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Abstract—In the quadratic approximation with respect to the amplitudes of capillary oscillation and velocity
field of the liquid moving inside a charged drop of a perfectly conducting fluid, it is shown that the liquid drop
oscillates about a weakly prolate form. This refines the result obtained in the linear theory developed by Lord
Rayleigh, who predicted oscillation about a spherical form. The extent of elongation is proportional to the initial
amplitude of the principal mode and increases with the intrinsic charge carried by the drop. An estimate is
obtained for the characteristic time of instability development for a critically charged drop. © 2000 MAIK
“Nauka/Interperiodica”.
Studies of capillary oscillation and stability of a
charged drop are motivated by numerous applications
[1]. The problem was reviewed in [1–7] and references
therein. However, most theoretical analyses are based
on the linearized system of fluid-dynamics equations.
Only recent studies have captured the nonlinear nature
of the phenomenon and provided essentially new infor-
mation about the mechanism of instability of a highly
charged drop and its capillary oscillation [2–7].

1. A charged spherical drop with an intrinsic charge
Q greater than a certain critical value becomes unsta-
ble, because the electrical repulsive forces exceed the
surface tension forces. At the close of the nineteenth
century, Lord Rayleigh developed a linear model of this
instability [8]. Since then, studies of the instability of a
highly charged drop and its generalizations have grown
into a broad area of research having important technical
applications.

From the perspective of classical physics, the ther-
mal motion of molecules gives rise to drop oscillations

of amplitude ~  about the equilibrium spherical
form, where k is Boltzmann’s constant, T is the absolute
temperature, and γ is the surface tension of the liquid.
Each mode is characterized by a specific critical value
of surface charge, and a supercritical charge leads to the
onset of instability. The stability of the drop with
respect to its intrinsic charge Q is generally character-
ized by the so-called Rayleigh parameter W ≡ Q2/4πγR3,
where R is the drop radius. The second mode is the
most unstable, and the corresponding critical value of
the Rayleigh parameter is Wc = 4.

In this paper, we solve Rayleigh’s problem in the
quadratic approximation with respect to the amplitudes
of the velocity field and surface perturbation and deter-
mine the geometric form about which a subcritically
charged liquid drop oscillates.

kT /γ
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2. Consider a drop of an inviscid, perfectly conduct-
ing liquid of density ρ characterized by the surface ten-
sion γ and carrying a charge Q. The linear theory of
capillary oscillation postulates that there exists a time
moment that can be treated as t = 0, when the drop
geometry is described by the second mode of linear
capillary oscillation of a small finite amplitude ε and
the velocity field is zero. The initial drop volume is
equal to that of a spherical drop of radius R. The prob-
lem is to determine the axially symmetric oscillations
of the drop in the case of an axially symmetric potential
velocity field in the drop.

We use the dimensionless variables in which ρ ≡ 1,
γ ≡ 1, and R ≡ 1. The mathematical model of the prob-
lem is then written in spherical coordinates with the ori-
gin at the center of the drop as follows:

(1)

(2)

r  ∞: |—Φ|  0, (3)

r = 0: |—ψ| < ∞, (4)

(5)
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(8)
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(10)

ψ = 0. (11)

This is a boundary value problem with the free sur-
face r = 1 + ξ(Θ, t) and three unknown functions: the
potential Φ = Φ(r, Θ, t) of the electric field outside the
drop, the potential ψ = ψ(r, Θ, t) of the velocity field
inside the drop, and the surface deviation ξ = ξ(Θ, t)
from a regular sphere with r = 1.

The potentials Φ and ψ satisfy the Laplace equa-
tions (1) and (2) under the boundary and initial condi-
tions (3)–(8) and (9)–(11), respectively.

Both kinematic and dynamic boundary conditions
for the velocity field U, (7) and (8), contain nonlinear
terms. Condition (4) implies that U is bounded at the
center of the drop. In (8), ∆F is the difference between
the constant pressure components inside and outside
the drop, FE is the electric pressure on the drop surface
[9, 10], and Fγ is the capillary pressure under the
curved drop surface [11].

It follows from (3) that the electric field E must be
bounded at infinity. The continuity of the tangential
components of E(r, t) at the charged surface of a con-
ductor means that the surface is equipotential (see (6))
[10]. The condition for the normal components of E(r, t)
at the interface is written in (5) in an integral form,
where n is the outward unit normal to the drop surface.
The quantity ξ∗  in (9) is determined by (10), which

means that the volumes of the initial drop and a spher-
ical drop of unit radius are equal.

3. In dimensionless variables, the amplitude ε of an
initial deviation from spherical form is measured in
units of the spherical drop radius. We treat ε as a small
parameter and seek a solution to the problem as a series
expansion in integer powers of ε, omitting the terms of
order higher than two: 

(12)

(13)

(14)

(15)

The functions Φ, ψ, and ξ are assumed to be of the
same order as their partial derivatives. Under these
assumptions, since the Laplace operator is linear, we
can use the expansions obtained in the Appendices to
split the problem (1)–(11) into problems of zeroth, first,
and second order [11] for the seven functions Φ0, Φm,
ψm, and ξm, where m = 1 and 2.

P2 µ( ) 1
2
--- 3µ2

1–( ), vd

V

∫ 4
3
---π;= =

V r Θ t, ,( )
0 r 1 ε* εP2 Θ( )cos( ),+ +≤ ≤
0 Θ π, 0 ϕ 2π,<≤ ≤ ≤




≡

Φ Φ0 Φ1 Φ2 O ε3( ),+ + +=

ψ ψ1 ψ2 O ε3( ),+ +=

r 1 ξ , ξ+ ξ1 ξ2 O ε3( ),+ += =

Φm ψm ξm O εm( ); m∼ ∼ ∼ 1 2; Φ0, O 1( ).= =
In the zeroth approximation, the nontrivial relations
are (2), (3), (5), and (8). They contain the electric
potential, the capillary pressure, and the constant com-
ponent of the difference of pressures inside and outside
the drop. Problem (1)–(11) reduces to one for the static
field Φ0(r), with the known functions ψ0 ≡ 0 and ξ0 ≡ 0:

(16)

where er is the unit radial vector.

The solution of the problem is Φ0 = Q/r. Using this
solution and formulas (1B), (2C), and (5D)–(10D) from
the Appendices, the first- and second order problems
are easily formulated. The first order problem is written
as

(17)

(18)

r  ∞: |—Φ1|  0, (19)

r = 0: |—ψ1| < ∞, (20)

(21)

(22)

(23)

(24)

(25)

(26)

The problem for the second-order quantities is writ-
ten as follows:

(27)
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r  ∞: |— · Φ2 |  0, (29)

r = 0: |— · ψ2 | < ∞, (30)

d
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Q
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(31)

(32)

(33)

(34)

(35)

(36)

where ∆Ω is the angular part of the Laplace operator,
with r = 1. The functions ψ1 and Φ1 are determined
from (17)–(20) in the following general form:

(37)

(38)

At any moment, the deviation ξ1 = ξ1(Θ, t) of the
drop surface is a single-valued continuous function of
cosΘ; therefore, it can be represented as a series in
terms of the orthogonal Legendre polynomials
{Pm(cosΘ)}:

(39)

To solve problem (17)–(26), we have to substitute
(37)–(39) into (17)–(26); use the orthogonality of the
Legendre polynomials, i.e., the fact that {Pm(cosΘ)}
are the eigenfunctions of the angular part of the Laplace
operator in spherical coordinates (∆ΩPm(cosΘ) =
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2
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m 0=
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−m(m + 1)Pm(cosΘ)); and formulate the Cauchy prob-
lem for a homogeneous system of ordinary differential
equations for the unknown functions Cm(t), Fm(t), and
Zm(t). By finding these unknowns and substituting them
into (37)–(39), we can write the stable solutions to the
first-order problem as

(40)

(41)

(42)

(43)

Substituting (40)–(43) and the obvious equalities

into (31)–(34), we obtain

(31')

(32')

(33')

(34')

The system including (27)–(30), (31')–(34'), (35),
and (36) is the reformulated second-order problem. It
can be solved in the same way as the first-order one.
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Q
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4. The solution obtained by substituting the result-
ing first- and second-order terms into (12)–(14) is

(44)

(45)

(46)

The sign of the potential in (45) corresponds to the
sign of the drop charge. In the expressions for Φ and ψ,
the terms that depend on time only are omitted.

The solution given by (44)–(46) is uniformly valid
for W ! 4, because it does not contain any secular
terms or terms with small denominators. When the

r 1
ε2

5
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2
– ε ω2t( )P2 Θcos( )cos+=
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2
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1
r
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r
3
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+
ε2
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2
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+ χ2 K+( ) 2ω2t( )cos )
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r
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------------------------

+
18
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r
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2
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2
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ω2
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2
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+
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  r
4
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36 5W–
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2
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χ4
12 W+
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Q
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G
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K
2ω2

2

7
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2
2 4 W–( ), ω4

2
12 6 W–( ).≡ ≡ ≡
Rayleigh parameter W approaches the critical value Wc

= 4 for the principal-mode instability,   0 in
(44)–(46) and the asymptotic character of the solution
is violated. This fact determines the domain of uniform
validity of the solutions written out here. The case of a
highly charged drop with W  4 was considered in
[2]. Formula (44) is identical with the solutions found
by using the Lindstedt–Poincaré and multiple-scales
methods [11].

5. Solution (44) has some interesting features that
have not been noted in [2–6].

Equation (44) of the oscillating surface contains
terms nonperiodic in time. The surface associated with
these terms is written as

(47)

and can be considered as the surface about which the
drop oscillates.

The equation of the surface of a prolate spheroid
with a small eccentricity β can be approximated by a
series in {Pm(cosΘ)}. In the quadratic approximation
with respect to β, this equation has the form

where b is the semiminor axis of the spheroid. Such a
spheroid is the best approximation of the surface r∗  if

These equations can be used to find the eccentricity
and semiaxes of the spheroid approximating the surface
defined by (47). Denoting the semimajor axis of this
spheroid by a, we have

(48)

According to (48), even an uncharged drop with the
initial disturbance ~P2(cosΘ) oscillates about a spher-
oid of eccentricity β = 1.1ε, which is close to the
dimensionless amplitude ε of the initial disturbance. It
is clear that the eccentricity of a spheroid about which
a drop of a viscous liquid oscillates must exponentially
decrease as the energy of the initial deformation dissi-
pates. In the case of a perfect liquid drop, the energy of
an initial deformation is merely distributed between the
interacting modes.

Curves 1 and 2 in Fig. 1 represent the surfaces (47)
and (48) with ε = 0.3 for a charged drop at W = 3.
Numerical calculations reveal that when ε < 0.3, the

ω2
2

r* 1 ε2
AP2 Θcos( ) ε4

BP4 Θcos( ),+ +=

A
44 5W–

28 4 W–( )
-------------------------, B

18
35
------ 36 5W–

12 6 W–( )
-------------------------= =

r b 1
1
6
---β2

+ 
  bβ2

3
--------P2 Θ( )cos( ),+=

b 1
1
6
---β2

+ 
  1,

bβ
3

------ ε2
A.= =

β ε 3A O ε3( ), b 1 O ε3( )+=+( ,=

a 1 ε23A
2

------- O ε2( ), A+ +
44 5W–

28 4 W–( )
-------------------------.= =
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ellipsoid described by (48) well approximates the sur-
face defined by (47) about which the drop oscillates.
The accuracy of the approximation improves with
decreasing ε. The influence of W on the accuracy of the
approximation of a nonoscillating drop surface (47) by
the spheroid defined by (48) with ε = 0.3 becomes
noticeable starting from W ≈ 3. As ε decreases, the
value of W above which the approximation in (48) fails
increases, approaching the limit W = 4.

Curves 3 and 4 in Fig. 1 show the contours of the
limit deformations of an oscillating drop. The contour
that is the most prolate along the polar axis (curve 3)
represents the geometry of the drop at t = T2m (with m =
0, 1, 2, …), where T2 ≈ 2.22 is the period of the second
mode of capillary oscillation. At the moments T2/2 +
T2m, the drop has the most oblate geometry, repre-
sented by curve 4.

The relative elongation of the semimajor axis of the
spheroid defined by (48) is described by the function

The graphs of this function are shown in Fig. 2 for
various values of ε. It is clear from this figure that the
eccentricity of the spheroid defined by (48), i.e., the
extent of elongation about which the drop oscillates,
rapidly increases with W.

6. Even though solution (44) has a nonasymptotic
character when W ≈ 4, it is interesting to compare its
behavior to that of the first-order solution for W  4
as W approaches the critical value. Indeed, in the linear
approximation with respect to ε, the surface equation

has the following limit form as W  4:

(49)

where rs represents the equation of the drop surface in
the first approximation with respect to ε.

In this approximation, the drop has a prolate
nonoscillating form when W = 4. When the Rayleigh
parameter W slightly exceeds the critical value Wc = 4,
this form elongates exponentially in time; when W < 4,
the drop oscillates stably.

When the second-order terms are taken into account
in (44), we have the limit

(50)

In the first approximation, a small left neighborhood
of W = 4 is a domain of stability; in the second-order
approximation, it is a domain where the asymptotic
expansion is not valid. At nearly critical W  4, the
second term in (44) grows with time, becoming compa-

δ ε W,( ) 1.5ε2
44 5W–( )/28 4 W–( ).=

rs ε W Θ t, , ,( ) 1 ε ω2t( )P2 Θ( )cos( )cos+=

rs ε W Θ t, , ,( )
W 4→
lim 1 εP2 Θcos( ),+=

rs ε W Θ t, , ,( )
W 4→
lim 1 εP2 Θ( )cos( ) ε2

5
----–+=

+ ε218
35
------ t 6( )P4 Θcos( )sin

2 12
7
------ε2

t
2
P2 Θcos( ).+
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rable to the preceding term in a characteristic time t ~
O(ε–1/2) and exceeding it as t increases further, as indi-
cated by the last term in (50).

Water drops of about a millimeter in diameter can be
treated as low-viscous and well conducting [1]. For a
water drop (ρ = 1 g/cm3) of radius R ~ 10–1 cm, capil-
lary oscillations with an amplitude ~10–8 cm are char-
acterized by a dimensionless amplitude ε ~ 10–7.
Accordingly, the dimensionless time t ~ ε–1/2 ~ 3 × 103.
In the dimensionless variables used here, the time unit
is t∗  = ((ρR3)/γ)1/2 ~ 4 × 10–3 s. The corresponding phys-
ical time equals t1 = tt∗  ~ 10 s, which agrees with an
estimate obtained in [12] by using another method in

r(θ)0 1–1

341 122 4

3

3

4

Fig. 1. Contours of possible forms taken by the drop.

1

2

34

δ

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 W

Fig. 2. Dependence of the relative elongation δ(ε, W) of the
semimajor axis of the spheroid (48) on W at ε = (1) 0.1,
(2) 0.2, (3) 0.03, and (4) 0.4.
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the spheroidal approximation for an unstable drop. This
is the time interval within which the expansion (50) can
be used to describe the evolution of the surface geome-
try after the drop is critically charged. From physical
considerations, a critically charged drop must be unsta-
ble. Therefore, the value tf obtained can be interpreted
as an estimate for the time interval from the moment
when the drop is charged to the moment when the drop
becomes stable by losing a part of its charge.

7. The nonlinear analysis of capillary oscillations of
a charged drop performed to the second-order terms
inclusive reveals that the time-averaged surface form of
an oscillating, subcritically charged drop of a perfectly
conducting liquid is well approximated by the spheroi-
dal surface defined by (48). The eccentricity of the
approximating spheroid is proportional to the initial
deviation amplitude and considerably increases the
intrinsic charge of the drop. The relative elongation of
the spheroid compared to the radius of an equivalent
perfectly spherical drop is proportional to the ampli-
tude squared of the initial deviation, increasing with the
intrinsic charge.

A water drop one millimeter in diameter carrying
the critical charge changes its form according to (50)
within an interval of about ten seconds, which is easy to
observe experimentally; therefore, the effect can be
detected.

APPENDIX

A. Asymptotic Expansions of the Components 
of the Normal to the Drop Free Surface 

and Their Derivatives

At a moment t, the geometry of an oscillating drop
surface obeys the following equation written in spheri-
cal coordinates with unit basis vectors er , eΘ, and eϕ:

Using the well-known relation

we obtain the components of the normal vector n to this
surface and their derivatives with respect to the spheri-
cal coordinates:

(1A)

(2A)
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---- ∂ξ
∂Θ
------- 

 
2

+
1/2–

, nϕ 0,≡= =

nΘ
1
r
--- 1

1

r
2

---- ∂ξ
∂Θ
------- 

 
2

+
∂ξ
∂Θ
-------,–=

∂nr

∂r
--------

1

r
3

---- 1
1

r
2

---- ∂ξ
∂Θ
------- 

 
2

+
3/2– ∂ξ

∂Θ
------- 

 
2

,=
(4A)

The problem under consideration is solved in the
approximation in which the following asymptotic esti-
mates and expansions with respect to the small dimen-
sionless amplitude ε of the initial drop deformation are
valid:

(5A)

By virtue of (5A), (1A)–(4A) can be rewritten as
follows:

(6A)

(7A)

(8A)

(9A)

B. The Asymptotic Form of the Capillary Pressure 
under the Curved Drop Surface

For a given mean liquid surface curvature H and sur-
face tension coefficient γ, the Laplace pressure distribu-
tion at the surface is determined as Fγ = 2Hγ. The value
of H can be calculated as 2H = divn. In dimensionless
variables such that γ ≡ 1, we have Fγ = divn and

Since the problem is axially symmetric (nϕ ≡ 0), it
holds that

Substituting (5A)–(9A) into the last expression, we

∂nΘ

∂Θ
---------

1
r
--- ∂2ξ

∂Θ2
--------- 1

1

r
2

---- ∂ξ
∂Θ
------- 

 
2

+
1/2–

–=

+
1

r
3

---- ∂ξ
∂Θ
------- 

 
2 ∂2ξ
∂Θ2
--------- 1

1

r
2

---- ∂ξ
∂Θ
------- 

 
2

+
3/2–

.

ξ ∂ξ
∂Θ
------- ∂2ξ

∂Θ2
--------- Oε, r∼ ∼ ∼ 1 ξ ,+=

1
r
--- 1 ξ– ξ2

O ε3( ),
1

r
2

----+ + 1 2ξ– 3ξ2
O ε3( ),+ += =

1

r
3

---- 1 3ξ– 6ξ2
O ε3( ).+ +=

nr 1
1
2
--- ∂ξ

∂Θ
------- 

 
2

– O ε3( ),+=

nΘ
∂ξ
∂Θ
-------– ξ ∂ξ

∂Θ
------- O ε3( ),+ +=

∂nr

∂r
--------

∂ξ
∂Θ
------- 

 
2

O ε3( ),+=

∂nΘ

∂Θ
--------- ∂2ξ

∂Θ2
---------– ξ ∂2ξ

∂Θ2
--------- O ε3( ).+ +=

div A
1

r
2

----
∂ r

2
Ar( )

∂r
------------------ 1

r Θsin
---------------

∂AΘ Θsin( )
∂Θ

--------------------------- 1
r Θsin
---------------

∂Aϕ

∂ϕ
---------.+ +=

Fγ
2nr

r
--------

∂nr

∂r
--------

1
r
---

∂nΘ

∂Θ
---------

nΘ

r
------ Θ.cot+ + +=
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have

The unknown function ξ is sought in the form ξ =
ξ1 + ξ2 + O(ε3), ξ1 ~ O(ε), ξ2 ~ O(ε2). Hence,

(1B)

where ∆Ω is the angular part of the Laplace operator in
spherical coordinates with r = 1.

C. Asymptotic Expansion of Initial Conditions

Let us derive the asymptotic expansion of integral
(10) over the drop volume at the initial moment. We
have

(1C)

or

Fγ 2 2ξ– ∂2ξ
∂Θ2
---------–

∂ξ
∂θ
------ Θcot–=

+ 2ξ ξ ∂2ξ
∂Θ2
---------

∂ξ
∂θ
------ Θcot+ + O ε3( ).+

Fγ 2 2ξ1– ∆Ωξ1– 2ξ1 ξ1 ∆Ωξ1+( ) O ε3( ),+ +=

∆Ω
∂2

∂Θ2
---------

∂
∂Θ
------- Θ,cot+=

r 1 ξ* εP2 Θcos( ),+ +=

4
3
---π vd

V

∫ r
2 Θ r Θ ϕdddsin

0

r

∫
0

π

∫
0

2π

∫ 2π
3

------ r
3 Θ Θdsin

0

π

∫= = =

=  
2π
3

------ r
3 µd

1–

1

∫ 2π
3

------ 1 ξ* εP2 µ( )+ +[ ] 3 µ,d

1–

1

∫=

2 1 ξ*+( )3
1

ε
1 ξ*+
---------------P2 µ( )+

3

µ,d

1–

1

∫=

2 1 ξ*+( )3
1

3ε
1 ξ*+
---------------P2 µ( ) -+

1–

1

∫=

+
3ε2

1 ξ*+( )2
----------------------P2

2 µ( ) O ε3( )+
3

µd

2 2 1 ξ*+( )3
1

3
5
--- ε2

1 ξ*+( )2
----------------------+ O ε3( ),+=

1 1 ξ*+( ) 1
3
5
--- ε2

1 ξ*+( )2
----------------------+ O ε3( )+ 

 
1/3

=

≈ 1 ξ*+( ) 1 ε2

5 1 ξ*+( )2
--------------------------+ .
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The resulting equation for ξ∗  has the roots –ε2/5 and

ε2/5 – 1. Setting ξ∗  equal to the one for which the initial

condition (9) can be written as an asymptotic expansion
in ε, we rewrite (9) and (10) in a simpler form:

(2C)

D. Expansions of Potentials and Related Quantities 
in the Vicinity of an Unperturbed Drop Surface

The electrostatic potential Φ on the surface r = 1 +
ξ can be expressed in terms of Φ and its partial deriva-
tives on the unit sphere surface with the required accu-
racy as 

Using (12), (14), and (15), we rewrite this expres-
sion as

(1D)

Now, the value of Φ on the surface r = 1 + ξ equals
the sum of terms defined on the surface r = 1 with the
required accuracy.

Applying a similar method and using (6A) and (7A),
we find

(2D)

t 0: r 1 εP2 Θcos( ) ε2

5
----.–+= =

r 1 ξ :+=

Φ Φ r Θ t, ,( ) Φ 1 ξ Θ t, ,+( ) Φ 1 Θ t, ,( )= = =

+
∂Φ
∂r
------- 1 Θ t, ,( )ξ 1

2
---∂2Φ

∂r
2

---------- 1 Θ t, ,( )ξ2
O ε3( ).+ +

r 1 ξ :+=

Φ Φ0 r 1= Φ1 ξ1

∂Φ0

∂r
----------+ 

 
r 1=

+=

+ Φ2 ξ2

∂Φ0

∂r
---------- ξ1

∂Φ1

∂r
---------- 1

2
---ξ1

2∂2Φ0

∂r
2

------------+ + +
r 1=

O ε3( ).+

r 1 ξ :+=

—Φ —Φ0 r 1= —Φ1 ξ1

∂—Φ0

∂r
--------------+ 

 
r 1=

+=

+ —Φ2 ξ2

∂—Φ0

∂r
-------------- ξ1

∂—Φ1

∂r
-------------- 1

2
---ξ1

2∂2—Φ0

∂r
2

----------------+ + +
r 1=

+ erO ε3( ) eΘO ε3( ),+

∂Φ
∂n
------- nr

∂Φ
∂r
-------

nΘ

r
------∂Φ

∂Θ
-------+ 1

1
2
--- ∂ξ

∂Θ
------- 

 
2

–= =

× ∂Φ
∂r
------- ξ∂2Φ

∂r
2

---------- ξ2

2
-----∂3Φ

∂r
3

----------+ +
r 1=

+ 1 ξ– ξ2
+( ) ∂ξ

∂Θ
-------– ξ ∂ξ

∂Θ
-------+
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(3D)

For S{(r, Θ, ϕ) ≡ r = 1 + ξ(Θ, t); 0 ≤ Θ < π; 0 ≤ ϕ <
2π}, we have

(4D)

where cosγ is the cosine of the angle between the radial
unit vector er and the normal n to the drop surface. The
zeroth-order terms in (1)–(11) are easily determined by
using (1D)–(4D), (1B), and (12)–(15). The complete
mathematical formulation of the zeroth-order problem
is given by (16). Using its solution, Φ0 = Q/r, we can
simplify (1D)–(4D) and write out the following
approximations:

(5D)

(6D)

× ∂Φ
∂Θ
------- ξ ∂2Φ

∂d∂Θ
-------------- ξ2

2
----- ∂3Φ

∂r
2∂Θ

---------------+ + O ε3( ),+

∂Φ
∂n
-------

∂Φ0

∂r
----------

∂Φ1

∂r
---------- ξ1

∂2Φ0

∂r
2

------------
∂ξ1

∂Θ
--------

∂Φ0

∂Θ
----------–+ +=

+ ξ2

∂2Φ0

∂r
2

------------
∂2ξ2

∂Θ
----------

∂Φ0

∂Θ
----------–

∂Φ2

∂r
----------+

+ ξ1

∂2Φ1

∂r
2

------------
ξ1

2

2
-----

∂3Φ0

∂r
3

------------ 1
2
---

∂ξ1

∂Θ
-------- 

 
2∂Φ0

∂Θ
----------+ +

–
∂ξ1

∂Θ
--------

∂Φ1

∂Θ
---------- ξ1

∂ξ1

∂Θ
--------

∂2Φ0

∂r∂Θ
-------------– 2ξ1

∂ξ1

∂Θ
--------

∂Φ0

∂Θ
----------+

r 1=
O ε3( ).+

dS
r

2 Θsin
γcos

-----------------dΘdϕ r
2 Θsin
er n⋅( )

-----------------dΘdϕ= =

=  
1 2ξ ξ2

+ +( ) Θsin

1
1
2
--- ∂ξ

∂Θ
------- 

 
2

– O ε3( )+

------------------------------------------------dΘdϕ ,

dS 1 2ξ1 2ξ2 ξ1
2 1

2
--- ∂ξ

∂Θ
------- 

 
2

+ + + + 
  Θ Θdϕ ,dsin=

r 1 ξ :+=

Φ Q Φ1 Qξ1–( )r 1=+=

+ Φ2 Qξ2– ξ1

∂Φ1

∂r
---------- ξ1

2
Q+ +

r 1=
O ξ3( ),+

FE
E

2

8π
------ —Φ( )2

8π
---------------- Q

2

4π
------

Q
4π
------

∂Φ1

∂r
---------- 2ξ1Q+ 

 
r 1=

–= = =

–
Q
4π
------

∂Φ2

∂r
---------- 2ξ2Q ξ1Q

∂2Φ1

∂r
2

------------ 2ξ1

∂Φ1

∂r
----------– 5ξ1

2
–+ +

r 1=

+
1

8π
------

∂Φ1

∂r
----------

r 1=

2 1
8π
------

∂Φ1

∂Θ
----------

r 1=

2

O ε3( ),+ +
(7D)

The expansions of the velocity potential ψ and its
partial derivatives on the drop surface are constructed
by analogy with (1D), and we have

(8D)

(9D)

(10D)
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Abstract—A time-independent one-dimensional model of the electron energy balance in the region of the mag-
netic filter of a volume plasma-based ion source is justified. The local electron energy balance equation and the
steady density profiles of the plasma components are used to determine the transverse (with respect to the mag-
netic field) electron temperature profile, which is found to agree well with the experimental profile. The tem-
perature profile obtained analytically is then used to refine the particle balance in a plasma with two ion species
and, accordingly, to find the optimum conditions for the formation of an H–/D– beam and for extracting the
beam from the source. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In [1], we proposed a model describing the transport
of a plasma with two ion species across the magnetic
field in a steady volume plasma-based source of nega-
tive ions which is intended to inject ion beams into
cyclotron accelerators from the outside. Profiles of the
electric field and of the densities of the plasma compo-
nents obtained with this model allowed us to determine
the optimum conditions for the formation of an H–/D–

beam. The calculated plasma parameters were found to
agree qualitatively with the experimental data obtained
in multipole two-chamber ion sources with a magnetic
filter adjacent to the plasma electrode [1, 2]. However,
a qualitative comparison between the numerical and
experimental results turned out to be incorrect,
because, in simulations, we specified the experimen-
tally measured mean electron temperature in the first
chamber (where the plasma is created) and neglected
the electron temperature variations in the second cham-
ber (in the region of the magnetic filter), whereas the
experimental data show that the electron temperature
depends on the magnetic and electric fields, as well as
on some other plasma parameters in the magnetic filter
region. The plasma electrons along the magnetic filter
may be cooled markedly, which leads to a more effi-
cient generation of negative ions via the dissociative
attachment of slow electrons to the excited gas mole-
cules. 

The cooling of plasma electrons in the transverse
magnetic field of a volume plasma-based ion source
was studied in [3, 4]. However, the formula derived in
those papers to describe the electron temperature vari-
ations is semiempirical, because the authors assumed
that the electron heat flux through the magnetic filter
is proportional to the electron flux itself. The propor-
1063-7842/00/4508- $20.00 © 21009
tionality coefficient was varied over a broad range and
was determined by bringing the calculated profile of
the electron temperature as a function of the magnetic
flux into coincidence with the relevant experimental
profile. The profile derived by Haas et al. [5] to
describe the spatial variation of the electron tempera-
ture along the magnetic filter is also semiempirical.
The constants characterizing this profile were found
from the corresponding experimental profiles of the
electron density, electron temperature, and plasma
potential. In the theoretical model proposed in [5], the
steady-state electron plasma density across the mag-
netic field was described by an exponentially decreas-
ing one-dimensional profile and the electron tempera-
ture was assumed to be a two-dimensional function of
the coordinates. However, a comparison between the
electron-energy relaxation length and the sizes of the
chamber of the ion source under consideration shows
that electron heat conduction equalizes the electron
temperature along the magnetic field. Consequently,
the electron temperature should be treated as a one-
dimensional function of the coordinate transverse to
the magnetic field.

In this paper, we apply the electron energy balance
equation and the density profiles of the plasma compo-
nents [1] in order to derive a steady-state transverse
(with respect to the magnetic field) electron tempera-
ture profile in a multipole two-chamber ion source.
Then, we use the temperature profile obtained analyti-
cally in order to refine the particle balance in a plasma
with two ion species and, accordingly, to find the opti-
mum condition for the formation of an H–/D– beam and
for extracting the beam from the source.
000 MAIK “Nauka/Interperiodica”
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JUSTIFICATION FOR THE USE 
OF A ONE-DIMENSIONAL ELECTRON ENERGY 

BALANCE EQUATION

We analyze electron heat transport in a magnetic
field using the classical scheme of a multicusp two-
chamber ion source described in [1, 2] as an example.
The second chamber (the region of the magnetic filter)
is a cylinder of radius R and length Lf. A plasma elec-
trode with an exit hole is positioned at the end of the
second chamber and is aimed at extracting ion beams
from the source. The longitudinal profile of the mag-
netic field, which is directed along the z-axis of a cylin-
der, is bell-shaped. We neglect the magnetic field non-
uniformity and set the magnetic field B equal to its
mean value along a magnetic filter of length Lf in order

for the magnetic flux  to be conserved. We put

the origin of the coordinates at the entrance to the sec-
ond chamber, so that the region where the plasma is
created (the first chamber) corresponds to the negative
values of the ordinate z.

The time-independent electron energy balance
equation in the second chamber is generally three-
dimensional. Under the condition that the energy of the
directed motion is much lower than the thermal energy,

me /2 ! Te, the energy balance equation has the
form [6]

(1)

where qe is the electron heat flux, ue is the directed elec-
tron velocity, ne is the electron density, Te is the electron
temperature, me is the mass of an electron, m0 is the
mass of a gas molecule, and νe0 is the averaged (over
the relative velocities) rate of elastic collisions between
electrons and molecules.

Let us show that the electron temperature is a one-
dimensional function of the coordinates Te(z). In a
weakly ionized plasma, the electron-energy relaxation
lengths along and across the magnetic field are equal
to [7]

(2)

where ωBe = eB/mec is the electron gyrofrequency.

Estimates made for sources of the type under con-
sideration suggest that λ|| @ R and λ⊥  < Lf. Conse-
quently, electron heat conduction equalizes the electron
temperature along the magnetic field, and the local
energy balance across the magnetic field can be
described by equation (1).

B zd
0

L f∫

ue
2

2
3
---div qe neue( )—Te

2
3
---neTe div ue+ +

+
2me

m0
---------neTeνe0 0,=

λ||
10
3
------

Te

me
2

------
m0

νe0
------- 

  1/2

, λ⊥ λ||
νe0

ωBe

--------,= =
In equation (1), the directed electron velocity is
defined as

(3)

where h is the unit vector along the magnetic field and
ue||, uet , and ued are the directed-velocity components
along and across the magnetic field, respectively.

In a strong magnetic field, the electron transport
coefficients have the form be|| = e/meνe0, De|| = Tebe||/e,

bed = e/meωBe , Ded = Tebed/e, be⊥  = eνe0/me , and
De⊥  = be⊥ Te/e.

The electric field E⊥  is driven by a current flowing
through the magnetic filter when the plasma electrode
is held at a positive bias potential relative to the walls
of both the first and second chambers of the source. In
the central region of the second chamber, the conditions
E⊥  @ E|| and —⊥ ne @ —||ne are satisfied for a plasma with
two ion species such that the density of negative ions is
comparable with the electron density. The electric field
causes negative ions with the temperature Ti ! Te to
accumulate near the chamber axis, thereby creating an
ion–ion plasma with a weak field E|| ~ Ti/e in the axial
region [7]. Since this field is not strong enough to con-
fine the electrons, the radial electron density ne(r) is
nearly constant. An electron–ion plasma with a strong
ambipolar field E|| ~ Te/e occupies the region near the
chamber wall; moreover, the plasma potential drops
preferentially in a narrow charged sheath in the imme-
diate vicinity of the wall. Consequently, far from the
wall of the second chamber, we can neglect the contri-
bution to equation (1) of the velocity component ue|| in
comparison with the contribution of uet.

In (1), the electron heat flux has the form

(4)

where gTe = (Te/νe0)(∂νe0/∂Te) is the thermal diffusivity.

ue ue|| ued uet,+ +=

ue|| be||Ee|| De||
—|| neTe( )

neTe

----------------------,–=

uet be⊥ E⊥ De⊥
—⊥ neTe( )

neTe

----------------------,–=

ued bed E h×[ ] Ded

h — neTe( )×[ ]
neTe

----------------------------------,+=

ωBe
2

qe qe|| qet qed,+ +=

qe|| neTebe||E||
5
2
---neDe||—||Te,–=

qet = gTe neTebe⊥ E⊥ —⊥ neTeDe⊥( )+[ ]–

–
5
2
---ne De⊥ —⊥ Te = gTeneTeuet– 5

2
--- gTe+ 

  neDe⊥ —⊥ Te,–

qed neTebed h E×[ ]–
5
2
---Ded h —⊥ neTe( )×[ ] ,+=
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For Te ≤ 3 eV, the cross section σe0 for elastic elec-
tron–molecule collisions is independent of the electron
temperature [8]. In this case, the collision frequency is
proportional to the electron velocity, and, under the
assumption that the electrons obey a Maxwellian veloc-
ity distribution, the effective collision frequency has the
form [6] νe0 = (4/3)σe0 vTe, where vTe = (8Te/πme)1/2

is the electron thermal velocity and  is the density
of the gas molecules. Accordingly, the thermal diffusiv-
ity is equal to gTe = 1/2.

Repeating the arguments regarding the longitudinal
and transverse components of the directed velocity, we
can also neglect the electron heat flux qe|| along the
magnetic field in comparison with the cross-field flux
qe⊥ . The components ued and qed of the electron velocity
and electron heat flux do not contribute to equation (1),
because, for a uniform magnetic field, we have ∇ [h ×
E], ∇ [h × —(neTe)] = 0. Hence, far from the wall of the
second chamber of the ion source, the electron energy
balance equation (1) is one-dimensional and the
directed electron velocity and electron heat flux are
described by the above expressions for uet(z) and qet(z),
respectively.

PROFILES OF THE ELECTRON TEMPERATURE 
AND OF THE DENSITIES OF THE PLASMA 

COMPONENTS ALONG THE MAGNETIC FILTER

To determine the electron temperature from equa-
tion (1) requires a knowledge of the steady profiles of
the electron density and electric field in a current-carry-
ing plasma. Plasma transport across a strong magnetic
field is governed by heavy plasma ions rather than by
plasma electrons. Using the one-dimensional model
developed in [1] to describe the transport of a plasma
with two ion species across the magnetic field and tak-
ing into account the condition that the plasma is quasi-
neutral, we can obtain the following equations for the
densities of negative ions n–(x) and electrons ne(x) in a
source of H–/D– ions:

(5)

(6)

Here, x = z/Lf ,  = n–/n–0, n–0 = n–(x = 0),
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β = SADnH, γ = SDA , nH is the atomic density,

 is the density of the excited gas molecules, SAD

= 〈σv〉AD is the rate of associative detachment of elec-
trons from negative ions in their collisions with
H atoms, SDA = 〈σv〉DA is the rate of dissociative attach-
ment of electrons to the excited molecules H2(v ''),
SMN = 〈σv〉MN is the ion–ion recombination rate, SED =
〈σv〉ED is the rate of electron detachment from negative
ions in electron–negative-ion collisions, SIZ = 〈σv〉 IZ is
the rate of ionization of H atoms by electrons, E0 is the
electric field of a current-carrying plasma at the

entrance to the filter, and b± = eν±0/2m±  are the
mobilities of positive and negative ions.

Equation (5) was derived in the approximation
dγ/dx ! SEDdn–/dx and dln(SED)/dx ! dln(n–)/dx. The
density of the excited molecules is determined from the
balance between their production and losses:

(7)

where nef is the density of fast electrons emitted from
the heated cathode into the first chamber, SEV and 
are the production rate of the excited molecules and
their mean directed velocity, and b = 5–10 is the num-
ber of collisions of the excited molecule with the wall
that still do not change the excited state of the mole-
cule.

Estimates show that the loss rates of the excited gas
molecules on the walls of both the first and second
chambers are higher than the rates of their quenching in
the processes of dissociative attachment (SDA) and ion-
ization (SIZ) in the source plasma.

In a first approximation, we assume that α1 and α2
are independent of both the electron temperature and
the x-coordinate. Then, we obtain from (5) and (6) the
steady profile of the electron plasma density:

(8)

where we introduce the notation (x) = ne(x)/ne0 and
ne0 = ne(x = 0).

Accordingly, for α1x ! 1, the electric field profile in
a current-carrying plasma is given by the expression

(9)

Here, E0 = 2(ϕ0 – ϕe)/(2 + α2)Lf , where ϕ0 is the plasma
potential in the first chamber and ϕe is the potential of
the plasma electrode.

In the model proposed here to describe the electron
heat transport in the second chamber of a volume

nH2 v ''( )

nH2 v ''( )

ωB±
2

nH2
nef SEV nH2 v ''( )νH2

/bR,=
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ne* x( ) α1x( ) 1
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α1
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,exp=

ne*
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plasma-based ion source, equation (1) reduces to the
following equation for the electron temperature:

(10)

where y = Te(x)/Te0, Te0 = Te(x = 0),  = E⊥ eLf/Te0, A =

1.64, and D = 0.57 /m0Te0.

Ignoring the electric field  and the derivative

d /dx, we obtain the following solution to equation
(10):

(11)

An analysis of equation (10) shows that, for x ≤ 1,
the electric field of a current-carrying plasma contrib-
utes to the electron temperature only in the region
where this field is maximum. At small values of the
argument x ≥ 0, it is important to take into account the
electron density profile.

For α1x ! 1, we can use expression (8) to obtain
from (10) the following equation for Te at x ≥ 0:

(12)

where C = 0.38(α2 – α1)α2.
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Fig. 1. Electron temperature profiles along the source axis in
the region of the magnetic filter: (1) experimental profile,
(2) profile calculated from (11), (3) corrected profile (14),
and (4) corrected profile (16).
This equation can be transformed into the first-order
differential equation

(13)

in which the second term on the right-hand side is a
small correction to the first term. Solving equation (13)
by the method of successive approximations yields

(14)

where y0(x) is defined in (11) and C1 = C[(2D/(2A +
1))−1/2 + 3/2α2]/2(A + 1).

For x ≤ 1, we can neglect the second derivative of the
function y in comparison with the leading-order term
D1 in equation (10) and apply the method of successive
approximations to solve the equation

(15)

where D1 = D – 0.29(α2 – α1)eE0Lf/Te0.

In this case, the electron temperature profile has the
form

(16)

We compared the calculated and experimental pro-
files Te(x) for the following parameters of the plasma
and of the ion source [2]: B = 100 G, Lf ≈ 5 cm, R =
5 cm,  = 1014 cm–3, nH = 1013 cm–3, ne0 ≈ 9 ×
1012 cm–3, Te0 ≈ 2 eV, ϕ0 ≈ 4 eV, and ϕe ≈ 1.25 eV. Fig-
ure 1 shows the experimental (curve 1) electron tem-
perature profile and the analytic (curve 2) profile Te(x)
calculated from (11). In a first approximation, we
assume that the parameters α1 and α2 are independent
of both the electron temperature and the x-coordinate.
We bring the profile ne(x) calculated from (8) into coin-
cidence with the experimental electron density profile
(see Fig. 2) to obtain α2 ≈ 3.3 and α1 ≈ 0.3. Substituting
these parameter values into formulas (14) and (16), we
determine the corrections to the electron temperature
profile (11), which are represented in Fig. 1 by curves 3
and 4, respectively.

Note that, for the above parameters of the ion-
source plasma, the conditions for the electron energy
relaxation λ|| @ R and λ1 < Lf and the condition

me /2 ! Te are all well satisfied. The directed electron
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velocity should be estimated from the maximum com-
ponent ued in expression (3).

By virtue of the relationship β/γ ≈ 1.5, our model of
the electron heat transport across the magnetic field far
from the wall of the second chamber is one-dimen-
sional with a fairly high degree of confidence. When the
associative detachment of electrons from negative ions
is enhanced (i.e., when β/γ @ 1 and ne @ n–), the elec-
tron–ion plasma expands from the wall toward the
chamber axis and occupies most of the volume of the
ion source [7]. In this case, the electron density
becomes two-dimensional and the one-dimensional
approach used here fails.

CONCLUSION

The one-dimensional model proposed here to
describe the electron energy balance in the region of the
magnetic filter of a volume plasma-based ion source
allowed us to determine the electron temperature pro-
file along the source axis. The analytic profile agrees
well with the experimental one and makes it possible to
refine the rates of the elementary processes that are sen-
sitive to the electron temperature and govern the equi-
librium density profiles (6) and (8) of the plasma com-
ponents.

In a second approximation, equation (5) for the den-
sity of negative ions should be solved with the coordi-
nate-dependent coefficients α2(x) and α1(x). The solu-
tion to this equation,

where F(x) = exp (x)dx, then enables us to refine

the density profile of negative ions in the magnetic filter
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Fig. 2. Electron density profiles in the magnetic filter:
(1) experimental profile and (2) profile calculated from (8).
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region adjacent to the plasma electrode. By controlling
this profile, it is possible to form ion beams with the
maximum current and to extract them from the source.

The above plasma parameters are representative of
ion sources of the type under consideration. Under the
conditions prevailing in these sources, taking into
account the electron-density and electric-field profiles
yields a small correction to the electron temperature
profile in the region of the magnetic filter. Specifically,
the variables ne(x) and Te(x) in the electron energy bal-
ance equation become independent of each other. The
electron density is determined from the model of the
transport of heavy plasma components across the mag-
netic field, under the assumption that the plasma is
quasi-neutral. In this case, electron temperature varia-
tions may substantially change the plasma density pro-
file.

If the plasma electric field is strong (with an
increased potential ϕ0 in the first chamber and a
decreased potential ϕe of the plasma electrode), then
the relation between the electron-density and electron-
temperature profiles becomes closer. An increase in the
plasma electric field raises the intensity of the electron
heat flux qet (4), which is directed toward the first cham-
ber (where the plasma is created) and is governed by
the directed electron velocity. As a result, the plasma
electrons are cooled more efficiently in the magnetic
filter region adjacent to the plasma electrode.
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Abstract—Numerical simulation of the melting and crystallization processes of monocrystalline silicon
exposed to the nanosecond radiation of a ruby laser was carried out with the kinetics of the phase transforma-
tions accounted for on the basis of Kolmogorov equations. A two-dimensional mechanism of nucleation and
growth of the new phase was invoked to describe the phase transitions. It was shown that the temporal depen-
dences of monocrystal overheating and liquid phase supercooling in the melting and crystallization stages,
respectively, are nonmonotonic and determined by the kinetics of the phase transitions. The maximum values
of the overheating and supercooling were ~100 K. © 2000 MAIK “Nauka/Interperiodica”.
The melting and recrystallization processes of
monocrystalline silicon initiated by nanosecond laser
pulses have been studied in many papers (see, for
example, [1–4]). Generally, the Stephan problem is
solved to clarify the main relationships of the effect of
laser irradiation. This approach is warranted for pro-
cesses deviating only slightly from equilibrium condi-
tions. However, as follows from experimental studies
[5–7] on irradiation of semiconductor surfaces by
nano- and picosecond laser pulses, phase transitions
occur far from equilibrium. In [8, 9], the simulation of
laser annealing of amorphous silicon layers takes into
account the nonequilibrium character of the processes
and is based on a consideration of the phase state of the
irradiated sample cell as a function of enthalpy and the
elapsed time before nucleation of the new phase.
Another approach [10] is based on solving the Stephan
problem for the nonlinear dependence of the phase
boundary velocity on temperature. However, problems
involving the kinetics of the new phase formation have
rarely been dealt with in these studies.

This paper presents a model of melting and crystal-
lization of monocrystalline silicon irradiated by a nano-
second ruby laser, which takes into account the kinetics
of the phase transformations using Kolmogorov equa-
tions [11–13]. We previously used a similar approach in
a numerical simulation of laser annealing of amorphous
silicon [14, 15], in which the crystallization process of
a highly supercooled melt is controlled by a three-
dimensional growth mechanism of already available
nuclei. Here, it is assumed that both melting and crys-
tallization occur as a result of homogeneous nucleation
through two-dimensional layer-by-layer growth [11,
12, 16–18].

Variation of the temperature of monocrystalline sil-
icon irradiated by nanosecond laser pulses is described
1063-7842/00/4508- $20.00 © 21014
on the basis of the one-dimensional thermal conductiv-
ity equation

(1)

with the boundary and initial conditions

(2)

where ρ is the density, c(T) is the specific heat capacity,
k(x, T) is the coefficient of thermal conductivity, L is the
latent heat of phase transition, and T0 is the initial tem-
perature.

The heat source term S(x, t) in (1) describes the heat
evolved due to absorption of the laser radiation:

(3)

where R and α(x, T) are the reflection and absorption
coefficients, respectively, and W and τ1 are the energy
density and duration of the laser pulse, respectively.

The two last terms on the right-hand side of Eq. (1)
describe the capacities of heat sinks and sources in
melting and crystallization of silicon. Here, ϕ(x, t) is
the fraction of the melt formed at point x by the time t
after melting begins and Ψ(x, t) is the fraction of crys-
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tallized melt at point x by the time t after crystallization
begins; in this case, the condition ϕ(x, t) + Ψ(x, t) + γ(x,
t) = 1 should be fulfilled, where γ(x, t) is the fraction of
monocrystal not melted at point x by the time t. In the
theory of phase transitions, the fraction of new phase
formed is expressed in terms of the nucleation rate J(t)
and the growth rate V(t) [11, 12]:

(4)

where t1 is the time of the start of nucleation at point x
and β is the form factor. The function J(t) is determined
by the nucleation mechanism. In this study, the kinetics
of melting and crystallization is considered in the
framework of the layer-by-layer growth model [11, 13];
i. e., it is assumed that the growth of the new phase pro-
ceeds as ongrowth of successive layers. The formation
of each layer proceeds by two-dimensional growth of
nuclei (the exponent n = 2 in (4)), and the nuclei of a
new ith layer can emerge only in the crystallized
regions of the preceding (i + 1)th layer. In this case, the
expression for the nucleation rate has the form [11, 12]

(5)

where N = N0 f(x, t), N0 is the density of atoms per cm2

at the interface, and f(x, t) = Ψ(x + a, t) + γ(x + a, t) =
1 – ϕ(x + a, t) is the fraction of monocrystalline phase
of the preceding layer where crystallization centers of
the next layer can be formed.

During melting, centers of the liquid phase can arise
only in the crystalline regions of the layer and, in this
case, f(x, t) = 1 – ϕ(x, t) [12]; U is the activation energy
for the transition of an atom through the phase bound-
ary; a is the interatomic distance (the monolayer
height); σ is the surface energy of the phase boundary;
∆T = T – Tm for melting; and ∆T = Tm – T for crystalli-
zation.

The expression used for the growth rate has the form
[13]

(6)

where L* is the melting heat per atom.
In the two-phase (transition) region, which includes

molten and crystalline silicon, the parameters of the
problem are defined as follows [14]:

(7)

where the indices l and s refer to the liquid and crystal-
line phases, respectively.

Equation (1), in combination with (2)–(7), was
solved numerically by a sweep method. The shape of
the laser pulse was specified by the function sin2(πt/2τi)
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with τi = 70 ns. The values of the silicon parameters
used in solving the problem are listed in the table.

