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Abstract—In the quadratic approximation with respect to the amplitudes of capillary oscillation and velocity
field of the liquid moving inside a charged drop of a perfectly conducting fluid, it is shown that the liquid drop
oscillates about a weakly prolate form. This refines the result obtained in the linear theory developed by Lord
Rayleigh, who predicted oscillation about aspherical form. The extent of elongationisproportional totheinitial
amplitude of the principal mode and increases with the intrinsic charge carried by the drop. An estimate is
obtained for the characteristic time of instability development for a critically charged drop. © 2000 MAIK

“ Nauka/Interperiodica” .

Studies of capillary oscillation and stability of a
charged drop are motivated by numerous applications
[1]. The problem was reviewed in [1-7] and references
therein. However, most theoretical analyses are based
on the linearized system of fluid-dynamics equations.
Only recent studies have captured the nonlinear nature
of the phenomenon and provided essentially new infor-
mation about the mechanism of instability of a highly
charged drop and its capillary oscillation [2—7].

1. A charged spherical drop with anintrinsic charge
Q greater than a certain critical value becomes unsta-
ble, because the electrical repulsive forces exceed the
surface tension forces. At the close of the nineteenth
century, Lord Rayleigh developed alinear model of this
instability [8]. Since then, studies of the instability of a
highly charged drop and its generalizations have grown
into abroad area of research having important technical
applications.

From the perspective of classical physics, the ther-
mal motion of molecules gives rise to drop oscillations

of amplitude ~/kT/y about the equilibrium spherical
form, wherek is Boltzmann's constant, T isthe absolute
temperature, and y is the surface tension of the liquid.
Each mode is characterized by a specific critical value
of surface charge, and asupercritical chargeleadsto the
onset of instability. The stability of the drop with
respect to itsintrinsic charge Q is generally character-
ized by the so-called Rayleigh parameter W = Q/4m\R’,
where R is the drop radius. The second mode is the
most unstable, and the corresponding critical value of
the Rayleigh parameter isW, = 4.

In this paper, we solve Rayleigh’'s problem in the
guadratic approximation with respect to the amplitudes
of the velocity field and surface perturbation and deter-
mine the geometric form about which a subcritically
charged liquid drop oscillates.

2. Consider adrop of an inviscid, perfectly conduct-
ing liquid of density p characterized by the surface ten-
sion y and carrying a charge Q. The linear theory of
capillary oscillation postulates that there exists a time
moment that can be treated as t = 0, when the drop
geometry is described by the second mode of linear
capillary oscillation of a small finite amplitude € and
the velocity field is zero. The initial drop volume is
equal to that of a spherical drop of radius R. The prob-
lem is to determine the axially symmetric oscillations
of thedrop inthe case of an axially symmetric potential
velacity field in the drop.

We use the dimensionless variablesin which p =1,
y =1, and R = 1. The mathematical model of the prob-
lemisthenwrittenin spherical coordinateswith the ori-
gin at the center of the drop as follows:

Ay =0; U= V0O, 1)
A® =0; E =-V[b, 2
r — oo |[VP|— 0, (3)
r=0:[Vy| <o, 4)
0 %Y = 1+&(0,t)
4 andS Q; 9(r,0,¢)=M<O<Tn (5)
Epsq)<2n,
r=1+&(0,t): ® = congt, (6)
oy _ 08 10€0y
or at (20000’ ¢
2
pF-S VY Fe =By Fe= £ ®
t=0:r =1+&, +eP,(cosO), 9
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1 4
Po(W) = 5(30°-1), fdv =3m
\Y

(10)
V(r.0 1) = [D<r<1+s* +eP,(cos(@)),
[p<®<n 0<s ¢ <2m,
Y =0. (1)

Thisis aboundary value problem with the free sur-
facer = 1 + (O, t) and three unknown functions: the
potential ® = ®(r, ©, t) of the electric field outside the
drop, the potential Y = Yi(r, ©, t) of the velocity field
inside the drop, and the surface deviation & = (O, t)
from aregular sphere withr = 1.

The potentials ® and  satisfy the Laplace equa
tions (1) and (2) under the boundary and initial condi-
tions (3)—(8) and (9)—(11), respectively.

Both kinematic and dynamic boundary conditions
for the velocity field U, (7) and (8), contain nonlinear
terms. Condition (4) implies that U is bounded at the
center of the drop. In (8), A% is the difference between
the constant pressure components inside and outside
the drop, ¢ isthe electric pressure on the drop surface
[9, 10], and %y is the capillary pressure under the
curved drop surface [11].

It follows from (3) that the electric field E must be
bounded at infinity. The continuity of the tangential
components of E(r, t) at the charged surface of a con-
ductor means that the surface is equipotential (see (6))
[1Q]. The condition for the norma components of E(r, t)
at the interface is written in (5) in an integral form,
where n isthe outward unit normal to the drop surface.
The quantity £ in (9) is determined by (10), which

means that the volumes of the initial drop and a spher-
ical drop of unit radius are equal.

3. In dimensionless variables, the amplitude € of an
initial deviation from spherical form is measured in
units of the spherical drop radius. We treat € as a small
parameter and seek asolution to the problem as a series
expansion in integer powers of €, omitting the terms of
order higher than two:

b = q30+q:1+q>2+0(83), (12)
W = gy + Y, + O(e%), (13)
r=1+& &=§&+§&+0(d, (14)

o, 0P, 0&,00(e™); m=1,2; d, = O(1). (15)

The functions @, ), and ¢ are assumed to be of the
same order as their partial derivatives. Under these
assumptions, since the Laplace operator is linear, we
can use the expansions obtained in the Appendices to
split the problem (1)—(11) into problems of zeroth, first,
and second order [11] for the seven functions ®,, @,
W, and &, wherem=1and 2.
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In the zeroth approximation, the nontrivial relations
are (2), (3), (5), and (8). They contain the electric
potential, the capillary pressure, and the constant com-
ponent of the difference of pressuresinside and outside
the drop. Problem (1)—(11) reduces to one for the static
field ®y(r), with the known functions P, =0 and §, = 0:

2
quO:O’ El:_d;‘)or’
dr dr
f .f EWOD sn(@)dedp = Q,  (16)
=1
[ —— 00 ﬂ) —0,
dr

where g, isthe unit radia vector.

The solution of the problem is @, = Q/r. Using this
solution and formulas (1B), (2C), and (5D)—(10D) from
the Appendices, the first- and second order problems
are easily formulated. Thefirst order problem iswritten
as

Ay, =0, U, = V0@, (17)
A®, =0, E,=-V3b, (18)
r — oo [VO,| — 0, (29
r=0: |V <o, (20)
r=1-—— IDd ‘Ssin(@)dodp = 0,  (21)
-&Q =0, (22)
oy, _ 0§,
¥ TR (23)
0 o
i 200 06,Q) = 26480k, (20
t =0:&, = eP,(cos(@));
_1 2 (25)
P,(cos(©)) = §(3cos (©)-1),
W, = 0, (26)

The problem for the second-order quantitiesiswrit-
ten asfollows:

Ay, =0, U, = V0O, (27)
Aq)z = O, E2 = _V [q)z, (28)
rr— o |V -®,] — 0, (29)
r=0:|V- gyl <o, (30)
TECHNICAL PHYSICS Vol. 45 No.8 2000
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" o 0D, _ 0d;
=L ‘_II U Y2yt
or (31)
gg%qgggned@dq) =0,
ID
~8,Q = ~& 52+ &1Q, (32)
anz 2w1 _ 08, 08,0y,
El = 3t 3090 (33)
d 9P
T 20024 28,Q) = 28, + Ak,
1[@%5 1[13%5 Eiﬂ_a_qf_lm
“20or 0 20900 ~“t9rUot O
oD 59
28 - 28t + 58T+ 26, 20
g, Q0 ¢1+LBL"1D2_£HL"1D2
41 5,2 8nlor U~ gnlbe D’
2
t=0:&, = —%, (35)
Y, =0, (36)

where A, is the angular part of the Laplace operator,
with r = 1. The functions {; and @, are determined
from (17)—(20) in the following general form:

=y Col "Pr(c0s®), C, = Cy(t), (37)

m=0

_|:+Z

Fn = Fm(t), F = F(t).

At any moment, the deviation &, = &,(O, t) of the
drop surface is a single-valued continuous function of
cos@; therefore, it can be represented as a series in
terems of the orthogonal Legendre polynomias
{P,(cos®)}:

5 Pm(C0sO), (38)

= Z Z.(t)P,(cosO®). (39)
=0

To solve problem (17)—<(26), we have to substitute
(37)—39) into (17)—(26); use the orthogonality of the
Legendre polynomials, i.e., the fact that { P,(cos®)}
are the eigenfunctions of theangular part of the Laplace
operator in spherical coordinates (AqP(C0sS®) =
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-m(m + 1)P(cos®)); and formulate the Cauchy prob-
lem for a homogeneous system of ordinary differential
equations for the unknown functions C.(t), F.(t), and
Z.(t). By finding these unknowns and substituting them
into (37)—(39), we can write the stable solutions to the
first-order problem as

= gcos(w,t)P,(cosO), (40)

Wy = —22sin(w,t)P,(cos0), (42)

@, = eQcos(w,t)P,(cosO), (42
2

W, = 8—2W, w:%[<4. (43)

Substituting (40)—(43) and the obvious equalities

2

Pz(cose) —+ Pz(cosO)+ P4(cosO)

P,(cos@)
g—za@ E = §+7P2(cose)

into (31)—(34), we obtain

P4( cos0)

r=1-— J’ J’jSbzgsin@d@dq) =0, (31)
P,+&,Q = 2€2Qc032(w2t)
y [1 , 2Py(c0s®) | 18P4(cose)] (32)
5 7 35 ’
aa_ll:z_aa_iz = £w,siN(2,t)
(33)
9 [_ 1_Py(cosO) 27P4(cos@)}
5 14 35 ’
0 oP
224 Q0024 26,Q] - 26,- Aok
2 2
_ 82[Cc)52(002t) 9w, - ZZ%W +40 %
150; —56W+80 (34
+ %:os (w,t) 8 ,(c0sO)
2 9(2w5 — 21W + 20) w2
+ %os (w,t) >3 ,(C0os@).

The system including (27)—30), (31)—(34), (35),
and (36) is the reformulated second-order problem. It
can be solved in the same way as the first-order one.



1004

4. The solution obtained by substituting the result-
ing first- and second-order termsinto (12)—14) is

2
r=1- % cosz(wzt) + ecos(w,t)P,(cosO)

2
+ £ (X1 (X1 * X2) COS(@,t) + X2C0S(26,t))
© (44)

18
X P5(0080) + Z2&" (X3~ (X * Xa) COS(@3t)

+ X,€0s(2w,t))P,(cosd),
P,( cos@)

o = iZA/TIWH + ecos(w,t)
I

2
€
+ = (X1 + K= (X1 +X2) cos(w,t)

W,

P,( cos@)

+ (X2 + K)cos(2w,t) ) (45)

18
+ 38 (Xo+ 1= (Xs * Xa) cOS(4t)

+(Xa + 1) c0oS(200,1))

P4(cos@)}

€|j(1

ZD > sm(wzt)

1] ——%sn(oozt)r P,(cosO) +

+Gsin(20,t) 5 *P5(cosO) (46)

+ 18, 29(3

35"

_44-5W 23W-116 _36-5W
xl_ 14 1 x2 42 1 3= wi I

2sin(w,t) + Lsi n(Zoozt)% P,(cos@),

12+W Q’
Xe=3m0-wy VEaw

| = (9-2W).[2(4—W)
2(10-W)

OsW <4,

_2(26-5W)
C===%

20
7 il
The sign of the potential in (45) corresponds to the
sign of the drop charge. In the expressionsfor ® and
the terms that depend on time only are omitted.
The solution given by (44)—(46) is uniformly valid

for W < 4, because it does not contain any secular
terms or terms with small denominators. When the

K= Wy =2(4—W), ;=12(6—W).
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Rayleigh parameter W approaches the critical value W,

= 4 for the principal-mode instability, wf — 0in
(44)—(46) and the asymptatic character of the solution
isviolated. Thisfact determines the domain of uniform
validity of the solutions written out here. The case of a
highly charged drop with W — 4 was considered in
[2]. Formula (44) is identical with the solutions found
by using the Lindstedt—Poincaré and multiple-scales
methods [11].

5. Solution (44) has some interesting features that
have not been noted in [2-6].
Equation (44) of the oscillating surface contains

terms nonperiodic in time. The surface associated with
these termsis written as

« =1+ szAPz(cos(D) + 84BP4(COS@),

(47)

A= JA-SW o 18 36-5W

28(4—W) 3512(6—W)
and can be considered as the surface about which the
drop oscillates.

The equation of the surface of a prolate spheroid
with a small eccentricity 3 can be approximated by a
series in {P,(cos®)}. In the quadratic approximation
with respect to 3, this equation has the form

2
= b+ 25+ 2, (cos(9)),

where b is the semiminor axis of the spheroid. Such a
spheroid is the best approximation of the surface rif

1.27_ b[3_
b%“éﬁm- 1L 3 e°A.

These equations can be used to find the eccentricity
and semiaxes of the spheroid approximating the surface
defined by (47). Denoting the semimgjor axis of this
spheroid by a, we have

= g(J/3A+0(e%),

a-= 1+82§2'—A‘+O(£) A=

b=1+0(,
44 —5W
28(4— W)’

According to (48), even an uncharged drop with the
initial disturbance ~P,(cos®) oscillates about a spher-
oid of eccentricity B = 1.1g, which is close to the
dimensionless amplitude € of the initial disturbance. It
is clear that the eccentricity of a spheroid about which
adrop of aviscous liquid oscillates must exponentialy
decrease as the energy of the initial deformation dissi-
pates. In the case of a perfect liquid drop, the energy of
aninitial deformation is merely distributed between the
interacting modes.

Curves 1 and 2 in Fig. 1 represent the surfaces (47)
and (48) with € = 0.3 for a charged drop at W = 3.
Numerical calculations reveal that when € < 0.3, the

(48)

TECHNICAL PHYSICS Vol. 45 No.8 2000
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ellipsoid described by (48) well approximates the sur-
face defined by (47) about which the drop oscillates.
The accuracy of the approximation improves with
decreasing €. Theinfluence of W on the accuracy of the
approximation of a nonoscillating drop surface (47) by
the spheroid defined by (48) with € = 0.3 becomes
noticeable starting from W = 3. As ¢ decreases, the
value of W above which the approximation in (48) fails
increases, approaching the limit W = 4.

Curves 3 and 4 in Fig. 1 show the contours of the
limit deformations of an oscillating drop. The contour
that is the most prolate along the polar axis (curve 3)
representsthe geometry of thedrop att = T,m(withm=
0,1,2,...), where T, = 2.22 is the period of the second
mode of capillary oscillation. At the moments T,/2 +
T,m, the drop has the most oblate geometry, repre-
sented by curve 4.

Therelative elongation of the semimajor axis of the
spheroid defined by (48) is described by the function

3(g, W) = 1.5¢°(44 —5W)/28(4—W).

The graphs of this function are shown in Fig. 2 for
various values of €. It is clear from this figure that the
eccentricity of the spheroid defined by (48), i.e., the
extent of elongation about which the drop oscillates,
rapidly increases with W.

6. Even though solution (44) has a nonasymptotic
character when W = 4, it is interesting to compare its
behavior to that of the first-order solution for W — 4
as W approaches the critical value. Indeed, in the linear
approximation with respect to €, the surface equation

ro(e, W, 0,t) = 1+ ecos(w,t)P,(cos(®))
has the following limit form asW — 4:

limry(e, W, ©,t) = 1+¢eP,(cosO), (49)
W 4

where r represents the equation of the drop surface in
the first approximation with respect to €.

In this approximation, the drop has a prolate
nonoscillating form when W = 4. When the Rayleigh
parameter W dlightly exceeds the critical value W, = 4,
this form elongates exponentially in time; when W< 4,
the drop oscillates stably.

When the second-order terms are taken into account
in (44), we have the limit

2

lim (e, W, ©,1) = 1+€P,(cos(®)) -
w- 4 (50)
+ g%smz(h/é) P,(cos@) + 172821:2P2(COS@).

In thefirst approximation, asmall left neighborhood
of W= 4 isadomain of stability; in the second-order
approximation, it is a domain where the asymptotic
expansion is not valid. At nearly critical W — 4, the
second termin (44) grows with time, becoming compa-
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Fig. 1. Contours of possible forms taken by the drop.

)

1.0 4

0.6 |-

04r

Jl

1 2 3 4 w

Fig. 2. Dependence of the relative elongation &(g, W) of the
semimajor axis of the spheroid (48) on W at € = (1) 0.1,
(2) 0.2, (3) 0.03, and (4) 0.4.

rable to the preceding term in a characteristic timet ~
O(e77?) and exceeding it as t increases further, as indi-
cated by the last term in (50).

Water drops of about amillimeter in diameter can be
treated as low-viscous and well conducting [1]. For a
water drop (p = 1 g/cmd) of radius R ~ 10 cm, capil-
lary oscillations with an amplitude ~10® cm are char-
acterized by a dimensionless amplitude € ~ 107
Accordingly, the dimensionlesstimet ~ €2 ~ 3 x 10°.
In the dimensionless variables used here, the time unit
isty= ((PR®)/y)Y2 ~ 4 x 103 s. The corresponding phys-
ical time equals t; = tt;~ 10 s, which agrees with an
estimate obtained in [12] by using another method in
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the spheroidal approximation for an unstabledrop. This
isthetimeinterval within which the expansion (50) can
be used to describe the evolution of the surface geome-
try after the drop is critically charged. From physical
considerations, acritically charged drop must be unsta-
ble. Therefore, the value t; obtained can be interpreted
as an estimate for the time interval from the moment
when the drop is charged to the moment when the drop
becomes stable by losing a part of its charge.

7. The nonlinear analysis of capillary oscillations of
a charged drop performed to the second-order terms
inclusive revea sthat the time-averaged surface form of
an oscillating, subcritically charged drop of a perfectly
conducting liquid is well approximated by the spheroi-
dal surface defined by (48). The eccentricity of the
approximating spheroid is proportional to the initia
deviation amplitude and considerably increases the
intrinsic charge of the drop. The relative elongation of
the spheroid compared to the radius of an equivalent
perfectly spherical drop is proportional to the ampli-
tude squared of theinitial deviation, increasing with the
intrinsic charge.

A water drop one millimeter in diameter carrying
the critical charge changes its form according to (50)
withinaninterval of about ten seconds, whichiseasy to
observe experimentally; therefore, the effect can be
detected.

APPENDIX

A. Asymptotic Expansions of the Components
of the Normal to the Drop Free Surface
and Their Derivatives

At amoment t, the geometry of an oscillating drop
surface obeys the following equation written in spheri-
cal coordinates with unit basis vectors e, eg, and €

F(r,©,t) =0, f(r,0,t) =r-1-¢(r,0,1).
Using the well-known relation
_ VF(r, 61
[VE(r, 0, 1)’

we obtain the components of the normal vector n to this
surface and their derivatives with respect to the spheri-
cal coordinates:

1 -1/2

r=1 nr=[1+r—2g—ég} , Ny=0, (1A)
1 1 0

No = —F[l"'r—z'j%g}a—z (2A)

on, _ 1[14_12595 g}-yzng, (3A)
r
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90 30° FrcE
) (4A)
+ lcﬁﬁﬁ[l + lcﬁﬁ}_glz
rsﬂf’@Daez rzw b

The problem under consideration is solved in the
approximation in which the following asymptotic esti-
mates and expansions with respect to the small dimen-
sionless amplitude € of the initial drop deformation are
valid:

0¢ GE _
EDaO Py > 00, 1 = 1+¢,

= 1-E+&+0(e),

=l

L =1-28+382+0(eY,
' (5A)

1 - 13846824 0(e).

-

By virtue of (5A), (1A)—(4A) can be rewritten as
follows:

n = 1-3280 4 o, (6A)
no = — 95 +£95 + O(e), (7A)
&
%’Og +0(eY, (8A)
dng 0 E a E
30 —£ E >+ O(¢e ) (9A)

B. The Asymptotic Form of the Capillary Pressure
under the Curved Drop Surface

For agiven mean liquid surface curvature H and sur-
face tension coefficient y, the Laplace pressure distribu-
tion at the surfaceis determined as ¥, = 2H,. The value
of H can be calculated as 2H = divn. In dimensionless
variables such that y =1, we have 7§, = divn and

1 oA,

19(r°A) N
rsin@ o¢ -

2
r2or

1 (0AcSin®) .
rsin® 00

divA =

Since the problem is axially symmetric (n, = 0), it
holds that
~ 2nr on, 16nO No

S I TR cot®.

Substituting (5A)—(9A) into the last expression, we

TECHNICAL PHYSICS Vol. 45 No.8 2000
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have

R
Sy = 2-28 Py aecotG)

+ ZE[E + :@i ggcote} +0(e).

The unknown function & is sought in the form & =
&+ &+ O(e9), & ~ O(€), &, ~ O(e?). Hence,

By = 2-28;— D&, + 28,(E; + AgE) + O(e),

9.0
aG)Z + %cote)

(1B)
A =

where A, isthe angular part of the Laplace operator in
spherical coordinateswith r = 1.

C. Asymptotic Expansion of Initial Conditions

Let us derive the asymptotic expansion of integral
(10) over the drop volume at the initial moment. We
have

r=1+¢&, +¢eP,(cosO),

2nTr

L—ln Idv = Iﬂ'r sin©drdodd = —Ir sn©de

000

Irdu—

J’[l + &, +EP,()]dy,

(10)
3
2 = (1+z*)3f[1+ﬁpz(u)} i,
2= (1+80)°f| 1+ g Pa)
3 2 3
+ _P3(1) + O(e )}
(1+8,)°
or
_ § 82 3
2 = 2(1+£,) [1+5( )}+O(s),
2 1/3
1= @re)1e 3t |+ O]

2

=(1+z*)[1+5(1j—a*)2]
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Theresulting equation for & hasthe roots—&?/5 and
€2/5—1. Setting € equal to theonefor whichtheinitial

condition (9) can be written asan asymptotic expansion
in g, werewrite (9) and (10) in asimpler form:
2

t=0:r = 1+£P2(cosG))—%. (20C)

D. Expansions of Potentials and Related Quantities
in the Vicinity of an Unperturbed Drop Surface

The electrostatic potential ® on the surfacer =1 +
& can be expressed in terms of ® and its partial deriva-
tives on the unit sphere surface with the required accu-

racy as
r=1+¢&:
O = Pd(r,0,t) = P(1+&,0,t) = d(1,06,1)

+—(1 o, )¢ +1‘2—‘D(1 0, )82+ 0(%).

Using (12), (14), and (15), we rewrite this expres-
sion as

r=1+¢:
oP
@ = Oyt Putlig (1D)
®, 0P 0’®,
[¢2+zz 5Lt E —zf L+0(s3).

Now, the value of ® on the surfacer =1 + & equals
the sum of terms defined on the surface r = 1 with the
required accuracy.

Applying asimilar method and using (6A) and (7A),
wefind

r=1+¢:
VO = V| _ 1+KV¢1+516V¢°E
r=1
avqno VP, | 1 ,0°Vd, (2D)
+ VO, +&, +&, —
a 2 ar -1
+ erO(s3) + eeO(e3),
0D _ 3P Nod® [ 156652}
on "or 1 00 2lpeU

[aqa azq>+a_2¢f_q>}
or 6r2 2 6r3 r=1

r1-g+ 8- g ]
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oD g oo 3
* [ae *S5d00 Zarzae} +OE),
) (3D)
aCD %+‘L‘)1+Ea¢0_a—zl%
on ~|ar ar "ty 0000
pg 2% 0809 09,
o’ 9000  or
b, 0, 810700 1098,f0%,
08,00, _ 98, 0°D, 08,0P, 3
“3090 “1300r90 T 130 aelzﬁo(g)'

For§((r,0,9)=r=1+¢&(0,1);0<0<m0<sd <
213, we have
r’sin®
[h)

r’sin®

dS = ——dod¢ =
cosy (e
(1+ 28 + £°)sin®

10 f
~20pe0

dodd

dods,
+ O(eY) (4D)

dS = D+ 28, +28,+ &2+ %gég%inededcb,

where cosy is the cosine of the angle between the radial
unit vector e, and the normal n to the drop surface. The
zeroth-order termsin (1)—(11) are easily determined by
using (1D)—4D), (1B), and (12)—<(15). The complete
mathematical formulation of the zeroth-order problem
is given by (16). Using its solution, ®, = Q/r, we can
simplify (1D)—(4D) and write out the following
approximations:

r=1+¢:

®=Q+ (P -Q¢&), -, (5D)

0
+[0,-Qe,+ 8,52 +Ei0]  +0(E),

2
Q| 0P, 0",
4]_[{—& +28,Q+¢&,Q or2

+L[6&T
8l oJr |, -

(6D)

r=1

0P
—zzla—rl—szf}

1 0P, 3
1+8T[[a@1=1+0(8 )
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9 O 0P, , 0P, aq:l
o dS_DQ+{ar o 2&1
(7D)
oP> 98,00, O
+Elar2 ~3670 r:lgj@dd).

The expansions of the velocity potential g and its
partial derivatives on the drop surface are constructed
by analogy with (1D), and we have

oy,

P14 = [t bl | +O(E), (8D)

oy, 0
o © H SR } +O(E),  (9D)
r=1
0L oW _ 08,09, 3
aeae‘[aea Lfo(e)’
) o (10D)
2 _ __1|] Y¥1 3
(v’ = B0 R o
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Abstract—A time-independent one-dimensional model of the electron energy balancein the region of the mag-
netic filter of avolume plasma-based ion sourceisjustified. The local electron energy balance equation and the
steady density profiles of the plasma components are used to determine the transverse (with respect to the mag-
netic field) electron temperature profile, which is found to agree well with the experimental profile. The tem-
perature profile obtained analytically isthen used to refine the particle balance in a plasmawith two ion species
and, accordingly, to find the optimum conditions for the formation of an H/D~ beam and for extracting the
beam from the source. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

In[1], we proposed amodel describing the transport
of a plasma with two ion species across the magnetic
field in a steady volume plasma-based source of nega-
tive ions which is intended to inject ion beams into
cyclotron accelerators from the outside. Profiles of the
electric field and of the densities of the plasma compo-
nents obtained with this model allowed usto determine
the optimum conditions for the formation of an H/D~
beam. The cal culated plasma parameters were found to
agree qualitatively with the experimental data obtained
in multipole two-chamber ion sources with a magnetic
filter adjacent to the plasma electrode [1, 2]. However,
a qualitative comparison between the numerical and
experimental results turned out to be incorrect,
because, in simulations, we specified the experimen-
tally measured mean electron temperature in the first
chamber (where the plasma is created) and neglected
the electron temperature variationsin the second cham-
ber (in the region of the magnetic filter), whereas the
experimental data show that the electron temperature
depends on the magnetic and electric fields, as well as
on some other plasma parameters in the magnetic filter
region. The plasma electrons along the magnetic filter
may be cooled markedly, which leads to a more effi-
cient generation of negative ions via the dissociative
attachment of slow electrons to the excited gas mole-
cules.

The cooling of plasma electrons in the transverse
magnetic field of a volume plasma-based ion source
was studied in [3, 4]. However, the formuladerived in
those papers to describe the electron temperature vari-
ations is semiempirical, because the authors assumed
that the electron heat flux through the magnetic filter
is proportional to the electron flux itself. The propor-

tionality coefficient was varied over a broad range and
was determined by bringing the calculated profile of
the electron temperature as afunction of the magnetic
flux into coincidence with the relevant experimental
profile. The profile derived by Haas et al. [5] to
describe the spatial variation of the electron tempera-
ture along the magnetic filter is also semiempirical.
The constants characterizing this profile were found
from the corresponding experimental profiles of the
electron density, electron temperature, and plasma
potential. In the theoretical model proposed in [5], the
steady-state electron plasma density across the mag-
netic field was described by an exponentially decreas-
ing one-dimensional profile and the electron tempera-
ture was assumed to be a two-dimensional function of
the coordinates. However, a comparison between the
electron-energy relaxation length and the sizes of the
chamber of the ion source under consideration shows
that electron heat conduction equalizes the electron
temperature along the magnetic field. Consequently,
the electron temperature should be treated as a one-
dimensional function of the coordinate transverse to
the magnetic field.

In this paper, we apply the electron energy balance
equation and the density profiles of the plasma compo-
nents [1] in order to derive a steady-state transverse
(with respect to the magnetic field) electron tempera-
ture profile in a multipole two-chamber ion source.
Then, we use the temperature profile obtained analyti-
cally in order to refine the particle balance in a plasma
with two ion species and, accordingly, to find the opti-
mum condition for the formation of an H/D~ beam and
for extracting the beam from the source.

1063-7842/00/4508-1009%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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JUSTIFICATION FOR THE USE
OF A ONE-DIMENSIONAL ELECTRON ENERGY
BALANCE EQUATION

We analyze electron heat transport in a magnetic
field using the classical scheme of a multicusp two-
chamber ion source described in [1, 2] as an example.
The second chamber (the region of the magnetic filter)
isacylinder of radius R and length L;. A plasma elec-
trode with an exit hole is positioned at the end of the
second chamber and is aimed at extracting ion beams
from the source. The longitudinal profile of the mag-
netic field, which isdirected along the z-axis of acylin-
der, is bell-shaped. We neglect the magnetic field non-
uniformity and set the magnetic field B equal to its
mean value along a magnetic filter of length L; in order

for the magnetic fl UX(F Bdz to be conserved. We put

the origin of the coordinates at the entrance to the sec-
ond chamber, so that the region where the plasma is
created (the first chamber) corresponds to the negative
values of the ordinate z.

The time-independent electron energy balance
equation in the second chamber is generaly three-
dimensional. Under the condition that the energy of the
directed motion is much lower than the thermal energy,

meuslz < T, the energy balance equation has the
form [6]

%divqe +(NU) VT, + %neTediv Ug

1
om, (D)
+ Fone-reveo = 0,

where g, isthe electron hest flux, u. isthe directed elec-
tron velocity, n. isthe electron density, T isthe electron
temperature, m, is the mass of an electron, my, is the
mass of a gas molecule, and v, is the averaged (over
the relative vel ocities) rate of elastic collisions between
electrons and molecules.

Let us show that the electron temperature is a one-
dimensional function of the coordinates TJ(2). In a
weakly ionized plasma, the electron-energy relaxation
lengths along and across the magnetic field are equal

to[7]
T 2
Y
Be

17 03 dvel

where wg, = eB/mc is the electron gyrofrequency.

Estimates made for sources of the type under con-
sideration suggest that A, > R and Ay < L;. Conse-
guently, electron heat conduction equalizesthe electron
temperature along the magnetic field, and the local
energy baance across the magnetic field can be
described by equation (1).

VERESOV et al.

In equation (1), the directed electron velocity is
defined as

ue = ue|| + ued + ueta

_ V,(nTe)

Ugj = DgjEe)— Doy neie !

Vo(nTe) ©)
Ueg = beDED_DeD%!
e’ e
hxV(n,T
Uss = Dl E X ] + DT el

e'e

where h is the unit vector along the magnetic field and
Ugp Uet, @Nd Ugq are the directed-velocity components
along and across the magnetic field, respectively.

In a strong magnetic field, the electron transport
coefficients have the form by = €M, De = Ty /e,

Doy = €/Mge, Doy = Tebgg/€, b = eveolmewée, and
Dy =bTo/e

The electric field E is driven by a current flowing
through the magnetic filter when the plasma electrode
is held at a positive bias potential relative to the walls
of both the first and second chambers of the source. In
the central region of the second chamber, the conditions
Ep> Ejand Vn. > V|n, are satisfied for aplasmawith
two ion species such that the density of negativeionsis
comparable with the electron density. The electric field
causes negative ions with the temperature T, < T, to
accumulate near the chamber axis, thereby creating an
ion—ion plasma with aweak field E; ~ T/e in the axial
region [7]. Since thisfield is not strong enough to con-
fine the electrons, the radia electron density ng(r) is
nearly constant. An electron-ion plasma with a strong
ambipolar field E ~ T/e occupies the region near the
chamber wall; moreover, the plasma potential drops
preferentialy in a narrow charged sheath in the imme-
diate vicinity of the wall. Consequently, far from the
wall of the second chamber, we can neglect the contri-
bution to equation (1) of the velocity component Uy in
comparison with the contribution of ug.

In (1), the electron heat flux has the form
qe = qe|| + qet + qed!

5
ey = NeTebeyEy—5NeDey V) Te

et = _gTe[ neTebeDED + VD(neTeDeD)] (4)
5
- éne DeDVIIITe =- gTeneTeuet - % + gTqueDeDVDTei
5
Oead = _neTebed[h x E] + éDed[h X VD(neTe)]v
where gr. = (To/V ) (0V/0Ty) is the thermal diffusivity.
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For T, < 3 eV, the cross section o, for elastic elec-
tron—molecule callisions is independent of the electron
temperature [8]. In this case, the collision frequency is
proportional to the electron velocity, and, under the
assumption that the electrons obey a Maxwellian veloc-
ity distribution, the effective collision frequency hasthe

form [6] Ve = (4/3)0Ny, Ve, Where v, = (8T/Tmy) Y2
is the electron thermal velocity and n,, is the density

of the gas molecules. Accordingly, thethermal diffusiv-
ity isequal to g = 1/2.

Repeating the arguments regarding the longitudinal
and transverse components of the directed velocity, we
can also neglect the electron heat flux gg along the
magnetic field in comparison with the cross-field flux
Jeo- The components uy and g4 Of the electron vel ocity
and electron heat flux do not contribute to equation (1),
because, for a uniform magnetic field, we have O[h x
E], O[h x V(n,T.)] = 0. Hence, far from the wall of the
second chamber of the ion source, the electron energy
balance equation (1) is one-dimensional and the
directed electron velocity and electron heat flux are
described by the above expressionsfor ug(2) and g(2),
respectively.

PROFILES OF THE ELECTRON TEMPERATURE
AND OF THE DENSITIES OF THE PLASMA
COMPONENTS ALONG THE MAGNETIC FILTER

To determine the electron temperature from equa-
tion (1) requires a knowledge of the steady profiles of
the electron density and electric field in acurrent-carry-
ing plasma. Plasma transport across a strong magnetic
field is governed by heavy plasma ions rather than by
plasma electrons. Using the one-dimensional model
developed in [1] to describe the transport of a plasma
with two ion species across the magnetic field and tak-
ing into account the condition that the plasmais quasi-
neutral, we can obtain the following equations for the
densities of negative ions n_(x) and electrons n,(x) in a

source of H/D~ions;

*
ddn)z +a,n  —aynt = 0, (5

_B
N = =n_. 6
v (6)
Here, x =7/, n* =n_/ng no=n(x=0),

*Sun L b,
- deirsep il

SznMy Ls b, BO

zy—=-2 1+ X9+FE
al ySEDn_Ob+E0|:1 b_% y[l:|,
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B = S Y = Salk vy, Ny is the atomic density,
Ny, isthe density of the excited gas molecules, Syp

= [0 v isthe rate of associative detachment of elec-
trons from negative ions in their collisions with
H atoms, S, = [d VI3, istherate of dissociative attach-
ment of electrons to the excited molecules Hy(v"),
Sun = G vl is the ion-ion recombination rate, S =
[0 v istherate of electron detachment from negative
ions in eectron—negative-ion collisions, S, = OV} is
the rate of ionization of H atoms by electrons, E; isthe
electric field of a current-carrying plasma at the

entrance to the filter, and b, = e'viO/thoo,f31 are the
mobilities of positive and negative ions.

Equation (5) was derived in the approximation
dy/dx < Spdn_/dx and dIn(Sgp)/dx < din(n.)/dx. The
density of the excited moleculesis determined from the
bal ance between their production and losses:

r]Hznef Sy = nHz(V")VHZIbR, (7)

where ng is the density of fast electrons emitted from
the heated cathode into the first chamber, S, and v,,,

are the production rate of the excited molecules and
their mean directed velocity, and b = 5-10 is the num-
ber of collisions of the excited molecule with the wall
that still do not change the excited state of the mole-
cule.

Estimates show that the loss rates of the excited gas
molecules on the walls of both the first and second
chambers are higher than the rates of their quenching in
the processes of dissociative attachment (S,,) and ion-
ization (S) in the source plasma.

In afirst approximation, we assume that a,; and o,
are independent of both the electron temperature and
the x-coordinate. Then, we obtain from (5) and (6) the
steady profile of the electron plasma density:

-1

Nt (x) = exp(alx)[l—;’—j(l—exp(alx))} )

where we introduce the notation n} (X) = ny(X)/ng and
N = Ne(X = 0).

Accordingly, for a;x < 1, the electric field profilein
acurrent-carrying plasmais given by the expression
En(x) = Eo/n*(x) = Eg[1+ (a—ay)x]. (9

Here, Eg = 2(do— $o)/(2 + a,)L;, where ¢, isthe plasma
potential in the first chamber and ¢, is the potential of
the plasma electrode.

In the model proposed here to describe the electron
heat transport in the second chamber of a volume
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plasma-based ion source, equation (1) reduces to the
following equation for the electron temperature:

ay, AEP'VDZ D +033Er I 4020950
dx2 ytd “ydx dx

n d’In(n?
+ED11E” + 15233%0' d(x ) 0.29y——d—(—2-—) (10)
X

In(n*)~
+0.11y%%% =0,

T(x=0), Ef =Eeli/Tq A=
1.64, and D = 0.57wgmeLf /myTe,

Ignoring the electric field EX and the derivative
dn? /dx, we obtain the following solution to equation

(20):
Te(x) _ |:1_1_|: 2D :|1/2Xi|112.
Teo 2[2A+1
An analysis of eguation (10) shows that, for x < 1,
the electric field of a current-carrying plasma contrib-
utes to the electron temperature only in the region
where this field is maximum. At small values of the

argument x = 0, it is important to take into account the
electron density profile.

For a;x < 1, we can use expression (8) to obtain
from (10) the following equation for T, at x = O:

wherey = T(X)/ T, Tep =

Yo(X) = (11)

yd y AEpIyEF Dy + Cy (1+cxzx) =0, (12

where C = 0.38(a, —

041)0s.

1
0 02 04 06 08 1
X = Z/Lf

Fig. 1. Electron temperature profilesalong the source axisin
the region of the magnetic filter: (1) experimental profile,
(2) profile calculated from (11), (3) corrected profile (14),
and (4) corrected profile (16).

VERESOV et al.

This eguation can be transformed into thefirst-order
differential equation

rdyf _
CoxD ~

Cy2
(1 a(A+ D)
in which the second term on the right-hand side is a

small correction to the first term. Solving equation (13)
by the method of successive approximations yields

2D
2A+1

(13)

= X
y(x20) = ¥o(x) + Cop=i—s (14)
where yy(X) is defined in (11) and C, = C[(2D/(2A +
1))™Y2 + 3/2a,]/2(A + 1).

For x < 1, we can neglect the second derivative of the
function y in comparison with the leading-order term
D, in equation (10) and apply the method of successive
approximations to solve the equation

roycf
A0
g (15)
ek
+0.33—=" f[1+(a2—al)x]$3:—oly:o,

e0
where D, = D —0.29(a, — 01)eEoL/Te.

In this case, the electron temperature profile has the
form

1|:Pl 12 12
‘QDKD X}

y(x<1) = [1

0.08eE,L
A(a,—07)Te

We compared the calculated and experimental pro-
files Ty(x) for the following parameters of the plasma
and of theion source [2]: B=100G, Ly=5cm, R=
5cm, ny, = 10% cm=3, ny = 102 ecm™3, ng = 9 x

102 cem3, To=2¢eV, pp=4eV,and .= 1.25eV. Fig-
ure 1 shows the experimental (curve 1) electron tem-
perature profile and the analytic (curve 2) profile Ty(X)
calculated from (11). In a first approximation, we
assume that the parameters a, and a, are independent
of both the electron temperature and the x-coordinate.
We bring the profile ny(x) calculated from (8) into coin-
cidence with the experimental electron density profile
(seeFig. 2) toabtain a, = 3.3 and a; = 0.3. Substituting
these parameter values into formulas (14) and (16), we
determine the corrections to the electron temperature
profile (11), which are represented in Fig. 1 by curves 3
and 4, respectively.

Note that, for the above parameters of the ion-
source plasma, the conditions for the electron energy
relaxation Ay > R and A; < Ly and the condition

meu‘f /2 < T,aredll well satisfied. The directed electron

(16)

[1+ (a,—0)x]%
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02 04 06 0.8 1.0
X = Z/Lf

Fig. 2. Electron density profiles in the magnetic filter:
(2) experimenta profile and (2) profile calculated from (8).

velocity should be estimated from the maximum com-
ponent Uy in expression (3).

By virtue of the relationship B/y = 1.5, our model of
the electron heat transport across the magnetic field far
from the wall of the second chamber is one-dimen-
siona with afairly high degree of confidence. When the
associative detachment of electrons from negative ions
is enhanced (i.e., when B/y > 1 and n, > n_), the elec-
tronHon plasma expands from the wall toward the
chamber axis and occupies most of the volume of the
ion source [7]. In this case, the electron density
becomes two-dimensional and the one-dimensional
approach used here fails.

CONCLUSION

The one-dimensional model proposed here to
describe the el ectron energy balancein theregion of the
magnetic filter of a volume plasma-based ion source
allowed us to determine the electron temperature pro-
file along the source axis. The analytic profile agrees
well with the experimental one and makesit possibleto
refinethe rates of the elementary processesthat are sen-
sitive to the electron temperature and govern the equi-
librium density profiles (6) and (8) of the plasma com-
ponents.

In asecond approximation, equation (5) for the den-
sity of negative ions should be solved with the coordi-
nate-dependent coefficients a,(x) and a,(x). The solu-
tion to this equation,

-1

. ) ]
n* = F(x)gaz(x)F(x)dx+ 10,
A O

where F(x) = exp [ a; (x)dx, then enables us to refine
the density profile of negative ionsin the magnetic filter
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region adjacent to the plasma electrode. By controlling
this profile, it is possible to form ion beams with the
maximum current and to extract them from the source.

The above plasma parameters are representative of
ion sources of the type under consideration. Under the
conditions prevailing in these sources, taking into
account the electron-density and electric-field profiles
yields a small correction to the electron temperature
profile in the region of the magnetic filter. Specifically,
the variables ny(x) and T,(X) in the electron energy bal-
ance equation become independent of each other. The
electron density is determined from the model of the
transport of heavy plasma components across the mag-
netic field, under the assumption that the plasma is
quasi-neutral. In this case, electron temperature varia-
tions may substantially change the plasma density pro-
file.

If the plasma €electric field is strong (with an
increased potential ¢, in the first chamber and a
decreased potentia ¢, of the plasma electrode), then
the relation between the electron-density and electron-
temperature profiles becomes closer. An increasein the
plasma electric field raises the intensity of the electron
heat flux g (4), which isdirected toward thefirst cham-
ber (where the plasma is created) and is governed by
the directed electron velocity. As a result, the plasma
electrons are cooled more efficiently in the magnetic
filter region adjacent to the plasma electrode.
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Radiation
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Abstract—Numerical simulation of the melting and crystallization processes of monocrystalline silicon
exposed to the nanosecond radiation of a ruby laser was carried out with the kinetics of the phase transforma-
tions accounted for on the basis of Kolmogorov equations. A two-dimensional mechanism of nucleation and
growth of the new phase was invoked to describe the phase transitions. It was shown that the temporal depen-
dences of monocrystal overheating and liquid phase supercooling in the melting and crystallization stages,
respectively, are nonmonotonic and determined by the kinetics of the phase transitions. The maximum values
of the overheating and supercooling were ~100 K. © 2000 MAIK “ Nauka/Interperiodica” .

The melting and recrystallization processes of
monocrystalline silicon initiated by nanosecond laser
pulses have been studied in many papers (see, for
example, [1-4]). Generaly, the Stephan problem is
solved to clarify the main relationships of the effect of
laser irradiation. This approach is warranted for pro-
cesses deviating only dightly from equilibrium condi-
tions. However, as follows from experimental studies
[5-7] on irradiation of semiconductor surfaces by
nano- and picosecond laser pulses, phase transitions
occur far from equilibrium. In [8, 9], the simulation of
laser annealing of amorphous silicon layers takes into
account the nonequilibrium character of the processes
and is based on a consideration of the phase state of the
irradiated sample cell as a function of enthalpy and the
elapsed time before nucleation of the new phase.
Another approach [10] is based on solving the Stephan
problem for the nonlinear dependence of the phase
boundary velocity on temperature. However, problems
involving the kinetics of the new phase formation have
rarely been dealt with in these studies.

This paper presents amodel of melting and crystal-
lization of monocrystalline silicon irradiated by anano-
second ruby laser, which takesinto account the kinetics
of the phase transformations using Kolmogorov equa-
tions[11-13]. We previously used asimilar approachin
anumerical simulation of laser annealing of amorphous
silicon [14, 15], in which the crystallization process of
a highly supercooled melt is controlled by a three-
dimensional growth mechanism of aready available
nuclei. Here, it is assumed that both melting and crys-
tallization occur as aresult of homogeneous nucleation
through two-dimensional layer-by-layer growth [11,
12, 16-18].

Variation of the temperature of monocrystalline sil-
icon irradiated by nanosecond laser pulses is described

on the basis of the one-dimensional thermal conductiv-
ity equation

oT _ 0 oT
pe(M5: = a—x[k(x, T)&}

+S(x, T)—pL 22 M

ot otU

with the boundary and initial conditions

OT =0, T(X—=o0,1) =T,
0X|x=0 2

T(x,t=0) = T,

where p isthe density, c(T) isthe specific heat capacity,
k(x, T) isthe coefficient of thermal conductivity, L isthe
latent heat of phase transition, and T, istheinitial tem-
perature.
The heat sourceterm S, t) in (1) describes the heat
evolved due to absorption of the laser radiation:
wW(T)

S(x, t) = (1-R)a(x, T)T—

x (©)
X exp[—J'a(x‘, T)dx},

where R and a(x, T) are the reflection and absorption
coefficients, respectively, and W and T, are the energy
density and duration of the laser pulse, respectively.

The two last terms on the right-hand side of Eq. (1)
describe the capacities of heat sinks and sources in
melting and crystallization of silicon. Here, ¢(x, t) is
the fraction of the melt formed at point x by the timet
after melting begins and W(x, t) is the fraction of crys-

1063-7842/00/4508-1014%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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tallized melt at point x by thetimet after crystalization
begins; in this case, the condition ¢(x, t) + W(x, t) + y(X,
t) = 1 should befulfilled, where y(x, t) isthe fraction of
monocrystal not melted at point x by the timet. In the
theory of phase transitions, the fraction of new phase
formed is expressed in terms of the nucleation rate J(t)
and the growth rate V(t) [11, 12]:

t t

O(x 1) = 1—exp%ﬁp(r)b’va')dt} RO
| : d |

wheret; isthe time of the start of nucleation at point x
and (3 isthe form factor. The function J(t) is determined
by the nucleation mechanism. In this study, the kinetics
of melting and crystallization is considered in the
framework of thelayer-by-layer growth model [11, 13];
i. e, itisassumed that the growth of the new phase pro-
ceeds as ongrowth of successive layers. The formation
of each layer proceeds by two-dimensional growth of
nuclei (the exponent n = 2 in (4)), and the nuclel of a
new ith layer can emerge only in the crystallized
regions of the preceding (i + 1)th layer. In this case, the
expression for the nucleation rate has the form [11, 12]

2
_ o kT D Tao TmD
0 = Ny erafeeitrs ©

where N = Ny f(x, t), Ny is the density of atoms per cm?
at theinterface, and f(x, t) = W(x + a,t) +y(x + a, t) =
1-¢(x + a, t) isthe fraction of monocrystalline phase
of the preceding layer where crystallization centers of
the next layer can be formed.

During melting, centers of theliquid phase can arise
only in the crystalline regions of the layer and, in this
case, f(x, 1) = 1—¢(x, t) [12]; U isthe activation energy
for the transition of an atom through the phase bound-
ary; a is the interatomic distance (the monolayer
height); o isthe surface energy of the phase boundary;
AT =T-T,,for melting; and AT = T,,— T for crystalli-
zation.

The expression used for the growth rate hastheform

[13]
V(t) = a— ept- kTHl ptL- k'-T* ATTE} ©6)

where L* isthe melting heat per atom.

In the two-phase (transition) region, which includes
molten and crystalline silicon, the parameters of the
problem are defined as follows [14]:

a(X, t) = ¢(X! t)a|(X, t) +[1_¢(X1 t)]aS(X! t)v (7)
wheretheindices| and srefer to the liquid and crystal-
line phases, respectively.

Equation (1), in combination with (2)—(7), was
solved numerically by a sweep method. The shape of
the laser pulse was specified by the function sin?(mit/2t;)
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Fig. 1. Temporal dependence of the temperature of silicon
surface at a radiation power density of W = (1) 1.5 and
2 2 Jem?.

]
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Fig. 2. Tempora dependence of the silicon melting depth.
¢ =0.01 (solid curve), ¢ = 0.99 (dashed curve); (1, 2) same
asinFig. 1.

with 1; = 70 ns. The values of the silicon parameters
used in solving the problem are listed in the table.

In Fig. 1, the temporal dependences of the tempera-
ture of amonaocrystalline silicon surface are shown for
two values of the energy density, W= 1.5 and 2 Jcm?.
It is seen that at the early stage of heating, a narrow
peak is observed on the temperature curve. As follows
from the calculations, this peak appears as the silicon
begins to melt and corresponds to overheating of the
surface layer. The overheating before melting starts is
ashighasAT=100K (Fig. 3), both at W= 2 Jcm? and
W= 1.5 Jcm?. In thetime interval At < 1 nsin anear-
surface layer Ax = 0.075 um thick (Figs. 2, 5), nuclei of
theliquid phase arise, which at AT = 100K start to grow
at ahighrate (Fig. 4). Because of the large latent heat L
of the phase transition in silicon, formation of the melt-
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Fig. 3. Temporal dependence of overheating and supercool-
ing of silicon at the boundaries of the two-phase region ¢ =
0.01 (solid curve) and ¢ = 0.99 (dashed curve) ((1, 2) same
asinFig. 1).

]
0.4
X, Hm

Fig. 5. Depth variation of the silicon liquid phase fraction at
W=2Jcm? at varioustimest = (2) 59, (2) 61, (3) 62, (4) 64,
(5) 65, (6) 68, (7) 80, (8) 100, and (9) 133 ns.

ing nuclei and their growth causes a reduction in over-
heating at the forward boundary of the two-phase
region down to AT = 10K (Fig. 3), cooling of the adja-
cent crystalline regions (Figs. 5, 6), and a significant
reduction in the propagation velocity of the forward
boundary down to V = 2 m/s (Fig. 4).1 As the forward
boundary dlowly propagates into the sample bulk
(Fig. 5, curves 1-5), an increase in the melt fraction at
the surface and formation of the rear boundary of the
transition region occur; i.e., a continuous liquid phase

1 The condition used to define the position of the rear boundary of
the two-phase (transition) region is that the melting (crystalliza-
tion) processis considered finished if ¢ =0.99 (W =0.99) [8]. The
position of the forward boundary is defined by the condition ¢ =
0.01 (W = 0.02).
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Fig. 4. Temporal dependence of the velocity of advance of
the boundaries ¢ = 0.01 (solid curve) and ¢ = 0.99 (dashed
curve) of the two-phase region at W = (1) 1.5 and
(2) 2 Jem?.
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Fig. 6. Calculated temperature profilesat W = 2 Jem? for
timet= (1) 59, (2) 61, (3) 62, (4) 64 ns.

layer forms. Thus, at the initial stage of melting of
monocrystalline silicon, in time At = 5-6 ns, a molten
layer Ax = 0.07-0.08 um thick with a fairly narrow
transition region Ax= 0.015 umisformed at the surface
(Figs. 2, 5).

