—4/3isin accordance
with experimental data obtained in measurements on
CeColns, which displayed thecritical behavior with 3 =
-1.37+£0.1[4].

In the LFL theory, the magnetic susceptibility x O

M*/(1— F3). Note, that there s no ferromagnetic insta-
bility in Fermi systems related to the growth of the

effective mass, and the relevant Landau amplitude F§ >

—1[14]. Therefore, at T < T*(B), the magnetic suscep-
tibility turns out to be proportional to the effective mass

X(B) O M*(BYJ (B—By)™", (18)
while the static magnetization Mg(B) is given by
Mg(B) OB (B—Bg)™". (19)

At T > T*(B), asfollows from Eqg. (10), Eqg. (18) hasto
be rewritten as

1

THOM*(TH —.

Xx(T) (TH N

The behavior of x(B) and Mg(B) as a function of mag-

netic field B given by Egs. (18) and (19) and the behav-

ior of X(T), see Eq. (20), are in accordance with facts

observed in measurements on CeRu,Si, with the criti-
ca field B, —= 0[20].

(20)
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Consider the system whenr — 0. Then, its prop-
erties are determined by the magnetic fields B and the
temperature T because there are no other parameters to
describe the state of the system. At the transition tem-
peratures T = T*(B), the effective mass depends on both
Tand B, whileat T < T*(B), the systemisLFL with the
effective mass being given by Eqg. (14), and at T >
T*(B), the massis defined by Eq. (10). Instead of solv-
ing Eq. (8), it is possible to construct a ssmple interpo-
lation formula to describe the behavior of the effective
mass over al the region,

1
(
Ci(B-Be)™ + o f ()T
Here, f(y) is a universal monotonic function of y =

JTI(B=By)?3such that f(y ~ 1) = 1 and f(y < 1) = 0.
Itisseenfrom Eq. (21) that the behavior of the effective
mass can be represented by a universal function F,, of
only onevariabley if thetemperatureis measuredinthe
units of the transition temperature T*(B), see Eq. (15),
and the effective massis measured in the units of M* (B)
given by Eq. (14), Fy(y) = aF(B, T)/M*(B) with abeing
a constant. This representation describes the scaling
behavior of the effective mass. As is seen from
Egs. (19) and (21), the scaling behavior of the magneti-
zation can be represented in the same way, provided the
magnetization is normalized by the saturated value at
each field given by Eq. (19),

Mg(B, T) 1
Mg(B) 1+cf(y)y

where czisaconstant. It isseen from Eq. (22) that mag-
netization is a monotonic function of y. Upon using the
definition of susceptibility, x = dMg/0B, and differenti-
ating both sides of Eq. (22) with respect to B, we arrive
at the conclusion that the susceptibility also exhibitsthe
scaling behavior and can be presented as a universa
function of only one variabley, provided it is normal-
ized by the saturated value at each field given by
Eqg. (18),

X(B, T) 1 f(y) + ydf (y)/dy 23)
X(B) ~1+csf(Vy T (L+cif(y)y)’

It is of importance to note that the susceptibility is not
a monotonic function of y because the derivative is the
sum of two contributions. The second contribution on
the right-hand side of Eq. (23) makes the susceptibility
have a maximum. The above behaviors of the magneti-
zation and susceptibility are in accordance with the
facts observed in measurements on CeRu,Si, [20].
Note that the magnetic properties of CeRu,Si, do not
show any indications of the magnetic ordering at the
smallest temperatures and in the smallest applied mag-
netic fields [20], which is By, — 0 in that case. As a
result, we can conclude that the QCP is driven by the
divergence of the effective mass rather than by mag-

M*(B, T) DF(B, T) =

21)

(22)




290

netic fluctuations and FCQPT is the main cause of the
NFL behavior. We can a so conclude that the Nedl tem-
peratureis zero in this case, because the magnetic sus-
ceptibility divergesat T— 0, asis seen from Eq. (20).
A more detailed analysis of thisissue will be published
elsewhere.

Consider the case when the system has undergone
FCQPT. Then, there exist special solutions of EQ. (2)
associated with the so-called fermion condensation [7].
Being continuous and satisfying the inequality 0 <
ne(p) < 1 within some region in p, such solutions ny(p)
admit afinite limit for thelogarithminEq. (2) at T —

0yielding [7]

e(pP)—H = 0, if 0<ny(p) <1; pispsp:, (24)
whereg(p) isgiven by Eq. (3). At T=0, Eq. (24) defines
a new state of electron liquid with FC [7, 10] which is
characterized by a flat spectrum in the (p; — p;) region
and which can strongly influence measurable quantities
up totemperatures T < T;. Inthis state, the order param-
gter of the superconducting state K(p) =

J(L=ny(p))ne(p) has finite values in the (p; — p)
region, whereas the superconducting gap A; — 0in
this region, provided that the pairing interaction tends
to zero. Such astate can be considered as superconduct-
ing, with an infinitely small value of A, so that the
entropy ST = 0) of this state is equal to zero [6, 7].

When p; —= p, — pg, the flat part vanishes and
Eq. (24) determines the QCP at which the effective
mass M* diverges and FCQPT takes place. When the
density approachesthe QCP from the disordered phase,
Eq. (24) possesses nontrivial solutions at X = Xgc as
soon asthe effective interelectron interaction as afunc-
tion of the density, or the Landau amplitude, becomes
sufficiently strong to determine the occupation num-
bers n(p) which deliver the minimum value to the
energy E[n(p)], while the kinetic energy can be consid-
ered as frustrated [6]. As aresult, the occupation hum-
bers n(p) become variational parameters and Eq. (24)
has nontrivial solutions ny(p), because the energy
E[n(p)] can be lowered by alteration of the occupation
numbers. Thus, within the region p; < p < p;, the solu-
tion ny(p) deviates from the Fermi step function ng(p)
in such away that the energy €(p) stays constant, while
outside this region, n(p) coincides with n-(p) [7]. Note
that aformation of theflat part of the spectrum has been
confirmed in [21-23].

At r > 0 when the system is on the disordered side,
that is, k(p) = 0, and the density x moves away from
QCP located at xg¢, the Landau amplitude F (p = pg
P; = P X) as a function of x becomes smaller, the
kinetic energy comesinto aplay and makestheflat part
vanish. Obvioudly, Eq. (24) hasonly thetrivial solution
£(p = pr) = W, and the quasi particle occupation numbers
are given by the step function, n:(p) = 6(pr —p).
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At A, — 0O, the critical temperature T, — 0. We
see that the ordered phase can exist only at T = 0, and
the state of electron liquid with FC disappearsat T > 0
[6]. Therefore, FCQPT is not the endpoint of aline of
finite-temperature phase transitions. This conclusion is
in accordance with Eq. (2), which does not admit the
existence of the flat part of spectrum at finite tempera-
tures. As a result, the quantum-to-classical crossover
upon approaching a finite-temperature phase transition
does not exist. In the considered case, one can expect to
observe such a crossover at T ~ T;. On the other hand,
A, becomesfinite if we assume that the pairing interac-
tionisfinite and the corresponding x — T phase diagram
becomes richer. Moving along this line, we can con-
sider the high-T, superconductivity as well (see, e.g.,
[6, 7]).