In Fig. 1, the temporal dependences of the tempera-
ture of a monocrystalline silicon surface are shown for
two values of the energy density, W = 1.5 and 2 J/cm2.
It is seen that at the early stage of heating, a narrow
peak is observed on the temperature curve. As follows
from the calculations, this peak appears as the silicon
begins to melt and corresponds to overheating of the
surface layer. The overheating before melting starts is
as high as ∆T ≈ 100 K (Fig. 3), both at W = 2 J/cm2 and
W = 1.5 J/cm2. In the time interval ∆t < 1 ns in a near-
surface layer ∆x ≈ 0.075 µm thick (Figs. 2, 5), nuclei of
the liquid phase arise, which at ∆T ≈ 100 K start to grow
at a high rate (Fig. 4). Because of the large latent heat L
of the phase transition in silicon, formation of the melt-
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Fig. 1. Temporal dependence of the temperature of silicon
surface at a radiation power density of W = (1) 1.5 and
(2) 2 J/cm2.
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Fig. 2. Temporal dependence of the silicon melting depth.
ϕ = 0.01 (solid curve), ϕ = 0.99 (dashed curve); (1, 2) same
as in Fig. 1.
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ing nuclei and their growth causes a reduction in over-
heating at the forward boundary of the two-phase
region down to ∆T ≈ 10 K (Fig. 3), cooling of the adja-
cent crystalline regions (Figs. 5, 6), and a significant
reduction in the propagation velocity of the forward
boundary down to V ≈ 2 m/s (Fig. 4).1 As the forward
boundary slowly propagates into the sample bulk
(Fig. 5, curves 1–5), an increase in the melt fraction at
the surface and formation of the rear boundary of the
transition region occur; i.e., a continuous liquid phase

1 The condition used to define the position of the rear boundary of
the two-phase (transition) region is that the melting (crystalliza-
tion) process is considered finished if ϕ = 0.99 (Ψ = 0.99) [8]. The
position of the forward boundary is defined by the condition ϕ =
0.01 (Ψ = 0.01).

–100

100

(T – Tm), K

t, ns
50 150 200 250 300

–50

0

12
50

100

Fig. 3. Temporal dependence of overheating and supercool-
ing of silicon at the boundaries of the two-phase region ϕ =
0.01 (solid curve) and ϕ = 0.99 (dashed curve) ((1, 2) same
as in Fig. 1).
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Fig. 5. Depth variation of the silicon liquid phase fraction at
W = 2 J/cm2 at various times t = (1) 59, (2) 61, (3) 62, (4) 64,
(5) 65, (6) 68, (7) 80, (8) 100, and (9) 133 ns.
layer forms. Thus, at the initial stage of melting of
monocrystalline silicon, in time ∆t ≈ 5–6 ns, a molten
layer ∆x ≈ 0.07–0.08 µm thick with a fairly narrow
transition region ∆x ≈ 0.015 µm is formed at the surface
(Figs. 2, 5).

Further heating of silicon by laser radiation results
in renewed increases in overheating and the velocity of
forward boundary movement, both of which attain their
maximum values at this stage (Figs. 3, 4). Thus, at W =
2 J/cm2, ∆T |ϕ = 0.01 ≈ 80 K and V |ϕ = 0.01 ≈ 9 m/s. At the
rear boundary, the overheating is somewhat higher,
∆T |ϕ = 0.99 ≈ 105 K, and the velocity of the boundary
movement V |ϕ = 0.99 becomes equal to V |ϕ = 0.01, remain-
ing so until completion of the melting process. As the
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Fig. 4. Temporal dependence of the velocity of advance of
the boundaries ϕ = 0.01 (solid curve) and ϕ = 0.99 (dashed
curve) of the two-phase region at W = (1) 1.5 and
(2) 2 J/cm2.
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Fig. 6. Calculated temperature profiles at W = 2 J/cm2 for
time t = (1) 59, (2) 61, (3) 62, (4) 64 ns.
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melt moves deeper into the sample bulk and the influx
of light energy decreases, the overheating and the prop-
agation rate gradually decrease and, by the time the
laser radiation is ended, the ingress of melt into the
semiconductor bulk ceases and the two-phase region
remains immobile for ∆t ≈ 20 ns (Figs. 2, 4). For this
period of time, as a result of heat drain to the sample
volume, which is no longer compensated by the laser
radiation, the overheating vanishes completely and the
melt becomes supercooled by ∆T ≈ 100 K (Fig. 3) in the
vicinity of the transition region and by 80 K (Fig. 1) at
the surface. With the onset of, and increase in, super-
cooling, the formation and growth of the nuclei of the
crystalline phase begins (Fig. 7, curve 8). The heat
release in the silicon crystallization process causes an
increase in temperature and the emergence of a peak in
the temperature profile within the two-phase region
(Fig. 8, curves 2–4). The temperature gradient pro-
duced in the melt at the forward boundary of the two-
phase region (Ψ = 0.01) causes spreading of the transi-
tion region toward the surface, increasing its thickness
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Fig. 7. Depth variation of the fraction of crystallized silicon
at W = 2 J/cm2 for time t = (1) 136, (2) 139, (3) 142, (4) 145,
(5) 150, (6) 201, (7) 243, (8) 251, (9) 259, and (10) 268 ns.
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to ∆x ≈ 0.075 µm (Fig. 2), since the emerging nuclei of
the new layer are subjected to greater supercooling and,
consequently, their nucleation and growth rates are
higher than in the preceding layer. As more heat is
released from growth of the crystalline phase, the tem-
perature distribution becomes uniform (Fig. 8) and
supercooling at the forward boundary (Ψ = 0.01) and
the rear boundary (Ψ = 0.99) of the transition region
drops to ~4 K and ~18 K, respectively. The velocity of
advance of the boundaries decreases to 3–4 m/s. The
advance of the crystallization region toward the sample
surface is accompanied by a minor temperature
increase (of ~2 K); and the velocities V |Ψ = 0.99 and
V |Ψ = 0.01 drop from ~3 to 2.2 m/s and from 4 to 3 m/s,
respectively. Only at the final stage, when the thickness
of the transition layer becomes less than 0.05 µm (Fig. 2),
do the supercooling at the rear boundary and the veloc-
ity V |Ψ = 0.99 increase sharply (Figs. 3, 4). The reason is
that the heat sources contained in a narrow layer with
ψ > 0.5 are insufficient to offset the heat which is being
removed to the sample bulk.

0 0.1

T, K

x, µm
0.2 0.3 0.5

1600

1

2

1650

1700

34

5

0.4
1550

Tm

Fig. 8. Calculated temperature profiles at W = 2 J/cm2 for
time t = (1) 136, (2) 139, (3) 142, (4) 145, and (5) 150 ns.
Silicon parameter values

Parameters Crystalline Si Molten Si

ρ, g/cm3 2.328 2.53–0.152 × 10–3(T–Tm) [19]

c, J/g K 0.844 + 1.18 × 10–4T – 1.55 × 104T–2 [19] 1.04

L, J/g 1787 [19]

k, W/cm K , T < 1200 K, , T ≥ 1200 K [20] 0.585 [19]

R 0.35 0.72

α, cm–1 1578exp(T/493) [21] 106 [20]

U, eV 1.22 [22]

σ, erg/cm2 300

1521

T1.226
------------- 8.97

T0.5
----------
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Thus, the temporal variations of the overheating of
crystalline silicon and supercooling of the melt proceed
nonmonotonically and depend on the phase transfor-
mation kinetics. Maximum overheating and supercool-
ing values, both equal to ~100 K, are attained at the
early stages of melting and crystallization, respectively.
Formation of a continuous film of melt at the surface of
monocrystalline silicon takes 5–6 ns. The average
velocity of advance of the two-phase region is ~8–9 m/s
for melting and ~3–4 m/s for crystallization.
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The Determination of the Model Interaction Potential 
Parameters from a Comparison of Experimental and Calculated 

Ion Ranges in an Amorphous Substance
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Abstract—Parameters of the model atomic interaction potential are suggested to be determined by comparing
the experimental and analytical values of projective ion ranges. The parameters were found for the interaction
of Bi, Pb, Au, Yb, Er, Eu, Cs, Xe, Sn, Rb, Kr, Ga, and Cu ions with carbon and boron atoms. © 2000 MAIK
“Nauka/Interperiodica”.
The proper selection of atomic interaction potential
is of great importance in analysis and numerical simu-
lation of low- and medium-energy ion motion in a sub-
stance. The interaction potential must adequately char-
acterize elastic scattering while being easy to apply. In
[1], a model interaction potential that basically satisfies
these requirements was proposed. It is written in the
form of screened Coulomb potential

(1)

where Z1 and Z2 are the charges of an ion nucleus and
target atom, respectively; r is the distance between col-
liding particles; and a is the screening radius.

It is assumed that the screening radius depends on
the ion energy as

(2)

This relationship provides an adequate description
of the experimentally found stopping power of ions
in  elastic collisions throughout the energy range. Here,

aTF = 0.8853a0/(  + )1/2, e is the charge of
an  electron, and a0 is the Bohr radius. The reduced
energy ε is related to the ion energy E as ε =
Em2aTF/(Z1Z2e2(m1 + m2)), where m1 and m2 are the
masses of an ion and target atom, respectively. The
parameter β appearing in (2) is viewed as an adjusting
parameter.

In this work, we will try to estimate β for specific
ion–target pairs by comparing theoretical and experi-
mental values of projective ion ranges in a substance.

For interaction potential (1) with screening radius
(2), the stopping power of ions is given by [1]

(3)

V r( )
Z1Z2e

2

r
-----------------

1 r/a, r– a,≤
0, r a,>




=

a aTFε 1/4–
/β.=

Z1
2/3

Z2
2/3

sn ε( ) ε
β2
------ f X ε( )( ),=
1063-7842/00/4508- $20.00 © 21019
where f(X) = X[(1 + X)ln(1 + 1/X) – 1] and

Figure 1 shows the stopping powers of ions sn(ε)
calculated from (3) for three values of β. It follows that
the stopping power depends on β only slightly for ε > 2.
Hence, results for ion energies ε ≤ 2 are the most appro-
priate if β is determined by comparing the theory and
experiment.

Projective ranges will be estimated using results
obtained in [2]. In that work, elastic scattering of ions
is treated in terms of potential (1) and inelastic scatter-
ing is considered within the approximation of continu-

X ε( ) β2

4 ε3/2 βε3/4
+( )

---------------------------------.=

0.1

10–3 10–2

sn

ε10–1 100 101
0

0.2

0.3

0.4

0.5

2
3

1

Fig. 1. Stopping power vs. energy for model potential (1)
with screening radius (2) at β = (1) 0.5, (2) 0.6, and (3) 0.7.
000 MAIK “Nauka/Interperiodica”



 

1020

        

SHEŒKIN 

 

et al

 

.

                                     
ous deceleration with stopping power sn(ε) = k ,
where k is a dimensionless parameter. In the calcula-
tions, we will take into account the threshold character
of ion deceleration. This means that an ion will stop if
its energy ε becomes less than the threshold energy εth.
The latter is related to the energy of atom displacement
Ed [3]. In view of these assumptions, the projective ion
range Rp(ε) can be represented in the form [2]

(4)

where

n is the target atom density, Q = γkβ2, γ = 4m1m2/(m1 +
m2)2, and µth is the mean direction cosine of ion motion
at the instant its energy becomes less than εth.

At ε ≤ 2, we can put N = 6 in representation (4); in
this case, the relative error of the ion range calculation
will not exceed 0.5%, according to [2]. In [2], µth was
calculated by the Monte Carlo method. In this work, we
suggest an expression approximating the results of [2]:

(5)

The use of (5) instead of the Monte Carlo expression
for µth introduces additional relative and absolute errors
into the projective ranges of no more than 0.1% and
0.5 Å, respectively, throughout the energy range.

The coefficients bi in (4) are found by solving the set
of linear equations with N variables

(6)

where 

ε

Rp ε( ) R̃p ε( ) µth ε( )R̃p εth( ),–=

R̃p ε( ) λ0 ε( ) biε
i/2

,
i 0=

N

∑=

λ0 ε( ) β2 ε
nπaTH

2
1 Q/2+( )

---------------------------------------,=

µth ε( ) 1 0.16 1.6
m2

m1
------ 3.65

m2

m1
------ 

 
2

+ + 
  ε0.25

+
1–

.=

F j biψi j,

i 1=

N

∑+ 0, j 1…N ,= =

Fi λ0 b0 L λ0( ) λ0–( )+( ) L λ0ε
i/2( ) λ0ε

i/2
–( ) ε,d

0

εmax

∫=

ψi j, L λ0ε
i/2( ) λ0ε

i/2
–( ) L λ0ε

j /2( ) λ0ε
j /2

–( ) ε,d

0

εmax

∫=

L f( ) pe ε ε''( ) f ε'( )µ ε'' ε',( )
0

ε''

∫
0

ε

∫=

× pn ε'' ε'( )dε'dε'',
Let us briefly explain the physical meaning of the
functions involved in (6). The function pe(ε  ε'')
defines the probability density of the ion energy being
changed from ε to ε" under inelastic deceleration,
pn(ε''  ε') defines that of the ion energy being
changed from ε" to ε' under elastic collision, and µ(ε'', ε')
is the scattering angle cosine of an elastically colliding
ion when its energy changes from ε" to ε'. The value of
εmax is the extreme of the energy interval in which pro-
jective ranges are calculated.

According to (4)–(6), for an ion–target pair, the pro-
jective range depends on β, which characterizes elastic
scattering of ions, and k, which describes inelastic
deceleration of ions. Assuming these parameters to be
unknown, we will try to find them by contrasting exper-
imental and theoretical values of the projective ranges.
As a measure of discrepancy, we will take residue
S(β, k):

(7)

where (εi) is an experimental projective range, σi is
the standard deviation of the measured projective
ranges at an energy εi , Nexp is the number of data points,
and Rp(β, k, εi) is a theoretical projective range [unlike
(4), the parameters β and k enter in explicit form].

The parameters β and k will be found from the min-
imum condition for the residue S(β, k). Experimental
values of projective ranges will be taken from [4]. The
value of σi in [4] is defined as σi = max(14 Å;

0.05 (εi)).

In order that the errors involved in β and k be deter-
mined simultaneously with the calculation of these
parameters, we will make the following assumptions.
Let the discrepancy between calculated and experimen-
tal results be random. Also, let random discrepancies
between experimental and theoretical ranges of ions
with an energy εi be distributed by the normal law with

b0
2 Q+

Q γ 1 m2/m1+( )/2+
------------------------------------------------,=

µ ε'' ε',( ) 1
2
--- 1

m2

m1
------– 

  ε''
ε'
---- 1

m2

m1
------+ 

  ε'
ε''
----+ ,=

pe ε ε''( ) 1
εQ
------- ε''

ε
---- 

 
1
Q
---- 1–

, ε'' ε,≤=

pn ε'' ε'( ) γX ε''( ) X ε''( ) 1+[ ]
ε'' γX ε''( ) 1 ε'/ε''–( )+[ ] 2
-----------------------------------------------------------=

×
1 at 1 γ–( )ε'' ε' ε'',≤ ≤
0 at ε ε'', ε' 1 γ–( )ε''.<>




S β k,( )
Rp

exp εi( ) Rp β k εi, ,( )–
σi

----------------------------------------------------
2

,
i 1=

Nexp

∑=

Rp
exp

Rp
exp
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the zero expectation and a dispersion . Then [5], S in
(7) is a random quantity obeying the chi-square (χ2)
distribution with the number of degrees of freedom
(Nexp – 1). The probability density for this distribution
is

(8)

where Γ(x) is gamma function.
The expectation of the random quantity S is (Nexp – 1).

The probability that the random quantity S lies in the
interval 0 ≤ S ≤ SP is given by

(9)

The tolerance ranges for β and k are determined
from the inequality S(β, k)/SP ≤ 1. Given P, SP is found
from (9).

Figure 2 shows S(βopt , k)/SP vs. k curves for different
ion–target pairs at P = 0.95. The value of βopt is found
from the residue minimum for a given k and also
depends on k. βopt vs. k curves for the pairs in Fig. 2 are
displayed in Fig. 3.

From Fig. 2, it follows that S(βopt , k) for Cu–C, Au–
C, and Rb–B pairs is within the tolerance range S0.95 for
k in the interval of 0 ≤ k ≤ 0.1. For Au–C, the projective
ranges were measured for 0.0127 ≤ ε ≤ 0.127. In this
energy interval, ions are decelerated largely because of
elastic collisions with target atoms; inelastic decelera-
tion can be ignored. As a result, S(βopt, k)/SP is virtually
k-independent for this pair. For Ga–C, S(βopt, k)/SP has
a minimum, which is more distinct here than in the
other pairs. For this pair, experimental data were
obtained for energies 0.142 ≤ ε ≤ 2.12, which are larger
than for the other pairs. Accordingly, inelastic scatter-
ing processes are most significant in this case. As fol-
lows from Fig. 3, βopt grows with k almost linearly. The
weakest βopt(k) dependence is observed for Au–C.
Hence, it can be expected that β for this pair will be
determined with the greatest accuracy.

The k values obtained from the experimental data in
Figs. 2 and 3 (ε ≤ 2) are rough estimates. The exact
evaluation of β from these results thus requires that k be
calculated with independent experimental or theoreti-
cal data. The inequality S(βopt, k)/SP < 1 holds in a wide
range of k. Hence, k can be determined with a not too
high accuracy. Therefore, we will take advantage of the
frequently used Lindhard’s expression (see, e.g., [6, 7])

(10)

It is assumed that ξ varies in the [1, 2] interval. In
(10), m1 and m2 are expressed in atomic mass units.

σi
2

p S( ) 1

2
Nexp 1–( )/2

Γ Nexp 1–( )/2( )
------------------------------------------------------------S

Nexp 3–( )/2
e

S/2–
,=

p S( ) Sd

0

SP

∫ P.=

k ξ
0.0793Z1

1/2
Z2

1/2

Z1
2/3

Z2
2/3

+( )
3/4

-----------------------------------
m1 m2+( )3/2

m1
3/2

m2
1/2

-----------------------------.=
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Analysis [4] of 19 ion–target pairs similar to that illus-
trated in Figs. 2 and 3 showed that, under such condi-
tions, (10) provides the best estimate of k at ξ = 1. The
associated value of k will be designated as k*. For
example, k* = 0.0573 and 0.0541 for the Ga–C and Rb–
B pairs (Fig. 2), respectively. The corresponding values
of S(βopt, k*)/SP , as follows from Fig. 2, deviate from
the smallest ones insignificantly. Hereafter, the param-
eter β will be found from the minimum condition for
S(β, k*)/SP. The inequality S(β, k*)/SP ≤ 1 will be used

0.2

0.02

S(βopt, k)/S0.95

k
0.04 0.08 0.100

0.4

0.6

0.8

1.0

2

3

1

0.06

4

Fig. 2. Normalized residue vs. k. Ion–target pairs are
(1) Ga–C, (2) Rb–B, (3) Au–C, and (4) Cu–C.

0.56
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k
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0.64

0.68
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1

0.06

4

0.58

0.62

0.66

0.72

0.54

Fig. 3. βopt vs. k. Ion–target pairs are (1) Ga–C, (2) Rb–B,
(3) Au–C, and (4) Cu–C.
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to estimate the tolerance range of β. Figure 4 depicts
normalized residue S(β, k*)/SP vs. β curves for three
ion–target pairs at P = 0.95. They look like quadratic
parabolas and have distinct minima whose positions
specify the desired parameter β. The intersections of
the curves with the S(β, k*)/SP = 1 level are treated as
extremes of the tolerance ranges of β for the corre-
sponding pair. For example, for Ga–C and Au–C, the
allowable values of β fall into the ranges 0.637 ≤ β ≤
0.696 and 0.537 ≤ β ≤ 0.575, respectively, with a prob-
ability P = 0.95. The relative error thus determined in β
for the different ion–target pairs varies from 3.5 to
5.5%. Since this error is estimated approximately, we
will set it equal to 5% on average. Figure 5 compares
the experimental projective ranges of Au ions in carbon
and theoretical values calculated by (4)–(6) for three
β's. It is seen that all data points fall into the interval
bounded by the extreme curves for β. At β = 0.556,
which corresponds to the minimum of S(β, k*)/SP, the
calculation and experiment coincide within the experi-
mental error.

The table lists the values of β for 19 ion–target pairs.
With regard for the estimated error, they are rounded
off to two significant digits. As follows from the table,
the values of β are close to each other and lie in the
interval 0.53 ≤ β ≤ 0.59, except for Ga and Cu ions.
These values were employed to calculate ion ranges by
the Monte Carlo method using the algorithm described
in [1]. In these calculations, the projective ion ranges Rp

and their standard deviations ∆Rp were determined. The
number of histories was 105. According to [1], the rela-
tive error in this case is no more than 0.3%. The calcu-

0.56

S(β, k*)/S0.95

β
0.60 0.68 0.720.52

0.4

0.6

1.0

23 1

0.64

0.2

0.8

1.2

0

Fig. 4. Normalized residue vs. β. Ion–target pairs are (1)
Ga–C, (2) Rb–B, and (3) Au–C. Circles denote the confi-
dence interval for β.
lated values of Rp and ∆Rp listed in the table are in good
agreement with the experimental data. The maximum
absolute discrepancy ∆Rp between them is 61 Å
(300-keV Cs ions in B). The associated relative error is
23% for this case. Recall that β was estimated using the
experimental data for projective ranges Rp alone. The
coincidence of the calculated and experimental ∆Rp

values supports the validity of β’s for the ion–target
pairs considered. In addition, this fact strengthens the
selection of potential (1) for simulating ion motion in a
substance.

The calculated results are well approximated by the
relationship

(11)

From (11), the relative error ∆Rp/Rp is no more than
2% for ions with m1/m2 > 5 and energies between
0.01 < ε < 2.5. This relationship can be used for esti-
mating ∆Rp when Rp is calculated [for example, with
(4)–(6)] or known from experiment.

To conclude, a method for determining the parame-
ters of the model interaction potential is suggested. It is
based on comparing experimental and calculated pro-
jective ion ranges in amorphous substances. The poten-
tial parameters estimated for 19 ion–target pairs were
applied to calculate ion ranges by the Monte Carlo
method. Both the projective ranges Rp and standard
deviations ∆Rp are in good agreement with the experi-

∆Rp

Rp

----------
m2

m1
------

0.846

1 0.473 ε+
-----------------------------.=

50

Rp, A

E, keV
150 2000

200

400

600

100

800

Fig. 5. Energy dependence of the projective range of Au
ions in carbon. Error bars, experiment [4]. Calculation by
(4)–(6) at β = 0.556, 0.537, and 0.575 is represented by con-
tinuous, dashed, and dotted curves, respectively.
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Experimental ion ranges vs. those calculated by the Monte Carlo method

Ion Target β E, 
keV

Experiment 
[4]

Monte Carlo 
calculation Ion Target β E, 

keV

Experiment 
[4]

Monte Carlo 
calculation

Rp, Å ∆Rp, Å Rp, Å ∆Rp, Å Rp, Å ∆Rp, Å Rp, Å ∆Rp, Å

Bi B 0.54 20 180 30 177 32 Cs B 0.55 20 165 45 164 36

50 285 60 302 53 50 285 65 290 61

100 440 90 459 78 100 450 110 465 93

300 1050 170 965 153 300 1180 262 1126 201

C 0.53 15 140 27 146 28 C 0.57 20 170 43 176 41

40 245 37 256 48 50 290 69 309 68

80 390 60 386 70 100 490 105 491 104

150 615 115 573 101 200 820 152 824 164

Pb B 0.55 20 175 30 183 33 Xe C 0.55 20 150 30 165 38

50 310 70 312 55 50 290 60 290 64

100 450 100 474 81 100 480 100 464 99

300 1050 200 997 157 300 1200 230 1108 210

C 0.56 20 205 44 190 37 Sn C 0.58 30 235 45 228 54

50 315 60 322 60 50 310 65 316 73

100 495 91 488 88 100 515 100 509 112

200 790 137 763 132 300 1300 260 1241 241

Au B 0.57 20 200 50 193 36 Rb B 0.58 20 170 45 172 44

50 330 70 328 59 50 325 80 325 79

100 470 90 501 87 100 565 150 564 127

300 1100 172 1056 171 300 1550 320 1607 311

C 0.56 20 197 25 187 37 C 0.59 30 210 70 233 62

50 315 47 318 61 50 330 90 332 85

100 460 80 484 89 100 590 160 568 136

150 640 121 627 112 200 1077 270 1057 230

Yb B 0.56 20 180 40 180 36 Kr C 0.58 30 206 60 227 61

50 310 60 310 59 50 320 90 326 84

100 480 90 479 88 100 610 155 562 135

300 1100 190 1053 176 150 870 220 805 183

C 0.55 20 176 35 175 36 Ga C 0.67 20 216 52 222 65

50 295 59 300 60 50 415 110 423 115

100 490 95 463 89 100 730 200 740 185

200 800 150 742 137 300 2000 500 2111 442

Er C 0.58 10 135 48 129 28 Cu C 0.68 30 280 90 301 88

50 310 90 329 67 50 430 130 440 122

75 421 95 421 84 100 785 215 783 200

100 500 105 506 99 200 1547 400 1509 342

Eu C 0.55 30 220 45 215 46

50 320 64 293 62

100 458 90 458 93

200 729 140 752 144
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mental data. This counts in favor of the selected model
potential and supports the validity of its parameters.
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Abstract—Results of a theoretical and experimental study of photoacoustic and electron–acoustic effects in
solids with internal stresses are presented. In the theoretical part, an approach to describing these effects on the
basis of a generalized concept of thermoelastic energy of a solid with internal stresses and the nonlinear Mur-
naghan model for the elastic part of its energy is developed. The results of studying objects with internal stresses
in the context of an integrated experimental approach incorporating the techniques of photodeflection and ther-
mal-wave and photoacoustic microscopy with piezoelectric recording of the signal are reported. It is shown that
a similar approach allows one to detect the arrangement of the strained surface areas of the object and to eva-
luate the extent to which its thermal and thermoelastic parameters are affected by internal stresses. The results
of applying this approach to a study of Vickers indentations in silicon nitride ceramics are reported. © 2000
MAIK “Nauka/Interperiodica”.
Internal stresses can radically change the properties
of materials [1]. In this connection, the development of
methods for detecting them in different materials has
received considerable attention. At present, a number of
methods are being used to tackle this problem. Among
these are primarily the optical method [2], the ultra-
sonic technique [3], X-ray [4] and neutron [5, 6] dif-
fraction, magnetic measurements [7, 8], Raman spec-
troscopy [9, 10], mechanoluminescence [11], detection
of thermal radiation from the absorption of ultrasonic
oscillations by the object being studied [12], and the
methods based on holographic interferometry [13–15].
These methods have shown their high efficiency in
solving problems of detecting internal stresses in dif-
ferent types of objects. At the same time, serious
restrictions are inherent in most of these methods due
to the origin of the corresponding physical processes.
The only exceptions are the last two methods, which
are based on fairly general physical principles and can
be applied to a wide range of objects. However, rela-
tively moderate spatial resolution is inherent in these
methods. In this connection, much attention has
recently been given to studying the possibility of using
the photoacoustic [16–26] and electron–acoustic [27–
30] effects to detect mechanical stresses in solids. An
important point to note when using either of these
methods is the conversion of the optical-radiation or
electron-beam energy to thermal energy with its subse-
quent transformation into acoustic energy owing to the
thermoelastic effect. Therefore, when considering the
photoacoustic and electron–acoustic effects, we may
disregard the details of the interaction of the optical
radiation and the electron beam with the material. In
fact, we may restrict ourselves in both cases to consid-
1063-7842/00/4508- $20.00 © 21025
eration of the thermoelastic mechanism of generating
acoustic vibrations in solid-state objects. An important
advantage of thermoelastic generation of sound is its
versatility [31]. In this connection, the photoacoustic
and electron–acoustic methods for detecting internal
stresses may basically be regarded as belonging to a
small group of general-purpose methods that make it
possible to detect internal mechanical stresses in
objects of different origin.

A body of experimental data in support of this pos-
sibility has been already obtained. The experimental
results obtained so far support the possibility of using
the photoacoustic and electron–acoustic effects to
detect internal stresses in metals [16, 17, 20, 21, 28, 30]
and in ceramics [17–19, 22–25, 27]. Theoretical mod-
els of the possible influence of internal stresses on pho-
toacoustic and electron–acoustic signals have also been
suggested. A model for generating photoacoustic and
electron–acoustic signals was proposed [20]; this
model explicitly relates the dependence of these signals
on stresses to the dependence of thermal material
parameters on these stresses. The photoacoustic and the
electron acoustic effects were analyzed [26, 32] in the
context of a nonlinear mechanical model of a solid with
regard for the possible influence of internal stresses on
the thermoelastic component of the energy of the solid.
This model yields correct estimates for the nonlinear
mechanical and acoustic parameters of solids and
makes it possible to explain the photoacoustic and elec-
tron–acoustic effects in ceramics with internal stresses,
in which a profound influence of internal stresses on
thermal parameters has not been observed [22–25]. In
this connection, the prime objective of this work is the
further theoretical and experimental study of photoa-
000 MAIK “Nauka/Interperiodica”
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coustic and electron–acoustic effects in solids with
internal stresses.

An experimental investigation of the influence of
internal stresses on the photoacoustic and electron–
acoustic effects presents serious difficulties. They are
mainly related to the need to monitor a large number of
different object characteristics during the experiments.
This includes, first of all, independent monitoring of
the thermal, elastic, and thermoelastic parameters of
the object. Furthermore, in these experiments, informa-
tion about the surface relief of the object is found to be
extremely useful, since it allows detection of strained
areas of the sample and, thereby, monitoring of the
arrangement of areas with internal stresses.

We turn to a more detailed consideration of the sub-
ject. We begin by analyzing the theory of the phenom-
ena being considered. In [20, 26, 32, 33], the basic con-
cepts of the theory of photoacoustic and electron–
acoustic effects in solids with internal stresses were
generally formulated. In addition, the possible depen-
dence of the thermoelastic energy of the solid on strain
was taken into account [26, 32, 33]. This dependence
was chosen on the basis of theoretical analysis of the
influence of strain on the thermal expansion coefficient
of the solids [34]. At the same time, from general con-
siderations, the dependence of the thermoelastic energy
on strain can be represented in a somewhat more gen-
eral form taking into account the possible influence of
a change in the volume of the body under strain on this
energy. Such general representation of the thermoelas-
tic energy is used in this study. According to this
approach, the density of the thermoelastic energy of the
body can be represented as (correct to first order terms
of the strain tensor stemming from the influence of
optical radiation or an electron beam)

(1)

where γik = γ0[(1 + β0Ull)δik + β1Uik], γ0 is the coefficient
of thermoelastic coupling for an unstrained body, β0
and β1 are coefficients determining the dependence of
thermoelastic coupling on the initial distortion,

is the tensor of overall strain in the body, Uik is the ten-
sor of initial strain in the body, ∆T = T – T0, and T0 is
the ambient temperature.

Note that, for β0 = 0, Eq. (1) transforms into the
expression for the thermoelastic energy density used in
[26, 32, 33] while, for β0 = β1 = 0, it transforms into the
expression for the thermoelastic energy density of an
isotropic solid without internal stresses [35].

The Murnaghan model can be used to determine the
thermoelastic energy density of a strained solid, taking
into account nonlinear effects under deformation [36].

WT γik uik Uik–( )∆T ,–=

uik
1
2
---

∂ui

∂xk

--------
∂uk

∂xi

--------
∂ul

∂xi

-------
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--------+ + 
 =
In this model, the thermoelastic energy density is deter-
mined by the expression

(2)

where λ and µ are Lamé coefficients; l, m, and n are the
Murnaghan constants; I1 = ukk;

Knowledge of the energy densities of a solid makes
it possible to set up the equation of motion for the com-
ponents of the body. In the context of nonlinear
mechanics [37], this equation can be written as

(3)

where Pik = tkm is the Piola–Kirchhoff tensor; tkm is

the stress tensor related to the internal energy of the
body W = WE + WT by the relation tkm = ∂W/∂ukm; Xi are
coordinates of points of the strained body; xi are coor-
dinates of points of the body in the initial unstrained
state; and ρ0 is the density of the body in the initial
state.

Note that the coordinates of points of the strained
and unstrained body are related by the equation

(4)

where Ui are components of the vector of the initial
strain in the body; ∆ui are components of the vector of
the strain caused by the effect of optical radiation or an
electron beam on the body and superimposed on the
initial strain.

Further description of the problem depends on the
chosen system of coordinates xi or Xi, which are
referred to as the Lagrangian and Eulerian coordinates,
respectively [38]. In the context of the current problem,
Eq. (3) is written in the Lagrangian representation;
therefore, further consideration will be carried out in
this representation. Further solution of the problem
depends on the mutual arrangement of the optical radi-
ation or electron beam and the object. In this study, for
the sake of definiteness, the geometry of the problem
will be considered as shown in Fig. 1.

In its general formulation, the problem of acoustic-
vibration generation by a non-steady-state optical or
electron beam in the context of thermoelasticity theory
goes beyond the above-formulated statements, which
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should be supplemented with an equation for non-
steady-state thermal-flux propagation in a solid. Basi-
cally, such an equation can be derived by the method
used, for instance, in [35]. However, in [35], this equa-
tion was derived in the context of linear elastic theory.
In nonlinear elastic theory, the difference between the
parameters of strained and unstrained objects should be
taken into account more precisely. Therefore, we will
dwell briefly on deducing the thermal conductivity
equation in the context of nonlinear elastic theory.

According to [35], the rate of heat generation or
absorption in a unit volume is connected with the
entropy density S by the relationship T∂S/∂t. Therefore,
for an arbitrary volume element of the strained body,
the following equation is valid:

(5)

where Q is the vector of the thermal-flux density in the
solid with initial strains; w is the energy density
released in the body owing to the effect of external
sources (optical radiation or electron beam).

The entropy density of a strained body with regard
to the impact of optical or electron-beam excitation can
be written as

(6)

where the vectors R and U are defined by the compo-
nents (X1, X2, X3) and (U1, U2, U3), respectively; S0(U,
T) is the entropy density of the body with initial strain;
and ∆S(R, T, t) is the variation of the entropy density of
the body as a result of an external excitation.

In its thermodynamic sense, the density of ther-
moelastic energy of the body (1) represents the varia-
tion of the free energy density ∆F of the body. There-
fore, the entropy variation ∆S is given by

(7)

where ∆uik = uik – Uik.

The entropy density S0 of the body with initial strain
and given volume is related to temperature by the
expression

(8)

where Cv is heat capacity of the body with initial strain.

To transform the coordinates in equation (5) into
those of an unstrained body, we can use the relationship
ρdV = ρ0dV0 [38], where dV0 is a volume element of the
body in the unstrained state. In addition, it is necessary
to use the relation [39] between integrals over the vol-
ume for thermal fluxes in strained and unstrained bod-
ies

(9)

VT
∂S
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------d∫ V div Qd∫– Vw,d∫+=

S R T t, ,( ) S0 U T,( ) ∆S R T t, ,( ),+=

∆S
∂∆F
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-----------–
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∂T
-----------– γik∆uik,= = =

S0 ρCv T ,ln=

V div Qd∫ V0 div q,d∫=
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where q is the vector of thermal-flux density per unit
area of the unstrained body.

The components of the heat flux q in a solid with
initial strains can be specified in the form [39]

(10)

where Kik is thermal-conductivity tensor of the body
with initial strains.

It should be noted that, according to the field theo-
ries of nonlinear mechanics [20, 39], the thermal-con-
ductivity tensor Kik generally has the structure

(11)

where the quantities K0, K1, and K2 should be consid-
ered as scalar functions of the three invariants of the ini-
tial strain tensor, temperature, and convolution of its
first derivatives with respect to coordinates with the ini-
tial strain tensor [20, 39].

Using equations (5)–(10), as well as the outlined
rules, we can derive the thermal conductivity equation
for a body with initial strain in the starting coordinate
system, i.e., in the Lagrangian representation. On the
basis of the stated results, this equation can be obtained
from (5) in the form

(12)

Note that all quantities in Eq. (12) are assumed to be
expressed in the Lagrangian coordinates corresponding
to the position of points in the unstrained body. The
influence of strains on the heat capacity of the body is
usually insignificant and is discussed elsewhere [40]. In
the second term on the left-hand side of equation (12),
the strains ∆ui in this study are considered to be small.
Therefore, restricting ourselves to quantities of the first
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Fig. 1. Geometry of sample arrangement: (1) is the exciting
radiation or electron beam; (2) is the sample.
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order of smallness in (12), we may assume that T ≅  T0.
Density ρ in Eq. (12) can be determined (correct to the
terms of the first order of smallness in the initial strains
in the body) from the relationship ρ ≅  (1 – Ull)ρ0. If, in
Eq. (12), we set β0 = β1 = 0, ρ = ρ0, and Kik = Kδik, this
equation transforms into the well-known equation of
thermal conductivity for isotropic bodies [35].

The second term on the left-hand side of Eq. (12)
describes dilatation processes in a solid during defor-
mation. They are vital in the process of emission of
infrared radiation by solids under deformation [12] but
usually exert little influence on photoacoustic and elec-
tron–acoustic effects in solids. Therefore, when consid-
ering the photoacoustic and electron–acoustic pro-
cesses in solids, this term is usually ignored.

According to the formulated conditions, the deter-
mination of heat fluxes is generally an intricate mathe-
matical problem. A further simplification can be carried
out on the basis of additional experimental data con-
cerning the behavior of thermal properties of a material
subjected to mechanical stresses. In [22–25], several
photothermal methods were used to show that residual
stresses only slightly affect the thermophysical proper-
ties of silicon nitride ceramics.

In this study, investigations of the influence of inter-
nal stresses on the photoacoustic effect are restricted
solely to silicon nitride ceramics. Therefore, according
to experimental results obtained in [22–25], we assume
that the appearance of internal stresses in the sample
does not result in a noticeable variation of the thermal
parameters. In addition, we assume that the exciting
radiation is time-modulated by a harmonic law and the
sample surface is irradiated uniformly. Then, if radia-
tion is absorbed in the near-surface region of the sam-
ple, the non-steady-state component of temperature
inside the sample will be defined by the expression

(13)

where σ = (1 + i) , κ is thermal diffusivity of the
sample, ∆Ts is amplitude of the temperature oscillations
at the sample surface, and ω is the circular frequency of
modulation of the exciting radiation.

Knowledge of the temperature distribution in the
sample allows displacements of the sample surface
under the action of exciting radiation to be determined
from Eq. (3) and the photoacoustic signal to be found
with a piezoelectric recording method. A detailed
scheme for these calculations was described elsewhere
[26, 32, 33]. Therefore, passing over the details of the
calculations, we immediately present the net result for
a photoacoustic signal with piezoelectric signal record-
ing for the case when the thermoelastic energy of the
sample is defined by Eq. (1). Then, for the photoacous-
tic signal V(ω) in a sample with uniform initial strains
Ui = A(i)xi (A(i) are arbitrary coefficients characterizing
the strain in different directions), we obtain the follow-
ing result:

∆T z t,( ) ∆Tse
σz– iωt+

,=

ω/2κ
(14)

where V0(ω) is the photoacoustic piezoelectric signal
from the sample in the absence of initial strains [41],

Equation (14) shows that the dependence of the pho-
toacoustic piezoelectric signal on internal stresses
stems from the nonlinear elastic and inelastic properties
of the medium. In deducing Eq. (14), no special
assumptions were made about the nature of the interac-
tion of radiation with the material and, hence, this result
is also valid for an electron–acoustic signal, provided it
is due to the thermoelastic mechanism. Note that, for
β1 = 0, expression (14) transforms into the correspond-
ing result for a photoacoustic signal obtained in
[26, 32, 33].

In the experimental part of this work, silicon nitride
ceramics were studied. The key feature of the experi-
mental approach is the use of several photothermal and
photoacoustic techniques in combination with the opti-
cal deflection method [42]. This approach makes it pos-
sible to measure independently the thermal, elastic, and
thermoelastic parameters of the sample. In turn, the
optical deflection method is very useful for determining
the surface relief of the sample, in particular, the posi-
tions of plastically deformed areas.

We studied experimentally the influence of internal
strains on the thermal and elastic parameters of samples
of silicon nitride ceramics that were indented using the
Vickers method. The Vickers indentation method is one
of the most reliable and reproducible methods for
inducing stresses and cracks in samples [43]. The gen-
eral structure of the region formed in the ceramics in
the vicinity of the Vickers indentation site is shown in
Fig. 2. Results of the photodeflection and photoreflec-
tion measurements, as well as the obtained thermal-
wave images of Vickers indentations in silicon nitride
ceramics were considered in detail previously [22–25].
Therefore, in this paper, only the optical deflection
images of regions in the vicinity of Vickers indentations
are presented. A representative example of such images
is shown in Fig. 3. According to these images, the max-
imum surface deformation was attained in the immedi-
ate region of plastic deformation in the vicinity of an
indentation site. For instance, the surface deformation
amounted to 3–4 µm for an indentation load of 196 N.
As for the surface-relief changes in the ceramics away
from the indentation site, they are related to surface
strain resulting from the formation of lateral surface
cracks in the ceramics during Vickers indentation [43].
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In this study, comprehensive investigations of the
indentations were carried out by the photoacoustic
technique with a piezoelectric signal recording method.
In particular, we studied both old indentations about
five years of age and new ones that were made several
days before the measurements. In Fig. 4, images of
both old and new indentations obtained by the photo-
acoustic technique are presented. First, we note that
these images are very similar in structure to those
obtained for Vickers-indented ceramics by the elec-
tron–acoustic method [27]. This result supports the the-
oretical conclusion that the photoacoustic and elec-
tron–acoustic signals are formed by the same mecha-
nisms.

1

2

3

4

1

(a) (b)

Fig. 2. Schematic representation of the impression and
crack system in ceramics: (1) are subsurface horizontal
cracks, (2) is the region of plastic deformation, (3) are radial
cracks, (4) are subsurface medial cracks; (a) is the top view
and (b) is the cross section.

Fig. 3. Optical deflection image of the region of silicon
nitride ceramics near a Vickers indentation. Load is 98 N.
The image size is 500 × 500 µm.
TECHNICAL PHYSICS      Vol. 45      No. 8      2000
At the same time, a noticeable difference in the
structures of the old and new indentations should be
noted. This difference becomes especially pronounced
if we superpose corresponding photoacoustic and opti-
cal deflection images represented in the form of con-
tour plots. Examples of such superposed images are
shown in Fig. 5. It can be seen that, for new indenta-
tions, the regions with maximum values of photoacous-
tic signals are positioned near the tips of radial cracks.
For old indentations, the regions with maximum values
of photoacoustic signals are appreciably closer to their
centers and correspond approximately to the intersec-
tion site of radial and subsurface lateral cracks. We also

(‡)

(b)

Fig. 4. Region of silicon nitride ceramics near a Vickers
indentation. The image was obtained by the photoacoustic
method with a piezoelectric recording of the signal. Load is
98 N. Modulation frequency of exciting radiation is 113 kHz.
(a) is an old indentation; the image size is 240 × 320 µm. (b)
is a new indentation; the image size is 380 × 400 µm.
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Fig. 5. Superposition of two images of a silicon nitride
ceramic region in the vicinity of a Vickers indentation; the
images were obtained by the photoacoustic and optical tech-
niques and are shown as contour plots. (a) and (b) are the
same as in Fig. 4.
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200
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Fig. 6. Dependence of the maximum value of the photoa-
coustic signal (PAS) obtained by a piezoelectric recording
on the load value. Modulation frequency of exciting radia-
tion is 98 kHz. (d) correspond to old Vickers indentations.
(m) correspond to new Vickers indentations.
note that the maximum values of photoacoustic signals
are somewhat higher in the latter case.

These features are presumably explained by the fact
that gradual stress relaxation occurs with time in the
vicinity of radial cracks. At the same time, near the
intersection site of radial and subsurface lateral cracks,
the latter gradually develop and approach the surface.
This is consistent with the well-known result for silicon
nitride ceramics: under the effect of stresses, the
motion of dislocations does not occur in its volume; at
the same time, a noticeable motion of the dislocations
over the fracture surfaces can be observed [44].

To analyze this subject in greater detail, we studied
the dependence of the maximum value of the photoa-
coustic signal (PAS) near the tips of both types of
cracks on the indentation load. The results of these
measurements are shown in Fig. 6. They show that, as
the load increases, the photoacoustic signal at first
grows and then gradually levels off. This dependence of
the photoacoustic signal may be related to the fact that
an increase in the crack length promotes an increase in
stresses at its tips [45]. Therefore, under a certain
indentation load, the stress at the tips of the cracks
reaches a limiting value corresponding to the ultimate
strength of the material. After that, a further increase in
stresses becomes impossible and the photoacoustic sig-
nal levels off.

Expression (14) and the data shown in Fig. 6 allow
estimation of the upper limit values of the parameters
β0, βl , l, m, and n. It should be taken into account that
the maximum possible strains in present-day ceramics
that do not result in their failure meet the condition
Umax ≤ 1% [46]. Then, in order to explain the variation
in the photoacoustic signal at a level of 10% according
to Eq. (14), we should assume that β0 ≅ β 1 ≅  10 and l,

m, and n ≤ 10ρ0 . Theoretical estimation of the coef-
ficient β [34] yielded a value on the order of unity.
However, only metals were considered [34]. As for the
quantities l, m, and n, the values obtained from estima-
tions with Eq. (14) are in the correct range of the Mur-
naghan parameters [36]. At the same time, Eq. (14)
makes it possible to explain qualitatively the difference
in the magnitudes of photoacoustic signals observed
near the tips of the radial and subsurface lateral cracks.
For subsurface lateral cracks, the principal component
of the strain tensor that contributes to the photoacoustic
signal is the component U33. For radial cracks, the prin-
cipal strains near the crack tips are related to U11 and
U22. The strains U11 and U22 also result in strains of the
U33 type, but they are related by the Poisson ratio. The
Poisson ratio for silicon nitride ceramics is approxi-
mately equal to 0.26 [44]. Therefore, according to
expression (14), the strains near the tips of radial cracks
exert somewhat less influence on the photoacoustic sig-
nal compared with the case of the subsurface lateral
cracks.

cl
2
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Thus, the theoretical and experimental results
reported here show that the photoacoustic and elec-
tron–acoustic effects in solids with internal stresses can
be described in the context of the nonlinear theory of
elasticity and thermoelasticity. An important advantage
of the photoacoustic and electron–acoustic methods for
detecting internal stresses is their versatility, since,
according to the presented theory, their internal-stress
sensitivity is based on the general linear elastic proper-
ties of solids.
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Abstract—A model has been developed to calculate the growth parameters of silicon films in diode- and triode-
type PECVD reactors and to analyze the factors affecting the deposition of silicon-containing radicals. Mech-
anisms of the effect of diluting silane with molecular hydrogen on the film growth process have been explained.
© 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

One of the most widespread methods of growing
hydrogenated amorphous silicon films is the technol-
ogy based on deposition from the gas phase of silicon-
containing radicals produced by the decomposition of
silane by an RF discharge plasma in PECVD reactors.
At present, various types of such systems are used. In
one of these, the diode system, the substrate serves as
one of the electrodes. In another system, belonging to a
numerous class of systems with remote plasma and
usually called a triode system, the substrate is placed
outside the plasma discharge (PECVD reactors). This
system was proposed and thoroughly investigated in
[1]. By increasing the growth rate and film quality
through optimizing the parameters of PECVD reactors,
significant technological advantages can be attained.
Therefore, various models are being proposed, which,
with differing degrees of detail, describe the processes
in the growth chamber and allow improvements to be
made in the reactor design.

The first comprehensive model of the growth pro-
cess of hydrogenated amorphous silicon film was pro-
posed in [2].

A rather simple and effective model developed later
[3] is suitable for making prompt estimates of all basic
process parameters with sufficient accuracy. Apart from
silane (SiH4), 12 major chemical components of the
mixture are included in this model: SiHn, n = 1–3; H;

H2; Si2Hn, n = 3–6; Si3H8; Si2 ; and Si2  (aster-
isks denote the excited electronic state). Recently, a
similar model but with a different set of chemical com-
ponents and a much more elaborate presentation of the
electronic subsystem was proposed [4]. The authors
carried out quite detailed measurements of the system
parameters and provided the experimental data neces-
sary for verifying the models.

H6* H6**
1063-7842/00/4508- $20.00 © 21032
In the framework of the model proposed in [3], the
authors carried out a computational investigation of the
physical and chemical processes occurring in a purely
silane plasma of a diode reactor and performed a
detailed analysis of the role of various components and
the effect of the system parameters on film growth for
major operating regimes. It was found that, at low pres-
sures, molecular hydrogen accumulates in the chamber,
so that silane ceases to be the only carrier component.
In addition, in practice, a technology based on diluting
silane with hydrogen is often used, which saves silane
and makes the production of silicon films ecologically
cleaner. Under these conditions, the model of [3] is
inadequate.

In this study, a model that takes into account the
changes in silane concentration during film growth is
presented. Transport due to diffusion was determined
using, instead of fixed coefficients, those calculated by
Wilke’s formula representing a first approximation of
diffusion in a multicomponent medium. It has been
shown that further elaboration of the description of dif-
fusion processes does not improve the accuracy of the
calculations of the component fluxes onto the film sur-
face. Calculations of the plasma discharge were carried
out using a fluidic model [5] affording a means of cal-
culating electron densities. Expressions have also been
obtained for the rate constants of reactions initiated by
electron impact in silane–hydrogen mixtures. Hence,
the processes in reactors could be studied in a wider
range of parameters and the processes taking place in
silane diluted with molecular hydrogen could be simu-
lated. The proposed model describes the processes in
triode-type reactors with the discharge zone some dis-
tance away from the substrate. Finally, in this work, the
effect of the reactor volume, which in almost every real
installation does not coincide with the discharge zone
volume, has been accounted for in a correct manner.
000 MAIK “Nauka/Interperiodica”
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MATHEMATICAL MODEL

In the proposed model of a PECVD reactor, the gas-
phase processes in its chamber are described by one-
dimensional equations of chemical kinetics, in which,
as estimated in [3], only transfer processes by diffusion
are taken into account:

(1)

Here, ni is the number density of the ith component and
Fi is the source term describing chemical transforma-
tions (for more detail, refer to [3]). The effective diffu-
sion coefficient of the ith component Di is calculated by
Wilke’s formula [6], commonly used in practical calcu-
lations of multicomponent gas mixtures:

(2)

where n is the total number density of the mixture.
The ambipolar diffusion coefficient Dki is calculated

by the formula of the molecular kinetic theory of gases
[7] with use of the Lennard–Jones 6–12 potential

(3)

Here, µki = mkmi/(mk + mi) is the effective mass of the
kth and ith species, mi is the molecular weight of the ith
species, σki = (σk + σi)/2 is the effective collision diam-

eter,  = kT/εki is the characteristic temperature, εki =

 is a parameter of the potential for intermolecular
interaction (potential well depth), k is the Boltzmann

constant, and ( ) is a reduced Ω-integral of
collisions for mass transfer normalized by the Ω-inte-
gral of the model of hard spheres. Values of the 
function for a wide range of characteristic temperatures

 can be found in monograph [7]; in the calculations,
approximate formulas given in [8] were used. Values of
the Lennard–Jones potential parameters σi and εi bor-
rowed from [9] are given in Table 1.