Further heating of silicon by laser radiation results
in renewed increases in overheating and the velocity of
forward boundary movement, both of which attain their
maximum values at this stage (Figs. 3, 4). Thus, at W=
2 Jem?, ATy =00 =80 K and Vly - ; = 9 M/s. At the
rear boundary, the overheating is somewhat higher,
ATy =000 = 105 K, and the velocity of the boundary
movement V|, - oo becomes equal to V|, - g1, remain-
ing so until completion of the melting process. As the
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7 6 5[4
3
2
\
1 1 1 ]
0.1 0.2 0.3

0.4
X, hm

Fig. 7. Depth variation of the fraction of crystallized silicon
at W=2Jcm?fortimet = (1) 136, (2) 139, (3) 142, (4) 145,
(5) 150, (6) 201, (7) 243, (8) 251, (9) 259, and (10) 268 ns.

melt moves deeper into the sample bulk and the influx
of light energy decreases, the overheating and the prop-
agation rate gradually decrease and, by the time the
laser radiation is ended, the ingress of melt into the
semiconductor bulk ceases and the two-phase region
remains immobile for At = 20 ns (Figs. 2, 4). For this
period of time, as a result of heat drain to the sample
volume, which is no longer compensated by the laser
radiation, the overheating vanishes completely and the
melt becomes supercooled by AT = 100K (Fig. 3) inthe
vicinity of the transition region and by 80 K (Fig. 1) at
the surface. With the onset of, and increase in, super-
cooling, the formation and growth of the nuclei of the
crystalline phase begins (Fig. 7, curve 8). The heat
release in the silicon crystallization process causes an
increase in temperature and the emergence of apeak in
the temperature profile within the two-phase region
(Fig. 8, curves 2-4). The temperature gradient pro-
duced in the melt at the forward boundary of the two-
phase region (W = 0.01) causes spreading of the transi-
tion region toward the surface, increasing its thickness

Silicon parameter values

PROCESSES
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Fig. 8. Calculated temperature profiles at W = 2 Jcm? for
timet = (1) 136, (2) 139, (3) 142, (4) 145, and (5) 150 ns.

to Ax = 0.075 um (Fig. 2), since the emerging nuclei of
the new layer are subjected to greater supercooling and,
consequently, their nucleation and growth rates are
higher than in the preceding layer. As more heat is
released from growth of the crystalline phase, the tem-
perature distribution becomes uniform (Fig. 8) and
supercooling at the forward boundary (¥ = 0.01) and
the rear boundary (W = 0.99) of the transition region
dropsto ~4 K and ~18 K, respectively. The velocity of
advance of the boundaries decreases to 3—4 m/s. The
advance of the crystallization region toward the sample
surface is accompanied by a minor temperature
increase (of ~2K); and the velocities V|y-¢99 and
Vg = g1 drop from ~3 to 2.2 m/s and from 4 to 3 m/s,
respectively. Only at thefina stage, when the thickness
of the trangtion layer becomeslessthan 0.05 um (Fig. 2),
do the supercooling at the rear boundary and the veloc-
ity V|y =099 iNncrease sharply (Figs. 3, 4). Thereason is
that the heat sources contained in a narrow layer with
Y > 0.5 areinsufficient to offset the heat which isbeing
removed to the sample bulk.

Parameters Crystalline Si Molten Si
p, glem?® 2.328 2.53-0.152 x 1073(T-T,;) [19]
c, JgK 0.844 + 1.18 x 1074T — 1.55 x 10°T2[19] 1.04
L, Jg 1787 [19]

1521 8.97

k, W/em K e T<1200K, pog T=1200K [20] 0.585[19]
R 0.35 0.72
a, cm™ 1578exp(T/493) [21] 106 [20]
U, ev 1.22[22]
o, erglcm? 300
TECHNICAL PHYSICS Vol. 45 No.8 2000
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Thus, the temporal variations of the overheating of
crystalline silicon and supercooling of the melt proceed
nonmonotonically and depend on the phase transfor-
mation kinetics. Maximum overheating and supercool -
ing values, both equal to ~100 K, are attained at the
early stages of melting and crystallization, respectively.
Formation of a continuous film of melt at the surface of
monocrystalline silicon takes 56 ns. The average
velocity of advance of thetwo-phaseregionis~8-9 m/s
for melting and ~3-4 m/sfor crystallization.
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Abstract—Parameters of the model atomic interaction potential are suggested to be determined by comparing
the experimental and analytical values of projective ion ranges. The parameters were found for the interaction
of Bi, Pb, Au, Yb, Er, Eu, Cs, Xe, Sn, Rb, Kr, Ga, and Cu ions with carbon and boron atoms. © 2000 MAIK

“Nauka/Interperiodica” .

The proper selection of atomic interaction potential
is of great importance in analysis and numerical simu-
lation of low- and medium-energy ion motion in a sub-
stance. The interaction potential must adequately char-
acterize elastic scattering while being easy to apply. In
[1], amodel interaction potential that basically satisfies
these requirements was proposed. It is written in the
form of screened Coulomb potential

_ lezezm—r/a, r<a,
= r Ep’
where Z; and Z, are the charges of an ion nucleus and

target atom, respectively; r isthe distance between col-
liding particles; and a is the screening radius.

It is assumed that the screening radius depends on
theion energy as

Vv(r) (D)

r=a,

a= aTFs_M/B. @)
This relationship provides an adequate description

of the experimentally found stopping power of ions
in elastic collisionsthroughout the energy range. Here,

arr = 0.8853a/(Z2° + Z2°)12, e is the charge of
an electron, and a, is the Bohr radius. The reduced
energy € is related to the ion energy E as € =
Emyare/(Z,Z,62(m + m,)), where m; and m, are the
masses of an ion and target atom, respectively. The
parameter [3 appearing in (2) is viewed as an adjusting
parameter.

In this work, we will try to estimate 3 for specific
ion-target pairs by comparing theoretical and experi-
mental values of projective ion ranges in a substance.

For interaction potential (1) with screening radius
(2), the stopping power of ionsis given by [1]

Sn(g) = -E/—;f(x(ﬁ)), ©)

where f(X) = X[(1 + X)In(1 + 1/X) — 1] and

X(¢g) = Bz

Figure 1 shows the stopping powers of ions s,(€)
calculated from (3) for three values of 3. It follows that
the stopping power depends on 3 only dlightly for € > 2.
Hence, resultsfor ion energies e < 2 are the most appro-
priate if 3 is determined by comparing the theory and
experiment.

Projective ranges will be estimated using results
obtained in [2]. In that work, elastic scattering of ions
istreated in terms of potential (1) and inelastic scatter-
ing is considered within the approximation of continu-

1072

10! 100

10' €

0
1073

Fig. 1. Stopping power vs. energy for model potential (1)
with screening radius (2) at = (1) 0.5, (2) 0.6, and (3) 0.7.
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ous deceleration with stopping power s,(€) = k./e,
where k is a dimensionless parameter. In the calcula-
tions, we will take into account the threshold character
of ion deceleration. This means that an ion will stop if
its energy € becomes less than the threshold energy €.
Thelatter isrelated to the energy of atom displacement
E4 [3]. In view of these assumptions, the projectiveion
range R,(€) can be represented in the form [2]

Ro(g) = Ro(g) — Hin(€) Ro(Ep),

. A (4)
Ro(€) = Ay(€) S b,
p 0 iZO
where
2
Ao(€) = ZB—“/E,
nmar, (1 + Q/2)

nisthe target atom density, Q = ykB2, y = 4mym,/(m, +
m,)?, and W, is the mean direction cosine of ion motion
at the instant its energy becomes less than g,

At € < 2, we can put N = 6 in representation (4); in
this case, the relative error of the ion range calculation
will not exceed 0.5%, according to [2]. In [2], Yy, Was

calculated by the Monte Carlo method. In thiswork, we
suggest an expression approximating the results of [2]:

Mn(€) = [1 +Hb16+ 1.6%2 4 3.653“252%025}
1

Theuse of (5) instead of the Monte Carlo expression
for W, introduces additional relative and absolute errors
into the projective ranges of no more than 0.1% and

5 A, respectively, throughout the energy range.

The coefficients b, in (4) arefound by solving the set
of linear equations with N variables

N

F]_+ bi"pi,j = 0 J = 1N, (6)
2

where

Emax

Fi = J—(}\o"'bo(l—()\o) )\o))(LO\OSIIZ) )\OS'/Z)ds

Emax

i i

Wi = (L)~ At )(L(Aoe"?) = Aoe"?) ke,

0

L(f) = IIOe(8 — 8")If(8')u(€", £
0 0

x p,(e" — €')de'de",

SHEIKIN et al.

b 2+Q
0 Q +y(1+my/my)/2'

v ey = 1[0 _Men e ﬂzaf;
W', €) 2% mlﬂ/;+%[+ml e}
1
pe(a—»s)-%?[%BQ , €"<kg,

yX(e")[X(e") +1]
e'[yX(e") + (1-€/e")]”
N Il a (1-y)e"<eg' <¢g",
a e>¢g", g¢<(1-ye".

pn(€" —= &) =

Let us briefly explain the physical meaning of the
functions involved in (6). The function p(e — €")
defines the probability density of the ion energy being
changed from ¢ to €" under inelastic deceleration,
py(e" — €') defines that of the ion energy being
changed from €" to €' under dastic collision, and (", €
is the scattering angle cosine of an elastically colliding
ion when its energy changes from €" to €'. The value of
€max 1S the extreme of the energy interval in which pro-
jective ranges are calculated.

According to (4)—(6), for an ion—target pair, the pro-
jective range depends on 3, which characterizes elastic
scattering of ions, and k, which describes inelastic
deceleration of ions. Assuming these parameters to be
unknown, wewill try to find them by contrasting exper-
imental and theoretical values of the projective ranges.
As a measure of discrepancy, we will take residue

B, K):

=RP(g) -Ry(B. K, si)} ’ 0

@R = Y[

i=1

where R, (g;) isan experimental projectiverange, o is
the standard deviation of the measured projective
ranges at an energy €;, Ny, iSthe number of data points,
and R(B, k, &) isatheoretica projective range [unlike
(4), the parameters 3 and k enter in explicit form].

The parameters 3 and k will be found from the min-
imum condition for the residue (3, k). Experimental
values of projective ranges will be taken from [4]. The
value of o; in [4] is defined as o; = max(14 A

0.05R5* (€))).

In order that the errorsinvolved in 3 and k be deter-
mined simultaneously with the calculation of these
parameters, we will make the following assumptions.
L et the discrepancy between cal culated and experimen-
tal results be random. Also, let random discrepancies
between experimental and theoretical ranges of ions
with an energy ¢; be distributed by the normal law with

TECHNICAL PHYSICS Vol. 45

No. 8 2000



THE DETERMINATION OF THE MODEL INTERACTION

the zero expectation and adispersion oiz .Then[5], Sin

(7) is a random quantity obeying the chi-square (x?)
distribution with the number of degrees of freedom
(Nexp — 1). The probability density for this distribution
is

l (Nexp_s)lz —S/2
e

p(S) = - S
2™V (Ng — 1)/12)
where I' (x) is gamma function.

The expectation of the random quantity Sis (Ne,,—1).
The probability that the random quantity Slies in the
interval 0 < S< S, isgiven by

Se
[p(s)ds = P. 9)
0

(8)

The tolerance ranges for B and k are determined
from the inequality (3, k)/S> < 1. Given P, S; isfound
from (9).

Figure 2 shows (B, K)/S> vs. k curvesfor different
ion-target pairs at P = 0.95. The value of B, is found
from the residue minimum for a given k and aso
depends on k. B, Vs. k curvesfor the pairsin Fig. 2 are
displayed in Fig. 3.

From Fig. 2, it follows that §B,, k) for Cu-C, Au—
C, and Rb-B pairsiswithin the tolerance range S, 5 for
kintheinterval of 0 < k< 0.1. For Au-C, the projective
ranges were measured for 0.0127 < € < 0.127. In this
energy interval, ions are decelerated largely because of
elastic collisions with target atoms; inelastic decelera
tion can beignored. Asaresult, B, K)/S> isvirtually
k-independent for this pair. For Ga-C, S(Byy., K)/Ss has
a minimum, which is more distinct here than in the
other pairs. For this pair, experimental data were
obtained for energies 0.142 < € < 2.12, which are larger
than for the other pairs. Accordingly, inelastic scatter-
ing processes are most significant in this case. As fol-
lows from Fig. 3, B, growswith k amost linearly. The
weakest 3,,(k) dependence is observed for Au-C.
Hence, it can be expected that (3 for this pair will be
determined with the greatest accuracy.

The k values obtained from the experimental datain
Figs. 2 and 3 (e < 2) are rough estimates. The exact
evaluation of 3 from these resultsthusrequiresthat k be
calculated with independent experimental or theoreti-
cal data. Theinequality S(B,y, K)//S> <1 holdsinawide
range of k. Hence, k can be determined with a not too
high accuracy. Therefore, we will take advantage of the
frequently used Lindhard’'s expression (see, e.g., [6, 7])
_.0.07932,%Z;%(m, + m,)**

(z°+ 2% mm,”

It is assumed that ¢ variesin the [1, 2] interval. In

(10), m; and m, are expressed in atomic mass units.

k

(10)
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Fig. 2. Normalized residue vs. k. lon-target pairs are
(1) Ga—C, (2) Rb-B, (3) Au-C, and (4) Cu—C.
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Fig. 3. Bopt Vs. K. lon—target pairs are (1) Ga-C, (2) Rb-B,
(3) Au—C, and (4) Cu-C.

Analysis[4] of 19 ion—target pairs similar to that illus-
trated in Figs. 2 and 3 showed that, under such condi-
tions, (10) provides the best estimate of kat £ = 1. The
associated value of k will be designated as k*. For
example, k* =0.0573 and 0.0541 for the Ga—C and Rb—
B pairs (Fig. 2), respectively. The corresponding values
of Byt K*)/Ss, as follows from Fig. 2, deviate from
the smallest ones insignificantly. Hereafter, the param-
eter B will be found from the minimum condition for
S(B, k*)/Ss Theinequality S(B, k*)/S> < 1 will be used
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Fig. 4. Normalized residue vs. 3. lon—target pairs are (1)
Ga—C, (2) Rb-B, and (3) Au-C. Circles denote the confi-
denceinterval for 3.

to estimate the tolerance range of . Figure 4 depicts
normalized residue S3, k*)/S> vs. B curves for three
ion—target pairs at P = 0.95. They look like quadratic
parabolas and have distinct minima whose positions
specify the desired parameter (3. The intersections of
the curves with the S, k*)/S> = 1 level are treated as
extremes of the tolerance ranges of B for the corre-
sponding pair. For example, for Ga—C and Au-C, the
allowable values of [ fall into the ranges 0.637 < 3 <
0.696 and 0.537 < 3 < 0.575, respectively, with a prob-
ability P = 0.95. Therelative error thus determined in 3
for the different ion—target pairs varies from 3.5 to
5.5%. Since this error is estimated approximately, we
will set it equal to 5% on average. Figure 5 compares
the experimental projectiveranges of Auionsin carbon
and theoretical values calculated by (4)—6) for three
B's. It is seen that all data points fall into the interval
bounded by the extreme curves for (3. At f = 0.556,
which corresponds to the minimum of (3, k*)/S;, the
calculation and experiment coincide within the experi-
mental error.

Thetableliststhevaluesof 3 for 19 ion-target pairs.
With regard for the estimated error, they are rounded
off to two significant digits. As follows from the table,
the values of (3 are close to each other and lie in the
interval 0.53 < 3 < 0.59, except for Ga and Cu ions.
These values were employed to calculate ion ranges by
the Monte Carlo method using the algorithm described
in[1]. Inthese calculations, the projectiveionranges R,
and their standard deviations AR, were determined. The

number of historieswas 10°. According to [1], therela
tive error in this case is no more than 0.3%. The calcu-
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Fig. 5. Energy dependence of the projective range of Au
ions in carbon. Error bars, experiment [4]. Calculation by
(4)—(6) at p =0.556, 0.537, and 0.575 isrepresented by con-
tinuous, dashed, and dotted curves, respectively.

lated values of R, and AR, listed in the table arein good
agreement with the experimental data. The maximum
absolute discrepancy AR, between them is 61 A
(300-keV Csionsin B). The associated relative error is
23% for this case. Recall that 3 was estimated using the
experimental data for projective ranges R, alone. The
coincidence of the calculated and experimental AR,
values supports the validity of 's for the ion—target
pairs considered. In addition, this fact strengthens the
selection of potentia (1) for simulating ion motionin a
substance.

The calculated results are well approximated by the
relationship

ARy _ [m 0.846
R, M1 +0.473./¢
From (11), therelative error AR,/R; is no more than
2% for ions with m/m, > 5 and energies between
0.01< € < 25. This relationship can be used for esti-

mating AR, when R, is calculated [for example, with
(4)—(6)] or known from experiment.

(11)

To conclude, a method for determining the parame-
ters of the model interaction potential issuggested. Itis
based on comparing experimental and calculated pro-
jectiveion ranges in amorphous substances. The poten-
tial parameters estimated for 19 ion—target pairs were
applied to calculate ion ranges by the Monte Carlo
method. Both the projective ranges R, and standard
deviations AR, are in good agreement with the experi-
No. 8
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Experimental ion ranges vs. those cal culated by the Monte Carlo method

Experiment | Monte Carlo Experiment | Monte Carlo
lon |Target| B kI(Ee\'/ [4] calculation || |4 Target| B kI(:;\'/ [4] calculation
Rp,A ARp,A Rp,A ARp,A Rp,A ARp,A Rp,A ARp,A
Bi B | 054| 20 | 180 30 | 177 32| Cs | B 055 | 20 | 165| 45 164 36
50 | 285 60 | 302 53 50 | 285| 65 | 290 61
100 | 440 90 | 459 78 100 | 450 | 110 | 465 93
300 |[1050 | 170 | 965 | 153 300 | 1180 | 262 | 1126 | 201
C | 053] 15 | 140 27 | 146 28 C 057 | 20 | 170| 43 176 41
40 | 245 37 | 256 48 50 | 290| 69 | 309 68
80 | 390 60 | 386 70 100 | 490 | 105 | 491 | 104
150 | 615 | 115 | 573 | 101 200 | 80| 152 824 | 164
Pb B | 055| 20 | 175 30 | 183 33 || Xe | C 055| 20 | 150| 30 165 38
50 | 310 70 | 312 55 50 | 290| 60 | 290 64
100 | 450 | 100 | 474 81 100 | 480 | 100 | 464 99
300 1050 | 200 | 997 | 157 300 | 1200 | 230 | 1108 | 210
C | 056 | 20 | 205 44 | 190 374 sSn | C 058 | 30 | 235| 45 228 54
50 | 315 60 | 322 60 50 | 310| 65 | 316 73
100 | 495 91 | 488 88 100 | 515 | 100 | 509 | 112
200 | 790 | 137 | 763 | 132 300 | 1300 | 260 | 1241 | 241
Au B |057| 20 | 200 50 | 193 36 || Rb | B 058 | 20 | 170| 45 172 44
50 | 330 70 | 328 59 50 | 325| 80 | 325 79
100 | 470 90 | 501 87 100 | 565 | 150 | 564 | 127
300 (1100 | 172 [1056 | 171 300 |1550| 320 | 1607 | 311
C |056 | 20 | 197 25 | 187 37 C 059 | 30 | 20| 70 | 233 62
50 | 315 47 | 318 61 50 | 330| 90 | 332 85
100 | 460 80 | 484 89 100 | 590 | 160 | 568 | 136
150 | 640 | 121 | 627 | 112 200 | 1077 | 270 | 1057 | 230
Yb B |05 | 20 | 180 40 | 180 36 || Kr C 058 | 30 | 206 60 | 227 61
50 | 310 60 | 310 59 50 | 320| 90 | 326 84
100 | 480 90 | 479 88 100 | 610 | 155 | 562 | 135
300 |1100 | 190 |1053 | 176 150 | 870 | 220 | 805 | 183
C | 055 | 20 | 176 35 | 175 36 || Ga | C 067 | 20 | 216| 52 222 65
50 | 295 59 | 300 60 50 | 415| 110 | 423 | 115
100 | 490 95 | 463 89 100 | 730 | 200 | 740 | 185
200 | 800 | 150 | 742 | 137 300 (2000 | 500 | 2111 | 442
Er C |058 | 10 | 135 48 | 129 28 || Cu | C 068 | 30 | 280| 90 | 301 88
50 | 310 9 | 329 67 50 | 430 | 130 | 440 | 122
75 | 421 95 | 421 84 100 | 785 | 215 783 | 200
100 | 500 | 105 | 506 99 200 | 1547 | 400 | 1509 | 342

Eu C |055 | 30 | 220 45 | 215 46

50 | 320 64 | 293 62

100 | 458 90 | 458 93

200 | 729 | 140 | 752 | 144

TECHNICAL PHYSICS Vol.45 No.8 2000
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mental data. This countsin favor of the selected model
potential and supports the validity of its parameters.
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Abstract—Results of a theoretical and experimental study of photoacoustic and electron—acoustic effectsin
solidswith internal stresses are presented. In the theoretical part, an approach to describing these effects on the
basis of a generalized concept of thermoelastic energy of a solid with internal stresses and the nonlinear Mur-
naghan model for the elastic part of itsenergy isdevel oped. Theresults of studying objectswith internal stresses
in the context of an integrated experimental approach incorporating the techniques of photodeflection and ther-
mal-wave and photoacoustic microscopy with piezoelectric recording of the signal arereported. It isshown that
asimilar approach allows one to detect the arrangement of the strained surface areas of the object and to eva-
[uate the extent to which its thermal and thermoelastic parameters are affected by internal stresses. The results
of applying this approach to a study of Vickers indentations in silicon nitride ceramics are reported. © 2000

MAIK “ Nauka/lInterperiodica” .

Internal stresses can radically change the properties
of materials[1]. In this connection, the devel opment of
methods for detecting them in different materials has
received considerable attention. At present, anumber of
methods are being used to tackle this problem. Among
these are primarily the optical method [2], the ultra-
sonic technique [3], X-ray [4] and neutron [5, 6] dif-
fraction, magnetic measurements [7, 8], Raman spec-
troscopy [9, 10], mechanoluminescence [11], detection
of thermal radiation from the absorption of ultrasonic
oscillations by the object being studied [12], and the
methods based on holographic interferometry [13-15].
These methods have shown their high efficiency in
solving problems of detecting internal stresses in dif-
ferent types of objects. At the same time, serious
restrictions are inherent in most of these methods due
to the origin of the corresponding physical processes.
The only exceptions are the last two methods, which
are based on fairly general physical principles and can
be applied to a wide range of objects. However, rela-
tively moderate spatial resolution is inherent in these
methods. In this connection, much attention has
recently been given to studying the possibility of using
the photoacoustic [16—26] and electron—acoustic [27-
30] effects to detect mechanical stresses in solids. An
important point to note when using either of these
methods is the conversion of the optical-radiation or
electron-beam energy to thermal energy with its subse-
guent transformation into acoustic energy owing to the
thermoelastic effect. Therefore, when considering the
photoacoustic and electron—acoustic effects, we may
disregard the details of the interaction of the optical
radiation and the electron beam with the material. In
fact, we may restrict ourselves in both cases to consid-

eration of the thermoelastic mechanism of generating
acoustic vibrations in solid-state objects. An important
advantage of thermoelastic generation of sound is its
versatility [31]. In this connection, the photoacoustic
and electron—acoustic methods for detecting internal
stresses may basically be regarded as belonging to a
small group of general-purpose methods that make it
possible to detect internal mechanical stresses in
objects of different origin.

A body of experimental datain support of this pos-
sibility has been aready obtained. The experimental
results obtained so far support the possibility of using
the photoacoustic and electron—acoustic effects to
detect internal stressesin metals[16, 17, 20, 21, 28, 30]
and in ceramics [17-19, 22-25, 27]. Theoretical mod-
els of the possibleinfluence of internal stresses on pho-
toacoustic and electron—acoustic signals have al so been
suggested. A model for generating photoacoustic and
electron—acoustic signals was proposed [20]; this
model explicitly relates the dependence of these signals
on stresses to the dependence of thermal materia
parameters on these stresses. The photoacoustic and the
electron acoustic effects were analyzed [26, 32] in the
context of anonlinear mechanical model of asolid with
regard for the possible influence of internal stresses on
the thermoel astic component of the energy of the solid.
This model yields correct estimates for the nonlinear
mechanical and acoustic parameters of solids and
makesit possibleto explain the photoacoustic and el ec-
tron—acoustic effects in ceramics with internal stresses,
in which a profound influence of internal stresses on
thermal parameters has not been observed [22-25]. In
this connection, the prime objective of thiswork is the
further theoretical and experimental study of photoa-
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coustic and €lectron—acoustic effects in solids with
internal stresses.

An experimenta investigation of the influence of
internal stresses on the photoacoustic and electron—
acoustic effects presents serious difficulties. They are
mainly related to the need to monitor alarge number of
different object characteristics during the experiments.
This includes, first of al, independent monitoring of
the thermal, elastic, and thermoelastic parameters of
the object. Furthermore, in these experiments, informa-
tion about the surface relief of the object is found to be
extremely useful, since it allows detection of strained
areas of the sample and, thereby, monitoring of the
arrangement of areas with internal stresses.

We turn to amore detailed consideration of the sub-
ject. We begin by analyzing the theory of the phenom-
enabeing considered. In [20, 26, 32, 33], the basic con-
cepts of the theory of photoacoustic and electron—
acoustic effects in solids with internal stresses were
generally formulated. In addition, the possible depen-
dence of the thermoelastic energy of the solid on strain
was taken into account [26, 32, 33]. This dependence
was chosen on the basis of theoretical analysis of the
influence of strain on the thermal expansion coefficient
of the solids [34]. At the same time, from general con-
siderations, the dependence of the thermoel astic energy
on strain can be represented in a somewhat more gen-
eral form taking into account the possible influence of
achangein the volume of the body under strain on this
energy. Such general representation of the thermoelas-
tic energy is used in this study. According to this
approach, the density of the thermoel astic energy of the
body can be represented as (correct to first order terms
of the strain tensor stemming from the influence of
optical radiation or an el ectron beam)

Wr = —yi(Uik — Ui ) AT, )

where vy, = Yol (1 + BoUi)di + B1Uid , Yo isthe coefficient
of thermoelastic coupling for an unstrained body, 3,
and 3, are coefficients determining the dependence of
thermoelastic coupling on the initial distortion,

_ 1ppui , du, 0udu
Uk = 0%, T ax | ax.ax
isthe tensor of overall strain in the body, U, isthe ten-
sor of initial strain in the body, AT=T - T,, and T, is
the ambient temperature.

Note that, for B, = 0, Eqg. (1) transforms into the
expression for the thermoelastic energy density used in
[26, 32, 33] while, for B, =3, =0, it transformsinto the
expression for the thermoelastic energy density of an
isotropic solid without internal stresses[35].

The Murnaghan model can be used to determine the
thermoel astic energy density of a strained solid, taking
into account nonlinear effects under deformation [36].

MURATIKOV, GLAZOV

In this model, the thermoel astic energy density is deter-
mined by the expression
2 3

| |
We = (A+2u>§—2ulz+(l +2m)§1 @

=2ml,l, +nl,,

where A and p are Lamé coefficients; |, m, and n arethe
Murnaghan constants; |; = Uy,

1
I, = é[(ukk)z_ulmulm];
and

1 3 1
I3 = :__3|:uikuilukl _éuikuikull + é(un)s]

Knowledge of the energy densities of a solid makes
it possible to set up the equation of motion for the com-
ponents of the body. In the context of nonlinear
mechanics [37], this equation can be written as

T PoAL;, ©)

where P, = % t.m i the Piola—Kirchhoff tensor; t,,,is
m

the stress tensor related to the internal energy of the
body W =W + W; by therelation t,,, = 0W/du,,; X, are
coordinates of points of the strained body; x, are coor-
dinates of points of the body in the initial unstrained
state; and p, is the density of the body in the initia
state.

Note that the coordinates of points of the strained
and unstrained body are related by the equation

Xi(X, Xo0 X3, 1) = X + Ui(Xq, Xp, X3)

(4)

+ AU (Xq, Xy, X, 1),
where U; are components of the vector of the initial
strain in the body; Au; are components of the vector of
the strain caused by the effect of optical radiation or an
electron beam on the body and superimposed on the
initial strain.

Further description of the problem depends on the
chosen system of coordinates x; or X;, which are
referred to as the Lagrangian and Eulerian coordinates,
respectively [38]. In the context of the current problem,
Eqg. (3) is written in the Lagrangian representation;
therefore, further consideration will be carried out in
this representation. Further solution of the problem
depends on the mutual arrangement of the optical radi-
ation or electron beam and the object. In this study, for
the sake of definiteness, the geometry of the problem
will be considered as shown in Fig. 1.

In its general formulation, the problem of acoustic-
vibration generation by a non-steady-state optical or
electron beam in the context of thermoel asticity theory
goes beyond the above-formulated statements, which

TECHNICAL PHYSICS Vol 45
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should be supplemented with an equation for non-
steady-state thermal-flux propagation in a solid. Basi-
cally, such an equation can be derived by the method
used, for instance, in [35]. However, in [35], this equa-
tion was derived in the context of linear elastic theory.
In nonlinear elastic theory, the difference between the
parameters of strained and unstrained objects should be
taken into account more precisely. Therefore, we will
dwell briefly on deducing the thermal conductivity
equation in the context of nonlinear elastic theory.

According to [35], the rate of heat generation or
absorption in a unit volume is connected with the
entropy density Sby the relationship ToS/ot. Therefore,
for an arbitrary volume element of the strained body,
the following equation is valid:

J’dVTaS

= —J’dlevQ +J'dVW (5)
where Q isthe vector of the thermal-flux density in the
solid with initial strains;, w is the energy density
released in the body owing to the effect of external
sources (optical radiation or €l ectron beam).

The entropy density of a strained body with regard
to theimpact of optical or electron-beam excitation can
be written as

S(R, T, t) = §(U, T)+AS(R, T, 1), (6)

where the vectors R and U are defined by the compo-
nents (X;, Xy, X3) and (U,, U,, Uy), respectively; S(U,
T) isthe entropy density of the body with initial strain;
and AS(R, T, t) isthe variation of the entropy density of
the body as aresult of an external excitation.

In its thermodynamic sense, the density of ther-
moelastic energy of the body (1) represents the varia
tion of the free energy density AF of the body. There-
fore, the entropy variation ASis given by

1= YiAUi, (7)

where Auik = Uk — Uik'
The entropy density S, of the body with initial strain

and given volume is related to temperature by the
expression

S = pCyInT, (8)

where C, is heat capacity of the body withinitial strain.

To transform the coordinates in equation (5) into
those of an unstrained body, we can use the relationship
pdV = pydV, [38], where dV, isavolume element of the
body in the unstrained state. In addition, it is necessary
to use the relation [39] between integrals over the vol-
ume for thermal fluxes in strained and unstrained bod-
ies

[avdivQ = [dVdiva, (9)
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Fig. 1. Geometry of sample arrangement: (1) is the exciting
radiation or electron beam; (2) is the sample.

where q is the vector of thermal-flux density per unit
area of the unstrained body.

The components of the heat flux g in a solid with
initial strains can be specified in the form [39]

0T
IkaXk

where K, is thermal-conductivity tensor of the body
with initial strains.
It should be noted that, according to the field theo-

ries of nonlinear mechanics [20, 39], the thermal-con-
ductivity tensor K;, generally has the structure

Kik = (Kodix + K Ui + Kol Uy), (11)

where the quantities K,, K;, and K, should be consid-
ered as scalar functions of the threeinvariants of theini-
tial strain tensor, temperature, and convolution of its
first derivatives with respect to coordinates with theini-
tial strain tensor [20, 39].

Using equations (5)—(10), as well as the outlined
rules, we can derive the thermal conductivity equation
for a body with initial strain in the starting coordinate
system, i.e., in the Lagrangian representation. On the
basis of the stated results, this equation can be obtained
from (5) in the form

g = K (10)

0AT aAw
PoCy - +voT U[(1+BoU )3y + BuUid =
(12)
_ i% 6ATD po
ox 0k gx, O p

Notethat all quantitiesin Eq. (12) are assumed to be
expressed in the Lagrangian coordinates corresponding
to the position of points in the unstrained body. The
influence of strains on the heat capacity of the body is
usually insignificant and is discussed elsewhere[40]. In
the second term on the |eft-hand side of equation (12),
the strains Ay, in this study are considered to be small.
Therefore, restricting ourselves to quantities of the first
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order of smallnessin (12), we may assumethat T O T,.
Density p in Eg. (12) can be determined (correct to the
terms of the first order of smallnessin theinitia strains
in the body) from therelationship p (1 - U,)p,. If, in
Eqg. (12), we set By =B, =0, p = py, and K, = K&, this
equation transforms into the well-known equation of
thermal conductivity for isotropic bodies [35].

The second term on the left-hand side of Eq. (12)
describes dilatation processes in a solid during defor-
mation. They are vital in the process of emission of
infrared radiation by solids under deformation [12] but
usually exert little influence on photoacoustic and elec-
tron—acoustic effectsin solids. Therefore, when consid-
ering the photoacoustic and electron—acoustic pro-
cesses in solids, thisterm is usually ignored.

According to the formulated conditions, the deter-
mination of heat fluxesis generally an intricate mathe-
matical problem. A further simplification can be carried
out on the basis of additional experimental data con-
cerning the behavior of thermal properties of amaterial
subjected to mechanical stresses. In [22-25], several
photothermal methods were used to show that residual
stresses only dightly affect the thermophysical proper-
ties of silicon nitride ceramics.

In this study, investigations of the influence of inter-
nal stresses on the photoacoustic effect are restricted
solely to silicon nitride ceramics. Therefore, according
to experimental results obtained in [22-25], we assume
that the appearance of internal stresses in the sample
does not result in a noticeable variation of the thermal
parameters. In addition, we assume that the exciting
radiation is time-modulated by a harmonic law and the
sample surface is irradiated uniformly. Then, if radia-
tion is absorbed in the near-surface region of the sam-
ple, the non-steady-state component of temperature
inside the sample will be defined by the expression

AT(zt) = AT 7', (13)

whereo = (1 +1) /w/2K , K isthermal diffusivity of the
sample, AT, isamplitude of the temperature oscillations
at the sample surface, and wisthe circular frequency of
modulation of the exciting radiation.

Knowledge of the temperature distribution in the
sample alows displacements of the sample surface
under the action of exciting radiation to be determined
from Eqg. (3) and the photoacoustic signal to be found
with a piezoelectric recording method. A detailed
scheme for these cal cul ations was described el sewhere
[26, 32, 33]. Therefore, passing over the details of the
calculations, we immediately present the net result for
a photoacoustic signal with piezoelectric signal record-
ing for the case when the thermoelastic energy of the
sampleis defined by Eq. (1). Then, for the photoacous-
tic signal V(w) in a sample with uniform initia strains
U; = ADx (AD are arbitrary coefficients characterizing
the strain in different directions), we obtain the foll ow-
ing result:

MURATIKOV, GLAZOV

V(w)
1+BoU,,+B,Ug
N1+ A’ [L+21U,, + (4m +n)U gl ¥

where Vy(w) is the photoacoustic piezoelectric signal
from the sample in the absence of initial strains[41],

= Vo(w) (14)

v ., _m ., _ n
'=—, m=—, n = —

2 2
PoCi PoC

andc = /%.

Equation (14) showsthat the dependence of the pho-
toacoustic piezoelectric signal on internal stresses
stemsfrom the nonlinear elastic and inelastic properties
of the medium. In deducing Eq. (14), no specia
assumptions were made about the nature of the interac-
tion of radiation with the material and, hence, thisresult
isalso valid for an electron—acoustic signal, provided it
is due to the thermoelastic mechanism. Note that, for
B,=0, expression (14) transforms into the correspond-
ing result for a photoacoustic signal obtained in
[26, 32, 33].

In the experimental part of thiswork, silicon nitride
ceramics were studied. The key feature of the experi-
mental approach isthe use of several photothermal and
photoacoustic techniques in combination with the opti-
cal deflection method [42]. This approach makesit pos-
sible to measure independently the thermal, elastic, and
thermoelastic parameters of the sample. In turn, the
optical deflection method isvery useful for determining
the surface relief of the sample, in particular, the posi-
tions of plastically deformed aress.

We studied experimentally the influence of internal
strains on the thermal and el astic parameters of samples
of silicon nitride ceramics that were indented using the
Vickers method. TheVickersindentation method isone
of the most reliable and reproducible methods for
inducing stresses and cracks in samples [43]. The gen-
eral structure of the region formed in the ceramics in
the vicinity of the Vickers indentation site is shown in
Fig. 2. Results of the photodeflection and photoreflec-
tion measurements, as well as the obtained thermal-
wave images of Vickers indentations in silicon nitride
ceramics were considered in detail previously [22-25].
Therefore, in this paper, only the optical deflection
images of regionsin thevicinity of Vickersindentations
are presented. A representative example of such images
isshownin Fig. 3. According to these images, the max-
imum surface deformation was attained in the immedi-
ate region of plastic deformation in the vicinity of an
indentation site. For instance, the surface deformation
amounted to 34 um for an indentation load of 196 N.
As for the surface-relief changes in the ceramics away
from the indentation site, they are related to surface
strain resulting from the formation of lateral surface
cracksin the ceramics during Vickers indentation [43].

TECHNICAL PHYSICS Vol. 45 No.8 2000



THEORETICAL AND EXPERIMENTAL STUDY

(b)

Fig. 2. Schematic representation of the impression and
crack system in ceramics: (1) are subsurface horizontal
cracks, (2) istheregion of plastic deformation, (3) areradial
cracks, (4) are subsurface medial cracks; () isthetop view
and (b) isthe cross section.

Fig. 3. Optical deflection image of the region of silicon
nitride ceramics near a Vickers indentation. Load is 98 N.
The image sizeis 500 x 500 pm.

In this study, comprehensive investigations of the
indentations were carried out by the photoacoustic
technique with apiezoel ectric signal recording method.
In particular, we studied both old indentations about
five years of age and new ones that were made several
days before the measurements. In Fig. 4, images of
both old and new indentations obtained by the photo-
acoustic technique are presented. First, we note that
these images are very similar in structure to those
obtained for Vickers-indented ceramics by the elec-
tron—acoustic method [27]. Thisresult supportsthe the-
oretical conclusion that the photoacoustic and elec-
tron—acoustic signals are formed by the same mecha
nisms.

2000
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Fig. 4. Region of silicon nitride ceramics near a Vickers
indentation. The image was obtained by the photoacoustic
method with a piezoelectric recording of the signal. Load is
98 N. Modulation frequency of exciting radiationis 113 kHz.
(a) isan old indentation; the image size is 240 x 320 um. (b)
isanew indentation; the image size is 380 x 400 pm.

At the same time, a noticeable difference in the
structures of the old and new indentations should be
noted. This difference becomes especially pronounced
if we superpose corresponding photoacoustic and opti-
cal deflection images represented in the form of con-
tour plots. Examples of such superposed images are
shown in Fig. 5. It can be seen that, for new indenta-
tions, the regions with maximum val ues of photoacous-
tic signals are positioned near the tips of radial cracks.
For old indentations, the regions with maximum values
of photoacoustic signals are appreciably closer to their
centers and correspond approximately to the intersec-
tion site of radial and subsurface |ateral cracks. We also
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Fig. 5. Superposition of two images of a silicon nitride
ceramic region in the vicinity of aVickers indentation; the
imageswere obtained by the photoacoustic and optical tech-
niques and are shown as contour plots. (a) and (b) are the
sameasinFig. 4.
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Fig. 6. Dependence of the maximum value of the photoa-
coustic signal (PAS) obtained by a piezoelectric recording
on the load value. Modulation frequency of exciting radia-
tion is 98 kHz. (®) correspond to old Vickers indentations.
() correspond to new Vickers indentations.
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note that the maximum values of photoacoustic signals
are somewhat higher in the latter case.

These features are presumably explained by the fact
that gradual stress relaxation occurs with time in the
vicinity of radia cracks. At the same time, near the
intersection site of radial and subsurface lateral cracks,
the latter gradually develop and approach the surface.
Thisis consistent with the well-known result for silicon
nitride ceramics. under the effect of stresses, the
motion of dislocations does not occur in its volume; at
the same time, a noticeable motion of the didocations
over the fracture surfaces can be observed [44].

To analyze this subject in greater detail, we studied
the dependence of the maximum value of the photoa-
coustic signal (PAS) near the tips of both types of
cracks on the indentation load. The results of these
measurements are shown in Fig. 6. They show that, as
the load increases, the photoacoustic signal at first
grows and then gradually level s off. This dependence of
the photoacoustic signal may be related to the fact that
an increase in the crack length promotes an increase in
stresses at its tips [45]. Therefore, under a certain
indentation load, the stress at the tips of the cracks
reaches a limiting value corresponding to the ultimate
strength of the material. After that, afurther increasein
stresses becomesimpossible and the photoacoustic sig-
nal levels off.

Expression (14) and the data shown in Fig. 6 alow
estimation of the upper limit values of the parameters
Bo, By, I, m, and n. It should be taken into account that
the maximum possible strains in present-day ceramics
that do not result in their failure meet the condition
Ujnax < 1% [46]. Then, in order to explain the variation
in the photoacoustic signal at alevel of 10% according
to Eq. (14), we should assume that B, (3 ; 010 and I,

m, and n < 10poc|2 . Theoretical estimation of the coef-

ficient B [34] yielded a value on the order of unity.
However, only metals were considered [34]. Asfor the
guantities|, m, and n, the values obtained from estima-
tions with Eq. (14) are in the correct range of the Mur-
naghan parameters [36]. At the same time, Eq. (14)
makes it possible to explain qualitatively the difference
in the magnitudes of photoacoustic signals observed
near the tips of the radial and subsurface lateral cracks.
For subsurface lateral cracks, the principal component
of the strain tensor that contributes to the photoacoustic
signal isthe component Ug,. For radial cracks, the prin-
cipal strains near the crack tips are related to U,; and
U,,. The strains U;; and U,, aso result in strains of the
Us; type, but they are related by the Poisson ratio. The
Poisson ratio for silicon nitride ceramics is approxi-
mately equal to 0.26 [44]. Therefore, according to
expression (14), the strains near thetips of radial cracks
exert somewhat lessinfluence on the photoacoustic sig-
nal compared with the case of the subsurface lateral
cracks.

TECHNICAL PHYSICS Vol. 45 No.8 2000
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Thus, the theoretical and experimental results

reported here show that the photoacoustic and elec-
tron—acoustic effectsin solids with internal stresses can
be described in the context of the nonlinear theory of
elagticity and thermoelasticity. An important advantage
of the photoacoustic and el ectron—acoustic methods for
detecting internal stresses is their versatility, since,
according to the presented theory, their internal-stress
sensitivity is based on the general linear elastic proper-
ties of solids.
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Abstract—A model has been devel oped to cal cul ate the growth parameters of silicon filmsin diode- and triode-
type PECVD reactors and to analyze the factors affecting the deposition of silicon-containing radicals. Mech-
anisms of the effect of diluting silane with molecular hydrogen on the film growth process have been explained.

© 2000 MAIK “ Nauka/lnterperiodica” .

INTRODUCTION

One of the most widespread methods of growing
hydrogenated amorphous silicon films is the technol-
ogy based on deposition from the gas phase of silicon-
containing radicals produced by the decomposition of
silane by an RF discharge plasma in PECVD reactors.
At present, various types of such systems are used. In
one of these, the diode system, the substrate serves as
one of the electrodes. In another system, belonging to a
numerous class of systems with remote plasma and
usually called a triode system, the substrate is placed
outside the plasma discharge (PECVD reactors). This
system was proposed and thoroughly investigated in
[1]. By increasing the growth rate and film quality
through optimizing the parameters of PECV D reactors,
significant technological advantages can be attained.
Therefore, various models are being proposed, which,
with differing degrees of detail, describe the processes
in the growth chamber and allow improvements to be
made in the reactor design.

The first comprehensive model of the growth pro-
cess of hydrogenated amorphous silicon film was pro-
posed in[2].

A rather simple and effective model developed later
[3] is suitable for making prompt estimates of all basic
process parameters with sufficient accuracy. Apart from
silane (SiH,), 12 magjor chemical components of the
mixture are included in this model: SiH,,, n = 1-3; H;
Hy; Si,H,, n = 3-6; SigHg; Si,Hg; and Si,HE* (aster-
isks denote the excited electronic state). Recently, a
similar model but with a different set of chemical com-
ponents and a much more elaborate presentation of the
electronic subsystem was proposed [4]. The authors
carried out quite detailed measurements of the system
parameters and provided the experimental data neces-
sary for verifying the models.

In the framework of the model proposed in [3], the
authors carried out a computational investigation of the
physical and chemical processes occurring in a purely
silane plasma of a diode reactor and performed a
detailed analysis of the role of various components and
the effect of the system parameters on film growth for
major operating regimes. It was found that, at low pres-
sures, molecular hydrogen accumulatesin the chamber,
so that silane ceases to be the only carrier component.
In addition, in practice, atechnology based on diluting
silane with hydrogen is often used, which saves silane
and makes the production of silicon films ecologically
cleaner. Under these conditions, the model of [3] is
inadequate.

In this study, a model that takes into account the
changes in silane concentration during film growth is
presented. Transport due to diffusion was determined
using, instead of fixed coefficients, those calculated by
Wilke's formula representing a first approximation of
diffusion in a multicomponent medium. It has been
shown that further elaboration of the description of dif-
fusion processes does not improve the accuracy of the
calculations of the component fluxes onto the film sur-
face. Calculations of the plasmadischarge were carried
out using a fluidic model [5] affording a means of cal-
culating electron densities. Expressions have also been
obtained for the rate constants of reactions initiated by
electron impact in silane-hydrogen mixtures. Hence,
the processes in reactors could be studied in a wider
range of parameters and the processes taking place in
silane diluted with molecular hydrogen could be simu-
lated. The proposed model describes the processes in
triode-type reactors with the discharge zone some dis-
tance away from the substrate. Finally, in thiswork, the
effect of the reactor volume, which in ailmost every real
installation does not coincide with the discharge zone
volume, has been accounted for in a correct manner.

1063-7842/00/4508-1032%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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MATHEMATICAL MODEL

In the proposed model of a PECV D reactor, the gas-
phase processes in its chamber are described by one-
dimensional equations of chemical kinetics, in which,
asestimated in [3], only transfer processes by diffusion
are taken into account:

on _ 9y 9ng
at ~ oxTaxO

Here, n; isthe number density of theith component and
F; is the source term describing chemical transforma-
tions (for more detail, refer to [3]). The effective diffu-
sion coefficient of theith component D; is calculated by
Wilke'sformula[6], commonly used in practical calcu-
lations of multicomponent gas mixtures:

+Fi. 1

-1
Ny

Z NJ/Dyi | )

k =1,
k#1

D; = (n—n)

where n isthe total number density of the mixture.
The ambipolar diffusion coefficient D,; is calculated

by the formula of the molecular kinetic theory of gases
[7] with use of the Lennard—Jones 6-12 potential

/\ITS/Zuki C_I'T']2
po Qi (Ts) S
Here, W = mm/(m, + m) is the effective mass of the

kth and ith species, m isthe molecular weight of theith
species, 0y, = (0, + 0;)/2 isthe effective collision diam-

eter, Ty, = KT/g,; isthe characteristic temperature, €,; =

D, = 0.002628 A3)

JEE; isaparameter of the potential for intermolecular
interaction (potential well depth), k is the Boltzmann

constant, and Q""" (T ) is a reduced Q-integral of

collisions for mass transfer normalized by the Q-inte-
gral of the model of hard spheres. Values of the Ty
function for awide range of characteristic temperatures
Ty can befoundin monograph [7]; inthe calculations,
approximate formulas given in [8] were used. Values of
the Lennard—-Jones potential parameters o; and €; bor-
rowed from [9] are given in Table 1.

In [10], experimental determinations of the ambipo-
lar diffusion coefficients of silyl in silane and molecular
hydrogen were carried out and found to be equal to
140 + 30 and 580 + 140 cm?/s, respectively, at the tem-
perature 320 K and pressure 1 torr. Under these condi-
tions, formula (3) gives the values of 111 and 536 cm?/s,
respectively, in good agreement with measured data.

To finalize the formulation of the problem, we need
to know the dependence of the rate constants of chem-
ical reactionsinitiated by an electron beam on pressure
p and the interelectrode separation |. To define this
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dependence in such away asto circumvent calculations
of the corresponding el ectron temperatures, it was sug-
gested in [3] to use the following relation between the
reaction constants k, and the ionization constants k;:

€ /€

klke = (ki) ", @

where g, and ¢; are the thresholds for the chemical reac-
tion and ionization, respectively [11], and the super-
script “0” refersto certain conditions for which the val-
ues of the constants are known (bel ow, these conditions
arecaled “basic”).

Then, assuming that the plasma as a whole is neu-
tral, that the withdrawal rate of electronsis equal to the
withdrawal rate of ions (mainly SiH, ions), and that

the carrier mixture consists of silane and molecular
hydrogen, the following expression can be obtained
using formula (2):

0
ki _ s,
Kk’ ntOnSiH4
0 0 0 ;0 02 ®)
(Ns,/Dsn, sh, * N,/ D, si,) uln _
(Nsi,/ D, sim, + Ny, /Dy, g,) HI D

Here, n, and ntO are the numerical densities of the mix-

ture under present and basic conditions, respectively.
For the basic conditions, a silane-hydrogen mixture is
chosen with partial hydrogen and silane pressures

pf.z = ng4 = 0.125 torr at the temperature T° = 520 K

and the interel ectrode separation |° = 2.5 cm, the reason
being that the constants for these conditions were deter-
mined in [2].

Table 1. Parameters of the Lennard—-Jones potential

Component o, A &i/k, K
SiH, 4.084 207.6
SiH, 3.943 170.3
SiH, 3.803 133.1
SiH 3.662 95.8
H 25 30.0
H, 2.915 59.7
SijHg 4.828 301.3
Si,Hg 4.828 301.3
Si,Hg" 4.828 301.3
SiHs 4717 306.9
Si,H, 4.601 312.6
Si,Hj 4.494 318.2
SigHg 5.562 331.2
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Table 2. List of chemical reactions and reaction constants

Reac-

) . Constants*,
tion Reactions cm3ls

no.
Rl |SH,+e—» SiH;+H 3.000 x 1071
R2 |[SiH,+e—= SiH,+2H 1.500 x 10710
R3 |SH,+e—>SH+H+H, 9.340 x 107%?
R4 |SH,+e— SiH,+H, 7.190 x 10712
R5 |H,+e—2H 4,490 x 10712
R6 |Si,Hg+e—= SiHz+SH,+H |3.720x107°
R7 |Si,Hg+e— Si,H,+2H 3.700 x 1071
R8 |SH,+H — SiH;+H, 2,530 x 10712
R9 | SiH,+ SiH, —» Si,Hj 1.000 x 107
RlO S|H4 + S|H —— SizH3 + H2 1700 X 10_12
R11 | SiH,+ SIH — Si,Hs 2.500 x 10712
R12 | SiH,+ Si,H; —= SiHg + Si,Hg | 5.000 x 1073
R13 S|H4 + Si2H4 —— Si3H8 1000 X 10_10
R14 |SiH;+H —= SiH, + H, 1.000 x 10710
R15 S|H3 + S|H3 —— S|H4 + S|H2 1500 X 10_10
R16 S|H3 + S|H3 — SIZHE* 1000 X 10_11
R17 S|H3 + Si2H5 —— S|H4 + SizH4 1000 X 10_10
R18 | SiH3+ Si,Hs —> SigHg 1.000 x 107
R19 | SiHz+ Si,Hg —= SiH,+ Si,Hs | 3.270x 10712
R20 |SH,+H —= SiH+H, 7.960 x 10713
R21 | SiH, + Si;Hg — SigHg 1.200 x 10710
R22 Si2H3 + Hz —— SizH5 1700 X 10_12
R23 | Si,H, + H, + SiH, + SiH, 1.000 x 10710
R24 | Si,Hs+H — Si;H,+H, 1.000 x 10710
R25 | Si,Hg+H — SiH, + SiH; 7.160 x 10712
R26 Si2H6 + H —— Sisz + H2 1430 X 10_11
R27 | Si,Hf — Si,H,+H, 5.000 x 106 st
R28 | Si,H§ +M —> Si,Hg+ M 1.000 x 10710

(M, aspecies calliding with Si,Hg )

R29 | Si,Hi* — SiH, + SiH, 2.300 x 107 st
R30 | Si,Hi* — SiH,+H, 2.300 x 10" st
R31 | SigHg+H — Si,Hs + SiH, 2170 x 10711
R32 Si3H8 + S|H3 E—— §4H9 + H2 1000 X 10_11

* Dataaregiven for theinterelectrode separation 1°=25cm, partial
pressures of molecular hydrogen and silane p°® = 0.125 torr, and
temperature T = 520 K.