At finite temperatures T << T;, the occupation num-
bers in the region (p; — p,) are still determined by
Eq. (24) and the system becomes divided into two qua-
siparticle subsystems: the first subsystem is occupied
by normal quasiparticles with the finite effective mass
M} independent of T at momentap < p;, while the sec-
ond subsystem in the (p; — p,) range is characterized by

the quasiparticles with the effective mass Mg (T)
[6, 24]

Pi— B
Pr2T
Thereisan energy scale E, separating the slow dispers-
ing low energy part, related to the effective mass M.,
from the faster dispersing relatively high energy part,

defined by the effective mass M} . It follows from
Eqg. (25) that E, is of the form [6]

E, = 4T. (26)

The described system can be viewed as a strongly
correlated one, it has the second type of the behavior
and demonstrates the NFL behavior even at low tem-
peratures. By applying magnetic fields, the system can
be driven to LFL with the effective mass [25]

1
/B-B,

In the same way as it was done above, we find from
Egs. (25) and (27) that a crossover from the B-depen-
dent effective mass M* (B) to the T-dependent effective
mass M*(T) takes place at a transition temperature

T™(B)
T*(B) O ./(B-Bey). (28)

Equation (28) determinesthe lineinthe B-T phase dia-
gram which separates the region of the LFL behavior at
T < T*(B) from the NFL behavior occurring at T >
T*(B). The existence of the B—T phase diagram given
by Egs. (15) and (28) can be highlighted by calculating

*
Mgc =

(25)

M*(B) O

(27)
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the resistivity and the magnetoresistance [8]. Theresis-
tivity, which at T > T* (B) demonstrates the NFL behav-
ior, a T < T*(B), exhibits the LFL behavior, p = p, +
A(B)T2. The B-T diagram of the dependence of the
effective mass on the magnetic field can be highlighted
by calculating the magnetoresistance. At (B — By) >
B*(T), the magnetoresistance is negative, and at (B —
By) < B*(T), it becomes positive. This behavior of both
the magnetoresistance and the resistivity is in agree-
ment with measurements on YbRh,Si, [3], when the
system exhibits the second type of the behavior, see
Eqg. (28), while CeColng and Y bAgGe demonstrate the
first type of behavior consistent with that given by
Eq. (15) [4, 19].

At T < T*(B), the coefficients y O M*(B), x(B) U
M*(B), and A(B) O (M*(B))?, and we find that the Kad-
owaki ratio K arid the Sommerfeld-Wilson ratio R [J
X(B)/y(B) are preserved due to Eqg. (27). The obtained
B-T phase diagram and the conservation of both the
Kadowaki and the Sommerfeld-Wilson ratios are in
full agreement with data obtained in measurements on
YbRh,Si, and YbRh,(Si;45G€y05)2 [3, 5, 17]. Taking
into account Egs. (11) and (25), we find that in the case
of the two quasi particle subsystems the thermal expan-

sion coefficient a(T) O a+ bT + ¢c./T, witha, b, and ¢
being constants. Here, the first term a is determined by
the FC contribution, the second bT is given by normal

quasiparticles with the effective mass M}, and the

third c./T comesfrom aspecific contribution related to
the spectrum ¢ (p) which ensures the connection
between the dispersionless region (p; — p;) occupied by
FC and normal quasiparticles[16, 24]. At finite temper-
atures, the contribution coming from the third term is
expected to be relatively small because the spectrum
£.(p) occupies arelatively small areain the momentum
space. Since at T — 0, the main contribution to the
specific heat ¢(T) comes from the spectrum £4(p), the

specific heat behavesasc(T) 0 a, /T + b, T, with a, and
b, being constants. The second term b, T comes from
the contribution given by FC and normal quasiparticles.
Measurements for Y bRh,(SigsG€05)», Show a power
low divergence of y=c¢/T O T witha = 1/3[17]. This
result is in reasonable agreement with our calculations
giving a = 0.5. At lower temperatures, the relative con-

tribution of thefirst term a, /T becomes bigger and we
expect that the agreement will also become better. Now,
we find that the Grineisen ratio I'(T) = a(T)/c(T)
diverges as I(T) O 1/./T [16]. This result is in good
agreement with measurements on Y bRh,(Si ¢sG€ 05)
[5, 17].

As follows from Eq. (27), the static magnetization

behaves as Mg(B) O ./B—B,,, in accordance with
measurements on 'Y bRh,(Si; gsG&; os), [5]. We can aso
JETP LETTERS  Vol. 79
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conclude that Egs. (21)—(23) determining the scaling
behavior of the effective mass, static magnetization,
and the susceptibility are aso vaid in the case of
strongly correlated liquid, but the variable y is now

givenby y=T/./B— B, while the function f(y) can be

dependent on (p; — p,)/pe This dependence comes from
Eq. (25). Asaresult, we can find that at T < T*(B), the
factor dp/dT O A(B)T behaves as A(B)T O T/(B — Byy),
and at T > T*(B), it behaves as A(B)T O UT. These
observations are in good agreement with the data
obtained in measurements on 'Y bRh,(Si; osG€; 05)2 [5].

It isworthy to note that, in zero magnetic fields, the
Neél temperatureiszero at FCQPT, because, asfollows
from Eg. (10), the effective mass tends to infinity at
FCQPT and makes the susceptibility divergent. On the
other hand, if there is the magnetic order and the Nedl
temperature is not equal to zero, the effective massis
finite and there is no FCQPT. As soon as the magnetic
order is suppressed at B —» B, that is, the Ned tem-
perature tendsto zero, the effective mass M* (B) — oo,
as follows from Eq. (14). If the system has undergone
FCQPT, again at B — B, the Neél temperature goes
to zero and M*(B) —» o0, see Eq. (27). If B, =0, the
effectivemassdivergesat T — 0, see Eq. (25), and the
susceptibility x tends to infinity, being proportional to
the effective mass. In this case, the Nedl temperature is
equal to zero as well. Therefore, one may say that the
effective mass M* diverges at the very point that the
Neél temperature goes to zero.

A few remarks arein order at this point. To describe
the behavior of HF metal's, we have introduced the sys-
tem of quasiparticles, asisdonein the Landau theory of
normal Fermi liquids, where the existence of fermionic
quasiparticles is a generic property of norma Fermi
systems independent of microscopic details. As we
have seen, at T < T;, these quasi particles have universal
properties which determine the universal behavior of
HF metals. One can use another approach, constructing
the singular part of the free energy, introducing notions
of the upper critical dimension, hyperscaling, etc. (see,
e.g., [1, 2]). Moving along this way, one may expect
difficulties. For example, having only the singular part,
one has to describe at least the two types of the behav-
ior. We reserve a consideration of theseitemsfor future
publications.

In conclusion, we have shown that our simple model
based on FCQPT explains the critica behavior
observed in different HF metals. In the case of such HF
metals as CeNi,Ge,, CeColns, Y bAgGe, and CeRu,Si,,
the behavior can be explained by the proximity to
FCQPT, where their electronic systems behave like
highly correlated liquids. In the case of such HF metals
as YDbRh,(SigesGey0s), and YbRh,Si,, the critica
behavior isdifferent. This can be explained by the pres-
ence of FC in the electronic systems of these metals,
i.e., by the fact that the electronic systems have under-
gone FCQPT and behave as strongly correlated liquids.
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We have shown that the basis of the Landau Fermi lig-
uid theory survives in both cases: the low energy exci-
tations of both strongly correlated Fermi liquid with FC
and the highly correlated Fermi liquid are quasiparti-
cles. It is aso shown that the effective mass M*
diverges at the very point that the Neél temperature
goes to zero. The B-T phase diagrams of both the
highly correlated liquid and the strongly correlated one
have been studied. We have shown that these B-T phase
diagrams strongly influence the effective mass and such
important properties of HF metals as magnetoresis-
tance, resistivity, specific heat, magnetization, suscepti-
bility, and volume thermal expansion.
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By two-dimensional ballistic magnetotransport calculations, it is demonstrated that large-scale resistance
peaks, typical of small ring interferometers in zero magnetic field, are suppressed at B ~ 1 T. This result is
explained by the peculiarities of theinterference pattern at the confluence sites of quantum wiresand isin qual-
itative agreement with experimental data. © 2004 MAIK “ Nauka/Interperiodica” .