In [10], experimental determinations of the ambipo-
lar diffusion coefficients of silyl in silane and molecular
hydrogen were carried out and found to be equal to
140 ± 30 and 580 ± 140 cm2/s, respectively, at the tem-
perature 320 K and pressure 1 torr. Under these condi-
tions, formula (3) gives the values of 111 and 536 cm2/s,
respectively, in good agreement with measured data.

To finalize the formulation of the problem, we need
to know the dependence of the rate constants of chem-
ical reactions initiated by an electron beam on pressure
p and the interelectrode separation l. To define this

∂ni
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dependence in such a way as to circumvent calculations
of the corresponding electron temperatures, it was sug-
gested in [3] to use the following relation between the
reaction constants kr and the ionization constants ki:

(4)

where er and ei are the thresholds for the chemical reac-
tion and ionization, respectively [11], and the super-
script “0” refers to certain conditions for which the val-
ues of the constants are known (below, these conditions
are called “basic”).

Then, assuming that the plasma as a whole is neu-
tral, that the withdrawal rate of electrons is equal to the

withdrawal rate of ions (mainly  ions), and that
the carrier mixture consists of silane and molecular
hydrogen, the following expression can be obtained
using formula (2):

(5)

Here, nt and  are the numerical densities of the mix-
ture under present and basic conditions, respectively.
For the basic conditions, a silane–hydrogen mixture is
chosen with partial hydrogen and silane pressures

 =  = 0.125 torr at the temperature T0 = 520 K

and the interelectrode separation l0 = 2.5 cm, the reason
being that the constants for these conditions were deter-
mined in [2].

kr/kr
0

ki/ki
0( )

er/ei
,=

SiH2
+

ki

ki
0

-----
nt

nt
0

-----
nSiH4

0

nSiH4

----------=

×
nSiH4

0
/DSiH4 SiH2

0
nH2

0
/DH2 SiH2

0
+( )

nSiH4
/DSiH4 SiH2

nH2
/DH2 SiH2

+( )
------------------------------------------------------------------------- l

0

l
--- 

 
2

.

nt
0

pH2

0
pSiH4

0

Table 1.  Parameters of the Lennard–Jones potential

Component σi, Å εi/k, K

SiH4 4.084 207.6

SiH3 3.943 170.3

SiH2 3.803 133.1

SiH 3.662 95.8

H 2.5 30.0

H2 2.915 59.7

Si2H6 4.828 301.3

4.828 301.3

4.828 301.3

Si2H5 4.717 306.9

Si2H4 4.601 312.6

Si2H3 4.494 318.2

Si3H8 5.562 331.2

Si2H6
*

Si2H6
**
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Other finalizing relationships for system (1) are
boundary conditions (3) accounting for a concentration
jump near the deposition surface, which, under the con-
ditions specified above, can be of considerable

Table 2.  List of chemical reactions and reaction constants

Reac-
tion 
no.

Reactions Constants*, 
cm3/s

R1 SiH4 + e  SiH3 + H 3.000 × 10–11

R2 SiH4 + e  SiH2 + 2H 1.500 × 10–10

R3 SiH4 + e  SiH + H + H2 9.340 × 10–12

R4 SiH4 + e  SiH2 + H2 7.190 × 10–12

R5 H2 + e  2H 4.490 × 10–12

R6 Si2H6 + e  SiH3 + SiH2 + H 3.720 × 10–10

R7 Si2H6 + e  Si2H4 + 2H 3.700 × 10–11

R8 SiH4 + H  SiH3 + H2 2.530 × 10–12

R9 SiH4 + SiH2  1.000 × 10–11

R10 SiH4 + SiH  Si2H3 + H2 1.700 × 10–12

R11 SiH4 + SiH  Si2H5 2.500 × 10–12

R12 SiH4 + Si2H5  SiH3 + Si2H6 5.000 × 10–13

R13 SiH4 + Si2H4  Si3H8 1.000 × 10–10

R14 SiH3 + H  SiH2 + H2 1.000 × 10–10

R15 SiH3 + SiH3  SiH4 + SiH2 1.500 × 10–10

R16 SiH3 + SiH3  1.000 × 10–11

R17 SiH3 + Si2H5  SiH4 + Si2H4 1.000 × 10–10

R18 SiH3 + Si2H5  Si3H8 1.000 × 10–11

R19 SiH3 + Si2H6  SiH4 + Si2H5 3.270 × 10–12

R20 SiH2 + H  SiH + H2 7.960 × 10–13

R21 SiH2 + Si2H6  Si3H8 1.200 × 10–10

R22 Si2H3 + H2  Si2H5 1.700 × 10–12

R23 Si2H4 + H2 + SiH4 + SiH2 1.000 × 10–10

R24 Si2H5 + H  Si2H4 + H2 1.000 × 10–10

R25 Si2H6 + H  SiH4 + SiH3 7.160 × 10–12

R26 Si2H6 + H  Si2H5 + H2 1.430 × 10–11

R27   Si2H4 + H2 5.000 × 106  s–1

R28  + M  Si2H6 + M 1.000 × 10–10

(M, a species colliding with )

R29   SiH4 + SiH2 2.300 × 107  s–1

R30   SiH4 + H2 2.300 × 107  s–1

R31 Si3H8 + H  Si2H5 + SiH4 2.170 × 10–11

R32 Si3H8 + SiH3  Si4H9 + H2 1.000 × 10–11

* Data are given for the interelectrode separation l0 = 2.5 cm, partial
pressures of molecular hydrogen and silane p0 = 0.125 torr, and
temperature T 0 = 520 K.

Si2H6*

Si2H6**

Si2H6*

Si2H6*

Si2H6*

Si2H6**

Si2H6**
magnitude:

(6)

Here, ∂/∂x is a normal derivative at the outside of the

surface, ci = 2  is the thermal velocity, and si

is the deposition coefficient of the ith species. Values of
these coefficients are given in [2]: si = 0.15 for SiH3 and
Si2H5; si = 1 for SiH, SiH2, Si2H3, and Si2H4; and si = 0
for all other components. The electron density in the
interelectrode gap is calculated in the fluidic approxi-
mation using a model described in detail in [5]. In the
simulations, it is assumed that the hot electrons causing
dissociation are available only in the interelectrode gap.
Away from the gap, the energy of electrons diffusing
from the discharge zone drops exponentially and
becomes insufficient for initiating chemical reactions.
In this sense, a technological system in which the sub-
strate is outside the discharge zone can be considered as
a system with remote plasma.

For numerical solution of this problem, a method
described in [3] was employed.

Basic chemical reactions and their rate constants are
listed in Table 2. In addition, silane and disilane pyrol-
ysis reactions are taken into consideration, which, as is
proved by the calculations, make an insignificant con-
tribution to the total chemical balance.

2. ANALYTICAL RESULTS

Asymptotic analysis based on the difference of scale
of different processes gave some analytical formulas
and an explanation of the interrelationship between
conditions in the chamber and various process parame-
ters. In [3], such relationships are given only for the
diode system, whereas in this work, such an analysis
has been made for the triode system as well. The entire
calculation area 0 < x < L was divided into two zones:
0 < x < l, where the density ne of electrons initiating the
chemical reactions was taken equal to that in the inter-
electrode gap, and l < x < L, where plasma is penetrat-
ing, but the energy of its electrons is not enough to ini-
tiate the reactions. It is assumed that in the latter zone
of size d = L – l, only monomolecular reactions or reac-
tions involving molecular collisions are proceeding.

Estimates of basic processes similar to those in [3]
produced the following simplified equation for the
behavior of silyl:

(7)

where ki is the constant of the ith reaction (i is the reac-
tion number in Table 2); condition (6) with a deposition
coefficient  = 0.15 is taken as the boundary condi-
tions for this equation.

A corresponding analysis for atomic hydrogen,
which is the major initiator of silyl production, leads to

Di

∂ni

∂x
-------–

sici

2 2 si–( )
--------------------ni.=

2kT /πmi

DSiH3
d

2
nSiH3

/dx
2

2k8nHnSiH4
k32nSiH3

nSi3H8
,–=

sSiH3
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the following balance equation in the discharge region
0 < x < l:

(8)

Outside the discharge region at l < x < L the behavior
of atomic hydrogen is described by the same equation,
except that the first term on the right-hand side should
be omitted (ne = 0); i.e., hydrogen gets outside the dis-
charge zone only due to diffusion. Solving these equa-
tions with boundary conditions (6) in the absence of
deposition (sH = 0) and with the condition of smooth
joining of solutions at the boundary of the zones (at
x = l), we get an analytical expression for the atomic
hydrogen concentration profile:

(9)

(10)

Substitution of expressions (9) and (10) into equa-
tion (7) yields an analytical dependence on the system
parameters of the flow of silyl towards the surface: 

(11)

Here, LH and L3 are reaction-diffusion lengths for
atomic hydrogen and silyl, respectively, introduced in
[3] and defined as the distance which a diffusing spe-
cies will travel before entering into a chemical reaction.
For l  L (d  0), expression (11) describes a
diode system.

To conclude this section, we consider the behavior
of silylyl. In the discharge zone, silylyl is produced
mainly via the decomposition of silane by electron
impact, reaction R2, and through reaction R23,
whereas, outside this zone, it is produced in reactions
R15 and, again, R23. Withdrawal of silylyl through
reactions in both cases depends on its reaction with
silane (R9). The Si2H4 radical is an intermediate prod-
uct of the cycle of fast chemical reactions R9, R27, and
R23; therefore, its concentration is close to the equilib-

rium value  = k9 /(k23  + k13 ) [3].
If it were not for reaction R13 diverting part of the sili-
con atoms to higher silanes, reactions R23 and R9
would compensate one another and the only mecha-
nism for silylyl to escape from the zone would be its
diffusion to the surface for deposition and pumping out.
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Because the cycle in not closed, silylyl is withdrawn
through a reaction with an effective constant keff =
k9k13 /(k23  + k13 ) ≅  k9/( /  + 1). The
last approximate equality is a consequence of k13 ≅  k23.
Therefore, the behavior of silylyl can be described by
the equations

(12)

(13)

By solving these equations with corresponding
boundary conditions, an analytical expression for the
flux of silylyl to the surface has been obtained, but, in
view of its clumsiness, we do not present it here.

3. RESULTS AND DISCUSSION

(1) Comparison with experiment. Comparison with
experimental data in the literature is difficult, because
the set of parameters describing the system available
there is far from complete. For this reason, we chose the
results given in [4] for comparison. In this work,
exhaustive information on the experimental conditions
and results of numerical calculations are described.

The experimental installation was a chamber with a
volume of 101 and contained two electrodes of radius 8
cm located 2.7 cm apart. For this configuration, the
ratio of the reaction volume to the total volume of the
chamber is Rν = 0.054 (for more details, see Section 3.5).
The experiments were carried out with a mixture of
silane and hydrogen in equal molar concentrations with
a flow rate equal to 3.6 l/h under normal atmospheric
conditions; the temperature in the reactor was 400 K.
A program for computing parameters of the RF dis-
charge between two plane-parallel electrodes was used
to calculate the electron densities [5]. The main prob-
lem was to obtain a good estimate of the discharge
power. In [4], from a comparison of the self-bias poten-
tial computed in simulations of argon plasma based on
corresponding experiments, it was determined that the
power directed to the discharge amounted to 50% of the
total power. The same conclusion was made from a
comparison of the calculated concentrations of H2 and
SiH4 in the hydrogen–silane plasma with experimental
data. Therefore, in calculations performed for the sug-
gested model, we used the power value of 0.05 W/cm2

proposed in [4]. 
Figure 1 shows the dependence of the film growth

rate on the discharge frequency at a constant pressure of
16 Pa in the reactor. It is seen that the results are in good
agreement with experimental data up to a frequency of
30 MHz. At frequencies higher than 30 MHz, the cal-
culated curve tends to level off. The same tendency,
although more gradual, was noted in [4]. At the same

nSiH4
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time, in [4], the experimental dependence of the growth
rate on frequency was approximately linear. To explain
this effect, additional investigations are needed; their
possible directions have been proposed in [4].

From the calculations of the partial pressures of
molecular hydrogen and silane as functions of the dis-
charge frequency given in Fig. 2, it is seen that the data
obtained using the approach developed in this study are
in better agreement with experiment than the calcula-
tion results obtained in [4].

(2) Specific features of chemical kinetics at low
pressures. With the model described in Section 1, cal-
culations are possible of the processes at low pressures,
at which silane decomposition becomes noticeable and
the concentration of molecular hydrogen can no longer
be considered small. Below, we discuss in detail the
qualitative differences of these processes from those
taking place at high pressures.

Dependence of the electron density in the discharge
zone on the process parameters was described by a for-
mula [3] derived for the case of constant discharge
power

(14)

where  is the electron density under basic conditions,
taken equal to 5 × 108 cm–3. This formula is true for
pressures that are not very low, but it was used for the
qualitative analysis in the entire range of pressures. For
other key parameters of the problem, values character-

ne pSiH4
l( ) ne

0
pSiH4

0
l

0
/ pSiH4

l,=

ne
0
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0.5
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3

Fig. 1. Film growth rate as a function of discharge frequency
at a constant pressure in the chamber p = 16 Pa. (1) Experi-
ment [4], (2) calculation [4], and (3) this work.
istic of real experimental setups were chosen [1, 2]: the
temperature in the reaction chamber was taken equal to
520 K, the pressure was 0.25 torr, and the interelectrode
distance was l = L = 2.5 cm. Under these conditions, the
reactor parameters corresponded to a characteristic
pumping time of τ = 1s at a pressure of 1 torr (for more
details on this characteristic, see Section 3.4). The cal-
culations were carried out for the pressure range 0.02 <
p < 1 torr. All the results given in this section refer to
the case of pure silane as the carrier.

One of main distinctions of the considered pro-
cesses is a considerable rise in the concentration of
atomic hydrogen with decreasing pressure. There are a
number of reasons for this. First of all, as seen from for-
mula (9), the concentration of atomic hydrogen in the
particular case of homogeneous discharge is given by
formula

(15)

i.e., it depends only on the electron density. This for-
mula is also in good agreement with the calculation
results. At the same time, as seen from formulas (4),
(5), and (14), the electron density and the constant k2
rise rapidly with decreasing silane pressure, so that the
concentration of atomic hydrogen increases by nearly
five orders of magnitude as the pressure in the chamber
decreases from 1 to 0.02 torr and the relative silane con-
centration decreases to 0.3 as a result of its decomposi-
tion. The increase in atomic hydrogen concentration
causes qualitative changes in various processes.

nH 2k2ne/k8;=

2

0 20

P, Pa

F, MHz
40 60 80

4

6

8

10

1
2
3
4
5
6

Fig. 2. Partial pressures of molecular hydrogen (1, 3, 5) and
silane (2, 4, 6) as a function of discharge frequency.
(1, 3) Experiment [4], (2, 4) calculation [4], and (5, 6) this
work.
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The behavior of other components with variations in
pressure does not change compared with the descrip-
tion in [3], except for the fact that the concentration of
Si2H6 drops at pressures below 0.1 torr. The same effect
is observed for Si3H8. This is due to the appreciable
drop in silane concentration and the increase in atomic
hydrogen concentration, the main reactants determin-
ing the formation and decomposition of these compo-
nents. The increase in atomic hydrogen concentration
also affects the balance and role of different reactions
in silyl decomposition. Thus, at low pressures, a notice-
able growth in the role of the decomposition process in
the silyl balance is observed; at 0.02 torr, it becomes
dominant and prevails over deposition. Note, however,
that this result is entirely a property of the model,
because the use of formula (14) at very low pressures
gives values of the electron density that are too high.

At pressures below about 0.08 torr in silyl decompo-
sition, the reaction SiH4 + Si3H8  Si4H9 + H2 gives
way as the dominant process to reaction SiH3 +
SiH3  SiH4 + SiH2; and at pressures of about
0.02 torr, to the reaction between silyl and atomic
hydrogen, which begins to make a noticeable contribu-
tion to the production of silyl. As before, silyl forma-
tion is completely dominated by the reaction between
silane and atomic hydrogen.

Contributions of individual reactions to the silylyl
balance remain largely unchanged, but its production at
low pressures increases so much that most of the silylyl
is deposited instead of being decomposed. Because of
all these changes, the contribution of silylyl to film
growth, which, with decreasing pressure, increases at a
greater rate than that of silyl, becomes dominant at a
pressure of 0.02 torr. This should cause appreciable
modifications in the film structure.

Taking into account silane decomposition at low
pressures revealed further details of the division [3] of
all components into three groups: stationary, nonsta-
tionary, and quasi-stationary. It was found that SiH can
be considered strictly stationary only at high pressures.
In addition, at high pressures, stationary components
also include silylyl, the balance of which is maintained
by two reactions with silane: SiH4 + e  SiH2 + 2H + e

and SiH4 + SiH2  Si2 , with the latter reaction

keeping the concentrations of Si2  and Si2H4 (which

is produced via decomposition of Si2 ) stationary. At
low pressures, these last two components go over to the
quasi-stationary group because of the appreciable
decomposition of silane, resulting in an increase in
electron density and reaction rate constants. This is
especially noticeable in the behavior of atomic hydro-
gen, whose concentration at high pressure is stationary
and adequately described by formula (15). At low pres-
sures, the deviation from stationarity caused by these
processes makes atomic hydrogen nonstationary and
appreciable accumulation of this component in the

H6*

H6*

H6*
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reaction chamber begins. Other parts of this classifica-
tion remain qualitatively unchanged (see details in [3]).

(3) Effect of diffusion coefficients. The use of for-
mula (2) in calculating the diffusion coefficients does
not significantly change the main results (such as the
growth rate and film composition) compared with cal-
culations in which these coefficients were assumed to
be equal to the coefficients of ambipolar diffusion of
the respective components in silane, as was done in [3].
This result appears to be quite evident at high pressures,
where the concentration of molecular hydrogen is
rather low and the diffusion coefficients calculated by
formula (2) are close to the corresponding ambipolar
coefficients. However, at low pressures, these values
are distinctly different.

This fact suggests that the concentration profiles of
the depositing components adjust in such a way as to
maintain the production–deposition balance, irrespec-
tive of the particular values of the diffusion coefficients
(the rate of chemical decomposition of silyl and silylyl
at low pressures is small).

For a more detailed investigation of this issue, cal-
culations using the above approach were carried out for
a mixture of silane and molecular hydrogen at equal
partial pressures and constant electron density 5 ×
108 cm–3. In this case, the influence of the diffusion
coefficients is more pronounced. For the same purpose,
a simplified formula was used to calculate reaction rate
constants as functions of pressure [3]:

Under these conditions, the diffusion coefficients
calculated by Wilke’s formula differ from the ambipo-
lar diffusion coefficients by a factor of 1.6–1.7. Still, at
low pressures where the silyl–silylyl balance is domi-
nated by deposition, the fluxes of these components to
the substrate are practically coincident in the two cases,
despite distinctly different concentration profiles. At
high pressures, silylyl is spent mainly through reactions
in the bulk and the values of fluxes obtained with the
use of constant ambipolar diffusion coefficients are
somewhat less than those given by Wilke’s formula;
however, this difference is a mere 10% for silyl and
20% for silylyl, which is much less than the difference
in the coefficients, and the contribution of silylyl to film
growth under these pressures is insignificant.

To check this, a series of calculations was carried
out for varying values of the diffusion coefficients. In
one of these, the diffusion coefficient for silyl was
assumed to be twice as large. The film growth rate was
almost unchanged, although at a pressure of 1 torr, the
silyl concentration dropped by a factor of 1.5.

This fact is explained as follows. Because the dom-
inant contribution to film growth comes from the flux of
silyl, the growth rate can be analyzed using expression
(11). At d = 0, this expression is significantly simpli-
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fied, reducing to  = 2k2ne L3 /2L3). For
real values of the diffusion coefficient, L/2L3 < 0.7
throughout the range of pressures studied and, there-
fore, the dependence of  on L3 is weak. An
increase in the diffusion coefficient only reduces the
dependence of the flux of silyl on its value. Thus, silyl
deposition is virtually unaffected by diffusion pro-
cesses.

A similar result was also obtained for silylyl. The
twofold increase in the silylyl diffusion coefficient did
not produce any significant changes. At low pressures,
the silylyl concentration decreased, but the modified
profiles ensured exactly the same value of its flux. At
higher pressures, the silylyl balance is completely con-
trolled by chemical reactions; therefore, its concentra-
tion (as well as concentrations of all other components)
remained the same, but the flux increased somewhat
(by 37% at p = 1 torr). However, at this pressure, the
contribution from SiH2 to film growth is quite small and
cannot change the final result.

It can be concluded from the above that further
specifying the description of diffusion transport cannot
significantly change the results, especially in the case
of a pure silane plasma.

(4) Effect of the flow rate. The flow rate of the mix-
ture through the working reactor volume is one of the
important factors affecting the film growth parameters,
and, at the same time, it can be easily varied. In [3], an
approach that allows one to take into account the effect
of the flow rate using a simple one-dimensional model
was suggested. In this approach, the initial steady-state
problem is replaced with a nonstationary problem,
which is to be solved for a time period τ equal to the
characteristic time of transit of the mixture in the reac-
tor working volume. Decomposition of a considerable
part of silane occurring at low flow rates and a signifi-
cant increase in the molecular hydrogen concentration
render the model suggested in [3] inapplicable for
studying the role of the flow rate in a relatively wide
range of this parameter.

Using the model presented in this study, the effect of
the flow rate has been analyzed for the example of pure
silane for τ ranging from 0.13 to 2.6 s, which, at a pres-
sure of 0.25 torr, corresponds to a change in the cham-
ber volume from 1 to 20 l for the fixed flow rate of
silane of 5 l/h at atmospheric pressure. Values of the
other parameters were the same as in the previous sec-
tions, and the electron density was calculated by for-
mula (14).

As in [3], variation of the flow rate was found to
affect, first of all, the concentration of Si2H6: it
increased by an order of magnitude as the flow rate was
reduced by the same factor. At the same time, the con-
centration of Si3H8 increased by a factor of about 5. On
the whole, variation of the flow rate corresponding to
the considered range of τ caused only insignificant vari-
ations of the characteristics of the growing film. Thus,

ΓSiH3
nSiH4

(Ltanh

ΓSiH3
with a decreasing flow rate, the film growth rate
increased by 30%. This was due to an increase in both
the electron density and the reaction rate constants with
a decreasing partial concentration of silane. The rela-
tive contribution of silylyl increased by about the same
amount. This was caused by an increase in the concen-
tration of molecular hydrogen and, subsequently, a
greater contribution to the recovery of the silylyl con-
centration from the cyclic reaction SiH4 + SiH2 

Si2   Si2H4 + H2  SiH4 + SiH2.

(5) The effect of chamber volume. The problem con-
sidered above is closely related to the effect of the ratio
of the reaction volume to the entire chamber volume,
because circulation of the components throughout the
volume can change the course of the processes.

To investigate this aspect in a one-dimensional case,
the following approach was suggested: the area under
study was expanded by adding a region R such that the
ratio Rν would have been equal to the total chamber vol-
ume. The calculations for a fixed parameter τ and vari-
able Rν gave estimates of the effect of circulation. The
results described below were obtained for a total cham-
ber volume of 2 l and τ = 0.26 s; other parameters were
the same as before.

Changing the parameter Rν from 1 to 0.2 resulted in
an insignificant (about 25%) increase in the rates of
film growth and silyl deposition. This increase was
caused by increased concentrations of silane and silyl in
the reaction volume because of the influx of SiH4 from
the chamber volume. At the same time, silylyl deposition
remained nearly constant, because some increase in its
production due to the reaction of silylyl decomposition
(R15) was offset by reaction SiH4 + SiH2 and deposition
occurs only from a thin near-wall layer, where the con-
centration of silyl is low. Figures 3–5 illustrate some dis-
tinctive features of these processes.

In Fig. 3, profiles of typical representatives of the
three classes of components are shown: nondepositing
and slowly reacting (H2), nondepositing and rapidly
reacting (H), and depositing and rapidly reacting
(SiH2). It is seen that the concentrations of the latter
two components in the reaction volume are practically
independent of the chamber volume. They are deter-
mined by reactions proceeding in the discharge zone,
and circulation has little effect on them. The concentra-
tion of molecular hydrogen, on the contrary, is constant
throughout the chamber volume and is appreciably
reduced by circulation.

The small reaction-diffusion length for silylyl with
respect to the chamber dimensions is the reason for the
weak influence of the chamber volume on the balance
and flows of this radical (Figs. 4, 5). Only some
increase in its production due to a higher silane concen-
tration can be noted; this increase is compensated by its
more intensive (for the same reason) decomposition, so
that flows onto the substrate turn out to be about the
same.

H6*
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(6) The effect of diluting silane with molecular
hydrogen. In real equipment, a mixture of silane and
molecular hydrogen is widely used. To evaluate the
effect of silane dilution, calculations have been carried
out for a silane content in this mixture varying from 100
to 20%, the other parameters having the same values as
before. The electron density was determined using an
RF discharge model [5]. Calculations for a discharge
power of 0.025 W/cm2 have shown that, in these condi-
tions, the average electron density rises nearly linearly
from 4.3 × 108 to 6.7 × 108 cm–3 as the silane content in
the mixture is reduced.

As the silane content at constant pressure is reduced,
the diffusion coefficients of the components, with the
exception of H2, increase by a factor of 2–3. Variation
of the concentrations of all reaction products under
these conditions is shown in Fig. 6. The film growth
rate rises, and the relative contribution of silylyl to
overall deposition becomes larger (Fig. 7). The growth
rate rises, despite falling silane concentration, because
of an increase in the total production of depositing
components due to higher rate constants of reactions
initiated by electron impact (see expressions (4) and
(5)) and increased electron density. In addition, the net
result of lowering the concentration and the simulta-
neous increase in the diffusion coefficients is that the
greater part of the produced silyl is deposited; this is
true for other depositing components, except Si2H3 and
Si2H4, which are effectively decomposed by molecular
hydrogen. The behavior of silylyl is explained by the
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Fig. 3. Concentration profiles of silylyl and molecular and
atomic hydrogen at different values of the ratio of reaction
volume to the total chamber volume Rν equal to 0.2 (curves)
and 1 (dots).
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fact that with an increasing concentration of H2 and a
decreasing concentration of silane, the fraction of sily-
lyl being deposited rises significantly. At the same time,
the intensity of the above-mentioned cyclic reaction
rises, leading to the recovery of the SiH2 concentration.
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Fig. 4. Silylyl balance at different values of the ratio of reac-
tion volume to the total chamber volume Rν: F, production;
A, decomposition; D, diffusion; Rν = 0.2 (curves) and
1 (dots).
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Also worth noting is the considerable reduction in
the Si3H8 concentration with dilution (Fig. 6). The rea-
son is that alongside the drop in production by the reac-
tion SiH4 + Si2H4, it is decomposed via the reaction
with atomic hydrogen, whose concentration rises at a
high rate. The result is a drastic drop in Si4H9 produc-
tion, and the greater part of the silicon produced in the
reaction is deposited.
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Fig. 6. Concentrations of components as a function of the
silane fraction in the initial silane–hydrogen mixture at con-
stant pressure.
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Fig. 7. Film growth rate and contributions of silyl and silylyl
to it as a function of the fraction of silane in the initial
silane–hydrogen mixture at constant pressure.
(7) Specific features of the triode system. All the
results described above were obtained for a diode sys-
tem in which the discharge zone is located between two
electrodes, one of which serves as a substrate for the
growing film. One alternative technology is the so-
called triode system, in which the discharge zone is
separated from the substrate. Formulation of the
respective problem has been described in Sections 1
and 2.

In order to investigate the effect of the separation of
electrodes from the substrate, calculations of film
growth from a pure silane plasma were carried out for
the same problem parameters as previously used (with
the exception of parameter L = 5 cm, with parameter l/L
varying from 0.4 to 1). The electron densities deter-
mined using the RF discharge model [5] were varied
from 6.8 × 108 to 4.9 × 108 cm–3. The calculation results
obtained using the above analytical expressions for the
silyl flux (11) and the concentration profile of atomic
hydrogen (9), (10) are in good agreement with numeri-
cal simulation results, as seen in Figs. 8 and 9, respec-
tively.

As a result of varying the parameter l/L in the range
specified above, the film growth rate (at a constant dis-
charge power) decreased by only half. The cause of the
slow decrease in the growth rate with increasing sepa-
ration between the electrode and the substrate is the
increase in electron densities and rate constants of reac-
tions initiated by electron impact as the interelectrode
separation l is reduced, which partially compensates
decomposition of silicon-containing components out-
side the discharge zone. In addition, a drastic reduction
in the contribution to the film growth from silylyl
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Rd tot

SiH3, (11)

SiH2

10–3
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10–1
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Fig. 8. Film growth rate and contributions of silyl and silylyl
as a function of the ratio of discharge zone to the total reac-
tor zone. Numerical and analytical solutions (formula (11)).
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should be noted, starting as soon as the electrode is
moved away from the substrate (Fig. 8). This is espe-
cially remarkable in view of the fact that at the same
time, its concentration and total production are rising.
Two main reasons for this effect can be indicated. The
first is that the reaction-diffusion length of silylyl is
much less compared with silyl; therefore, the bulk
decomposition of silylyl is more efficient. The second
reason is the very different mechanisms of their pro-
duction. The major source of silyl is the reaction
between silane and atomic hydrogen, which, as seen in
Fig. 9, diffuses quite intensively beyond the discharge
zone. On the other hand, the main contribution to sily-
lyl production comes from the reaction between silane
molecules themselves; therefore, production of SiH2
outside the discharge is small.

CONCLUSIONS

In this work, numerical investigations of the growth
of hydrogenated amorphous silicon films have been
carried out under various conditions in the growth
chamber.

Comparison with experimental data has demon-
strated the ability of the model to predict the film
growth rate and concentrations of individual compo-
nents with reasonable accuracy.

CH, 1010 cm–3

x, cm
1 50 3

1.0

2 4

2.0

3.0

4.0

Fig. 9. Atomic hydrogen profiles for the triode reactor sys-
tem (l/L = 0.4): solid curve, analytical solution; dashed
curve, numerical solution.
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It has been shown that the widely used technique of
diluting silane with molecular hydrogen both increases
the growth rate and reduces production of higher
silanes, making this technology more economical and
ecologically clean. Moreover, dilution increases the
contribution of silylyl to film growth, appreciably
affecting its properties.

Analysis of a widely used reactor system has been
carried out. Numerical simulation has shown that the
effective decomposition of silylyl outside the discharge
zone reduces its contribution to film growth as the sub-
strate is displaced away from the discharge.

The analytical expressions obtained for silyl and
silylyl fluxes and for the profile of atomic hydrogen
closely approximate the results of numerical computa-
tions and can be used for making the corresponding
estimations.
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Abstract—Specific features of the electroluminescence of ion-implanted (Ar ion implantation in oxide layer
bulk) and ion-synthesized (SIMOX technology) Si–SiO2 structures were studied. The electroluminescence
from the electrolyte-insulator-semiconductor system was registered in the 250–800 nm range at room temper-
ature. It has been found that implantation increases the concentration of centers already present in the oxide
layer bulk and creates new luminescent centers. The nature and the models of the centers are discussed. © 2000
MAIK “Nauka/Interperiodica”.
Lately, ion implantation in solid-state structures has
been widely used both in fundamental and applied
research. This is due to a range of opportunities offered
by implantation, which produces controllable transfor-
mations of both the structure and atomic and electronic
properties of solids by way of introducing selected ions
to a specified depth (depending on the impinging ion
energy). This allows the type and level of doping in the
semiconductor near-surface region to change, to form
submerged oxide layers in the bulk of silicon (SIMOX
technology), and to significantly modify the electro-
physical properties of dielectric layers at the semicon-
ductors surface [1]. One of the main problems involved
in the utilization of ion implantation is to determine the
properties and nature of the defects introduced in the
process. The development of a fast, nondestructive pro-
cess control method is an important fundamental and
practical task. Electroluminescence (EL) is a highly
reliable method of studying Si–SiO2 structures. It
detects the presence and identifies the types of defects
in the oxide layer, as well as their concentration and
spatial distribution, by measuring the spectral distribu-
tion and intensity of characteristic bands [2].

The purpose of this work is to study the specific fea-
tures of EL in ion-implanted and ion-synthesized Si–
SiO2 structures and apply EL to the study of defects
produced by implantation.

The EL in the 250–800 nm range was registered
from an electrolyte–insulator–semiconductor system
[2], with the sensitivity significantly enhanced due to
utilization of a field electrode transparent in this spec-
tral range (1 pH water solution of Na2SO4). The mea-
surements were carried out in a photon-counting
regime at 293 K.

In this paper, three types of Si–SiO2 structures were
investigated. Type 1 structures were produced by the
thermal oxidation of silicon (grade KDB-10 (100)) in
accordance with the usual technologies. Type 2 struc-
tures were made by SIMOX technology. Oxygen ions
of energy 190 keV and dose 1.8 × 1018 cm–2 were
1063-7842/00/4508- $20.00 © 21042
implanted into the silicon bulk at 650°C, followed by
annealing for 6 hours at 1320°C and the etching away
of the outer silicon layer, which resulted in the forma-
tion of a 390-nm-thick silicon dioxide layer. Type 3
structures were prepared by the thermal oxidation of
KÉF-5 (100) silicon in a humid oxygen ambient at
950°C and the subsequent implantation of argon ions.
The ion energy, 130 keV, was chosen with a view to
having the maximum density of implanted ions in the
middle of the oxide layer, and the doses were in the
1013–3.2 × 1017 cm–2 range. Some of these structures
were subjected to a fast thermal (radiative) annealing
(FTA) at temperatures of 500–1100°C for 10 s.

Figure 1 shows EL spectra of type 1 structures pre-
pared with the use of different technologies. Earlier,
characteristic emission bands at energies 1.9, 2.3, 2.7,
3.3, 3.8, and 4.6 eV, corresponding to various types of
defects located in the oxide layer and at the Si–SiO2
interface, were identified in this spectrum [2]. It has
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Fig. 1. EL spectra of standard Si–SiO2 structures produced
by thermal oxidation of KDB-10 (100) silicon: (1) in water
vapor at 950°C; (2) in dried oxygen at 1100°C.
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been shown that the luminescence centers responsible
for the red EL band at 1.9 eV are silanol groups local-
ized in the outer SiO2 layer and that their concentration
and spatial distribution correlate with those of the elec-
tron capture centers [2]. Three-coordinated silicon
localized near the Si–SiO2 interface is the center
responsible for the EL band at 2.3 eV, which is due to
intracenter electron transitions in silicon atoms induced
by hot electrons created in the oxide layer [2]. Lumi-
nescence centers responsible for emission in the ultra-
violet (UV) spectral range are localized near the Si–
SiO2 interface [2], but the nature of these centers in
these particular structures has not yet been conclusively
ascertained.

The EL band at 2.7 eV is the most interesting. In
nonimplanted structures, it is observed only in the
range of electric fields producing impact ionization of
the SiO2 matrix. Its localization is not fixed, being coin-
cident with the position of the impact ionization proba-
bility maximum in SiO2 (determined by the electric
field strength in the oxide layer), where the concentra-
tion of dangling Si–O bonds is a maximum.

The EL spectrum of type 2 structures is presented in
Fig. 2. The band at 1.9 eV is not observed in this spec-
trum, indicating the absence of silanol groups in the
oxide layer. This is explained by the specific technol-
ogy of these structures, which eliminates penetration of
the fragments of water molecules (hydrogen, hydroxyl
groups) into the oxide layer.

At the same time, an intense band at 2.7 eV is
observed in the EL spectrum for electric fields not caus-
ing impact ionization. Its intensity is practically not
affected by etching half the oxide layer away. This
means that the centers that are responsible for this band
are mainly localized near the Si–SiO2 interface. The
energy position and the root-mean-square variance of
this band (0.35 ± 0.05 eV) are the same as in nonim-
planted structures. An emission band at 4.4 ± 0.1 eV
occurs in the UV range of the spectrum, which is well
fitted by the Gaussian distribution function with a root-
mean-square variance of 0.4 ± 0.1 eV.

EL spectra of type 3 structures are presented in
Fig. 3. There are three well-resolved EL bands in the
spectrum. Two of the bands have the same energy posi-
tions at 1.9 and 2.7 eV and fit the same Gaussian distri-
butions as in the initial structures, but the EL band at
2.7 eV is excited by fields lower than those causing the
impact ionization in the oxide layer. As in type 2 struc-
tures, one EL band in the UV range is observed at
energy 4.4 eV. It fits the Gaussian function with the
same variance.

It has been found that the intensity of the EL band at
1.9 eV grows with an increase in the implantation dose
for doses up to 1014 cm–2, levels off at 1015 cm–2, and
drops down as the dose is further increased. The EL
bands at 2.7 and 4.4 eV are seen in spectra of the struc-
tures implanted with doses 1013 cm–2 and higher. A fur-
TECHNICAL PHYSICS      Vol. 45      No. 8      2000
ther increase of the dose to 1017 cm–2 causes a drop in
the intensity of these bands, which is succeeded by
rapid growth at a dose of 3.2 × 1017 cm–2. The ratio of
intensities of the bands at 2.7 and 4.4 eV stays constant.

To determine the localization area of the lumines-
cence centers, we monitored the intensity variations of
the bands at 1.9, 2.7, and 4.4 eV resulting from the pro-
gressive etching away of the oxide layer. It has been
found that the centers emitting at 1.9 eV are localized
in the outer region of the oxide layers, as in the nonim-
planted structures. The localization area of the centers
broadens with the implantation dose. Centers emitting
at 2.7 and 4.4 eV are located mainly in the 30–140 nm
region from the Si–SiO2 interphase boundary. Their
distribution maximum is closer to the Si boundary than
that of the implanted argon ions. Increase of the dose
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Fig. 2. EL spectra of Si–SiO2 structures formed using
SIMOX technology.
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causes the smearing of the spatial distribution of lumi-
nescence centers and the shifting of its maximum
towards the Si boundary. The intensities of all EL bands
observed decrease as a result of FTA as the anneal tem-
perature is increased.

To reveal the nature of the defects responsible for
the EL at 2.7 and 4.4 eV, let us discuss the processes
occurring in the silicon oxide layers during argon ion
implantation. The bombarding argon ions lose their
energy in the oxide layer through interactions with its
atomic and electronic subsystems, thereby generating
the structural defects of the SiO2 matrix and electron-
hole pairs, respectively.

In the outer region of the oxide layer, approximately
equal amounts of energy are dissipated due to interac-
tions with the atomic and electronic subsystems. In the
bulk of the oxide layer, the more probable channel of
energy dissipation for the bombarding argon atoms is
the interaction with the atomic subsystem. Therefore,
the greatest amount of dangling Si–O bonds occurs
near the maximum of the distribution of implanted
argon ions, and the Si and O atoms are found displaced
deeper into the oxide layer. The estimated displacement
from the distribution maximum of implanted argon
ions is 80–170 nm for oxygen atoms and 30–70 nm for
Si atoms. As a consequence, two nonstoichiometric
regions of SiOx with x > 2 and x < 2 are formed in the
bulk of the oxide layer [3]. The region rich in oxygen
(x > 2) is located closer to the boundary with silicon
due to the larger displacement of oxygen atoms com-
pared with that of Si atoms.

In the oxygen-deficient region of SiO2, defects of
the two-coordinated silicon atom (O2 = Si:) type are
formed; these we consider to be the EL centers respon-
sible for the 2.7- and 4.4-eV bands. Such defects are
generated in ion implantation as two of the Si–O bonds
in a silicon-oxygen tetrahedron become broken and the
broken bonds spatially separated because of the greater
inward displacements of oxygen atoms in the oxide
layer. According to data in the literature [4], in defects
of this type, two radiative transitions are possible with
energies 2.7 and 4.4 eV, their excitation energy being
equal to approximately 5 eV. These luminescence cen-
ters are excited due to interaction with hot electrons
whose mean kinetic energy in the electric fields of the
range used for exciting EL in SiO2 is just around 5 eV.
The decrease in the intensity of the 2.7- and 4.4-eV
bands caused by exposure to external factors (FTA) is
explained by the partial restoration of the broken bonds
in the oxide layer bulk and a decrease in the concentra-
tion of two-coordinated silicon. The nonmonotonic
behavior of the intensity of 2.7- and 4.4-eV EL bands
with an implantation dose is of special interest. This
fact indicates that the variation of the concentration of
=Si-type defects is nonmonotonic. The lowering of the
concentration of these defects with an increasing dose
is apparently due to the partial restoration of the broken
bonds because of the considerable reduction of the
average distance between neighboring implantation-
induced defects accompanied by structural changes in
the oxide layer due to the change in the silicon-oxygen
bond angle, the formation of =Si=Si=-type defects in
the SiO2 bulk, and so on. The drastic enhancement of
these EL bands at the highest doses suggests the
renewed generation of defects like two-coordinated sil-
icon, which this time takes place in a dielectric layer
whose structure and properties differ from those of the
initial SiO2 matrix. This argumentation is supported by
the nonmonotonic behavior of the intensity of a photo-
luminescence band at 2.7 eV with an increasing dose of
silicon implanted in the oxide layer, as well as with an
increasing concentration of excess silicon in SiO2 films
[5, 6].

The abovementioned peculiarities of the EL band at
1.9 eV (due to silanol groups in the oxide layer) display
the considerable transformation of the atomic structure
in the outer portion of the oxide layer as a result of ion
implantation. The growth of the concentration and
localization area of the silanol groups is attributed to
the generation of these defects in the retardation tracks
of bombarding argon ions due to the breaking of the Si–O
bonds and their subsequent capture by hydrogen and/or
by hydroxyl groups localized in the oxide layer or dif-
fusing from the ambient. This process results in the
growth of the concentration of electron traps in the
outer region of the oxide layer and depends on the
argon implantation dose.

In the case of the Si–SiO2 structures produced by
SIMOX technology, the EL bands at 2.7 eV and 4.4 eV
are also attributed to defects of the two-coordinated sil-
icon (=S :) type. However, these defects in such struc-
tures are due to the formation of silicon clusters near
the Si–SiO2 interface during the fabrication process.

Thus, EL provides a quick and efficient (a spectrum
can be taken in less than 10 minutes) means of studying
ion-implanted Si–SiO2 structures and getting informa-
tion about their structural and electrophysical proper-
ties.

REFERENCES
1. H. Ryssel and I. Ruge, Ionenimplantation (Teubner,

Stuttgart, 1978; Nauka, Moscow, 1983).
2. A. P. Baraban, V. V. Bulavinov, and P. P. Konorov, Elec-

tronics of SiO2 Layers on Silicon (Leningrad. Gos. Univ.,
Leningrad, 1988).

3. B. Garido, J. Samitier, S. Bota, et al., J. Non-Cryst.
Solids 187, 101 (1995).

4. L. N. Skuja, A. N. Streletsky, and A. B. Pakovich, Solid
State Commun. 50, 1069 (1984).

5. W. Skorupa, R. A. Yankov, et al., Appl. Phys. Lett. 68,
2410 (1996).

6. D. J. DiMaria, J. R. Kirtley, et al., J. Appl. Phys. 56, 401
(1984).

Translated by S. Egorov
TECHNICAL PHYSICS      Vol. 45      No. 8      2000



  

Technical Physics, Vol. 45, No. 8, 2000, pp. 1045–1050. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 70, No. 8, 2000, pp. 91–96.
Original Russian Text Copyright © 2000 by Parygin, Vershubski

 

œ

 

, Kholostov.

                                                                                      

ACOUSTICS, ACOUSTOELECTRONICS

         
Acousto-Optical Filtering Using Short Acoustic Trains
V. N. Parygin, A. V. Vershubskiœ, and K. A. Kholostov

Moscow State University, Vorob’evy gory, Moscow, 119899 Russia
Received June 7, 1999

Abstract—The problem of controlling the characteristics of collinear acousto-optical filters is studied experi-
mentally. It is shown that the use of an acoustic pulse in the form of a step-function signal makes it possible to
considerably reduce the side lobes of the instrument function of a collinear acousto-optical filter. The changes
in the shape of the transmission curve that occur as a result of the variations in the number of acoustic pulses
simultaneously propagating in the crystal and in their duration are investigated. An experimental study of a
spectrum consisting of two close lines is performed using a tunable collinear acousto-optical filter. © 2000
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Tunable collinear acousto-optical filters are among
the most promising optoelectronic devices. These fil-
ters have a narrow transmission band that can be elec-
tronically tuned within an octave [1–3]. In the litera-
ture, two types of acousto-optical filters are described:
collinear and noncollinear ones [4, 5]. Collinear filters,
which usually have a narrow transmission band, are
characterized by higher selectivity, and this property is
important for the spectral analysis of optical radiation
and for the channel multiplexing purposes.

In our recent publications [6–9], it was shown theo-
retically that, in collinear acousto-optical filters, an
electronic tuning of not only the central frequency but
also the width of the transmission band and the shape
of the transmission curve is possible when the filter is
controlled by a pulsed acoustic signal rather than by a
continuous one. In this case, the duration of the control
pulse determines the transmission band, and the form
of the pulsed signal governs the shape of the transmis-
sion curve of the collinear filter. Our previous experi-
ments [10] demonstrated the possibility of controlling
the characteristics of a collinear filter by using single
acoustic trains.

If we use a sequence of short acoustic trains with a
relatively small distance between them (less than the
crystal length), several acoustic pulses may simulta-
neously propagate in the cell. In this case, the transfer
characteristic of the cell has the form of a series of sev-
eral narrow peaks. The spacing between the peaks
depends on the number of peaks in the crystal, and the
number of peaks depends on the duration of each indi-
vidual pulse.

In this paper, we describe the experimental study of
the dependence of the characteristics of a collinear
acousto-optical filter on the form and duration of suc-
cessive acoustic trains.
1063-7842/00/4508- $20.00 © 21045
THEORY OF THE COLLINEAR ACOUSTO-
OPTICAL INTERACTION

The propagation of acoustic trains in a crystal is
accompanied by an elastic strain wave described by the
strain tensor Slma(x, y, z, t). The strain wave changes the
refractive indices of the medium. This change is related
to the elasto-optical effect described by the tensor pjklm.
The change in the components of the permittivity ten-
sor of the medium under the effect of the acoustic field

has the form ∆εjk = – . Here, Nj

and Nk are the main refractive indices of the medium,
and j, k, l, and m are the coordinate indices.

The diffraction of light by sound is described by the
wave equation

(1)

where E(x, y, z, t) is the electric vector of the light wave;
 is the permittivity of the medium in the absence of

sound;  is the variation of  in the presence of
sound, this variation being proportional to the acoustic
strain; and a(x, y, z, t) is the distribution of the acoustic
strain in the medium. The latter quantity can be repre-
sented in the form

(2)

where a0 is the amplitude of the wave at the cell input
(at x = 0), and K and Ω are the wave number and the fre-
quency of the acoustic train, respectively. In the general
case, the functions W(x, y, z) and V(x, t) describe the
spatial distribution of the amplitude and the time enve-
lope of the trains, respectively.

It should be noted that, for light beams of finite
dimensions, we have rotrotE ≠ ∇ 2E, because graddivE

N j
2
Nk

2
p jklmSlml m, 1=

3∑

rotrot E
1

c
2

---- ∂2

∂t
2

------- ε̂0E+
1

c
2

---- ∂2

∂t
2

-------∆ε̂ aE( ),–=

ε̂0

∆ε̂ ε̂0

a x y z t, , ,( ) a0W x y z, ,( )V x t,( )=

× j Kx Ωt–( )[ ]exp c.c.,+
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cannot be considered as zero even in an isotropic
medium.

It is known that, in the case of a collinear diffraction,
the polarization of the diffracted light beam is orthogo-
nal to the polarization of light incident on the acousto-
optical cell. Therefore, in the region of the interaction
of light and sound, it is quite natural to represent the
light beam as a sum of the transmitted and diffracted
beams with orthogonal polarizations:

(3)

where et and ed are the polarization directions of the
transmitted and diffracted beams, respectively; ωt and
ωd are the frequencies of the transmitted and diffracted
light beams; and Et(x, y, z, t) and Ed(x, y, z, t) are their
amplitudes slowly varying along the x-axis.

We substitute the vector E determined by expression
(3) into equation (1). We use the diffraction condition
ωd = ωt + Ω and equate the amplitudes of exp{jωtt} and
exp{jωdt}. Neglecting the quantities ∂2Et/∂x2 and
∂2Ed/∂x2, as well as ∂Et/∂t and ∂Ed/∂e, we apply a two-
dimensional Fourier transform to both sides of equation
(2) in the yz plane. Then, omitting the mathematical
transformations analogous to those described in [6–9]
and taking into account the orthogonality of the polar-
izations et and ed, we arrive at a system of scalar equa-
tions for the spectra of the transmitted and diffracted
light Ut and Ud:

(4)

(5)

Here, q1 = kd(ed∆ et)/ ; q2 = kt(et∆ ed)/ ; η = kt +
K – kd is the parameter of detuning; ky , kz and Ky , Kz

are  the transverse components of the wave vectors of
light and sound, respectively; and A(Ky , Kz , x) =

πR2exp{−(  + )R2(1 – jDx)/4} is the Fourier spec-
trum of the function W(x, y, z) for the case of a Gaussian
distribution of the acoustic pulse amplitude in the yz
plane. In the latter expression, R denotes the transverse
dimensions of the train at x = 0 and t = 0, D = 2ζ/KR is
the train divergence in the transverse directions, and ζ
characterizes the transverse anisotropic spread. We rep-
resent the functions Ut and Ud in the form

(6)

E etEt x y z t, , ,( ) j kt x ωtt–( )[ ]exp=

+ edEd x y z t, , ,( ) j kdx ωdt–( )[ ] ,exp

j
∂Ud

∂x
----------

ky
2

2kd

--------Ud+ q1 jηx–( )V x t,( )exp=

× A Ky Kz x, ,( )Ut ky Ky kz Kz x t, ,+,+( ) Ky Kz,dd∫∫
j
∂Ut

∂x
---------

kz
2

2kt

-------Ut+ q2 jηx( )V x t,( ) A* Ky Kz x, ,( )∫∫exp=

× Ud ky Ky– kz Kz– x t, , ,( ) Ky Kz.dd

ε̂ nd
2 ε̂ nt

2

Ky
2

Kz
2

Ut ky kz x t, , ,( ) f t x t,( ) jxkz
2
/2kt{ }exp=

× ky
2

kz
2

+( )rt
2

x( )/4–{ } ,exp
(7)

Here, ft(x, t) and fd(x, t) are the light beam amplitudes
depending on x and t and taken along the axis at ky =
kz = 0; ri(x) (where i = t, d) are the slowly varying radii
of the Gaussian beams. According to our previous cal-
culations [7], the variations of the radii with the coordi-
nate are negligibly small. In addition, the radii of the
incident rt and diffracted rd light beams are related as

rd = rt/ .