Other finalizing relationships for system (1) are
boundary conditions (3) accounting for a concentration
jump near the deposition surface, which, under the con-
ditions specified above, can be of considerable

GORBACHEYV et al.

magnitude:
on _ s
ia-)z - 2(2_Si)ni' (6)

Here, 0/0x is a norma derivative at the outside of the

surface, ¢, = 2,/2kT/Tim; isthethermal velocity, and

isthe deposition coefficient of theith species. Values of
these coefficientsaregivenin[2]: s =0.15for SiH; and
Si,Hs; 5 =1for SiH, SiH,, Si,H;, and Si,H,; and5=0
for al other components. The electron density in the
interelectrode gap is calculated in the fluidic approxi-
mation using a model described in detail in [5]. In the
simulations, it is assumed that the hot electrons causing
dissociation are available only in theinterel ectrode gap.
Away from the gap, the energy of electrons diffusing
from the discharge zone drops exponentially and
becomes insufficient for initiating chemical reactions.
In this sense, a technological system in which the sub-
strate is outside the discharge zone can be considered as
a system with remote plasma.

For numerical solution of this problem, a method
described in [3] was employed.

Basic chemical reactions and their rate constants are
listed in Table 2. In addition, silane and disilane pyrol-
ysis reactions are taken into consideration, which, asis
proved by the calculations, make an insignificant con-
tribution to the total chemical balance.

-D

2. ANALYTICAL RESULTS

Asymptotic analysisbased on the difference of scale
of different processes gave some analytical formulas
and an explanation of the interrelationship between
conditionsin the chamber and various process parame-
ters. In [3], such relationships are given only for the
diode system, whereas in this work, such an analysis
has been made for the triode system aswell. The entire
calculation area 0 < x < L was divided into two zones:
0<x<I, wherethe density n. of electronsinitiating the
chemical reactions was taken equal to that in the inter-
electrode gap, and | < x < L, where plasma s penetrat-
ing, but the energy of its electrons is not enough to ini-
tiate the reactions. It is assumed that in the latter zone
of sized =L —1, only monomolecular reactions or reac-
tions involving molecular collisions are proceeding.

Estimates of basic processes similar to those in [3]
produced the following simplified equation for the
behavior of silyl:

2 2
Dgn,d" nNgp,/dX" = 2kgNyNgy, — KeoNg,Ns s (7)

wherek; isthe constant of the ith reaction (i isthe reac-
tion number in Table 2); condition (6) with adeposition
coefficient sgy, = 0.15 istaken as the boundary condi-
tionsfor this equation.

A corresponding analysis for atomic hydrogen,
which isthe mgjor initiator of silyl production, leadsto
TECHNICAL PHYSICS Vol 45
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the following balance equation in the discharge region
O<x<l:
—Dpdny/dx” = 2kyn gy, —KeNgp, N )
Outsidethedischargeregion at | <x < L thebehavior
of atomic hydrogen is described by the same equation,
except that the first term on the right-hand side should
be omitted (n, = 0); i.e., hydrogen gets outside the dis-
charge zone only due to diffusion. Solving these equa-
tions with boundary conditions (6) in the absence of
deposition (s; = 0) and with the condition of smooth
joining of solutions at the boundary of the zones (at
=1), we get an analytical expression for the atomic
hydrogen concentration profile:

2k2 sinh(d/Ly) X0
%l_smh(L/LH) e
o<x<l,
2k,n, sinh(1/Ly,) L_x
M = S sm(oL,) o X<t (10)

Substitution of expressions (9) and (10) into equa-
tion (7) yields an analytical dependence on the system
parameters of the flow of silyl towards the surface:

_ :2k2nen5H4L3 L | Lli 1
SHs ™ ginh(L/L,) 2|_3 L2_2sinh(L/Ly)
I L I dg
—sinh— — h— —sinh— 11
xa:oshl_ssm ™ coshL33m ™ sin L0 } (12)

Ly = /Du/(kgngy,), Ls = ,/Dgn,/(KsNg pn,)-

Here, L, and L; are reaction-diffusion lengths for
atomic hydrogen and silyl, respectively, introduced in
[3] and defined as the distance which a diffusing spe-
cieswill travel before entering into achemical reaction.
For | — L (d — 0), expression (11) describes a
diode system.

To conclude this section, we consider the behavior
of silylyl. In the discharge zone, silylyl is produced
mainly via the decomposition of silane by electron
impact, reaction R2, and through reaction R23,
whereas, outside this zone, it is produced in reactions
R15 and, again, R23. Withdrawal of silylyl through
reactions in both cases depends on its reaction with
silane (R9). The Si,H, radical is an intermediate prod-
uct of the cycle of fast chemical reactions R9, R27, and
R23; therefore, its concentration is close to the equilib-
riumvalue n§2H4 =KoNg,Ngh, /(KosN, + KisNgy, ) [3]-
If it were not for reaction R13 diverting part of the sili-
con atoms to higher silanes, reactions R23 and R9
would compensate one another and the only mecha-
nism for silylyl to escape from the zone would be its
diffusion to the surface for deposition and pumping out.
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Because the cycle in not closed, silylyl is withdrawn
through a reaction with an effective constant kg =
kokisNgn, /(KasNy, + KisNgy, ) Oke/(Nyy, /Ngy, +1). The
last approximate equality is a consequence of Ky [Kys.

Therefore, the behavior of silylyl can be described by
the equations

2 2
—Dgi,d Ngi,/AX" = KNeNgiy, —KetNsip, Nsin (12)
O<x<l,
2 2 _ 2
—Dgn,d Ng,/dX" = KisNgn, —KeNgin, Nsin,» (13)

| <x<lL.

By solving these equations with corresponding
boundary conditions, an analytical expression for the
flux of silylyl to the surface has been obtained, but, in
view of its clumsiness, we do not present it here.

3. RESULTS AND DISCUSSION

(1) Comparison with experiment. Comparison with
experimental data in the literature is difficult, because
the set of parameters describing the system available
thereisfar from complete. For thisreason, we chosethe
results given in [4] for comparison. In this work,
exhaustive information on the experimental conditions
and results of numerical calculations are described.

The experimental installation was a chamber with a
volume of 101 and contained two electrodes of radius 8
cm located 2.7 cm apart. For this configuration, the
ratio of the reaction volume to the total volume of the
chamber isR, = 0.054 (for more details, see Section 3.5).
The experiments were carried out with a mixture of
silane and hydrogen in equal molar concentrationswith
a flow rate equal to 3.6 I/h under normal atmospheric
conditions; the temperature in the reactor was 400 K.
A program for computing parameters of the RF dis-
charge between two plane-parallel electrodes was used
to calculate the electron densities [5]. The main prob-
lem was to obtain a good estimate of the discharge
power. In[4], from a comparison of the self-bias poten-
tial computed in simulations of argon plasma based on
corresponding experiments, it was determined that the
power directed to the discharge amounted to 50% of the
total power. The same conclusion was made from a
comparison of the calculated concentrations of H, and
SiH, in the hydrogen—silane plasma with experimental
data. Therefore, in calculations performed for the sug-
gested model, we used the power value of 0.05 W/cn?
proposed in [4].

Figure 1 shows the dependence of the film growth
rate on the discharge frequency at a constant pressure of
16 Painthereactor. It isseen that theresultsarein good
agreement with experimental data up to a frequency of
30 MHz. At frequencies higher than 30 MHz, the cal-
culated curve tends to level off. The same tendency,
although more gradual, was noted in [4]. At the same
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Fig. 1. Film growth rate asafunction of discharge frequency
at a constant pressure in the chamber p = 16 Pa. (1) Experi-
ment [4], (2) calculation [4], and (3) thiswork.

time, in[4], the experimenta dependence of the growth
rate on frequency was approximately linear. To explain
this effect, additional investigations are needed; their
possible directions have been proposed in [4].

From the calculations of the partial pressures of
molecular hydrogen and silane as functions of the dis-
charge frequency givenin Fig. 2, it is seen that the data
obtained using the approach devel oped in this study are
in better agreement with experiment than the calcula-
tion results obtained in [4].

(2) Specific features of chemical kinetics at low
pressures. With the model described in Section 1, cal-
culations are possible of the processes at low pressures,
at which silane decomposition becomes noticeable and
the concentration of molecular hydrogen can no longer
be considered small. Below, we discuss in detail the
gualitative differences of these processes from those
taking place at high pressures.

Dependence of the electron density in the discharge
zone on the process parameters was described by afor-
mula [3] derived for the case of constant discharge
power

Ne(Psn,!) = NePan,!”/Pai,], (14)

where ng isthe electron density under basic conditions,

taken equal to 5 x 108 cmr3. This formula is true for
pressures that are not very low, but it was used for the
gualitative analysisin the entire range of pressures. For
other key parameters of the problem, values character-
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Fig. 2. Partial pressures of molecular hydrogen (1, 3, 5) and
silane (2, 4, 6) as a function of discharge frequency.
(1, 3) Experiment [4], (2, 4) calculation [4], and (5, 6) this
work.

istic of real experimental setupswere chosen [1, 2]: the
temperature in the reaction chamber was taken equal to
520K, the pressure was 0.25 torr, and theinterel ectrode
distancewas| = L = 2.5 cm. Under these conditions, the
reactor parameters corresponded to a characteristic
pumping time of T = 1sat a pressure of 1 torr (for more
details on this characteristic, see Section 3.4). The cal-
culations were carried out for the pressure range 0.02 <
p < 1 torr. All the results given in this section refer to
the case of pure silane as the carrier.

One of main distinctions of the considered pro-
cesses is a considerable rise in the concentration of
atomic hydrogen with decreasing pressure. There are a
number of reasonsfor this. First of all, as seen fromfor-
mula (9), the concentration of atomic hydrogen in the
particular case of homogeneous discharge is given by
formula

Ny = 2K,n/Kg; (15)
i.e., it depends only on the electron density. This for-
mula is also in good agreement with the calculation
results. At the same time, as seen from formulas (4),
(5), and (14), the electron density and the constant k,
rise rapidly with decreasing silane pressure, so that the
concentration of atomic hydrogen increases by nearly
five orders of magnitude as the pressure in the chamber
decreasesfrom 1to 0.02 torr and therel ative silane con-
centration decreases to 0.3 as aresult of its decomposi-
tion. The increase in atomic hydrogen concentration
causes qualitative changes in various processes.
TECHNICAL PHYSICS Vol 45
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Thebehavior of other componentswith variationsin
pressure does not change compared with the descrip-
tionin [3], except for the fact that the concentration of
Si,Hg drops at pressures below 0.1 torr. The same effect
is observed for SizHg. This is due to the appreciable
drop in silane concentration and the increase in atomic
hydrogen concentration, the main reactants determin-
ing the formation and decomposition of these compo-
nents. The increase in atomic hydrogen concentration
also affects the balance and role of different reactions
insilyl decomposition. Thus, at low pressures, anotice-
able growth in the role of the decomposition processin
the silyl balance is observed; at 0.02 torr, it becomes
dominant and prevails over deposition. Note, however,
that this result is entirely a property of the model,
because the use of formula (14) at very low pressures
gives values of the electron density that are too high.

At pressures below about 0.08 torr in silyl decompo-
sition, the reaction SiH, + Si;Hg — Si,Hg + H, gives
way as the dominant process to reaction SiH; +
SiH;— SiH, + SiH,; and at pressures of about
0.02 torr, to the reaction between silyl and atomic
hydrogen, which begins to make a noticeabl e contribu-
tion to the production of silyl. As before, silyl forma-
tion is completely dominated by the reaction between
silane and atomic hydrogen.

Contributions of individual reactions to the silylyl
balance remain largely unchanged, but its production at
low pressuresincreases so much that most of the silylyl
is deposited instead of being decomposed. Because of
all these changes, the contribution of silylyl to film
growth, which, with decreasing pressure, increases at a
greater rate than that of silyl, becomes dominant at a
pressure of 0.02 torr. This should cause appreciable
modifications in the film structure.

Taking into account silane decomposition at low
pressures revealed further details of the division [3] of
all components into three groups: stationary, nonsta-
tionary, and quasi-stationary. It was found that SiH can
be considered strictly stationary only at high pressures.
In addition, at high pressures, stationary components
also include silylyl, the balance of which is maintained
by two reactionswith slane: SH,+e— SH,+2H + e

and SiH, + SiH, — Si,Hg , with the latter reaction
keeping the concentrations of Si,H} and Si,H, (which

is produced via decomposition of Si,Hj ) stationary. At

low pressures, these last two components go over to the
quasi-stationary group because of the appreciable
decomposition of silane, resulting in an increase in
electron density and reaction rate constants. This is
especially noticeable in the behavior of atomic hydro-
gen, whose concentration at high pressure is stationary
and adequately described by formula (15). At low pres-
sures, the deviation from stationarity caused by these
processes makes atomic hydrogen nonstationary and
appreciable accumulation of this component in the
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reaction chamber begins. Other parts of this classifica-
tion remain qualitatively unchanged (see detailsin [3]).

(3) Effect of diffusion coefficients. The use of for-
mula (2) in calculating the diffusion coefficients does
not significantly change the main results (such as the
growth rate and film composition) compared with cal-
culations in which these coefficients were assumed to
be equal to the coefficients of ambipolar diffusion of
the respective componentsin silane, aswasdonein [3].
Thisresult appearsto be quite evident at high pressures,
where the concentration of molecular hydrogen is
rather low and the diffusion coefficients calculated by
formula (2) are close to the corresponding ambipolar
coefficients. However, at low pressures, these values
are distinctly different.

This fact suggests that the concentration profiles of
the depositing components adjust in such a way as to
maintain the production—deposition balance, irrespec-
tive of the particular values of the diffusion coefficients
(the rate of chemical decomposition of silyl and silylyl
at low pressuresis small).

For a more detailed investigation of this issue, cal-
culations using the above approach were carried out for
a mixture of silane and molecular hydrogen at equal
partial pressures and constant electron density 5 x
108cm3. In this case, the influence of the diffusion
coefficients is more pronounced. For the same purpose,
asimplified formulawas used to calculate reaction rate
constants as functions of pressure[3]:

kr _ IjOpODZE,/ei

Under these conditions, the diffusion coefficients
calculated by Wilke's formula differ from the ambipo-
lar diffusion coefficients by afactor of 1.6-1.7. Still, at
low pressures where the silyl-silylyl balance is domi-
nated by deposition, the fluxes of these components to
the substrate are practically coincident in the two cases,
despite distinctly different concentration profiles. At
high pressures, silylyl is spent mainly through reactions
in the bulk and the values of fluxes obtained with the
use of constant ambipolar diffusion coefficients are
somewhat less than those given by Wilke's formula;
however, this difference is a mere 10% for silyl and
20% for silylyl, which is much less than the difference
in the coefficients, and the contribution of silylyl to film
growth under these pressuresis insignificant.

To check this, a series of calculations was carried
out for varying values of the diffusion coefficients. In
one of these, the diffusion coefficient for silyl was
assumed to be twice as large. The film growth rate was
almost unchanged, although at a pressure of 1 torr, the
silyl concentration dropped by afactor of 1.5.

Thisfact is explained as follows. Because the dom-
inant contribution to film growth comes from the flux of
silyl, the growth rate can be analyzed using expression
(11). At d = 0, this expression is significantly simpli-
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fied, reducing to I' gy, = 2koneNgy, Lstanh(L /2L). For
real values of the diffusion coefficient, L/2L; < 0.7
throughout the range of pressures studied and, there-
fore, the dependence of Iy, on Lj is weak. An

increase in the diffusion coefficient only reduces the
dependence of the flux of silyl onitsvalue. Thus, silyl
deposition is virtually unaffected by diffusion pro-
Cesses.

A similar result was also obtained for silylyl. The
twofold increase in the silylyl diffusion coefficient did
not produce any significant changes. At low pressures,
the silylyl concentration decreased, but the modified
profiles ensured exactly the same value of its flux. At
higher pressures, the silylyl balance is completely con-
trolled by chemical reactions; therefore, its concentra-
tion (aswell as concentrations of al other components)
remained the same, but the flux increased somewhat
(by 37% at p = 1 torr). However, at this pressure, the
contribution from SiH, to film growth is quite small and
cannot change the final result.

It can be concluded from the above that further
specifying the description of diffusion transport cannot
significantly change the results, especially in the case
of apure silane plasma.

(4) Effect of the flow rate. The flow rate of the mix-
ture through the working reactor volume is one of the
important factors affecting the film growth parameters,
and, at the sametime, it can be easily varied. In [3], an
approach that allows one to take into account the effect
of the flow rate using a ssmple one-dimensional model
was suggested. In this approach, the initial steady-state
problem is replaced with a nonstationary problem,
which is to be solved for a time period T equal to the
characteristic time of transit of the mixture in the reac-
tor working volume. Decomposition of a considerable
part of silane occurring at low flow rates and a signifi-
cant increase in the molecular hydrogen concentration
render the model suggested in [3] inapplicable for
studying the role of the flow rate in a relatively wide
range of this parameter.

Using the model presented in this study, the effect of
the flow rate has been analyzed for the example of pure
silanefor 1 ranging from 0.13 to 2.6 s, which, at apres-
sure of 0.25 torr, corresponds to a change in the cham-
ber volume from 1 to 20 | for the fixed flow rate of
silane of 5 I/h at atmospheric pressure. Values of the
other parameters were the same as in the previous sec-
tions, and the electron density was calculated by for-
mula (14).

Asin [3], variation of the flow rate was found to
affect, first of all, the concentration of Si,Hg: it
increased by an order of magnitude as the flow rate was
reduced by the same factor. At the same time, the con-
centration of Si;Hg increased by afactor of about 5. On
the whole, variation of the flow rate corresponding to
the considered range of T caused only insignificant vari-
ations of the characteristics of the growing film. Thus,
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with a decreasing flow rate, the film growth rate
increased by 30%. This was due to an increase in both
the electron density and the reaction rate constants with
a decreasing partial concentration of silane. The rela-
tive contribution of silylyl increased by about the same
amount. This was caused by an increase in the concen-
tration of molecular hydrogen and, subsequently, a
greater contribution to the recovery of the silylyl con-
centration from the cyclic reaction SiH, + SH, —

S|2H~}6c —— Si2H4 + H2 —— S|H4 + S|H2

(5) The effect of chamber volume. The problem con-
sidered aboveis closely related to the effect of theratio
of the reaction volume to the entire chamber volume,

because circulation of the components throughout the
volume can change the course of the processes.

To investigate this aspect in aone-dimensional case,
the following approach was suggested: the area under
study was expanded by adding aregion R such that the
ratio R, would have been equal to thetotal chamber vol-
ume. The calculations for afixed parameter T and vari-
able R, gave estimates of the effect of circulation. The
results described bel ow were obtained for atotal cham-
ber volume of 21 and T = 0.26 s; other parameters were
the same as before.

Changing the parameter R, from 1t0 0.2 resulted in
an insignificant (about 25%) increase in the rates of
film growth and silyl deposition. This increase was
caused by increased concentrations of silane and silyl in
the reaction volume because of the influx of SiH, from
the chamber volume. At the sametime, silylyl deposition
remained nearly constant, because some increase in its
production due to the reaction of silylyl decomposition
(R15) was offset by reaction SiH, + SiH, and deposition
occurs only from athin near-wall layer, where the con-
centration of silyl islow. Figures 3-5 illustrate some dis-
tinctive features of these processes.

In Fig. 3, profiles of typical representatives of the
three classes of components are shown: nondepositing
and dowly reacting (H,), nondepositing and rapidly
reacting (H), and depositing and rapidly reacting
(SiH,). It is seen that the concentrations of the latter
two components in the reaction volume are practically
independent of the chamber volume. They are deter-
mined by reactions proceeding in the discharge zone,
and circulation haslittle effect on them. The concentra-
tion of molecular hydrogen, on the contrary, is constant
throughout the chamber volume and is appreciably
reduced by circulation.

The small reaction-diffusion length for silylyl with
respect to the chamber dimensionsis the reason for the
weak influence of the chamber volume on the balance
and flows of this radical (Figs. 4, 5). Only some
increasein its production due to ahigher silane concen-
tration can be noted; thisincrease is compensated by its
more intensive (for the same reason) decomposition, so
that flows onto the substrate turn out to be about the
same.
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Fig. 3. Concentration profiles of silylyl and molecular and
atomic hydrogen at different values of the ratio of reaction
volumeto the total chamber volume R, equal to 0.2 (curves)
and 1 (dots).

(6) The effect of diluting silane with molecular
hydrogen. In real equipment, a mixture of silane and
molecular hydrogen is widely used. To evaluate the
effect of silane dilution, calculations have been carried
out for asilane content in this mixture varying from 100
to 20%, the other parameters having the same values as
before. The electron density was determined using an
RF discharge model [5]. Calculations for a discharge
power of 0.025 W/cm? have shown that, in these condi-
tions, the average electron density rises nearly linearly
from 4.3 x 108 t0 6.7 x 10® cm3 asthe silane content in
the mixtureis reduced.

Asthe silane content at constant pressureis reduced,
the diffusion coefficients of the components, with the
exception of H,, increase by a factor of 2-3. Variation
of the concentrations of all reaction products under
these conditions is shown in Fig. 6. The film growth
rate rises, and the relative contribution of silylyl to
overall deposition becomes larger (Fig. 7). The growth
rate rises, despite falling silane concentration, because
of an increase in the total production of depositing
components due to higher rate constants of reactions
initiated by electron impact (see expressions (4) and
(5)) and increased €electron density. In addition, the net
result of lowering the concentration and the simulta-
neous increase in the diffusion coefficients is that the
greater part of the produced silyl is deposited; this is
true for other depositing components, except Si,H; and
Si,H,, which are effectively decomposed by molecular
hydrogen. The behavior of silylyl is explained by the
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Fig. 4. Silylyl balance at different values of theratio of reac-
tion volume to the total chamber volume R,: F, production;
A, decomposition; D, diffusion; R, = 0.2 (curves) and
1 (dots).

fact that with an increasing concentration of H, and a
decreasing concentration of silane, the fraction of sily-
Iyl being deposited rises significantly. At the sametime,
the intensity of the above-mentioned cyclic reaction
rises, leading to the recovery of the SiH, concentration.
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Fig. 5. Silylyl fluxes at different values of the ratio of the
reaction volume to the total chamber volumeR,.



—_— > H
— 4+ H
—o— SiyHg
- -0 -- Si,Hs
- - —- SihH,y
- —w - - SipHj
- = —- SigHyg
SiH,

Fig. 6. Concentrations of components as a function of the
silanefractionintheinitial silane-hydrogen mixture at con-
stant pressure.

Also worth noting is the considerable reduction in
the Si;Hg concentration with dilution (Fig. 6). The rea-
sonisthat alongside the drop in production by the reac-
tion SiH, + Si,H,, it is decomposed via the reaction
with atomic hydrogen, whose concentration rises at a
high rate. The result is adrastic drop in Si;Hg produc-
tion, and the greater part of the silicon produced in the
reaction is deposited.
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Fig. 7. Film growth rate and contributions of silyl and silylyl
to it as a function of the fraction of silane in the initial
silane-hydrogen mixture at constant pressure.
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(7) Specific features of the triode system. All the
results described above were obtained for a diode sys-
tem in which the discharge zone islocated between two
electrodes, one of which serves as a substrate for the
growing film. One alternative technology is the so-
caled triode system, in which the discharge zone is
separated from the substrate. Formulation of the
respective problem has been described in Sections 1
and 2.

In order to investigate the effect of the separation of
electrodes from the substrate, calculations of film
growth from a pure silane plasma were carried out for
the same problem parameters as previously used (with
the exception of parameter L = 5 cm, with parameter |/L
varying from 0.4 to 1). The electron densities deter-
mined using the RF discharge model [5] were varied
from 6.8 x 108t0 4.9 x 108 cm3. The calculation results
obtained using the above analytical expressions for the
silyl flux (11) and the concentration profile of atomic
hydrogen (9), (10) are in good agreement with numeri-
cal simulation results, as seen in Figs. 8 and 9, respec-
tively.

Asaresult of varying the parameter I/L in the range
specified above, the film growth rate (at a constant dis-
charge power) decreased by only half. The cause of the
slow decrease in the growth rate with increasing sepa-
ration between the electrode and the substrate is the
increasein electron densities and rate constants of reac-
tions initiated by electron impact as the interelectrode
separation | is reduced, which partially compensates
decomposition of silicon-containing components out-
side the discharge zone. In addition, a drastic reduction
in the contribution to the film growth from silylyl

R;, A/min
102 —
10!
Rdlol
ol o SiH;
100 _____. SiH; (11) 4
—_—— - — SIH2 ’
/
107 - ’
/
/
/
_ _A
-—— A -7
1072 e
A---"7
1073 ' I I
0.4 0.6 0.8 1.0

/L

Fig. 8. Film growth rate and contributions of silyl and silylyl
as afunction of theratio of discharge zone to the total reac-
tor zone. Numerical and analytical solutions (formula(11)).
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Fig. 9. Atomic hydrogen profiles for the triode reactor sys-
tem (I/L = 0.4): solid curve, anaytical solution; dashed
curve, numerical solution.

should be noted, starting as soon as the electrode is
moved away from the substrate (Fig. 8). Thisis espe-
cialy remarkable in view of the fact that at the same
time, its concentration and total production are rising.
Two main reasons for this effect can be indicated. The
first is that the reaction-diffusion length of silylyl is
much less compared with silyl; therefore, the bulk
decomposition of silylyl is more efficient. The second
reason is the very different mechanisms of their pro-
duction. The major source of silyl is the reaction
between silane and atomic hydrogen, which, asseenin
Fig. 9, diffuses quite intensively beyond the discharge
zone. On the other hand, the main contribution to sily-
lyl production comes from the reaction between silane
molecules themselves; therefore, production of SiH,
outside the discharge is small.

CONCLUSIONS

In thiswork, numerical investigations of the growth
of hydrogenated amorphous silicon films have been
carried out under various conditions in the growth
chamber.

Comparison with experimental data has demon-
strated the ability of the model to predict the film
growth rate and concentrations of individual compo-
nents with reasonable accuracy.
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It has been shown that the widely used technique of
diluting silane with molecular hydrogen both increases
the growth rate and reduces production of higher
silanes, making this technology more economica and
ecologically clean. Moreover, dilution increases the
contribution of silylyl to film growth, appreciably
affecting its properties.

Analysis of awidely used reactor system has been
carried out. Numerical simulation has shown that the
effective decomposition of silylyl outside the discharge
zone reduces its contribution to film growth as the sub-
strate is displaced away from the discharge.

The analytical expressions obtained for silyl and
silylyl fluxes and for the profile of atomic hydrogen
closely approximate the results of numerical computa-
tions and can be used for making the corresponding
estimations.
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Abstract—Specific features of the electroluminescence of ion-implanted (Ar ion implantation in oxide layer
bulk) and ion-synthesized (SIMOX technology) Si-SiO, structures were studied. The e ectroluminescence
from the el ectrolyte-insul ator-semiconductor system was registered in the 250-800 nm range at room temper-
ature. It has been found that implantation increases the concentration of centers already present in the oxide
layer bulk and creates new luminescent centers. The nature and the models of the centers are discussed. © 2000

MAIK “ Nauka/Interperiodica” .

Lately, ion implantation in solid-state structures has
been widely used both in fundamental and applied
research. Thisisdueto arange of opportunities offered
by implantation, which produces controllable transfor-
mations of both the structure and atomic and electronic
properties of solids by way of introducing selected ions
to a specified depth (depending on the impinging ion
energy). Thisalowsthe type and level of doping in the
semiconductor near-surface region to change, to form
submerged oxide layers in the bulk of silicon (SIMOX
technology), and to significantly modify the electro-
physical properties of dielectric layers at the semicon-
ductors surface [1]. One of the main problemsinvolved
in the utilization of ion implantation isto determine the
properties and nature of the defects introduced in the
process. The development of afast, nondestructive pro-
cess control method is an important fundamental and
practical task. Electroluminescence (EL) is a highly
reliable method of studying S—-SIO, structures. It
detects the presence and identifies the types of defects
in the oxide layer, as well as their concentration and
spatial distribution, by measuring the spectral distribu-
tion and intensity of characteristic bands[2].

The purpose of thiswork isto study the specific fea
tures of EL in ion-implanted and ion-synthesized Si—
SO, structures and apply EL to the study of defects
produced by implantation.

The EL in the 250-800 nm range was registered
from an electrolyte-insulator—semiconductor system
[2], with the sensitivity significantly enhanced due to
utilization of afield electrode transparent in this spec-
tral range (1 pH water solution of Na,SO,). The mea-
surements were carried out in a photon-counting
regime at 293 K.

In this paper, three types of Si—SiO, structures were
investigated. Type 1 structures were produced by the
thermal oxidation of silicon (grade KDB-10 (100)) in
accordance with the usual technologies. Type 2 struc-
tures were made by SIMOX technology. Oxygen ions
of energy 190 keV and dose 1.8 x 10*® cm= were

implanted into the silicon bulk at 650°C, followed by
annealing for 6 hours at 1320°C and the etching away
of the outer silicon layer, which resulted in the forma-
tion of a 390-nm-thick silicon dioxide layer. Type 3
structures were prepared by the thermal oxidation of
KEF-5 (100) silicon in a humid oxygen ambient at
950°C and the subsequent implantation of argon ions.
The ion energy, 130 keV, was chosen with a view to
having the maximum density of implanted ions in the
middle of the oxide layer, and the doses were in the
101-3.2 x 10 cm range. Some of these structures
were subjected to a fast thermal (radiative) annealing
(FTA) at temperatures of 500-1100°C for 10 s.

Figure 1 shows EL spectra of type 1 structures pre-
pared with the use of different technologies. Earlier,
characteristic emission bands at energies 1.9, 2.3, 2.7,
3.3, 3.8, and 4.6 eV, corresponding to various types of
defects located in the oxide layer and at the S-S0,
interface, were identified in this spectrum [2]. It has

L, arb. units

=~ 1

hv, eV

Fig. 1. EL spectra of standard Si—SiO, structures produced
by thermal oxidation of KDB-10 (100) silicon: (1) in water
vapor at 950°C; (2) in dried oxygen at 1100°C.
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been shown that the luminescence centers responsible
for the red EL band at 1.9 eV are silanol groups local-
ized in the outer SIO, layer and that their concentration
and spatial distribution correlate with those of the elec-
tron capture centers [2]. Three-coordinated silicon
localized near the S-S0, interface is the center
responsible for the EL band at 2.3 eV, which is due to
intracenter electron transitionsin silicon atomsinduced
by hot electrons created in the oxide layer [2]. Lumi-
nescence centers responsible for emission in the ultra-
violet (UV) spectral range are localized near the Si—
SO, interface [2], but the nature of these centers in
these particular structures has not yet been conclusively
ascertained.

The EL band at 2.7 eV is the most interesting. In
nonimplanted structures, it is observed only in the
range of electric fields producing impact ionization of
the SiO, matrix. Itslocalization is not fixed, being coin-
cident with the position of the impact ionization proba
bility maximum in SiO, (determined by the electric
field strength in the oxide layer), where the concentra-
tion of dangling Si—O bonds is a maximum.

The EL spectrum of type 2 structuresis presented in
Fig. 2. Theband at 1.9 eV is not observed in this spec-
trum, indicating the absence of silanol groups in the
oxide layer. This is explained by the specific technol-
ogy of these structures, which eliminates penetration of
the fragments of water molecules (hydrogen, hydroxyl
groups) into the oxide layer.

At the same time, an intense band at 2.7 €V is
observed inthe EL spectrum for electric fields not caus-
ing impact ionization. Its intensity is practically not
affected by etching half the oxide layer away. This
means that the centersthat are responsible for this band
are mainly localized near the Si—-SiO, interface. The
energy position and the root-mean-square variance of
this band (0.35 * 0.05 €V) are the same as in honim-
planted structures. An emission band at 4.4 = 0.1 eV
occurs in the UV range of the spectrum, which is well
fitted by the Gaussian distribution function with aroot-
mean-square variance of 0.4 £ 0.1 eV.

EL spectra of type 3 structures are presented in
Fig. 3. There are three well-resolved EL bands in the
spectrum. Two of the bands have the same energy posi-
tionsat 1.9 and 2.7 €V and fit the same Gaussian distri-
butions as in the initial structures, but the EL band at
2.7 eV isexcited by fields lower than those causing the
impact ionization in the oxide layer. Asin type 2 struc-
tures, one EL band in the UV range is observed at
energy 4.4 eV. It fits the Gaussian function with the
same variance.

It has been found that the intensity of the EL band at
1.9 eV grows with an increase in the implantation dose
for doses up to 10 cm, levels off at 10> cm, and
drops down as the dose is further increased. The EL
bandsat 2.7 and 4.4 eV are seen in spectra of the struc-
tures implanted with doses 10'3 cm= and higher. A fur-
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L, arb. units
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Fig. 2. EL spectra of Si-SiO, structures formed using
SIMOX technology.
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Fig. 3. EL spectra of argon-implanted Si-SiO, structures.
D = (1) 10%3; (2) 10'* (3) 10%6; (4) 3.2 x 101" cm™.

ther increase of the dose to 10*” cm causes adrop in
the intensity of these bands, which is succeeded by
rapid growth at a dose of 3.2 x 10" cm2. The ratio of
intensities of the bands at 2.7 and 4.4 eV stays constant.

To determine the localization area of the lumines-
cence centers, we monitored the intensity variations of
thebandsat 1.9, 2.7, and 4.4 eV resulting from the pro-
gressive etching away of the oxide layer. It has been
found that the centers emitting at 1.9 eV are localized
in the outer region of the oxide layers, asin the nonim-
planted structures. The localization area of the centers
broadens with the implantation dose. Centers emitting
at 2.7 and 4.4 eV are located mainly in the 30-140 nm
region from the Si-SiO, interphase boundary. Their
distribution maximum is closer to the Si boundary than
that of the implanted argon ions. Increase of the dose
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causes the smearing of the spatia distribution of lumi-
nescence centers and the shifting of its maximum
towardsthe Si boundary. Theintensitiesof all EL bands
observed decrease asaresult of FTA asthe anneal tem-
peratureisincreased.

To reveal the nature of the defects responsible for
the EL at 2.7 and 4.4 eV, let us discuss the processes
occurring in the silicon oxide layers during argon ion
implantation. The bombarding argon ions lose their
energy in the oxide layer through interactions with its
atomic and electronic subsystems, thereby generating
the structural defects of the SiO, matrix and electron-
hole pairs, respectively.

In the outer region of the oxide layer, approximately
equal amounts of energy are dissipated due to interac-
tions with the atomic and electronic subsystems. In the
bulk of the oxide layer, the more probable channel of
energy dissipation for the bombarding argon atoms is
the interaction with the atomic subsystem. Therefore,
the greatest amount of dangling Si—-O bonds occurs
near the maximum of the distribution of implanted
argon ions, and the Si and O atoms are found displaced
deeper into the oxide layer. The estimated displacement
from the distribution maximum of implanted argon
ionsis 80-170 nm for oxygen atoms and 30—70 nm for
S atoms. As a consequence, two nonstoichiometric
regions of SIO, with x > 2 and x < 2 are formed in the
bulk of the oxide layer [3]. The region rich in oxygen
(x> 2) is located closer to the boundary with silicon
due to the larger displacement of oxygen atoms com-
pared with that of Si atoms.

In the oxygen-deficient region of SIO,, defects of
the two-coordinated silicon atom (O, = Si:) type are
formed; these we consider to be the EL centers respon-
sible for the 2.7- and 4.4-€V bands. Such defects are
generated in ion implantation as two of the S—O bonds
in asilicon-oxygen tetrahedron become broken and the
broken bonds spatially separated because of the greater
inward displacements of oxygen atoms in the oxide
layer. According to datain the literature [4], in defects
of this type, two radiative transitions are possible with
energies 2.7 and 4.4 eV, their excitation energy being
equal to approximately 5 eV. These luminescence cen-
ters are excited due to interaction with hot electrons
whose mean kinetic energy in the electric fields of the
range used for exciting EL in SIO, isjust around 5 eV.
The decrease in the intensity of the 2.7- and 4.4-eV
bands caused by exposure to external factors (FTA) is
explained by the partial restoration of the broken bonds
in the oxide layer bulk and a decrease in the concentra-
tion of two-coordinated silicon. The nonmonotonic
behavior of the intensity of 2.7- and 4.4-eV EL bands
with an implantation dose is of special interest. This
fact indicates that the variation of the concentration of
=Si-type defects is nonmonotonic. The lowering of the
concentration of these defects with an increasing dose
is apparently dueto the partial restoration of the broken
bonds because of the considerable reduction of the
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average distance between neighboring implantation-
induced defects accompanied by structural changesin
the oxide layer due to the change in the silicon-oxygen
bond angle, the formation of =Si=Si=-type defects in
the SiO, bulk, and so on. The drastic enhancement of
these EL bands at the highest doses suggests the
renewed generation of defects like two-coordinated sil-
icon, which this time takes place in a dielectric layer
whose structure and properties differ from those of the
initial SIO, matrix. This argumentation is supported by
the nonmonatonic behavior of the intensity of a photo-
luminescence band at 2.7 eV with an increasing dose of
silicon implanted in the oxide layer, as well aswith an
increasing concentration of excesssiliconin SO, films
[5, 6].

The abovementioned peculiarities of the EL band at
1.9 eV (dueto silanal groupsin the oxide layer) display
the considerable transformation of the atomic structure
in the outer portion of the oxide layer as aresult of ion
implantation. The growth of the concentration and
localization area of the silanol groups is attributed to
the generation of these defects in the retardation tracks
of bombarding argon ions due to the breaking of the S—O
bonds and their subsequent capture by hydrogen and/or
by hydroxyl groups localized in the oxide layer or dif-
fusing from the ambient. This process results in the
growth of the concentration of electron traps in the
outer region of the oxide layer and depends on the
argon implantation dose.

In the case of the S—SiO, structures produced by
SIMOX technology, the EL bandsat 2.7 €V and 4.4 eV
are also attributed to defects of the two-coordinated sil-
icon (=S:) type. However, these defects in such struc-
tures are due to the formation of silicon clusters near
the S-S0, interface during the fabrication process.

Thus, EL providesaquick and efficient (a spectrum
can betaken in lessthan 10 minutes) means of studying
ion-implanted Si-SiO, structures and getting informa:
tion about their structural and electrophysical proper-
ties.
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Abstract—The problem of controlling the characteristics of collinear acousto-optical filtersis studied experi-
mentally. It is shown that the use of an acoustic pulse in the form of a step-function signal makesit possible to
considerably reduce the side lobes of the instrument function of a collinear acousto-optical filter. The changes
in the shape of the transmission curve that occur as aresult of the variations in the number of acoustic pulses
simultaneously propagating in the crystal and in their duration are investigated. An experimental study of a
spectrum consisting of two close lines is performed using a tunable collinear acousto-optica filter. © 2000

MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Tunable collinear acousto-optical filters are among
the most promising optoelectronic devices. These fil-
ters have a narrow transmission band that can be elec-
tronically tuned within an octave [1-3]. In the litera-
ture, two types of acousto-optical filters are described:
collinear and noncollinear ones [4, 5]. Collinear filters,
which usually have a narrow transmission band, are
characterized by higher selectivity, and this property is
important for the spectral analysis of optical radiation
and for the channel multiplexing purposes.

In our recent publications [6-9], it was shown theo-
retically that, in collinear acousto-optical filters, an
electronic tuning of not only the central frequency but
also the width of the transmission band and the shape
of the transmission curve is possible when the filter is
controlled by a pulsed acoustic signal rather than by a
continuous one. In this case, the duration of the control
pulse determines the transmission band, and the form
of the pulsed signal governs the shape of the transmis-
sion curve of the collinear filter. Our previous experi-
ments [10] demonstrated the possibility of controlling
the characteristics of a collinear filter by using single
acoustic trains.

If we use a sequence of short acoustic trains with a
relatively small distance between them (less than the
crystal length), several acoustic pulses may simulta-
neously propagate in the cell. In this case, the transfer
characteristic of the cell hasthe form of a series of sev-
era narrow peaks. The spacing between the peaks
depends on the number of peaksin the crystal, and the
number of peaks depends on the duration of each indi-
vidua pulse.

In this paper, we describe the experimental study of
the dependence of the characteristics of a collinear
acousto-optical filter on the form and duration of suc-
cessive acoustic trains.

THEORY OF THE COLLINEAR ACOUSTO-
OPTICAL INTERACTION

The propagation of acoustic trains in a crystal is
accompanied by an elastic strain wave described by the
strain tensor S, a(x, v, z t). The strain wave changes the
refractive indices of the medium. This changeisrelated
to the elasto-optical effect described by the tensor pj.
The change in the components of the permittivity ten-
sor of the medium under the effect of the acoustic field

has the form Ag, = —Nfome: L PikimSim- Here, N,
and N, are the main refractive indices of the medium,
and |, k, |, and m are the coordinate indices.

The diffraction of light by sound is described by the
wave equation

10°

19° .
= —=Z_N&(aE), 1)
cot?

rotrotE + 5 —¢&.E
c ot

where E(X, Y, z t) isthe electric vector of thelight wave;
€, isthe permittivity of the medium in the absence of

sound; A€ is the variation of &, in the presence of
sound, this variation being proportional to the acoustic
strain; and a(x, y, z, t) isthe distribution of the acoustic
strain in the medium. The latter quantity can be repre-
sented in the form

a(x, y,z,t) = aW(x, y,2)V(x 1)

. 2
x exp[j(Kx—Qt)] +c.c.,

where a, is the amplitude of the wave at the cell input
(atx=0), and K and Q are the wave number and the fre-
guency of the acoustic train, respectively. Inthe genera
case, the functions W(X, y, 2) and V(x, t) describe the
spatial distribution of the amplitude and the time enve-
lope of the trains, respectively.

It should be noted that, for light beams of finite
dimensions, we have rotrot E # [J°E, because graddivE
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cannot be considered as zero even in an isotropic
medium.

It isknown that, in the case of acollinear diffraction,
the polarization of the diffracted light beam is orthogo-
nal to the polarization of light incident on the acousto-
optical cell. Therefore, in the region of the interaction
of light and sound, it is quite natural to represent the
light beam as a sum of the transmitted and diffracted
beams with orthogonal polarizations:

E = eE(x Y,z )exp[j(kx— )]

. (©)
+e4Eq(X, Y, Z t)exp[ ] (Kgx—wgyt)],

where g and e, are the polarization directions of the
transmitted and diffracted beams, respectively; w, and
wy are the frequencies of the transmitted and diffracted
light beams; and E;(X, Y, z, t) and E4(X, ¥, z, t) are their
amplitudes slowly varying along the x-axis.

We substitute the vector E determined by expression
(3) into equation (1). We use the diffraction condition
Wy = W + Q and equate the amplitudes of exp{jwt} and
exp{jwgt}. Neglecting the quantities 9%E,/0x?> and
0%E,4/0x?, aswell as E,/0t and IE,/de, we apply atwo-
dimensional Fourier transform to both sides of equation
(2) in the yz plane. Then, omitting the mathematical
transformations analogous to those described in [6-9]
and taking into account the orthogonality of the polar-
izations e and e,, we arrive at a system of scalar equa-
tions for the spectra of the transmitted and diffracted
light U, and Uy:

2

U, kK, .
== +52Ug = giexp(=jnx)V(x, t)
ox  2ky ° ! 4

X [[AKy, Kz )UK, + Ky ke + Ky, DK A,

U, k. . .
I5% T2t T REPUMOVX DIfAT(K, K, ?25)
x Ug(k, — Ky, k,— K, X, 1) dK, K,

Here, g = k(@A @)/ng; 6, = k(eAEe)/n’;n =k +
K —ky is the parameter of detuning; k, k, and K, K,
are the transverse components of the wave vectors of
light and sound, respectively; and A(K,, K, X) =

TR2exp{ —(K + K )R3(1—]Dx)/4} isthe Fourier spec-
trum of the function W(x, v, 2) for the case of a Gaussian
distribution of the acoustic pulse amplitude in the yz
plane. In the latter expression, R denotes the transverse
dimensions of thetrainatx=0andt=0, D = 2{/KRis
the train divergence in the transverse directions, and ¢
characterizes the transverse anisotropic spread. We rep-
resent the functions U, and U, in the form

UKy, ko X, 1) = Fo(x, 1) expf{ jxk;/2k}
x exp{ —(k; + k2)ri(x)/4},
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Ug(Ky, Ky X, 1) = Fy (%, ) exp{ jxki/2kg)
x exp{ —(k; + k2)ra(x)/4} .

Here, f.(x, t) and fy(x, t) are the light beam amplitudes
depending on x and t and taken along the axis at k, =
k,=0; r;(X) (wherei =t, d) arethe dowly varying radii
of the Gaussian beams. According to our previous cal-
culations[7], the variations of the radii with the coordi-
nate are negligibly small. In addition, the radii of the
incident r, and diffracted r4 light beams are related as

rg=r/ 1+rt2/R2.

Let us substitute expressions (6) and (7) into equa
tions (4) and (5). The integrals over dK, and dK,in the
right-hand members of equations (4) and (5) can becal-
culated analytically. Neglecting the variations of the
light beam radii, we obtain a system of two first-order
differential equations describing the collinear diffrac-
tion of light by Gaussian acoustic trainsin the case of a
strong acousto-optical interaction:

(7)

of . i
=4 = g, f(x ov(x 2B
X (1-jDx) +p;
of, _ . exp{ jxn}
== = —JGfd(x V(X ) ————, (9)
ox e (1+Dx) +p;
where p; =r;/R.

The use of finite beams in describing the diffraction
of light by sound makes it possible to determine the
efficiency of the diffraction not through the ratio of the
power densities of incident and diffracted light but
through theratio of the luminous fluxesin the diffracted
and incident light beams, as it is always done in the
experiment. The luminous flux in alight beam can be
calculated by using either the integral of the squared
magnitude of the light field distribution over the beam
cross-section or the integral of the squared magnitude
of the Fourier spectrum of the field over the angular
coordinates k, and k, (the Parseval theorem).

Theluminousflux at theinput of the acousto-optical
cell isdetermined by theformula P, = O.SJ’J’exp{—(kj +

kZ)r{ /2y dkdk,, because f,(0) = 1; at the cell output,
it is caculated by the formula P =
0.5J’J’fd(L) f3 (L)exp{—(kf + kf)r§/2}dkydkz, where

expression (8) should be used for fy(L). The ratio P/P,
characterizes the efficiency of the acousto-optical dif-
fraction, and this quantity can be directly determined
from the experimental data.

EXPERIMENT

In our experimental studies, we used a collinear
acousto-optical filter made on the basis of a CaMo0O,
TECHNICAL PHYSICS Vol. 45
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crystal of length L = 4 cm. The time of the acoustic
pulse propagation through the crystal was L/v =
11.6 ps. The acoustic wave was excited in the crystal by
a piezoel ectric transducer, which converted the electric
energy of the generator to the energy of the acoustic
wave.

For our experiments, we used a specially designed
generator that was capabl e of producing signalswith an
arbitrary envelope, i.e., arbitrarily shaped pulses. The
envelope of the signal isformed by setting the value of
the signal amplitude every 0.1 ps; i.e., the envelope has
the form of a set of rectangles of duration 0.1 ps each.
In this way, one can specify any form and duration of
the acoustic train, as well as the entire sequence of
trains. The maximum duration of a pulse produced by
the generator is 200 ps, and the minimum duration is
about 0.5 ps. The rate of the pulse series repetitions
may vary from 0.5to 1 kHz. After the amplification, the
output power reaches alevel of 3W.

The block diagram of the generator is shown in
Fig. 1. The high-frequency unit generates the funda-
mental frequency 35-48 MHz, and thisis precisely the
sound frequency at which the diffraction of light takes
place. The envelope is formed by the following units:
the read-only memory (ROM), the processor, the ran-
dom-access memory (RAM), and the digital-to-analog
(D/A) converter. The initial pulse or pulse series was
modeled on aPC and saved in the text format. Then, the
envel ope was sent through the corresponding port to the
generator processor and to the ROM. After this, the
communication between the computer and the genera-
tor was cut off. When the generator was turned off, the
information on the pulse form was stored in the ROM.
Within several seconds after the termination of the data
transfer from the PC to the generator, or after turning on
the generator, the processor supplies the data on the
pulse form to the RAM from which the digital data are
sent to the D/A converter. As aresult of the described
process, the desired envelope of the signal is formed.
Then, by means of a multiplier, the high-frequency
oscillation of frequency 35-48 MHz is modulated by
the envelope. Theresulting pulse (or series of pulses) is
supplied to an amplifier and amplified to the necessary
amplitude.

In common practice, to obtain acoustic trains of
finite length, rectangular pulses are used; for such
trains, the transfer characteristic has the form of the
function sinc?(x). For rectangular pulses, the level of
the side lobes does not depend on the pulse duration
and is as high as 5% of the central maximum (in the
weak-interaction approximation). It should be noted
that, in contrast to rectangular pulses for which the
level of the side lobes is constant, for Gaussian pul ses,
this quantity varies from zero (for short pulses, T < L/v)
to the level corresponding to rectangular pulses (for
long pulses, T > L/v).

The possibility of considerably reducing the side
lobes allows one to improve the characteristics of the
TECHNICAL PHYSICS Vol 45
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Fig. 1. Block diagram of the generator of arbitrarily shaped
acoustic pulses: (1) a com-noprainterface, (2) a processor,
(3) memory (ROM), (4) memory (RAM), (5) a D/A con-
verter, (6) a high-frequency oscillator, (7) a multiplier, and
(8) an amplifier.
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Fig. 2. Time envelope of an acoustic pulse in the form of a
step-function signal.

filter. This improvement is most pronounced for the
pulse lengths somewhat less than the crystal length,
because in this case the transmission band is practically
not broadened, while the side lobes are aready notice-
ably suppressed. On the other hand, with a further
decrease in the acoustic train duration, the filter band-
width increases. This fact can be used in practice for
controlling the characteristic of the collinear filter, but
a strong suppression of the side lobes can be achieved
only with smooth control pulses.

We experimentally studied thelevel of the sidelobes
of the instrument function of a collinear filter con-
trolled by an acoustic pulse in the form of a step-func-
tion signal. It was found that, in the case of an optimal
choice of the form of the step-function signal, the level
of the sidelobes is considerably reduced. For example,
if an acoustic train with the time envelope shown in
Fig. 2 isused, its form can be described by the expres-
sion

_ d—xv _1Q

V(xt) = ArectD & ~50
d-x/v-t; 1n f—x/v—-t, 1
+ LA -~ = ¥ L —
BrectD Lo, 500 CrectD — 50

where the constants A, B, and C determine the width
and the height of the steps.
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Fig. 3. Instrument function of a filter controlled by two
acoustic pulses of duration 3 ps. The solid line corresponds
to the distance between the pulses 6 us; the dotted line
shows the instrument function of afilter with asingle pulse

of duration 1 ps.
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Fig. 5. Theoretical dependence of the transmission factor on
the sound frequency for an acousto-optica filter in the case
of five acoustic trains being present inside the crystal. The
distance between the trains is 2 us; the train duration is
(solid line) 2 and (dashed line) 1 ps.

When uniform rectangular pulses are used and the
condition of weak interaction is fulfilled, the levels of
the first, second, and third side lobes are 4.7, 2.7, and
1.0%, respectively. With the use of a step-function sig-
nal shownin Fig. 2, it was possible to suppress the side
lobes down to alevel of 0.7%.