PACS numbers; 73.23.Ad; 73.63.Nm

Anideal ring interferometer isadevice consisting of
one-dimensional quantum wires. The first theoretical
publications[1, 2], in which the points of connection of
guantum-wire leads with the ring were assumed to be
structurel ess and the wires were considered as homoge-
neous, predicted a periodic 100% conductance modula-
tion in a varying magnetic field, i.e., the Aharonov—
Bohm (AB) oscillations. The origin of the effect isin
the passage through the ring resonance levels. How-
ever, in redlity, the AB oscillations [3-5] have a much
smaller amplitude and, in some cases, are observed
against the background of large-scale features in the
conductance [5-8]. Ancther effect that is often
observed in experimental measurementsisthe presence
of a negative magnetoresistance [7-12].

Obviousdly, aredl interferometer is much more com-
plicated than the one-dimensional model because of the
finite wire width and because of the formation of deep
triangular potential wells, i.e., quantum dots, at the sites
of wire separation into the ring arms. According to the
self-consistent calculations of the three-dimensional
electrostatic potential and electron density [6, 8, 13],
these quantum dots have many single-particle levels,
which should affect the transmission through the inter-
ferometer. Calculations performed for a two-dimen-
sional ballistic transport in zero magnetic field show
that the triangular dots cause additional reflection and
even interferometer blocking. This conclusion follows
from the comparison of the arrangements of large-scale
peaks and dips in the energy dependence of transpar-
ency for the whole device and for one triangular dot
[6, 8].

A similar sequence of quasiperiodic resistance
peaks in the gate-voltage dependence was experimen-
tally obtained for small ring interferometers (r =
130 nm) [7, 8]. It was found that a large negative mag-
netoresistance is present in the region of conductance
dips and that the conductance approaches the value

~2€%/h as the magnetic field grows [9]. An explanation
of al these facts requires numerical investigation of the
magnetic-field effect on the behavior of aballistic elec-
tron in arealistic potential of the interferometer. Note
that the magnetotransport in an interferometer was
modeled earlier using simple modeling potentials that
neglect the electrostatics of the structure [14, 15].

In this paper, we study the wave functions and the
magnetotransport in small interferometers, for which
the effect of triangular dots is most pronounced. We
show that, in zero magnetic field, the Fermi-energy
dependence of the conductance of a single-mode inter-
ferometer consists of the alternating portions with high,
G = 2¢?/h, and low, G < 2€%/h, transparencys. In the
region of a triangular dot, the wave functions corre-
sponding to the low-conductance intervals have a sym-
metry that suppresses the transmission of a ballistic
electron into the ring arms. Magnetic field violates this
symmetry and increases the transmission probability
through the interferometer.

To calculate the interferometer transparency, we
used the method described in [16] and representing the
extension of the recursive Green's-function technique
[17]. Thismethod alows the Schrodinger equation in a
magnetic field to be solved for the realistic potential s of
acomplex geometry. The advantage of the method [16]
is that the matrices of transmission and reflection
amplitudes and the wave functions are calculated
simultaneously for each point of agrid used for the dis-
cretization of the computational region. The stability is
an important feature of this method. The conductance
of the device is determined from the multichannel Lan-
dauer-Buttiker formula [18]. The two-dimensional
effective potential necessary for calculating the con-
ductance and wave functions was obtained by modeling
three-dimensional electrostatics of an interferometer
fabricated by etching on the basis of a GaAs/AlGaAs
heterostructure [6]. The lithographic dimensions were

0021-3640/04/7906-0293%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Conductances calculated for a small symmetric
interferometer Ty (solid ling) and for atriangular quantum
dot Ty, (dashed line) as functions of the Fermi energy at
B=0.

taken smaller than in the cited publication (the average
ring radiuswasr = 105 nm). For simplicity, we chose a
symmetric etch profile and ignored the fluctuation
impurity potential (uniform doping). In our case, the
channel widths in the narrowest parts of the ring and
between the ring and reservoirs with 2D electron gas
were approximately the same and rather small. This
made it possible to obtain a single-mode regime simul-
taneously for all constrictions over a sufficiently large
energy interval from 1.3 to 8 meV. The lower boundary
of the interval corresponds to the first transverse-quan-
tization level in the narrow part of the interferometer
input channel, and the upper boundary corresponds to
the second level in the ring arms. The choice of this sit-
uation is motivated by the following reasons. If the
channels connecting the ring with reservoirs become
much narrower than the ring-arm channels and have
tunnel barriers, a single-electron charging of a multi-
mode ring becomes possible [19]. The opposite condi-
tion leadsto the case where two open triangul ar dotsare
separated by the tunnel barriers formed in the ring
arms. Evidently, both these tunneling situations make
the device transparency rather low. However, these
cases could hardly be redlized in experiment [9],
because, in amagnetic field of ~ 1 T, the interferometer
conductance was close to 2e?/h in a considerable por-
tion of the gate-voltage interval, which isimpossiblein
the tunneling regime.

The calculated dependence Tiiny(Er) of the interfer-
ometer trangparency on the energy of ballistic electrons
shows that, in zero magnetic field, the transmission
peaks alternate with deep dips (Fig. 1). For comparison,
we calculated the transparency T,.(Eg) of a half of the
interferometer (the outgoing wave is assumed to prop-
agate through two parallel channels extending the ring
arms). One can see that two curves, on the whole, cor-
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Fig. 2. Probability density distribution in an electron wave
incident in the first mode: (@) the interferometer transpar-
ency is Tyjng =0.99 at Er = 2.34meV and B=0; (D) Tyjng =
1.5 x 10 at E¢ = 5.66 meV and B = O (the dashed lines
show the boundaries of the classically allowed region Eg =
Uer); (©) Tring=1at Ep =5.62meV and B=1T. The prob-
ability-density isolines correspond to the levels of 0.01,
0.0316, 0.1, 0.316, and 1 and to the maximal values (a) 1.2,
(b) 1.4, and (c) 2.3.

relate with each other, and additional resonances on the
curve T,in(Er) obtained for theinterferometer appear as
aresult of a circular motion in the ring. The question
arises of why the interferometer conductance has wide
and deep dipsin theregion 1.3-8 meV in zero magnetic
field while the transparency of the ring arms and the
connecting channelsis closeto its total value.

Let usconsider the plotsof probability density inthe
interferometer for the states corresponding to the total
transmission (Fig. 2a) and total reflection (Fig. 2b). We
assume that electrons are incident from the left in the
first transverse-motion mode. Since thering and the tri-
angular dots have a small size and the energy of the
incident particlesislow, the transmission is determined
by quantum interference. The state with the energy
E- = 2.34 meV corresponds to the resonant transmis-
sion with T, = 0.99 through the combined dot—ring
system. One can see from Fig. 2athat the wave function
is delocalized over the whole system, and the standing
wave along the ring contains 16 antinodes.
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Fig. 3. Interferometer conductance as a function of magnetic field for Fermi energy Eg = (a) 2.34 and (b) 5.6 meV. (c) Effects of
negative magnetoresistance and suppression of AB oscillations observed for an asymmetric ring in [11]. The values of Eg areindi-
cated in millielectron volts near the calculated curves. The experimental curve taken from [11] is presented for comparison.