Let us substitute expressions (6) and (7) into equa-
tions (4) and (5). The integrals over dKy and dKz in the
right-hand members of equations (4) and (5) can be cal-
culated analytically. Neglecting the variations of the
light beam radii, we obtain a system of two first-order
differential equations describing the collinear diffrac-
tion of light by Gaussian acoustic trains in the case of a
strong acousto-optical interaction:

(8)

(9)

where ρi = ri/R.
The use of finite beams in describing the diffraction

of light by sound makes it possible to determine the
efficiency of the diffraction not through the ratio of the
power densities of incident and diffracted light but
through the ratio of the luminous fluxes in the diffracted
and incident light beams, as it is always done in the
experiment. The luminous flux in a light beam can be
calculated by using either the integral of the squared
magnitude of the light field distribution over the beam
cross-section or the integral of the squared magnitude
of the Fourier spectrum of the field over the angular
coordinates ky  and kz (the Parseval theorem).

The luminous flux at the input of the acousto-optical

cell is determined by the formula P0 = 0.5  +

) /2}dkydkz, because ft(0) = 1; at the cell output,
it     is calculated by the formula P =

0.5 (L) (L)exp{–(  + ) /2}dkydkz, where

expression (8) should be used for fd(L). The ratio P/P0
characterizes the efficiency of the acousto-optical dif-
fraction, and this quantity can be directly determined
from the experimental data.

EXPERIMENT

In our experimental studies, we used a collinear
acousto-optical filter made on the basis of a CaMoO4

Ud ky kz x t, , ,( ) fd x t,( ) jxky
2
/2kd{ }exp=

× ky
2

kz
2

+( )rd
2

x( )/4–{ } .exp

1 rt
2
/R

2
+

∂ f d

∂x
-------- jq1 f t x t,( )V x t,( ) jxη–{ }exp

1 jDx–( ) ρt
2

+
-----------------------------------,–=
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-------- jq2 f d x t,( )V x t,( ) jxη{ }exp

1 jDx+( ) ρd
2
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2
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2
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crystal of length L = 4 cm. The time of the acoustic
pulse propagation through the crystal was L/v =
11.6 µs. The acoustic wave was excited in the crystal by
a piezoelectric transducer, which converted the electric
energy of the generator to the energy of the acoustic
wave.

For our experiments, we used a specially designed
generator that was capable of producing signals with an
arbitrary envelope, i.e., arbitrarily shaped pulses. The
envelope of the signal is formed by setting the value of
the signal amplitude every 0.1 µs; i.e., the envelope has
the form of a set of rectangles of duration 0.1 µs each.
In this way, one can specify any form and duration of
the acoustic train, as well as the entire sequence of
trains. The maximum duration of a pulse produced by
the generator is 200 µs, and the minimum duration is
about 0.5 µs. The rate of the pulse series repetitions
may vary from 0.5 to 1 kHz. After the amplification, the
output power reaches a level of 3 W.

The block diagram of the generator is shown in
Fig. 1. The high-frequency unit generates the funda-
mental frequency 35–48 MHz, and this is precisely the
sound frequency at which the diffraction of light takes
place. The envelope is formed by the following units:
the read-only memory (ROM), the processor, the ran-
dom-access memory (RAM), and the digital-to-analog
(D/A) converter. The initial pulse or pulse series was
modeled on a PC and saved in the text format. Then, the
envelope was sent through the corresponding port to the
generator processor and to the ROM. After this, the
communication between the computer and the genera-
tor was cut off. When the generator was turned off, the
information on the pulse form was stored in the ROM.
Within several seconds after the termination of the data
transfer from the PC to the generator, or after turning on
the generator, the processor supplies the data on the
pulse form to the RAM from which the digital data are
sent to the D/A converter. As a result of the described
process, the desired envelope of the signal is formed.
Then, by means of a multiplier, the high-frequency
oscillation of frequency 35–48 MHz is modulated by
the envelope. The resulting pulse (or series of pulses) is
supplied to an amplifier and amplified to the necessary
amplitude.

In common practice, to obtain acoustic trains of
finite length, rectangular pulses are used; for such
trains, the transfer characteristic has the form of the
function sinc2(x). For rectangular pulses, the level of
the side lobes does not depend on the pulse duration
and is as high as 5% of the central maximum (in the
weak-interaction approximation). It should be noted
that, in contrast to rectangular pulses for which the
level of the side lobes is constant, for Gaussian pulses,
this quantity varies from zero (for short pulses, τ ! L/v)
to the level corresponding to rectangular pulses (for
long pulses, τ > L/v).

The possibility of considerably reducing the side
lobes allows one to improve the characteristics of the
TECHNICAL PHYSICS      Vol. 45      No. 8      2000
filter. This improvement is most pronounced for the
pulse lengths somewhat less than the crystal length,
because in this case the transmission band is practically
not broadened, while the side lobes are already notice-
ably suppressed. On the other hand, with a further
decrease in the acoustic train duration, the filter band-
width increases. This fact can be used in practice for
controlling the characteristic of the collinear filter, but
a strong suppression of the side lobes can be achieved
only with smooth control pulses.

We experimentally studied the level of the side lobes
of the instrument function of a collinear filter con-
trolled by an acoustic pulse in the form of a step-func-
tion signal. It was found that, in the case of an optimal
choice of the form of the step-function signal, the level
of the side lobes is considerably reduced. For example,
if an acoustic train with the time envelope shown in
Fig. 2 is used, its form can be described by the expres-
sion

where the constants A, B, and C determine the width
and the height of the steps.

V x t,( ) A rect t x/v–
t5

---------------- 1
2
---– 

 =

+ B rect
t x/v– t1–

t4 t1–
-------------------------- 1

2
---– 

  C rect
t x/v– t2–

t3 t2–
-------------------------- 1

2
---– 

  ,+
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2

Fig. 1. Block diagram of the generator of arbitrarily shaped
acoustic pulses: (1) a com-nopra interface, (2) a processor,
(3) memory (ROM), (4) memory (RAM), (5) a D/A con-
verter, (6) a high-frequency oscillator, (7) a multiplier, and
(8) an amplifier.
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0 t5t4t3t2t1 t

a/a0

Fig. 2. Time envelope of an acoustic pulse in the form of a
step-function signal.
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Fig. 3. Instrument function of a filter controlled by two
acoustic pulses of duration 3 µs. The solid line corresponds
to the distance between the pulses 6 µs; the dotted line
shows the instrument function of a filter with a single pulse
of duration 1 µs.
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Fig. 5. Theoretical dependence of the transmission factor on
the sound frequency for an acousto-optical filter in the case
of five acoustic trains being present inside the crystal. The
distance between the trains is 2 µs; the train duration is
(solid line) 2 and (dashed line) 1 µs.

When uniform rectangular pulses are used and the
condition of weak interaction is fulfilled, the levels of
the first, second, and third side lobes are 4.7, 2.7, and
1.0%, respectively. With the use of a step-function sig-
nal shown in Fig. 2, it was possible to suppress the side
lobes down to a level of 0.7%.

In the case of the generation of short acoustic trains
(with the duration less than 3–4 µs), several pulses may
simultaneously occur within the crystal. In such a situ-
ation, it is of interest to study the dependence of the
shape of the transmission curve on the pulse duration
and the number of pulses that simultaneously propagate
in the crystal (the number of pulses depends on the dis-
tance between them). Below, we will consider a
sequence of acoustic trains with a Gaussian time enve-
lope.

For a single short acoustic train, we obtain a broad
transmission band with a Gaussian characteristic with-
out any side lobes (the dotted line in Fig. 3). When two
0.5

0
43.3

I/I0

f, MHz43.6 43.9 44.2

1.0

43.0

Fig. 4. Instrument function of a filter controlled by two
acoustic pulses of duration 3 µs with the distance between
them 6 µs. The solid line corresponds to the theory, and the
dashed line shows the experimental data.

0.5

0
42

I/I0

f, MHz43 44 45

1.0

Fig. 6. Experimental instrument function of a filter con-
trolled by five acoustic pulses of duration 1 µs with the dis-
tance 2 µs between them.

trains of the same duration are present in the crystal,
beats are observed (the solid line in Fig. 3). The calcu-
lation is performed for the pulses of duration 1 µs with
the distance between them 6 µs. The envelope width
and, correspondingly, the number of maxima are deter-
mined by the duration of the short pulse. The use of
acoustic trains of longer duration leads to a narrowing
of the envelope of the filter characteristic and to a
decrease in the number of maxima. This was observed
in the experiment (Fig. 4) with the trains of duration
3 µs with a distance of 6 µs between them.

With a further increase in the number of trains in the
crystal, the envelope of the transmission characteristic
is retained, because it is determined exclusively by the
duration of the pulses forming the sequence (the shorter
the acoustic train, the broader the envelope). As the
number of pulses increases, the beats take the form
shown in Fig. 5. The transmission function tends to a
set of isolated narrow peaks whose width is determined
TECHNICAL PHYSICS      Vol. 45      No. 8      2000
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by the size of the crystal, i.e., by the length of interac-
tion in the case of a continuous-wave operation.

Figure 6 presents the experimental shape of the
transmission curve for a series of five pulses of duration
1 µs spaced at 2 µs intervals. One can see that the
experimental data agree well with the theoretical ones.
Thus, using a series of short trains whose individual
frequency bands are very wide, it is possible to create a
filter with a comb-shaped transmission curve whose
peaks are characterized by bandwidths about those of
long pulses or even a continuous-wave signal.

As one can see from Figs. 5 and 6, in the case of a
simultaneous propagation of several acoustic trains in
the crystal, the transmission band of the filter has the
form of a set of equidistant peaks. Figure 7 shows the
theoretical dependence of the frequency interval
between the peaks of the comb on the time interval
between the acoustic pulses. This dependence is a
hyperbolic one. It is evident that the interval between
the acoustic pulses determines the number of pulses
simultaneously propagating in the crystal. It should be
noted that the frequency interval between the peaks
depends on the time interval between the acoustic trains
rather than on the number of pulses inside the crystal.
Therefore, we obtain a continuous and smooth depen-
dence rather than a step function. Correlating the exper-
imental dependence shown in Fig. 6 with the calibra-
tion dependence given in Fig. 7, we obtain the interval
between the acoustic pulses 2 µs, which is in complete
agreement with the experiment.

An important application of tunable acousto-optical
filters is in the measurements of optical spectra. In our
experiments, we studied a spectrum consisting of two
close lines that differed by 91 Å. The spectrum was
obtained by simultaneously supplying the optical sig-
nals from a He–Ne laser (λ1 = 0.6328 µm) and a semi-
conductor laser (λ2 = 0.6419 µm) to the filter input. The
measurements were performed by using long acoustic
pulses (τ ≈ L/v).

1.0

0.6

0.2
1 2 ∆τ, µs

f, MHz

Fig. 7. Dependence of the frequency interval between the
peaks of the comb, ∆f, on the pulse-repetition interval ∆τ.
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The results of the experiment are shown by the
dashed line in Fig. 8. One can see that the acousto-opti-
cal filter well resolves the spectral lines. The solid line
shows the same spectrum studied by using short acous-
tic pulses with τ ! L/v. In this case, the filter bandwidth
exceeds the distance between the spectral lines, and the
resolution of the system is insufficient for observing the
two separate lines of the spectrum. This experiment
confirms the fact that the filter bandwidth increases
with a decrease in the control pulse length.

For a spectrum consisting of two lines, there still is
an interesting possibility to determine the exact dis-
tance between the lines even with the use of short
pulses. When we use a single short pulse, we cannot
resolve two close lines of the spectrum because of the
broad transmission band. However, using a series of
short pulses, we can tune the system in such a way that
the peaks of the filter characteristic will coincide with
the lines of the spectrum. In this case, the spectral char-
acteristic of the filter remains a periodic one for the
optical spectrum consisting of two lines.

CONCLUSION

The experimental studies described above showed
that the use of acoustic trains of finite length for con-
trolling the characteristics of a collinear acousto-opti-
cal filter is of great interest, because it provides a pos-
sibility to vary the characteristics of the filter over wide
limits. The filter bandwidth can be increased by using
short pulses. At the same time, the level of the side
lobes of the transmission function depends on the form
of the acoustic train and its duration. In the case of a
Gaussian (or close to it) acoustic train, the side maxima
are absent when the pulse duration is less than the time
of the pulse propagation through the crystal τ = L/v. As
the pulse duration increases, the level of the side lobes
tends to the value characteristic of a rectangular pulse.
By using pulses in the form of a step-function signal
(with adequately chosen parameters), it is possible to

I/I0

1.0

0.5

0
42.0 42.5 43.0 43.5 44.0 f, MHz

Fig. 8. Study of the optical spectrum consisting of two lines
by an acousto-optical filter controlled by the pulses of dif-
ferent duration: τ = (solid line) 2 and (dashed line) 12 µs.
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suppress the side lobes down to a level of 0.7%. The use
of a series of Gaussian pulses allows one to obtain a fil-
ter characteristic that has the form of a set of equidistant
peaks with a broad envelope.

An acousto-optical cell can also be used as a spec-
trometer with a varying resolution, the latter being var-
ied by changing the pulse duration. Interesting possibil-
ities for spectrum identification are offered by the use
of a series of acoustic trains simultaneously propagat-
ing in the crystal.
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Abstract—A method for determining the relaxation times of the magnetic moments of ferrites from inverse
Fourier transforms is suggested. The effect of the alternating external magnetic field strength on the relaxation
times was studied. It was found that the dispersion and absorption ranges in the magnetic spectra are associated
with changes in the relaxation times of magnetic moments of ferromagnets. © 2000 MAIK “Nauka/Interperi-
odica”.
DETERMINATION OF RELAXATION TIME

Relaxation time is a key parameter of ferromagnets
that specifies their frequency properties, such as the fre-
quency curve of the permeability (its slope), the width
of the absorption range, etc. The relaxation time τ is tra-
ditionally found from the width of the peak of the imag-
inary part µ'' of the permeability: τ = 2π/∆ω, where ∆ω
is the half-peak width of µ''. This method is applied to
saturation-magnetized magnets (single-domain crys-
tals and polycrystals). The most pressing problem is
however to find relaxation times at small and vanishing
magnetizing fields, since ferromagnets are most fre-
quently applied just in this range of magnetization. For
most of ferromagnets, experimental data for µ'' can be
obtained only at lower-than-resonance frequencies pre-
sumably because of large losses (defined as µ''/µ' ratio,
where µ' is the real part of the permeability) at higher
values. Therefore, the need for a method that can over-
come these difficulties is obvious.

In this work, the relaxation time τ of the magnetic
moments of ferrites is derived from inverse Fourier
transformation applied to the frequency dependence of
the permeability 

(1)

For inverse Fourier transformation, the integrand
must be defined in (–∞, +∞) and the functions µ'(ω)
and µ''(ω), in [0, +∞). We assume µ' and µ" to be even
in order to define them in the (–∞, +∞) range. The
inverse Fourier transform is then a real time function
µ(t) [1]. The relaxation time τ of magnetic moments is
defined as a time during which µ(t) becomes e times
smaller than µ(t = 0). To apply this method, µ' and
µ''(ω) must be taken as continuous functions approxi-
mating experimental data. Inverse Fourier transforma-
tion imposes constraints on the approximating func-
tions. Two of the constraints make integration easier

µ t( ) 1

2π
---------- µ' ω( ) iµ'' ω( )–( ) iωt( ) ω.dexp

∞–

+∞

∫=
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[µ''(ω = 0) = 0 and µ''(ω  ∞) = 0], and the third one
has a physical meaning [µ'(ω  ∞) = 0]. They also
help to solve the problem associated with the broaden-
ing of the natural ferromagnetic resonance (FMR)
peak. This effect is related to domain wall motion at
zero static fields and makes the evaluation of τ difficult.
At such fields, τ can be determined only in ferrites for
which the contribution from wall motion is small in the
FMR frequency range. With the above restrictions, the
approximating curves eliminate this contribution.

Real µ'(ω) and imaginary µ''(ω) curves found in exper-
iments were approximated as µ'(ω) = A1exp(−B1/ω) +
A2exp(–B2/ω) and µ''(ω) = Aωexp(–Bωn), where n is a
positive rational number. These expressions are fairly
simple and provide a good fit to experimental data.
Approximating and experimental curves for several
samples are shown in Figs. 1–4.

OBJECTS OF INVESTIGATION

Using the inverse transform method, we calculated
the relaxation time for the magnetic subsystem of man-

µ'
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Fig. 1. µ' vs. frequency for the (211) single-crystal MnZ
spinel. h0 = 1 mOe. Symbols denote data points.
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ganese–zinc spinel (MnZ spinel) from experimental
frequency spectra µ(ω). A specific feature of MnZ
spinel is that the range of dispersion and the absorption
peak in the µ'' curve are due largely to magnetization
rotation [2–4], i.e., to FMR. Since MnZ spinel has low
fields of anisotropy HA (below 1 Oe), FMR and domain
wall resonance in them are observed in the 0.1–10 MHz
and 1–10 kHz ranges, respectively [4]. Hence, they add

104 105 106

ω, Hz
107

µ''
700
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400

300

200

100

0

Fig. 2. µ" vs. frequency for the (211) single-crystal MnZ
spinel. h0 = 1 mOe.
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Fig. 3. µ' vs. frequency for the polycrystals. h0 = 20 mOe.
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Fig. 4. µ" vs. frequency for the polycrystals. h0 = 20 mOe.
little to the total permeability at high frequencies [5].
A small contribution from wall displacement must
improve the accuracy of determination of the true mag-
netic moment relaxation times, not the effective times,
which are severely affected by wall motion. Moreover,
along with the suggested method, the conventional
approach to determining the relaxation time is also
applicable in this case.

Calculations were carried out on (1)
Mn0.54Zn0.36Fe2.09O4 (111), (110), (211), and (100)
spinel single crystals (the ring (torus) plane was parallel
to the plane of orientation) subjected to different alter-
nating magnetic fields h0 (1, 7, and 20 mOe) and (2)
Mn0.63Zn0.29Fe2.08O4 spinel polycrystals with a porosity
of 0.003, mean grain size 20.2 µm, and field of anisot-
ropy HA = 0.04 Oe. In the latter case, h0 equaled 1 and
2 mOe. Experimental dependences µ(ω) were taken
from [6, 7].

COMPARISON OF THE METHODS 
FOR τ DETERMINATION

The relaxation times obtained by inverse Fourier
transformation lie near 10–7 s, while those derived from
the half-peak width are in the 10–6–10–7 s range. In [3],
the magnetic moment relaxation times in MnZ spinel
were estimated at 10–7–10–8 s; hence, the inverse Fou-
rier transform gives the more accurate value. This is
explained as follows. In calculations using the inverse
Fourier transform, both the real, µ', and the imaginary,
µ", parts of the permeability are used. Therefore, due to
a greater number of data points, the accuracy of calcu-
lation is improved. A frequency dependence of µ' at
high frequencies is easier to predict, since its slope, as
a rule, is represented more comprehensively. Hence, µ'
can be approximated with a much better accuracy than
µ" (Figs. 1, 2).

When the relaxation time was calculated with the
conventional method, data points only for µ" were
used. Note that the component µ' was approximated at
frequencies from 104 to 107 Hz. Conversely, in the case
of µ", data at h0 = 1 mOe were obtained only for the
ascending branch (in the 104–106 Hz range, Fig. 2). The
further behavior of µ" was predicted very roughly from
the conditions µ"(0) = 0 and µ"(∞) = 0.

From experimental data for µ", the position of its
peak remains unclear; hence, the height of the peak
may be in great error. For the peak value of µ", we took
the highest-frequency data point. As follows from cal-
culations, such an assumption is usually valid and the
relaxation times estimated by both methods are close to
each other.

Thus, for the experimental data considered, inverse
Fourier transformation is the method of choice, since it
provides more accurate values of the relaxation times
of ferrites.
TECHNICAL PHYSICS      Vol. 45      No. 8      2000
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For polycrystals, the relaxation times obtained by
both methods coincide. Here, we used experimental
data for a wide frequency range and the peak of µ" is
distinct. In this case, the conventional method gives
fairly accurate values of τ (related approximations are
shown in Figs. 3, 4).

DISCUSSION
For the single crystals, the relaxation times calcu-

lated from the experimental permeability data were
found to be independent of the crystallographic orien-
tation and alternating external field amplitude h0 within
1–20 mOe. The times remain constant at a level of 3 ×
10–7 s. For polycrystals, the relaxation time at small h0’s
is 4 × 10–7 s, i.e., roughly equal to that of the single
crystals. As h0 rises, the situation changes drastically.
At h0 = 20 mOe, the magnetic moment relaxation time
increases about twofold. Unlike the single crystals, the
structure of the polycrystals undergoes substantial
modification (damage). In this case, the vector of mag-
netization may slowly return to the equilibrium posi-
tion, causing the relaxation time to increase. Similar
results were obtained in [8–10]. It was found in these
works that the relaxation time increases as the energy
delivered to the magnetic subsystem grows. In [9],
nickel ferrite was studied; and in [10], nickel–chro-
mium alloys. It is likely that such an energy depen-
dence of the relaxation time is typical of all spinel-like
ferrites within a certain range of field amplitudes.

CONCLUSIONS
If the relaxation time is difficult to estimate with the

traditional method, inverse Fourier transformation can
be used. When the frequency range is such that the
vicinity of the imaginary component peak is fully cov-
ered, both methods give similar results. In this case, the
TECHNICAL PHYSICS      Vol. 45      No. 8      2000
traditional method is even preferred, since inverse Fou-
rier transformation requires data preprocessing.

We can conclude that the relaxation time is indepen-
dent of the mutual arrangement of the crystallographic
axes and alternating field in the single-domain ferrites.
The field amplitude affects the relaxation time only in
the polycrystals. It can be suggested that frequency
characteristics of many radio engineering devices
based on polycrystalline ferrites can easily be con-
trolled by varying the amplitude of an external alternat-
ing field.
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Abstract—Relativistic electron motion in the electromagnetic Gaussian beam that propagates along a station-
ary magnetic field is studied. It is shown that, if the cyclotron resonance conditions are initially satisfied, elec-
trons can be efficiently accelerated over a relatively small interval at a slightly lower rate than in a plane accel-
erating wave. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Among various charged particle acceleration mech-
anisms, the cyclotron autoresonance mechanism dis-
covered by Kolomenskiœ and Lebedev [1] and, indepen-
dently, by Davydovskiœ [2] is of great interest. This
mechanism provides a high acceleration rate and suffi-
ciently low radiation losses [3]. A variety of designs of
microwave [4–6] and laser [7, 8] electron accelerators
based on the cyclotron autoresonance have been pro-
posed. At the same time, strictly speaking, the cyclo-
tron autoresonance, being a relativistic effect, exists
only in the plane transverse electromagnetic wave trav-
eling at the speed of light in vacuum along a stationary
magnetic field if electrons are in the cyclotron reso-
nance with the wave at the initial moment of time. If
these conditions are violated, various techniques can be
used to support the forced synchronism [3]. It was
shown [7] that electrons can be accelerated to
extremely high energies in the field of high-power laser
radiation at a very high rate with very small radiative
losses. However, these results were obtained under the
assumption that the laser radiation has the form of a
plane wave. Actually, this assumption is usually
invalid. In many cases, laser and microwave radiation
can be considered in the quasi-optical approximation as
a Gaussian beam. Clearly, in this case, the cyclotron
autoresonance conditions are a fortiori violated. There-
fore, the electron energy does not necessarily grow
monotonically. In this paper, we show that, despite this
circumstance, particles in the Gaussian beam can also
acquire a significant energy over a short acceleration
interval. A high acceleration rate can be achieved by
shaping the guiding magnetic field to fit an appropriate
profile or by optimizing the parameters of the electron
injection and of the Gaussian beam.
1063-7842/00/4508- $20.00 © 21054
ASSUMPTIONS AND BASIC EQUATIONS

In the paraxial approximation, laser radiation can be
represented as a Gaussian beam (GB) [9] that propa-
gates along a stationary magnetic field aligned with the
z-axis:

(1)

Here,

(1a)

where D = 2z/ka2 ≡ z/zq; zq = ka2/2 is the Rayleigh
length; ω is the wave frequency; k = ω/c is the wave
number in vacuum; a is the radius of the beam’s waist,

i.e., its minimal radius at z = 0; and r =  is the
transverse coordinate.

The magnetic components of the GB field can be
found from Maxwell’s induction equation:

(2)

where

(2a)

(2b)

(2c)

E E Θcos E Θsin– 0, ,( ).=

Θ ωt– kz kψ,+ +=

kψ r
2
D/a

2
1 D

2
+( ) D,arctan–=

E E1 1 D
2

+( )
1/2–

r
2
/a

2
1 D

2
+( )–{ }exp=

≡ E1 f x y z, ,( ),

x
2

y
2

+

B Bx By Bz, ,( ),=

Bx E1 G Θcos fQ Θsin+( ),=

By E1 G Θsin fQ Θcos–( ),–=

Bz

2 f E1

ka
2

1 D
2

+( )
-----------------------------–=

× xD y–( ) Θsin yD x+( ) Θcos+( ).
000 MAIK “Nauka/Interperiodica”



        

ELECTRON ACCELERATION BY GAUSSIAN ELECTROMAGNETIC BEAM 1055

                                              
Here,

The phase velocity of the GB is

where

At a distance of about the Rayleigh length, D ≈ 1, so
that ψ'/k ≈ (1/kzq) ! 1 when r < a. Therefore,

That is, the phase velocity is higher than the velocity
of light. This means that the cyclotron autoresonance
cannot exist in the GB.

In order to extract the cyclotron rotation of a parti-
cle, we represent its momentum vector as

(3)

Here, ex , ey, and ez are the unit vectors of the Cartesian
coordinate system; pz and p⊥  are the momentum com-
ponents, respectively, along and perpendicular to the
guiding magnetic field; and Θ0 is the phase of the par-
ticle cyclotron rotary motion in this field. The phase of
field (1), as it acts on the electron, is governed by the
equation

(4)

Equations of electron motion in the GB field com-
bined with equation (4) constitute a two-period (or two-
frequency) system, which contains oscillating factors
with phases Θ, Θ0, and their combinations Θ ± Θ0. In
the region of the electron cyclotron resonance, Θ +
Θ0 ≡ Θ+ is a slowly varying quantity. When the oscilla-
tion frequency is high and the magnetic field is strong,
phases Θ, Θ0, and Θ – Θ0 must be regarded as rapidly
varying quantities. Smoothing over rapidly varying
phases [10] in the electron cyclotron resonance region
yields

(5)
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(7)

(8)

(9)

Here, τ = ωt; R = kr; P = p/m0c, and ε = eE1/m0cω are
the dimensionless parameters and variables; m0 is the
electron rest mass; ω0 = eB0/m0c is the classical fre-
quency of the electron cyclotron rotation in the guiding
magnetic field; Ω0 = ω0/ω; the electron charge is –e,

where e > 0; and γ =  is the relativistic
factor (dimensionless electron energy). In the case of a
plane electromagnetic wave, Q = 1 and function f = 1
such that G = 0. Then, system (5)–(9) yields the integral
of motion γ – Pz = Y = const, which coincides with the
cyclotron resonance condition at Y = Ω0. This is the
autoresonance [3]. If the electromagnetic field has the
form of GB (1) and (2), according to (5)–(9), the cyclo-
tron resonance occurs when

(10)

Since the phase velocity of the GB is higher than the
velocity of light, the electron cyclotron resonance con-
dition, imposed at the initial time moment, is not pre-
served during the electron motion. This effect occurs
because (10) is not an integral of motion.

NUMERICAL RESULTS

It is difficult to derive an analytical solution to sys-
tem (5)–(9). Therefore, we solved it numerically by the
Runge–Kutta method. The motion of electrons injected
at Z ≤ 0 was studied in the region x2 + y2 < a2. The
cyclotron resonance condition (10) was assumed to be
fulfilled exactly at the initial moment of time. This
requirement imposes rather stringent constraints on the
domain of parameters Ω0 and Q0. In fact, initially, the
transverse momentum component must comply with
the relationship

(11)

which yields the constraint on parameters Ω0 and Q0
mentioned above

(12)

We will study the motion of electrons that satisfy
initial condition (10) and have an initial energy of
25 MeV or higher. The electron motion will be studied
within a rather small 100-cm-long interval. This inter-
val is chosen because it is necessary to find the optimal
parameters that provide a high electron acceleration
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rate with the Rayleigh length being noticeably longer
than the acceleration interval.

Figure 1 shows the electron energy on this interval
as a function of the GB width (parameter q = a2k2) for
microwave radiation (λ = 1 mm and Ω0 = 1). It can be
seen that the particle acceleration rate increases with
the beam width at a constant wavelength. At q = 105, the
energy grows as fast as in the plane wave. Under these
conditions, the electron energy can rise by more than an
order of magnitude. The acceleration process involves
all electrons regardless of the spread in the initial
phases, which govern the electron motion at the initial
stage; the electron energy increases by a factor of 7–8.
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Fig. 1. Electron energy γ on the acceleration interval versus
GB width (parameter q = a2k2) for microwave radiation
(λ = 1 mm and Ω0 = 1) at γ0 = 50 and ε = 1: (A) plane wave
and the GB at q = 105 and the GB at q = (B) 104, (C) 5 × 103,
and (D) 103.
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Fig. 3. Energy of electrons accelerated in the GB under the
approximate initial cyclotron resonance conditions at λ =
10 µm (CO2 laser), Ω0 = 0.01, γ0 = 50, and ε = 1: (A) plane
wave with the exact cyclotron resonance; (B) the GB with
C = 0.01, 0.00985, and 0.0101; and (C) the GB with C = 0.011.

200
The acceleration rate significantly increases with the
radiation power.

At shorter wavelengths (less than 20 µm, laser radi-
ation) and the same guiding magnetic field, Ω0 is very
small; hence, by virtue of constraint (12), the initial
cyclotron resonance conditions (10) cannot be satisfied.
Therefore, when the particles are accelerated in the
laser field, we impose the initial condition γ0 – Pz0 = Ω0,
which corresponds to the electron cyclotron resonance
in the plane wave. The results are presented in Fig. 2. It
can be seen that, similarly to the plane wave [7], the GB
can also efficiently accelerate electrons on the consid-
ered interval, though at a slower rate. The initial GB
width was specified such that the beam intensity
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Fig. 2. Electron energy in the laser GB and stationary mag-
netic field Bz = 100 kG at ε = 1 for (A) γ0 = 50 and λ = 10 µm
(CO2 laser) and for (B) γ0 = 500 and λ = 1 µm (neodymium
glass laser).
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Fig. 4. Energy of electrons injected at different points of
plane z0 = 0 (beam’s waist) versus z at λ = 1 mm, Ω0 = 1,

γ0 = 50, and ε = 1: (A)  ≡ r ≤ 0.1a; (B) r = 0.5a; and
(C) r = a.
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decreased by a factor of no more than e at a distance z =
150 cm from the beam’s waist. Figure 2 plots the elec-
tron energy as a function of z in a stationary magnetic
field Bz = 100 kG at ε = 1 for (A) γ0 = 50 and λ = 10 µm
(CO2 laser) and for (B) γ0 = 500 and λ = 1 µm (neody-
mium glass laser).

Figure 3 shows the electron energy as a function of
z when, at the initial moment of time, the cyclotron res-
onance condition is satisfied approximately (γ0 – pz0 =
const ≡ C ≠ Ω0) rather than exactly. The energy of elec-
trons accelerated by the plane wave with the initial
cyclotron resonance condition that is satisfied exactly is
plotted for reference. It can be seen that such particles
can be accelerated on the 100-cm-long interval of our
interest if the difference between C and Ω0 is small. If
C is significantly higher than Ω0, the energy oscillates
rather than grows monotonically.

Figure 4 shows the energy of electrons injected at
different points of plane z0 = 0 (beam’s waist): (A)

 ≡ r ≤ 0.1a; (B) r = 0.5a; and (C) r = a. All
remaining parameters of the GB and electron are the
same as above. As shown in the figure, the acceleration
rate decreases as the injection point moves away from
the GB center because the GB energy decreases. Thus,
all particles of a given cross section of the electron
beam are accelerated, though at different rates.

In order to validate our calculations, we compared
our solution to system (5)–(9) for the plane wave with
results given in [7, 11]; the agreement was perfect. Let
us focus on the results presented in [7], which predict
that relativistic electrons can be accelerated in a high-
power laser plane wave to extremely high energies at a
high rate if the electron cyclotron autoresonance is
maintained. At first sight, this statement contradicts the
conclusion [1, 3] that the acceleration rate decreases

with increasing energy as 1/ . However, it can easily
be seen that the energy is also proportional to the wave
frequency and the dimensionless parameter ε. There-
fore, increasing the energy and acceleration rate with
the power and frequency of the laser radiation at a given
ε is justified.

CONCLUSION

Our calculations show that an electron beam can be
accelerated at a sufficiently high rate in the electromag-
netic Gaussian beam that propagates along an external
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Y
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+

γ
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stationary magnetic field despite the fact that the initial
cyclotron resonance between the wave and particle is
violated during the particle motion. All particles are
involved in the acceleration process regardless of their
initial phases.

We studied the motion of a separate electron,
thereby ignoring the effect of the intrinsic field of the
beam and the back effect of the beam on the accelerat-
ing electromagnetic wave. This approximation is valid
when the beam concentration (and current) is suffi-
ciently low. The single-particle model of interaction
between the electron beam and the electromagnetic
wave was shown to be valid if the beam current is lower
than a certain tolerable value J(kA) ! 8εωRb/c, where
Rb is the beam radius [8]. As for the radiation losses,
their effect is of very small significance even at very
high electron energies [7].
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Abstract—In the two-dimensional approximation, the potential of a six-electrode deflectron (which was pre-
viously proposed by the authors) is obtained in a closed form. The field nonuniformity is calculated for this
deflectron. The field distributions are computed on the axes of finite-length deflectrons using certain analytical
formulas. In deflectrons, the axial trajectory of the beam can be horizontally and vertically deflected by a maxi-
mum angle which depends on the structure geometry. The nonlinearity of this deflection is calculated. The
results are compared to those obtained for four- and eight-electrode deflectrons. © 2000 MAIK “Nauka/Inter-
periodica”.
In order to create a scan on a sample, electrostatic
omnidirectional deflection systems with spatially
superposed deflection centers (so-called deflectrons)
are used in scan electron microscopes, electron-beam
tubes, high- and low-energy electron diffractometers;
in the techniques of secondary-ion and atom mass spec-
troscopy; etc. Deflectrons do not focus beams of
charged particles (in the first-order approximation).
The main requirement imposed on these structures is
that the field in the operation region should be as uni-
form as possible.

Electrostatic deflectrons are most often designed as
cylinders or cones which are cut along generatrices into
an even number of fragments [1, 2], having the forms
of planar electrodes placed on the sides of rectangular
(square) boxes [3, 4] and cut planar capacitors [5, 6].

In [7], we proposed a six-electrode deflectron with
identical angular dimensions of electrodes equal to π/3
(assuming that the gaps between the electrodes are infi-
nitely small). The electrodes are located on a cylinder
(cone) surface. The cross section of the deflectron is
shown in Fig. 1. Inside an infinitely long cylinder that
is cut along the generatrices, the potential distribution
can be represented in Cartesian coordinates as a series.
When feeding voltages are applied as we propose
(Fig. 1), the series coefficients of the potential for the
six-electrode deflectron are expressed as follows:

(1)

These expressions imply that K3x = 0 always and
K3y = 0 only at b = 0.5. The six-electrode deflectron
provides a more uniform field than a standard four-
electrode deflectron. According to (1), the higher coef-
ficients, which govern the sensitivities of the horizontal

K 2n 1–( )x 4/π/ 2n 1–( ) 2n 1–( )π/3[ ] ,sin=

K 2n 1–( )y

=  4/π/ 2n 1–( ) b 1 b–( ) 2n 1–( )π/3[ ]cos+{ } .
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and vertical deflections, are, respectively, K1x = 2 /π
and K1y = 3/π. Therefore, equal deflections in both
directions are provided by the feeding voltages that are

coupled by the relationship Vx/Vy = /2.
In a closed form, the potential distribution of the six-

electrode deflectron that involves the corrected third
harmonics has the form

(2)

Here and below, the x and y coordinates are expressed
in terms of cylinder radius R. The field intensity com-
ponents of this deflectron are

(3)

3
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Expressions (3) imply that, when Vx/Vy = /2, the
field intensity components on the axis are Ex(x = y =
0) = Ey(x = y = 0) = Eh, where Eh is the intensity of the
corresponding uniform field.

Figure 2 demonstrates field nonuniformity ∆E nor-
malized to the intensity of the uniform field versus the
distance to the axis. These results are calculated for the
six-electrode deflectron using (3) (curves 2) and com-
pared to the field nonuniformities of the elementary
four- and the more complicated eight-electrode [2]
deflectrons with the electrode angular dimensions of
π/2 (curves 1) and π/4 (curves 3). Specifying the value
of the field nonuniformity necessary for solving a prob-
lem under consideration, one can find the maximum
possible distance between the trajectory and the struc-
ture axis and, finally, determine the deflection angle.
Thus, when ∆E/Eh = 0.1%, the distance from the axis
must not exceed 0.02R, 0.17R, and 0.025R for the four-,
six-, and eight-electrode deflectrons, respectively. We
should note that the difference in the distances is small
for the two latter deflectrons and, in most cases, the six-
electrode deflectron is not inferior to the eight-elec-
trode one. Below, this circumstance is demonstrated by
analyzing the trajectories and determining the nonlin-
earities of deflection through equal angles.

For arbitrary deflectrons, the field distribution along
the axis (in the proximity of the axis) coincides with the
field of a planar capacitor when the deflectrons have
equal lengths and interelectrode distances. In the case
when the deflectron is located in the free space, the field
distribution is calculated using the TEO program [8].
The field intensities are calculated on the longitudinal
axes of deflectrons of different lengths and normalized
to the field intensity AEh observed at the center (see
Fig. 3a). Coefficient A as a function of deflectron length
is shown in Fig. 3b. Taking into account the data given
in Fig. 3, we have chosen an analytical formula for the
field distribution. For short deflectrons (1 ≤ l/R ≤ 2), it
has the form

(4)

where B = 0.9 – 0.2l/R.
The origin z = 0 coincides with the deflectron center.

In Fig. 3a, the field distribution calculated by (4) is
marked with crosses. For long deflectrons (l/R > 3),
A = 1. In this case, one can notice a section with Eh =
const, whose length depends on the structure length.
For this section, we have found the empirical formula

(5)

In addition, long deflectrons are characterized by an
edge field that is virtually independent of the deflectron
length. This field can be represented in a simple form as

(6)

In Fig. 3a, the edge field calculated by (6) is marked
with dots surrounded by circles. The effective lengths

3

E z( ) AEh Bz/R( ),cos
3

=

z0/R l/R 2.8.–=

Ek Eh z/ 2R( )[ ]cos
2

.=
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of deflectrons are determined using (4)–(6). For the
short and long structures, the effective lengths are,
respectively,

(7)

and

(8)

L 2 Bz/R( ) zdcos
3

0

π/ 2B( )

∫ 4R/ 3B( )= =

L z0 2 z/2R( ) zdcos
2

0

π

∫+ l 0.3R.+= =

1 3
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Fig. 2. The field nonuniformity of electrostatic deflectrons:
(solid curves) deflection in the x-axis direction, (dash-and-
dot curves) deflection in the y-axis direction, and (dashed
curves) the diagonal deflection.
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Fig. 1. The cross section of the six-electrode deflectron.
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The trajectories of the charged-particle beam in the
deflection structures are computed using the DEF pro-
gram, which utilizes the MathCAD system of com-
puter-aided mathematical calculations. In this program,
each second-order equation is reduced to a system of
two first-order differential equations. The error in the
solution is 10–6.

The axial trajectories of the beams in the short and
long six-electrode deflectrons are calculated by the
DEF program. The fields of these deflectrons are spec-
ified by (3)–(6). The coordinates and slope angles
obtained at the exit of the field region are compared
with the calculations performed using a rectangular
model with the effective lengths found from (7) and (8).
The comparison shows that the difference observed for
short deflectrons reaches 100% and, for long deflec-
trons, this difference does not exceed 10%. This fact
means that the longer the deflectrons, the less the beam
parameters are affected by the form of the edge field
and, starting with a certain length, the variation of the
radial field becomes a determining factor.

.
.
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.
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.

.

.
.
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A
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Fig. 3. (a) The field intensity of deflectrons of different
length [l/R: (1) 1, (2) 2, (3) 3, (4) 4, (5) 6, and (6) 8] and (b)
the coefficient governing the field intensity at the center of
the structure.
Using calculations of the parameters of the axial tra-
jectory, we find the nonlinearity of the coordinate (δi)

and slope angle ( ) deflections observed at the exit of
the field region by using the following formulas:

(9)

where ri  and  are the distance from the axis and the
slope angle of the axial beam trajectory at the exit of the

field region, respectively, and rih and  are the same
parameters for a uniform field.

Then, the deflection nonlinearity on the object is

(10)

δi'

δi ri/rih 1; δi'– ri'/rih' 1,–= =

ri'

rih'

∆ δi' δi'λ , ∆'+ δi',= =
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Fig. 4. (a) The coordinate and (b) angle deflection nonlin-
earity of the axial beam trajectory at the exit of deflectrons
of the length l = 2R: (1) the four-, (2) the six-, and (3) the
eight-electrode deflectrons. (Solid curves) deflections in the
x- and (dashed curves) y-axis directions.
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where λ is the distance from the exit of the field region
to the object.

Figure 4 demonstrates the nonlinearities of the coor-
dinate (a) and angle (b) deflections for the short six-
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Fig. 5. (a) The coordinate and (b) angle deflection nonlin-
earity of the axial beam trajectory at the exit of deflectrons
of the length l = 4R: (1) the four-, (2) six-, and (3) eight-elec-
trode deflectrons. (Solid curves) deflections in the x- and
(dashed curves) y-axis directions.
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electrode deflectron whose length is equal to the diam-
eter of its aperture (curves 2). Figure 5 shows the same
parameters calculated using the rectangular field model
for the deflectron with the length equal to the doubled
aperture diameter. The data characterizing the coupling
of the efficiency of the deflection structure with the
deflection angle, as well as with the coordinate of the
axial trajectory at the exit of the field region, are sum-
marized in the table. The efficiency of the deflection
structure is governed by the ratio between the main
feeding electrode voltages (±V) and the acceleration

potential (Φ0). Note that Vy = V and Vx = /2V.
From Figs. 4 and 5, one can see that the long and

short deflectrons exhibit a substantially different
behavior of the deflection nonlinearity. For the long
deflectron, the deflection-angle dependence corre-
sponds to the field nonuniformity of the infinitely long
deflectron observed when the distance from its longitu-
dinal axis increases. This nonuniformity mainly gov-
erns the deflection nonlinearity, which is virtually inde-
pendent of the edge field. For the short deflectron, the
edge-field effect is essential. At deflection angles which
do not exceed 25°, the deflection nonlinearity of the
long deflectron is less than that of the short one by a
factor of 2–4.

We should note that, when the deflection angle
exceeds 25–30° in the short deflectron, the deflection
nonlinearity abruptly varies and, hence, the shape of the
spot is distorted due to a considerable difference
between the axial and edge beam trajectories. There-
fore, it is inexpedient to use these modes in precision
instruments such as scanning electron microscopes.

The parameters of four- (curves 1) and eight-elec-
trode (curves 3) deflectrons are compared in Figs. 4 and
5. These parameters are calculated using the DEF pro-
gram in the case when the field distribution along the
longitudinal axis is identical to the corresponding field
distribution of the six-electrode deflectron. As
expected, the four-electrode structure exhibits the max-

3

Table

l/R = 2 l/R = 4

V/Φ0 xi/R yi/R xi/R yi/R

0.05 3.5 0.192 3.5 0.192 5.9 0.225 5.9 0.225

0.1 7.0 0.386 7.0 0.386 11.6 0.449 11.8 0.450

0.2 14.1 0.779 14.3 0.782 21.7 0.891 23.1 0.907

0.25 26.2 1.100 28.8 1.140

0.3 21.2 1.183 21.8 1.202

0.4 26.8 1.577 28.0 1.627

0.5 30.5 1.918 32.4 2.004

0.6 32.8 2.196 35.0 2.320

0.8 35.5 2.630 38.4 2.840

1.0 37.1 2.972 41.1 3.330

α x
0 α y

0 α x
0 α y

0



1062 OVSYANNIKOVA, FISHKOVA
imum nonlinearity. For example, if we assume that δ =
1%, the deflection angle must not exceed 5°. In this sit-
uation, the beam can be deflected by an angle of up to
8° in the short six-electrode and in the eight-electrode
deflectrons and up to 18° and 15°, respectively, in the
long eight-electrode and the six-electrode deflectrons.

Thus, in certain cases, the proposed six-electrode
deflectron with the corrected third harmonics in the
expansion of the potential is superior because its
parameters are close to those of the eight-electrode
deflectron and the design is simpler.
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Abstract—A method for simulating processes of metal sputtering by ion bombardment in the form of large
neutral and charged clusters with a number of atoms N ≥ 5 based on simple physical assumptions and in fair
agreement with experiment is suggested. As an example, the ionization degrees and ionization coefficients, as
well as the relative cluster yields, are calculated as a function of the number of atoms in clusters of different
metals (Ag, Nb, and Ta) bombarded by singly charged Ar+1 and Au–1 ions. A fluctuation mechanism of charge
state formation for large clusters, which describes the dependence of the charge state distributions on cluster
size and target temperature, is developed. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Sputtering of solids by ion bombardment plays an
important role in many fields of science and technol-
ogy. This is primarily associated with technological
applications in micro- and nanoelectronics and space
and fission technologies. The number of papers devoted
to both the application and fundamental studies of sput-
tering has increased considerably in recent years (see,
for example, recent reviews [1–5] and the literature
cited therein). A theoretical description and calcula-
tions of sputtering processes are extremely difficult,
first of all because of the many-particle nature of the
problem both at the stage of ion penetration into a solid
and at the stage of formation of sputtering products,
which consist not only of single target atoms but also of
polyatomic particles, i.e., clusters. Sputtering processes
involving single target atoms are usually described [1]
using the so-called collision cascade sputtering mecha-
nism [6]. Sputtering mechanisms in the form of two or
more bonded target atoms are still the subject of discus-
sion [1, 2, 5], since they describe the formation of large
clusters inadequately and differ considerably from the
cluster formation mechanisms in gas and plasma. At the
present time, hopes of performing calculations based
on “first principles” are connected with computer sim-
ulations using molecular dynamics methods [1, 2, 5]
(see also the calculations in [7, 8]). However, these cal-
culations are technically complicated, especially as the
number of atoms in the cluster increases, and are hard
to reproduce in other investigations. The formation of
the charge state of the sputtered surface material is also
a complicated problem. The ionization degree η = JQ/J
is usually used as a quantitative characteristic of the
charge state, where JQ is the flow of particles of charge
Q escaping the surface and J = ΣQJQ is the total flow of
escaping particles. However, to characterize the charge
1063-7842/00/4508- $20.00 © 21063
state of the sputtering products in the form of clusters,
it is convenient to use the following more specific char-
acteristics: the ionization coefficient

(1)

and the ionization degree of clusters with number of
atoms N

(2)

where  is the flow of clusters escaping a surface con-
sisting of N atoms and having a charge Q = 0, ±1,

±2, … and JN = ΣQ  is the total flow of neutral and
charged clusters of N atoms.

A large number of both experimental and theoretical
works (see, for example, [9]) are devoted to studies of
charge state formation for monatomic particles sput-
tered or scattered at a metal surface. The mechanism of
charge state formation for polyatomic particles has
been studied much less extensively, both theoretically
and experimentally. Notably, in [10], the ionization

coefficient  was found to depend on the number of

atoms in a cluster:  increases drastically with
increasing N, saturating at N ≥ 5, so that variations of

 with a further increase in N are negligible. From
this observation, a conclusion was made about the uni-
versal character of the power law established empiri-
cally for the relative yield of large clusters, both neutral
and charged. In [11], an attempt based on semiempiri-
cal estimates of the degree of cluster excitation was
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undertaken to account for the formation of singly
charged positive clusters as they leave the metal by sug-
gesting that the thermionic emission of an electron
from the cluster occurs as it leaves the metal. However,
agreement with experimental results could only be
reached by assuming the existence of clusters with
extremely high temperatures of ~1 eV. Moreover, the
formation mechanisms for clusters with charges other
than +1, including negative clusters, are not clear. In
this paper, we have suggested a mechanism for ion
bombardment sputtering of a metal in the form of neu-
tral and charged clusters with number of atoms N ≥ 5.
The mechanism is based on simple physical assump-
tions and is in good agreement with experimental
results.

FORMULATION OF THE PROBLEM

The process of charge state formation is an integral
part of the sputtering mechanism. Our consideration
largely relies on the suggestion made earlier in many
works [1] that large clusters leave a solid as an integral
block of atoms. This assumption was further developed
in a sputtering model proposed in [12, 13]. According
to [12, 13], the probability of events corresponding to
the correlated motion of a block of N atoms with total
momentum k can be expressed as

(3)

where β = 1/(2mω/"); ω is the characteristic oscillation
frequency of the target atoms, m is the mass of the tar-
get atoms, and q has the meaning of the average
momentum received by a metal atom at the early devel-
opment stage of a collision cascade.

The probability (3) is the result of summing over all
vibrational excited states of the cluster up to some prin-
cipal quantum number n0 when the energy accumulated
in excited oscillations is sufficient to destroy the cluster.
This can be realized at n0 ≈ ∆/("ω) when the oscillation
energy of all the oscillators (atoms in the cluster)
becomes sufficient to remove one atom from the poten-
tial well of depth ∆ describing the bonds between target
atoms.