In the case of the generation of short acoustic trains
(with the duration less than 3—4 us), several pulses may
simultaneously occur within the crystal. In such asitu-
ation, it is of interest to study the dependence of the
shape of the transmission curve on the pulse duration
and the number of pulsesthat simultaneously propagate
in the crystal (the number of pulses depends on the dis-
tance between them). Below, we will consider a
sequence of acoustic trains with a Gaussian time enve-
lope.

For a single short acoustic train, we obtain a broad
transmission band with a Gaussian characteristic with-
out any side lobes (the dotted linein Fig. 3). When two

PARYGIN et al.
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Fig. 4. Instrument function of a filter controlled by two
acoustic pulses of duration 3 ps with the distance between
them 6 ps. The solid line corresponds to the theory, and the
dashed line shows the experimental data.
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Fig. 6. Experimental instrument function of a filter con-
trolled by five acoustic pulses of duration 1 pswith the dis-
tance 2 s between them.

trains of the same duration are present in the crystal,
beats are observed (the solid linein Fig. 3). The calcu-
lation is performed for the pulses of duration 1 pswith
the distance between them 6 ps. The envelope width
and, correspondingly, the number of maxima are deter-
mined by the duration of the short pulse. The use of
acoustic trains of longer duration leads to a narrowing
of the envelope of the filter characteristic and to a
decrease in the number of maxima. This was observed
in the experiment (Fig. 4) with the trains of duration
3 uswith adistance of 6 s between them.

With afurther increase in the number of trainsin the
crystal, the envelope of the transmission characteristic
isretained, because it is determined exclusively by the
duration of the pul ses forming the sequence (the shorter
the acoustic train, the broader the envelope). As the
number of pulses increases, the beats take the form
shown in Fig. 5. The transmission function tends to a
set of isolated narrow peaks whose width is determined
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Fig. 7. Dependence of the frequency interval between the
peaks of the comb, Af, on the pulse-repetition interval At.

by the size of the crystal, i.e., by the length of interac-
tion in the case of a continuous-wave operation.

Figure 6 presents the experimental shape of the
transmission curvefor aseries of five pulsesof duration
1 ps spaced at 2 ps intervals. One can see that the
experimental data agree well with the theoretical ones.
Thus, using a series of short trains whose individual
frequency bands are very wide, it is possible to create a
filter with a comb-shaped transmission curve whose
peaks are characterized by bandwidths about those of
long pulses or even a continuous-wave signal.

As one can see from Figs. 5 and 6, in the case of a
simultaneous propagation of several acoustic trainsin
the crystal, the transmission band of the filter has the
form of a set of equidistant peaks. Figure 7 shows the
theoretical dependence of the frequency interval
between the peaks of the comb on the time interval
between the acoustic pulses. This dependence is a
hyperbolic one. It is evident that the interval between
the acoustic pulses determines the number of pulses
simultaneously propagating in the crystal. It should be
noted that the frequency interval between the peaks
depends on thetimeinterval between the acoustic trains
rather than on the number of pulses inside the crystal.
Therefore, we obtain a continuous and smooth depen-
dencerather than a step function. Correlating the exper-
imental dependence shown in Fig. 6 with the calibra-
tion dependence given in Fig. 7, we obtain the interval
between the acoustic pulses 2 us, which isin complete
agreement with the experiment.

An important application of tunable acousto-optical
filtersisin the measurements of optical spectra. In our
experiments, we studied a spectrum consisting of two
close lines that differed by 91 A. The spectrum was
obtained by simultaneously supplying the optical sig-
nals from aHe-Nelaser (A, = 0.6328 um) and a semi-
conductor laser (A, = 0.6419 um) to thefilter input. The
measurements were performed by using long acoustic
pulses (T = L/v).
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Fig. 8. Study of the optical spectrum consisting of two lines
by an acousto-optical filter controlled by the pulses of dif-
ferent duration: T = (solid line) 2 and (dashed line) 12 ps.

The results of the experiment are shown by the
dashed linein Fig. 8. One can see that the acousto-opti-
cal filter well resolves the spectral lines. The solid line
shows the same spectrum studied by using short acous-
tic pulseswith T < L/v. Inthis case, thefilter bandwidth
exceeds the distance between the spectral lines, and the
resolution of the system isinsufficient for observing the
two separate lines of the spectrum. This experiment
confirms the fact that the filter bandwidth increases
with adecrease in the control pulse length.

For a spectrum consisting of two lines, there still is
an interesting possibility to determine the exact dis-
tance between the lines even with the use of short
pulses. When we use a single short pulse, we cannot
resolve two close lines of the spectrum because of the
broad transmission band. However, using a series of
short pulses, we can tune the system in such away that
the peaks of the filter characteristic will coincide with
the lines of the spectrum. In this case, the spectral char-
acteristic of the filter remains a periodic one for the
optical spectrum consisting of two lines.

CONCLUSION

The experimental studies described above showed
that the use of acoustic trains of finite length for con-
trolling the characteristics of a collinear acousto-opti-
cal filter is of great interest, because it provides a pos-
sibility to vary the characteristics of thefilter over wide
limits. The filter bandwidth can be increased by using
short pulses. At the same time, the level of the side
lobes of the transmission function depends on the form
of the acoustic train and its duration. In the case of a
Gaussian (or closetoit) acoustic train, the side maxima
are absent when the pulse duration is less than the time
of the pulse propagation through the crystal T = L/v. As
the pulse duration increases, the level of the side lobes
tends to the value characteristic of a rectangular pulse.
By using pulses in the form of a step-function signal
(with adequately chosen parameters), it is possible to
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suppressthe sidelobesdownto alevel of 0.7%. Theuse
of aseries of Gaussian pulses allows oneto obtain afil-
ter characteristic that hasthe form of aset of equidistant
peaks with a broad envelope.

An acousto-optical cell can also be used as a spec-
trometer with avarying resolution, the latter being var-
ied by changing the pulse duration. I nteresting possibil-
ities for spectrum identification are offered by the use
of a series of acoustic trains simultaneously propagat-
ing in the crystal.
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Abstract—A method for determining the relaxation times of the magnetic moments of ferrites from inverse
Fourier transformsis suggested. The effect of the alternating external magnetic field strength on the relaxation
times was studied. It was found that the dispersion and absorption rangesin the magnetic spectra are associated
with changes in the relaxation times of magnetic moments of ferromagnets. © 2000 MAIK “ Nauka/ I nterperi-

odica” .

DETERMINATION OF RELAXATION TIME

Relaxation time is a key parameter of ferromagnets
that specifiestheir frequency properties, such asthefre-
guency curve of the permeability (its slope), the width
of the absorption range, etc. TherelaxationtimeT istra-
ditionally found from the width of the peak of theimag-
inary part 1" of the permeability: T = 217Aw, where Aw
is the half-peak width of p". This method is applied to
saturation-magnetized magnets (single-domain crys-
tals and polycrystals). The most pressing problem is
however to find relaxation times at small and vanishing
magnetizing fields, since ferromagnets are most fre-
quently applied just in this range of magnetization. For
most of ferromagnets, experimental data for p" can be
obtained only at |ower-than-resonance frequencies pre-
sumably because of large losses (defined as "/’ ratio,
where ' is the real part of the permeability) at higher
values. Therefore, the need for a method that can over-
come these difficultiesis obvious.

In this work, the relaxation time 1 of the magnetic
moments of ferrites is derived from inverse Fourier
transformation applied to the frequency dependence of
the permeability

+o00

L :
u(t)—ﬁ:[(u(w) in"(w))exp(iwt)dw. (1)

For inverse Fourier transformation, the integrand
must be defined in (o, +0) and the functions p'(w)
and K"(w), in [0, +). We assume [ and 1" to be even
in order to define them in the (—co, +) range. The
inverse Fourier transform is then a real time function
M(t) [1]. The relaxation time T of magnetic momentsis
defined as a time during which p(t) becomes e times
smaller than p(t = 0). To apply this method, 1’ and
K"(w) must be taken as continuous functions approxi-
mating experimental data. Inverse Fourier transforma-
tion imposes constraints on the approximating func-
tions. Two of the constraints make integration easier

[W'(w=0)=0and K"(w — o) = 0], and the third one
has a physical meaning ['(0w — ) = 0]. They aso
help to solve the problem associated with the broaden-
ing of the natura ferromagnetic resonance (FMR)
peak. This effect is related to domain wall motion at
zero static fields and makes the evaluation of t difficult.
At such fields, T can be determined only in ferrites for
which the contribution from wall motion issmall inthe
FMR freguency range. With the above restrictions, the
approximating curves eliminate this contribution.

Real '(w) and imaginary |1"(w) curvesfound in exper-
iments were gpproximated as U'(w) = A,exp(-B,/w) +
A,exp(-B,/w) and K" (w) = Awexp(-Bw"), wherenisa
positive rational number. These expressions are fairly
simple and provide a good fit to experimental data.
Approximating and experimental curves for several
samples are shown in Figs. 1-4.

OBJECTS OF INVESTIGATION

Using the inverse transform method, we calculated
the relaxation time for the magnetic subsystem of man-
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Fig. 1. p' vs. frequency for the (211) single-crystal MnZ
spinel. hy = 1 mOe. Symbols denote data points.
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Fig. 3. i vs. frequency for the polycrystals. hy = 20 mOe.
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Fig. 4. 4" vs. frequency for the polycrystals. hy = 20 mOe.

ganese-zinc spinel (MnZ spinel) from experimental
frequency spectra p(w). A specific feature of MnZ
spinel isthat the range of dispersion and the absorption
peak in the u" curve are due largely to magnetization
rotation [2—4], i.e., to FMR. Since MnZ spinel has low
fields of anisotropy H, (below 1 Oe), FMR and domain
wall resonancein them are observed in the 0.1-10 MHz
and 1-10 kHz ranges, respectively [4]. Hence, they add

BAZHUKOV et al.

little to the total permeability at high frequencies [5].
A small contribution from wall displacement must
improve the accuracy of determination of the true mag-
netic moment relaxation times, not the effective times,
which are severely affected by wall motion. Moreover,
along with the suggested method, the conventional
approach to determining the relaxation time is also
applicablein this case.

Calculations were caried out on (1)
Mg 54ZNg 36F€ 060, (111), (110), (211), and (100)
spinel singlecrystals (thering (torus) planewas parallel
to the plane of orientation) subjected to different alter-
nating magnetic fields h, (1, 7, and 20 mOe) and (2)
Mg 63Z N 29F€, 0660, SPinel polycrystals with a porosity
of 0.003, mean grain size 20.2 um, and field of anisot-
ropy Ha = 0.04 Oe. In the latter case, hy equaled 1 and
2mOe. Experimental dependences pi(w) were taken
from [6, 7].

COMPARISON OF THE METHODS
FOR 1 DETERMINATION

The relaxation times obtained by inverse Fourier
transformation lie near 107 s, while those derived from
the half-peak width arein the 10°-10~" srange. In [3],
the magnetic moment relaxation times in MnZ spinel
were estimated at 107—108 s; hence, the inverse Fou-
rier transform gives the more accurate value. This is
explained as follows. In calculations using the inverse
Fourier transform, both the real, ', and the imaginary,
K", parts of the permeability are used. Therefore, dueto
agreater number of data points, the accuracy of calcu-
lation is improved. A frequency dependence of W' at
high frequenciesis easier to predict, since its lope, as
arule, isrepresented more comprehensively. Hence, '
can be approximated with a much better accuracy than
p" (Figs. 1, 2).

When the relaxation time was calculated with the
conventional method, data points only for y" were
used. Note that the component 1' was approximated at
frequencies from 10* to 107 Hz. Conversely, in the case
of u", data at hy = 1 mOe were obtained only for the

ascending branch (in the 10-10° Hz range, Fig. 2). The
further behavior of u" was predicted very roughly from
the conditions 1" (0) = 0 and " (o) = 0.

From experimental data for u", the position of its
peak remains unclear; hence, the height of the peak
may bein great error. For the peak value of p", we took
the highest-frequency data point. As follows from cal-
culations, such an assumption is usually valid and the
relaxation times estimated by both methods are closeto
each other.

Thus, for the experimental data considered, inverse
Fourier transformation is the method of choice, sinceit
provides more accurate values of the relaxation times
of ferrites.
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For polycrystals, the relaxation times obtained by
both methods coincide. Here, we used experimental
data for a wide frequency range and the peak of 1" is
distinct. In this case, the conventional method gives
fairly accurate values of 1 (related approximations are
shownin Figs. 3, 4).

DISCUSSION

For the single crystals, the relaxation times calcu-
lated from the experimental permeability data were
found to be independent of the crystallographic orien-
tation and alternating external field amplitude hy within
1-20 mOe. The times remain constant at a level of 3 x
10" s. For polycrystals, therelaxation time at small hy's
is4 x 107 s, i.e, roughly equal to that of the single
crystals. As hy rises, the situation changes drastically.
At hy = 20 mOe, the magnetic moment relaxation time
increases about twofold. Unlike the single crystals, the
structure of the polycrystals undergoes substantial
modification (damage). In this case, the vector of mag-
netization may slowly return to the equilibrium posi-
tion, causing the relaxation time to increase. Similar
results were abtained in [8-10]. It was found in these
works that the relaxation time increases as the energy
delivered to the magnetic subsystem grows. In [9],
nickel ferrite was studied; and in [10], nickel—chro-
mium alloys. It is likely that such an energy depen-
dence of the relaxation timeistypical of all spinel-like
ferrites within a certain range of field amplitudes.

CONCLUSIONS

If the relaxation time is difficult to estimate with the
traditional method, inverse Fourier transformation can
be used. When the frequency range is such that the
vicinity of the imaginary component peak is fully cov-
ered, both methods give similar results. In this case, the
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traditional method is even preferred, sinceinverse Fou-
rier transformation requires data preprocessing.

We can conclude that the relaxation time isindepen-
dent of the mutual arrangement of the crystallographic
axes and aternating field in the single-domain ferrites.
The field amplitude affects the relaxation time only in
the polycrystals. It can be suggested that frequency
characteristics of many radio engineering devices
based on polycrystalline ferrites can easily be con-
trolled by varying the amplitude of an external alternat-
ing field.
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Abstract—Relativistic electron motion in the el ectromagnetic Gaussian beam that propagates along a station-
ary magnetic field is studied. It is shown that, if the cyclotron resonance conditions are initially satisfied, elec-
trons can be efficiently accelerated over arelatively small interval at adightly lower rate than in a plane accel-

erating wave. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Among various charged particle accel eration mech-
anisms, the cyclotron autoresonance mechanism dis-
covered by Kolomenskii and L ebedev [1] and, indepen-
dently, by Davydovskii [2] is of great interest. This
mechanism provides a high acceleration rate and suffi-
ciently low radiation losses [3]. A variety of designs of
microwave [4—6] and laser [7, 8] electron accelerators
based on the cyclotron autoresonance have been pro-
posed. At the same time, strictly speaking, the cyclo-
tron autoresonance, being a relativistic effect, exists
only in the plane transverse el ectromagnetic wave trav-
eling at the speed of light in vacuum along a stationary
magnetic field if electrons are in the cyclotron reso-
nance with the wave at the initial moment of time. If
these conditions are violated, various techniques can be
used to support the forced synchronism [3]. It was
shown [7] that electrons can be accelerated to
extremely high energiesin thefield of high-power laser
radiation at a very high rate with very small radiative
losses. However, these results were obtained under the
assumption that the laser radiation has the form of a
plane wave. Actudly, this assumption is usualy
invalid. In many cases, laser and microwave radiation
can be considered in the quasi-optical approximation as
a Gaussian beam. Clearly, in this case, the cyclotron
autoresonance conditions are a fortiori violated. There-
fore, the electron energy does not necessarily grow
monotonically. In this paper, we show that, despite this
circumstance, particles in the Gaussian beam can also
acquire a significant energy over a short acceleration
interval. A high acceleration rate can be achieved by
shaping the guiding magnetic field to fit an appropriate
profile or by optimizing the parameters of the electron
injection and of the Gaussian beam.

ASSUMPTIONS AND BASIC EQUATIONS

In the paraxia approximation, laser radiation can be
represented as a Gaussian beam (GB) [9] that propa
gates along a stationary magnetic field aligned with the
z-axis.

E = (Ecos®,-Esino, 0). (D)
Here,
O = —wt+kz+ky,
kg = rZD/a2(1+ D2)—arctanD,
E = E,(1+ D) exp{—r¥a’(1+ D%}
=E, f(xY,2),

(1)

where D = 2zka? = 7z, z, = ka?/2 is the Rayleigh
length; w is the wave frequency; k = w/c is the wave
number in vacuum; a is the radius of the beam’s waist,

i.e.,itsminimal radiusat z=0; andr = A/x2 + y2 isthe
transverse coordinate.

The magnetic components of the GB field can be
found from Maxwell’s induction equation:

B = (B, B, B,), 2
where
B, = E;(GcosO + fQsin@), (28)
B, = —E;(Gsin®© - fQcos0O), (2b)
2fE
5 = kal(1 +1D2) (20)

x ((xD —y)sin® + (yD + x) cos®).
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Here,
L. C i
=13z © 7 ok
The phase velocity of the GB is
oo W
k(L)

where
1 r’(1-D*)-a*(1+D?
a'z;,  (1+D%’

At adistance of about the Rayleigh length, D = 1, so
that {'/k = (1/kz,) < 1 whenr < a. Therefore,

- g’

kp(2)= S -

That is, the phase vel ocity is higher than the vel ocity
of light. This means that the cyclotron autoresonance
cannot exist in the GB.

In order to extract the cyclotron rotation of a parti-
cle, we represent its momentum vector as

p = pxez + pD(exCOSOO + eySineo)- (3)

Here, g,, €, and e, are the unit vectors of the Cartesian
coordinate system; p, and py are the momentum com-
ponents, respectively, along and perpendicular to the
guiding magnetic field; and ©, is the phase of the par-
ticle cyclotron rotary motion in this field. The phase of
field (1), as it acts on the electron, is governed by the
equation
do dr
It w+ at 0. %
Equations of electron motion in the GB field com-
bined with equation (4) constitute atwo-period (or two-
frequency) system, which contains oscillating factors
with phases ©, ©,, and their combinations © = @,. In
the region of the electron cyclotron resonance, © +
O, = 0, isadowly varying quantity. When the oscilla-
tion frequency is high and the magnetic field is strong,
phases ©, ©,, and ® — ©, must be regarded as rapidly
varying quantities. Smoothing over rapidly varying
phases [10] in the electron cyclotron resonance region
yields

dPy € P, .
—_— = == - + &=
= Yf{y P,Q} cos@, +¢ y Gsno,, (5
Q,-y+P .
dO+ — 0 y ZQ+EL{Y—PZQ}S|HO+
dt Y Pry ©)
=]
+£—=GcosO,,
Poy
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dd_l? = —s—F:TD{ fQcos®, + Gsin®,}, )
%\r—/ = _\El P fcoso,, (8
3_%:%, X<0, D=0 (9)

Here, T = wt; R = kr; P = p/myc, and € = eE;/mycw are
the dimensionless parameters and variables; my is the
electron rest mass; wy, = eBy/myc is the classical fre-
guency of the electron cyclotron rotation in the guiding
magnetic field; Q, = wy/w; the electron charge is —,

wheree>0; andy = ,/1+ PZ2 + Pé is the relativistic
factor (dimensionless electron energy). In the case of a
plane electromagnetic wave, Q = 1 and function f =1
such that G = 0. Then, system (5)—(9) yieldstheintegral
of motion y— P, =Y = const, which coincides with the
cyclotron resonance condition at Y = Q,. This is the
autoresonance [3]. If the electromagnetic field has the
form of GB (1) and (2), according to (5)—(9), the cyclo-
tron resonance occurs when

y-P,Q=Q,. (10)

Sincethe phase vel ocity of the GB ishigher than the
velocity of light, the electron cyclotron resonance con-
dition, imposed at the initial time moment, is not pre-
served during the electron motion. This effect occurs
because (10) is not an integral of motion.

NUMERICAL RESULTS

It is difficult to derive an analytical solution to sys-
tem (5)—9). Therefore, we solved it numerically by the
Runge—Kuttamethod. The motion of electrons injected
at Z < 0 was studied in the region X2 + y? < a. The
cyclotron resonance condition (10) was assumed to be
fulfilled exactly at the initial moment of time. This
requirement imposes rather stringent constraints on the
domain of parameters Q, and Q,. In fact, initidly, the
transverse momentum component must comply with
the relationship

2
p?, = yg_l_(yo_?o) >0,
Qo
which yields the constraint on parameters Q, and Q,
mentioned above

(11)

Q+Q2z1. (12)

We will study the motion of electrons that satisfy
initial condition (10) and have an initial energy of
25 MeV or higher. The electron motion will be studied
within a rather small 100-cm-long interval. This inter-
val is chosen because it is necessary to find the optimal
parameters that provide a high electron acceleration
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Fig. 1. Electron energy y on the acceleration interval versus
GB width (parameter q = a’k?) for microwave radiation
(A =1mmand Qqg=1) at yp =50 and € = 1: (A) plane wave
andthe GB at q= 10° and the GB at g = (B) 10%, (C) 5 x 10°,
and (D) 10°.
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Fig. 3. Energy of electrons accelerated in the GB under the
approximate initial cyclotron resonance conditions at A =
10 pm (CO,, laser), Qg = 0.01, yg = 50, and € = 1: (A) plane
wave with the exact cyclotron resonance; (B) the GB with
C=0.01, 0.00985, and 0.0101; and (C) the GB with C=0.011.

rate with the Rayleigh length being noticeably longer
than the acceleration interval.

Figure 1 shows the electron energy on this interval
as afunction of the GB width (parameter q = a’k?) for
microwave radiation (A = 1 mm and Q, = 1). It can be
seen that the particle acceleration rate increases with
the beam width at aconstant wavelength. At q = 10°, the
energy grows as fast asin the plane wave. Under these
conditions, the electron energy can rise by morethan an
order of magnitude. The acceleration process involves
al electrons regardless of the spread in the initial
phases, which govern the electron motion at the initial
stage; the electron energy increases by a factor of 7-8.
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Fig. 2. Electron energy in the laser GB and stationary mag-
neticfield B,=100kG at € = 1 for (A) yp=50and A =10 pm
(CO, laser) and for (B) yg =500 and A = 1 pm (neodymium
glass laser).
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Fig. 4. Energy of electrons injected at different points of
plane zy = 0 (beam’s waist) versuszat A =1 mm, Qg = 1,

Yo =50, ande =1: (A) A/x2 + y2 =r<0.1a; (B) r =0.5a; and
©Or=a

The acceleration rate significantly increases with the
radiation power.

At shorter wavelengths (less than 20 um, laser radi-
ation) and the same guiding magnetic field, Q, is very
small; hence, by virtue of constraint (12), the initia
cyclotron resonance conditions (10) cannot be satisfied.
Therefore, when the particles are accelerated in the
laser field, weimposetheinitial condition yy,— P, = Qq,
which corresponds to the electron cyclotron resonance
in the plane wave. Theresults are presented in Fig. 2. It
can be seen that, similarly to the planewave[7], the GB
can aso efficiently accelerate electrons on the consid-
ered interval, though at a sower rate. The initial GB
width was specified such that the beam intensity
2000
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decreased by afactor of no morethan eat adistancez=
150 cm from the beam’s waist. Figure 2 plots the elec-
tron energy as a function of z in a stationary magnetic
fieldB,=100kG ate =1 for (A) yo=50and A = 10 ym
(CO, laser) and for (B) y, = 500 and A = 1 um (neody-
mium glass laser).

Figure 3 shows the electron energy as a function of
zwhen, at theinitial moment of time, the cyclotron res-
onance condition is satisfied approximately (Yo — po =
const = C # Q) rather than exactly. The energy of elec-
trons accelerated by the plane wave with the initial
cyclotron resonance condition that is satisfied exactly is
plotted for reference. It can be seen that such particles
can be accelerated on the 100-cm-long interval of our
interest if the difference between C and Q is small. If
C is dignificantly higher than Q,, the energy oscillates
rather than grows monotonically.

Figure 4 shows the energy of electrons injected at
different points of plane z, = 0 (beam’'s waist): (A)

X +Y? =1 <0la; (B) r =0.5a; and (C) r = a. All
remaining parameters of the GB and electron are the
same as above. As shown in the figure, the accel eration
rate decreases as the injection point moves away from
the GB center because the GB energy decreases. Thus,
all particles of a given cross section of the electron
beam are accelerated, though at different rates.

In order to validate our calculations, we compared
our solution to system (5)—(9) for the plane wave with
results given in [7, 11]; the agreement was perfect. Let
us focus on the results presented in [7], which predict
that relativistic electrons can be accelerated in a high-
power laser plane wave to extremely high energies at a
high rate if the electron cyclotron autoresonance is
maintained. At first sight, this statement contradicts the
conclusion [1, 3] that the acceleration rate decreases

with increasing energy as 1/./y . However, it can easily
be seen that the energy is aso proportional to the wave
frequency and the dimensionless parameter €. There-
fore, increasing the energy and acceleration rate with
the power and frequency of thelaser radiation at agiven
gisjustified.

CONCLUSION

Our calculations show that an electron beam can be
accelerated at a sufficiently high rate in the electromag-
netic Gaussian beam that propagates along an external
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stationary magnetic field despite the fact that the initial
cyclotron resonance between the wave and particle is
violated during the particle motion. All particles are
involved in the acceleration process regardless of their
initial phases.

We studied the motion of a separate electron,
thereby ignoring the effect of the intrinsic field of the
beam and the back effect of the beam on the accel erat-
ing electromagnetic wave. This approximation is valid
when the beam concentration (and current) is suffi-
ciently low. The single-particle model of interaction
between the electron beam and the electromagnetic
wave was shown to bevalid if the beam current islower
than a certain tolerable value J(kA) < 8ewR,/c, where
R, is the beam radius [8]. As for the radiation losses,
their effect is of very small significance even at very
high electron energies[7].
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ELECTRON AND ION BEAMS, ACCELERATORS

Six-Electrode Deflectron
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Abstract—In the two-dimensional approximation, the potential of a six-electrode deflectron (which was pre-
viously proposed by the authors) is obtained in a closed form. The field nonuniformity is calculated for this
deflectron. Thefield distributions are computed on the axes of finite-length deflectrons using certain analytical
formulas. In deflectrons, the axial trajectory of the beam can be horizontally and vertically deflected by a maxi-
mum angle which depends on the structure geometry. The nonlinearity of this deflection is calculated. The
results are compared to those obtained for four- and eight-electrode deflectrons. © 2000 MAIK “ Nauka/ I nter-

periodica” .

In order to create a scan on a sample, electrostatic
omnidirectional deflection systems with spatialy
superposed deflection centers (so-called deflectrons)
are used in scan electron microscopes, e ectron-beam
tubes, high- and low-energy electron diffractometers;
in the techniques of secondary-ion and atom mass spec-
troscopy; etc. Deflectrons do not focus beams of
charged particles (in the first-order approximation).
The main requirement imposed on these structures is
that the field in the operation region should be as uni-
form as possible.

Electrostatic deflectrons are most often designed as
cylinders or coneswhich are cut along generatricesinto
an even number of fragments [1, 2], having the forms
of planar electrodes placed on the sides of rectangular
(square) boxes[3, 4] and cut planar capacitors[5, 6].

In [7], we proposed a six-electrode deflectron with
identical angular dimensions of electrodes equal to 173
(assuming that the gaps between the el ectrodes are infi-
nitely small). The electrodes are located on a cylinder
(cone) surface. The cross section of the deflectron is
shown in Fig. 1. Inside an infinitely long cylinder that
is cut along the generatrices, the potential distribution
can be represented in Cartesian coordinates as a series.
When feeding voltages are applied as we propose
(Fig. 1), the series coefficients of the potential for the
six-electrode deflectron are expressed as follows:

Kin-1x = 4/T/(2n—-1)sin[(2n-1)1/3],
K(2n—1)y (1)
= 4/1/(2n-1){b+ (1-b)cos[(2n—-1)TU/3]} .
These expressions imply that K5, = 0 always and
Ks = 0 only at b = 0.5. The six-€electrode deflectron
provides a more uniform field than a standard four-

electrode deflectron. According to (1), the higher coef-
ficients, which govern the sensitivities of the horizontal

and vertical deflections, are, respectively, K, = 2./3/1
and K;, = 3/t Therefore, equal deflections in both
directions are provided by the feeding voltages that are

coupled by the relationship V,/V, = /3/2.

Inaclosed form, the potential distribution of the six-
electrode deflectron that involves the corrected third
harmonics has the form

®(6)
= U (V, + V2V ) arctan[ (/3 + y)/(1- X —y?)]
+ (V= 12V, ) arctan[ (J/3x —y) /(1 - X" - y°)]
+Vyarctan[2y/(1—x2—y2)]} .

Here and below, the x and y coordinates are expressed
in terms of cylinder radius R. The field intensity com-
ponents of this deflectron are

Ex(6) = —L/(TR){ (V, + 1/2V,)[/3(1+ X —y?)
+2xy]/[(1= X =y") "+ (J3x+y)] + (V= 1/2V,)
X [J3(1+ 5 —y") —2xy] /[ (1~ % ~y?)’

+ (Bx—y)’] + AV xyl[(1-X —y") + 4y},
E,(6) = —L/(TR){ (V, + L/2V,)
x[1=x+y* +2./3xy][(1- X - y?)°

+(Bx+y)’] 3)
— (Vo= 12V,)[1- X"+ y* = 2./3x) /[ (1~ X - y?)°
+(M3x=y)]

2V, [(1—x +y)[(1—XC =y 1"+ 4y7]} .
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Expressions (3) imply that, when V,/\, = ./3/2, the
field intensity components on the axisare E(x =y =
0) = E(x =y =0) = E;,, where E,, isthe intensity of the
corresponding uniform field.

Figure 2 demonstrates field nonuniformity AE nor-
malized to the intensity of the uniform field versus the
distance to the axis. These results are calculated for the
six-electrode deflectron using (3) (curves 2) and com-
pared to the field nonuniformities of the elementary
four- and the more complicated eight-electrode [2]
deflectrons with the electrode angular dimensions of
102 (curves 1) and 174 (curves 3). Specifying the value
of the field nonuniformity necessary for solving a prob-
lem under consideration, one can find the maximum
possible distance between the trgjectory and the struc-
ture axis and, finally, determine the deflection angle.
Thus, when AE/E;, = 0.1%, the distance from the axis
must not exceed 0.02R, 0.17R, and 0.025R for the four-,
six-, and eight-electrode deflectrons, respectively. We
should note that the difference in the distances is small
for the two latter deflectrons and, in most cases, the six-
electrode deflectron is not inferior to the eight-elec-
trode one. Below, this circumstance is demonstrated by
analyzing the trgjectories and determining the nonlin-
earities of deflection through equal angles.

For arbitrary deflectrons, the field distribution along
the axis (in the proximity of the axis) coincideswith the
field of a planar capacitor when the deflectrons have
equal lengths and interelectrode distances. In the case
when the deflectronislocated in the free space, thefield
distribution is calculated using the TEO program [8].
The field intensities are calculated on the longitudinal
axes of deflectrons of different lengths and normalized
to the field intensity AE,;, observed at the center (see
Fig. 3a). Coefficient A asafunction of deflectron length
isshown in Fig. 3b. Taking into account the data given
in Fig. 3, we have chosen an analytical formulafor the
field distribution. For short deflectrons (1 < I/R < 2), it
has the form

E(z) = AE,cos’(BZ/R), (4)

whereB=0.9-0.2I/R.

Theorigin z= 0 coincides with the deflectron center.
In Fig. 3a, the field distribution calculated by (4) is
marked with crosses. For long deflectrons (I/R > 3),
A=1. In this case, one can notice a section with E, =
const, whose length depends on the structure length.
For this section, we have found the empirical formula

z/R = I/R-2.38. (5)

In addition, long deflectrons are characterized by an
edgefield that isvirtually independent of the deflectron
length. Thisfield can be represented in asimpleform as
E, = E,cos’[Z/(2R)]. (6)

InFig. 3a, the edge field calculated by (6) is marked
with dots surrounded by circles. The effective lengths
TECHNICAL PHYSICS Vol 45
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Fig. 1. The cross section of the six-electrode deflectron.
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Fig. 2. The field nonuniformity of electrostatic deflectrons:
(solid curves) deflection in the x-axis direction, (dash-and-
dot curves) deflection in the y-axis direction, and (dashed
curves) the diagonal deflection.

of deflectrons are determined using (4)—6). For the
short and long structures, the effective lengths are,

respectively,
1/(2B)
L=2 J’ cos’(Bz/R)dz = 4R/(3B) 7
0
and
L = = 1+0.3R. (8)

Zy+ 2J’cosz(ﬂ2R)dz
0
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E/AE),

0 1 2 3 4 /R

Fig. 3. (a) The field intensity of deflectrons of different
length[I/R: (1) 1, (2) 2, (3) 3, (4) 4, (5) 6, and (6) 8] and (b)
the coefficient governing the field intensity at the center of
the structure.

The trgjectories of the charged-particle beam in the
deflection structures are computed using the DEF pro-
gram, which utilizes the MathCAD system of com-
puter-aided mathematical calculations. Inthisprogram,
each second-order equation is reduced to a system of
two first-order differential equations. The error in the
solution is 1075,

The axial tragjectories of the beams in the short and
long six-electrode deflectrons are calculated by the
DEF program. The fields of these deflectrons are spec-
ified by (3)«6). The coordinates and dope angles
obtained at the exit of the field region are compared
with the calculations performed using a rectangular
model with the effective lengths found from (7) and (8).
The comparison shows that the difference observed for
short deflectrons reaches 100% and, for long deflec-
trons, this difference does not exceed 10%. This fact
means that the longer the deflectrons, the less the beam
parameters are affected by the form of the edge field
and, starting with a certain length, the variation of the
radial field becomes a determining factor.

OVSYANNIKOVA, FISHKOVA
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Fig. 4. (@) The coordinate and (b) angle deflection nonlin-
earity of the axial beam trajectory at the exit of deflectrons
of the length | = 2R: (1) the four-, (2) the six-, and (3) the
eight-electrode deflectrons. (Solid curves) deflectionsin the
x- and (dashed curves) y-axis directions.

Using calculations of the parameters of the axial tra-
jectory, we find the nonlinearity of the coordinate (&)

and slope angle (9, ) deflections observed at the exit of
the field region by using the following formulas:

O =rilrin=1; & =rilri,—1, ©)

wherer; and r; are the distance from the axis and the
slope angle of the axial beam trgjectory at the exit of the
field region, respectively, and r;, and r,, are the same
parameters for a uniform field.

Then, the deflection nonlinearity on the object is

A=03+3\ A =23, (10)

TECHNICAL PHYSICS Vol. 45 No.8 2000
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(a)

4

Fig. 5. (a) The coordinate and (b) angle deflection nonlin-
earity of the axial beam trajectory at the exit of deflectrons
of thelength| = 4R: (1) thefour-, (2) six-, and (3) eight-elec-
trode deflectrons. (Solid curves) deflections in the x- and
(dashed curves) y-axis directions.

where A is the distance from the exit of the field region
to the object.

Figure 4 demonstrates the nonlinearities of the coor-
dinate (a) and angle (b) deflections for the short six-
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electrode deflectron whose length is equal to the diam-
eter of its aperture (curves 2). Figure 5 shows the same
parameters cal culated using the rectangular field model
for the deflectron with the length equal to the doubled
aperture diameter. The data characterizing the coupling
of the efficiency of the deflection structure with the
deflection angle, as well as with the coordinate of the
axial trgjectory at the exit of the field region, are sum-
marized in the table. The efficiency of the deflection
structure is governed by the ratio between the main
feeding electrode voltages (V) and the acceleration

potential (P,). Note that \, =V and V, = ./3/2V.

From Figs. 4 and 5, one can see that the long and
short deflectrons exhibit a substantially different
behavior of the deflection nonlinearity. For the long
deflectron, the deflection-angle dependence corre-
sponds to the field nonuniformity of the infinitely long
deflectron observed when the distance from its longitu-
dinal axis increases. This nonuniformity mainly gov-
ernsthe deflection nonlinearity, whichisvirtually inde-
pendent of the edge field. For the short deflectron, the
edge-field effect isessential. At deflection angleswhich
do not exceed 25°, the deflection nonlinearity of the
long deflectron is less than that of the short one by a
factor of 2—4.

We should note that, when the deflection angle
exceeds 25-30° in the short deflectron, the deflection
nonlinearity abruptly varies and, hence, the shape of the
spot is distorted due to a considerable difference
between the axial and edge beam trgjectories. There-
fore, it is inexpedient to use these modes in precision
instruments such as scanning electron microscopes.

The parameters of four- (curves 1) and eight-elec-
trode (curves 3) deflectrons are compared in Figs. 4 and
5. These parameters are calculated using the DEF pro-
gram in the case when the field distribution along the
longitudinal axisisidentical to the corresponding field
distribution of the six-electrode deflectron. As
expected, the four-electrode structure exhibits the max-

Table
IIR=2 IIR=4

VI®, al X/R ay yi/R al x/R ay yi/R
0.05 35 0.192 35 0.192 5.9 0.225 5.9 0.225
0.1 7.0 0.386 7.0 0.386 11.6 0.449 11.8 0.450
0.2 14.1 0.779 14.3 0.782 21.7 0.801 231 0.907
0.25 26.2 1.100 28.8 1.140
03 21.2 1183 21.8 1.202
0.4 26.8 1.577 28.0 1.627
05 305 1.918 324 2.004
0.6 3238 2.196 35.0 2.320
0.8 355 2.630 38.4 2.840
1.0 37.1 2.972 411 3.330
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imum nonlinearity. For example, if we assume that 6 =
1%, the deflection angle must not exceed 5°. In this sit-
uation, the beam can be deflected by an angle of up to
8° in the short six-electrode and in the eight-electrode
deflectrons and up to 18° and 15°, respectively, in the
long eight-electrode and the six-electrode deflectrons.

Thus, in certain cases, the proposed six-€lectrode
deflectron with the corrected third harmonics in the
expansion of the potential is superior because its
parameters are close to those of the eight-electrode
deflectron and the design is simpler.
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Abstract—A method for simulating processes of metal sputtering by ion bombardment in the form of large
neutral and charged clusters with a number of atoms N = 5 based on simple physical assumptions and in fair
agreement with experiment is suggested. As an example, the ionization degrees and ionization coefficients, as
well as the relative cluster yields, are calculated as a function of the number of atoms in clusters of different
metals (Ag, Nb, and Ta) bombarded by singly charged Ar*? and Au ions. A fluctuation mechanism of charge
state formation for large clusters, which describes the dependence of the charge state distributions on cluster
size and target temperature, is developed. © 2000 MAIK “ Nauka/lnterperiodica” .

INTRODUCTION

Sputtering of solids by ion bombardment plays an
important role in many fields of science and technol-
ogy. This is primarily associated with technological
applications in micro- and nanoelectronics and space
and fission technol ogies. The number of papers devoted
to both the application and fundamental studies of sput-
tering has increased considerably in recent years (see,
for example, recent reviews [1-5] and the literature
cited therein). A theoretical description and calcula-
tions of sputtering processes are extremely difficult,
first of all because of the many-particle nature of the
problem both at the stage of ion penetration into asolid
and at the stage of formation of sputtering products,
which consist not only of singletarget atoms but al so of
polyatomic particles, i.e., clusters. Sputtering processes
involving single target atoms are usually described [1]
using the so-called collision cascade sputtering mecha
nism [6]. Sputtering mechanismsin the form of two or
more bonded target atoms are still the subject of discus-
sion[1, 2, 5], since they describe the formation of large
clusters inadequately and differ considerably from the
cluster formation mechanismsin gasand plasma. At the
present time, hopes of performing calculations based
on “first principles’ are connected with computer sim-
ulations using molecular dynamics methods [1, 2, 5]
(seedsothecalculationsin[7, 8]). However, these cal-
culations are technically complicated, especialy asthe
number of atoms in the cluster increases, and are hard
to reproduce in other investigations. The formation of
the charge state of the sputtered surface material isaso
acomplicated problem. The ionization degree n = J¥J
is usually used as a quantitative characteristic of the
charge state, where J? is the flow of particles of charge
Q escaping the surface and J = X5, isthe total flow of
escaping particles. However, to characterize the charge

state of the sputtering products in the form of clusters,
it is convenient to use the following more specific char-
acteristics: the ionization coefficient

Q

Q= N

N — -0
NN

)

and the ionization degree of clusters with number of
atoms N

NMn = 5 2

where JS istheflow of clusters escaping asurface con-
sisting of N atoms and having a charge Q = 0, +1,

+2,...and Jy = ZQJS is the total flow of neutral and
charged clusters of N atoms.

A large number of both experimental and theoretical
works (see, for example, [9]) are devoted to studies of
charge state formation for monatomic particles sput-
tered or scattered at a metal surface. The mechanism of
charge state formation for polyatomic particles has
been studied much less extensively, both theoretically
and experimentally. Notably, in [10], the ionization

coefficient K,t,l was found to depend on the number of

atoms in a cluster: KLl increases drastically with
increasing N, saturating at N > 5, so that variations of

K:,l with a further increase in N are negligible. From

this observation, a conclusion was made about the uni-
versal character of the power law established empiri-
caly for therelative yield of large clusters, both neutral
and charged. In [11], an attempt based on semiempiri-
cal estimates of the degree of cluster excitation was

1063-7842/00/4508-1063%20.00 © 2000 MAIK “Nauka/Interperiodica’
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undertaken to account for the formation of singly
charged positive clusters asthey |eave the metal by sug-
gesting that the thermionic emission of an electron
from the cluster occurs as it |eaves the metal. However,
agreement with experimental results could only be
reached by assuming the existence of clusters with
extremely high temperatures of ~1 €V. Moreover, the
formation mechanisms for clusters with charges other
than +1, including negative clusters, are not clear. In
this paper, we have suggested a mechanism for ion
bombardment sputtering of a metal in the form of neu-
tral and charged clusters with number of atoms N = 5.
The mechanism is based on simple physical assump-
tions and is in good agreement with experimental
results.

FORMULATION OF THE PROBLEM

The process of charge state formation is an integral
part of the sputtering mechanism. Our consideration
largely relies on the suggestion made earlier in many
works[1] that large clusters leave a solid as an integral
block of atoms. This assumption was further devel oped
in a sputtering model proposed in [12, 13]. According
to [12, 13], the probability of events corresponding to
the correlated motion of a block of N atoms with total
momentum k can be expressed as

W,
OB kfO B krf
eXpL—— - 10 - &XPpO—— 41+ x5 [
0 ns2E N g 0 nohz%1 NE | (3)
— k B 1
4gs L
Nnoﬁ2

where 3 = 1/(2mw/#); wisthe characteristic oscillation
frequency of the target atoms, mis the mass of the tar-
get atoms, and g has the meaning of the average
momentum received by ametal atom at the early devel-
opment stage of a collision cascade.

The probability (3) isthe result of summing over all
vibrational excited states of the cluster up to some prin-
cipal quantum number ny when the energy accumul ated
in excited oscillationsis sufficient to destroy the cluster.
Thiscan berealized at ny = A/(fiw) when the oscillation
energy of al the oscillators (atoms in the cluster)
becomes sufficient to remove one atom from the poten-
tial well of depth A describing the bonds between target
atoms.

Model of Charge State Formation

L et us define the charge state of ablock of N atoms.
As in the statistical derivation of the Saha—Langmuir
equation [14], we will assume that asthe cluster moves
a certain distance & (called critical) away from the
metal surface, an exchange of electrons between the

MATVEEV

conduction band of the metal and the atoms of the clus-
ter is possible. When the distance between the cluster
and the metal exceeds &, the electron exchange process
is stopped nonadiabatically. Below, when speaking of
electronsin the cluster, we mean only valance electrons
and we call the set of corresponding states the cluster
conduction band. We assume that an exchange process
between the conduction bands of the cluster and the
metal is possible. Then, the average number of elec-

trons N, occupying the energy level €. according to the
Fermi distribution is equal to n; = {exp[(s, — W/O] +
1} 1, where O is the temperature and p is the chemical

potential. Let us denote by Anf the rmsdeviation of the
occupation numbers n, from their equilibrium values

= (n,—m)° = (1 - i) [15]. Obvi-

ously, the average number of electronsis N, = =1, .
The number of electronsin the cluster conduction band

is N, therefore, by definition, AN? = (N,—N,)° =

n, ; then, AnT2

s.An’. A cluster with N, electrons in the conduction

band will be neutral if N, = N,, where N, isthe aver-

age number of electronsin the cluster conduction band,
equal to the number of atoms N in the cluster multiplied
by the valencey (more precisely, by the number of elec-
trons a neutral metal atom gives to the conduction
band). Thus, the cluster charge is Q. = (N. — Ny)e,
where e isthe electron charge.

Further calculations by these eguations require
information about the cluster’s electron structure and
cannot be performed in the general case. However,
assuming that the cluster size is large enough and the
electron states are quasi-continuous, summation over
the electron states can be replaced, in the standard way,
by integration over the band by the rule givenin [15]

zf(er)-jf( 2" v, ﬁ 3

where m, is the mass of the conduction band electron
and V isthe cluster volume.

Thus,
AE - pVMme expl (e, ~1)/©)
SRS TS P
1,2Vm3/2 ) _ eXpz__
J’ dz0./0z+py—m—
e {expz+ 1}

At temperatures less than the degeneracy tempera-
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ture, i.e, at Wo > 1,

3/2
1/2V me

243 “/ﬁ@’

AN =

2

where the chemical potential of adegenerate Fermi gas
with the number of particles N, in avolume Vis[15]

2 , 2
_ (3 AN
W= G va
Thus, the rms deviation of the cluster charge from
the equilibrium value Qe = (N,—Ny)e = 0 is equal
to:!

1 1
M@ Ner?

(8Qy)’ = €an? = e T2
T[é

()

Probabilities Py(Q) for values of Q can be deter-

mined from the standard equation for the probability of
fluctuations

2
Pu(Q) = S expia— g (®)
v 0 2(aQ,)20

where the normalization factor Dy is determined by
summing over al possible valuesof Q =0, £1, £2, ...
andisequal to

2

0= 3 epi=2
Q (AQN)

Thus, to obtain the probability WS for acluster with

N atomsand charge Q. to leave the metal, it is necessary
to multiply the probability Wy (see formula (3)) by

Pu(Q):

5 @)
]

W3 = WP (Q). (8)

Equation (8) describes the probability for a cluster
of N atoms to escape the metal if the cluster's kinetic
energy issufficient to break the bonds between the clus-
ter of N atoms and other atoms of the metal. If the clus-
ter is neutral, this energy is proportional to the square

LIn principle, the fact that the equilibrium cluster chargeis equal to
zero follows from the assumption that the Fermi levelsin the clus-
ter and the metal coincide; if this is not the case, asymmetry
between positively and negatively charged clusters will be
observed. The corresponding changes to the resulting formulas
can easily be made.
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of the contacting surface S, between the block of N
atoms and the metal. Let us assume that the contacting
surface is a hemisphere with its center on the initia
metal surface before sputtering. Its radius is obviously
connected with the number of atomsin the cluster

Wik

3
Ry [N z—nd} 9)
where d isthe number of atomsin a unit volume.
Then, the binding energy of aneutral cluster, which
isproportional to §, is
2
3 2
Uy = 0S, = 021R; = OEQ dgN3 SN°,
where d obviously means the surface binding energy of
aneutral cluster per atom in the cluster.
If acluster carriesaway acharge Q,, an energy U, of
interaction with the image charge should be added to

Uﬁ, to obtain its binding energy with the metal US.
The energy of interaction can be expressed as

_ Q¢

U, = 2y’

wherex issome effective distance at which the overlap-

ping of the wave functions of electrons of the cluster

and the metal conduction bands vanishes as the cluster

moves away. Therefore, we shall assume that x is con-
nected with the work function ¢ of the target metal

fi
/2me(p'

Thus, the energy binding the cluster of charge Q.
and the metal can be expressed as
2
Ug = 3N*+U,. (13)
A cluster that before escaping (before overcoming

the binding energy US) was imparted the momentum
k will then move with the kinetic energy Ty equal to

2

(10)

(11)

X = (12)

k2
>N -o0Sy—U..

Taking Ty = 0, we find from (14) the minimum
momentum Kqy the cluster needs to overcome the bind-

Ty =

(14)

ing energy Uﬁ:

kon = /Kon + 2MNU,

(15

2In the strict sense, X is defined only to within an order of magni-
tude, but we put the sign of equality in the definition of X so asnot
to introduce extra fitting parameters.
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1 15 5
kon = [2MNOS,]? = [2mB]°N°® = ky,N®,  (16)
1
where ky; = (2md)? is the minimum momentum per
atom in acluster necessary to gject a neutral cluster.

Now, to obtain the escape probability of a whole
cluster of N atoms, it is necessary to integrate the prob-
ability formula (8) over al possible values of k, under
the condition that |k| > koy and k is directed outside,
i.e., isfound within the solid angle of 21t

W= [ Widk= [ 2 Py(Q). (17)

ET k> Koy

Tointegrate (17), we can write the probability in the
form in which the integrand represents the distribution
of the kinetic energy T, of the clusters; thus, we write
(14) intheform

Ty = (18)

2rnN(k -U,).

By substituting the variables in (17), we obtain the
final expression for the escape probability of a cluster
of N atoms with charge Q

00

—Q q k o™
Wx = 21(kmNdT P [4—— —}
N -! N N(Q) k01Nk01A

dnq __k fH
{ex'f’D_AEkol NkmDE (19)
3 5Dq k DZD

Values of energy 6 (eV) [16] and variable parameter q (at.u.)
for various ion-target combinations

Incident ion Target Bi r%dgg/; ([agg]r Y g, au
Ar* (5keV) Ta 8.1 550
Au (6 keV) Ta 8.1 550
Ar* (5keV) Nb 7.47 380
Au (6 keV) Nb 7.47 310
Ar* (5keV) Ag 2.96 170

Note: Some differences in the values of the fitting parameter g
from those we used earlier [12, 13] for tantalum and nio-
bium can be explained by the fact that in [12, 13], charge
state formation was not considered and that for tantalum, the
value of the sublimation energy was taken from a different
source.

MATVEEV

where k = /2mNTy + (Kon)? + Uq, Koy = kogNY, v =

5/6, and the fact that Bk§1/n0 = O/A is taken into
account.
We define the ionization degree (2) as

o _ Wi
o - Wy

NN = (20)
where
—Q
WN = ZWN
Q
is \TVS summed over al possible values of Q = 0, 1,

2, .... The ionization coefficient, which according to
(2) istheratio of the number of clusters with charge Q
to the number of neutra clusters (for a given cluster
size N), can be defined as

—Q
W
Ky = — (21)
N
RESULTS

Our consideration apparently cannot be used to
describe the sputtering of single atoms or small clus-
ters, while comparison with experimental results has
led to the conclusion [12, 13] that the model isvalid for
clusters containing a certain minimum number of
atoms (N = 5). In experiments, the relative probability
of theyield of clusterswith different numbers of atoms
is usually measured. Thus, to compare it with experi-
mental data, the probability given by (19) should first
be divided by the probability of escape of acluster with
N =5 (to be exact, any value in the range N = 5 can be
chosen, but N = 5 is more convenient in this case);
experimental results are normalized in a similar way.
Also, any arbitrary units can be defined to meet partic-
ular needs.

Values of the binding energy & (eV) and the variable
parameter g (atomic units# = m, = e = 1) for different
ion—target combinations are given in the table. In al
cases listed in the table, good agreement with experi-
ment is observed. In the calculations, we kept the num-
ber of fitting parameters to a minimum and assumed
A =9d. In general, analysis of the direct consequences
from Eq. (19) is difficult; thus, we shall consider the
results of numerical simulations and experiments pre-
sented in Figs. 1-8, which appropriately illustrate the
general situation.