Now, we consider the state with E = 5.66 meV and
Tiing = 1.5 % 10~* (Fig. 2b), which corresponds to a sup-
pressed transmission. In zero magnetic field, the wave
function represents a standing wave that arises between
the antidot and the reservoir and hasasymmetry forbid-
ding the transmission into the ring arms at the first tri-
angular dot. Specifically, two maximaof the probability
density at the arm input correspond to the second trans-
verse-motion mode. This mode, being not mixed with
the first one, is totally reflected, because its transmis-
sion through the narrow parts of the channels is not
allowed. Figure 2b shows that electron tunnels at a
small depth into the classically forbidden region of the
two-dimensional effective potential Ex < U. Similar
pictures of probability density also occur for other
states of minimal transmission a B =0 (Ex = 3.83 meV
or Er = 4.9 meV). Note that, in symmetric single-mode
interferometers that have no quantum wells at the chan-
nel-confluence sites, the reflection states in zero mag-
netic field appear only as a result of the destructive
wave interference at the ring output [15]. In this case,
the electron distribution density in the ring is always
nonzero [20]. By contrast, we investigate the reflection
states corresponding to the case where an el ectron does
not penetrateinto thering at all, although the first-mode
motion is open. An increase in a magnetic field breaks
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the symmetry in the positions of the probability-density
maxima at the ring-input triangular dot, and the trans-
mission probability through the interferometer
increases. Figure 2c represents the state of total trans-
missioninthemagneticfieldB=1T for Er =5.62 meV.

The magnetic-field effect manifestsitself in the AB
oscillations (Fig. 3a) and in the negative magnetoresis-
tance (Fig. 3b). Note that the one-dimensional interfer-
ometer model gives the AB oscillations with a full
amplitude modulation and a period corresponding to
the flux quantum through thering [1, 2]. Similar results
were obtained by a simplified two-dimensional model-
ing of single-mode ring interferometers [14, 15]. How-
ever, the calculation for arealistic interferometer poten-
tial gives a qualitatively different result. For the half-
integer magnetic flux quanta, the conductance of asym-
metric interferometer with afinite channel width is not
suppressed to zero, as was predicted by the one-dimen-
sional model. The presence of levelsin triangular dots
and their displacement from the ring levels in a mag-
netic field is seen inthe G(B) curve asalarge-scal e con-
ductance modulation and as Fano profiles of the peak—
dip type. Because of the presence of Fano resonances,
theform of the AB oscillationsis not sinusoidal and the
period and phase vary. Calculations show that, for the
stateswith T;,, = 1 at B =0, despitethe large-scale con-
ductance modulation, the transmission remains, on the
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Fig. 4. Dependence of the conductance at the Fermi energy
for the ring, shown in Fig. 2, in magnetic fields B = 0, 0.5,
and 2 T at atemperature of 1.5 K.

average, high with an increase in the magnetic field.
However, the states corresponding to thetotal reflection
become more transparent in a magnetic field. One can
see from Fig. 3b that the conductance G(B) grows with
increasing magnetic field and reaches the value 2e?/h
evenat B=1T. Thus, at the given energy, we obtain the
giant negative magnetoresistance effect. For other
states of minimal transmission at B =0, asimilar behav-
ior takes place for G(B).

Asfor the amplitude of AB oscillations, it depends
in a complicated way on the Fermi energy, magnetic
field, and the degree of ring asymmetry. The effect of
AB-oscillation suppression upon passing to atunneling
regime in one of the ring arms was analyzed in our pre-
vious papers [8, 11] (together with the corresponding
experimental data). Figure 3c shows the conductance
G(B) calculated for different Fermi energies of a small
interferometer (r = 110 nm) with different channel
widths in the ring. The first mode opens in one of the
ring arms at E- = —1 meV, while the other arm is open
for the transmission of two mades. At Ex = -2 meV, the
ring isinterrupted by atunnel barrier and the AB oscil-
lations are suppressed. At E- = -1 meV, the AB oscilla-
tions show a 5% modulation, and, at Ec = 0, amodula-
tion from 7 to 10% (in the experiment, a5% modul ation
is observed). It follows from the analysis of Fig. 3 that
the model of a symmetric single-mode interferometer
exaggerates the effects of AB oscillations and negative
magnetoresistance, compared to the experiment [9].
However, when the fluctuation potential [8, 13] and the
nanolithography errors [8, 11] are taken into account,
the results of calculations become closer to the mea-
surements [11].

Figure 4 shows the dependences of conductance on
the Fermi energy, averaged for an effective temperature
of T= 1.5 K. The dependences are obtained for differ-
ent magnetic fields and correspond to the conditions of
experiments with small rings [7—9]. One can see that
the deep dips typical for conductance G(Eg) in low
magnetic fields beginto blur aa B=05T. At B=2T,
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Fig. 5. Experimental dependence of the conductance on the
gate voltage for asmall ring at a temperature of 1.5 K. The
dependenceis plotted using the data reported in [9].

the edge current states start to form (the asymptotic val-
ues of 2e?/h and 4€*h are approached). For compari-
son, Fig. 5 shows the experimental results reported in
[9]. The measured dependence of the conductance of a
small interferometer on the gate voltage V, at B = 0
shows dips that can be related to the conductance dips
in Fig. 4. One can see that, in the case of modeling and
in the experiment, the dips decrease with increasing
magnetic field in asimilar way. The electrostatic calcu-
lation allows us to compare the lengths of the intervals
of Er and V, within which a qualitatively similar
behavior of conductances is observed. In the calcula-
tions, a 0.05-V variation of the upper gate voltage V,
causes an approximately 5.5-meV shift of one-dimen-
sional subbands in the channels of symmetric interfer-
ometer. Hence, the values obtained for the lengths of
the single-mode motion intervals (G < 2e?/h) in the cal-
culations and measurements are in good agreement.

Thus, the two-dimensional modeling of the trans-
mission through a small interferometer in the single-
mode regime predicts high-resistance peaks caused by
the backscattering of a ballistic electron in the triangu-
lar quantum dots. With an increase in a magnetic field,
the height of these peaks decreases because of the
increase in the probability of electron penetration into
the ring arms. This effect may be the cause of the neg-
ative magnetoresistance observed in the experiments
[7-11]. We have also shown that the amplitude of AB
oscillations nonmonotonically depends on the Fermi
energy, magnetic field, and the degree of ring asymme-
try. When one of thering arms switchesto the tunneling
regime, the AB oscillations become suppressed.
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The voltage response of a thin-film normal-metal hot-electron bolometer based on a SINIS (superconductor—
insulator—normal metal—insulator—superconductor) structure to the radiation of a high-temperature Josephson
junction in the terahertz frequency region was measured. Bolometers were integrated with planar log-periodic
and double-dipole antennas, and Josephson junctions were integrated with log-periodic antennas. Measure-
ments showed that the Josephson junction at atemperature of 260 mK was overheated by the transport current,
so that its electron temperature exceeded 3 K at abias voltage of 1 mV. The maximum response of a bolometer
with a double-dipole antenna was observed at a frequency of 300 GHz, which agreed well with the calculated
value. The Josephson radiation was observed at frequencies up to 1.7 THz. The voltage response of abolometer

reached 4 x 108 V/W, and the total noise-equivalent power reached 1.5 x 1077 W/HzY2. © 2004 MAIK

“Nauka/Interperiodica” .
PACS numbers: 74.50.+r; 07.57.Kp; 85.25.Pb

1. SINIS bolometers. Normal-metal hot-electron
bolometerswith a capacitive decoupling of the supercon-
ductor—insulator—normal metal— nsul ator—supercon-
ductor (SINIS) structure were proposed in [1] and
experimentally tested in [2]. The response to an exter-
nal microwave signal and the noise-equivalent power of
such abolometer are determined by its electron temper-
ature. To improve the noise and signal characteristics, a
direct electron cooling of a normal-metal absorber by a
superconductor—insulator—normal metal (SIN) tunnel
junction was proposed in [3]. The electron cooling
effect was demonstrated in [4] and further developed in
[5].

A general view of asubstrate with bolometersispre-
sented in Fig. 1la. A broadband log-periodic antenna
with a frequency range of 0.2-2 THz is positioned at
the center of the substrate; two double-dipole antennas
with a central frequency of 300 GHz are on the right,
and one doubl e-dipole antennawith acentral frequency
of 600 GHz is on the left. At the top and bottom, test
structures are positioned with two pairs of SIN junc-
tionsfor studying the electron cooling effect. The latter
isdescribed for such astructurein [6]. An atomic-force
microscopic image of the central part of the bolometer
isshownin Fig. 1b.