Model of Charge State Formation

Let us define the charge state of a block of N atoms.
As in the statistical derivation of the Saha–Langmuir
equation [14], we will assume that as the cluster moves
a certain distance ξ (called critical) away from the
metal surface, an exchange of electrons between the
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conduction band of the metal and the atoms of the clus-
ter is possible. When the distance between the cluster
and the metal exceeds ξ, the electron exchange process
is stopped nonadiabatically. Below, when speaking of
electrons in the cluster, we mean only valance electrons
and we call the set of corresponding states the cluster
conduction band. We assume that an exchange process
between the conduction bands of the cluster and the
metal is possible. Then, the average number of elec-
trons  occupying the energy level ετ according to the
Fermi distribution is equal to  = {exp[(ετ – µ)/Θ] +
1}–1, where Θ is the temperature and µ is the chemical

potential. Let us denote by  the rms deviation of the
occupation numbers nτ from their equilibrium values

; then,  =  = (1 – ) [15]. Obvi-

ously, the average number of electrons is  = Στ .

The number of electrons in the cluster conduction band

is Ne; therefore, by definition,  =  =

Στ . A cluster with Ne electrons in the conduction

band will be neutral if Ne = , where  is the aver-
age number of electrons in the cluster conduction band,
equal to the number of atoms N in the cluster multiplied
by the valence γ (more precisely, by the number of elec-
trons a neutral metal atom gives to the conduction
band). Thus, the cluster charge is Qe = (Ne – Nγ)e,
where e is the electron charge.

Further calculations by these equations require
information about the cluster’s electron structure and
cannot be performed in the general case. However,
assuming that the cluster size is large enough and the
electron states are quasi-continuous, summation over
the electron states can be replaced, in the standard way,
by integration over the band by the rule given in [15]

where me is the mass of the conduction band electron
and V is the cluster volume.

Thus,

(4)

At temperatures less than the degeneracy tempera-
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ture, i.e., at µ/Θ @ 1,

where the chemical potential of a degenerate Fermi gas

with the number of particles  in a volume V is [15]

Thus, the rms deviation of the cluster charge from

the equilibrium value  = e = 0 is equal
to:1

(5)

Probabilities PN(Q) for values of Q can be deter-
mined from the standard equation for the probability of
fluctuations

(6)

where the normalization factor DN is determined by
summing over all possible values of Q = 0, ±1, ±2, …
and is equal to

(7)

Thus, to obtain the probability  for a cluster with
N atoms and charge Qe to leave the metal, it is necessary
to multiply the probability WN (see formula (3)) by
PN(Q):

(8)

Equation (8) describes the probability for a cluster
of N atoms to escape the metal if the cluster’s kinetic
energy is sufficient to break the bonds between the clus-
ter of N atoms and other atoms of the metal. If the clus-
ter is neutral, this energy is proportional to the square

1 In principle, the fact that the equilibrium cluster charge is equal to
zero follows from the assumption that the Fermi levels in the clus-
ter and the metal coincide; if this is not the case, asymmetry
between positively and negatively charged clusters will be
observed. The corresponding changes to the resulting formulas
can easily be made.
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of the contacting surface SN between the block of N
atoms and the metal. Let us assume that the contacting
surface is a hemisphere with its center on the initial
metal surface before sputtering. Its radius is obviously
connected with the number of atoms in the cluster

(9)

where d is the number of atoms in a unit volume.
Then, the binding energy of a neutral cluster, which

is proportional to SN, is

(10)

where δ obviously means the surface binding energy of
a neutral cluster per atom in the cluster.

If a cluster carries away a charge Qe, an energy Uc of
interaction with the image charge should be added to

 to obtain its binding energy with the metal .
The energy of interaction can be expressed as

(11)

where χ is some effective distance at which the overlap-
ping of the wave functions of electrons of the cluster
and the metal conduction bands vanishes as the cluster
moves away. Therefore, we shall assume that χ is con-
nected with the work function ϕ of the target metal as2

. (12)

Thus, the energy binding the cluster of charge Qe

and the metal can be expressed as

(13)

A cluster that before escaping (before overcoming

the binding energy ) was imparted the momentum
k will then move with the kinetic energy TN equal to

(14)

Taking TN = 0, we find from (14) the minimum
momentum kQN the cluster needs to overcome the bind-

ing energy :

(15)

2 In the strict sense, χ is defined only to within an order of magni-
tude, but we put the sign of equality in the definition of χ so as not
to introduce extra fitting parameters.
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(16)

where k01 = (2mδ  is the minimum momentum per
atom in a cluster necessary to eject a neutral cluster.

Now, to obtain the escape probability of a whole
cluster of N atoms, it is necessary to integrate the prob-
ability formula (8) over all possible values of k, under
the condition that |k | > kQN and k is directed outside,
i.e., is found within the solid angle of 2π:

(17)

To integrate (17), we can write the probability in the
form in which the integrand represents the distribution
of the kinetic energy TN of the clusters; thus, we write
(14) in the form

(18)

By substituting the variables in (17), we obtain the
final expression for the escape probability of a cluster
of N atoms with charge Q

(19)

k0N 2mNσSN[ ]
1
2
---

2mδ[ ]
1
2
---

N
5
6
---

k01N
5
6
---

,= = =

)
1
2
---

WN
Q

WN
Q

d
3
k

k k0N>
∫ 2πk

2
kWNPN Q( ).d

k k0N>

∞

∫= =

T N
1

2mN
------------ k

2
k0N

2
– Uc–( ).=

W N
Q

2π kmN T NPN Q( ) 4
q

k01
------ k

Nk01
----------- δ

∆
---

N–

d

0

∞

∫=

× δ
∆
--- q

k01
------ k

Nk01
-----------– 

  2

–
 
 
 

exp

–
δ
∆
--- q

k01
------ k

Nk01
-----------+ 

  2

–
 
 
 

exp

N

,

Values of energy δ (eV) [16] and variable parameter q (at.u.)
for various ion–target combinations

Incident ion Target Binding energy 
δ, eV [16] q, au

Ar+ (5 keV) Ta 8.1 550
Au– (6 keV) Ta 8.1 550
Ar+ (5 keV) Nb 7.47 380
Au– (6 keV) Nb 7.47 310
Ar+ (5 keV) Ag 2.96 170

Note: Some differences in the values of the fitting parameter q
from those we used earlier [12, 13] for tantalum and nio-
bium can be explained by the fact that in [12, 13], charge
state formation was not considered and that for tantalum, the
value of the sublimation energy was taken from a different
source.
where k = , k0N = k01Nν, ν =

5/6, and the fact that β /n0 = δ/∆ is taken into
account.

We define the ionization degree (2) as

(20)

where

is  summed over all possible values of Q = 0, ±1,
±2, …. The ionization coefficient, which according to
(1) is the ratio of the number of clusters with charge Q
to the number of neutral clusters (for a given cluster
size N), can be defined as

(21)

RESULTS

Our consideration apparently cannot be used to
describe the sputtering of single atoms or small clus-
ters, while comparison with experimental results has
led to the conclusion [12, 13] that the model is valid for
clusters containing a certain minimum number of
atoms (N ≥ 5). In experiments, the relative probability
of the yield of clusters with different numbers of atoms
is usually measured. Thus, to compare it with experi-
mental data, the probability given by (19) should first
be divided by the probability of escape of a cluster with
N = 5 (to be exact, any value in the range N ≥ 5 can be
chosen, but N = 5 is more convenient in this case);
experimental results are normalized in a similar way.
Also, any arbitrary units can be defined to meet partic-
ular needs.

Values of the binding energy δ (eV) and the variable
parameter q (atomic units " = me = e = 1) for different
ion–target combinations are given in the table. In all
cases listed in the table, good agreement with experi-
ment is observed. In the calculations, we kept the num-
ber of fitting parameters to a minimum and assumed
∆ = δ. In general, analysis of the direct consequences
from Eq. (19) is difficult; thus, we shall consider the
results of numerical simulations and experiments pre-
sented in Figs. 1–8, which appropriately illustrate the
general situation.

The simplest characteristics of the charge state dis-
tribution of clusters with a given number of atoms N is

the ionization coefficient  equal to the ratio of the
number of clusters with charge Q ≠ 0 to the number of
neutral clusters of the same size N. The dependence of
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the ionization coefficients of Ta clusters with N = 5 and
10 atoms as a function of target temperature Θ is given
in Fig. 1, illustrating the following general conclusions:
(1) The charge state varies with target temperature, and
the ionization coefficient increases with increasing
temperature. (2) The larger the cluster charge, the more
rarely that cluster occurs; for example, the number of
clusters with charge 2 is, as a rule, much less than those
with charge 1. (3) Larger clusters are more strongly

ionized; for example,  >  and  > .

The dependence of the ionization coefficient for Ag
clusters on cluster size N at a target temperature Θ =
700 K is shown by the dashed line in Fig. 2. An impor-
tant feature is the tendency to saturation of the ioniza-
tion coefficients with increasing cluster size. Qualita-
tively similar behavior was observed in experiments
[10],3 whose results are also presented in Fig. 2. Since
an ionization coefficient describing only charged clus-
ters cannot account for the behavior of neutral clusters,

it is necessary to introduce the ionization degree  as
the ratio of the number of clusters (of size N) with
charge Q = 0, ±1, ±2, … to the total number of clusters
of the same size N. The ionization degree shows charge
redistribution between clusters of a given size; for
example, a rise in the number of charged clusters is
accompanied by a corresponding fall in the number of
neutral clusters. This behavior of the ionization degree
is shown in Fig. 3 (for N = 5) and Fig. 4 (for N = 10).

The relative yields  = /  for singly charged

( ) and neutral ( ) clusters of TaN and NbN as a
function of the number of their atoms are shown in
Figs. 5–8. Tantalum and niobium targets were sputtered
by singly charged Au–1 ions at an energy of 6 keV and
Ar+1 ions at an energy of 5 keV at target temperatures

3 To be precise, in these experiments, the target temperature was
not registered, despite its possible dependence on laser irradia-
tion.
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Fig. 1. The dependence of the coefficients of single and dou-
ble ionization of clusters on target temperature Θ.
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Fig. 2. The dependence of the single ionization coefficient
on the number of atoms in Ag clusters: dots, experiment
[10]; dashed line, calculation.
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Θ = 2273 K and Θ = 300 K, respectively. The power
law curve [19] normalized to a cluster with 5 atoms,
i.e., values of the functions N–8.5/5–8.5 for tantalum and
N−8.1/5–8.1 for niobium, is also plotted in the figures for
comparison. It is worth noting that mass spectra of the
neutral clusters are weakly dependent on temperature,
whereas mass spectra of singly charged clusters are
appreciably affected by target temperature but
approach the mass spectra of the neutral clusters as the
temperature increases.
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Fig. 5. The relative yield  of  singly charged clus-

ters as a function of N. Bombardment by Au–1 ions, Θ =

2273 K. Solid line, calculated  values; heavy dots,

experiment [17, 18]; dashed line, calculated mass spectrum

of neutral  clusters; dotted line, power law curve [19]

normalized to N = 5, i.e., values of the function N–8.5/5–8.5.
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ment [20]; dashed line, calculated mass spectrum of neutral

 clusters; dotted line, power law curve [19] normalized
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Thus, only on the assumption that a cluster escapes
as a whole can the fluctuation mechanism of cluster
charge state formation be developed and the depen-
dence of the charge state distribution on cluster size and
target temperature be described. It is known that it is
technically much simpler to register charged particles
than neutral ones. Charge state formation processes,
i.e., emission processes of charged and neutral parti-
cles, are often interrelated. Therefore, experimental
results for charged particles provide an indirect way to
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ters; dotted line, see Fig. 5.
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recover data for neutral particles and thus allow one to
simplify the experimental setup.
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Abstract—A model was put forward for finding the angle of incidence of a narrow gamma-ray beam and refin-
ing its coordinate when the beam is detected by cathode-readout counters based on thin-film drift tubes. The
model can be used in solving small-angle scattering problems, which are widely met in X-ray diffraction anal-
ysis. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The determination of neutral particle coordinates
with the use of gas-filled detectors based on thin-film
drift tubes is always complicated by parallax. If the par-
ticle path is deflected from the plane normal to the
anode wire, the performance of these detectors
degrades in comparison with the usual case. The spatial
resolution of the detector can be improved by introduc-
ing a correction for parallax [1] on condition that the
beam coordinate distribution in the detector is given by
the Gaussian function.

This paper deals with an experimental check of the
parallax-correction method and extends it to the case
when a linear position cathode-readout detector on the
base of thin-film drift tubes is used [2, 3].

EXPERIMENTAL

A special collimator (Fig. 1) with orthogonal slit 3
of width 40 µm and inclined slit 4 of width 80 µm was
designed for investigations. The detector [2] was
purged by a Ar : CH4 (80 : 20) or Xe : CH4 (80 : 20) gas
mixture under normal pressure. It was irradiated by a
55Fe source through slits 3 and 4 simultaneously. The
collimator can move up and down over a distance of
1 mm with a precision of better than 20 µm. Beam
orthogonality was thought to be provided if collimator
movement did not change the coordinate of the peak
leaving slit 3 (within the accuracy defined by the spatial
resolution of the detector).

Typical coordinate distributions after passing both
slits for the argon and xenon mixtures are presented in
Fig. 2. It is evident that a gas mixture with a great
absorption factor is preferable. In this case, two or more
nearby peaks from narrow gamma-ray beams that are
1063-7842/00/4508- $20.00 © 21070
not orthogonal to the anode wire may be resolved. A
similar problem appears, for instance, in structure anal-
ysis related to small-angle scattering; in this case, the
xenon mixture under excessive pressure is more appro-
priate.

RESULTS AND DISCUSSION

Model

It follows from experimental data (Figs. 2a, 2b) that,
if a narrow beam is strongly deflected from the normal,
the coordinate distribution of gamma quanta cannot be
represented by a broadened and shifted Gaussian func-
tion. To treat the data, we assumed, in contrast to [1],
that, for each gamma quantum absorbed in the detector,
the coordinate distribution obeys a Gaussian curve, and
the parameter σ of this distribution is the spatial resolu-
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 m
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Fig. 1. Schematic of experiment: 1, 55Fe source; 2, collima-
tor; 3 and 4, slits; 5, anode; and 6, strips.
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tion of the detector. We assume also that σ is constant
for each single event, being independent of the drift
path of the primary electron cloud toward the anode
wire. Physically, this means that we neglect the diffu-
sion of the drifting primary electron cloud.

The geometry of the experiment is shown in Fig. 3.
The situation when the gamma flux vector, the normal
to the plane of the flux, and the anode-wire axis are
noncomplanar was not considered. According to our
assumption, the differential probability that the event
will occur at a point x is given by the normal distribu-
tion

(1)

where xm is the projection of the point where a gamma
quantum is absorbed (Fig. 4).

The probability that the gamma quantum will be
absorbed in the gas mixture is given by

(2)

where µ is the absorption factor of the gas mixture in
the detector and s is the gamma quantum range in the
mixture. 

dPg x xm–( )2
/2σ2

–( ),exp∼

dPa µs–( ),exp∼

0.1
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N

Fig. 2. Typical coordinate distributions of the number of
gamma quanta for (a) argon and (b) xenon gas mixtures (one
bin along the x-axis equals 50 µm).
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These processes are mutually independent; then, the
total differential probability that the event will be
detected at the anode, including the probability that the
gamma quantum is absorbed in a volume dV, takes the
form 

(3)

Integrating (3) over the region where gamma quanta
meet the gas mixture, we obtain the total probability
that the event will be detected at a point x:

(4)

where 

x0 is the intersection point of the anode wire and mid-
plane of a gamma flux (by definition, the midplane is
parallel to the collimator slit), and d is the gamma flux
width (we neglect the beam divergence).

Thus, the model is specified by the function P(x, x0,
σ, α).

Fitting

The parameter σ is determined as follows: in the
absence of parallax (α = 90°), the peak leaving slit 3
(Fig. 2b) is approximated with expression (4). This
gives σ ≈ 50 µm. For this experimental distribution, the
root-mean-square deviation is RMS ≈ 56 µm (Fig. 5). If
this peak is approximated by a normal Gaussian func-
tion within the range where a good correlation with the
experiment is observed, we obtain σG ≈ 45 µm.

Now, putting σ = 50 µm, we apply this model to
approximate the data for inclined slit 4 (Fig. 2b) and

dP x( ) µs–( ) x xm–( )2
/2σ2

–( )dV .expexp∼

P x( ) x0' z yd

R
2

z
2

––

R
2

z
2

–

∫d

R–

R

∫d

x0 d/ 2 αsin( )–

x0 d/ 2 αsin( )+

∫∼

× µs–( ) x xm–( )2
/2σ2

–( )expexp{ } ,

s R
2
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2
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1/2

y–[ ] / α , xmsin x0' y α ,cot+= =

0.15

N
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χ2/ndf
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87.9/46
0.2292 cm
13.20°

Fig. 6. Fitting by model (4) (one bin along the x-axis equals
50 µm).
find x0 = 0.2292 ± 0.0011 cm and (90° – α) = 13.20° ±
0.12°. The latter value agrees well with the measured
angle (13.25° ± 0.15°) of the used collimator. The fit-
ting results are presented in Fig. 6.

CONCLUSIONS

Mathematical model (4) for coordinate distribution
in a cathode-readout detector based on thin-film drift
tubes is presented. The model takes into account the
detector and incident beam geometries. It gives a good
fit to the experimental data and can be employed in
experiments with space-separated gamma-ray beams,
for instance, in X-ray diffraction analysis.

A method [see (5)] is suggested that not only signif-
icantly refines the coordinate x0 but also finds the paral-
lax-related angular coordinate α for a narrow gamma
beam from the shape of the peak in its coordinate dis-
tribution.

Experimental coordinate distributions were obtained
for the designed detector (Fig. 2). The angular coordi-
nate of a narrow beam of gamma quanta, which are
absorbed for the most part through photoeffect, was
first obtained from these data.

The method can be employed for creating planar
detectors for synchrotron beam imaging [4].

The use of numerical integration (see Appendix)
will inevitably increase the computational time when
the model becomes more complicated to improve the
accuracy of obtaining the coordinates x0 and α (for
instance, if diffusion or a more intricated incident beam
geometry is considered). Clearly, the greater the com-
putational resource, the less the computational time.1

APPENDIX

The main difficulties in taking the integral in (4), 

are as follows: (1) This triple integral cannot be taken
analytically and (2) Immediate numerical integration
requires much computational time because of the three-
dimensional domain of integration.

However, (4) can be analytically integrated succes-
sively for the variables y and . On simplification, we

1 In this work, an AMD-K-6-II (333 MHz/32-Mb RAM) computer
was used. The time to compute the data presented in Fig. 6 was
25 min.
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obtain

(5)
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It only remains for us to integrate over z numeri-
cally.2 The normalization factor is defined by 

(6)

In the final form, the model is given by

(7)

2 Here, the domain of integration over z differs from that in general
expression (4), because actually the collimator (window) is R =
0.5 mm wide throughout the tubes.
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where the integration of the numerator and denomina-
tor is performed numerically with an accuracy of five
significant digits.

Because of the complexity of mathematical model
(7), the Newton method was initially used to minimize
the χ2 functional, which provides a rapid convergence
with the minimum number of iterations. However, this
numerical method does not give an explicit functional
dependence of the parameters {x0min, αmin, σmin}, mini-
mizing the functional, on experimental values {Ni , xi}.
This makes the accurate estimation of errors (standard
deviations) introduced into the obtained parameters
more difficult. Therefore, model (7) was first interpo-
lated in x and the parameters in the vicinity of {x0min,
αmin, αmin} by a third-degree polynomial. Then the min-
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imum of the χ2 functional is searched using polynomial
regression [5]. This method provides an explicit depen-
dence of {x0min, αmin, σmin} on {Ni , xi}, resulting in a
more accurate estimation of errors in the sought param-
eters.
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Abstract—The potentialities provided by bismuth-containing garnet ferrite films with uniaxial anisotropy and
easy-plane anisotropy for the visualization of spatially nonuniform magnetic fields in magnetooptic nonde-
structive testing are compared. © 2000 MAIK “Nauka/Interperiodica”.
Nondestructive testing and several physically simi-
lar techniques designed for other purposes [1–26] can
exploit the magnetooptic visualization of spatially non-
uniform magnetic fields [1, 8, 27, 28]. Two types of bis-
muth-containing single-crystal garnet ferrite films
(BcSCGFFs) with giant Faraday rotation [1, 29] are
used: with uniaxial magnetic anisotropy (type I) and
with easy-plane magnetic anisotropy (type II). For
BcSCGFFs of type I, an inhomogeneous magnetic field
can be judged from the domain configuration, while for
the films of type II, the surface distribution of the angle
between the magnetization and film plane bears neces-
sary information.

In the absence of an external magnetic field, the
films of type I split up into oppositely polarized
domains and the areas covered by the domains of either
polarity are roughly equal. The difference between the
areas increases with coercive force Hc, which is usually
0.1–1 Oe for these films. Owing to coercive force, the
films of type I exhibit hysteresis at magnetization rever-
sal under a bias field Hb applied normally to the film.

In the films of type I, the plane of polarization in the
neighboring domains rotates in the opposite direction
by the same angle ΘF, which does not depend on the
bias magnetic field. As Hb increases, the area occupied
by domains with the magnetization aligned with the
field grows at the expense of unfavorably magnetized
domains up to the complete magnetization of the film.
The motion of domain walls (DWs) accounts for this
process. By changing the angle between the analyzer
and polarizer in a polarizing microscope, one can com-
pletely suppress monochromatic light passing through
the domains of a specific polarity. If white light is used,
domains become differently colored, the color depend-
ing on the angle ϕ between the optical axes of the polar-
izer and analyzer. When the polarizer and analyzer are
crossed (ϕ = 0), domains have the same color and DWs
appear dark.
1063-7842/00/4508- $20.00 © 21075
In the films of type II not subjected to an external
magnetic field, the magnetization vectors lie in the film
plane even if the film splits up into domains of opposite
polarities. Therefore, the plane of polarization of light
propagating normally to the film does not rotate. The
plane of polarization may rotate only in the case of
Bloch walls. Bloch lines separating DW parts where the
plane of polarization rotates in the opposite directions
can be visualized.

The influence of a time-invariable but space-inde-
pendent magnetic field on the films of type I depends on
the field intensity and gradient. A sufficiently intense
alternating magnetic field with the spatial period con-
siderably exceeding the equilibrium size of domains
splits up the film into large oppositely polarized
domains with smooth walls. These films visualize the
lines of equal intensity H = 0. In particular, a gradient
magnetic field Hb = βx that can be produced by two per-
manent magnets with the C-shaped section forms pla-
nar straight DWs. If then a constant bias field Hb is
applied perpendicular to the film surface, the DWs will
move to another equilibrium position, again going
through the points where the total magnetic field equals
zero. In other words, lines of equal intensity H = –Hb

are visualized. By varying the bias field, one can visu-
alize lines of equal intensity for any H.

Lines of equal intensity can be visualized even if an
intense magnetic field varies very smoothly (the gradi-
ent is small). In this case, the border between two oppo-
sitely magnetized domains is no longer a planar DW,
but a transient region of strip domains. The smaller the
gradient, the wider this transient region. In particular, a
gradient magnetic field Hb = βx induces a “comb” of
strip domains. It is significant that the curves envelop-
ing the transient region go through points where the
external magnetic field H is equal to the saturation field
of the film ±Hs. If then a bias field is applied to the film,
these two curves will shift. The monodomain areas of
one polarity will expand; and those of the other, shrink.
000 MAIK “Nauka/Interperiodica”
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The new lines of equal intensity will relate to H = Hb +
Hs and H = Hb – Hs, respectively. Note that, in both
cases, high-resolution magnetic field mapping requires
a fine measurement step.

In the case of a low magnetic field (less than Hs),
monodomain areas in the films of type I are absent and
field nonuniformity can be judged by the local ratio of
the areas occupied by domains with different polarity.
It is evident that, in this case, the spatial resolution
sharply drops. To remedy the situation, the bias field
should be chosen such that the total magnetic field
exceeds the saturation field. As for mapping of a non-
uniform magnetic field that consists of weak variable
and intense constant components, it is advisable to can-
cel out the constant component using an external bias
field.

The most problematic is the visualization of an
alternating close-to-saturation magnetic field whose
period coincides on the order of magnitude with the
equilibrium period of domains in the films of type I. In
this case, the spatial period of the magnetic field may be
misestimated several times [30].

Magnetization reversal in the films of type II sub-
jected to a bias field does not cause hysteresis (Fig. 1),
since this phenomenon is not inherent in the rotation of
magnetization. If even a relatively weak magnetic field
is applied, the magnetization vectors come out of the
film plane, their direction being the same for domains
of different polarity. Consequently, the plane of polar-
ization rotates. As the bias field grows, ΘF increases
almost linearly until the film is magnetized to satura-
tion and the magnetization vectors come out at right
angles to the film surface (Fig. 1). With a further
increase in Hs, the Faraday rotation angle remains con-
stant.

When a nonuniform magnetic field is applied to the
films of type II and white light is used for illuminating,
the films change their color throughout the surface
(for  monochromatic light, the transmitted intensity
changes). Being proportional to the normal component
of the magnetization, the local angle of Faraday rota-
tion depends on the corresponding component of the
external magnetic field. It is significant that, with the
films of type II (in contrast to those of type I), mapping
of a nonuniform magnetic field does not require the
application and variation of an additional external mag-
netic field. The films of type II provide information
about the field nonuniformity via the distribution of the
Faraday rotation angle over the film surface.

The films of type I are magnetized to saturation
when the total magnetic field reaches Hs, which is less
than but comparable to the saturation magnetization
4πMs. In the films of type II, saturation occurs when the
total magnetic field equals the field of magnetic anisot-
ropy HK, which can be both much less and much more
than 4πMs. Since the films of type II respond to a weak
external magnetic field by a slight rotation of the mag-
netization vector, their sensitivity is considerably
higher than that of the films of type I. For this reason, a
range of magnetic fields to be visualized may be broad
and accommodated to applications. Experiments show
that the films of type II are suitable for magnetooptic
nondestructive testing at magnetic fields within the
10−8–105 Oe range.

When a magnetooptic signal from the films of type II
is photometrically recorded with a linear measuring
channel, the output is defined by the Malus law

where U0 is the input signal.
The linearity of the transfer characteristic can con-

siderably be increased by applying the two-channel dif-
ferential measurement mode, which means the auto-
matic subtraction of two images of the same visual field
that are obtained at two different angles between the
polarizer and analyzer axes (+ϕ and –ϕ). In this case,
the output signal looks like

This form ensures the high linearity of conversion and
simplifies the calibration of results in absolute mag-
netic units.

The experimental setup, built around a polarizing
microscope, was connected to a personal computer
through a CCD video camera. The surface of a visual-
izing film was covered first by a mirror coating and then
by a protective layer. The thus-prepared film and a bias-
ing coil were placed on the microscope stage. The
source of a magnetic field to be studied was placed near
the surface of the visualizing film.

The most obvious application of magnetooptic visu-
alization of nonuniform magnetic fields is the nonde-
structive control of magnetically hard products, for
example, magnetic-recording media or permanent
magnets.

U U0 ϕ ΘF–( )sin
2

,=

U U0 2ϕ 2ΘF.sinsin=

5

–5

1000 2000–1000–2000

Hs

ϕF, deg

H⊥ , Oe

Fig. 1. Hysteresis loop typical of films of type II magnetized
perpendicularly to the film surface.
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Fig. 2a shows the black-and-white magnetooptic
image of a recorded tape. A colored image obtained
with the experimental setup consists of a number of
colored fringes (brown, yellow, and various tints of
green) of different width with diffused borders against
a yellow-green background (unfortunately, on a black-
and-white picture, a significant part of information on a
sample under study is lost). This means that an analog
record is visualized. In experiments, the dynamic range
was found to be no less than 56 dB (this value depends
only on the capability of metrological equipment).
Note that each of two tape tracks is about 450 µm wide.

Fig. 2b shows the magnetooptic image of a recorded
VHS tape (the color picture is a set of narrow fringes of

(c)

(b)

(‡)

Fig. 2. Magnetooptic images of a (a) sound record on a mag-
netic tape, (b) VHS-tape record, and (c) R-DAT digital
record visualized with the use of the film of type II.
TECHNICAL PHYSICS      Vol. 45      No. 8      2000
various brown tints). A video tape track is about 30 µm
wide; and the recording period, about 5 µm.

Fig. 2c shows the magnetooptic image of a tape with
a digital sound record made in the R-DAT standard. The
record shows up as narrow alternate yellow-brown
fringes of different tints and widths. Also shown are
timing tracks (wide and narrow yellow and green
fringes of equal width). The periods of timing pulses
were 170, 40, and 30 µm.

Fig. 3a shows the magnetooptic image of a record
and labels on a hard magnetic disk. The width of the

(c)

(b)

(‡)

Fig. 3. Magnetooptic images of records on a (a) hard mag-
netic disk, (b) flexible magnetic disk, and (c) metallic tape
of a “black box” that are visualized with the use of the film
of type II.
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(‡) (b)

Fig. 4. Magnetooptic images of (a) the permanent magnet surface and (b) a part of laser-printed text that are visualized with the use
of the film of type II.
visualized lines is less than 0.7 µm, which is unattain-
able when the films of type I are used.

Fig. 3b shows the magnetooptic image of a record
on a faulty flexible disk. Long curved lines are disk sur-
face defects, while horizontal lines, which form vertical
tracks, depict records. Sharp local variations of the
track width and location, which are caused by start-stop
faults of the recording head, are noteworthy. In particu-
lar, the track width varies stepwise by about 50 µm.
This means that the visualization of magnetic records
discovers the faults of a recording head.

The films of type II are indispensable in restoring
corrupted or lost information written on the metallic
tape of a “black box.” As seen from Fig. 3c, distinct
black and white fringes alternate with low-contrast
lines, which result from incomplete deletion of the pre-
vious record (color contrast gives additional informa-
tion). Moreover, the noncoincidence between the tracks
of the previous and subsequent records results in the
presence of the previous one as bright dots at the track
edges.

Fig. 4 shows the black-and-white magnetooptic
image from the surface of a barium permanent magnet,
which is used for producing a bias magnetic field in
bubble technology [31, 32]. The image is brown to
green in the color image. In particular, narrow vertical
dark fringes on the light background correspond to
dark-brown ones on the orange background. These
fringes seem to be associated with polishing defects on
the magnet surface. Dark intersecting fringes with light
spots represent aggregates of particles with another
structure or saturation magnetization. In the color orig-
inal, these spots are yellow with a green border (in
black-and-white images, the contrast between green
and dark brown parts is lost). Figure 4a indicates that
the magnetooptic visualization of spatially nonuniform
magnetic fields may be helpful in the phase analysis of
various materials.

Figure 4b shows the magnetooptic image of a laser-
printed text (the text is not seen because of the mirror
coating). The need for reading such a text appears in the
case of a latent marking [33], specifically, when a text
is written with a “magnetic paint” on a nonmagnetic
background of the same color. A text and an image may
contain fragments that are drawn with both magnetic
and ordinary paints of the same color and grade into
one another (a $100 banknote is an example). In this
case, the use of magnetooptic visualization of spatially
nonuniform magnetic fields is appropriate both for
developing and controlling printing processes and for
revealing counterfeit banknotes.

The main difference between magnetically soft and
magnetically hard materials is that, in the normal state,
the former do not produce stray fields, since the mag-
netic flux closes inside a magnet. Stray fields, however,
arise if a magnetically soft sample is duly magnetized
(magnetically “illuminated”). If the field required for
this purpose is significantly lower than the field of
TECHNICAL PHYSICS      Vol. 45      No. 8      2000
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uniaxial anisotropy for the films of type I, then the
domain structure of a defect-free magnetically soft
material remains unchanged. Conversely, the rear-
rangement of domains indicates the presence of
defects. With the films of type II, defects show them-
selves through the local variation in the Faraday rota-
tion angle.

Figure 5a shows the magnetooptic image of the edge
of a piece of a magnetically soft material. Stray fields
were observed under the constant field 150 Oe. They
arise at the edges and in the vicinity of defects and are
visualized with a BcSCGF film. The areas of different
contrast in Fig. 5a correspond to yellow, green, and

(c)

(b)

(‡)

Fig. 5. Magnetooptic images of the (a) edge of a magneti-
cally soft material, (b) magnetic path and gap of a record
head for hard disk recording, and (c) bubble chip expander.
Visualization with the use of the magnetically illuminated
film of type II.
TECHNICAL PHYSICS      Vol. 45      No. 8      2000
dark brown colors in the color magnetooptic image.
This variation of contrast suggests that the magnetic
properties of the sample are nonuniform.

“Magnetic illumination,” as applied to BcSCGF
films, seems to be promising for the control of mag-
netic head manufacturing and positioning. By way of
example, Fig. 5b shows the magnetooptic image of the
magnetic path and head gap for hard disk recording.
The irregularity and asymmetry of the image, specifi-
cally beard-like domains near the magnetic path, point
to head faults and misarrangement.

Fig. 5c shows the magnetooptic image of a 256-kbit
bubble chip expander. Control elements of the bubble
chip are made of magnetically soft permalloy. The stray
fields, which are produced at the edges of the permalloy
elements by “magnetic illumination,” are visualized by
using the film of type II. As a consequence, these ele-
ments become visible.

The high sensitivity of the BcSCGFFs is demon-
strated by the fact that 3-µm-wide domains are seen in
the color image of the bubble film (saturation magneti-
zation is 4πMs = 320 Gs). Recall that this film and
BcSCGFF are separated by the several protective layers
and the mirror layer (in the black-and-white image, this
faint contrast is lost). In other words, the films of type II
enable the magnetization control of various magnetic
substances that do not possess magnetooptic properties.

The magnetooptic images presented in Figs. 2–5 by
no means exhaust the capabilities of the films of type II
in the magnetooptic visualization of nonuniform mag-
netic fields. Yet, they give an idea of the range of the
intensities and characteristic spatial dimensions of non-
uniform magnetic fields that can be visualized with the
films of type II. It is obvious that the use of the same
BcSCGFF to solve many problems, even if possible, is
unjustified. For every specific problem, it is advanta-
geous to select the film with an optimal set of proper-
ties. This can be done because of the unique possibility
of modifying the BcSCGFF composition. In particular,
the presence of three cation interstices of different size
allows more than half of the known chemical elements
to be incorporated into the film, thus providing a variety
of its properties [34–37].
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Abstract—Results are presented from an experimental investigation of the onset of ionization instability in a
disk-shaped Faraday magnetogasdynamic channel attached to a shock tube. The experiments were carried out
in a pure inert gas (xenon) without alkaline additives. A relation is found between the integral plasma charac-
teristics of a nonequilibrium magnetogasdynamic channel and the local parameters of a plasma that is unstable
against the ionization instability. Mechanisms for amplifying perturbations and increasing the effective conduc-
tivity are revealed. It is concluded that these effects stem mainly from the features of three-body recombination
in rare gases. © 2000 MAIK “Nauka/Interperiodica”.
The goal of this paper is to develop a self-consistent
physical model that accounts for the effect of an
increase in the effective conductivity during the onset
of the ionization instability in pure inert gases. The
model is based on the measurements of the local
plasma parameters and exploration of the structure of
plasma irregularities.

The experimental facility (see [1, 2]) consists of a
shock tube with a disk-shaped 32-cm-diameter and
1-cm-high magnetogasdynamic (MGD) channel. The
magnetic induction is up to 1.4 T. Experiments were
carried out in xenon at an incident shock wave Mach
number of 6.9 and initial pressure of 26 torr. At the
entrance to the disk channel, plasma parameters were
as follows: r = 0.04 m, u0 = 1.27 × 103 m/s, ρ0 =
0.45 kg/m3, Ta0 = 2600 K, Te0 = 3100 K, α0 = 2.6 × 10−4,
and M = 2.45. A circular Faraday current and radial
Hall field were induced in the disk channel. The chan-
nel operated either in a short-circuit Faraday channel
mode or with a narrow insert shaped as a sector with
three pairs of electrodes for connecting load resistors.
The load coefficient was varied within the 0 < k < 0.2
range.

The methods for determining the parameters of the
gas-dynamic stream; measuring the effective plasma
conductivity, the Hall parameter, the electron density
and temperature, and the value of the magnetic induc-
tion Bcr that is critical for the onset of the ionization
instability; and recording glow irregularities are
described in [1–5].

The main results of the previous studies [1–3] used
in this paper are the following. At B > Bcr, the effective
plasma conductivity, the average electron density, and
the level of the electron density fluctuations grow as the
1063-7842/00/4508- $20.00 © 21081
plasma moves along the channel. An increase in the
magnetic induction results in an increase in these
parameters.

The experimental results show that the ratio
between the electron temperature Te and the tempera-
ture of the heavy plasma component Tg attains Te/Tg = 4.
At B = 0, the plasma is in the recombination state (α >
αeq), whereas with selective heating of electrons in an
induced electric field, the degree of ionization α is
below the equilibrium value (both in the initial state and
in the presence of fluctuations); i.e., in the MGD mode,
the plasma is being ionized (α < αeq). The degree of
ionization is high enough (α > 10–4) for the electron
velocity distribution to be considered Maxwellian.
A characteristic feature of the plasma is that an increase
in the magnetic field leads to an increase in the degree
of ionization; as a result, the ratio between the electron–
neutral and electron–ion collision frequencies,

changes. Here, na and ne are the densities of atoms and
ions, respectively; ce is the average electron velocity;
and Qea and Qei are the cross sections (averaged over
the Maxwellian distribution) for the electron momen-
tum transfer in collisions with atoms and in Coulomb
collisions, respectively. Under our experimental condi-
tions, we have 0.2 < νei/νea < 1. In this case, the colli-
sion frequency depends not only on the electron tem-
perature and atom density, but also on the electron den-
sity. The main distinguishing feature of a rare-gas
plasma is a fairly low recombination coefficient Kr.
This feature stems from a specific structure of energy

νea naceQea, νei neceQei= =
000 MAIK “Nauka/Interperiodica”
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levels. Thus, at Te = 8000 K, the value of Kr for alkali
metals equals 5 × 10–39 m6/s, whereas for rare gases,
Kr = 5 × 10–41 m6/s.
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Fig. 1. Time evolutions of the measured electron tempera-
ture and density and the calculated conductivity and Hall
parameter at B = 1 T and r = 0.09 m.
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Fig. 2. Schematic diagram of current and field fluctuations
under conditions of the ionization instability.
Figure 1 presents the typical time behavior of the
local plasma parameters at a fixed point of the channel
(r = 0.09 m) during the onset of the ionization instabil-
ity. In the experiment, we measured the electron tem-
perature and density. Both the conductivity and the Hall
parameter were deduced from the measured values of
Te and ne and the known density of atoms (at B = 0, na =
1024 m–3). Low-frequency fluctuations with a duration
of 20–50 µs are seen in the dependences Te(t) and ne(t).
There, fluctuations are caused by plasma processes.
Higher frequency oscillations with a period of less than
5 µs are likely attributed to a photomultiplier noise. For
this reason, below, we only consider low-frequency
oscillations. Note that the intervals with higher (lower)
values of Te correspond to the intervals with higher
(lower) values of the electron density and conductivity.
The Hall parameter varies in the opposite phase with
the conductivity, because Coulomb collisions play an
important role under given conditions and the momen-
tum transfer rate increases with an increase in the elec-
tron density. Based on the above dependences, we can
find the average values 〈Te〉 , 〈ne〉 , 〈σ〉 , and 〈β〉 . However,
they do not clarify how the fluctuations with respect to
the average values are related to those with respect to
the initial, unperturbed plasma parameters. Therefore,
the role of positive and negative perturbations in the
build-up of oscillations should be revealed.

The irregularities are oriented in space in a definite
manner. This was found by a frame-by-frame imaging
of the plasma glow [2]. The glowing irregularities
turned out to be shaped as spokes inclined at an angle
of 20° with respect to the azimuthal direction. The
propagation velocity of the spokes was on the order of
the flow velocity as if the they were “frozen” in the
flow. As a spoke moves, the brightness of its glow
increases. On average, there are two spokes in the chan-
nel simultaneously. They arise with definite time inter-
vals. At radii much greater than the initial radius, the
glowing spokes can be approximately represented as
strips in rectangular coordinates (Fig. 2). In the disk
geometry, the ϕ and r directions correspond to the y and
x directions, respectively. Figure 2 displays the coordi-
nate system and the vectors of the initial current j0 and

the initial electric field  in the plasma. Here,  =
β, and θ is the angle between the current and the normal
to the sheet plane (π/2 < θ < π). We denote the changes
in the main plasma parameters as j ' = j – j0 , σ' = σ – σ0,

β' = β – β0,  = Te – Te0, and  = ne – ne0 (subscript 0
stands for the parameter values in the unperturbed sur-
rounding medium). In [6, 7], it was shown that, in an
unbounded plasma, the fluctuations of the current and
electric field are related to the fluctuations of conduc-
tivity and the Hall parameter as follows:

(1)

E0* δtan

Te' ne'

j ' J0 θsin β θcos–( ) σ'
σ0
----- J0β' θ,cos+=
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Fig. 3. Illustration of the mechanism for amplifying positive electron density perturbations.
(2)

Here, the plus sign is used if the vectors E and k are of
the same direction and the minus sign is used in the
opposite case.

Therefore, positive fluctuations of σ and negative
fluctuations of β lead to an increase in the electric field
and a fluctuation current in the direction of j0. The per-
turbations of the main plasma parameters along the
normal to the observed irregularities are shown sche-
matically in Fig. 3. The numerals stand for certain
dimensionless distances along the normal correspond-
ing to those in Fig. 2. Let us trace the evolution of pos-
itive and negative fluctuations of the electron density
and temperature. Let the fluctuation of Te shown in
Fig. 3a occur at the instant t1. According to the ioniza-
tion kinetics [8], the higher the electron temperature,
the higher the electron density in region A (under our
experimental conditions, the characteristic ionization
time is about (1–5) × 10–5 s). In region B, where the
electron temperature is decreased, the electron density
decreases only slightly with respect to the initial value
because of the low rate of three-body recombination in
rare gases (under our experimental conditions, the char-
acteristic recombination time is about 10–1 s). Accord-
ingly, in region A, the conductivity increases, whereas
in region B, it remains almost the same. The change in
the Hall parameter may be opposite in phase to the
change in the conductivity σ', as shown in Fig. 3a.
A positive change in σ and a negative change in β in
region A result in an increase in the fluctuation current,

E '±
1 β0

2
+

σ0
2

---------------J0 θσ'
σ0
-----cos–

J0

σ0
----- θsin β0 θcos+( )β'.+=
YSICS      Vol. 45      No. 8      2000
which adds to the initial current, thus providing an
additional Joule heating and increasing the electron
temperature and density. Therefore, positive perturba-
tions of Te and ne are increasing, whereas negative ones
have no chance to rise. Indeed, let us assume that a neg-
ative fluctuation of ne has occurred. This would lead to
a decrease in the conductivity and, according to for-
mula (1), a decrease in the current, which, in turn,
would result in a decrease in the Joule heating and Te,
but not in a further drop in ne.

During the time interval between t1 and t2, the
plasma volume A moves along the channel from region
1–2 to region 3–4 (Fig. 3b). During this time, positive
perturbations of Te, ne, and σ and negative perturbations
of β further develop and a new fluctuation arises in
region 1–2.

In a bounded plasma, the structure of fluctuation
currents will be different compared to that in Fig. 2.
The current distributions in a Faraday channel with per-
fectly sectionalized electrodes were calculated in [6, 7].
It was shown in those papers that the Faraday current
flowing along the isolines of the electron density closes
mainly via the electrodes and partly inside the plasma.
All of this influences the effective values of the conduc-
tivity and the Hall parameter. Here, we define the effec-
tive conductivity σeff and the effective Hall parameter
βeff as follows:

(3)

(4)

σeff jϕ〈 〉 / uB( ),=

βeff Er〈 〉 / uB( ),=
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where 〈jϕ〉  is the azimuth current density at the load
coefficient k  0.

In essence, the values of σeff and βeff are the integral
characteristics of the MGD channel.

The dependences of the average and effective con-
ductivities on the magnetic induction are shown in
Fig. 4. Being close to each other at B < Bcr, both 〈σ〉  and
σeff increase with an increase in the magnetic induction.
This is caused by the increase in both σ0 (due to selec-
tive electron heating) and positive perturbations of σ
(due to the onset of the ionization instability). At the
highest value of the magnetic induction, the effective
conductivity is somewhat less than the average conduc-
tivity (σeff /〈σ〉  = 0.7), which is due to a partial closing
of fluctuation currents inside the plasma.

300

0 0.4

σ, S/m

Bcr, T0.8

600

〈σ〉

σeff

900

Fig. 4. Dependences of the average conductivity 〈σ〉 (h) and
effective conductivity σeff (n) on the magnetic induction.
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Fig. 5. Dependences of the average (,) and effective (e)
values of the Hall parameter on the magnetic induction.
Figure 5 presents the average and effective values of
the Hall parameter. Their decrease with an increase in
the magnetic induction is caused by an increase in the
electron density and a subsequent increase in the Cou-
lomb collision frequency and the average momentum
transfer rate. As a result, the Hall parameter decreases
in both the irregularities and the surrounding medium.
As is seen from Fig. 5, the values of β and βeff are nearly
the same. According to theoretical predictions, this can
occur if the irregularity direction is close to that of the
initial current [7]. Under our experimental conditions,
which correspond to 〈β〉  = βeff, irregularities in the
shape of the spokes are only slightly inclined to the azi-
muthal direction, the instability develops at moderate
values of β ≈ 1–2, the fluctuations in the Hall parameter
attain 40%, and the momentum transfer rate depends on
the plasma parameters in a complicated way.

The results obtained can be summarized as follows:
(i) a relation between the local plasma parameters and
the integral characteristics of an MGD channel is estab-
lished, (ii) mechanisms for amplifying perturbations
and increasing the effective conductivity under condi-
tions of the ionization instability are revealed, and (iii)
it is shown that these effects stem mainly from the fea-
tures of three-body recombination in rare gases.
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Abstract—The spectral and energy characteristics of an emerald laser are studied experimentally. Its perfor-
mance is compared with that of an alexandrite laser. For free-running oscillation under normal conditions,
undamped pulsating behavior of output intensity is observed, as is the case with other lasing media containing
Cr ions. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Lasing due to the 4T2  4A2 electronic vibrational
transitions in Cr3+ ions of emerald was first reported in
[1]. Next were studies of tunable emerald lasers, which
used the 4T2  4A4 transition and laser pumping [2−4]
or the R-lines of Cr3+ [4, 5]. Energy characteristics of a
flashlamp-pumped laser with a flux-grown crystal were
presented in [6].

Emerald, or chromium-doped beryl Cr3+ :
Be3Al2(SiO3)6, is a negative uniaxial crystal with
refractive indexes n0 = 1.58 and ne = 1.575. The crystal
is green when the concentration of Cr3+ is 0.01–1%.
The melting point is 1470°C, which is 400°C lower
than that of alexandrite. The thermal conductivity of
emerald is 0.04 W cm–1 deg–1, being nearly six times
less than that of alexandrite. Emerald crystals are
grown by the hydrothermal or flux method. The latter
yields crystals with a higher optical quality and lower
impurity content. The nonselective loss of hydrother-
mally grown crystals is of the order of 0.1 cm–1.

In an emerald laser, lasing due to the 4T2  4A2
electronic vibrational transitions occurs in the 700–
850 nm range. The energy gap between the 4T2 and 2E
levels of Cr3+ is 400 cm–1, being half as high as that of
alexandrite. At room temperature, the lifetime of the
excited state of Cr3+ is 65 µs and the transition cross
section σ is 3.3 × 10–20 cm2.

Optical absorption spectra of emerald (Fig. 1) are
typical of Cr3+ ions enclosed by the octahedral config-
uration of oxygen ions. The wide bands in the blue and
red (Y, U) regions represent the allowed transitions
4A2  4T1 and 4A2  4T2, respectively. The triplet
levels are split by the trigonal component of the crystal
field, hence the differences in the π and σ components.
The narrow absorption lines at 681 and 684 nm stem
from the spin-forbidden transitions 4A2  2E (the R1
and R2 lines). The fine structure of the U band is due to
1063-7842/00/4508- $20.00 © 21085
electron–phonon interaction. Compared with alexan-
drite, emerald has a more complex crystal structure and
a weaker crystal field, the latter being indicated by the
position of the U band. The crystal field of emerald is
Dq = 1600 cm–1 (for alexandrite, Dq = 1740 cm–1).

In emerald, strong ultraviolet (UV) absorption
arises at shorter wavelengths, than in alexandrite,
namely in the 300-nm band for flux-grown crystals and
in the 360-nm band for hydrothermally grown ones; in
the latter case, there are additional bands in the 380–
450 nm region. Short-wave absorption of emerald pro-
ceeds mainly from impurities, especially from iron.
The iron content is 0.001 wt % in flux-grown crystals
and 0.1 wt % in hydrothermally grown ones.

In luminescence spectra of Cr3+ ions of emerald
(Fig. 2), the most noticeable component is the wide
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Fig. 1. Optical properties of (a) flux-grown and (b) hydro-
thermally grown emerald crystals at T = 300 K: the absorp-
tance α for (1) E || C and (2) E ⊥  C and (3) the luminescence
quantum yield η vs. wavelength.
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peak at 770 nm, corresponding to the 4T2  4A2 tran-
sition. The R1 and R2 lines are not so strong as in alex-
andrite because of the smaller energy gap, ∆E, between
the levels 2E and 4T2. In emerald, the levels are near
thermal equilibrium even at room temperature (kT =
208 cm–1) and the metastable level 2E is intensely
depleted via the short-lived level 4T2. In alexandrite,
this occurs at higher temperatures, since its ∆E is as
large as 800 cm–1.
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Fig. 2. Emerald luminescence intensity vs. wavelength at
T = 300 K for (1) E || C or (2) E ⊥  C.
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Fig. 3. (a) (1, 3) Output energy density Eout/Va and (2, 4)
threshold pump energy Et vs. crystal temperature T for Ep =
0.4 kJ and L = 0.4 m and (b) output energy density vs. cavity
length L for Ep = 0.4 kJ and T = 70°C. The emerald laser is
represented by curves 1 and 2 in panel (a) and curve 1 in
panel (b). The alexandrite laser is represented by curves 3
and 4 in panel (a) and curve 2 in panel (b).
The absolute quantum yield of Cr3+ luminescence is
0.7 for flux-grown emerald crystals and of the order of
0.01 for hydrothermally grown ones. The yield is flat in
the absorption region of chromium ions, decreasing at
wavelengths shorter than 380 nm. This testifies that
Cr3+ ions are responsible for the short-wave absorption.