The simplest characteristics of the charge state dis-
tribution of clusters with a given number of atomsN is
the ionization coefficient KS equal to the ratio of the

number of clusters with charge Q # 0 to the number of
neutral clusters of the same size N. The dependence of
TECHNICAL PHYSICS Vol 45

No. 8 2000
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N
0.6

0.5
0.4
03r
0.2
0.1f

1600 15b0 2000 2500 3000
6,K

0 T
0 500

Fig. 1. The dependence of the coefficients of singleand dou-
bleionization of clusters on target temperature ©.

the ionization coefficients of Taclusterswith N =5 and
10 atoms as a function of target temperature © is given
inFig. 1, illustrating the following general conclusions:
(1) The charge state varies with target temperature, and
the ionization coefficient increases with increasing
temperature. (2) Thelarger the cluster charge, the more
rarely that cluster occurs; for example, the number of
clusterswith charge 2 is, asarule, much less than those
with charge 1. (3) Larger clusters are more strongly

. . 1 1 2 2
ionized; for example, K3, > Kz and K3g > Ks .

The dependence of the ionization coefficient for Ag
clusters on cluster size N at a target temperature © =
700 K is shown by the dashed linein Fig. 2. An impor-
tant feature is the tendency to saturation of the ioniza-
tion coefficients with increasing cluster size. Qualita-
tivel)é similar behavior was observed in experiments
[10],° whose results are also presented in Fig. 2. Since
an ionization coefficient describing only charged clus-
ters cannot account for the behavior of neutral clusters,

it is necessary to introduce the ionization degree r]ﬁ as

the ratio of the number of clusters (of size N) with
chargeQ =0, £1, 2, ... to the total number of clusters
of the same size N. The ionization degree shows charge
redistribution between clusters of a given size; for
example, a rise in the number of charged clusters is
accompanied by a corresponding fall in the number of
neutral clusters. This behavior of the ionization degree
isshown in Fig. 3 (for N = 5) and Fig. 4 (for N = 10).

The relative yields Yy = W /We for singly charged

(Y,{,) and neutral (Yﬁ) clusters of Tay and Nby as a
function of the number of their atoms are shown in
Figs. 5-8. Tantalum and niobium targets were sputtered
by singly charged Au™ ions at an energy of 6 keV and
Arttions at an energy of 5 keV at target temperatures

3 To be precise, in these experiments, the target temperature was
not registered, despite its possible dependence on laser irradia-
tion.
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Fig. 2. The dependence of the single ionization coefficient
on the number of atoms in Ag clusters. dots, experiment
[10]; dashed line, calculation.

ng
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0 500 1000 1500 2000 2500 3000
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Fig. 3. Theionization degree of Ta clusters as a function of
target temperature. N = 5; Zr] S the ionization degree

summed over all cluster charges corresponding to the total
relative number of clusters with arbitrary, but nonzero,

charge, i.e, an =1- ng.
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0 kL I I I I I I
0 500 1000 1500 2000 2500 3000
0,K

Fig. 4. Sameasin Fig. 3 for N = 10.
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Fig. 5. Therlative yield Yy, of Tay singly charged clus-

ters as a function of N. Bombardment by Aulions © =
2273 K. Solid line, calculated Y,{, values, heavy dots,
experiment [17, 18]; dashed line, calculated mass spectrum

of neutral Yﬁ clusters; dotted line, power law curve [19]
N-85/585

normalizedto N =5, i.e., values of the function
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Fig. 7. Therelativeyield Y,{, of NbL1 singly charged clus-
ters as a function of N. Bombardment by Aul ions, © =
2273 K. Solid line, calculated values of Y,{, ; dots, experi-
ment [20]; dashed line, calculated mass spectrum of neutral
Y% clusters; dotted line, power law curve [19] normalized
toN =5, i.e., values of the function N81/58.1,

© = 2273 K and © = 300 K, respectively. The power
law curve [19] normalized to a cluster with 5 atoms,
i.e., values of the functions N-85/585 for tantalum and
N-81/5-81 for niobium, is also plotted in the figures for
comparison. It isworth noting that mass spectra of the
neutral clusters are weakly dependent on temperature,
whereas mass spectra of singly charged clusters are
appreciably affected by target temperature but
approach the mass spectra of the neutral clusters as the
temperature increases.

Fig. 6. The relative yield Yﬁ of Taﬁ, neutral clustersasa
function of N. Bombardment byAr+1 ions, © =300K. Solid
line, calcul ated val ues of Yﬁ ; dots, experiment [19]; dashed

line, calculated mass spectrum of singly charged Y,{, clus-
ters; dotted line, see Fig. 5.

—_
<
TTTITT T T OO T T IIIII|-T|

Fig. 8. The relative yield Yﬁ of Nbﬁ neutral clustersas a
function of N. Bombardment by Ar*1ions, ® = 300 K. Solid

line, cal culated values of Y,?, ; dots, experiment [ 19]; dashed
line, calculated mass spectrum of singly charged clusters

Y,{, ; dotted line, see Fig. 7.

Thus, only on the assumption that a cluster escapes
as a whole can the fluctuation mechanism of cluster
charge state formation be developed and the depen-
dence of the charge state distribution on cluster size and
target temperature be described. It is known that it is
technically much simpler to register charged particles
than neutral ones. Charge state formation processes,
i.e.,, emission processes of charged and neutral parti-
cles, are often interrelated. Therefore, experimental
results for charged particles provide an indirect way to

TECHNICAL PHYSICS  Vol. 45
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recover datafor neutral particles and thus allow one to

EMISSION OF CHARGED CLUSTERS DURING METAL SPUTTERING BY IONS

simplify the experimental setup.

10.
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Abstract—A model was put forward for finding the angle of incidence of anarrow gamma-ray beam and refin-
ing its coordinate when the beam is detected by cathode-readout counters based on thin-film drift tubes. The
model can be used in solving small-angle scattering problems, which are widely met in X-ray diffraction anal-

ysis. © 2000 MAIK * Nauka/Interperiodica” .

INTRODUCTION

The determination of neutral particle coordinates
with the use of gasfilled detectors based on thin-film
drift tubesisalways complicated by parallax. If the par-
ticle path is deflected from the plane normal to the
anode wire, the performance of these detectors
degradesin comparison with the usual case. The spatial
resolution of the detector can be improved by introduc-
ing a correction for parallax [1] on condition that the
beam coordinate distribution in the detector is given by
the Gaussian function.

This paper deals with an experimental check of the
parallax-correction method and extends it to the case
when alinear position cathode-readout detector on the
base of thin-film drift tubesisused [2, 3].

EXPERIMENTAL

A special collimator (Fig. 1) with orthogonal dlit 3
of width 40 um and inclined dlit 4 of width 80 um was
designed for investigations. The detector [2] was
purged by aAr : CH, (80: 20) or Xe: CH, (80: 20) gas
mixture under normal pressure. It was irradiated by a
5Fe source through dlits 3 and 4 simultaneously. The
collimator can move up and down over a distance of
1 mm with a precision of better than 20 pm. Beam
orthogonality was thought to be provided if collimator
movement did not change the coordinate of the peak
leaving dlit 3 (within the accuracy defined by the spatial
resolution of the detector).

Typical coordinate distributions after passing both
dlits for the argon and xenon mixtures are presented in
Fig. 2. It is evident that a gas mixture with a great
absorption factor is preferable. In this case, two or more
nearby peaks from narrow gamma-ray beams that are

not orthogonal to the anode wire may be resolved. A
similar problem appears, for instance, in structure anal-
ysis related to small-angle scattering; in this case, the
Xenon mixture under excessive pressure is more appro-
priate.

RESULTS AND DISCUSSION
Model

It follows from experimental data (Figs. 2a, 2b) that,
if anarrow beam is strongly deflected from the normal,
the coordinate distribution of gamma quanta cannot be
represented by a broadened and shifted Gaussian func-
tion. To treat the data, we assumed, in contrast to [1],
that, for each gamma quantum absorbed in the detector,
the coordinate distribution obeys a Gaussian curve, and
the parameter o of thisdistribution isthe spatial resolu-

3.6 mm | | 1
= ! f
g I y
L
) ) 4 )
3/3,/ 0.3 mm
0
. /i Xe/CHy
g ! 5
= / X
/

Fig. 1. Schematic of experiment: 1, ®°Fe source; 2, collima-
tor; 3 and 4, dlits; 5, anode; and 6, strips.
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2000 ®

1500
1000

500 -

(b)

T
—

2500

2000

1500

1000

500 -

U

0 0.1 0.2 0.3 0.4 0.5

X, cm

Fig. 2. Typical coordinate distributions of the number of
gammaquantafor (a) argon and (b) xenon gas mixtures (one
bin along the x-axis equals 50 pm).

tion of the detector. We assume also that o is constant
for each single event, being independent of the drift
path of the primary electron cloud toward the anode
wire. Physically, this means that we neglect the diffu-
sion of the drifting primary electron cloud.

The geometry of the experiment is shown in Fig. 3.
The situation when the gamma flux vector, the normal
to the plane of the flux, and the anode-wire axis are
noncomplanar was not considered. According to our
assumption, the differential probability that the event
will occur at a point x is given by the normal distribu-
tion

dP, Dexp(—(x—X,)*/20°%), (1)
where x,,, is the projection of the point where a gamma

guantum is absorbed (Fig. 4).

The probability that the gamma quantum will be
absorbed in the gas mixture is given by

dP, Uexp(—us), (2

where | is the absorption factor of the gas mixture in
the detector and s is the gamma quantum range in the
mixture.
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Fig. 3. Geometry of the experiment.
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Fig. 4. Schematic of the process.
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Fig. 5. Fitting by the Gaussian function (one bin along the
x-axis equals 10 pum).
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Fig. 6. Fitting by model (4) (one bin along the x-axis equals
50 pm).

These processes are mutually independent; then, the
total differential probability that the event will be
detected at the anode, including the probability that the
gamma quantum is absorbed in a volume dV, takes the
form

dP(x) O exp(—pus) exp(—(x—X,)/207)dV.  (3)

Integrating (3) over the region where gamma quanta
meet the gas mixture, we obtain the total probability
that the event will be detected at a point x:

Xo + d/(2sina) R RP-7

P(x) O dx, [dz dy
xo—d/(J’Zsina) :[Q _Jé[i_zz
x { exp(—1s) exp(—(x — X) */26%)},

(4)

where

s = [(Rz—zz)ljz—y]/sina, Xm = Xo * ycota,

X is the intersection point of the anode wire and mid-
plane of a gamma flux (by definition, the midplane is
parallel to the collimator dlit), and d is the gamma flux
width (we neglect the beam divergence).

Thus, the modél is specified by the function P(x, X,
g, a).

Fitting

The parameter o0 is determined as follows: in the
absence of paralax (a = 90°), the peak leaving dlit 3
(Fig. 2b) is approximated with expression (4). This
gives 0 =50 um. For this experimental distribution, the
root-mean-square deviation is RMS= 56 um (Fig. 5). If
this peak is approximated by a normal Gaussian func-
tion within the range where a good correl ation with the
experiment is observed, we obtain og = 45 um.

Now, putting o = 50 um, we apply this model to
approximate the data for inclined dlit 4 (Fig. 2b) and

LOBASTOV et al.

find X, = 0.2292 + 0.0011 cm and (90° —a) = 13.20°
0.12°. The latter value agrees well with the measured
angle (13.25° £ 0.15°) of the used collimator. The fit-
ting results are presented in Fig. 6.

CONCLUSIONS

Mathematical model (4) for coordinate distribution
in a cathode-readout detector based on thin-film drift
tubes is presented. The model takes into account the
detector and incident beam geometries. It gives a good
fit to the experimental data and can be employed in
experiments with space-separated gamma-ray beams,
for instance, in X-ray diffraction analysis.

A method [see (5)] is suggested that not only signif-
icantly refines the coordinate x, but also findsthe paral -
lax-related angular coordinate a for a narrow gamma
beam from the shape of the peak in its coordinate dis-
tribution.

Experimental coordinate distributions were obtained
for the designed detector (Fig. 2). The angular coordi-
nate of a narrow beam of gamma quanta, which are
absorbed for the most part through photoeffect, was
first obtained from these data.

The method can be employed for creating planar
detectors for synchrotron beam imaging [4].

The use of numerical integration (see Appendix)
will inevitably increase the computational time when
the model becomes more complicated to improve the
accuracy of obtaining the coordinates x, and a (for
instance, if diffusion or amore intricated incident beam
geometry is considered). Clearly, the greater the com-
putational resource, the less the computational time.

APPENDIX
The main difficultiesin taking the integral in (4),

%o + d/(2sina) R R-7
P(x) O I dxéIdz I dy
Xg—d/(2sina) -R _JRzi_ZZ

x { exp(—ps) exp(—(x — %) */26%)},

are as follows: (1) This triple integral cannot be taken
analytically and (2) Immediate numerical integration
requires much computational time because of the three-
dimensional domain of integration.

However, (4) can be analytically integrated succes-
sively for the variablesy and x, . On simplification, we

In this work, an AMD-K-6-11 (333 MHz/32-Mb RAM) computer
was used. The time to compute the data presented in Fig. 6 was
25 min.
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obtain

R/2

N
[(X, Xo, O, Q) = I dzDEl-2+ exp(24/R 7 UCOSGC(G))EI’fDZX 2%~
0

-R/2

-2Xx + 2%, + 24/ R
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2.JR? —Z°cot(a) + dcosec(a)%
220 O

?_Zcot(a) + dcosec(a)D

+ exp(2+4/R Pz pcosec(a))ErfD

+ eXp(ZA/——Zucosec(a))%x rhsec(a)(2x —2Xy—

2./20 D

dcosec(a) + po’sec(a)) g

2 0d

0 2x+2x,-2 R*—Z°cot(a) + dcosec(a) — 2U0 sec((x)D

x [Erf 3

g d

[ 2X + 2%y + 2

2./20 D

—Erf 3

R®—Z°cot(a) + dcosec(a) —2pozsec(a)%

0 2./20 Bl )

rpsec(a)(2x— 2x0+dcosec(cx)+u0 sec(a))

+eXp|:|

[2x —2X,—24/R

2 d

? _Zcot(a) + dcosec(a) + 2|0 sec(u)D

O
x FErf 3
o d

+ Erf 4

2./20 D

(DX —2Xq + 2 R’ —Z°cot(a) + dcosec(a) + 2uozsec(o()%

0 2./20

2% + 2%, — 2

[l

?_Zcot(a) + dcosec(a)D

+ Erfc3
O

+ Erfc3

(DX —2Xq + 2 R®—Z"cot(a) + dcosec(a) ]

zﬁo D

2./20

It onIy remains for us to integrate over z numeri-
cally.? The normalization factor is defined by

1

00 - 6
J’dxl(x, X T, O) ©

In thefinal form_, the model is given by
(X, X, O, O)

K =

P(X, Xp, O, Q) = — =KI, (7

J’dxl (X, Xq, 0, 0)

—00

2 Here, the domain of integration over z differs from that in general
expression (4), because actually the collimator (window) isR =
0.5 mm wide throughout the tubes.
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D]sm(a)D
Cexp(2/RE — Zpicosec (o))

where the integration of the numerator and denomina-
tor is performed numerically with an accuracy of five
significant digits.

Because of the complexity of mathematical model
(7), the Newton method was initially used to minimize
the x2 functional, which provides a rapid convergence
with the minimum number of iterations. However, this
numerical method does not give an explicit functional
dependence of the parameters { Xomins O mins Omint » MiNi-
mizing the functional, on experimental values{N;, x}.
This makes the accurate estimation of errors (standard
deviations) introduced into the obtained parameters
more difficult. Therefore, model (7) was first interpo-
lated in x and the parameters in the vicinity of {Xymins
O min Omint DY @third-degree polynomial. Then the min-
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imum of the x? functional is searched using polynomial
regression [5]. This method provides an explicit depen-
dence of {Xomin Omin Omint ON {N;, X}, resulting in a
more accurate estimation of errorsin the sought param-
eters.
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Abstract—The potentialities provided by bismuth-containing garnet ferrite films with uniaxial anisotropy and
easy-plane anisotropy for the visualization of spatially nonuniform magnetic fields in magnetooptic nonde-
structive testing are compared. © 2000 MAIK “ Nauka/Interperiodica” .

Nondestructive testing and several physicaly simi-
lar techniques designed for other purposes [1-26] can
exploit the magnetooptic visualization of spatially non-
uniform magnetic fields[1, 8, 27, 28]. Two types of bis-
muth-containing single-crystal garnet ferrite films
(BCSCGFFs) with giant Faraday rotation [1, 29] are
used: with uniaxial magnetic anisotropy (type 1) and
with easy-plane magnetic anisotropy (type Il). For
BcSCGFFs of typel, aninhomogeneous magnetic field
can bejudged from the domain configuration, while for
thefilms of typell, the surface distribution of the angle
between the magnetization and film plane bears neces-
sary information.

In the absence of an external magnetic field, the
films of type | split up into oppositely polarized
domains and the areas covered by the domains of either
polarity are roughly equal. The difference between the
areasincreases with coerciveforce H,, whichisusually
0.1-1 Oe for these films. Owing to coercive force, the
filmsof type| exhibit hysteresis at magnetization rever-
sal under abias field H, applied normally to the film.

In the films of typel, the plane of polarization in the
neighboring domains rotates in the opposite direction
by the same angle ©, which does not depend on the
bias magnetic field. As H,, increases, the area occupied
by domains with the magnetization aligned with the
field grows at the expense of unfavorably magnetized
domains up to the complete magnetization of the film.
The motion of domain walls (DWs) accounts for this
process. By changing the angle between the analyzer
and polarizer in a polarizing microscope, one can com-
pletely suppress monochromatic light passing through
the domains of a specific polarity. If white light isused,
domains become differently colored, the color depend-
ing ontheangle ¢ between the optical axes of the polar-
izer and analyzer. When the polarizer and analyzer are
crossed (¢ = 0), domains have the same color and DWs
appear dark.

In the films of type Il not subjected to an external
magnetic field, the magnetization vectorsliein the film
plane even if the film splits up into domains of opposite
polarities. Therefore, the plane of polarization of light
propagating normally to the film does not rotate. The
plane of polarization may rotate only in the case of
Blochwalls. Bloch lines separating DW partswherethe
plane of polarization rotates in the opposite directions
can be visualized.

The influence of a time-invariable but space-inde-
pendent magnetic field on thefilms of typel dependson
the field intensity and gradient. A sufficiently intense
alternating magnetic field with the spatial period con-
siderably exceeding the equilibrium size of domains
splits up the film into large oppositely polarized
domains with smooth walls. These films visualize the
lines of equal intensity H = 0. In particular, a gradient
magnetic field H,, = Bx that can be produced by two per-
manent magnets with the C-shaped section forms pla-
nar straight DWSs. If then a constant bias field H,, is
applied perpendicular to the film surface, the DWswill
move to another equilibrium position, again going
through the points where the total magnetic field equals
zero. In other words, lines of equal intensity H = —H,
are visualized. By varying the bias field, one can visu-
alizelines of equal intensity for any H.

Lines of equal intensity can be visualized even if an
intense magnetic field varies very smoothly (the gradi-
entissmall). Inthis case, the border between two oppo-
sitely magnetized domains is no longer a planar DW,
but a transient region of strip domains. The smaller the
gradient, the wider thistransient region. In particular, a
gradient magnetic field H, = x induces a “comb” of
strip domains. It is significant that the curves envelop-
ing the transient region go through points where the
external magnetic field H is equal to the saturation field
of thefilm xH,. If then abiasfield isapplied to thefilm,
these two curves will shift. The monodomain areas of
one polarity will expand; and those of the ather, shrink.

1063-7842/00/4508-1075%$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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The new lines of equal intensity will relateto H = H, +
H, and H = H, — H,, respectively. Note that, in both
cases, high-resolution magnetic field mapping requires
afine measurement step.

In the case of alow magnetic field (less than HY),
monodomain areas in the films of type | are absent and
field nonuniformity can be judged by the local ratio of
the areas occupied by domains with different polarity.
It is evident that, in this case, the spatial resolution
sharply drops. To remedy the situation, the bias field
should be chosen such that the total magnetic field
exceeds the saturation field. As for mapping of a non-
uniform magnetic field that consists of weak variable
and intense constant components, it is advisable to can-
cel out the constant component using an external bias
field.

The most problematic is the visudization of an
aternating close-to-saturation magnetic field whose
period coincides on the order of magnitude with the
equilibrium period of domainsin the films of typel. In
thiscase, the spatial period of the magnetic field may be
misestimated several times[30].

Magnetization reversal in the films of type Il sub-
jected to a bias field does not cause hysteresis (Fig. 1),
since this phenomenon is not inherent in the rotation of
magnetization. If even arelatively weak magnetic field
is applied, the magnetization vectors come out of the
film plane, their direction being the same for domains
of different polarity. Consequently, the plane of polar-
ization rotates. As the bias field grows, © increases
amost linearly until the film is magnetized to satura-
tion and the magnetization vectors come out at right
angles to the film surface (Fig. 1). With a further
increase in H,, the Faraday rotation angle remains con-
Stant.

When a nonuniform magnetic field is applied to the
films of type Il and white light is used for illuminating,
the films change their color throughout the surface
(for monochromatic light, the transmitted intensity
changes). Being proportional to the normal component
of the magnetization, the local angle of Faraday rota-
tion depends on the corresponding component of the
external magnetic field. It is significant that, with the
films of typell (in contrast to those of typeI), mapping
of a nonuniform magnetic field does not require the
application and variation of an additional external mag-
netic field. The films of type Il provide information
about the field nonuniformity viathe distribution of the
Faraday rotation angle over the film surface.

The films of type | are magnetized to saturation
when the total magnetic field reaches H, which is less
than but comparable to the saturation magnetization
4tV Inthefilms of typel, saturation occurs when the
total magnetic field equals the field of magnetic anisot-
ropy Hg, which can be both much less and much more
than 41M.. Since the films of type |l respond to aweak
external magnetic field by a slight rotation of the mag-

RANDOSHKIN et al.
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Fig. 1. Hysteresisloop typical of filmsof type Il magnetized
perpendicularly to the film surface.

netization vector, their sensitivity is considerably
higher than that of the films of type . For thisreason, a
range of magnetic fields to be visualized may be broad
and accommodated to applications. Experiments show
that the films of type Il are suitable for magnetooptic
nondestructive testing at magnetic fields within the
108-10° Oerange.

When amagnetooptic signal from the filmsof typell
is photometrically recorded with a linear measuring
channel, the output is defined by the Malus law

U = Uosin’(¢ —©5),

where U, isthe input signal.

The linearity of the transfer characteristic can con-
siderably beincreased by applying the two-channel dif-
ferential measurement mode, which means the auto-
matic subtraction of two images of the samevisual field
that are obtained at two different angles between the
polarizer and analyzer axes (+¢ and —¢). In this case,
the output signal looks like

U = Uysin2¢sin20;.

This form ensures the high linearity of conversion and
simplifies the calibration of results in absolute mag-
netic units.

The experimental setup, built around a polarizing
microscope, was connected to a personal computer
through a CCD video camera. The surface of avisual-
izing film was covered first by amirror coating and then
by aprotective layer. The thus-prepared film and abias-
ing coil were placed on the microscope stage. The
source of amagnetic field to be studied was placed near
the surface of the visualizing film.

The most obvious application of magnetooptic visu-
alization of nonuniform magnetic fields is the nonde-
structive control of magneticaly hard products, for
example, magnetic-recording media or permanent
magnets.

No. 8
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Fig. 2. Magnetoopticimages of a(a) sound record on amag-
netic tape, (b) VHS-tape record, and (c) R-DAT digital
record visualized with the use of the film of typell.

Fig. 2a shows the black-and-white magnetooptic
image of a recorded tape. A colored image obtained
with the experimental setup consists of a number of
colored fringes (brown, yellow, and various tints of
green) of different width with diffused borders against
ayellow-green background (unfortunately, on a black-
and-white picture, asignificant part of information on a
sample under study islost). This means that an analog
record isvisualized. In experiments, the dynamic range
was found to be no less than 56 dB (this value depends
only on the capability of metrological egquipment).
Note that each of two tape tracksis about 450 um wide.

Fig. 2b shows the magnetooptic image of arecorded
VHS tape (the color pictureisaset of narrow fringes of
TECHNICAL PHYSICS Vol. 45
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Fig. 3. Magnetooptic images of records on a (a) hard mag-
netic disk, (b) flexible magnetic disk, and (c) metalic tape
of a“black box” that are visualized with the use of the film
of typell.

various brown tints). A video tape track is about 30 um
wide; and the recording period, about 5 um.

Fig. 2c showsthe magnetooptic image of atapewith
adigital sound record madein the R-DAT standard. The
record shows up as narrow alternate yellow-brown
fringes of different tints and widths. Also shown are
timing tracks (wide and narrow yellow and green
fringes of equal width). The periods of timing pulses
were 170, 40, and 30 pum.

Fig. 3a shows the magnetooptic image of a record
and labels on a hard magnetic disk. The width of the
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Fig. 4. Magnetooptic images of (a) the permanent magnet surface and (b) apart of laser-printed text that are visualized with the use

of thefilm of typell.

visualized lines is less than 0.7 um, which is unattain-
able when the films of type | are used.

Fig. 3b shows the magnetooptic image of a record
on afaulty flexible disk. Long curved lines are disk sur-
face defects, while horizontal lines, which form vertical
tracks, depict records. Sharp local variations of the
track width and location, which are caused by start-stop
faults of the recording head, are noteworthy. In particu-
lar, the track width varies stepwise by about 50 pum.
This means that the visualization of magnetic records
discovers the faults of arecording head.

The films of type Il are indispensable in restoring
corrupted or lost information written on the metallic
tape of a “black box.” As seen from Fig. 3c, distinct
black and white fringes aternate with |ow-contrast
lines, which result from incompl ete del etion of the pre-
vious record (color contrast gives additional informa-
tion). Moreover, the noncoincidence between the tracks
of the previous and subsequent records results in the
presence of the previous one as bright dots at the track
edges.

Fig. 4 shows the black-and-white magnetooptic
image from the surface of a barium permanent magnet,
which is used for producing a bias magnetic field in
bubble technology [31, 32]. The image is brown to
green in the color image. In particular, narrow vertical
dark fringes on the light background correspond to
dark-brown ones on the orange background. These
fringes seem to be associated with polishing defects on

the magnet surface. Dark intersecting fringes with light
spots represent aggregates of particles with another
structure or saturation magnetization. In the color orig-
inal, these spots are yellow with a green border (in
black-and-white images, the contrast between green
and dark brown parts is lost). Figure 4a indicates that
the magnetooptic visualization of spatially nonuniform
magnetic fields may be helpful in the phase analysis of
various materials.

Figure 4b shows the magnetooptic image of alaser-
printed text (the text is not seen because of the mirror
coating). The need for reading such atext appearsin the
case of alatent marking [33], specifically, when a text
is written with a “magnetic paint” on a nonmagnetic
background of the same color. A text and an image may
contain fragments that are drawn with both magnetic
and ordinary paints of the same color and grade into
one another (a $100 banknote is an example). In this
case, the use of magnetooptic visualization of spatially
nonuniform magnetic fields is appropriate both for
developing and controlling printing processes and for
revealing counterfeit banknotes.

The main difference between magnetically soft and
magnetically hard materialsisthat, in the normal state,
the former do not produce stray fields, since the mag-
netic flux closesinside amagnet. Stray fields, however,
arise if a magnetically soft sample is duly magnetized
(magnetically “illuminated”). If the field required for
this purpose is significantly lower than the field of

TECHNICAL PHYSICS Vol. 45
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Fig. 5. Magnetooptic images of the (a) edge of a magneti-
cally soft material, (b) magnetic path and gap of a record
head for hard disk recording, and (c) bubble chip expander.
Visualization with the use of the magnetically illuminated
film of typell.

uniaxial anisotropy for the films of type I, then the
domain structure of a defect-free magnetically soft
material remains unchanged. Conversely, the rear-
rangement of domains indicates the presence of
defects. With the films of type I, defects show them-
selves through the local variation in the Faraday rota-
tion angle.

Figure 5a shows the magnetooptic image of the edge
of apiece of a magneticaly soft material. Stray fields
were observed under the constant field 150 Oe. They
arise at the edges and in the vicinity of defects and are
visualized with a BcSCGF film. The areas of different
contrast in Fig. 5a correspond to yellow, green, and

TECHNICAL PHYSICS Vol. 45
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dark brown colors in the color magnetooptic image.
This variation of contrast suggests that the magnetic
properties of the sample are nonuniform.

“Magnetic illumination,” as applied to BcSCGF
films, seems to be promising for the control of mag-
netic head manufacturing and positioning. By way of
example, Fig. 5b shows the magnetooptic image of the
magnetic path and head gap for hard disk recording.
The irregularity and asymmetry of the image, specifi-
cally beard-like domains near the magnetic path, point
to head faults and misarrangement.

Fig. 5¢ shows the magnetooptic image of a 256-kbit
bubble chip expander. Control elements of the bubble
chip are made of magnetically soft permalloy. The stray
fields, which are produced at the edges of the permalloy
elements by “magnetic illumination,” are visualized by
using the film of type Il. As a consequence, these ele-
ments become visible.

The high sensitivity of the BcSCGFFs is demon-
strated by the fact that 3-um-wide domains are seen in
the color image of the bubble film (saturation magneti-
zation is 4riM, = 320 Gs). Recall that this film and
BcSCGFF are separated by the several protective layers
and the mirror layer (in the black-and-whiteimage, this
faint contrast islost). In other words, the films of typelll
enable the magnetization control of various magnetic
substancesthat do not possess magnetooptic properties.

The magnetooptic images presented in Figs. 2-5 by
no means exhaust the capabilities of the films of typell
in the magnetooptic visualization of nonuniform mag-
netic fields. Yet, they give an idea of the range of the
intensities and characteristic spatial dimensions of non-
uniform magnetic fields that can be visualized with the
films of type Il. It is obvious that the use of the same
BcSCGFF to solve many problems, even if possible, is
unjustified. For every specific problem, it is advanta-
geous to select the film with an optimal set of proper-
ties. This can be done because of the unique possibility
of modifying the BcSCGFF composition. In particular,
the presence of three cation interstices of different size
allows more than half of the known chemical elements
to beincorporated into the film, thus providing avariety
of its properties [34-37].
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Abstract—Results are presented from an experimental investigation of the onset of ionization instability in a
disk-shaped Faraday magnetogasdynamic channel attached to a shock tube. The experiments were carried out
in a pure inert gas (xenon) without alkaline additives. A relation is found between the integral plasma charac-
teristics of anonequilibrium magnetogasdynamic channel and the local parameters of a plasmathat is unstable
against theionization instability. Mechanismsfor amplifying perturbations and increasing the effective conduc-
tivity arerevealed. It is concluded that these effects stem mainly from the features of three-body recombination

in rare gases. © 2000 MAIK “ Nauka/Interperiodica” .

The goal of this paper isto develop a self-consistent
physical modd that accounts for the effect of an
increase in the effective conductivity during the onset
of the ionization instability in pure inert gases. The
model is based on the measurements of the local
plasma parameters and exploration of the structure of
plasmairregularities.

The experimental facility (see [1, 2]) consists of a
shock tube with a disk-shaped 32-cm-diameter and
1-cm-high magnetogasdynamic (MGD) channel. The
magnetic induction is up to 1.4 T. Experiments were
carried out in xenon at an incident shock wave Mach
number of 6.9 and initial pressure of 26 torr. At the
entrance to the disk channel, plasma parameters were
as follows: r = 0.04 m, u, = 1.27 x 10 m/s, py =
0.45 kg/m?3, T,,=2600K, T, =3100K, 0y =2.6 x 1074,
and M = 245. A circular Faraday current and radial
Hall field were induced in the disk channel. The chan-
nel operated either in a short-circuit Faraday channel
mode or with a narrow insert shaped as a sector with
three pairs of electrodes for connecting load resistors.
The load coefficient was varied within the 0 < k < 0.2
range.

The methods for determining the parameters of the
gas-dynamic stream; measuring the effective plasma
conductivity, the Hall parameter, the electron density
and temperature, and the value of the magnetic induc-
tion B, that is critical for the onset of the ionization
instability; and recording glow irregularities are
described in [1-5].

The main results of the previous studies [1-3] used
in this paper are the following. At B > B, the effective
plasma conductivity, the average electron density, and
the level of the electron density fluctuations grow asthe

plasma moves along the channel. An increase in the
magnetic induction results in an increase in these
parameters.

The experimental results show that the ratio
between the electron temperature T, and the tempera
ture of the heavy plasma component T, attains T./T, = 4.
At B =0, the plasmaisin the recombination state (o >
Oe), Whereas with selective heating of electronsin an
induced electric field, the degree of ionization a is
bel ow the equilibrium value (both intheinitial state and
in the presence of fluctuations); i.e., in the MGD mode,
the plasma is being ionized (o < a,). The degree of
ionization is high enough (a > 104) for the electron
velocity distribution to be considered Maxwellian.
A characterigtic feature of the plasmaisthat an increase
in the magnetic field leads to an increase in the degree
of ionization; asaresult, theratio between the el ectron—
neutral and electron—ion collision frequencies,

Vea = naCeQea’ Vei = neCeQei
changes. Here, n, and n, are the densities of atoms and
ions, respectively; c, is the average electron velocity;
and Q, and Qg are the cross sections (averaged over
the Maxwellian distribution) for the electron momen-
tum transfer in collisions with atoms and in Coulomb
collisions, respectively. Under our experimental condi-
tions, we have 0.2 < v4/v, < 1. In this case, the colli-
sion frequency depends not only on the electron tem-
perature and atom density, but also on the electron den-
sity. The main distinguishing feature of a rare-gas
plasma is a fairly low recombination coefficient K.
This feature stems from a specific structure of energy

1063-7842/00/4508-1081$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Time evolutions of the measured electron tempera-
ture and density and the calculated conductivity and Hall

parameter aa B=1T andr =0.09 m.
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Fig. 2. Schematic diagram of current and field fluctuations
under conditions of the ionization instability.

levels. Thus, at T, = 8000 K, the value of K, for akali
metals equals 5 x 103 mé/s, whereas for rare gases,
K, =5x 10 m%/s.

VASIL’EVA et al.

Figure 1 presents the typical time behavior of the
local plasma parameters at a fixed point of the channel
(r = 0.09 m) during the onset of the ionization instabil-
ity. In the experiment, we measured the electron tem-
perature and density. Both the conductivity and the Hall
parameter were deduced from the measured values of
T, and n, and the known density of atoms(at B=0, n, =

10?* m3). Low-frequency fluctuations with a duration
of 20-50 ps are seen in the dependences T(t) and ng(t).
There, fluctuations are caused by plasma processes.
Higher frequency oscillations with aperiod of lessthan
5 usarelikely attributed to a photomultiplier noise. For
this reason, below, we only consider low-frequency
oscillations. Note that the intervals with higher (lower)
values of T, correspond to the intervals with higher
(lower) values of the electron density and conductivity.
The Hall parameter varies in the opposite phase with
the conductivity, because Coulomb collisions play an
important role under given conditions and the momen-
tum transfer rate increases with an increase in the elec-
tron density. Based on the above dependences, we can
find the average values [T.[) L] (G [) and [BC] However,
they do not clarify how the fluctuations with respect to
the average values are related to those with respect to
the initial, unperturbed plasma parameters. Therefore,
the role of positive and negative perturbations in the
build-up of oscillations should be reveaed.

The irregularities are oriented in space in a definite
manner. This was found by a frame-by-frame imaging
of the plasma glow [2]. The glowing irregularities
turned out to be shaped as spokes inclined at an angle
of 20° with respect to the azimutha direction. The
propagation velocity of the spokes was on the order of
the flow velocity as if the they were “frozen” in the
flow. As a spoke moves, the brightness of its glow
increases. On average, there are two spokesin the chan-
nel simultaneously. They arise with definite time inter-
vals. At radii much greater than the initia radius, the
glowing spokes can be approximately represented as
strips in rectangular coordinates (Fig. 2). In the disk
geometry, the ¢ and r directions correspond to they and
x directions, respectively. Figure 2 displays the coordi-
nate system and the vectors of the initia current j, and

theinitial electricfield E inthe plasma. Here, tand =
B3, and 8 isthe angle between the current and the normal
to the sheet plane (172 < 8 < 11). We denote the changes
inthe main plasmaparametersasj’'=j —j,, 0' = 0 — 0y,
B'=B—Bg, To =To— T, and N, =n,— Ny (Subscript 0
stands for the parameter values in the unperturbed sur-
rounding medium). In [6, 7], it was shown that, in an
unbounded plasma, the fluctuations of the current and
electric field are related to the fluctuations of conduc-
tivity and the Hall parameter as follows:

= Jo(sinB—Bcose)g +3,Bcos0, (1)
0
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Fig. 3. lllustration of the mechanism for amplifying positive electron density perturbations.
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tE' =

3,050 + 2(sing + B,cosO)B.. (2)
Go Ty

Here, the plus sign is used if the vectors E and k are of
the same direction and the minus sign is used in the
opposite case.

Therefore, positive fluctuations of ¢ and negative
fluctuations of 3 lead to an increase in the electric field
and afluctuation current in the direction of j,. The per-
turbations of the main plasma parameters along the
normal to the observed irregularities are shown sche-
matically in Fig. 3. The numerals stand for certain
dimensionless distances along the normal correspond-
ing to thosein Fig. 2. Let ustrace the evolution of pos-
itive and negative fluctuations of the electron density
and temperature. Let the fluctuation of T, shown in
Fig. 3a occur at the instant t;. According to the ioniza-
tion kinetics [8], the higher the electron temperature,
the higher the electron density in region A (under our
experimental conditions, the characteristic ionization
time is about (1-5) x 107° ). In region B, where the
electron temperature is decreased, the electron density
decreases only slightly with respect to the initial value
because of the low rate of three-body recombination in
rare gases (under our experimental conditions, the char-
acteristic recombination time is about 107 s). Accord-
ingly, in region A, the conductivity increases, whereas
in region B, it remains almost the same. The change in
the Hall parameter may be opposite in phase to the
change in the conductivity o', as shown in Fig. 3a
A positive change in ¢ and a negative change in 3 in
region A result in an increase in the fluctuation current,
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which adds to the initial current, thus providing an
additional Joule heating and increasing the electron
temperature and density. Therefore, positive perturba-
tions of T, and n, are increasing, whereas negative ones
have no chanceto rise. Indeed, let us assume that aneg-
ative fluctuation of ng has occurred. Thiswould lead to
a decrease in the conductivity and, according to for-
mula (1), a decrease in the current, which, in turn,
would result in a decrease in the Joule heating and T,
but not in afurther drop in n,.

During the time interval between t; and t,, the
plasma volume A moves a ong the channel from region
1-2 to region 34 (Fig. 3b). During this time, positive
perturbations of T, n,, and o and negative perturbations
of B further develop and a new fluctuation arises in
region 1-2.

In a bounded plasma, the structure of fluctuation
currents will be different compared to that in Fig. 2.
The current distributionsin a Faraday channel with per-
fectly sectionalized electrodeswere calculated in[6, 7].
It was shown in those papers that the Faraday current
flowing aong the isolines of the electron density closes
mainly viathe electrodes and partly inside the plasma.
All of thisinfluencesthe effective values of the conduc-
tivity and the Hall parameter. Here, we define the effec-
tive conductivity o4 and the effective Hall parameter
B asfollows:

O et

Beff

= yU(uB), ©)

= [EL(uB), (4)
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Fig. 5. Dependences of the average (V) and effective (¢©)
values of the Hall parameter on the magnetic induction.

where [j,,0is the azimuth current density at the load
coefficient k — 0.

In essence, the values of 0 and B are the integral
characteristics of the MGD channel.

The dependences of the average and effective con-
ductivities on the magnetic induction are shown in
Fig. 4. Being closeto each other at B < B, both [d[and
O« increase with an increase in the magnetic induction.
Thisis caused by the increase in both o, (due to selec-
tive electron heating) and positive perturbations of o
(due to the onset of the ionization instability). At the
highest value of the magnetic induction, the effective
conductivity is somewhat |ess than the average conduc-
tivity (o4/[d0= 0.7), which is due to a partia closing
of fluctuation currents inside the plasma.

VASIL’EVA et al.

Figure 5 presents the average and effective val ues of
the Hall parameter. Their decrease with an increase in
the magnetic induction is caused by an increase in the
electron density and a subsequent increase in the Cou-
lomb collision frequency and the average momentum
transfer rate. As a result, the Hall parameter decreases
in both the irregularities and the surrounding medium.
AsisseenfromFig. 5, thevaluesof 3 and B are nearly
the same. According to theoretical predictions, this can
occur if the irregularity direction is close to that of the
initial current [7]. Under our experimental conditions,
which correspond to [BO= By, irregularities in the
shape of the spokes are only dlightly inclined to the azi-
muthal direction, the instability develops at moderate
valuesof 3 = 1-2, thefluctuationsin the Hall parameter
attain 40%, and the momentum transfer rate dependson
the plasma parameters in a complicated way.

The results obtained can be summarized as follows:
(i) arelation between the local plasma parameters and
theintegral characteristics of an MGD channel is estab-
lished, (ii) mechanisms for amplifying perturbations
and increasing the effective conductivity under condi-
tions of the ionization instability are revealed, and (iii)
it is shown that these effects stem mainly from the fea-
tures of three-body recombination in rare gases.
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Abstract—The spectral and energy characteristics of an emerald laser are studied experimentally. Its perfor-
mance is compared with that of an alexandrite laser. For free-running oscillation under normal conditions,
undamped pulsating behavior of output intensity is observed, asis the case with other lasing media containing

Crions. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Lasing due to the T, — “A, electronic vibrational
transitionsin Cr3* ions of emerald was first reported in
[1]. Next were studies of tunable emerald lasers, which
used the T, — %A, transition and laser pumping [2-4]
or the R-lines of Cr3* [4, 5]. Energy characteristics of a
flashlamp-pumped laser with aflux-grown crystal were
presented in [6].

Emerald, or chromium-doped beryl Cr3*
BeAly(SiO)6, IS a negative uniaxial crystal with
refractive indexes ny = 1.58 and n, = 1.575. The crystal
is green when the concentration of Cr3* is 0.01-1%.
The melting point is 1470°C, which is 400°C lower
than that of alexandrite. The thermal conductivity of
emerald is 0.04 W cm™ deg™, being nearly six times
less than that of alexandrite. Emerald crystals are
grown by the hydrothermal or flux method. The latter
yields crystals with a higher optical quality and lower
impurity content. The nonselective loss of hydrother-
mally grown crystalsis of the order of 0.1 cm™.

In an emerald laser, lasing due to the T, — 4A,
electronic vibrational transitions occurs in the 700—
850 nm range. The energy gap between the “T, and °E
levels of Cr3*is 400 cm™, being half as high as that of
alexandrite. At room temperature, the lifetime of the
excited state of Cr¥* is 65 ps and the transition cross
section 0 is 3.3 x 1020 cm?.

Optical absorption spectra of emerad (Fig. 1) are
typical of Cr* ions enclosed by the octahedral config-
uration of oxygen ions. The wide bandsin the blue and
red (Y, U) regions represent the allowed transitions
4A, — 4T, and A, — “T,, respectively. The triplet
levels are split by the trigonal component of the crystal
field, hence the differences in the Ttand o components.
The narrow absorption lines at 681 and 684 nm stem
from the spin-forbidden transitions “A, — %E (the R,
and R, lines). The fine structure of the U band isdueto

electron—phonon interaction. Compared with alexan-
drite, emerald has amore complex crystal structure and
aweaker crystal field, the latter being indicated by the
position of the U band. The crystal field of emerald is
Dy = 1600 cm (for alexandrite, D, = 1740 cm™).

In emerald, strong ultraviolet (UV) absorption
arises at shorter wavelengths, than in alexandrite,
namely in the 300-nm band for flux-grown crystals and
in the 360-nm band for hydrothermally grown ones; in
the latter case, there are additional bands in the 380—
450 nm region. Short-wave absorption of emerald pro-
ceeds mainly from impurities, especially from iron.
The iron content is 0.001 wt % in flux-grown crystals
and 0.1 wt % in hydrothermally grown ones.

In luminescence spectra of Cr¥* ions of emerad
(Fig. 2), the most noticeable component is the wide

a, cmt n
(a)
3L 1“ ........................................................... los
b
10.3
1+
3L ®
2 | \
1+
1 ‘\4
0.3 0.4 0.5 0.6 0.7A, um

Fig. 1. Optical properties of (a) flux-grown and (b) hydro-
thermally grown emerald crystalsat T = 300 K: the absorp-
tancea for (1) E||Cand (2) E O C and (3) the luminescence
guantum yield n vs. wavelength.
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Fig. 2. Emerald luminescence intensity vs. wavelength at
T=300K for (1) E||Cor (2) EOC.

peak at 770 nm, corresponding to the 4T, — %A, tran-
sition. The R; and R, lines are not so strong as in alex-
andrite because of the smaller energy gap, AE, between
the levels 2E and “T,. In emerald, the levels are near
thermal equilibrium even at room temperature (KT =
208 cm™) and the metastable level 2E is intensely
depleted via the short-lived level “T,. In alexandrite,
this occurs at higher temperatures, since its AE is as
large as 800 cm™.

-3
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- ] —

3 4013
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40.12
4
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Fig. 3. (8 (1, 3) Output energy density Eq/V, and (2, 4)
threshold pump energy E; vs. crystal temperature T for E, =
0.4kJand L =0.4 mand (b) output energy density vs. cavity
length L for E;=0.4 kJand T = 70°C. The emerald laser is
represented by curves 1 and 2 in panel (a) and curve 1 in
panel (b). The alexandrite laser is represented by curves 3
and 4 in panel (a) and curve 2 in pand (b).

ANTSIFEROV

The absolute quantum yield of Cr3* luminescenceis
0.7 for flux-grown emerald crystals and of the order of
0.01 for hydrothermally grown ones. Theyieldisflatin
the absorption region of chromium ions, decreasing at
wavelengths shorter than 380 nm. This testifies that
Cr3* ions are responsible for the short-wave absorption.

Emerald lasers have received only marginal applica
tion. It is difficult to produce emerald crystals of ade-
guate size, sincetheir growth rateis an order of magni-
tude less than that of alexandrite crystals. Another
demerit isthe toxicity of beryllium.

EXPERIMENTAL SETUP

In this study, we tested a 3 x 35-mm flux-grown
emerald crysta [7] with an active volume V, of

0.21 cm? and a Cr3* concentration of 0.7 wt %. Theend
faces of the crystal were beveled (the bevel was one
degree) and supplied with antireflection coatings. The
laser was pumped by an | SP-250 flashlamp in a mono-
block quartz clarifier. The UV pump radiation was cut
off by a liquid filter. The energy characteristics were

Eou/Va J O3 E,
0.2
0.1
| | | |
0 0.2 0.4
T
Eout/ Ve JCM
1.0+
0.5F
1 1 1 1
0 0.2 04 E,kJ

Fig. 4. (8) (1, 3) Output energy density Eq/V, and (2, 4)
threshold pump energy E; vs. output-mirror transmittance
T, for E, =04 kJ, L =04m,and T = 70°C. (b) Output
energy oFensjty vs. pump energy E, forL=04mandT=
70°C. The emerald laser is represented by curves1and 2 in
panel (a) and curve 1 in panel (b). The aexandrite laser is
represented by curves 3 and 4 in panel (a) and curve 2 in
pand (b).
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compared with those of an alexandrite laser [8-10]
operated under similar conditions.

Lasing was examined with a photodiode and an
oscilloscope. The output spectrum was recorded with
an STE-1 spectrograph, and the output energy was
measured with an IMO-2 meter.

OUTPUT-ENERGY AND SPECTRUM
CHARACTERISTICS

Figure 3 shows the output-energy density E,./V,
againgt (a) the crystal temperature T or (b) cavity length
L. Theemerald laser isrepresented by curves1and 2in
Fig. 3aand curve 1 in Fig. 3b. The alexandrite laser is
represented by curves 3and 4 in Fig. 3aand curve 2in
Fig. 3b. It is seen that the output of the emerald laser is
much less sensitive to temperature variation (Fig. 3a).
The reason is that, in emerald, the energy gap between
the metastable °E and upper “T, levelsis much narrower
and the latter becomes populated even at room temper-
ature. The dependence on cavity length is stronger for
the emerald laser (Fig. 3b) due to the much lower ther-
mal conductivity of the medium. As is known, a posi-
tive spherical thermal lens arises in lasing solids under
flashlamp pumping, which is equivalent to replacing a
flat cavity with a spherical one. The focal length of the
thermal lens is much smaller in emerald. That is why
the cavity of an emerald laser becomes unstable at a
smaller length, hence amore prominent and sharper fall
in the output energy.

We aso compared the dependences of the output
energy on the transmittance T, of the output mirror at the
pump energy E, = 0.4 kJ(Fig. 43). Theemerald laser was
found to attain its maximum output energy at the higher
T,. The threshold pump energy E; of the emerald laser
was much lower throughout the range of T,.

The output energy was also studied as a function of
E, a optima T,’s (Fig. 4b). A nonlinear rise was
observed for both lasers, except for small values of E,.
The output energy of the emerald laser increased more
steeply at modest E,'s and saturated more rapidly at
high Ej's, so that the output energy densities of the
lasers at E, = 0.5 kJwere nearly equal. This stemsfrom
more severe strainsin the emerald crystal.

For the emerald laser, the spectra of the TEM,
modes (Fig. 5) were virtually the same as those for the
alexandritelaser [9]. Thelasers exhibited afine discrete
spectral structure. This stems from spurious longitudi-
nal-mode selection, no matter how weak it is, imparted
by the beveled and coated end faces. At room tempera
ture and moderate values of E,, the emerald |aser emit-
ted in a wide wavelength band with the maximum at
770 nm. As E, grew, the output spectrum broadened
predominantly toward shorter wavelengths. An eight-
fold increase in E, above the threshold resulted in an
output bandwidth of about 20 nm. The bandwidth was
an almost linear function of E,,.
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Fig. 5. TEMy,q mode spectra of the emerald laser at T =
20°C for pump energies E, = 3, 4, 6, and 8 E; (from the top
down).

The laser was tuned by means of a dispersive cavity
with three prisms made of TF-5 glass. Thetotal angular
dispersion was about 3'/nm. The tuning range was 710—
830 nm, the output wavelength being stable within ~1 nm.

For the TEMyoq and TEM,,,, modes of the emerald
laser, its output always has the form of undamped oscil-
lation, asisthe case with other lasing media containing
Crions. The evolution of the output spectrum depended
on the physical state of the emerald crystal and was
affected by the spurious longitudinal-mode selection in
the cavity, asin the case of the alexandrite laser. With
partial cutoff of UV pump radiation, the spectral evolu-
tion changed materialy.
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pressi ble medium approximation. Parameter values at theinner boundary of the shell are defined by the solution
of aself-modeling problem. At collapse, the velocity and kinetic energy of the shell behave asymptotically. ©

2000 MAIK “ Nauka/Interperiodica” .

Matter compression by a spherical shell is consid-
ered under the assumption that the shell compressibility
is much less than that of the matter. Such problems are
of interest in the production and metrology of high
energy densities, in particular, in treating target com-
pression during inertial nuclear fusion. Let us simplify
the problem by assuming the shell to be incompress-
ible: dp/dt = 0. Then, shell motion is described by the
ordinary differential equation

20Ul 10, 1
ph%rlul +ry at]DD =+

I’F 2(U2 Ul) =—pP2t Py
2 2 411, 3
FiU; = rouy, (rz—rl) = Vi,

where p,, is the shell densty, V,, itsinitial volume; r,
radii; u, velocities; and p, the pressure at the shell
boundaries. Subscripts 1 and 2 refer to the inner and
outer boundaries, respectively. All parameters are taken
as dimensionless with respect to the matter being com-
pressed.

Parameter values at the inner boundary of the shell
are defined by the solution of a self-modeling problem.
The associated equations are derived from the mass and
momentum conservation equations at constant entropy.
A self-modeling variable is represented as ¢ = t/r, and
self-maodeling functions will be denoted as U = u§ and
C =g, where u isthe mass velocity and c is the sound
adiabatic velocity. Time is counted backward from t =
1 (initial state) tot = 0 (collapse). Then, in terms of the
independent variable C, the self-modeling mass and
momentum conservation equations have the form

dInU/AINC = ((1-U)*—vC?/H,

dIn&/dInC = ((1-U)-C*)/H,

whereH=(1-U)(1-nU)-C?andn = (v - 1)(y-
1)/2+ 1. Here, v = 1, 2, and 3 for planar, cylindrical,
and spherical space geometry, respectively, and y =
y(V) is defined by the equation of state. Accelerationis
expressed as du,/dt = (dU/dC — U0In&/aC)/(dt/dC).