Thefirst step in fabricating the samples was the for-
mation of gold contact pads and traps for hot quasipar-
ticles. The pattern was made by standard photolithogra-
phy. Gold 60 nm in thickness was deposited by thermal

evaporation. The next step consisted in the formation of
the tunnel junctions and the absorber. The pattern was
made by direct electron lithography. The films were
deposited by therma evaporation at different angles
through a suspended double-photoresist mask. This
method made it possible to deposit films of different
metals in a single process in vacuum and provide their
overlap in the tunnel junction regions. A 65-nm-thick
aluminum film was deposited at an angle of 60° to the
substrate and oxidized for 2 minin oxygen at apressure
of 0.1 mbar to obtain a tunnel barrier. A double-layer
absorber film consisting of chromium and copper with
atotal thickness of 75 nm was deposited perpendicular
to the substrate. The absorber volume was 0.18 um3.
The outer cooling SIN junctions of the test structures
had a resistance of 0.86 kQ each, and the inner junc-
tionshad 5.3 kQ each. Theinner junctions had asimple
crosslike geometry, where a segment of anormal-metal
strip crossed the oxidized aluminum electrode. Their
overlap area was 0.2 x 0.3 um. The structure of the
outer junctions was such that the ends of the normal-
metal absorber covered the corner of each of the outer
oxidized aluminum electrodes, and the junction area
was 0.55 x 0.82 um. An increase in the size of alumi-
num electrodes made it possible to improve the diffu-
sion of hot quasiparticles carried away from the
absorber by the tunneling current and to avoid a reab-
sorption in the normal metal for the phonons emitted
upon quasi particle recombination. Additionally, for the
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same purpose, one of thetest structures had hot-particle
traps in the form of normal-meta films located in the
junction region under the aluminum film. In the exper-
iments with electron cooling, the application of a bias
voltage close to the energy gap of the outer SIN junc-
tions caused a decrease in the electron temperature
measured by the inner SIN thermometers from 260 to
100 mK.

2. High-temperature Josephson oscillators.
Accordingto[7, 8], the maximal Josephson-oscillation
frequency and power are determined by the critical cur-
rent I, the normal resistance R,, and their product V. =
IR, The characteristic frequency of a Josephson junc-
tionisf, = (2e/h)V,, where eis the electron charge and
histhe Planck’s constant. The characteristic voltage of
a Josephson junction does not exceed the energy gap,
which corresponds to frequencies on the order of
700 GHz for niobium junctions, while, for high-T,
superconductors (HTSCs) with a critical temperature
above 77 K, the corresponding frequency may reach
10 THz and higher. However, high characteristic volt-
ages and oscillation frequencies are realized only at
temperatures much lower than the critical temperature.
In particular, values of V. above 5 mV are observed for
the HTSC junctions at liquid-helium temperatures and
lower. For the HTSC junctions on bicrystal substrates,
the choice of the substrate material is highly important.
Thebest dc characteristics are obtained for junctionson
the strontium titanate substrates, but the high dielectric
constant and the substantial losses at high frequencies
render them unsuitable for use in the submillimeter
wave range. Sapphire substrates proved to possess the
most suitable characteristics, and they were used to fab-
ricate the Josephson oscillators. Unlike standard bic-
rystal substrates with a misorientation in the substrate
plane, we used substrates with a crystallographic axis
inclined to the substrate plane. Epitaxial Y BaCuO films
were grown by laser ablation on the substrates whose ¢
axis in the [100Cdirection was inclined at an angle of
14° + 14°. Films 250 nm thick were deposited on a
CeO, buffer layer. The critical temperature of the films
was T, =89 K, and thetransition widthwasAT,= 1.5 K.
The bicrystal Josephson junctions were from 1.5 to
6 um wide and, at atemperature of 4.2 K, had the char-
acteristic voltage V. = 4 mV. Under an external submil-
limeter radiation, their |-V characteristics exhibited
Shapiro steps at voltages up to 4 mV, which corre-
sponds to frequencies above 2 THz.

3. Bolometer responseto changesin temperature
and absor bed power. The main bolometer characteris-
ticswere measured at atemperature of 260 mK inacry-
ostat with a closed-cycle He-3 absorption refrigerator.
The maximal voltage response to the temperature vari-
ationswas 1.6 mV/K for a10-kQ SIN junction, and the
maximal current response was equal to 55 nA/K for a
6-kQ junction.
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Fig. 1. (8) General view of a substrate with bolometer and
(b) atomic-force microscopic image of the bolometer cen-
tral part.

For structures with four SIN junctions, it was possi-
ble to apply power to the inner pair of junctions and
measure the response of the outer pair. The measured
dependences of the response on the bias voltage are
shownin Fig. 2. The maximal voltage response was 4 x
108V/W for apair of 70-kQ junctions, and the maximal
current response was 550 A/W for apair of 10-kQ junc-
tions. These values correspond to the noise-equivalent
power (NEP)

NEP = 1,/S or NEP = V,/S,, 1)

wherel, isthe current noise, V, isthevoltagenoise, § =
di/dP is the current response, and S, = dV/dP is the
bolometer voltage response. Setting the noise voltage
of our preamplifier equal to 3 nV/HzY2, we obtain the
technical noise-equivalent power:

TNEP = 1.25x 107" W/HZ"?. )
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Fig. 4. Bolometer response to the radiation of a Josephson
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Substituting the measured values of the response to
changes in temperature and power, we obtain the

bolometer heat conductivity
_ 0P _QV/OT _
Gy = 3T = 3v/op - 0.8x 10 WIK. (©)]

The thermodynamic noise-equivalent power is
determined by the expression

NEP?, = 4kT°G. 4

Taking into account that G = 5XvT* = 1071t W/K, we
obtain NEP;p = 1.4 x 10718 W/HZY? and, substituting
the heat conductivity in avoltage-bias mode, we obtain

NEP, = 1.3x 107" W/Hz", (5)

The use of a SQUID-based low-noise reading
device with a current resolution of 50 fA/HZY? will
allow the noise-equivalent power to be improved by an
order of magnitude as compared to the technical noise-
equivalent power determined by the noise of a warm
transistor amplifier.

4. Measurement of the Josephson junction radia-
tion at 260 mK. In the first series of experiments, the
backside of a substrate with the Josephson oscillator
was directly attached to the backside of asubstrate with
the bolometer (Fig. 3), and this assembly was cooled to
260 mK. Since the planar antennas were deposited on
the substrates with a dielectric constant higher than 10,
the main lobes of their directivity patterns were ori-
ented toward the dielectric and, when the radiating
antenna was positioned opposite the receiving antenna,
an efficient power transfer occurred from the Josephson
junction to the bolometer. The log-periodic antennas of
the oscillator and the receiver were identical and rated
for afrequency range from 200 GHz to 2 THz.

The dependence of the bolometer response on the
voltage applied to the Josephson junction is shown in
Fig. 4. By applying amagnetic field, the critical current
of the Josephson junction can be suppressed to zero,
and then the junction will be a ssmple current-heated
resistor. In this case, depending on the bias on the radi-
ating junction, the bolometer receivesthermal radiation
from a cold or heated load. The dependence of the
response on the bias is found to be parabolic, which
corresponds to the Joule heating proportional to the
square of applied voltage. This experiment allows one
to separate the Josephson radiation component, whose
frequency corresponds to the bias voltage, from the
broadband thermal component, whose power is propor-
tional to the square of biasvoltage. It is significant that,
above 1 mV, the Josephson junction is strongly over-
heated both in the absence and in the presence of mag-
netic field and its effective el ectron temperature consid-
erably exceeds the refrigerator equilibrium tempera-
ture.