Emerald lasers have received only marginal applica-
tion. It is difficult to produce emerald crystals of ade-
quate size, since their growth rate is an order of magni-
tude less than that of alexandrite crystals. Another
demerit is the toxicity of beryllium.

EXPERIMENTAL SETUP

In this study, we tested a 3 × 35-mm flux-grown
emerald crystal [7] with an active volume Va of
0.21 cm3 and a Cr3+ concentration of 0.7 wt %. The end
faces of the crystal were beveled (the bevel was one
degree) and supplied with antireflection coatings. The
laser was pumped by an ISP-250 flashlamp in a mono-
block quartz clarifier. The UV pump radiation was cut
off by a liquid filter. The energy characteristics were
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Fig. 4. (a) (1, 3) Output energy density Eout/Va and (2, 4)
threshold pump energy Et vs. output-mirror transmittance
T2 for Ep = 0.4 kJ, L = 0.4 m, and T = 70°C. (b) Output
energy density vs. pump energy Ep for L = 0.4 m and T =
70°C. The emerald laser is represented by curves 1 and 2 in
panel (a) and curve 1 in panel (b). The alexandrite laser is
represented by curves 3 and 4 in panel (a) and curve 2 in
panel (b).
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compared with those of an alexandrite laser [8–10]
operated under similar conditions.

Lasing was examined with a photodiode and an
oscilloscope. The output spectrum was recorded with
an STÉ-1 spectrograph, and the output energy was
measured with an IMO-2 meter.

OUTPUT-ENERGY AND SPECTRUM 
CHARACTERISTICS

Figure 3 shows the output-energy density Eout/Va
against (a) the crystal temperature T or (b) cavity length
L. The emerald laser is represented by curves 1 and 2 in
Fig. 3a and curve 1 in Fig. 3b. The alexandrite laser is
represented by curves 3 and 4 in Fig. 3a and curve 2 in
Fig. 3b. It is seen that the output of the emerald laser is
much less sensitive to temperature variation (Fig. 3a).
The reason is that, in emerald, the energy gap between
the metastable 2E and upper 4T2 levels is much narrower
and the latter becomes populated even at room temper-
ature. The dependence on cavity length is stronger for
the emerald laser (Fig. 3b) due to the much lower ther-
mal conductivity of the medium. As is known, a posi-
tive spherical thermal lens arises in lasing solids under
flashlamp pumping, which is equivalent to replacing a
flat cavity with a spherical one. The focal length of the
thermal lens is much smaller in emerald. That is why
the cavity of an emerald laser becomes unstable at a
smaller length, hence a more prominent and sharper fall
in the output energy.

We also compared the dependences of the output
energy on the transmittance T2 of the output mirror at the
pump energy Ep = 0.4 kJ (Fig. 4a). The emerald laser was
found to attain its maximum output energy at the higher
T2. The threshold pump energy Et of the emerald laser
was much lower throughout the range of T2.

The output energy was also studied as a function of
Ep at optimal T2’s (Fig. 4b). A nonlinear rise was
observed for both lasers, except for small values of Ep.
The output energy of the emerald laser increased more
steeply at modest Ep’s and saturated more rapidly at
high Ep’s, so that the output energy densities of the
lasers at Ep = 0.5 kJ were nearly equal. This stems from
more severe strains in the emerald crystal.

For the emerald laser, the spectra of the TEMmnq

modes (Fig. 5) were virtually the same as those for the
alexandrite laser [9]. The lasers exhibited a fine discrete
spectral structure. This stems from spurious longitudi-
nal-mode selection, no matter how weak it is, imparted
by the beveled and coated end faces. At room tempera-
ture and moderate values of Ep, the emerald laser emit-
ted in a wide wavelength band with the maximum at
770 nm. As Ep grew, the output spectrum broadened
predominantly toward shorter wavelengths. An eight-
fold increase in Ep above the threshold resulted in an
output bandwidth of about 20 nm. The bandwidth was
an almost linear function of Ep.
TECHNICAL PHYSICS      Vol. 45      No. 8      2000
The laser was tuned by means of a dispersive cavity
with three prisms made of TF-5 glass. The total angular
dispersion was about 3′/nm. The tuning range was 710–
830 nm, the output wavelength being stable within ~1 nm.

For the TEMooq and TEMmnq modes of the emerald
laser, its output always has the form of undamped oscil-
lation, as is the case with other lasing media containing
Cr ions. The evolution of the output spectrum depended
on the physical state of the emerald crystal and was
affected by the spurious longitudinal-mode selection in
the cavity, as in the case of the alexandrite laser. With
partial cutoff of UV pump radiation, the spectral evolu-
tion changed materially.
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Abstract—The problem of the spherical compression of condensed matter by a shell was solved in an incom-
pressible medium approximation. Parameter values at the inner boundary of the shell are defined by the solution
of a self-modeling problem. At collapse, the velocity and kinetic energy of the shell behave asymptotically. ©
2000 MAIK “Nauka/Interperiodica”.
Matter compression by a spherical shell is consid-
ered under the assumption that the shell compressibility
is much less than that of the matter. Such problems are
of interest in the production and metrology of high
energy densities, in particular, in treating target com-
pression during inertial nuclear fusion. Let us simplify
the problem by assuming the shell to be incompress-
ible: dρ/dt = 0. Then, shell motion is described by the
ordinary differential equation

where ρh is the shell density; Vh, its initial volume; r,
radii; u, velocities; and p, the pressure at the shell
boundaries. Subscripts 1 and 2 refer to the inner and
outer boundaries, respectively. All parameters are taken
as dimensionless with respect to the matter being com-
pressed.

Parameter values at the inner boundary of the shell
are defined by the solution of a self-modeling problem.
The associated equations are derived from the mass and
momentum conservation equations at constant entropy.
A self-modeling variable is represented as ξ = t/r, and
self-modeling functions will be denoted as U = uξ and
C = cξ, where u is the mass velocity and c is the sound
adiabatic velocity. Time is counted backward from t =
1 (initial state) to t = 0 (collapse). Then, in terms of the
independent variable C, the self-modeling mass and
momentum conservation equations have the form

where H = (1 – U)(1 – ηU) – C2 and η = (ν – 1)(γ –
1)/2 + 1. Here, ν = 1, 2, and 3 for planar, cylindrical,
and spherical space geometry, respectively, and γ =
γ(V) is defined by the equation of state. Acceleration is
expressed as ∂u1/∂t = (dU/dC – U∂lnξ/∂C)/(ξdt/dC).
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For γ = const, the self-modeling equations are split:
we solve the first equation and then find ξ using quadra-
ture. In the general case γ ≠ const, the equations must
be solved jointly. The self-modeling problem specifies
the piston path in such a way that the entire mass is
isoentropically compressed to a point, i.e., to collapse.
The self-modeling compression of the finite plasma
mass by a piston (on condition that the equation of the
perfect gas (plasma) state is p = p0ργ) was considered,
e.g., in [1–12]. In this work, we suggest an equation of
state of real gas. Namely, if the specific volume V  0,
the thermodynamic functions depend on the properties
of perfect degenerate nonrelativistic electron gas. For
the normal density, they depend on two experimental
parameters: bulk modulus B = –V(∂p/∂V)s and exponent
γ = –(∂lnB/∂lnV)s. Cold pressure is introduced in the
form

where p0 = (2/5)cF(Z/V0)5/3 and Z is the atomic number.
The constant cF = (3π2)2/3"2/2me enters into the Fermi

energy according to the expression εF = cF .

We will use conventional designations: specific vol-
ume V, which is dimensionless relative to V0; dimen-
sionless density ρ = 1/V; and parameters p and B,
dimensionless relative to B0. Hence, at V = 1, the
dimensionless sound velocity c equals 1.

The values of a and α were calculated from B0 and
γ0 obtained from shock-wave and static measurements.
In the former, B0 and γ0 are determined from the depen-
dence of the shock wave velocity on mass D ≈ c0 + D1u;
at V = 1, γ = 4D1 – 1. The value of B0 varies between
~1 kbar (for hydrogen, its isotopes, and helium) and
several megabars, and 3 ≤ γ ≤ 7. Calculations of a and
α indicated that the interpolation formula for p(V) is
well realizable throughout the range of B0. Figure 1
shows the dimensionless dependences of B and γ on V
for hydrogen. The transition from the initial value of γ

p p0 e
aV

α
–

/V
5/3

e
a–
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2/3
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to its final value is observed at ρ ≅  10. The energy (per
unit mass) is determined from the relationship p =
−(∂e/∂V)z with a normalization e(1) = 0. At V ! 1, the

dimensionless sound velocity is c2 = ργ – 1.

The desired integral curve must start and end on the
(C, U) plane at singular points N = (1, 0) (node) and S =
(Cs, Us) (saddle). At S, ξ = 0, and at N, ξ = 1. At ξ = 0
or 1, V = 0 or 1, respectively. The parameters of singular
points defined by γ(V) are calculated for both V’s. The
desired integral curve U(C) comes out of the saddle S
and enters the node N along the separatrix. The param-
eters of S (having the subscript s) are Us = 2/(ν(γ – 1) + 2)

and Cs = (γ – 1)/(ν(γ – 1) + 2). At small ∆ = C – Cs,
the curve leaves the saddle, following the analytical for-
mula ξ = Ω∆ω, where ω = (ν – 1)k/(η(2Us – 1) – 1 – k),
k is the slope of the separatrix, and Ω is a variable

c∞
2

ν
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parameter that is determined from the condition ξ = 1
at N. The piston path is found from the equation
∂lnt/∂lnξ = 1 – U.

The power is defined as W = 4π u2p2, the kinetic
energy of the shell is

and its internal energy Ei = 0 because of incompress-
ibility.

The problem involves two dimensionless parame-
ters: ρh and Vh. In the above calculations, we put ρh =
10 and Vh = 4π/3, which is the initial volume of the mat-
ter. Hence, r2 = 1 at collapse. Qualitatively, these quan-
tities do not have an effect on the results. Figure 2
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shows the obtained relationships. A number of com-
pression features deserve attention. Near collapse, r1 =

(ζt  and u1 = Us , where ζ = c∞/ν1/4 .

Then, u2 ≈ Us /  (r2 ≈ const). The exponent
3Us – 1 = (4 – ν(γ – 1))/(ν(γ – 1) + 2) and changes sign
when γu = 1 + 4/ν. This means that, near collapse, the
velocity of the outer boundary of the shell may increase
(for γ > γu), decrease, or remain unchanged. From
Fig. 2, it follows that u2 first grows and then, starting
with t ≈ 5 × 10–3, drops. Also, near collapse (r1 ! r2),

Ek = 2πρh  = 2πρhζ5 / . The exponent
5Us – 2 = (6 – 2ν(γ – 1))/(ν(γ – 1) + 2) at γk = 1 + 3/ν
also changes sign. Finally, the kinetic energy near col-
lapse may increase (at γ > γk), decrease, or remain con-
stant. Since γh < γn, there exists a range γk < γ < γu where
the velocity of the outer boundary decreases and the
kinetic energy grows. This is explained by velocity and
accelerated-mass redistributions in the shell. However,
for physically ultimate values, γ = 5/3 < γk = 2; there-
fore, at collapse, both the outer boundary velocity u2
and the kinetic energy of the shell Ek tend to zero.
Figure 2 implies that the difference E2 – E1 due to the
pressure drop p2 – p1 and power difference W2 – W1
contributes to the kinetic energy Ek = E2 – E1. At t <
10−3, Ek slowly drops: Ek ∝  t1/2. It is clear, however, that

)
Us ζ

Us t
Us 1–

Cs
γ 1+( )/2

ζ
3Us t

3Us 1–
r2

2

r1
3
u1

2
Us

2
t

5Us 2–
r2

2

E2  ∞ and W2  ∞, since the total energy of the
collapsing matter E  ∞.
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Abstract—Experimental dependence of the relative dynamic viscosities of liquid dielectrics on the applied
alternating voltage amplitude and frequency is presented. The voltage frequency was varied from 20 Hz to
2 kHz. The variation of viscosity can be attributed to a change in the liquid structure, with ion–molecule com-
plexes centered at the ions produced as a result of charge injection from an electrode. A change in the injection
regime leads to a change in viscosity. © 2000 MAIK “Nauka/Interperiodica”.
In previous publications, it was pointed out that an
electroviscous effect is observed in electric fields that
are transverse to the dielectric flow [1, 2]. The change
in viscosity was attributed to momentum transfer due to
ion electrophoresis, the development of electrohydro-
dynamic flows, and the formation of ion–dipole clus-
ters near electrodes [3]. In some studies, it was noted
that the electroviscous effect is not observed in nonpo-
lar liquids, but it was observed in the presence of small
amounts of polar additives [1]. The addition of a polar
additive to a nonpolar liquid can substantially affect the
conductivity of the medium. Indeed, it was noted in a
number of studies (e.g., see [1, 2]) that conductivity
affects the intensity of the electroviscous effect. Apart
from polar additives, an important factor that affects the
intensity of the electroviscous effect is the presence of
an injecting electrode. The process referred to as charge
injection into a medium was not studied specifically,
and only the consequences of charge injection from an
electrode were discussed. It was shown in [2] that
charge injection plays a very important role in the elec-
troviscous effect as manifested in constant electric
fields. The production of ions and ion–molecule com-
plexes can change the structure of a liquid dielectric
medium and considerably affect the viscosity observed
in an electric field. The regime of charge injection from
an electrode can be changed by applying an alternating
electric field to the electrode gap.

In this paper, the behavior of the observed viscosity
of polar liquid dielectrics as a function of the frequency
of the external alternating electric field is discussed. It
should be noted that the effect of the frequency of the
applied field on the viscosity of a liquid dielectric has
previously been studied only at 50 and 1000 Hz [1], and
the frequency-dependent behavior has remained
unclear. In other papers, the existence of this effect was
ruled out completely. To this day, no acceptable expla-
nation has been given for these controversial results.

For processes that take place near the electrodes
(electrochemical reactions) responsible for charge
injection to take place, it is necessary that charge build
1063-7842/00/4508- $20.00 © 21091
up in the vicinity of the electrodes. The change in the
regime of charge production due to a change in the fre-
quency of the external electric field can affect the rate
of charge buildup or completely suppress it. Within the
framework of the conventional model of the electrode
double layer, injection can take place if a charge at least
equal to the total double-layer charge has accumulated:

(1)

where Cdl is the capacity of the double layer and Φ is
the voltage drop across the double layer. A rough esti-
mate shows that the double-layer capacity is
~10 µF/cm2, and the voltage drop is ~1 V for media of
the kind considered here [4]. In an alternating field,
such a double layer is discharged and charged during a
half-period of every voltage cycle. Therefore, for injec-
tion to take place, a charge equal to q must build up in
the layer during at least a quarter-period of the applied
voltage; i.e.,

(2)

where i(t) = σE0sin2πft, σ is the conductivity of the
liquid, E0 is the amplitude of the external field intensity,
and f is its frequency. This yields an expression for the
critical frequency above which the required charge can-
not build up in the double layer:

(3)

where Umax is the amplitude of the applied voltage and
d is the electrode-gap width.

When f > fcr, charge injection does not take place,
and vice versa. The setup used in the experiment was
described in a previous paper [2]: a channel of rectan-
gular cross section, 20 mm long and 3.5 mm wide, had
top and bottom walls made of metal plates that served
as electrodes. The electrode gap (channel height) was
200 µm. The passage time of the liquid flow between

q CdlΦ,=

q i t( ) t,d
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Fig. 1. Relative change in viscosity versus the frequency of applied alternating voltage for (a) acetone and (b) nitrobenzene at (1) 10,
(2) 20, (3) 30, (4) 40, and (5) 50 kV/cm.

∆η/η
marks on the capillary walls was measured by a photo-
detector within 0.1 s. The alternating voltage generated
by a special power supply was applied to the electrodes
of the experimental cell. The error of frequency mea-
surement did not exceed 3%. The length of the segment
upstream of the capillary cell was adjusted so that the
flow was steady along the entire cell. Since dynamic
viscosity can be represented as η = A∆P/∆Q, where A
is a calibration constant and ∆P is the pressure drop
required to keep the flow rate at ∆Q = V0/t (V0 is the vol-
ume of flowing liquid), the change in the observed vis-
cosity is ∆η/η = (ηel – η)/η = (tel – t)/t, where ηel is the
viscosity observed when voltage is applied to the cell,
tel is the time required for the liquid volume to flow
through the passage in the presence of the field, and t is
the time required for the liquid volume to flow through
the passage in the absence of the field.

The polar liquids under study had high permittivi-
ties (ε ~ 36–20), and decane (with ε ≈ 1.2–1.4) was
used as a reference nonpolar liquid. These liquids are
typical liquid dielectrics. The change in viscosity (i.e.,
the time required for a liquid to pass through the cell)
was measured as a function of the frequency of the
applied voltage at different amplitudes of the voltage
for various liquids. All of the curves obtained for the
polar liquids involved portions characterized by similar
behavior (see Figs. 1 and 2). At low frequencies, as the
frequency is increased, the relative viscosity drops,
reaches a minimum, and then rapidly increases. With a
further increase in frequency, viscosity exhibits a slow
decline. For example, the relative viscosity of acetone
the relative viscosity at 400 Hz was equal to that
observed at ~60 Hz when the voltage amplitude was
held at 10 kV, whereas the minimum relative viscosity
(∆η/η)min increased with the applied voltage. In partic-
ular, the value of (∆η/η)min at E = 40 kV/cm is three
times higher than that observed at E = 10 kV/cm for all
curves (see Figs. 1 and 2).

The minima of the curves discussed here may be
associated with the critical frequencies for the charge
buildup in the electrode double layer. Indeed, compar-
ing the frequencies corresponding to (∆η/η)min with the
critical frequency given by (3), one finds that they close
(see table). It should be noted that the critical frequen-
Table

E, kV/cm

Nitrobenzene Nitromethane Acetone Decane

fcr, Hz fmin, Hz
(experiment) fcr, Hz fmin, Hz

(experiment) fcr, Hz fmin, Hz
(experiment) fcr, Hz fmin, Hz

(experiment)

10 16 12 80 60 10 10 1.6 × 10–6 –

20 32 25 160 120 20 15 3.2 × 10–6 –

30 48 42 240 180 32 26 4.8 × 10–6 –

40 64 60 320 260 40 35 6.4 × 10–6 –

50 80 75 400 350 53 48 8.0 × 10–6 –
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cies measured for all liquids used in this study lie
within 10–500 Hz (see table), i.e., in a domain of rela-
tively low frequencies. For a nonpolar liquid such as
decane, no minimum of this type was observed in the
frequency range explored here (see Fig. 3). The relative
viscosity of decane decreases with increasing fre-
quency. In particular, as the frequency of the applied
voltage is reduced by a factor of one hundred, the rela-
tive viscosity decreases by ~30%. As the applied volt-

1

∆η/η × 10–2

5

100 200 400 500 700

1

2

f, Hz

2

4

6

300 600

3

0

Fig. 3. Relative change in viscosity versus frequency for
decane at (1) 20 and (2) 40 kV/cm.
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Fig. 2. Relative change in viscosity versus the frequency of
applied voltage for nitromethane at (1) 10, (2) 20, (3) 30,
and (4) 40 kV/cm.
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age amplitude is increased, the value of ∆η/η increases
by a factor of less than 1.5. It should be noted that when
a constant voltage was applied to a flow cell containing a
nonpolar liquid, the value of ∆η/η also exhibited a rela-
tively slow increase as the voltage was increased [2].

The table compares the values of the critical fre-
quency fcr calculated by (3) with fmin exp measured in the
experiment. The table demonstrates that the frequen-
cies corresponding to the minima of curves in Figs. 1
and 2 are in good agreement with that predicted by (3),
whereas experiments with decane did not reveal any
critical frequency. According to (3), the critical fre-
quency for decane at the field intensity 10 kV/cm
would lie at ~10–2 Hz, i.e., in the far low-frequency
domain, which is also consistent with experimental
results.

After the injection was “switched off,” the observed
viscosity slightly increased with frequency and then
slowly declined. These trends can be explained by
effects of the bulk conductance of the liquid due to the
molecular dissociation of the additive.

Thus, the studies described here have shown that the
presence of injected space charge in a liquid medium
plays an important role in the mechanism of the electro-
viscous effect. When the injection is prevented either
by isolating the electrode from the liquid [2] or by
changing the frequency of the applied voltage results
in  a decrease in relative viscosity. This may occur
because the concentration of ion–molecule complexes
decreases with injection intensity, i.e., because the for-
mation of an ion–molecule complex is centered at an
injected charge. An increase in the size of a structural
element of a liquid would then lead to an increase in
viscosity and, under certain conditions, to manifesta-
tions of other electrohydrodynamic effects.
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Abstract—For higher manganese silicide single crystals of certain geometry and superstructure orientation, an
unusual metallization process is observed. This anomaly can be associated either with bulk processes similar to
thermogalvanic effects or with the carrier redistribution in the near-surface regions that is due to the high ther-
moelectric power anisotropy and complex crystal structure. © 2000 MAIK “Nauka/Interperiodica”.
The use of electrochemical techniques in the tech-
nology of high-temperature thermoelectric devices
makes it possible to integrate electrochemical cleaning
(chemical activation) of the surface and subsequent
deposition of metal contacts into a continuous fabrica-
tion process [1]. Also, it allows researchers to study the
distributions of heat fluxes and electric currents.

Higher manganese silicide (HMS) is viewed as the
best candidate for high-temperature generators and
sensors that operate in a wide spectral range. This mate-
rial has the tetragonal crystal structure, which consists
of loosely bonded manganese and silicon sublattices.
The spacings of the sublattices along the tetragonal
C-axis are generally incommensurable. Their incom-
mensurability and the existence of many crystal struc-
tures in the narrow range of compositions (MnSe1.71–1.75)
cause the precipitation of manganese monosilicide on
planes normal to the C-axis [2].

When HMS polycrystals are subjected to electro-
chemical metallization (nickel plating), no anomalies
(from the electrochemistry viewpoint) are observed.
Ohmic contacts with a resistivity of 10–5–10–6 Ω cm2

are produced [3].

The electrochemical deposition of nickel on HMS
single crystals in the form of a parallelepiped whose
end face is dipped into an electrolyte proceeds in sev-
eral stages. Within the initial five seconds, the blanket
metallization of the electrolyte-covered surface takes
place. Then, the metal begins to dissolve at the speci-
men corners and edges, forming metal islands on the
side faces. The islands extend toward the end face (see
figure). On the end face, the dissolving metal film first
takes the oval shape, then its central part narrows to
form a dumb-bell, and eventually two metal spots
remain. If the process continues further, the central part
of the spots also dissolves and two metal rings are left
on the surface. The same is reproduced on another
specimen in the same electrolyte.
1063-7842/00/4508- $20.00 © 21094
This observation seems to be an anomaly from the
standpoint of conventional electrochemistry. During
the electrochemical application of metal films (cathode
polarization), preferential deposition on edges, corners,
and surface ridges, not etching, is common.

This effect is most prominent when the C-axis
makes an angle of 45° with the largest side of the par-
allelepiped (see figure). When the C-axis deviates from
this direction, the island length on the side faces may
change and the process on the end side may be com-
pleted with the formation of the oval or dumb-bell. The
shape of the end face metallization strongly depends on
the parallelepiped dimensions. The two metal rings
appeared on the end face when a : b = 1 : 3 and speci-
mens were sufficiently long in the current passing
direction. The effect was absent for short specimens.

It can be inferred that the residual metallization pat-
terns on the end side (rings) and side surfaces are due
to bulk processes similar to thermogalvanic effects [4].
It appears that, when the carriers move along stream-
lines, their paths twist and eventually two parallel flows
are produced where the carries spiral. This becomes
possible because of the specific superstructure orienta-
tion, specimen geometry, and temperature distribution.
The situation looks as if the carriers were drawn in two
parallel-mounted “solenoids” instead of being spent on
metal reduction at cathode polarization. Eventually,
metal reduction on the surface changes to its dissolu-
tion, causing an oval, dumb-bell, spots, and rings to
appear successively on the end face. On the side sur-
faces, the tendency to complete metal etching off is
observed.

An alternative explanation is the redistribution of
the carriers in the near-surface region because of the
high thermopower anisotropy and complex crystal
structure. Cathodic and anodic areas forming on the
surface begin to act in parallel. As the specimen tem-
perature changes during the electrochemical reaction,
000 MAIK “Nauka/Interperiodica”
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Anomalous electrochemical metallization of HMS single crystals with the certain superstructure orientation and different geometry.
so do the mutual arrangement and shapes of the areas
with different polarization. In this way, the residual
metal film is patterned.

Thus, an anomalous metallization process is
observed in HMS single crystals of the specific geome-
try and superstructure orientation. This anomaly can be
associated either with bulk processes similar to ther-
mogalvanic effects or with the carrier redistribution in
the near-surface regions that is due to the high thermo-
electric power anisotropy and complex crystal struc-
ture.
TECHNICAL PHYSICS      Vol. 45      No. 8      2000
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Abstract—Mechanisms for the generation and amplification of electromagnetic waves by a thin-walled annu-
lar beam of electrons rotating in a radial electric field in free space are studied theoretically. It is shown that
electromagnetic waves can be generated and amplified under the Cherenkov resonance conditions. The frequen-
cies and growth rates of the generated waves are determined, and the propagation characteristics and amplifi-
cation coefficients of the amplified waves are found. © 2000 MAIK “Nauka/Interperiodica”.
The theory of the generation and amplification of
electromagnetic waves by annular electron beams in
waveguides (in particular, plasma-filled waveguides) is
widely covered in the literature (see, e.g., [1, 2]). Under
certain conditions (such as a small beam diameter in
comparison with the waveguide diameter, the field falls
off exponentially in the radial direction with distance
from the beam, and the wavelengths are short), the
waveguide walls have essentially no effect on the dis-
persion properties of electromagnetic waves. On the
other hand, the problem of the generation and amplifi-
cation of waves by a thin-walled annular beam of elec-
trons moving simultaneously in the azimuthal and axial
directions in free space is of interest in its own right.

We introduce the cylindrical coordinates (r, ϕ, z)
and consider an unbounded (along the z-axis) cylindri-
cal electron layer in which the electrons rotate in the
azimuthal direction. Let us assume that a positively
charged metal rod with radius a, linear charge density
Q, and a high but finite conductivity σ is located at the
coordinate axis. The electrons are held on circular equi-
librium orbits by the radial electrostatic field of the rod,
F0(r) = 2Q/r. We neglect the constant magnetic and
electric self-fields of the electron layer and assume that
the perturbations of the electromagnetic field, electron
density, and electron velocity all depend on the coordi-
nates z and ϕ and time t as exp[i(mϕ + kzz – ωt)], where
m ≠ 0 is an integer, kz is the projection of the wave vec-
tor onto the z-axis, and ω is the frequency. We treat the
problem in the hydrodynamic approximation. The
unperturbed electron density n(r) is assumed to be non-
zero in the layer between the surfaces r = r– and r = r+.
We also assume that the following conditions are satis-
fied:

(1)kz  @ ω
c
---- , kϕ  @ ω

c
---- , kzr–  ! 2 m( )1/2

,
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where kϕ = m/r– is the azimuthal component of the wave
vector, c is the speed of light, and  = |m |.

Inequalities (1) allow us to apply the potential
approximation [3, 4]. Using the method described by
Dolgopolov et al. [5], we can show that, in the case of
a thin layer such that

(2)

the electrostatic potential Φ treated in a linear approxi-
mation under the Cherenkov resonance conditions sat-
isfies the boundary conditions

(3)

where

(4)

Ω2(r) = 4πe2n(r)/me , ωm = ω – mVϕ /r– – kzVz , Vϕ and Vz

are the azimuthal and axial components of the unper-
turbed electron velocity, and –e < 0 and me are the
charge and the mass of an electron.

Formulas (3) and (4) were derived under the Cher-
enkov resonance condition

(5)

and with allowance for the fact that, by virtue of condi-
tions (1), the quantity kz/kϕ is small. Taking (2) into
account, we match Φ(r) and dΦ(r)/dr at the boundaries
between the rod and the layer to obtain the dispersion

m

r+ r–– δr ! r–,=

Φ r+
Φ r–

,
dΦ
dr
-------

r+

dΦ
dr
-------–
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2
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r( )r

2
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relation

(6)

where η = r–/a, ηm = (  – 1)/2, δσ = 1/(4πσηm), and
|ωδσ| ! 1.

The parameter δσ accounts for energy losses in the

rod. We introduce the averaged quantity :

(7)

We start by solving the problem of the excitation of
electromagnetic waves. To do this, we must set Im(kz) =
0 in (6), which then implies that Im(ω) ≠ 0 and
|Im(ω)| ! Re(ω). Under the condition

(8)

equation (6) yields

(9)

(10)

under the condition

(11)

equation (6) yields

(12)

(13)

We can see that, under condition (8), which indi-
cates that the angular electron velocity is high and the
electron density is low, the growth rate is considerably
higher than that under the opposite condition (11),
according to which the instability is triggered by the
dissipation of the wave energy in the rod. Note that the

growth rate (10) increases with  as , while the
growth rate (13) is exponentially decreasing. However,
we must keep in mind that, by virtue of inequalities (1),
the positive integer  is limited by the condition

(14)
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In addition, dispersion relation (6) enables us to
solve the problem of the amplification of an electro-
magnetic wave travelling along the z-axis by an annular
electron beam under the Cherenkov resonance condi-
tion (5). To do this, we must set Im(ω) = 0 in equation
(6), in which case we have Im(kz) ≠ 0 and |Im(kz)| !
Re(kz). Under condition (8), equation (6) gives the fol-
lowing expression for the amplification coefficient
|Im(kz)|:

(15)

under condition (11), we obtain

(16)

The amplification coefficient (15) is much larger
than (16). Under condition (11), the coefficient |Im(kz)|
is governed by the energy losses in the rod and is pro-
portional to the frequency of the amplified wave.

Note that, according to the first inequality in (1), the
magnetic and electric fields are both exponentially
decreasing in the radial direction. Consequently, during
the generation or amplification of a wave, an infinite
annular beam in free space emits no electromagnetic
waves, thereby keeping its energy unchanged. In con-
trast, a generated or amplified wave will be emitted by
a semi-infinite annular beam (bounded, e.g., by the
coordinate z0) through its end into a half-space z > z0.
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Abstract—An analytical solution to the boundary-value problem of an electric field and electrons in a metal-
filled half-space is obtained for arbitrary values of the tangential-momentum accommodation coefficient. The
frequency of an external electromagnetic field directed tangentially to the surface is allowed to take on complex
values. Both the normal and anomalous skin effects are considered. In the latter case, the low- and high-fre-
quency limits are examined. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The skin-effect problem has been solved analyti-
cally for the specular and diffuse reflections of elec-
trons from a metal surface. The former case corre-
sponds to zero accommodation of electron tangential
momentum; and the latter, to total accommodation (the
tangential-momentum accommodation coefficient q is
0 or 1, respectively). For intermediate q’s, analytical
solutions have not yet been found. The aim of this study
is to fill the gap.

For conventional boundary conditions, the behavior
of gases or electrons near the surface defies analytical
description if the specular reflection coefficient α takes
on arbitrary values. However, modified boundary con-
ditions were developed in the kinetic theory of gases [1]
so as to allow for an arbitrary q (q = 1 – α for the spec-
ular or diffuse case). They make the boundary-value
problems solvable in an analytical form (e.g., for the
isothermal or thermal slip of gas, etc.). We are going to
extend this approach to electrons in metals.

The tangential momentum accommodation coeffi-
cient q is the ratio of the tangential momentum flux of
electrons reflected from the surface to that of electrons
impinging on the surface:

Here, vn and vτ are, respectively, the normal and tan-
gential components of the electron velocity. The plus
and minus signs correspond to vn > 0 and vn < 0,
respectively. The surface is assumed to be planar.

An analytical solution to the problem of the anoma-
lous skin effect in a half-space was first obtained by the
Wiener–Hopf method [2–4]. Generalizations of the

q v nv τ f d
3
v v nv τd

3
v

–( )
∫

1–

.

+( )
∫=
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problem were addressed in [5, 6]. Studies [7, 8] of high-
frequency processes in metals highlighted the effi-
ciency of the Case method [9], which expands a solu-
tion in the singular generalized eigenfunctions of the
associated characteristic equation. In [10, 11], diffuse
boundary conditions were applied to an electron
plasma subjected to an electromagnetic field perpen-
dicular to the surface. In contrast to the Wiener–Hopf
method [3–6], Case’s method yields explicit expres-
sions for discrete modes of the solution. As emphasized
by some authors (see, e.g., [12]), under certain condi-
tions, such modes define to the largest extent the prop-
erties of both the electromagnetic field and conduction
electrons. Furthermore, the Case method provides the
deepest understanding of different types of skin effect.
That is why it is followed here.

In this study, we apply the expansion in singular
eigenfunctions to finding the impedance at 0 ≤ q ≤ 1. In
particular, formulas for diffuse (q = 1) and specular
(q = 0) boundary conditions are derived. The normal
and anomalous skin effects are considered. In the latter
case, the high- and low-frequency limits are explored.
For the anomalous skin effect, a relation is revealed
between the macroscopic response (impedance) of a
metal to an external field and the discrete spectrum. The
beauty of the Case method is that it dispenses with intu-
itive ideas, such as the concept of inefficiency [1, 13].

FORMULATION OF THE PROBLEM

We restrict ourselves to the case of a spherical Fermi
surface and small oscillation frequencies, neglecting
displacement current. The external field is assumed to
be weak, which allows us to view the problem in a lin-
ear context. Consider a metallic medium occupying a
half-space. Let us introduce Cartesian coordinates so
that the origin lies on the surface, the x-axis is perpen-
000 MAIK “Nauka/Interperiodica”
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dicular to the surface and is directed into the metal, the
y-axis is aligned with the electric field E(x)exp(αt), and
the z-axis is perpendicular to the magnetic field
H(x)exp(αt).

After the time variable is separated, the equations
for electric field and electrons in the metal have the
form [2]

Here, f0 is the Fermi distribution of electrons; f1 is the
correction to f0; f = f0 + f1exp(αt); ε, e, m, v, and ν are
the electron energy, charge, mass, velocity, and colli-
sion rate, respectively; j is the current density; and A =
4παc–2. The current density is given by 

Let us introduce the notation

Here, vF is the electron velocity on the Fermi surface,
E0 is the electric field amplitude on the surface of the
metal, and δ(x) is the delta function. In what follows,
instead of x', we will write x. Then, the equations
become

(1)

The conditions on the surface and away from it are
assumed to have the form

(2)

where d relates to the mean velocity of the electrons
reflected from the surface.

Suppose that the momentum flux of reflected elec-
trons equals 1 – q times the momentum flux of imping-
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ing electrons:

Here, q is the tangential-momentum accommodation
coefficient, i.e., the probability of electron reflection.
The last two conditions imply

(3)

EIGENFUNCTIONS

Let us separate the variables according to

where η is the spectral parameter. We thus arrive at the
characteristic system

where

Eliminating E(η) from the last two equations results
in the characteristic equation

where

If η ∈  (–1, 1) and n(η) ≡ 1, the characteristic equa-
tion immediately yields its continuum eigenfunctions
[14]:

Here, Px–1 denotes a distribution, i.e., the principal
value of the integral of x–1; δ(x) is the Dirac function;
and λ(z) is the dispersion function of the problem,
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where 

is the Case dispersion function [9].
By definition, the discrete spectrum of the charac-

teristic equation comprises the zeros of the dispersion
function that lie outside the cut [–1, 1]. The structure of
the spectrum can be found by the technique developed
in [15]. First, we will consider the homogeneous Rie-
mann boundary-value problem

(4)

where

Here,

and

Let Θ(µ) denote the regular branch of argG(µ) such
that Θ(0) = 0. Let us find the index [16] of problem (4).
We have

where γ is a contour that runs clockwise around the cut
[–1, 1] and does not enclose the zeros of the dispersion
function.

Let N and P respectively denote the total numbers of
the zeros and poles of ω(z) outside the cut [–1, 1]. As
follows from the last equality and the principle of argu-
ment [16], the index of problem (4) is κ = (N – P)/2. In
the δ plane, consider the region

Let ∆– and γ0 respectively denote the exterior and
boundary of δ ∈ ∆ +. As in [15], it can be shown that, if
δ ∈ ∆ +, κ = 1 and hence N = 4, since P = 2 for all δ ∈ ∆ ±.
Also, if δ ∈ ∆ –, κ = 0 and hence N = 2. That P = 2 fol-
lows from the expansion

(5)

For problem (4), let us select a solution that is non-
vanishing and bounded at the extremes of the interval
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of integration. In view of the behavior of κ = κ(δ) for
δ ∈ ∆ +(∆–), we take the function

Explicit expressions for the zeros of the dispersion
function can be obtained from its factorization formu-
las (presented without derivation):

The eigenfunctions associated with the discrete
spectrum at hand are as follows:

We skip over the boundary regime, since this topic
has been carefully treated in the context of the Rayleigh
problem [17]. In [17], the continuity of the distribution
function and its integral characteristics in the plane of
complex frequency were also demonstrated for the case
when the index of the Rayleigh problem varies in steps.

Let us find explicit expressions for the zeros of the
dispersion function in two limiting cases: |δ| ! 1 and
|δ| @ 1.

If |δ| ! 1, we are dealing with the anomalous skin
effect. Then, ω± = δ ± iπµ3/2. If δ is in the second quad-
rant, the discrete spectrum consists of two zeros: η1 =

rexp(iargδ/3) + iπ/6 and η2 = –η1, where r = .
The zero η1 is in the first quadrant (Rη1 > 0), since π <
argδ < π/2. The zero η2 is in the third quadrant. If δ is
in the third quadrant, the spectrum also consists of two
zeros: η1 = rexp(iargδ/3 + iπ/6 + i2π/3) and η2 = –η1.
The zero η1 is in the second quadrant now, since –π <
argδ < –π/2. Note that, if δ is real and negative (argδ =
π), the dispersion function has two purely imaginary
zeros: η0 = ri and η1 = –η0. On the other hand, if δ is a
purely imaginary number, then η0 = rexp(iπ/3) and
η1 = –η0 for argδ = π/2 and η0 = rexp(–iπ/3) and η1 =
–η0 for argδ = –π/2.

Let δ be in the right half-plane. In this case, the dis-
persion function has four zeros, two of which,

lie in the upper half-plane (with Rη0 > 0 and Rη1 < 0)
and the other zeros are η2 = –η1 and η3 = –η0.

In the context of the anomalous skin effect, we sin-
gle out two important cases: the high- and low-fre-
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quency conditions. Under the low-frequency condi-
tions, the field frequency is much lower than the elec-
tron collision rate: |α| ! ν and also ν|α| ! a0.
Furthermore, w0 = 1 + α/ν = 1 and δ = –(ν + α)3/αa0 =
–ν3/αa0 = –ν3i/ωa0. We then have two zeros: ±η0,
where η0 = rexp(–iπ/3). Under the high-frequency con-
ditions (which are close to an oscillatory regime), the
field frequency is much higher than the electron colli-
sion rate: |α| @ ν. This situation occurs at low temper-
atures and low impurity concentrations. Here, w0 =
ατ = – iωτ and δ = –α2/a0. The dispersion function has
four zeros, since α = –iω, so that δ = ω2/a0 > 0. The
expressions for the zeros are as in the above.

The case |δ| @ 1 corresponds to the normal skin
effect. Now the dispersion function has two zeros. As
follows from (5), the expression for them is

If δ lies in the negative portion of the real axis, then
Rη0 > 0 always. If δ < 0, then η0 = ri. If δ > 0, then the
zeros are real: ±η0.

EXPANDING THE GENERAL SOLUTION 
IN EIGENFUNCTIONS

Let us represent the general solution of system (1) in
terms of the discrete and continuum eigenfunctions in
such a way as to satisfy boundary conditions (2) (away
from the surface). The expansions read as follows:

(6)

(7)

Here, Ak (k = 0, 1) are unknown coefficients associated
with the discrete spectrum, with A1 = 0 for δ ∈ ∆ –;
A(η) is an unknown function associated with the con-
tinuous spectrum (continuous expansion coefficient);
and Rw0/ηk > 0 (k = 0, 1), with Rw0 > 0. 

Based on the boundary conditions, let us determine
the expansion coefficients in (6) and (7). Let δ ∈ ∆ +.

ηk = r i δ/2arg πk+( )[ ] , rexp  = 3 δ /2 k = 0 1,( ).
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At x = 0, we obtain

(8)

(9)

It is seen that (8) is a complete singular integral
equation with the Cauchy kernel. To prove this, substi-
tute expansion (6) into boundary condition (3) for d. We
solve equation (8) by the Carleman–Vekua regulariza-
tion [15]. The approach is built around an explicit solu-
tion of the characteristic equation.

Let us introduce the auxiliary function

Using the boundary values of N(z) and λ(z) reduces
equation (8) to the nonhomogeneous Riemann bound-
ary-value problem

Now recall the results for problem (4) and reduce
the last equation to the problem of finding an analytic
function from its zero jump over a cut:

Its general solution is

(10)

where c0 and c1 are arbitrary constants.
Eliminating poles from (10) gives
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The condition N(∞) = 0 implies

(11)

To the auxiliary function N(z), we apply the
Sokhotskiœ formula. Then we substitute (10) into the
resultant expression and determine the continuum
expansion coefficient:

(12)

Using (12), we will calculate the integral in (9).
First, notice that

where

The integral appearing in the formula for J(ηk) is
calculated via the following integral expression (pre-
sented without derivation):

where

It is now clear that J(ηk) = X(ηk)–1 = ηk + V1. Hence,
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gral in (9) is
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In view of (11), substituting (13) into (9) gives

Now substitute expansion (6) into boundary condi-
tion (3). In doing so, we will take into account that the
first moments of the continuum and discrete eigenfunc-
tions are respectively expressed as

We thus obtain the equation

Due to (13) and (11), we finally arrive at

The resultant system of equations uniquely deter-
mines the parameters d and c0 of general solution (10).
This completes the proof of expansions (6) and (7) for
δ ∈ ∆ +.

EXACT IMPEDANCE FORMULAS

First, consider the case δ ∈ ∆ +. Differentiating (7)
for electric field gives

.

According to the above notation, e'(0) = –bw0R1, where
R1 is determined from (13). To calculate the impedance,
we start from the formula Z = Ae(0)/e'(0). Since e(0) = 1
[see (2)], we have Z = A/e'(0). With the notation
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the desired exact expression is

(14)

With q = 0, formula (14) becomes

(15)

As q  1 (diffuse boundary conditions), the impedance tends to

Now look at the case δ ∈ ∆ –. The same reasoning as above leads to the exact formula
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where g(η0) = X '(0)/X(0) – 1/η0.

For (16), consider the limits q = 0 and q  1,
which refer to the zero accommodation of electron tan-
gential momentum and to diffuse boundary conditions,
respectively. With q = 0, the impedance is

(17)

With q  1,

(18)

LIMITING CASES

We begin with the normal skin effect. If δ ∈ ∆ – (δ <
0), then

For large |δ|’s, this yields

Since the normal skin effect is characterized by δ < 0,

η0 = –ri, and r = , we have V '(0) – 1/η0 ≈ –1/η0.
Consequently, if q  1, then Z = –Aη0/w0 [see (18)].
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Furthermore,

For large |δ|’s, these yield

Then consider the case q = 0. Based on (17), we
obtain the same formula: Z = –Aη0/w0. With an arbi-
trary q, formula (16) gives

Now, we proceed to the anomalous skin effect. First,
consider the low-frequency limit. It is characterized by
w0 = 1 + α/ν ≈ 1, δ = –iδ0 (δ0 > 0), η0 = rexp(–iπ/3),

and r = . Let us employ the following asymp-
totics for ω(z): ω±(µ) = δ ± iπµ3/2. Hence,
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After the change of the variable, we have V'(0) =
V'/(3r), where

Consequently, V '(0) = V 'exp(–iπ/3)/(3η0) =

i/( η0) = /η0, where  = i/ . Finding the
asymptotics of the expressions for V(0) and V1 as δ  0
and using (16), we arrive at

or Z = –Ar/(2w0).

Turn to the high-frequency limit. It is characterized
by w0 = –iω/ν and δ > 0. Furthermore, there are four
discrete modes, for which η0 = rexp(–iπ/6) and η1 =

rexp(–i5π/6), where r = .

Let us expand X(z) as X(z) = (z – 1)–1expV0(z),
where

Notice that V1 is bounded if δ  0. Furthermore,

The asymptotics for ω(z) enable us to find

Hence, (0) = /r, where

Due to (14) [or (15)], the impedance is

The same formula applies to diffuse boundary con-
ditions as well. Let us find V(0), V'(0), and V1. The
above factorization of the dispersion function yields

so that X(0) = i(π/4)2/3 δ–1/6. We will demonstrate
that V1 is bounded if δ  0. Since p(µ) ≈ µ3, the
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equality

implies

To calculate V'(0), we use the following asymptotic
representation of the function ω: ω±(µ) = δ ± iπµ3/2.
Then, we have

Let x denote πµ2/(2δ) = x, so that µ = . Then

In short, (0) = /r, where  = 3[ln  + π(−1/2 +

/3)/2]/π. Thus, the impedance for diffuse boundary
conditions is

It can easily be proven that this formula applies in
the general case as well [see (15)].

CONCLUSIONS
We developed a novel technique to obtain an analyt-

ical solution to the classical skin-effect problem in a
generalized form. According to our approach, the fre-
quency of the external electric field may take on com-
plex values and the accommodation coefficient of elec-
tron tangential momentum q may lie anywhere between
0 and 1. The technique consists in expanding the solu-
tion to the boundary-value problem in the singular gen-
eralized eigenfunctions of the associated characteristic
equation. This enabled us to investigate the problem
comprehensively. In particular, we derived explicit
expressions for the discrete modes of the solution and
constructed the frequency region D+ such that the prob-
lem has four discrete solutions if the frequency lies in
D+ and two discrete solutions if the frequency is outside
D+. The D+ region boundary represents the line of crit-
ical frequencies: crossing the boundary of D+ from the
inside changes the structure of the solution.

Remarkably, the singular-eigenfunction method
enabled us to reduce the problem to a complete singular
integral equation with the Cauchy kernel rather than to
the characteristic equation. This seems to be the first
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result of its kind in transport theory. The skin-effect
problem is thus opened up to the Carleman–Vekua reg-
ularization based on an explicit solution of the charac-
teristic equation.
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Abstract—The problem of resonance oscillations of inertial inclusions in contact with elastic waveguides has
triggered a number of theoretical investigations. It was shown [1–3] that related phenomena may be treated by
solving the spectral problem posed for a differential equation that is defined in an infinitely long interval. For
specific waveguide and inclusion parameters, a composite system that includes interacting objects with lumped
and distributed parameters may have a mixed (continuous and line) eigenfrequency spectrum. The line spec-
trum may be observed both before and after the boundary frequency. It was noted [3, 4] that the presence of an
isolated lumped inertial element causes the line eigenfrequency spectrum, which extends to the boundary fre-
quency. So-called trap oscillations are responsible for this spectrum. However, little is yet known about these
effects, which hinders their effective use in practice. First, conditions for trap oscillations should be generalized
for the case of multielement inclusions in various infinite waveguides. Second, the effect of edge conditions on
the line spectrum in a semi-infinite waveguide calls for in-depth investigation. The solution to these problems
would formulate proper ways of tackling engineering challenges associated with the interaction of a railway
track with high-speed rolling stock [5]. Issues discussed in this paper are also concerned with object character-
ization from analysis of its eigenfrequency spectrum. In recent years, this technique has gained wide acceptance
in crystallography and other fields of science and technology as a promising tool for the acquisition and pro-
cessing of data on the internal structure of an object. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Any extended constructions represent objects with a
complex internal structure. Such objects integrate, nat-
urally or artificially, members of highly different den-
sity, modulus of rigidity, viscosity, etc. that deform
simultaneously. One basic member of such objects is a
so-called elastic inertial load-carrying continuum.
Other members are mounted on, or placed into, it. A
rail–cross tie array is an example of an artificial struc-
ture; crystals are natural objects of this kind.

The analysis efficiency in solving applied or exper-
imental problems is closely related to the justified
selection of a real object (physical) model. Then, the
physical model is supplemented by an adequate mathe-
matical model of the object. A model for the load-car-
rying continuum is of greatest importance. This model
should be based on previous service experience or
experiments with the given object. It may happen that,
in experiment, various models of the inertial continuum
predict similar qualitative and quantitative (accurate to
an experimental error) results. In this case, designers
first consider the traditional inertial continuum model
(which is the simplest in terms of mathematical
description). Then, this model is replenished by iner-
tial, elastic, and other lumped-parameter members nec-
essary for the rigorous description of subsequent exper-
iments.
1063-7842/00/4508- $20.00 © 20963
This may explain the wide use of the Bernoulli–
Euler equation of a beam on a Winkler foundation in
studying the interaction of a railway track with rolling
stock [5] or the wave equation in the physics of crystal
lattices [6].

However, the selection of a load-carrying contin-
uum model imposes stringent restrictions on model-
refining lumped members. Specifically, if the contin-
uum is a priori assumed to have string properties,
moment-type interactions of the continuum with any
surrounding inertial and inertialess members must be
immediately excluded from consideration. This
strongly restricts the elaboration of the mathematical
model. It may so happen that this model will be impos-
sible to improve by adding any finite number of lumped
members.

It is known that eigenfrequency spectra bear much
information on a real object’s properties, particularly,
its internal structure. The agreement between the real
object spectrum and its mathematical model is a neces-
sary condition for the validity of any physical theory.
We, however, consider the dynamics of an object with
an unknown, but a priori, complex internal structure
for which only its eigenfrequency spectra are known
from experiments. In this case, the construction of a
mathematical model with a spectrally similar operator
leaves many “dark spots.” It remains unclear how to
integrate its elementary inertial links into macrostruc-
tures.
000 MAIK “Nauka/Interperiodica”
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In this work, the behavior of the eigenfrequency
spectra of complex objects was derived by rigorously
solving formally stated problems of mathematical
physics. The discovered effects provide a greater possi-
bility to experimentally test the adequacy of available
mathematical models of real objects. The discussed
features are expected to show up in experiments with
any systems whose dynamics is simulated by the above
equations.