For y = const, the self-modeling equations are split:
we solvethefirst equation and then find & using quadra-
ture. In the general case y # congt, the equations must
be solved jointly. The self-modeling problem specifies
the piston path in such a way that the entire mass is
isoentropically compressed to a point, i.e., to collapse.
The self-modeling compression of the finite plasma
mass by a piston (on condition that the equation of the
perfect gas (plasma) state is p = pypY) was considered,
e.g., in[1-12]. In thiswork, we suggest an equation of
state of real gas. Namely, if the specific volumeV — 0,
the thermodynamic functions depend on the properties
of perfect degenerate nonrelativistic electron gas. For
the normal density, they depend on two experimental
parameters: bulk modulus B = -V(dp/0V)s and exponent
y = —0InB/dInV).. Cold pressure is introduced in the
form

p _ po(e —aVv* 5/3_e—a),
where p, = (2/5)c(Z/V,)®? and Z is the atomic number.

The constant ¢ = (31)%%42%/2m, enters into the Fermi
energy according to the expression g = ¢¢ nf s
We will use conventional designations:. specific vol-
ume V, which is dimensionless relative to V,; dimen-
sionless density p = 1/V; and parameters p and B,
dimensionless relative to B,. Hence, a V = 1, the
dimensionless sound velocity ¢ equals 1.

The values of a and a were calculated from B, and
Yo obtained from shock-wave and static measurements.
In theformer, B, and v, are determined from the depen-
dence of the shock wave velocity on massD = ¢, + D, u;
aV=1y=4D, — 1. The value of B, varies between
~1 kbar (for hydrogen, its isotopes, and helium) and
several megabars, and 3 < y< 7. Calculations of a and
a indicated that the interpolation formula for p(V) is
well realizable throughout the range of B,. Figure 1
shows the dimensionless dependences of B and y on V
for hydrogen. The transition from the initial value of y
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toitsfinal valueis observed at p (010. The energy (per
unit mass) is determined from the relationship p =
—(0e/0V), with anormalization (1) = 0. AtV < 1, the

dimensionless sound velocity isc? = ¢ pY~ .

The desired integral curve must start and end on the
(C, U) plane at singular pointsN = (1, 0) (node) and S=
(Cy, Uy (saddle). AtS €=0,andat N, E =1. At =0
or1,V=0or 1, respectively. The parameters of singular
points defined by y(V) are calculated for both V's. The
desired integral curve U(C) comes out of the saddle S
and enters the node N along the separatrix. The param-
eters of S(having the subscript s) are U= 2/(v(y—1) + 2)
and C,= /v (y—=1)/(v(y—1) + 2). Atsmal A=C—-C,
the curve leaves the saddle, following the analytical for-
mula & = QA®, where w = (v — )k/(n(2Us— 1) — 1 —K),
kisthe dope of the separatrix, and Q is a variable
No. 8
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parameter that is determined from the condition § = 1
a N. The piston path is found from the equation
oInt/0In§ =1-U.

The power is defined as W = 4nr§ u,p,, the kinetic
energy of the shell is

Iz
u’ 4 2l 10

E, = 4mp, Erzdr = anhrlulEFl_r_ZD

Iy
and its internal energy E; = 0 because of incompress-
ibility.

The problem involves two dimensionless parame-
ters: p,, and V,,. In the above calculations, we put p;, =
10and V,, = 4173, which istheinitial volume of the mat-
ter. Hence, r, = 1 at collapse. Qualitatively, these quan-
tities do not have an effect on the results. Figure 2



1090

shows the obtained relationships. A number of com-
pression features deserve attention. Near collapse, ry =

@)™ andu, = 2 UL where 2 = c vacl Y2

Then, u, = Z?’US Ustsus_l/rf (r, = const). The exponent
3Us—1=(4-v(y-21)/(v(y—1) + 2) and changes sign
when y, = 1 + 4/v. This means that, near collapse, the
velacity of the outer boundary of the shell may increase
(for y > vy,), decrease, or remain unchanged. From
Fig. 2, it follows that u, first grows and then, starting
witht = 5 x 1073, drops. Also, near collapse (r; < r,),

E = 2mpriu? = 2mp Uit 2 /r2. The exponent
S5U—2=(6-2v(y—-1))/(viy—-D+2ay.=1+3V
also changes sign. Finally, the kinetic energy near col-
lapse may increase (at y > V), decrease, or remain con-
stant. Sincey, <Y, thereexistsarangey, <y<y, where
the velacity of the outer boundary decreases and the
kinetic energy grows. Thisis explained by velocity and
accel erated-mass redistributions in the shell. However,
for physically ultimate values, y = 5/3 <y, = 2; there-
fore, at collapse, both the outer boundary velocity u,
and the kinetic energy of the shell E, tend to zero.
Figure 2 implies that the difference E, — E; due to the
pressure drop p, — p; and power difference W, — W,
contributes to the kinetic energy E, = E, — E;. At t <
1073, E, slowly drops: E, [ tY2. It is clear, however, that

PRUT

E, — o and W, — oo, since the total energy of the
collapsing matter E — oo,
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Abstract—Experimental dependence of the relative dynamic viscosities of liquid dielectrics on the applied
alternating voltage amplitude and frequency is presented. The voltage frequency was varied from 20 Hz to
2 kHz. The variation of viscosity can be attributed to a change in the liquid structure, with ion—molecule com-
plexes centered at the ions produced as aresult of charge injection from an electrode. A change in the injection
regime leads to a change in viscosity. © 2000 MAIK “ Nauka/Interperiodica” .

In previous publications, it was pointed out that an
electroviscous effect is observed in electric fields that
are transverse to the dielectric flow [1, 2]. The change
in viscosity was attributed to momentum transfer dueto
ion electrophoresis, the development of electrohydro-
dynamic flows, and the formation of ion—dipole clus-
ters near electrodes [3]. In some studies, it was noted
that the electroviscous effect is not observed in nonpo-
lar liquids, but it was observed in the presence of small
amounts of polar additives [1]. The addition of a polar
additive to anonpolar liquid can substantially affect the
conductivity of the medium. Indeed, it was noted in a
number of studies (e.g., see [1, 2]) that conductivity
affects the intensity of the electroviscous effect. Apart
from polar additives, animportant factor that affectsthe
intensity of the electroviscous effect is the presence of
aninjecting electrode. The processreferred to as charge
injection into a medium was not studied specifically,
and only the consequences of charge injection from an
electrode were discussed. It was shown in [2] that
charge injection plays avery important role in the elec-
troviscous effect as manifested in constant electric
fields. The production of ions and ion—molecule com-
plexes can change the structure of a liquid dielectric
medium and considerably affect the viscosity observed
in an electric field. The regime of charge injection from
an electrode can be changed by applying an alternating
electric field to the el ectrode gap.

In this paper, the behavior of the observed viscosity
of polar liquid dielectrics as afunction of the frequency
of the external alternating electric field is discussed. It
should be noted that the effect of the frequency of the
applied field on the viscosity of aliquid dielectric has
previously been studied only at 50 and 1000 Hz [1], and
the frequency-dependent behavior has remained
unclear. In other papers, the existence of this effect was
ruled out completely. To this day, no acceptable expla-
nation has been given for these controversial results.

For processes that take place near the electrodes
(electrochemical reactions) responsible for charge
injection to take place, it is necessary that charge build

up in the vicinity of the electrodes. The change in the
regime of charge production due to a change in the fre-
guency of the external electric field can affect the rate
of charge buildup or completely suppressit. Within the
framework of the conventional model of the electrode
doublelayer, injection can take place if acharge at |east
equal to the total double-layer charge has accumul ated:

q = Cyo, D

where C is the capacity of the double layer and @ is
the voltage drop across the double layer. A rough esti-
mate shows that the double-layer capacity is
~10 puF/cm?, and the voltage drop is ~1V for media of
the kind considered here [4]. In an aternating field,
such adouble layer is discharged and charged during a
half-period of every voltage cycle. Therefore, for injec-
tion to take place, a charge equal to g must build up in
the layer during at least a quarter-period of the applied
voltage; i.e.,

T/2

as [ie, @)
Ti4

where i (t) = oE,sin2rtft, ¢ is the conductivity of the
liquid, Ey isthe amplitude of the external field intensity,
and f isits frequency. Thisyields an expression for the
critical frequency above which the required charge can-
not build up in the double layer:

oU max
2nd '’ )

where U, is the amplitude of the applied voltage and
d is the electrode-gap width.

When f > f, charge injection does not take place,
and vice versa. The setup used in the experiment was
described in a previous paper [2]: a channel of rectan-
gular cross section, 20 mm long and 3.5 mm wide, had
top and bottom walls made of metal plates that served
as electrodes. The electrode gap (channel height) was
200 pm. The passage time of the liquid flow between

fc:r =

1063-7842/00/4508-1091$20.00 © 2000 MAIK “Nauka/Interperiodica’



1092 OSTAPENKO
An/n An/n
(a) (b)
1.0 W 5
\/\\ ,
3
05}
0 M‘\ ,

100 200 300 400 500 600 700

1
100 200 300 400 500 600 700

f, Hz

Fig. 1. Relative changein viscosity versusthe frequency of applied alternating voltage for (a) acetone and (b) nitrobenzeneat (1) 10,

(2) 20, (3) 30, (4) 40, and (5) 50 KV/cm.

marks on the capillary walls was measured by a photo-
detector within 0.1 s. The alternating voltage generated
by a special power supply was applied to the electrodes
of the experimental cell. The error of frequency mea-
surement did not exceed 3%. The length of the segment
upstream of the capillary cell was adjusted so that the
flow was steady along the entire cell. Since dynamic
viscosity can be represented as n = AAP/AQ, where A
is a calibration constant and AP is the pressure drop
required to keep theflow rate at AQ = V,/t (Vyisthevol-
ume of flowing liquid), the change in the observed vis-
cosity isAn/n = (ng —N)/N = (tg —t)/t, whereny isthe
viscosity observed when voltage is applied to the cdll,
ty is the time required for the liquid volume to flow
through the passage in the presence of thefield, andtis
the time required for the liquid volume to flow through
the passage in the absence of the field.

The polar liquids under study had high permittivi-
ties (¢ ~ 36-20), and decane (with € = 1.2-1.4) was
used as a reference nonpolar liquid. These liquids are
typical liquid dielectrics. The change in viscosity (i.e.,
the time required for a liquid to pass through the cell)

was measured as a function of the frequency of the
applied voltage at different amplitudes of the voltage
for various liquids. All of the curves obtained for the
polar liquids involved portions characterized by similar
behavior (see Figs. 1 and 2). At low frequencies, asthe
frequency is increased, the relative viscosity drops,
reaches a minimum, and then rapidly increases. With a
further increase in frequency, viscosity exhibits a slow
decline. For example, the relative viscosity of acetone
the relative viscosity at 400 Hz was equal to that
observed at ~60 Hz when the voltage amplitude was
held at 10 kV, whereas the minimum relative viscosity
(ANn/n)in increased with the applied voltage. In partic-
ular, the value of (An/n)mi, a E = 40 kV/cm is three
times higher than that observed at E = 10 kV/cm for all
curves (seeFigs. 1 and 2).

The minima of the curves discussed here may be
associated with the critical frequencies for the charge
buildup in the electrode double layer. Indeed, compar-
ing the frequencies corresponding to (An/n)i» With the
critical frequency given by (3), one finds that they close
(see table). It should be noted that the critical frequen-

Table
Nitrobenzene Nitromethane Acetone Decane
E, kV/cm
’ foin, HZ foin, HZ foin, HZ fin, HZ
fer, HZ (exglenri ment) fer, Hz (exggri ment) fer, HZ (exgvlenri ment) fer, Hz (exgtlanri ment)
10 16 12 80 60 10 10 1.6x 100 -
20 32 25 160 120 20 15 32x10° -
30 48 42 240 180 32 26 4.8x10° -
40 64 60 320 260 40 35 6.4 %100 -
50 80 75 400 350 53 48 8.0x 107 -
TECHNICAL PHYSICS Vol. 45 No.8 2000
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Fig. 3. Relative change in viscosity versus frequency for
decane at (1) 20 and (2) 40 kV/cm.

cies measured for al liquids used in this study lie
within 10-500 Hz (seetable), i.e., in adomain of rela-
tively low frequencies. For a nonpolar liquid such as
decane, no minimum of this type was observed in the
frequency range explored here (see Fig. 3). Therelative
viscosity of decane decreases with increasing fre-
quency. In particular, as the frequency of the applied
voltage is reduced by afactor of one hundred, the rela-
tive viscosity decreases by ~30%. As the applied volt-
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age amplitude isincreased, the value of An/n increases
by afactor of lessthan 1.5. It should be noted that when
aconstant voltage was applied to aflow cell containing a
nonpolar liquid, the value of An/n aso exhibited arela-
tively dow increase as the voltage was increased [ 2].

The table compares the values of the critical fre-
quency f,, calculated by (3) with fii, e, measuredinthe
experiment. The table demonstrates that the frequen-
cies corresponding to the minima of curves in Figs. 1
and 2 are in good agreement with that predicted by (3),
whereas experiments with decane did not reveal any
critical frequency. According to (3), the critical fre-
guency for decane at the field intensity 10 kV/cm
would lie at ~102 Hz, i.e, in the far low-frequency
domain, which is also consistent with experimental
results.

After theinjection was “ switched off,” the observed
viscosity slightly increased with frequency and then
slowly declined. These trends can be explained by
effects of the bulk conductance of the liquid due to the
molecular dissociation of the additive.

Thus, the studies described here have shown that the
presence of injected space charge in a liquid medium
playsan important role in the mechanism of the electro-
viscous effect. When the injection is prevented either
by isolating the electrode from the liquid [2] or by
changing the frequency of the applied voltage results
in a decrease in relative viscosity. This may occur
because the concentration of ion—molecule complexes
decreases with injection intensity, i.e., because the for-
mation of an ion—-molecule complex is centered at an
injected charge. An increase in the size of a structural
element of aliquid would then lead to an increase in
viscosity and, under certain conditions, to manifesta-
tions of other el ectrohydrodynamic effects.
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Abstract—For higher manganese silicide single crystals of certain geometry and superstructure orientation, an
unusual metallization processis observed. Thisanomaly can be associated either with bulk processes similar to
thermogalvanic effects or with the carrier redistribution in the near-surface regions that is due to the high ther-
moel ectric power anisotropy and complex crystal structure. © 2000 MAIK “ Nauka/Interperiodica” .

The use of electrochemical techniques in the tech-
nology of high-temperature thermoelectric devices
makes it possible to integrate el ectrochemical cleaning
(chemical activation) of the surface and subsequent
deposition of metal contacts into a continuous fabrica-
tion process[1]. Also, it allows researchersto study the
distributions of heat fluxes and electric currents.

Higher manganese silicide (HMS) is viewed as the
best candidate for high-temperature generators and
sensorsthat operate in awide spectral range. Thismate-
rial has the tetragonal crystal structure, which consists
of loosely bonded manganese and silicon sublattices.
The spacings of the sublattices along the tetragonal
C-axis are generally incommensurable. Their incom-
mensurability and the existence of many crystal struc-
tures in the narrow range of compositions (MnSe; 71_4 75)
cause the precipitation of manganese monosilicide on
planes normal to the C-axis[2].

When HMS polycrystals are subjected to electro-
chemical metallization (nickel plating), no anomalies
(from the electrochemistry viewpoint) are observed.
Ohmic contacts with a resistivity of 10°-10° Q cm?
are produced [3].

The electrochemical deposition of nickel on HMS
single crystals in the form of a parallelepiped whose
end face is dipped into an electrolyte proceeds in sev-
eral stages. Within the initia five seconds, the blanket
metallization of the electrolyte-covered surface takes
place. Then, the metal begins to dissolve at the speci-
men corners and edges, forming metal islands on the
side faces. The islands extend toward the end face (see
figure). On the end face, the dissolving metal film first
takes the oval shape, then its central part narrows to
form a dumb-bell, and eventualy two metal spots
remain. If the process continues further, the central part
of the spots also dissolves and two metal rings are left
on the surface. The same is reproduced on another
specimen in the same electrolyte.

This observation seems to be an anomaly from the
standpoint of conventional electrochemistry. During
the electrochemical application of metal films (cathode
polarization), preferential deposition on edges, corners,
and surface ridges, not etching, is common.

This effect is most prominent when the C-axis
makes an angle of 45° with the largest side of the par-
alelepiped (seefigure). When the C-axis deviates from
this direction, the island length on the side faces may
change and the process on the end side may be com-
pleted with the formation of the oval or dumb-bell. The
shape of the end face metallization strongly depends on
the paralelepiped dimensions. The two metal rings
appeared on the end facewhen a: b =1 : 3 and speci-
mens were sufficiently long in the current passing
direction. The effect was absent for short specimens.

It can beinferred that the residual metallization pat-
terns on the end side (rings) and side surfaces are due
to bulk processes similar to thermogalvanic effects [4].
It appears that, when the carriers move along stream-
lines, their pathstwist and eventually two parallel flows
are produced where the carries spiral. This becomes
possible because of the specific superstructure orienta-
tion, specimen geometry, and temperature distribution.
The situation looks asif the carriers were drawn in two
parallel-mounted “ solenoids” instead of being spent on
metal reduction at cathode polarization. Eventualy,
metal reduction on the surface changes to its dissolu-
tion, causing an oval, dumb-bell, spots, and rings to
appear successively on the end face. On the side sur-
faces, the tendency to complete metal etching off is
observed.

An aternative explanation is the redistribution of
the carriers in the near-surface region because of the
high thermopower anisotropy and complex crysta
structure. Cathodic and anodic areas forming on the
surface begin to act in parallel. As the specimen tem-
perature changes during the electrochemical reaction,
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Anomalous el ectrochemical metallization of HM S single crystals with the certain superstructure orientation and different geometry.

so do the mutual arrangement and shapes of the areas
with different polarization. In this way, the residual
metal filmis patterned.

Thus, an anomalous metallization process is
observed in HM S single crystal s of the specific geome-
try and superstructure orientation. Thisanomaly can be
associated either with bulk processes similar to ther-
mogalvanic effects or with the carrier redistribution in
the near-surface regions that is due to the high thermo-
electric power anisotropy and complex crystal struc-
ture.
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Abstract—Mechanisms for the generation and amplification of electromagnetic waves by athin-walled annu-
lar beam of electrons rotating in aradial electric field in free space are studied theoretically. It is shown that
electromagnetic waves can be generated and amplified under the Cherenkov resonance conditions. The frequen-
cies and growth rates of the generated waves are determined, and the propagation characteristics and amplifi-
cation coefficients of the amplified waves are found. © 2000 MAIK “ Nauka/lInterperiodica” .

The theory of the generation and amplification of
electromagnetic waves by annular electron beams in
waveguides (in particular, plasma-filled waveguides) is
widely covered intheliterature (see, e.g., [1, 2]). Under
certain conditions (such as a small beam diameter in
comparison with the waveguide diameter, thefield falls
off exponentialy in the radia direction with distance
from the beam, and the wavelengths are short), the
waveguide walls have essentially no effect on the dis-
persion properties of electromagnetic waves. On the
other hand, the problem of the generation and amplifi-
cation of waves by athin-walled annular beam of elec-
trons moving simultaneously in the azimuthal and axial
directionsin free space is of interest in its own right.

We introduce the cylindrical coordinates (r, ¢, 2)
and consider an unbounded (along the z-axis) cylindri-
cal electron layer in which the electrons rotate in the
azimuthal direction. Let us assume that a positively
charged metal rod with radius a, linear charge density
Q, and a high but finite conductivity o is located at the
coordinate axis. The electronsare held on circular equi-
librium orbits by theradial electrostatic field of therod,
Fo(r) = 2Q/r. We neglect the constant magnetic and
electric self-fields of the electron layer and assume that
the perturbations of the electromagnetic field, electron
density, and electron velocity all depend on the coordi-
nates zand ¢ and timet as exp[i(md + k,z— wt)], where
m# O isan integer, k, isthe projection of the wave vec-
tor onto the z-axis, and w is the frequency. We treat the
problem in the hydrodynamic approximation. The
unperturbed electron density n(r) is assumed to be non-
zero in the layer between the surfacesr =r_andr =r,.
We al so assume that the following conditions are satis-
fied:

[kl >

Wk, >
3k

9‘, llor | <2m™, (1)
C

wherek, = m/r_isthe azimuthal component of thewave
vector, c isthe speed of light, and m = |m|.

Inequalities (1) alow us to apply the potential
approximation [3, 4]. Using the method described by
Dolgopolov et al. [5], we can show that, in the case of
athin layer such that

r,—r_=20r<r_, ()]

the electrostatic potential ® treated in alinear approxi-
mation under the Cherenkov resonance conditions sat-
isfies the boundary conditions

do do

cbln = chr_’ W ; _ar = K(Dlr_’ (3)
where
o I+ 2 2 2
m 2Vy — Q7 (r)r
K= [N —t—=—— @
rZ0m? 2V + Q7(n)r

Q2(r) = 4ren(r)/me, Wy, = W—MV,/r_—Kk,V,, V, and V,
are the azimuthal and axial components of the unper-
turbed electron velocity, and —e < 0 and m, are the
charge and the mass of an electron.

Formulas (3) and (4) were derived under the Cher-
enkov resonance condition

Wy, = 0 (5)

and with allowance for the fact that, by virtue of condi-
tions (1), the quantity k/k, is small. Taking (2) into
account, we match ®(r) and d®(r)/dr at the boundaries
between the rod and the layer to obtain the dispersion
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relation

" h 2ve —Q*(n)r?
W = -2 -2 [0’ 2
N r 2V, +Q°(n)r

wheren =r_/a, n, = (n°" - 1)/2, 8, = U(4mon,), and
|wd| < 1.

The parameter &, accounts for energy losses in the
rod. We introduce the averaged quantity Q :

- 6r,r

We start by solving the problem of the excitation of
electromagnetic waves. To do this, we must set Im(k,) =
0 in (6), which then implies that Im(w) # 0 and
[Im(w)| < Re(w). Under the condition

_22Vi
¢
Q =
2V +Q

2v(p Q’(nr?

N———=-—>
2V¢ +Q(n)r

2 2=2
2V, >12Q (8
equation (6) yields

Re(w) = mr_v¢ +k\V, + oI’ o )

Oy O

G Met " 2Y; -0 o e

Im(w) = = . (10)
0 Gz gD o
under the condition
2Vy <r’Q (12)
equation (6) yields
_ mV, morth’o
Re(w) = r +kZVZ_ODEF:D 0 (12
_ 15 50V N
Im(w) = EGOQD r +szz|:|:Jn2mD
13
XDEQZ—zvj%f”@Duz =
G20°+2v20 H-H

We can see that, under condition (8), which indi-
cates that the angular electron velocity is high and the
electron density is low, the growth rate is considerably
higher than that under the opposite condition (11),
according to which the instability is triggered by the
dissipation of the wave energy in the rod. Note that the

growth rate (10) increases with m as m"?, while the
growth rate (13) is exponentially decreasing. However,
we must keep in mind that, by virtue of inequalities (1),
the positive integer m islimited by the condition
k,rc
m < : (14
Vs
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In addition, dispersion relation (6) enables us to
solve the problem of the amplification of an electro-
magnetic wave travelling along the z-axis by an annular
electron beam under the Cherenkov resonance condi-
tion (5). To do this, we must set Im(w) = 0 in equation
(6), in which case we have Im(k) # 0 and |Im(k,)| <
Re(k,). Under condition (8), equation (6) gives the fol-
lowing expression for the amplification coefficient

[Im(ky)[:
ZDZV¢ K_IZFZDU BSrD”

Q [MNm 1
Im(k)| = & B (1)
VD 2m ] EQV¢+QZ ZD
under condition (11), we obtain
wQé N2
Im(y)] = %::zmgu
(16)

0% -2v¢dj orel”
"Bt eovi0 OO

The amplification coefficient (15) is much larger
than (16). Under condition (11), the coefficient [Im(k,)|
is governed by the energy losses in the rod and is pro-
portional to the frequency of the amplified wave.

Note that, according to thefirst inequality in (1), the
magnetic and electric fields are both exponentialy
decreasing in theradial direction. Consequently, during
the generation or amplification of a wave, an infinite
annular beam in free space emits no electromagnetic
waves, thereby keeping its energy unchanged. In con-
trast, a generated or amplified wave will be emitted by
a semi-infinite annular beam (bounded, e.g., by the
coordinate z,) through its end into a half-space z> z,.
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Abstract—An analytical solution to the boundary-value problem of an electric field and electrons in a metal-
filled half-space is obtained for arbitrary values of the tangential-momentum accommodation coefficient. The
frequency of an external electromagnetic field directed tangentially to the surfaceis allowed to take on complex
values. Both the normal and anomalous skin effects are considered. In the latter case, the low- and high-fre-
guency limits are examined. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The skin-effect problem has been solved analyti-
cally for the specular and diffuse reflections of elec-
trons from a metal surface. The former case corre-
sponds to zero accommodation of electron tangential
momentum; and the latter, to total accommaodation (the
tangential-momentum accommodation coefficient q is
0 or 1, respectively). For intermediate q's, analytical
solutions have not yet been found. The aim of this study
istofill the gap.

For conventional boundary conditions, the behavior
of gases or electrons near the surface defies analytical
description if the specular reflection coefficient a takes
on arbitrary values. However, modified boundary con-
ditionswere developed in the kinetic theory of gases[1]
so asto alow for an arbitrary g (q = 1 —a for the spec-
ular or diffuse case). They make the boundary-value
problems solvable in an analytical form (e.g., for the
isothermal or thermal dlip of gas, etc.). We are going to
extend this approach to electronsin metals.

The tangential momentum accommodation coeffi-
cient g is the ratio of the tangential momentum flux of
electrons reflected from the surface to that of electrons
impinging on the surface:

-1
3 3
q-= J’vnvrfd V[IVnVTd v} :
*) )
Here, v, and v, are, respectively, the normal and tan-
gential components of the electron velocity. The plus
and minus signs correspond to v,, > 0 and v,, < O,
respectively. The surface is assumed to be planar.

An analytical solution to the problem of the anoma-

lous skin effect in ahalf-space wasfirst obtained by the
Wiener—Hopf method [2—4]. Generalizations of the

problemwere addressed in [5, 6]. Studies[7, 8] of high-
frequency processes in metals highlighted the effi-
ciency of the Case method [9], which expands a solu-
tion in the singular generalized eigenfunctions of the
associated characteristic equation. In [10, 11], diffuse
boundary conditions were applied to an electron
plasma subjected to an electromagnetic field perpen-
dicular to the surface. In contrast to the Wiener—Hopf
method [3-6], Case’s method yields explicit expres-
sionsfor discrete modes of the solution. As emphasized
by some authors (see, e.g., [12]), under certain condi-
tions, such modes define to the largest extent the prop-
erties of both the electromagnetic field and conduction
electrons. Furthermore, the Case method provides the
deepest understanding of different types of skin effect.
That iswhy it isfollowed here.

In this study, we apply the expansion in singular
eigenfunctionsto finding theimpedanceat 0<g< 1. In
particular, formulas for diffuse (9 = 1) and specular
(q=0) boundary conditions are derived. The normal
and anomal ous skin effects are considered. In the latter
case, the high- and low-frequency limits are explored.
For the anomalous skin effect, a relation is revealed
between the macroscopic response (impedance) of a
metal to an external field and the discrete spectrum. The
beauty of the Case method isthat it dispenseswith intu-
itive ideas, such as the concept of inefficiency [1, 13].

FORMULATION OF THE PROBLEM

Werestrict ourselvesto the case of aspherical Fermi
surface and small oscillation frequencies, neglecting
displacement current. The external field is assumed to
be weak, which alows usto view the problem in alin-
ear context. Consider a metallic medium occupying a
half-space. Let us introduce Cartesian coordinates so
that the origin lies on the surface, the x-axis is perpen-
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dicular to the surface and is directed into the metal, the
y-axisisaigned with the electric field E(x)exp(at), and
the z-axis is perpendicular to the magnetic field
H(X)exp(at).

After the time variable is separated, the equations
for electric field and electrons in the metal have the
form[2]

vxg—fx—+(v+a)f (x,v) = ev,E(x)=2 fo

E"(x) = Aj(X).

Here, f, is the Fermi distribution of electrons; f; is the
correction to fy; f = fy + fexp(at); €, e, m, v, and v are
the electron energy, charge, mass, velocity, and colli-
sion rate, respectively; j isthe current density; and A =
4mtoc. The current density is given by

j(x) = —2el hDJ’v f(X, v)d V.

Let usintroduce the notation

e(x) = E(X)/E;, W, = 1+alv,
X' = xI(tve), W=V, /v,
fy = v, B(v -V, k= _225(\)/#
evﬁa
B vznhsczEO'

Here, v¢ is the electron velocity on the Fermi surface,
E, is the electric field amplitude on the surface of the
metal, and d(x) is the delta function. In what follows,
instead of X, we will write x. Then, the equations
become

n2E Wy ) = ke(x),
: (1)

e'(x) = B j(l—u‘z)w, LT

The conditions on the surface and away from it are
assumed to have the form
YO ) =d, O<p<i;
Yo, p) =0, -1<p<Q; 2
e(0) =1, e(w) =0,
where d relates to the mean velocity of the electrons
reflected from the surface.

Suppose that the momentum flux of reflected elec-
trons equals 1 — q times the momentum flux of imping-
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ing electrons:
0

(1-q) j(l—u‘z)wo, Wy

1

= - j(l—u'z)w(o, W),
0

Here, q is the tangential-momentum accommodation
coefficient, i.e., the probability of electron reflection.
The last two conditionsimply

d = —41=9 J’(l W)W (o, W)p'dy. ©)

EIGENFUNCTIONS
L et us separate the variables according to

W, (X, 1) = exp(=x/n), exp(=x/n)E(n),

where n is the spectral parameter. We thus arrive at the
characteristic system

(N—po(n, p) = kwy'nE(N),
E(n) = Bwo'nn(n), b = Bwy’,

& (x) =

where
1
n(n) = I(l—uz)mm. W) du.
-1

Eliminating E(n) from the last two equations results
in the characteristic equation

1
(n-W®(. 1) = 5an°n(n),
where
2 5
a=-a—% - &V , -1
v+o)® i e T

If n O (-1, 1) and n(n) = 1, the characteristic equa-
tion immediately yields its continuum eigenfunctions
[14]:

®(n, u) =

Lt AM) 5
2ar] Pﬂ— +1 50(N —H).

Here, Px! denotes a distribution, i.e., the principal
value of the integral of x%; &(x) is the Dirac function;
and A(2) isthe dispersion function of the problem,

AN2) = 1-aZ + a2’ (1-2)\(2),

TECHNICAL PHYSICS Vol. 45 No.8 2000
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where

1

_galpdr
)\C(Z) - 1+2IT_Z
-1

isthe Case dispersion function [9].

By definition, the discrete spectrum of the charac-
teristic equation comprises the zeros of the dispersion
function that lie outside the cut [-1, 1]. The structure of
the spectrum can be found by the technique devel oped
in [15]. First, we will consider the homogeneous Rie-
mann boundary-value problem

X'(M) = G(W)X (W), O0<u<i, 4
where

G() = A (/A (L) = 0 (W)/w (1)
Here,

W (1) = Aa = 8, —p(p) +i(8, = q(p)),
5 =1/a = 5+,

and
p(R) = K1-(1-pI)A ()],
a(w) = Su°(1-).

Let ©(u) denote the regular branch of argG(l) such
that ©(0) = 0. Let usfind theindex [16] of problem (4).
We have

K = 2[00y = 2-10()] 1 = 2l agw(2],,

whereyis acontour that runs clockwise around the cut
[-1, 1] and does not enclose the zeros of the dispersion
function.

Let N and P respectively denote the total numbers of
the zeros and poles of w(2) outside the cut [-1, 1]. As
follows from the last equality and the principle of argu-
ment [16], the index of problem (4) isk = (N—P)/2.In
the  plane, consider the region

A" = {8=8,+i8, 0<8,<1,[8] <q(5,)}.

Let A~ and vy, respectively denote the exterior and
boundary of d [A *. Asin[15], it can be shown that, if
0[N *,k=1andhenceN=4,snceP=2fordl o [\ =
Also, if d A -,k =0and hence N = 2. That P = 2 fol-
lows from the expansion
S 22,5 2

w(z) = 32 +0 1 +0(1),

For problem (4), let us select a solution that is non-
vanishing and bounded at the extremes of the interval

12 — . (5)
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of integration. In view of the behavior of Kk = k(d) for
o0 [A *(AY), we take the function

X(2) = Z “expV(2),

V() = %ﬁ InG(1) —2T[iK]Td—_TZ.
0

Explicit expressions for the zeros of the dispersion
function can be obtained from its factorization formu-
las (presented without derivation):

+

(2) = 25 - (ni-Hx@X(-2), 204",

w(2) = %(ng—zz)X(Z)X(—z), 20N

The eigenfunctions associated with the discrete
spectrum at hand are as follows:

1
N—H
E(zn) = bni (k=0,1).

We skip over the boundary regime, since this topic
has been carefully treated in the context of the Rayleigh
problem [17]. In [17], the continuity of the distribution
function and its integral characteristics in the plane of
complex frequency were also demonstrated for the case
when theindex of the Rayleigh problem variesin steps.

Let us find explicit expressions for the zeros of the
dispersion function in two limiting cases: |8| < 1 and
8] > 1.

If 8] < 1, we are dealing with the anomalous skin

effect. Then, w* =& xim|f/2. If disin the second quad-
rant, the discrete spectrum consists of two zeros: n; =

1
BN, W) = 30,

rexp(iargd/3) + i1/6 and n, = —n,, wherer = /2|9|/m.
The zero n, isin thefirst quadrant (Min, > 0), since Tt<
argd < 2. The zero n, isin the third quadrant. If dis
in the third quadrant, the spectrum also consists of two
zeros. N, = rexp(iargd/3 + i1/6 +i21v/3) and n, = —n;.
The zero n, isin the second quadrant now, since —Tt <
argd < —172. Notethat, if disrea and negative (argd =
1), the dispersion function has two purely imaginary
ZEeros. Ny =ri and n; = —ng. Onthe other hand, if disa
purely imaginary number, then ny, = rexp(itv3) and
nN,=-No forargd = 12 and ny = rexp(—m3) and n; =
—n, for argd = —12.

Let o beintheright half-plane. In this case, the dis-
persion function has four zeros, two of which,

Ne = rexpli(argd/3+1/6 +21k/3)] (k=0,1),
lie in the upper half-plane (with iny, > 0and din,; < 0)

and the other zerosaren, = —n, and Nz = —np.

In the context of the anomalous skin effect, we sin-
gle out two important cases: the high- and low-fre-
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guency conditions. Under the low-frequency condi-
tions, the field frequency is much lower than the elec-
tron collision rate: |a] < v and aso v|a| < a.
Furthermore, wo =1+ a/v=1and d=—v + a)¥aa, =
-v3oa, = —vii/wa, We then have two zeros: £n,,
wheren, = r exp(—i1v3). Under the high-frequency con-
ditions (which are close to an oscillatory regime), the
field frequency is much higher than the electron colli-
sionrate: |o| > v. This situation occurs at low temper-
atures and low impurity concentrations. Here, w, =
ot = —iwT and & = —a?/a,. The dispersion function has
four zeros, since a = —iw, so that & = w/a, > 0. The
expressions for the zeros are as in the above.

The case || > 1 corresponds to the normal skin
effect. Now the dispersion function has two zeros. As
follows from (5), the expression for themis

J3372 (k=0,1).

If & lies in the negative portion of the real axis, then
Nny>0aways. If <0, thenny=ri.f >0, thenthe
zerosarerea: £n,.

Nk = rexpli(argd/2 + k)], r =

EXPANDING THE GENERAL SOLUTION
IN EIGENFUNCTIONS

L et usrepresent the general solution of system (1) in
terms of the discrete and continuum eigenfunctions in
such away as to satisfy boundary conditions (2) (away
from the surface). The expansions read as follows:

1
1l s 1 O X0
Wx, ) = kZ zanknk_HEXpDWOnkD
=0
1 (6)

*+ [exp o0 (n, WA()dn,
0

1
X
e(X) = 3 Adniexp s

k=0

1 (7
+ bJ’expE—woﬁquA(n)dn .
0

Here, A, (k =0, 1) are unknown coefficients associated
with the discrete spectrum, with A; = 0 for & 0A
A(n) is an unknown function associated with the con-
tinuous spectrum (continuous expansion coefficient);
and Hwy/n, >0 (k= 0, 1), with Rw, > 0.

Based on the boundary conditions, let us determine
the expansion coefficients in (6) and (7). Let & TA *.

LATYSHEV, YUSHKANOV

At x =0, weobtan

1
z kl r]k
= 2N, —

n A(n) AR)
2] dn +1 . SA(H) = (8)

O<u<l,
1

A’ + AN+ InZA(n)dn = 1/b. 9)

It is seen that (8) is a complete singular integral
equation with the Cauchy kernel. To prove this, substi-
tute expansion (6) into boundary condition (3) for d. We
solve equation (8) by the Carleman—Vekua regulariza-
tion [15]. The approach is built around an explicit solu-
tion of the characteristic equation.

Let usintroduce the auxiliary function
1 1°A(n)
— 10 AN
N(z) = 2_[ n—z dn.

Using the boundary values of N(z) and A(2) reduces
equation (8) to the nonhomogeneous Riemann bound-
ary-value problem

ANy }

Aknki|

Now recall the results for problem (4) and reduce
the last equation to the problem of finding an analytic
function from its zero jump over acut:

Akrlk:|

Aknk}

1
N(u)[N%u)—d : z

1
- A‘(u)[N‘(u)—d : z

O<pu<l

. . 1e
X (u){N (W) —d- QZ

VI 1o
—X(u){N (W) —d- EZ

O<pu<l
Its general solution is

1 3 1
— g+ I nAM) -1 C
NG = dvgy s Xy e 00
where ¢, and ¢, are arbitrary constants.
Eliminating poles from (10) gives
1
G = SANXM)  (k=0,1).
TECHNICAL PHYSICS Vol. 45 No.8 2000
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The condition N(e) = 0 implies

d+cy+c, = 0. (11)

To the auxiliary function N(z), we apply the
Sokhotskii formula. Then we substitute (10) into the
resultant expression and determine the continuum
expansion coefficient:

n1

By X(p) zu N

Using (12), we will calculate the integral in (9).
First, notice that

mip’A() = (12)

1 1

fnAm)dn = 3 T30 -I0)],

0 k=0
where

= i — 1 dy =
I 2”iJO'[X+(u) x‘(p)}u—nk (k=0,1).

The integral appearing in the formula for J(n,) is
calculated via the following integral expression (pre-
sented without derivation):

1

VA 1w
@~ V1+2"‘£[x+(u) X‘(m}“—’

where

1

V, = —%f[lnG(T)—Zm]dT.

It isnow clear that J(n,) = X(N)™* =Ny + V,. Hence,

1 1
J(ny) —J(0) = Xy~ X0y
Furthermore, J'(0) = —X'(0)/X?(0) — 1. Thus, the inte-
gral in(9) is

1

2 o257 11
JnAtmen = 3wz xw)

which implies

2Ck 1 D
R, = - 13
2 e 0" X(0)0 (13)
where
1 1
R = [n'AM)dn+ 3 Any (1=1,2,3).
0 k=0
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Inview of (11), substituting (13) into (9) gives

1 O
+ —_— =
N, X(0)H

Now substitute expansion (6) into boundary condi-
tion (3). In doing so, we will take into account that the
first moments of the continuum and discrete el genfunc-
tions are respectively expressed as

1

2
[@A-K)FM, wudu = n-Zan’,

1

2
[A-W)FM, pdu = ne—3an, (k=0,1).

We thus obtain the equation

g 2.0
d4(1_q)+R1 3aR3 0.

Dueto (13) and (11), wefinally arrive at

2¢, 1 1X(0) 1

X(0)th, mmx(o) No NiU
2d X(0) 1

n.X(0)EX(0) n,H
No) +2d(N,—Vy).

The resultant system of equations uniquely deter-
mines the parameters d and ¢, of general solution (10).
This completes the proof of expansions (6) and (7) for
oA,

Rl_

Ry = 2¢o(N1—

EXACT IMPEDANCE FORMULAS

First, consider the case & A *. Differentiating (7)
for electric field gives

1 1

€(0) = —bwo| » Ay +jnA(n)dn} :
k=0 0

According to the above notation, €(0) = -bwyR;, where

R, isdetermined from (13). To calculate theimpedance,

we gtart from the formulaZ = Ag(0)/€(0). Sinceeg(0) =1

[see (2)], we have Z = A/€(0). With the notation
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the desired exact expression is

7 = Ag—1/non;X(0) +a/8(1—q) —2a(nen,X(0) +no + r]l—Vl)/3.

LATYSHEV, YUSHKANOV

W 9[a/8(1—-q) —2a(ne+ N,

With q =0, formula (14) becomes

3A g-1/ngn;X(0) —2a(nen, X(0) +ng+ N,

(14)

—V,)/3] - 2a/3

2aw,

g(no+n:

V) +1 (13)

Asqg —= 1 (diffuse boundary conditions), the impedance tends to

A _
Z = 9oy g

Now look at the case & CA —. The same reasoning as above leads to the exact formula

Z =

A g(Nno) +1/neX(0) +a/8(1—q) +2a(neX(0) —Nno +V,)/3

Wo g(no)[a/8(1-q) —2a(n,

where g(no) = X'(0)/X(0) — 1/no.

For (16), consider the limitsq = 0 and g — 1,
which refer to the zero accommodation of el ectron tan-
gential momentum and to diffuse boundary conditions,
respectively. With g = O, theimpedance is

_3A
2aw,
y g(no) + 1/nyX(0) + 2a(noX(0) + ng
g(Nog)(no—Vy) +1
Withg — 1,

~V,)/3 (7

- A -1
2= 3%9(a) (18)
LIMITING CASES

We begin with the normal skin effect. If & [A
0), then

(<

3 2
_ mu(1-p)dp
= Vo= rJ A R MmN

For large |9]'s, thisyields

1

(o) = L _Adu = L
V'(0) = 25‘[11(1 W)du = ==
0

Since the normal skin effect is characterized by & < 0,

No=-—ri,andr = ./3/9|/2, we have V'(0) — 1/ny, = —-1/n,.
Conseguently, if g — 1, then Z = —An/w, [see (18)].

(16)

—V,)/3] - 2a/3 ’

Furthermore,

1o mi(1-p)d
YO = T p
(1)

1
V, = —=farctan du.
L 2(G-p(u)) "

For large |0]'s, these yield

1

I N
0

1

1
Vy = _[u(l W’ydp = — 545"

Then consider the case g = 0. Based on (17), we
obtain the same formula: Z = —Any/w,. With an arbi-
trary q, formula (16) gives

Ar]o[ _
Wo

Z =

2(1-q) }
95(qd+1-q)l

Now, we proceed to the anomal ous skin effect. First,
consider the low-frequency limit. It is characterized by
Wo=1+0a/v=1 0=-id (8> 0), Ny = rexp(H13),
and r = 3/2|9|/mt. Let us employ the following asymp-
totics for w(2): w(u) = d +im/2. Hence,

1
V'(0) = J.I O+iTtm /ZdT.
2m it
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After the change of the variable, we have V'(0) =
V'/(3r), where

_iw 43 _ _J:
—ZniJ’x I—dx i1 +i.4/3).

Consequently, V'(0) = V'exp(H1U3)/(3ny) =
i/(/3n0) = Vg/no, where V, = i/./3. Finding the
asympitotics of the expressionsfor V(0) and V, asdé — 0
and using (16), we arrive at

_A_ No

WoVg—1'

or Z =—Ar/(2wy).

Turn to the high-frequency limit. It is characterized
by w, = —iw/v and & > 0. Furthermore, there are four
discrete modes, for which ng = rexp(—1/6) and n,; =

rexp(—i51/6), wherer = 3/2d/.
Let us expand X(2) as X(2) = (z — 1)expVy(2),
where

Trr3(1 —Tz) dt
2(0-p(1))1-2

1
Vo(0) = %{J’ arctan
0

Notice that V; is bounded if & — 0. Furthermore,
NoN1X(0) = ./30/2,
X'(0)/X(0) = V5(0)+1, nony = —r°.

The asymptatics for w(z) enable usto find

1 3
1 arctanT—r[—g-I
o T

0

Hence, V, (0) = V, /r, where

Vo(0) =

1

_ 1. a3 _ 3 _l
—TJX arctanxdx = 2[ In2 5

&l
Dueto (14) [or (15)], the impedanceis
- AT
WoVp—1

The same formula applies to diffuse boundary con-
ditions as well. Let us find V(0), V'(0), and V,. The
above factorization of the dispersion function yields

2
5= énénfexp(ZV(O)),

so that X(0) = i(174)%3,/35Y6. We will demonstrate
that V; is bounded if & — 0. Since p(n) = 13, the
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equality

(1 —p°)
rJ AN G- pu)

implies

1
Vlzé‘l’(l—xz)dx = %
0

To calculate V'(0), we use the following asymptotic
representation of the function w: w(u) = & *iTEd/2.
Then, we have

°d
p’

Ic

V,(0) = rJarct —%

Let x denote Ttp¢/(20) = X, so that i = 3/2d/1t. Then

[

VO(O)——l arctan dx 3[ ﬁ+ED—1+“/3§E}
) v

In short, Vg (0) = Vg /r, where Vy = 3[In./2 + T(-1/2 +

J313)/2]/1. Thus, the impedance for diffuse boundary
conditionsis

_ AJ2d/m
Wo Vg —i

It can easily be proven that this formula applies in
the general case aswell [see (15)].

CONCLUSIONS

We devel oped a novel technique to obtain an analyt-
ical solution to the classical skin-effect problem in a
generalized form. According to our approach, the fre-
guency of the external electric field may take on com-
plex values and the accommaodation coefficient of elec-
tron tangential momentum g may lie anywhere between
0 and 1. The technique consists in expanding the solu-
tion to the boundary-value problem in the singular gen-
eralized eigenfunctions of the associated characteristic
equation. This enabled us to investigate the problem
comprehensively. In particular, we derived explicit
expressions for the discrete modes of the solution and
constructed the frequency region D* such that the prob-
lem has four discrete solutions if the frequency liesin
D* and two discrete solutionsif the frequency isoutside
D*. The D* region boundary represents the line of crit-
ical frequencies. crossing the boundary of D* from the
inside changes the structure of the solution.

Remarkably, the singular-eigenfunction method
enabl ed usto reduce the problem to acomplete singular
integral equation with the Cauchy kernel rather than to
the characteristic equation. This seems to be the first
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result of its kind in transport theory. The skin-effect
problem is thus opened up to the Carleman—Vekuareg-
ularization based on an explicit solution of the charac-
teristic equation.
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Abstract—The problem of resonance oscillations of inertial inclusions in contact with elastic waveguides has
triggered a number of theoretical investigations. It was shown [1-3] that related phenomena may be treated by
solving the spectral problem posed for a differential equation that is defined in an infinitely long interval. For
specific waveguide and inclusion parameters, a composite system that includesinteracting objects with lumped
and distributed parameters may have a mixed (continuous and line) eigenfrequency spectrum. The line spec-
trum may be observed both before and after the boundary frequency. It was noted [3, 4] that the presence of an
isolated lumped inertial element causes the line eigenfrequency spectrum, which extends to the boundary fre-
guency. So-called trap oscillations are responsible for this spectrum. However, little is yet known about these
effects, which hinderstheir effective usein practice. First, conditionsfor trap oscillations should be generalized
for the case of multielement inclusions in various infinite waveguides. Second, the effect of edge conditionson
the line spectrum in a semi-infinite waveguide calls for in-depth investigation. The solution to these problems
would formulate proper ways of tackling engineering challenges associated with the interaction of arailway
track with high-speed rolling stock [5]. Issues discussed in this paper are also concerned with object character-
ization from analysis of its eigenfrequency spectrum. In recent years, thistechnique has gained wide acceptance
in crystallography and other fields of science and technology as a promising tool for the acquisition and pro-

cessing of data on the internal structure of an object. © 2000 MAIK “ Nauka/lInterperiodica” .

INTRODUCTION

Any extended constructions represent objectswith a
complex internal structure. Such objects integrate, nat-
uraly or artificially, members of highly different den-
sity, modulus of rigidity, viscosity, etc. that deform
simultaneously. One basic member of such objectsisa
so-caled elastic inertial load-carrying continuum.
Other members are mounted on, or placed into, it. A
rail-cross tie array is an example of an artificia struc-
ture; crystals are natural objects of this kind.

The analysis efficiency in solving applied or exper-
imental problems is closely related to the justified
selection of a real object (physical) model. Then, the
physical model is supplemented by an adequate mathe-
matical model of the object. A model for the load-car-
rying continuum is of greatest importance. This model
should be based on previous service experience or
experiments with the given object. It may happen that,
in experiment, various models of theinertial continuum
predict smilar qualitative and quantitative (accurate to
an experimental error) results. In this case, designers
first consider the traditional inertial continuum model
(which is the smplest in terms of mathematical
description). Then, this model is replenished by iner-
tial, elastic, and other lumped-parameter members nec-
essary for the rigorous description of subsequent exper-
iments.

This may explain the wide use of the Bernoulli—
Euler equation of a beam on a Winkler foundation in
studying the interaction of arailway track with rolling
stock [5] or the wave equation in the physics of crysta
lattices [6].

However, the selection of a load-carrying contin-
uum model imposes stringent restrictions on model-
refining lumped members. Specifically, if the contin-
uum is a priori assumed to have string properties,
moment-type interactions of the continuum with any
surrounding inertial and inertialess members must be
immediately excluded from consideration. This
strongly restricts the elaboration of the mathematical
model. It may so happen that this model will be impos-
sibleto improve by adding any finite number of lumped
members.

It is known that eigenfrequency spectra bear much
information on a real object’s properties, particularly,
its internal structure. The agreement between the real
object spectrum and its mathematical model is aneces-
sary condition for the validity of any physical theory.
We, however, consider the dynamics of an object with
an unknown, but a priori, complex interna structure
for which only its eigenfrequency spectra are known
from experiments. In this case, the construction of a
mathematical model with a spectrally similar operator
leaves many “dark spots” It remains unclear how to
integrate its elementary inertia links into macrostruc-
tures.

1063-7842/00/4508-0963%20.00 © 2000 MAIK “Nauka/Interperiodica’
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In this work, the behavior of the eigenfrequency
spectra of complex objects was derived by rigorously
solving formally stated problems of mathematical
physics. The discovered effects provide a greater possi-
bility to experimentally test the adequacy of available
mathematical models of real objects. The discussed
features are expected to show up in experiments with
any systemswhose dynamicsis simulated by the above
equations.

Consider the problem of free vibrations of an infi-
nite elastic inertial line on a Winkler foundation. It is
known that this problem involves a continuous eigen-
frequency spectrum. This spectrum corresponds to
eigenmodes in the form of propagating undamped
waves. Such a spectrum is called continuous and lies
above the boundary frequency. A Winkler classica
foundation implies that a system has a single boundary
frequency when interacting with infinite (or semi-infi-
nite) one-dimensional elastic inertial continua, such
that their behavior is described by the string equation,
Bernoulli—-Euler beam equation, or Timoshenko beam
equation. The boundary frequency w, depends on the
linear mass density of an elastic line p and modulus of

rigidity of theWinkler foundation k; that is, w, = J/k/p .
It was shown [1, 2] that, if lumped elastic inertial inclu-
sions are embedded in these infinite or semi-infinite
systems, the latter, along with the continuous spectrum,
may exhibit line eigenfrequency spectra. These spectra
correspond to localized, or trap, vibrations. It was
found, in particular, that, for strings, the line spectra of
studied inclusions aways lie below the boundary fre-
guency. In the case of beams (for certain combinations
of their elastic and inertial properties and those of the
inclusions), these spectramay appear above the bound-
ary frequency. Some of the previous conclusions, being
valid as applied to specific situations, however need,
correction upon generalizing obtained results. This
refersto the sufficient condition for the existence of line
spectraand the effect of edge conditions on their behav-
ior when inclusion parameters vary according to the
intrinsic properties of the elastic inertia line.