The maximal Josephson radiation power can be esti-
mated as P, = 0.11 .V, = 2 x 10° W [7]. In the case of
JETP LETTERS  Vol. 79
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alog-periodic radiation antenna with a knife-edge pat-
tern and double-dipole reception antenna with a pencil-
beam pattern, the mismatch of the directivity patterns
takes place and the | osses increase by more than 10 dB.
The oscillator substrate had five log-periodic antennas
on itssurface, and the bolometer substrate had two dou-
ble-dipole antennas and one log-periodic antenna. The
oscillator and receiver antennas were never directed
toward each other, resulting in the losses of no lessthan
10 dB. No convergence lenses were placed between the
oscillator and receiver, so that the received beams
diverged, adding another 10-dB (or greater) loss. The
mismatch with antenna, the mismatch between theradi-
ating and receiving beams, the inaccurate alignment of
the directions of different antennas, thereflectionsfrom
the sapphire-silicon boundary, and the difference in
polarizations—all this provides a total loss of no less
than 30 dB at frequencies on the order of 1 THz. Asa
result, the power received by the bolometer islessthan
10712 W. Setting the response of the bolometer under
consideration to S= 1.1 x 108 V/W, we find that the
maximal voltage response is equal to approximately
1.1 x 10* V. In our experiments, the response to the
Josephson radiation reached a level of 10 pV. The dif-
ference of one order of magnitude may be caused by
such factors as nonideal characteristics of the Joseph-
son junction, excess current, and overheating, which
reduce the output power. The response to the non-
Josephson radiation on the parabolic portion of the
response curve may be ascribed to the receipt of the
submillimeter and infrared radiation from the matched
load integrated in the broadband antenna circuit and
radiating into the quasi-optical channel.

If we accept the overheating model for the Joseph-
son junction as a bridge of variable thickness [4], we
can estimate the temperature in the middl e of the bridge

as
|jeV|]2
Tm = /|t2>+3|:2m@- (6)

From this relation, we obtain an equivalent electron
temperature of about 3 K for a Josephson junction bias
of 1 mV. Considering that the thermal radiation is scat-
tered within a solid angle of 4mtand that the bolometer
isplaced at adistance of about 1 mmin adielectric, the
value of 5mK of the effective temperature measured by
the bolometer becomes understandable. Since the
power isfirst radiated and then received, it is also nec-
essary to take into account the quantum character of
radiation according to the Planck law:

h
P, = ——0.3f. @)
r ehf/kT_l

According to this relation, the maximal radiation
occursat afrequency corresponding to the temperature:
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Structure under test

Fig. 5. Schematic diagram of the quasi-optical experiment,
where the bolometer was positioned on the flat surface of a
hyperhemispherical sapphire lens at 260 mK and the sub-
strate with the Josephson oscillator was placed on asimilar
silicon lens at 1.8 K. The oscillator and receiver were 3 cm
apart, so that the tested object could be placed between
them.

hf = KT. Applying Eqg. (7) to Eg. (1) and neglecting the
phonon temperature, we arrive at the expression

_ 06€V°
rad 4T[2 h
which fits the quadratic dependence observed in the
experiment.

5. Irradiation of bolometer by the Josephson
junction at 1.8 K. To increase the output power of the
Josephson source and the oscillation frequency, it is
necessary to increase the characteristic voltage of the
Josephson junction, i.e., itscritical current. Placing the
Josephson junction at the He-4 cooling step, we prevent
the bolometer overheating by the dc bias-current power
of the Josephson junction. For example, in a junction
with a resistance of 10 Q, a power of 0.2 PW is
absorbed at an oscillation frequency of 300 GHz, and
this power increasesto 2.5 yW at afrequency of 1 THz.

In the quasi-optical configuration (Fig. 5), the
bolometer was placed on the flat surface of a hyper-
hemispherical sapphire lens at a temperature of
260 mK, and the substrate with the Josephson oscillator
was placed on asimilar silicon lens at a temperature of
1.8 K. The oscillator and the receiver were spaced 3 cm

apart.

The topology of the Josephson samples was the
same as in the experiments at 260 mK, but the critical
current exceeded 0.5-1 mA at 4 K. In the absence of an
external magnetic field, the value of IR, exceeded
5 mV. With increasing magnetic field, the critical cur-
rent oscillated. Under the irradiation by a backward-
wave oscillator, the Shapiro steps were observed up to
4 mV. The experimental curves are shown in Fig. 6.
Figure 6a represents the response of abolometer with a
double-dipole antenna rated for a central frequency of
300 GHz and the response of a bolometer with a log-
periodic broadband antenna in the range 0.2—2 THz.
Figure 6b shows the response of a bolometer with a
double-dipole antennafor two values of magnetic field,
i.e.,, for the higher (upper curve) and lower (lower
curve) values of critical current and characteristic volt-

P )
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Fig. 6. (a) Responses measured by a bolometer with a dou-
ble-dipole antenna (upper curve) and a bolometer with a
log-periodic antenna (lower curve). (b) Response of a
bolometer with a double-dipole antenna for two values of
magnetic field and critical currents of 400 (upper curve) and
150 pA (lower curve). (c) Response measured at high bias
voltages without magnetic field. The last maximum corre-
sponds to afrequency of 1.7 THz.

age. The response corresponding to the highest fre-
guency (1.7 THz) is shown in Fig. 6¢. The same curve
exhibits the third and fifth harmonics of the antenna
fundamental mode.

TARASOV et al.

6. Discussion. A simple analytic expression for the
voltage response of bolometer [9] gives a rough esti-
mate of the practically attainable power response at a
temperature of 260 mK:

ax 2k,

= - = 10° VIW.
e>vT,

A more accurate calculation, according to [9], yields a
value of 4 x 10 V/W, which coincides with the experi-
mental data. With allowance made for the bolometer
noise at the operating point and the amplifier noiseVy =
6 nV/HZzY2in a current bias mode, the noise-equivalent
power is

NEP, = V,/SI* = 1.5x 107" W/HZz"?.

Let us also estimate the characteristic values for the
voltage bias mode with electron cooling. The main heat
flow occurs from hot phonons to electrons that are sub-
jected to electron cooling:

Pon_e = ZVTp, = 0.5 pW.

To remove this power from the electron system, it is
necessary to apply cooling current

This current gives rise to a shot noise. Taking the theo-
retical value of the current response § = e/2k,T = 6 x

10% A/W, we obtain the noise-equivalent power

JAk, T 2vTe, = 1.3x 107 WiHZ?. (9)

Thisvalueis smaller than the measured vaue of 5 x 1077,
This can be explained by the fact that the current
response of high-resistance SIN junctions is weaker
than the theoretical value obtained for an optimal resis-
tance of 1 kQ.

The voltage response has been measured for a
SINIS bolometer at 260 mK to give 4 x 108 V/W. The
noise-equivalent power limited by the bolometer and
amplifier noise is 1.5 x 107 W/HzY2, The measure-
ments of the radiation from an HTSC Josephson junc-
tion have shown that, at bias voltages on the order of
1 mV, the junction is overheated, and its effective tem-
perature exceeds 3 K for a substrate temperature of
260 mK. The use of HTSC junctions at low tempera-
tures is advantageous, because these junctions allow
one to obtain high values of characteristic voltage IR,
and increase the radiation frequency at least to 1.7 THz.
A combination of a Josephson terahertz oscillator with
ahigh-sensitivity SINIS bolometer makesit possible to
realize acompact cryogenic terahertz network analyzer
with afrequency resolution on the order of several giga-
hertz.