Consider the problem of free vibrations of an infi-
nite elastic inertial line on a Winkler foundation. It is
known that this problem involves a continuous eigen-
frequency spectrum. This spectrum corresponds to
eigenmodes in the form of propagating undamped
waves. Such a spectrum is called continuous and lies
above the boundary frequency. A Winkler classical
foundation implies that a system has a single boundary
frequency when interacting with infinite (or semi-infi-
nite) one-dimensional elastic inertial continua, such
that their behavior is described by the string equation,
Bernoulli–Euler beam equation, or Timoshenko beam
equation. The boundary frequency ωb depends on the
linear mass density of an elastic line ρ and modulus of

rigidity of the Winkler foundation k; that is, ωb = .
It was shown [1, 2] that, if lumped elastic inertial inclu-
sions are embedded in these infinite or semi-infinite
systems, the latter, along with the continuous spectrum,
may exhibit line eigenfrequency spectra. These spectra
correspond to localized, or trap, vibrations. It was
found, in particular, that, for strings, the line spectra of
studied inclusions always lie below the boundary fre-
quency. In the case of beams (for certain combinations
of their elastic and inertial properties and those of the
inclusions), these spectra may appear above the bound-
ary frequency. Some of the previous conclusions, being
valid as applied to specific situations, however need,
correction upon generalizing obtained results. This
refers to the sufficient condition for the existence of line
spectra and the effect of edge conditions on their behav-
ior when inclusion parameters vary according to the
intrinsic properties of the elastic inertial line.

In this work, we find trap vibration spectra in elastic
systems of infinite length like a string or Bernoulli–
Euler beam lying on a Winkler foundation. The systems
have purely inertial inclusions that lack intrinsic vibra-
tory dynamics. In this case, the line spectrum frequen-
cies lie below the boundary frequency ωb. As inclu-
sions, the following objects were considered: (1) two
material points of masses m1 and m2 spaced at an inter-
val L, (2) a perfectly rigid body of mass m and moment
of inertia J (with respect to the center-of-mass position)
that is momentlessly fixed on an elastic line at two
points spaced at an interval L, and (3) two perfectly
rigid bodies of masses m1 and m2 and moments of iner-
tia J1 and J2 (with respect to the center-of-mass posi-
tions) that are fixed on an elastic line in such a way that
the center-of-mass displacement coincides with that of
the point of fixing and the center-of-mass rotation coin-

k/ρ
cides with that of the cross section at the point of fixing.
Cases 1 and 2 refer to a so-called momentless contact
between the elastic line and inclusions. Case 3 means a
moment-type contact interaction. Note that a moment-
type line–inclusion contact is possible for a beam but
impossible for a string. Various limiting processes dealt
with in the above problems allow the determination of
trap frequencies for a wide variety of edge conditions.
This gives a chance to trace a correlation between the
appearance (or disappearance) of some trap spectrum
and many physical factors, such as the elastic proper-
ties of the loaded line; type of degrees of freedom of an
individual, purely inertial inclusion; type of line–inclu-
sion contact; and inclusion size.

For steady-state vibrations of two-element point
inclusions of masses m1 and m2, the amplitudes of their
transverse (relative to the equilibrium position) dis-
placements will be denoted as W1 and W2. For two rigid
bodies, rotations Ψ1 and Ψ2 are added. The position of
a single-element inclusion (rigid body) is specified by
the transverse displacement of its center of mass W and
a rotation Ψ. The rest of the parameters are designated
as follows: s, longitudinal Lagrange coordinate of an
elastic-line cross section; ()' = ∂/∂s; w = w(s), trans-
verse displacement amplitude of a cross section with a
coordinate s; c2 = T/ρ, velocity of a transverse distur-
bance in a string (T is the string tension); β4 = C/ρ, elas-
tic parameter of a Bernoulli–Euler beam (C is its flex-
ural rigidity); and N1 and N2 are force amplitudes acting
on the elastic line at points of contact with inclusions.

INTERACTION OF STRING AND BEAM 
WAVEGUIDES WITH TWO POINT MASSES

Consider how trap spectra depend on inclusion
parameters when a purely inertial inclusion is in
momentless contact with an elastic inertial line. For fre-
quencies below the boundary frequency ωb, the steady-
state vibration amplitude of an elastic line (string) or
Bernoulli–Euler beam that lies on a Winkler foundation
and has a two-point moment-type contact with an inclu-
sion is given by

(1)

The vibration amplitudes of an inclusion with two

w'' λ 2
w–

N1

ρc
2

--------δ s( )–
N2

ρc
2

--------δ s L–( ),–=

λ2 ωb
2 ω2

–

c
2

------------------ 0, string,>=

w
IV

4λ 4
w+

N1

ρβ4
---------δ s( )

N2

ρβ4
---------δ s L–( ),+=

λ4 ωb
2 ω2

–

4β4
------------------ 0, beam.>=
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masses m1 and m2 satisfy conditions

(2)

For the string, the solution of (1) bounded at infinity
has the form

(3)

A similar solution for the Bernoulli–Euler beam is

(4)

In both cases, the vibration amplitude exponentially
drops with distance from the line–inclusion contact
region; hence, waveguide vibrations are localized near
the inclusions.

Matching the string or beam equation [equations
(1)] with the inclusion equation [expression (2)] yields
two expressions for the spectral parameter ω2:

(5)

m1ω
2
W1 N1, m2ω

2
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for the string and

(6)

for the beam.
With the minus sign in (5) and (6), we find the

eigenfrequency  of conventionally symmetric
waveguide vibrations (Figs. 1a, 1c); the plus sign gives

the eigenfrequency  of conventionally asymmetric
waveguide vibrations (Figs. 1b, 1d) (if m1 = m2, vibra-
tions become symmetric or asymmetric in the strict
sense).

Consider limiting cases for (5) and (6). If L  0,
we have

 = 1,  = 1

for the string and

(7)

for the beam.
If one of the masses (e.g., m1) in (5) is taken infi-

nitely large, one comes to the frequency equation of
vibration for an infinite string that has a point inertial
inclusion of mass m2 placed at a distance L from a
hinged waveguide point with the coordinate s = 0. It is

m1m2ωI II,
2

1 e
2λ I II, L–

1 2λ I II, Lsin+( )–( )

4λ I II,
3 ρβ4
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--------------------------------------------------------------------------------------------
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(a)

(b) (d)
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L

Fig. 1. Symmetric and asymmetric localized vibrations in
(a, b) string and (c, d) beam waveguides with two-point
inclusions. Shape “b” disappears when the interinclusion
distance is less than L∗ .
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easy to check that results thus obtained completely
coincide with those for a semi-infinite string with a
point inertial inclusion of mass m2 placed at a distance L
from the rigidly fixed beginning of the waveguide s = 0.
If m1 tends to infinity in the beam waveguide problem
[that is, in (6)], we arrive at the frequency equation of
vibration for an infinite beam with a point inertial inclu-
sion of mass m2 placed at a distance L from a hinged
waveguide point with the coordinate s = 0 (but not for
a semi-infinite beam!). Thus, we have

for the string and

(8)

for the beam.
At L  0 in (8), we obtain the limiting equations

for the string and

(9)

for the beam.
The condition ωI = 0 means that the system moves

as a rigid unit. Since the hinged point with the coordi-
nate s = 0 makes the infinitely large mass m1 immobile,
the zero frequency correlates with the system at rest in
this case.

If the distance L between the masses is less than

(10)

equations (7) and (9) for the string give real values of
the trap frequency ωII that no longer satisfy the condi-
tion ωII < ωb. The former equation in (10) gives L* for

a string with a two-mass inclusion; and the latter, for a

ωI
2

0,
m2ωII

2

λ IIρc
2

-------------- 1 e
2λ IIL–

–( ) 1= =

ωI
2
 = 0,

m2ωII
2
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------------------- 1 e
2λ IIL–

1 2λ IILsin+( )–( ) = 1

ωI
2

0,
m2ωII

2
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ρc
2

----------------- 1= =

ωI
2

0,
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2
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2β2 ωb
2 ωII

2
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2
m1 m2+( )
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--------------------------------, L*≈ L m1 ∞=
ρc

2

m2ωb
2

-------------,≈=

L*

m2m2m1 = ∞ m1 = ∞

(a) (b)

Fig. 2. Localized vibrations of a point inertial inclusion in a
(a) semi-infinite string waveguide and (b) beam waveguide
with hinged support. Shape “a” disappears when the dis-
tance between the inclusion and waveguide boundary is less
than L*.
string with a single hinged point and one-mass inclu-
sion.

As follows from (7) and (9) for a string waveguide,
there should exist a distance between inertial inclusions
such that the realness and positiveness conditions for
the square of the eigenfrequencies are violated. In this
case, the associated eigenfrequency spectrum becomes
complex, the existence criteria for localized undamped
vibrations responsible for the given eigenfrequency are
violated, and this localized vibration mode disappears
(Figs. 1b, 2a).

However, more thorough analysis is needed to gen-
eralize the conditions necessary for such a phenomenon
to occur. The drift of ωII beyond the boundary fre-
quency with decreasing distance between the masses or
to the fixed support (Fig. 2b) is not predicted from the
above results for a Bernoulli–Euler beam with similar
inclusions.

INTERACTIONS OF STRING AND BEAM 
WAVEGUIDES WITH A RIGID BODY 

UNDER MOMENTLESS TWO-POINT CONTACT

Consider elastic lines momentlessly interacting
with a single rigid body. Recall that its location is spec-
ified by the center-of-mass position and a rotation about
a certain axis. For a rigid inclusion in momentless sym-
metric contact with an elastic line, conditions (2) are
replaced by

(11)

From the latter, we come to the equations for fre-
quencies of symmetric (subscript I) and asymmetric
(subscript II) elastic-line vibrations:

for the string and

(12)

for the beam.

Localized vibrations of a string with a fixed rigid
body are represented in Fig. 3a. Similar vibrations of a
beam are shown in Figs. 3c and 3d.
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If m  ∞, (12) can be recast as

for the string and

(13)

for the beam. Relationships (13) yield the frequency
equations for a rigid solid that has a fixed center of mass
and is in two-point contact with an elastic line. For
J  ∞, we obtain

for the string and

(14)

for the beam. These relationships are frequency equa-
tions for vibration of a rigid body that momentlessly
interacts with an elastic line at two points without rota-
tion.

If m and J in (12) jointly tend to infinity, we obtain

 = 0 and  = 0 for both beam and string. This is a
well-known result, indicating that string and beam sys-
tems with two fixed hinged supports do not have trans-
verse vibration frequencies lying below the boundary
frequency of line spectra.

If L  0 in (12), we obtain

for the string and

(15)

for the beam.
Thus, in this case, the beam does not have, but the

string has, the limiting (maximum) distance between
contact points. As this distance grows, the higher fre-
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quency of localized vibrations of a string with two
purely mass inclusions disappears:

(16)

As was demonstrated, the effect of the disappear-
ance or conservation of the higher trap spectrum imme-
diately depends on the type of elastic inertial contin-
uum. Also, this effect is not a mere consequence of a
rising number of degrees of freedom of a single inclu-
sion. Nor is it directly associated with types of elastic
line–inclusion contact.

To confirm the last statement, we will present
expressions for trap spectra of free vibrations in the
case of a purely inertial inclusion that has two intrinsic
degrees of freedom and is in moment-type contact with
a Bernoulli–Euler beam. These are line spectra of free
vibrations of a system consisting of a rigid body (bod-
ies) fixed at its center of mass and lying on a Bernoulli–
Euler beam supported by a Winkler foundation:

(17)

Free vibrations at these frequencies are shown in
Figs. 4a–4c.

Putting m = ∞ in (17), we arrive at the frequency
equation for vibrations of an infinite beam hinged at a
point with the coordinate s = 0. This point coincides
with the center of mass of a perfectly rigid body inter-
acting with a waveguide and having a moment of iner-
tia J:

(18)

Putting J = ∞ in (17), we arrive at the frequency
equation for vibrations of an infinite beam supported at
a point with the coordinate s = 0. This support is a slid-
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Fig. 3. Symmetric and asymmetric localized vibrations in
(a, b) string and (c, d) beam waveguides in momentless con-
tact with a rigid body. Shape “b” is disappearing.
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ing attachment of mass m:

(19)

It is easy to notice that the localized vibration mode
disappears in none of the situations considered, as
opposed to the previous cases for the string.

INTERACTION OF A BEAM WAVEGUIDE 
WITH TWO SOLIDS BEING IN MOMENT POINT 

CONTACT WITH AN ELASTIC INERTIAL 
CONTINUUM

To elucidate the effect of interest in an infinite beam
system, we will determine steady-state vibration fre-
quencies of a beam lying on a Winkler foundation and
being in point moment contact with two rigid inclu-
sions. We assume the frequencies to be below the
boundary frequency ωb. Divide the infinite region occu-
pied by the elastic line into three sections: those on the
left and on the right of both inclusions and the region
between them. For each of the sections, we write the
elastic line equations and edge conditions:

(20)

as well as the joining conditions for the partial (section)
solutions:

(21)
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Fig. 4. Symmetric and asymmetric localized vibrations in a
beam waveguide in point moment-type contact with (a, b)
one- and (c, d) two-element rigid inclusions.
The solution of problem (20)–(21) bounded at infin-
ity and localized near the contacts with the inclusions is
given by

(22)

where A1, D1, P, Q, H, K, B2, and S2 are constants.
The joining conditions give the set of equations

(23)

Let both rigid bodies (two-element inclusion) be
identical. Then, the frequencies of symmetric and
asymmetric vibrations are found independently. Since
the localized vibrations may disappear with decreasing
interelement distance, the behavior of these spectra at
L  0 seems to be the most interesting.

We will find the symmetric vibration frequencies by
putting W1 = W2 = Ws and Ψ1 = –Ψ2 = Ψs. Then, at
L  0, one obtains from set (23)

(24)

For the free symmetric vibrations of a beam
waveguide with two rigid inclusions, the frequencies
obtained from the existence condition for the nontrivial
solution of (24) are

(25)

The symmetric vibrations are depicted in Fig. 4c.
The presence of zero frequency among the roots of

the characteristic equation merits attention. As is
known, the zero frequency implies that a system moves
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as a rigid unit. However, in our infinite system, unlim-
ited displacements of the inertial inclusions are impos-
sible because of the Winkler foundation. This apparent
conflict is due to the fact that the frequencies were cal-
culated using the limiting equations obtained from (23)
at L  0. The frequency equation coincident with the
first equation in (17) yields a more accurate value of

. For the refined frequency, system vibrations are
shown in Fig. 4a.

For asymmetric vibrations, the frequencies are
found by putting W1 = –W2 = Wa and Ψ1 = Ψ2 = Ψa. At
L  0, we obtain from (23)

(26)

The frequencies of free asymmetric vibrations of the
beam waveguide with two rigid inclusions are as fol-
lows:

(27)

The corresponding asymmetric vibrations are given
in Fig. 4d. Like the symmetric vibration spectrum, they
possess the zero eigenfrequency. It is associated with
the rotation of both inertial inclusions with equal con-
stant velocities. The reason for its appearance is the

same as in the previous case. The exact value of  is
derived from the frequency equation coincident with
the second expression in (17). The shape of the vibra-
tions for this case is shown in Fig. 4b.

The appearance of both zero frequencies is very
important from the physical viewpoint. This means
that, as the interinclusion distance diminishes, the
approximate frequency equations become “insensitive”
to the presence of the Winkler foundation. Under such
conditions, these equations predict that the entire sys-
tem will behave as a rigid unit.

For high-frequency components of the trap spectra,
approximate frequency equations (25) and (27) give the
same interinclusion distance, namely,

(28)

at which these spectra disappear when exceeding the
boundary frequency.

Now we proceed with the limiting case when a rigid
body interacts with a semi-infinite beam fixed at its
beginning. We put the mass and moment of inertia of
the body fixed at the point s = 0 tending to infinity.
Then, W1 = 0 and Ψ1 = 0. Under such conditions, the
frequency equation derived from (23) at L  ∞
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results in the same effect: the upper frequency of the
line spectrum disappears on exceeding the boundary
frequency:

(29)

With (23), one can obtain frequency spectra of free
localized vibrations for variously posed two-body
problems: the centers of mass of both bodies are fixed,
neither one can rotate, the center of mass of one body is
fixed and the other cannot rotate, etc. In each of these
problems, the localized vibration modes of the beam
waveguide disappear. In fact, for this to take place, it is
sufficient that at least one of the inertial elements of a
two-element inertial inclusion interacting with a Ber-
noulli–Euler beam have the inertia of a rigid solid and
that the beam–inclusion interaction be of moment-type
character.

DISCUSSION

The string and beam waveguides considered in this
work are partial mathematical models. They, however,
to some degree of approximation account for the possi-
ble behavior of real objects under service or in experi-
ments. The disappearance of one line spectrum when
the parameters of an inertial inclusion are varied seems
to be rather intriguing in this respect. Since the eigen-
frequencies of a linear system become resonant in the
presence of an external harmonic action on the system,
this effect can be used for thoroughly examining the
internal structure of a continuum with massive inertial
inclusions. The very discovery of this effect is an indi-
cation that an object is of an essentially discrete–con-
tinuous nature. However, distributed members, lumped
inclusions, and interactions between them need to be
identified. If information on any of these components is
available, the effect of the appearance or disappearance
of the trap mode can help to clarify the properties of the
others. As follows from the aforesaid, a new trap reso-
nance frequency appears or disappears if variations of
the geometric and inertial inclusion parameters are spe-
cially matched to the properties of all the components
of complex systems (comprising elastic inertial contin-
uum, noninertial elastic continuum, and purely inertial
inclusions). The new mode is lost when the disturbance
energy is transferred from the near-inclusion region to
the elastic inertial continuum and disappears when the
energy is confined in the vicinity of the inclusion [1–3].

With very simple mechanical models, it was demon-
strated that the spectra of two closely related systems
may qualitatively behave in a fundamentally different
way when their parameters are varied similarly. It is
noteworthy that the qualitative distinction due to radi-
cally differing internal properties of objects is observed
only in a rather narrow frequency range. This is of spe-
cial significance for systems where the variations occur
in a natural manner; i.e., the parameters vary during
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operation. Specifically, the case in point is transport
problems. In fact, such a situation may arise when a
train approaches some railway irregularity (bridge, via-
duct, or switch). In these cases, the joint railway–track
dynamics inevitably necessitates the solution to prob-
lems like those considered in this work. Obviously,
some of them are still more complicated because of the
need for taking into account the continuously varying
interinclusion distance. For this reason, they cannot be
treated rigorously. Here, the role of tests, which allow
the qualitative prediction and correct interpretation of
results, increases.

Analytical methods can be applied to one-dimen-
sional elastic inertial (string and beam) and noninertial
(Winkler foundation) continua with inclusions having
no more than two elements. Only in these cases can we
find analytical solutions to a number of like problems
for each of the elastic lines and compare them. This is,
however, a rarely encountered exception. In our opin-
ion, the value of our results is that they provide a better
insight into similar phenomena in two- and three-
dimensional continua with a complex structure. Exam-
ples are the upper part of a railway track or crystals,
where a model problem is hard to solve analytically.

REFERENCES
1. V. A. Babeshko, B. V. Glushkov, and N. F. Vinchenko,

Dynamics of Inhomogeneous Linearly Elastic Media
(Nauka, Moscow, 1989).

2. A. K. Abramyan, V. L. Andreev, and D. A. Indeœtsev,
Model. Mekh. 6, 34 (1992).

3. A. K. Abramyan, V. V. Alekseev, and D. A. Indeœtsev, Zh.
Tekh. Fiz. 68 (3), 15 (1998) [Tech. Phys. 43, 278
(1998)].

4. G. G. Denisov, E. K. Kugusheva, and V. V. Novikov,
Prikl. Mat. Mekh. 49, 691 (1985).

5. G. M. Shakhunyants, Railway Track (Transport, Mos-
cow, 1987).

6. L. Brillouin and M. Parodi, Wave Propagation in Peri-
odic Structures (Dover, New York, 1953; Inostrannaya
Literatura, Moscow, 1959).

Translated by V. Isaakyan
TECHNICAL PHYSICS      Vol. 45      No. 8      2000



  

Technical Physics, Vol. 45, No. 8, 2000, pp. 971–979. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 70, No. 8, 2000, pp. 16–24.
Original Russian Text Copyright © 2000 by Lazarev, Petrov.

                                            

THEORETICAL AND MATHEMATICAL PHYSICS

                 
A High-Gradient Accelerator Based on a Faster-than-Light 
Radiation Source

Yu. N. Lazarev and P. V. Petrov
All-Russia Research Institute of Technical Physics, Russian Federal Nuclear Center

Snezhinsk, Chelyabinsk oblast, 456770 Russia
Received March 23, 1999

Abstract—A wide-band microwave generator using a faster-than-light source is proposed to be used as a
charged particle accelerator. According to theoretical estimates, an electric field amplitude as high as ~1011 V/m
or more can be attained at the focus of a paraboloidal emitting surface with a focal parameter of ~1 m. These
estimates are supported by numerical calculations. The schematic diagram of such an accelerator is suggested.
© 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Wide-band microwave generators based on a faster-
than-light (FTL) emission source are very promising for
applications [1]. In particular, emission directivity in
these generators is provided by the shape of the emitting
surface, and the direction of emission coincides with that
of the specular reflection of emission-inducing radiation.
Thus, the focusing of FTL emission presents no prob-
lems. This raises the question of whether the electric
field intensity at the focus can be increased to the point
where it can be used for accelerating charged particles.

Consider a plane laser beam propagating along the
axis of a paraboloid. Let the paraboloid consist of radi-
ating elements similar to those described in [1]. Let
also the inner surface of the paraboloid be exposed to
the laser beam (Fig. 1).

Electromagnetic radiation generated by such an
FTL emission source must be focused at the paraboloid
focus and must greatly increase the field intensity. The
electromagnetic energy fluxes near the paraboloid sur-
face and at the focus should coincide: 

(1)

Hence, the electric field at the focus can be estimated as

(2)

where E is the electric field at the paraboloid focus, E0
is the electric field near the paraboloid surface, r0 is the
paraboloid radius in the focal plane, and 2πÂ is the
electromagnetic radiation wavelength. The field ampli-
tude near the paraboloid surface can readily be deter-
mined using the results obtained in [1]:

(3)
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where εf is the energy of electrons emitted from the
anode of the microwave source placed on the parabo-
loid surface.

Thus,

(4)

If a particle of charge e and mass M is accelerated
by this field, it gains a momentum p,

, (5)

and energy εa,

(6)

The values of εf ~ 102–103 keV, Â ~ 0.1–1 cm, and
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Fig. 1. Schematic diagram of an FTL paraboloid source: (1)
photons, (2) emitted electrons, (3) photoemitter, (4) laser
radiation front, (5) paraboloid surface, (6) accelerating
charge; and (7) electromagnetic wave.
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r0/Â ~ 102–103 seem to be attainable. Thus, it is hoped
that the energy of the accelerated particle may run to
about 1 GeV with a comparatively small-size accelera-
tor (several meters). Since the acceleration length is
about Â, the accelerating gradient can be as high as
~10 GeV/m or even more. Rigorous treatment of the
problem using analytical and numerical methods sup-
ports this result.

ANALYTICAL CALCULATIONS

Electron acceleration. The analytical expression for
the intensity of an electric field generated by an FTL
pulse on the inner surface of the paraboloid,

can be obtained with the retarded potentials in the
Lorentz gauge:

(7)

Considering that

(8)

and assuming that the emission current is directed nor-
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Fig. 2. Geometry used in computations: (1) focus and (2)
paraboloid surface.
mally to the paraboloid surface, i.e., 

(9)

we obtain the expression for the field component along
the paraboloid axis

(10)

where α is the angle between the axis OZ and vector r'
(Fig. 2).

In our case, the dipole approximation can be
applied:

(11)

Here, ω = z'/z' + r0, z' is the coordinate of the vector r',
(z0, ρ0) and (zk, ρk) are the coordinates of the extreme
points of the paraboloid, ω0 = z0/z0 + r0, ωk = zk/zk + r0,
z and ρ are the cylindrical coordinates of the vector r,
P0 is the amplitude of the dipole moment surface den-
sity,

Tp is the characteristic time of variation of the dipole
moment, Â = cTp, r0 is the paraboloid radius in the focal
plane,

(12)

is a dimensionless function specified for a pumping
source that provides a linear growth of the radiation
intensity, and η(x) is the Heaviside function.

At the paraboloid axis,
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Ez that the phase velocity of the field is c/ω > c, because

(14)

Obviously, the closer the velocity of particles to the
phase velocity of the field, the higher the acceleration
efficiency. Therefore, truncated paraboloids with |ω| ≈ 1
are of particular interest. Paraboloids with ω ~ 1 are
preferable because of the factor (1 + ω)/(1 – ω) in the
integrand for Ez. The physical meaning of this factor is
clear: the dipole radiation field is maximum in the plane
perpendicular to the dipole axis, whereas the dipole
does not emit along its axis. When ω  –1, the angle
between the dipole axis and direction toward the focus
tends to zero; when ω  1, this angle tends to π/2.
Only paraboloids with ωk, ω0 ≈ 1 are therefore consid-
ered in further discussions.

For the points with coordinates (z, ρ = 0) lying on
the paraboloid axis in the vicinity of the focus, 

(15)

the expression for Ez at the paraboloid axis can further
be simplified to

(16)

If ωk is far from unity (ωk < 0.95), the following
equation is valid:

(17)

Actually, the values of ωk close to unity are of no
practical significance, because the required power of
the light source is inversely proportional to the sine of
the glancing angle. When ω  1, the sine decreases,

whereas the power increases as 1/ . In addition,
a significant difference between ωk and ω0 (very long
paraboloid) results in nonuniform illumination and
makes the wavelength Â dependent on the coordinates
of the emission point.

Consider the process of electron acceleration. For a
relativistic electron (the electron velocity is close to the
velocity of light, v ≈ c), the equation of motion is writ-
ten as

(18)

Using this equation, we obtain the formula for the
momentum of the accelerated electron:
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It follows that

(20)

Expression (16) for the field component Ez was
obtained under the assumption that

(21)

Hence, within this approximation,

(22)

This inequality defines the time interval where the
above approximation is valid. The function F(τ) has a
broad maximum at τ = 2. Therefore, the energy of the
accelerated electron increases until τmax:

(23)

According to (22), the following inequality should
be met:

(24)

Otherwise, τmax should be determined from (22).
Thus, it can be assumed that F = Fmax = 1, and the
momentum of the accelerated relativistic electron can
attain the value pmax equal to

(25)
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is the effective length of the paraboloid, which varies
over a wide range. The value of K attains its maximum
(K ≈ 1) at Λ ≈ 0.5r0. For paraboloids of moderate length
Λ ~ (1–5)r0, which are of practical significance, we
have
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Since P0 = ,

(29)

If  = γf – 1 ~ 1,  ~ 1, and  @ 1, then

(30)

that is,

(31)

Hence, if Λ/Â ~ 103, the energy of the accelerated
electron is approximately 1 GeV. So far, the accelera-
tion of a relativistic electron has been considered. If an
electron is nonrelativistic but the condition

(32)

is met, all the estimates obtained above remain valid in
the order of magnitude. If an accelerated particle is out
of phase with the accelerating field (this is true for non-
relativistic velocities v ! c), the time of acceleration
decreases in proportion to 1 – . However, if condition
(32) is met, the electron soon becomes relativistic,
whereupon acceleration proceeds as described above.

Proton acceleration. Protons and electrons have
opposite electric charges. Therefore, when the acceler-
ating field reverses at τ > 2, the directions of the proton
velocity, phase velocity of the accelerating field, and
accelerating force will coincide. The proton mass is
approximately 1840 times the mass of an electron.
Therefore, it is reasonable to suggest that the proton
remains nonrelativistic throughout the acceleration
process. We cannot say in advance how the proton posi-
tion in space will vary with time. However, this infor-
mation is not necessary for making the required esti-
mates. It is sufficient to obtain the formal solution of the
equation of motion for the coordinate zn(t):

(33)
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Substituting the current coordinate of the proton
into the expression for the field phase, we obtain

(34)

Now, the solution of the equation for proton
momentum can easily be obtained:

(35)

It follows that

(36)

If r0/Â ~ 2 × 103 and γf – 1 ≈ 1, 

(37)

In this case, a proton can be accelerated to about
100 MeV.

ANTICIPATED DESIGN AND PERFORMANCE 
OF THE ACCELERATOR

From the obtained results, the possible design and
performance of the accelerator can be envisioned.

Electron accelerator. The condition Λ/Â = 103 spec-
ifies the accelerator size. The value of Â ≈ 0.2 cm seems
to be attainable. In this case, the accelerating gap L
should be approximately 0.2 cm at γf ≈ 2. The parabo-
loid length should be Λ = 2 m. If ωk = 0.8 and ω0 = 0.5,
the paraboloid radius in the focal plane should be r0 =
2/3 m and the paraboloid surface area, S ≈ 22 m2. The
amount of energy accumulated in the accelerating gap
near the paraboloid surface is easily estimated at

(38)

The output power of a laser with the light quantum
energy εk ≅  2 eV that provides electron emission from
the paraboloid surface (quantum efficiency Y ≈ 0.2) can
also be easily assessed:

(39)

If the pulse duration is approximately 10 ps, the
laser energy is ≈0.4 J.

The schematic diagram of the accelerator is shown
in Fig. 3. Obviously, a device accelerating particles to
energies lower than 1 GeV would have smaller dimen-
sions. Let us estimate the energy acquired by an elec-
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tron in such an accelerator with a characteristic size
of 1 m.

If r0 ≈ 6.7 cm, ωk = 0.8, and ω0 = 0.5, the distance
between the extreme point of the paraboloid and its

1

2 3

6

7

54

Fig. 3. Schematic diagram of the accelerator: (1) paraboloi-
dal mirrors of optical system, (2) conical mirrors, (3) parab-
oloidal microwave source, (4) laser, (5) injector, (6) focus,
and (7) beam outlet.
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focus is approximately 27 cm and Λ = 20 cm. Assum-
ing, as above, that Â = 0.2 cm, we find that all the
parameters of the accelerator should be decreased a
hundred times in comparison with the case considered
above: S ≈ 0.22 m2, J ~ 7 × 108 W, and U ~ 130 J. The
energy εa acquired by an electron upon acceleration
decreases only tenfold: εa ~ 100 MeV. The total length
of the accelerator, including a laser and an optical sys-
tem, is approximately 1 m. The injection of particles
into such a system can be performed in two ways: (1)
synchronously with the generation of a laser pulse (in
this case, particles are accelerated in the vicinity of the
paraboloid focus) or (2) prior to focusing the electro-
magnetic pulse (a dipole layer of low-energy electrons
is produced over the injecting surface, and the electro-
magnetic pulse captures as many electrons from this
layer as it can accelerate).

Proton accelerator. The energy of a proton attains
1 GeV at Pmax ≈ 1.8Mc. Assuming that γf ≈ 3, Â =
0.3 cm, ωk = 0.67, and ω0 = 0, we obtain, using starting
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Fig. 4. Electric field level lines: (1) paraboloid surface and (2) electric current.
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Fig. 5. Electric field at the paraboloid focus (ρ = 0, z = zf , and T0 = 0.05 ns): (1) analytical solution and (2) numerical solution.
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equation (9),

(40)
Pmax

Mc
---------- 1.8 10

3– r0

Â
----;×≈
hence, r0 ≈ 103Â. Therefore, the paraboloid radius r0 ≈
3 m; the paraboloid length, 6 m; and the maximum
radius, 6.7 m. A 100-MeV accelerator should have the
TECHNICAL PHYSICS      Vol. 45      No. 8      2000
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Fig. 9. Time dependence of the electromagnetic field components in the focal region: ρ/λ = 0.666; z/λ = (dashed line) 2.666, (solid
line) 0, and (dash-and-dot line) 1.333.
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following dimensions: r0 ≈ 0.7 m; length, 1.5 m; and
maximum radius, ≈1.6 m.

RESULTS OF NUMERICAL 
CALCULATIONS

The computation of the space–time distribution of
the electric field near the paraboloid focus was per-
formed using a two-dimensional electromagnetic code.
An FTL current pulse induced by radiation in an inner
layer (dl = 0.25 cm) of the paraboloid (zp(ρ), 0 < z/r0 <
0.9, the focal distance r0 = 100 cm) was simulated using
the expression for electric current density

(41)

(42)

j t z ρ, ,( ) f t
zk z–

c
------------– 

  δ zp ρ( )( )n,=

n
1

1
ρ
r0
---- 

  2

+

------------------------- ρ
r0
----; 1–

 
 
 

,=

f t( ) t
T0
----- 

  2

e

t
T0
-----– t

T0
----- 

  , T0 0.5 10
9–
 s,×= =
where δ is the Dirac function.

The mesh size was taken to be ∆z/Â = ∆x/Â = 0.166.

Simulated results for the propagation of an electro-
magnetic wave induced by an FTL pulse on the parab-
oloid surface are presented at different time instants in
Figs. 4–6. It can be seen that the amplitude of the local-
ized electromagnetic pulse increases as the focus is
approached. For comparison, an analytic curve for
electric field intensity Ez is shown in Fig. 5.

Calculations showed that a strong electric field is
generated in the focal region of size *Â (Figs. 7–9). The
field direction remains invariable for the time interval
≅ 2T0, during which the field can be used for accelerat-
ing charged particles. It should be noted that the radial
component of the electric field is much smaller than the
longitudinal component and equals zero at the parabo-
loid axis. In addition, the magnetic field upon accelera-
tion is directed so that the Lorentz force, acting on the
electron beam, presses it against the paraboloid axis
(i.e., the beam contracts). Thus, the accelerator can be
expected to provide a small angular spread of acceler-
ated particles.
TECHNICAL PHYSICS      Vol. 45      No. 8      2000
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CONCLUSION
The obtained results show that the use of FTL emis-

sion sources for accelerating charged particles is feasi-
ble. Accelerators based on FTL microwave sources are
expected to accelerate charged particles to energies of
several hundred or even several thousand MeV, while
being significantly smaller in size than today’s linear
accelerators. The requirements for the performance of
the accelerator components do not seem to be unique.
Therefore, the production of such accelerators should
TECHNICAL PHYSICS      Vol. 45      No. 8      2000
present no problems if FTL microwave sources them-
selves are developed.
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Abstract—Three types of magnetic traps that provide three-dimensional potential wells for neutral atoms and
ferromagnetic particles are considered. The possibility of forming directed particle beams is discussed. © 2000
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Ions that are cooled to ultralow temperatures and
localized in electromagnetic traps open many possibil-
ities for investigating quantum jumps, the quantum
properties of photon statistics, optical bistability, and
the problems standing in the way of constructing fre-
quency standards. Experiments with ensembles of par-
ticles made it possible to observe the formation of
ordered structures and phenomena similar to phase
transitions [1, 2]. In connection with this, it becomes
relevant to analyze the problems of the localization,
accumulation, and confinement of neutral particles in
magnetic traps [1, 3–5]. Another aspect of this area of
research is associated with the possibility of emitting
particles from a magnetic trap and implementing a
device that was called an atomic laser [6]. The escape
of particles can be driven by one or another triggering
mechanism [7, 8].

The motion of particles with a nonzero magnetic
moment is described by a set of six nonlinear equations
for the coordinates of the center of mass and for the
components of the magnetic moment. Here, we pro-
pose a new approach to investigating the dynamics of
the magnetic moment of a particle in a magnetic field.
The dynamic equations for the magnetic moment are
represented in Hamiltonian form with the fundamental
Poisson bracket of complex “coordinates” and
“momenta.” The solution obtained is a canonical trans-
formation that drives the new Hamiltonian to zero. We
consider several configurations of a constant axisym-
metric nonuniform magnetic field that provide three-
dimensional potential wells for trapping cooled parti-
cles in a bounded region. A resonant RF pulse triggers
the spin-flip transition to the state of infinite particle
motion. The question then arises of how to pass over to
the state of semi-infinite motion. We show that an axi-
symmetric field configuration provides the possibility
of emitting particles in the form of a directed beam. In
order to implement this effect, three ring currents that
produce a symmetric magnetic trap should be supple-
mented with an additional ring coil.
1063-7842/00/4508- $20.00 © 20980
EQUATIONS FOR PARTICLE MOTION 
AND MAGNETIC MOMENT

The energy of the particle–magnetic-field interac-
tion has the form U(t, x) = –mB, where m = gµBS is the
mean magnetic-moment operator, S is the mean effec-
tive spin, g is the Landé factor, and µB = e"/2me = 5.787 ×
10–5 eV/T is the Bohr magneton [9]. For a neutron and
proton, we have gµB  gn, pµN, where gn = −3.826,
gp = 5.586, and µN = 3.15 × 10–8 eV/T is the nuclear
magneton. The magnetic moment of a ferromagnetic
particle is equal to µ = MV, where M is the volume den-
sity of the magnetic moment, V is the volume of a par-
ticle, and Mmax ~ 107 (J/T cm3).

The equation of motion for the center of mass of an
atom in a quasi-uniform magnetic field is a conse-
quence of the Ehrenfest equation

(1)

where g0 is the free-fall acceleration.

Equation (1) is also valid for a ferromagnetic parti-
cle [10]. The vector S satisfies the equation

(2)

where W = –γB and γ = gµB/".

Equation (2) has an obvious first integral S2(t) = .
Note that, in electron systems, the cyclotron frequency
is equal to ν [GHz] = eB/(2πme) = 27.9922B [T].

We consider particle motion in a magnetic field that
is a superposition of the constant axisymmetric field
Bs(x), the constant uniform field B0 = (0, 0, b0), and the
RF magnetic field

(3)

where we introduced the function f(t) = 0 for t < t0 and
t > t0 + τ and f(t) = 1 for t0 ≤ t ≤ t0 + τ.

The vector potential of the magnetic field, As(ρ, ϕ,
z) = (0, Aϕ, 0), satisfies the conditions divB = 0 and

md
2x/dt

2
gµBSn∂Bn/∂x mg0,+=

dS/dt W S,⋅=

S0
2

B~ t( ) bp ωtcos bp ωtsin– 0, ,( ) f t( ),=
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curlB = 0. In cylindrical coordinates, the component
Aϕ = A(ρ, z) can be represented as a series [11]:

(4)

where ρ = (x2 + y2)1/2 and bs(z) is an arbitrary function.
From (4), we find the constant nonuniform magnetic

field:

(5)

The lines of the constant magnetic field B(x) = B0 +
Bs(x) are described by ρ[A(ρ, z) + ρb0/2] = const. Let us
consider some configurations of a nonuniform mag-
netic field.

(i) In a hyperbolic configuration, the magnetic field
intrinsically vanishes at the z-axis and increases when
away from it, so that we can set

(6)

Here, the first term describes the quadrupole field
and the second terms defines the mirror field.

(ii) A quasi-periodic magnetic field can be specified
through the function bs(z) = bcoskz, where k = 2π/λ
with λ the spatial period, in which case we have

(7)

(iii) For a configuration produced by a ring current-
carrying coil of radius a, centered at the z-axis and
lying in the z = h plane, we can set bs(z) = µ0Ia/(2R3),
where R2 = a2 + (z – h)2, I is the current magnitude, and
µ0 = 4π × 10–7 H/A2 is the permeability of the vacuum.

EQUATION OF PARTICLE MOTION 
IN A MAGNETIC TRAP

Equations (1) and (2) yield a law according to which
the total energy of a particle changes as

(8)

where E = mv2/2 – gµBS(t)Bt(t, x) – mg0x and Bt(t, x) =
B0 + Bs(x) + B~(t) is the total magnetic field.

We start by solving equations (1) and (2) in the time
interval 0 ≤ t ≤ t0, assuming that B(x) = B0 + Bs(x).
The spatial and spin variables change with the charac-
teristic frequencies ωa = (µB''/m)1/2 and Ω = γB, where
B'' ~ 200 T/m2 and B ~ 1 T. Since ωa ! Ω , we can
neglect the contribution of the rapidly oscillating com-
ponents of the vector S to equation (1) and switch to
slowly varying spatial variables. This procedure is
equivalent to the replacement of S by its mean value. In
the Appendix, we solve equation (2) and show that the

A ρ z,( ) ρbs z( )/2 ρ3
bs'' z( )/16–=

+ … 1–( )n 1+
1/ n 1–( )!n![ ] ρ/2( )2n 1–

bs
2n 2–( )

z( ),

Bs x( ) x/2( ) bs' bs'''ρ
2
/8–( ),–[≈

y/2( ) bs' bs'''ρ
2
/8–( )– bs ρ2

/4( )bs'' ] .–,

bs z( ) a1z a2z
2
/2 a3z

3
/6.+ +=

Bs x( ) bkx/2( ) kz,sin[≈

bky/2( ) kzsin b 1 k
2ρ2

/4+( ) kzcos ] .,

dE/dt gµBS∂Bt/dt,–=
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mean spin is equal to 〈S〉  = CB/B with C = S(0)B/B. The
thermally equilibrium states are characterized by C > 0.
As the temperature decreases, we have C  S0 .
Moreover, if C = S0, then S(t) = S0B/B, in which case
the total energy of a particle can be written as E =
mv2/2 – µB(x) – mg0x, where µ = gµBS0.

Substituting S = CB/B into (1) results in the equa-
tion

(9)

Let the origin of the coordinates be at the axis of the
magnetic configuration, and let this axis coincide with
the z-axis directed vertically upward. In order to deter-
mine the conditions under which the particles move in
a bounded spatial region (|z | < L/2, ρ < L), we introduce
the function bz = b0 + bs(z) and assume that |bz | @ |Bs1|,
|Bs2|, in which case we have B(x) ≈ bz + (ρ2/8)[( )2/bz –

2 ]. From (9), we obtain the set of equations

(10)

(11)

(12)

In the paraxial approximation ρ ! L, such that the

values of ρ satisfy the condition ρ2 | /bz – | !
4 | |, equation (10) can be written as

(13)

where the function W(z) = –gµBCbz(z) + mg0z plays the
role of the potential energy.

Equation (13) has an obvious first integral

(14)

where E3 is the total energy of the longitudinal particle

motion. Under the condition  > ( )2/2bz, equations
(11) and (12) describe a harmonic oscillator with a
time-varying frequency.

EMISSION OF PARTICLES 
FROM A MAGNETIC TRAP

For cold particles moving in a magnetic trap, we
have C  S0 , in which case the energy of the particle–
magnetic-field interaction via the particle magnetic
moment is U(t, x)  –µB, where µ = gµBS0. Let the
RF magnetic field (3), which is rotating around the z-
axis, be also present in the system, so that the total mag-
netic field is Bt(t, x) = Bs(x) + B0 + B~(t). We assume
that the condition b0 @ |bs | holds. A resonant pulse of
the RF magnetic field with the duration τ = π/Ωp, where

md
2x/dt

2
gµBC∂B/∂x mg0.+=

bz'

bz''

md
2
z/dt

2

=  gµBC bz' ρ2
/4( ) bz'bz''/bz bz'''–( )+[ ] mg0,–

md
2
x/dt

2
gµBC/4( ) bz'( )

2
/bz 2bz''–[ ] x,=

md
2
y/dt

2
gµBC/4( ) bz'( )

2
/bz 2bz''–[ ] y.=

bz'bz'' bz'''

bz'

md
2
z/dt

2 ∂W z( )/∂z,–=

dz/dt( )2
G z( ), G z( ) 2/m( ) E3 W z( )–[ ] ,= =

bz'' bz'
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Ωp = γbp, triggers the spin-flip transition S0  –S0 at
the frequency ω = γb0 [12]. In fact, according to (A.14),
the solution to the dynamic equations for the magnetic
moment on the time scales t > t0 + τ has the form S(t) =
–S0B/B, where S0 = S(t0)B/B. For a particle moving in
an alternating electric field, law (8), according to which
the total particle energy changes, reduces to dE/dt =
−gµBSdB~(t)/dt, which yields the total energy ∆E =
2µb0 acquired by the particle over the time interval τ.
On the time scales t ≥ t0 + τ, the energy of a particle
interacting with a constant magnetic field becomes
Uf(t, x) = µB. Under the action of the RF pulse, the con-
ditions for the particle to move in a bounded region fail
to hold and the particle escapes from the trapping
region.

PARTICLE IN AN AXISYMMETRIC 
MAGNETIC TRAP

Localization of a Particle

In (6), we set a3 = –a30 < 0 and a1 > 0, in which case
the potential energy of a particle is equal to W(z) =
−gµBC(b0 + a1z + a2z2/2 – a30z3/6) + mg0z. The equation
dW/dz = 0 implies that the potential energy has two
local extremes, a maximum and a minimum, at the

points with the coordinates e2, 1 = [a2 ± (  + 2a30[a1 –
mg0/gµBC])1/2]/a30, such that W(e1) > W(e2). If E3 is in
the W(e2) < E3 < W(e1) range, then the particle oscillates
in the potential well between two turning points z2 and
z1, such that e1 < z1 < e2 < z3. In the well region, we have
G(z) ≥ 0. The zeros of the function G(z) are such that
z3 > z2 > z1. Substituting the function G(z) in the form
G(z) = –σ2(z – z1)(z – z2)(z – z3) with σ2 = gµBCa30/3m
into (14), we obtain a solution to equation (10):

where sn[ωz(t + T)/2, ξ] is an elliptic sine, ωz = σ(z3 –
z1)1/2, ξ2 = (z3 – z2)/(z3 – z1), z3 – z(0) = (z3 – z2)sn2[ωzT/2,
ξ], z(t) is a periodic function with the period 4K/ωz, and
K(ξ) is the complete elliptic integral.

Now, we analyze particle motion in the x- and y-
directions by examining the simplest situation, when

the inequalities b0 @ |bs | and ( )2/bz – 2  ≈ /b0 –
2a2 < 0 are assumed to be satisfied in the region where
the particle moves along the z-axis. In this case, equa-
tions (11) and (12) reduce to

(15)

where  = (gµBC/4m)[2a2 – /b0].

The projection of the particle trajectory onto the
(x, y) plane is an ellipse, so that the particle moves in a
bounded spatial region. Note that, if the magnetic axis
is horizontal, then the equilibrium vertical displace-

a2
2

z t( ) z3 z3 z2–( )sn
2 ωz t T+( )/2 ξ,[ ] ,–=

bz' bz'' a1
2

d
2
x/dt

2 ω12
2

x+ 0, d
2
y/dt

2 ω12
2

y+ 0,= =

ω12
2

a1
2

ment of the particle away from the axis is equal

to g0/ .

Emission of Particles from the Trap

After the interaction between a particle and a reso-
nant RF pulse, the potential energy of the particle and
its total energy are equal to W(z)  Wf(z) = µbz(z) +
mg0z and E3f = E3 + 2µb0. On the time scales t ≥ t0 + τ,
equation (14) takes the form

(16)

Since the equation Gf(z) = 0 has the single real root
z = z0, there remains only one turning point, so that the
z0-particles moving in the z-direction leave the trap in
the positive direction along the z-axis. The time at
which the particles escape from the potential well can
be estimated from (16) as follows:

where

The characteristic time scale tr on which the particle
beam diverges in the radial direction can be estimated
from equations (15) with the replacement –gµBC  µ:

tr ~ 2[(µ/m)( /b0 – 2a2)]–1/2. If tax ! tr, the particles
occupy the region stretched out along the z-axis, form-
ing a beam extended in the positive direction along the
z-axis.

PARTICLE IN A QUASIPERIODIC 
MAGNETIC TRAP

Inserting bz(z) = b0 + bcoskz into (10)–(12), we
obtain the following equations in the paraxial approxi-
mation:

(17)

(18)

(19)

where  = gµBCk2b/m.

We can draw an analogy between (17) and the equa-
tion of motion of a pendulum with a constant force

moment. If kg0 < , the coordinates zeq of the equilib-
rium points can be obtained from the equation

sinkzeq = –kg0 with coskzeq > 0. The potential energy
is equal to W(z) = –gµBC(b0 + bcoskz) + mg0z. In the
vicinity of an equilibrium point, we have z = zeq +

ω12
2

dz/dt( )2
 = G f z( ), G f z( ) = 2/m( ) E3 f W f z( )–[ ] .

tax 2/σ f D
1/4

,∼

σt
2 µa30/3m,=

D
4

3 z0
2

2a2z0/a30– 2/a30( ) a1 mg0/µ+( )–[ ] .=

a1
2

d
2
kz/dt

2 ωz
2

kzsin+ kg0,–=

d
2
x/dt

2 ωz
2
/2( ) b/2b0( ) kzsin

2
kzcos+[ ] x– 0,=

d
2
y/dt

2 ωz
2
/2( ) b/2b0( ) kzsin

2
kzcos+[ ] y– 0,=

ωz
2

ωz
2

ωz
2
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Acos(ω0t + α). In other words, a particle oscillates with

frequency ω0 such that  = coskzeq. In this case,
equations (18) and (19) belong to the class of Hill equa-
tions. If kA ! 1, equations (18) and (19) reduce to the
Mathieu equation d2u/ds2 + (p + 2qcos2s)u = 0, where
s = 2(ω0t + α) and

The theory of Mathieu functions implies that, in the
parameter plane (p, q), there are regions in which the
solutions are either bounded or unbounded [13, 14]. In
the plane (p, q), the solutions to equations (18) and (19)
are bounded in the first stability domain, which is
located to the right of the curve pc0(q) = –q2/2 +
7q4/128 + … and is bounded by the curve ps1(q) = 1 +
q – q2/8 + … for q < 0 and by the curve pc1(q) = 1 – q –
q2/8 + … for q > 0 [13].

PARTICLE IN A SPHERICAL SEXTUPOLE 
MAGNETIC TRAP

Localization of a Particle

The magnetic trap implemented experimentally by
Paul and his collaborators [3] and aimed at confining
neutrons was produced by the magnetic field of three
ring current-carrying coils placed at the intersections of
a spherical surface with the planes z = ±h and z = 0. The
equatorial current was chosen to flow in the direction
opposite to the polar currents, in which case the two
points corresponding to the equilibrium states are those
located symmetrically with respect to the equatorial
plane (z ≠ 0). This circumstance complicates the extrac-
tion of neutrons from the trap.

We consider the motion of particles in a magnetic
field produced by three unidirectional ring currents. To
do this, we treat (4) with

(20)

where  = a2 + (z + h)2,  = a2 + (z – h)2, h > a/2,

and  =  + z2. Let the z-axis be directed horizon-
tally, and let the x-axis be directed vertically down-
ward. From (10)–(12), we obtain the following equa-
tions in the paraxial approximation:

(21)

(22)

(23)

where W(z) = –gµBC[b0 + bs(z)] and b0 @ bs.