In thiswork, wefind trap vibration spectrain elastic
systems of infinite length like a string or Bernoulli—
Euler beam lying on aWinkler foundation. The systems
have purely inertial inclusions that lack intrinsic vibra-
tory dynamics. In this case, the line spectrum fregquen-
cies lie below the boundary frequency w, As inclu-
sions, the following objects were considered: (1) two
material points of masses m; and m, spaced at an inter-
val L, (2) aperfectly rigid body of mass mand moment
of inertiaJ (with respect to the center-of-mass position)
that is momentlessly fixed on an elastic line at two
points spaced at an interval L, and (3) two perfectly
rigid bodies of masses m; and m, and moments of iner-
tia J; and J, (with respect to the center-of-mass posi-
tions) that are fixed on an elastic line in such away that
the center-of-mass displacement coincides with that of
the point of fixing and the center-of-mass rotation coin-

INDEITSEV et al.

cideswith that of the cross section at the point of fixing.
Cases 1 and 2 refer to a so-called momentless contact
between the elastic line and inclusions. Case 3 means a
moment-type contact interaction. Note that a moment-
type line-inclusion contact is possible for a beam but
impossible for astring. Various limiting processes dealt
with in the above problems allow the determination of
trap frequencies for a wide variety of edge conditions.
This gives a chance to trace a correlation between the
appearance (or disappearance) of some trap spectrum
and many physical factors, such as the elastic proper-
ties of theloaded line; type of degrees of freedom of an
individual, purely inertial inclusion; type of line-inclu-
sion contact; and inclusion size.

For steady-state vibrations of two-element point
inclusions of masses m; and m,, the amplitudes of their
transverse (relative to the equilibrium position) dis-
placementswill be denoted asW, and W,. For tworigid
bodies, rotations W, and W, are added. The position of
a single-element inclusion (rigid body) is specified by
the transverse displacement of its center of mass W and
arotation W. The rest of the parameters are designated
as follows: s, longitudinal Lagrange coordinate of an
elastic-line cross section; ()' = d/0s; w = w(s), trans-
verse displacement amplitude of a cross section with a
coordinate s; ¢® = T/p, velocity of a transverse distur-
bancein astring (T isthe string tension); * = C/p, elas-
tic parameter of a Bernoulli—Euler beam (C is its flex-
ural rigidity); and N, and N, are force amplitudes acting
on the elastic line at points of contact with inclusions.

INTERACTION OF STRING AND BEAM
WAVEGUIDES WITH TWO POINT MASSES

Consider how trap spectra depend on inclusion
parameters when a purely inertial inclusion is in
momentless contact with an elastic inertial line. For fre-
guencies below the boundary frequency w, the steady-
state vibration amplitude of an elastic line (string) or
Bernoulli—Euler beam that lies on aWinkler foundation
and has atwo-point moment-type contact with aninclu-
sion is given by

. +2 _ N N
W' —AW = ——8(s) - —8(s— L),
pc pc

2 2
A2 = &b —20\) >0, string,
© (1)
N N
w + 4N 'w = —L5(s) + —23(s- L),
PB PB
0)2—(02
N - >0, beam.
4

The vibration amplitudes of an inclusion with two
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masses my, and m, satisfy conditions
mloozw1 = Ny, m2002W2 = N,,
w(0) = W;, w(L) = W,.

For the string, the solution of (1) bounded at infinity
has the form

)

AS -A(L-5s)
N1e2+N2e . w0<s<0;
2\pc 2\pcC
—-AS —A(L-5s)
N N,e
w(s) =< 1e2+ = o0sssL; (9
2\pcC 2\pcC
-\S A(L-s)
N, e 2+N2e . Lss<o,
2\pcC 2\pcC

A similar solution for the Bernoulli-Euler beam is
AsS

N
8)\;(:'\le(cos)\s—sin)\s)
p
AMs—-L)
+ D2 (cosh(s—L)—sinA(s—-L)),
8\ ppB
—0<S<0;
-AS
’\)I\lse 84(sin)\s+ COSAS)
8\°p
w(s) = < N,V . (4)
+ ————(cosA(s—L) —sinA(s-L)),
8ApPB
O0<s<lL;
—AS
l\)l\lae B4(sin)\s+ COSAS)
8\°p
NLg )
+ 22 (sinA(s—L) + cosA(s—L)),
8N ppB
L<s<oo,

In both cases, the vibration amplitude exponentially
drops with distance from the line-inclusion contact
region; hence, waveguide vibrations are localized near
the inclusions.

Matching the string or beam equation [equations
(2)] with the inclusion equation [expression (2)] yields
two expressions for the spectral parameter oy:

2
mm,w, e—Z?\l,uL

(1- )

)\I,Ilpcz(ml +my)

—2A; L
- 17 1_4m1m2(1—e2 )_
(my +my)

©)
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L
(2) (©)
my

m nmy ny

(b) my 6
my

my my

Fig. 1. Symmetric and asymmetric localized vibrations in
(a, b) string and (c, d) beam waveguides with two-point
inclusions. Shape “b” disappears when the interinclusion
distanceislessthan L

for the string and

mumyef (L—e " (1 + sin2A, L))
4Af,,pB4(m1+ m,)

(6)

| ammy(1—e (L + sin2), L))
=1F |1- > :
(my+my)

for the beam.
With the minus sign in (5) and (6), we find the

eigenfrequency oo,2 of conventionaly symmetric
waveguide vibrations (Figs. 1a, 1c); the plus sign gives
the eigenfrequency m,z, of conventionally asymmetric
waveguide vibrations (Figs. 1b, 1d) (if m = m,, vibra-
tions become symmetric or asymmetric in the strict
sense).

Consider limiting cases for (5) and (6). If L — O,
we have
Ly mmlel

pc (m, +my)

2
(my + my)w,

2pcA/w§—w,2

for the string and

(m1+m2)0olz -1
34 ’
2,/2pB(wy — W) @
2
mm, L, -1
2.1/2

2pB*(my + my) (wp — )

for the beam.

If one of the masses (e.g., m,) in (5) is taken infi-
nitely large, one comes to the frequency equation of
vibration for an infinite string that has a point inertial
inclusion of mass m, placed at a distance L from a
hinged waveguide point with the coordinate s= 0. It is
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() L. (b)
-+
2 m

my

mp = my = oo

T FEE

Fig. 2. Localized vibrations of apoint inertial inclusionina
(8) semi-infinite string waveguide and (b) beam waveguide
with hinged support. Shape “a’ disappears when the dis-
tance between the inclusion and waveguide boundary isless
than L* .

easy to check that results thus obtained completely
coincide with those for a semi-infinite string with a
point inertial inclusion of mass m, placed at adistance L
from therigidly fixed beginning of thewaveguides=0.
If m, tends to infinity in the beam waveguide problem
[that is, in (6)], we arrive at the frequency equation of
vibration for an infinite beam with apoint inertial inclu-
sion of mass m, placed at a distance L from a hinged
waveguide point with the coordinate s = 0 (but not for
a semi-infinite beam!). Thus, we have

2
m,w; ~2\ L

w, =0, (1-e ") =1

Ay pcz
for the string and

2
o' =0, T2 1_e™ (14 sn2\,L1) =1 (8)
npP
for the beam.
AtL — 0in(8), we obtain the limiting equations
W =0, mszL =1
pc
for the string and
2 mzw|2||-
w =0 ——=——p=1 ©)
2P (wyp — )
for the beam.

The condition wy = 0 means that the system moves
as arigid unit. Since the hinged point with the coordi-
nate s = 0 makes the infinitely large mass m, immobile,
the zero frequency correlates with the system at rest in
this case.

If the distance L between the masses is less than

2
L pc(m ¥ my)
.=

2
v L =l ce= pc .
MWy,
equations (7) and (9) for the string give real values of
the trap frequency wy, that no longer satisfy the condi-
tion wy, < wy,. The former equation in (10) gives L, for

a string with atwo-mass inclusion; and the latter, for a

> (20
m; M,y

INDEITSEV er al.

string with a single hinged point and one-mass inclu-
sion.

Asfollows from (7) and (9) for a string waveguide,
there should exist adistance between inertial inclusions
such that the realness and positiveness conditions for
the square of the eigenfrequencies are violated. In this
case, the associated eigenfrequency spectrum becomes
complex, the existence criteriafor localized undamped
vibrations responsible for the given eigenfrequency are
violated, and this localized vibration mode disappears
(Figs. 1b, 2a).

However, more thorough analysis is needed to gen-
eralizethe conditions necessary for such aphenomenon
to occur. The drift of w, beyond the boundary fre-
guency with decreasing distance between the masses or
to the fixed support (Fig. 2b) is not predicted from the
above results for a Bernoulli—Euler beam with similar
inclusions.

INTERACTIONS OF STRING AND BEAM
WAVEGUIDES WITH A RIGID BODY
UNDER MOMENTLESS TWO-POINT CONTACT

Consider elastic lines momentlessly interacting
with asinglerigid body. Recall that itslocation is spec-
ified by the center-of-mass position and arotation about
acertain axis. For arigid inclusion in momentless sym-
metric contact with an elastic line, conditions (2) are
replaced by

MW, = Ny + Ny, Jo'W, = —%N1+|§‘N2,
LY Ly, D
w(0) = W,— 20, w(L) = W0+T°.

From the latter, we come to the equations for fre-
quencies of symmetric (subscript 1) and asymmetric
(subscript 1) elastic-line vibrations:

Joo,z,(l—e_A”L)
=1l ———5— =1
AupcL

mwi(l+e )
4)\,pc2

for the string and

mw’(1+e " "(cosh L + sinAL))
16\ pB*

1,

, L (12
Juy (1—e " (sin\, L+ cosA, L)) 1

anSppiL?

for the beam.

Localized vibrations of a string with a fixed rigid
body are represented in Fig. 3a. Similar vibrations of a
beam are shown in Figs. 3c and 3d.
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If m— o, (12) can be recast as

Jot(l—e "

=1
)\,,chL2

wf:o,

for the string and

Jon(1—e"(smL+coshL)) _ (9

arSpp*L?

for the beam. Relationships (13) yield the frequency
equationsfor arigid solid that has afixed center of mass
and is in two-point contact with an elastic line. For
J — o0, weobtain

AL
mwlz(1+e )_1 w2 = 0
—= - -, =
4)\,pc2

for the string and

moor (1 + e_A'L(cos)\lL +sinA\L))
16\, pp*

(14
wp =0

for the beam. These relationships are frequency equa-
tions for vibration of a rigid body that momentlessly
interacts with an elastic line at two points without rota-
tion.

If mand Jin (12) jointly tend to infinity, we obtain

oo|2 =0and wlzl = 0 for both beam and string. Thisisa
well-known result, indicating that string and beam sys-
tems with two fixed hinged supports do not have trans-
verse vibration frequencies lying below the boundary
frequency of line spectra.

If L— 0in(12), weobtain

2 2
maw, Y Jay 1
! 2
2pCA /0 — 0 pcL
for the string and
2
mao, -
34
2./2pB (0, — )
12 (15)
Wy -1

2pPB°Lywy — wof
for the beam.

Thus, in this case, the beam does not have, but the
string has, the limiting (maximum) distance between
contact points. As this distance grows, the higher fre-
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(a) (c)

m,J

(d) (d

m,J m,J

83

Fig. 3. Symmetric and asymmetric localized vibrations in
(a, b) string and (¢, d) beam waveguidesin momentless con-
tact with arigid body. Shape “b" is disappearing.

guency of localized vibrations of a string with two
purely mass inclusions disappears:

2
B0 L=
pc
As was demonstrated, the effect of the disappear-
ance or conservation of the higher trap spectrum imme-
diately depends on the type of elastic inertial contin-
uum. Also, this effect is not a mere consequence of a
rising number of degrees of freedom of asingle inclu-
sion. Nor is it directly associated with types of elastic
line—inclusion contact.

To confirm the last statement, we will present
expressions for trap spectra of free vibrations in the
case of apurely inertial inclusion that has two intrinsic
degrees of freedom and isin moment-type contact with
a Bernoulli—Euler beam. These are line spectra of free
vibrations of a system consisting of arigid body (bod-
ies) fixed at its center of mass and lying on aBernoulli—
Euler beam supported by aWinkler foundation:

2 2 CZL
Wy > Wy = &

5"

(16)

Blw;,

BSme
——: = L, — = 1.(17)

«/ép(ws—wf)sm Zﬁp(ws_wu)

Free vibrations at these frequencies are shown in
Figs. 4a-4c.

Putting m = « in (17), we arrive at the frequency
equation for vibrations of an infinite beam hinged at a
point with the coordinate s = 0. This point coincides
with the center of mass of a perfectly rigid body inter-
acting with a waveguide and having a moment of iner-
tiad:

1/
- > _ 22p(wh—awp) "
w =0 w,, = 6

Putting J = o in (17), we arrive at the frequency
equation for vibrations of an infinite beam supported at
apoint with the coordinate s= 0. This support isadlid-

(18)
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f %mé]?? (b)??%%??

(c) m,J

A

Fig. 4. Symmetric and asymmetric localized vibrationsin a
beam waveguide in point moment-type contact with (a, b)
one- and (c, d) two-element rigid inclusions.

ing attachment of mass m:

2.2p(w — o o
oo|2= 2p( b3 ) ’ mﬁ
mp
It is easy to notice that the localized vibration mode
disappears in none of the situations considered, as
opposed to the previous cases for the string.

(19)

INTERACTION OF A BEAM WAVEGUIDE
WITH TWO SOLIDS BEING IN MOMENT POINT
CONTACT WITH AN ELASTIC INERTIAL
CONTINUUM

To elucidate the effect of interest in an infinite beam
system, we will determine steady-state vibration fre-
guencies of abeam lying on aWinkler foundation and
being in point moment contact with two rigid inclu-
sions. We assume the frequencies to be below the
boundary frequency w,. Dividetheinfinite region occu-
pied by the elastic line into three sections: those on the
left and on the right of both inclusions and the region
between them. For each of the sections, we write the
elastic line equations and edge conditions:

2 2
wWeatw=o0, 2= 2250
Bt (20)
w(0) = W;, w(L) = W,,
w(0) = W, w(lL) =W,

aswell asthejoining conditionsfor the partia (section)
solutions:

4 m

mw’ W, = pB*w."(0) — pB*w"(0),

3w, = —pB'w;(0) + pB*w(0), 1)

MW, = pB*wi'(L) —pB*w(L),

4 T

3,0 W, = —pBw(L) +pB W (L).
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The solution of problem (20)—(21) bounded at infin-
ity and localized near the contacts with theinclusionsis
given by

As
—5—(A.cosAs+ D, sinAs),

—00 <S<0;
e—)\s
)\—384(Pcos)\s+ QsinAs)
w(s) = < A(s-L) (22)
+ 7\_3[34(H cosA(s—L) + KsinA(s—L)),
O0<s<lL;
—A(s—L)

—3[54(82005}\(8_ L) + S;sinA(s-L)),

L<s<o,

where A;, D4, P, Q, H, K, B,, and S, are constants.
The joining conditions give the set of equations

mlu)ZWl _p mza)zW2 -y
208° 20" -
AW _ _P+0 AW, _ K
pp’ - pp’

Let both rigid bodies (two-element inclusion) be
identical. Then, the frequencies of symmetric and
asymmetric vibrations are found independently. Since
the localized vibrations may disappear with decreasing
interelement distance, the behavior of these spectra at
L — 0 seemsto be the most interesting.

We will find the symmetric vibration frequencies by

putting W, = W, = W, and W, = -W, = W, Then, at
L —» 0, one obtains from set (23)
ALLLMO” S~ 1AW, +w, = 0,
hadpp?
(24)
ALAW, + CE3¢ ~1fy = o.

20p*

For the free symmetric vibrations of a beam
waveguide with two rigid inclusions, the frequencies
obtained from the existence condition for the nontrivial
solution of (24) are

2pp" , 4AsipB’
JL m
The symmetric vibrations are depicted in Fig. 4c.

The presence of zero frequency among the roots of
the characteristic equation merits attention. As is
known, the zero frequency implies that a system moves

2
wy =0,

(*)sll = (25)

TECHNICAL PHYSICS Vol. 45 No.8 2000



RESONANCE VIBRATIONS OF ELASTIC WAVEGUIDES

as arigid unit. However, in our infinite system, unlim-
ited displacements of the inertial inclusions are impos-
sible because of the Winkler foundation. This apparent
conflict is due to the fact that the frequencies were cal-
culated using the limiting equations obtained from (23)
at L — 0. The frequency eguation coincident with the
first equation in (17) yields a more accurate value of

wszl . For the refined frequency, system vibrations are

shownin Fig. 4a.

For asymmetric vibrations, the frequencies are
found by putting W; = -W, =W, and ¥, = W, = W, At
L — 0, we obtain from (23)

El_zmwz_
[Brpp*
Jo’
—oaw,+ B9 Oy =0
|:pr4 E?\

Thefrequencies of free asymmetric vibrations of the
beam waveguide with two rigid inclusions are as fol-
lows:

1AW, -ALY, = 0,
(26)

4 8\,,pp*
(*)zl =0, 005” = ZS)LB + :1':_‘)28

The corresponding asymmetric vibrations are given
in Fig. 4d. Like the symmetric vibration spectrum, they
possess the zero eigenfrequency. It is associated with
the rotation of both inertial inclusions with equal con-
stant velocities. The reason for its appearance is the

same as in the previous case. The exact value of wﬁ, is

derived from the frequency equation coincident with
the second expression in (17). The shape of the vibra-
tionsfor this caseis shown in Fig. 4b.

The appearance of both zero frequencies is very
important from the physical viewpoint. This means
that, as the interinclusion distance diminishes, the
approximate frequency eguations become “insensitive’
to the presence of the Winkler foundation. Under such
conditions, these equations predict that the entire sys-
tem will behave asarigid unit.

For high-frequency components of the trap spectra,
approximate frequency equations (25) and (27) givethe
same interinclusion distance, namely,

(27)

L, =208 29)
Jw,

at which these spectra disappear when exceeding the
boundary frequency.

Now we proceed with the limiting case when arigid
body interacts with a semi-infinite beam fixed at its
beginning. We put the mass and moment of inertia of
the body fixed at the point s = 0 tending to infinity.
Then, W, = 0 and W, = 0. Under such conditions, the
frequency equation derived from (23) at L — oo
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results in the same effect: the upper frequency of the
line spectrum disappears on exceeding the boundary

frequency:

2 2 2
W = PR N wy — W Wl = _Qﬁi (29)
| msz 1 1 Jsz'

With (23), one can obtain frequency spectra of free
localized vibrations for variously posed two-body
problems: the centers of mass of both bodies are fixed,
neither one can rotate, the center of mass of one body is
fixed and the other cannot rotate, etc. In each of these
problems, the localized vibration modes of the beam
waveguide disappear. In fact, for thisto take place, it is
sufficient that at least one of the inertial elements of a
two-element inertial inclusion interacting with a Ber-
noulli—Euler beam have the inertia of arigid solid and
that the beam—inclusion interaction be of moment-type
character.

DISCUSSION

The string and beam waveguides considered in this
work are partial mathematical models. They, however,
to some degree of approximation account for the possi-
ble behavior of real objects under service or in experi-
ments. The disappearance of one line spectrum when
the parameters of an inertial inclusion are varied seems
to be rather intriguing in this respect. Since the eigen-
frequencies of alinear system become resonant in the
presence of an external harmonic action on the system,
this effect can be used for thoroughly examining the
internal structure of a continuum with massive inertial
inclusions. The very discovery of this effect is an indi-
cation that an object is of an essentially discrete—con-
tinuous nature. However, distributed members, lumped
inclusions, and interactions between them need to be
identified. If information on any of these componentsis
available, the effect of the appearance or disappearance
of the trap mode can help to clarify the properties of the
others. As follows from the aforesaid, a new trap reso-
nance frequency appears or disappears if variations of
the geometric and inertial inclusion parameters are spe-
cially matched to the properties of all the components
of complex systems (comprising elastic inertial contin-
uum, noninertial elastic continuum, and purely inertial
inclusions). The new modeislost when the disturbance
energy is transferred from the near-inclusion region to
the elastic inertial continuum and disappears when the
energy isconfined in thevicinity of theinclusion [1-3].

With very ssimple mechanical models, it was demon-
strated that the spectra of two closely related systems
may qualitatively behave in a fundamentally different
way when their parameters are varied similarly. It is
noteworthy that the qualitative distinction due to radi-
cally differing internal properties of objectsis observed
only in arather narrow frequency range. Thisis of spe-
cial significance for systemswhere the variations occur
in a natural manner; i.e., the parameters vary during
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operation. Specifically, the case in point is transport
problems. In fact, such a situation may arise when a
train approaches somerrailway irregularity (bridge, via-
duct, or switch). In these cases, the joint railway—track
dynamics inevitably necessitates the solution to prob-
lems like those considered in this work. Obviously,
some of them are still more complicated because of the
need for taking into account the continuously varying
interinclusion distance. For this reason, they cannot be
treated rigoroudly. Here, the role of tests, which allow
the qualitative prediction and correct interpretation of
results, increases.

Analytical methods can be applied to one-dimen-
sional elastic inertial (string and beam) and noninertial
(Winkler foundation) continua with inclusions having
no more than two elements. Only in these cases can we
find analytical solutions to a number of like problems
for each of the elastic lines and compare them. Thisis,
however, a rarely encountered exception. In our opin-
ion, the value of our resultsisthat they provide a better
insight into similar phenomena in two- and three-
dimensional continuawith a complex structure. Exam-

INDEITSEV er al.

ples are the upper part of a railway track or crystals,
where amodel problem is hard to solve analytically.
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Abstract—A wide-band microwave generator using a faster-than-light source is proposed to be used as a
charged particle accel erator. According to theoretical estimates, an electric field amplitude as high as~10 V/m
or more can be attained at the focus of a paraboloidal emitting surface with afoca parameter of ~1 m. These
estimates are supported by numerical calculations. The schematic diagram of such an accelerator is suggested.

© 2000 MAIK “ Nauka/lInterperiodica” .

INTRODUCTION

Wide-band microwave generators based on a faster-
than-light (FTL) emission source are very promising for
applications [1]. In particular, emission directivity in
these generatorsis provided by the shape of the emitting
surface, and the direction of emission coincideswith that
of the specular reflection of emission-inducing radiation.
Thus, the focusing of FTL emission presents no prob-
lems. This raises the question of whether the electric
field intensity at the focus can be increased to the point
where it can be used for accel erating charged particles.

Consider a plane laser beam propagating along the
axis of aparaboloid. Let the paraboloid consist of radi-
ating elements similar to those described in [1]. Let
also the inner surface of the paraboloid be exposed to
the laser beam (Fig. 1).

Electromagnetic radiation generated by such an
FTL emission source must be focused at the paraboloid
focus and must greatly increase the field intensity. The
electromagnetic energy fluxes near the paraboloid sur-
face and at the focus should coincide:

EZr2 OE*X”. 1)

Hence, the electric field at the focus can be estimated as
lo

ED on : (2

where E is the electric field at the paraboloid focus, E,
isthe electric field near the paraboloid surface, ryisthe
paraboloid radius in the focal plane, and 21X is the
electromagnetic radiation wavelength. The field ampli-
tude near the paraboloid surface can readily be deter-
mined using the results obtained in [1]:

€
Eo O )

where & is the energy of electrons emitted from the
anode of the microwave source placed on the parabo-
loid surface.

Thus,
E¢lg

EDEXX' (4

If a particle of charge e and mass M is accelerated
by thisfield, it gains a momentum p,

K- &ilp
and energy €,,
8er01 K/IPE> 1;
g0 , (6)
S ddg P ooq
Mc2EkE T Mc

The vaues of & ~ 10%-10° keV, X ~ 0.1-1 cm, and
e

- N
4 6
= 5
- 7

=

Fig. 1. Schematic diagram of an FTL paraboloid source: (1)
photons, (2) emitted electrons, (3) photoemitter, (4) laser
radiation front, (5) paraboloid surface, (6) accelerating
charge; and (7) electromagnetic wave.

1063-7842/00/4508-0971$20.00 © 2000 MAIK “Nauka/Interperiodica’
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ro/ X ~ 10°-10° seem to be attainable. Thus, it is hoped
that the energy of the accelerated particle may run to
about 1 GeV with acomparatively small-size accelera-
tor (several meters). Since the acceleration length is
about X, the accelerating gradient can be as high as
~10 GeV/m or even more. Rigorous treatment of the
problem using analytical and numerical methods sup-
ports this result.

ANALYTICAL CALCULATIONS

Electron acceleration. The analytical expression for
the intensity of an electric field generated by an FTL
pulse on the inner surface of the paraboloid,

can be obtained with the retarded potentials in the
Lorentz gauge:

Ir—r’g
b(r) jmﬁt—if
ry = ‘
Ir—r
or (7)
—rig
JB‘ c O
AT = [V =
Considering that
10A
——D¢—Cat (8)

and assuming that the emission current is directed nor-

Fig. 2. Geometry used in computations. (1) focus and (2)
paraboloid surface.
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mally to the paraboloid surface, i.e.,

. . y4
i(tzp) = joit+ Sz pah,
9
pfO ro 0
E'Lo

we obtain the expression for the field component along
the paraboloid axis

1 dv'

il

where a is the angle between the axis OZ and vector r’
(Fig. 2).

In our case, the dipole approximation can be
applied:

Pio

sm(a)cosEQDat (20

E, = EO Id o 2tf+ 2o

+§A/1—w2cos(¢)g

21 oPy

x>
Here, w = Z/Z + r,, Z isthe coordinate of the vector r',
(20, Po) @nd (z., py) are the coordinates of the extreme
points of the paraboloid, wy = zy7Z, + ro, W = z/7 + 1y,
z and p are the cylindrical coordinates of the vector r,
P, is the amplitude of the dipole moment surface den-
sity,

(11)

I = _].__(Zk—z)
T, cT, '

T, is the characteristic time of variation of the dipole
moment, X = CT,,, Iy isthe paraboloid radiusin the focal

plane,

f(x) = N(OAF0),

is a dimensionless function specified for a pumping
source that provides a linear growth of the radiation
intensity, and n(x) is the Heaviside function.

At the paraboloid axis,

F(x) = 217x°exp(—X) (12)

Wy
E, = EOId 1+‘*’f% f

The parameter w varies from -1 to +1 over the
paraboloid surface. It follows from the expression for

(13)
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E, that the phase velocity of thefield isc/w > ¢, because

wdz  dt dz _ c
xatat oM a T W
Obviously, the closer the velocity of particlesto the
phase velocity of the field, the higher the acceleration
efficiency. Therefore, truncated paraboloids with |w| =
are of particular interest. Paraboloids with w ~ 1 are
preferable because of the factor (1 + w)/(1 — w) in the
integrand for E,. The physical meaning of thisfactor is
clear: thedipoleradiation field ismaximum in the plane
perpendicular to the dipole axis, whereas the dipole
does not emit along its axis. When w — —1, the angle
between the dipole axis and direction toward the focus
tends to zero; when w — 1, this angle tends to 1v2.
Only paraboloids with w,, v, = 1 are therefore consid-
ered in further discussions.
For the points with coordinates (z, p = 0) lying on
the paraboloid axis in the vicinity of the focus,

(14)

Z(w—wo) <1, (15)

the expression for E, at the paraboloid axis can further
be simplified to

E, 0, f 3 + 2o (TL+ L - wo),

If wy is far from unity (w, < 0.95), the following
equation isvalid:

(16)

drog 140 o Oty
-l 1-w — 2
Actually, the values of w, close to unity are of no
practical significance, because the required power of
the light source is inversely proportional to the sine of
the glancing angle. When w — 1, the sine decreases,

whereas the power increases as 1//1 — w. In addition,
a significant difference between w, and wy, (very long
paraboloid) results in nonuniform illumination and
makes the wavelength X dependent on the coordinates
of the emission point.

Consider the process of electron acceleration. For a
relativistic electron (the electron velocity is closeto the
velocity of light, v = c), the equation of motion iswrit-
ten as

. (17)

z,=z+c(t—-t) = z+X(1-1)). (18)

Using this equation, we abtain the formula for the
momentum of the accelerated el ectron:

d + W
=D = By -0 f((L-B)(T - 1),
dt Ch -
(19)
Z_
T = —X(A)
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It follows that
p1) = p+ T LBy gy
(1—w) (20)
xF((1-0)(t-1)),
pl = pz(Ti)-

Expression (16) for the field component E, was
obtained under the assumption that

%(c— o) < 1. (22)
Hence, within this approximation,
(T-T)(w—wp) <1. (22)

This inequality defines the time interval where the
above approximation is valid. The function F(1) has a
broad maximum at T = 2. Therefore, the energy of the
accelerated electron increases until T,,,4:

2

= (23)

Thax =T =

According to (22), the following inequality should
be met:

2

1 _ G)(O‘)k -

Otherwise, 1,5 should be determined from (22).

Thus, it can be assumed that F = F,,, = 1, and the

momentum of the accelerated relativistic electron can

attain the value p, equal to

) <1. (24)

E
Prac = P+ T S 0w (2
The quantity
1+ (R0 ATA
= ok DL
(1-& )(wk @) = 2KE T, (26)
N =2z-2

is the effective length of the paraboloid, which varies
over awide range. The value of K attainsits maximum
(K= 1) at A =0.5r,. For parabol oids of moderate length

N ~ (1-5)r,, which are of practical significance, we
have

o A
KDLO’ rOD> 0.5. 27
Assuming K = 0.5, we obtain
21e/\P,
Pmax = P + C—KO (28)
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i - &
Since P, = e
Prac _ B 5__‘°'_f_
m.C mC xm c (29)
8f pl N
If — = 1~-1, — ~1,and = > 1, then
mc’ L m.C X
pmax__/\ sf .
MC ™ Kmc® (30)
that is,
(Y= Dmax = (vf -1). (31)

Hence, if A/X ~ 103, the energy of the accelerated
electron is approximately 1 GeV. So far, the accelera-
tion of arelativistic electron has been considered. If an
electron is nonrelativistic but the condition

;—\(1—00) > 1, 32)

ismet, all the estimates obtained above remain valid in
the order of magnitude. If an accelerated particle is out
of phase with the accelerating field (thisistrue for non-
relativistic velocities v < ¢), the time of acceleration

decreasesin proportionto 1 — @. However, if condition
(32) is met, the electron soon becomes relativistic,
whereupon accel eration proceeds as described above.

Proton acceleration. Protons and electrons have
opposite electric charges. Therefore, when the acceler-
ating field reverses at T > 2, the directions of the proton
velocity, phase velocity of the accelerating field, and
accelerating force will coincide. The proton mass is
approximately 1840 times the mass of an electron.
Therefore, it is reasonable to suggest that the proton
remains nonrelativistic throughout the acceleration
process. We cannot say in advance how the proton posi-
tion in space will vary with time. However, this infor-
mation is not necessary for making the required esti-
mates. It is sufficient to obtain theformal solution of the
equation of motion for the coordinate z,(t):

T

z, :z+J‘dT x—z+(T T)V(T)
T (33
v® o4
c

where v = v (1) isthe mean velocity of the particle.
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Substituting the current coordinate of the proton
into the expression for the field phase, we obtain
z, z_ . _V
T+—=W=T+-0+0O=(T-T,

= %L—%G)%T—Ti)zt—ri Bi' ——T,%

Now, the solution of the equation for proton
momentum can easily be obtained:

(34)

ek
P=P+ 0 20— w)F(T-1). ()
It follows that
Pmax Dpi O
MCD My, —1) Are < 19 (36)
If ro/Xx ~2x 10% and y; —
I:)ma><~
=05 (37)

In this case, a proton can be accelerated to about
100 MeV.

ANTICIPATED DESIGN AND PERFORMANCE
OF THE ACCELERATOR

From the obtained results, the possible design and
performance of the accelerator can be envisioned.

Electron accelerator. The condition A/X = 10° spec-
ifiesthe accelerator size. The value of X = 0.2 cm seems
to be attainable. In this case, the accelerating gap L
should be approximately 0.2 cm at y; = 2. The parabo-
loid length should be A =2 m. If wy, = 0.8 and w, = 0.5,
the paraboloid radius in the focal plane should bery =

2/3 m and the paraboloid surface area, S= 22 m?. The
amount of energy accumulated in the accelerating gap
near the paraboloid surface is easily estimated at

(v)

U 0116-1—=2 5(J) = 13(J).

The output power of a laser with the light quantum
energy €, 02 eV that provides electron emission from
the parabol oid surface (quantum efficiency Y = 0.2) can
also be easily assessed:

3

75k(Vf )

(38)

JO14x 10 %"= qwy = 7x 10" (W).  (39)

If the pulse duration is approximately 10 ps, the
laser energy is=0.4 J.

The schematic diagram of the accelerator is shown
in Fig. 3. Obviously, a device accelerating particles to
energies lower than 1 GeV would have smaller dimen-
sions. Let us estimate the energy acquired by an elec-
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Fig. 3. Schematic diagram of the accelerator: (1) paraboloi-
dal mirrors of optical system, (2) conical mirrors, (3) parab-
oloidal microwave source, (4) laser, (5) injector, (6) focus,
and (7) beam outlet.

tron in such an accelerator with a characteristic size
of 1 m.

If ro = 6.7 cm, w, = 0.8, and wy, = 0.5, the distance
between the extreme point of the paraboloid and its

Z, cm
120 -

E,, arb. units
t=5ns

100 |

80

60

FocusO

40 |

20
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focus is approximately 27 cm and A = 20 cm. Assum-
ing, as above, that X = 0.2 cm, we find that al the
parameters of the accelerator should be decreased a
hundred times in comparison with the case considered
above: S=0.22m?, J~7 x 108 W, and U ~ 130 J. The
energy €, acquired by an electron upon acceleration
decreases only tenfold: €, ~ 100 MeV. The total length
of the accelerator, including alaser and an optical sys-
tem, is approximately 1 m. The injection of particles
into such a system can be performed in two ways: (1)
synchronously with the generation of a laser pulse (in
this case, particles are accelerated in the vicinity of the
paraboloid focus) or (2) prior to focusing the electro-
magnetic pulse (a dipole layer of low-energy electrons
is produced over the injecting surface, and the electro-
magnetic pulse captures as many electrons from this
layer asit can accelerate).

Proton accelerator. The energy of a proton attains
1GeV a P, = 1.8Mc. Assuming that y; = 3, X =
0.3 cm, w, = 0.67, and wy, = 0, we obtain, using starting

Current

1

ro =100 cm

0 50

1
150
p, cm

1
100

Fig. 4. Electric field level lines: (1) paraboloid surface and (2) electric current.
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E,, arb. units

1.0r

0.5

de)

-0.5 1 1 1 1 1
5.4 5.5 5.6 5.7 5.8 5.9
T, ns
Fig. 5. Electric field at the paraboloid focus (p = 0, z= z, and Ty = 0.05 ns): (1) analytical solution and (2) numerical solution.

E,, arb. units

()

1.0

Paraboloid surface

E,, arb. units -0.2
(b)
1.0
il
2y T S
b 10 iy

p/ry

SOy
BRI

Fig. 6. Spatial distribution of the electric component E;, of the electromagnetic wave focused onto the paraboloid focus. t/Ty = (a) 6
and (b) 0.8.

equation (9), hence, r, = 103X. Therefore, the paraboloid radius r, =
Prax _ 18 x 102"e. 40 3 m; the paraboloid length, 6 m; and the maximum
Mc e X’ (40)  radi us, 6.7 m. A 100-MeV accelerator should have the
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E., arb. units
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following dimensions: r, = 0.7 m; length, 1.5 m; and
maximum radius, =1.6 m.

RESULTS OF NUMERICAL
CALCULATIONS

The computation of the space-time distribution of
the electric field near the paraboloid focus was per-
formed using atwo-dimensional el ectromagnetic code.
An FTL current pulse induced by radiation in an inner
layer (dl = 0.25 cm) of the paraboloid (z,(p), 0 < Z/ry <
0.9, thefocal distancer,= 100 cm) was simulated using
the expression for electric current density

: _ 7z -2
i(tz.p) = f===(z(P)n,
41
n = 1 E—E;lg 0
1+U—)DZD ‘o O
CFo0
DZ_L

t Tot -9
f(t) = e °LE0 1 =05x107%s, (42
® = fFe "BR T (42)

where & is the Dirac function.
The mesh size was taken to be Az/x = Ax/X = 0.166.

Simulated results for the propagation of an electro-
magnetic wave induced by an FTL pulse on the parab-
oloid surface are presented at different time instantsin
Figs. 4-6. It can be seen that the amplitude of the local-
ized electromagnetic pulse increases as the focus is
approached. For comparison, an analytic curve for
electric field intensity E, isshown in Fig. 5.

Calculations showed that a strong electric field is
generated inthefocal region of size =X (Figs. 7-9). The
field direction remains invariable for the time interval
02T, during which the field can be used for accelerat-
ing charged particles. It should be noted that the radial
component of the electric field is much smaller than the
longitudinal component and equals zero at the parabo-
loid axis. In addition, the magnetic field upon accelera
tion is directed so that the Lorentz force, acting on the
electron beam, presses it against the paraboloid axis
(i.e., the beam contracts). Thus, the accelerator can be
expected to provide a small angular spread of acceler-
ated particles.

TECHNICAL PHYSICS Vol 45

No. 8 2000



A HIGH-GRADIENT ACCELERATOR 979

CONCLUSION

The obtained results show that the use of FTL emis-
sion sources for accelerating charged particlesis feasi-
ble. Accelerators based on FTL microwave sources are
expected to accelerate charged particles to energies of
several hundred or even several thousand MeV, while
being significantly smaller in size than today’s linear
accelerators. The requirements for the performance of
the accelerator components do not seem to be unique.
Therefore, the production of such accelerators should

TECHNICAL PHYSICS Vol. 45 No.8 2000

present no problems if FTL microwave sources them-
selves are devel oped.
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INTRODUCTION

lons that are cooled to ultralow temperatures and
localized in electromagnetic traps open many possibil-
ities for investigating quantum jumps, the quantum
properties of photon statistics, optical bistability, and
the problems standing in the way of constructing fre-
guency standards. Experiments with ensembles of par-
ticles made it possible to observe the formation of
ordered structures and phenomena similar to phase
transitions [1, 2]. In connection with this, it becomes
relevant to analyze the problems of the localization,
accumulation, and confinement of neutral particles in
magnetic traps [1, 3-5]. Another aspect of this area of
research is associated with the possibility of emitting
particles from a magnetic trap and implementing a
device that was called an atomic laser [6]. The escape
of particles can be driven by one or another triggering
mechanism [7, 8].

The motion of particles with a nonzero magnetic
moment is described by a set of six honlinear equations
for the coordinates of the center of mass and for the
components of the magnetic moment. Here, we pro-
pose a new approach to investigating the dynamics of
the magnetic moment of a particle in a magnetic field.
The dynamic equations for the magnetic moment are
represented in Hamiltonian form with the fundamental
Poisson bracket of complex “coordinates’ and
“momenta.” The solution obtained is acanonical trans-
formation that drives the new Hamiltonian to zero. We
consider several configurations of a constant axisym-
metric nonuniform magnetic field that provide three-
dimensional potential wells for trapping cooled parti-
clesin a bounded region. A resonant RF pulse triggers
the spin-flip transition to the state of infinite particle
motion. The question then arises of how to pass over to
the state of semi-infinite motion. We show that an axi-
symmetric field configuration provides the possibility
of emitting particles in the form of a directed beam. In
order to implement this effect, three ring currents that
produce a symmetric magnetic trap should be supple-
mented with an additional ring coil.

EQUATIONS FOR PARTICLE MOTION
AND MAGNETIC MOMENT

The energy of the particle-magnetic-field interac-
tion has the form U(t, X) = —uB, where p = gugSisthe
mean magnetic-moment operator, S is the mean effec-
tive spin, g isthe Landé factor, and pg = ei/2m, = 5.787 x
10° eV/T is the Bohr magneton [9]. For a neutron and
proton, we have gug — gy, pHn, Where g, = —3.826,
g, = 5.586, and py = 3.15 x 108 eV/T is the nuclear
magneton. The magnetic moment of a ferromagnetic
particleisequal to u = MV, where M isthe volume den-
sity of the magnetic moment, V is the volume of a par-
ticle, and M, ~ 107 (JT cmd).

The equation of motion for the center of mass of an
atom in a quasi-uniform magnetic field is a conse-
guence of the Ehrenfest equation

md’x/dt® = gpgS,0B,/0x + mg,, 1)

where g, is the free-fall acceleration.
Equation (1) is also valid for a ferromagnetic parti-
cle[10]. The vector S satisfies the equation
dS/dt = Q [5, 2
where Q = —yB and y = gug/.

Equation (2) has an obviousfirst integral SA(t) = S-.
Note that, in electron systems, the cyclotron frequency
isequal tov [GHz] = eB/(2rm,) = 27.9922B [T].

We consider particle motion in amagnetic field that
is a superposition of the constant axisymmetric field
B4(X), the constant uniform field B, = (0, 0, b), and the
RF magnetic field

B_(t) = (bpcosw, —b,sinwt, 0) f(t), 3
where we introduced the function f(t) = 0 for t <ty and
t>ty+tandf(t) =1fortp<t<t,+T.

The vector potential of the magnetic field, A(p, ¢,
2) = (0, Ay, 0), satisfies the conditions divB = 0 and
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curlB = 0. In cylindrical coordinates, the component
Ay = A(p, 2) can be represented as a series[11]:

A(p. 2) = pby(2)/2—p’b;(2)/16
+ .. (D" M U[(n=1)In](pr2)*" b2 (2),

where p = (X% + y?)¥2 and by(2) is an arbitrary function.

From (4), wefind the constant nonuniform magnetic
field:

(4)

B.(x) = [(x/2)(b;~b:'p’/8),
~(y/2)(b;~b;'p*/8), by— (p°/4)by].
Thelines of the constant magnetic field B(x) = B, +
B4(x) are described by p[A(p, 2) + pby/2] = const. Let us

consider some configurations of a nonuniform mag-
netic field.

() In ahyperbolic configuration, the magnetic field
intrinsically vanishes at the z-axis and increases when
away from it, so that we can set

b(2) = a,z+ a,z’/2 + a,Z’/6. (6)
Here, the first term describes the quadrupole field
and the second terms defines the mirror field.
(i) A quasi-periodic magnetic field can be specified
through the function by(z) = bcoskz, where k = 217/A
with A the spatial period, in which case we have

B.(X) = [(bkx/2) sinkz,

(bky/2)sinkz, b(1 + kp?/4) coskz].

(iii) For a configuration produced by aring current-
carrying coil of radius a, centered at the z-axis and
lying in the z = h plane, we can set by(2) = pyla/(2R%),
where R? = a? + (z—h)?, | isthe current magnitude, and
o = 411 x 107" H/A? isthe permeability of the vacuum.

)

(7)

EQUATION OF PARTICLE MOTION
IN A MAGNETIC TRAP

Equations (1) and (2) yield alaw according to which
the total energy of a particle changes as

dE/dt = —guESaB,/dt, 8)

where E = mv?/2 — gugS(t)B((t, X) — mgyx and By(t, X) =
By + ByX) + B_(t) isthe total magnetic field.

We start by solving equations (1) and (2) in thetime
interval 0 < t < ty, assuming that B(x) = By + By(X).
The spatial and spin variables change with the charac-
teristic frequencies w, = (UB"/M)Y2 and Q = yB, where
B" ~ 200 T/m? and B ~ 1 T. Since w, < Q, we can
neglect the contribution of the rapidly oscillating com-
ponents of the vector S to equation (1) and switch to
slowly varying spatial variables. This procedure is
equivalent to the replacement of Sby itsmean value. In
the Appendix, we solve equation (2) and show that the
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mean spinisequal to (5= CB/Bwith C=S(0)B/B. The
thermally equilibrium states are characterized by C > 0.
As the temperature decreases, we have C — §,.
Moreover, if C = S, then S(t) = §B/B, in which case
the total energy of a particle can be written as E =
mv?/2 — uB(X) — mgyX, Where i = gugS.

Substituting S = CB/B into (1) results in the equa-
tion

md’x/dt’ = gpgCoB/AX + mg,. 9)

Let the origin of the coordinates be at the axis of the
magnetic configuration, and let this axis coincide with
the z-axis directed vertically upward. In order to deter-
mine the conditions under which the particles movein
abounded spatial region (Jz| < L/2, p <L), weintroduce
the function b, = b, + by(2) and assume that |b,| > |By],

IBs,|, in which case we have B(x) = b, + (p%/8)[(b, )/b, —
2b; ]. From (9), we obtain the set of equations

md’z/dt*
= guClb; + (p4)(bib./b, b)) ~mgo, (10
md*x/dt® = (gusC/4)[(b))’/b,—2b2]x,  (11)
md’y/dt® = (gusC/4)[(bl) /b, —2b]y.  (12)

In the paraxial approximation p < L, such that the
values of p satisfy the condition p?|b,b, /b, — b,"| <
4|b, |, equation (10) can be written as

md’z/dt* = —dW(2)/dz, (13)

where the function W(2) = —gugCh,(2) + mgyz playsthe
role of the potential energy.
Equation (13) has an obvious first integral

(dz/dt)® = G(2), G(2) = (2/m)[Es—W(2)], (14)

where E; is the total energy of the longitudinal particle

motion. Under the condition b, > (b,)%2b,, equations

(11) and (12) describe a harmonic oscillator with a
time-varying frequency.

EMISSION OF PARTICLES
FROM A MAGNETIC TRAP

For cold particles moving in a magnetic trap, we
have C — §,, inwhich case the energy of the particle—
magnetic-field interaction via the particle magnetic
moment is U(t, X) — —uB, where 4 = guzS,. Let the
RF magnetic field (3), which is rotating around the z-
axis, be also present in the system, so that the total mag-
netic field is By(t, X) = B{X) + B, + B_(t). We assume
that the condition b, > |bs| holds. A resonant pulse of
the RF magnetic field with the duration T = /Q,,, where
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Q, = yh,, triggers the spin-flip transition § — -, at
the frequency w=yb, [12]. Infact, according to (A.14),
the solution to the dynamic eguations for the magnetic
moment on thetime scalest > t; + T hasthe form S(t) =
—-SB/B, where S, = S(ty)B/B. For a particle moving in
an alternating electric field, law (8), according to which
the total particle energy changes, reduces to dE/dt =
—gugSdB_(t)/dt, which yields the total energy AE =
2ub, acquired by the particle over the time interval T.
On the time scalest = t, + T, the energy of a particle
interacting with a constant magnetic field becomes
Ui (t, X) = uB. Under the action of the RF pulse, the con-
ditions for the particle to move in abounded region fail
to hold and the particle escapes from the trapping
region.

PARTICLE IN AN AXISYMMETRIC
MAGNETIC TRAP

Localization of a Particle

In (6), weset a; = —azy < 0and a, > 0, inwhich case
the potential energy of a particle is equal to W(2) =
—guUgC(by + 8,2 + a,7%/2 — a3,2%/6) + mg,z. The equation
dwW/dz = 0 implies that the potential energy has two
local extremes, a maximum and a minimum, at the

points with the coordinates e, ; = [a, * (a§ + 2ag[a; —
mgy/gueCl) Y7 /ag,, such that W(e,) > W(e,). If E;isin
theW(e,) < E; <W(e,) range, then the particle oscillates
in the potential well between two turning points z, and
z,, suchthat e, < z; < e, < z;. Inthewell region, we have
G(2) = 0. The zeros of the function G(z) are such that
Z3> 7, > z;. Substituting the function G(2) in the form
G(2) = -0%(z- z)(z - 2,)(z— z5) with 02 = ggCagy/3m
into (14), we obtain a solution to equation (10):

2(t) = 23— (z3— )N [yt + T)/2, E],

where sn[w,(t + T)/2, &] is an dliptic sine, w, = 0(z; —
)2, &2 = (23— 2)/(z5—21), 23— 2(0) = (z,— ) s[ W,T/2,
&], z(t) isaperiodic function with the period 4K/w,, and
K(&) isthe complete dliptic integral.

Now, we analyze particle motion in the x- and y-
directions by examining the ssimplest situation, when

the inequalities by > |b,| and (b, )b, — 2b, = af/b0 -
2a,< 0 are assumed to be satisfied in the region where

the particle moves along the z-axis. In this case, equa-
tions (11) and (12) reduceto

d’x/dt’ + wo,x = 0, d’y/dt*+wo,y = 0, (15)

where wfz = (gugClam)[2a, — af /bg].

The projection of the particle trgjectory onto the
(%, y) planeis an ellipse, so that the particle movesin a
bounded spatial region. Note that, if the magnetic axis
is horizontal, then the equilibrium vertical displace-

PAVLENKO

ment of the particle away from the axis is equd
to golwfz.

Emission of Particles fromthe Trap

After the interaction between a particle and a reso-
nant RF pulse, the potential energy of the particle and
its total energy are equal to W(2) — W;(2) = pb(2) +
mgyz and Eg = E; + 2ub,. Onthetimescalest >ty + 1,
equation (14) takes the form

(d2/dt)* = G(2), G((2) = (2/m)[Eq —W,(2)]. (16)

Since the equation G;(2) = 0 has the single real root
z = z,, there remains only one turning point, so that the
Zy-particles moving in the z-direction leave the trap in
the positive direction along the z-axis. The time at
which the particles escape from the potential well can
be estimated from (16) as follows:

t,, 02/c,D",

where
otz = Hag/3m,
D* = 3[25 — 2a,2y/ay — (2/ag,)(a; + Mgy/p)].

The characteristic time scalet, on which the particle
beam diverges in the radial direction can be estimated
from equations (15) with the replacement -gugC — W

t ~ 2[(plm)(af/bO —2a,)] Y2 If t, < t,, the particles
occupy the region stretched out along the z-axis, form-

ing a beam extended in the positive direction along the
z-axis.

PARTICLE IN A QUASIPERIODIC
MAGNETIC TRAP
Inserting b(2) = b, + bcoskz into (10)—(12), we
obtain the following equations in the paraxial approxi-
mation:

d’kz/dt® + w’sinkz = —kg,, (17)
d*x/dt” — (w’/2)[(b/2by) sin“kz + coskz] x = 0, (18)
d’y/dt® — (0’/2)[ (b/2b,) sin’kz + coskz]y = 0, (19)

where w’ = gpeCk2/m.

We can draw an anal ogy between (17) and the equa-
tion of motion of a pendulum with a constant force
moment. If kg, < wzz , the coordinates z, of the equilib-
rium points can be obtained from the equation
w; sinkzy, = —kgo With coskz,, > 0. The potential energy
is equal to W(2) = -guzC(b, + bcoskz) + mgyz. In the
vicinity of an equilibrium point, we have z = 7, +

TECHNICAL PHYSICS Vol 45

No. 8 2000



EMISSION OF PARTICLES FROM A MAGNETIC TRAP

Acos(wt + a). In other words, a particle oscillates with

frequency wy such that w§ = wzz Coskzg,. In this case,
equations (18) and (19) belong to the class of Hill equa-
tions. If KA < 1, equations (18) and (19) reduce to the
Mathieu equation d?u/ds? + (p + 2qcos2s)u = 0, where
s=2(uwgt + a) and

p = —(U/8)[1+ bsin’kz.,/(2bycoskz.,)],
q = —(A/8)(—tankz,, + bsinkz,/b,).

The theory of Mathieu functionsimpliesthat, in the
parameter plane (p, q), there are regions in which the
solutions are either bounded or unbounded [13, 14]. In
the plane (p, g), the solutions to equations (18) and (19)
are bounded in the first stability domain, which is
located to the right of the curve py(q) = —g¥2 +
79*128 + ... and is bounded by the curve p4(q) =1 +
q—g¥8+ ... for g<0and by thecurve p,(q) =1—-q -
948+ ... forq>0[13].