NEP, =
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Dissipation of Ripplon Flow at the Surface of Superfluid “He
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Within the framework of quantum hydrodynamics of asuperfluid helium surface, the momentum relaxation rate
caused by the annihilation of two ripplons with phonon creation, inelastic phonon scattering with ripplon anni-
hilation, and in the case of helium films one-particle ripplon scattering from the surface-level inhomogeneities
introduced by the substrate roughness (new relaxation mechanism) was obtained for aripplongasat T < 0.25K.
The contribution from the inelastic phonon scattering is negligible at these temperatures. For afilmat T< 0.15K,
one-particle scattering dominates, leading to a temperature dependence of the form K [ T2 for the convective

thermal conductance. At hi %her temperatures, phonon creation with annihilation of two ripplonsisthe dominant

mechanism, giving K O T~°. These results are in quantitative agreement with the available experimental data.

© 2004 MAIK “ Nauka/Interperiodica” .
PACS numbers: 67.40.Pm; 67.40.Hf; 68.03.Kn

The hydrodynamical flow drag of a gas of elemen-
tary excitations (ripplons) [1] at the surface of super-
fluid *He determines the heat transfer in helium films at
T =< 02K [2, 3], the possibility of and the conditions
for the observation of the second surface sound [4], and
also plays an important role in the experiments with
two-dimensional atomic hydrogen (2D H!) at the
helium surface [5, 6]. In thiswork, the phonon-induced
ripplon-flow decay at the surface of abulk liquidiscal-
culated and the flow dissipation mechanism is sug-
gested for a helium film covering rough substrate.

The ripplon gas flow aong the helium surface sepa-
rately from bulk liquid was considered theoretically by
Andreev and Kompaneets in [7] and observed experi-
mentally by Mantz, Edwards, and Nayak in[2, 3]. Orig-
inally, the main role in the ripplon-flow stagnation was
ascribed to the creation of a long-wavelength ripplon
with annihilation of two short-wavelength ripplons [2,
8], followed by a rapid decay of the long-wavelength
ripplon, whose velocity field penetrates across the
wholefilmwidth. Later on, it was recognized, however,
that both the theoretical probability of this process [9]
and the actual decay of acoustic ripplons [10] are quite
insignificant. It was established theoretically that the
inelastic phonon (P) scattering at the surface with the
creation of aripplon (R) [8, 9] or the annihilation of two
ripplons with phonon creation [11] are the main mech-
anisms that are responsible for the interaction of rip-
plon subsystem with bulk helium at temperatures con-
sidered. Next, Reynolds, Setija, and Shlyapnikov [11]
showed that the energy transfer from the ripplon to the
phonon subsystem is mainly governed by the second
process.

Following the reasoning exactly asin [11], we cal-
culate the momentum-transfer rate from the ripplon to

the phonon subsystem with the creation of a phonon
with wavevector (g, k), where q and k are the compo-
nents, respectively, aong and perpendicular to the sur-
face, and with the annihilation of two ripplons with
wavevectors ' and g". Denote the ripplon and phonon
temperatures as Tg and Tp. The ripplon frequency and
wavevector are related to each other by the well-known

expression ws. = g°a/p [1], where a = 0.378 dyne/cm

and p = 0.145 g/cm? are, respectively, the surface ten-
sion and the density of liquid “He at T = 0. Similarly,

one has for phonons wy = c4/q° +k*, where ¢ =
238 m/s is the sound velocity in helium. Due to the
energy and momentum conservation laws, q <€ ' and,
hence, q" = —q'. According to [11], the matrix element
for theR + R~— Ptransitionis

Eqlelq"a qID: Evﬁscz Dl/2(31'k60|,q‘+q", (1)
pw

where V is the liquid volume. The momentum transfer
rate to phonons is given by the expression presented in
[11] for the heat transfer rate:

2 n 1
Meer.p = Vﬁ—?thlmlelq LqT?

X [NgNg(1+ng) —ng(L+Ng)(1+Ng)l (2
d’q'd’qdk
(2m)°
where N (Tr), Ng (Tg), and ng, (Tp) are the equilib-

rium occupation numbers for, respectively, ripplons
and phonons in the reference system associated with

x O( Wy + Wy — ‘*)qk)
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ripplons. The integration over g’ goes over a half of the
momentum space, lest the same pairs (', q") of rip-
plons be taken twice.

Let ripplons move relative to the bulk liquid with a
velocity u much lower than the sound velocity. Then,
the occupation numbersin the reference system associ-
ated with ripplons are ny, = n'(wy) = N(wy — uag),
where n’s are the occupation numbersin afixed coordi-
nate system. By expanding n' in powers of ugq and
retaining only the linear term (because [uq| < cq < wyy),
weobtain Ny, = Ny —ug(dng/dwy). Dueto the symme-
try, al terms proportional to q in Eq. (2) turn to zero
upon the integration, and q(uq) can be replaced by

ug¥2. In addition, w, = Wy = %qu and Ny = Ng..
The subsequent calculation yields

16 urp™A° (e
a5 clod] P AtaU
® 2X Bx ]-El (3)
20/3 e e+
x X dx[ } .
.[ (> - 1)1

In this expression, B = Ty/Tg. The substitution of
numerical values gives

I-IR+RHP -

Mevr.p = (333107 —Lu TR (B), ()

where F(B) stands for the integral in Eq. (3). For small
B,i.e, for Tp < Tg, the evaluation of thisintegral gives
F(B) = 7.91/, and it becomes constant F = 12.9 in the
opposite limit 3 > 1. If the temperatures of both sub-
systems coincide, the integral is F(1) = 14.3.

Let us now turn to the inelastic phonon scattering
P(gk) < P(q'k") + R(Q). One can readily seefrom the
kinematic considerations [8] that the ripplon frequency
Wq is small compared to the phonon frequencies wey
and wy , Whereas the vectors g, g, and Q are, gener-
ally speaking, comparable. Consequently, iwg < T,
because the main contribution to the momentum trans-
fer comes, clearly, from phonons with energies <Tp
(the phonon and ripplon temperatures are assumed to
be comparable). According to the experimentally con-
firmed [10] calculations of Roche, Roder, and Williams
[9], the reciprocal decay time caused by the inelastic
phonon scattering is equal for acoustic ripplonsto

To 60 p Chcd ©
Similarly to Eq. (2), the momentum transfer rate can be
estimated by the integral

#Q .. d°Q
Mo pir = [No—S (6)
PoP+R .ITQ Q(ZT[)2
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with the shifted ripplon distribution function N'(wg) =

N(wg — uQ) = Ny + uQ(T/hwy) and the integration
going to Q ~ g; = Ty/#ic, where g is the wavevector of
athermal phonon. This gives

T uherey
M. erUzgoc o hal '™ 0
i.e.,
Mp . peg 0.1 x 20°—2 Dy, )
Po P+R % CmBKE P'R

which is severa orders of magnitude smaller than the
value obtained for the R + R ~— P process at temper-
atures T = 0.2 K. Thus, the characteristic time of
momentum transfer from the ripplon to the phonon sub-
systemis, evidently,

__PrU__126x107'sK’
Meer.e TRB™°F(B)

where pg = 1.67 x 10-10T23

mass density.
The convective therma conductance

Tr

9)

(glem?) K52 istheripplon

Ke = T2, (10)
Pr

due to the heat transfer by the ripplon hydrodynamical
flow [2], where S; = 1.52 x 102T#3 erg cm™? K2 isthe
ripplon gas entropy, is one of the possible experimen-
tally measured quantities. It follows that, if the ripplon
stagnation is controlled by the R + R ~—— P process,
the value of Kz must decrease as T-3 with increasing
temperature. However, the experiments of Mantz,
Edwards, and Nayak [2] showed a cardinally different
behavior (Fig. 1): the therma conductance increased
with temperature up to T = 0.15 K, whereupon it
became saturated and even slightly decreased. Such a
distinction can be explained by the occurrence of a dif-
ferent and a more efficient ripplon-stagnation mecha-
nism in helium films. It follows from the experimen-
tally observed temperature dependence of thermal con-
ductance that the characteristic ripplon-momentum
relaxation time at low temperatures depends weakly on
temperature. This allows one to disregard multiparticle
processes such as direct ripplon interaction with the
substrate phonons and restrict oneself to asearch for the
mechanisms determining the finite lifetime of an indi-
vidual ripplon.