ω0
2 ωz

2

p 1/8( ) 1 b kzeq/ 2b0 kzeqcos( )sin
2

+[ ] ,–=

q A/8( ) kzeqtan– b kzeq/b0sin+( ).–=

bs z( ) µ0Ia/2( ) 1/R1
3

1/R2
3

+[ ]– µ0I0a0/2R0
3
,–=

R1
2

R2
2

R0
2

a0
2

md
2
z/dt

2
dW /dz,–=

md
2
x/dt

2
gµBC/4( ) bs'( )

2
/b0 2bs''–[ ] x mg0,+=

md
2
y/dt

2
gµBC/4( ) bs'( )

2
/b0 2bs''–[ ] y,=
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Equations (21)–(23) give the coordinates of the
equilibrium point: zeq = 0, xeq = 2mg0/[gµBC (0)], and

yeq = 0, (0) = 3gµBC[Ia(a2 – 4h2)(a2 + h2)7/2 + I0/2 ].

If the potential well is sufficiently deep, |bs(h)| @
|bs(0)|, then the parameters of the magnetic system
should satisfy the inequality

On the other hand, since (0) = 0, a particle will
move in a bounded region in the vicinity of the plane
z = 0 in the in the x- and y-directions only if the inequal-
ity (0) > 0 holds. Consequently, the particles can
generally be localized if the function bs(z) satisfies the
conditions 2  – ( )2/b0 > 0 and |bs(h)| > |bs(0)|.

Emission of Particles from the Trap

In order to ensure the directed motion of the parti-
cles after the resonant pulse has come to an end, it suf-
fices to switch on an additional coil, with current Ic and
radius r, located in the plane z = –H such that H > h.
After the particle spin reverses direction, the potential
energy of the particle becomes W(c)(z) = µ(b0 + bs + bc),
where bc(z) = µ0Icr/(2R3), R2 = r2 + (z + H)2, and bs(z) is
defined in (20). The magnetic field of the additional coil
plays the role of a magnetic mirror that reflects particles
in the positive direction along the z-axis. To make the
beam radially nondivergent, the additional coil should
satisfy the condition 2(  + ) – (  + )2/b0 < 0.
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APPENDIX

Equation (2) is derived by averaging the Heisenberg
equations of motion for the spin operator over the
superposition of states of a quasiclassical wave packet.
Consequently, equation (2) is neither Lagrangian nor
Hamiltonian; it also cannot be derived variationally.
But it can be made Hamiltonian with the help of the
method that was developed by Schwinger, who found
the relation between the spin operator and the conju-
gate “creation” and “annihilation” operators, which can
be introduced when examining two harmonic oscilla-
tions [15].

We introduce a spinor-column Ψ with two complex
elements a1 and a2, such that Ψ+ = ( , ). We
denote the Pauli matrices by σk (k = 1, 2, 3) and define

bs''

bs'' a0
4

I/a
2( ) 1 1 4h

2
/a

2
+( )

3/2–
2 1 h

2
/a

2
+( )

3/2–
–+[ ]

@ I0/a0
2

1 1 h
2
/a0

2
+( )

3/2–
–[ ] .

bs'

bs''

bs'' bs'

bs'' bc'' bs' bc'

a1* a2*
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the components Sk = (1/2)Ψ+σkΨ of the vector S
through the relationships

(A.1)

We also introduce the “coordinates” and

“momenta” qk = ak and pk = i  (k = 1, 2) with the fun-
damental Poisson bracket (PB) [qi , pk] = δik. The rela-
tionship [S1, S2] = εijkSk for the PB puts equation (2) in
Hamiltonian form dS/dt = [S, H] with the Hamiltonian
H = WS.

We consider the dynamic equations for the magnetic
moment in a constant nonuniform magnetic field B0 +
Bs(x). Along the phase trajectories of the system, we
have W(t) = –γB(t), where B(t) = B0 + Bs(x(t)). In terms
of canonical variables, the Hamiltonian has the form

(A.2)

where Ω± = Ω1 ± iΩ2.
The dynamic equations dak/dt = [ak , H] (k = 1, 2)

become

(A.3)

where H11 = Ω3/2, H12 = Ω–/2, H21 = Ω+/2, and H22 =
−Ω3/2.

We begin by solving the eigenvalue problem λvn =
–Hnkvk. From the equation det(H + λI) = 0, we obtain
the eigenvalues λ1, 2 = ±λ0 and λ0 = Ω/2, where Ω =

(  +  + )1/2. Substituting λ = λ1, 2 into the
eigenvalue problem yields the orthonormal eigenvec-
tors vn(1) and vn(2):

(A.4)

We can parameterize the eigenvectors by introduc-
ing the angles Θ and ϕ for the vector B in spherical
coordinates through the relationships B1 = B12cosϕ and
B2 = B12sinϕ, where B12 = BsinΘ, and B3 = BcosΘ,

where B12 = (  + )1/2.

We represent Hamiltonian (A.2) in terms of the
coordinates and momenta H = – iHmnpmqn and make the

canonical transformation (CT) qk = ak, pk = i  

 = ck,  = i  generated by the function F2(q, p',

t) = (Λ+)µk qk, which depends on the old coordinates
and new momenta. Here, the columns of the unitary

S1 a1*a2 a2*a1+( )/2, S2 a1*a2 a2*a1–( )/2i,= =

S3 a1*a1 a2*a2–( )/2.=

ak*

H  =  1/2 ( ) a 1 * a 2 Ω – a 2 * a 1 Ω + a 1 * a 1 a 2 * a 2 – ( )Ω 3 + + [ ] ,

dak/dt iHknan,–=

Ω1
2 Ω2

2 Ω3
2

v 1 1( ) Ω Ω3–( )/2Ω[ ] 1/2
,=

v 1 2( ) Ω–/ 2Ω Ω Ω3–( )[ ] 1/2
,=

v 2 1( ) Ω+/ 2Ω Ω Ω3–( )[ ] 1/2
,–=

v 2 2( ) Ω Ω3–( )/2Ω[ ] 1/2
.=

B1
2

B2
2

ak*

qk' pk' ck*

pµ'
 

matrix 

 

Λ

 

m

 

µ

 

 = [

 

u

 

m

 

(

 

µ

 

)

 

] are the eigenvectors of the matrix

 

B

 

s

 

/2

 

B

 

, which coincide with (A.4) to within a phase
factor [16]:

(A.5)

The CT generated by the function 

 

F
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 has the form

(  = 

 

∂
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∂
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∂
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∂

 

q

 

m

 

)  (
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u
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(

 

α

 

)

 

]*, we have

(A.6)

Consequently, in the new variables, the Hamiltonian

 

H

 

'(

 

q

 

', 

 

p

 

', 

 

t

 

) = (

 

H

 

 + 

 

∂

 

F

 

2

 

/

 

∂

 

t

 

) is equal to 

 

H

 

' =  + 

 

h

 

' with

(A.7)

where  = (

 

Λ

 

H

 

mn

 

Λ

 

n

 

α

 

 = –

 

λ

 

µδµα, ωµα(t) = Λkα.

The CT puts the Hamiltonian (q', p', t) in the diago-

nal form (q', p', t) = –λn cn or

(A.8)

We assume that, along the phase trajectories of the
system, the magnetic field satisfies the condition
|ωµα | ! Ω (µ, α = 1, 2), in which case we have H'(q', p',
t) ≈ –λn cn. The solution to the equations generated
by the Hamiltonian H' is a CT ck  bk such that c1 =
b1exp(iη/2) and c2 = b2exp(–iη/2) pass over to b1 =
(S0 + C)1/2exp(iφ/2) and b2 = (S0 – C)1/2exp(–iφ/2),

where η(t) = (t)dt and C and φ are integration con-

stants. The general solution to equations (A.3) has the
form an = Λnαcα. Inserting an = Λnαcα into (A.1) gives

Sn = Rn(α) , where the real vectors Rn(α) (α = 1, 2, 3)
are defined as

(A.9)

The components of the vector  are determined by
relationships (A.1) with the replacement an  cn:

(A.10)

u1 1( ) Θ/2( ) iϕ /2–( ),expcos=

u1 2( ) Θ/2( ) iϕ /2–( ),expsin–=

u2 1( ) Θ/2( ) iϕ /2( ),expsin=

u2 2( ) Θ/2( ) iϕ /2( ).expcos=

qα' pα' qα'

)µm
+

pµ
+

)αk
+

qn un α( )qα' , pm um µ( )[ ]* pµ' .= =

H0'

H0' q' p' t, ,( ) iHµα' pµ' qα'' ,–=

h' q' p' t, ,( ) ωµα pµ' qα' ,=

Hµα' )µm
+ Λµk

+

H0'

H0' cn*

H0' Ω c1
2

c2
2

–( )/2.–=

cn*

Ω∫

Sα'

R1 1( ) = B1B3/BB12, R1 2( ) = B2/B12, R1 3( )–  = B1/B,

R2 1( ) = B2B3/BB12, R2 2( ) = B1/B12, R2 3( ) = B2 /B,

R3 1( ) B12/B, R3 2( )– 0, R3 3( ) B3/B.= = =

Sα'

S1' S0
2

C
2

–( )
1/2

η φ+( ),cos=

S2' S0
2

C
2

–( )
1/2

η φ+( ), S3'sin– C.= =
TECHNICAL PHYSICS      Vol. 45      No. 8      2000



EMISSION OF PARTICLES FROM A MAGNETIC TRAP 985
The relationship BS = BC implies that, in a quasi-
uniform magnetic field, the projection C = BS/B of the
vector S onto the tangent to a magnetic field line is an
adiabatic invariant. The mean spin is equal to 〈S〉  =
R3C = BC/B.

Note that the CT ak  ck defines a transition to the
new basis vectors nk   (k = 1, 2, 3), in which the

magnetic field B is directed along the unit vector . In
fact, the matrix Eik = (R–1)ik describes the operations of
rotating by the Eulerian angles ϕ1 = ϕ, ϕ2 = Θ, and
ϕ3 = 0 about the 3-2-3 axes, respectively [17]. With
allowance for (A.9), we represent the solution to equa-
tion (2) as

(A.11)

Now, we consider the dynamics of the magnetic
moment of a particle in the magnetic field Bt = B0 +
Bs(x) + B~(t). The total Hamiltonian of the dynamic
equations for the magnetic moment has the form Ht =
H + h, where the Hamiltonian H is defined in (A.2) and

(A.12)

with Ωp = γbp.

We set b0 @ |bs | and Ω ≈ Ω0 = γb0. Under the reso-
nance condition ω = Ω0, the CT ak  ck  bk con-
verts the Hamiltonian to the form

(A.13)

Taking into account (A.9) or (A.11), we obtain the
components of the vector S(t):

(A1a)

The equations generated by Hamiltonian (A.13) and
supplemented with the boundary conditions S1(t0) = 0,
S2(t0) = 0, and S3(t0) = S0 have the solution

Therefore, the components of the vector S(t) are

nk'

n3'

S1 S1' Θcos S3' Θsin+( ) ϕcos S2' ϕ ,sin–=

S2 S1' Θcos S3' Θsin+( ) ϕsin S2' ϕ ,cos+=

S3 S1' Θsin– S3' Θ.cos+=

h 1/2( ) a1*a2Ωp iωt( )exp a2*a1Ωp iωt–( )exp+[ ] ,–=

t t0,≥

Ht' Ωp/2( ) b1*b2 b2*b1+( ).–=

S1 Re b1*b2 iωt–( ),exp=

S2 Im b1*b2 iωt–( ),exp=

S3 b1*b1 b2*b2–( )/2.=

b1 i 2S0( )1/2 Ωp t t0–( )/2,cos=

b2 2S0( )1/2 Ωp t t0–( )/2.sin–=
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equal to

(A.14)

If an RF field is nonzero over the time interval t –
t0 = τ such that Ωpτ = π, then, on the time scales t ≥ t0 +
τ, we have S1(t) = 0, S2(t) = 0, and S3(t) = –S0. In other
words, the resonant “π-pulse” reverses the direction of
the magnetic moment. We conclude with the following
two comments.

(i) We write equation (2) in tensor form, dSi/dt =
AikSk, where Aik = εijkΩj(t) is an antisymmetric tensor
with the elements A21 = Ω3, A32 = Ω1, and A13 = Ω2. In
this case, the equation σVi = AijVj has the eigenvectors

V(1) = (R(1) + iR(2))/ , V(2) = [V(1)]*, and V(3) = R(3),
which refer to the eigenvalues σ1 = –iΩ , σ2 = iΩ , and
σ3 = 0. The vectors V(α) compose the orthogonal basis
[V(α)]*V(β) = δαβ [8].

(ii) The functional

satisfies the Euler–Lagrange equation

which is in Hamiltonian form [18]. A significant advan-
tage of the Hamiltonian formalism is the possibility of
using new methods for integrating the canonical equa-
tions of motion [18–20]. Introducing the functional
makes it possible to apply direct variational methods of
the Bubnov–Galerkin type.
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Abstract—The one-dimensional approximate equations describing the dynamics of a Newtonian viscous fluid
are used to analyze the nonlinear development of capillary waves in a jet. It is shown that the size of satellite
droplets resulting from a nonuniform jet breakup decreases with the Reynolds number at a constant wavenum-
ber. The satellite-droplet formation ceases at a certain value of the Reynolds number, which depends on the
wavenumber and initial perturbation amplitude. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

A liquid jet issuing out of a nozzle can break up into
droplets as the amplitude of a perturbation is increased
by capillary forces. The perturbation may appear on the
jet surface or arise from fluctuations of pressure, flow
rate, or physical characteristics of the fluid. This phe-
nomenon is employed in a variety of technical devices,
such as printers, chemical apparatus, etc. [1]. For this
reason, capillary waves on the surface of a liquid jet
have been studied over many years, both experimen-
tally and theoretically. This subject has been discussed
in a number of literature surveys [1, 2], and there is no
need for reviewing it in detail here.

Lord Rayleigh established that a liquid jet is unsta-
ble with respect to a sinusoidal disturbance whose
wavelength is longer than the circumference of the jet
cross section. The instability is driven by capillary
forces. When the jet radius locally decreases, capillary
forces give rise to a corresponding local pressure
increase. Vice versa, at the location where the jet radius
increases, the pressure at the surface decreases. As a
result, the liquid flows from the regions where the jet
contracts to the regions where it expands, and the per-
turbation tends to increase with time elapsed. Solving
the linearized equations of fluid mechanics, Rayleigh
obtained an equation relating the growth rate of the per-
turbation amplitude to the perturbation wavelength.
The time interval from the initial moment of perturba-
tion to the moment when the jet breaks up into droplets
predicted by the linear theory was found to be in fair
agreement with experimental results.

The principal drawback of the linear theory lies in
the fact that the linearized equations used in the theory
become inapplicable as the perturbation amplitude
grows. Accordingly, the results based on the theory are
valid only for the relatively short interval where the per-
turbation amplitude remains small. Two different
approaches can be used to allow for nonlinear interac-
tion between disturbances. In one approach, the desired
1063-7842/00/4508- $20.00 © 20987
solution is represented as a series in a small perturba-
tion amplitude. In the other, the equations of fluid
mechanics supplemented with appropriate boundary
conditions are integrated numerically.

A number of studies were focused on the problem of
nonlinear perturbation development in a cylindrical
inviscid jet [3–9]. In particular, it was shown that non-
linear interaction between perturbations can result in
nonuniform breakup of a liquid jet into drops. Rela-
tively small droplets, so-called satellites, can form
between relatively large, so-called main, drops.
Lafrance calculated the sizes of main drops and satel-
lites as depending on the wavenumber and found that
his results were in good agreement with experimental
data [8].

Direct numerical simulations of liquid-jet breakup
were reported in [10–16], where both inviscid [13, 14]
and viscous [10–12, 15, 16] liquid jets were considered.
In [15], a very detailed analysis of the effects of the
Reynolds number, wavenumber, and initial perturba-
tion amplitude on the process of jet breakup into drop-
lets was presented. However, numerical integration of
the equations of fluid mechanics is not a universal
method. The high computational costs make it impossi-
ble to do without the assumption of longitudinally peri-
odic flow or take into account the initial velocity pro-
file. For this reason, many theoretical analyses of the
capillary instability of a liquid jet are based on the one-
dimensional approximate equations derived by assum-
ing that the transverse length scale of the flow is much
smaller than its longitudinal length scale.

This approach was developed, for example, in
[17−26]. These studies include analyses based on per-
turbation methods [17–22] and numerical simulations
[23–26]. Eggers obtained a self-similar solution to the
one-dimensional equations describing the behavior of a
liquid jet just before and after its breakup [27, 28]. The
stability of this solution with respect to small perturba-
tions was analyzed in [29]. In [30], it was shown that
000 MAIK “Nauka/Interperiodica”
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there exists a countable set of self-similar solutions of
this type, the Eggers solution being the most stable with
respect to perturbations.

Different authors considered different variants of
approximate one-dimensional equations. Systematic
derivation of such equations was considered, for exam-
ple, in [31, 32], where the results obtained by solving
various approximate equations were compared with the
exact solution to Rayleigh’s problem. In [32], a proce-
dure was developed for constructing approximate equa-
tions that are valid to an arbitrary order with respect to
the small parameter defined as the ratio of the trans-
verse and longitudinal length scales of the flow. It was
shown that the equations derived therein can be used as
a basis for constructing a solution to the stability prob-
lem for a cylindrical viscous liquid jet that is consistent
with Rayleigh’s solution up to terms proportional to the
wavenumber squared.

In this paper, the approximate one-dimensional
equations derived in [32] are used to solve the problem
of nonlinear development of perturbations in a cylindri-
cal jet of a viscous liquid. A solution to a similar prob-
lem that does not rely on approximate one-dimensional
equations has been found only for the inviscid liquid
jet. As in [32], the temporal stability of a liquid jet is
analyzed. This means that an infinite jet is considered
in a coordinate system moving with the liquid. The spa-
tial stability of a viscous liquid jet, i.e., the stability of
a semi-infinite jet under given initial conditions at the
nozzle outlet cross section, was analyzed in [19–21] by
invoking the so-called Cosserat equations. These equa-
tions, as well as other variants of approximate one-
dimensional equations, can be employed under the
assumption that the transverse length scale of the flow
is small compared to its longitudinal length scale. This
condition holds for long-wavelength perturbations
when the corresponding wavenumber is small. It
should be noted that the terms of leading order with
respect to this parameter in the Cosserat equations,
which contain the liquid viscosity, are not consistent
with the exact equations [31]. This makes it impossible
to analyze the effect of viscosity on the development of
perturbations within the framework of these equations.
An analysis of nonlinear interaction between capillary
waves on the surface of a cylindrical jet of a viscous liq-
uid based on the equations proposed in [32] can be used
both to examine the effect of viscous friction forces on
the development of capillary waves and to determine to
what extent these equations are valid for describing the
nonlinear interaction between perturbations. To accom-
plish the latter task, one should compare the results
obtained in this study with solutions to the problem of
nonlinear development of capillary waves in inviscid
liquid jets that can be found in literature, as well as with
the results obtained by solving a similar problem
numerically for viscous liquid jets.
STATEMENT OF THE PROBLEM
In this paper, the capillary stability of a cylindrical

jet of an incompressible Newtonian liquid is analyzed.
Lord Rayleigh showed that the breakup of a jet into
droplets is caused by the growth of axially symmetric
perturbations. Therefore, perturbations of this particu-
lar form are considered in the present analysis. The
fluid velocity in the jet is assumed to be sufficiently
high, so that the effect of gravity on the breakup of a
liquid jet driven by capillary forces is negligible.

It is convenient to seek a solution in terms of dimen-
sionless variables. Denote the jet radius by a, the liquid
density by ρ, its viscosity by µ, and the surface tension
at the interface between the liquid jet and the ambient
gas by σ. Then, the jet radius a can be used as a refer-
ence length; t0 = (ρa3/σ)1/2, as a reference time; v0 =
(σ/ρa)1/2, as a reference velocity; and p0 = σ/a, as a ref-
erence pressure. Consider the cylindrical coordinate
system (r, Θ, z) with z-axis aligned with the symmetry
axis. Denote the axial and radial velocity components
by u and v, respectively, and pressure by p. The govern-
ing equations for a liquid jet flow include the continuity
equation

the axial Navier–Stokes equation

and the radial Navier–Stokes equation

Here, t is time and the Reynolds number Re is defined
as

In these equations, the subscripts denote derivatives
with respect to the corresponding variables: vr = ∂v/∂r,
etc. The free surface of the jet is prescribed by the equa-
tion

On the surface, a kinematic boundary condition

and two dynamic boundary conditions are set. One of
these dictates that the tangential component of viscous
stress vanish on the jet surface:

By the other dynamic condition, the normal compo-
nent of viscous stress has a jump equal to σ(1/R1 +
1/R2) across the surface, where R1 and R2 are the longi-
tudinal and transverse principal curvature radii of the

v r
v
r
---- uz+ + 0,=

ut vur uuz+ + pz–
1

Re
------ 1

r
--- rur( )r uzz+ ,+=

v t vv r uv z+ + pr–
1

Re
------ 1

r
--- rv r( )r

v

r
2

----– v zz+ .+=

Re ρaσ( )1/2
/µ.=

r η z t,( ).=

η t uη z+ v at r η= =

2v rη z ur v z+( ) 1 η z
2

–( ) 2uzη z–+ 0 at r η .= =
TECHNICAL PHYSICS      Vol. 45      No. 8      2000



 

NONLINEAR DEVELOPMENT OF CAPILLARY WAVES 989
jet surface, respectively. In dimensionless form, it can
be written as

Here, pa is the ambient pressure, assumed to be con-
stant. In the cylindrical coordinate system, the principal
curvature radii are calculated as

The problem formulated here has a solution of the
form

(1)

These formulas describe the motion of the liquid in
a cylindrical jet in a coordinate system tied to the liq-
uid. This solution is not valid in the near field of a jet,
where viscous relaxation of the velocity profile of the
nozzle flow takes place. According to some estimates
(e.g., see [6]), the near-field length is small compared to
the distance at which the capillary breakup of the jet
occurs. For this reason, almost all studies of the capil-
lary stability of liquid jets are focused on the analysis
of the particular solution written out above with respect
to small perturbations.

ONE-DIMENSIONAL EQUATIONS 
OF THE DYNAMICS OF A CAPILLARY JET

Calculation of nonlinear interactions between per-
turbations in a viscous liquid jet is associated with cer-
tain difficulties. When a solution is sought in the form
of a series in powers of a small parameter (perturbation
amplitude), it turns out that explicit analytical solutions
of the equations describing the liquid motion in the jet
cannot be obtained in the second approximation with
respect to the small parameter. However, one can con-
struct an approximate solution based on the assumption
that the length scale of the longitudinal (axial) profiles
of flow variables is much greater than the length scale
of their cross-sectional profiles. Approximate one-
dimensional equations that are valid under this condi-
tion have been considered by many authors. In [32], a
technique was developed for constructing equations of
this type that are valid to an arbitrary order with respect
to the small parameter defined as the ratio of transverse
to longitudinal length scale of the flow. Actually, these
equations are quite accurate when the perturbation
wavelength is sufficiently long; i.e., the corresponding
wavenumber is small. Here, the derivation of the
approximate equations is briefly outlined in order to
introduce the notation and assumptions that underlie
the theoretical analysis.

When the equations of fluid mechanics and bound-
ary conditions are written in a dimensionless form, dif-
ferent reference lengths should be introduced for the

p
1

Re
------ 2v r ur v z+( )η z–[ ]– pa

1
R1
-----

1
R2
-----.+ +=

1
R1
-----

1

η 1 η z
2

+( )
1/2

-----------------------------,
1
R2
-----

η zz

1 η z
2

+( )
3/2

-------------------------.–= =

u v 0, η 1, p pa 1.+= = = =
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transverse and longitudinal coordinates r and z. The
resulting equations would then involve a small param-
eter δ equal to the ratio of the reference lengths. The
dimensionless parameter Re is assumed to be a quantity
on the order of unity (while δ  0). If the variables η,
u, v, and p are sought in the form of series,

then equations for the coefficients of these expansions
can be obtained by substituting the series into the equa-
tions of fluid mechanics and boundary conditions and
equating the coefficients of like powers of r and δ. In
[32], equations of this kind were used to analyze the
stability of the flow described by (1) in the linear
approximation with respect to the initial perturbation
amplitude. At the initial moment, a sinusoidal perturba-
tion, e.g., the jet-surface perturbation

was introduced, where ε is a small parameter and k is
the wavenumber.

When the analysis is restricted to the leading terms
of asymptotic expansions, i.e., to the equations for η(0)

and u0, 0, a perturbation with an arbitrary wavenumber
is found to be unstable. This is inconsistent with Ray-
leigh’s exact results, which show that only the perturba-
tions with k < 1 are unstable. In the second approxima-
tion with respect to δ, only long-wavelength perturba-
tions are unstable. If the wavenumber k is greater than
a certain value depending on Re, the flow is unstable.
The approximate expression for the rate of perturbation
growth agrees with Rayleigh’s results up to terms of
order k2.

In this paper, a somewhat different approach is
applied. Consider the new variables

The equations for the coefficients η(0), η(2), u0, 0, and
u0, 2 in the expansions were written out in [32]. Multi-
plying the equations for η(2) and u0, 2 by δ2; summing
the resulting relations with the equations for η(0) and

η δ2mη 2m( )
z t,( ),

m 0≥
∑=

u δ2 n m+( )
r

2n
u

n 2m,
z t,( ),

n m 0≥,
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v δr δ2 n m+( )
r

2n
v

n 2m,
z t,( ),

n m 0≥,
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p pa– δ2 n m+( )
r

2n
p

n 2m,
z t,( ),

n m 0≥,
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η 1 ε kz( )cos O ε2( ) at t+ + 0,= =

φ η 0( ) δ2η 2( )
O δ4( ),+ +=

w u
0 0, δ2

u
0 2,

O δ4( ).+ +=



990 CHESNOKOV
u0, 0, respectively; and dropping the terms of order δ4,
one obtains the equations for φ and w:

(2)

(3)

These equations are obtained without introducing
different reference lengths for r and z; i.e., δ ≡ 1 here.
This approach is advantageous in that the necessary
algebra is somewhat simplified. The presentation below
shows that, in contrast to [32], the boundary that sepa-
rates the stable and unstable perturbations calculated in
the linear approximation with respect to ε is identical
with that predicted by Rayleigh’s theory; i.e., the flow
is unstable when k < 1.

APPROXIMATE EQUATIONS 
FOR PERTURBATION AMPLITUDES: THE FIRST 

APPROXIMATION

Assume that the jet surface is perturbed at the initial
moment t = 0, while the flow velocity remains unper-
turbed. Then, equations (2) and (3) must be supple-
mented with the following initial conditions:

(4)

(5)

Here, ε is a small parameter (initial perturbation ampli-
tude). A derivation of (4) can be found in [3]. It is based
on the condition that the jet volume is conserved.
A solution to the formulated problem is sought in the
following form:

Substituting these expansions into equations (2) and
(3) and the initial conditions and collecting the coeffi-
cients of like powers of ε on both sides, one obtains the

φt φzw
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---φwz
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φt 0 at t 0.= =

φ 1 εφ1 ε2φ2 O ε3( ),+ + +=

w εw1 ε2
w2 O ε3( ).+ +=
equations and initial conditions for the first and second
approximations. In the linear approximation in ε,

(6)

(7)

(8)

(9)

The equations for φ2 and w2 are

(10)

(11)

The initial conditions for these equations are

(12)

(13)

A solution to equations (6) and (7) subject to initial
conditions (8) and (9) can be sought in the form

Here, i is the imaginary unit. Define

For h1 and f1, one obtains the following expressions:

Here, ω1(k) and ω2(k) are the roots of the quadratic
equation

(14)

and the coefficients α0 and β0 are calculated as
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In the linear approximation, the exact solution to the
problem of capillary stability of a viscous liquid jet was
obtained by Rayleigh. It can be used to find a relation
for calculating the perturbation growth rate ω. As
shown in [32], this relation can be written as

(15)

where  = k2 + ωRe; F(k) = kI0(k)/I1(k); and I0(k) and
I1(k) are the first- and second-order modified Bessel
functions of the first kind, respectively.

Representing F(k) as a series in powers of k and
retaining only the leading two terms, one obtains

By using this relation, the sum of the second and
third terms on the left-hand side of (15) is transformed
into

On the other hand,

Thus, equation (4) for small k can be derived from
(15) by neglecting terms of order k6. Calculations show
that the exact and approximate solutions are in good
agreement, even at relatively large k. For example, at
Re = 10 and k = 0.9, the exact and approximate values
of ω are 0.17547 and 0.17555, respectively.

SECOND APPROXIMATION

In the second approximation, a solution to equations
(10) and (11) subject to initial conditions (12) and (13)
can be sought in the form

To write formulas for h2, g2, and f2 in a more com-
pact form, the following notation is introduced:
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The expressions for g2, h2, and f2 are

Here, ω3 = ω1(2k); ω4 = ω2(2k); and the coefficients ci

(i = 1, …, 5) are calculated as

The second approximation of the exact solution
(i.e., the solution obtained without approximating the
governing equations) is not known for a viscous liquid.
However, the results obtained can be compared with the
exact solution for an inviscid liquid. In this case, ω2 =
−ω1, ω4 = –ω3 and the first two terms in the expansions
of ωi in powers of k are identical with the exact solu-
tion, so that the exact and approximate solutions differ
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by a quantity on the order of k6. The leading two terms
in the expansion of c3 in powers of k are given by

A comparison with the corresponding term obtained
in [5] shows that this expansion agrees with the exact
one up to terms of order k2. However, in the expressions
for Ωi (i = 1, 2), which have the form

in the approximation considered, the leading terms in
the expansions of the first and second terms in powers
of k are mutually canceled. For this reason, only the
leading terms turn out to be correct both in the expan-
sions of Ωi and in the expansions of ci (i = 1, 2). None-
theless, the results of calculations of the jet based on the
exact and approximate relations are in good agreement.

EFFECTS OF WAVENUMBER AND REYNOLDS 
NUMBER ON THE DEVELOPMENT 

OF CAPILLARY WAVES

The relations obtained above can be used to exam-
ine the effect of viscosity on the evolution of perturba-
tions. The strongest effect of fluid viscosity is on the
duration of the interval from the initial moment of per-
turbation to the moment when the liquid jet breaks up
into droplets. To find this quantity, the following
method was applied. With the Reynolds number and the
initial perturbation amplitude held constant, the coordi-
nates of points of the liquid jet surface were calculated
at various times. The moment at which the radial coor-
dinate of one of the points vanishes was assumed to be
the desired quantity. It should be pointed out here that,
generally, the formulas obtained above are not applica-
ble at such moments. At the moment of jet breakup, the
neglected terms in the expansions in powers of the
small parameter are of the same order as the retained

c3
1
2
---

63
32
------k

2
O k

4( ).+ +=

Ωi 4ωi
2 ω3

2
–=

30
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k0.4
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0.6 0.8

Fig. 1. Time to jet breakup versus wavenumber for various
values of the Reynolds number: Re = (1) ∞; (2) 10; (3) 5.
terms. Nevertheless, the derived formulas can be used
to obtain realistic estimates for the quantities of interest
here. It is well known that the time to breakup of a liq-
uid jet into droplets can be quite accurately predicted
not only by the weakly nonlinear theory, but also by the
linear theory. The geometry of the jet at the moment of
its breakup can be quite accurately calculated by means
of perturbation theory as well. This is demonstrated by
comparing the results of a calculation of the size of the
main and satellite droplets depending on the wavenum-
ber with experimental results [8].

Figure 1 shows that, at each value of the Reynolds
number, the time to jet breakup first decreases as the
wavenumber is increased and then reaches a minimum
and increases. As expected, the effect of the Reynolds
number increases with wavenumber. This is explained
by the increase in the spatial derivatives of fluid veloc-
ity toward shorter wavelengths, which enhances the
effect of viscosity on the flow behavior. The location of
the minimum of the time to jet breakup plotted versus
wavenumber shifts leftwards with increasing Re.
A similar trend is predicted by the linear theory. Calcu-
lations (not represented in this figure) show that the
time to jet breakup strongly depends on the initial per-
turbation amplitude. The graphs shown here are plotted
for the initial perturbation amplitude ε = 0.01.

Figure 2 shows that the Reynolds-number depen-
dence of the time to breakup is weak in a wide range of
Re. Only at relatively low Re does the time to breakup
steeply increase. In this domain, the instability devel-
ops very slowly and can be described by the results
obtained here even better.

The jet geometry at times close to the moment of
breakup into droplets strongly depends on the wave-
number. The jet radius plotted versus longitudinal coor-
dinate for long-wavelength perturbations has a second
maximum, starting from a certain moment (see Fig. 3).
This phenomenon is not observed for short-wavelength
perturbations (Fig. 4). The appearance of the second
maximum is an indication of satellite-droplet formation

30
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t

Re
4 6 8 10

40

50

60

70

80

Fig. 2. Time to jet breakup versus Reynolds number for
k = 0.4.
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between the main droplets. As the Reynolds number is
increased, the magnitude of the second maximum in the
graph of jet radius versus longitudinal coordinate at the
moment of jet breakup decreases (Fig. 5), and the point
where the jet radius vanishes shifts toward the midpoint
of the segment bounded by the two principal maxi-
mums. At a certain value of Re, the second maximum
disappears completely. This means that the size of sat-
ellite droplets decreases with increasing Re, and the jet
breakup ceases at a certain Re. The fluid viscosity sup-
presses the development of the second harmonic, and
satellite droplets do not form. Figure 6 shows the
dependence of the jet radius on ζ = kz for various k. It
demonstrates that, as the wavenumber increases, the
point where the jet radius vanishes at the moment of jet
breakup shifts toward the center, while the jet radius at
the midpoint of the segment bounded by the two prin-
cipal maximums decreases. Therefore, the size of satel-
lite droplets decreases with the perturbation wave-
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Fig. 3. Jet shape at Re = 10 and k = 0.4 for t = (1) 18, (2) 19,
(3) 20, (4) 21, and (5) 21.9305.

Fig. 5. Jet shape at the moment of breakup for k = 0.4 and
Re = (1) 100, (2) 5, (3) 3, and (4) 0.3.
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length. Note that the results presented here are consis-
tent with the numerical results reported in [15].
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Abstract—The structure of the capillary–relaxation motion spectrum in a liquid with a charged free surface
has been investigated taking into account the viscosity relaxation effect. On the basis of numerical analysis of
the dispersion equation for the wave motion in a viscoelastic incompressible liquid, it is shown that for a given
wave number the range of characteristic relaxation times in which relaxation-type wave motion exists is limited
and expands with increasing wave number. The growth rate of instability of the charged liquid surface markedly
depends on the characteristic relaxation time and increases with its growth; in liquids with elastic properties,
the energy dissipation rate of capillary motion is enhanced. At a surface charge density that is supercritical for
the onset of Tonks–Frenkel instability, both purely gravitational waves and waves of a relaxational nature exist.
© 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The problem of capillary motion in a liquid exhibit-
ing elastic properties is of interest in connection with
numerous scientific and technological applications, and
for this reason it has often been a focus of attention
(see, for example, [1–7] and the references therein).
Nevertheless, many issues remain unclear because of
the known awkwardness of the theoretical solution, the
variety of possible ways of choosing nondimensional
parameters in the boundary problem, and the large
number and complicated structure of nondimensional
parameters arising in the final solution [1–7].

The essence of the problem is that under a suffi-
ciently brief (t ≤ 10–5 s) external impact even non-New-
tonian liquids show elastic properties: they are first
deformed elastically, and, after the impact ends, the
residual shear stresses persists, relaxing in time t ~
10−5 s [8] and setting the liquid in motion. This effect
manifests itself in capillary wave motion, because, at a
wavelength of ~10 µm, the wave period is already com-
parable with the characteristic relaxation time of the
elastic stress. As shown in [1–7], taking account of the
elastic properties of a liquid leads to an appreciable
complication of the capillary motion spectrum, result-
ing in limitation of the capillary wave spectrum and
an  increase in the wave energy dissipation rate due to
the formation of high-frequency phonon-type wave
motions.

In the consideration below, the entire analysis (in
contrast to [3], where the dispersion equation for the
wave motion of a viscoelastic liquid was derived in the
framework of a microstructure approach and statistical
mechanics methods) will be performed using a contin-
1063-7842/00/4508- $20.00 © 20995
uous medium model on the basis of hydrodynamics
equations for a viscous liquid (as was done in [1–2,
4−7]), on the assumption that the viscoelastic proper-
ties of a liquid can be accounted for by introducing
complex viscosity through the Maxwell formula [9]

representing a Fourier image of the exponential varia-
tion of the viscosity of a viscoelastic liquid with time.
In this expression, ν0 is a coefficient of kinematic vis-
cosity at zero frequency, ω is the complex frequency, t∗
is the characteristic time of viscosity relaxation, and i is
the imaginary unit.

The analysis in [1–7] of the influence of the viscos-
ity relaxation effect on the relationships governing cap-
illary motion in a liquid with a charged free surface is
mainly qualitative, as it was performed either by
asymptotic methods [1–5, 7] or by numerical methods
capable of establishing only qualitative relationships
[5, 6]. In the latter case, ways are sought of first deriv-
ing a nondimensional dispersion equation for use in
numerical calculations. In the numerical analysis in
[5, 6], the frequency and the enhancement and damping
rates of capillary motion in a liquid were converted
using either the wave motion frequency in an ideal liq-
uid with a charged free surface or the characteristic
damping rate of the capillary waves. In both cases, the
objective was to diminish the number of nondimen-
sional physical parameters describing the capillary
motion of the liquid in the system considered. As a vari-
able argument of the sought-for complex frequencies, a
complex parameter was used, which depended on the
wave number, the capillary pressure, and the pressure

ν ν0 1 iωt*–( ) 1–
,=
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exerted by an electrostatic field on the free surface of
the liquid, that is, ultimately, on the physical character-
istics of the liquid, namely, its density, capillary con-
stant, surface tension, coefficient of viscosity, and the
surface density of the electrical charge. From this anal-
ysis, it is hard to find out just how the characteristics of
capillary motion in a liquid depend on parameters such
as wave number k or surface density κ of the electrical
charge. Our purpose is to overcome this limitation.

1. The problem will be solved by calculating the
spectrum of capillary waves on the charged flat surface
of an ideally conductive liquid of infinite depth border-
ing a vacuum. The liquid, which has density ρ, viscos-
ity ν, and surface tension coefficient σ, is exposed to
gravitational field g and electrostatic field E0 (the sur-
face density of the charge induced by field E0 on the
unperturbed free surface of the liquid is connected to E0
by the well-known relation E0 = 4πκ. The strength of
the electrostatic field E0 near the liquid surface is deter-
mined by the potential difference between the free sur-
face of the liquid with zero potential and a flat counter-
electrode positioned parallel to the unperturbed flat sur-
face of the liquid at distance b and with a potential
Φ = V.

Let us choose a Cartesian coordinate system with
the z-axis directed vertically upward, nz || –g (nz is a unit
vector of coordinate z), and x-axis along the propaga-
tion direction of a flat capillary wave (~exp(ikx – iωt)).
Let us also assume that the plane z = 0 coincides with
the unperturbed free surface of the liquid. The function
ζ(x, t) = ζ0exp(ikx – iωt) describes a small perturbation
of the equilibrium flat surface of the liquid caused by
thermal capillary wave motion with a very small ampli-
tude (ζ0 ~ (kT/σ)1/2), where k is the Boltzmann constant,
T is the absolute temperature, and U(r, t) is the velocity
field of the liquid motion caused by the free surface
perturbation ζ(x, t) and having the same order of small-
ness [10].

Let us derive the spectrum of the capillary waves in
a liquid for the given conditions. The mathematical for-
mulation of the problem includes the linearized
Navier–Stokes equation for an incompressible liquid;
the incompressibility condition; the Laplace equation
for the electrical field potential near the liquid surface;
and the corresponding boundary conditions

(1)

(2)

(3)

(4)

(5)

∂U
∂t
-------

1
ρ
---—P U( )– ν∆U g,+ +=

div U 0,=

∆Φ 0, E —Φ,–= =

z ∞: U– 0,= =

z 0: ∂ξ x t,( )
∂t

-------------------– Uz+ 0,= =
(6)

(7)

(8)

(9)

In the above expressions, n and t are the normal and
tangential unit vectors relative to the free liquid surface,
respectively; P(U) is the pressure within the liquid due
to the capillary motion of the liquid and is of the first
order of smallness in ζ; and PE(ζ) and Pσ(ζ) are addi-
tional pressures on the free liquid surface related to the
electrical forces and the surface tension forces, respec-
tively, both of them resulting from the perturbation
ζ(x, t) = Aexp(ikx – iωt) of the equilibrium flat surface
of the liquid caused by the capillary wave motion and
of the first order of smallness in ζ [11, 12],

(10)

As the liquid is viscous, to describe the flows in it,
we divide the velocity field U = U(r, t) into two compo-
nents in accordance with the Helmholtz theorem: the
potential component (with the velocity field potential
ψ(r, t)) and the vortex component (described by the
stream function ϕ(r, t). Then the expression for pres-
sure field P(U) in the liquid can be written in the form

(11)

2. We will be seeking a solution of problem (1)–(6)
in the following form [12]:

Here A, B, and C are constants and l is the characteristic
linear scale of the spatial variation of the vortex compo-
nent of the velocity field.

We follow the reasoning in [12] and add an extra
term to the dynamic boundary condition for the normal
component of the stress tensor to take into account the
electric field pressure. Then, expressing the viscosity as
a function of frequency ν = ν0/(1 – iωt∗ ) in accordance
with the Maxwell formula, we obtain the dispersion
relationship characterizing the capillary motion of a

n t—( )U t n—( )U+ 0,=

P U( )– ρgζ 2ρνn n—( )U PE ζ( )– Pσ ζ( )+ + + 0,=

Φ 0,=

z b: Φ V .= =

Pσ ζ( ) σ∂2ζ
∂x

2
--------, PE ζ( )– 4πε 1– κ 2

kζ .= =

P U( ) ρ∂ψ
∂t
-------– ρgζ .–=

Ux x z t, ,( ) ikB kz–( )exp lC lz–( )exp–( )=

× ikx iωt–( ),exp

Uz x z t, ,( ) kB kz–( )exp– ikC lz–( )exp+( )=

× ikx iωt–( ),exp

l
2

k
2

iων 1–
.–=
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viscoelastic liquid with a charged free surface in the
dimensional form

Introducing the nondimensional variables

we obtain

(12)

where a is the capillary constant of the liquid; W is the
Tonks–Frenkel parameter characterizing the free-sur-

ω
ν02ik

2

1 iωt
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2
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4
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Fig. 1. Nondimensional real ReY(X) and imaginary ImY(X)
frequency components as functions of the nondimensional
wave number X calculated for β = 1, W = 0, and τ = 0.11.
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face stability of the liquid with respect to its own
charge; and the capillary–gravitational wave with the
wave number k at the liquid surface sustains instability
at W > (k + k–1) [13, 14].

3. Variations of the real ReY = ReY(X) and imagi-
nary ImY = ImY(X) components of nondimensional fre-
quency Y on nondimensional wave number X calcu-
lated numerically using Eq. (12) for various character-
istic relaxation times τ and the Tonks–Frenkel
parameter W are presented in Figs. 1–8.

The numerical calculations show (Figs. 1, 2) that at
W = 0 (with no charge at the free surface of the liquid)
the viscosity relaxation effect leads to the emergence of
a periodic relaxation motion (branch 4), as well as two
aperiodic relaxation motions (branches 5, 6). Branches
1–3 correspond to the capillary–gravitational liquid
motions arising in nonviscous liquids as well. When the
parameter τ increases to 0.17 (Fig. 2), the aperiodic
motion 3 vanishes and curves 1 and 4 combine into a
single capillary–relaxation periodic motion 7; an aperi-
odic motion 8 also arises as curves 2 and 5 combine.
A further increase in τ does not change the general
qualitative picture of the capillary motions; however, it
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Fig. 2. Same as in Fig. 1 for τ = 0.17 and W = 0.
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decreases the frequency of the wave motions described
by branch 7 and the damping rates of all branches.

The presence of an electrostatic field near a liquid
surface (due to the surface charge) with subcritical
strength in the sense of the Tonks–Frenkel instability
(W = 1), while not affecting the frequency of the relax-
ation oscillations, decreases the capillary wave fre-
quencies, and at larger τ (τ = 0.3), branch 1 combines
with 4 and branch 2 with 5.

At a supercritical strength of the electrostatic field
(W = 3, see Figs. 3, 4), the locus corresponding to curve
1 describing capillary–gravitational waves shrinks con-
siderably and curve 2 corresponding to capillary–grav-
itational aperiodic motions penetrates into the half-
plane ImY > 0, which is evidence of the onset of aperi-
odic instability of the surface perturbations in the cor-
responding range of wave numbers k.

Increasing the parameter τ does not change the
spectrum of the waves, which became unstable because
of supercritical charge; however, it causes an increase
in the growth rates of unstable motions and decreases
the damping rates of stable motions.

For a highly supercritical Tonks–Frenkel parameter
W = 6 (Fig. 5), expansion of the spectrum of the waves
experiencing instability is observed (branch 2) both
into region X < 1 of the gravitational waves and into
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Fig. 3. Same as in Fig. 1 for τ = 0.3 and W = 3.
region X > 1 of the capillary waves; in addition, the ape-
riodically damping motions 3 and 5 vanish.

Thus, when the parameter W is subcritical for the
onset of Tonks–Frenkel instability, gravitational, capil-
lary, and relaxation waves exist; at supercritical param-
eter W, the capillary waves are unstable in a limited
range of wave numbers. At the same time, the gravita-
tional waves (k ! 1), as well as the relaxational waves,
remain and the spectra of the wave numbers character-
izing these wave motions are contiguous (Figs. 3–5).

Investigation of the dependence of the instability
growth rates (the section of branch 2 at ImY > 0 in
Figs. 3–5) on nondimensional wave number X for vari-
ous values of characteristic relaxation time τ of the
elastic stresses in a liquid was carried out in [13] using
the same dimensionless parameters as in the present
study. It was found that this dependence is very strong
and that the growth rate increase reaches 100% of the
growth rate value at W = 6 when τ varies from 0.11 to 1,
in contrast to the conclusions based on qualitative
investigations made in [5, 6], where even such a strong
effect was obscured by the complicated form of the
dimensionless parameters and arguments used.

The numerical investigation of the growth rate of
unstable capillary motions in a liquid as a function of
nondimensional characteristic time τ of the viscosity
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Fig. 4. Same as in Fig. 1 for τ = 1 and W = 3.
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relaxation carried out for various wave numbers X and
various W show (Fig. 6) that the larger W and X are, the
faster the growth rates increase with τ.

The dependence of the components ReY = ReY(W)
and ImY = ImY(W) of the nondimensional frequency Y
on the Tonks–Frenkel parameter W calculated for X = 1
and different values of τ shows that taking into account
the viscosity relaxation effect with τ = 0.1, in compari-
son with the purely gravitational–capillary wave
motions described by branches 1–3, leads to the onset
of three aperiodic relaxation motions 4–6, one of which
(4) becomes periodic when τ is increased to 0.3 (Fig. 7).

A further increase in characteristic relaxation time τ
leads to convergence of the relaxation (branch 4) and
capillary–gravitational (branch 1) periodic motions, as
well as of aperiodic motions 2 and 5, accompanied by
the formation of compound capillary–relaxation
motions.

The real ReY = ReY(τ) and imaginary ImY = ImY(τ)
components of nondimensional frequency Y as a func-
tion of nondimensional characteristic time τ of the vis-
cosity relaxation calculated for Y = 1 and W = 3 are
shown in Fig. 8. Branch 1 describes variation of the
instability growth rate with τ: the growth rate slowly
increases with increasing τ. Branch 2 describes the
periodic relaxation motions existing, according to

–1.5

1

2

4

6

ImY

7.5

0

–7.5

5 10 x

1

1

4

ReY

5 10 x
0

1.5

4

Fig. 5. Same as in Fig. 1 for τ = 1 and W = 6.
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Fig. 8, within a limited range of τ values. Branches 3–
5 describe the aperiodic relaxation motions in a liquid.
Fig. 8 and numerical calculations carried out for other
values of W show that the periodic relaxation motions
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Fig. 6. Plot of the nondimensional growth rate of the insta-
bility vs. the nondimensional characteristic time τ of the vis-
cosity relaxation. (1) X = 1 and W = 3; (2) X = 1 and W = 6;
(3) X = 5 and W = 6.
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Fig. 7. Nondimensional real ReY(W) and imaginary ImY(W)
frequency components as functions of the Tonks–Frenkel
parameter W for X = 1 and τ = 0.3.
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exist within a limited interval of τ values whose extent
is inversely proportional to the Tonks–Frenkel parame-
ter W. As the wavelength increases, the range of τ in
which the relaxation oscillations exist expands and the
instability growth rate of the capillary waves increases.

CONCLUSIONS
In summarizing the above consideration of the vis-

cosity relaxation influence on the relationships in the
capillary motions of a liquid with a charged free sur-
face, let us note the following:

The instability growth rate for the branch of capil-
lary motions unstable with respect to the surface charge
strongly depends on the characteristic time of viscosity
relaxation and on the surface charge density. For suffi-
ciently large surface charge densities (parameter W),
the instability growth rate increases appreciably with
an increase in the nondimensional characteristic relax-
ation time τ.

The range of wave numbers in which surface insta-
bility with respect to the surface charge is observed is
governed only by the nondimensional Tonks–Frenkel
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Fig. 8. Nondimensional real ReY(τ) and imaginary ImY(τ)
frequency components as functions of the nondimensional
characteristic time τ of the viscosity relaxation for X = 1 and
W = 3.
parameter W and does not depend on the characteristic
time of viscosity relaxation, although the wave number
of the most unstable wave at W = const slowly increases
with increasing τ.

At a fixed value of the wave number k = const, the
range of characteristic relaxation times τ in which peri-
odic solutions exist is limited; however, it expands with
increasing wave number k.

For large enough characteristic relaxation times τ,
the branches of the capillary–gravitational and relax-
ation waves combine into a single compound motion
existing at any wave number k, including those corre-
sponding to purely gravitational waves (k  0).

As the characteristic relaxation time τ decreases, the
damping rates of relaxation-type capillary motions in
the liquid rapidly increase.
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