PARTICLE IN A SPHERICAL SEXTUPOLE
MAGNETIC TRAP

Localization of a Particle

The magnetic trap implemented experimentally by
Paul and his collaborators [3] and aimed at confining
neutrons was produced by the magnetic field of three
ring current-carrying coils placed at the intersections of
aspherical surfacewiththeplanesz=+handz=0. The
equatorial current was chosen to flow in the direction
opposite to the polar currents, in which case the two
points corresponding to the equilibrium states are those
located symmetrically with respect to the equatorial
plane (z# 0). Thiscircumstance complicates the extrac-
tion of neutrons from the trap.

We consider the motion of particles in a magnetic
field produced by three unidirectional ring currents. To
do this, wetreat (4) with

by(2) = — (Kol @/2)[L/R; + 1/RS] — Pl 0a/2Rs, (20)

where RS = a2+ (z+ h)2, R = a2+ (z—h)2 h > a/2,

and R. = a2 + 22 Let the z-axis be directed horizon-

tally, and let the x-axis be directed verticaly down-
ward. From (10)—12), we obtain the following equa-
tionsin the paraxial approximation:

md°z/dt” = —dWidz, (21)

md?x/dt® = (gusC/4)[(b)*/by—2b2]x + mgo, (22)

md’y/dt® = (gueCl4)[(bl) Tbo—2bl1y,  (29)

where W(2) = —-guzClb, + by(2)] and by > b,
TECHNICAL PHYSICS Vol. 45
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Equations (21)—(23) give the coordinates of the
equilibrium point: Zy, = 0, X, = 2Mgy/[gusCh; (0)], and
Yeq =0, bt (0) = 3gusCl1a(a? — 4h?)(a2 + W2 + 1528y ].

If the potential well is sufficiently deep, [by(h)| >

[by(0)|, then the parameters of the magnetic system
should satisfy the inequality

(11a3)[1+ (1 +4h¥a?) ? —2(1 + h*a®) 4
> I/ad[1—(1+h%a2) 7.

On the other hand, since b (0) = 0, a particle will
move in a bounded region in the vicinity of the plane
z=0intheinthex- andy-directionsonly if theinegqual-
ity bg (0) > 0 holds. Consequently, the particles can
generally be localized if the function by(2) satisfies the

conditions 2b; — (b} )%, > 0 and |by(h)| > |by(0)|.

Emission of Particles fromthe Trap

In order to ensure the directed motion of the parti-
cles after the resonant pulse has come to an end, it suf-
ficesto switch on an additional coil, with current I, and
radius r, located in the plane z = —H such that H > h.
After the particle spin reverses direction, the potential
energy of the particle becomes W (2) = (b, + by + by),
where by(2) = Yol J/(2R®), R? =r2 + (z+ H)?, and by(2) is
defined in (20). The magnetic field of the additional coil
playstherole of amagnetic mirror that reflects particles
in the positive direction aong the z-axis. To make the
beam radially nondivergent, the additional coil should

satisfy the condition 2(b? + b.') — (b, + b;,)2/b, < 0.
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APPENDIX

Equation (2) is derived by averaging the Heisenberg
equations of motion for the spin operator over the
superposition of states of a quasiclassical wave packet.
Consequently, equation (2) is neither Lagrangian nor
Hamiltonian; it aso cannot be derived variationally.
But it can be made Hamiltonian with the help of the
method that was developed by Schwinger, who found
the relation between the spin operator and the conju-
gate“ creation” and “annihilation” operators, which can
be introduced when examining two harmonic oscilla-
tions[15].

We introduce a spinor-column W with two complex
elements a, and a,, such that W* = (a7, a; ). We
denote the Pauli matrices by o, (k = 1, 2, 3) and define
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the components S = (U2)¥W*o W of the vector S
through the relationships

S = (ataytayay)/2, S = (afa,—ayay)/2i,
S; = (aya;—a; a,)/2.

We aso introduce the “coordinates’ and
“momenta’ g, =a,andp,=ia; (k=1,2) withthefun-
damental Poisson bracket (PB) [q;, pd = &y Therela-
tionship [S,, S)] = &S for the PB puts equation (2) in
Hamiltonian form dSdt = [S, H] with the Hamiltonian
H=QS.

We consider the dynamic equationsfor the magnetic
moment in a constant nonuniform magnetic field By +
B4(X). Along the phase trajectories of the system, we
have Q(t) = —yB(t), where B(t) = By + By(Xx(t)). Interms
of canonical variables, the Hamiltonian has the form

(A.2)
H = (U2)[aja,Q_+a;a,Q, + (a7 a, —a; a,) Q3]
where Q, = Q; £iQ,.

The dynamic equations da,/dt = [a,, H] (k =1, 2)
become

da/dt = —iH,,a,, (A.3)
where Hy; = Q4/2, H, = Q_/2, H,; = Q,/2, and H,, =
_Q3/2.

We begin by solving the eigenvalue problem Av, =
—H,.v\. From the equation det(H + Al) = 0, we obtain
the eigenvalues A; , = £Aq and Ag = Q/2, where Q =
(QF + QF + Q2)V2 Substituting A = A, , into the
eigenvalue problem yields the orthonormal eigenvec-
tors Vi) and V).

Vi = [(Q-Q4)/20]7,
Vi = QI[2Q(Q-Q5)]",
Vo = —Q./[2Q(Q - Q)] ™,
Ve = [(Q-Q4)/20]™.

We can parameterize the eigenvectors by introduc-
ing the angles © and ¢ for the vector B in spherical
coordinates through the rel ationships B, = B;,cos¢$ and
B, = B;,sing, where B,, = Bsin®, and B; = BcosO,
where B, = (B> + B2)Y2,

We represent Hamiltonian (A.2) in terms of the
coordinates and momentaH = —iH,,,p.0, ahd make the

canonica transformation (CT) g, = a,, py = iay —

(A.4)

Ok =C. Px =icy generated by the function F,(q, p',

t) = (A*) P, Ok Which depends on the old coordinates
and new momenta. Here, the columns of the unitary

PAVLENKO

matrix Ap, = [Uy,] are the eigenvectors of the matrix
Bo/2B, which coincide with (A.4) to within a phase
factor [16]:

Uyqy = cos(O/2)exp(-i¢/2),
Uypy = —SIN(O/2)exp(-i$/2),
sin(©/2)exp(i$/2),
Upp) = cos(O/2)exp(idp/2).
The CT generated by the function F, has the form
(Ao = 0F50 Py, P = OF2/0G) — (O = Ang U » P =
(N)umPyr)- Since (A) g = [Ue]*, we have

(A.5)

Uz(1)

qn = un(u)q&! pm = [um(p)]*p;l' (A6)

Consequently, in the new variables, the Hamiltonian
H'(q, p', t) = (H + aF,/at) isequal to H' = Hy + h' with

Ho(d, ' t) = —=iH aP,da;

o o (A.7)
h(q, p,t) = W,Pua.

where H;ux = (/\);m Hmn/\na = _)\uauou wlm(t) = /\;k /\ka-
The CT puts the Hamiltonian Hy (q, p', t) in the diago-
nal form Hg (d, p', t) =-A,Cy ¢, or

Hy = —Q(|cy|” —|c, )2 (A.8)

We assume that, along the phase tragjectories of the
system, the magnetic field satisfies the condition
lwe| < Q (4, a=1,2),inwhich casewe have H'(q, p',

t) = —A\,C) c,. The solution to the equations generated
by the Hamiltonian H' isa CT ¢, — b, such that ¢, =
b,exp(in/2) and ¢, = b,exp(—in/2) pass over to b, =
(S+ OYexp(i@2) and b, = (S — C)V’exp(-i@2),
wheren(t) = [Q (t)dt and C and @ are integration con-

stants. The general solution to equations (A.3) has the
form a, = A\ oCq- Inserting a, = A\ ,Cq into (A.1) gives

S = Ry » Where the real vectors R, (0 = 1, 2, 3)
are defined as

Ry1y = B2B3/BB1y, Ryp) = Bi/Bia, Ry3=B,/B,

The components of the vector S, are determined by
relationships (A.1) with the replacement a, — c;;;

S = (§-C%"cos(n + ),

o am . (A.10)
=~(%-C) sn(n+9), S=C.

TECHNICAL PHYSICS Vol. 45 No.8 2000



EMISSION OF PARTICLES FROM A MAGNETIC TRAP

The relationship BS = BC implies that, in a quasi-
uniform magnetic field, the projection C = BS/B of the
vector S onto the tangent to a magnetic field lineis an
adiabatic invariant. The mean spin is equal to [B0=
R;C =BC/B.

Notethat the CT a, —» ¢, definesatransition to the
new basisvectorsn, — n, (k=1, 2, 3), in which the
magnetic field B isdirected along the unit vector n; . In
fact, the matrix E;, = (R™);, describes the operations of
rotating by the Eulerian angles ¢, = ¢, ¢, = ©, and

3=0 about the 3-2-3 axes, respectively [17]. With
allowance for (A.9), we represent the solution to equa
tion (2) as

S, = (S,c0s0 + S;sin®) cosd — S,sing,
S, = (S;cos@ + S;sin®)sing + S,coso,
= —S,SiN@ + S;cosO.

(A.11)

Now, we consider the dynamics of the magnetic
moment of a particle in the magnetic field B, = By +
By(x) + B_(t). The total Hamiltonian of the dynamic
equations for the magnetic moment has the form H; =
H + h, where the Hamiltonian H isdefined in (A.2) and

h = —(12)[a; a,Q exp(iwt) + a; a,Q exp(—iwt)],
(21, (A.12)
with Q, = yby,.

We set by > |be| and Q = Q, = yb,. Under the reso-
nance condition w = Q,, the CT a, — ¢, —= b, con-
verts the Hamiltonian to the form

H; = —(Q,/2)(b¥b, + biby). (A.13)

Taking into account (A.9) or (A.11), we obtain the
components of the vector S(t):

S, = Reb} b,exp(-iwt),

S, = Imb} b,exp(—iwt), (Ald)
S; = (bi'b,—b3b,)/2

The equations generated by Hamiltonian (A.13) and

supplemented with the boundary conditions S,(t,) = 0,
S(tp) =0, and S5(tp) = § have the solution

b, = 1(2%) " cosQ,(t—to)/2,
b, = —(2%)?sinQ (t —t,)/2,

Therefore, the components of the vector S(t) are
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equal to
Si(t) = Ssin[Q,(t—tp)]sinwt,
S(t) = Ssin[Q,(t—t,)] coswt,
S;(t) = ScosQ (t—tp).

If an RF field is nonzero over the time interval t —
to = T such that Q,t =, then, on thetime scalest > t, +
T, we have S(t) = 0, Si(t) = 0, and S;(t) = —S;. In other
words, the resonant “Tpulse” reverses the direction of
the magnetic moment. We conclude with the following
two comments.

(i) We write equation (2) in tensor form, dS/dt =
AiS. where Ay = €, Q;(t) is an antisymmetric tensor
with the elements Ay; = Qg, Agy = Qq, and A3 = Q,. In
this case, the equation oV, = AV, has the eigenvectors
Vi = Ry +iR)/ 2,V (5 = [Vl*, and V(5 = R,
which refer to the eigenvalues 0, =-Q, 0, = 1Q, and
05 = 0. The vectors V) compose the orthogonal basis
[V(a)]*V(B) = Ogp [8].

(i) The functional

(A.14)

| = IdtL(a;*,ak, t)
satisfies the Euler—Lagrange equation

L(as, a) = (i/2)[a,da; /dt —a; da,/dt]

+H(ay, a, t),

whichisin Hamiltonian form [18]. A significant advan-
tage of the Hamiltonian formalism is the possibility of
using new methods for integrating the canonical equa-
tions of motion [18-20]. Introducing the functional
makesit possible to apply direct variational methods of
the Bubnov—Galerkin type.
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Abstract—The one-dimensional approximate eguations describing the dynamics of a Newtonian viscous fluid
are used to analyze the nonlinear development of capillary wavesin a jet. It is shown that the size of satellite
droplets resulting from a nonuniform jet breakup decreases with the Reynolds number at a constant wavenum-
ber. The satellite-droplet formation ceases at a certain value of the Reynolds number, which depends on the
wavenumber and initial perturbation amplitude. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

A liquid jet issuing out of anozzle can break up into
droplets as the amplitude of a perturbation isincreased
by capillary forces. The perturbation may appear on the
jet surface or arise from fluctuations of pressure, flow
rate, or physical characteristics of the fluid. This phe-
nomenon is employed in avariety of technical devices,
such as printers, chemical apparatus, etc. [1]. For this
reason, capillary waves on the surface of a liquid jet
have been studied over many years, both experimen-
tally and theoretically. This subject has been discussed
in anumber of literature surveys[1, 2], and thereis no
need for reviewing it in detail here.

Lord Rayleigh established that aliquid jet is unsta-
ble with respect to a sinusoidal disturbance whose
wavelength is longer than the circumference of the jet
cross section. The instability is driven by capillary
forces. When the jet radius locally decreases, capillary
forces give rise to a corresponding local pressure
increase. Vice versa, at the location where the jet radius
increases, the pressure at the surface decreases. As a
result, the liquid flows from the regions where the jet
contracts to the regions where it expands, and the per-
turbation tends to increase with time elapsed. Solving
the linearized equations of fluid mechanics, Rayleigh
obtained an equation relating the growth rate of the per-
turbation amplitude to the perturbation wavelength.
The time interval from the initial moment of perturba-
tion to the moment when the jet breaks up into droplets
predicted by the linear theory was found to be in fair
agreement with experimental results.

The principal drawback of the linear theory liesin
the fact that the linearized equations used in the theory
become inapplicable as the perturbation amplitude
grows. Accordingly, the results based on the theory are
valid only for therelatively short interval wherethe per-
turbation amplitude remains small. Two different
approaches can be used to alow for nonlinear interac-
tion between disturbances. In one approach, the desired

solution is represented as a series in a small perturba-
tion amplitude. In the other, the equations of fluid
mechanics supplemented with appropriate boundary
conditions are integrated numerically.

A number of studieswere focused on the problem of
nonlinear perturbation development in a cylindrical
inviscid jet [3-9]. In particular, it was shown that non-
linear interaction between perturbations can result in
nonuniform breakup of a liquid jet into drops. Rela
tively small droplets, so-called satellites, can form
between relatively large, so-caled main, drops.
Lafrance calculated the sizes of main drops and satel-
lites as depending on the wavenumber and found that
his results were in good agreement with experimental
data[8].

Direct numerical simulations of liquid-jet breakup
were reported in [10-16], where both inviscid [13, 14]
and viscous[10-12, 15, 16] liquid jetswere considered.
In [15], a very detailed analysis of the effects of the
Reynolds number, wavenumber, and initial perturba-
tion amplitude on the process of jet breakup into drop-
lets was presented. However, numerical integration of
the equations of fluid mechanics is not a universal
method. The high computational costs makeit impossi-
ble to do without the assumption of longitudinally peri-
odic flow or take into account the initial velocity pro-
file. For this reason, many theoretical analyses of the
capillary instability of aliquid jet are based on the one-
dimensional approximate equations derived by assum-
ing that the transverse length scale of the flow is much
smaller than its longitudinal length scale.

This approach was developed, for example, in
[17-26]. These studies include analyses based on per-
turbation methods [17-22] and numerical simulations
[23-26]. Eggers obtained a self-similar solution to the
one-dimensional equations describing the behavior of a
liquid jet just before and after its breakup [27, 28]. The
stability of this solution with respect to small perturba-
tions was analyzed in [29]. In [30], it was shown that
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there exists a countable set of self-similar solutions of
thistype, the Eggers solution being the most stable with
respect to perturbations.

Different authors considered different variants of
approximate one-dimensional equations. Systematic
derivation of such equations was considered, for exam-
ple, in [31, 32], where the results obtained by solving
various approximate equations were compared with the
exact solution to Rayleigh's prablem. In [32], a proce-
durewas developed for constructing approximate equa-
tions that are valid to an arbitrary order with respect to
the small parameter defined as the ratio of the trans-
verse and longitudinal length scales of the flow. It was
shown that the equations derived therein can be used as
abasisfor constructing a solution to the stahility prob-
lemfor acylindrical viscousliquid jet that is consistent
with Rayleigh’s solution up to terms proportional to the
wavenumber squared.

In this paper, the approximate one-dimensional
equations derived in [32] are used to solve the problem
of nonlinear development of perturbationsin acylindri-
cal jet of aviscous liquid. A solution to asimilar prob-
lem that does not rely on approximate one-dimensional
equations has been found only for the inviscid liquid
jet. Asin [32], the temporal stability of aliquid jet is
analyzed. This means that an infinite jet is considered
in a coordinate system moving with theliquid. The spa-
tial stability of aviscous liquid jet, i.e., the stability of
a semi-infinite jet under given initial conditions at the
nozzle outlet cross section, was analyzed in [19-21] by
invoking the so-called Cosserat equations. These equa
tions, as well as other variants of approximate one-
dimensional eguations, can be employed under the
assumption that the transverse length scale of the flow
issmall compared to its longitudinal length scale. This
condition holds for long-wavelength perturbations
when the corresponding wavenumber is small. It
should be noted that the terms of leading order with
respect to this parameter in the Cosserat equations,
which contain the liquid viscosity, are not consistent
with the exact equations [31]. Thismakesit impossible
to analyze the effect of viscosity on the devel opment of
perturbations within the framework of these equations.
An analysis of nonlinear interaction between capillary
waves on the surface of acylindrical jet of aviscouslig-
uid based on the equations proposed in [32] can be used
both to examine the effect of viscous friction forces on
the devel opment of capillary waves and to determineto
what extent these equations are valid for describing the
nonlinear interaction between perturbations. To accom-
plish the latter task, one should compare the results
obtained in this study with solutions to the problem of
nonlinear development of capillary waves in inviscid
liquid jetsthat can befound in literature, aswell aswith
the results obtained by solving a similar problem
numerically for viscous liquid jets.

CHESNOKOV

STATEMENT OF THE PROBLEM

In this paper, the capillary stability of a cylindrical
jet of an incompressible Newtonian liquid is analyzed.
Lord Rayleigh showed that the breakup of a jet into
droplets is caused by the growth of axially symmetric
perturbations. Therefore, perturbations of this particu-
lar form are considered in the present analysis. The
fluid velocity in the jet is assumed to be sufficiently
high, so that the effect of gravity on the breakup of a
liquid jet driven by capillary forcesis negligible.

Itisconvenient to seek asolution in terms of dimen-
sionless variables. Denote the jet radius by a, theliquid
density by p, its viscosity by W, and the surface tension
at the interface between the liquid jet and the ambient
gas by o. Then, the jet radius a can be used as a refer-
ence length; t, = (pa®o)?, as a reference time; v, =
(o/pa)¥?, as areference velocity; and p, = o/a, as aref-
erence pressure. Consider the cylindrical coordinate
system (r, ©, 2) with z-axis aligned with the symmetry
axis. Denote the axial and radial velocity components
by uand v, respectively, and pressure by p. The govern-
ing equationsfor aliquid jet flow include the continuity
equation

1%
v,+—r-+uZ= 0,

the axial Navier—Stokes equation
171
ut+vu +uu, = -p,+ R_e[F(rur)r + uzzi|l

and the radial Navier—Stokes equation
171 v
VitVvv,+uv, = _pr+R_e|:F(rVr)r_r_2+ szi|-
Here, t is time and the Reynolds number Re is defined
as

Re = (pao)ﬂzlu.
In these equations, the subscripts denote derivatives
with respect to the corresponding variables: v, = ov/dr,

etc. Thefree surface of thejet is prescribed by the equa-
tion

r =n(zt).
On the surface, a kinematic boundary condition
ngtun,=v ar=n

and two dynamic boundary conditions are set. One of
these dictates that the tangential component of viscous
stress vanish on the jet surface:

2Vrn2+(ur+ Vz)(l_nzz)_zuzr]z =0 ar-= n.

By the other dynamic condition, the normal compo-
nent of viscous stress has a jump equal to o(VR; +
1/R,) across the surface, where R, and R, are the longi-
tudinal and transverse principa curvature radii of the
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jet surface, respectively. In dimensionless form, it can
be written as

1 1.1
p_R_e[ZVr _(ur + Vz)nz] = Pat El + Ez
Here, p, is the ambient pressure, assumed to be con-
stant. Inthe cylindrical coordinate system, the principal

curvature radii are calculated as

1 _ 1 1_ Nz
Rion@+n)™ R @+nd”

The problem formulated here has a solution of the
form

u=v =0, n=1, p=p,+1 D

These formulas describe the motion of the liquid in
acylindrical jet in a coordinate system tied to the lig-
uid. This solution is not valid in the near field of a jet,
where viscous relaxation of the velocity profile of the
nozzle flow takes place. According to some estimates
(e.g., see[6]), the near-field length is small compared to
the distance at which the capillary breakup of the jet
occurs. For this reason, almost al studies of the capil-
lary stability of liquid jets are focused on the analysis
of the particular solution written out above with respect
to small perturbations.

ONE-DIMENSIONAL EQUATIONS
OF THE DYNAMICS OF A CAPILLARY JET

Calculation of nonlinear interactions between per-
turbationsin aviscous liquid jet is associated with cer-
tain difficulties. When a solution is sought in the form
of aseriesin powers of asmall parameter (perturbation
amplitude), it turns out that explicit analytical solutions
of the equations describing the liquid motion in the jet
cannot be obtained in the second approximation with
respect to the small parameter. However, one can con-
struct an approximate solution based on the assumption
that the length scale of the longitudinal (axial) profiles
of flow variables is much greater than the length scale
of their cross-sectional profiles. Approximate one-
dimensional equations that are valid under this condi-
tion have been considered by many authors. In [32], a
technique was developed for constructing equations of
thistypethat are valid to an arbitrary order with respect
to the small parameter defined astheratio of transverse
to longitudinal length scale of the flow. Actualy, these
equations are quite accurate when the perturbation
wavelength is sufficiently long; i.e., the corresponding
wavenumber is small. Here, the derivation of the
approximate equations is briefly outlined in order to
introduce the notation and assumptions that underlie
the theoretical analysis.

When the equations of fluid mechanics and bound-
ary conditions are written in adimensionless form, dif-
ferent reference lengths should be introduced for the
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transverse and longitudinal coordinates r and z. The
resulting equations would then involve a small param-
eter & equal to the ratio of the reference lengths. The
dimensionless parameter Reis assumed to be aquantity
on the order of unity (whiled — 0). If thevariablesn,
u, v, and p are sought in the form of series,

n — Z 62ml’](2m)(Z, t),

m=0

U= z 62(n+m)r2nun,2m(z’t),

n,m=0

vV = 6r Z 62(n+m)r2nvn,2m(z’ t),

n,m=0

p_pa — z 62(n+m)r2npn,2m(z, t),

n,m=0

then equations for the coefficients of these expansions
can be obtained by substituting the seriesinto the equa-
tions of fluid mechanics and boundary conditions and
equating the coefficients of like powers of r and d. In
[32], equations of this kind were used to analyze the
stability of the flow described by (1) in the linear
approximation with respect to the initial perturbation
amplitude. At theinitial moment, asinusoidal perturba-
tion, e.g., the jet-surface perturbation

n = l+scos(kz)+O(sz) at=0,

was introduced, where € is a small parameter and k is
the wavenumber.

When the analysis is restricted to the leading terms
of asymptotic expansions, i.e., to the equations for n©
and u® °, a perturbation with an arbitrary wavenumber
is found to be unstable. This is inconsistent with Ray-
leigh’s exact results, which show that only the perturba-
tionswith k < 1 are unstable. In the second approxima-
tion with respect to 8, only long-wavelength perturba-
tions are unstable. If the wavenumber k is greater than
a certain value depending on Re, the flow is unstable.
The approximate expression for the rate of perturbation
growth agrees with Rayleigh’s results up to terms of
order k2.

In this paper, a somewhat different approach is
applied. Consider the new variables
¢ =n"+8n"+0(8",
W0+ 52002 + 0(64).
The equations for the coefficientsn©, n®@, u%°, and
u® 2 in the expansions were written out in [32]. Multi-

plying the equations for n® and u® 2 by &; summing
the resulting relations with the equations for n© and

w
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u® 9, respectively; and dropping the terms of order &%,
one obtains the equations for ¢ and w:

@+ QW+ ToW, + = [@°W,, + 10Q,¢°W,,
2 16 )

+6(¢,.0° + 3¢.9)w,] = 0,

3, 2 2

é((p W,W,, + 2(p(Psz)

W, + Ww, =

+

% [sz AL
+ 2200, + 0., + 00+ 20,0+ 3 (p }

Q, 39,9,
+cp2+ @,y + et

12 5
+ é(p Wozpp + Z]_(p(pzwzzz
©)

These equations are obtained without introducing
different reference lengthsfor r and z i.e., d =1 here.
This approach is advantageous in that the necessary
algebrais somewhat simplified. The presentation bel ow
shows that, in contrast to [32], the boundary that sepa-
rates the stable and unstable perturbations calculated in
the linear approximation with respect to € is identical
with that predicted by Rayleigh's theory; i.e., the flow
isunstablewhen k < 1.

APPROXIMATE EQUATIONS
FOR PERTURBATION AMPLITUDES: THE FIRST
APPROXIMATION

Assume that the jet surface is perturbed at the initial
moment t = 0, while the flow velocity remains unper-
turbed. Then, equations (2) and (3) must be supple-
mented with the following initial conditions:

Q= 1+ecos(kz)—%2+0(s4), 4

@=0at=0. (5)

Here, € isasmall parameter (initial perturbation ampli-
tude). A derivation of (4) can befoundin[3]. Itisbased
on the condition that the jet volume is conserved.
A solution to the formulated problem is sought in the
following form:

¢ = 1+eQ +e°Q,+0(e),
W = gw, + €2W2 + O(ss).
Substituting these expansionsinto equations (2) and

(3) and the initial conditions and collecting the coeffi-
cients of like powers of € on both sides, one obtains the

CHESNOKOV

equations and initial conditions for the first and second
approximations. In the linear approximation in €,

1 1
@yt éwlz + Ewlzzzz =0, (6)
3 1
Wy = R_e|:wlzz + §W12222i| T Qi t Qi (7)
@, = cos(kz), (8)
q)lt:Oatt:O. (9)

The equations for ¢, and w, are

1 1 1
Py + EWZZ + 1_6WZZZZ T QW t E(plwlz
1 (10)
+ 1_6(3(plwlzzz + 1O(plelz + 6(plzzwlz) = 0!

3

3 1
Wi Wiy + R_e|:WZZz + éWZZZZZ + 2(plelz

Wor + WiWy, = 8

1 5
+ Z(plwlzzzz + Z(plzwlzz + 2(plzlezz + (plzzzwlzi| (11)

3
Tt Oy — 2(p1(plz + Z(plz(plzz-

Theinitial conditions for these equations are

1
- _Z_v (12)

@ =0at=0. (13)

A solution to equations (6) and (7) subject to initial
conditions (8) and (9) can be sought in the form

@, = hy(t)cosh(ikz), w, = if,(t)sinh(ikz).

Here, i istheimaginary unit. Define

For h, and f;, one obtains the following expressions:
hy(t) = age™ +Boe™,
1 w;t w,t
fi(t) = Z(O‘owle +Bow,e 7).

Here, wy(K) and w,(k) are the roots of the quadratic
equation

6"F’?(k)m K1-K)AK) = 0,  (14)
and the coefficients a, and 3, are calculated as
_ W _ W
%o = W, — W’ Po = Wy — 0,
TECHNICAL PHYSICS Vol. 45 No.8 2000
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In the linear approximation, the exact solution to the
problem of capillary stability of aviscousliquid jet was
obtained by Rayleigh. It can be used to find a relation
for calculating the perturbation growth rate w. As
shown in [32], thisrelation can be written as

wE0 KRR, (F(k) F(k)
(15)
_ 12 2
= SK(1-K),

where kf = k2 + wRe; F(K) = Kkly(K)/I,(K); and 1,(k) and
[,(k) are the first- and second-order modified Bessel
functions of the first kind, respectively.

Representing F(K) as a series in powers of k and
retaining only the leading two terms, one obtains

F(k) = 2+ kzz +0(k").

By using this relation, the sum of the second and
third terms on the left-hand side of (15) is transformed
into

5—(—2—FF§——‘9——1—’ (F(k) F(ky))
3k°
= 220+ 0(K).

On the other hand,

11(k)
lo(K)

Thus, equation (4) for small k can be derived from
(15) by neglecting terms of order k8. Calculations show
that the exact and approximate solutions are in good
agreement, even at relatively large k. For example, at
Re =10 and k = 0.9, the exact and approximate values
of ware0.17547 and 0.17555, respectively.

= AK) + O(K).

SECOND APPROXIMATION
In the second approximation, a solution to equations
(10) and (11) subject to initial conditions (12) and (13)
can be sought in the form
@, = hy(t)cosh(2ikz) + g,(1),
w, = if,(t)sinh(2ikz).

To write formulas for h,, g,, and f, in a more com-
pact form, the following notation is introduced:
i =1,2;

Q = 4(gi2—2((o3—(04)0)i + W300,

2 )
Q; = (W +0y)" — (W3 + 0y) (W + W) + Wa0y;
No. 8
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_ 3,20
= KA(2K)HL + <0
3 2 2
B, = 3- K B, = 6k 0 _ K CA(ZK)
A(k) Re 16U A(K)

The expressionsfor g,, h,, and f, are
12
0 = _Zhl’
20t 20,t (wy + Wyt wst

Wyt
h, =ce " +c,e °~ +cse +ce” +ce

2
Ay BZ 2wt

A =
+ wz%cz _ BSZBZ%szt

B
+(0\)1+002)%:3—%02

(00, + 00y)t

wst w,t
+W3C,E8 ~ + (W,Cs€ }

Here, w; = wy(2K); w, = w,(2K); and the coefficients ¢
(i=1,...,5) arecaculated as

(X
QO B, D— 1D+ B,w: + By, |,
1| '2A%K) O

Bo[, O |
= Q" B, D— 1D+ B,w; + By,
o| 2A%(K) O

[QVOV)
BD 172 _1D
‘Ha2) C

+ %Bz((*h + (*)2)2 + By(w, + 002)}

3:

050[2

_ (200 — ) Cy + (200, — ) Co + (00 + W, — ) C5

4 W, — Wy ’

_ (20, —w3)Cy + (200, — w3) €, + (W + W, —

(}.)3 _(A)4

W3)C3

The second approximation of the exact solution
(i.e., the solution obtained without approximating the
governing equations) is not known for aviscous liquid.
However, the results obtained can be compared with the
exact solution for an inviscid liquid. In this case, w, =

— Wy, Wy = —w; and the first two termsin the expansions
of wy in powers of k are identical with the exact solu-
tion, so that the exact and approximate solutions differ
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by aquantity on the order of k8. The leading two terms
in the expansion of c; in powers of k are given by

.. = 1,863
37573

A comparison with the corresponding term obtained
in [5] shows that this expansion agrees with the exact
one up to termsof order k?. However, in the expressions
for Q; (i = 1, 2), which have the form

K>+ O(K%.

Q = 40 —w;

in the approximation considered, the leading terms in
the expansions of the first and second terms in powers
of k are mutually canceled. For this reason, only the
leading terms turn out to be correct both in the expan-
sions of Q; and in the expansions of ¢, (i = 1, 2). None-
theless, the results of calculations of thejet based on the
exact and approximate relations are in good agreement.

EFFECTS OF WAVENUMBER AND REYNOLDS
NUMBER ON THE DEVELOPMENT
OF CAPILLARY WAVES

The relations obtained above can be used to exam-
ine the effect of viscosity on the evolution of perturba-
tions. The strongest effect of fluid viscosity is on the
duration of the interval from the initial moment of per-
turbation to the moment when the liquid jet breaks up
into droplets. To find this quantity, the following
method was applied. With the Reynolds number and the
initial perturbation amplitude held constant, the coordi-
nates of points of the liquid jet surface were calculated
at various times. The moment at which the radial coor-
dinate of one of the points vanishes was assumed to be
the desired quantity. It should be pointed out here that,
generally, the formul as obtained above are not applica-
ble at such moments. At the moment of jet breakup, the
neglected terms in the expansions in powers of the
small parameter are of the same order as the retained

60 -
50 F
40 |-
30
06— 038

Fig. 1. Timeto jet breakup versus wavenumber for various
values of the Reynolds number: Re = (1) «; (2) 10; (3) 5.

CHESNOKOV

terms. Nevertheless, the derived formulas can be used
to obtain realistic estimates for the quantities of interest
here. It iswell known that the time to breakup of alig-
uid jet into droplets can be quite accurately predicted
not only by the weakly nonlinear theory, but also by the
linear theory. The geometry of the jet at the moment of
its breakup can be quite accurately calculated by means
of perturbation theory aswell. Thisis demonstrated by
comparing the results of a calculation of the size of the
main and satellite dropl ets depending on the wavenum-
ber with experimental results[8].

Figure 1 shows that, at each value of the Reynolds
number, the time to jet breakup first decreases as the
wavenumber is increased and then reaches a minimum
and increases. As expected, the effect of the Reynolds
number increases with wavenumber. This is explained
by the increase in the spatial derivatives of fluid veloc-
ity toward shorter wavelengths, which enhances the
effect of viscosity on the flow behavior. The location of
the minimum of the time to jet breakup plotted versus
wavenumber shifts leftwards with increasing Re.
A similar trend is predicted by the linear theory. Calcu-
lations (not represented in this figure) show that the
time to jet breakup strongly depends on the initial per-
turbation amplitude. The graphs shown here are plotted
for theinitial perturbation amplitude € = 0.01.

Figure 2 shows that the Reynolds-number depen-
dence of thetime to breakup isweak in awide range of
Re. Only at relatively low Re does the time to breakup
steeply increase. In this domain, the instability devel-
ops very slowly and can be described by the results
obtained here even better.

The jet geometry at times close to the moment of
breakup into droplets strongly depends on the wave-
number. The jet radius plotted versuslongitudinal coor-
dinate for long-wavelength perturbations has a second
maximum, starting from a certain moment (see Fig. 3).
This phenomenon is not observed for short-wavelength
perturbations (Fig. 4). The appearance of the second
maximum isan indication of satellite-droplet formation

o9
S
T

A U
oS o O
T T T

—

2 4 6 8 10
Re

Fig. 2. Time to jet breakup versus Reynolds number for
k=04
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Fig. 3. Jet shapeat Re=10and k=0.4for t = (1) 18, (2) 19,
(3) 20, (4) 21, and (5) 21.9305.

12.5

Fig. 5. Jet shape at the moment of breakup for k = 0.4 and
Re= (1) 100, (2) 5, (3) 3, and (4) 0.3.

between the main droplets. As the Reynolds number is
increased, the magnitude of the second maximum in the
graph of jet radius versus longitudinal coordinate at the
moment of jet breakup decreases (Fig. 5), and the point
wherethejet radius vanishes shifts toward the midpoint
of the segment bounded by the two principal maxi-
mums. At a certain value of Re, the second maximum
disappears completely. This means that the size of sat-
ellite droplets decreases with increasing Re, and the jet
breakup ceases at a certain Re. The fluid viscosity sup-
presses the development of the second harmonic, and
satellite droplets do not form. Figure 6 shows the
dependence of the jet radius on ¢ = kz for various k. It
demonstrates that, as the wavenumber increases, the
point where the jet radius vanishes at the moment of jet
breakup shifts toward the center, while the jet radius at
the midpoint of the segment bounded by the two prin-
cipal maximums decreases. Therefore, the size of satel-
lite droplets decreases with the perturbation wave-
No. 8
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Fig. 4. Jet shapeat Re=10andk=0.75for t = (1) 14, (2) 15,
(3) 16, (4) 17, and (5) 18.149.

Fig. 6. Jet shape at the moment of breakup for Re = 10 and
k=(1) 0.1, (2) 0.3, (3) 0.45, (4) 0.525, and (5) 0.8.

length. Note that the results presented here are consis-
tent with the numerical results reported in [15].
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Abstract—The structure of the capillary—relaxation motion spectrum in a liquid with a charged free surface
has been investigated taking into account the viscosity relaxation effect. On the basis of numerical analysis of
the dispersion equation for the wave motion in a viscoelastic incompressible liquid, it is shown that for agiven
wave number the range of characteristic relaxation timesin which relaxation-type wave motion existsis limited
and expands with increasing wave number. The growth rate of instability of the charged liquid surface markedly
depends on the characteristic relaxation time and increases with its growth; in liquids with elastic properties,
the energy dissipation rate of capillary motion is enhanced. At a surface charge density that is supercritical for
the onset of Tonks—Frenkel instability, both purely gravitational waves and waves of arelaxational nature exist.

© 2000 MAIK * Nauka/Interperiodica” .

INTRODUCTION

The problem of capillary maotion in aliquid exhibit-
ing elastic properties is of interest in connection with
numerous scientific and technological applications, and
for this reason it has often been a focus of attention
(see, for example, [1-7] and the references therein).
Nevertheless, many issues remain unclear because of
the known awkwardness of the theoretical solution, the
variety of possible ways of choosing nondimensional
parameters in the boundary problem, and the large
number and complicated structure of nondimensional
parameters arising in the final solution [1-7].

The essence of the problem is that under a suffi-
ciently brief (t < 107° s) external impact even non-New-
tonian liquids show elastic properties: they are first
deformed elastically, and, after the impact ends, the
residual shear stresses persists, relaxing in time t ~
105 s[8] and setting the liquid in motion. This effect
manifests itself in capillary wave motion, because, at a
wavelength of ~10 um, the wave period is aready com-
parable with the characteristic relaxation time of the
elastic stress. As shown in [1-7], taking account of the
elastic properties of a liquid leads to an appreciable
complication of the capillary motion spectrum, result-
ing in limitation of the capillary wave spectrum and
an increase in the wave energy dissipation rate due to
the formation of high-frequency phonon-type wave
motions.

In the consideration below, the entire analysis (in
contrast to [3], where the dispersion eguation for the
wave motion of aviscoelastic liquid was derived in the
framework of a microstructure approach and statistical
mechanics methods) will be performed using a contin-

uous medium model on the basis of hydrodynamics
equations for a viscous liquid (as was done in [1-2,
4-7]), on the assumption that the viscoelastic proper-
ties of a liquid can be accounted for by introducing
complex viscosity through the Maxwell formula[9]

v = vp(l—iwty) ™,

representing a Fourier image of the exponentia varia-
tion of the viscosity of aviscoelastic liquid with time.
In this expression, vy is a coefficient of kinematic vis-
cosity at zero frequency, wisthe complex frequency, t

isthe characteristic time of viscosity relaxation, andi is
the imaginary unit.

The analysisin [1-7] of the influence of the viscos-
ity relaxation effect on the relationships governing cap-
illary motion in aliquid with a charged free surface is
mainly qualitative, as it was performed either by
asymptotic methods [1-5, 7] or by nhumerical methods
capable of establishing only qualitative relationships
[5, 6]. In the latter case, ways are sought of first deriv-
ing a nondimensional dispersion equation for use in
numerical calculations. In the numerical analysis in
[5, 6], thefrequency and the enhancement and damping
rates of capillary motion in a liquid were converted
using either the wave motion frequency in anideal lig-
uid with a charged free surface or the characteristic
damping rate of the capillary waves. In both cases, the
objective was to diminish the number of nondimen-
sional physical parameters describing the capillary
motion of theliquid in the system considered. Asavari-
able argument of the sought-for complex frequencies, a
complex parameter was used, which depended on the
wave number, the capillary pressure, and the pressure

1063-7842/00/4508-0995%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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exerted by an electrostatic field on the free surface of
the liquid, that is, ultimately, on the physical character-
istics of the liquid, namely, its density, capillary con-
stant, surface tension, coefficient of viscosity, and the
surface density of the electrical charge. From this anal-
ysis, itishard to find out just how the characteristics of
capillary motion in aliquid depend on parameters such
as wave number k or surface density k of the electrical
charge. Our purpose is to overcome this limitation.

1. The problem will be solved by calculating the
spectrum of capillary waves on the charged flat surface
of anideally conductive liquid of infinite depth border-
ing avacuum. The liquid, which has density p, viscos-
ity v, and surface tension coefficient o, is exposed to
gravitational field g and electrostatic field E, (the sur-
face density of the charge induced by field E, on the
unperturbed free surface of theliquid is connected to E,
by the well-known relation E, = 41k The strength of
the electrostatic field Ej near the liquid surface is deter-
mined by the potential difference between the free sur-
face of the liquid with zero potential and aflat counter-
electrode positioned parallel to the unperturbed flat sur-
face of the liquid at distance b and with a potential
P=V.

Let us choose a Cartesian coordinate system with
the z-axisdirected vertically upward, n, ||—g (n,isaunit
vector of coordinate z), and x-axis along the propaga-
tion direction of aflat capillary wave (~exp(ikx —iwt)).
Let us aso assume that the plane z = 0 coincides with
the unperturbed free surface of the liquid. The function
(%, t) = {yexp(ikx —iwt) describes asmall perturbation
of the equilibrium flat surface of the liquid caused by
thermal capillary wave motion with avery small ampli-
tude (¢, ~ (KT/0)Y?), where k isthe Boltzmann constant,
T isthe absolute temperature, and U(r, t) isthe velocity
field of the liquid motion caused by the free surface
perturbation {(x, t) and having the same order of small-
ness [10].

L et us derive the spectrum of the capillary wavesin
aliquid for the given conditions. The mathematical for-
mulation of the problem includes the linearized
Navier—Stokes equation for an incompressible liquid;
the incompressibility condition; the Laplace equation
for the electrical field potential near the liquid surface;
and the corresponding boundary conditions

U _ 1
T pVP(U)+VAU+g, Q)
divu = 0, 2

AD =0, E=-VO, ()
z=-0:U=0, (4)
z=0: —%wzzo, (5)
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n(tvV)U +t(nV)U = 0, (6)

—P(U) + pgl +2pvn(nV)U —Pe(() + Po(Q) = 0, (7)
® =0, (8)

z=h: ® =V, 9

In the above expressions, n and t are the normal and
tangential unit vectorsrelativeto the freeliquid surface,
respectively; P(U) is the pressure within the liquid due
to the capillary motion of the liquid and is of the first
order of smallnessin ¢; and P(¢) and P4({) are addi-
tional pressures on the free liquid surface related to the
electrical forces and the surface tension forces, respec-
tively, both of them resulting from the perturbation
(%, t) = Aexp(ikx — iwt) of the equilibrium flat surface
of the liquid caused by the capillary wave motion and
of thefirst order of smallnessin { [11, 12],

2
- 2%
0X

Pe(Q) = 4me kKL,

Ps(C) (10)

Asthe liquid is viscous, to describe the flows in it,
wedividethe velocity field U = U(r, t) into two compo-
nents in accordance with the Helmholtz theorem: the
potential component (with the velocity field potential
W(r, t)) and the vortex component (described by the
stream function ¢(r, t). Then the expression for pres-
surefield P(U) in the liquid can be written in the form

P(U) = —p%%—pgz.

(11)
2. We will be seeking a solution of problem (1)—(6)
in the following form [12]:

U,(x, zt) = (ikBexp(—kz) —ICexp(-12))
x exp(ikx —iwt),

U,(x, zt) = (—kBexp(—kz) + ikCexp(-12))
x exp(ikx —iwt),

1> = K —iov ™.
Here A, B, and C are constants and | isthe characteristic

linear scale of the spatial variation of the vortex compo-
nent of the velocity field.

We follow the reasoning in [12] and add an extra
term to the dynamic boundary condition for the normal
component of the stress tensor to take into account the
eectricfield pressure. Then, expressing the viscosity as
afunction of frequency v = vo/(1 —iwtp) in accordance

with the Maxwell formula, we obtain the dispersion
relationship characterizing the capillary motion of a
TECHNICAL PHYSICS Vol 45

No. 8 2000



ON CAPILLARY MOTION OF A VISCOELASTIC LIQUID

Fig. 1. Nondimensiona real ReY(X) and imaginary ImY(X)
frequency components as functions of the nondimensional
wave number X calculated for B =1, W=0, and t = 0.11.

viscoelastic liquid with a charged free surface in the
dimensional form

B*’ Wil avekt J |w(1—|oot)
(1-iot, )D (1-iwt,)

= g(gp + 0k2—4m<2k).

Introducing the nondimensional variables

2
X = ka, = Jolpg, Y = u\)}_a,
0
t,v 2
Tz*zo’ B=0—az, W=4n§a’
a PVo
we obtain

[Y(1-iYT)+2iX]°+ 4%@
X (12)

= BX[1+ X =WX](1-iY1)’,

where a is the capillary constant of the liquid; Wisthe
Tonks—Frenkel parameter characterizing the free-sur-
TECHNICAL PHYSICS Vol 45
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Fig. 2. Sameasin Fig. 1fort=0.17and W=0.

face stability of the liquid with respect to its own
charge; and the capillary—gravitational wave with the
wave number Kk at the liquid surface sustains instability
aW> (k+k?)[13, 14].

3. Variations of the real ReY = ReY(X) and imagi-
nary ImY = ImY(X) components of nondimensional fre-
guency Y on nondimensional wave number X calcu-
lated numerically using Eq. (12) for various character-
istic relaxation times 1 and the Tonks-Frenkel
parameter W are presented in Figs. 1-8.

The numerical calculations show (Figs. 1, 2) that at
W = 0 (with no charge at the free surface of the liquid)
the viscosity relaxation effect |eads to the emergence of
aperiodic relaxation motion (branch 4), as well astwo
aperiodic relaxation motions (branches 5, 6). Branches
1-3 correspond to the capillary—gravitational liquid
motions arising in nonviscousliquids aswell. When the
parameter T increases to 0.17 (Fig. 2), the aperiodic
motion 3 vanishes and curves 1 and 4 combine into a
single capillary—rel axation periodic motion 7; an aperi-
odic motion 8 also arises as curves 2 and 5 combine.
A further increase in T does not change the general
qualitative picture of the capillary motions; however, it
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ImY

Fig. 3. SameasinFig. 1L fort=0.3and W= 3.

decreases the frequency of the wave motions described
by branch 7 and the damping rates of all branches.

The presence of an electrostatic field near a liquid
surface (due to the surface charge) with subcritical
strength in the sense of the Tonks—Frenkel instability
(W= 1), while not affecting the frequency of the relax-
ation oscillations, decreases the capillary wave fre-
guencies, and at larger t (T = 0.3), branch 1 combines
with 4 and branch 2 with 5.

At a supercritical strength of the electrostatic field
(W= 3, seeFigs. 3, 4), thelocus corresponding to curve
1 describing capillary—gravitational waves shrinks con-
siderably and curve 2 corresponding to capillary—grav-
itational aperiodic motions penetrates into the half-
plane ImY > 0, which is evidence of the onset of aperi-
odic instability of the surface perturbations in the cor-
responding range of wave numbers k.

Increasing the parameter T does not change the
spectrum of the waves, which became unstabl e because
of supercritical charge; however, it causes an increase
in the growth rates of unstable motions and decreases
the damping rates of stable motions.

For a highly supercritical Tonks—Frenkel parameter
W =6 (Fig. 5), expansion of the spectrum of the waves
experiencing instability is observed (branch 2) both
into region X < 1 of the gravitational waves and into

SHIRYAEVA, GRIGOR’EV

ImY

1+

=251 4

Fig. 4. SameasinFig. 1fort=1and W= 3.

region X > 1 of the capillary waves; in addition, the ape-
riodically damping motions 3 and 5 vanish.

Thus, when the parameter W is subcritical for the
onset of Tonks—Frenkel instability, gravitational, capil-
lary, and relaxation waves exist; at supercritical param-
eter W, the capillary waves are unstable in a limited
range of wave numbers. At the same time, the gravita-
tional waves (k < 1), aswell asthe relaxational waves,
remain and the spectra of the wave numbers character-
izing these wave motions are contiguous (Figs. 3-5).

Investigation of the dependence of the instability
growth rates (the section of branch 2 at ImY > 0 in
Figs. 3-5) on nondimensional wave number X for vari-
ous values of characteristic relaxation time 1 of the
elastic stressesin aliquid was carried out in [13] using
the same dimensionless parameters as in the present
study. It was found that this dependence is very strong
and that the growth rate increase reaches 100% of the
growth rate value at W= 6 when t variesfrom0.11to 1,
in contrast to the conclusions based on qualitative
investigations made in [5, 6], where even such astrong
effect was obscured by the complicated form of the
dimensionless parameters and arguments used.

The numerical investigation of the growth rate of
unstable capillary maotions in a liquid as a function of
nondimensional characteristic time 1 of the viscosity

TECHNICAL PHYSICS Vol 45
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Fig. 5. Sameasin Fig. 1fort=1and W=6.

relaxation carried out for various wave numbers X and
various W show (Fig. 6) that the larger Wand X are, the
faster the growth rates increase with t.

The dependence of the components ReY = ReY(W)
and ImY = ImY(W) of the nondimensional frequency Y
on the Tonks—Frenkel parameter W calculated for X = 1
and different values of T shows that taking into account
the viscosity relaxation effect with t = 0.1, in compari-
son with the purely gravitational—capillary wave
motions described by branches 1-3, leads to the onset
of three aperiodic relaxation motions 46, one of which
(4) becomes periodic when t isincreased to 0.3 (Fig. 7).

A further increase in characteristic relaxation time t
leads to convergence of the relaxation (branch 4) and
capillary—gravitational (branch 1) periodic motions, as
well as of aperiodic motions 2 and 5, accompanied by
the formation of compound capillary—relaxation
motions.

Therea ReY = ReY(1) and imaginary ImY = ImY(1)
components of nondimensional frequency Y as afunc-
tion of nondimensional characteristic time T of the vis-
cosity relaxation calculated for Y =1 and W = 3 are
shown in Fig. 8. Branch 1 describes variation of the
instability growth rate with t: the growth rate slowly
increases with increasing 1. Branch 2 describes the
periodic relaxation motions existing, according to

TECHNICAL PHYSICS Vol 45
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Fig. 6. Plot of the nondimensional growth rate of the insta-
bility vs. the nondimensional characteristictimet of thevis-
cosity relaxation. (1) X=1andW=3; (2) X=1and W= 6;
(3) X=5and W=6.

ImY

25¢F

ReY

Fig. 7. Nondimensional real ReY(W) and imaginary ImY(W)
frequency components as functions of the Tonks—Frenkel
parameter Wfor X=1and 1 =0.3.

Fig. 8, within alimited range of t values. Branches 3—
5 describe the aperiodic relaxation motionsin aliquid.
Fig. 8 and numerical calculations carried out for other
values of W show that the periodic relaxation motions
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Fig. 8. Nondimensional real ReY(1) and imaginary ImY(t)
frequency components as functions of the nondimensional
characteristic timet of the viscosity relaxation for X =1 and
W=3.

exist within alimited interval of T values whose extent
isinversely proportional to the Tonks—Frenkel parame-
ter W. As the wavelength increases, the range of 1 in
which the relaxation oscillations exist expands and the
instability growth rate of the capillary waves increases.

CONCLUSIONS

In summarizing the above consideration of the vis-
cosity relaxation influence on the relationships in the
capillary motions of a liquid with a charged free sur-
face, let us note the following:

The instability growth rate for the branch of capil-
lary motions unstable with respect to the surface charge
strongly depends on the characteristic time of viscosity
relaxation and on the surface charge density. For suffi-
ciently large surface charge densities (parameter W),
the instability growth rate increases appreciably with
an increase in the nondimensional characteristic relax-
ationtimeT.

The range of wave numbers in which surface insta-

bility with respect to the surface charge is observed is
governed only by the nondimensional Tonks—renkel
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parameter W and does not depend on the characteristic
time of viscosity relaxation, athough the wave number
of the most unstable wave at W= const slowly increases
with increasing T.

At afixed value of the wave number k = const, the
range of characteristic relaxation timest in which peri-
odic solutions exist islimited; however, it expands with
increasing wave number k.

For large enough characteristic relaxation times T,
the branches of the capillary—gravitational and relax-
ation waves combine into a single compound motion
existing at any wave number k, including those corre-
sponding to purely gravitational waves (k — 0).

Asthe characteristic relaxation time t decreases, the
damping rates of relaxation-type capillary motions in
the liquid rapidly increase.
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