We assume that the ripplon decay is due to the scat-
tering from the film surface inhomogeneities intro-
duced by the substrate roughness (Fig. 2a). Since the
ripplon propagation is unrelated to the surface orienta
tion, only the variable surface curvature K(r) can bethe
cause of scattering. The effective potential for ripplon
scattering (Fig. 2b) can easily befound from the dimen-
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Fig. 1. The convective thermal conductance of ripplons at
the surface of *He film: (solid curve) according to Eq. (16)
withH=6cmand| =2.9 um, and (m) experimental results
of Mantz et al. [2]. The calculated dependence (light dots)
takes into account the experimentally measured thermal
conductance of substrate. The dashed curve shows the rip-
plon thermal conductance restricted only to the interaction
with helium phonons.
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Fig. 2. (a) The profile of a substrate surface and a coating
helium film. (b) Effective potential produced by the surface
curvature and leading to the ripplon scattering.

sional considerations: V(r) ~ A(a/p)Y?|K(r)]¥2. Due to
the capillary effect, afilm covering arough surfacefills
the deepenings between the substrate peaks to form
menisci with curvature K, = pgH/a ~ 10° cm, where
H ~ 1 cmisthe height above thelevel of bulk liquid. At
the peaks, the curvature coincides, in the order of mag-
nitude, with the reciprocal film thickness, K, = 2/d =
6 x 10°HY3 cm™ (the height H is in centimeters). The
number of peaks per unit surface areaiis equal to ~1/12,

SAFONOV et al.

where| isthe roughness scale. Since the constant com-
ponent of effective potential does not induce scattering
and K, > K, the effective potential V(r) can be
replaced by the zero value everywhere except for the
vicinities of peaks, where, due to the relation between
the potential and the curvature, it is V, ~ 7i(a/p)¥2d=2,
The vicinity size a is determined by the surface slope
¢@=K,J/4 near thepeak andisa=¢@d = 10" cmfor | =
1um. Thus, the scattering centers are rather widely
spaced, so that each of them can be considered sepa-
rately.

Note that K, is small compared to the wavevector
gr = (p/a)Y3(T/Ah)?2 ~ 3 x 106 cm! of the typical rip-
plon, whereas gra = 0.3. One can, therefore, use the
Born approximation for slow particles, which, as is
known, gives the isotropic scattering. The scattering
cross section of a ripplon with wavevector g can be
obtained from the standard expression [12] for the two-
dimensional case by the substitution of the ripplon
effective mass according to the definition 1/m =

0E/0(q?) = %h(alp)”zq—ﬂz. The result is independent
of g

_ 4 PO 5 |2 41PV? a PO
o 2wDJ’V(r)ol r\ %2 o @
or, using the expressions for V, and a,
4
Dg’g%—T—[Zd. (12)

Theripplon meanfree pathis, asusual, A =1%/g, and the
reciprocal relaxation time 1, of the momentum projec-
tion onto theinitial direction isfound from the relation
Ty, = OA.

The momentum transfer rate from ripplons to the
substrate is calculated by analogy with Eq. (6):

dN

_[ d q ﬁuq (13)
2 (

2T[) Tq

Theintegration with respect to g and the substitution of
Qgive

R [pD 412
My 00.14—= =5 (gH) 1.

Accordingly, the characteristic time of momentum
transfer from ripplonsto the substrate is

(14)

_Pru_8x10° K" cem’s
"Ny TEH%2d
Thus, the thermal conductance at low temperatures

isproportional to T3, in full agreement with the exper-
imentally observed dependence.

(15
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For several ssimultaneously acting mechanisms, the
momentum relaxation rates add up. Hence, the fina
expression for the film thermal conductance at T, =
Tr =T hastheform

7 -1
9:5%0 HPd [erg/sK].

K= H83T° + (16)
In Eq. (16), the temperature is in K and the roughness
scalel isin cm. The temperature dependence of Ky for
H=6cmand| =29 umisshowninFig. 1 by the solid
curve. The agreement with the experiment [2] (m) looks
rather conclusive, the more so as al calculations were
carried out using the ab initio values, while the only fit-
ting parameter—substrate roughness scale |—seems to
be quite reliable from the viewpoint of experimental
conditions. In the calcul ations, the experimentally mea-
sured thermal conductance of the substrate (mylar film
coated with a layer of solid neon) was taken into
account. For comparison, the ripplon convective ther-
mal conductance restricted only to the interaction with
liquid phonons (R + R~— P process), asisthe casefor
the surface of bulk helium, is shown in Fig. 1 by the
dashed curve.

As is known, the equilibrium film thickness d is
related to the height above the level of bulk liquid by
d = 3 x 10°H-Y3, where both quantities are expressed
in cm. For this reason, the dependence of K on the film
thickness observed by Mantz et al. in [3] can be
explained qualitatively by formally replacing the height
H by (3 x 10%/d)? in Eg. (16). It should also be noted
that the fact that the momentum relaxation time
depends on the substrate roughness scale and on the
film height above the bulk liquid can be the reason why
the times observed in experiments with two-dimen-
sional atomic hydrogen [6] were much shorter than in
the experiments of Mantz et al. [2, 3].

In conclusion, let us discussthe validity of using the
concept of ripplon temperature. The point iswhat isthe
ratio between the rate of establishing equilibriuminthe
ripplon system and the rate of equilibrium breaking due
to theinteraction with phonons (one-particle elastic rip-
plon scattering by the surface inhomogeneities does not
affect the distribution function). The characteristic heat
transfer time from ripplons to phonons is mainly deter-
mined by the R + R —— P process and can be esti-
mated as T,, ~ R,Cg = 3 x 10707133 K133 5, where
Cr = 1.52 x 1072T*3 erg K- cm2 is the ripplon heat
capacity (coinciding with the ripplon entropy) and
R = 1.8 x 108T1R K22 cm?/erg is the thermal resis-
tance between the ripplon and phonon subsystems[11].
One can readily see that, in the absence of an externa
heat inflow and efficient relaxation mechanisms in the
ripplon system, the indicated process leads to the rip-
plon thermal distribution with temperature equal to the
phonon temperature (the phonon system is assumed to
be in equilibrium). Such a situation is redlized, e.g.,
when measuring the temperature dependence of surface
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tension in pure “He [13] and in the measurements of
thermal conductance of helium films [2]. As to the
experiments with atomic hydrogen [5], the time of
establishing thermal equilibrium in a two-dimensional
system is determined by the ripplon scattering from the
H atoms adsorbed at the helium surface [14]. For a
characteristic density of ~10'? cm of these atoms and
the temperature T =< 100 mK, thistime is 1, ~ 60 ns,
which is two orders of magnitude shorter than the heat
transfer time from ripplons to phonons. Thus, a two-
dimensional system is aso in thermal equilibrium in
this case, but its temperature can be different from the
phonon temperature.
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A. G. Lyapin, S. V. Popova, and R. N. Voloshin

PACS numbers: 64.70.Kb; 62.50.+p; 61.43.-j; 61.50.Ks; 99.10.Cd

The study of the chemical composition of borate glasses obtained in graphite ampoules under pressures of
3-7 GPa and at temperatures above 1700 K have shown the presence of a considerable (5-10 at. %) amount of
calcium that enters the glass, most likely, from the pressure-transmitting medium. As a result, the physical prop-
erties and structural characteristics that were initially assigned to boron oxide glasses with oxygen nonstoichiom-
etry (6th section in the article) relate in reality to triple glasses with a high calcium content.
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